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Abstract

In this thesis, a numerical method is developed for simulating non-

isothermal multiphase flows, which are important in many technical

applications such as crystal growth and welding. The method is based

on the arbitrary Lagrangian Eulerian method of Li (2013). The inter-

face is represented explicitly by mesh lines, and is tracked by an adap-

tive moving unstructured mesh. The P2−P1d finite element method

(FEM) is used for discretisation and the incompressible Navier-Stokes

equations are solved by the uzawa method.

Firstly, a thorough study is presented on the method’s capability

in numerically representing the force balance condition on the in-

terface. An inaccurate representation of this condition induces the

non-physical spurious currents, which degrade the simulation accu-

racy especially when the viscous damping is weak (small Ohnesorge

number, Oh). For the example of a circular/spherical droplet, the

interfacial tension and the associated pressure jump are exactly bal-

anced numerically and thus the static Laplace solution exists in our

method. The stability of this solution is examined numerically. The

amplitude of the dimensionless spurious currents is found to be around

10−15 for Oh ≥ 10−3. Another benchmark test is the axisymmetric

oscillation of a freesurface droplet/bubble. The simulation results are

in good agreement with the analytical solution for Oh = 10−3. This

is by far the first successful simulation of droplet/bubble oscillation

with such weak viscous damping and it demonstrates the ability of

our method in simulating flows with strong capillary forces.
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Secondly, a numerical treatment of interface topology changes is incor-

porated into our method for studying problems with interface breakup.

Thanks to the adaptive mesh generator, the thin region between the

interface boundary and another boundary consists of one layer of el-

ements. The interface topology change is performed once the mini-

mum distance between the two boundaries falls below a pre-set scale

lbreakup. The numerical implementation is verified through two differ-

ent examples: dripping faucet and droplet coalescence. Remarkably

good agreement has been obtained with the experimental results. The

simulation of the low Oh dripping problem shows both the accuracy

and robustness of our method. The simulation of droplet coalescence

demonstrates the great advantage of our method in solving problems

with a large disparity in length scales.

Finally, an FEM solver for temperature is developed and the non-

isothermal effects are included in our method for the purpose of sim-

ulating non-isothermal multiphase flows. The modified method is

validated to be accurate through three benchmark examples: natural

convection in a cavity, thermocapillary convection of two layers, and

droplet migration subject to a temperature gradient. Our method is

then applied to investigate the liquid bridge breakup with thermocap-

illary effect. The non-isothermal liquid bridge breakup in the viscous

and inertial regimes are studied. It has been found that the inertial

regime breakup exhibits different pinchoff shapes as the Capillary

number increases, and that the viscous regime breakup is accelerated

by the thermocapillary motion.
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Chapter 1

Introduction

1.1 Background

Multiphase flow consists of two or more immiscible components, such as

air/water and oil/water. It is a subject rich with fascinating physics; it is also

ubiquitous in many technical applications and in the natural world, examples

including ink-jet printing, cavitation, the formation of rain drops, spray, and at-

omization. The key element of multiphase flow is the presence of an interface

separating different phases. Many physical properties, for example density and

viscosity, are discontinuous across the interface. The interface also possesses lo-

calised properties, the most prominent of which is the interfacial tension σ. It

represents the magnitude of force per unit length normal to a cut in the interface

(Davis, 1987), and it results in the discontinuity of the stress tensor on the in-

terface. Furthermore, owing to the fact that the interface is a moving boundary,

the evolution of the interface is coupled with the velocity field and pressure, and

all of these must be determined simultaneously (Davis, 2002).

In non-isothermal multiphase flows, not only does the heat transfer have to

be considered, but also the temperature dependence of important fluid proper-

ties. As a result, the fluid density and the interfacial tension vary spatially and

temporally. If gravity is taken into consideration, the density variation leads to

buoyancy forces. The variation of interfacial tension results in shear stresses that

act on the interface and induce flow motion along the interface. In general, the in-

terfacial tension decreases with increasing temperature. Figure 1.1 illustrates the

1



1. INTRODUCTION

Figure 1.1: Thermal-driven Marangoni forces induce interfacial flow towards the

cold side (larger interfacial tension). Due to mass conservation, fluid in the bulk

moves towards the warm end. The image is taken from http://iss.jaxa.jp/

en/kiboexp/theme/first/marangoni/

effect of non-uniform interfacial tension in a slot. As interfacial tension is larger

in regions where the temperature is lower, fluid on the interface is pulled from

the warmer region towards the cooler region. Due to mass conservation, the bulk

fluid moves towards the warmer side. This effect is known as the Marangoni effect

(Scriven and Sternling, 1960), which can also be triggered by other mechanisms,

such as surface active molecules (surfactants), electric and magnetic fields. The

thermal driven Marangoni flow is the main focus of this thesis and is typically

referred to as thermocapillary flow.

Both the buoyancy and thermocapillary effects are present in non-isothermal

multiphase flows on earth, with the thermocapillary flow often overshadowed by

the buoyancy driven flow. However, for small geometry and microgravity envi-

ronments, the thermocapillary flow usually dominates. For example, it plays an

important role in technical processes including thin film rupture in heat transfer

devices, the propagation of flames over liquid fuels, the texturing of surfaces in

magnetic storage devices, the behaviour of welding pools, and crystal growth in

semiconductor materials (Schatz and Neitzel, 2001). Recently it has also been ap-

plied to manipulate droplet motion in microfluidic devices (Darhuber and Troian,

2005).

2
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1.2 Overview of thermocapillary flow

This thesis is motivated by the importance of thermocapillary flow in countless

industrial applications. For the in-depth understanding of thermocapillary flow,

we develop a numerical method for simulating non-isothermal multiphase flows.

This method is based on the existing method for isothermal multiphase flows.

Non-isothermal effects are incorporated and the modifications are validated. The

modified method is then applied to study the effect of thermocapillary motion

in the breakup of liquid bridge. Before introducing our method, we first review

the literature for previous research on thermocapillary flow , and then provide an

overview on numerical methods for multiphase flows.

1.2 Overview of thermocapillary flow

Figure 1.2: A Sketch of the cohesive forces for molecules on the surface and within

the bulk fluid by De Gennes et al. (2004).

First, we would like to give a brief introduction to the physical origin of the

surface tension σ. As shown in Figure 1.2, the molecule in the midst of the fluid

is exposed to cohesive forces (as visualised by arrows) from all its neighbours in

all directions, resulting in zero net force. In contrast, the molecule on the surface

loses half its cohesive interactions, and is in an unfavourable energy state. If

the cohesion energy per molecule is U inside the bulk, a molecule sitting at the

interface finds itself short of roughly U/2. The surface tension is a direct measure

of the energy shortfall, defined as the amount of energy required to increase

the surface area by one unit. The interfacial tension between two immiscible

fluids can be defined likewise. Since the fluctuations of the interface thickness

are of the order of a mere Ångström, in fluid mechanics under the continuum

3



1. INTRODUCTION

assumption, the interface is usually modelled as a moving boundary with zero

thickness. The interfacial tension then has the mechanical definition stated in

the previous section.

Cohesive forces decrease with an increase of molecular thermal activity, e.g.

an increase in the system temperature. A higher temperature corresponds to

lower energy shortfall on the interface, and thus a lower surface tension. Eötvös

(1886) came up with the Eötvös rule:

σ =
k(Tc − T )

V 2/3
(1.1)

where V is the molar volume, Tc is the critical temperature and k the Eötvös

constant. Later a nonlinear relation was proposed (Guggenheim, 1945). How-

ever, for simplicity it is conventional to adopt the linear relationship in studying

thermocapillary flow. As shown in Figure 1.3, though the interfacial tension of

water in contact with air does not depend on temperature strictly linearly, a

linear relationship is a good approximation.

Figure 1.3: The interfacial tension between air and water decreases with an in-

creasing temperature. This relationship can be approximated as a linear one.

This image is from Karbalaei et al. (2016).
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1.2 Overview of thermocapillary flow

Figure 1.4: Fluid motion is induced in a thin liquid layer by temperature gradient

perpendicular to the interface. This image is from Charru (2011).

Early studies on thermocapillary flow focus on the instabilities triggered by

temperature inhomogeneity. According to whether the imposed temperature gra-

dient is perpendicular or parallel to the interface, Davis (1987) classified these

instabilities into (1) Marangoni instability (perpendicular) and (2) hydrothermal

instability (parallel).

An example of the Marangoni instability, a thin liquid layer heated from be-

low, is illustrated in Figure 1.4. Assuming a disturbance creates a hot spot on the

interface, there is a net surface traction away from the hot spot, and as the fluid is

viscous, fluid near the hot spot is dragged away. Thus an upflow beneath the hot

spot is created due to mass conservation. The rising fluid coming from the warm

end can maintain the heat excess at the hot spot given that the temperature

gradient is large enough. The resulted convection, called the Marangoni-Bénard

convection, was first observed by Bénard (1901). The dimensionless Marangoni

number (to be defined later) is used to characterise the strength of the thermo-

capillary motion. Pearson (1958) conducted the first linear stability analysis on

this problem and found the critical Ma number for the onset of the steady con-

vection with different heating condition on the bottom boundary. In his paper,

the interface was considered non-deformable and gravity was neglected. Following

his work, two-layer system (Scriven and Sternling, 1960), buoyancy(Smith, 1966),

and interface deformation (Davis, 1983; Davis and Homsy, 1980) were taken into

consideration. The post-instability behaviour was examined by nonlinear analysis

(Cloot and Lebon, 1984; Scanlon and Segel, 1967; Vanhook et al., 1997).

When a temperature gradient is imposed parallel to the interface, the cor-
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1. INTRODUCTION

(a) (b)

∇ T

∇ σ

Figure 1.5: Sketches of the velocity profile for (a) linear-flow and (b) return-flow

basic state.

responding surface tension gradient is created and tangential forces are induced

along the interface. Smith and Davis (1983a,b) considered a two-dimensional thin

liquid layer. Two basic states were obtained, the linear-flow of an infinite hori-

zontal layer and the return-flow for a layer confined at both ends, as illustrated

in Figure 1.5. Assuming a flat interface, two instabilities associated with the two

basic states were identified: (1) the hydrothermal instability which grows in the

form of propagation of waves; (2) the previously discussed Marangoni instability

induced by the basic state in which temperature is higher at the bottom. With

the interface deformation involved, a surface-wave instability was found. Subse-

quent investigations on such instabilities have been extended to the axisymmetric

configuration such as a liquid bridge or a capillary jet. A liquid bridge is a liquid

column held between two coaxial solid disks, and a capillary jet is a liquid column

of infinite length. Xu and Davis (1983, 1984, 1985) revealed the appearance of

hydrothermal wave in the two configurations.

The liquid bridge is a configuration simplified from the floating zone crystal

growth process. Figure 1.6 illustrates schematically the full floating zone process

and the half-zone liquid bridge configuration. The unprocessed materials pass

through the ring heater, melts, and re-solidifies into a single crystal. As most

impurities are more soluble in the melt than the crystal, the molten zone carries

the impurities away with it, and the purity of the single crystal is significantly

improved. The quality of the formed crystal highly depends on the homogeneity

of the local temperature field and is affected by the thermocapillary motion.
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1.2 Overview of thermocapillary flow

Figure 1.6: Illustration of the floating zone crystal growth process and the sim-

plified half zone configuration (Kawamura et al., 2012). The indicated flow is

induced by the interfacial tension gradient on the melt/gas interface.

The thermal-driven convective flow promotes the non-uniform dopant distribution

and crystal striations, both of which degrade crystal quality (Anilkumar et al.,

1993; Eyer and Leiste, 1985). Due to its application in crystal growth, the non-

isothermal liquid bridge has been extensively investigated with the focus on the

transition to the oscillatory convection state. A number of non-axisymmetric

instabilities have been identified through linear stability analysis and numerical

simulation (Kuhlmann and Rath, 1993; Rupp et al., 1989; Wanschura et al., 1995),

and microgravity experiment were performed in space to exclude the influence of

gravitational effect (Nakamura et al., 1998). For more details on analytical and

experimental investigations of thermocapillary instabilities, the reader is referred

to the reviews by Davis (1987) and Schatz and Neitzel (2001).

Thermocapillary instabilities are detrimental in the example of crystal growth,

but they can be beneficial in some other applications. For instance, the interfacial

tension gradient along the interface due to temperature variation can be used for

controlled break-up of liquid jet or sheet. Nahas and Panton (1990) used a modu-

lated laser to induce periodic temperature perturbation on the interface of a long

cylindrical liquid thread and found that the onset of the classic Rayleigh-Plateau

instability was delayed. Dijkstra and Steen (1991) studied the stabilising effect
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of thermocapillarity on the breakup of an annular film. Mashayek and Ashgriz

(1995) conducted numerical investigation to study the competition between ther-

mocapillary breakup and capillary breakup. A series of theoretical investigations

on thermal-induced rupture of liquid sheet have been carried out by Bowen and

Tilley (2012, 2013); Tilley and Bowen (2005). There are some more applied ex-

amples. For instance, Furlani and Hanchak (2011) proposed a design of an ink-jet

printer with a heater at the nozzle such that a periodic temperature fluctuations

is induced along jet interface; De Saint Vincent et al. (2015) applied a laser beam

to destabilise liquid thread in a confined microchannel for the developing of a

microfluidic flow focusing device.

A new contribution of this thesis is the investigation on the role played by

the thermocapillary effect in the breakup of a liquid bridge. As explained before,

this configuration is of great importance in the floating zone method, and its

breakup also occurs in some applications such as welding. Furthermore, previous

investigations on interface breakup with thermocapillary effect focused on a long

thread subject to a periodic temperature variation. We expect that the effect of

thermocapillary motion may be different in the breakup of a liquid bridge, as the

liquid bridge is confined and the imposed temperature variation is linear.

1.3 Overview of interface-tracking methods

Numerical methods are important tools for investigating multiphase flows.

The interface, the key feature of multiphase flows, causes considerable difficulties

in numerical simulations. As it is constantly moving, the location of the interface

is not known as a priori and has to be determined as part of the solution. On the

other hand, some physical phenomena at/across the interface are so important

that the interface actively influences and sometimes dominates the bulk flow.

The interface and the bulk flow are tightly coupled and a numerical method

for multiphase flows has to address the three issues: (1). how to represent the

interface? (2). how to describe the evolution of the interface? and (3). how to

deal with the boundary conditions on the interface as well as the discontinuous

physical properties?
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1.3 Overview of interface-tracking methods

Various numerical methods have been developed to tackle the three issues.

Depending on the relation between the interface and the computational mesh, we

classify these methods into two categories: (1) the interface-conforming method

where the interface is represented by lines of the mesh system; and (2) the non-

conforming method where the interface intersects with mesh lines. The method

presented in this thesis falls into the first category (Li, 2013), and some popu-

lar methods including front-tracking method, Volume of Fluid (VOF) method,

Level-Set (LS) method and phase-field method (Ding et al., 2007; Scardovelli and

Zaleski, 1999; Sussman et al., 1994; Tryggvason et al., 2001) belong to the second

category. Those methods are illustrated schematically in Figure 1.7: (a) shows

the interface-conforming method where the interface (red solid line) separates two

phases drawn in blue and green respectively, while (b) and (c) shows two types of

non-conforming methods: front-tracking and volume-tracking (or front-capture).

In the schematic diagram for non-conforming method, the interface drawn in red

line does not align with mesh lines drawn in blue.

The distinct difference between front-tracking and volume-tracking methods

is that the interface is explicitly represented by a series of lines connecting marker

points (black dots in Figure 1.7(b)) in front-tracking, while in volume-tracking

such as VOF, LS and phase-field, the interface is implicitly captured through a

marker function. The marker function in VOF and phase-field method is the

volume fraction of one phase in each cell, and that in LS method is the level-set

function representing the signed distance from the interface. Due to the implicit

nature of volume-tracking method, evaluation of some geometric quantities such

as interface curvature is not as straightforward as in front-tracking method. The

principal advantage of implicit representation is that volume-tracking method can

easily deal with severe deformations of the interface and is capable of handling in-

terface topology changes automatically (Lafaurie et al., 1994; Zaleski et al., 1995).

Some excellent multiphase simulations of atomization which involve large amount

of interface topology changes were performed with volume-tracking methods (see

the examples of VOF in (Chen et al., 2013) and LS in (Desjardins et al., 2008)).

In the interface-conforming method, the interface always coincides with lines

of the mesh system and each cell (or element in finite element terminology) con-

tains only one type of fluid, as shown in Figure 1.7(a). The computational mesh
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Figure 1.7: Schematics of different interface-tracking methods: (a) an interface-

conforming method using an unstructured mesh; (b) a front-track method where

the interface nodes are drawn in black dots; (c) a front-capture/volume-tracking

method. The interface are all in red. The red solid line in (a) and (b) indicates

that the interface is explicitly tracked, while the red dashed line in (c) indicates

that the interface is implicitly captured through a marker function.

is updated constantly to follow the evolution of the interface. A robust mesh al-

gorithm is required to maintain this interface-conforming mesh system (Bejanov

et al., 2008; Li, 2013; Quan and Schmidt, 2007). The use of unstructured mesh

enhances the flexibility for generating high-quality meshes. Note that the mesh

in non-conforming methods can also be adaptive, for instance, the VOF solver

Gerris (Popinet, 2003) and the phase-field method with adaptive meshing (Yue

et al., 2006). Similar to front-tracking, the explicit representation of the interface

requires explicit treatment of interface topology changes. Extra efforts are re-

quired on mesh manipulation to split and re-connect the interface (Cristini et al.,
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1.3 Overview of interface-tracking methods

2001; Quan et al., 2009).

Although the practical implementation is technically difficult, the interface-

conforming method possesses tremendous advantages in dealing with physics tak-

ing place at/across the interface. Firstly, as each cell/element of the mesh contains

only one type of fluid, fluid properties like density and viscosity are well defined

in each cell. The discontinuity of fluid properties across the interface is then re-

solved exactly. By contrast, in non-conforming methods, fluid properties are not

clearly defined in cells intersected by the interface and have to be approximated.

When the ratio of fluid properties is very large, this approximation is highly in-

accurate. This will not cause a problem under most circumstances. However

accurate representation of fluid properties is crucial in some cases. For example

in the lubrication flow within the air film between two colliding droplets, the

usual averaging operation leads to a gross over-estimation of the viscosity and

hence of the lubrication force. As a consequence, the non-conforming method

might predict a wrong outcome of droplet collision (Li, 2016). Secondly, thanks

to the explicit representation of the interface, geometrical quantities such as the

unit normal vector and curvature are calculated directly similar to front-tracking

method. Finally, the force balance condition on the interface can be incorporated

naturally into finite volume or finite element formulations in conforming methods

(Li, 2013; Li et al., 2005). The numerical discretization is simply an evaluation of

a boundary integral and can be calculated accurately. In contrast, the numerical

implementation of the force balance condition is not as straightforward in the

non-conforming method. The interfacial tension is often modelled by the Contin-

uum Surface Force (CSF) method (Brackbill et al., 1992) in which the interfacial

tension is interpreted as a continuous effect across the interface rather than as a

boundary condition.

A frequently encountered issue in multiphase flow simulation is the spurious

currents, which are mainly induced by the inaccuracy in the numerical implemen-

tation of the force balance condition on the interface. The numerical imbalance

on the interface keeps feeding energy into the system and can not be damped by

viscous and/or numerical dissipation in some cases where the interfacial tension

is dominantly strong. Consequently, the numerical simulation may stop prema-

turely. The non-physical velocities are best illustrated with the example of a
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Figure 1.8: Spurious currents around a circular bubble in a VOF simulation. The

image is from Popinet and Zaleski (1999)

circular/spherical droplet in equilibrium without external forcing. They appear

as vortices near the droplet interface as illustrated in Figure 1.8 and can not be

reduced with spatial refinement. As a result, the static Laplace solution which

is seemingly trivial can not be obtained numerically. Popinet and Zaleski (1999)

made a correction on the pressure gradient calculation by taking account of the

pressure jump across the interface in a front-tracking method. The modified

method achieved very accurate results and the spurious current was reduced in

the Laplace drop test. Another remarkable work in reducing spurious current was

carried out by Renardy and Renardy (2002). Aiming to achieve the discrete bal-

ance between the interfacial tension and the pressure jump, they dedicated great

efforts on improving the flow solver, curvature estimation and the approximation

of the interface shape. The spurious currents were effectively reduced in their

improved VOF method. The key to these successes in reducing spurious currents

is to obtain the discrete balance between the interfacial force and the associated

pressure jump. A series of work have recently been carried out with the aim

to recover such balance numerically (Abadie et al., 2015; Francois et al., 2006;

Herrmann, 2008; Popinet, 2009). The recent progress of interface non-conforming
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1.3 Overview of interface-tracking methods

methods on surface tension modelling was summarised by Popinet (2018). To the

best of our knowledge, there are few in-depth studies of spurious currents for the

interface-conforming methods.

Although a number of numerical methods for multiphase flows have been

developed and well validated, there are many multiphase flow problems still chal-

lenging to solve. One such challenge is the flow within the inter-droplet gas film

during the head-on collision of two droplets. Experimental observations have ex-

hibited the important role this gas film plays in determining whether the outcome

of head-on collision is bounce or coalescence (Qian and Law, 1997). During the

entire course of coalescence of droplet with radius ∼ 100 µm, the flow within

the gas film experiences a wide range of flow regimes, from continuum lubrica-

tion flow, to rarefied flow, and to intermolecular flow where the van der Waals

force dominates and the rupture of the gas film takes place. This requires the

numerical method not only include modelling of the rarefied gas effects and van

der Waals force, but also to resolve all length scales involved, spanning a range

from larger than the droplet size (> 10−4 m) to length scale where intermolecular

forces prevail (∼ 10−8 m). It is not yet feasible to capture all length scales in

an non-conforming method even with excessive mesh refinement. The automatic

handling of interface topology change may lead to a false predict of the collision

outcome or collision instant. In a few attempts using VOF and LS, whether and

when droplet coalescence takes place were determined artificially by an empirical

parameter or model (Kwakkel et al., 2013; Pan et al., 2008). The numerical study

of Li (2016) using interface-conforming method successfully simulated this prob-

lem without introducing any adjustable parameters. Lack of numerical treatment

for interface topology changes, only droplet collision with a bounce outcome was

simulated. However the fact that their method accurately resolves 6 orders of

magnitude of length scales with no artificial parameters demonstrates the ro-

bustness of their method and the advantage of interface-conforming method in

this problem.

The numerical method in this thesis is an interface-conforming method. It

is based on the method developed through a series of publications by Étienne

et al. (2006) and Li (2013, 2016). The mesh lines conforms the interface all the

time, and an adaptive mesh generator is employed to satisfy this condition. The
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popular Taylor-Hood P2 − P1 element is used for finite element discretization.

The conventional approach that the pressure is continuous all over the domain

(P1 − C0) is sufficient for single-phase flow or free-surface flow as in Étienne

et al. (2006), but not for multiphase flows due to the pressure jump on the

interface. Li (2013) introduced a new element space for pressure discretization,

called the P1d element space, such that the pressure has one value in the bulk

fluid, double values on the interface and triple value on triple junction points

where three interfaces intersect. This novel element space has been validated in

three-phase simulations and has been applied to the simulation of binary droplet

collisions with a bounce outcome. We further verify the capability of the method

in accurately representing the force balance condition on the interface in this

thesis.

The aim of this thesis is first to develop an accurate numerical method for

simulating two-dimensional/axisymmetric non-isothermal multiphase flows, and

then to apply the method to study the break-up of liquid bridge with the ther-

mocapillary effect. For this purpose, we require a robust treatment of interface

topology changes and an accurate numerical implementation of thermocapillary

flow. The numerical development will be detailed in later chapters.

1.4 Thesis outline

The remainder of this thesis is structured into six chapters:

In Chapter 2, the adaptive mesh generator is introduced. It is the foundation

of our numerical method. This mesh generator developed by Li (2013) is designed

to produce a high-quality unstructured mesh specifically for multiphase flows. It

enables us to generate mesh according to the need and provides us with full

control of the mesh.

In Chapter 3 we present the basics of finite element methods (FEM) through

the example of a Poisson solver. Both theoretical aspect and practical imple-

mentation of FEM are detailed. This chapter ends with the evaluation of the

accuracy of an FEM Poisson solver.

Chapter 4 illustrates the numerical procedures in developing an FEM solver

for the incompressible Navier-Stokes (NS) equations. The finite element formula-
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1.4 Thesis outline

tion and discretisation are presented in detail. The discretised NS equations are

solved with the uzawa method (Glowinski and Le Tallec, 1989) on an adaptive

moving mesh. The interfacial tension is treated as a boundary integral. We prove

that our method achieves the discrete force balance on the interface on the circu-

lar/spherical interface. The accuracy of our method is then examined through two

benchmark examples: the static Laplace solution of a spherical/circular droplet

and the axisymmetric oscillation of a droplet/bubble.

In Chapter 5 we develop an algorithm to split and re-connect the interface.

Using the adaptive mesh generator, we incorporate this algorithm seamlessly into

the finite element code. Two completely different examples involving interface

topology changes are used to validate our numerical implementation: droplet

formation from a faucet and coalescence in binary droplet collision. The accuracy

of our numerical method and the robustness of our adaptive mesh generator are

also tested in this chapter.

Chapter 6 is dedicated to non-isothermal multiphase flows. An FEM solver for

temperature is added into the existing NS solver and our method is extended to

include thermal-driven buoyancy force and thermocapillarity. The modifications

are validated using three benchmark tests: natural convection in a square cavity,

thermocapillary convection in two layers, and droplet migration subject to a

vertical temperature gradient. The method is then applied to study the effect of

thermocapillary flow on the break-up of a liquid bridge.

Chapter 7 concludes the thesis with main findings and potential future work.
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Chapter 2

Mesh generator

The interface is the key factor in numerical simulation of multiphase flows.

In interface-conforming method such as ours, the interface always coincides with

boundaries of elements. The mesh is required to be constantly adjusted to follow

the interface evolution. Hence, maintaining a valid and high-quality mesh is the

cornerstone for the success of our numerical method.

There are many excellent mesh generator available, such as BAMG (Hecht,

1998), GRUMMP (Ollivier-Gooch, 2010), Gmsh (Geuzaine and Remacle, 2009)

and Triangles (Shewchuk, 1996). These mesh softwares allow the prescription of

boundary position, but not the vertices on the boundaries. This could lead to

a problem for multiphase flow: the vertices on the interface boundary are not

the same for both sides. In order to have full control over the computational

mesh, our in-house adaptive mesh generator has been developed by Li (2013). In

this chapter, the mesh generator is detailed: we start with operations performed

on the mesh and in the second part, the principles for mesh manipulation are

presented.

2.1 Moving mesh and local re-arrangement

In an interface-conforming method, the mesh is adapted to the interface at

each time step. Two strategies are possible to realise this, either completely

remeshing occasionally or locally re-arranging constantly. The former seems more

computationally efficient, but its shortcoming is that too many interpolations
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2. MESH GENERATOR

would take place at one instance. This will lead to a slightly large deviation

from the pre-interpolation velocity field. Therefore the accuracy of the numerical

method is undermined. To avoid this, we choose to constantly re-arrange the

mesh such that a moderate number of remesh operations occur at each instance.

We employ an unstructured mesh in our method. The difference from a struc-

tured one is the irregular connectivity between elements. This leads to high space

inefficiency as the connectivity information between elements is stored explicitly.

