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ABSTRACT 

Title: Primate Ventromedial Prefrontal Cortex and the Physiological and Behavioural 

Dysfunction Characteristic of Mood and Anxiety Disorders 

Author: Laith Alexander 

The heterogeneity intrinsic to the ventromedial prefrontal cortex (vmPFC) is evidenced in 

both its anatomy and implicated function: vmPFC subregions have roles in positive affect, 

negative affect and autonomic/endocrine regulation. Whether different subregions serve 

fundamentally different functions, or whether they perform similar computations on different 

inputs, remains unclear. Nevertheless, the role of the vmPFC in psychopathology is widely 

appreciated – in mood and anxiety disorders, over-activity within constituent regions of the 

vmPFC is consistently implicated in symptomatology, together with its normalisation following 

successful treatment. However, the precise locus of change varies between studies.  

The work presented in this thesis investigates the causal contributions of over-activity within 

two key subregions of the vmPFC – the subgenual anterior cingulate cortex (sgACC, area 

25) and perigenual anterior cingulate cortex (pgACC, area 32) – in discrete dimensions of 

behaviour and physiology affected in psychiatric disorders. Specifically, the impact of over-

activity is assessed on (i) baseline physiological function; (ii) the regulation of anticipatory, 

motivational and consummatory aspects of reward-related behaviour; and (iii) negative affect 

including fear learning, stress recovery and the intolerance of uncertainty. To provide further 

insight into the mechanism of action of antidepressants, the efficacy of selected treatments is 

tested on changes induced by over-activity of these regions.  

Beyond the direct relevance of the results presented here to psychiatric disorders and their 

treatment, the thesis aims to emphasise the importance of broader themes associated with 

the measurement and quantification of emotion in preclinical animal studies. First, a multi-

faceted approach is utilised enabling quantification of both the autonomic and behavioural 

aspects of emotion. In so doing, the experiments maintain relevance to studies which assess 

these correlates in isolation, both in humans (which typically measure subjective responses 

and physiology) and in rodents (which frequently assess behaviour in isolation). The 

assessment of more than one dimension of emotion confers these studies with improved 

power to detect maladaptive changes. Second, the experiments described were conducted in 

the marmoset, a new-world primate. The extensive anatomical homology between marmoset 

and human prefrontal cortex facilitates the forward-translation of functional results. In 

combination with the appropriate assays, this renders marmosets as an invaluable species to 

study the causal contributions of vmPFC subregions to symptoms of psychiatric disorders. 

I believe that the results of these experiments provide important insights into the causal role 

primate vmPFC has in relation to the behavioural and physiological aspects of psychiatric 

symptomatology. Most importantly, I hope that they serve as the foundation for future work to 

further elucidate the neuropathological processes underlying mental disorders. 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Ragheb, Joanne and Anna  



 

PREFACE 

The following work was carried out at the Department of Physiology, Development and 

Neuroscience, University of Cambridge, during the years 2015-2018, under the supervision 

of Professor Angela C. Roberts.  

The dissertation is the result of my own work and includes nothing which is the outcome of 

work done in collaboration except as declared in the Preface and specified in the text. 

It is not substantially the same as any that I have submitted, or, is being concurrently 

submitted for a degree or diploma or other qualification at the University of Cambridge or any 

other University or similar institution except as declared in the Preface and specified in the 

text. I further state that no substantial part of my dissertation has already been submitted, or, 

is being concurrently submitted for any such degree, diploma or other qualification at the 

University of Cambridge or any other University or similar institution except as declared in the 

Preface and specified in the text.  

The dissertation does not exceed the prescribed word limit of 80,000 for the Degree 

Committee of Biology. 

This work was funded by an MRC Doctoral Training Program studentship and a Wellcome 

Trust Investigator award (108089/Z/15/Z). 

 

Laith Alexander 

August 2018  

 

Publications 

A version of Chapter 4 has been accepted for publication in the journal Neuron. 

  



 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my supervisor, Professor Angela Roberts. Not 

only was she a source of steadfast support throughout the entire project, but the way she 

tackles scientific questions has directly influenced my own approach, attesting to her 

immense skill as a supervisor. I would also like to thank Dr Hannah Clarke for her guidance, 

encouragement and supervision especially during the early stages of this work which 

equipped me with the skills necessary to carry out the experimental work described herein.  

I am indebted to every single person I have worked with at the Innes, without whom these 

experiments would simply not have been possible. I mean this not only from a practical 

standpoint – thank you for holding my animals – but also because of their support as friends. 

I must particularly thank Dr Philip Gaskin for his work with the touchscreen and sucrose 

preference animals, Dr Nicole Horst for her guidance during some of the most complicated 

experiments carried out as part of this thesis, Dr Roohollah Massoudi for his help in setting 

up the telemetry system (and some great debates in the Yellow Room), Lauren Anderson for 

her tireless efforts (and patience!) helping me with scoring and animal-holding, and Gemma 

Cockcroft for histological processing and immunohistochemistry.  

Special mention also goes to PhD students, past and present, whose journeys have 

intersected with mine. The past – Lydia, Stacey and Sufia (Nessie) – have supported me 

from day one, and through shared experiences have become some of my closest friends (I 

will forget about the time you crashed the supervisor’s garden party). The present – 

Zuzanna, Sebastian, Lisa and Shaun – are a testament to the lab, and it has been my 

privilege to work with them these past few years. 

The marmoset care provided by Colin Windle (NACWO), Jo Kelley (NVS) and the superstar 

group of technicians – Danielle Oberle, Ollie Tyrtania and Lucy Mulderrig – is second-to-

none. Their expertise and skill is matched only by their devotion to maintaining world-  

standards of welfare. 

Outside of the Innes, I would like to particularly thank Dr Rudolf Cardinal for programming 

help, statistical advice and sage words of wisdom. I would also like to thank the Clinical 

School MB/PhD programme and its co-ordinators (especially Dr Stefan Marciniak, Dr Robert 

Semple and Lesley Flood) for giving me the opportunity to explore my scientific passion. 

Thank you to all my friends who have supported me – through thick and thin – along the way.  

Finally, to my parents, sister and grandparents: your unconditional and unwavering support 

has allowed me to grow and flourish into the man that I am today, and for that I am eternally 

grateful. I love you.   



 

ABBREVIATIONS 

The following abbreviations are used in this thesis: 

Abbreviation Meaning 

18F-FDG PET 18Fluorine-fluorodeoxyglucose positron emission tomography 

5,7DHT 5,7-dihydroxytryptamine 

5HIAA 5-hydroxyindoleacetic acid 

5HT Serotonin 

5HTT Serotonin reuptake transporter 

5HTTLPR Serotonin reuptake transporter long promoter region 

6OHDA 6-hydroxydopamine 

AAV Adeno-associated virus 

AC Anterior cingulate region (of rodent mPFC) 

ACC Anterior cingulate cortex 

ACTH Adrenocorticotropic hormone 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (receptor) 

ANOVA Analysis of variance 

ANS Autonomic nervous system 

AP Anteroposterior 

aPFC Anterior prefrontal cortex 

BA Brodmann Area 

BAS Behavioural activation system 

BDNF Brain-derived neurotrophic factor 

BIS Behavioural inhibition system 

BLA Basolateral amygdala 

BNST Bed nucleus of the stria terminalis 

BOLD Blood oxygen level dependent 

BP Blood pressure 

BrkP Breakpoint 

CaMKIIa Calcium/calmodulin dependent protein kinase promoter (DREADDs) 

CAN Central autonomic network 

CBT Cognitive-behavioural therapy 

CeN Central nucleus 

CGP/LY CGP52432/ LY341495 

CGT Cambridge Gambling Task 

CMS Chronic mild stress 

CNO Clozapine-N-oxide 

CNS Central nervous system 

Cort(Num) Cortisol (dose in mg/kg) 

CPAS Chapman Physical Anhedonia Scale 

CR Conditioned response 

CRH Corticotropin releasing hormone 

CS Conditioned stimulus 

CSAS Chapman Social Anhedonia Scale 

CSF Cerebrospinal fluid 



 

CSI Cardiac sympathetic index 

CSPT Cortico-striato-pallido-thalamic 

CVI Cardiac vagal index 

DA Dopamine 

DAB Diaminobenzidine 

dACC Dorsal anterior cingulate cortex 

DBS Deep brain stimulation 

DHK Dihydrokainic acid 

dlPFC Dorsolateral prefrontal cortex 

DMH Dorsomedial hypothalamus 

DMN Default mode network 

dmPFC Dorsomedial prefrontal cortex 

DREADD Designer receptor exclusively activated by designer drug 

DRN Dorsal raphe nucleus 

DSM Diagnostic and Statistical Manual of Mental Disorders 

EAAT2 Excitatory amino acid transporter-2 

ECT Electroconvulsive therapy 

eEF2 Eurkaryotic elongation factor 2 

EEfRT Effort Expenditure for Reward Task 

EEG Electroencephalography 

EFA Exploratory factor analysis 

EPN Emotional processing network 

ET Endotracheal 

F F statistic: ratio of MSeffect to MSerror 

FCPS Fawcett-Clark Pleasure Scale 

fMRI Functional Magnetic Resonance Imaging 

FR Fixed ratio 

FRP Facial reactivity pattern 

GABA γ-aminobutyric acid 

GAD Generalised anxiety disorder 

GCR Glucocorticoid receptor 

Glx Combined glutamate and glutamine concentration (MRS) 

GPCR G-protein coupled receptor 

GWAS Genome-wide association study 

HA Haemagglutinin (DREADDs) 

HARS Hamilton Anxiety Rating Scale 

HDRS Hamilton Depression Rating Scale 

HI Human intruder 

hM3/4Dq/i Protein-engineered muscarinic receptor (DREADDs) 

HPA Hypothalamo-pituitary-adrenal 

HR Heart rate 

HRV Heart rate variability 

hSyn Human synapsin promoter (DREADDs) 

IBI Inter-beat interval 

ICD International Classification of Diseases 

ICSS Intracranial self-stimulation 

IGT Iowa Gambling Task 



 

IL Infralimbic (cortex) 

IML Intermediolateral (nucleus of the thoracic spinal cord) 

IRES Internal ribosomal entry site (DREADDs) 

ITI Inter-trial interval 

KMO Kaiser-Meyer-Olkin 

LC Locus coeruleus 

LH Lateral hypothalamus 

LM Lateromedial 

lOFC Lateral orbitofrontal cortex 

lPFC Lateral prefrontal cortex 

LSD Least squares difference 

LTD Long term depression 

LTP Long term potentiation 

MAOi Monoamine oxidase inhibitor 

MAP Mean arterial pressure 

MAPK Mitogen-activated protein kinase 

mCitrine Fluorescent tag (DREADDs) 

MCR Mineralocorticoid receptor 

MD Mediodorsal nucleus (of the thalamus) 

MDD Major depressive disorder 

MI Myocardial infarction 

MID Monetary incentive delay 

MO Medial orbital (region of rodent mPFC) 

mOFC Medial orbitofrontal cortex 

mPFC Medial prefrontal cortex 

MRF Medullary reticular formation 

MRI Magnetic resonance imaging 

MRN Median raphe nucleus 

MRS Magnetic resonance spectroscopy 

MST Magnetic seizure therapy 

NA Noradrenaline/noradrenergic 

NHP Non-human primate 

NMDA N-methyl-D-aspartate (receptor) 

NS Not significant 

NTS Nucleus tractus solitarius (nucleus of the solitary tract) 

NVI Neurovisceral integration 

OCD Obsessive-compulsive disorder 

OFC Orbitofrontal cortex 

oPFC Orbital prefrontal cortex 

PAG Periaqueductal gray 

PET Positron Emission Tomography 

PFC Prefrontal cortex 

pgACC Perigenual anterior cingulate cortex 

PIT Pavlovian-to-instrumental transfer 

PL Prelimbic (cortex) 

PLv Ventral prelimbic (cortex) 

PTSD Post-traumatic stress disorder 

PVN Paraventricular nucleus (of the hypothalamus) 



 

RDoC Research Domain Criteria 

RMSSD Root mean squared standard deviation 

RNA Ribonucleic acid 

RSC Retrosplenial cortex 

rTMS Repetitive transcranial magnetic stimulation 

rvmPFC Rostral ventromedial prefrontal cortex 

SAD Social anxiety disorder 

SC Subcutaneous 

SEM Standard error of the mean 

sgACC Subgenual anterior cingulate cortex 

SHaPS Snaith-Hamilton Pleasure Scale 

siRNA Short inhibitory ribonucleic acid 

SNRI Serotonin-noradrenaline reuptake inhibitor 

SSRE Selective serotonin reuptake enhancer 

SSRI Selective serotonin reuptake inhibitor 

SUVR(c) Standard uptake value ratio (normalised to cerebellum) 

TCA Tricyclic antidepressant 

tDCS Transcranial direct current stimulation 

TEPS Temporal Experience of Pleasure Scale 

TEPS-ANT Anticipatory TEPS scale 

TEPS-CONS Consummatory TEPS scale 

TSAB Time spent at back 

TSAF Time spent at front 

US Unconditioned stimulus 

VMAT Vesicular monoamine transporter 

vmPFC Ventromedial prefrontal cortex 

VNS Vagal nerve stimulation 

VS Vigilant scanning 

VTA Ventral tegmental area 

α Threshold for determining statistical significance` 



 

 
 

CONTENTS 

1 GENERAL INTRODUCTION ............................................................................................................. 1 

1.1 DEFINING THE PREFRONTAL CORTEX AND THE VENTROMEDIAL PREFRONTAL CORTEX .................... 1 

1.1.1 Defining the prefrontal cortex ........................................................................................ 1 

1.1.2 Defining the ventromedial prefrontal cortex .................................................................. 5 

1.2 EMOTION, COGNITION AND THE VENTROMEDIAL PREFRONTAL CORTEX ........................................ 16 

1.2.1 Ventromedial prefrontal cortex in reward processing and value-based decision-

making: evidence from animals................................................................................... 16 

1.2.2 Ventromedial prefrontal cortex in reward processing and value-based decision-

making: evidence from humans .................................................................................. 22 

1.2.3 Ventromedial prefrontal cortex in the regulation of negative emotion: evidence from 

animals ........................................................................................................................ 28 

1.2.4 Ventromedial prefrontal cortex in the regulation of negative emotion: evidence from 

humans ........................................................................................................................ 33 

1.2.5 Ventromedial prefrontal cortex in social cognition ...................................................... 41 

1.3 PHYSIOLOGICAL FUNCTION AND THE VENTROMEDIAL PREFRONTAL CORTEX ................................. 42 

1.3.1 Ventromedial prefrontal cortex regulates autonomic and cardiovascular function in 

emotionally-neutral situations ...................................................................................... 43 

1.3.2 Ventromedial prefrontal cortex regulates autonomic function during emotionally-

valanced situations ...................................................................................................... 53 

1.3.3 Ventromedial prefrontal cortex regulates stress responses and HPA axis activity ..... 60 

1.4 SPECIALISATION OF FUNCTION WITHIN THE VENTROMEDIAL PREFRONTAL CORTEX? ..................... 68 

1.5 PSYCHIATRIC DISORDERS AND THE VENTROMEDIAL PREFRONTAL CORTEX .................................. 72 

1.5.1 Depression and Major Depressive Disorder ............................................................... 72 

1.5.2 Anhedonia: impaired reward processing in depression ............................................ 100 

1.5.3 Ventromedial prefrontal cortex in depression and anhedonia .................................. 116 

1.5.4 Anxiety disorders ....................................................................................................... 130 

1.5.5 Ventromedial prefrontal cortex in anxiety disorders .................................................. 137 

1.6 SUMMARY ............................................................................................................................... 140 

2 MATERIALS AND METHODS ....................................................................................................... 141 

2.1 SUBJECTS AND HOUSING ......................................................................................................... 142 

2.1.1 Subjects ..................................................................................................................... 142 

2.1.2 Housing ..................................................................................................................... 145 

2.2 SURGICAL PROCEDURES .......................................................................................................... 146 

2.2.1 Pre-surgical Procedures ............................................................................................ 147 

2.2.2 Anaesthetic Procedures ............................................................................................ 147 

2.2.3 Telemetry Surgery ..................................................................................................... 148 

2.2.4 Cannulation Surgery ................................................................................................. 150 

2.2.5 Soloport Surgery ....................................................................................................... 152 

2.3 BEHAVIOURAL TESTING APPARATUS ......................................................................................... 154 

2.3.1 Carry Box .................................................................................................................. 154 



 

 
 

2.3.2 Testing Chambers ..................................................................................................... 154 

2.3.3 Home Cage ............................................................................................................... 156 

2.4 DRUG TREATMENTS ................................................................................................................ 156 

2.4.1 Intracerebral infusions in awake marmosets ............................................................ 159 

2.4.2 Systemic drug treatments ......................................................................................... 160 

2.5 SALIVARY CORTISOL SAMPLING ............................................................................................... 161 

2.6 DATA ACQUISITION AND PRELIMINARY ANALYSIS ....................................................................... 161 

2.6.1 Telemetry data collection and analysis ..................................................................... 161 

2.6.2 Behavioural Analysis ................................................................................................. 162 

2.7 STATISTICAL ANALYSIS ............................................................................................................ 163 

2.8 POST-MORTEM ASSESSMENT OF CANNULA PLACEMENT ............................................................ 163 

3 CARDIOVASCULAR CHANGES INDUCED BY OVER-ACTIVATING PRIMATE SGACC/25 BUT 

NOT PGACC/32 .................................................................................................................................. 164 

3.1 ABSTRACT .............................................................................................................................. 165 

3.2 INTRODUCTION ........................................................................................................................ 165 

3.3 METHODS ............................................................................................................................... 168 

3.3.1 Subjects .................................................................................................................... 168 

3.3.2 Surgical Procedures .................................................................................................. 168 

3.3.3 Behavioural testing apparatus and paradigms ......................................................... 168 

3.3.4 Drug treatments ........................................................................................................ 169 

3.3.5 Salivary cortisol sampling ......................................................................................... 169 

3.3.6 Data acquisition and preliminary analysis ................................................................. 169 

3.3.7 Statistical analysis ..................................................................................................... 170 

3.3.8 Post-mortem histological processing ........................................................................ 171 

3.4 RESULTS................................................................................................................................. 172 

3.4.1 Post-mortem assessment of cannula placement ...................................................... 172 

3.4.2 Habituation to the testing apparatus ......................................................................... 172 

3.4.3 SgACC/25 over-activation profoundly alters baseline cardiovascular activity, but 

pgACC/32 over-activation has no effect ................................................................... 173 

3.4.4 Differential effects of sgACC/25 and pgACC/32 over-activation on baseline 

cardiovascular activity ............................................................................................... 175 

3.4.5 Both sgACC/25 and pgACC/32 over-activation have no effect on baseline salivary 

cortisol levels ............................................................................................................ 177 

3.5 DISCUSSION ............................................................................................................................ 178 

3.5.1 ‘At rest’ cardiovascular function is profoundly altered by sgACC/25 over-activation 178 

3.5.2 Endocrine function .................................................................................................... 180 

3.6 CONCLUSION ........................................................................................................................... 180 

4 FRACTIONATED ANHEDONIA INDUCED BY OVER-ACTIVATING PRIMATE SGACC/25 ..... 182 

4.1 ABSTRACT .............................................................................................................................. 183 

4.2 INTRODUCTION ........................................................................................................................ 183 

4.3 METHODS ............................................................................................................................... 186 

4.3.1 Subjects .................................................................................................................... 186 

4.3.2 Surgical procedures .................................................................................................. 186 



 

 
 

4.3.3 Behavioural testing apparatus and paradigms .......................................................... 186 

4.3.4 Drug Treatments ....................................................................................................... 189 

4.3.5 PET imaging .............................................................................................................. 189 

4.3.6 Data acquisition and preliminary analysis ................................................................. 190 

4.3.7 Statistical analysis ..................................................................................................... 192 

4.3.8 Post-mortem histological processing ........................................................................ 193 

4.4 RESULTS ................................................................................................................................. 195 

4.4.1 Post-mortem assessment of cannula placement and cFos expression.................... 195 

4.4.2 SgACC/25 over-activation blunts anticipatory but not consummatory arousal for 

reward, whereas pgACC/32 manipulations have no effect ....................................... 196 

4.4.3 SgACC/25 over-activation impairs reward motivation on a progressive ratio schedule 

of reinforcement ........................................................................................................ 204 

4.4.4 SgACC/25 over-activation has no effect on sucrose preference or consumption, 

despite these being common preclinical analogues of anhedonia ........................... 204 

4.4.5 SgACC/25 over-activation is associated with metabolic changes in a circuit including 

dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and insula .............. 207 

4.4.6 Acute administration of ketamine, but not citalopram, reverses anticipatory anhedonia 

induced by over-activation of sgACC/25 ................................................................... 209 

4.4.7 Reversal of anticipatory anhedonia by ketamine is associated with normalization of 

metabolic activity in dmPFC and dACC, and deactivation of the insula ................... 212 

4.5 DISCUSSION ............................................................................................................................ 216 

4.5.1 Fractionating anhedonia ............................................................................................ 216 

4.5.2 Circuit-wide changes associated with over-activation induced anhedonia ............... 217 

4.5.3 Ketamine as an efficacious treatment for over-activation induced anhedonia ......... 218 

4.5.4 Translational considerations ..................................................................................... 219 

4.6 CONCLUSION ........................................................................................................................... 220 

5 ENHANCED CARDIOVASCULAR AND BEHAVIOURAL CORRELATES OF NEGATIVE 

EMOTION INDUCED BY OVER-ACTIVATING PRIMATE SGACC/25 ............................................. 221 

5.1 ABSTRACT ............................................................................................................................... 222 

5.2 INTRODUCTION ........................................................................................................................ 222 

5.3 METHODS ................................................................................................................................ 226 

5.3.1 Subjects ..................................................................................................................... 226 

5.3.2 Surgical procedures .................................................................................................. 226 

5.3.3 Behavioural testing apparatus and paradigms .......................................................... 226 

5.3.4 Drug treatments ........................................................................................................ 231 

5.3.5 Salivary cortisol sampling .......................................................................................... 231 

5.3.6 Data acquisition and preliminary analysis ................................................................. 232 

5.3.7 Statistical analysis ..................................................................................................... 235 

5.3.8 Post-mortem histological processing ........................................................................ 239 

5.4 RESULTS ................................................................................................................................. 240 

5.4.1 Post-mortem assessment of cannula placement ...................................................... 240 

5.4.2 Animals show both cue- and context-directed conditioning following Snake Extinction 

acquisition sessions under control conditions ........................................................... 240 

5.4.3 Animals show extinction and recall of extinction under control conditions ............... 241 



 

 
 

5.4.4 Salivary cortisol levels are higher following acquisition ............................................ 241 

5.4.5 SgACC/25 over-activation increases cardiovascular and behavioural arousal during 

fear extinction, which remain elevated on the following extinction recall day ........... 243 

5.4.6 SgACC/25 over-activation elevated salivary cortisol concentrations following 

extinction ................................................................................................................... 246 

5.4.7 Animals successfully acquired differential arousal responses to the CS+ and CS- on 

the Fear Discrimination paradigm ............................................................................. 247 

5.4.8 SgACC/25 over-activation systematically increased cardiovascular and behavioural 

arousal during Fear Discrimination testing ............................................................... 249 

5.4.9 SgACC/25 over-activation may impair recovery from a stressor .............................. 249 

5.4.10 SgACC/25 over-activation profoundly increases anxiety responses to the HI ......... 251 

5.4.11 Ketamine does not reverse increases in anxiety associated with sgACC/25 over-

activation ................................................................................................................... 254 

5.5 DISCUSSION ............................................................................................................................ 255 

5.5.1 SgACC/25 over-activity enhances cardiovascular and behavioural arousal to aversive 

contexts ..................................................................................................................... 255 

5.5.2 SgACC/25 over-activity may impair stress recovery ................................................ 258 

5.5.3 SgACC/25 over-activity increases anxiety as measured by intolerance of a HI ....... 258 

5.5.4 Ketamine fails to reverse over-activation associated enhanced anxiety responses to 

an HI .......................................................................................................................... 259 

5.5.5 SgACC/25 over-activity may potentiate HPA axis activity in aversive contexts ....... 261 

5.6 CONCLUSION ........................................................................................................................... 264 

6 BLUNTED REWARD AROUSAL AND ENHANCED ANXIETY FOLLOWING PERIPHERAL 

INJECTIONS OF CORTISOL ............................................................................................................. 265 

6.1 ABSTRACT .............................................................................................................................. 266 

6.2 INTRODUCTION ........................................................................................................................ 266 

6.3 METHODS ............................................................................................................................... 270 

6.3.1 Subjects .................................................................................................................... 270 

6.3.2 Surgical procedures .................................................................................................. 270 

6.3.3 Behavioural testing apparatus and paradigms ......................................................... 270 

6.3.4 Drug treatments ........................................................................................................ 270 

6.3.5 Salivary cortisol sampling ......................................................................................... 271 

6.3.6 Data acquisition and preliminary analysis ................................................................. 271 

6.3.7 Statistical analysis ..................................................................................................... 271 

6.4 RESULTS................................................................................................................................. 272 

6.4.1 Subcutaneous cortisol injections successfully raised peripheral cortisol levels as 

measured by increases in salivary cortisol concentrations ....................................... 272 

6.4.2 Subcutaneous cortisol injections induce behavioural – but not cardiovascular – signs 

of anticipatory anhedonia, without affecting reward consumption ............................ 274 

6.4.3 Subcutaneous cortisol injections increased anxiety scores in response to a HI ...... 276 

6.5 DISCUSSION ............................................................................................................................ 280 

6.5.1 Blunted anticipatory but intact consummatory appetitive arousal following acute 

cortisol administration ............................................................................................... 280 

6.5.2 Elevated anxiety following acute cortisol administration ........................................... 281 

6.5.3 Contributions of elevated cortisol to the over-activation induced phenotype ........... 283 



 

 
 

6.5.4 Future work investigating the effects of chronic cortisol, and the action of cortisol in 

the context of the ventromedial prefrontal cortex ...................................................... 283 

6.6 CONCLUSION ........................................................................................................................... 285 

7 GENERAL DISCUSSION ............................................................................................................... 286 

7.1 SUMMARY OF RESULTS ............................................................................................................ 288 

7.1.1 Peripheral physiological dysfunction associated with sgACC/25 over-activation ..... 288 

7.1.2 Fractionated anhedonia associated with sgACC/25 over-activation......................... 288 

7.1.3 Cardiovascular, behavioural and endocrine correlates of enhanced negative emotion 

associated with sgACC/25 over-activation ................................................................ 289 

7.1.4 The novel antidepressant ketamine and its amelioration of sgACC/25 over-activation 

induced changes ....................................................................................................... 290 

7.1.5 Changes induced by peripheral injections of cortisol resemble, but do not mimic, 

changes induced by sgACC/25 over-activation ........................................................ 290 

7.2 SYNTHESIS OF FINDINGS .......................................................................................................... 292 

7.2.1 Hypotheses regarding sgACC/25 function ................................................................ 292 

7.2.2 Novel antidepressant agents ..................................................................................... 303 

7.3 APPRAISAL OF METHODOLOGICAL APPROACHES ........................................................................ 304 

7.4 FUTURE DIRECTIONS ................................................................................................................ 308 

7.5 CONCLUSION ........................................................................................................................... 311 

BIBLIOGRAPHY ................................................................................................................................. 312 

 

  



 

 
 

LIST OF FIGURES 

Figure 1-1 In both rodents and primates, the PFC is a heterogeneous brain region. ............................. 4 

Figure 1-2 Medial wall of the rodent brain. .............................................................................................. 6 

Figure 1-3 Different maps illustrating cytoarchitectonic areas of the cerebral cortex of the rhesus 

macaque. ................................................................................................................................................. 7 

Figure 1-4 Comparison of the orbital surface of the rhesus macaque PFC as fractionated by Barbas 

and Pandya (1989) vs. Carmichael and Price (1994). ............................................................................ 9 

Figure 1-5 Brodmann's map of Hapale (now Callithrix) neocortex. ...................................................... 10 

Figure 1-6 Maps of the medial wall of human cerebral cortex. ............................................................. 12 

Figure 1-7 Maps of the human mPFC based on multi-modal classification approaches. ..................... 13 

Figure 1-8 Functional organisation of human sgACC. .......................................................................... 14 

Figure 1-9 Vogt and Paxinos' 2014 map, highlighting homology between human and rodent mPFC. 15 

Figure 1-10 A model of PL and IL contributions to fear regulation by gating information flow in the 

amygdala. .............................................................................................................................................. 30 

Figure 1-11 Neuroimaging studies implicating human vmPFC in fear extinction. ................................ 40 

Figure 1-12 Bidirectional connectivity between rodent vmPFC and autonomic control centres in the 

brainstem. .............................................................................................................................................. 44 

Figure 1-13 Autonomic effects of rodent vmPFC stimulation in the context of amygdala and 

hypothalamic stimulation. ...................................................................................................................... 46 

Figure 1-14 Electrical stimulation of pgACC and sgACC of the macaque induces autonomic changes.

 ............................................................................................................................................................... 49 

Figure 1-15 Electrical stimulation of human pgACC regions induces autonomic changes. .................. 50 

Figure 1-16 Electrical stimulation of human vmPFC induces BP and HR changes. ............................. 51 

Figure 1-17 Neurovisceral integration (NVI) model. .............................................................................. 60 

Figure 1-18 The hypothalamo-pituitary adrenal (HPA) axis. ................................................................. 61 

Figure 1-19 Perspectives on vmPFC function. ...................................................................................... 69 

Figure 1-20 DSM-V criteria for diagnosing MDD. .................................................................................. 73 

Figure 1-21 Efficacy of a single IV infusion of ketamine in treating symptoms of depression. ............. 91 

Figure 1-22 Selected neurosurgical interventions for the treatment of depression. ............................. 97 

Figure 1-23 Selected items from common anhedonia questionnaires. ............................................... 103 

Figure 1-24 Parsing anhedonia. .......................................................................................................... 105 

Figure 1-25 Microstructural analysis of consumption. ......................................................................... 107 

Figure 1-26 Monetary Incentive Delay (MID) task. .............................................................................. 110 

Figure 1-27 Limbic-cortical model. ...................................................................................................... 119 

Figure 1-28 Default mode network (DMN) model. .............................................................................. 123 

Figure 1-29 Components of a normal anxiety response and their neurobiological correlates. ........... 133 

Figure 1-30 Deakin-Graeff model of 5HT in anxiety and panic. .......................................................... 135 



 

 
 

Figure 2-1 Subjects and Housing: home cage. ................................................................................... 146 

Figure 2-2 Surgical Procedures: telemetry surgery. ............................................................................ 148 

Figure 2-3 Surgical Procedures: Stereotaxic frame for cannulation surgery. ...................................... 151 

Figure 2-4 Behavioural Testing Apparatus: testing chambers. ........................................................... 155 

Figure 2-5 Drug Treatments: intracerebral infusions in awake marmosets. ........................................ 160 

Figure 2-6 Data Acquisition and Preliminary Analysis: telemetry data acquisition and analysis. ....... 162 

Figure 3-1 Cannula placements. ......................................................................................................... 172 

Figure 3-2 Mean HR and MAP responses across the first, penultimate and final habituation sessions 

prior to experimental manipulations. .................................................................................................... 173 

Figure 3-3 SgACC/25 over-activation had profound effects on baseline cardiovascular function. ..... 174 

Figure 3-4 PgACC/32 over-activation had no effect on baseline cardiovascular function. ................. 176 

Figure 3-5 Neither sgACC/25 nor pgACC/32 over-activation has an effect on baseline salivary cortisol 

levels. ................................................................................................................................................... 177 

Figure 4-1 Cannula placements and cFos expression. ....................................................................... 195 

Figure 4-2 Experimental outline and conditioned discrimination. ........................................................ 197 

Figure 4-3 SgACC/25 over-activation impairs anticipatory responses but not consummatory 

responses. ........................................................................................................................................... 199 

Figure 4-4 Locomotor activity during saline and drug sessions. ......................................................... 200 

Figure 4-5 Baseline (20s period before CS) effects of sgACC/25 over-activation on HR and MAP. .. 201 

Figure 4-6 SgACC/25 inactivation had no effect on appetitive anticipatory or consummatory arousal.

 ............................................................................................................................................................. 202 

Figure 4-7 Neither pgACC/32 over-activation nor pgACC/32 inactivation impairs anticipatory or 

consummatory arousal. ....................................................................................................................... 203 

Figure 4-8 SgACC/25 over-activation impairs reward motivation on a progressive-ratio schedule of 

reinforcement but has no effect on sucrose preference or consumption. ........................................... 206 

Figure 4-9 18F-FDG PET imaging revealed metabolic changes in a network of brain regions associated 

with interoception and reward processing following sgACC/25 over-activation. ................................. 208 

Figure 4-10 A single intramuscular injection of ketamine ameliorates the cardiovascular and 

behavioural anticipatory anhedonia induced by over-activation sgACC/25 in a time-dependent manner 

– whereas acute citalopram has no effect. .......................................................................................... 212 

Figure 4-11 Reversal of anticipatory anhedonia by ketamine is associated with metabolic changes 

within dmPFC, dACC and insula. ........................................................................................................ 214 

Figure 5-1 Tractability of constructs in negative emotion with animal studies. ................................... 223 

Figure 5-2 Snake Extinction testing paradigm. .................................................................................... 227 

Figure 5-3 Fear Discrimination paradigm. ........................................................................................... 229 

Figure 5-4 HI testing apparatus. .......................................................................................................... 230 

Figure 5-5 Dimensions of HI test quadrant. ......................................................................................... 234 

Figure 5-6 Vocalisations made during the HI test. .............................................................................. 235 



 

 
 

Figure 5-7 The use of an exploratory factor analysis (EFA) to extract latent variables explaining 

variance in behaviour. ......................................................................................................................... 239 

Figure 5-8 Cannula placements. ......................................................................................................... 240 

Figure 5-9 Features of acquisition, extinction and extinction recall under control conditions in the 

Snake Extinction paradigm. ................................................................................................................. 242 

Figure 5-10 SgACC/25 over-activation increases cardiovascular and behavioural arousal during fear 

extinction, which remain elevated on the following extinction recall day. ........................................... 245 

Figure 5-11 Ratio of ‘post’:‘pre’ salivary cortisol levels during extinction days under control and over-

activation conditions. ........................................................................................................................... 247 

Figure 5-12 Animals successfully acquired conditioned aversive Fear Discrimination. ...................... 248 

Figure 5-13 SgACC/25 over-activation enhances cardiovascular and behavioural arousal during an 

aversive Pavlovian Fear Discrimination paradigm. ............................................................................. 250 

Figure 5-14 SgACC/25 over-activation increases anxiety responses to an HI. .................................. 252 

Figure 5-15 Ketamine does not reverse increases in anxiety associated with sgACC/25 over-

activation. ............................................................................................................................................ 254 

Figure 5-16 Mechanisms of action of ketamine in the context of sgACC/25 over-activation. ............. 261 

Figure 5-17 The relationship between sgACC/25, the HPA axis and peripheral cortisol levels. ........ 263 

Figure 6-1 The relationship between dysregulation within the HPA axis and stress-related disorders 

such as depression and anxiety. ......................................................................................................... 267 

Figure 6-2 Causality: HPA axis and vmPFC dysfunction associated with depression and anxiety. ... 268 

Figure 6-3 Subcutaneous cortisol injections successfully raise peripheral cortisol levels as measured 

by increases in salivary cortisol concentrations. ................................................................................. 273 

Figure 6-4 Subcutaneous cortisol injections induce behavioural – but not cardiovascular – signs of 

anticipatory anhedonia, without affecting reward consumption. ......................................................... 275 

Figure 6-5 Subcutaneous cortisol injections do not affect reward consumption as measured in the 

sucrose preference test. ...................................................................................................................... 276 

Figure 6-6 Subcutaneous cortisol injections increase anxiety responses to an HI. ............................ 278 

Figure 6-7 Future studies stimulated by the work presented in this chapter. ..................................... 284 

Figure 7-1 Hypotheses regarding sgACC/25 function based on data presented in this thesis. ......... 295 

Figure 7-2 Afferent connectivity of sgACC/25: hippocampal formation. ............................................. 296 

Figure 7-3 ‘Stuck-in-a-rut’: depression as an inability to disengage from a negative mood state. ..... 298 

Figure 7-4 Afferent (left) and efferent (right) connectivity of sgACC/25: rostral (top) and caudal 

(bottom) insula. .................................................................................................................................... 301 

Figure 7-5 Suggestions for future work based on the data presented in this thesis. .......................... 310 

 

  



 

 
 

LIST OF TABLES 

Table 1-1 Studies implicating primate vmPFC (and subregions of mOFC) in reward-related processing.