However, unstructured meshes are more flexible and can fit complicated bound-

aries, making the treatment of boundary conditions very simple and accurate.

The triangular element is chosen in our method since it is the simplest element.

The vertex on the interface moves with its actual velocity while most interior

vertices stay fixed. As the interface evolves, the new positions of interface vertices

are computed in a Lagrangian manner:

xn+1 = xn + un(xn)∆t, (2.1)

in which x and u denote position and velocity of a vertex, ∆t is the time step and

the superscript represents time level of u and x. An example of interface mesh

movement is shown in Figure 2.1(a) where the interface nodes are drawn in red

and their tracks are in green.

After the interface is updated, triangulation near the interface becomes dis-

torted, as illustrated in Figure 2.1(b). To improve this, we re-locate interior nodes

via Laplacian smoothing. This technique adjusts the location of a vertex q to the

arithmetic mean of its adjacent vertices:

q =
1

N

N∑
i=1

pi, (2.2)

in which pi is the coordinate of the i-th adjacent vertex of q and N is the number

of adjacent nodes of vertex q. This smoothing technique is applied vertex by ver-

tex, and in practice, we repeat this process 10 times in one smoothing step. The

Laplacian smoothing can avoid the occurrences of acute triangles and produce a

high-quality mesh as shown in Figure 2.1(c).
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2.1 Moving mesh and local re-arrangement

(a) (b) (c)

Figure 2.1: Examples of mesh moving and smoothing: the mesh is drawn as

blue solid lines and the interface nodes are drawn as red circular nodes: (a) the

interface nodes move to their new position in a Lagrangian manner with green

arrows representing their tracks; (b) the interface has been updated while some

triangles near the interface become distorted; (c) the quality of the triangulation

is improved through smoothing.

Edge Swapping

Edge Splitting

Edge Collapsing

Figure 2.2: Schematics of three basic local remesh operations: edge swapping

(top), edge splitting (middle) and edge collapsing (bottom). In the collapsing

sketch, the collapsed edge is drawn as a thick solid line.
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Apart from smoothing, three other operations are available to improve mesh

quality, namely edge swapping/splitting/collapsing. These are local mesh ar-

rangement and involve changes in the mesh topology. The schematics of the

three operations are drawn in Figure 2.2.

Edges not on the interface are swapped based on the Delaunay condition

(Bern and Plassmann, 1999) to avoid sliver triangles. If a vertex lies within the

circumcircle (dotted lines in the top panel of Figure 2.2) of another triangle,

the common edge of the two triangles is then swapped to another position. To

preserve a valid interface definition, edge swapping is not performed on interface

edges.

Edge splitting/collapsing are used to refine/coarsen the mesh as shown in the

middle and bottom panel in Figure 2.2. To keep the interface topology, we do not

perform edge collapsing on edges which connect two separate interfaces. When

an edge on the interface is split into two, the new position of the new vertex is

calculated by a local spline algorithm (Dritschel, 1988) in order to preserve the

smoothness of the interface.

To determine whether edge splitting/collapsing should proceed, a quantitative

description of mesh quality is necessary, which is presented in the next section.

2.2 Adaptive mesh principles

Our numerical method is designed for multiphase flows where the surface

tension plays an important role. Thus we must resolve areas near interface with

sufficiently fine mesh when generating computational mesh. Meanwhile, regions

which are far away from the interface are less demanding in mesh resolution.

Applying a coarser mesh in these regions can significantly reduce the overall

computing costs. In this section, we introduce rules that our mesh generator

must follow to meet the above requirements.

Like many previous authors (Freitag and Ollivier-Gooch, 1997; Yue et al.,

2006; Zheng et al., 2005), we introduce a local characteristic length scale ls as the

desirable mesh size at each vertex of the mesh. On the interfaces, ls at a vertex
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2.2 Adaptive mesh principles

q is defined to be proportional to the inverse of the local interface curvature κ:

ls(q) =
α

κ(q)
, (2.3)

in which α is the mesh scale, a constant controlling the mesh quality on the inter-

face. This formulation ensures a decent mesh resolution at high-curvature regions

near the interface, where the surface tension force is strong. The evaluation of

κ(q) is explained later. To guarantee that a flat interface can still be resolved

by a sufficient number of points, we set a maximum linterface for nodes on the

interface. Then ls for vertex q on the interface is rewritten as:

ls(q) = min(
α

κ(q)
, linterface). (2.4)

We can set ls flexibly on other boundaries according to need in a similar manner,

for instance a curved wall boundary or inlet/outlet boundaries.

To control the mesh between two interfaces or other types of boundaries, the

distance ld between vertices on two different boundaries is taken into considera-

tion:

ls(q) = min(ls, βld(q)), (2.5)

where β is a constant, ls is from equation (2.4) and ld(q) is the minimum distance

from vertex q on the interface to all vertices p on another interface or boundary.

The length scale function is then extended to all vertices: for a given vertex

q in the mesh, ls(q) must satisfy:

ls(q) ≤ ls(p) +G|q− p|, (2.6)

in which G is a constant, called the mesh size gradient and |q−p| is the distance

between the two vertices. This formulation allows mesh size to grow exponentially

with distance from the interface so that the total number of vertices is reduced. A

fast marching algorithm (Sethian, 2001) is used to realise this condition starting

from vertices with the smallest length scale, normally interface vertices with high

curvature.

To prevent mesh from becoming over-refined or under-refined, ls is restrained

by the global maximum and minimum mesh size:

lmin ≤ ls ≤ lmax. (2.7)
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With ls defined for every vertices in the computational domain, the desired

length scale of an edge is taken as the average ls of its two vertices. We require

that the actual length l of an edge satisfy the condition:

rmin ≤
l

ls,edge
≤ rmax, (2.8)

where the rmax and rmin are the maximum and minimum ratios allowed: edge

collapsing (or splitting) is performed when the ratio is smaller than rmin (or

greater than rmax). In practice, it is found that rmin = 1.0 and rmax = 2.8 work

well to produce mesh with minimum angle ≥ 20◦, except probably triangles in

thin gaps between two interfaces.
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Figure 2.3: The aimed interface is a circle depicted in red solid line while the

interface edges are drawn in blue solid line: (a) shows the initial mesh; (b) is the

mesh after several refinement steps; (c) illustrates the final mesh and the contour

of the mesh size density ls.

With these rules, it is sufficient to generate a desired mesh for a given config-

uration. Figure 2.3 illustrates an example of mesh generation from the simplest

configuration for a circular interface of radius 1 within a rectangular box of size
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5× 10. In this example, α = 0.05 and G = 0.2. Initially, the interface only con-

sists of two edges (blue solid lines in Figure 2.3(a)), while the expected circular

interface is drawn in red solid lines. We first determine ls on interface vertices us-

ing equation (2.4) and then determine ls on interior vertices using equation (2.6).

The mesh is then refined through edge swapping/splitting/collapsing. The inter-

face is refined by more edges, for example 8 edges in Figure 2.3(b). This process

does not stop until the desired mesh is achieved as shown in Figure 2.3(c).

By varying α we can obtain meshes with different resolutions. We take the

above mesh with a circular interface for example. The number of interface edges

Ninterface and the total number of vertices Ntotal are documented in Table 2.1,

together with the corresponding mesh scale α and mesh size gradient G. As

shown in the table, Ninterface is generally proportional to the inverse of α. We

plot Ntotal against 1/α in Figure 2.4, with G fixed at 0.2. The total number of

vertices is found to increase linearly with the inverse of α: the data from the table

drawn as circular point almost all fall onto the dotted line representing 1.6/α.

Table 2.1: Mesh scale α and the corresponding mesh vertices number

α G Ninterface Ntotal

0.1 0.2 16 114

0.05 0.0 32 3417

0.05 0.1 32 381

0.05 0.2 32 207

0.025 0.2 64 381

0.0125 0.2 128 764

0.00625 0.2 256 1521

The mesh size gradient G enables us to simulate a large domain at a relatively

smaller computing costs. When G = 0, the mesh is almost uniform everywhere

within the computational domain. As shown in Table 2.1, increasing G from 0

to 0.1 reduces the total number of vertices significantly by nearly 90% while the

interface is still resolved by 32 edges. A mesh with a relatively larger G is coarse

everywhere except in regions near the interface. Practically the choice of G is
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Figure 2.4: Data in Table 2.1 is drawn in black circular point with mesh size

gradient G kept at 0.2. The dotted line is 1.6/α and the data point are almost

all on the dotted line.

between 0.15 and 0.25 such that the computing costs are reduced without loss in

simulation fidelity.

The constant β in equation (2.5) is an important mesh parameter especially

when two boundaries get very close. For instance, Figure 2.5 shows the compu-

tational mesh used in a simulation of the head-on collision of two droplets with

equal size. Due to symmetry, only half of the domain is simulated. The bot-

tom boundary is the symmetry boundary while the red solid line represents the

interface. One distinctive feature of this mesh is that there are only one layer

of triangles (see the close-up in Figure 2.5) to model the thin gas film between

the two boundaries. In this example, the distance d between the two boundaries

are used to control the desired length scale ls through equation (2.5). Since the

interface is very flat (small curvature), curvature on the interface has little in-

fluence on ls according to equation (2.4). If β is chosen to be a number large

enough, for instance β = 1/2, according to equation (2.8), edges shorter than

rminls = βd > 1/2d are collapsed. Hence there will be no edge shorter than d

between the two boundaries and we manage to achieve only one layer of triangles

in the gap of two boundaries.
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2.2 Adaptive mesh principles

Zoom

(a) (b)

Figure 2.5: Example of a single-layer triangles between two boundaries: (a) shows

the mesh of a colliding droplet above the symmetry plane. The red solid line

represents the air-droplet interface, and the black solid lines the computational

mesh. (b) is the close-up of the mesh in a region within the lubrication layer

where triangles are small within the gap.

In our simulation, we frequently use β = 2 and then only edges of length

larger than rmaxβd = 5.8d are split, resulting in very slim triangles in the gap

regions. The thin gap regions between interfaces are in general lubrication layers

(Zhang and Law, 2011), where the velocity profile is parabolic and can be resolved

exactly by second-order polynomial (in our method, velocity is quadratic in the

element). Hence the use of one layer of slim triangles can avoid over-fined mesh

and significantly enhance the efficiency of the method.

Another advantage of keeping a single layer of triangles between the two inter-

faces is that it make topology changes of the interface easier to implement. How

the mesh generator handles interface topology change is discussed in Chapter 5.
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Chapter 3

Basics of finite element method

The governing equations for fluid flow and heat transfer are a set of partial

differential equations (PDEs). In most cases, it is not possible to find an analytical

solution to these PDEs. This is particularly so for nonlinear PDEs on an irregular

domain with complicated source terms and boundary conditions, as commonly

seen in engineering applications. If the solution cannot be obtained in closed

form, we approximate the solution with numerical techniques. The finite element

method (FEM) is a flexible and powerful technique to find numerical solutions

to PDEs. It is based on the weak formulation of PDEs. To obtain the weak

formulation, we multiply a test function on both sides of a PDE and integrate it

over the whole domain. The weak formulation can be transformed into algebraic

equations through finite element discretisation and then solved numerically. In

this chapter, we illustrate the basics of FEM through an example: the numerical

solution of a Poisson equation. We start with the theory of FEM, then move on

to the practical implementation and conclude this chapter with a numerical test

of Poisson solver.

3.1 Theory of FEM

We consider a Poisson equation:

−∇ · (k∇u) = f in Ω, (3.1)
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3. BASICS OF FINITE ELEMENT METHOD

with boundary conditions:

u = g on ∂ΩD, (3.2a)

∂u/∂n = h on ∂ΩN , (3.2b)

in which u, f, k, g and h are scalar functions, Ω is a bounded open domain, ∂ΩD is

the Dirichlet boundary, and ∂ΩN is a Newman boundary, as illustrated in Figure

3.1. Note that ∂ΩN = ∂Ω \ ∂ΩD.

∂ΩN: ∂u / ∂n = h

∂ΩD: u=g

Ω

Figure 3.1: Example of domain Ω and two types of boundaries ∂ΩN (drawn in

blue) and ∂ΩD (drawn in red).

3.1.1 Weak formulation

We first multiply equation (3.1) with a test function v and then integrate it

over Ω: ∫
Ω

−∇ · (k∇u)vdΩ =

∫
Ω

DVDΩ. (3.3)

Next, we use the product rule on the left hand side:∫
Ω

(−∇ · (kv∇u) + k∇u · ∇v)dΩ =

∫
Ω

fvdΩ. (3.4)

By applying the divergence theorem onto the first term in the left hand side

of equation (3.4), we obtain:∫
∂Ω

−kv∂u
∂n
dl +

∫
Ω

k∇u · ∇vdΩ =

∫
Ω

fvdΩ. (3.5)
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3.1 Theory of FEM

The boundary integral in the above equation (3.5) can be split into:

−
∫
∂ΩD

kv
∂u

∂n
dl −

∫
∂ΩN

kv
∂u

∂n
dl. (3.6)

The test functions are chosen so that v is zero on Dirichlet boundaries, and

thus the first term of the above equation vanishes. While on the Neumann bound-

ary, ∂ΩN , ∂u/∂n = h according to equation (3.2b). To summarise, the weak

formulation has the form below:∫
Ω

k∇u · ∇vdΩ =

∫
Ω

fvdΩ +

∫
∂ΩN

khvdl. (3.7)

Equation (3.1) suggests that the solution u should be twice differentiable, while

equation (3.7) only involves the first derivative of u. For this reason, equation

(3.7) is called as the weak form of the original PDE. The arbitrariness of the

test function is essential in the weak form. If the weak formulation holds for all

test functions from a sufficiently large set, then equation (3.1) must hold. For

more mathematical theories about the weak formulation, the reader is referred

to Gockenbach (2006).

3.1.2 Galerkin finite element method

FEM is generalised from the classical variational and weighted-residual meth-

ods (Reddy and Gartling, 2010). These methods are based on the idea that the

solution u can be represented as a linear combination of unknown parameters ci

and appropriately selected functions φi in the entire domain. The function φi,

called the approximation functions, are selected to satisfy the boundary condi-

tions. The parameters ci are determined such that the PDE holds, often in a

weighted-integral sense, e.g. the weak formulation holds. The shortcoming is

that φi can be difficult to construct due to the complex boundary conditions and

geometry in real-world problems.

The basic idea of FEM is to view the domain as a collection of “simple sub-

domains”, or called finite elements. In this way, it is possible to construct the

approximation function for arbitrary boundary conditions. In our method, trian-

gular elements are used. Figure 3.2 shows an example of triangulation in domain

Ω.

29



3. BASICS OF FINITE ELEMENT METHOD

∂ΩN: ∂u / ∂n = h

∂ΩD: u=g

Figure 3.2: Finite element triangulation of domain Ω.

(a) (b)

Figure 3.3: (a) A piecewise linear approximation. This image is from https://

en.wikipedia.org/wiki/Finite_element_method; (b) A “tent-like” basis func-

tion φi. This image if from http://hplgit.github.io/INF5620/doc/notes/

fem-sphinx/main_fem.html.

In each element, the solution to the weak formulation is approximated by

low-degree polynomials. The simplest of them are functions which are piecewise

linear and continuous as shown in Figure 3.3(a). If xi, i = 1, ..., N , are nodes of

the triangulation, then a “tent-like” basis function φi can be defined associated

with it. As drawn in Figure 3.3(b), φi is linear in elements containing xi and
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3.1 Theory of FEM

vanishes outside these elements. Hence φi satisfies the below condition:

φi(xj, yj) = δij =

{
1 i = j

0 i 6= j
. (3.8)

The solution u is approximated as:

u ≈
N∑
i=1

uiφi(x, y), (3.9)

in which N is the total number of nodes and ui is the approximate solution at

node i.

In the Galerkin finite element method, we choose the test function φj, j =

1, ..., N , the same as the basis functions. The weak formulation equation (3.7) is

turned into:
N∑
i=1

Aijui =
N∑
i=1

Mijfi + gj, (3.10)

where

Aij =

∫
Ω

k∇φj · ∇φidΩ, Mij =

∫
Ω

φjφidΩ, gj =

∫
∂ΩN

kφjhdl. (3.11)

By varying j from 1 to N (but excluding ND Dirichlet boundary nodes), we

obtain a system of Nu (Nu is the number of unknown values and Nu +ND = N)

algebraic equations, written in matrix form:

Au = Mf + g. (3.12)

The matrix A is called the stiffness matrix, M is called the mass matrix and

their dimensions are both Nu × N . The vector u = (u1, u2, ... , uN)T is the

solution vector and f = (f1, f2, ..., fN)T is the load vector. Note that matrix

A and M are both sparse, as Aij and Mij are only non-zero when the node j

is adjacent to node i. The j-th element of vector g is only non-zero when node

j is located on the Neumann boundary. We rearrange the order of elements in

vector u such that the unknown values are listed first, followed by the known

values at Dirichlet boundary nodes: u = (uu
T uD

T )T in which the dimensions of

uu and uD are Nu× 1 and ND × 1 in respect. Correspondingly, we rearrange the
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3. BASICS OF FINITE ELEMENT METHOD

matrix A = (Auu AuD) where the dimensions of Auu and AuD are Nu×Nu and

Nu ×ND, respectively. Equation (3.12) becomes:

(Auu AuD)

(
uu

uD

)
= Auuuu + AuDuD = Mf + g. (3.13)

Moving the term AuDuD to the right hand side, we eventually obtain Auuuu =

Mf + g −AuDuD, a system of Nu linear equations with Nu unknown values to

be determined.

3.2 Practical implementation

Having introduced the theory of FEM, we now present how FEM is imple-

mented numerically in our method. One important part of the implementation

is to find the basis functions for a triangular element before assembling related

matrices and vectors.

x

y

1

2

3

(a) P1 basis functions are defined on three

vertices

x

y

1

2

3

4

5

6

(b) P2 basis functions are defined on three

vertices and three edge midpoints

Figure 3.4: Examples of P1 and P2 elements

P1 and P2 basis functions are used in our method and the corresponding

elements are called P1 and P2 element, as shown in Figure 3.4. They both satisfy

equation (3.8), vanishing at all nodes except the one they are associated with.
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3.2 Practical implementation

The difference is that the P1 basis function is linear within the element, while

the P2 basis function is quadratic. The P1 basis functions are defined on three

vertices, as illustrated in Figure 3.4(a). The P2 basis functions are associated

with three vertices and three edge midpoints, as shown in Figure 3.4(b).

The P1 finite element method uses the simplest linear functions of the form:

φ = a + bx + cy as basis functions. The shapes of the basis functions are shown

in Figure 3.5. The P2 basis function are quadratic in the element, with the form

ψ = a + bx + cy + dxy + ex2 + fy2. The shape of P2 basis function ψ1 and ψ4

are illustrated in Figure 3.6.

b

φ
1

φ
2

φ
3

Figure 3.5: P1 functions are linear in the element. The shape of P1 functions

in a triangular element is shaded (φ1, φ2 and φ3 from left to right). This figure

and the below figure are modified from the image from the 3D7 lecture note by

Li and Wells at CUED (Cambridge University Engineering Department).

In the real computations, the triangular elements are of arbitrary shape and

have different positions. To tackle this, a widely used strategy is employed to

transform all triangles on 2D x− y plane from a reference triangle with vertices

(0, 0), (0, 1) and (1, 0) on 2D s− t plane, as depicted in Figure 3.7. For simplicity,

we only consider triangular elements with straight edges. This transformation is

an affine transformation (J represents the affine mapping matrix):

(
x
y

)
=

(
x0

y0

)
+ J

(
s
t

)
, (3.14a)

J =

 ∂x

∂s

∂x

∂t
∂y

∂s

∂y

∂t

 =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
. (3.14b)
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b

ψ
1

ψ
4

Figure 3.6: P2 functions are quadratic in the element. The shape of P2 basis

functions defined on a vertex node 1 (in the left panel) and an edge midpoint

node 4 (in the right panel) are shaded.

s

t

x

y

0 1

2

0

1

2

Figure 3.7: Transformation of a reference triangle to an arbitrary triangle

The P1 basis functions ϕi(s, t) for each node defined in the P1 reference

triangle in Figure 3.8(a) are:

ϕ0(s, t) = 1− s− t, (3.15a)

ϕ1(s, t) = s, (3.15b)

ϕ2(s, t) = t, (3.15c)

and their gradients are:

∇ϕ0 = (−1,−1)T , (3.16a)

∇ϕ1 = (1, 0)T , (3.16b)
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s

t

Node0 (0,0) Node1 (1,0)

Node2 (0,1)

(a) The P1 Reference Triangle

Node0 (0,0) Node1 (1,0)

Node2 (0,1)

Node3 (0.5,0.5)
Node4 (0,0.5)

Node5 (0.5,0) s

t

(b) The P2 Reference Triangle

Figure 3.8: P1 and P2 reference triangles in s− t plane

∇ϕ2 = (0, 1)T . (3.16c)

The P2 basis function ϕi(s, t) for each node defined in the P2 reference triangle

in Figure 3.8(b) are:

ϕ0(s, t) = (1− s− t)(1− 2s− 2t), (3.17a)

ϕ1(s, t) = s(2s− 1), (3.17b)

ϕ2(s, t) = t(2t− 1), (3.17c)

ϕ3(s, t) = 4st, (3.17d)

ϕ4(s, t) = 4t(1− s− t), (3.17e)

ϕ5(s, t) = 4s(1− s− t), (3.17f)

and their gradients are:

∇ϕ0 = (−3 + 4s+ 4t,−3 + 4s+ 4t)T , (3.18a)

∇ϕ1 = (−1 + 4s, 0)T , (3.18b)

∇ϕ2 = (0,−1 + 4t)T , (3.18c)

∇ϕ3 = (4t, 4s)T , (3.18d)

∇ϕ4 = (−4t, 4− 4s− 8t)T , (3.18e)

∇ϕ5 = (4− 8s− 4t,−4s)T . (3.18f)
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With known basis functions, we can calculate the integrals
∫

Ω
∇ϕi · ∇ϕjdΩ

and assemble the stiffness matrix or other forms of integrals for other matrices

according to the need. By applying the inverse mapping matrix, ∂φi/∂x, ∂φi/∂y

can be calculated using the chain rule:

∇φi =


∂φi
∂x
∂φi
∂y

 =


∂s

∂x

∂t

∂x
∂s

∂y

∂t

∂y


 ∂ϕi

∂s
∂ϕi
∂t

 = J−T · ∇ϕi. (3.19)

in which

J−T =
1

det(J)

(
y2 − y0 y0 − y1

x0 − x2 x1 − x0

)
. (3.20)

The integrals over an arbitrary triangle in x− y plane are computed as:∫
Ω

∇φi · ∇φjdxdy =

∫
ΩR

(
J−T∇ϕi

)
·
(
J−T∇ϕj

)
det(J)dsdt, (3.21)

in which ΩR is the referenced triangle on s−t plane. The use of reference triangle

simplifies the calculation of integrals over an arbitrary triangle. The integration

over a reference triangle is numerically calculated by Hammer integration formu-

las, as listed in Appendix A.3.

More details regarding how FEM is implemented into our code are attached

in Appendix A.

3.3 An FEM Poisson solver

In this section, we consider a Poisson equation in two-dimensional ring domain

(x = r cos θ, y = r sin θ):

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 1, 1 < r < 2, (3.22a)

u|r=1 = 1 + cos2 θ, (3.22b)

u|r=2 = 1 + sin2 θ. (3.22c)

The analytical solution is:

u(r, θ) =
1

2
+
r2

4
+

3

4

(
1− lnr

ln2

)
− 1

6

(
r2 − 4

r2

)
cos 2θ. (3.23)
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−2 −1 0 1 2
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lmax = 0.2

−2 −1 0 1 2

lmax=0.1

−2 −1 0 1 2

lmax = 0.05

(b)

Figure 3.9: Results from left to right are from simulation with lmax = 0.2, 0.1

and 0.05 respectively. (a) shows the temperature contour and (b) shows the

corresponding computational mesh.

We have implemented a P2 finite element Poisson solver for this problem.

The ring domain is discretised using a mesh with a uniform mesh size density

(G = 0, ls = lmax), but the mesh is not necessarily uniform. We vary lmax for

different mesh resolution. The numerical solution for u is plotted in Figure 3.9(a),

and the corresponding computational meshes are shown in Figure 3.9(b). The

contour plot becomes smoother with a finer mesh (smaller lmax).

We document the maximum relative error compared to the analytical solution

of u in Table 3.1 and plot it against lmax in Figure 3.10. From the plot, we can

clearly see that the maximum relative error converges to zero with a decreasing

lmax and the data points almost all fall on the line 0.35l2max. This indicates that
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Table 3.1: Performance of P2 finite element Poisson solver

lmax total number of vertices maximum relative error (%)

0.2 106 1.048

0.1 310 0.313

0.05 1192 0.086

0.025 4541 0.026
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Figure 3.10: The maximum relative error of the numerical solution is plotted as

circular dots and the dashed line represents 0.35l2max.

the P2 finite element method converges to the analytical solution at a convergence

rate of 2. This can be explained by the fact that P2 basis function are quadratic in

each element, and we expect the error to be almost zero if the analytical solution

can be exactly represented by second-order polynomial.

In this problem, the boundary is curved, and the isoparametric P2 curved

finite element method has a better performance1. Since the midpoints are put on

1 We initially intended to implement an isoparametric P2/P1d finite element method
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3.3 An FEM Poisson solver

the curved boundary, the boundary condition is better represented numerically.

for solving Navier-Stokes equations with the interface tracked by piecewise curved seg-

ments. Later it is found that a lot of additional work were required as described in

the last paragraph in Section 4.2.5, We have evaluated the performance of an isopara-

metric P2 finite element solver for Poisson equation in our earlier work (Section 4.4 in

https://github.com/cz295/Thesis/blob/master/FYR.pdf)
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Chapter 4

FEM for multiphase flows

FEM has been introduced from its theoretical and practical aspects in the

previous chapter. In this chapter we demonstrate how FEM is applied to solve

multiphase flows on an adaptive moving mesh. The difference between multi-

phase flows from single-phase flows is the presence of the interface separating two

immiscible fluids. To resolve multiphase flows, not only do we need to determine

the flow in two phases simultaneously, but also to track the moving interface, and

to impose the boundary conditions correctly. In our method, the interface is ex-

plicitly represented by lines of the mesh system and the mesh is adapted to follow

the interface motion. The boundary conditions on the interface can be naturally

embedded in the weak formulation of the Navier-Stokes equation. Hence, FEM

based on the weak formulation has the tremendous advantage in handling the

interface boundary conditions.

We start this chapter with the mathematical formulations of multiphase flows.

Then the numerical procedures are illustrated step by step, including the finite

element discretization, Navier-Stokes solver, the arbitrary Lagrangian Eulerian

(ALE) method, and the numerical treatment of interfacial tension. We prove that

our method achieves the static Laplace solution of a circular/spherical droplet.

The numerical stability of this solution is further examined. At the end of this

chapter, the accuracy and robustness of our method is validated with a more

rigorous example: the axisymmetric droplet/bubble oscillation.
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4. FEM FOR MULTIPHASE FLOWS

4.1 Mathematical formulations for multiphase

flows

Phase 1: ρ1, µ1

Phase 2: ρ2, µ2

interface B.C.

(N-S equations)

(N-S equations)

Figure 4.1: Flow in the bulk fluid is determined by solving the Navier-Stokes

equations with boundary conditions on the interface matching simultaneously.

We consider two immiscible incompressible Newtonian fluids with density ρi

and viscosity µi (i = 1, 2). The density ratio and viscosity ratio are denoted as

η and λ:

η =
ρ2

ρ1

, (4.1a)

λ =
µ2

µ1

. (4.1b)

As illustrated in Figure 4.1, the two fluids are separated by an interface whose

location, shape and evolution are to be determined. Flow in the bulk fluid is

governed by the incompressible Navier-Stokes equations. The vector form of the

continuity equation reads:

∇ · u = 0, (4.2)
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and the momentum equation reads:

ρi
du

dt
= ∇T + f , (4.3)

where we use f for body force and T for the stress tensor:

T = −pI + µi
(
∇u +∇uT

)
. (4.4)

In the above equations, d(·)/dt is the material derivative:

d

dt
(·) =

∂

∂t
(·) + (u · ∇)(·). (4.5)

The density and viscosity is discontinuous across the interface, while the veloc-

ity is continuous across the interface. The most important boundary condition on

the interface is the force balance between interfacial tension and stress from both

sides of the interface. Since the interface is massless, a singularity will appear

without this condition. This condition is written as follows:

[T · n]+− = σκn, (4.6)

where [·]+− denotes the differences between both sides of the interface, σ is the

surface tension coefficient, κ is the interface curvature, and n is the unit normal

vector on the interface. The derivation of this condition is attached in Appendix

B. In this chapter we only consider uniform σ. This formulation is also applicable

to free-surface flow in which the ambient fluid is considered passive (T = −p0I,

and we normally set p0 = 0).

Since our mesh generator produces mesh in two-dimension, we only consider

two-dimensional or axisymmetric flow. The governing equations in the two-

dimensional x− z plane reads:

∂u

∂x
+
∂v

∂z
= 0, (4.7a)

ρi
du

dt
= −∂p

∂x
+

∂

∂x

(
2µi

∂u

∂x

)
+

∂

∂z

(
µi

(
∂u

∂z
+
∂v

∂x

))
+ fx, (4.7b)

ρi
dv

dt
= −∂p

∂z
+

∂

∂x

(
µi

(
∂u

∂z
+
∂v

∂x

))
+

∂

∂z

(
2µi

∂v

∂z

)
+ fz, (4.7c)
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where u and v are horizontal and vertical component of the velocity, and fx and

fz represent the body force in the horizontal and vertical direction, respectively.

The governing equations in the axisymmetric geometry (r−z plane) are listed

below:

1

r

∂

∂r
(ru) +

∂v

∂z
= 0, (4.8a)

ρi
du

dt
= −∂p

∂r
+

1

r

∂

∂r

(
r2µi

∂u

∂r

)
− 2µiu

r2
+

∂

∂z

(
µi

(
∂u

∂z
+
∂v

∂r

))
+ fr, (4.8b)

ρi
dv

dt
= −∂p

∂z
+

1

r

∂

∂r

(
rµi

(
∂u

∂z
+
∂v

∂r

))
+

∂

∂z

(
2µi

∂v

∂z

)
+ fz, (4.8c)

in which u and v represents the radial and axial velocity respectively, and fr and

fz denote the body force in the radial and vertical direction, respectively.

To define a multiphase flow system, a group of dimensionless numbers are

required apart from η and λ defined in equation (4.1). We characterise length and

velocity with L and U , respectively. Gravity is also considered with g representing

the gravitational acceleration. There are six physical variables (L, U , g, ρ, µ and

σ) and three dimensions (time, length and mass). Hence three dimensionless

numbers are needed. The commonly used numbers related to multiphase flows

are, the Reynolds number, the Weber number and the Froude number, defined

as below (Munson et al., 2014):

Re =
ρUL

µ
=
UL

ν
, We =

ρU2L

σ
, Fr =

U√
gL
. (4.9)

The Re number measures the relative importance of the inertial effect with re-

spect to the viscous stresses; the We number measures the relative magnitude

between the inertial effect and the interfacial tension; the Fr number represents

the measure of the inertial effect relative to the gravitational force. Some other

dimensionless numbers are defined for convenient description of a particular prob-

lem. Other dimensionless numbers used in this thesis are presented below.

In the study of droplet formation from a nozzle, Ohnesorge (1936) defined the

Ohnesorge number:

Oh =
µ√
ρσL

=

√
We

Re
, (4.10)
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which reflect the relative magnitudes of inertial, viscous and capillary effects.

McKinley and Renardy (2011) pointed out that the Oh number can also be

understood as a ratio between two time scales important in capillary jet breakup,

the Rayleigh timescale for breakup of an inviscid fluid jet and the viscocapillary

time scale characterising the thinning of a viscous thread. In the numerical study

of the static Laplace solution of a circular droplet, the Oh number was interpreted

by Popinet (2018) as the ratio of the capillary oscillating time scale and the viscous

dissipation time scale. In the above examples, L is chosen as the diameter of the

nozzle/jet/droplet.

The Capillary number is widely used in flows with droplet/bubble and flow

of thin films, defined as follows:

Ca =
µU

σ
=
We

Re
, (4.11)

which represents a measure of the viscous force relative to the interfacial tension.

In general, a small value of Ca corresponds to weaker deformation of the interface.

For example, the droplet shape is nearly spherical provided that the Ca number

is sufficiently small (Stone, 1994).

In the investigation on measuring the surface tension of liquid, Bond (1935)

defined a dimensionless number, later known as the Bond number

Bo =
ρgL2

σ
=
We

Fr2
, (4.12)

to measures the relative importance of the gravitational force to the capillary

force. It is a crucial dimensionless number in deciding the shape of a pendant or

sessile droplet (Middleman, 1995).

4.2 Numerical procedures

4.2.1 Weak formulation

The first step is to obtain the weak formulation of the governing equations.

In this section, we consider the governing equations in 2D geometry. The weak

formulation in axisymmetric geometry can be obtained similarly, as provided in
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Appendix C. The difference is that
∫

Ω
dΩ corresponds to

∫
Ω
dxdz in 2D geometry

and
∫

Ω
rdrdz in axisymmetric geometry, respectively.

We multiply a test function ψ on both side of equation (4.7a) to obtain the

weak form of the continuity equation:∫
Ω

(
∂u

∂x
+
∂v

∂z
)ψdxdz = 0. (4.13)

The momentum equation (4.7b, 4.7c) are multiplied by φ on both sides and

integrated by parts. The subscript i is dropped for convenience. We obtain:∫
Ω

(
ρφ
du

dt
+ 2µ

∂φ

∂x

∂u

∂x
+ µ

∂φ

∂z

∂u

∂z
+ µ

∂φ

∂z

∂v

∂x
− p∂φ

∂x

)
dxdz

=

∫
∂Ω

φ

[(
−p+ 2µ

∂u

∂x

)
nx + µ

(
∂u

∂z
+
∂v

∂x

)
nz

]
dl +

∫
Ω

fxφdxdz, (4.14a)

∫
Ω

(
ρφ
dv

dt
+ µ

∂φ

∂x

∂u

∂z
+ µ

∂φ

∂x

∂v

∂x
+ 2µ

∂φ

∂z

∂v

∂z
− p∂φ

∂z

)
dxdz

=

∫
∂Ω

φ

[
µ

(
∂u

∂z
+
∂v

∂x

)
nx +

(
−p+ 2µ

∂v

∂z

)
nz

]
dl +

∫
Ω

fzφdxdz. (4.14b)

In the above equations, nx and nz denote the horizontal and vertical components

of the normal vector on the boundary ∂Ω. Dirichlet boundary conditions for

velocity can be implemented easily by choosing φ suitably such that it vanishes

on the related Dirichlet boundary. Note that the Dirichlet boundary for u and

v may differ. For example, the up-and-down symmetry boundary is a Dirichlet

boundary for v (v = 0), but not for u. In most cases, the interface is the only

Neumann boundary we consider, and equation (4.14) is then written as:∫
Ω

(
ρφ
du

dt
+ 2µ

∂φ

∂x

∂u

∂x
+ µ

∂φ

∂z

∂u

∂z
+ µ

∂φ

∂z

∂v

∂x
− p∂φ

∂x

)
dxdz

=

∫
Γ

φ

[(
−p+ 2µ

∂u

∂x

)
nx + µ

(
∂u

∂z
+
∂v

∂x

)
nz

]+

−
dl +

∫
Ω

fxφdxdz, (4.15a)

∫
Ω

(
ρφ
dv

dt
+ µ

∂φ

∂x

∂u

∂z
+ µ

∂φ

∂x

∂v

∂x
+ 2µ

∂φ

∂z

∂v

∂z
− p∂φ

∂z

)
dxdz

=

∫
Γ

φ

[
µ

(
∂u

∂z
+
∂v

∂x

)
nx +

(
−p+ 2µ

∂v

∂z

)
nz

]+

−
dl +

∫
Ω

fzφdxdz, (4.15b)
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where the interface is denoted as Γ. By applying the force balance condition,

equation (4.6), the following equations are obtained:∫
Ω

(
ρφ
du

dt
+ 2µ

∂φ

∂x

∂u

∂x
+ µ

∂φ

∂z

∂u

∂z
+ µ

∂φ

∂z

∂v

∂x
− p∂φ

∂x

)
dxdz

=

∫
Γ

φσκnxdl +

∫
Ω

fxφdxdz, (4.16a)

∫
Ω

(
ρφ
dv

dt
+ µ

∂φ

∂x

∂u

∂z
+ µ

∂φ

∂x

∂v

∂x
+ 2µ

∂φ

∂z

∂v

∂z
− p∂φ

∂z

)
dxdz

=

∫
Γ

φσκnzdl +

∫
Ω

fzφdxdz. (4.16b)

The finite element discretisation for the above equations is presented in the

following section.

4.2.2 Spatial and temporal discretisation

The whole computational domain is discretised with a triangulation Th in

which the interface is represented by mesh lines. A piece of triangulation in

the interfacial region is drawn in Figure 4.2. The interface drawn in red divides

the computational domain into two parts, each of which consists of only one

phase. This triangulation is generated by our adaptive mesh generator described

in Chapter 2.

A semi-implicit method is used for the temporal discretisation. We first up-

date the location of the interface in a Lagrangian manner as previously explained

using Figure 2.1(a). Then the triangulation is updated from T nh to T n+1
h through

smoothing and local mesh arrangement (the superscript n and n + 1 denote the

time level). The weak forms of the incompressible Navier-Stokes equation are

then solved implicitly at time level n+ 1 on the updated triangulation. When we

swap/split/collapse an edge, physical quantities at the new nodes are obtained

through local interpolation.

Pressure and velocity are approximated with a Taylor-Hood element, as shown

in Figure 4.3. In each element, the velocity is approximated by P2 basis functions

and is continuous over the entire domain. Within the element, velocity is obtained

by local interpolation with its value on 6 nodes (3 vertices and edge midpoints,
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Figure 4.2: The red solid line represents the interface and the black solid lines

form the triangulation. Pressure nodes on the interface (drawn as red circular

nodes) have two values while in the interior pressure nodes (drawn as black square

nodes) have one value.

Figure 4.3: In a Taylor-Hood element, the pressure are defined on three vertices

(•) while the velocity nodes (◦) are three vertices and edge midpoints.

denoted as ◦ in Figure 4.3). This finite element space is called P2−C0. Pressure

is approximated by its values on 3 vertices (denoted as • in Figure 4.3) and

thus is linear in each element. The conventional continuous finite element space

(P1 − C0) for pressure is adequate in the interior domain, but it is not able

to address the pressure jump across the interface. Since a fully discontinuous
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pressure space results in extra unnecessary computing costs over the interior

domain, a pressure space (P1d − C0) is introduced by Li (2013), in which the

pressure has single value on interior nodes (square nodes in Figure 4.2) and double

values on interfacial nodes (circular nodes in Figure 4.2). In practice, P2 − C0

nodes are ordered as the list of vertices in the triangle followed by the list of

edges; P1 − C0 nodes are ordered as the list of vertices; P1d nodes are ordered

as the list of vertices in phase 0, followed by the list of vertices in phase 1, such

that vertices on the interface can be counted twice.

The velocity and pressure are approximated as follows:

u ≈
NP2∑
i=1

uiφi, v ≈
NP2∑
i=1

viφi, p ≈
NP1d∑
i=1

piψi, (4.17)

in which φi is the P2 basis function, ψi is the P1 basis function, NP2 and

NP1d are numbers of P2 and P1d nodes respectively, and ui and vi on Dirichlet

boundaries are known values. Following the Galerkin finite element method, ψj,

j = 1, ..., NP1d are chosen as the test functions in the weak form of the continuity

equation and φj, j = 1, ..., NP2 are the test functions in the weak form of the

momentum equation (see Reddy and Gartling (2010) for further details). We

substitute equation (4.17) into the weak formulation, equation (4.13) and (4.16).

Except the material derivatives, the discretised weak formulations written in a

matrix-vector format are listed below: Mx 0 0
0 Mz 0
0 0 0

 du/dt
dv/dt

p

+

 Kxx Kxz Bx

(Kxz)T Kzz Bz

(Bx)T (Bz)T 0

 u
v
p

 =

 gx

gz

0

 ,(4.18)

in which

u = (u1, ..., uNP2
)T , (4.19a)

v = (v1, ..., vNP2
)T , (4.19b)

p = (p1, ..., pNP1d
)T , (4.19c)

Mx,z
ij =

∫
Ω

ρφiφjdxdz, (4.19d)

Kxx
ij =

∫
Ω

µ

(
2
∂φi
∂x

∂φj
∂x

+
∂φi
∂z

∂φj
∂z

)
dxdz, (4.19e)
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Kxz
ij =

∫
Ω

µ
∂φi
∂z

∂φj
∂x

dxdz, (4.19f)

Kzz
ij =

∫
Ω

µ

(
∂φi
∂x

∂φj
∂x

+ 2
∂φi
∂z

∂φj
∂z

)
dxdz, (4.19g)

Bx
ij = −

∫
Ω

∂φi
∂x

ψjdxdz, (4.19h)

Bz
ij = −

∫
Ω

∂φi
∂z

ψjdxdz. (4.19i)

When calculating these values, we choose ρ and µ according to which phase the

element belongs to. The vectors in the right hand side are the source terms:

gxj =

∫
Γ

φjσκnxdl +

∫
Ω

φjfxdxdz, gzj =

∫
Γ

φjσκnydl +

∫
Ω

φjfzdxdz, (4.20)

in which the first and second term represents the contribution from the inter-

facial tension and the body force respectively. The numerical evaluation of the

interfacial tension source term is introduced in Section 4.2.5.

Equation (4.18) in a more compact form reads:

M
dU

dt
+ KU + Bp = g, (4.21a)

BTU = 0 (4.21b)

in which the matrices are defined as below:

M =

(
Mx 0
0 Mz

)
, K =

(
Kxx Kxz

Kzx Kzz

)
, (4.22a)

B =

[
Bx

Bz

]
, U =

[
u
v

]
, g =

[
gx

gz

]
. (4.22b)

and p is unchanged. The matrix M is the mass matrix, K is the viscous ma-

trix and B is the constraint matrix constraining the velocity to be discretely

divergence-free. It is known that the conventional P2 − C0/P1 − C0 finite ele-

ment space for velocity and pressure satisfies the condition for numerical stability

(Gunzburger, 2012). Though it has not been proved that the new finite element

space P2 − C0/P1d also satisfies this condition, our practice has shown that it

works pretty well in various problems.
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The discretised equations (4.21) are solved fully implicitly at time level n+ 1

on the triangulation T n+1
h . The material derivative is discretised as follows:(

dU

dt

)n+1

≈ Un+1 − Ũn

∆t
, (4.23)

where ∆t is the time step. Equation (4.21) is thus expressed as:(
M

∆t
+ K

)
Un+1 + Bpn+1 =

M

∆t
Ũn + g, (4.24a)

BTUn+1 = 0. (4.24b)

Bear in mind that Ũn is not the same as Un. For instance, (uni , v
n
i ) is the velocity

of a fluid particle located at node xni at time level n. One time step later, this

particle does not necessarily travel to node xn+1
i in the new triangulation T n+1

h ,

unless it moves in a purely Lagrangian way as an interface node. To correctly

approximate the material derivatives, we need to find the position x̃ni at time

level n of a fluid particle whose location is xn+1
i at time level n+ 1. This position

is called the characteristic foot at time level n of this fluid particle. Then the

velocity at time level n, (ũni , ṽ
n
i ), can be calculated through local interpolation in

the element within which x̃n+1
i is located. This procedure is detailed in Section

4.2.4.

4.2.3 Solution steps

The next step is to solve the discretised Navier-Stokes equations represented

by equation (4.24). This is accomplished using an augmented Lagrangian tech-

nique with a Uzawa iterative algorithm as used in Étienne et al. (2006). The

continuity equation (4.24b) is the constraint condition. We relax this constraint

by adding λ amount of the divergence on the pressure vector as below:(
M

∆t
+ K

)
Um+1 + Bpm+1 =

M

∆t
Ũn + g, (4.25a)

pm+1 = pm + λBTUm+1, (4.25b)

in which m is the iteration time level. Then an area in which flow sinks has

its pressure reduced to remove the sink to enforce continuity. Similarly an area
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which acts as a source has its pressure increased. After calculating the value of

pm+1, we substitute it into (4.25a) to obtain the value of Um+1. The iteration

continues until pm+1 = pm. The converged value of pm+1 is the value of pressure

of this iteration time level, and will be used for calculating the pressure at the

next iteration step through iteration again. The iteration steps are written as:(
M

∆t
+ K + λBBT

)
Um+1 =

M

∆t
Ũn + g −Bpm, (4.26a)

pm+1 = pm + λBTUm+1. (4.26b)

The constant λ and iteration time are carefully chosen such that the BTUm+1

converges to a small value quickly. For Stokes flow where convective acceleration

equals zero, the process of tracing backwards following the characteristics is not

performed to remove the convective acceleration. The linear equations are solved

with the SPOOLES (Sparse Object Oriented Linear Equation Solver, Ashcraft

et al. (2002)).

4.2.4 ALE method and approximation of material deriva-

tives

In our method, vertices on the interface move with the flow field. The motion

of nodes on the interface are most conveniently understood from a Lagrangian

point of view, e.g. moving with the flow, rather than from a fixed observer’s

Eulerian point of view. A purely Lagrangian method does not suit the fixed

boundaries: the mesh close to the fixed boundaries will be sheared by the flow

and consequently frequent remesh is required. The arbitrary Lagrangian Eulerian

method (ALE) is thus adopted in our method which couples the advantages of

the two methods. In each time step, we first update the location of the interface

and then carry out remesh operations to improve the mesh quality. As a result,

the triangulation may differ from the triangulation at the last time step. This

brings a technical challenge in the approximation of material derivatives. We

tackle this by a characteristic method under the ALE framework.

To describe the mesh movement, a mesh velocity a is defined, which may

locally differ from the material velocity u. At the fixed boundary where a = 0,
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the method is reduced to Eulerian method; at the moving boundary where a = u,

such as the interface, a purely Lagrangian method is applied. The bulk region

provides a smooth transition between the two. Node xn of the old triangulation

T nh is moved to xn+1 = xn + a∆t in the new triangulation T n+1
h . An example is

sketched in Figure 4.4 where only the old triangulation is drawn. In the context

of our ALE framework, the material derivative of a physical quantity f is then

written as:
df

dt
=
∂f

∂t
+ (u− a) · ∇f, (4.27)

and temporal discretisation of the above equation via a semi-implicit method is:(
df

dt

)n+1

≈ fn+1 − f̃n

∆t
, (4.28)

where f̃n denotes the value of f at the characteristic foot x̃n. The characteristic

foot x̃n is the location of a fluid particle at time level n whose location is xn+1 at

time level n+ 1.

u
n
∆t

x
n+1

~
x

n

x
n

Figure 4.4: The new position of mesh node xn+1 is connected to the old position

xn via the vector a∆t as represented by the arrow with solid line tail. The

characteristic foot x̃n is connected to the old position via the vector (u− a)∆t,

which is drawn as an arrow with dashed-line tail. The arrow with dotted-line tail

depicts the material trace during this time step of a fluid particle whose location

at time level n is xn.
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In a purely Lagrangian method, the characteristic foot is the mesh node itself,

whereas in a purely Eulerian method, the characteristic foot is connected to the

mesh node via a vector un∆t. In the ALE framework, the characteristic foot is

connected to the old mesh nodes via a vector (u− a)∆t:

x̃n = xn+1 −∆t · un(xn)

= xn −∆t · (un(xn)− an(xn)),
(4.29)

and this vector is drawn as the arrow with dashed-line tail in Figure 4.4.

Having identified x̃, we can use local interpolation to calculate the velocity

at x̃ and then correctly approximate the material derivatives. For simplicity and

accuracy, we let the time step ∆t be small enough to make sure that x̃n is located

within a neighbouring triangle of mesh node xn. We identify the triangle where

x̃n lies by looping all neighbouring triangles of xn. Having identified the triangle,

we then calculate the barycentric coordinate (λ0, λ1, λ2) of x̃n in this triangle:
λ0 + λ1 + λ2 = 1
λ0x0 + λ1x1 + λ2x2 = x̃
λ0z0 + λ1z1 + λ2z2 = z̃

where (xi, zi), i = 0, 1, 2 are the coordinates of vertices of this triangle.

Then f̃n can be obtained through interpolation according to its approximate

finite element space. If it is P1 finite element space, the formulation of f̃n is:

f̃n =
2∑
i=0

λif
n
i , (4.30)

where fi is the value of f at vertex i.

If f is approximated by P2 finite element space, the formulation is as below:

f̃n =
5∑
i=0

φif
n
i , (4.31)

where the node i are defined as in a P2 element illustrated in Figure 3.4(b) and

φi can be calculated using the barycentric coordinates:

φ0 = λ0(2λ0 − 1), (4.32a)

φ1 = λ1(2λ1 − 1), (4.32b)
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φ2 = λ2(2λ2 − 1), (4.32c)

φ3 = 4λ1λ2, (4.32d)

φ4 = 4λ2λ0, (4.32e)

φ5 = 4λ0λ1. (4.32f)

4.2.5 Numerical evaluation of interfacial tension

As shown in the previous text, the interfacial tension enters the weak formu-

lation as boundary integrals along the interface:∫
Γ

σκnxφdl and

∫
Γ

σκnzφdl, (4.33)

in the horizontal and vertical direction respectively. In this section we present

how we numerically evaluate these terms.

i

i-1

i+1

n

Figure 4.5: Vertex nodes and midpoint nodes are drawn in • and ◦ respectively

and the unit normal vector of the interface edge is denoted by an arrow with

solid-line tail. The dashed line is a local circle fitted onto nodes i, i− 1 and i+ 1.

With the whole domain divided into triangulation, the interface is explicitly

represented by a series of straight segments as illustrated in Figure 4.5. The

boundary integrals in equation (4.33) are then numerically computed with Gaus-

sian quadrature (Press et al., 1996). We use the unit normal and tangent vector

of the interface edge directly in the calculation. Curvature at node i is calculated

by fitting node i− 1, i and i + 1 with a local circle, which is depicted in dashed

line in Figure 4.5 (Dritschel, 1988). Then we calculate the radius of this local
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circle, denoted as R. In two-dimension, the curvature of node i is then −1/R. In

the axi-symmetric case, another term is added1:

κ = − 1

R
− tz
r
, (4.34)

where r and tz are the radial coordinate and the vertical component of unit

tangent vector at node i respectively. The value of tz at node i is calculated as

an average tz of its two adjacent interface edges. Since curvatures are evaluated

on vertex nodes, κ is considered linear on the interface edge.

As each interface segment has two vertices and one midpoint, the interface can

also be approximated as a series of curved segments by the nonlinear isoparamet-

ric mapping. The author has worked on isoparametric mapping for a curved fixed

boundary and has found that it indeed improves the accuracy as a result of better

representation of boundary. The drawback is that the nonlinear mapping of the

moving interface brings additional difficulties in interpolation and the tracking of

the characteristic feet. The simpler treatment we adopt is capable of accurately

calculating the interfacial tension source term, and the convergence test in later

studies shows a convergence rate of 2.

4.3 Laplace solution for a circular/spherical droplet

The force balance condition on the interface is the most important boundary

condition in multiphase flow simulations. An inaccurate representation of this

condition can result in an imbalanced force which keeps disturbing the interface

and generating tiny artifacts near the interface, the so-called spurious currents

(Scardovelli and Zaleski, 1999). Provided that the viscous damping is sufficiently

strong, the spurious currents might be suppressed or stay below a certain value.

This problem becomes acute when we deal with common fluid like water, for which

the interfacial tension force is often much stronger than the viscous damping. The

ratio between viscous damping and capillarity is quantified by the dimensionless

Oh number. For a water droplet of diameter D = 1.2 mm, Oh = µ/
√
ρσD ≈

10−3. Hence, a method without an accurate implementation of the force balance

condition can only be applied to a limited range of multiphase flows.

1See Appendix B for the formulation of curvature in axisymmetric geometry.
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A typical example of spurious currents is a circular/spherical droplet under no

external forcing. Theoretically the static Laplace solution exists: the fluid is at

rest, and the interfacial tension is exactly balanced by the pressure jump across

the interface. Some methods are not able to recover the force balance numerically

and consequently spurious currents arise as vortices near the interface. Two

influential works by Popinet and Zaleski (1999) and Renardy and Renardy (2002)

effectively reduced spurious current in non-conforming methods (front-tracking

and VOF). The key of their success was to modify the conventional methods such

that the numerical balance is recovered.

In this section, we prove 1 that our method achieves the numerical equilibrium

between the interfacial tension and the associated pressure jump. The static

solution of a circular/spherical droplet exists in our method, and the numerical

stability of the solution is further examined.

4.3.1 Existence of a static solution

We consider a circular droplet with radius R initially at rest. The inner and

outer fluids are marked as fluid 1 and 2, respectively (see the configuration in

Figure 4.6). The interfacial tension is a constant σ. Without external forces,

the theoretical solution is obtained by Laplace: u = v = 0 and p1 − p2 = σ/R.

The horizontal direction is taken as an example. The weak formulation of the

momentum equation (4.16), is reduced to:∫
Ω

ρφ
du

dt
dΩ =

∫
Ω

∂φ

∂x
pdΩ +

∫
Γ

σκnxφdl. (4.35)

As long as the pressure term balances the surface tension source term, the static

solution is obtained.

If the test function φ is defined on an interior node, such as node i and

k in Figure 4.6, pressure is a constant over the triangles containing the node.

Taking node i as an example, we use Ωi to denote all the triangles containing

it, illustrated as the shaded region around node i in Figure 4.6. As φi vanishes

1This proof was communicated by Dr. Jie Li
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Figure 4.6: The interior and interface edges are depicted in thick and thin solid

lines respectively. Node i is an interior node while node j an interface node. The

shaded region represents triangles containing node i or j.

outside Ωi, including on the interface Γ, equation (4.35) turns into:∫
Ωi

ρφi
du

dt
dΩ = p1

∫
Ωi

∂(φi)

∂x
dΩ = p1

∫
∂Ωi

φinxdl = 0, (4.36)

where the first equality is due to the fact that p = p1 in Ωi, and the last equality

holds due to the fact that φi vanishes on ∂Ωi.