 ............................................................................................................................................................... 21 

Table 1-2 Human vmPFC activations related to reward processing. .................................................... 27 

Table 1-3 Human vmPFC activations related to sadness and social exclusion. ................................... 37 

Table 1-4 Studies implicating human vmPFC in cardiovascular modulation during emotional/stressful 

situations. ............................................................................................................................................... 58 

Table 1-5 Studies implicating human vmPFC in the regulation of the stress response. ....................... 67 

Table 1-6 Examples of errors in logic (cognitive biases) outlined by Aaron Beck’s cognitive theory of 

depression. ............................................................................................................................................ 76 

Table 1-7 Converging lines of evidence point to GCR-related dysfunction in depression. ................... 79 

Table 1-8 Animal models/tests of depression against validity criteria. .................................................. 98 

Table 1-9 Neuroimaging studies showing vmPFC activity associated with anhedonia. ..................... 126 

Table 2-1 Subjects and housing: cohort one, for neutral condition and negative-affect related studies.

 ............................................................................................................................................................. 143 

Table 2-2 Subjects and Housing: cohort two, for positive-affect related studies. ............................... 144 

Table 2-3 Subjects and Housing: cohort three, for peripheral cortisol studies. ................................... 145 

Table 2-4 Drug Treatments: Mechanism, route of administration, dose and pre-treatment time for 

drugs used in experimental manipulations in this thesis. .................................................................... 159 

Table 4-1 Schedule for training on the Appetitive Discrimination paradigm. ....................................... 187 

Table 4-2 Consummatory (US+) latencies to start eating food reward. .............................................. 200 

Table 4-3 Measurements of SUVR changes across control, over-activation and [over-activation + 

ketamine] in an atlas-defined sgACC/25 ROI. ..................................................................................... 215 

Table 5-1 Experimental testing schedule for Fear Discrimination. ...................................................... 229 

Table 5-2 HI behaviours of all eight subjects for all conditions. .......................................................... 253 

Table 6-1 HI behaviours for all four subjects for control and 20mg/kg cortisol conditions. ................. 279 

Table 7-1 Appraisal of methodological approaches. ........................................................................... 304 



Chapter 1: General Introduction 

1 
 

1 GENERAL INTRODUCTION 

Neuropsychiatric illnesses are common and debilitating, and of these, depression and 

anxiety are associated with the largest disease burden (Whiteford et al., 2013). Both 

preclinical interventional studies in animals and correlative neuroimaging studies in humans 

have provided significant insights into the wide-spread neuroanatomical, neurophysiological 

and neurochemical abnormalities associated with specific symptoms. Many of these 

disorders share prefrontal cortex (PFC) dysfunction as an important neural signature (Godsil 

et al., 2013; Myers-Schulz and Koenigs, 2012; Price and Drevets, 2010). Perhaps 

unsurprisingly given its role in the regulation of emotion, changes in activity within the 

ventromedial PFC (vmPFC) – including the subgenual anterior cingulate cortex (sgACC) and 

perigenual anterior cingulate cortex (pgACC) – have been repeatedly identified in the context 

of mood and anxiety disorders. However, the precise locus of change varies from study-to-

study, and forward translation from preclinical studies is made difficult owing to a lack of 

understanding regarding the functional equivalence of sectors of rodent vmPFC to those of 

primates. These difficulties are further compounded by inconsistent terminology and 

imprecise definitions concerning the anatomy of the vmPFC, and the PFC more generally.  

In this chapter, literature concerning the anatomy of the PFC and vmPFC will be discussed 

first, to provide an anatomical framework within which functional results can be interpreted. 

Then, the role of the vmPFC in the regulation of appetitive and aversive behaviour will be 

considered, together with its role in autonomic and endocrine function – and whether these 

diverse functions can be parcellated at a neuroanatomical level. Finally, the vmPFC will be 

discussed in the context of psychiatric disorders, with a focus on mood disorders – primarily 

depression – and anxiety disorders.    

1.1 DEFINING THE PREFRONTAL CORTEX AND THE VENTROMEDIAL PREFRONTAL 

CORTEX 

1.1.1 Defining the prefrontal cortex 

The PFC is loosely defined as the portion of the frontal lobe anterior to the premotor and 

primary motor cortex. Consensus on the precise neuroanatomical constituents of the PFC 

has yet to be reached, although there are several proposals:  

• Region of frontal cortex which, when stimulated, does not lead to observable 

movements – This definition was adopted by Ferrier in the late 19th century (Ferrier, 

1890) and was one of the earliest definitions of the PFC. However this fell out of use 

with the development of cytoarchitectonic definitions (see below), following the 
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recognition that electrically silent frontal cortex encompasses highly heterogeneous 

cytoarchitectonic regions (Preuss, 1995). 

• Region of frontal cortex which receives projections from the mediodorsal (MD) 

nucleus of the thalamus – Formulated originally by Rose and Woolsey (Rose and 

Woolsey, 1948) and developed further by Akert (Akert, 1964), this definition is often 

used in the context of defining cross-species homologues: regions of frontal cortex 

receive MD projections across a number of species, including primates and rodents. 

This definition is used to this day, although it is limited by the fact that MD thalamus 

projections are relatively widespread and not restricted to definitive group of 

cytoarchitectonic regions in primates (Preuss, 1995). This definition has since been 

modified to suggest that the PFC has stronger reciprocal connections to MD 

thalamus compared with any other thalamic nucleus (Uylings et al., 2003).  

• Dopaminergic projections from the midbrain – In the 1970s, catecholaminergic 

innervation of the frontal cortex of macaques was being extensively studied. 

Preliminary accounts of the distribution of dopaminergic fibres gave rise to the 

suggestion that primate PFC is specifically innervated by the dopaminergic nuclei of 

the midbrain (Björklund et al., 1978; MacBrown and Goldman, 1977). Indeed, Divac 

and colleagues demonstrated that the distribution of dopaminergic terminations is 

coextensive with MD projections in primates and non-primates (Divac et al., 1978), 

thereby showing cross-validity with another approach for defining the PFC. However, 

dopaminergic terminations have also been identified in mid ACC, premotor cortex 

and primary motor cortex (Berger et al., 1991; Gaspar et al., 1992). Although these 

are regions of frontal cortex, they are typically considered too caudal to constitute 

PFC and are functionally very distinct.  

• Cytoarchitectonic definitions – The anatomist Korbinian Brodmann suggested that 

PFC was defined by the presence of small, granule cells in layer II and layer IV 

(Brodmann, 1909). In his initial investigations, he observed two different patterns of 

layer IV granularity in the frontal lobe – no granule cell layer (agranular), or a thick, 

well defined granule cell layer (granular). Based on this, he grouped frontal lobe 

regions into an agranular precentral region (regio praecentralis), an agranular medial 

region (regio cingularis) and a granular frontal region (regio frontalis; including dorsal, 

lateral and ventral surfaces of the frontal lobe). The regio frontalis was generally and 

collectively referred to as the PFC until the mid-20th century (Groenewegen et al., 

1997) and it was the presence of a distinct granular layer IV that was the key feature 

distinguishing regio frontalis (PFC) from the agranular premotor and primary motor 

cortex. The ACC – including dorsal (d), perigenual (pg) and subgenual (sg) regions – 

was considered separate as it was agranular. Brodmann further asserted that 
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granular frontal cortex is unique to primates, since other species he studied did not 

have a granular layer in cortex of the frontal lobe. Indeed, according to Brodmann’s 

definition, rodents do not possess a PFC as their cortex completely lacks a granular 

layer IV (Uylings et al., 2003). 

Since his initial work, subsequent studies have shown that several of the areas 

identified by Brodmann as granular do not have a clear layer IV – instead, it is a 

sparse and thinly developed. Anatomists refer to these areas as being ‘dysgranular,’ 

and include areas on the medial wall and ventral surface of the frontal lobe (Barbas 

and Pandya, 1989; Walker, 1940). In addition, owing to its extensive connectivity with 

the MD thalamus, the separation between ACC and PFC has become blurred, and 

most investigators consider rostral portions of the ACC as being part of the PFC 

(Barbas, 2015). Despite these discrepancies, Brodmann’s characterisation of the 

PFC has been enormously useful because it can be used to fractionate the PFC into 

subregions based on relatively well-defined cytoarchitectonic characteristics (see 

below).  

In rodents and primates, the PFC is appreciated to be a heterogeneous brain region (FIGURE 

1-1) and attempts have been made to delineate subregions of the PFC in a manner that is 

comparable across species. However, language relating to these subregions is often 

imprecise: whilst they can be useful, terms including ‘medial’ PFC (mPFC), ‘orbital’ PFC 

(oPFC, also termed orbitofrontal cortex, OFC), ‘anterior’ PFC (aPFC), ‘lateral’ PFC (lPFC) 

and vmPFC are used when discussing the PFC without detailed characterisation of the brain 

regions to which they refer. Brodmann’s work gave rise to the earliest iteration of a series of 

comparative maps of the cytoarchitectonic subregions of human and non-human primate 

(NHP) frontal cortex (Brodmann, 1909). These subregions were numbered – for example, in 

the macaque PFC, regio frontalis was comprised of BA10, 11, 12 and 13 ventrally and BA8 

and 9 laterally. Regio cingularis (then not considered part of the PFC) was comprised of 

agranular BA24, 25 and 32.  
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Figure 1-1 In both rodents and primates, the PFC is a heterogeneous brain region.  

Subregions typically classified as contributing to ‘ventromedial’ PFC (vmPFC) are highlighted in red. 

A The rodent PFC is subdivided into medial and orbital zones. Rodents do not have a lateral 

prefrontal cortex – instead, executive function is thought to be subserved by dorsomedial PFC 

(dmPFC). Rodent vmPFC typically refers to prelimbic (PL) and infralimbic (IL) sectors, but variably 

includes the anterior cingulate ventral (ACv) division. B Primate PFC is more extensive, consisting 

of loosely defined mPFC, oPFC, anterior PFC (aPFC, sometimes termed frontopolar cortex) and 

lateral PFC (lPFC). The mPFC of primates can be thought of as comprising a superficial ‘outer rim’ 

and a deep ‘inner rim’ hugging the corpus callosum. In primates, references to the vmPFC typically 

include perigenual anterior cingulate cortex (pgACC, including BA24 and BA32), subgenual anterior 

cingulate cortex (including caudally, BA25 and rostrally, BA10), BA10m (sometimes referred to as 

rostral ‘r’vmPFC) and BA14 (both rostral – 14r – and caudal – 14c – divisions). 

 

The focus of this thesis is the role of PFC subregions in the regulation of emotion, and the 

subdivision of the PFC most consistently implicated in emotion and its regulation is the 
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vmPFC (Myers-Schulz and Koenigs, 2012). Therefore, subsequent discussion of the 

anatomy of the PFC and its role in (ab)normal emotion will focus on the vmPFC. As has been 

mentioned, discussion is invariably constrained by anatomical imprecision, but wherever 

possible the precise subregions to which studies refer will be quoted.  

1.1.2 Defining the ventromedial prefrontal cortex 

As with other subregions, the term vmPFC is often used loosely, without a precise 

characterisation of the brain regions to which it refers. In this thesis, the term vmPFC will 

refer to the subregions outlined in FIGURE 1-1. 

1.1.2.1 Rodent ventromedial prefrontal cortex 

Brodmann did not consider the rat to have a PFC (and, by extension, a vmPFC) because its 

frontal cortex is entirely agranular (Brodmann, 1909). Defining rodent prefrontal and 

ventromedial prefrontal subregions remains difficult for this very reason, although 

subsequent investigators have asserted that the rat does possess prefrontal regions 

homologous to the oPFC, mPFC and vmPFC of primates. These anatomists have tended to 

adopt a characterisation based on projections of the MD nucleus of the thalamus (see 1.1.1). 

The first example of this was the work of Krettek and Price, who traced efferent projections of 

the MD thalamus and characterized four subdivisions of the rodent mPFC: prelimbic (PL), 

infralimbic (IL), anterior cingulate (AC, dorsal (d) and ventral (v) subfields) and medial orbital 

(MO) (Krettek and Price, 1977) (FIGURE 1-2A). Together, the PL and IL regions were said to 

constitute rodent vmPFC. Following on from Krettek and Price’s work assessing MD 

projection zones (and with the growing consensus that ‘PFC’ included agranular regions), 

Vogt and Peters evaluated the cytoarchitecture of the rat cingulate cortex in light of 

Brodmann’s description using Golgi staining (Vogt and Peters, 1981). Vogt and Peters 

emphasized the homology between subregions of rodent vmPFC and primate vmPFC by 

adopting Brodmann’s nomenclature: PL corresponded to BA32, IL corresponded to BA25 

and AC corresponded to BA24 (FIGURE 1-2B). This equivalence has become widely adopted 

when discussing both rodent-monkey (Gabbott et al., 2003) and rodent-human (Quirk and 

Beer, 2006) homology. Indeed, subsequent work has shown that beyond having similar 

cytoarchitecture and locations with the PFC, PL/BA32 and IL/BA25 have similar 

afferent/efferent connectivity (Haber, 2016; Passingham and Steven, 2012; Price, 2007). 
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Figure 1-2 Medial wall of the rodent brain. A Krettek and Price (1977) fractionated rodent cortex 

based on projections of the MD thalamus and identified four subregions constituting mPFC – 

infralimbic (IL), prelimbic (PL), anterior cingulate (AC, dorsal (d) and ventral (v)) and medial orbital 

(MO). B Vogt and Peters (1981) identified similar anterior divisions to Krettek and Price but used 

different nomenclature. ‘Area 25’ is roughly equivalent to IL; ‘area 32’ to PL; ‘24a’ to ACv; and ‘24b’ 

to ACd. MO was not described in this work, although an analogous region is bordered by ‘area 

25/32’. 

 

1.1.2.2 Non-human primate ventromedial prefrontal cortex 

Classification systems for NHP vmPFC have developed extensively over the 20th and 21st 

centuries (Schmahmann and Pandya, 1997). Brodmann characterized the cellular 

architecture of the PFC in rhesus macaque monkeys (FIGURE 1-3A), applying his numbering 

scheme to specific subregions. However, there were differences in his characterisation of 

subregions within NHP vmPFC compared to those identified in humans – specifically, there 

was difficulty with BA32, and Brodmann stated that his ‘monkey’ BA32 was not homologous 

to human BA32.   
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Figure 1-3 Different maps illustrating cytoarchitectonic areas of the cerebral cortex of the 

rhesus macaque. Taken from Schmahmann and Pandya, 1997. In all cases, the PFC is 

recognised as a heterogenous brain region that covers an extensive portion of the macaque frontal 

lobe. A Designation of Brodmann (1909). vmPFC consists of BA24 and 32. B Designation of Walker 

(1940). vmPFC consists of BA24 and 25. C Designation of von Bonin and Bailey (1947). Note 

difference in nomenclature. vmPFC consists of ‘FL’ (corresponding to BA25) and ‘FD’ 

(corresponding to BA32). D Designation of Petrides and Pandya (1994). vmPFC consists of BA25, 

32 and 14.  

 

Differences between the anatomical characterisation of macaque and human PFC led 

Walker (1940) to re-examine Brodmann’s maps. Walker realised that several BAs could be 

further sub-divided based on further examination of their cytoarchitectonic features. In 
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Walker’s first revised map, there was closer correspondence to the human PFC (FIGURE 

1-3B). Even in Walker’s map, BA32 was not recognized at all. Instead, BA24 and 25 

constituted the entirety of the vmPFC (Walker, 1940). At a similar time, von Bonin and Bailey 

also published a revised map of macaque neocortex (FIGURE 1-3C) (von Bonin and Bailey, 

1947), using lettering terminology on von Economo’s parcellation of human cortex (see 

1.1.2.3). Whilst the lettering system adopted by von Bonin and Bailey failed to become 

popular, von Bonin and Bailey’s map was very similar to that of Walker’s.  

The Walker map remained a mainstay until the 1980s, when more sophisticated staining 

techniques were used to identify architectonic features not possible to delineate previously. 

Vogt and colleagues first identified BA32 in the macaque, comprised of thick layers II-IV and 

distinct ‘band’ in layer V (Vogt et al., 1987). Barbas and Pandya carried out further work 

fractionating macaque PFC, distinguishing BA25, BA32 and BA24 on the basis of cyto- and 

also myeloarchitectural differences: for example, BA32 has a more discernible cortical layer 

II (cytoarchitectural) and a faint inner Baillarger band (myelinated fibres travelling from layer 

V; myeloarchitectural) (Barbas and Pandya, 1989). These findings were in broad agreement 

with the earlier cytoarchitectonic work from Vogt.  

In the 1990s, the focus was extended from cyto- and myeloarchitecture to encompass 

consideration of chemoarchitectural differences. Carmichael and Price conducted an 

extended analysis of subregions of NHP PFC in three different macaque species 

(Carmichael and Price, 1994). In addition to cytoarchitectural and myeloarchitectural 

differences, Carmichael and Price considered markers related to metabolism, synapses and 

neurotransmission. In this work, more than 20 different fields were identified in orbital, medial 

and ventromedial regions. BA24, BA25 and BA32 were delineated on the medial wall, 

separated from surrounding PFC by dark acetylcholinesterase (AChE) staining. AChE could 

also be used to separate these regions (albeit with low resolution), with BA25 containing the 

most AChE+ fibres. Calbindin separated BA25, BA32 and BA24 more distinctly – whilst BA24 

had many calbindin+ cell bodies, in BA25 calbindin+ cell bodies were scattered across all 

cortical layers and in BA32 staining was especially sparse. However, it is worth noting that 

the border between BA25 and BA32 was gradual – a low degree of precision was achieved 

when attempting to identify the cortical boundaries. In parallel, Petrides and Pandya 

developed their own map of macaque PFC based on cytoarchitectural and connectional 

characteristics (FIGURE 1-3D) (Petrides and Pandya, 1994). To define the connectivity of 

prefrontal subregions, Petrides and Pandya microinjected anterograde and retrograde 

tracers, to determine the efferent and afferent connectivity respectively. Based on these 

properties, the medial wall of the Petrides-Pandya map includes BA24, BA25 and a 
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particularly extensive BA32 occupying the majority of the vmPFC. Ventral to BA32, a medial 

component of BA14 extends around onto the inferior aspect of the medial wall.  

Most recently, there has been a push for quantitative architectonics using a multi-

dimensional approach with a combination of techniques. This approach has been pioneered 

by the work of Helen Barbas and colleagues (for example, in (Dombrowski et al., 2001)). 

Using fundamental architectonic criteria – including cyto-, myelo- and chemoarchitectonic 

features – Barbas and colleagues have investigated whether subregions of the PFC have 

unique profiles that can be illustrated quantitatively. Dombrowski et al. have shown that 

neuronal density is highly informative when establishing architectonic profiles in the 

macaque, followed by measures of cortical thickness and parvalbumin+ neuron density. 

Interestingly, the use of this approach led to BA25 being characterised as an ‘outlier’ region, 

distinct from its neighbouring vmPFC subregions, based on quantitative analysis of these 

architectonic features.  

The characterisation of NHP BA25 is worth further consideration, because the borders of 

BA25 are subject to variability across different maps. Petrides and Pandya (1994), 

Dombrowski et al. (2001) and other work by Helen Barbas (e.g. Barbas and Pandya, 1989) 

identifies a portion of BA25 that extends ventrally onto the orbital surface, abutting BA13, in 

addition to the ‘typical’ portion BA25 on the medial wall. By contrast, Carmichael and Price 

label an analogous region to Barbas et al.’s orbital BA25 as BA14c (FIGURE 1-4). In their 

paper Carmichael and Price show that BA14c differs markedly to BA14r based on PV neuron 

distribution and AChE staining (see (Carmichael and Price, 1994) Figure 8 for PV; Figure 

20A,C for AChE), and based on data from their own manuscript it would appear that 14c is 

actually more similar to BA25. Therefore, in the macaque, it is likely that BA25 extends from 

the medial surface onto the orbital surface.  

 

Figure 1-4 Comparison of the orbital surface of the rhesus macaque PFC as fractionated by 

Barbas and Pandya (1989) vs. Carmichael and Price (1994).  A In the map by Barbas and 
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Pandya, an orbital portion of BA25 is identified based on chemo-architectural and quantitative 

architectonic differences. B Carmichael and Price identify a caudal region of BA14(c), which may be 

equivalent to orbital BA25. 

 

Beyond these extensive characterisations of macaque vmPFC (an old-world monkey), the 

neuroanatomy of marmoset vmPFC (a new-world monkey) has also been investigated. 

Knowledge of marmoset neuroanatomy is proving increasingly important, as the marmoset is 

becoming a popular experimental system for neuroscience research (Oikonomidis et al., 

2016). Remarkably, in his original work, Brodmann included a cytoarchitectonic map of 

marmoset cortex (then genus Hapale, now Callithrix) in his cross-species comparisons of 

cytoarchitecture (FIGURE 1-5). In his analysis, marmosets and macaques had equivalent 

regions of the PFC: the marmoset vmPFC contained BA25, 24 and 32. Characterisation of 

the marmoset vmPFC was not carried out in much further detail until 2009, when Burman 

and Rosa used a combination of cyto-, myelo- and chemoarchitectural (cytochrome oxidase) 

approaches to identify subregions of marmoset orbital and medial PFC which were likely 

homologous to those seen in Old World monkeys (Burman and Rosa, 2009). From their 

work, it is apparent that many of the subregions found in Old World monkey vmPFC can be 

found in the marmoset, including BA25, BA32 and BA24a/b. In addition to being 

evolutionarily informative (suggestive of a basic underlying organisation of primate frontal 

cortex), knowledge of the subdivisions of marmoset vmPFC provides an essential anatomical 

framework for interpreting functional studies in the marmoset (including all the experimental 

work in this thesis).  

 

Figure 1-5 Brodmann's map of Hapale (now Callithrix) neocortex. In Brodmann’s 1909 map, 

marmoset and macaque PFC contained identical cytoarchitectonic subregions. Included in the 

vmPFC are well defined BA24, 25 and 32. 
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1.1.2.3 Human ventromedial prefrontal cortex 

Extensive work has focused on parcellating human cerebral cortex, including vmPFC. The 

first attempt at cerebral cartography of the human cortex was conducted by Alfred Campbell 

in the early 20th century (Campbell, 1905). By assessing changes in cellular architecture 

across the cortex, Campbell identified 17 fields including a limbic field along the cingulate 

gyrus consisting of three subzones – limbic ‘A’ (mid cingulate/dACC/pgACC), ‘B’ (sgACC) 

and ‘C’ (posterior cingulate) (FIGURE 1-6A). In comparison to Campbell’s 17 fields, 

Brodmann recognised 44 cerebral divisions using more detailed cytoarchitectural techniques. 

Whilst not considered part of the PFC at the time, BA10, BA25, and BA32 were recognised 

as comprising the medial wall (FIGURE 1-6B). Brodmann’s classification system is still the 

most widely used in humans, in part because of the (arbitrary) decision to adopt Brodmann’s 

nomenclature in the influential Talairach-Tournoux neuroimaging atlas (Talairach and 

Tournoux, 1988). 

In parallel to Brodmann’s cell-based approach, Cecile and Oskar Vogt adopted a 

myeloarchitectonic approach to parcellate human cerebral cortex (Vogt, 2015; Vogt and 

Vogt, 1919) (FIGURE 1-6C). Over 200 areas were identified, many of which are subdivisions 

of Brodmann’s fields. Their mapping of the cingulate gyrus was particularly extensive and 

detailed. In their work, the cortex of the anterior cingulate was divided into 22 subregions 

including three regions corresponding to BA25, nine regions corresponding to BA32 and ten 

regions spanning BA24 and parts of BA32. Because their work remained largely incomplete 

for the temporal and occipital cortex, their myeloarchitectural map has not been extensively 

used.  

Following this work, von Economo and Koskinas published a revised map of the human 

cortex based upon their own cytoarchitectonic analysis (von Economo & Koskinas, 1925) 

(FIGURE 1-6D). A similarly gargantuan effort, von Economo and Koskinas identified 107 

cortical areas as opposed to the 44 identified by Brodmann. In the medial wall, a region was 

identified similar in position and extent to BA25. However, BA32 was no longer considered 

homogeneous and instead consisted of four separate subfields. Their work is considered by 

many to be the definitive text on cortical mapping; however, it never received widespread 

usage (likely owing to the encyclopaedic nature of the final text – 810 pages with 112 

microphotographs). 
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Figure 1-6 Maps of the medial wall of human cerebral cortex. A Alfred Campbells’ 1905 map, 

showing limbic A (BA24/32), B (BA25) and C (posterior cingulate) subzones. B Brodmann’s 1909 

map. Highlighted in red, BA25, and in blue, BA32. C Vogt and Vogt’s 1919 map, taken from Vogt, 

2015, showing detailed characterisation of the cingulate gyrus. Note the two vertical and one 

horizontal divisions of BA25 (1.) and the nine divisions of BA32 (*). The dACC/BA24 is divided 

horizontally (2.) and delineated clearly from mid-cingulate (3.). D von Economo and Kosnikas’ 1925 

map. Highlighted in red is Ff, roughly equivalent to BA25. Highlighted in blue are FDL, F8L, FæL 

and FæF – four subregions which roughly correspond to BA32. 

 

A B 

C 

D 
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In the late 1990s/early 2000s, more precise characterisations of the subregions of human 

mPFC were developed. In 1994, whilst developing their map of macaque PFC, Petrides and 

Pandya developed a map of human PFC based on detailed cytoarchitectonic analysis 

(FIGURE 1-7A). At the time, Petrides and Pandya were trying to reconcile differences 

between human and monkey PFC literature, so findings from experimental research in the 

macaque could be more closely linked to structural and functional findings from human 

neuroimaging. In their human map, BA32 and BA24 comprise the majority of dACC and 

pgACC, but also have extensive portions in the sgACC. Human BA25 is restricted to caudal 

sgACC (note that in their macaque map, BA25 constitutes the majority of rostral and caudal 

sgACC). Öngür and colleagues built upon this work by using similar techniques Carmichael 

and Price had employed in the macaque – namely multi-modal cyto-, myelo- and 

chemoarchitectural classification systems – to fractionate human vmPFC (Öngür et al., 2003) 

(FIGURE 1-7B). BA32 was found to be heterogeneous: the ‘human’ BA32 (equivalent to the 

human region identified by Brodmann) was labelled as 32ac (ac, anterior cingulate) and 

located perigenually, whereas ‘monkey’ BA32 (equivalent to the monkey region identified by 

Brodmann) was labelled 32pl (pl, prelimbic) and located in sgACC. Notably, both maps in 

FIGURE 1-7 omit parcellation of BA24.  

 

Figure 1-7 Maps of the human mPFC based on multi-modal classification approaches. A 

Petrides and Pandya, 1994. B Öngür et al., 2003. Both maps were developed in the context of 

comparing human mPFC with macaque mPFC using a combination of cyto-, myelo- and 

chemoarchitectural approaches.  

 

Neuroanatomical techniques are constantly developing and improving, and consequently 

classification systems are continuously revisited and revised. Most recently, Palomero-

Gallagher et al. have employed an anatomical and functional approach to precisely classify 

subregions within human sgACC (Palomero-Gallagher et al., 2015) (FIGURE 1-8). Using 

A B 
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macroscopic landmarks, cyto- and chemoarchitectural techniques together with functional 

connectivity profiles during tasks involving reward, punishment or fear processing, they 

propose four distinct fields: 25, s24, s32 and ventral 33. These regions have different 

functional connectivity profiles: s24 was associated with sadness; s32 with fear processing; 

33 with painful stimuli; and 25 with regulation of autonomic and endocrine functions, together 

with any tasks involving reward perception. 

 

 

Figure 1-8 Functional organisation of human sgACC. Taken from Palomero-Gallagher et al. 

(2015). Sagittal section showing the locations of area 25, s24, s32 and 33 based on functional 

activation studies and anatomical features. The different sgACC subzones show distinct anatomical 

features, different task-dependent functional connectivity profiles and are associated with different 

functions. 

 

1.1.2.4 Rodent-primate homology 

When Vogt and Peters evaluated the cytoarchitecture of the rat cingulate cortex in 1981, they 

identified divisions corresponding to those identified by Brodmann in humans/NHPs – they 

therefore adopted Brodmann’s nomenclature (Vogt and Peters, 1981). In 2014, Vogt and 

Paxinos revised this map in an attempt to clarify and reaffirm the homology between human 

and rodent (Vogt and Paxinos, 2014). Using cytoarchitectural techniques combined with 

differences in receptor architecture, intra-cingulate connectivity and ligand binding, they 

confirmed the presence of clear homologies between human and rodent anterior cingulate 

zones including BA24 (AC), 25 (IL) and 32 (PL). Their human-rodent mapping is shown in 

FIGURE 1-9. Based on their work, they divided human BA32 into four divisions. Two of these 

can be homologised to the rodent: perigenual (p)32 and subgenual (s)32 are found in 

primates, which are homologous to dorsal (d)32 and ventral (v)32 respectively in rodents 

(p32 and s32 are also roughly equivalent to 32ac and 32pl identified in (Öngür et al., 2003)). 

In both primates and rodents, p/d32 have a dysgranular layer IV, whereas s/v32 have large 

and dense neurons in layer V.  
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Figure 1-9 Vogt and Paxinos' 2014 map, highlighting homology between human and rodent 

mPFC. Anterior, mid and posterior divisions of the cingulate cortex are highlighted in red, blue and 

green respectively (note: rodents do not have a posterior cingulate region – instead, their 

retrosplenial cortex [RSC] is expanded and constitutes a much larger portion of the medial wall). 

 

Most recent work by Heilbronner, Haber and colleagues has largely corroborated this 

anatomical homology through examination of cortico-striatal projections (Heilbronner et al., 

2016). In their study, they defined the ‘striatal emotional processing network’ (EPN) as the 

projections to the accumbens shell, together with hippocampal- and amygdala-striatal 

projection zones. The striatal EPN is conserved across species, so by examining overlap 

between the striatal EPN and projections of vmPFC subregions, Heilbronner et al. could use 

these conserved striatal features to determine homology. Based on this analysis, the overlap 

between IL-BA25 and PL-BA32 projection zones and the EPN was very similar. Using these 

precision anatomical approaches, Heilbronner and colleagues have corroborated the 

suggestion that IL-25 and PL-BA32 are anatomically homologous. Whether anatomical 

homology necessitates functional analogy, however, remains unclear.  

1.1.2.5 A note on BA14: ventromedial prefrontal cortex vs. medial orbitofrontal cortex 

Discussion so far has focused on the anatomy medial wall of the prefrontal cortex – BA10, 

14, 24, 25 and 32. As with BA25, BA14 is present on the medial wall but also extends onto 

the orbital surface of the PFC in NHPs and humans (Öngür et al., 2003; Petrides and 

Pandya, 1994) and is therefore variably considered part of the vmPFC or part of mOFC. 

Furthermore, in many human functional neuroimaging studies, changes detected in regions 

including BA14 are variably discussed as being part of vmPFC or mOFC.  For the purposes 

of further discussion in this thesis, studies examining the contribution of BA14 will also be 

considered when discussing function of the vmPFC.  



Chapter 1: General Introduction 

16 
 

1.2 EMOTION, COGNITION AND THE VENTROMEDIAL PREFRONTAL CORTEX 

Parallel perspectives have emerged which emphasise the function of the vmPFC in (i) 

reward processing and value-based decision-making; (ii) the regulation of negative emotion; 

and (iii) social cognition (Hiser and Koenigs, 2018). 

1.2.1 Ventromedial prefrontal cortex in reward processing and value-based 

decision-making: evidence from animals 

1.2.1.1 Evidence from rodents: vmPFC contributions to appetitive Pavlovian and 

instrumental processes 

1.2.1.1.1 Rodent vmPFC in appetitive Pavlovian conditioning 

Very few studies have investigated the contributions of rodent IL/PL to the acquisition or 

expression of Pavlovian appetitive responses. In one recent study, the effects of IL 

inactivations were assessed following acquisition of an appetitive Pavlovian response (food 

port entry) to an auditory conditioned stimulus (CS) (Mendoza et al., 2015). Whilst IL 

inactivations had no effect on responses during the CS, there were many more entries during 

the baseline (pre-CS) period, and even during sessions where the CS was never presented. 

This may be interpreted as an impulsive ‘checking’ behaviour, akin to the impulsive 

behaviour observed on the 5-choice serial reaction time task following IL lesions 

(Chudasama et al., 2003) – i.e. not directly related to appetitive learning per-se. To my 

knowledge, there have been no studies examining the role of PL in appetitive Pavlovian 

conditioning. 

Similarly, few studies have assessed the contributions of rodent vmPFC to the extinction of 

appetitive Pavlovian memories. Rhodes and Killcross used a Pavlovian conditioned 

approach assay to demonstrate that whilst IL lesions did not affect the extinction of appetitive 

conditioned responses, there was enhanced spontaneous recovery and reinstatement on 

subsequent days (Rhodes and Killcross, 2004). It has since been suggested that IL acts as a 

source of projections to the nucleus accumbens shell, mediating the extinction of appetitive 

memories (Peters et al., 2009). In the study by Mendoza and colleagues mentioned above, 

pharmacological inactivation of IL was also shown to result in more rapid extinction of 

appetitive Pavlovian memories with no effect on extinction recall (whereas PL inactivation 

had no effect) (Mendoza et al., 2015). This implicates IL in maintaining appetitive Pavlovian 

responding when appetitive USs are omitted – although it is at odds with the majority of 

rodent fear extinction literature which suggests that IL inactivation impairs extinction (see 

1.2.3.1.1). It is also at odds with a more recent study, showing that pharmacological and 

optical stimulation of IL during CS presentations in extinction recall reduce the reinstatement 

of CS-elicited port-entries (Villaruel et al., 2017). These data would suggest that IL inhibits 

appetitive Pavlovian responding following extinction. Given the variation in findings between 
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different studies (e.g. Mendoza et al. vs. Villaruel et al.), it seems that the precise role of IL 

remains to be determined. Interpretation is complicated by the different approaches used in 

different laboratories, which manipulate IL either before extinction, before extinction recall or 

during extinction recall.  

1.2.1.1.2 Rodent vmPFC in appetitive instrumental conditioning 

A more extensive body of work has explored the role of IL and PL in appetitive instrumental 

behaviours. Emergent from this work is the hypothesis that IL and PL have differential roles 

in goal directed vs. habitual responding for reward. Lesions of IL prevent the development of 

a S-R habit; despite overtraining, rodents are still sensitive to reward devaluation (a hallmark 

of goal-directed behaviour) (Killcross and Coutureau, 2003). Lesions of PL have the opposite 

effect, reducing sensitivity to reward devaluation. This has led to the suggestion that PL 

lesioned animals are ‘creatures of habit’ (Balleine and Dickinson, 1998; Killcross and 

Coutureau, 2003). Interestingly, Coutureau and Killcross have shown that inactivations of IL 

can reinstate goal-directed responding following over-training (Coutureau and Killcross, 

2003), suggesting that goal-directed behaviours are actively inhibited when responding is 

habitual.  

Rodent vmPFC has also been implicated in the extinction of appetitive instrumental 

memories, however the data are once again discrepant. Studies assessing the role of IL in 

response suppression following extinction have shown that manipulations reducing IL activity 

promotes reinstatement of appetitive instrumental responding (Peters et al., 2008; Warren et 

al., 2016). Consistent with these findings, enhancing IL activity using pharmacological (Chen 

et al., 2016; Peters et al., 2008) or chemogenetic (Augur et al., 2016) techniques inhibits the 

reinstatement of drug-seeking behaviour. LaLumiere and colleagues additionally showed that 

IL inactivation immediately after extinction training impairs extinction recall (LaLumiere et al., 

2010) suggesting a role for IL in the consolidation of extinction memories. These data would 

suggest that response suppression after extinction is maintained by activity within IL.   

However, several inactivation studies have found that inactivating IL – rather than 

augmenting responding – reduces (Bossert et al., 2011; Eddy et al., 2016; Rogers et al., 

2008) or has no impact (Willcocks and McNally, 2013) on the return of operant behaviour 

during extinction recall. One study which selectively ablated neurons in IL activated by a 

heroin-associated context found that this manipulation reduced (rather than enhanced) the 

context-induced renewal of heroin-seeking behaviour (Bossert et al., 2011). The reasons for 

these discrepancies are unclear. One possible reason again relates to the timing of IL 

manipulations: for example, inactivating IL immediately after extinction may disrupt 

consolidation of an appetitive extinction memory, whereas inactivating IL on the extinction 

recall day does not disrupt the expression of an extinction memory in the same way. Fewer 
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studies have assessed the role of PL in appetitive instrumental extinction, although Sparta et 

al. have used optogenetic techniques to stimulate fast-spiking inhibitory interneurons within 

PL (thereby inhibiting PL output) and found that extinction is accelerated following PL 

inhibition (Sparta et al., 2014).  