If the test function φ is defined on an interface node, node j in Figure 4.6 for

example. Let Ωj,1 and Ωj,2 denote the triangles containing node j in Ω1 and Ω2,

respectively, and Γj be the piece of interface in Ωj. The radius of curvature on

the interface is calculated by fitting a circle with three vertices. Since the initial

shape is circular and the calculated curvature is a constant: κ = −1/R. In Ωj,

the pressure is not a constant. But in our method, the pressure has two values

on the interface and it is a constant in Ωj,1 and Ωj2 respectively. As φj vanishes

outside Ωj, equation (4.35) thus turns into:∫
Ωj

ρφj
du

dt
dΩ = p1

∫
Ωj,1

∂φj
∂x

dΩ + p2

∫
Ωj,2

∂φj
∂x

dΩ +

∫
Γj

σκnxφjdl
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4.3 Laplace solution for a circular/spherical droplet

= p1

∫
∂Ωj,1

φjnxdl + p2

∫
∂Ωj,2

φjnxdl −
∫

Γj

σ

R
nxφjdl. (4.37)

The test function φj vanishes on the boundary of Ωj, but not on the communal

part of ∂Ωj,1 and ∂Ωj,2, which is Γj. Hence, we obtain:∫
Ωi

ρφj
du

dt
dΩ = (p1 − p2 −

σ

R
)

∫
Γj

φjnxdl = 0 (4.38)

as nx on ∂Ωj,1 and ∂Ωj,2 have the opposite sign.

Similar arguments can be applied to test functions defined on midpoint nodes

and the weak formulation for the momentum equation in axisymmetric geometry.

Therefore the interfacial tension source term is balanced by the pressure term

discretely. Without external forcing, the static solution is obtained. In conclusion,

we have proved the existence of the static Laplace solution for a circular/spherical

droplet in our numerical method. This is accomplished thanks to the explicit

representation of the interface and the P1d finite element space for pressure.

It is worthwhile to check whether this static solution is obtained numerically.

As suggested in Xie et al. (2016), we only need to run an inviscid simulation

for one time step to verify whether the static solution is obtained. We use the

same parameter as in the literature and consider a circular/spherical droplet with

radius R = 2, density ρ0 = 1.0 and interfacial tension σ = 73.0. The time step

is set at ∆t = 10−6. The density of the ambient fluid is ρ1 and we vary the ratio

in this experiment. The mesh parameters are G = 0.15 and α = 0.05 (32 nodes

on the interface). The error in velocity is presented in Table 4.1. The maximum

velocity is approximately O(10−16) (machine accuracy) when the density ratio is

not larger than 103. The error in velocity is of the order of 10−13 when the density

ratio is 105. We have not yet had an answer for this, but this will not be an issue

as the density ratio is typically smaller than 103 in a two-phase system.

4.3.2 Numerical experiment of spurious current

In the previous section, we have proved that our numerical method obtains

the static Laplace solution for a circular/spherical droplet when no external forces

are applied. The existence of the static Laplace solution in a numerical method
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Table 4.1: Error in velocity after one time step for the inviscid static drop

ρ1/ρ0 maximum velocity

Circular droplet

1 1.07× 10−17

103 6.91× 10−16

105 6.90× 10−14

Spherical droplet

1 1.49× 10−17

103 1.87× 10−15

105 1.21× 10−13

shows that in theory the method recovers the balance on the interface numerically.

Since the method is used mostly to study unsteady flows, it is also important to

examine whether this force balance can be retained over a long period. For this

purpose, we now investigate the numerical stability of the Laplace solution. This

gives an insight on the capability of our method in retaining the force balance

condition.

In literature, most researchers study a circular droplet for this numerical test.

In our numerical experiment, a spherical droplet is also considered. The diameter

of the droplet is set at D = 1.0. The density of the droplet is chosen as ρ =

1.0 and the interfacial tension coefficient σ = 1.0. For simplicity the viscosity

and density ratios of the inner and outer fluid are set to be 1.0. The viscosity

µ is varied for a desired Oh number, Oh = µ/
√
ρσD which is the controlling

dimensionless number in this problem. We can interpret it as the ratio between

the capillary time scale τσ =
√
ρD3/σ and the viscous damping time scale τµ =

ρD2/µ. Cases with small Oh numbers are associated with strong capillary effect

and it is numerically challenging to simulate.

The initial velocity is set to be u = 0. There is no need to set an initial value

for pressure as it is deduced from the velocity for incompressible flow. Due to the

symmetry condition, we only simulate half of the droplet. The droplet is centred

at (0, 0) of a domain [0, 30] × [−30, 30]. We vary mesh size scale α in equation

(2.4) for mesh with different resolutions. The mesh size gradient G from equation

(2.6) is kept fixed at 0.1. In the numerical test, mesh size scale and time steps

are chosen so that the computation is stable and converging. Numerical results
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4.3 Laplace solution for a circular/spherical droplet

are presented in terms of the dimensionless time and the maximum velocity. The

time is scaled by τσ. The amplitude of the spurious current is characterised using

the maximum velocity Umax. The accuracy of the method is measured by the

dimensionless velocity, the Capillary number:

Ca =
µUmax
σ

(4.39)
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Figure 4.7: The numbers in legends indicates the Oh number. The left panel

(a) is from simulations of a circular droplet, while the right panel (b) if from

simulations of a spherical droplet. The computation is performed with maximum

mesh size and time-steps so long that it is stable.

Figure 4.7 shows the temporal evolution of Ca with different Oh numbers

in the simulations. The left panel is from two-dimensional simulations and the

right panel shows results from axisymmetric simulations. We observe that for

all cases, Ca starts at values of order 10−15 or less. This is as expected since

in theory the static solution exists in the framework of our method. For the

duration of 100 dimensionless time, Ca in most cases remains of the same order.

For the axisymmetric case with Oh = 5 × 10−3, Ca starts at a low value and

increases during the whole duration T = 100. One might question whether this
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trend would continue and eventually lead to Ca deviating from the theoretical

value. We carried out this case to T = 1000 and found that Ca saturates around

2 × 10−15 from T = 320. These results show that our static solution is stable

and the spurious current is due to machine error for Oh ≥ 10−3, for both two-

dimensional and axisymmetric simulations.

We document the maximum Ca numbers at T = 100 and the corresponding

simulation information in Table 4.2. Smaller Oh number corresponds to weaker

viscous damping and more capillary waves of high frequency persists 1. To keep

the simulation stable and convergent, a finer mesh is required for cases with

smaller Oh numbers, as shown in Table 4.2. This fact is also reflected from the

observation in Figure 4.7 that the evolution of Ca looks “noisier” in cases with

small Oh. It is worthwhile to mention that our axisymmetric simulation also

retains the force balance over a long period. The axisymmetric simulation is in

general more difficult to deal with than two-dimensional simulation. For example,

the time step in simulating a spherical droplet with Oh = 10−3 is one fifth of that

in simulating a circular droplet with same Oh. This is owing to the fact that in

the axisymmetric geometry, the curvature has a term which is proportional to 1/r.

Once an interface node is close to the axis (small r), a tiny error in its location

will cause inaccuracy in curvature evaluation, and hence, in the calculation of the

interfacial tension source term. The successful simulation of a spherical droplet

staying static at Oh = 10−3 demonstrates the high capability of our numerical

treatment of interfacial tension.

Most methods with implicit representation of the interface do not know the

numerical static solution a priori, and have to leave an approximate solution to

converge to it. In contrast, we know the static solution from the beginning, and

the solution is so accurate (up to some round-off error) that the above experiment

is trivial for Oh ≥ 10−3. To further study the stability of this solution, we

introduce an artificial sinusoidal disturbance to the initial circular shape of the

droplet as:

R(θ) = 0.5 + ε/N
N∑
i=1

sin(nθ), (4.40)

1Popinet (2009) points out that the damping coefficient of the capillary wave is proportional

to ν = µ/ρ.
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4.3 Laplace solution for a circular/spherical droplet

Table 4.2: Maximum Ca and maximum CFL number at T = 100 for simulation

of a circular/spherical droplet with different Oh and the corresponding mesh

information

Oh interface nodes ∆t Ca max CFL

Circular droplet

0.5 8 0.02 6.7× 10−16 1.44× 10−16

0.1 16 0.01 1.1× 10−15 6.53× 10−16

0.05 32 0.005 1.7× 10−15 2.24× 10−15

0.01 32 0.002 5.2× 10−16 1.80× 10−15

0.005 64 0.001 5.2× 10−16 6.19× 10−15

0.001 256 0.00025 1.6× 10−15 9.52× 10−14

Spherical droplet

0.5 16 0.02 3.3× 10−15 3.49× 10−16

0.1 16 0.01 1.2× 10−15 3.09× 10−16

0.05 32 0.005 2.0× 10−15 8.48× 10−16

0.01 32 0.002 1.2× 10−15 7.41× 10−16

0.005 64 0.001 1.5× 10−15 2.65× 10−15

0.001 256 0.00025 1.7× 10−15 7.09× 10−14

where N is the number of sinusoidal modes, ε is the total amplitude of the dis-

turbance and θ is the argument of the interface point in the polar coordinate

system. In this numerical test, we used N = 100 and ε = 10−6. Here we consider

the two-dimensional case with Oh = 10−3.

For this case, we performed simulation using a quarter of a droplet and a

half of a droplet. Initially we chose the quarter-droplet as the simulation is less

time-consuming.

The temporal evolution of the maximum Ca is plotted in Figure 4.8. In

simulation performed on coarse meshes (quarter-drop simulation with 8, 16, 32

interface nodes and half-drop simulation with 16, 32, 64, 128 interface nodes), the

solution deviates from the static solution. Furthermore, the maximum Ca follows

mainly exponential growth (the vertical axis is in log-scale in the two figures) in

the initial stage, and saturates around 10−4, meaning that that the maximum
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Figure 4.8: The results come from two-dimensional simulation of a slightly per-

turbed circular droplet. The numbers in the legends indicate the number of nodes

on the interface. The left panel (a) is from simulation of a half of a droplet while

the right panel (b) is from simulation of a quarter of a droplet.

velocity in the simulation is around 0.1. We notice that the coarser the mesh is,

the later the simulation starts to deviate from the static solution. It is believed

that this is the result of lack of more unstable modes of higher frequency on

coarser meshes. Simulations on fine meshes all converge towards the theoretical

static solution as t increases. As shown in the close-up in Figure 4.8, the temporal

evolution of Ca in simulation with fine meshes agrees very well with each other.

Since the perturbation is symmetric to the horizontal axis, we can utilise

the symmetry condition to use the quarter-drop configuration instead of half-

drop one. The results turn out to be different from the comparison between

simulations of half-droplet and quarter-droplet. There are two distinctions: (1)

half-drop simulation with 128 interfacial nodes has the same interface resolution

as quarter-drop simulation with 64 interfacial nodes, but the half-drop simulation

does not converge to the static solution; (2) the oscillation amplitude of Ca

vanishes in half-drop simulation while in contrast the quarter-drop simulation

ends up with one mode and the oscillation amplitude is retained. It is reasonable

to believe that the additional symmetry boundary in quarter-drop simulation has
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4.4 Benchmark test: drop/bubble oscillation

an influence: one special oscillating mode might be promoted by this condition

and thus the amplitude is retained.

4.4 Benchmark test: drop/bubble oscillation

In the numerical experiment of the Laplace solution, the motion of the inter-

face is tiny as the interface is nearly kept circular/spherical. In this section, we

consider the axisymmetric oscillation of a perturbed drop/bubble. In this exam-

ple, the interface undergoes moderate deformation. The accuracy of our method

is validated against the theoretical solution by Prosperetti (1980).

The drop/bubble is initially set at rest. The interface is perturbed as:

R(θ) = R0 + εnPn(cosθ), 0 ≤ θ ≤ π (4.41)

in which R0 is the unperturbed radius, εn is the amplitude of the initial perturba-

tion of mode n and Pn is the Legendre polynomial of order n. Prosperetti (1980)

obtained the solution for this initial value problems for a free-surface droplet/bub-

ble. The Laplace transform of the oscillation amplitude a(t) is written as:

ã(p) =
1

p

(
a0 +

pȧ0 − ω2
na0

p2 + 2b0p+ ω2
n + 2βb0pQ̃(p)

)
(4.42)

in which a0 is the initial amplitude, ȧ0 is the initial derivative of a(t), ωn is the

angular frequency and b0 is the decaying rates. The expressions of ωn, b0, β and

Q̃(p) are different for an oscillating drop or bubble. They are listed in Table 4.3.

Here σ is the interfacial tension, ν = µ/ρ is the kinematic viscosity, and In(q)

and Kn(q) are modified Bessel function of the first and second kind, respectively.

The analytical solution is numerically computed by a numerical Laplace inversion

method (Durbin, 1974).

We first simulate the oscillation of a free-surface bubble. In the numerical

experiment, the physical parameters are R0 = 1, ρ = 1.0, σ = 1.0, and µ =

0.01414 (Oh = µ/
√

2R0ρσ = 0.01). Only perturbation of the second mode is

considered and the initial perturbation is set to be ε2 = 0.01. The oscillating

amplitude of the top node (corresponding to θ = 0) is plotted against time t

in Figure 4.9. The simulated result (drawn as black circles) is compared to the
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Table 4.3: The initial value solution of an oscillating drop/bubble

Drop Bubble

ω2
n

n(n− 1)(n+ 2)σ

ρR3
0

(n+ 1)(n− 1)(n+ 2)σ

ρR3
0

b0 (n− 1)(2n+ 1)ν/R2
0 (n+ 2)(2n+ 1)ν/R2

0

β (n− 1)(n+ 1)/(2n+ 1) n(n+ 2)/(2n+ 1)

Q̃(p)
1

1− 1
2
Γn(R0

√
p/ν)

− 1

1 + 1
2
Γn(R0

√
p/ν)

Γn(q) q
In+1/2(q)

In+3/2(q)
q
Kn+1/2(q)

Kn−1/2(q)

analytical solution (draw as solid line) from the initial-value problem in Figure

4.9(a), and a good agreement is obtained. The mesh in our simulation has 854

vertices, 64 of which are on the interface (α = 0.025, G = 0.1). Figure 4.9(b) is

a close-up of the sixth crest illustrating two more numerical results. The black

squares represent the simulated result using a coarser mesh with 592 vertices in

total, 32 of which are on the interface (α = 0.05, G = 0.1). A clear convergence

towards the analytical solution is observed. The empty circles are obtained on a

structured mesh of size 128×128 (= 16384) nodes (Li et al., 2005). The quality is

similar to that of the unstructured mesh with 854 vertices. The relative difference

at this crest is about 3% between our simulation and Prosperetti’s theory. In

the simulation using 854 vertices (the number of edges is 2331), the number of

unknown values is approximately 60001. At each time step, computing time spent

on the numerical solver is approximately 0.46 s, and computing time spent on

mesh manipulation is approximately 0.0036 s. Most (> 99%) of the computing

time is spent on the linear solver, and if the total number of unknown values is

reduced by a great amount, the computing cost can then be reduced significantly.

By contrast, the total number of unknowns is approximately 32000 if the 128×128

structured mesh is used. Hence, this numerical test not only validate both spatial

and temporal accuracy of our method, but also demonstrate that less computing

cost is required compared to structured mesh method.

1The velocity (u, v) is defined on both vertices and edge midpoints
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4.4 Benchmark test: drop/bubble oscillation

Compared to the study of the static Laplace solution, a finite size of pertur-

bation is induced, resulting in relatively larger deformation of the interface. It

is more likely to excite spurious currents. Hence it is much more challenging

to obtain a stable and accurate solution, especially for cases with a small Oh

number. We have to increase mesh nodes on the interface in order to keep the

effects of spurious currents under control. In our next experiment, we consider

the oscillation of a free-surface bubble and a free-surface droplet with Oh = 10−3.

The viscosity is set as µ = 0.001414 and the mesh used in this numerical exper-

iment has 256 nodes on the interface. We only consider the initial perturbation

of the second mode and record the oscillating amplitude of the top node. The

simulated results are compared to the corresponding analytical initial-value solu-

tion in Figure 4.10. The top figure is the result from an oscillating droplet, and

the bottom figure is the result from an oscillating bubble. We observe that the

droplet oscillation decays much slower than bubble oscillation. Both simulations

are in excellent agreement with the analytical solution.

Numerical simulation of oscillating droplet/bubble at Oh ∼ 10−3 or smaller

is very rare in the literature. To our knowledge, this is the first successful com-

parison to Prosperetti’s theory at such a small Oh number, demonstrating that

our method has great advantages in handling spurious currents.
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Figure 4.9: Temporal evolution of the second mode of deformation of a bubble

set in a liquid initially at rest. (a) Our simulation uses a mesh with 854 vertices

(the black circles). The theoretical curves are obtained from the exact solution

to the initial-value problem (64 interface nodes, the black circles). (b) A close-up

of (a) alongside with the results of a unstructured mesh with 592 vertices (32

interface nodes, the black squares) and structured mesh of size 128 × 128 (the

empty circles). The simulation using structured mesh is from Li et al. (2005).
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Figure 4.10: Comparisons between the analytical solution (in black solid lines)

and the simulated results (in black circles) of an (a) oscillating droplet, and (b)

oscillating bubble with Oh = 10−3.
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Chapter 5

Multiphase flow with interface

topology changes

(b)(a)

Figure 5.1: Two examples of interface topology changes are sketched: (a) liquid

thread breakup; (b) thin film rupture. The two images are from Scardovelli and

Zaleski (1999).

It is a common phenomenon that the interface undergoes topology changes in

multiphase flows. For instance, a long liquid thread breaks up due to Rayleigh-

Plateau instability, as illustrated in Figure 5.1(a), or the thin gas film between

two droplets ruptures and then droplets coalesce together, as shown in Figure
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5.1(b). These topology changes not only lead to severe difficulties in theoretical

analysis, but also in the practical implementation of numerical methods, which

is the concern of this chapter.

In the first part of this chapter, we demonstrate how the adaptive mesh gener-

ator is used to tackle interface topology changes numerically. Then the numerical

implementation is validated with two different problems: droplet formation from

a faucet and the head-on collision of two droplets.

5.1 Interface split/re-connection algorithms

In methods where the interface is implicitly captured such as LS and VOF,

the interface is constructed from the volume fraction (in VOF) or the LS func-

tion (in LS). Hence interface topology changes are dealt with automatically and

effortlessly. Whereas this is not so in methods with an explicit representation of

interface such as ours. An extra treatment is required to split and re-connect the

interface: some old connections must be broken and some new connections must

be established.

Assuming that all previous steps have been done correctly, a new issue arises

because the newly established interface is in general not smooth enough, especially

when the thin region consists of more than one layer of elements. For instance,

the top right panel in Figure 5.2 illustrates the mesh after the interface was

broken up in the 3D moving mesh method of Quan and Schmidt (2007). It is

highly irregular, and without optimisation of the interface shape, severe numerical

instabilities will be excited. Quan and Schmidt (2007) fitted the cut interface with

a local sphere. The mesh after adjustment is drawn in the bottom right panel of

Figure 5.2, which is much more smooth than before.

Unlike the approach working on the thin region consisting of multiple layers

of elements, we would like to proceed topology changes on only one layer of

elements. This configuration is achieved using our adaptive mesh generator, as

explained in Section 2.2. The advantages of having a single layer of elements in

the thin region are that: (a) it is sufficient to accurately describe the flow in the

thin region; (b) the efforts spent on interface split, re-connection and smoothing

are then minimised.
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Figure 5.2: Quan and Schmidt (2007) cut the interface while the thin region

consists of multiple layers of elements. The top two panels show the mesh near

the interface before and after the interface breaks up, respectively. The bottom

panels shows the mesh near the break-up point before and after conversion. The

gas phase is shaded in green while the liquid shaded in grey.

Prior to topology changes of the interface, the length scales of the interface

gaps become very small, for example, the thread before pinchoff of a capillary

jet and the thin gas film before the coalescence of two droplets. Therefore the

desired local interface mesh size ls is mainly controlled by βld(q) in equation

(2.5). With well-chosen values of β and α, the thin region consists of only one

layer of elements. We introduce a critical length scale lbreakup: when the minimum

of a thread diameter or a film thickness is below lbreakup, the interface is to be

broken up. The choice of this length scale is not universal and should be decided

upon the simulated problem. In practice, we start with a few simulations using

different lbreakup and then choose a scale which is small enough such that the

global dynamics is not affected much.
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Figure 5.3: These figures are from a simulation of thread breakup. The interface

is drawn in red thick solid line and the mesh lines are drawn in black. In the

global view, the mesh is much denser near the break-up point compared to that in

other regions. Due to symmetry, only half of the configuration is simulated. The

close-up shows the sequence of mesh topology changes: (1) one layer of triangles

in the thin regions; (2) interface reconnection at the instant of break-up; (3)

remeshing after the topology change.

Figure 5.3 illustrates an example of the topology change procedure in the

simulation of a thread breakup. In this example, α = 0.1, β = 1.0 and lmin =

0.001. We only simulate half of the domain due to symmetry. Here we choose to

break up the interface when the minimum thread radius is less than lbreakup = 0.01.

Triangles between the interface and the symmetry boundary occupy only one layer

as shown in Figure 5.3(1). The neck node on the interface is easily identified, as its

distance to the symmetry boundary is a local minimum. It is denoted as node N,

drawn as a circular dot in Figure 5.3(2). In practice, interface nodes are listed in

an anti-clockwise order starting from the node where the interface intersects the

symmetry boundary. Having identified the node N, we can then split the original

list into two sublists: the one before the neck node, and the one after it. The

status of the neck node is changed from an “interface” node to an “interior” node.
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The next step is to find the nodes on the interface and on the symmetry boundary

that are also adjacent to the neck node. These nodes are denoted as U1, D1, U2

and D2, as in Figure 5.3(2). This can be done effortlessly as the information

about which vertices are adjacent to the neck node is explicitly stored. Then we

insert the two adjacent nodes on the symmetry boundary, U2 and D2, into one

of the interface sublists: node U2 is inserted into the sublist which starts from

node U1, and node D2 is inserted into the sublist which ends with node D1. Then

the status of nodes U2 and D2 are updated from “boundary” node to “interface”

node. The status of the triangular elements 4U1U2N , 4U2D2N and 4ND2D1

is updated from the thread phase to the ambient phase. The status of edge

D1D2, U1U2, NU1 and NU2 also need to be updated. Though up to this stage

the triangulation remains the same, the interface has been split into two. The

single-layer configuration of the thin regions has made this process straightforward

and the computing costs are minimised. The topology change leaves a high-

curvature tip region, where the interface mesh size is mainly controlled by α/κ(q)

in equation (2.4). The newly formed unsmooth interface is then refined by our

adaptive mesh algorithm. The refined mesh is displayed in Figure 5.3(3). The

topology changes of free-surfaces can be implemented in a similar way. The

difference is that some triangles and edges are deleted rather than swapped to

another phase.

The numerical implementation of interface topology changes violates the mass

conservation. However, the influence can be kept small by choosing an appro-

priate length scale to control topology changes. For example, we consider the

break-up of a perturbed liquid bridge held by two coaxial disks. The radius of

the disk is R and the height of the liquid column is 4R. We set the break-up

length scale to be 0.01R. When break-up takes place, liquid near the neck is

removed from the liquid phase. Normally only three triangular element will be

removed from the liquid phase. We estimate the mass loss of the liquid phase

by approximating the removed liquid with a small liquid cylinder. The radius of

the cylinder is approximately 0.01R and the height is typically 3 to 5 times of

the radius. The volume of the removed liquid is of the order of 10−6R3, while

the liquid volume is of the order of R3. The mass loss of the bridge liquid is

negligible.
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Note that the choice of this length scale depends on the simulated problems.

The case of thread breakup is not very sensitive to the chosen value of this length

as long as it is small enough. On the other hand, a mischosen one will lead to

a wrong outcome in the simulation droplet coalescence (interface reconnection).

Detailed examples are presented in the following sections.

5.2 Dripping faucet

The formation of droplets from a faucet is widely observed in everyday life. We

often see that at the end of a tap a pendant drop forms and grows very slowly.

Once the size of the pendant drop exceeds a certain limit, it then elongates,

forms a neck in the middle, and eventually detaches from the faucet. The final

breakup process is so rapid that the details can hardly be captured by the naked

eye. This interface topology change is a critical phenomenon connected to a

singularity of the nonlinear Navier-Stokes equation with interface (Eggers, 1997).

It is a challenging issue to address for a numerical or analytical method. Peregrine

et al. (1990) documented the shapes of a pendant droplet near the breakup instant

using a high-speed camera. Their experiment involved a large disparity of time

and length scales, including (1) the initial slow filling stage, of the order of seconds,

(2) the formation of the neck and the transition to a columnar bridge, of the

order of a millisecond, (3) the breakup of the interface and the generation of the

droplet, of the order of 100 µs, and (4) the recoil of the water thread involving

capillary travelling waves. Their pictures have been well reproduced by a number

of numerical studies including one-dimensional simulation (Eggers and Dupont,

1994; Fuchikami et al., 1999) and the VOF method (Gueyffier et al., 1999). Due

to the weak viscous damping in the experiment (Oh ∼ O(10−3)), the slow filling

stage is dominated by interfacial tension prone to spurious currents. Hence it is

a good benchmark test for validating our implementation of interface topology

change and both the accuracy and robustness of our method.

76



5.2 Dripping faucet

5.2.1 Numerical set-up for dripping

In the experiment of Peregrine et al. (1990), water is slowly dripped from the

end of a glass capillary tube whose outer diameter D = 5.2 mm. The initial

shape and the inlet boundary condition are not explicitly mentioned except for

the vague description “the drops were dripping as slowly as possible in order to

minimise the initial motion in the pendant mass of water”. In our axisymmetric

simulation, the initial interface is set either spherical or flat, drawn as dashed

lines in Figure 5.4. As illustrated in the figure, a parabolic velocity profile is set

at the inlet boundary:

u(r) = 0, (5.1a)

v(r) = −V (4r2 −D2)/D2, (5.1b)

where V is the maximum velocity at the inlet, which is set at 3.0×10−3 m/s. Both

free-surface and two-phase simulation are performed. For two-phase simulations

at the outlet boundary we also set a parabolic velocity profile. The outlet velocity

is determined according to the ratio between the inlet and outlet diameter such

that the same volume of fluid is going in and out of the simulated domain.

In our simulation, the length is scaled by the inlet diameter D. The outlet

diameter is 20 in two-phase simulation and the vertical distance between the

nozzle and the outlet boundary is 20. We consider that the fluid flows through

a tube before dripping out of the faucet. To ensure a good resolution within the

inlet tube, a maximum length scale is set at the inlet boundary and the tube

wall boundary (linlet = ltube = 0.025). A global maximum length scale lmax is

set at 1.0 to ensure a decent mesh resolution at regions far from the interface.

This treatment guarantees that the inlet and outlet boundary conditions are

implemented correctly. Other mesh parameters are chosen as: α = 0.01, G = 0.2

and linterface = 0.01. An example of the two-phase mesh is shown in Figure

5.5. The mesh is almost uniform in regions far from the interface, and near

the interface, mesh size grows with the increasing distance from the interface

as illustrated in the close-up (b). The close-up (a) shows the mesh in the inlet

tube where the inlet boundary and the tube wall are resolved with relatively finer

mesh.
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Parabolic velocity profile at inlet

(a) flat interface (b) spherical interface

Figure 5.4: Our simulation starts from an initially (a) flat interface or (b) spherical

interface. The interface is drawn as a dashed line. At the inlet boundary the

velocity profile is set to be parabolic, and at the tube wall the no-slip boundary

condition is applied.