1.2.1.2 Evidence from non-human primates: vmPFC contributions to subjective valuation, 

reward-based decision-making and reward anticipation 

The combined use of electrophysiological, lesion and neuroimaging approaches has 

implicated subregions of NHP o/vmPFC in reward-related constructs. For a summary of 

studies implicating NHP vmPFC (and subregions of mOFC) in reward-related processing, 

see TABLE 1-1. 
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Reference Image Description 

Electrophysiological studies 

(Amemori and 

Graybiel, 

2012) 

BA32 

Electrophysiology and 

microstimulation, macaques: 

along its dorsoventral extent, 

pgACC/32 contains intermixed 

groups of neurons which 

represent both motivationally 

positive and negative subjective 

value; in one subregion along this 

axis, there is a particularly 

concentrated focus of negative-

encoding neurons which 

negatively bias reward-based 

decision making through over-

estimation of costs.   

(Monosov and 

Hikosaka, 

2012) 

 

BA14, 25 

Electrophysiology, macaques: 

recorded ‘dorsal’-vmPFC neurons 

(roughly BA25) and ‘ventral’-

vmPFC neurons (roughly BA14) 

and found dorsal neurons were 

persistently more active in 

aversive blocks of a Pavlovian 

task (signalling CS and US), 

whereas ventral neurons were 

persistently more active in 

appetitive blocks (signalling CS 

and US) 

(Strait et al., 

2014) 

BA14 

Electrophysiology, macaques: 

recorded vmPFC neurons whilst 

macaques performed a gambling 

task. vmPFC neurons show (i) 

tuning for reward probability and 

reward size (i.e. expected value 

signal); (ii) inversely correlated 

tuning curves for the two decision 

options suggesting they are under 

mutual inhibition; and (iii) rapid 
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convergence following choice to 

signal the value of a chosen offer. 

(Azab and 

Hayden, 2018) 

BA25 

Electrophysiology, macaques: 

neurons in sgACC encode 

multiple aspects of reward 

processing, responding especially 

to losses and anticipation of 

primary rewards. Many of these 

encoding properties were also 

seen in the dACC. 

(San-Galli et 

al., 2018) 

BA14r 

Electrophysiology, macaques: 

recorded vmPFC neurons in 

monkeys squeezing a grip for fluid 

rewards. vmPFC neuron activity 

was closely related to slow 

changes in motivational state 

(fatigue, satiety) and reliably 

predicted monkey’s willingness to 

perform the task.  

Lesion studies 

(Noonan et al., 

2010) 

BA14 

Aspiration lesion, macaque: 

mOFC-lesioned animals are 

impaired during reward-guided 

decision making. Specifically, 

animals are more susceptible to 

errors when deciding between two 

options close together in value (or 

when deciding between two 

options disparate in value, with a 

third distractor option). Note that 

mOFC includes the portion of 

BA14 extending onto the medial 

wall. 

(Rudebeck 

and Murray, 

2011) 

BA14 

Excitotoxic lesion, macaques: 

lesions of BA14 prevent ability of 

monkeys to stop responding to a 

previously rewarded object during 

extinction. 
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(Rudebeck et 

al., 2014) 

BA25 

Ablative lesion, macaques: 

ablation of BA25 in macaques 

impairs monkeys’ ability to sustain 

autonomic arousal (as measured 

by pupil diameter) in a trace 

interval between an appetitive CS 

and US.   

(Papageorgiou 

et al., 2017) 

BA11m, 13, 14 

Ablative lesion and fMRI, 

macaques: vmPFC lesions do not 

impair the ability to learn simple 

stimulus-reward associations but 

do alter the subjective valuation of 

reward in more complex 

situations. Activity in vmPFC 

reflects the subjective value 

difference between a choice taken 

and a choice rejected.  

   
 

Table 1-1 Studies implicating primate vmPFC (and subregions of mOFC) in reward-related 

processing. Electrophysiological and lesion studies presented separately. Electrophysiological 

studies evidence functional heterogeneity even within the same BAs – neurons in BA14 appear 

broadly tuned for different aspects of reward processing, whereas neurons in BA25 and BA32 are 

more intermixed with both aversive and appetitive functions. Lesion studies illustrate that lesions 

targeting BA14 and BA25 appear to impair reward processing. BA14 lesions have been shown to 

affect instrumental reward-based decision making, and BA25 lesions impair the maintenance of 

autonomic arousal during a trace interval. There is a dearth of studies investigating the casual 

contributions of subregions of NHP vmPFC to reward processing, limiting the scope of any 

conclusion that can be drawn. 

 

 

Electrophysiological studies have, in all cases, revealed specialisation and heterogeneity in 

the reward-encoding properties of neuronal populations. Whether there is any general 

organising principle is not clear – although the general encoding properties of neurons 

seems to vary between different subregions, there is still variation within single BAs. For 

example, neurons within BA32 heterogeneously encode positive and negative offer values 

and choices (Amemori and Graybiel, 2012), whereas activity of neurons in BA25 is related to 

the anticipation of positive and negative outcomes (Azab and Hayden, 2018; Monosov and 

Hikosaka, 2012). Still more ventrally, neurons in BA14 seem to encode subjective value 
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signals, fire during the anticipation of reward and show slower changes reflecting changes in 

motivational state (Monosov and Hikosaka, 2012; San-Galli et al., 2018; Strait et al., 2014). 

Results of lesion studies similarly implicate the vmPFC in reward processing, particularly 

BA14. BA14 has a role in representing subjective value (Papageorgiou et al., 2017) and in 

reward choice (Noonan et al., 2010). Lesions of BA14 in the macaque impair the extinction of 

instrumental appetitive memories (Rudebeck and Murray, 2011) in a similar fashion to 

lesions of IL in rodents (Rhodes and Killcross, 2004). Only one study has assessed the 

impact of BA25 lesions in macaques in the context of reward arousal. Rudebeck and 

colleagues demonstrated that macaques with BA25 lesions were unable to sustain 

autonomic arousal (pupil diameter) during a trace interval introduced between a CS and 

rewarding US (Rudebeck and Murray, 2011). Note that these were ablations, and therefore 

the effects could be due to damage to underlying fibres of passage. 

1.2.2 Ventromedial prefrontal cortex in reward processing and value-based 

decision-making: evidence from humans 

Ever since Harlow’s famous descriptions of the impairments in Phineas Gage’s behaviour 

associated with bilateral damage to o/vmPFC following an accident with a tamping iron 

(Harlow, 1868), ventral regions of the PFC have been appreciated as playing a critical role in 

affective behaviour. After the lesion, Gage showed profound deficits in social and emotional 

behaviour – Harlow described Gage as follows: 

“He is fitful, irreverent … [and] impatient of restraint or advice when it 

conflicts with his desires … Gage was no longer Gage.” (Harlow, 1868) 

Although highly informative, conclusions drawn from this case must be tempered with 

realism: first, it is a single case report, and second, damage involved several subregions 

within the PFC (including BA8-10, BA24 and BA32) making it impossible to attribute the 

impairments with a particular subregion (Damasio et al., 1994). Subsequently, patients with 

damage more localized to the vmPFC have been characterised as having impairments in 

value-based and social decision-making with preserved ‘general intelligence,’ consistent with 

the hypothesis that ventromedial regions have a role in these functions (Barrash et al., 2000; 

Eslinger and Damasio, 1985).  

At the time of Harlow’s account, the alterations in Gage’s behaviour were not specifically 

linked to impairments in reward processing.  More precise characterization of the vmPFC 

‘syndrome’ in reward-related behaviour was achieved following the development of gambling 

tasks such as the Iowa Gambling Task (IGT) and Cambridge Gambling Task (CGT). In these 

tasks, participants learn about reward and punishment contingencies under conditions of 

ambiguity (Bechara et al., 1994, 1999). vmPFC-lesioned patients typically show increased 
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betting under conditions of higher risk (with unimpaired declarative performance in judging 

probabilities), consistent with a role of intact vmPFC in biasing individuals towards safer, 

conservative options during uncertainty.   

Following on from these studies, two perspectives have emerged: (i) the vmPFC mediates 

the affective (‘gut-feeling’) contribution to value-based decision-making (based largely on 

lesion studies); and (ii) the vmPFC represents and updates the reward values of incentive 

stimuli and primary outcomes (based largely on functional neuroimaging studies). These 

perspectives are not mutually exclusive; rather, they differentially emphasise a role for 

vmPFC in ‘hot’ (emotion-laden) vs. ‘cold’ (emotion-independent) cognitive aspects of 

decision-making. 

1.2.2.1 vmPFC and ‘hot’ cognition: somatic maker hypothesis 

A role for vmPFC in mediating the affective ‘gut-feeling’ component of decision-making was 

developed by Antonio Damasio in the 1990s, termed the somatic marker hypothesis 

(Damasio, 1996). Damasio’s aim was to understand the decision-making deficits observed in 

Phineas Gage and other patients with vmPFC damage. He emphasised that emotions are 

typified by physiological (visceral) and behavioural (musculoskeletal) changes, together with 

subjective changes in feelings. The changes in the “musculoskeletal, visceral and internal 

milieu components of the soma” comprised a ‘somatic state.’ The vmPFC served as a 

privileged locus by having access to the body’s current somatic state (through connections 

with the insula), together with sensory and contextual information about an individual’s 

current situation (connections with sensory cortex). The vmPFC links specific internal 

somatic states to external stimuli/situations and can reactivate somatic states when these 

stimuli/situations are encountered in the future. Reactivation of these states occurs rapidly 

and subconsciously, and feedback from the periphery can then bias the decision-making 

functions of the vmPFC based on the history of reward in those specific contexts. Under 

conditions of uncertainty where multiple variables influence reward probability in complex, 

non-linear ways (such as IGT/CGT), ‘cold’ cognitive cost-benefit decision-making is too slow 

to compute the likelihood of an outcome. In such situations, ‘gut-feelings’ (reactivation of 

appropriate somatic markers by the vmPFC) are critically important to rapidly bias decision-

making. Whilst attractive in its ability to explain behavioural performance and autonomic 

responsivity of vmPFC-lesioned patients on IGT/CGT (Bechara et al., 1994, 1996), the 

somatic marker hypothesis is not without criticism. For instance, whether the contingencies 

during the IGT/CGT are truly ‘ambiguous’ has been questioned, with the suggestion that 

these tasks are highly cognitively-penetrable and do not reflect a contribution of 

subconscious bias (‘gut feeling’) to decision-making (Dunn et al., 2006). 
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1.2.2.2 vmPFC and ‘cold’ cognition: reward valuation 

In parallel, a large body of work has related subjective value judgements, the anticipation of 

reward and various aspects of reward-based decision-making to functional magnetic 

resonance imaging (fMRI)-measured blood oxygen level dependent (BOLD) signals 

throughout the brain. Across multiple different tasks and reward types these studies have 

yielded relatively homogeneous results, with almost all of them identifying activity within the 

vmPFC correlated with subjective reward value (together with the striatum, amygdala and 

insula) (Levy and Glimcher, 2012). In several cases, BOLD responses across different 

reward types have been measured within the same study, facilitating the use of conjunction 

analysis to identify brain regions which encode reward value across different modalities. 

These consistently show vmPFC activation confined to a very similar cluster (e.g.) (Chib et 

al., 2009; FitzGerald et al., 2009; Kim et al., 2011; Lin et al., 2012). Activity within vmPFC 

also spans different constructs related to reward processing – seen in reward anticipation; 

during rewarding outcomes; and in reward-based decision-making scenarios. See TABLE 1-2 

for studies showing human vmPFC activations spanning different aspects of reward 

processing, including subjective valuation, reward anticipation and reward-based decision 

making. 
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Reference Image Description 

Activation to rewarding outcomes 

(Blood and 

Zatorre, 2001) 

BA10, 11, 14 

vmPFC activation associated with 

intensely pleasurable responses to 

music. 

(Rolls et al., 

2003a) 

 

BA10, 11 

vmPFC activation correlating with 

the subjective rating of pleasantness 

of three different pleasant odours. 

(de Araujo et 

al., 2003) 

BA10, 11 

vmPFC activation (‘caudal OFC’) 

when thirsty humans drink water – 

the activation was not present when 

the same participants drank water 

once sated. 

(Chib et al., 

2009) 

 

 

BA10, 32 

[Location of peak activation] 

Region of vmPFC correlated with 

subjective value across different 

categories of goods, including food, 

non-food consumables and 

monetary gambles. 

(Sescousse et 

al., 2013a) 

 

 

 

 

 

 

 

 

BA10, 24, 32 

 

 

 

[meta-analysis]  

vmPFC region showing overlapping 

activation to monetary, food and 

erotic rewards. 
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Activation in anticipation of rewards 

(Knutson et al., 

2005) 

 

 

BA10 

 

vmPFC activity correlates with 

probability estimates of future 

reward during the anticipatory phase 

of the MID task. 

(Tom et al., 

2007)  

BA10, 11, 24, 25, 32 

Region of vmPFC showing 

increasing activity as potential gains 

increase during a gambling task 

(same region shows decreasing 

activity as potential losses increase). 

(Kable and 

Glimcher, 

2007) 

 

 

 

 

 

 

 

BA10, 24, 32 

Region of vmPFC tracking the 

subjective value of delayed 

monetary rewards. 

(Gläscher et 

al., 2009) 

BA10, 25, 32 

Activity in vmPFC tracks expected 

future reward during action-based 

and stimulus-based reward decision 

making task. 

(Kim et al., 

2011) 

 

  

 

 

 

 

 

BA10, 25 

vmPFC activation overlapping 

between conditions of expecting 

juice reward and expecting monetary 

reward. 

 



Chapter 1: General Introduction 

27 
 

(Lin et al., 

2012) 

 

BA10 

vmPFC activation overlapping 

between conditions of expecting 

social reward (pictures of smiling 

people) and expecting juice reward. 

 

 

Activation at choice during reward-based decision making 

(FitzGerald et 

al., 2009) 

BA10, 24, 25, 32 

vmPFC activation reflects the 

difference in subjective value when 

comparing incommensurable 

outcomes. 

(Boorman et 

al., 2009) 

 

 

 

 

 

BA10, 32 

vmPFC encodes relative chosen 

value between two options (chosen 

– unchosen expected value). 

(Boorman et 

al., 2013) 

 

BA10 

Activity at choice in vmPFC is tied to 

the value of the current choice. 

   
 

Table 1-2 Human vmPFC activations related to reward processing. Activations have been 

grouped broadly according to (i) activations during rewarding outcomes, (ii) activation during the 

anticipatory period before reward receipt and (iii) activations at choice phase during decision 

making. It is apparent that a highly similar region of rostral vmPFC is activated across these 

different aspects of reward processing – typically corresponding to BA10, occasionally extending 

posteriorly into BA25 and dorsally into BA24/32.   
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1.2.3 Ventromedial prefrontal cortex in the regulation of negative emotion: evidence 

from animals 

The second critical function in which vmPFC plays a major role is the regulation of negative 

emotion, and much of our understanding of this function comes from work in rodents and 

non-human primates. 

1.2.3.1 Evidence from rodents: fear conditioning and extinction; fear generalisation; and the 

controllability of stress  

1.2.3.1.1 Fear conditioning and extinction 

Using fear conditioning and extinction paradigms, rodent studies have causally implicated the 

vmPFC in regulating negative emotion. In these paradigms, rodents acquire a Pavlovian 

CS/US association (e.g. tone-shock; ‘acquisition’), extinguish it through non-reinforced CS 

presentations (tone-no shock; ‘extinction’) and are then tested for successful extinction the 

following day through further presentations of the non-reinforced CS (tone-no shock; 

‘extinction recall’). The acquisition of the CS/US association involves increased expression of 

the conditioned response (CR) – freezing in the case of rodents. Extinction involves 

reduction in the CR as the animal learns that the CS no longer predicts the US. Early 

theorists posited that fear extinction processes resulted in the weakening and eventual 

removal of the CS/US association that was learnt during acquisition (Rescorla and Wagner, 

1972). However, phenomena such as spontaneous recovery of fear conditioning and 

accelerated re-acquisition provide evidence that the CS/US association is not simply 

‘unpaired’ following extinction. Instead, it appears that learning of a new CS/noUS inhibitory 

association takes place (Bouton et al., 2006; Milad and Quirk, 2002). 

Early experiments assessed the effects of broad lesions to rodent mPFC/vmPFC (including 

PL, IL, MO and AC) on the extinction of fear memories and found these lesions severely 

impaired extinction without an effect on acquisition (Morgan et al., 1993). Studies more 

restricted to vmPFC (IL and PL) then followed, highlighting a role for vmPFC in the 

successful recall of extinction (Quirk et al., 2000). In the same study, lesions of vmPFC which 

spared most of IL did not have an effect, suggesting that IL is the critical vmPFC sector 

necessary for recalling fear memories.  

Following on from lesion studies, electrophysiological, microstimulation and pharmacological 

inactivation studies have probed the specific contributions of IL vs. PL in fear regulation. In 

seminal work, Milad and Quirk recorded from IL neurons during acquisition, extinction and 

extinction recall phases and found that IL neurons fire only when recalling a CS/noUS 

association on extinction recall days (Milad and Quirk, 2002). The degree of firing correlated 

with successful recall of this association: the more IL neurons fired, the less rodents froze. 

The same study also demonstrated at least some degree of causality between IL neuron 
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activity and successful extinction, as brief 300ms microstimulation of IL during extinction 

(purportedly resembling recall-induced IL responses) resulted in lower freezing on both the 

day of extinction and during extinction recall. Work in 2004 extended upon this finding by 

showing that 300ms microstimulation of IL reduces conditioned freezing if given 0.1s after 

CS onset (the normal latency of CS-evoked responses), but has no effect if given 1s before 

or 1s after CS onset (Milad et al., 2004). The temporally-specific nature of the effects of IL 

stimulation suggests that IL inputs serve to gate the output of downstream structures 

associated with fear expression such as the amygdala (see below). Pharmacological 

inactivation studies have extended knowledge gleaned from lesion and microstimulation work 

by causally implicating IL in extinction and extinction recall (Laurent and Westbrook, 2009; 

Sierra-Mercado et al., 2011) placing IL as a key player in the inhibitory mechanisms 

suppressing amygdala responses to extinguished CSs during CS-noUS learning and 

retention. 

The evidence for a causal role of IL in successful extinction and its recall has led to the 

investigation of plastic changes within IL and their relationship to extinction memory 

consolidation. These studies have shown that infusion of the amnestic agent anisomycin into 

IL after extinction blocks subsequent extinction recall (Santini et al., 2004). Probing at the 

molecular mechanisms further, blocking molecular components of classic long-term 

potentiation (LTP) – including NMDA receptors and mitogen-activated protein kinase (MAPK) 

– in IL immediately after extinction training causes a failure of extinction recall 24 hours later, 

suggesting an impairment in consolidation (Burgos-Robles et al., 2007; Hugues et al., 2004). 

Consolidation of extinction has also been shown to be contingent upon ribonucleic acid 

(RNA) synthesis within IL, supporting a role for plasticity in this region in fear learning 

(Mueller et al., 2008). In sum, these data suggest that disruptions to the apparatus of cellular 

plasticity and learning in IL can result in failure of consolidation of CS-noUS memories in the 

interval between extinction and extinction recall.  

Distinct from IL, electrophysiological recordings from PL do not indicate neurons sensitive to 

extinction recall, nor does PL microstimulation influence the memory of extinction (Milad and 

Quirk, 2002). Nevertheless, PL microstimulation has been shown to increase conditioned 

fear expression and impair extinction without impairing retention (Vidal-Gonzalez et al., 

2006). Furthermore, activity within PL neurons is directly correlated with expression of the 

CR (freezing) (Burgos-Robles et al., 2009). However, inactivation of PL prior to acquisition 

does not impair the learning of fear associations – whilst animals freeze less during 

acquisition, presenting the CS on the following day (a test of fear learning) shows that they 

freeze at normal levels (Corcoran and Quirk, 2007). The same manipulation prior to 

extinction depresses fear responses on the same day without influencing subsequent recall 
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(Laurent and Westbrook, 2009; Sierra-Mercado et al., 2011). These multiple streams of 

evidence suggest that, distinct from IL, PL plays a role in the expression of learned fear, but 

not fear learning per-se (either during acquisition or extinction).  

These data have led to the development of models of fear regulation which posit that PL and 

IL have opposing roles on amygdala output to facilitate flexibility when responding to danger-

associated cues (FIGURE 1-10). Quirk and colleagues have demonstrated that IL gates 

transmission of action potentials from BLA to CeN, such that prestimulation of IL reduces the 

responsiveness of CeN neurons to afferent action potentials incoming from BLA (Quirk et al., 

2003). The functional relationship between IL and amygdala output has been consolidated 

with anatomical data: anterograde tracers injected into IL highlight its extensive connectivity 

with amygdala subnuclei, preferentially targeting inhibitory interneurons within CeN together 

with (inhibitory) neurons in the intercalated cell masses (Mcdonald et al., 1996; Sotres-Bayon 

and Quirk, 2010; Strobel et al., 2015). By contrast, PL projects directly to the BLA, 

presumably to influence expression of the CR (Sotres-Bayon and Quirk, 2010). The 

differential anatomical connectivity of PL and IL support the hypothesis that these regions 

have different roles in the regulation of negative emotion at the level of the amygdala (Vertes, 

2004). 

 

Figure 1-10 A model of PL and IL contributions to fear regulation by gating information flow 

in the amygdala. A wealth of anatomical and functional data (see text) supports the hypothesis that 
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subregions of rodent vmPFC – PL and IL – differentially regulate information flow within the 

amygdala. PL projects to BLA neurons to influence fear expression through downstream 

connections to the CeN, hypothalamus and striatum. The IL preferentially targets inhibitory 

interneurons, both within CeN and in the intercalated cell masses (ICM), to dampen output from the 

CeN. The CeN projects to the periaqueductal gray (PAG) to trigger behavioural aspects of the 

classic freezing response, and to the hypothalamus to trigger autonomic (including cardiovascular) 

and endocrine changes. During fear acquisition, neuronal plasticity is thought to occur at synapses 

from auditory (CS) and somatosensory (US) afferents (originating from both primary sensory cortex 

and sensory thalamus) into the BLA, such that over the course of learning, the strength of the CS-

BLA synapse is strengthened. This means that CS presentation alone can drive a freezing 

response. There may also be plasticity within PL and at PL-BLA synapses, although evidence for 

this is lacking. During fear extinction (CS-noUS learning), plasticity has been shown to occur within 

IL itself and at IL-ICM synapses, supporting the suggestion of a functional relationship between this 

prefrontal subregion and inhibitory components of the amygdala during the acquisition/expression of 

an extinction memory. 

 

1.2.3.1.2 Fear generalisation 

A related but distinct line of work implicating rodent PL/IL in the regulation of negative 

emotion concerns the role of these regions in fear generalisation, although this field is still 

relatively nascent. In fear generalisation, animals express a learned fear response to a 

stimulus that is perceptually similar to a CS (Hiser and Koenigs, 2018). An initial study in 

2012 showed the global abrogation of synaptic transmission in rodent mPFC (including PL, 

IL and AC) causes generalisation of fear memories (Xu et al., 2012). Subsequent work has 

shown that connections from the nucleus reuniens of the thalamus to the hippocampus, and 

from hippocampus back to vmPFC, seem to be necessary to prevent generalisation of fear in 

the presence of ambiguous stimuli (Xu and Südhof, 2013). It is important to highlight that 

these initial studies failed to differentiate between the functionally heterogeneous IL and PL. 

No rodent studies to date have addressed the potentially separable roles of IL and PL in fear 

generalisation.  

1.2.3.1.3 Controllability of stress 

Some aspects of stress ‘controllability’ – a composite construct including the perception of 

control, the identification of controllable situations and the exertion of effortful control (Kerr et 

al., 2012) – are uniquely human (Abramson et al., 1978), but rodent studies have provided 

insights into the role of IL/PL subregions in the behavioural correlates of a lack of control 

associated with learned helplessness. In learned helplessness models, animals learn that 

their attempts to escape a shock are futile. When animals are subsequently challenged with 

avoidable shock – typically in a shuttle-box apparatus – those that have been preconditioned 

with unavoidable shocks fail to acquire the instrumental avoidance response (Seligman, 
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1974). Maier and colleagues have shown that serotonergic output from the dorsal raphe 

nucleus (DRN) is necessary for mediating the deleterious behavioural consequences of 

learned helplessness on post-shock escape responses (Maier et al., 1993, 1995).  

Anatomical studies indicate that input to the DRN is almost exclusively from IL/PL (Gabbott 

et al., 2003, 2005; Jankowski and Sesack, 2004). Pharmacological inactivation of IL/PL 

blocks the ‘behavioural immunisation’ effects of prior experience of control on the 

behavioural responses during instrumental avoidance (Amat et al., 2005, 2006), suggesting a 

critical role of rodent vmPFC in signalling the controllability of stress (Robbins, 2005) (note: in 

the Amat et al. studies, cannula placement in 2005 study is predominantly IL; cannula 

placement in 2006 study in IL/PL border zone). Congruently, activation of vmPFC (both IL 

and PL) using microinfusions of picrotoxin can mimic the stress resistance conferred by prior 

control experience (Christianson et al., 2009). Beyond the DRN, the beneficial inhibitory 

effects of vmPFC activity during stressful situations has been shown to involve numerous 

brain regions including the amygdala, suggesting that top-down feedback by the vmPFC has 

wide-ranging effects on limbic and paralimbic structures to mediate resilient behaviour (Maier 

et al., 2006). 

1.2.3.2 Evidence from non-human primates: opposing roles of primate areas 25 and 32 and 

their putative rodent homologues in the regulation of negative emotion 

[Work described in this paragraph was published in Proceedings of the National Academy of Sciences, USA in 

2017 with the present author as a co-author: (Wallis et al., 2017)] The importance of NHP studies as a 

translational step to humans is nowhere more evident than when addressing the issue of 

vmPFC function in negative emotion. As discussed in 1.1.2.4, it is generally accepted that 

the anatomical homologues of rodent IL and PL are primate vmPFC subregions area 25 (part 

of the sgACC; referred to hereafter as sgACC/25) and 32 (part of the pgACC; referred to 

hereafter as pgACC/32). These homologies have been established owing to a wealth of 

anatomical data demonstrating similarities in cytoarchitecture together with similar 

connectivity of IL-sgACC/25 and PL-pgACC/32 to cortical, subcortical and striatal targets 

(Heilbronner et al., 2016; Joyce and Barbas, 2018; Vertes, 2004; Vogt and Paxinos, 2014).  

Pharmacological interventional studies have recently been carried out in marmosets, 

facilitating causal manipulations of primate sgACC/25 and pgACC/32. This research is 

invaluable as its utility applies for both forward-translation of preclinical results to humans 

(marmoset vmPFC subregions are highly homologous to those of humans) and back-

translation for comparison with rodent studies (comparing results from manipulating IL-

sgACC/25 and PL-pgACC/32).  One such study co-authored by the present author has 

illustrated that sgACC/25 inactivation reduces the behavioural and cardiovascular correlates 

of negative emotion during fear conditioning and fear extinction whereas pgACC/32 
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inactivation increases these correlates via generalisation (Wallis et al., 2017). At a coarse 

level, this suggests that NHP sgACC/25 may normally act to promote negative affect, 

whereas pgACC/32 reduces negative affect. These data conflict with rodent fear-conditioning 

studies outlined above, where inactivation of IL (anatomical homologue of sgACC/25) 

increases negative affect whereas inactivation of PL (anatomical homologue of pgACC/32) 

reduces negative affect. Anatomical homology, therefore, does not appear to translate to 

functional similarity between these prefrontal regions when assessing fear-related 

behaviours.  

It is possible that the apparent mismatch in function of these vmPFC subregions in fear 

conditioning/extinction is because their functions are far more complex than has been 

originally proposed (Wallis et al., 2017), and with current assays we are unable to tease 

about the precise contributions of these regions. A focus on negative emotion clearly omits 

the important functions of these regions in positive emotion (Marquis et al., 2007), 

instrumental responding (Sharpe and Killcross, 2015a, 2015b) and social cognition 

(Rudebeck et al., 2006). Indeed, given the myriad of roles that vmPFC sectors are involved 

in, some have suggested that these regions have functions transcending isolated behaviours 

measured by specific tasks (e.g. in conditioned fear/extinction). For instance, Sharpe and 

Killcross have suggested that PL is involved in selective attention to aspects of the 

environment that are best predictive of an outcome (Sharpe and Killcross, 2014). 

Furthermore, the link between the role of IL to modulate extinction on the one hand (see 

1.2.3.1.1), and to attenuate goal-directed behaviour to promote habit formation on the other 

(Haddon and Killcross, 2011), still needs to be resolved. Further work is needed to determine 

the precise roles of IL-sgACC/25 and PL-pgACC/32, and to delineate their contributions to 

behaviour.  

1.2.4 Ventromedial prefrontal cortex in the regulation of negative emotion: evidence 

from humans 

Human vmPFC has been implicated in three different aspects of negative emotion: (i) the 

feeling of sadness; (ii) sustained and unpredictable threat associated with anxiety; and (iii) 

top-down emotion regulation of fear and pain responses (Etkin et al., 2011).  

1.2.4.1 Human vmPFC activity during the perception and expression sadness 

Correlative human neuroimaging studies – including PET and fMRI – have given us insights 

into the role of the vmPFC in the perception and expression of sadness in healthy 

individuals. A meta-analysis of 55 neuroimaging studies found that sgACC/25 ‘activation’ (as 

measured by either an increase in rCBF or in BOLD signal) was significantly associated with 

sadness induction (46% of studies included) (Phan et al., 2002). Several studies illustrating 

vmPFC activation associated with negative mood induction are illustrated in TABLE 1-3.  
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Reference Image Description 

Meta-analyses of emotion activation studies 

(Phan et al., 

2002) 

 

Circled: sadness-associated 

activation/ increase in rCBF focus 

in sgACC/25 (46% of studies) 

Meta-analysis: Review 55 PET and 

fMRI activation studies. Sadness 

induction in healthy subjects 

significantly associated with 

‘subcallosal cingulate’ (sgACC/25) 

activation/increase in rCBF. 

Overall, 46% of studies reporting 

this finding. 

Inconsistencies may be explained 

by differences in provocation 

method. Several early studies 

scanned participants whilst they 

were actively generating the 

desired emotional state (e.g. 

(Gemar et al., 1996; George et al., 

1995; Pardo et al., 1993)). Studies 

which scanned subjects once they 

had generated the desired state 

(Liotti et al., 2000; Mayberg et al., 

1999) yielded robust activation 

within sgACC/25. 

 

 

Recall of sad life events and autobiographical scripts 

(George et al., 

1995) 

Bilateral ACC: BA24,32 

Inferomedial PFC: BA25 

rCBF PET, recall of sad life events: 

Increased rCBF to bilateral ACC 

and ‘inferomedial prefrontal cortex’ 

(Talairach coordinates [-14,8,-8] 

correspond to sgACC/25) 

associated with recall of sad 

memories vs. neutral memories. 

 

(Gemar et al., 

1996) 

 

BA24, 32 

rCBF PET, recall of sad life events: 

Decreased rCBF to ‘left medial 

prefrontal’ cortex (dACC/24 and 

pgACC/32) associated with recall of 

negative life events. 
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(Mayberg et al., 

1999) 

 

 

 

 

 

BA24, 25, 32 

 

rCBF PET, autobiographical scripts: 

Subjects allowed 8-10 minutes to 

achieve target mood, mood state 

maintained for 2 minutes then 

tracer injected for scan. High levels 

of sadness (75% of subjects 

reported being ‘tearful’) associated 

with increased rCBF in sgACC/25 

and anterior insula. 

 

 

(Liotti et al., 

2000) 

 

 

 

 

 

BA24, 25 

rCBF PET, autobiographical scripts: 

Sadness-related effects included 

paralimbic activation in sgACC/25 

and right posterior/left anterior 

insular cortex. These changes were 

not seen during anxiety-induction. 

(Habel et al., 

2005) 

 

 

 

 

 

 

BA24/32 

fMRI, facial expressions + recall of 

sad life events: Increased activity in 

the d/pgACC (BA24/32) 

demonstrated when subjects 

viewed sad vs. happy faces, then 

instructed to use these facial 

expressions as material to generate 

their own emotional experience 

from recollection of sad events. 

Impersonal sad stimuli 

(Paradiso et 

al., 2003) 

BA14, 25 

rCBF, sad pictures: elevated blood 

flow to vmPFC during the 

processing of sad visual stimuli 

(compared to either neutral or 

happy stimuli). 
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(Côté et al., 

2007) 

BA10 

fMRI, film stimuli: compared to 

neutral film excerpts, sad film 

excerpts cause activation of very 

rostral vmPFC (BA10) together with 

frontopolar cortex. 

(Smith et al., 

2011) 

BA24/25, 32 

[fMRI foci from two of the nine 

subjects; sgACC/25 seed circled] 

fMRI, sad pictures and mournful 

music: sadness-induction paradigm 

combined with participant self-

report when desired mood state 

was achieved. Activation within 

sgACC/25 was associated with 

successful attainment of a sad 

mood state, but inter-individual 

variability meant the specific locus 

varied. 

(Zald et al., 

2002) 

[P = Posterior focus] 

BA 25 

rCBF, self-rating of negative affect: 

Individuals who report higher 

negative affect across the previous 

month show elevated blood flow to 

a posterior region of vmPFC 

corresponding to sgACC/25. 

Social exclusion 

(Masten et al., 

2009) 

 

 

 

 

 

BA25 

fMRI, social exclusion: greater 

activity in sgACC/25 relates to 

increased distress during social 

exclusion. 

(Onoda et al., 

2009) 

BA14, 25 

fMRI, social exclusion: greater 

activity in vmPFC (sgACC/14,25) 

associated with increased social 

pain (low self-esteem, low 

belongingness, high 

meaningfulness and low control) 

during social exclusion. 
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(Vijayakumar 

et al., 2017) 

BA14, BA25 

Meta-analysis, social exclusion: 

bilateral vmPFC involvement 

across different paradigms used to 

measure feelings of social 

exclusion. vmPFC activation was 

strongest in adult samples, 

whereas ventrolateral involvement 

was more prevalent in 

developmental samples. 

   
 

Table 1-3 Human vmPFC activations related to sadness and social exclusion. Phan et al.: 

meta-analysis. Other studies grouped according to elicitation method: (i) recall of sad life events 

with and without autobiographical scripts; (ii) impersonal sad stimuli (e.g. sad pictures); and (iii) 

social exclusion. Consistent with the findings of the meta-analysis, these studies implicate a caudal 

subregion of vmPFC, including but not limited to sgACC/25, in the experience of sadness across 

different elicitation methods. 

 

Neuroimaging studies which have investigated the neurobiological basis of sadness must be 

interpreted with some degree of caution. Firstly, the precise method of emotion induction 

may influence patterns of rCBF/BOLD activity changes. For example, Reiman et al. found 

increased caudal vmPFC activity to recall-generated but not film-induced sadness, 

suggesting that such activity may relate to “the cognitive process of internally generating 

emotion” rather than the experience of sadness per-se (Phan et al., 2002; Reiman et al., 

1997). Indeed, in the 2002 meta-analysis, many sgACC/25 activations arose from studies 

where autobiographical scripts were used to induce sadness (George et al., 1995; Lane et 

al., 1997; Liotti et al., 2000; Mayberg et al., 1999) although statistical analysis did not support 

the notion that sgACC/25 activation was specifically associated with recall. Secondly, the 

time course of scanning in relation to mood induction is important. Several early studies 

showed inconsistent reports of sgACC/25 activation (such as (Gemar et al., 1996; Pardo et 

al., 1993)) – in these studies, subjects were imaged (partly or fully) whilst they were 

generating the emotional state, such as whilst they were visualising emotional memories. 

rCBF-PET imaging experiments by Mayberg and colleagues (Liotti et al., 2000; Mayberg et 

al., 1999) addressed these issues by scanning only when the subjects had achieved the 

desired emotional state (and detected highly consistent increases in rCBF in sgACC/25). 