Table 5.1: Dimensionless numbers in the simulation of a dripping faucet

Oh = µ2/
√
ρ2σD 1.45× 10−3

We = ρ2V
2D/σ 6.50× 10−4

Bo = ρ2gD
2/σ 3.68

ρ2/ρ1 816.33

µ2/µ1 45.08

The dripping fluid is water (ρ = 103 kg/m3, µ = 8.9 × 10−4 Pa·s and σ =

0.072 N·m−1). In the two-phase simulation, the ambient fluid is air. Relevant

dimensionless parameters are listed in Table 5.1, where we use subscript 2 for the

dripping fluid and 1 for the ambient fluid in the two-phase simulation. We only

simulate half of the dripping configuration due to symmetry. In the interfacial

tension calculation, the curvature at the fixed contact point with the faucet is

obtained by fitting a circle onto the node and the two interfacial nodes which are

close to it. This is not the most accurate approximation and spurious currents
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Figure 5.5: The interface is drawn in red solid line: (a) a close-up of the inlet

boundary; (b) a close-up of the interface

are easily excited as the Oh number is around 10−3. We have not come up with

a better way to approximate the curvature at the fixed contact point. In our

practice, the spurious currents can be suppressed by a finer mesh.

5.2.2 Equilibrium shape of a pendant droplet

Before presenting the simulated results of dripping, we carry out a numerical

experiment on the equilibrium shape of a pendant droplet. For a faucet of a

sufficiently small diameter D, droplets with a volume V which is smaller than

a threshold volume Vc can stay still. The static shape of such a pendant drop

is determined by the balance between the gravitational and the surface tension

forces. This problem is defined by the dimensionless Bond number Bo = ρgD2/σ

and the dimensionless volume V/D3. For simplicity, we consider an axisymmetric

pendant water droplet with a free-surface assuming the ambient pressure is 0.

As shown in Figure 5.6, we use s to denote the arc-length of the droplet

interface starting from the axial axis. The interface is represented as (r(s), z(s))
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s

r

z

θ

0

Figure 5.6: The pendant droplet is attached to the wall (z = 0). The location of

the contact point is r = D/2. We use a parametric representation (r(s), z(s)) to

describe the shape of the pendant droplet.

in the cylindrical coordinate. We denote the angle between the tangent of the

interface and the axial axis as θ. The four quantities r, z, s and θ satisfy:

dr

ds
= sin θ,

dz

ds
= − cos θ. (5.2)

According to Fuchikami et al. (1999), the force balance on the interface is:

P = σκ = σ(−dθ
ds

+
cosθ

r
), (5.3)

and the force balance in the pendant droplet is:

P = ρgz, (5.4)

where g denotes the gravitational acceleration. Combining the geometry relations

in equation (5.2), we obtain a set of ODEs:

dr

ds
= sin θ,

dz

ds
= − cos θ,

dθ

ds
=

cos θ

r
− ρgz

σ
.

(5.5)
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The boundary condition at the bottom (s = 0) is:
r(0) = 0,

z(0) = pb/(ρg),

θ(0) = π/2.

(5.6)

where pb is the unknown pressure at the bottom of the drop and is used as a

controlling parameter.

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

V

pb

Vc = 0.715

Figure 5.7: The dimensionless pressure at the bottom of the drop pb (scaled by

ρgD) is plotted as a function of the dimensionless volume V (scaled by D3) for a

pendant water droplet hanging from a faucet with diameter D = 5.2mm.

We integrate equation (5.5) from r = 0 to r = D/2 with a fourth-order Runge-

Kutta method. Then we can calculate its corresponding volume V =
∫
πr2dz. By

varying pb, we obtain a set of solutions of the static pendant droplet shape and

pb/(ρgD) is plotted against the corresponding dimensionless volume in Figure

5.7. The threshold volume is found to be Vc = 0.715 scaled by D3. For a certain

volume V < Vc, the pendant drop might have more than one equilibrium shape,

however only the solutions of the branch from the origin to the first turning point

in Figure 5.7 are stable static shapes (Padday and Pitt, 1973).

To obtain the static shape of a pendant droplet with our Navier-Stokes solver,

we first start with a free-surface simulation of water slowly dripping from the
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V=0.450 V=0.496 V=0.528

V=0.562 V=0.629 V=0.696

Figure 5.8: The pendant shape from the ODE solutions is drawn in solid lines

while the simulation results are drawn in dots. The volume is scaled with D3.

faucet. The interface is initially flat and once the volume of the pendant droplet

reaches a certain value, the influx is switched off. As our interest is in the final

static shape, the viscosity is then set at 1000 times the real viscosity so that the

droplet shape converges faster1. Since the initial pendant droplet volume is zero

and the volume influx is tiny in our simulation, we expect that the converged

static solution corresponds to the stable equilibrium shape.

Figure 5.8 displays a comparison between the simulated results and the corre-

sponding stable static solutions. The dots which represent the simulated pendant

shape are superposed on the analytical shape drawn as solid lines. The good

agreement with the analytical solution shows the high precision of our numerical

method. Due to numerical error, the numerical solution deviates from the analyt-

ical solution. We perform a convergence study for V = 0.629. In the convergence

study, we set a uniform mesh size density linterface on the interface. In the analyt-

ical solution, the height of the pendant droplet L (scaled by D) is 1.05218. The

numerical height from a list of calculations is documented in Table 5.2 together

1
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with corresponding values of linterface, number of interface nodes N , and relative

error. We plot the relative error of L against linterface in Figure 5.9(a). Data from

Table 5.2 is drawn as dots and we observe that the relative error converges to

zero almost following 0.4l2interface. This exhibits the second order convergence of

our method.
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Figure 5.9: (a) The relative error of L to the analytical solution is plotted against

mesh parameter linterface. Data in Table 5.2 is drawn as dots which almost all fall

onto the line 0.4l2interface. (b) Temporal evolution of the relative error of L shows

that L converges in every mesh.

Table 5.2: Relative error of L to the analytical solution for V = 0.629

linterface N L Relative error (%)

0.05 30 1.05325 0.1

0.025 52 1.05242 0.02

0.0125 115 1.05210 0.007

0.00625 230 1.05216 0.001

We note that although L in each simulation converges as shown in Figure

5.9(b), the converged solution deviates from the static solution. This is due to

the spurious current which is induced by the imperfect approximation of curvature
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Figure 5.10: (a) illustrates the temporal evolution of Ca which converges at

O(10−5); (b) shows the velocity field at t = 0.5 and a close-up near the fixed

contact point. The interface is drawn in red lines and the amplitude of the

dimensionless velocity is amplified by 104 times.

at the fixed contact point. To show the effect of the spurious current, we conduct

an experiment starting with the converged interface shape (linterface = 0.00625)

and set the initial velocity at zero. The viscosity is still 1000 times that of the

water viscosity. The temporal evolution of the maximum dimensionless velocity

Ca = µUmax/σ is plotted in Figure 5.10(a). Theoretically Ca should converge

to zero, however it saturates around 10−5. The velocity field is plotted in Figure

5.10(b) where the interface is drawn as red solid lines. The velocity is presented

in a dimensionless number µU/σ and in the figure the amplitude of velocity is

multiplied by 104 times so that the vectors are visible. The maximum velocity

appears close to the fixed contact point as shown in the zoomed figure. It is

believed that the inaccurate approximation for curvature at the fixed contact

point accounts for the spurious currents, which can be reduced by refining the

mesh nearby. In this example, we manage to reduce the influence of spurious

currents on the pendant shape by using a strong viscous damping. However, we

have not found an accurate and stable alternative to calculate the curvature at

the fixed contact point.
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5.2.3 Simulation results of dripping faucet

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 5.11: The simulation results are superposed on the photograph from the

experiment. The interface shape (drawn in red solid line) from different stages are

selected: (1-2) necking and the formation of the columnar bridge before the first

breakup; (3) the instant after first breakup; (4) recoil of the dripping fluid; (5)

the instant after the second breakup; (6-8) oscillation of the secondary droplet.

We now apply our numerical method to simulate the dripping experiment. In

our simulation, the numerical parameter lbreakup is set to be 0.01 of the faucet

diameter. Figure 5.11 superposes the interface shapes computed from our simu-
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lation (drawn as red solid lines) over the experimental photo in the experiment

of Peregrine et al. (1990). The simulated results are from a two-phase simulation

starting from an initially flat interface. Remarkably good agreement with the

experimental results is achieved for all stages of the dripping process: (1) shows

the initial stage of necking which exhibits an appreciable up-down symmetry; in

(2) the necking has formed a columnar liquid bridge; (3) illustrates a sharp conic

shape near the pinchoff point just after bifurcation; in (4) the strong interfacial

tension after breakup rapidly accelerates the fluid in both water bodies, with the

formation of a knob at the tip of the cone and a dimple at the top of the drop; (5)

displays the propagation of the small-amplitude capillary waves, while a second

bifurcation takes place with the formation of a secondary droplet; and (6-8) shows

the interaction between the up and down capillary waves. Our simulation has

captured three and four major waves on the droplet, including a minute detail,

the tiny nodule at the top of the secondary droplet in (8). We notice that the

experimental photograph is not exactly axisymmetric. For example, the pendant

drop in the first photograph tilts clearly to the right. It is difficult to speculate

what the reason is. It might be due to the some imperfections in the experimental

apparatus, for instance, the experiment was not carried out on an anti-vibration

table.

The driving force in thread breakup is the interfacial tension. The analytical

solution (Eggers, 1997) reveals that the minimum neck diameter close to the

breakup point decreases linearly with time. This process is entirely governed

by continuum fluid mechanics. In our method, interface topology changes are

performed manually. As long as the breakup length scale lbreakup is small enough,

the numerical surgery does not disturb the global behaviour of the flow system

by a large amount. In Figure 5.12, the interface shape near the breakup instant

is shown when the minimum neck diameter reaches 10−2, 10−3 and 10−4 of the

faucet diameter. The interfaces overlay on each other very well except for near

the breakup point, as shown in the close-up. Our concern in this problem is

the evolution of the interface shape. Since computing costs increase rapidly with

the decrease of lbreakup without obvious gain in accuracy, setting lbreakup = 0.01

is adequate for this simulation. This figure also shows that the over-turning of

the interface occurs before the breakup. When such over-turning takes place, the
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Zoom

Figure 5.12: These interface shapes are from freesurface simulation when the neck

diameter reaches 0.01 (solid line), 0.001 (dashed line) and 0.0001 (dotted line) of

the faucet diameter.

one dimensional approximation is not applicable and numerical methods (Eggers

and Dupont, 1994; Fuchikami et al., 1999) based on 1D theory were not able to

capture this.

It is worthwhile to mention that the initial condition does not affect the final

breakup shape much. We perform two simulations starting from a semi-spherical

and a flat initial interface. The vertical coordinate z of the bottom point of the

droplet is plotted against the volume V for both cases in Figure 5.13. Since the

inflow volume flux is a constant and V grows linearly with time, this figure can

also be interpreted as a temporal evolution of z. The semi-spherical interface is

not a equilibrium shape. In this simulation, the evolution of z exhibits oscillations

around the red solid line, which represents the evolution of z in the simulation

starting from a flat interface. When both simulations enter the fast-necking stage,

the discrepancy between the two is then substantially reduced.

We also compare the interface shapes at different dripping stages from two-

phase and free-surface simulations starting from an initially flat interface, as

shown in Figure 5.14. The differences between the two are negligible. The effect
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Figure 5.13: Results from simulation starting with a spherical and flat interface

are drawn in blue and red lines respectively. The volume is scaled with D3.

of ambient gas on the dripping simulation is tiny due to the large density ratio

between the dripping fluid and the ambient fluid.

In this example, the Oh number is of the order of 10−3. Though the spurious

current is tiny in the simulation of the static Laplace solution with Oh = 10−3,

it can become severe in the simulation of a dripping faucet. More factors could

excite the spurious currents, including the interface advection, the oscillation due

to the initial shape, and in particular the inaccurate approximation of curvature

at the fixed contact point. One option to suppress spurious currents is to use

a larger viscosity. We carry out a simulation with viscosity 10 times as large as

that of the water (Oh ∼ 10−2), with the results that the simulated interface shape

near the instant of breakup agrees well with the experimental result even using

a coarser mesh α = 0.05. The final break-up is driven by interfacial tension, and

this process is very fast once the volume grows beyond the critical value. Larger

viscous damping makes the initial droplet-filling numerically more stable. Using

the real parameters is thus more challenging numerically. In our practice, we

reduce the effect of spurious currents by using a finer mesh. Figure 5.15 displays
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(1) (2) (3)

Figure 5.14: The left/right halves of each sub-figure are from free-surface/two-

phase simulations, respectively. The interface is depicted in red solid lines. The

same mesh parameters (α, β and G) are applied.

the velocity field from two simulations starting from an initially flat interface. The

interface is drawn in black solid line. The blue and red vector arrows represent

the velocity from the simulation using a mesh with α = linterface = 0.02 and

α = linterface = 0.01, respectively. All other mesh parameters remain the same.

It is evident that the amplitude of spurious currents is significantly reduced in

the simulation with a finer mesh (α = 0.01), so that the velocity field represented

by red vector arrows are much more smooth. Though spurious currents are very

strong in the simulation with α = 0.02, this simulation is still able to reach the

final breakup stage. We notice that at the instant t = 3.0, the velocity field

from the two simulations is similar. At this instant, the simulation enters the

fast-necking stage, and a smaller time step is used which may contribute to the

reduction of spurious currents.

The success in reproducing the experiment of Peregrine et al. (1990) numeri-

cally validates our implementation of interface topology changes. Using the real

physical parameters of water in the simulation further demonstrates the robust-

ness of our method in coping with spurious currents.
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t = 0.5 t=1.5

t=2.5 t=3.0

Figure 5.15: The velocity field at four instants before breakup are plotted. The

red and blue vector arrows are from the simulation using a mesh with parameters

α = linterface = 0.01 and α = linterface = 0.02 respectively.

5.3 Droplet head-on collision

Droplet collision occurs frequently in many natural and industrial processes,

for example, the formation of raindrops, spray and atomization. The head-on

collision of two droplets of the same size, is typically characterized by the Weber

number, We = ρlV
2D/σ, in which ρl is the liquid density, V is the relative

velocity of the drops, D is the droplet diameter, and σ is the interfacial tension.
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Experimental studies (Ashgriz and Poo, 1990; Bradley and Stow, 1978; Jiang

et al., 1992) have identified four distinct outcomes with increasing values of We:

(1) coalescence after minor deformation, (2) bouncing, (3) coalescence after large

deformation, and (4) coalescence followed by separation with the generation of

secondary droplets.

Further experimental investigation by Qian and Law (1997) revealed that

the bouncing regime of tetradecane head-on collision disappeared when the pres-

sure of the ambient gas was reduced from 1 atm to 0.6 atm, while the bouncing

regime appeared for water droplet head-on collisions when the ambient pressure

was increased from 1 atm to 2.7 atm. These observations suggest that the inter-

droplet gas film plays an important role in determining the collision outcome. In

a coalescence example, the flow in the intervening gas experiences a wide range

of flow regimes, from continuum flow, to rarefied flow, and finally to molecu-

lar flow. Zhang and Law (2011) developed the first comprehensive theory for

flow in the intervening gas film. Li (2016) incorporated the macroscopic theory

into the moving mesh methods and successfully predicted the threshold We for

coalescence-bouncing transitions. The simulated results of a bouncing example

were in excellent agreement with the experimental photographs.

The interface topology change in droplet collision is different from the drip-

ping example in the previous section. The break-up of a fluid thread is driven

by interfacial tension and a universal macroscopic solution based on continuum

mechanics has been found by Eggers (1997). Therefore the choice of lbreakup does

not affect the outcome of drop formation as the breakup is predicted to take

place in finite time. Whereas in the example of droplet collision, the final stage

before gas film rupture involves molecular van der Waals forces. If the controlling

breakup length scale lbreakup is set much larger than the length scale for which

van der Waals forces are effective, the simulation could predict the wrong collision

outcome or the wrong coalescence instant.

In this section, our method is applied to simulate the head-on collision of two

droplets of the same size with a coalescence outcome. This example is used to

validate our numerical implementation of interface topology change. To start

with, the implementation1 of the macroscopic theory is introduced, followed by

1This part of code was accomplished by Dr. Jie Li
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the simulation results and discussions on droplet collision.

5.3.1 Modelling the inter-drop gas film

When the two droplets approach each other, gas between the droplets is

drained out and the inter-droplet gas film becomes so thin that it can be modelled

as a disk with radius a and height h (h/a� 1) as shown in Figure 5.16. We use

the dimensionless Knudsen number Kn = λ/h to represent the ratio between the

mean free path λ of the gas and the thickness of the thin film h. When Kn is close

to or greater than 1, the continuum assumption fails and the film flow is governed

by the Boltzmann equation, rather than by the Navier-Stokes equations.

2a

h

Figure 5.16: The inter-droplet gas film has been squeezed into a disk with height

h and radius a (h� a).

Zhang and Law (2011) introduced a comprehensive analysis of the flow in the

gas film using the lubrication theory for the continuum regime and Boltzmann

equations for the rarefied regime. They found that the rarefied solution for the

lubrication layer only differs from the solution for continuum flow by a correction

factor. A unified form of the lubrication pressure is written as:

pg(r) =
3µg
∆h3

(r2 − a2)(
dh

dt
+ 2κh) (5.7)

in which ∆ is a function of the Knudsen number Kn:

∆(Kn) =

{
1 + 6.0966Kn+ 0.9650Kn2 + 0.6967Kn3 , Kn < 1

8.7583Kn1.1551 , Kn ≥ 1
(5.8)
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Our numerical method is based on the Navier-Stokes equations. To incorpo-

rate the rarefied gas effect into our method, we adopt the following form for an

effective viscosity in the lubrication layer:

µ =
µg

∆(Kn)
. (5.9)

This effective viscosity is about one tenth of the macroscopic viscosity µg at Kn =

1, and decreases as h1.1551 with the film thickness for Kn ≥ 1. The rarefied effect

reduces the lubrication resistance and therefore promotes droplet coalescence.

With the viscosity correction, continuum and rarefied flows are unified in a single

set of Navier-Stokes equations. The transition between the two flow regimes is

also achieved smoothly as the correction factor ∆(Kn) is continuous.

In our numerical method, the thin gas film is represented by one layer of

triangular elements, for example, the triangles between the interface (depicted as

a thick line) and the symmetry plane (the bottom boundary z = 0) in Figure

5.17. For simplicity, the viscosity is taken as a constant in each triangle and

the value depends on the local Kn number. For triangles with one vertex on

the interface, for example 4ABC in Figure 5.17, the height of vertex A is used

to calculate Kn. For triangles with two vertices on the interface, for instance

4DEF in Figure 5.17, the height of the midpoint of edge DF is used.
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Figure 5.17: The thick line represents the interface and z = 0 is the symmetry

plane. In this plot, the radial scale is 10 times as large as the axial scale as

otherwise it is impossible to view the triangles in the thin region.
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The final stage before droplet coalescence is dominated by the attractive van

der Waals force. It can be implemented by employing a body force calculated as

the negative gradient of the van der Waals potential or by adding a disjointing

pressure on the interface (Israelachvili, 2011; Nir and Vassilieff, 1988). Jiang and

James (2007) examined the two approaches and concluded that the calculated

van der Waals forces through both methods have qualitatively similar effects.

Here the van der Waals forces are attractive forces and are approximated by the

disjointing pressure model:

p = − AH
6πh3(x)

(5.10)

where AH is the Hamaker constant and h(x) is the minimum distance from x to

the other interface. Hence the force balance equation (4.6) turns into:

[T · n]+− =

(
σκ− AH

6πh3(x)

)
n. (5.11)

In the numerical calculation of this term, h is considered linear in each interface

segment as the interface is represented as a series of linear segments.

Though the van der Waals force is inversely proportional to the cubic power of

the decreasing h, the magnitude of the Hamaker constant is considerably small,

generally between O(10−21) J and O(10−18) J. Therefore the force only becomes

effective when the gap length is very small, to the order of 10 nm. In order to

precisely describe all the flow regimes in the process of droplet collision, it is

required that the numerical method resolve length scales ranging from the length

scale larger than the droplet diameter (O(10−4) ∼ O(10−2) m) down to 10 nm,

which is a demanding task for a numerical method.

5.3.2 Simulation results

We apply our method to simulate the head-on collision of two tetradecane

droplets of equal size. The real physical properties are used in our simulation, as

listed in Table 5.3. Using the symmetry condition, we only simulate half of one

droplet. The length is scaled by the droplet diameter D. The computing domain

is [0, 40]× [0, 40] and initially the droplet is centered at (0, 5).
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Figure 5.18: (a) Simulated sequences (in red) of the head-on collision of binary

tetradecane in air at atmospheric pressure superposed onto the experimental re-

sults by Pan et al. (2008). The diameter D = 214.4 µm, the relative impact

velocity is V = 0.604 m/s and We = 2.25. (b) shows the mesh configuration

close to the coalescence instant (the length is scaled by diameter). The zoomed

region is [−2 × 10−5, 2 × 10−5] × [0.276, 0.277]. (1 − 4) illustrate the process of

droplet merging, in which the red lines represent the interface: (1) one time step

before topology change; (2) the instant of the topology change; (3) 5 time steps

after coalescence; (4) 50 time steps after coalescence.

95



5. MULTIPHASE FLOW WITH INTERFACE TOPOLOGY
CHANGES

Table 5.3: Physical parameters used in the simulation

Air density 1.225 kg ·m−3

Air viscosity 1.827× 10−5 N · s ·m−2

Air mean free path 6.9× 10−8 m

Nitrogen density 1.138 kg ·m−3

Nitrogen viscosity 1.787× 10−5 N · s ·m−2

Nitrogen mean free path 5.88 × 10−8 m

Tetrahedron density 762.0 kg ·m−3

Tetradecane viscosity 2.128× 10−3 N · s ·m−2

Tetradecane-air interfacial tension 2.65× 10−2 N ·m−2

Tetradecane-Nitrogen interfacial tension 2.65× 10−2 N ·m−2

Tetradecane Hamaker constant 5.0× 10−20 J

The first example we present is the head-on collision of two tetradecane

droplets with diameter D = 214.4 µm in atmospheric air. The governing We

number is 2.25. According to the experiment by Pan et al. (2008), this example

has an outcome of coalescence. In the simulation, the breakup length scale is set

to be 10−5 of the droplet diameter. As we use the symmetry condition, this is

equivalent to merging the droplets once the minimum thickness of the gas film

reaches 4.29 nm, which equals 2× 10−5 of the droplet diameter.

We superpose the sequence of the simulated interface shape on the experi-

mental sequence in Figure 5.18(a). The time is calibrated by finding the instant

at which the simulated interface shape matches the experimental photograph at

t = 0 ms. We find that in the simulation, droplet coalescence takes place at the

instant t = 0.38576 ms. The droplet merge instant solely depends on when the

minimum gas film thickness falls below the set length scale, rather than by using

an empirical instant or model. The good agreement with the experimental obser-

vations, especially with the post-coalescence oscillation, shows that our method

successfully predicts the merge instant and resolved the various flow regimes of

the gas film before coalescence. Although there are some discrepancies, they are

acceptable since the experiment may not be exactly head-on. Furthermore, extra

inaccuracy may be generated when we calibrate time.
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5.3 Droplet head-on collision

Figure 5.18(b) illustrates how our adaptive mesh algorithm handles the topol-

ogy change. In the simulation, the mesh related parameters are α = 0.05,

β = 1.0, G = 0.15 and lmin = 5 × 10−7. The zoomed region in Figure 5.18(b) is

[−2× 10−5, 2× 105]× [0.276, 0.277]. The newly formed interface is not smooth at

the merge instant and after several time steps. Through constant remeshing, a

high-quality triangulation and a much smoother interface are eventually obtained

after 50 time steps. In this case, our method resolves length scales ranging from

larger than D to 10−5D. The computing costs are not extremely high: after

50 time steps from the merge instant, the total number of vertices is 3836 and

435 vertices are on the interface. After coalescence, a thin gas disk is trapped

in the droplet and will break up into many tiny bubbles. To precisely simulate

the evolution of the thin gas sheet, excessive mesh topology changes are needed.

The dynamics of the gas sheet after coalescence does not affect the oscillation of

the merged droplet. Since our focus is the collision outcome, we then disable the

rarefied effects and the van der Waals forces in our code to prohibit unnecessary

topology changes.

We also simulate an example with a bounce outcome. The droplet diameter

is 341.2 µm and We = 2.27. Comparisons with the experimental results are dis-

played in Figure 5.19. The two droplets experience a minor deformation before

bouncing apart, and the simulation effectively captures the temporal evolution of

this process. This numerical simulation is also in good agreement with the experi-

mental result. The success in simulating the two examples demonstrates that our

method has accurately resolved the flow in the inter-drop gas film. Particularly,

the agreement with the post-coalescence oscillation in the experiment shows that

our method predicts the merge instant with high precision. Though no previ-

ous experimental studies have suggested this, it is worthwhile to mention that

droplet size may have an influence on the final outcome of droplet collision. For

the binary tetradecane droplet collision in 1 atm air, Li (2016) pointed out that

the coalescence-bounce transition occurs at We = 2.3− 2.4 when D = 214.4 µm,

while it takes place at We = 1.0− 1.1 when D = 341.2 µm.

97



5. MULTIPHASE FLOW WITH INTERFACE TOPOLOGY
CHANGES

t = 0.00 ms t = 0.30 ms t = 0.60 ms t = 0.70 ms t = 0.90 ms 

t = 1.05 ms t = 1.15 ms t = 1.25 ms t = 1.30 ms t = 1.50 ms

Figure 5.19: The simulated interface is drawn in red solid lines and is superposed

on the experimental results by Pan et al. (2008). In this example, the ambient

gas is air at atmospheric pressure, the diameter is D = 341.2 µm, the relative

impact velocity V = 0.229 m/s and We = 2.27.

5.3.3 Discussion on droplet collision

In this part, we discuss some numerical and physical issues in our simula-

tion, including the influence of the rarefied effect and the van der Waals forces,

the incompressible assumption, and comparisons with interface non-conforming

methods related to this problem.

5.3.3.1 Rarefied effects and van der Waals forces

In order to investigate the effect of the rarefied gas and the van der Waals force,

we simulate the droplet collision problems using only the rarefied correction, only

the van der Waals force, or neither. In Figure 5.20, we plot the temporal evolution

of the minimum gas film thickness h (scaled by D) from these simulations. The

black solid line is from the simulation with both effects. The red solid line presents

the result from the simulation with only the rarefied gas effect. The blue solid

line represents the simulation with only the van der Waals force, and the green

solid line is from the simulation with no modifications.

In both Figure 5.20(a) and (b), the red or black line (with rarefied correction)

are lower than the blue or green lines (without rarefied correction) when the Kn

number is larger than 10−1. According to equations (5.8) and (5.9), the rarefied

gas pressure is smaller than the gas pressure without the viscosity correction.

The difference between viscosities before/after rarefied correction is small when

Kn � 1. For instance, the difference is only 0.6% when Kn = 10−3. As Kn
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(a) We = 2.25, D = 214.4 µm.
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(b) We = 2.27, D = 341.1 µm.

Figure 5.20: The dimensionless minimum thickness h/D of the thin gas film

between the two droplets is plotted against time. (a) presents the simulation for

We = 2.25 and D = 214.4 µm and (b) presents the result from We = 2.27 and

D = 341.1 µm. The time in the two figures is calibrated according to Figure 5.18

and Figure 5.19, respectively. Four cases are simulated for the two problems and

are drawn in different colours: with both rarefied effects and van der Waals force

(black), only rarefied effects (red), only van der Waals force (blue), and with no

modification (green).
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increases, the effective viscosity decreases. For Kn = 0.1, the effective viscosity

is around 60% of the macroscopic viscosity, and for Kn = 1, it is reduced to

around one tenth of the viscosity with no correction. As a result the lubrication

resistance of the rarefied gas film is reduced substantially, and this facilitates the

two droplets to approach to each other.

The attractive van der Waals force is included into our method by a disjoint

pressure model. As described before, it only becomes effective when h is of the

order of 10 nm, e.g. the Kn number is around 1. For simulations without the

rarefied correction, the film thickness is larger than the mean free path over the

entire course of collision. As a result, the blue (with only van der Waals force)

and the green (with no modifications) lines are identical in both figures. When

the rarefied effect is present, the film thickness is able to reach below the mean

free path. The effect of the van der Waals force is reflected through the difference

between the red (with only rarefied effect) and the black (with both effects) lines.

In Figure 5.20(a), the black line starts to deviate from the red line once Kn is

larger than 1. When Kn increases to 5, the gas film thickness decreases rapidly,

indicating that the van der Waals force prevails. According to equation (5.11), the

attractive van der Waals force is proportional to the inverse of the cubic power of

the film thickness h3. As h decreases, the attractive force is further enhanced and

drop coalescence is inevitable. In contrast, the simulation with only the rarefied

effect ends with a bouncing outcome. We notice that the difference between the

red and the black lines is tiny in Figure 5.20(b) as the actual outcome is bouncing.

For We = 2.25 and D = 214.4 µm, the collision outcome is coalescence as

confirmed in the experimental study of Pan et al. (2008). The experimental

sequences are well reproduced by our simulation as presented in the previous

section. By contrast, the simulated collision has a different outcome if the rarefied

effects or the van der Waals force are not incorporated. This demonstrates the

importance of the rarefied gas effect and the van der Waals force in droplet

collision. A numerical method may predict a wrong collision outcome if either of

the two effects is not included.

In this example, the interface topology change is performed only when h/D

falls below 2 × 10−5. In the two cases, the Kn number is around 10 if h/D <

2× 10−5. At this length range, the outcome of the collision is clear: coalescence
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Figure 5.21: Temporal evolution of the interface shape near the second thickness

minimum for tetradecane droplets collision in air with We = 2.27 and D =

214.4 µm. The radial scale is 20 times as much as the axial scale. h/D = 0 is the

symmetry boundary.

is inevitable. If the breakup length scale lbreakup is set to be 10−3 or 10−4 of

the droplet diameter, the collision outcome may be wrongly predicted (in the

case with We = 2.27 and D = 341.1 µm) or the coalescence time is wrongly

determined (in the case with We = 2.25 and D = 214.4 µm). Our choice of

lbreakup = 2× 10−5 D is necessary in the drop collision simulation. In the two ex-

amples, there is no need to further refine lbreakup. In the case of bounce outcome,

the h would never reach lbreakup = 2 × 10−5 D. In the example of droplet coa-

lescence, the van der Waals force has already become dominant before h reaches

lbreakup. As shown in Figure 5.20(a), the black solid line is nearly perpendicular to

the time axis before h reaches lbreakup. In fact, we have run the same simulation

without interface topology change and the difference between the instant when

h reaches 10−14 D and the instant when h reaches 3 × 10−5 D is only 5 × 10−5
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ms. In such a short time, the bulk fluid barely moves (the velocity is of the order

of 0.1 m/s). Hence further refining lbreakup will not improve the accuracy in the

global dynamics of the two droplets, and hence setting lbreakup = 2 × 10−5 D is

sufficient enough in this example.

In the bounce example, there is a second minimum in the evolution of h. The

evolution of the interface shape near the second minimum of h in the simulation

for We = 2.27 and D = 341.1 µm is depicted in Figure 5.21. This rapid decrease

of h is a consequence of the interface shape change from indented to unindented.

5.3.3.2 Compressibility of the inter-droplet gas
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Figure 5.22: Temporal evolution of the maximum relative pressure in the droplet

collision simulation for We = 2.25 (in red) and We = 2.27 (in blue). The time 0

is the start of the simulation.

Our method is based on the incompressible assumption. In real droplet col-

lision, the compressibility of the gas film may come into play. To investigate

this effect, we consider the two simulations in Section 5.3.2. In the example of

We = 2.25 and D = 214.4µm, the droplet speed is V = 0.3 m/s and the am-

bient pressure is p0 = 1 atm = 1.013 × 105 Pa. Hence the dynamic pressure is
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ρ(2V )2/p0 = 0.273% of the ambient pressure. In Figure 5.22, the maximum rel-

ative pressure is plotted against time for the two collision problems: the red and

blue solid lines represent the result from the cases for We = 2.25 and We = 2.27,

respectively. The relative pressure stays a small level apart from a pressure singu-

larity. The occurrence of this pressure singularity is due to the interface topology

change. When the van der Waals force prevails, the outcome of droplet collision is

determined. Hence the incompressible assumption still yields the correct outcome

of droplet collision.

5.3.3.3 Comparison with interface non-conforming methods

It is worthwhile to compare our method to interface non-conforming meth-

ods in simulating droplet collision. In interface non-conforming methods, the

interface is implicitly captured. The interface topology changes are handled au-

tomatically when two interfaces are close enough to each other, typically at a

distance of the length scale of a mesh cell. However, if the size of the mesh

cell is not small enough, this numerical coalescence may take place much earlier

than the actual coalescence instant, or it may take place even when the actual

collision outcome is bouncing. In non-conforming methods, it is still challenging

to resolve all length scales involved in droplet collision, which span more than 5

orders of magnitude. Once there are cells crossed by two interfaces, an empirical

model or parameter is usually necessary to determine whether and when coales-

cence occurs. For example, Pan et al. (2008) avoided the numerical coalescence

by using a front-tracking method and the coalescence instant was based on the

experimental results. In their simulation, the minimum gap thickness was about

0.2 µm, which is still an order of magnitude larger than the mean free path. An

adjusted Hamaker constant was used which is about 105 times larger than the

real value. In this way, the van der Waals force could be dominant at a larger

length scale in their simulation. Kwakkel et al. (2013) prohibited the automatic

topology changes by using two marker functions (LS and VOF) and described

the flow within the intervening gas film using a film drainage model based on the

theory by Zhang and Law (2011). The temporal evolution of the minimum film

thickness h in their simulation was rather smooth and the second minimum of h
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Moving mesh mesh Fixed mesh methods

Figure 5.23: The interface represented by the red solid line coincides with mesh

lines in our method (left panel). In contrast it intersects cells in non-conforming

method (right panel).

did not occur. This indicates that their simulation failed to capture the shape

transition from an indented interface to an unindented one.

By contrast, in our method, the adaptive mesh algorithm is able to improve the

mesh resolution at the interface region while keeping the total number of vertices

at a reasonable number. The rarefied gas effects and the van der Waals force have

been correctly incorporated and our method is governed solely by the Navier-

Stokes equations with an effective viscosity. All length scales involved in droplet

collision are resolved, and the real physical parameters are used. Though the

interface topology change requires an explicit treatment, the minimum distance

between the two droplets is the only factor that determines whether and when

the simulation proceeds to coalescence. As shown in Section 5.3.3.1, the choice of

the breakup scale lbreakup ensures that the topology change is only performed once

droplet coalescence is certain. Unlike the non-conforming methods, our method

does not rely on an empirical model or on adjusted parameters to determine the

collision outcome.

Another advantage of our method is that each element only contains one

phase, and the viscosity does not need approximation. In contrast, interfacial

cells contain a mixture of two phases in non-conforming methods. A comparison

between the two interface representation is depicted in Figure 5.23. The viscosity
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Figure 5.24: Temporal evolution of the minimum thickness of the inter-drop gas

film in the We = 0.2 tetradecane droplet collision with the size of D = 240 µm.

The solid/dashed lines depict the cases with/without rarefied viscosity correction,

respectively.

in non-conforming method is usually calculated as a weighted mean:

µ = µlC + µg(1− C) (5.12)

where µl and µg denote the viscosity of the liquid and gas, and C is the volume

fraction of the liquid phase in the cell. When the viscosity ratio is high, this

approximation may inaccurately describe the dynamics of the gas phase. For

instance, if µl/µg = 100, the approximated viscosity is 50 times larger than the

gas viscosity if C = 0.5. The approximation over-estimates the viscosity in the

cell intersected by the interface, and hence, the lubrication pressure which is pro-

portional to the viscosity. An exaggerated lubrication pressure may lead to a

delay in the coalescence instant or may even shift the outcome from coalescence

to rebound as it can prevent the gas film thickness from reaching the intermolec-

ular length scale. For instance, a numerical experiment by Pan and Suga (2005)

using the LS method predicted the outcome of the tetradecane droplet collision in

nitrogen at We = 0.2 to be bouncing. According to the phase diagram depicting
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the regime of tetradecane droplet collision (Qian and Law, 1997), the outcome

should be coalescence. In their simulation, numerical coalescence is not prohib-

ited and the cell size is 1/80 of the droplet diameter (D = 240 µm). The cell size

is roughly two orders of magnitude larger than the scale at which the van der

Waals force dominates. Even though their method has not incorporated the van

der Waals force, the outcome is still coalescence as long as the minimum thickness

of the inter-drop gas film reaches the same order of the magnitude as the cell size.

The bouncing result indicates that the lubrication pressure of the gas film is so

strong that the gas film can not be further squeezed. We conducted the same

numerical experiment using the same parameters. The physical parameters of

nitrogen gas are listed in Table 5.3. The temporal evolution of the minimum gas

thickness is plotted in Figure 5.24 for both cases with (solid line) and without

(dashed line) the rarefied viscosity corrections. Although the two cases have dif-

ferent coalescence instants, the outcome is clearly coalescence, which is in accord

with the phase diagram by Qian and Law (1997).

To summarise, our method is capable of resolving all length scales involved

in droplet head-on collisions at a feasible computing cost. No extra empiri-

cal/adjusted parameters or coalescence/bounce models are needed. The topology

change is decided solely by whether the minimum gas film thickness reaches the

scale at which the intermolecular force is dominant. The accurate description of

the flow within the inter-drop gas film across different flow regimes enables the

method accurately to predict the outcome of droplet collision.
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Chapter 6

FEM applied to non-isothermal

multiphase flows

This chapter is dedicated to non-isothermal multiphase flows. The effect of

temperature variation on the flow is through the temperature dependence of im-

portant fluid properties, including density and interfacial tension. The induced

density non-uniformity leads to buoyancy force. The non-uniform interfacial ten-

sion results in a fluid motion along the interface, and eventually flow in the bulk

fluid. This flow is often called thermocapillary flow, and is common in many

technical processes such as crystal growth and welding. Motivated by its applica-

tion, we decide to extend our numerical method to include non-isothermal effects.

This chapter starts with the governing equations for non-isothermal multiphase

flows, followed by numerical implementation of thermal-induced buoyancy and

thermocapillarity. The implementation is validated using three benchmark ex-

amples. At the end of this chapter, we apply our method to study the effect of

thermocapillary flow in the break-up of a liquid bridge.

6.1 Mathematical formulation for thermocapil-

lary flow

We consider non-isothermal flow with two incompressible immiscible Newto-

nian fluids. Their physical properties are density ρi, viscosity µi, thermal con-
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ductivity ki and specific heat capacity cp,i (i = 1, 2). The thermal diffusivity is

expressed as:

α =
k

ρcp
. (6.1)

In addition to η and λ in equation (4.1), we define χ as the thermal conductivity

ratio:

χ =
k2

k1

, (6.2)

and γ as the heat capacity ratio:

γ =
cp,2
cp,1

. (6.3)

We consider a linear relationship between density and temperature:

ρi = ρi,0[1− βi(T − T0)], (6.4)

where βi is the isobaric thermal expansion coefficient1 and the subscript 0 indi-

cates a reference condition (Reddy and Gartling, 2010).

For simplicity, the interfacial tension is approximated as a linear function of

the temperature:

σ = σ0 +
dσ

dT
(T − T0), (6.5)

where σ0 is the value of interfacial tension at reference temperature T0, and dσ/dT

is a negative constant.

The governing equations for non-isothermal multiphase flows include the con-

tinuity equation, the momentum equation, and the convection diffusion equation

for temperature. They are expressed in vector form as follows:

∇ · u = 0, (6.6a)

ρi,0
du

dt
= ∇T + ρi,0(1− βi(T − T0))g, (6.6b)

ρi,0cp,i
dT

dt
= ∇ · (ki∇T ), (6.6c)

1 The general equation of state is written as δρ/ρ0 = −βpδT +κT δp where βp is the isobaric

thermal expansion and κT is the isothermal compressibility (Charru, 2011). Here we consider

incompressible flow and drop the κT δp term.
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where u and T denote velocity and temperature, respectively, the stress tensor

is T = −pI + µi
(
∇u +∇uT

)
, and we use the material derivatives in the above

equations. We adopt the Bousssinesq approximation, which only considers the

density variation in the gravity term. This approximation is restricted to flows

with small density differences (∆ρ/ρ0 � 1) such that we can ignore the non-

uniform density in the inertial term and the continuity equation (Reddy and

Gartling, 2010).

On the interface, the force balance condition reads:

[T · n]+− = σκn +
dσ

ds
t, (6.7)

in which s represents the arc-length, and n and t are the unit normal and tangent

vector, respectively.

Another condition on the interface is the balance between heat flux:

[−ki∇T · n]+− = 0. (6.8)

In additional to the ratio of physical properties and the dimensionless numbers

introduced in Section 4.1, more dimensionless numbers are required to define a

non-isothermal multiphase flow. Compared to the isothermal two-phase system,

there are five more physical variables, namely k, cp, β, dσ/dT , and ∆T (the tem-

perature scale), and one more dimension, e.g. temperature, in a non-isothermal

system. Hence, we need four more dimensionless numbers.

We first introduce the Péclet number for heat transfer:

Pe =
LU

α
, (6.9)

which characterises the relative importance of heat advection to heat diffusion.

Pe and Re are related through the Prandtl number:

Pe = Re× Pr, Pr =
ν

α
=

µ/ρ

k/(ρcp)
=
cpµ

k
, (6.10)

where Pr measures the ratio between the viscous diffusion rate and the thermal

diffusion rate. Typically, for liquid metal Pr � 1.0, for gases, Pr ≈ 1.0 and for

very viscous liquid Pr � 1.0.
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The second dimensionless number, the Rayleigh number, is defined as:

Ra =
gβ∆TL3

να
, (6.11)

which characterises the ratio between the thermal-driven buoyancy force and the

viscous force. The Ra number is an analogy to the Pe number if we use the

velocity scale Uβ = βgL2∆T/ν in equation (6.9). This velocity scale can be

obtained from the balance between viscous stress and pressure difference due to

buoyancy: µU/L ∼ ∆ρgL yields U ∼ Uβ.

The third is the Marangoni number defined as :

Ma =
∆σL

µα
= | dσ

dT
|∆TL
µα

, (6.12)

which is regarded as the ratio between thermal-induced interfacial tension gra-

dient to viscous force. The Ma number is also analogous to Pe with U∆σ =

|dσ/dT |∆T/µ substituted into equation (6.9). We can obtain this velocity scale

from the balance between the Marangoni stress and the viscous stress: ∆σ/L ∼
µU/L yields U ∼ U∆σ.

Last, we define the Capillary number:

Ca =
µU∆σ

σ0

= | dσ
dT
|∆T
σ0

=
∆σ

σ0

, (6.13)

as a measure of interface deformation due to thermocapillarity. When Ca → 0,

the interface is considered nondeformable.

6.2 Numerical implementation

To include the temperature effect, we first develop an FEM solver for the

convection-diffusion equation of the temperature. The thermal-induced buoyancy

terms and thermocapillarity are then added into the existing NS solver. Details

of numerical implementation are presented in this section.
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6.2.1 An FEM solver for temperature equation

The formulation of equation (6.6c) in two-dimensional geometry is expressed

as (the subscript i is dropped for convenience):

ρ0cp
dT

dt
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂z

(
k
∂T

∂z

)
. (6.14)

Following standard FEM procedure, we multiply the above equation by the test

function φ and integrate it over the whole domain to obtain the weak formulation:∫
Ω

ρ0cpφ
dT

dt
dxdz +

∫
Ω

k

(
∂T

∂x

∂φ

∂x
+
∂T

∂z

∂φ

∂z

)
dxdz =

∫
∂Ω

k∇T · nφdl. (6.15)

In most cases, the Dirichlet boundary condition for temperature is imposed on

the domain boundaries. We set φ = 0 there, and the boundary integral term

vanishes. Due to the boundary condition (6.8), the integral on the interface Γ is:∫
Γ

[ki∇T · n]+− φdl = 0, (6.16)

The computational domain is discretised using the same triangulation with

which we solve the incompressible Navier-Stokes equation. We approximate tem-

perature using P2 finite element space:

T =

NP2∑
i=1

Tiφi, (6.17)

where Ti is the approximate temperature on node xi, φi is the P2 basis function

defined on node xi and NP2 is the total number of temperature nodes. According

to Galerkin finite element method, we choose the P2 basis function φj, j =

1, 2, ..., NP2 as the test function and the discretised weak formulation is written

as:

MT dT

dt
+ KTT = 0, (6.18)

in which:

MT
ij =

∫
Ω

ρ0cpφiφjdxdz, KT
ij =

∫
Ω

k

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂z

∂φj
∂z

)
dxdz, (6.19)

and T = (T1, T2, ..., TNP2
)T .
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The temperature equation is also solved on a moving mesh using a semi-

implicit method. The material derivative is approximated as below:(
dT

dt

)n+1

≈ Tn+1 − T̃n

∆t
. (6.20)

where T̃n is obtained using the method of characteristics in the ALE framework.

Equation (6.19) is turned into linear equations:(
MT

∆t
+ KT

)
Tn+1 =

MT

∆t
T̃n. (6.21)

which can be solved using the SPOOLES (Ashcraft et al., 2002).

The temperature equation in the axisymmetric case is:

ρ0cp
dT

dt
=

1

r

∂

∂r

(
kr
∂T

∂r

)
+

∂

∂z

(
k
∂T

∂z

)
. (6.22)

It is solved in a similar way as in the two-dimensional case and its weak formu-

lation is presented in Appendix C.

6.2.2 Coupling the temperature solver with the NS solver

In non-isothermal multiphase flow, the force balance condition on the interface

has to account for the interfacial tension gradient in equation (6.7). In the weak

formulation of the momentum equation, the boundary integral on the interface

needs to be modified accordingly. The thermal-induced buoyancy force is added

as a source term. The new weak formulations are as follows:∫
Ω

(
ρ0φ

du

dt
+ 2µ

∂φ

∂x

∂u

∂x
+ µ

∂φ

∂z

∂u

∂z
+ µ

∂φ

∂z

∂v

∂x
− p∂φ

∂x

)
dxdz

=

∫
Γ

φ

(
σκnx +

dσ

dl
tx

)
dl, (6.23a)

∫
Ω

(
ρ0φ

dv

dt
+ µ

∂φ

∂x

∂u

∂z
+ µ

∂φ

∂x

∂v

∂x
+ 2µ

∂φ

∂x

∂v

∂z
− p∂φ

∂z

)
dxdz

=

∫
Γ

φ

(
σκnz +

dσ

dl
tz

)
dl −

∫
Ω

(ρ0βg(T − T0))φdxdz. (6.23b)
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Unlike the isothermal situation, we need to evaluate dσ/ds and t numerically.

Similar to the evaluation of n, the unit tangent vector t on an interface edge is

calculated directly and is constant along this edge. The interfacial tension de-

pends on the temperature, which is defined at the two vertices and one midpoint

in each interface edge. Hence we consider σ quadratic on the segment and calcu-

late dσ/ds according to its local representation. This numerical evaluation is of

second order convergence, as shown in later text.

We adopt a straightforward approach to address the coupling between the

temperature equation and the momentum equation. The computational order

from time level n to n+ 1 is as follows:

(1) Update the triangulation from T nh to T n+1
h and calculate mesh velocity a;

(2) Use the method of characteristics to find the characteristic foot and use

interpolation to determine Ũn and T̃n;

(3) Solve the temperature equation on T n+1
h and update the temperature field

for time level n+ 1;

(4) Calculate the non-isothermal source terms using the updated tempera-

ture, solve the Navier-Stokes equations using the uzawa method and update the

velocity field for time level n+ 1.

6.3 Validation tests

In this section, our implementation of non-isothermal effects are validated

through three benchmark tests: (1) natural convection in a square cavity; (2)

thermocapillary convection in two superimposed layers; and (3) droplet migration

under a temperature gradient.

6.3.1 Natural convection in a square cavity

Natural convection problems are characterised by the fluid motion produced

by temperature-induced buoyancy forces. In general the fluid density decreases

when the temperature increases. Fluid close to a heat source becomes warmer

and lighter than its surroundings. The warmer fluid rises due to buoyancy and the

surrounding cooler fluid moves to replace it. The cooler fluid is then heated and
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(a) Configuration (b) Mesh

Figure 6.1: Configuration of natural convection in a square cavity of side L and

the computational mesh.

this process continues, forming a convection current. Natural convection appears

in many practical problems, including reactor insulation, the ventilation of rooms,

solar energy collection, etc. It has also been widely used as a benchmark test to

assess the accuracy of a numerical method to solve heat transfer equations. In this

section, we consider the natural convection in a square cavity with two vertical

walls heated differently and compare our results with the benchmark results of

De Vahl Davis (1983).

The set-up of this benchmark test is illustrated in Figure 6.1(a): a two-

dimensional square cavity with side length equal to L. We only consider one

phase flow in this example. The top and bottom walls are insulated and the tem-

peratures of the two vertical sides are T1 and T2, respectively (T1 > T2). No-slip

boundary conditions are applied to all walls of the cavity. Two non-dimensional

numbers governing this problem are the Prandtl number and the Rayleigh num-
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ber, expressed as:

Pr =
ν

α
, (6.24a)

Ra =
βg∆TL3

αν
=
βg(T1 − T2)L3

αν
. (6.24b)

In accordance with the benchmark results, we set Pr = 0.71123 and consider

a range of values for Ra (= 103, 104, 105, 106). We employ a mesh with uniform

mesh size density (mesh size gradient G = 0 and mesh size density ls = lmax =

0.025), as shown in Figure 6.1(b). There are approximately 20 nodes on each

side of the cavity. The benchmark results are presented in dimensionless form,

denoted with a tilde on the top: T̃ = (T − T2)/(T1 − T2), ũ = uL/α, w̃ = uL/α,

x̃ = x/L and z̃ = z/L. The following quantities are examined and compared with

the benchmark test:

1. the maximum and minimum vertical velocity (ṽmax and ṽmin) on the hori-

zontal mid-plane (x̃ = 0.5) and their location;

2. the maximum and minimum horizontal velocity (ũmax and ũmin) on the

vertical mid-plane (z̃ = 0.5) and their location;

3. the average Nusselt number defined by De Vahl Davis (1983), Nu =∫
Ω

(ũT̃ − ∂T̃
∂x̃

)dΩ. The Nusselt number measures the ratio between convective

heat transfer and conductive heat transfer. A large value for Nu indicates that

convection is dominant, and a small value for Nu indicates that conduction dom-

inates;

4. the average Nusselt number on the horizontal mid-plane Nu 1
2

and the left

wall boundary Nu0;

5. the maximum and minimum local Nusselt numbers Numax and Numin on

the hot wall.

The fluid is at rest initially, and the initial temperature is set at T2 everywhere

inside the cavity. We run the simulation until the examined values we examine

converges, meaning that the flow reaches the steady stage. For example, the

relative error of ũmax compared to the benchmark value is plotted against the

dimensionless time tα/L2 in Figure 6.2, and it converges at tα/L2 = 40000 for

the four Ra cases. The eight examined quantities from our simulation and the

benchmark results are listed in Table 6.1. For most examined values, the relative
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Figure 6.2: The temporal evolution of the relative error ũmax compared to the

benchmark value.

Table 6.1: Comparison with benchmark solution in De Vahl Davis (1983)

Ra

Benchmark solution Present work

103 104 105 106 103 104 105 106

ũmax 3.649 16.178 34.730 64.630 3.6488 16.189 34.769 64.839

z̃ũmax 0.813 0.823 0.855 0.850 0.823 0.824 0.856 0.848

ṽmax 3.697 19.617 68.590 219.36 3.698 19.630 68.612 222.07

x̃w̃max 0.178 0.119 0.066 0.0379 0.178 0.120 0.065 0.0380

Nu 1.118 2.243 4.519 8.800 1.118 2.244 4.525 8.927

Nu 1
2

1.118 2.243 4.519 8.799 1.112 2.245 4.526 8.934

Nu0 1.117 2.238 4.509 8.817 1.126 2.270 4.527 8.292

Numax 1.505 3.528 7.717 17.925 1.507 3.537 7.765 18.228

Numin 0.692 0.586 0.729 0.989 0.691 0.582 0.716 0.958

error compared to the benchmark value is less then 2%. The relative error of

Numin in the Ra = 106 case is around 3%. De Vahl Davis (1983) performed

simulations using finite difference with varied mesh sizes (structured mesh from
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Ra = 103 Ra = 104

Ra = 105 Ra = 106
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.3: Temperature field of the steady-state natural convection in a square

cavity for Ra = 103, 104, 105 and 106 while Pr = 0.71. The value of the dimen-

sionless temperature is represented by colour.

10×10 to 80×80), and then used extrapolation to obtain the benchmark solution.

In their simulation of Ra = 106 with mesh 40 × 40, the relative error of Numin

(equal to 1.02 in the simulation) is also around 3%. From the good quantitative

agreement with the benchmark results, we conclude that the FEM solver for

temperature and the thermal-induced buoyancy are implemented correctly and

accurately.

The steady-state temperature and velocity fields from our simulation for

Ra = 103, 104, 105 and 106 with Pr fixed at 0.71 are shown in Figure 6.3 and Fig-
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Ra = 10
4

Ra = 10
5

Ra = 10
6

Figure 6.4: Velocity field of the steady-state natural convection in a square cavity

for Ra = 103, 104, 105 and 106 while Pr = 0.71. The size of the vector is adjusted

for the clarity of visualisation: it is multiplied by 0.03, 0.01, 0.003 and 0.001 for

Ra = 103, 104, 105 and 106, respectively. The velocity is scaled by α/L.

ure 6.4, respectively. The value of the dimensionless temperature is represented

by the colour. The size of the velocity vector is also adjusted for the clarity of

visualisation. At a smaller Ra number, the flow is relatively weak and the tem-
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perature field is slightly perturbed from a conduction solution. For Ra = 103

and 104, the flow shows a single clockwise cell in the cavity. As Ra increases, the

convection strengthens as reflected by the increase in Nu in Table 6.1. At larger

Ra numbers, the temperature field in the centre of the cavity becomes more ver-

tically stratified. The flow structure is different from the cases with smaller Ra

number: there are two vortices in the case for Ra = 105 and perhaps more in

Ra = 106. The flow close to the two vertical boundaries is significantly stronger

than that in the centre of the cavity. This is due to the larger buoyancy forces

induced by the larger local temperature gradient.