Finally, there are practical issues associated with fMRI of caudal vmPFC at high field 

strength owing to signal drop out (Wang et al., 2005). This measurement bias can mean that 

sgACC/25 is erroneously excluded in task-based and resting state fMRI studies.  
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1.2.4.2 Human vmPFC activity during sustained and unpredictable threat associated with 

anxiety 

The neural circuitry associated with sustained threatening states is poorly understood. Such 

states are associated with heightened vigilance, future-oriented cognitive processing and 

representation of potential danger. Several studies have shown that these states engage the 

caudal vmPFC. For example, Hasler and colleagues have found that sgACC/25 and 

hippocampus show increased rCBF during sustained unpredictable threat (Hasler et al., 

2007a). In addition to playing a role in monitoring – responding to salient events in the 

environment (Berns et al., 2001) – sgACC/25 is highly interconnected to regions involved in 

the behavioural, autonomic and endocrine responses to aversive threat such as the 

amygdala, hypothalamus and PAG (Drevets et al., 1998). These characteristics position 

sgACC/25 as a region well-suited to coordinate such these responses when encountering 

threats. This finding has been replicated in subsequent studies such as (Alvarez et al., 2011), 

which found transient increases in sgACC/25 activity to the onset of unpredictable threat, 

followed by sustained decreases. Alvarez and colleagues posit that the sustained decrease 

may reflect changes in “the regulation of visceral reactions during threat exposure.” 

The clinical neurobiology of fear and anxiety can also be probed using specific 

pharmacological agents to induce such states in healthy individuals during functional imaging 

(Shin and Liberzon, 2010). Cholecystokinin-4 administration is associated with increased 

subjective fear and anxiety, along with increased activation of vmPFC (primarily BA10) (Eser 

et al.; Javanmard et al., 1999). Administration of procaine also induces elevated fear and 

anxiety, together with increases in rCBF to the pgACC (Ketter et al., 1996). A subsequent 

study supported the finding of increased pgACC activation associated with procaine-induced 

negative emotion, but observed that subjects who did not have a panic attack evidenced 

greater pgACC activation compared to those who did (Servan-Schreiber et al., 1998) 

supporting a top-down regulatory role for this region. Finally, the α2-adrenoreceptor agonist 

yohimbine has been associated with increased subjective anxiety together with increased 

rCBF to the vmPFC (BA10) (Cameron et al., 2000). 

1.2.4.3 Human vmPFC activity in the top-down regulation of negative emotion 

Largely grounded in pre-clinical work in animals (see sections 1.2.3.1.1 and 1.2.3.1.3), 

human vmPFC has been implicated in the top-down regulation of emotion. Across several 

paradigms, vmPFC activity has been shown to influence activity within subcortical structures 

critical in emotion generation including the amygdala (Etkin et al., 2006; Meyer-Lindenberg 

and Zink, 2007). The role of human vmPFC in top-down regulation is apparent in lines of 

work linking it to fear extinction; stress controllability and adaptation; fear generalisation and 

pain expectation/placebo effects. 
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1.2.4.3.1 Fear extinction 

Several studies have linked structural (Milad et al., 2005) and functional (Milad et al., 2007a; 

Phelps et al., 2004; Schiller et al., 2008) characteristics of human vmPFC to fear extinction – 

two key examples are shown in FIGURE 1-11. Initial work by Elizabeth Phelps et al. utilised a 

fear acquisition/extinction/extinction-recall paradigm similar in design to that used in rodents, 

and found that depressions in activity of a rostral portion of sgACC (BA10/11) diminished as 

extinction learning progressed (as measured by skin conductance responses) (Phelps et al., 

2004). The most striking correlation was measured at extinction recall – subjects showing 

greater extinction on extinction days showed reduced rostral sgACC depression at the start 

of extinction recall, highlighting a potential role of this region in the retention of extinction. 

Furthermore, on extinction recall days alone, responses of rostral sgACC were correlated 

with the strength of amygdala responses, suggesting that vmPFC activity is linked to top-

down regulation of amygdala responses specifically during the retention of extinction.  

A subsequent study broadly replicated these findings. Milad and colleagues again observed 

diminished activity of a more caudal sgACC region (sgACC/25 and BA10) associated with 

differential fear conditioning during acquisition, which diminished as extinction learning 

progressed (Milad et al., 2007a). In this study, a more ‘direct’ correlation between caudal 

sgACC signal change and extinction recall was observed: on the recall day itself, activations 

in caudal sgACC directly correlated with the extinction recall (measured by skin conductance 

responses over the first four trials). However, it is worth noting that whilst Phelps et al. 

observed diminished sgACC activity throughout all phases, Milad and colleagues observed 

moderate sgACC activation correlated with extinction recall (more consistent with rodent 

work demonstrating increased IL neuron responses correlated with extinction recall) (Milad 

and Quirk, 2002). The reasons for this difference are not clear, although in Phelps et al., 

extinction recall was compromised by high levels of fear at test which meant the first three 

recall trials had to be removed, potentially influencing the magnitude of vmPFC signal 

change measured across the session. 
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Figure 1-11 Neuroimaging studies implicating human vmPFC in fear extinction. Both Phelps 

et al. (rostral sgACC, BA10/11) and Milad et al. (caudal sgACC, BA10/25) found activity in vmPFC 

decreased during fear acquisition. During extinction, both studies observed diminished depression 

(i.e. a positive activity change) in vmPFC by the end of extinction. On the following day during 

extinction recall, different effects are reported in the two studies. Phelps and colleagues found that 

diminished depression in rostral sgACC activity at the start of extinction recall was correlated with 

extinction success on the previous day. Evidencing a subtly different effect, Milad and colleagues 

showed caudal sgACC activation correlated with the degree of extinction retention measured on the 

same day. Despite these differences, both studies implicate regions of vmPFC in the recall of 

extinction 

 

1.2.4.3.2 Controllability of stress and stress adaptation 

vmPFC activity has been linked to controllability of aversive stimuli, with fMRI studies 

showing that the vmPFC is engaged in a myriad of situations involving stress adaptation and 

control. These include during situations of increased perception of control and persistence 

during uncontrollable setbacks (Bhanji and Delgado, 2014); during periods of active coping 

(Sinha et al., 2016); during negative affect reduction in response to picture stimuli (correlated 

with steeper declines in cortisol levels) (Urry et al., 2006); and during the perception of 

control over painful stimuli (Salomons et al., 2004; Wiech et al., 2006). 

Recent work by Kerr and colleagues has posited that the vmPFC is particularly important in 

generating preparatory emotional responses when subjects anticipate having control over 

outcomes. The perception of control during anticipation of aversive stimuli is associated with 

robust engagement of human vmPFC (BA10/14), whereas vmPFC is not activated in 
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situations where aversive stimulus presentation is anticipated as being uncontrollable (Kerr 

et al., 2012). Furthermore, during anticipation of controllable threat, human vmPFC shows 

strong functional coupling with the amygdala (Kerr et al., 2012) – supporting a role in 

preparatory top-down regulation.  

1.2.4.3.3 Fear generalisation 

Human functional neuroimaging studies have supported a role for vmPFC in the transfer of 

conditioned fear to stimuli perceptually similar to learned CSs. Activation of the vmPFC 

(including sgACC/25 and BA10) and insula increases as generalisation stimuli become more 

distinct from the CS, correlated with participants’ decreasing ratings of shock likelihood and 

pupillary responses (Greenberg et al., 2013). This generalisation effect was replicated in a 

second study, although the region of vmPFC whose activity varied with perceptual similarity 

was more rostral (BA10, 32) (Lissek et al., 2014). Increased activation of vmPFC as stimuli 

become more distinguishable may be interpreted as increased safety signalling and fear 

inhibition, again consistent with work linking human vmPFC to the top-down regulation of 

emotion.  

1.2.4.3.4 Pain and placebo effects 

An additional line of evidence implicating human vmPFC in top-down regulation of emotion 

derives from its involvement in mediating placebo effects. A recent meta-analysis showed 

increases in rostral vmPFC (BA10) activity associated with placebo effects and expectancy 

manipulations to reduce pain (Atlas and Wager, 2014). Isolated studies have also shown that 

treatment with placebo reduces activity in pgACC/32 (Eippert et al., 2009). 

1.2.5 Ventromedial prefrontal cortex in social cognition 

The role of the vmPFC in social cognition is likely an emergent property of its involvement in 

positive and negative affect. Nevertheless, a large body of work has emerged specifically 

implicating vmPFC function in social processing (Hiser and Koenigs, 2018). In particular, 

extensive evidence comes from patients with vmPFC lesions, who show impairments in 

various aspects of social processing: cognitive empathy (Barrash et al., 2000; Shamay-

Tsoory et al., 2009); distinguishing emotional expressions on faces (Heberlein et al., 2008; 

Tsuchida and Fellows, 2012); attending to eye regions of faces (Adolphs et al., 2005; Wolf et 

al., 2014, 2016); and in moral judgement (Fumagalli and Priori, 2012; Young and Koenigs, 

2007). The vmPFC is engaged robustly when recalling autobiographical memories – and in 

this role, interacts with the default mode network (DMN), including the dmPFC (Northoff et 

al., 2006; Raichle et al., 2001; Svoboda et al., 2006).  
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1.3 PHYSIOLOGICAL FUNCTION AND THE VENTROMEDIAL PREFRONTAL CORTEX 

The anatomical connections of vmPFC place it at the interface between cognition and 

emotion, important in the detection of external and internal challenges to homeostasis 

together with coordinating the autonomic and endocrine effector mechanisms to maintain a 

stable internal milieu (Joyce and Barbas, 2018). The role of the vmPFC in the regulation of 

physiological function – in particular, regulation of the autonomic nervous system and in the 

regulation of endocrine axes – can be studied either in emotionally-neutral conditions (e.g. 

quite awake or anaesthetised) or during conditions of concurrent emotion regulation (e.g. 

periods of stress).  

Several considerations must be borne in mind when investigating cortical regulation of 

autonomic and cardiovascular function: 

• Which species is being investigated? Beyond issues of anatomical homology 

between rodents, NHPs and humans, there are apparent functional differences 

between putatively homologous regions in rodents and primates in cardiovascular 

control. For example, whilst electrical and chemical stimulation of rodent IL appears 

to have ‘sympatho-inhibitory’ effects (Al Maskati and Zbrożyna, 1989), 

pharmacological inactivation of the putative homologue in primates (sgACC/25) 

increases vagal tone (Wallis et al., 2017) meaning that opposite manipulations of 

putatively similar regions have comparable functional outcomes. Indeed, Chapter 3 

of this thesis shows that stimulation of marmoset sgACC/25 has reduces vagal tone 

and increases sympathetic:parasympathetic balance.  

• Is the preparation awake, or anaesthetised? Many animal studies investigating the 

prefrontal regulation of cardiovascular function are carried in anaesthetised 

preparations. Anaesthesia is known to profoundly alter cardiovascular activity 

(Vatner, 1978) so the results of these studies must be interpreted with caution. 

Studies have sometimes found opposite effects of manipulating vmPFC on 

cardiovascular parameters in awake vs. anaesthetised animals (Burns and Wyss, 

1985). 

• How was cortex manipulated? In early electrical stimulation studies, the frequency 

of stimulation and pulse duration was important and could result in differing 

magnitudes of effects (Kaada et al., 1949). In addition, the nature of the effect of 

electrical stimulation on activity within a brain region is unclear – whether application 

of electrical current is analogous to ‘activating’ (or inhibiting) an area is not known, but 

it is appreciated that such a manipulation disrupts normal activity within the brain 

region targeted. It is also important to note that sufficiently large currents can activate 

adjacent fibre pathways (Loewy and Spyer, 1990). 
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• Which region of cortex was manipulated? As discussed in 1.1.2, the vmPFC of 

both rodents and primates is heterogeneous and consists of subregions. The results 

of early studies can be difficult to compare as investigators did not localise their 

manipulations to recognised cytoarchitectonic boundaries (Loewy and Spyer, 1990). 

1.3.1 Ventromedial prefrontal cortex regulates autonomic and cardiovascular 

function in emotionally-neutral situations  

Although one must be mindful of the above caveats, a large body of work from studies in 

rodents, NHPs and humans supports the notion that vmPFC subregions are involved in the 

regulation of cardiovascular function in relatively emotionally-neutral situations. Note that 

studies involving non-emotional tasks concurrent with physiological monitoring (e.g. handgrip 

studies) will also be considered in this section. 

1.3.1.1 Evidence from rodents 

Early work examining the anatomical connectivity of rodent vmPFC subregions initially 

pointed to a role in autonomic function. A series of studies carried out in the 1980s by 

Edward Neafsey and Robert Terreberry injected the mixed anterograde-retrograde tracer 

wheat germ agglutinin–horseradish peroxidase into the dorsal medulla (corresponding to the 

nucleus of the solitary tract [nucleus tractus solitarius, NTS]/dorsal motor nucleus of the 

vagus nerve), and found retrograde labelling of cell bodies in the rat vmPFC: predominantly 

IL, with additional neurons in ventral PL (‘PLv’) (Terreberry and Neafsey, 1983). Additionally, 

injection of the tracer into vmPFC (AC, PL and IL) resulted in anterograde labelling of 

terminals in the NTS (FIGURE 1-12A, B). Given the direct connections of these vmPFC 

regions to autonomic effector regions in the brainstem, Terreberry and Neafsey collectively 

termed PLv and IL ‘visceral motor cortex’ (FIGURE 1-12C).  

In the early 1990s, more detailed anatomical characterisation of vmPFC-brainstem 

connectivity corroborated this work. For example, Hurley et al. showed that efferents from IL 

terminated in boutons at preganglionic parasympathetic neurons in the dorsal motor nucleus 

of the vagus, together with preganglionic sympathetic neurons of the intermediolateral 

nucleus of thoracic spinal cord (Hurley et al., 1991). These pathways have been termed a 

‘visceral pyramidal tract system’ (Neafsey et al., 1993).  Retrograde tracing from the stellate 

ganglion (cervical sympathetic ganglion outputting to the heart) using pseudorabies virus 

showed extensive trans-neuronal labelling in IL, providing additional support for a role for IL 

in sympathetic modulation of cardiac function (Westerhaus and Loewy, 2001). 
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Figure 1-12 Bidirectional connectivity between rodent vmPFC and autonomic control centres 

in the brainstem. A and B taken from Terreberry and Neafsey, 1983; C adapted from Neafsey et 

al. in Central Regulation of Autonomic Function (eds. Loewy, Spyer; 1990). A Injection of the mixed 

anterograde-retrograde tracer wheat germ agglutinin–horseradish peroxidase into vmPFC (including 

PL, IL and AC; top) causes anterograde labelling of fibres in the NTS (bottom). B Injection of the 

tracer into the dorsal medulla (encompassing NTS; top) causes retrograde labelling of cell bodies in 

rodent IL and ventral PL‘v’ (bottom). C The direct connections between IL and PLv to brainstem 

structures and structures in the spinal cord led to the proposal that these two regions constitute 

visceral motor cortex, from which a visceral pyramidal tract originates. The NTS is shown, 

containing populations of neurons involved in HR regulation (cardiovagal neurons), together with 

regulation of peripheral vascular resistance (vasomotor neurons). 

 

Whilst rodent IL/PL directly project to brainstem autonomic motor regions, they also project to 

other autonomic control regions which in turn project to the brainstem – namely, the 

hypothalamus, amygdala and insula (Loewy and Spyer, 1990; Vertes, 2004). A reasonable 

question, therefore, is whether direct or indirect projections from IL/PL to the brainstem 
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mediate their autonomic effector functions. Indeed, most descending vmPFC-NTS 

projections are not direct, but travel in the medial forebrain bundle to terminate in 

hypothalamic nuclei, which then coarse through dorsal brainstem to the medulla (Hurley et 

al., 1991). Supporting a role for indirect projections, hypotension generated by electrical 

stimulation of vmPFC is blocked with lidocaine infusions into either the lateral hypothalamus 

(LH) or PAG (Fisk and Wyss, 2000; Hardy and Holmes, 1988).  

There are other studies, however, which emphasise the importance of direct PL/IL-brainstem 

projections. In one study which mapped cardiovascular correlates of electrical stimulation of 

sites within vmPFC of anaesthetised rats (Al Maskati and Zbrożyna, 1989), three types of 

site were identified: defensive inhibitory sites (predominantly PL), sympatho-inhibitory 

(predominantly IL) sites and ineffective sites (FIGURE 1-13A). Stimulation of sympatho-

inhibitory sites resulted in baseline hypotension without any effect of hypertension induced by 

amygdala/hypothalamus stimulation (suggestive of direct pathways to the brainstem). 

Stimulation of dorsal defensive inhibitory sites had no effect on baseline cardiovascular 

parameters, but blocked hypertension and defensive reactions triggered by either amygdala 

or hypothalamic stimulation (FIGURE 1-13B). The authors highlight that the suprathreshold 

stimulation of the amygdala/hypothalamus utilised in the study would activate all neurons 

within the vicinity, suggesting that the action of defensive inhibitory sites must be 

independent of effects on these subcortical structures – instead, their effects are exerted at 

the brainstem/spinal cord (FIGURE 1-13C). It is likely that the influence of PL/IL on autonomic 

function reflects a combination of direct and indirect projections to the brainstem.  
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Figure 1-13 Autonomic effects of rodent vmPFC stimulation in the context of amygdala and 

hypothalamic stimulation. Figure adapted from Al Maskati and Zbrożyna, 1989. A Schematic 

diagram of rodent mPFC, showing the location of defensive inhibitory sites (PL), sympatho-inhibitory 

sites (IL) and ineffective sites. For a detailed description of the function of these sites, see text. B 

Table showing BP and HR changes associated with isolated amygdala or hypothalamic stimulation, 

together with combined defensive inhibitory stimulation (marked with a black circle). C BP trace 

from an example animal. Stimulation of defensive inhibitory sites (far left) has no baseline effect 

whereas stimulation of the amygdala (AM) induces a ‘defensive reaction’ including hypertension. 

Combined defensive inhibitory and amygdala stimulation (PFC+AM) blocks the defensive reaction; 

the effects of a single 10s stimulation lasts for several minutes afterwards (right). Given that 

amygdala stimulation would activate all neurons in its subnuclei, the antagonistic effects of 

defensive inhibitory stimulation must be mediated by effects downstream of the amygdala (in the 

brainstem). 

 

Following on from these early studies, increasing evidence supports the idea that rodent 

vmPFC (especially IL) functions as visceral motor cortex. As the function of these brain 

regions is being studied at finer and finer resolution, so discrete sites have been identified 
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within the vmPFC which exert control over specific aspects of autonomic function including 

blood pressure (BP), heart rate (HR) and baroreceptor gain (Cechetto, 2014; Resstel and 

Corrêa, 2006a): 

• vmPFC effects on BP: Direct stimulation of vmPFC (encompassing both PL and IL) 

causes an evoked mean arterial pressure (MAP) decrease in anaesthetised rats 

accompanied by increased blood flow in iliac vasculature (Owens and Verberne, 

2001). Acetylcholine injections into IL also cause hypotension and peripheral 

vasodilation (Crippa et al., 2000). Several lines of evidence do, however, point to 

confounding effects of anaesthesia: in un-anaesthetised rats, vmPFC stimulation by 

electrical (Burns and Wyss, 1985; Tavares et al., 2004) and chemical (Resstel and 

Corrêa, 2005) methods causes an opposite pattern of hypertensive and tachycardic 

changes.  

• vmPFC effects on baroreflex responses: Excitotoxic lesions of the entire rodent 

vmPFC (including IL, PL and portions of AC) reduce sensitivity of the baroreceptor 

HR reflex (i.e. per unit change in BP, the HR change is less). Pharmacological 

manipulations of IL can also reduce baroreflex sensitivity (e.g. NMDA receptor 

antagonism) (Resstel and Corrêa, 2006b). 

• vmPFC sympatho-inhibitory effects: Work in rodents points to a sympatho-

inhibitory default mechanism within IL (Shoemaker and Goswami, 2015). For 

example, electrical stimulation of IL has inhibitory effects within the medulla (at 

latencies consistent with a monosynaptic pathway) and reduces sympathetic 

splanchnic nerve discharge (with a latencies consistent with a polysynaptic pathway) 

(Verberne, 1996). 

• Effects of chronic vs. acute vmPFC manipulations: Chronic lesions to rodent 

vmPFC have no impact on baseline BP or HR (Verberne et al., 1987), suggesting 

that rodent vmPFC exerts little tonic influence on the cardiovascular system. 

However, these large lesions may be affecting multiple subregions with potentially 

different (even opposite) roles in cardiovascular function.  

1.3.1.2 Evidence from NHPs 

Anatomical tracing studies in NHPs also support a role for vmPFC in autonomic regulation – 

neurons from vmPFC (sgACC/25) have “massive” projections to hypothalamic autonomic 

nuclei which then project to NTS and spinal autonomic centres (Barbas et al., 2003). The 

vmPFC also diffusely innervates multiple amygdala nuclei, meaning it has dual access to an 

emotional-visceral motor system (Alheid and Heimer, 1996; Holstege, 1991). Several other 

tracing studies have supported the notion that subregions of NHP vmPFC are linked to 
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autonomic effector regions and autonomic output (An et al., 1998; Chiba et al., 2001; 

Ghashghaei and Barbas, 2002; Ongür et al., 1998a; Rempel-Clower and Barbas, 1998). 

More recently, anatomical tracing work in the macaque has shown that affective areas of 

cerebral cortex – including sgACC/25, pgACC/32 and dACC/24 – project to the adrenal 

medulla. Dum et al. injected rabies virus into the adrenal medulla and used a survival-time 

analysis method to identify third and fourth order neurons in the prefrontal cortex which 

contribute to a ‘cortico-adrenal circuit’ (Dum et al., 2016). They found prefrontal components 

of a ‘medial network’ (vmPFC – BA25, 32 and 24c) are the source of the densest projections 

the adrenal medulla. These regions are broadly similar to regions identified in human 

functional imaging studies related to sympathetic-related activations, negative affect and 

cognitive control. Such circuits may, therefore, mediate the effects of internal states such as 

chronic stress on visceral function. 

Early functional work – much of which was carried out in macaques – largely focused on 

determining the contributions of the cingulate gyrus to autonomic regulation, rather than the 

involvement of the vmPFC specifically. In 1945, an ‘electrically responsive rostral cingulate 

field’ was identified in BA24 of anaesthetised macaques (Smith, 1945). Depending on the 

precise stimulation parameters, application of a current to this zone resulted in varied yet 

profound changes in HR and BP. In the same study, severing the vagus nerve abolished the 

cardiac effects, suggesting that the effects of rostral cingulate stimulation are mediated 

through changes in vagal tone. Similar results were obtained by other investigators using 

electrical stimulation techniques in anaesthetised macaques (Ward, 1948), although 

stimulation in awake animals has yielded more variable results (Anand and Dua, 1956). 

Evidence for a role of ventral subregions came in 1949, when Kaada and colleagues applied 

electrical stimulation to pgACC and sgACC in anaesthetised macaques (Kaada et al., 1949). 

Stimulation throughout these regions induced cardiovascular changes, but the most 

prominent cardiovascular change was observed in ‘posterior subcallosal cortex,’ 

corresponding to sgACC/25. In addition to having a respiratory effect, application of electrical 

current in this region produced a BP response characterised by a transient hypertension 

followed by a more prolonged – but still short-lived – refractory hypotension (FIGURE 1-14). 

Since this study, little work has been carried out investigating the role of primate vmPFC in 

autonomic regulation, beyond the observation of enhanced activity within sgACC/25 during 

vegetative states such as sleeping, potentially reflecting an influence on parasympathetic 

activity (Rolls et al., 2003b).  
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Figure 1-14 Electrical stimulation of pgACC and sgACC of the macaque induces autonomic 

changes. Figure adapted from Kaada et al., 1949. Stimulation of the ‘anterior subcallosal cortex’ 

(pgACC/32, marked A) causes minimal autonomic change. Stimulation of the ‘posterior subcallosal 

cortex’ (sgACC/25, marked C) induces transient hypertension followed by a more prolonged (but 

also short-lived) hypotension. 

 

 [Work described in this paragraph was published in Proceedings of the National Academy of Sciences, USA in 

2017 with the present author as a co-author: (Wallis et al., 2017)] The effects of targeted 

pharmacological manipulations within NHP vmPFC on autonomic parameters during an 

emotionally neutral, quiet resting state have only very recently been explored using 

marmosets. Wallis and colleagues compared the effects of inactivating sgACC/25 and 

pgACC/32 on BP, HR and vagal/sympathetic balance in neutral conditions (Wallis et al., 

2017). Inactivation of sgACC/25 was found to have profound effects on cardiovascular 

activity, reducing HR and BP and increasing heart rate variability (HRV). When the effects on 

HRV were fractionated into vagal and sympathetic contributions, sgACC/25 inactivation had 

a selective effect to increase cardiac vagal tone. By contrast, inactivation of pgACC/32 had 

restricted effects on cardiovascular responses in emotionally neutral conditions limited to a 

modest increase in BP. This suggests that NHP sgACC/25 has a critical causal role in 

establishing activity within a central autonomic network, modulating the balance between 

parasympathetic and sympathetic contributions to cardiac function.  

1.3.1.3 Evidence from humans 

In a similar vein to work in macaques at the time, electrical stimulation experiments have 

been carried out in humans assessing cardiorespiratory changes induced by stimulating 

portions of the cingulate gyrus, including pgACC/32. Pool and Ransohoff stimulated the 

rostral cingulate (including pgACC) in twelve anaesthetised patients during neurological 

surgery (Pool and Ransohoff, 1949). Although the effects were variable in magnitude and 

direction, stimulation throughout the bilateral rostral cingulate zone (BA24, 32) resulted in BP 

and HR changes (FIGURE 1-15), whereas stimulation of more superior dmPFC (BA9/10) had 

no effect. 
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Figure 1-15 Electrical stimulation of human pgACC regions induces autonomic changes. 

Figure adapted from Pool and Ransohoff, 1949. Stimulation of the perigenual region induces 

variable autonomic changes. In patient DO (blue) stimulation of pgACC/32 profoundly increased 

systolic and diastolic BP and induced a moderate tachycardia. In patients BR, SS and SP, 

stimulation of pgACC/24 typically increased BP with no effect on HR. 

 

The cardiovascular effects of direct electrical stimulation of human vmPFC have also been 

observed in the context of deep brain stimulation (DBS) for conditions such as depression 

and epilepsy. A recent study directly examined the cardiovascular consequences of DBS into 

sgACC/25 in patients undergoing electrode implantation as a prelude to surgery to relieve 

epilepsy (Lacuey et al., 2018). In the four patients where electrodes were placed in 

sgACC/25, stimulation produced consistent and striking hypotensive changes – specifically, 

a reduction in systolic BP with more variable changes in diastolic BP. Laucey and colleagues 

present precise electrode placement diagrams in three of the four patients, and it is worth 

noting that in two patients with more caudal electrode placements (within sgACC/25) the 

hypotensive effects are substantially greater than in the patient with a more rostral placement 

(strictly speaking within sgACC/14), although this interpretation is also confounded by 

differences in the laterality of the hemisphere stimulated (FIGURE 1-16). These data support 

earlier work in macaques, showing more substantial BP changes with stimulation of caudal 

sgACC/25 (Kaada et al., 1949). However, whether the neurophysiological consequence of 

DBS is one of stimulation, inhibition, or generalised disruption remains to be determined 

(Chiken and Nambu, 2014). Whilst DBS experiments such as that described in Laucey et al. 

point to a role of sgACC/25 in autonomic regulation, the precise nature of its role in humans 

is still unclear.  
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Figure 1-16 Electrical stimulation of human vmPFC induces BP and HR changes.  

Figure adapted from Laucey et al., 2018. In this study, four patients were undergoing electrode 

implantation prior to epilepsy surgery. Stimulation of a subgenual region in produced hypotensive 

changes in all patients. The electrode placements of three patients (those available from the 

manuscript) are shown left. Right are the individual EEG, BP, MAP and HR traces. The time of 

stimulation is identifiable by a thick shading on the EEG (the midpoint is indicated by an arrow). In 

the upper two patients, stimulation produced hypertension at onset (black dashed oval). In all 

patients there was transient hypotension associated with stimulation (either during or after 

stimulation ended, blue dashed oval). Note that the bottom patient with (i) a more rostral placement 

(sgACC/14 rather than sgACC/25) and (ii) an electrode in the left rather than right vmPFC had the 

smallest cardiovascular response.   

 

In addition to direct stimulation experiments, functional imaging data supports a role for 

vmPFC in cardiovascular control in conscious humans: 

• vmPFC activity associated with ‘at-rest’ cardiovascular modulation: Whilst 

chronic lesion experiments in rodents suggest that vmPFC is not involved in 

regulating baseline cardiovascular parameters, in humans this may not be the case. 

Human vmPFC forms part of the DMN – a ‘specific, anatomically defined brain 

system preferentially active when individuals are not focused on the external 

environment’ (Buckner et al., 2008; Raichle et al., 2001). Default mode activity within 

vmPFC has been suggested to reflect regulation of parasympathetic outflow (vagal 
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tone) to maintain low baseline HR and high baseline HRV, constituting a key 

component of the ‘cortical autonomic network’ (Shoemaker and Goswami, 2015; 

Thayer et al., 2012). Indeed, vmPFC BOLD activity patterns have been directly 

correlated with high frequency band components of HRV, which is thought to reflect 

parasympathetic activity (Goswami et al., 2011).  

• vmPFC activity during volitional exercise: vmPFC (primarily pgACC/24 and 32) 

has been recognised to form a key part of a cortical autonomic network based on a 

meta-analysis of cortical activations during non-fatiguing handgrip exercise 

(Shoemaker and Goswami, 2015; Shoemaker et al., 2015). Specifically, observations 

of reduced vmPFC activity have been consistently reported in volitional exercise 

tasks that involve a HR response (Goswami et al., 2011; Norton et al., 2013). 

Reductions in vmPFC activity have been interpreted as a removal of a 

‘parasympathetic break’ to facilitate increases in HR during exercise (Shoemaker and 

Goswami, 2015). 

• vmPFC activity and baroreflex responses: Baroreflex responses can be assessed 

in various ways – for example, volitional changes using Valsalva’s manoeuvre 

(forceful exhalation against a closed airway); changes in the absence of volitional 

effort with lower-body suction (applying suction pressure to a supine body below the 

iliac crest); and assessment of spontaneous fluctuations in HR and BP. For example, 

King et al. showed elevated mPFC activity during the ‘recovery’ phase of the Valsalva 

manoeuvre, where BP is rising together with a reflex-induced cardioinhibitory effect 

(reductions in HR and sympatho-inhibition) (King et al., 1999)1. In general, regions 

corresponding to dmPFC/8,9 and dACC/24 – rather than vmPFC – have been more 

consistently implicated in baroreflex control, raising sympathetic drive by reducing 

baroreflex inhibition (Medford and Critchley, 2010). A comparable region has been 

identified related to sympathetic modulation of HR during cognitive and motor tasks 

(Critchley et al., 2003). 

In sum, activity within vmPFC and dmPFC/dACC subregions of human PFC correlates with 

various aspects of cardiovascular function. The precise contributions these areas make is 

still not understood, although some broad inferences can be drawn. Caudal vmPFC activity 

seems to be related to parasympathetic outflow during ‘at rest’ conditions, whereas 

decreases in pgACC/32 activity are related to a release of inhibition over sympathetic 

outflow. Furthermore, increases in dACC activity are consistently linked to increases in 

sympathetic outflow. The role of vmPFC (and dACC) subregions in the regulation of 

autonomic function, together with their apparent extensive connectivity to 

                                                 
1It is not possible to determine the precise location of this mPFC activation from the manuscript as no 
co-ordinates are provided. 
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brainstem/subcortical structures involved in visceral function, has led to the suggestion that 

vmPFC subregions form core components of a ‘central autonomic network’ (CAN) in rodents, 

NHPs and humans (Loewy and Spyer, 1990). The CAN is proposed to be an integral 

regulatory system involved in visceromotor and neuroendocrine control essential for 

adaptation and survival.  

1.3.2 Ventromedial prefrontal cortex regulates autonomic function during 

emotionally-valanced situations  

This section will discuss vmPFC activity in relation to autonomic modulation (with a focus on 

cardiovascular function) during emotional situations, including situations of ‘mental stress’ 

(such as the pressured performance of Stroop tasks or mental arithmetic in humans) 

(Critchley et al., 2005; Mathias and Bannister, 1999). 

1.3.2.1 Evidence from rodents 

Several lines of work support a role for rodent vmPFC in stress-associated cardiovascular 

regulation, with differential roles for PL and IL emerging (Myers, 2017). Cobalt chloride 

injection (which silence inputs and outputs) into PL enhances tachycardia associated with 

restraint (but does not alter BP), whereas the same manipulation in IL reduces tachycardia 

(again, with no effect on BP) (Tavares et al., 2009). However the pattern of results from the 

literature is mixed – other studies have found no effect following muscimol-induced inhibition 

of IL, whereas activation of IL decreases HR and BP responses to air puff stress (Müller-

Ribeiro et al., 2012). A potential explanation for these contrasting results might relate to a 

stressor-specific function of these subregions.  

Supporting a role for rodent vmPFC in learned cardiovascular responses associated with 

stressful outcomes, global cobalt chloride inhibition of PL and IL reduces HR and BP 

responses in a context previously associated with foot shocks (Resstel et al., 2006). Data 

supporting separable roles for PL and IL in learned cardiovascular stress responses comes 

from lesion work by Frysztak and Neafsey. Whilst global excitotoxic lesions of PL and IL 

decreased HR responses to a tone predicting shock, lesions restricted to PL increased 

tachycardic responses suggesting that the region has sympatho-inhibitory functions 

(Frysztak and Neafsey, 1994). By contrast, excitotoxic lesions of IL reduced sympathetic-

mediated tachycardia, suggesting an opposing role of PL/IL subregions in the cardiovascular 

correlates of learned fear. Given the aforementioned role of rodent vmPFC in the top-down 

regulation of emotion, together with evidence supporting the role of amygdala subnuclei in 

learned autonomic and behavioural responses to stress (Baklavadzhyan et al., 2000; Iwata 

et al., 1987; Kapp et al., 1979), some have proposed that rodent IL inhibits stress-related 

cardiovascular responses by down-regulating the amygdala (Myers-Schulz and Koenigs, 

2012). 
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1.3.2.2 Evidence from NHPs 

Two main studies have investigated the contribution of NHP vmPFC to Pavlovian appetitive 

and negative arousal using different autonomic measures. Rudebeck and colleagues used 

an appetitive Pavlovian conditioning procedure to investigate the consequences of aspiration 

lesions of sgACC/25 in macaques on autonomic arousal (pupil size) during CS and US 

periods (Rudebeck et al., 2014). Whilst lesioned monkeys still showed CS+ evoked 

autonomic arousal as indexed by increased pupil size, during a trace interval the lesioned 

animals could not sustain this arousal. As mentioned previously, this study employed ablative 

lesions and therefore the effects may be due to damage to fibres of passage in the white 

matter underlying sgACC/25. [Work described next was published in Proceedings of the National Academy 

of Sciences, USA in 2017 with the present author as a co-author: (Wallis et al., 2017)] Wallis and colleagues 

used targeted pharmacological manipulations of marmoset vmPFC to reveal differential 

contributions of sgACC/25 and pgACC/32 to stress-evoked cardiovascular arousal during a 

discriminative aversive Pavlovian conditioning procedure (Wallis et al., 2017). Whilst 

inactivations of sgACC/25 impaired fear conditioning as evidenced by a reduction in 

anticipatory cardiovascular arousal to a CS+ predicting an aversive US, pgACC/32 

inactivation impaired fear conditioning as evidenced by a generalisation of cardiovascular 

responding previously reserved to the CS+, to a CS-. These manipulations were without 

effect on cardiovascular arousal associated with the US. These results illustrate that 

subregions of primate vmPFC are not only involved in baseline cardiovascular regulation but 

also in the dynamic adjustment of cardiovascular output during situations of emotional 

valence – specifically, during appetitive and aversive Pavlovian conditioning. The effects of 

targeted over-activations within marmoset vmPFC on cardiovascular arousal during 

appetitive and aversive conditioning are detailed in Chapter 4 and Chapter 5 of this thesis, 

respectively. 

1.3.2.3 Evidence from humans 

The importance of cortical modulatory influences on autonomic and cardiovascular function 

during emotion was first highlighted by Albrecht von Haller in 1786, in his seminal work First 

Lines of Physiology: 

“…terror from a present evil increases the strength of the force of the heart 

to so great a degree, as to cause convulsions and a strong pulse; whence 

it [can] kill suddenly.” (von Haller, 1786) 

Nineteenth-century physiologists including Walter Cannon and Claude Bernard also 

documented case reports of ‘voodoo death’ where a profound emotional state triggered a 

sympathetic “emergency reaction” inducing a “disastrous fall of blood pressure, ending in 

death” (Cannon, 1942).  
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The advent of neuroimaging meant that specific regions of the brain could be implicated in 

cardiovascular changes associated with emotional experience and emotional stress. The 

human mPFC has been implicated in emotion-related changes in cardiovascular activity – 

the areas typically implicated include both ventral (vmPFC) and dorsal (dACC/dmPFC) 

regions (TABLE 1-4). Indeed, several recent meta-analyses have implicated vmPFC and 

dACC/dmPFC in emotional and cognitive stressor tasks, where changes in activity within 

these regions is associated with changes in skin conductance, HR, BP and/or HRV (Beissner 

et al., 2013; Gianaros and Wager, 2015; Thayer et al., 2012). 
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Reference Image Description 

dACC/vmPFC activations associated with cardiovascular arousal changes during 

emotional/stressful situations 

(Critchley et 

al., 2000) 

BA23, 24, 32 

rCBF, BP: activity in dACC 

(BA23/24) extending into pgACC/32 

covaried with BP changes during a 

mental arithmetic task (and during 

volitional exercise).  

(Critchley et 

al., 2005) 

BA24, 32, 8, 9 

fMRI, pupil diameter: activity within a 

region spanning dmPFC/dACC 

predicts Stroop task trial-by-trial 

variation in autonomic response 

magnitudes and is enhanced after 

errors. Activity within pgACC/32 

predicted evoked autonomic arousal, 

independent of errors. 

(Gianaros et 

al., 2007) 

BA 10, 32 

fMRI, BP: During a Stroop task, 

individuals showing higher BP 

arousal show increased activity in 

pgACC, in addition to the posterior 

cingulate cortex and insula. 

(Gianaros et 

al., 2008) 

BA10, 32 

fMRI, BP: region of pgACC showing 

greater BOLD activation (together 

with lower grey matter volume) 

associated with increased BP 

reactivity during a Stroop task. This 

region also shows elevated 

functional connectivity with the left 

and right amygdalae.  

(Lane et al., 

2009) 

 

 

 

 

 

BA10, 32 

rCBF, HRV: A region of rostral 

dACC/ vmPFC (BA10) showing 

correlated increases in rCBF 

associated with emotional 

experience and the high frequency 

(parasympathetic) component of 

HRV.  
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(Thayer et al., 

2012) 

 

 

 

 

 

 

 

BA24, 25, 32 

Meta-analysis, rCBF and HRV: 

changes in rCBF in vmPFC – 

specifically, right pgACC/24, right 

pgACC/32 and right sgACC/25 –  

shows significant associations with 

changes in HRV across different 

elicitation methods (both emotional 

and cognitive/motor).  

(Beissner et 

al., 2013) 

BA10, 24, 25, 32 (all autonomic) 

BA14, 32 (sympathetic) 

Meta-analysis, GSR and HRV: 

Activation likelihood meta-analysis 

showing pgACC/32 and sgACC/10, 

25 activation in a ‘pooled analysis’ of 

all studies showing brain region 

activation involved in autonomic 

processing. pgACC/32 and BA14 

activation was associated 

specifically with sympathetic 

regulation (as measured by GSR), 

and during tasks associated with 

cognitive stress. 

(Gianaros 

and Wager, 

2015) 

 

 

 

 

 

BA24, 32 

Meta-analysis, HR and BP: Regions 

of vmPFC (pgACC) and 

dmPFC/dACC show activity changes 

associated both HR and BP 

responses to social and cognitive 

stressors.  

dACC/vmPFC deactivations (or lesions) associated with cardiovascular arousal 

changes during emotional/stressful situations 

(Gianaros et 

al., 2004) 

BA 10, 14, 24, 25, 32 

rCBF, HR and HRV: increasing 

difficulty of working memory tasks 

increased HR and decreased high 

frequency (parasympathetic) 

component of HRV – these changes 

were associated with decreases in 

rCBF to vmPFC subregions 

including sgACC/14, sgACC/25 and 

pgACC/32. 
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(Wager et al., 

2009) 

BA10, 14 

fMRI, HR: brain activation and 

cardiovascular arousal measured 

during a social threat test (speech 

preparation). dACC/dmPFC region 

shows increased activity associated 

with increased HR during social 

threat, whereas vmPFC region 

shows decreased activity associated 

with increased HR.   

(Buchanan et 

al., 2010) 

BA10, 14, 25, 32 

Lesions, HR and HRV: [NB/ 

Response to stress and heart rate 

responses assessed independently] 

Damage to vmPFC causes higher 

resting HR in men and results in 

higher self-reports of stress in a 

social stress challenge. 

   
 

Table 1-4 Studies implicating human vmPFC in cardiovascular modulation during 

emotional/stressful situations. In general, these studies show activation of a dorsal region 

corresponding to pgACC/dACC/dmPFC associated with cardiovascular regulation, but deactivation 

of a ventral region corresponding to BA10, 14 and sgACC/25. However, the intensity and direction 

of change seems to depend on the elicitation method. 

 

Whilst several studies show dorsal activations and ventral deactivations associated with 

autonomic outputs during stress (TABLE 1-4), the direction and extent of activity change 

appears to depend on the index of autonomic activity (skin conductance, HR, BP) and the 

elicitation method (cognitive stress, emotional stress etc.; for example, see (Shoemaker and 

Goswami, 2015)). Beyond a recognition that ventral and dorsal prefrontal regions are 

important in the interaction between cardiovascular activity, behaviour and emotion 

(Buchanan et al., 2010; Hilz et al., 2006), it is difficult to ascribe a precise function to specific 

subregions. Nevertheless, complementary functions of dorsal and ventral aspects of the 

cingulate gyrus have been suggested based on existing evidence (Bush et al., 2000):  the 

dACC/dmPFC appears to be involved in energy expenditure and regulating sympathetic 

outflow (Critchley et al., 2003) whereas subgenual regions are involved in parasympathetic 

tone, behavioural withdrawal, energy conservation and the promotion of safety behaviours 

(Matthews et al., 2005; Yang et al., 2009). 

Several studies in humans have focused on the cortical correlates of changes in HRV. 

Determining the neural correlates of HRV fluctuations is particularly useful because (i) final 
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HRV is determined by both parasympathetic and sympathetic contributions which can be 

fractionated (e.g. (Toichi et al., 1997)); (ii) HRV is linked to trait differences in emotional 

regulation (Thayer et al., 2012); and (iii) HRV is linked to successful performance in tasks 

requiring emotional regulation (Park and Thayer, 2014). Thayer and Lane have proposed the 

Neurovisceral Integration Model as a framework to understand how affective and HRV-

indexed autonomic flexibility are linked (FIGURE 1-17) (Thayer and Lane, 2000). This model 

builds upon the Polyvagal Theory proposed by Porges which focuses on the key role of vagal 

outputs from the nucleus ambiguus/dorsal motor nucleus in social and affective behaviours 

(Porges, 1995). In NVI, a core set of neural structures upstream from brainstem vagal motor 

nuclei – vmPFC and insula – are important in integrating internal and external signals to 

dynamically adjust physiological parameters by modulating the vagus. By modulating vagal 

tone, these structures exert additional, critical influences over cognition, perception and 

action beyond the direct impact of their cortico-cortical connections. The importance of vagal 

tone is evident both physiologically and cognitively/behaviourally: 

• Physiologically, the vagus nerve has negative chronotropic and dromotropic 

influences on the heart (slowing conduction at the sinoatrial node and atrioventricular 

node respectively) which are associated with visceral flexibility and sensitivity (holding 

physiological systems within a sensitive portion of their dynamic range) (Levy, 1990; 

Porges, 1992).  

• Vagal tone can be considered a psychophysiological resource that organisms can 

utilise in response to environmental challenge – it can be increased or decreased, 

allowing for the interruption of ongoing behaviours (both during parasympathetic 

withdrawal and during elevated parasympathetic tone) and re-deployment of 

attentional and cognitive resources to other tasks. 

Caudal regions of vmPFC – particularly sgACC/25 – have been implicated in flexible 

adjustments in vagal tone associated with emotion regulation. Lane and colleagues have 

demonstrated strong positive correlations between changes in vagal tone and fMRI BOLD 

signals in right sgACC/25 during affective state-shifting (Lane et al., 2013).  
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Figure 1-17 Neurovisceral integration (NVI) model. The NVI model of Thayer and Lane (2000) is 

a framework to understand how the flexible and dynamic adjustment of cognition, emotion, 

behaviour and autonomic function is linked. Two key cortical structures are suggested as having a 

key role: the insula and the vmPFC. Environmental challenges produce changes in the external and 

internal environments which an organism can detect. The insula integrates sensory cues from the 

internal environment – the interoceptive function of the insula has led to it being labelled ‘visceral 

sensory cortex’ – and external sensory cues. Outputs from insula cortex feed into the vmPFC – 

‘visceral motor cortex’ – which can adjust physiological parameters by altering vagal tone (through 

efferent connections to NTS and the dorsal motor nucleus of the vagus). Critically, feedback relayed 

via the vagus facilitates flexible response selection during conditions of change as it has an 

inhibitory influence over behaviour – ‘vagal tone’ is a psychophysiological resource that organisms 

can utilise when an ongoing behaviour needs to be stopped and re-adjusted. Changes in peripheral 

physiology again manifest as interoceptive signals sensed by the insula, which can then readjust 

parasympathetic tone in the context of external signals forming a negative feedback loop to 

maintain homeostasis. Changes in cognition and action can modulate external signals, which are 

then also re-evaluated by central mechanisms. Thus, internal and external signals can be 

recognised and reacted to in cognitive, behavioural and physiological domains. 

 

1.3.3 Ventromedial prefrontal cortex regulates stress responses and HPA axis 

activity 

Beyond modulation of the autonomic nervous system (ANS), the vmPFC appears to play a 

critical role in the modulation of another physiological function: the hypothalamo-pituitary-

adrenal (HPA) axis (FIGURE 1-18). Corticotropin releasing hormone (CRH)-containing 

neurons of the hypothalamic paraventricular nucleus (PVN) receive inputs from the limbic 

system, including the amygdala, bed nucleus of the stria terminalis (BNST) and vmPFC.  
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Figure 1-18 The hypothalamo-pituitary 

adrenal (HPA) axis. Neurons of the  

paraventricular nucleus (PVN) of the 

hypothalamus release corticotropin releasing 

hormone (CRH) into the portal system of the 

anterior pituitary. These act on secretory cells 

to release adrenocorticotropic hormone 

(ACTH) into the systemic circulation. ACTH 

acts on cells of the zona glomerulosa of the 

adrenal cortex to release glucocorticoids – 

the most important of which is cortisol. 

Cortisol is a steroid hormone and permeates 

all cell membranes to have profound 

peripheral and central effects. Cortisol forms 

part of a negative feedback loop to regulate 

the production of CRH and ACTH, mediated 

by the glucocorticoid receptor (GCR). This 

negative feedback loop can be exploited clinically using the dexamethasone suppression test to 

assess adrenal cortical function. Exogenous administration of dexamethasone (a glucocorticoid) 

should suppress cortisol production via negative feedback. Failure of suppression indicates 

insensitivity of the negative feedback elements of the axis as part of e.g. Cushing’s disease. 

Historically the test has also been used to diagnose depression. 

 

1.3.3.1 Evidence from rodents 

Following identification of a high density of glucocorticoid receptors (GCR) in the vmPFC of 

the rat (McEwen et al., 1986; Meaney et al., 1985), work in the 1990s began to reveal the 

functional contributions of rodent vmPFC to the regulation of HPA function during basal and 

stressful conditions. Radiofrequency ablation of caudal IL increases adrenocorticotropic 

hormone (ACTH)/cortisol levels after restraint stress but has no effect on baseline cortisol 

levels, and cortisol implants into IL reduce ACTH/cortisol levels after restraint stress with no 

effect on baseline levels (Diorio et al., 1993). Excitotoxic lesions affecting both PL and IL 

reduce peak cortisol responses associated with repeat stress, again with minimal effects on 

baseline cortisol levels (Sullivan and Gratton, 1999).  

These early studies, together with work mentioned previously (1.2.3.1.3) concerning the role 

of vmPFC in stress controllability (Amat et al., 2005), have led to an appreciation of the 

importance of rodent vmPFC in stress regulation. Herman and colleagues have proposed 

four key characteristics of limbic (including vmPFC, amygdala and hippocampus) regulation 

of the HPA axis in the rodent (Herman et al., 2005; Jankord and Herman, 2008):  
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• The role of limbic structures is region- (e.g. PL vs. IL) and stimulus-specific 

(specific types of stress). All sectors of rodent vmPFC show robust cFos induction (an 

immediate early gene marker of neuronal activity) and enhanced glucose uptake 

following acute exposure to numerous stressors (Jankord and Herman, 2008). 

Lesions of PL enhance stress responsivity and stress-associated activation of PVN 

neurons, whereas lesions of IL attenuate these responses (Radley et al., 2006). 

Based on studies such as these, IL has been implicated in stimulating stress 

responses whereas PL has been suggested to inhibit stress responses (Ulrich-Lai 

and Herman, 2009; Veer et al., 2012). However, the response of IL in particular is 

stimulus-specific: whilst lesions of IL enhance ACTH responses and PVN cFos 

activation following administration of the inflammatory cytokine interleukin-1β, they 

reduce restraint-induced PVN cFos activation (Crane et al., 2003). Evidence also 

suggests lateralisation of function within the vmPFC, with right vmPFC being most 

directly linked to HPA axis regulation (Cerqueira et al., 2008; Sullivan and Gratton, 

1999, 2002). 

• There are minimal direct projections from limbic structures to PVN CRH 

neurons – projections relay in the BNST, NTS or dorsomedial nucleus of the 

hypothalamus (DMH). PL sends glutamatergic projections to the aBNST, which 

inhibits PVN and reduces the cortisol response to acute stress. IL projects directly to 

aBNST, DMH and NTS, which input to PVN. The targets of IL are differentially 

activated by psychogenic vs. systemic stressors (Cullinan et al., 1995; Emmert and 

Herman, 1999; Figueiredo et al., 2003; Sawchenko et al., 2000; Thrivikraman et al., 

2000). Furthermore, evidence suggest that in some of these structures – particularly 

the NTS – different cell populations are activated by psychogenic vs. systemic 

stressors. This provides evidence downstream of IL showing that neural structures 

critical in autonomic control show modality-specific responses (Dayas et al., 2001; 

Jankord and Herman, 2008). 

• There is extensive overlap between vmPFC, amygdala and hippocampal 

projections onto the BNST suggesting there is integration at subcortical relay 

sites. Regulation of the HPA axis is a distributed process involving the hippocampus, 

amygdala and IL/PL. Evidence suggests that the BNST serves as an integration 

structure, receiving converging inputs from this diverse array of structures and 

sending efferents to the PVN to regulate HPA axis output (Jankord and Herman, 

2008). 

• Limbic structures have divergent projections to multiple subcortical targets 

(BNST, DMH). 
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Precise determination of the role of vmPFC subregions in HPA axis regulation is complicated 

by the fact that these regions also participate in negative feedback loops controlling cortisol 

levels: for instance, glucocorticoids appear to act on PL to regulate negative feedback in 

acute situations of stress only, glucocorticoids act on IL to regulate negative feedback during 

both acute and chronic stress (McKlveen et al., 2013). Therefore, glucocorticoids act via both 

PL and IL during acute negative feedback, whereas feedback during chronic stress is 

mediated solely by IL. These signalling pathways impact upon affective behaviour, as GCR 

knockdown in IL (but not PL) increases immobility time in the forced-swim test, a common 

assay of depression-like behaviour.  

1.3.3.2 Evidence from NHPs 

Immunohistochemical assessment of GCR/mineralocorticoid receptor (MCR) expression in 

the cortices of NHP species (such as the squirrel monkey and rhesus macaque) have 

revealed high densities of immunoreactive nuclei distributed throughout the prefrontal cortex, 

particularly in ventromedial and lateral subregions (Patel et al., 2000; Sánchez et al., 2000). 

Despite this, the functional relevance of NHP vmPFC to HPA axis regulation has scarcely 

been explored. Jahn and colleagues recently examined the brain circuitry involved in 

individual differences in HPA axis regulation in macaques – specifically, the relationship 

between regional cerebral metabolic activity and cortisol levels across contexts with differing 

affective valence (Jahn et al., 2010). Macaques were exposed to four situations of increasing 

stress: home with cage-mate, home alone, human intruder exposure or foreign cage alone. 

After 30 minutes in these situations, macaques underwent femoral venepuncture for cortisol 

levels and an 18F-FDG PET scan. Using logical and conjunctional analyses, Jahn and 

colleagues were able to identify regions where metabolism and cortisol correlated across all 

conditions. In their analysis, macaque sgACC/25 was the only brain region showing activity 

correlated with cortisol output across different contexts. It is difficult to infer precise meaning 

from this correlation, because the positive relationship likely reflects a combination of 

stimulatory and inhibitory (negative feedback) processes co-occurring within the HPA axis. 

For instance, sgACC/25 activity could be correlated with cortisol output if (i) it were providing 

a direct stimulatory input to the HPA axis, or (ii) sgACC/25 was activated by increasing 

concentrations of circulating cortisol to exert negative feedback and supress further 

responses.  

1.3.3.3 Evidence from humans 

Surprisingly few studies have examined the neural correlates of HPA axis regulation in 

humans (see TABLE 1-5 for examples). Of the studies conducted, most focus on vmPFC-

amygdala connectivity given (i) the key role of the amygdala in facilitating stress responses 
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and (ii) that projections from vmPFC to amygdala are involved in inhibitory feedback and top-

down regulation of emotion and stress (Herman et al., 2005).  

These studies consistently implicate functional connectivity between a perigenual region of 

the vmPFC – typically encompassing pgACC/32, pgACC/24 and sometimes extending to 

sgACC – and the amygdala in responses to stressful situations and emotional conflict. These 

activations are interpreted in the context of top-down regulation of amygdala activity, as 

activation is seen when comparing effortful affective regulation versus baseline conditions 

(Banks et al., 2007; Urry et al., 2006; Veer et al., 2012). Activity within overlapping vmPFC 

regions has also been associated with fluctuations in daily cortisol levels (Hakamata et al., 

2017; Veer et al., 2012), and exogeneous cortisol administration has been shown to directly 

modulate sgACC/25 activity (Sudheimer et al., 2013) implying that there is a bidirectional 

relationship between prefrontal structures and peripheral correlates of HPA axis activity.  

A small number of studies have also shown differential patterns of human vmPFC activation 

associated with different types of stress. Ohira and colleagues identified a region of pgACC 

corresponding to pgACC/32 in which rCBF was directly related to the redistribution of natural 

killer cells (an immunological reaction to stress) during situations of controllable stress 

(monetary gain vs. loss) (Ohira et al., 2009). Activity in a caudal region of sgACC 

corresponding to sgACC/25 (and caudal BA10) is associated with increased interleukin-1β 

concentrations during presentation of grief related words (O’Connor et al., 2009). Similarly, 

Harrison and colleagues have shown that increases in interleukin-6 levels following typhoid 

vaccination are associated with mood-reductions, and these negative changes in mood are 

directly associated with enhanced sgACC/25 activity (Harrison et al., 2009). Although further 

studies are needed, the data from these select few imply activity in a subgenual region 

related to inflammation-induced stress, and activity in a perigenual region associated with 

stress related to cognitive challenge. 
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Reference Image Description 

Human vmPFC in stress regulation   

(Etkin et al., 

2006) 

 

 

 

 

 

 

 

 

 

Emotional conflict: BA8,9 

Resolution: BA32 

fMRI, emotional conflict: Activity in 

dmPFC (BA8/9) associated with 

emotional conflict, whereas 

activation of pgACC/32 (and BA10) 

is associated with the resolution of 

emotional conflict. PgACC/32 

activation is accompanied by a 

correlated reduction in amygdala 

activity, suggesting top-down 

regulation of the amygdala by 

pgACC/32.   

(Egner et al., 

2008) 

 

Resolution: BA32 

fMRI, emotional conflict: pgACC/32 

part of an ‘emotional control’ 

system – activation associated with 

the resolution of emotional conflict 

and decreased amygdala 

responses. 

(Urry et al., 

2006) 

BA11 

[Location of peak activation] 

fMRI, negative picture stimuli: 

individuals showing reduced 

amygdala responses when 

instructed to decrease their 

affective responses to negative 

picture stimuli also show higher 

signal in the vmPFC. These 

individuals also show steeper 

declines in cortisol levels over the 

course of the day.   

(Banks et al., 

2007) 

 

BA25 

fMRI, negative picture stimuli: 

activity within sgACC/25 and 

dmPFC/8,9 covaries with amygdala 

activity during active reappraisal of 

negative picture stimuli. The 

strength of connectivity predicts the 

extent of attenuation of negative 

affect after reappraisal.  
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(Gianaros et 

al., 2008) 

 

BA10, 32 

fMRI, stressor-evoked BP: area of 

pgACC/32 and BA10 showing 

higher connectivity with the right 

amygdala associated with greater 

BP reactivity during a Stroop 

stressor task.  

 

(Wager et al., 

2009) 

BA14, 25 

fMRI, stressor-evoked HR: brain 

activation and cardiovascular 

arousal measured during a social 

threat test (speech preparation). 

dACC/dmPFC region shows 

increased activity associated with 

increased HR during social threat, 

whereas vmPFC region shows 

decreased activity associated with 

increased HR.  

Also see section on cardiovascular 

regulation. 

(Veer et al., 

2012) 

 

BA25, 32, 10 

fMRI, cortisol levels: Stronger 

negative functional connectivity 

between sgACC/25 and pgACC/32 

and the amygdala is associated 

with higher cortisol levels. These 

regions are likely to be involved in 

the top down regulation of the 

amygdala during the stress 

response.  

(Sudheimer 

et al., 2013) 

 

BA14, 25 

fMRI, negative picture stimuli: 

single dose and extended dose of 

cortisol (administered peripherally) 

block the increase in sgACC/25 

activity evoked by sadness 

(placebo groups show an increase 

in sgACC/25 activity, whereas 

groups given cortisol do not).  
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(Hakamata et 

al., 2017) 

 

BA24 

fMRI, fearful faces: functional 

connectivity between ‘pgACC’ 

(dACC/24) and amygdala 

negatively correlated with daily 

cortisol levels, and negatively 

correlated when processing fearful 

faces.  

   
 

Table 1-5 Studies implicating human vmPFC in the regulation of the stress response. Several 

of these studies show pgACC/32 and sgACC/25 activity covaries with amygdala activity during 

situations of stress: specifically, situations of emotional reappraisal typically involve upregulated 

vmPFC activity and downregulated amygdala activity. These functional imaging changes are 

associated with peripheral cardiovascular and endocrine (cortisol) sequalae. 
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1.4 SPECIALISATION OF FUNCTION WITHIN THE VENTROMEDIAL PREFRONTAL 

CORTEX? 

The thesis so far has discussed the role of the vmPFC in reward processing and value-based 

decision-making; in the regulation of negative emotion (including pain); in social cognition; in 

cardiovascular regulation; and in regulation of the HPA axis. The vmPFC is, therefore, 

implicated in functions across cognitive, behavioural and physiological domains. Two 

hypotheses have emerged attempting to explain the myriad of functions the vmPFC is 

involved in:  

• Given the anatomical heterogeneity within the vmPFC, together with heterogeneity in 

implicated function, it would be reasonable to suggest that anatomical subregions 

within the vmPFC have associated functional specialisation (Hiser and Koenigs, 

2018).  

• Whilst the vmPFC is anatomically heterogeneous, the subregions are extensively 

connected with one another (Price and Drevets, 2010). Intra-vmPFC connectivity is 

critical in integrating a diverse array of inputs, such that the vmPFC acts as a hub of 

interrelated systems involved in memory, social cognition, interoception and 

autonomic regulation (Roy et al., 2012) 

First, a consideration of hypothesis one. In their review of vmPFC function, Hiser and 

Koenigs downloaded a series of meta-analyses using NeuroSynth (www.neurosynth.org) 

(Yarkoni et al., 2011), each using search terms associated with a particular function – 

value/decision-making, emotion or social cognition. Using this strategy, they could identify 

subregions of the vmPFC, together with other structures, whose activity is related to these 

functions across many studies. Their analysis is shown in FIGURE 1-19A. Value and 

decision-making was associated with activity in anterior BA10, sgACC/25 and the ventral 

striatum; emotion was associated with sgACC/25 and caudal BA10 together with the 

amygdala; and social cognition with anterior BA10 and dmPFC, precuneus and temporo-

parietal cortex. These data suggest distinct clusters of activity within vmPFC associated with 

distinct functions, although there is some overlap – particularly within sgACC/25. Whilst 

informative, one must also be mindful of the caveats associated with this approach, including 

the choice of search terms. For example, in their assessment of clusters involved in 

value/decision-making, Hiser and Koenigs used the terms ‘value,’ ‘reward’ and ‘decision-

making.’ Firstly, these constructs are not necessarily part of one homogenous function, and 

second, these search terms omit key constructs related of reward processing such as reward 

anticipation and reward motivation.  

http://www.neurosynth.org/
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Figure 1-19 Perspectives on vmPFC function. A Adapted from Hiser and Koenigs (2018). Based 

on their meta-analyses carried out using search terms with the Neurosynth software, Hiser and 

Koenigs propose that distinct subregions within the vmPFC are involved in value/decision-making 

vs. social processing vs. emotion. These vmPFC subregions are also associated with distinct 

patterns of co-activation with other structures. B Adapted from Roy et al. (2012). Roy and 

colleagues suggest that the vmPFC is responsible for extracting ‘affective meaning’ from a diverse 

constellation of external and internal stimuli to create a unitary representation termed a ‘schema’, 

and co-ordinating the appropriate behavioural and physiological response. When analogous 

physiological and behavioural outputs are induced but the triggering stimulus is unconditionally 

aversive, and its valence does not require integration of internal/external cues (‘conceptual’ 

information) – such as pain – the vmPFC is not activated. 

 

Next, consider hypothesis two. Roy et al. suggest that the vmPFC is a ‘hub’ region which 

links cognitive and affective information with physiological and behavioural responses. By 

integrating a constellation of external and internal cues, the vmPFC can extract ‘meaning’ 

from a situation and transduce this meaning into outputs critical for an organism’s survival. 

To construct this meaning, Roy and colleagues suggest the vmPFC must be involved in 

several processes: constructing unitary representations of a situation (‘schema’) from 

configurations of cues; recalling past situations and abstracting features to guide prediction 
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about future outcomes; evaluating the potential outcomes in terms of benefit/harm to the 

‘self’; and triggering appropriate physiological and behavioural responses (or modifying 

ongoing ones). A central tenet of their hypothesis, therefore, is that vmPFC is essential when 

conceptual information (external cues and self-relevant information – schema) is driving 

affective physiological/behavioural processes. Using a similar NeuroSynth-based meta-

analytic approach, Roy et al. extracted maps of brain networks whose activity was 

specifically associated with functional tasks related to affective meaning. Studies included 

brain changes related to memory, self-referential function (DMN), social cognition, emotion, 

reward and physiological (autonomic/endocrine) changes. By contrast, exposure to painful 

stimuli induces behavioural/physiological changes without a need for representation of 

affective meaning (it is unconditionally aversive). Shown in FIGURE 1-19B, Roy and 

colleagues found that there was overlapping vmPFC activation across all ‘meaning-related’ 

domains, but the pain map was largely distinct from the others, primarily involving dACC. 

They propose that this overlapping activation represents a common function of vmPFC in 

affective appraisal, across situations with different valence.  

Although there is extensive overlap, Roy et al. do acknowledge that there is some degree of 

functional specialisation in different parts of the vmPFC. For instance, DMN and memory 

maps include PCC whereas the emotion, reward and autonomic maps include the ventral 

striatum and amygdala. Inspection of the maps in FIGURE 1-19B suggests that there are at 

least two distinct subsystems overlapping on the vmPFC. The first subsystem includes 

anterodorsal vmPFC, dACC, dmPFC and PCC and is highlighted in the DMN and memory 

maps. This subsystem seems to be involved in internalisation, self-referential processes and 

constructing internal models of the world to imagine projected future scenes (Buckner et al., 

2008). The second subsystem includes ventral, caudal vmPFC (including sgACC/25) and is 

highlighted in the reward, autonomic and emotion maps. Understanding these subsystems, 

their constituent zones and their differential roles – whether they are truly distinct, or 

ultimately subserve one emergent function – is an ongoing quest. Specialisation could be 

related to content (positive vs. negative emotion), process (response selection vs. value 

updating), output (skeletomotor, autonomic, endocrine etc.) or another dimension entirely. 

Furthermore, the relationship of these functional zones to cytoarchitectonic, 

myeloarchitectonic and chemoarchitectonic properties is still not clear (nor indeed, whether 

there is any relationship at all). 

The role of the vmPFC to generate ‘schema’ as suggested by Roy and colleagues is closely 

related to the proposed function of vmPFC as proposed by Antonio Damasio and Antoine 

Bechara in the somatic marker hypothesis, discussed previously. They propose that the 

vmPFC is: 
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“… a repository of dispositionally recorded linkages between factual 

knowledge and bioregulatory states.” (Bechara et al., 2000) 

In their proposal, the vmPFC and its constituent subregions are responsible for forming 

associations between situations (consisting of actors and actions, response options and 

consequences of each response option) and the subjective and physiological (emotional) 

states associated with those situations based on past experience. The different components 

of the situation are ‘dispositionally linked’ to an emotional response, and the vmPFC is the 

key site for the link between specific components and their emotional responses based on 

previous learning. Their proposal is very similar to that suggested by Roy and colleagues – in 

particular because it ascribes a common function to the diverse array of subregions 

comprising the vmPFC. 
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1.5 PSYCHIATRIC DISORDERS AND THE VENTROMEDIAL PREFRONTAL CORTEX 

Given the role of the vmPFC in emotion and its regulation, it is not surprising that dysfunction 

within the vmPFC has been implicated in the aetiology and pathogenesis of psychiatric 

disorders. Indeed, meta-analyses of fMRI brain activation across several different psychiatric 

disorders consistently implicate distinct but overlapping subregions of the vmPFC (Mayberg 

et al., 1999). This thesis shall focus its discussion on major depressive disorder (MDD) and 

anxiety disorders.  

1.5.1 Depression and Major Depressive Disorder 

If a fright or despondency lasts for a long time, 

 

it is a melancholic affection. 

 

     Hippocrates, Aphorisms, Section 6, no. 23 

1.5.1.1 Defining Depression 

Depression is not a unitary construct and it is perhaps more appropriate to think of a range of 

depressive disorders with differing severity. These disorders are characterised by a state of 

persistent low mood, loss of interest/enjoyment, neuro-vegetative disturbances and reduced 

energy, resulting in varying levels of occupational and social dysfunction.  

1.5.1.2 Classifying Depression 

The DSM-V divides depressive disorders into four subtypes (American Psychiatric 

Association, 2013): MDD (also termed unipolar depression); persistent depressive disorder 

(dysthymia); premenstrual dysphoric disorder; and ‘other’ depressive disorders (due to side 

effects of drugs, substance abuse, medical conditions or other unspecified causes). 

Depressive symptoms are also seen as part of cyclothymia or bipolar disorder, where there 

are alternating manic/depressive phases. Besides a difference in cause, the clinical category 

of depression is also distinguished by the length of symptoms, the number of auxiliary 

symptoms (beyond core symptoms of low mood and/or anhedonia), the degree of functional 

impairment and the symptom severity. Nevertheless, it is becoming increasingly appreciated 

that there may be similarities in the pathophysiological changes at the heart of these 

disorders. 

MDD is the archetypal mood disorder, involving a persistent (longer than two weeks) change 

in mood, cognition and physiological functions. The Diagnostic and Statistical Manual of 

Mental Disorders, 5th Edition (DSM-V) criteria are used in both research and clinical settings 
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to stratify depression severity. The criteria for MDD are shown in FIGURE 1-20. Criterion 

symptoms (highlighted, FIGURE 1-20) must be present nearly every day for most of the day 

to be considered as present. MDD episodes are discrete but may last a long time (if the 

mood disturbance continues for longer than two years, MDD becomes persistent depressive 

disorder) with remissions between episodes. In this thesis, the term ‘depression’ will be used 

synonymously with MDD, although again it is important to emphasise that there are likely 

commonalities in the neural changes associated with the different subtypes of depression 

outlined by the DSM-V.   

 

Figure 1-20 DSM-V criteria for diagnosing MDD. American Psychiatric Association, 2013. 

Criterion symptoms are highlighted. 

 

1.5.1.3 Epidemiology of Depression 

Depressive disorders are extremely common, and have been recognised as a leading cause 

of disability worldwide (Ferrari et al., 2013; Kessler et al., 2009; Murray and Lopez, 1997; 

Qaseem et al., 2016). Depression is predicted to be the second leading cause of disability in 

people of all ages by 2020 and current estimates suggest 20% of adults will be affected by a 

mood disorder at some point during their life with MDD accounting for half of these 

diagnoses (Remick, 2002). The age of onset is bimodal, with incidence peaks typically 

between 12 and 24 years or in those older than 64 years (Remick, 2002). Women are 

affected twice as often as men (Albert, 2015). 

1.5.1.4 Aetiology and Pathophysiology of Depression 

The aetiology of depression is complex and is still poorly understood. It affects people of all 

ages, varies in its duration and severity, and differentially affects men and women. This 

heterogeneity would suggest that the aetiology of depression involves multiple factors. 

Neurobiologically, whilst it is generally accepted that there is some form of neurobiological 
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change/‘biochemical imbalance’ involved, it is also appreciated that there is no single brain 

region or neurotransmitter system which is always dysfunctional in depressed patients. 

1.5.1.4.1 Behavioural accounts 

One of the most influential behavioural accounts of the aetiology of depression was proposed 

by Martin Seligman in his theory of learned helplessness (mentioned previously in the 

context of stress controllability) (Seligman, 1974). This suggests that depression develops 

when individuals learn that their attempts to escape negative situations make no difference. 

This results in passivity: patients will endure aversive stimuli and environments even when 

escape is possible. This theory evolved following Seligman’s behavioural shuttle-box work in 

dogs (Seligman and Maier, 1967). In phase one of the experiment, two groups of dogs were 

arranged in yoked pairs – dogs in group A were shocked but could end the shock by 

pressing a lever, whereas dogs in group B were shocked whenever dogs in group A were 

shocked, but pedalling did not stop the shock. To group B, the shock seemed to end at 

random as it was contingent on a dog in group A pressing a lever.  

In phase two, dogs were tested in a shuttle-box apparatus where they could escape being 

shocked on one side of the apparatus by leaping over a small partition into a ‘safe zone.’ 

Group A quickly learned the avoidance response. Group B – who had previously 

experienced uncontrollable shocks – simply sat passively whilst they were shocked, showing 

lethargy, sluggishness and appetite loss even after the test session. Seligman suggested 

that the behaviour of dogs in Group B was akin to them having ‘given up’ trying to change 

their circumstances. In its explicit formulation, learned helplessness theory is that patients 

with MDD have a real or perceived absence of control over the outcomes of situations 

(Seligman, 1975). Subsequent work has shown that the acquisition of learned helplessness 

is associated with vegetative disturbances – in rats, exposure to uncontrollable shocks 

results in gastric erosion more readily than the same number of controllable shocks 

highlighting a link between uncontrolled stress and vegetative disturbances consistent with 

mood disorders (Murison and Isaksen, 1982). 

Learned helplessness has been demonstrated in humans. For instance, Hiroto presented 

college students with either controllable aversive noise which could be terminated with a 

button press, or uncontrollable noise whose termination was unrelated to button pressing 

(Hiroto, 1974). In a second phase, students were tested in a hand-shuttle box where 

students simply had to move a lever from one side of a box to another to terminate the noise. 

The results of this study were analogous the study in dogs: students previously receiving 

prior controllable shocks readily learnt the shuttling response, whereas the group receiving 

uncontrollable shocks failed to shuttle and listened to the noise passively.  
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1.5.1.4.2 Cognitive accounts  

Cognitive theories of depression focus on the dysfunctional thought patterns which 

depressed patients adopt. Aaron Beck famously suggested that depression results from a 

systematic negative bias in thinking, meaning that depressed patients think differently to 

healthy controls and that these changes may even precede the onset of depressed mood 

(Beck, 1973). A second cognitive account – termed attributional theory – was developed as 

an extension of Seligman’s work on learned helplessness, modified to place more emphasis 

on the cognitions of a depressed individual (Abramson et al., 1978).  

Aaron Beck’s account proposes three mechanisms that are involved in the predisposition for 

and development of depression: negative self-schemas which predispose individuals to 

developing depression; together with a cognitive triad of negative automatic thinking and 

errors in logic, both of which constitute the depressed cognitive phenotype.  

• Negative self-schemas refer to a set of beliefs that are negative and pessimistic. 