6.3.2 Thermocapillary convection of two superimposed flu-

ids

To verify our implementation of thermocapillarity, we consider the thermocap-

illary driven convection of two superimposed planar fluids (Pendse and Esmaeeli,

2010). The set-up of the problem is shown in Figure 6.5. The heights of the up-

per fluid A and and the lower fluid B are a and b, respectively. In the horizontal

direction, the fluids extend to infinity. We impose a uniform temperature on the

top wall:

Ta(x, a) = Tc, (6.25)

and a sinusoidal temperature on the bottom wall:

Tb(x,−b) = Th + T0 cos(ωx), (6.26)

in which Th > Tc > T0 and ω = 2π/l is the wave number.

The above boundary conditions establish a periodic temperature field in the

horizontal direction with a period length of l. It is sufficient to consider the

solution in one period domain with −l/2 ≤ x ≤ l/2. The characteristic length,

temperature and velocity scales are as follows:

L = b, ∆T = T0, U∆σ = | dσ
dT
| T0

µB
. (6.27)

The three governing dimensionless numbers are defined as:

Re =
U∆σb

νB
, Ma =

U∆σb

αB
, Ca =

µBU∆σ

σ0

(6.28)
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upper phase A

Tb(x) = Th + T0cos(ωx)

Ta(x) = Tc

Figure 6.5: Fluids A and B are separated by the interface depicted in the dotted

line. They are confined by the top and bottom walls, but extend to infinity in

the horizontal direction. Uniform temperature is imposed on the top wall while

a sinusoidal temperature is imposed on the bottom wall.

and we denote the ratio of viscosity and thermal conductivity as below:

λ =
µA
µB

, χ =
kA
kB
. (6.29)

An analytical solution for the thermocapillary driven convection of superim-

posed fluids when Ma � 1, Re � 1 and Ca � 1 was given by Pendse and

Esmaeeli (2010). They solved the Stokes equation for velocity and the Laplace

equation for temperature. The analytical solution is as below:

TA(x, z) = T0f(ã, b̃, χ)sinh(ã− ωz) cos(ωx) +
(Tc − Th)z + χTcb+ Tha

a+ χb
,

(6.30a)

uA(x, z) = U
{[
CA

1 + ω(CA
2 + CA

3 z)
]

cosh(ωz) + (CA
3 + ωCA

1 z)sinh(ωz)
}

sin(ωx),
(6.30b)

vA(x, z) = −χU
[
CA

1 cosh(ωz) + (CA
2 + ωCA

3 z)sinh(ωz)
]

cos(ωx) (6.30c)

in the upper layer and,

TB(x, z) = T0f(ã, b̃, χ) [sinh(ã)cosh(ωz)− χsinh(ωz)cosh(ã)] cos(ωx)

+
χ(Tc − Th)z + χTcb+ Tha

a+ χb
(6.31a)

uB(x, z) = U
{[
CB

1 + ω(CB
2 + CB

3 )z
]

cosh(ωz) + (CB
3 + ωCB

1 z)sinh(ωz)
}

sin(ωx),
(6.31b)
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vB(x, z) = −χU [CB
1 zcosh(ωz) + (CB

2 + CB
3 z)sinh(ωz)] cos(ωx), (6.31c)

in the lower layer. In the above equations, the constants are expressed as:

ã = aω, b̃ = bω. (6.32a)

f(ã, b̃, χ) =
1

χsinh(b̃)cosh(ã) + sinh(ã)cosh(b̃)
, (6.32b)

CA
1 =

sinh2(ã)

sinh2(ã)− ã2
, CA

2 =
−aã

sinh2(ã)− ã2
, CA

3 =
2ã− sinh2(2ã)

2[sinh2(ã)− ã2]
, (6.32c)

CB
1 =

sinh2(b̃)

sinh2(b̃)− b̃2
, CB

2 =
−bb̃

sinh2(b̃)− b̃2
, CB

3 =
sinh(2b̃− 2b̃)

2[sinh2(b̃)− b̃2]
. (6.32d)

and,

U = | dσ
dT
| T0

µB
g(ã, b̃, χ)h(ã, b̃, λ), (6.33)

in which,

g(ã, b̃, χ) = sinh(ã)f(ã, b̃, χ), (6.34a)

h(ã, b̃, λ) =
(sinh2(ã)− ã2)(sinh2(b̃)− b̃2)

λ(sinh2(b̃)− b̃2)(sinh(2ã)− 2ã) + (sinh2(ã)− ã2)(sinh(2b̃)− 2b̃)
.

(6.34b)

In our simulation, we set a = b = l/4 = 1, ρB = 1.0, νB = 1.0, αB = 1.0,

dσ/dT = −10−4, σ0 = 1.0, Tc = 1.0, Th = 3.0, and T0 = 1.0. The three non-

dimensional numbers are Re = Ma = Ca = 10−4 � 1.0. We vary the thermal

conductivity ratio χ while the other ratios are fixed. The computational mesh

is a uniform mesh with lmax = 0.1 and it has 313 vertices. Figure 6.6 shows the

contour map of temperature for the thermal conductivity ratios: χ = 0.2, 1.0, and

5.0. The blue dashed isothermal line represents the simulation results, and the

red solid isothermal line represents the analytical solution. The maximum relative

errors for the temperature solution are documented in Table 6.2. The simulated

Table 6.2: Maximum relative error of temperature compared to the analytical

solution

χ 0.2 1.0 5.0

relative error 9.87× 10−6 1.0× 10−5 1.32× 10−5
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Figure 6.6: The contour map of temperature is presented for thermal conductivity

ratios χ = 0.2, 1.0 and 5.0. All other physical property ratios are fixed at 1.0.

The simulated results and the analytical solutions are represented by blue dashed

and red solid lines respectively, labelled with the temperature value. The interface

is drawn as a blue dotted line.
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χ = 0.2

χ = 1.0

χ = 5.0

Figure 6.7: The velocity vectors are plotted for thermal conductivity ratios

χ = 0.2, 1.0 and 5.0. The blue and red arrows represent velocity vectors from

our simulation and the analytical solution, respectively. For the clarity of visual-

isation, we multiply the magnitude of the vectors by 105.
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results are in good quantitative agreement with the analytical solutions given by

equations (6.30) and (6.31). The maximum relative error is of the order of 10−5

and the simulated contour map is nearly identical to the analytical solution. We

observe that with a decreasing values of χ, the isothermal lines in the upper layer

become denser and the temperature gradient along the interface is larger.

The velocity field is plotted in Figure 6.7. The blue arrows represent the simu-

lation results and the red arrows are from the analytical solution. The magnitude

of the vectors are all multiplied by 105 such that they are visible. It can be clearly

seen that the velocity solution from the simulation agrees very well with the an-

alytical solution. We observe that the magnitude of the velocity vector increases

with the decreasing thermal conductivity ratio χ. The strengthened convection is

due to the larger temperature gradient along the interface and hence the stronger

Marangoni stresses.

6.3.3 Thermocapillary migration of a spherical droplet

In this section, we examine the accuracy of our method with another bench-

mark example: the migration of a spherical droplet under a constant temperature

gradient.

∇T

Figure 6.8: A droplet migrates towards the warmer side when a temperature

gradient is imposed. This figure is adapted from Figure 2-19 in Leal (2007).
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The configuration of this problem is sketched in Figure 6.8. A droplet of

fluid A is surrounded by fluid B which is heated on one side and cooled at the

other. The imposed temperature gradient establishes a gradient in the interfacial

tension along the drop interface. As the interfacial tension is reduced on the

warm side, the interface is pulled from the warm to the cool side of the droplet.

The fluid in the vicinity of the interface is dragged towards the cooler end of the

droplet. This motion causes higher pressure to develop just beyond the cooler

end relative to the warmer end. As a result of the pressure difference, the droplet

migrates towards the warm side. Young et al. (1959) were the first to investigate

the steady thermocapillary migration of a droplet. In the limit of Stokes flow,

negligible heat convection and a nondeformable interface (Re, Ma, Ca → 0),

the droplet maintains a spherical shape and migrates with a constant velocity

towards the warm end. In the absence of gravity, the analytical solution of the

terminal velocity of a droplet of radius R under a constant temperature gradient

∇T∞ is :

UY GB =
2U

(2 + 3λ)(2 + χ)
(6.35)

where U = |dσ/dT∇T∞|R/µB is the characteristic velocity, λ = µA/µB is the

viscosity ratio, and χ = kA/kB is the thermal conductivity ratio. Using R as the

characteristic length, we define three dimensionless numbers:

Re =
UR

νB
, Ma =

UR

αB
, Ca =

µBU

σ0

. (6.36)

In the following sections, we carry out simulations for a limiting case and a case

with finite Re, Ma, Ca.

6.3.3.1 Solution for a limiting case: Re,Ma,Ca� 1.0

The assumptions for the analytical solution are Re,Ma,Ca → 0, an infinite

domain, and the absence of gravity. In our numerical simulation, we only simu-

late half of the configuration due to symmetry. The domain size in our numerical

simulation is 100R × 200R and initially the droplet is placed at (0, 0). We ap-

ply a symmetry boundary to r = 0 and no-slip boundary conditions to other

boundaries. A linear temperature field is imposed in the vertical direction, with

T = 100 on the top wall and T = −100 on the bottom wall. The temperature
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gradient is a constant ∇T∞ = 1.0 and the reference temperature is T0 = 0. For

simplicity, the same physical properties are used for fluids A and B. The physical

parameters are set as below:

R = 1.0, ρ = 1.0, k = 1.0, µ = 1.0, cm = 1.0, dσ/dT = −10−4, σ0 = 0.1.

(6.37)

Under this numerical set-up, the values of the dimensionless numbers are Re =

Ma = 10−4, and Ca = 10−3. The analytical terminal velocity is UY GB = 1.3333×
10−5.

Table 6.3: Numerical results for different mesh resolutions

α N Ntotal Um relative error (%)

0.2 8 236 1.2368× 10−5 7.24

0.1 16 284 1.3094× 10−5 1.79

0.05 32 411 1.3273× 10−5 0.45

0.025 64 643 1.3316× 10−5 0.14

0.0125 128 1100 1.3325× 10−5 0.07

0.00625 256 2058 1.3335× 10−5 0.01

Fixing the mesh size gradient at G = 0.15, we vary the mesh size scale α to

change the mesh resolution. In general, the total number of mesh vertices grows

linearly with the inverse of the mesh size scale. The migration velocity of the

droplet Um is calculated as:

Um =

∫
Ωd
vrdrdz∫

Ωd
rdrdz

. (6.38)

where Ωd denotes the droplet domain.

The numerical results for different mesh resolutions are summarised in Table

6.3 where N is the number of vertices on the interface and Ntotal is the total

number of mesh vertices. The relative error for Um is plotted against the mesh

size scale α in Figure 6.9(a). The relative error converges to zero almost following

2α2 as α decreases. This example demonstrates the second order convergence of

our method. The evolution of the migration velocity is illustrated in Figure

6.9(b). Since the values of Re and Ma are very small, the flow converges to the
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Figure 6.9: (a) The relative error vanish with a decreasing mesh size scale α at

a second-order convergence rate; (b) At very small values of Ma and Re, the

migration velocity converges very quickly and the relative error is less than 1%

when the number of interface nodes exceeds 32.

steady solution very quickly. The final steady migration velocity converges to the

analytical solution with a relative error of less then 0.5% when N is greater than

32.

6.3.3.2 Solution for finite Re, Ma and Ca

Our numerical method is capable of simulating the thermocapillary migration

of droplet at finite values ofMa andRe. Though no analytical solution is available

for this problem, a few numerical tests are documented in the literature. In

our numerical simulation, we fix Re and Ca while varying Ma by adjusting the

thermal conductivity k. The physical parameters are still kept the same for the

fluid both inside and outside the droplet (η = χ = η = λ = 1.0).

We set R = 1.0, ρ = 1.0, σ = 10−4, dσ/dT = −10−5, µ = 0.01, cm = 1.0,

and ∇T∞ = 1.0 to fix Re = 1.0 and Ca = 0.1. The thermal conductivity k is

set at 0.01, 0.001, and 0.0001 such that Ma = 1.0, 10.0 , and 100.0. The size
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of the computing domain is [0, 5R]× [−7.5R, 7.5R], and initially the droplet is

centered at (0, 0). The mesh parameters are set at α = 0.025 (64 nodes on the

interface), G = 0.15, and lmax = 2.0. Under the influence of thermocapillarity, the

droplet starts migrating towards the warmer region (upwards in our simulation)

and finally reaches a steady migration velocity. The normalised migration velocity

Um/UY GB is plotted against dimensionless time tU/R (U = |dσ/dT∇T∞|T/µB)

in Figure 6.10. Our simulated results are drawn in dots and is compared to the

numerical results of Liu et al. (2012) using the lattice Boltzmann method (LBM),

which is depicted with solid lines.
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Figure 6.10: In the simulation, Ca is kept at 0.1 and Re is fixed at 1.0. Ma

is varied from 1.0 (green), 10.0 (blue) to 100.0 (blue). The dots presents the

numerical result from our simulation while the solid line presents numerical results

from the Lattice Boltzmann simulation from Liu et al. (2012)

From Figure 6.10 we observe that for small values of Ma, the evolution of the

migration velocity consists of two stages: the initial acceleration and the steady

migration. For relatively large values of Ma, after the initial acceleration, the

migration velocity decreases and then reaches the steady migration velocity which
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Figure 6.11: The temperature field around the droplet in case of Ma = 1.0, 10.0

and 100.0 when tU/R = 20.0.

is much smaller than UY GB. It is evident that the terminal migration velocity

decreases with an increase in the Ma number. This is consistent with the previous

theoretical and numerical investigations in the case of non-deformable droplets

or bubbles (Shankar and Subramanian, 1988; Yin et al., 2008). The dependence

of the final migration velocity on the Ma number can be explained through

the contour map of the temperature. We plot the contour map of temperature

from the three simulations in Figure 6.11. The droplet interface is drawn in

red solid lines and the value of the temperature is labelled on each contour.

The dimensionless time is tU/R = 20.0. The temperature field in the case for

Ma = 1.0 is close to the conduction solution. In contrast, the background linear

temperature field is disturbed by the migrating droplet in the case of Ma = 100.0.

In this problem, the Ma number is analogous to the Pe number. As the Ma

number increases, the convective transport is enhanced, resulting in wrapping of

the isotherm lines near the front of the migrating droplet. In the contour map

for Ma = 100.0, the isotherm line labelled 1.5 almost coincides with the front of

the droplet interface. This indicates a significant reduction in the temperature

gradient along the interface, and hence, a reduction in the driving force for droplet

migration.

Though good agreement has been achieved with the simulation results of

Liu et al. (2012) for small values of Ma, there exist some discrepancies for

Ma = 100.0. The relative error of the steady migration velocity is around 5%
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Figure 6.12: The temporal evolution of migration velocity at Re = 1.0, Ma =

100.0 and Ca = 0.1, from 3D LBM and our axisymmetric simulation with different

mesh resolutions and mesh domains.

compared to the LBM simulation. We note that our simulation is axisymmetric,

while Liu et al. (2012) performed the three-dimensional simulation with a cuboid

computing domain of 7.5R × 7.5R × 15R. We have checked the convergence of

our method using different mesh sizes (32, 64 and 128 vertices on the interface).

Another axisymmetric simulation has been carried out with a ”narrower” domain

([0, 4R]× [−7.5R, 7.5R]). Comparisons with the result from Liu et al. (2012) are

plotted in Figure 6.12. Our simulation converges to a value lower than the 3D

simulation, as illustrated in the zoomed image. The difference from the simula-

tion of a “narrower” domain is not significant. The three-dimensional effects may

contribute to the discrepancy between our axisymmetric simulation and the 3D

LBM simulation.

6.4 Liquid bridge with thermocapillarity

In this section, we apply our numerical method to study liquid bridge breakup

with the thermocapillary effect. A non-isothermal liquid bridge can be regarded
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(a) (b) (c)

Figure 6.13: Experimental pictures from the space experiment by Ueno et al.

(2012): (a) a perturbed liquid bridge shape; (b) the isothermal breakup shape;

(c) the non-isothermal breakup shape.

as the simplest idealisation of the configuration in the floating zone crystal growth

process. In this process, the molten material passes through a heated ring, melts,

and re-solidifies into a single crystal. The quality of the formed crystal is affected

by the thermocapillary motion in the molten zone, which motivated the studies

on the thermocapillary stabilities within the bridge (Davis, 1987; Schatz and

Neitzel, 2001). The breakup of a non-isothermal liquid bridge has been received

little attention. Recently Ueno et al. (2012) reported the experimental study of

a liquid bridge break-up under the thermocapillary effect. This experiment was

conducted on the International Space Station in a micro-gravity environment.

The fluid used was the 10 cSt silicon oil and the bridge diameter was 30 mm. The

liquid bridge was stretched to a perturbed shape so that it was no longer possible

for the bridge to return to a static state, as shown in Figure 6.13(a). Figure 6.13

(b) and (c) display the isothermal and non-isothermal breakup shapes. In both
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figures, a thin thread forms in the centre of the bridge. The difference is that

the up-and-down symmetry of the bridge is broken due to the thermocapillary

motion in the non-isothermal case. In this section, we numerically investigate

this problem to better understand the role played by the thermocapillary effect.

6.4.1 Configuration and numerical set-up

H

D

D
neck

T
h

T
l

∇T

(a) (b)

Figure 6.14: Configuration (a) and mesh (b) for our study of liquid bridge.

As illustrated in Figure 6.14(a), we consider a liquid bridge of height H held

captive by two coaxial disk with a diameter D. The contact points of the interface

with the walls are kept fixed, i.e. the moving contact line is not considered

in our study. Since we are only interested in the break-up behaviour rather

than the dynamics of stretching a liquid bridge, we start the simulation with a

perturbed interface shape. The initial interface shown in Figure 6.14(a) is fitted

to a parabola. The diameter at the neck of the bridge is Dneck. This shape is

similar to the interface shape in Figure 6.13(a). In our simulation, the aspect ratio

H/D is kept at 2 and the ratio between the neck diameter and the end diameter
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Dneck/D is fixed at 0.6. The two ratios are chosen such that the perturbed shape

can lead to break-up.

We perform two-phase simulations on this problem. The bridge fluid is de-

noted as fluid 2 and the surrounding fluid is denoted as fluid 1. In non-isothermal

cases, the top and bottom walls are heated to different temperatures Th and Tl

(Th > Tl), respectively. Initially the temperature is linearly distributed and the

temperature gradient is a constant noted as∇T . The characteristic length scale is

D and the characteristic scale for temperature variation is ∇TD. In this section,

both isothermal and non-isothermal simulations are performed. For the conve-

nience of comparison, we choose Oh, Pr, and Ca as the dimensionless number

set, written as:

Oh =
µ√
ρσ0D

, Pr =
cpµ

k
, Ca = | dσ

dT
|∇TD
σ0

. (6.39)

The focus of this section is the role played by the above three dimensionless

numbers. Ratios of the physical properties are kept fixed. We consider a liquid-gas

system and set the density ratio η, the viscosity ratio λ, the thermal conductivity

ratio χ, and the heat capacity ratio γ, as below:

η = 500.0, λ = 50.0, χ = 50.0, γ = 1.0. (6.40)

For comparison, a water-air system has the ratios: η ≈ 840, λ ≈ 50.0, χ ≈ 30.0

and γ ≈ 4.2.

The computational mesh used in our simulation is shown in Figure 6.14(b),

where the mesh lines are drawn in black and the interface is in red. The mesh scale

α is set to be 0.025 and the mesh gradient G is set at 0.1. The maximum mesh

size on the interface and two walls are set at linterface = lwall = 0.025. The global

minimum length scale lmin = 0.002. In our simulation, pinchoff takes place once

the minimum neck diameter falls below 0.01D. We consider the axisymmetric case

and only simulate half of the configuration. The size of the computational mesh

is [0, 5D]× [0, H]. At r = 5D, a Dirichlet boundary condition for temperature is

imposed so that temperature varies linearly from Tl to Th. Simulation results are

presented in the following sections.
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6.4.2 Mesh convergence

Before we carry out the parameter study, a mesh convergence-check is con-

ducted. We consider a liquid bridge with Oh = 0.01 and both isothermal and

non-isothermal convergence tests are performed. In the non-isothermal simula-

tion, the two other dimensionless numbers are Pr = 5 and Ca = 0.2. We use

meshes with 32, 64 and 128 nodes on the interface and plot the temporal evolution

of the minimum neck diameter Dneck/D in Figure 6.15.
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Figure 6.15: The temporal evolution of the minimum neck diameter is plotted for

simulation with 32 (green), 64 (red) and 128 (blue) nodes on the interface. (a)

shows an isothermal simulation with Oh = 0.01, and (b) shows a non-isothermal

simulation with Oh = 0.01, P r = 5, and Ca = 0.2. From the close-up, the

evolution using 64 nodes on the interface overlays with that using 128 nodes.

Figure 6.15(a) and (b) show the isothermal and non-isothermal simulations,

respectively. The temporal evolution of Dneck/D using 64 nodes (red solid line) on

the interface is almost identical to that of the simulation with 128 nodes (in blue

solid line) on the interface. We conclude that our numerical simulation converges

and the mesh with 64 nodes on the interface is sufficient for this problem.

6.4.3 Isothermal simulation: effect of Oh

We first carry out a series of isothermal numerical simulations with values of

Oh ranging from 0.005 to 1.0. According to the pinchoff shape, two regimes are
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t = 0.00 t = 2.50 t = 3.05 t = 3.12 t = 3.16 t = 3.27

(a) Oh = 0.005

t = 0.00 t = 25.00 t = 70.00 t = 72.22 t = 72.44 t = 73.04

(b) Oh = 1.0

Figure 6.16: The temporal evolution of the interface shapes in the two break-

up regimes are illustrated. (a) the distinct feature of the inertial regime is the

overturning at the necks (t = 3.12) and the formed satellite droplet; (b) the

viscous regime does not exhibit overturning and the break-up takes place at the

middle of the bridge, thus leaving no satellite droplet.

identified: the viscous regimes for high Oh number, and the inertial regime for

low Oh number. The temporal evolution of the interface shapes from the two

regimes are displayed in Figure 6.16: (a) is from the simulation with Oh = 0.005

while (b) is from the simulation with Oh = 1.0.

In the inertial regime, the inertial and the capillary force are in balance (Eg-

gers, 1997). The distinct feature of the inertial regime breakup is the overturning

near the necks as shown at t = 3.12 in Figure 6.16(a). The thread between the

two necks forms a satellite droplet after breakup. The diameter of the satellite

droplet Dsatellite and the pinchoff instance Tbreakup is recorded in Table 6.4. As

the Oh number increases, the satellite droplet becomes smaller and the breakup

is delayed.

In the viscous regime, the viscous and the capillary force are in balance (Pa-
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Table 6.4: Size of the satellite droplet and time to breakup in isothermal simula-

tions with different values of Oh

Oh Dsatellite/D Tbreakup

0.005 0.1 3.12

0.01 0.094 3.22

0.05 0.062 4.33

0.1 0.05 7.12

0.5 0.023 36.71

1.0 0.0 72.22

pageorgiou, 1995). As illustrated in Figure 6.16(b), overturning does not occur

and the thread in the middle is very thin. In the example of Oh = 1.0, breakup

takes place in the middle of the bridge. The two long ligaments retract back but

no subsequent breakup occurs due to the strong viscous force. As a result, there

is no droplet generated during this process. If the breakup length scale lbreakup

is set smaller, we can resolve a smaller daughter droplet. For instance, the nu-

merical investigation of Li and Sprittles (2016) on a capillary bridge did not stop

until the neck diameter reached 10−4D and a tiny daughter droplet was formed.

They also identified another transition regime, which is beyond the scope of this

thesis. We note that in all isothermal simulations, the up-and-down symmetry is

retained as expected.

6.4.4 Non-isothermal simulation: effect of Ca

In this section, we investigate the effect of Ca in the break-up of a liquid

bridge. The value of Pr is fixed at 5.0 in all simulations (for comparison, the

Pr number of water is 7.56). The initial temperature field in the liquid bridge is

linear and the average temperature of the interface is equivalent to the reference

temperature. Under this configuration, the average surface tension on the inter-

face is equal to the surface tension in the isothermal simulation. The length is
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scaled by the bridge diameter D and temperature is scaled as below:

T̃ =
T − Tl
Th − Tl

. (6.41)

Ca=0.0, t=3.219 Ca = 0.05, t = 3.223 Ca = 0.1, t = 3.284 Ca = 0.2, t = 3.437 Ca = 0.3, t = 3.445 Ca = 0.4, t = 3.466

Figure 6.17: Break-up shape and instant for Oh = 0.01 and varied values of Ca.

We first consider a liquid bridge withOh = 0.01, whose isothermal counterpart

falls into the inertial regime. The break-up shapes from simulations with a range

of values of Ca are illustrated in Figure 6.17. The up-and-down symmetry is

broken by the imposed temperature variation and such asymmetry is more severe

with a larger value of Ca. For example, the breakup shape in the case for Ca =

0.05 has two necks (local minima of the distance from the interface to the axis),

but for Ca = 0.1, the upper neck is not as obvious and disappears for Ca > 0.1.

The subsequent evolution of the interface after break-up also differs with different

values of Ca. The temporal evolution of the interface shape and the temperature

field for the simulations of Ca = 0.05 and Ca = 0.2 are shown in Figure 6.18 and

Figure 6.19, respectively. The interface is represented by black solid lines and

the colour represents the dimensionless temperature. In the case for Ca = 0.05,

the post-pinchoff evolution of the interface is similar to what we have observed in

the simulation of a dripping faucet (see Figure 5.8): following the first breakup,

the liquid ligament attached to the upper part of the bridge retracts, resulting in

a secondary breakup (at t = 3.26) and generating a small satellite droplet. By

contrast, in the case for Ca = 0.2, the ligament attached to the upper part is

not as thin or as long as in Ca = 0.05. The retraction of the interface due to

capillarity is not as strong and thus there is no satellites droplets formed during

this process. Thermocapillary motion in this example separates fluid in the bridge
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Figure 6.18: Temporal evolution of the interface shape and the thermal field in

the simulation with Oh = 0.01, Ca = 0.05 and Pr = 5.

into two parts without loss such as satellites droplets. This phenomenon can be

beneficial for some printing processes where satellite droplets should be avoided.