Examples of negative self-schemas include an ineptness schema (expectation to fail), 

a self-blaming schema (a responsibility for negative events) and a negative self-

evaluation schema (feeling worthless). These are acquired in childhood (and carried 

through to adulthood) following a traumatic event and act to pre-dispose an individual 

to depression. In a nod to psychosocial theories, Beck proposed that negative life 

events act to ‘activate’ these negative schemas, resulting in the cognitive triad and 

errors in logic. There is evidence for a predisposition to developing depression in 

individuals who have negative thinking styles. Alloy and colleagues (Alloy et al., 2006) 

assessed the thinking styles of young Americans for six years, and classified them 

into a ‘positive thinking’ group or ‘negative thinking’ group. The positive thinking group 

had a 1% rate of depression over the next six years, whereas the negative thinking 

group had a 17% rate of depression, suggesting that there is a link between thinking 

styles and the development of depression.  

• The cognitive triad outlines three forms of negative thinking that typify individuals 

with depression. These are negative views of the self (‘I am worthless,’ ‘I am 

inadequate’), negative views of the world (interpreting events in an unrealistically 

negative and defeatist way) and negative views of the future (situations will not 

improve). These negative thoughts become all-encompassing and this leads to 

problems in cognition and perception.  

• Errors in logic refer to cognitive biases that outline dysfunctional changes in 

attentional deployment associated with the depression – patients are prone to making 

logical errors by focusing on specific aspects of a situation whilst also ignoring other 

aspects. Different forms of errors in logic are outlined in TABLE 1-6.   
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Error in logic Description 

Arbitrary inference 

 

Drawing a negative conclusion in the absence of 

supporting data 

 

Selective abstraction 

 

Focusing on the worst aspects of a situation 

Magnification/minimisation 

 

Problems are made bigger and solutions are made smaller 

Personalisation 

 

Negative events are interpreted as patient’s own fault 

Dichotomous thinking 

 

‘Black-and-white’ thinking 

  
 

Table 1-6 Examples of errors in logic (cognitive biases) outlined by Aaron Beck’s cognitive 

theory of depression.  

 

A second cognitive account builds on the behavioural mechanisms proposed in learned 

helplessness theory, which does not consider the cognitions of depressed individuals. To 

resolve this, learned helplessness theory was reformulated into attributional theory 

(Abramson et al., 1978) which focuses on how individuals explain the causes of events in 

their lives – termed attributional styles. Attributional styles have three key components: locus 

(internal or external), stability (permanent or transient) and specificity (global or specific). 

Abramson considered the presence of a negative event alone insufficient to produce a 

depressed or helpless state. Instead, individuals who attribute negative events to internal, 

stable and global causes are more likely to become depressed. This thinking style leads 

people to think that they cannot change things for the better. There is ample evidence 

available to support attributional theory: depressed patients do show internal, stable and 

global attributional styles (Seligman et al., 1984); these attributional styles change following 

treatment (Petersen et al., 2004); and cognitive behavioural therapy – an effective treatment 

for depression – involves tackling these thought patterns (Proudfoot et al., 2004). 

A cardinal feature of depressed thinking consistent with both of these cognitive accounts (but 

not explicitly outlined by either) is rumination: a recurrent, self-reflective focus on depressed 

mood, its causes and its consequences (Hamilton et al., 2015; Morrow and Nolen-

Hoeksema, 1990). High levels of state rumination predict symptom severity (Kuehner and 

Weber, 1999), and high levels of trait rumination predict symptom onset (Nolen-Hoeksema et 

al., 2008). Furthermore, the presence of ruminative thinking reliably discriminates between 

depressed and never-depressed individuals (Hamilton et al., 2011a). Although is becoming 

increasingly apparent that rumination is a central part of the clinical phenotype of depressed 

patients (Lyubomirsky et al., 1999), in both the DSM-V and International Classification of 

Diseases (ICD)-10, it is not considered a criterion symptom of depression. The focus on 
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ruminative thinking has also seen a resurgence following the recognition of the DMN (see 

1.5.3.3) as a neural network responsible for self-referential processes (Fox et al., 2005). The 

intuitive link between this function and rumination has led to the development of neural 

models of rumination which include structures involved in the DMN (Hamilton et al., 2015). 

1.5.1.4.3 Genetic accounts 

Twin, family and genome-wide association studies have shown that depression is to some 

extent heritable (Lohoff, 2010).  

• Twin studies: A meta-analysis of twin studies in 2000 estimated the heritability of 

depression at 37% (Sullivan et al., 2000).  

• Family studies: Family studies have shown that first-degree relatives of depressed 

patients have between a two-fold to four-fold increased risk of developing the 

disease, relative to controls (Lohoff, 2010; Weissman et al., 1993). 

• Genome-wide association studies (GWAS): Single nucleotide polymorphisms 

contribute to approximately 9% of variation in susceptibility, although the contribution 

made by polymorphisms in individual genes is very small (Wray et al., 2018). Many of 

the polymorphisms are related to excitatory neurotransmission and post-

synaptic/dendritic function (Howard et al., 2018). 

As suggested by the results of GWAS, the genetic contribution to depressive disorders is 

polygenic, although polymorphisms in serotonin (5HT)-related genes have received the most 

attention. Deficits in 5HT handling within the central nervous system have been linked to 

numerous psychiatric disorders, including depression (Neumeister et al., 2004). A functional 

44 base-pair repeat polymorphism in the promoter region (5HTTLPR) of the serotonin 

reuptake transporter (5HTT) has received attention owing to its effect on in vivo 5HT levels. 

Caspi and colleagues have implicated this polymorphism in modulating the influence of 

stressful life events on depression  – specifically, individuals homozygous for the ‘short’ s 

allele are at increased risk of depression compared to individuals homozygous for the ‘long’ l 

allele (or s/l heterozygotes) when exposed to stressful life events (Caspi et al., 2003). This 

study suggests that a gene × environment interaction contributes to developing depression. 

Providing a neurobiological instantiation of the differential effect of 5HTT alleles, Hariri and 

colleagues imaged individuals with polymorphisms of the 5HTTLPR gene and found greater 

amygdala activation in response to threatening stimuli in patients with the s allele (Hariri et 

al., 2002). This directly implicates the polymorphism in differential sensitivity of the brain’s 

threat processing systems. However, it should be noted that subsequent studies 

investigating a link between the polymorphism and incidence of depression have yielded 

equivocal results. Most recently, a large collaborative meta-analysis found no evidence of 
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any statistically significant interaction between 5HTTLPR allele status and life stressors for 

the risk of depression (Culverhouse et al., 2017). 

The influence of genetic factors is not limited to direct effects on physiology: they also alter 

the nature of an individual’s interaction with the environment (Kendler and Karkowski-

Shuman, 1997). Despite the contribution made by genetic factors, the development of MDD 

involves a strong influence of the environment and tiny contributions of individual genes 

(Kendler et al., 2006). In the future, genetic testing will provide likely limited information 

regarding an individual’s propensity to develop depression. A deeper understanding of the 

genetic contributions to developing mood disorders will nonetheless provide us with an 

insight into the neurobiological and neurochemical mechanisms underlying depression and 

the potential pathways by which antidepressants act.  

1.5.1.4.4 Dysfunction within HPA axis 

One major model of the aetiology of depression suggests that dysregulation of the body’s 

response to stress is a key causal mechanism. This includes dysfunctional responses within 

the HPA axis including abnormal release of CRH and abnormal activation of the 

noradrenergic (NA) system including the locus coeruleus (LC).  

Cortisol is the primary glucocorticoid hormone, triggering an acute stress response which is 

self-limiting owing to negative feedback loops within the HPA axis. If these negative feedback 

loops do not function correctly, the resulting high levels of cortisol can have deleterious 

consequences including enhanced negative mood. Elevated levels of cortisol and CRH have 

been consistently identified in depressed populations (Plotsky et al., 1998), together with 

blunted regulation of cortisol following psychological stress (Burke et al., 2005). The 

associated sustained hypercortisolaemia results in pathological changes to brain structures – 

particularly the hippocampus (Sapolsky, 2000, 2001) – which has generalised effects on 

patients’ ability to regulate emotion. Further evidence for an association between sustained 

hypercortisolaemia and depression comes from patients with Cushing’s syndrome (caused 

by excess administration of exogenous steroids or a pituitary tumour [Cushing’s disease]), 

who often exhibit mood disturbances characterised by a depressive-like affective state 

(Sonino et al., 1998).  

Recent work has explored the role of changes to GCR function through epigenetic or 

inflammatory mechanisms, and the resultant impact this has on HPA axis function. Whilst the 

mineralocorticoid receptor has a high affinity for cortisol (and therefore operates within its 

dynamic range at lower cortisol concentrations), the GCR has lower affinity for endogenous 

cortisol and therefore is thought to be important in stress response regulation when baseline 

levels of cortisol are higher (as is the case in depression). Converging evidence points to 
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GCR-related dysfunction in depression (TABLE 1-7) which manifests as ‘glucocorticoid 

resistance’ exhibited by depressed patients (Anacker et al., 2011). The focus on the GCR is 

not unwarranted because it is key in mediating the negative feedback loop critical in 

maintaining normal HPA axis function (see FIGURE 1-18). The efficacy of this negative 

feedback is affected by cortisol availability together with early life trauma, inflammation and 

(epi)genetic factors which influence GCR function and expression. Changes in the negative 

feedback loop may be normalised following treatment with antidepressants, and this may (in 

part) underlie their mechanism of action (Pariante and Lightman, 2008). An increased 

understanding of how antidepressants modulate responses to glucocorticoids in normal 

physiology and in the context of depression may lead to a better understanding of 

components of their efficacious action.  

References GCR-related abnormality 

(Bhagwagar et al., 2003, 2005; 

Juruena et al., 2009; Nemeroff et 

al., 1992; Pariante, 2009; Young et 

al., 1991, 2003) 

Higher cortisol levels in patients with depression (even 

after recovery) compared to controls, suggesting 

changes in feedback loops mediated by GCR: increases 

in cortisol levels may reflect a compensatory 

mechanism due to reduced sensitivity of GCRs 

(‘glucocorticoid resistance’)  

(Hayes and Ettigi, 1983; Heim et 

al., 2008; Nutt, 2001; The APA 

Task Force on Laboratory Tests in 

Psychiatry, 1987) 

Failure to suppress cortisol secretion after 

administration of dexamethasone, suggesting a non-

responsive GCR-dependent negative feedback loop 

(although evidence for this effect is variable) 

(Avissar et al., 1997; Bierhaus et 

al., 2003; Lowy et al., 1984; Maes 

et al., 1993; Wodarz et al., 1991) 

Impaired function of GCR-related pathways in peripheral 

blood mononuclear cells cultured from depressed 

patients 

(Binder et al., 2004; van Rossum 

et al., 2006) 

Polymorphisms in GCR-related genes predict 

susceptibility to develop depression together with 

differential responses to anti-depressants  

  
 

Table 1-7 Converging lines of evidence point to GCR-related dysfunction in depression. 

These include higher baseline cortisol levels; failure of dexamethasone suppression; impaired 

function of GCR pathways in peripheral blood cells; and polymorphisms in GCR-related genes 

associated with a predisposition to depression and differential treatment response. 

 

Note that changes in HPA activity and reactivity may represent a susceptibility to depression 

(rather than a cause) that manifests during early life (Pariante and Lightman, 2008). Early 

maternal separation in rodents and primates can produce long-lasting changes in HPA axis 

function, namely hyperactivity together with increased activity in CRH-sensitive circuits 

(Sánchez et al., 2001). A hyperactive HPA axis has also been identified in men with early life 

trauma using the dexamethasone suppression test (Heim et al., 2008). Epigenetic 

mechanisms may explain how these early life stressors result in persistent changes in the 

HPA axis, with current working focusing on cortisol-related genes such as the GCR (van 

Rossum et al., 2006; Weaver et al., 2006) and CRH (Korosi and Baram, 2008) genes. These 
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biological mechanisms may explain the correlation between early life stress and adult 

depression, although epigenetic changes in stress-related genes do not act in isolation and 

polymorphisms in other genes (e.g. 5HTT, see 1.5.1.4.3) also interact with negative life 

events. 

1.5.1.4.5 Dysfunction within monoamine systems  

The monoamine theory of depression asserts that the underlying pathophysiological basis of 

depression is depletion in the levels of 5HT, NA and/or dopamine (DA) in the central nervous 

system. Historically, initial approximations to a monoamine theory come from two nearly 

simultaneous discoveries in the 1950s – one being the psychotropic effects of reserpine; the 

other that iproniazid has an antidepressant effect (Baumeister et al., 2003).  

Reserpine was isolated as the active component of the dried root Rauwolfia (used in India at 

the time), known to lower BP. Reserpine was shown to have equal anti-hypertensive efficacy 

as Rauwolfia (Wilkins et al., 1954) and subsequently marketed as a sedative-

antihypertensive under the trade name Serpasil. Reports from India suggested that 

Rauwolfia was also effective in treating mental disturbances, and subsequently Kline 

demonstrated its use in schizophrenia in a placebo controlled trial – not to halt the 

‘schizophrenic process,’ but to produce sedation and reduce disruption in wards (Kline, 

1954). Although the therapeutic effects associated with reserpine were modest at best, 

reserpine was used extensively by psychiatrists in the mid-1950s. However its popularity 

rapidly declined, primarily due to the development of chlorpromazine as a more effective 

treatment for schizophrenia (Margolis, 1957), but also because of concerns that reserpine 

caused profound depression in some patients (Harris, 1957). 

Iproniazid was first used as an anti-tuberculosis compound in the 1950s following successful 

clinical trials demonstrating its profound clinical effects, halting the progression of 

tuberculosis together with reversing apathy and improving patients’ sense of well-being 

(Robitzek et al., 1952). Although initially attributed to improvements in lung function, side 

effects indicative of a central action of iproniazid (such as dry mouth, constipation and 

drowsiness) led to speculation that psychological improvements are due to an action in the 

brain. This triggered clinical trials assessing mood changes following iproniazid 

administration both in patients with tuberculosis and in psychiatric patients. These trials 

showed moderate efficacy for iproniazid in improving mood and treating depression: some 

promising findings (Crane, 1956; Delay et al., 1952; Salzer and Lurie, 1953) were tempered 

by negative results (Smith, 1953). Widespread introduction of iproniazid into the psychiatrists’ 

toolbox for treating depression is generally attributed with results from a uncontrolled clinical 

trial by Loomer et al. at Rockland State Hospital, New York, who reported improvement in 

mood in 70% of hospitalized patients treated with iproniazid at time-points between five 
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weeks and four months following initiation of treatment (Loomer et al., 1957). Following this 

study, 380,000 patients with depression were treated with iproniazid between 1957 and 1958 

(Floody et al., 1958) although its golden age was short-lived: iproniazid was withdrawn in 

1961 owing to an association with jaundice. 

Despite their short-lived clinical use, studies into the mechanism of action of reserpine and 

iproniazid were crucial in the development of the monoamine hypothesis of depression. 

Zeller and Barksy discovered that iproniazid is a potent inhibitor of the enzyme monoamine 

oxidase (MAO inhibitor, MAOi) (Zeller and Barsky, 1952). The subsequent finding that other 

MAOis (such as tranylcypromine) also had anti-depressant effects confirmed this as the 

mechanism of action for mood changes associated with the drug. The chemical similarity of 

reserpine and 5HT (both indolamines) led to the suggestion that reserpine works through an 

action on endogenous 5HT and subsequently, reserpine was found to deplete 5HT and the 

time-course of depletion matched the time-course of reserpine’s therapeutic action and 

negative mood induction (Brodie et al., 1956). Later work revealed reserpine’s action more 

precisely: namely, to deplete catecholamines through its role as an irreversible vesicular 

monoamine transporter (VMAT) inhibitor (Henry and Scherman, 1989). 

The link between the action of these drugs on central amines (iproniazid to enhance and 

reserpine to deplete) and their psychological effects (iproniazid to enhance mood and the 

reserpine to reduce mood) led to early formulations of the monoamine hypothesis 

(Baumeister et al., 2003) as outlined by Everett and Toman: 

“One may speculate on the possible role of centrally active amines present 

in the brain in the normal activity and general responsiveness of an 

individual. An excess of these might result in irritability, restlessness and 

aggressiveness. In the opposite direction, a deficiency of these substances 

would result in depressions and general lassitude.” (Everett and Toman, 

1959) 

Although this was an early instantiation of the monoaminergic theory, it was not until 

Schildkraut integrated multiple lines of evidence that a compelling biochemical theory of 

depression was developed (Schildkraut, 1965). Schildkraut’s hypothesis asserted that drugs 

decreasing monoamines result in depression, whereas drugs increasing monoamines 

decrease depression. The focus towards 5HT (over other neurotransmitters) developed from 

this, owing to a gradual accumulation of numerous lines of evidence:  

• Tryptophan loading: In both healthy controls and patients with schizophrenia, 

ingestion of tryptophan – the precursor of 5HT – produces elevated mood (Oates and 

Sjoerdsma, 1960; Pollin et al., 1961; Smith and Prockop, 1962). Tryptophan was also 
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shown to potentiate the antidepressant action of the MAOi tranylcypromine (Coppen 

et al., 1963). 

• 5-hydroxyindoleacetic acid (5HIAA) concentrations in cerebrospinal fluid (CSF): 

Ashcroft and Sharman estimated the concentration of the 5HT breakdown product 

5HIAA in human CSF of controls and depressed patients (Ashcroft and Sharman, 

1960). They found reduced 5HIAA in the depressed group. Based on this, they 

reasoned that 5HT concentrations were also decreased.  

• Action of tricyclic antidepressants (TCA): Insight into the molecular mechanisms 

behind the action of the prototypical TCA imipramine on mood further bolstered the 

serotonergic version of the monoamine hypothesis. Marshall and colleagues 

discovered that imipramine blocked 5HT reuptake into platelets (Marshall et al., 

1960). 

These converging lines of evidence led Coppen to propose the 5HT version of the 

monoamine hypothesis (Coppen, 1967): depression is the result of low levels of central 5HT. 

This hypothesis gained momentum following the success of Selective Serotonin Reuptake 

Inhibitors (SSRIs) as first-line therapies for depression, together with the effect of acute 

tryptophan depletion to lower mood (Young et al., 1985) and induce depression relapse 

(Leyton et al., 2000). However, the role of catecholamines such as NA in depression was not 

neglected: imipramine was also shown to block NA reuptake in pre-synaptic terminals 

(Axelrod, 1964) and Serotonin-noradrenaline reuptake inhibitors (SNRIs) such as venlafaxine 

and duloxetine have also been developed as effective antidepressant agents. Since these 

initial proposals, the relative contribution of reduced 5HT vs. reduced NA to the depressive 

phenotype has been debated. TCAs such as imipramine and clomipramine act as SNRIs by 

blocking the reuptake transporters for both NA and 5HT approximately equally (with minimal 

effect on the DA reuptake transporter). It is possible that reductions in 5HT and NA are linked 

to different aspects of depression – drugs that increase NA appear to be better at improving 

symptoms of apathy, anhedonia and fatigue, whereas drugs that increase 5HT tend to 

elevate mood and improve ‘painful’ symptoms of depression such as guilt and distress 

(Moret and Briley, 2011; Nutt, 2008; Nutt et al., 2007). 

The monoamine theory of depression – in its various forms – has stimulated vast amounts of 

informative research regarding the neurobiological and neurochemical mechanisms of 

depressive disorders. At its heart, however, the idea behind the monoamine/5HT theory is 

correlative: reduced monoamine levels are correlated with low mood, and increased 

monoamine levels are correlated with the therapeutic effects of antidepressants (such as 

MAOis and TCAs) – therefore low monoamine availability is the cause of low mood and 

depression.  
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Additionally, the theory struggles to explain several features of SSRI/SNRI action:  

• Moderate efficacy of monoamine-based antidepressants: First-line treatment with 

antidepressant drugs which target the monoamine systems achieve remission rates 

of 50% over 12 weeks of treatment (Rush et al., 2006a). 

• Time-lag in drug action: There is a temporal discrepancy between the immediate 

effects of SSRI/SNRIs on the availability of monoamines at synapses (within 

minutes/hours) and the therapeutic effects of the drugs (3 weeks or longer) (Heninger 

et al., 1996; Hyman and Nestler, 1996). Multiple delayed pharmacological effects of 

antidepressants have been identified which could explain the time-lag (Frazer and 

Benmansour, 2002) – including effects on second-messenger systems (Popoli et al., 

2000) and on neural plasticity (Duman et al., 1999) – suggesting effects beyond 

simple increases in monoamine availability.  

• Actions of tianeptine: A potential problem with the monoamine hypothesis is related 

to the action of tianeptine, which may treat depression through its action as a 

selective serotonin reuptake enhancer (SSRE) (McEwen et al., 2010). Its role as an 

SSRE is directly opposite to SSRIs but its efficacy is well documented (Kasper and 

McEwen, 2008). However, whether tianeptine truly is an SSRE is not clear, as it fails 

to increase or decrease 5HT levels in the cortex of conscious rats and does not 

appear to have any measurable sustained effects on 5HT handling (McEwen et al., 

2010). The antidepressant effects of tianeptine may be through long-term 

neuroplastic and structural changes in neurons of structures within the limbic system. 

Recently, tianeptine has been shown to be an agonist at the µ-opioid receptor, with 

opiate-like properties of analgesia and reward without tolerance and withdrawal 

(Samuels et al., 2017). 

Therefore, whilst the monoamine theory does carry explanatory weight, (i) changes in 

monoaminergic neurotransmission alone are unlikely to account for all cases of depression 

and (ii) the antidepressant actions of monoamine-based therapies may be related to 

downstream, neuroplastic changes rather than acute effects associated with short-term 

increases in monoamine concentrations. 

1.5.1.4.6 Dysfunction within the glutamatergic system and neuroplastic changes 

The glutamate theory of depression suggests that the pathophysiology of depression is 

caused by malfunction in mechanisms regulating the central clearance and metabolism of 

glutamate. This results in structural and functional changes in multiple brain areas including 

those involved in the regulation of emotion, cognition and visceromotor function (Sanacora et 

al., 2012). The complexity and variety of changes that can be induced from insults to the 
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glutamatergic system may explain (in part) the array of behavioural and psychological 

symptoms of depression which can vary widely between individuals. 

The glutamate hypothesis formed based on a similar line of reasoning to the monoamine 

theory: drugs which act on the glutamatergic system can have antidepressant effects. For 

example, NMDA receptor antagonists (such as AP-7 and MK-801) exert an antidepressant 

action in rodent inescapable stress models of depression (Trullas and Skolnick, 1990). The 

subsequent emergence of a glutamate theory of depression was largely due to its role as the 

major excitatory neurotransmitter in the central nervous system (CNS) (Orrego and 

Villanueva, 1993). In the neocortex, 85% of all synapses are glutamatergic (Douglas and 

Martin, 2007), and glutamate is therefore significantly more prevalent than other 

neurotransmitters in the brain (including 5HT, NA, DA and – to a lesser extent – gamma-

aminobutyric acid, GABA). Indeed, the multi-faceted role of the monoamine 

neurotransmitters in sleep, motivation, emotion and cognition may ultimately depend on 

changes in excitatory glutamatergic neurotransmission (and its balance with inhibitory 

GABAergic tone). There are multiple lines of clinical evidence suggesting glutamatergic 

dysfunction in mood disorders: 

• Changes in peripheral and central glutamate levels from blood and tissue 

samples. Elevated glutamate content has been observed in depressed individuals’ 

plasma compared to controls (Altamura et al., 1995; Kim et al., 1982) Within the CNS, 

post-mortem samples from unipolar and bipolar depressed patients indicate 

increased glutamate levels in the frontal cortex (Hashimoto et al., 2007). 

• Changes in central glutamate levels from in vivo magnetic resonance 

spectroscopy (MRS) studies. In vivo MRS facilitates the assessment of glutamate 

levels in targeted neuroanatomical regions, and avoids the practical difficulties 

associated with post-mortem tissue collection. However, it is difficult to assign a 

resonance peak to glutamate exclusively so a combined measure term (Glx) is 

calculated which predominantly reflects glutamate levels but also contains glutamine. 

Since the first study demonstrating an association between mood and Glx measures 

(decreased Glx correlated with a single patient’s transient experience of suicidal 

depression) (Cousins and Harper, 1996) there have been multiple studies examining 

the relationship between glutamate and its related metabolites, and mood. The 

results are variable, although trends have emerged from the literature including (i) 

reduced Glx in the frontal/cingulate regions in patients with major depressive disorder 

(MDD) in the midst of an episode (Auer et al., 2000; Hasler et al., 2007a; Michael et 

al., 2003); (ii) elevated Glx in the parietal-occipital regions in patients in an acute 

depressive episode (Sanacora et al., 2004), in remission (Bhagwagar et al., 2005) 
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and in at risk groups (Taylor et al., 2011); and (iii) increased Glx in the frontal cortex 

of elderly patients with MDD (Binesh et al., 2004) and post-stroke depression 

(Glodzik-Sobanska et al., 2006; Wang et al., 2012). Overall, the Glx values seem to 

vary significantly by brain region, subtype of mood disorder and age of onset. 

• Changes in glial cell function. Astrocytes are critically involved in the regulation of 

glutamate levels in the brain through the glutamine-glutamate cycle. Reduced glial 

cell density has been repeatedly reported in depression (Cotter et al., 2001; Ongür et 

al., 1998b; Rajkowska et al., 1999). Importantly, reduced expression of the excitatory 

amino acid transporters (EAAT1, EAAT2) – located on astrocytes – has been 

identified in depressed patients (Bernard et al., 2011; Choudary et al., 2005a; Miguel-

Hidalgo et al., 2010; Sequeira et al., 2009) which would result in impaired glutamate 

clearance from the synaptic space and dysfunctional glutamate/glutamine cycling. 

These findings are highly relevant to the experiments in this thesis, as the principle 

drug used to over-activate subregions of the vmPFC is dihydrokainic acid (DHK, used 

in Chapter 3, Chapter 4 and Chapter 5) – an EAAT2 inhibitor. 

• Changes in glutamatergic synapses following stress. Stress and inappropriate or 

excessive activation of the HPA axis is associated with low mood and the 

development of depression (see 1.5.1.4.4). Acute stress seems to induce glutamate 

release in the hippocampus, amygdala and prefrontal cortex through rapid non-

genomic mechanisms (see (Sanacora et al., 2012)), although the impact of chronic 

stress is less well characterized. Direct administration of cortisol has also been shown 

to increase membrane trafficking of AMPA receptor subunits (Groc et al., 2008), and 

stress paradigms increase activity within NMDA and AMPA receptor mediated circuits 

in rat pyramidal neurons (Yuen et al., 2009). These lines of evidence suggest that the 

effects of stress – including deleterious effects on mood – may be mediated at least 

in part by alterations in glutamatergic neurotransmission.  

• The influence of antidepressants on the glutamate system. Antidepressants 

appear to modulate NMDA receptor function (Paul et al., 1994) and influence the 

expression of NMDA receptor subunits at synapses (Boyer et al., 1998). In so doing, 

these drugs influence glutamate-mediated functions such as LTP, although the 

magnitude and direction of effects are somewhat mixed and vary depending on brain 

area (Pittenger and Duman, 2008). Amongst the most consistent effects are reports 

of reduced hippocampal LTP after both acute (Kojima et al., 2003) and chronic 

(Stewart and Reid, 2000) antidepressant treatment. 

In addition to influencing the function of glutamate receptors, a number of studies 

have also found that antidepressants attenuate the release of glutamate in the frontal 

cortex and hippocampus (Bonanno et al., 2005; Tokarski et al., 2008). This effect to 
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reduce glutamatergic tone has led to the suggestion that antidepressants limit the 

excess of glutamate overflow induced by acute/chronic stress. This has been 

corroborated by animal studies: for example, tianeptine abolishes increases in 

extracellular glutamate induced in the amygdala following restraint stress (Reznikov 

et al., 2007). 

Excitingly, pharmacological agents with a direct action on the NMDA receptor have 

shown promise as highly effective antidepressants. The prototypical glutamate-based 

antidepressant is ketamine, an NMDA receptor antagonist. Multiple clinical trials have 

illustrated the rapid and relatively sustained effects of one-off ketamine doses in 

treating symptoms of depression (Berman et al., 2000; Diazgranados et al., 2010; 

Liebrenz et al., 2007; Murrough et al., 2013a, 2013b; Valentine et al., 2011). The 

beneficial effects of ketamine have also been observed in a number of animal studies 

(Autry et al., 2011; Du et al., 2006; Garcia et al., 2009; Koike et al., 2011; Maeng et 

al., 2008).  

The glutamate hypothesis has evolved to incorporate multiple lines of evidence which 

suggest changes to synaptic function, altered synaptic plasticity and circuit-level remodelling 

are cardinal features of depression: this is termed the neuroplasticity hypothesis (Pittenger 

and Duman, 2008). The hypothesis asserts that (i) plastic changes induced by glutamatergic 

transmission can be adaptive (plastic changes induced by learning and exercise) as well as 

maladaptive (plastic changes associated with mood disorders) and (ii) therapeutic treatments 

(such as antidepressants) can reverse maladaptive plastic changes (Bessa et al., 2009; 

Hajszan et al., 2009; Norrholm and Ouimet, 2001). 

The majority of neuroplastic changes associated with depression take place within the 

glutamatergic system (Sanacora et al., 2012). Simply by virtue of its prevalence, 

glutamatergic transmission is crucial in the generation and regulation of emotion. 

Accumulating evidence suggests that there are neuroplastic changes in prefrontal cortico-

limbic circuits mediating aspects of emotion that are responsible (at least in part) for 

symptoms of depression. In particular, stress-related animal models of depression show that 

stress can cause widespread changes in the glutamate system together with structural-

morphological changes in the synapses and dendrites of prefrontal cortical neurons (Holmes 

and Wellman, 2009; McEwen, 2005; Shansky and Morrison, 2009). These widespread 

structural changes can result in changes in gross morphology, potentially explaining 

volumetric changes observed in post-mortem imaging studies of depressed brains 

(Koolschijn et al., 2009; Lorenzetti et al., 2009). 

Glutamatergic neurotransmission undoubtedly interacts with the monoaminergic systems 

(Pralong et al., 2002), but given its critical role in regulating emotion and cognition and its 
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abundance as a neurotransmitter, several researchers have called for a greater focus on the 

glutamate system as a final common pathway for depressive symptoms and therapeutic 

treatments. This shift in focus may have therapeutic implications: there are no approved 

antidepressant agents directly targeting the glutamate system, but less than one-third of 

depressed patients achieve remission with current monoamine-based therapies (Trivedi et 

al., 2006). Glutamate-based strategies therefore represent a novel avenue to be explored for 

more effective antidepressants. 

1.5.1.4.7 Dysfunction within the endogenous opioid system 

Preclinical evidence suggests that activation of opioid receptors has antidepressant-like 

effects, with agonists decreasing immobility time in the tail-suspension test (Berrocoso et al., 

2013). The effects of these agonists are blocked by the non-selective opioid-receptor 

antagonist naloxone (Zomkowski et al., 2005). However, this evidence does not causally 

implicate reduced opioid transmission in depression-like behaviours. Indeed, the non-

selective opioid receptor antagonist naloxone has no effect on the forced swim test, but does 

diminish the efficacy of TCAs to reduce immobility time (Devoize et al., 1984) suggesting that 

these antidepressants exert some of their effects by modulating opioid transmission. The 

lack of effect of naloxone on these tests may relate to its lack of selectivity as an antagonist, 

as the different classes of opioid receptor are proposed to have different functions.   

The relevance of different opioid receptor subtypes, including the µ-opioid receptor, δ-opioid 

receptor and κ-opioid receptor, remains unclear. For instance, whilst some have suggested 

that the µ- and δ-subtypes exhibit antidepressant effects, whereas activation at the κ-subtype 

induces depressive-like states (Peciña et al., 2018). However, mice with µ-receptor 

knockouts exhibit decreased anxiety and depressive-like behaviours, δ-receptor knockouts 

exhibit the opposite pattern and κ-receptor knockouts have no effect (Lutz and Kieffer, 2013). 

More preclinical work is necessary to comprehensively disentangle the roles of different 

opioid receptors.  

Evidence in humans supports a role for opioid transmission in MDD. Opioid agonists such as 

morphine and heroin are euphorigenic, and opioid receptors are prevalent in limbic brain 

structures suggesting that opioid transmission is important in mood (Lutz and Kieffer, 2013). 

Opioid neurotransmission has been linked to emotional resilience and reduced negative 

affect (Hsu et al., 2013), and attenuated functioning of the endogenous opioid system has 

been observed in depressed patients during social rejection situations which require emotion 

regulation (Hsu et al., 2015). 

Clinically, 51% of all opioid prescriptions for pain are for the 16% of Americans who suffer 

from comorbid depression and anxiety (Davis et al., 2017), and substance abuse disorders – 
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including opioid abuse – are highly comorbid with depression, leading to the suggestion that 

patients with mood disorders may be using opioid agonists to ‘self-medicate’ for the 

symptoms of their disorder in these instances (Markou et al., 1998; Peciña et al., 2018). 

Furthermore, substance use disorders (including opioid abuse) The use of opioid agonists to 

treat symptoms of depression dates back hundreds of years, although the risks of abuse and 

overdose have limited their therapeutic potential. Nevertheless, the effects of intravenous 

infusions of endorphin peptide preparations have been evaluated, showing substantial 

improvements of depressive symptoms within hours of administration (Gerner et al., 1980; 

Kline et al., 1977; Pickar et al., 1981). More recently, the partial µ-opioid receptor agonist 

buprenorphine has been extensively investigated – its partial agonism properties having 

safety advantages and reducing the likelihood of abuse. Its antidepressant action may also, 

in part, be contributed to by antagonism at the κ-opioid receptor (Carlezon et al., 2009). Both 

intravenous (Emrich et al., 1982) and sublingual (Bershad et al., 2018) administration of low-

dose, sub-euphoric buprenorphine seems to have therapeutic potential in the treatment of 

depression. Low-dose buprenorphine also reduces suicidality in acutely suicidal patients 

(Yovell et al., 2015). Therefore, the opioid system represents a promising therapeutic target 

for the treatment of depression.  

1.5.1.5 Treatment of Depression 

Treatment goals include: eradicating symptoms; minimizing impact of symptoms on daily 

functioning and quality of life; reducing suicidality; minimizing treatment side-effects; and 

preventing relapse. Treatment is multi-faceted and nuanced, including medication, 

psychotherapy, and supportive interventions, together with more interventional measures 

such as electroconvulsive therapy (ECT) and DBS. Evidence emphasises the importance of 

integrated, collaborative care (including a multi-professional approach, a structured 

management plan, scheduled follow-up and communication between service providers) 

which improves depressive and anxiety symptoms (together with increasing medication 

compliance when compared to standard care) with benefits sustained for up to 2 years 

(Cochrane Clinical Answers, 2014). 

1.5.1.5.1 Psychotherapy 

Psychotherapy is recommended for all patients with depression. Therapists utilise a 

combination of cognitive behavioural therapy (CBT) (Cuijpers et al., 2013), interpersonal 

psychotherapy (IPT) (Cuijpers et al., 2011) and problem-solving therapy (Bell and D’Zurilla, 

2009). CBT seems to be particularly effective, having an enduring effect to reduce risk of 

relapse after treatment ends (Hollon et al., 2005). Data from clinical trials suggest a 

synergistic effect of CBT with antidepressant therapies in treatment-resistant depression 

(Wiles et al., 2013). 
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Psychological interventions such as CBT and IPT are associated with neurobiological 

changes. Two of the most consistent findings in this regard is that a hypometabolic dlPFC 

shows increases in activity following successful psychological intervention whereas a 

hypermetabolic sgACC/25 shows decreases in activity (Mayberg et al., 1999). 

1.5.1.5.2 Pharmacotherapy for depression: first-, second- and third-generation 

antidepressants2  

Treatment with second-generation or third-generation antidepressants is considered first-line 

therapy for moderate-severe depression. Antidepressant medications are superior to placebo 

in the treatment of depression (Cipriani et al., 2018; Gibbons et al., 2012). Whilst some 

studies show no robust differences between different antidepressants in their safety profiles 

or efficacy (Gartlehner et al., 2011), recent work suggests that there may be important 

variability in efficacy and acceptability (Cipriani et al., 2018). More severe cases of 

depression seem to benefit more from antidepressant therapy (Calati et al., 2013; Kirsch et 

al., 2008). Whilst the causal mechanisms are unclear, the first few weeks of SSRI use are 

associated with an increased risk of suicidal thoughts in patients under 25 years of age 

(Gunnell et al., 2005; Miller et al., 2014a; Saperia et al., 2006), although the ultimate effect of 

successful treatment with SSRIs is to reduce suicidal ideation (Rucci et al., 2011). 

TCA monotherapy (first-generation antidepressants such as amitriptyline, desipramine, 

imipramine, nortriptyline) is generally considered a second-line treatment option. TCAs inhibit 

both 5HT and NA reuptake and have more side effects compared to their SSRI counterparts, 

and so are less frequently used in clinical settings. MAOis are considered third-line choices 

and are rarely used. MAOis interact with many other drugs and food types and are counter-

indicated in patients with hypertension (see BMJ Best Practice: Depression in adults, 

https://bestpractice.bmj.com/topics/en-gb/55).  

Combination therapy is also possible, and augmentation strategies have been shown to 

improve antidepressant response; atypical antipsychotic augmentation has the most 

extensive evidence base (Spielmans et al., 2013). Bupropion – a noradrenaline-dopamine 

reuptake inhibitor – can work synergistically with SSRIs to enhance the antidepressant 

response and reduce side-effects (Zisook et al., 2006). Combination therapy with mirtazapine 

may be beneficial for treatment-refractory patients, although side effects are evident at doses 

                                                 
2 The terms ‘first-generation antidepressant,’ ‘second-generation antidepressant’ and ‘third-generation 
antidepressant’ refer to the approximate era of introduction, rather than any similarity in chemical 
structure or mechanism of action. First-generation antidepressants were introduced in the 1950s and 
1960s, and predominantly include tricyclic antidepressants (TCA) such as imipramine, together with 
iproniazid and isoniazid. Second-generation antidepressants were introduced in the 1970s and 1980s 
and include bupropion, tianeptine and amineptine. Third-generation antidepressants were introduced 
in the 1990s and 2000s, and include SSRIs such as fluoxetine, citalopram and sertraline together with 
SNRI antidepressants such as venlafaxine and duloxetine. 

https://bestpractice.bmj.com/topics/en-gb/55
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that have been tested (Carpenter et al., 1999). There is also some evidence for lithium 

augmentation strategies, but there are inconsistencies across studies (see (Fleurence et al., 

2009)). 

1.5.1.5.3 Pharmacotherapy for depression: novel antidepressants 

The use of antidepressant treatments such as those mentioned above has transformed the 

practice of psychiatry and provided relief to millions of patients. However, these medications 

are partially effective: only 37% of patients achieve remission following 12 weeks of 

citalopram treatment, suggesting that up to two-thirds of patients will remain ill despite first-

line antidepressant therapy (Murrough, 2012; Rush et al., 2006b). Even for patients who do 

eventually respond, there is a protracted delay of >3 weeks before current antidepressants 

start to work (Machado-Vieira et al., 2010). Patients who fail to respond to multiple first-line 

therapies are considered treatment resistant and will have higher symptom burden together 

with a more chronic illness course.  

The shortfalls of current therapy have prompted a drive to develop new antidepressants. The 

NMDA receptor antagonist ketamine has shown significant promise as a rapidly acting, 

potent antidepressant effective in treatment-resistant populations. The impetus to trial 

ketamine as an antidepressant resulted from a number of drivers: (i) an implication of 

glutamate in the pathophysiology of depression (see 1.5.1.4.6); (ii) the efficacy of NMDA 

receptor antagonists in animal models of depression (Layer et al., 1995; Trullas and 

Skolnick, 1990); (iii) the effect of antidepressants on NMDA receptor function; and (iv) 

preliminary data suggesting efficacy of weak NMDA receptor antagonists in depression (such 

as amantadine) (Vale et al., 1971).  

An antidepressant response associated with ketamine was first reported in 1998 in the 

context of eating disorder treatment (Mills et al., 1998). Patients received between two and 

nine ketamine infusions at intervals of five days to three weeks. As well as reducing 

compulsion scores, administration of ketamine significantly reduced eating disorder-

associated negative mood changes. The first placebo-controlled, double-blinded trial to 

assess the effects of a single dose of ketamine in depressed patients came two years later in 

2000, where seven depressed subjects underwent IV infusions with either ketamine (at a low 

dose of 0.5mg/kg, over 40 minutes) or saline (Berman et al., 2000). Compared to placebo, 

subjects infused with ketamine showed a rapid yet modest reduction in depressive symptoms 

(measured by the Hamilton Depression Rating Scale, HDRS) four hours after infusion, with a 

larger antidepressant response building over 24-72 hours later (FIGURE 1-21). The authors 

noted that the antidepressant response seems “temporally disconnected from the ketamine-

induced euphoria,” highlighting that the depressant response is maximum between one and 
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three days after infusion, whereas feelings of being ‘high’ returned to baseline after a few 

hours.  

 

Figure 1-21 Efficacy of a single IV infusion of ketamine in treating symptoms of depression. 

Figure adapted from Berman et al., 2000. Hamilton Depression Rating Scale (HDRS) scores were 

measured at 4 hours, 24 hours, 48 hours and 72 hours after a forty-minute IV ketamine infusion. 

Compared to infusions of placebo (saline vehicle), ketamine produced a modest reduction in HDRS 

score at 4 hours, but greatly abrogated depressive symptoms 24, 48 and 72 hours later. 

 

Since this initial study, further trials have been conducted assessing the efficacy of ketamine 

together with determining optimal parameters for its administration. This means systematic 

reviews have now been carried out to review the acceptability of ketamine (and other 

glutamate-based therapies) in the treatment of depression. One such review found an effect 

of ketamine at 24 hours, 72 hours and one week after infusion but not at two weeks (Caddy 

et al., 2015) – however, no significant results were found with other glutamate receptor 

modulators.  

Clinically, different routes of administration have also been tested. Typically, ketamine has 

been given intravenously at a dose of 0.5mg/kg in 50-100ml of normal saline over 40 minutes 

(Rao and Andrade, 2010). Two studies have also reported efficacy of intramuscular ketamine 

in depression (Chilukuri et al., 2014; Harihar et al., 2013), also demonstrating a rapid 

response within hours. To improve patients’ experience of ketamine therapy, oral and 

intranasal administration has been investigated. For example, a recent retrospective review 

looking at long-term oral ketamine treatment for depression has demonstrated a 70% 

reduction in inpatient hospital days and 65% reduction in admission associated with the 

therapy, together with minimal adverse events (Hartberg et al., 2017). Other studies have 

reported more modest benefits following open-label treatment with oral ketamine, indicating a 
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need for further exploration of optimal therapeutic parameters (such as dose and frequency 

of administration) (Al Shirawi et al., 2017). A recent randomized control trial of intranasal 

ketamine in major depressive disorder showed a significant improvement in depressive 

symptoms 24 hours after nasal spray of ketamine compared to placebo: response criteria 

were attained by 44% of patients with ketamine spray compared to 6% with placebo (Lapidus 

et al., 2014). An examination of the results of this study shows that a 30% reduction in 

depression scores had been achieved only 40 minutes after intranasal ketamine. Other 

reports suggest an action of intranasal ketamine on depression and anxiety symptoms in 

under 20 minutes (Opler et al., 2016). Although this time course overlaps with the 

psychoactive effects of ketamine, patients generally report feeling calmer and less anxious, 

rather than dissociated. Interestingly, the ‘ultra-rapid’ efficacy of intranasal ketamine is 

thought to be due to an effect of the spray on vmPFC subregions which lie directly above the 

cribriform plate, including sgACC/25 (Opler et al., 2016). 

The mechanism of action of ketamine is poorly understood. In vivo at clinical dose ranges, it 

is a selective NDMA receptor antagonist but it has effects on many other receptors (Tyler et 

al., 2017) – although these effects are weaker than its action at the NMDA receptor (Roth et 

al., 2013). Several hypotheses have been proposed regarding ketamine’s antidepressant 

action: 

• Disinhibition hypothesis. Despite being an NMDA receptor antagonist, in 1997 it 

was reported that ketamine increases prefrontal activity in healthy volunteers (Breier 

et al., 1997) thought to be due to NDMA receptor inhibition on GABAergic 

interneurons (Zanos and Gould, 2018). Interestingly the NMDA receptor antagonist 

MK-801 has been shown to inhibit fast-spiking interneurons in the prefrontal cortex, 

with a resultant increase in pyramidal neuron firing (Homayoun and Moghaddam, 

2007). At latencies similar to its antidepressant action, ketamine enhances gamma-

band electroencephalography power which is thought to be related to cortical 

disinhibition (Pinault, 2008). However, disinhibition is unlikely to fully explain 

ketamine’s antidepressant action because mice lacking (GluN1-containing) NMDA 

receptors on parvalbumin-expressing inhibitory interneurons retain ketamine’s 

antidepressant effect (Pozzi et al., 2014). 

• Inhibition of spontaneous NMDA receptor-mediated transmission. Spontaneous 

release of glutamate occurs at rest as vesicles randomly fuse with the presynaptic 

terminal membrane, leading to miniature excitatory post-synaptic potentials 

(mEPSPs). Ketamine and MK-801 have been shown to block NMDA receptor-

mediated mEPSPs at rest, leading to inactivation of CaMKIII and de-suppression of 
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BDNF expression via reduced eEF2 phosphorylation – and the antidepressant effects 

depend on this rapid upregulation of BDNF (Autry et al., 2011). 

• Inhibition of extra-synaptic NMDA receptors. GluN2B-containing heterotetrameric 

NMDA receptors are the principal NMDA receptor subtype located outside of synaptic 

densities. These receptors are not activated by transient glutamate-dependent 

neurotransmission within the synapse; instead, they are activated by tonic, low-levels 

of ambient glutamate in the extracellular space (Rothstein et al., 1996). One 

hypothesis posits that ketamine acts to inhibit these extra-synaptic NMDA receptors, 

and it has been shown that GluN2B-containing NMDA receptor knockout markedly 

reduces the antidepressant effects of ketamine in a mouse model (Miller et al., 

2014b). However, in humans, the GluN2B-selective NMDA receptor antagonist 

traxoprodil does not induce as rapid antidepressant effects as ketamine (Preskorn et 

al., 2008), and the GluN2B-preferring NMDA receptor antagonist MK-0657 produces 

modest (and slower) antidepressant benefits (Ibrahim et al., 2011), suggesting that 

the antidepressant action of ketamine is not solely down to GluN2B-containing NMDA 

receptor antagonism.  

• NMDA receptor-independent mechanisms. An important issue with NMDA 

receptor-dependent theories is that data from clinical trials suggest that alternative 

NMDA receptor antagonists fail to show the rapid/robust/long-lasting effects of 

ketamine (Newport et al., 2015). Ketamine is a racemate of (S)-ketamine and (R)-

ketamine, and whilst the former has a greater NMDA receptor affinity, the latter 

appears to have more potent antidepressant effects in preclinical studies (although 

both do exert an effect in this regard) (Zanos et al., 2016). To date there are no 

human trials directly comparing the two enantiomers.  

Importantly, following ketamine administration, the metabolites of the ketamine 

enantiomers – (2R,6R) and (2S,6S)-hydroxynorketamine (HNK) – are found in the 

plasma of mice and humans. Chemically altering ketamine by deuterating the C6 

position does not change its affinity for NMDA receptors, but prevents its metabolism 

into HNK and appears to prevent the antidepressant action of ketamine in mice 

(Zanos et al., 2016). Furthermore, administration of (2R,6R)-HNK has particularly 

potent antidepressant effects without acting on the NMDA receptor and without any 

locomotor side effects at effective doses – instead, the efficacy of this metabolite 

enantiomer seems to be dependent on activation of AMPA receptors (Zanos et al., 

2016).  

Ketamine has been touted as the most important advance in the treatment of depression in 

the past half-century (Duman and Aghajanian, 2014). However, knowledge about ketamine 

treatment is still incomplete and lacking. More data are needed to support the long-term 
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safety and efficacy of repeated ketamine dosing (including measuring misuse) (Singh et al., 

2017), together with its actions at a neurochemical and neurobiological level. Several of the 

experiments described later in this thesis will address the specific symptom domains in which 

ketamine is effective, together with the neurobiological substrates involved in its efficacious 

action (Chapter 4 and Chapter 5).  

1.5.1.5.4 Non-invasive neurostimulation: electroconvulsive therapy, magnetic seizure 

therapy, transcranial direct current stimulation and repetitive transcranial magnetic 

stimulation  

Electroconvulsive therapy (ECT) – involving the electrical induction of seizures – is the oldest 

neurostimulation therapy for treating treatment resistant depression (Müller et al., 2018). It 

has shown to be effective (UK ECT Review Group, 2003) and is currently the most common 

therapeutic option for severe, recurrent depression when medication and psychotherapy has 

been unsuccessful (Kellner et al., 2012). The neurobiological basis for the efficacy of ECT is 

unclear, because ECT produces widespread changes in grey matter volume of limbic and 

paralimbic structures including pgACC/32, sgACC/25 and other regions of vmPFC/ACC 

(Dukart et al., 2014; Ota et al., 2015; Tendolkar et al., 2013). Magnetic seizure therapy 

(MST) is a non-invasive convulsive therapy eliciting a generalized tonic-clonic seizure and is 

being investigated as an alternative to ECT for use during general anaesthesia (where there 

are added benefits of assisted ventilation and continuous electroencephalography [EEG] 

monitoring). Although preliminary data suggest that MST may have fewer side effects than 

ECT, it is still in experimental stages (Allan and Ebmeier, 2011). 

Not all neurostimulation techniques induce seizures. Transcranial direct current stimulation 

(tDCS) involves stimulation of cortical areas using a low-intensity direct current (Palm et al., 

2016). Stimulation is focused on left dlPFC with the rationale that this ameliorates the 

hypoactivity reported in depressed patients (Mayberg, 1997). tDCS is well-tolerated with 

minimal side-effects, and results in a moderate reduction of depressive symptoms (Meron et 

al., 2015). A similar, non-seizure inducing therapy, is repetitive transcranial magnetic 

stimulation (rTMS), involving the external delivery of magnetic pulses to the cortex which 

induce an electrical potential in brain tissue to depolarize neurons (McClintock et al., 2018). 

Low frequency rTMS inhibits cortex, whereas high frequency stimulation appears to activate 

cortex (Bakker et al., 2015). Whilst response rates for rTMS are relatively high at 

approximately 60%, the associated antidepressant effect is small and transient without 

maintenance treatment (Kedzior et al., 2015). Current evidence suggests that rTMS could be 

useful as a treatment strategy alongside other first-line therapies such as pharmacotherapy 

and psychological therapy, and may be a useful therapeutic avenue to pursue before trying 

ECT (Perera et al., 2016). 
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1.5.1.5.5 Invasive neurostimulation: vagal nerve stimulation 

Initially developed for epilepsy, vagal nerve stimulation (VNS) involves a minor surgical 

intervention to implant a pulse generator subcutaneously in the chest, connected to an 

electrode attached to one of the vagus fibres in the neck (Elliott et al., 2011). Stimulation of 

the vagus nerve at the point of contact sends impulses in a predominantly retrograde fashion 

from the periphery to the NST. This modulates activity in a wide array of brainstem and 

cortical targets including the vmPFC (Müller et al., 2018; Pardo et al., 2008). 

Beyond these general effects on neural circuits, the precise mechanism of action of VNS 

remains largely unknown, and particularly poorly understood is the finding that beneficial 

effects from VNS tend to accrue over months and years (Nahas et al., 2005). Functional 

neuroimaging studies have nevertheless provided several insights. Zobel and colleagues 

found widespread decreases in rCBF after four weeks of VNS, including in pgACC/32 and 

BA10 (Zobel et al., 2005). Subsequent studies have generally corroborated these findings, 

showing metabolic changes in sgACC, pgACC and rostral vmPFC regions (Conway et al., 

2006; Critchley et al., 2007; Nahas et al., 2007). Pardo and colleagues report that the most 

significant, extensive change over one year of chronic VNS is baseline hypometabolism 

localised to the vmPFC, extending from sgACC/25 to rostral BA10 (Pardo et al., 2008). 

1.5.1.5.6 Surgical therapies 

Surgical interventions are reserved for severe, treatment-resistant cases of depression. 

Surgical therapy for depression has a long history – early psychosurgical procedures such as 

the prefrontal leucotomy (involving complete white matter disconnection of large swathes of 

mPFC, lPFC and OFC) were dangerous and associated with persistent side effects including 

apathy, anhedonia and a change in personality (Catani et al., 2013). More recently, refined 

techniques and a more extensive understanding of the neurobiological changes associated 

with mood disorders has facilitated the development of targeted surgical interventions 

(Abosch and Cosgrove, 2008; Catani et al., 2013) (FIGURE 1-22). These include: 

• Cingulotomy: This involves bilateral lesions of the ACC and fibres of the cingulum 

(Cosgrove and Rauch, 2003). Thalamocortical fibres together with efferent 

projections arising from the anterior cingulate to the amygdala, PAG and NTS are 

likely destroyed by this intervention. Studies measuring the efficacy of cingulotomies 

in the treatment of depression report success rates of 40-60% (Ballantine et al., 1987; 

Spangler et al., 1996).  

• Anterior capsulotomy: This involves the generation of a lesion in frontothalamic 

fibres passing through the anterior limb of the internal capsule (medial to the putamen 

and ventral to the head of the caudate, and immediately dorsal to the accumbens). 

The primary indication for anterior capsulotomy is obsessive-compulsive disorder 
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(OCD) (Bingley and Persson, 1978) but it is also used in the treatment of depression 

(Ridout et al., 2007). 

• Subcaudate tractotomy: This involves bilateral lesions in the substantia innominata 

of the basal forebrain, ventral to the head of the caudate. Subcaudate tractotomy has 

been used to treat treatment-resistant cases of depression, anxiety and OCD for 

decades (Mashour et al., 2005). Studies have shown significant clinical improvements 

in over half of depressed patients following subcaudate tractotomy (Göktepe et al., 

1975; Poynton et al., 1995). 

• Limbic leucotomy: Limbic leucotomy is a combination of cingulotomy and 

subcaudate tractotomy, developed as a means of combining the therapeutic benefit 

associated with the individual procedures. Of a cohort of six patients, Montoya et al. 

reported three as experiencing significant improvement in symptoms following limbic 

leucotomy (Montoya et al., 2002). 

As discussed, these methods of ablation can benefit a significant proportion of patients with 

intractable depression. Nevertheless, they are still hampered by problems associated with 

the presence of an large (2cm) irreversible lesions which permanently impact upon wider 

brain function (Juckel et al., 2009).  
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Figure 1-22 Selected neurosurgical interventions for the treatment of depression. Figure 

adapted from Catani et al., 2013. Cingulotomy (1.) involves bilateral destruction of portions of the 

cingulate gyrus (labelled Cg; typically encompassing pgACC and dACC) together with white matter 

tracts forming the cingulate bundle (cingulum). Capsulotomy (2.) involves bilateral destruction of the 

anterior limb of the internal capsule (labelled IC) immediately dorsal to the caudal portion of the 

accumbens. Subcaudate tractotomy (3.) involves bilateral substantia innominata (labelled SI) 

lesions, ventral to the head of the caudate (labelled Cd). A limbic leucotomy is a combination of 

cingulotomy and subcaudate tractotomy. Also highlighted are novel targets for DBS, including the 

ventral capsule and subcaudate zone. Not shown is the sgACC/25, which also shows promise as a 

target for DBS in depression (Mayberg et al., 2005).   

 

DBS techniques were developed to better access deeper brain structures for even more 

focused interventional manipulation of neuronal circuits. First used in neurological settings to 

treat patients with movement disorders such as Parkinson’s disease (Benabid et al., 1987), 

DBS involves stereotaxic implantation of electrodes into a specific brain region. These 

electrodes are connected to a subcutaneous generator which provides power and controls 

stimulation (typically continuous). The electrodes used are only 1.7mm in diameter, 

facilitating highly specific targeting of neuronal pathways. The first target investigated for 

DBS of treatment resistant depression was sgACC/25 – Mayberg and colleagues reported 

alleviation of depressive symptoms in four of six treatment refractory depressed patients 

following DBS targeting sgACC/25 (Mayberg et al., 2005) (discussed in VMPFC AS A TARGET 

FOR TREATMENT). Other targets have also been investigated, including  the ventral 

capsule/ventral striatum and medial forebrain bundle to the tolerability, safety and potential 

mechanisms of DBS therapy (Delaloye and Holtzheimer, 2014).  

1.5.1.6 Animal models of Depression 

Many of the symptoms of depression – sadness, guilt, suicidal ideation etc. which rely on 

self-report measures – cannot be convincingly studied in animals. Developing animal models 
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is therefore difficult. Nevertheless, such models provide an opportunity to understand 

molecular, genetic and epigenetic factors which contribute to specific aspects of the aetiology 

and pathophysiology of depression in cognitive, behavioural and physiological domains.  

Animal models of depression should be distinguished from tests. A model represents a state 

of an organism in which aspects of human pathophysiology are reproduced. A test provides 

an endpoint – a behavioural or physiological output that can assess the effect of a genetic, 

pharmacological or environmental manipulation (which themselves may or may not be a 

model of depression). The merit of both animal models and tests can be assessed based on 

three criteria for validity. These are used as a benchmark against which animal models and 

tests of depression can be compared to the disorder being modelled/tested: 

• Face validity. Does the model/test ‘look’ like the disorder? Behavioural 

manifestations in the animal model should resemble symptoms of depression.  

• Construct validity. Are the same underlying changes involved? Pathophysiological 

changes occurring in depression – such as neurotransmitter and HPA axis 

dysfunction – should also mediate changes in the animal model/test. 

• Predictive validity. Do the same treatments work? Behavioural changes in the 

animal model/test should be reversed by the same treatments (pharmacological, 

surgical). 

Animal models of depression can be grouped into environmental manipulations (CMS, 

learned helplessness, maternal deprivation), injuries (olfactory bulbectomy), and chemical 

manipulations (stimulation of the immune system, psychostimulant withdrawal). Some of 

these models are particularly powerful – apparently evidencing face, construct and predictive 

validity. Different models and tests, together with a comparison against validity criteria, are 

shown in TABLE 1-8. 

 

MODEL OR TEST 
CRITERION 

Face Construct Predictive 

Environmental: Chronic stress 

(CMS, social isolation) 
+ + + 

Environmental: Maternal 

deprivation 
+ + + 

Injury: Olfactory bulbectomy + + + 

Chemical: Immune challenge   + + + 

Test: Forced swim or tail 

suspension 
- - + 

Test: Sucrose preference  - - + 

    
 

Table 1-8 Animal models/tests of depression against validity criteria. Adapted from Albeira et 

al. (2013). 
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Of all the animal models of depression, CMS has proved to be one of the most popular. 

Developed in 1981, CMS typically involves 1-3 months of exposure to a variety of stressors 

such as cold water immersion, unavoidable shocks and restraint (Katz et al., 1981). 

Compared to the criteria outlined above: 

• Face validity: Over the CMS period, animals show neuro-vegetative disturbances 

such as disrupted sleep and impaired reward processing as measured by blunted 

sucrose preference (face validity).  

• Construct validity: Animals show evidence of HPA axis disruption (elevated levels of 

plasma cortisol), changes in circulating lipid levels and raised levels of inflammatory 

cytokines (Lucca et al., 2009; You et al., 2011) – evidence of dysfunction within the 

stress, metabolic and immune systems. 

• Predictive validity: Changes in animals exposed to CMS are reversed by clinically-

effective antidepressants such as TCAs and SSRIs (Szymańska et al., 2009). 

Whilst CMS appears to be an appropriate model, it has disadvantages. First, CMS 

experiments are practically difficult to carry out as they are labour intensive and space-

demanding. Second, there is variability in the procedure between laboratories, making 

replication difficult (Willner, 1997). Third, whilst CMS is useful in assessing depressive 

pathophysiology, it is not getting to the core of the aetiology of the disorder. The same life 

stressors can lead to depression in some individuals, but not in others. Whilst CMS 

purportedly exposes animals to ‘mild’ stress, typical paradigms are intensive and induce 

pathological changes with a high rate of success. The nature of CMS may be obscuring 

individual variability in stress-handling and emotional regulation which are so critical in 

mediating the cause and progression of depression in clinical populations.   

Models are only as relevant to psychiatric disorders as the tests use to assess their impacts. 

Tests such as the forced swim test and tail suspension test are designed to acutely mimic 

depressive-like behaviour, whereas the sucrose preference test in an assay of reward 

processing – specifically, reward consumption. Several studies have attested to the 

predictive validity of these tests: classical antidepressants can reverse impairments on the 

forced swim test, tail suspension test and sucrose preference tests in animals exposed to 

CMS (Krishnan and Nestler, 2011; Nestler and Hyman, 2010). 

Consider, however, the face validity of these tests. Despite being gold standards for studying 

depression like behaviours, do tests such as the forced swim and tail suspension tests look 

like the depressed disorder? It has been suggested that immobility represents ‘despair’ or 

‘hopelessness.’ However it is equally possible that immobility could represent an adaptive 

learned response to conserve energy when attempts to escape are futile (Anyan and Amir, 
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2017; de Kloet and Molendijk, 2016). It has also been suggested that rather than immobility 

reflecting despair/helplessness, the escape-directed mobility phases actually represent 

enhanced anxiety (Anyan and Amir, 2017). 

There are also problems associated with the tests’ construct validity. From the clinical 

literature, it is apparent that the antidepressant effects of these drugs take several weeks to 

develop, and this is at odds with an antidepressant effect of an acute dose as measured in 

the forced swim/tail suspension test. Germane with the proposal of Anyan and Amir outlined 

above, the acute efficacy of SSRIs in ameliorating increased immobility times on these tests 

may be more consistent with their shorter-term anxiogenic effects, acting to stimulate escape 

behaviours (Silva et al., 1999). Similarly, the reduced sucrose consumption measured on the 

sucrose preference test is used as an index of impairment in reward processing purportedly 

consistent with anhedonia (Slattery et al., 2007). However, reward consumption is 

comparatively unimpaired in depression – changes are more consistently observed in 

anticipatory and motivational domains (see 1.5.2.4.1). Therefore, the construct measured in 

the sucrose preference test is at-odds with the impairments manifesting in patients.  

Therefore, whilst there may be animal models of depression which show some degree of 

predictive, face and construct validity, limitations with the models themselves together with 

the assays used to assess them currently constrain their utility. Nevertheless, animal models 

of depression have greatly enriched our understanding of the disorder and provide an 

avenue from which new treatments can be developed.  

1.5.2 Anhedonia: impaired reward processing in depression 

Anhedonia – defined as a reduced ability to experience pleasure - is a core feature of MDD, 

and it is one of the earliest psychopathological symptoms found in clinical descriptions of 

depression and melancholia (James, 1902). Despite this, the relevance of anhedonia to the 

depressed state has often been neglected, owing to a predominant focus on the enhanced 

negative affect associated with depression, but there is a growing appreciation that 

anhedonia represents a tractable symptom construct which, if treated, could greatly improve 

patient quality of life. 

1.5.2.1 The importance of anhedonia 

MDD is a common and debilitating condition, and anhedonia is one of its hallmark symptoms. 

This is reflected in the Diagnostic and Statistical Manual (DSM)-V criteria for the diagnosing 

MDD, which requires either depressed mood or anhedonia to be present before a diagnosis 

can be proposed (American Psychiatric Association, 2013). It is also a common symptom, 

with approximately one-third of MDD sufferers experiencing clinically significant anhedonia 

(Pelizza and Ferrari, 2009).  



Chapter 1: General Introduction 

101 
 

In addition to being a common feature of depressive syndromes, anhedonia is prevalent in 

patients with substance-use disorder, Alzheimer’s disease, Parkinson’s disease and 

schizophrenia (Der-Avakian and Markou, 2012). Anhedonia has also been measured as an 

enduring personality trait (‘trait anhedonia’) (Blanchard et al., 2001; Keedwell et al., 2005) 

which is present to a greater extent in at-risk groups for MDD (Gotlib et al., 2010; Liu et al., 

2011) and may be a trait marker for MDD (Loas, 1996). Variations in trait anhedonia have 

neurobiological correlates: higher levels are associated with reduced reactivity of critical 

reward pathways involving the nucleus accumbens and ventral tegmental area (VTA) (Keller 

et al., 2013).  

In patient groups, presence of anhedonia has important prognostic implications. The 

presence of anhedonia predicts non-responsiveness to antidepressant therapies (Spijker et 

al., 2001; Uher et al., 2012) including SSRIs (McMakin et al., 2012) and rTMS (Downar et al., 

2014a). Accumulating evidence suggests that conventional antidepressants do little to 

alleviate anhedonia (Nutt et al., 2007), and may actually contribute to blunting of appetitive 

behaviour (Hindmarch, 1998; McCabe et al., 2010). Therefore, novel therapies effective in 

treating anhedonia are sorely needed. 

1.5.2.2 Historical accounts of anhedonia 

Although the earliest descriptions of anhedonic-like symptoms trace back to the early 19th 

century (Haslam, 1809), the term ‘anhedonie’ was first used in 1896 by Ribot to describe an 

inability to feel pleasure and withdrawal from pleasurable daily activities (Ribot, 1896). Ribot 

considered anhedonia in the context of analgesia, striking a contrast between insensitivity to 

pleasure and insensitivity to pain. However, William James recognized anhedonia as part of 

‘melancholy’ (roughly equivalent to MDD) in 1902 (James, 1902). For several decades, 

anhedonia received relatively little attention as psychologists focused on the negative 

emotional aspect of depression (‘grief’) rather than reductions in positive emotion. 

An important development came in 1975, when psychologist Paul Meehl conceptualized 

anhedonia in a manner closely related to behavioural psychology. Meehl proposed the 

hedonic capacity model of anhedonia; namely, that hedonic capacity is a trait which varies 

within the population. ‘Hypohedonic’ individuals have a perceived weakness of positive 

reinforcers which usually serve as ‘softeners’ of aversive states. This weakness is acutely 

apparent in patients suffering from anhedonia and is associated with two consequences: (i) 

the normal pleasure associated with goal attainment is not there and therefore behaviours 

are not reinforced; and (ii) the occurrence of negative internal states such as anger and fear 

are more frequent. Meehl’s recognition of the importance of trait variations in hedonic 

processing is pithily summarized in the following quote:  
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“…[some people] are born three drinks behind.” 

Meehl’s characterization of anhedonia was particularly important as it suggests anhedonic 

deficits can act as a predisposing factor for MDD (as well as other mental health diseases), 

and that there are ‘trait’ features of anhedonia which are identifiable before the disease 

develops. Subsequently, Chapman and colleagues built upon Meehl’s characterisation, and 

distinguished between social and physical aspects of state anhedonia. They defined physical 

anhedonia as an absence of pleasure derived from physical or sensory experiences (e.g. 

eating, touching) whereas social anhedonia as an inability to enjoy interpersonal and social 

pleasures (e.g. talking, being with others) (Chapman et al., 1976).  

Klein is widely credited for emphasising anhedonia as a key feature of MDD (Der-Avakian 

and Markou, 2012; Klein, 1987). Following his account of reward-related deficits in 

depression, a “loss of interest or pleasure in usual activities” was adopted as a core feature 

of MDD in the revised edition of the DSM-III (American Psychiatric Association, 1987) and 

anhedonia was included as a negative symptom of schizophrenia in DSM-IV (American 

Psychiatric Association, 1994). The WHO’s ICD-10 does not explicitly use the term 

anhedonia but does list a “loss of interest and pleasurable feelings” as a non-essential 

symptom of depressive episodes. 

1.5.2.3 Clinical assessment of anhedonia 

Anhedonia is rarely assessed in detail clinically, and when it is, it is measured with self-report 

questionnaires. An limitation of these questionnaires (as with many other symptoms) 

concerns inaccuracies an individual’s introspection of emotional states, with evidence 

suggesting that conscious (as well as unconscious) components of emotion are difficult to 

quantitatively assess (Rømer Thomsen et al., 2015). At some coarse level, however, these 

questionnaires do provide useful information to guide clinical decision-making and in 

assessing the impact symptoms have on quality of life. See FIGURE 1-23 for selected 

examples of items in anhedonia questionnaires.   

The first formal anhedonia questionnaire developed was the Chapman Physical Anhedonia 

Scale (CPAS) (Chapman et al., 1976) which was designed to measure trait anhedonia – 

participants are encouraged to describe themselves as they have been “during most of [their] 

adult life.” The CPAS measures several domains of pleasurable experience, including 

activities/hobbies, sensory experiences and food/drink (FIGURE 1-23A). A complimentary 

scale – the Chapman Social Anhedonia Scale (CSAS) – was developed in parallel focusing 

on social interactions (in line with Chapman et al.’s distinction between physical vs. social 

anhedonia). Whilst routinely used in clinical populations, psychiatrists have called into 

question its construct validity as the deficits patients’ exhibited in the clinic were not 
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accurately assessed by the CPAS’s items (Germans and Kring, 2000). Slightly later, the 

Fawcett-Clark Pleasure Scale (FCPS) was developed (Fawcett et al., 1983). The FCPS 

requires participants to report their current state, thereby making it more suited to assessing 

disease-associated anhedonia in clinical populations. Using a 5-point Likert scale, the FCPS 

asks respondents to rate their imagined reactions to pleasurable situations including social 

activities, sensory experiences and senses of achievement (FIGURE 1-23B). Similarly, the 

shorter Snaith-Hamilton Pleasure Scale (SHaPS) (Snaith et al., 1995) assesses hedonic 

sensitivity over the past few days and asks participants to definitely agree, agree, disagree or 

strongly disagree with statements in a 14-item questionnaire regarding hedonic responses to 

pleasurable situations (such as “I would enjoy looking smart when I have made an effort with 

my appearance”). A common feature of FCPS and SHaPS is that their items exclusively 

concern the hedonic impact of reward, and none have items which tap into incentive 

motivational processes. The CPAS, by contrast, does have items that peripherally assess 

incentive motivation (e.g. “I have had very little desire to try new kinds of food”), but once 

again, the overwhelming focus is reward ‘liking’ rather than anticipatory or motivational 

processes.  

 

Figure 1-23 Selected items from common anhedonia questionnaires. A The Chapman Physical 

Anhedonia Scale (CPAS) is an interview-based scale consisting of 61 items. These items cover 

interest in activities and hobbies, sensory experiences, pastimes, social interactions and food/drink. 

The score is binary, and higher scores are associated with anhedonia. B The Fawcett-Clarke 

Pleasure Scale (FCPS) is an interview-based scale with 36 items covering social activities, sensory 
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experiences and mastery of difficult tasks. Each item is rated 1-5 on a Likert Scale, and lower 

scores are associated with anhedonia. Note that the items in the CPAS and FCPS are 

predominantly concerned with consummatory (hedonic) responses to reward. C The Temporal 

Experience of Pleasure Scale (TEPS) was developed by Gard et al. (2006) to distinguish between 

anticipatory (TEPS-ANT, left) and consummatory (TEPS-CONS, right) pleasure. 

 

 

To assess reward-related constructs beyond consummatory pleasure, the Temporal 

Experience of Pleasure Scale (TEPS) was developed (Gard et al., 2006). TEPS 

distinguishes between anticipatory and consummatory pleasure, with different probes for 

consumption (CONS, 8 items) and anticipation (ANT, 10 items) (FIGURE 1-23C). Using a 

Likert scale, participants rate items as being “very false for me” to “very true to me.” 

Psychometric analysis of the TEPS scale suggests that the different probes measure distinct 

constructs: whilst TEPS-ANT is related to reward sensitivity and mental imagery, TEPS-

CONS is related to appreciation of positive stimuli (‘liking’) (Rømer Thomsen et al., 2015). 

The construct validity of these probes has been studied extensively, particularly in the 

context of schizophrenia. Gard and colleagues examined correlations between TEPS, 

CPAS/CSAS and the Behavioural Inhibition/Activation Scales (used to measure appetitive 

and aversive motivation respectively). The anticipatory components of the TEPS scale had 

greater correlation with Behavioural Activation Scales reward responsiveness compared to 

the consummatory components, suggesting a link between diminished reward anticipation 

and diminished reward motivation. Anticipatory components were also highly related to social 

functioning assessed by CSAS, implying that reward anticipation is linked to everyday 

functional status (Gard et al., 2007). 

1.5.2.4 Parsing anhedonia 

As has been alluded to, although anhedonia is used as a single term to describe reward-

related deficits in MDD, these symptoms are not unitary. The definition of anhedonia that has 

long been in clinical usage focuses on a loss of pleasure (changes in hedonic ‘liking’), which 

can be considered as consummatory anhedonia. Largely based on findings from preclinical 

work into the neurobiological basis of reward-related and motivated behaviours, descriptions 

of anhedonia have gradually evolved – with an appreciation that it can be fractionated into 

distinct elements (FIGURE 1-24). Beyond consummatory anhedonia, these components 

include a Pavlovian anticipatory anhedonia and an instrumental motivational anhedonia 

(‘wanting’) (Admon and Pizzagalli, 2015; Der-Avakian and Markou, 2012; Treadway and 

Zald, 2011). Although separable, the individual components of anhedonia influence one 

another. For example, impairments in reward anticipation invariably impact on reward 
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motivation (analogous to the influence of Pavlovian stimuli on instrumental behaviour seen in 

Pavlovian-to-instrumental Transfer, conditioned reinforcement and conditioned approach). 