From Figure 6.17 we also observe that time to break-up increases slightly

with an increasing value of Ca. This is due to the interfacial flow driven by

the interfacial tension gradient. The velocity fields at time t = 2.0 from two

simulations (Ca = 0.0 and 0.2) are drawn in Figure 6.20, where the left half is

from the isothermal simulation while the right half is from the simulation with

Ca = 0.2. The interfaces are drawn in black solid lines. As set initially, the

bottom end is cold and the interfacial tension close to this end is larger. The

direction of the thermocapillarity-driven Marangoni flow is downwards near the

interface. Due to mass conservation, the bulk fluid moves upwards. In contrast,
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Figure 6.19: Temporal evolution of the interface shape and the thermal field in

the simulation with Oh = 0.01, Ca = 0.2 and Pr = 5.

the isothermal flow is upwards in the upper half and downwards in the lower

half. The fluid near the neck all flows outwards from the neck region, indicating

that the neck is thinning. The non-isothermal interfacial flow is a composite

of the Marangoni flow in the tangential direction and the capillary squeezing in

the normal direction. When the thermocapillary flow is rather strong such as

Ca = 0.2, the interfacial flow is still sustained towards the cold side and the flow

in the neck region is not all outwards. Thinning of the neck is delayed and hence

the pinchoff instant is also delayed. This can also explain the disappearance of

the upper neck. Since the thermal-driven interfacial flow near the upper neck

has the opposite direction to the capillary-driven interfacial flow, the thinning

of the upper neck is significantly slowed. In the two non-isothermal examples,
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Ca = 0.0 Ca = 0.2

Figure 6.20: Velocity field (t = 2.0) for Oh = 0.01, Ca = 0.0 (blue) and 0.2 (red).

the initial linear temperature field within the bridge is substantially disturbed

by convection. If we characterise velocity with U∆σ = |dσ/dT |∆TD/ν, the Pe

number (in the same form as the Ma number) is 625 in the case for Ca = 0.05 and

is 2500 in the case for Ca = 0.2. The return flow near the axis transports colder

fluid upwards and, as shown in Figure 6.18 and Figure 6.19, the temperature of

the interface fluid is in general higher than that of the bulk fluid at the same

height.

Next, we consider the non-isothermal flow in a liquid bridge with Oh = 1.0,

whose isothermal counterpart falls into the viscous break-up regime. The interface

profile at the pinchoff instant for a range of values of Ca (= 0.0, 0.05, 0.1, 0.2,

0.3 and 0.4) are shown in Figure 6.21. The non-isothermal break-up becomes

asymmetric: after break-up, the upper part has less volume. With a larger value

of Ca, such asymmetry is more obvious. The volume ratio between the upper

fraction and the lower fraction of the liquid bridge RV is plotted against Ca in

Figure 6.22(a) in which RV decreases with an increasing Ca.

The pinchoff instant is plotted against Ca in Figure 6.22(b). The process is

accelerated by thermocapillary motion and the time to breakup is reduced by
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increasing Ca

Figure 6.21: Interface profiles at the pinchoff instant for different values of Ca

are drawn in colours: 0.0 (red), 0.05 (orange), 0.1 (yellow), 0.2 (green), 0.3 (dark

blue) and 0.4 (black). In all cases, Oh = 1.0.
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Figure 6.22: Volume ratio between the upper and lower fractions of the liquid

bridge RV (a) and time to pinchoff (b) are plotted against Ca.

almost half when Ca = 0.4. The velocity field at t = 20.0 from the isothermal

simulation and simulation with Ca = 0.2 is shown in Figure 6.23. The blue
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Ca = 0.0 Ca = 0.2

Figure 6.23: Arrows in blue represents the velocity field from the isothermal sim-

ulation while the red arrows the velocity field from the non-isothermal simulation

with Ca = 0.2. The magnitude of the isothermal velocity is amplified five times

so that it is comparable to the non-isothermal velocity.

arrows representing the isothermal flow field have their magnitude multiplied

by five times such that they are visually comparable to the non-isothermal case

drawn as red arrows. This indicates that the neck thins much faster in the non-

isothermal cases. It can also be observed from the non-isothermal velocity field

that the bulk fluid of the bridge is transported towards to the bottom end. This

leads to the upper part having less volume at the pinchoff instant.

Compared to the inertial regime, due to strong viscous dissipation, the velocity

is much lower and so is the heat convection. The heat transfer is dominated by

conduction. For example, the Pe number is 0.25 in the case for Oh = 1.0 and

Ca = 0.2. As a result the initial linear temperature field is less perturbed by

the evolution of the bridge. Figure 6.24 displays the temporal evolution of the

interface shape and the temperature field. It is evident that the temperature field

does not exhibits large changes in spite that the interface experiences a topology

change.
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Figure 6.24: Temporal evolution of the temperature field inside the liquid bridge

from the non-isothermal simulation with Oh = 1.0 and Ca = 0.2.

6.4.5 Conclusion

In this section we have conducted a parameter study on two-phase liquid

bridge with an initially linear temperature distribution. The initial interface

shape is fitted to a parabola. A series of isothermal simulations are conducted

with a range of values of Oh. The inertial and viscous regimes are identified for

liquid bridge breakup. We then fix the Oh number and vary the Ca number to

investigate the effect of thermocapillarity on liquid bridge breakup.

The Ca number measures the relative importance of the Marangoni flow in

the tangential direction and the capillary squeeze in the normal direction. The

non-isothermal flow in the liquid bridge is a composite of the two. When Ca >

0, the flow in liquid bridge is asymmetric, and the asymmetry is enhanced as
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Ca increases. For the viscous regime (large Oh number), the Marangoni flow

accelerates the break-up process. By contrast, for the inertial regime (small

Oh number), it delays breakup slightly. The thermocapillary motion slows the

thinning at the upper neck of the bridge and may lead to the disappearance of

the satellite droplet.
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Chapter 7

Conclusions and future works

The objective of this thesis is to develop a numerical tool for simulating non-

isothermal multiphase flows, and to apply the method to study the non-isothermal

break-up of liquid bridge. In this chapter, the main conclusions are presented first,

followed by recommendations for future work.

Our numerical method is based on the numerical method developed by Li

(2013) for simulating multiphase flows: the computational domain is divided into

unstructured triangular mesh; the interface is represented explicitly by mesh lines

(interface-conforming); the mesh is adapted to follow the moving interface; the

governing equations are discretised using the P2 − P1d finite element method

(FEM) and are solved with uzawa iterations.

Two major modifications have been made to the original method:

(1). For the study of non-isothermal flows, an FEM solver for the advec-

tion diffusion equation of temperature has been implemented. The numerical

representation of the force balance condition has been extended to account for

non-uniform interfacial tension. The thermal-induced buoyancy has also been

included into the previous Navier-Stokes solver.

(2). Interface topology changes are involved in many multiphase flow prob-

lems, while our previous numerical method lacks of related treatment. Using

rules in the adaptive mesh generator, we achieve one layer of elements in the thin

regions prior to interface topology changes. The interface can then be split and

re-connected easily. This treatment has been incorporated into our numerical

method.
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The success of a numerical study lies on the accuracy and robustness of the

numerical method. For this purpose, we have thoroughly examined the accuracy

of our numerical methods through a number of benchmark tests with focus on

the interface force balance condition, the topology changes and non-isothermal

effects:

1. interface force balance condition

For the example of a circular/spherical droplet, we prove that our numeri-

cal method achieves the balance between interfacial tension and the associated

pressure jump at a discrete level. As a result, the static Laplace solution for a cir-

cular/spherical droplet exists. The numerical stability of this solution is further

examined. We have found that for Oh ≥ 10−3, the magnitude of the dimension-

less spurious current is reduced to machine error, around 10−15, even after a long

period. This indicates that the solution is numerically stable.

Another benchmark test, the axisymmetric oscillation of a freesurface droplet

and bubble, is performed to validate the temporal and spatial accuracy of our

method. The simulated results are in excellent agreement with the analytical so-

lution by Prosperetti (1980), including the example with a weak viscous damping

Oh = 10−3. Droplet/bubble oscillation with Oh ∼ 10−3 is rarely seen in the liter-

ature since the weak viscous damping is not able to suppress spurious currents in

some methods. The success of this benchmark test demonstrates the capability

of our method in coping with the spurious currents.

2. interface topology changes

In contrast to interface non-conforming methods, interface topology changes

are not dealt with automatically in our method. A mesh parameter lbreakup is

required to determine whether the topology changes should occur. We have used

two different benchmark examples for validation: dripping from a faucet and

binary droplet collision. The choice of lbreakup has little effects in the former,

while it may alter the simulation outcome in the latter.

In the dripping faucet simulation, the physical parameters are set in accord

with the dripping experiment by Peregrine et al. (1990). We start with simulating

the equilibrium shape of a pendant droplet given a certain volume. The simulation

results are in good agreement with the analytical solution, and a second order

convergence rate is demonstrated through a convergence study. All stages of
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the dripping experiment are well reproduced in our simulation, despite the weak

viscous damping, Oh ∼ 10−3. This benchmark test validates our treatment in

topology changes, and also shows the ability of our method in retaining the

numerical force balance on the interface.

The simulation of binary droplet collision requires the method to not only

include the rarefied gas effect and the intermolecular force, but also to resolve a

disparity in length scales from 10−4 m to 10−9 m. Inaccuracy in modelling the

inter-droplet flow and a mischosen lbreakup may lead to a wrong prediction of the

collision outcome. Previous VOF or LS simulations reply on an empirical model

or parameter in deciding whether and when the thin gas film ruptures. In con-

trast, we resolve the flow until the inevitability of the interface topology change,

e.g. the intermolecular van der Waals force dominates. Remarkable agreement

has been obtained with the experimental results of a coalescence example in Pan

et al. (2008). We not only predict the correct outcome of the collision, but also

the precise instant of film rupture. This shows the accuracy of our method in

modelling the inter-drop gas film. The robustness of our method is also demon-

strated through the fact that the method resolves an extreme range of length

scales.

3. thermocapillarity

For the application in non-isothermal multiphase flows, we first validate the

FEM solver for temperature. The relative error compared to the benchmark

results of the natural convection in a square cavity are all within 3%. The nu-

merical treatment of non-uniform interfacial tension due to the temperature in-

homogeneity are examined using two examples: the thermocapillary convection

in two superimposed layers and the migration of a spherical droplet subject to a

constant temperature gradient. We have found that our simulation are in good

agreement with the corresponding analytical solution. The convergence study in

droplet migration shows a second order convergence rate. The droplet migration

with a finite Re, Ma and Ca is also simulated. Our axisymmetric simulation

agrees well with Liu et al. (2012) in low Ma examples. The 5% discrepancy in

the Ma = 100 example is believed to due to the difference from three-dimensional

simulation.
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Having validated our numerical method for non-isothermal multiphase flow,

we conduct a two-phase numerical investigation on the break-up of a liquid bridge

with an initially linear temperature field. This configuration occurs in many

technical applications such as crystal growth and welding. Keeping all other

dimensionless numbers fixed, we focus on the influence of Oh and Ca. A series

of isothermal simulations are conducted, and two breakup regimes are identified,

namely the inertial regime (small Oh) and the viscous regime (large Oh). In

non-isothermal situation, the flow on the interface is a composition of the two

flows: the Marangoni flow in the tangential direction and the capillary squeeze

in the normal direction. The ratio between the two is measured by the Ca

number. The influence of Ca has been investigated for two examples: Oh =

0.01 for inertial breakup and Oh = 1.0 for viscous breakup. The up-and-down

symmetry in non-isothermal flow is broken and the symmetry is enhanced as

Ca increases. In the case where Oh = 0.01, for some large Ca number (≥ 0.2 in

our simulation), the asymmetric breakup leaves no formation of satellite droplets,

unlike the isothermal simulation. Due to the thermocapillary motion, the breakup

is slightly delayed. In contrast, the breakup is accelerated with an increase in the

values of Ca when Oh = 1.0.

During our work, we have identified many possibilities for future work, which

are listed below:

thermocapillary motion within a long confined thread

In developing a microfluidic flow focusing device, De Saint Vincent et al.

(2015) induced a temperature fluctuation along the interface by applying a laser

beam. Without thermocapillarity, the long thread is rather stable due to the ge-

ometric confinement (Humphry et al., 2009). For a comprehensive understanding

of the problem, it is worthwhile to carry out a numerical study to investigate the

role of thermocapillary motion. This can be of benefit for the droplet generation

in a long and confined micro-tube.

isoparametric moving mesh:

Currently the edge midpoints on interface edges are not moving in a La-

grangian way. If they can be put on the moving interface, the interface will be

represented by piecewisely quadratic segments. Since more nodes are on the inter-

face with the same number of interface edges, it is expected that such treatment

148



is more efficient compared to the straight edge method with similar accuracy.

However, a great deal of work is required to verify whether the current curva-

ture estimation, mesh movement, mesh refinement etc., are still valid under the

framework of an isoparametric representation of the interface.

moving contact line modelling:

Many microfluidic applications involve a droplet attached to a wall boundary.

With moving contact line modelling incorporated, the method can be applied to

the study of the thermocapillary motion of a droplet attached to a plate or a tube.

Numerical investigations by Sui (2014) and Fath and Bothe (2015) have shown

that adding moving contact motion may yield new migration phenomena: the

droplet can also migrate to the cold side with a large contact angle. Furthermore,

with a valid implementation of moving contact lines, the applicable range of our

method will be further extended.

generalising the interface topology changes:

Our numerical treatment of interface topology changes have been used to

break-up the thin region between an interface and a symmetry boundary. It

is worthwhile to generalise this treatment to break-up between two interfaces

with arbitrary shapes and locations. This can be useful in problems such as the

collision of droplets with different size, droplet splashing or a bubble crossing a

water-oil interface.

three dimensional configuration:

We have seen that our adaptive moving mesh generator has reduced a great

amount of computational costs compared to structured uniform mesh. This makes

us wonder how much computational costs can be reduced with a similar mesh

generator in three-dimensional configuration. Additionally, a three-dimensional

method is more general than our current method for two-dimensional and ax-

isymmetric flows.

149



7. CONCLUSIONS AND FUTURE WORKS

150



Appendix A

Numerical implementation of

FEM

In this section, we introduce some technical details in the numerical imple-

mentation of FEM: the mesh data structure, the storage for a sparse matrix and

the numerical technique to calculate integrals over a triangle.

A.1 Mesh data structure

Our method uses an unstructured triangular mesh, which requires the connec-

tivity information between elements to be explicitly stored. To define a triangu-

lation of a region Ω, we need to know the total number of nodes (NumberOfN-

odes), the total number of triangles (NumberOfTriangles), and the total

number of edges (NumberOfEdges).

The coordinates of the nodes are stored in a list ListOfNodes with the size

being NumberOfNodes (see Table A.1). The list of triangles is also called the

connectivity of the triangulation. It is defined as ListOfTriangles with the size

NumberOfTriangles (see Table A.2). The i-th element in ListOfTriangles

contains the numbers of three vertices of the i-th triangle. The edge information

is stored explicitly using the ListOfEdges whose size is NumberOfEdges (see

Table A.3).

It is often useful to give further information between neighbouring nodes

and edges, between neighbouring edges and triangles, and between triangles
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A. NUMERICAL IMPLEMENTATION OF FEM

x-Coordinate y-Coordinate

x0 y0

x1 y1

... ...

xNumberOfNodes−1 yNumberOfNodes−1

Table A.1: ListOfNodes[NumberOfNodes]

Number of 1st node Number of 2nd node Number of 3rd node

n0,0 n0,1 n0,2

n1,0 n1,1 n1,2

... ... ...

nNumberOfTriangles−1,0 nNumberOfTriangles−1,1 nNumberOfTriangles−1,2

Table A.2: ListOfTriangles[NumberOfTriangles]

Number of 1st node Number of 2nd node

n0,0 n0,1

n1,0 n1,1

... ...

nNumberOfEdges−1,0 nNumberOfEdges−1,1

Table A.3: ListOfEdges[NumberOfEdges]

and nodes. For example, ListOfTriangles provides the three nodes in one

triangle, from which we can find the list of triangles that contains each node:

Nodes Triangles. As the number of triangles that includes one node varies

from node to node, we need to keep track this number by a list NumberOf-
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A.2 Storage for a sparse matrix

TrianglesAtNodes whose size is NumberOfNodes. Similarly, from the

ListOfEdges we can find the list of edges that includes each node Nodes Edges.

Again, the number of edges that contains one node varies from node to node,

we need keep track this number by a list NumberOfEdgesAtNodes. Fi-

nally, from Nodes Triangles and Nodes Edges we find the list of edges

included in each triangle: Triangles Edges, and the list of triangle which

include one edge: Edges Triangles. The size of the list Triangles Edges is

NumberOfTriangles×3, while the size of Edges Triangles is more compli-

cate because an interior edge is included in two triangles while a boundary edge

is include in one triangle only. We need an additional list NumberOfTrian-

glesAtEdges[NumberOfEdges].

The boundary information is stored explicitly for the convenience in applying

boundary conditions. Assuming there are NumberOfBoundaries boundaries,

we define ListOfNodesAtBoundaries and ListOfEdgesAtBoundaries,

which store the nodes and edges on this boundaries, respectively. The name

and condition for boundaries are stored in the string list, boundaryNames

and boundaryConds, respectively. As the number of edges/nodes may be dif-

ferent from boundary to boundary, these numbers are stored by the list Num-

berOfEdgesAtBoundaries and NumberOfNodesAtBoundaries, respec-

tively. To differ nodes/edges on the boundaries from interior nodes/edges, the

status of each node/edge is stored in the list NdType and EdType, the value

of the element in which equals the number of the boundary.

As the method is applied to fluid flows with two or more phases, we use

the NumberOfDomains to denote the number of phases. Triangles in each

phase are stored in the ListOfTrianglesAtDomains. To differ triangles in

one phase from those in another phase, the list TrType is used. The value of

elements in this list represents the number of the domain.

A.2 Storage for a sparse matrix

An important observation is that the matrix obtained in the finite element

method is sparse. For example, Aij in equation (3.12) is nonzero only when node

i is one of the nodes of a triangle that is adjacent to node j. When a sparse
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matrix of dimension N × N contains only a few times of N nonzero elements (

a typical case in the finite element method), it is surely inefficient – and often

physically impossible – to allocate storage for all N2 elements. Even if one did

allocate such storage, it would be inefficient or prohibitive in machine time to

loop over all of it in search of nonzero elements.

Obviously we require a kind of indexed storage scheme, which stores only

nonzero matrix elements, along with sufficient auxiliary information to determine

where an element logically belongs and how the various elements can be looped

over in common matrix operations. Our method uses the compressed sparse

row matrix (CSR) format, which requires storage of less than three times the

number of nonzero matrix element (Press et al., 1996). To represent a matrix A

of dimension N ×N , the CSR scheme sets up two integer arrays ia and ja, and

one double array a. The size of these arrays are defined by three integer nrow

(number of rows), ncol (number of columns), and nnz (number of nonzero matrix

element). The storage rules are:

• The nonzero elements are saved in the variable a[nnz] ordered by row and,

within each row, ordered by columns.

• The variable ia[i] is the location of first nonzero element of row i+ 1 in the

array ja. ia[i+ 1]-ia[i] is the number of the nonzero elements in row i+ 1.

The size of ia is nrow + 1.

• The variable ja[nnz] is the column index of the corresponding nonzero ele-

ments.

As an example, consider the matrix
3. 0. 1. 0. 0.
0. 4. 0. 0. 0.
0. 7. 5. 9. 0.
0. 0. 0. 0. 2.
0. 0. 0. 6. 5.

 (A.1)

In CSR format, matrix (A.1) is represented by one array ia of length 5 and two

arrays ja and a of lengths 8, as follows:
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A.3 Hammer integration formulas

index i 0 1 2 3 4 5

ia[i] 1 3 4 7 8 10

ja[i] 1 3 2 2 3 4 5 4 5

a[i] 3. 1. 4. 7. 5. 9. 2. 6. 5.

Table A.4: CSR representation of matrix (A.1).

A.3 Hammer integration formulas

The Hammer formulas are used to numerically calculate the integration over

the reference element (Dhatt et al., 2012). For example, we consider an integrand

f(ξ, η) and the integration is approximated as below:∫ 1

0

∫ 1−η

0

f(ξ, η)dξdη ≈
r∑
i=1

wif(si, ti). (A.2)

These integration formulas are exact for polynomial of order m (ξiηj with i+ j ≤
m) and they are provided in Figure A.1 and A.2.
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Figure A.1: Direct formulas for Hammer integration over a reference triangle

(part 1). The image is from Dhatt et al. (2012).
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A.3 Hammer integration formulas

Figure A.2: Direct formulas for Hammer integration over a reference triangle

(part 2). The image is from Dhatt et al. (2012).
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Appendix B

The force balance on the

interface

In this part, the dynamic boundary condition on the interface is derived.

We start with the two-dimensional case (on the x − z plane). The parametric

representation of the interface shape is as below:{
x = x(s),

z = z(s).
(B.1)

We use l to denote the arc-length and dl =
√
x′2 + z′2ds. Note that in the section,

the dash ′ denotes the derivative with respect to s. A very small piece of interface

with length ∆l (∆l → 0) is considered, as illustrated in the left panel of Figure

B.1. This piece of interface is subject to the force applied by the bulk fluid of

both phase 1 and 2 and the surface tension force along the tangent direction. The

force balance equation reads:

(T2 · n−T1 · n)∆l + σ(s+ ∆s)t(s+ ∆s)− σ(s)t(s) = 0, (B.2)

where T is the stress tensor in equation (4.4), σ is the interfacial tension, n is

the unit normal vector and t is the unit tangent vector:
n =

z′√
x′2 + z′2

~ex −
x′√

x′2 + z′2
~ez,

t =
x′√

x′2 + z′2
~ex +

z′√
x′2 + z′2

~ez,

(B.3)
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Figure B.1: The interface piece is represented by (a) ∆l in two-dimensional x− z
plane, and (b) ∆l × r∆θ in axisymmetric r − z plane.

in which ~ex and ~ez are the unit vectors in the direction of the x and z axes,

respectively. Let ∆l→ 0 and we obtain:

(T1 −T2) · n =
d(σt)

dl
=
dσ

dl
t+

dt

dl
σ =

dσ

dl
t + σκn, (B.4)

where κ is the curvature. When σ is a constant, the term dσ/dlt on the right

hand side vanishes.

In the above equation, the last equality is due to the Frenet−Serret formula

(Aris, 2012):
dt

dl
= κn. (B.5)

The curvature κ in two-dimensional configuration has the form as below:

κ =
x′′z′ − z′′x′

(x′2 + z′2)3/2
. (B.6)

Similarly we can obtain the force balance condition in the axisymmetric configu-

ration (on the r − z plane). Consider a small interface quadrilateral element in

the right panel of Figure B.1. The element is small enough such that we can make
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the approximations: (1) the surface area is ∆l × r∆θ; (2) the normal vector is

constanton this surface element. The force balance equation of this small element

reads:

(T1 −T2) · nr∆θ∆l + σ(s+ ∆s)t(s+ ∆s)r(s+ ∆s)∆θ − σ(s)t(s)r(s)∆θ

+σ(s+ 1/2∆s)τ (+1/2∆θ)∆l − σ(s+ 1/2∆s)τ (−1/2∆θ)∆l = 0

(B.7)

in which n and t are the unit normal and tangent vectors in the r− z plane and

τ represents the unit vector in the azimuthal direction which is perpendicular to

the r − z plane, as illustrated in the schematic in the right panel of Figure B.1.

We let ∆θ → 0 and ∆l→ 0 and achieve:

(T1 −T2) · n =
1

r

d(σrt)

dl
+ σ

1

r

dτ

dθ
. (B.8)

Here we have used the fact that ∂σ/∂θ = 0 in the axisymmetric configuration

although σ is non-uniform.

In the r−z plane, the interface has the parametric representation r = r(s), z =

z(s). The normal and tangent vectors have similar formulation to equation (B.3).

We can use the previous result to simplify the first term on the right hand side

of equation (B.8):

1

r

d(σrt)

dl
=
dσ

dl
t+

σ

r

dr

dl
t+ σ

dt

dl

=
dσ

ds
t+

σ

r

r′√
r′2 + z′2

t+ σ
r′′z′ − z′′r′

(r′2 + z′2)3/2
n.

(B.9)

For the second term on the right hand side of equation (B.8),

σ

r

dτ

dθ
= −σ

r
(

r′√
r′2 + z′2

t+
z′√

r′2 + z′2
n). (B.10)

With the above two equations, we conclude that the force balance condition in

axisymmetric configuration reads:

(T1 −T2) · n =
dσ

dl
t+ σ

(
r′′z′ − z′′r′

(r′2 + z′2)3/2
− z′

r
√
r′2 + z′2

)
n

=
dσ

dl
t+ σκn

(B.11)
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in which κ is the curvature in axisymmetric configuration. Note that the formu-

lation of κ is affected by the defined orientation of the interface. In this thesis,

we always consider the anti-clockwise direction as the orientation of the interface

in x−z or r−z plane. For free-surface problem, the outer-side fluid is considered

passive: T2 = −p0I where p0 is a constant, usually set at 0.
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Appendix C

Weak formulation in

axisymmetric geometry

We multiply ψ on both side of equation (4.8a) to obtain the weak form of the

continuity equation and integrate over the whole domain:∫
Ω

(
∂u

∂r
+
u

r
+
∂v

∂z
)ψrdrdz = 0. (C.1)

Th momentum equation and heat transfer equation (4.8b), (4.8c), and (6.22) are

multiplied with φ on both sides. Following the similar procedure in 4.2.1, we

obtain the weak formulations:∫
Ω

(
ρφ
du

dt
+ 2µ

∂φ

∂r

∂u

∂r
+ 2φµ

u

r2
+ µ

∂φ

∂z

∂u

∂z
+ µ

∂φ

∂z

∂v

∂r
− p

(
φ

r
+
∂φ

∂r

))
rdrdz

=

∫
Γ

(
σκnr +

dσ

ds
tr

)
rφdl +

∫
Ω

frφrdrdz, (C.2a)

∫
Ω

(
ρφ
dv

dt
+ µ

∂φ

∂r

∂u

∂z
+ µ

∂φ

∂r

∂v

∂r
+ 2µ

∂φ

∂z

∂v

∂z
− p∂φ

∂z

)
rdrdz (C.2b)

=

∫
Γ

(
σκnz +

dσ

ds
tz

)
rφdl +

∫
Ω

fzφrdrdz,

∫
Ω

(
ρcp

dT

dt
+ k

∂T

∂r

∂φ

∂r
+ k

∂T

∂z

∂φ

∂z

)
rdrdz = 0. (C.2c)

in which n = (nr, nz) and t = (tr, tz) are the normal and tangent vectors on

the interface Γ. Note that the force balance conditions on the interface are in
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different form in isothermal and non-isothermal cases (see equation (4.6) and

equation (6.7)). In isothermal cases, the dσ/ds term in equation (C.2) vanishes.
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Appendix D

Computing information

Simulations in this thesis were all performed using the computers of the BP

Institute, Cambridge. The detailed information about the machine is presented

in the Table D.1. Note that all simulations are run on a single core.

Though this thesis mainly focuses on the accuracy and the capability of the

numerical method, rather than the efficiency, it is worthwhile to provide some

information regarding the computing cost for the reader, and for future users

of the method. An estimated computational time for some simulations carried

out in the thesis are presented in Table D.2. Since the mesh is adaptive, there

is no fixed number of vertices for each simulation and the number of vertices of

the initial mesh is used. In some cases, the initial mesh is coarse, but it will be

refined during the computation. For example, the initial number of vertices in

the droplet collision simulation is 304, but the number of vertices is 3836 when

break-up takes place.

Table D.1: CPU information

CPU model name Intel(R) Xeon(R) CPU E5-2680 0@2.70GHz

CPU cache size 20480 KB

CPU cores 8

Number of logical cores 16

Total memory 128 GB
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D. COMPUTING INFORMATION

Table D.2: Computing time

Simulation # of vertices # of time steps Time

Laplace solution Oh = 10−3 1573 400000 5 days

Drop Oscillation Oh = 10−2 591 2000 11 minutes

Dripping 1017 434500 12 days

Droplet collision (We = 2.25) 394 625000 23 days

Liquid bridge (Oh = 0.01, Ca = 0.2) 827 20000 2 days
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