 

 

Figure 1-24 Parsing anhedonia. Anhedonia is heterogeneous and can be subdivided into 

consummatory anhedonia (reduced hedonic capacity), anticipatory anhedonia (impaired arousal 

responses in anticipation of rewards) and motivational anhedonia (reduced capacity to work for 

rewards). Shown right are the behavioural assessment tools used in preclinical animal models and 

in humans to measure the anhedonic impairment or its related reward construct. See text for more 

detailed discussion of individual tasks. 

 

1.5.2.4.1 Consummatory anhedonia in animal models and patient populations 

Consummatory anhedonia refers to a deficit in the primary experience of pleasure – also 

thought of as reduced hedonic capacity, or reduced reward ‘liking.’ Consummatory 

anhedonia has been – and to a large extent, still is – the predominant focus of preclinical and 

clinical research into anhedonia. For example, items in questionnaires used to assess 

anhedonia in patient populations almost exclusively focus on the hedonic experience of 

reward (SHaPS, CPAS, FCPS). Preclinically, the analogue to these scales is the sucrose 

preference (or consumption) test, where decreased intake of a sweet sucrose solution is 

argued to reflect an anhedonic state. Rodent models of depression such as CMS reduce 

sucrose preference (Muscat and Willner, 1992; Strekalova et al., 2011), and manipulations of 
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rodent PFC which increase depression-like behaviour on assays such as the forced swim 

test also reduce sucrose preference (Ferenczi et al., 2016; John et al., 2012). 

Unfortunately there is a fundamental disconnect between the construct assessed in these 

studies and the pattern of impairments manifested in depressed patients, who display 

anhedonic symptoms in anticipatory and motivational domains (Der-Avakian and Markou, 

2012; Treadway and Zald, 2011) but relatively intact consummatory responses (Amsterdam 

et al., 1987; Arrondo et al., 2015a; Berlin et al., 1998; Dichter et al., 2010). This is similar to 

the pattern of deficits seen in schizophrenic patients (Cohen and Minor, 2010). Furthermore, 

the anhedonia questionnaires that are widely employed in the clinical domain are only 

moderately associated with depression severity (Leventhal et al., 2006). These findings 

suggest that human anhedonia is more than just reduced hedonic capacity. 

These data have implications for use of the sucrose preference test as a preclinical model of 

anhedonia – if consumption is relatively intact in depressed patients, what relevance do 

reductions in sucrose intake have to the depressed state? The problems for the sucrose 

preference test do not end there – it has been suggested that overall intake of sucrose is a 

crude measure even for consummatory hedonic ‘liking.’ Consider that low and high 

concentrations of sucrose solution elicit the same amount of consumption despite tasting 

different and possessing different caloric contents (Dwyer, 2012). This begs the question as 

to what precisely is driving consumption on the sucrose preference test? The lack of clarity in 

this regard has led researchers to analyse consummatory behaviours at a microstructural 

level, with the hypothesis that how consumption occurs at a detailed level can provide 

information about what drives it.  

One example of this approach is the use of facial reactivity patterns (FRPs) (Grill and 

Norgren, 1978). FRPs are evolutionarily conserved sequences of facial movements which 

reliably distinguish between appetitive (sweet) and aversive (bitter) tastes. FRPs are known 

to reflect the current state of the animal and/or previous experiences of the animal with the 

particular flavour (Berridge and Schulkin, 1989; Pelchat et al., 1983). The high degree of face 

validity intrinsic in this task has led to its widespread use in investigating the neurobiology of 

consummatory anhedonia and hedonics. Extensive 6-hydroxydopamine (6OHDA) lesions of 

mesolimbic dopaminergic projections to the accumbens and ventromedial caudate fail to 

reduce FRPs (Berridge et al., 1989). Instead, opioid neurotransmission has been implicated 

as the crucial hedonic system: Berridge and colleagues have identified subcortical and 

cortical ‘hedonic hotspots’ where microinjections of opioid-receptor agonists increase FRPs 

to positive stimuli. Two such hotspots are the nucleus accumbens (Peciña and Berridge, 

2005) and ventral pallidum (Peciña et al., 2006). Conversely, µ opioid receptor antagonism in 
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– for example – the nucleus accumbens reduces positive FRPs to a sucrose solution (but 

also affects their incentive motivation for these rewards) (Shin et al., 2010).  

Although FRPs have been informative, they are largely qualitative, difficult to analyse in 

freely-moving animals and scoring is labour intensive. At the same time FRP analysis was 

being developed as a method to assess hedonics, others focused on developing automated 

methods to assess lick microstructure in rodents. Rodents free-feeding from a spout of sweet 

solution lick in clusters (FIGURE 1-25A), and the size of a cluster is not random. Instead, the 

lick cluster size is lawfully determined by the nature of the solution, increasingly 

monotonically with the concentration of sucrose (Austen et al., 2016; Davis, 1989) (FIGURE 

1-25B). Interestingly, whilst sucrose-shock pairings affect the amount of sucrose solution 

consumed but not lick cluster size, pairing sucrose solutions with LiCl (devaluing the sucrose 

– a true ‘taste aversion’) affects both sucrose consumption and lick cluster size. Some have 

suggested that this reflects a distinction between taste avoidance (no effect on hedonic 

value) vs. a true taste aversion (diminishing hedonic value) (Dwyer, 2012). Broadly speaking, 

lick cluster sizes are affected by similar manipulations to those that alter FRPs – both 

decrease with LiCl/sucrose pairings (Baird et al., 2005) and both increase with 

benzodiazepine/sucrose pairings (Higgs and Cooper, 1998).  

 

Figure 1-25 Microstructural analysis of consumption. Schematic diagrams based on 

descriptions in Dwyer, 2012. A When consuming solutions from a bottle, rats lick in bouts known as 

lick clusters. The mean size of lick clusters is not random – it is lawfully determined by the nature of 

the solution. B Absolute sucrose consumption shows an inverted-U pattern (red) such that low and 

high concentrations of sucrose result in the same amount of consumption. Two very different 

solutions (both in terms of taste and caloric content) produce the same consumption, meaning it is 

unclear precisely what feature of the solution is driving consumption. By contrast, lick cluster size is 

directly proportional to the concentration of sucrose (blue). 
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Despite their apparent utility in informing us about hedonic processing, very few studies have 

looked at manipulations which change how pleasurable solutions are consumed – either 

assessing FRPs or lick cluster size – in the context of depression or models of depression. 

Preliminary data has suggested that certain psychosocial stress models can reduce lick 

cluster size (but not the amount of sucrose consumed) together with increasing circulating 

cortisol levels and attenuating weight gain (Dwyer, 2012). Recently, stressful handling 

methods such as tail handling have been shown to reduce lick cluster size in mice (Clarkson 

et al., 2018). However, given an apparent lack of consummatory anhedonia in most 

depressed patients, one would expect that translationally relevant depression models in 

animals should leave measurements of consummatory liking unimpaired. Indeed, one study 

assessing taste reactivity in depressed patients found that depressive symptoms do not 

appear to alter FRPs to appetitive solutions (Scinska et al., 2004). The importance of the 

relationship between depression and consummatory anhedonia is explored by experiments 

in this thesis, showing that manipulations of vmPFC subregions can induce blunted reward 

processing in anticipatory and motivational domains, whilst leaving reward consumption 

intact (Chapter 4).  

In humans, one approach to measuring consummatory liking is the sweet taste test (Dichter 

et al., 2010). This test yields three types of information: (i) intensity sensitivity to sucrose 

(slope of intensity ratings vs. sucrose concentration); (ii) hedonic sensitivity to sucrose (slope 

of pleasure ratings vs. sucrose concentration); and (iii) whether the participant is ‘sweet-

liking’ or ‘sweet-disliking’ (does the subject prefer the highest concentration of sucrose 

solution [sweet-liking] or a lower one [sweet-disliking]). Dichter and colleagues compared 

depressed patients and controls on each of these metrics. They found no difference in 

intensity sensitivity, hedonic sensitivity or proportions of sweet-likers/dislikers in depressed 

patient groups vs. controls, providing further evidence that depressed patients are minimally 

impaired in their hedonic evaluation of rewards. 

1.5.2.4.2 Anticipatory anhedonia in animal models and patient populations 

The simplest behavioural paradigm that could be used to distinguish between reward 

anticipation and reward consumption (in both animals and humans) is appetitive Pavlovian 

conditioning. In this paradigm, reward anticipation can be considered a Pavlovian arousal 

response to reward-predicting cues (conditioned stimuli, CSs) whereas the arousal response 

during reward consumption (unconditioned stimuli, USs) reflects hedonic consummatory 

processing. Arousal during the CS or US could be considered relatively ‘pure’ measures of 

anticipation and consumption respectively (although the consummatory period may be 

contaminated by concomitant vegetative responses during reward ingestion). However, 
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remarkably few studies have assessed anticipatory/consummatory reward processing in this 

way in rodents, NHPs and humans. Examples include: 

• Impaired learning of appetitive Pavlovian associations: In CMS models of 

depression in rodents, Di Chiara and colleagues have shown impaired appetitive 

learning together with blunted DA responses in the ventral striatum and PFC (Di 

Chiara et al., 1999). Impaired appetitive Pavlovian learning has also been 

demonstrated in depressed patients, together with dysfunction activity in the 

amygdala, OFC, caudate and pgACC/24,32 (Martin-Soelch et al., 2007). It is 

important to note that many of these studies assess impairments during learning, so 

whether these are related to impairments in the affective components of reward 

anticipation or cognitive learning processes is unclear. 

• Impaired expression of appetitive Pavlovian behaviours: rats subjected to CMS 

show reduced anticipatory Pavlovian nose pokes directed to a reward hopper after 

learning that the hopper is associated with sucrose delivery (Phillips and Barr, 1997). 

In NHPs, ablative sgACC/25 lesions are associated with a failure to sustain 

autonomic arousal in a trace interval between the CS and US of a learned Pavlovian 

association, although (i) CS-induced arousal remained intact and (ii) these effects 

may result from damage to underlying fibres of passage (Rudebeck et al., 2014). 

One study looking at neural responses post-learning in humans has shown reduced 

ventral striatal responses during CSs predicting reward in schizophrenic patients 

(Dowd and Barch, 2012), with no change in neural activity during reward 

consumption. No such studies have been carried out in depressed patients. However, 

in a mixed Pavlovian-instrumental design, Manohar and Husain used a speeded-

saccade task with an auditory cue to examine incentivisation by reward-predicting 

cues (in a manner similar to Pavlovian-to-instrumental transfer) in vmPFC lesioned 

patients vs. controls. They found that vmPFC lesioned patients showed reduced 

saccadic velocity and autonomic pupillary responses for rewards during cue 

presentation (Manohar and Husain, 2016). 

In Chapter 4 of this thesis, an appetitive Pavlovian conditioning paradigm is used to examine 

the causal role of vmPFC over-activity in symptoms of anticipatory/consummatory 

anhedonia.  

Whilst the literature on Pavlovian responses in anhedonic populations is scarce, 

touchscreen-based tasks have been used to assess reward anticipation in depressed 

patients vs. controls. The most widely used is the Monetary Incentive Delay (MID) task 

(FIGURE 1-26) where (1) an incentive cue is presented (indicating potential gain/loss on the 

trial), (2) the subject reacts to a target stimulus and (3) the outcome occurs: money is 
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delivered/money is omitted/loss is avoided/loss is sustained depending on 

successful/unsuccessful performance (Knutson et al., 2000; Maresh et al., 2014). This well-

established paradigm allows the examination of reward anticipation (incentive cue phase) 

and reward consumption (outcome phase) within a single task. Neurally, several studies 

indicate that depressed and schizophrenic patients have decreased ventral striatal activity 

when anticipating rewards in the MID (Arrondo et al., 2015b; Juckel et al., 2006; Nielsen et 

al., 2012; Stoy et al., 2012).  

 

Figure 1-26 Monetary Incentive Delay (MID) task. Task schematic taken from Maresh et al., 

2014. Cues indicate the potential to gain (circles) money, lose (squares) money, or a neutral 

condition (triangle). After the cue, a fixation cross is presented – this period is the anticipatory 

period. Participants are then presented with a target square when they must press a button as 

quickly as possible to gain reward/avoid loss. A feedback screen indicates the amount of reward 

won or lost during the trial, together with the total amount accrued so far. This is the outcome 

(consummatory) phase. The power of this task lies in its ability to fractionate anticipatory and 

consummatory aspects of reward processing. Note that the anticipatory phase is confounded by the 

anticipation to make a motor response. 

 

Several studies have highlighted a role for PFC subregions in reward anticipation measured 

by MID. Data from Dillon and colleagues suggests that activity within dACC/24 is most 

closely related to reward anticipation; activity in pgACC/32 is linked to rewarding outcomes; 

and ventral striatal activity spans both phases (Dillon et al., 2008). Data from other studies 

suggests there is a role for vmPFC in reward anticipation. Patients with vmPFC lesions 

(centred around rostral BA10) fail to show increased ventral striatal activity during 

anticipation of reward on the MID, suggesting that an intact rostral vmPFC is necessary to 
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sustain the neural correlates of anticipatory arousal (Pujara et al., 2016) and therefore 

dysfunction within the vmPFC may contribute to symptoms of anticipatory anhedonia.  

1.5.2.4.3 Motivational anhedonia in animal models and patient populations 

Ever since animals were shown to work for intracranial self-stimulation (ICSS) targeting the 

medial forebrain bundle (Olds and Milner, 1954), the importance of monoamines in motivated 

behaviour has been appreciated. Early theories suggested that the neural basis of reward-

related behaviours – particularly the hedonic (consummatory) components of reward – could 

be explained by the observations that a wide array of rewarding stimuli resulted in an 

increase in dopamine (DA) signalling, originating from the VTA (the mesolimbic DA system). 

This is true of artificial (ICSS, drugs of abuse) and natural (food, sex) reinforcers. Roy Wise 

suggested that all forms of reward are mediated specifically by the mesolimbic DA system; 

more explicitly, that independent of their precise mechanism of action, reinforcers act to 

increase DA transmission in the nucleus accumbens and this is the central component of 

reward processing and underlies the hedonic value of appetitive outcomes (Wise, 1978, 

1982). However, FRPs are convincingly unaffected by both activation (Di Chiara, 2002; 

Kaczmarek and Kiefer, 2000; Wyvell and Berridge, 2000) and suppression (Fenu et al., 

2001; Peciña et al., 1997) of mesolimbic DA transmission. Furthermore, extensive 6-OHDA 

lesions of the striatum (enough to produce profound aphagia) fail to disrupt taste liking 

(Berridge and Robinson, 1998). These studies suggest that mesolimbic DA transmission is 

not directly related to reward consumption. 

Integrating several lines of evidence, Berridge and Robinson have re-appraised the role of 

mesolimbic DA in their incentive salience hypothesis based on findings that dopaminergic 

manipulations of the mesolimbic system in rodents extensively affect appetitive approach 

behaviours but not taste ‘liking’ (Berridge and Robinson, 2003; Berridge et al., 2009). In their 

proposal, mesolimbic dopamine is critically important in reward motivation and reward 

anticipation, but not consumption. The role of DA is to assign a universal motivational 

currency – ‘incentive salience’ – to transform sensory information into desired incentives. 

During appetitive Pavlovian conditioning, DA release during CS presentation makes the CS a 

‘wanted target’ of motivation, and effectively imbues the CS with the ability to influence 

instrumental behaviour in several ways: 

• Pavlovian-to-instrumental transfer (Lovibond, 1983). In appetitive Pavlovian-to-

instrumental transfer, presentation of an appetitive CS invigorates instrumental 

responding for the same rewarding outcome (outcome-specific) but also invigorates 

instrumental responding for a different rewarding outcome (outcome-general).  
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• Conditioned reinforcement (Hyde, 1976). A CS is a ‘conditioned reinforcer’ when it 

can support instrumental responding (e.g. lever pressing) due to a previously learnt 

association between the CS and a rewarding outcome .  

• Conditioned approach (Brown and Jenkins, 1968). The process by which a CS 

acquires reinforcing properties that promote approach towards it (typically studied 

using ‘auto-shaping’ preparations). The CS can also elicit consummatory responses 

that are appropriate to the reinforcer – for example, rats may lick a CS associated 

with a liquid US.  

The importance of DA signalling is not necessarily restricted to discrete CSs: during 

instrumental conditioning, DA signalling may also attribute contextual cues and manipulanda 

with motivational significance which act to support ongoing responding.  

Parallel perspectives on DA have emerged, predominantly based on electrophysiological 

studies in macaques carried out by Wolfram Schultz and colleagues. Recordings of midbrain 

DA neurons in the macaque indicate that phasic firing in these neurons is in accordance with 

a Rescorla-Wagner ‘prediction error’ term (Rescorla and Wagner, 1972), such that the 

release of DA rewarding US is maximal when the reward is unpredicted and minimal when 

the reward is fully predicted by a CS (Schultz et al., 1997). Schultz’s hypothesis posits that 

rapid phasic changes in mesolimbic DA transmission which show these patterns of firing are 

critical in reward-based associative learning. Schultz has also emphasised that phasic and 

tonic levels of DA can change over time-courses that vary over several thousand fold 

(Schultz, 2000): 

• ‘Phasic’ electrophysiological changes: A ‘short’ time-course of milliseconds-

seconds. Phasic DA (200ms) represents the reward prediction error signal. A slower, 

ramping electrophysiological uncertainty signal (2s) has also been measured, whose 

magnitude is proportional to the degree of variance in reward distribution (maximal 

when CS predicts US with p=0.5).  

• ‘Phasic’ voltammetric changes: A ‘medium’ time-course of hundreds of 

milliseconds-seconds. Voltammetric changes in [DA] lie on a spectrum – the fastest 

changes broadly corresponding with the electrophysiological reward prediction signal, 

and the slower changes corresponding to changes in behavioural outputs.  

• ‘Phasic’ microdialysis changes: A comparatively ‘long’ time-course over tens-of-

seconds – tens-of-minutes. Changes in [DA] measured by microdialysis are 

approximately 200-1800x slower than voltammetric changes, and 3000-18000x 

slower than electrophysiological responses. Because of their longer time-course, they 

are difficult to relate to discrete events. Changes in microdialysis [DA] are thought to 
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be related to slower, underlying behavioural processes related to appetite, hunger 

and satiation.  

• ‘Tonic’, no temporal change (steady-state DA): In DA lesioned animals, many 

behaviours (such as profound aphagia/adipsia) are rescued by administration of a DA 

agonist and therefore do not require temporal fluctuations in [DA]. The mere presence 

of DA enables many different behaviours, so steady-state DA may serve a tonic 

enabling function.  

The interpretation of the function of DA at different time-courses is not straight-forward. For 

instance, temporal changes in DA may not be necessary for reward associations: even after 

near-total DA lesions, some new values for sweet rewards can be learnt, suggesting that 

associative representations are ‘outside’ of mesolimbic DA transmission and consequently 

that DA signalling is not necessary for reward-based learning (Berridge and Robinson, 1998). 

Nevertheless, both the Berridge-Robinson and Schultz perspectives suggest DA has a 

critical role in reward-based motivation, either through rapid phasic transmission mediating 

incentive salience and/or associative learning, slower changes reflecting motivational state, 

or a combination of both.  

It is therefore, perhaps, unsurprising that manipulations and lesions of the DA system can 

induce profound motivational deficits akin to motivational anhedonia. Animal models suggest 

a pivotal role for DA in reward motivation as indexed by overcoming response cost: animals 

with DA-depleting lesions in the accumbens prefer low-cost/low-reward options, whereas 

control animals prefer high-cost/high-reward options >90% of the time (Salamone et al., 

2007), suggesting that experimentally-induced increases in low-cost/low-reward choices are 

pathological in nature (and therefore represent a model of motivational anhedonia) 

(Treadway and Zald, 2011).  

The progressive ratio task has also been used to assess reward motivation – together with 

the consequences of DA disruption – in animals. In progressive ratio paradigms, animals 

make an instrumental response to obtain reward under (typically exponentially) increasing 

response demands (Hodos, 1961). Eventually, the cost of responding is too high for the 

reward offered, and the animal stops responding. This is termed the breakpoint. 

Psychostimulant withdrawal (a model of depression which results in ‘anhedonia’) (Markou et 

al., 1998) depletes accumbens DA (Weiss et al., 1992) and increases avolition on 

progressive ratio schedules as measured by reduced breakpoints (Harrison et al., 2001; 

Stoker and Markou, 2011). In mice, D1 receptor knockout attenuates progressive ratio 

responding, without affecting sucrose consumption (El-Ghundi et al., 2003) providing further 

evidence for a neurobiological dissociation between reward wanting and liking.  
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The role of prefrontal regions in progressive ratio responding has seldom been explored, 

although some rodent studies have pointed to a potential role for (vm)PFC dysfunction in 

motivational anhedonia. In 1995, McGregor and Roberts found that injections of the D1 

receptor antagonist SCH-23390 into IL decreased breakpoints when rats responded for 

intravenous cocaine on a self-administration schedule of reinforcement (McGregor and 

Roberts, 1995). However, Walton and colleagues found that whilst lesions of AC cause a 

preference for low-cost/low-reward options, combined lesions of PL and IL had no effect 

(Walton et al., 2003). An evident caveat of this study is the nature of the lesion, affecting both 

PL and IL (which may have distinct or even opposing roles in behaviour). Supporting the 

hypothesis that individual sectors of rodent vmPFC have distinct roles, Gourley and 

colleagues have found that if PL lesions are given before mice learn to escalate response 

requirements on a progressive ratio schedule, they impair performance. However, if mice 

have learnt progressive ratio parameters prior to lesion surgery and are then lesioned, PL 

lesions have no effect (Gourley et al., 2010). This suggests that PL is important in the 

acquisition of progressive ratio response requirements, but not the expression of behaviour 

once learnt.  

In NHPs, aspiration lesions of dACC/24 typically bias monkeys to prefer low-cost/low-reward 

options over high-cost/high-reward options, although whether these effects are due to 

damaged grey matter or damage to underlying fibre tracts remains to be determined 

(Rudebeck et al., 2006, 2008; Walton and Mars, 2007). Electrophysiological studies have 

also shown that dACC/24 is one of the only regions of NHP PFC to be sensitive to effort cost 

(Kennerley et al., 2011; Wallis and Kennerley). Unfortunately, no studies have examined the 

effects of selective manipulations of NHP vmPFC on progressive ratio performance. The 

progressive ratio study presented in Chapter 4 of this thesis represents the first of its kind – 

in which the effects of pharmacological manipulations of NHP vmPFC have been explored on 

motivational performance as assessed by this schedule of reinforcement. 

In humans, questionnaires and interviews can be used to assess motivation by asking 

individuals about their drives and desires (Rømer Thomsen et al., 2015). However, as 

discussed in 1.5.2.3, very few of the questionnaires in common usage assess motivational 

aspects of reward processing. Even the TEPS scale measures reward anticipation and does 

not directly assess reward motivation (Treadway and Zald, 2011). Nevertheless, isolated 

studies have endeavoured to more precisely assess motivational processes in 

questionnaires/interviews. In 2006, the Rhode Island Methods to Improve Diagnostic 

Assessment and Services project published work providing psychometric quantification of the 

DSM symptom criteria using structured interviews in over one-thousand patients 

(Zimmerman et al., 2006). The ‘diminished drive’ criterion (very similar to motivational 
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anhedonia) extracted from their interviews had the second highest odds-ratio for predicting a 

depression diagnosis – only sad mood was higher (McGlinchey et al., 2006).   

In addition, instrumental tasks can also be used to assess willingness to work for reward in 

humans. An early example of this was used by Aharon and colleagues in 2001, to 

demonstrate a dissociation between motivational capacity and consummatory liking. In their 

paradigm, participants could ‘work’ to change the duration of viewing average or beautiful 

faces. Whilst heterosexual males rated beautiful female and male faces as equally (equal 

‘liking’), participants exerted more effort to keep female faces on the screen (differential 

‘wanting’) (Aharon et al., 2001) showing that the constructs are behaviourally separable.  

Subsequently, the Effort Expenditure for Rewards Task (EEfRT) was developed by 

Treadway et al. (Treadway et al., 2009) to more instrumentally quantify reward motivation in 

humans. EEfRT was designed based on fixed and progressive ratio studies in rodents 

(Aberman and Salamone, 1999; Salamone et al., 1994). In the EEfRT, decreased reward 

motivation is indicated by a reduced willingness to choose high-effort/high-reward options 

over low-effort/low-reward options. The sensitivity of the task was initially validated in healthy 

controls, where greater self-reported ‘trait’ anhedonia was associated with reduced 

willingness to choose high-effort/high-reward options. The EEfRT has also been used to 

assess motivational anhedonia in patient populations, where patient groups with either first-

episode depression or remitted depression (together with ‘at-risk’ cohorts) show reduced 

effort expenditure for rewards (Treadway et al., 2012; Yang et al., 2014). This finding has 

also been reported in schizophrenic patients (Fervaha et al., 2013; Gold et al., 2013). Whilst 

these studies are informative, human participants are technically working for conditioned 

reinforcers (money) rather than primary rewards (such as food used in animal studies). 

Whether primary vs. secondary rewards are processed differently in the brain is unclear, but 

emerging evidence suggests that there may be differences (Sescousse et al., 2013b). 

Neuroimaging studies in humans have given us several insights into the neurobiology of 

effort and motivation, and therefore the structures potentially disrupted in motivational 

anhedonia. Congruent with work in macaques, several imaging studies have found that 

activity within dACC/24 is associated with increasing effort requirements – interpreted as 

balancing effort expenditure with potential reward (McGuire and Botvinick, 2010; Prévost et 

al., 2010). As has been discussed, the vmPFC – particularly sgACC/25 and BA10 – has 

been implicated in subjective value encoding (Bartra et al., 2013). Effort is an important 

response cost that contributes to subjective reward value. Therefore, the question has been 

raised as to whether the vmPFC is involved in effort-related contributions to reward-based 

behaviour?  
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A recent study by Arulpragasam et al. dissociated neural correlates of effort- and reward-

related contributions to decision-making by presenting subjects with two cues during fMRI: 

an effort-related cue and a reward-related cue, presented in either order (cue 1/2). Brain 

regions that were active when (i) only effort-related information was presented; (ii) only 

reward-related information was presented; or (iii) both sets of information had been 

presented could then be compared (Arulpragasam et al., 2018). Following cue presentation, 

subjects then made a choice between the effortful option and an alternative no-effort option. 

This study found that the anterior insula and dACC/24 encoded integrated cost-reward 

information at phase (iii). No region encoded effort alone (i), and both dACC/24 and vmPFC 

(sgACC/25, pgACC/32 and BA10) encoded reward-related subjective value information (ii). 

Arulpragasam investigated further by correlating neural signals with a ‘subjective value 

prediction error’: for instance, if subjects saw a high reward cue during cue 1, but then a high 

effort cue during cue 2, a negative subjective value prediction error would be expected 

following the presentation of cue 2. The dACC/24 and anterior insula (together with the 

caudate) reliably encoded subjective value prediction errors. Interestingly, in the vmPFC 

(BA10/25/32), if reward information was presented at cue 1, activity within this cluster closely 

tracked subjective expected value following cue 2 presentation. This activity was related to 

expected subjective rather than any objective information presented at the time of cue 1 

because this cluster did not significantly respond to the reward magnitude of the presented 

option alone: similar vmPFC activity was observed in the case of low-value low-effort and 

high-value high-effort. This is the first human neuroimaging study to identify vmPFC as being 

engaged by expectations of reward in exchange for effort and suggests that PFC regions are 

computing integrated signals combining subjective value-related and effort-related 

information. Given that highly similar vmPFC subregions have been shown to be involved in 

depression and anhedonia (see 1.5.3.4.1), this study could provide further insight into the 

mechanisms at play which underlie motivational anhedonia and associated impairments in 

decision-making. 

1.5.3 Ventromedial prefrontal cortex in depression and anhedonia  

Neuroimaging studies have consistently identified dysfunctional activity within the vmPFC 

associated with depression (Baxter et al., 1989; Biver et al., 1994; Drevets et al., 1992; 

Galynker et al., 1998; Greicius et al., 2007; Mayberg et al., 2005; Nofzinger et al., 2005). 

Building on primary evidence, several influential neurobiological models of depression 

directly implicate vmPFC dysfunction in its aetiology and/or pathogenesis (Palmer et al., 

2015). Three particularly influential models include:  

• The limbic-cortical model which emphasises the importance of interactions between 

dorsal prefrontal cortical areas, limbic and paralimbic (cingulate) structures;  
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• The cortico-striatal model which emphasises the importance cortico-striato-pallido-

thalamic (CSPT) circuitry; and 

• The default mode network model which emphasises the increased functional 

connectivity between sgACC/25 and the DMN, leading to maladaptive rumination and 

a lack of adaptive task-dependent modulation.   

These models are not mutually exclusive, overlapping in terms of the neurobiological 

substrates being implicated and the consequences that dysfunction within these structures 

has on behaviour, physiology and cognition.   

1.5.3.1 Limbic-cortical model 

Building on earlier prototypes (Mayberg, 1994), in 1997 Helen Mayberg proposed a highly 

influential neurobiological account of depression, with the goal of linking impairments in 

cognition to sustained altered mood states characteristic of the disorder (Mayberg, 1997). 

This model was formulated based on several lines of evidence: 

• Blood flow changes during transient sadness in healthy subjects. Induction of 

sadness in healthy controls results in a combination of limbic-cortical increases and 

decreases in metabolism (George et al., 1995; Pardo et al., 1993; Schneider et al., 

1995). Specifically, both dorsal and ventral prefrontal regions are consistently 

implicated in the experience of ‘normal’ sadness – hypo-activity of dorsal regions and 

over-activity in ventral regions are amongst the most consistent findings (Mayberg, 

1997). However, the precise nature of the change appears to be highly dependent on 

provocation method (Phan et al., 2002). 

• Resting state patterns of regional metabolism in patients with depression. 

Depressed patients show altered patterns of resting-state regional metabolism 

including hypoactivity of a dorsal region corresponding to dlPFC/46 and dmPFC/9, 

and hyperactivity of caudal vmPFC corresponding to sgACC/25 (Mayberg, 1997). 

These loci are very similar to those identified in studies of transient normal sadness. 

• Changes in metabolism following successful antidepressant treatment. The 

metabolic changes that characterise the depressed state appear to be sensitive to 

treatments. Whilst early work showed variable effects on dorsal frontal, dorsal 

cingulate and limbic regions associated with a variety of antidepressant treatment 

methodologies (Bench et al., 1995; Goodwin et al., 1993; Martinot et al., 1990; Nobler 

et al., 1994; Wu et al., 1992), differences in study design, cingulate location and 

analysis strategies renders direct comparison between these studies difficult. 

Using fluoxetine – an SSRI – in acutely depressed patients, Mayberg and colleagues 

assessed the responsivity of limbic-cortical regions to pharmacological intervention 

(Mayberg et al., 1999). Clinical responses were associated with metabolic changes in 
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dorsal prefrontal and vmPFC regions: the hypometabolic changes in dm/dlPFC were 

normalised, whereas the hypermetabolic sgACC/25 showed hypometabolism 

following successful treatment (activity below control levels). Non-responders with 

identical treatment showed persistently increased metabolism in sgACC/25. These 

divergent patterns suggest different adaptation patterns of brain regions to chronic 

5HT modulation using SSRIs in responders vs. non-responders.  

• The value of pgACC/24,32 activity in predicting antidepressant response. As 

mentioned above, there are consistent activity changes within dlPFC/dmPFC and 

sgACC/25 in depressed patients. However, patterns of activity in other brain regions 

are more inconsistent – in particular, there are contrasting reports of hypo- vs. hyper-

activation of a perigenual vmPFC region corresponding to pgACC/24,32 (Drevets and 

Raichle, 1992; Drevets et al., 1992; Ebert and Ebmeier, 1996; Ebert et al., 1994). 

There could be several reasons for these differences, including variations in symptom 

clusters, medication status, illness severity and transient fluctuations in mood during 

imaging. Furthermore, volumetric changes in these structures can influence their 

activity as measured by functional neuroimaging – for instance, Drevets and 

colleagues initially reported hypoactivity in pgACC/32 associated with depression 

(Drevets et al., 1997). However, when corrected for reductions in volume, activity per 

unit volume seems to be increased (Drevets et al., 2008a). 

An alternative suggestion for this variability is proposed in the context of the limbic-

cortical model. Mayberg and colleagues suggest that pre-treatment metabolic activity 

within this region might differentially predict the responsiveness of depressed patients 

to medication (Mayberg et al., 1997). Indeed, Mayberg et al. have shown that patients 

with high pre-treatment pgACC/24,32 activity show a robust response to 

antidepressants whereas patients with low pre-treatment activity typically failed to 

respond after six weeks. Interestingly, this same region has reciprocal connections 

with dmPFC/8,9 and ventral regions including sgACC/25. The integrity of this 

perigenual region may therefore be critical for normalising limbic-cortical dysfunction 

which accompanies the depressed state. Subsequent studies have supported the 

utility of pre-treatment activity in pgACC/24,32 in predicting treatment response (Boes 

et al., 2018; Klumpp et al., 2017). 

• Anatomical evidence shows connectivity between vmPFC, dlPFC/dmPFC and 

brainstem structures involved in attention and cognition (Carmichael and Price, 1995; 

Pandya and Yeterian, 1996), establishing putative pathways through which limbic 

structures can modulate cognition (and vice-versa). Furthermore, these same regions 

and interconnected with subcortical and brainstem structures involved in visceral-

autonomic regulation (see 1.3.1). Therefore, dysfunction in these limbic-cortical 
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regions could impact upon several functions which are frequently disrupted in 

depression.  

In the model, a dorsal compartment is proposed to be principally involved with the attentional 

and cognitive features of depression, including dm/dlPFC, dACC/24, parietal cortex and the 

dorsal striatum. A ventral compartment, consisting of limbic and paralimbic structures 

including sgACC/25, is proposed to mediate the vegetative and somatic aspects of 

depression. Isolated from both compartments is the rostral cingulate, corresponding to 

pgACC/24,32 where metabolism predicts treatment response in depressed individuals 

(Mayberg et al., 1997). PgACC/24,32 may serve as a regulator of the interaction between 

dorsal and ventral compartments, dysfunction in which can cause changes in remote brain 

regions to affect physiology, behaviour and subjective experience. See FIGURE 1-27 for an 

overview of the limbic cortical model. 

 

Figure 1-27 Limbic-cortical model. Adapted from Mayberg et al., 1997. The limbic-cortical model 

is an influential model of depression, implicating “failure of the coordinated interactions of a 

distributed network of limbic cortical pathways.” The regions implicated in this model are 

consistently identified in functional neuroimaging studies of normal sadness, baseline depressed 

patients and treatment recovery. Normal sadness and depression are associated with metabolic 

decreases in dorsal regions (dl/dmPFC and dACC/24; whose function is cognitive and attentional) 

and increases in more ventral regions (primarily sgACC/25; whose function is vegetative) – with 

successful treatment, these activity patterns are reversed. Metabolism in the perigenual cingulate 

(pgACC/24, 32) uniquely predicts antidepressant treatment response, and this region is thought to 

be critical for the adaptive changes associated with remission of depression. 
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At the core of the model is the hypothesis that depression is more than just dysfunction 

within a single compartment; rather, it is: 

“…a failure of the coordinated interactions between the subcomponents of 

either compartment and between the two compartments.” (Mayberg, 1997) 

Prior to the development of this model, functional studies of cognition had largely been 

carried out in isolation from functional studies of mood. However, the highly intercorrelated 

nature of the dorsal and ventral compartments during both pre- and post-treatment states 

suggests a fundamental link between brain regions typically associated with cognition and 

attention vs. brain regions associated with emotion and physiological regulation. In 

Mayberg’s model, the negative influence of depressed mood on attention may therefore be 

attributable to functional connections between vmPFC and dm/dlPFC, rather than 

independent concurrent changes.  

The limbic cortical model of depression has implications for treatment, specifically that 

treatments targeting components of either the dorsal or ventral compartments both represent 

viable options. Indeed, Mayberg and colleagues suggest that cognitive therapies such as 

CBT can be thought of as a top-down treatment strategy, augmenting the influence of dorsal 

neocortical regions on limbic/paralimbic pathways. Pharmacological therapies are typically 

thought of as acting in a bottom-up (or mixed) fashion: brainstem nuclei (such as the 

MRN/DRN) are major sites of antidepressant action and these project to structures in both 

compartments. An example of a bottom-up approach is leucotomy targeting vmPFC including 

sgACC/25, destroying putatively hyperactive limbic regions and potentially disinhibiting 

dm/dlPFC. Regardless of the initial causal perturbation, remodelling of limbic-neocortical 

circuitry would appear necessary to treat depression.  

1.5.3.2 Cortico-striatal model 

Abnormal CSPT circuitry has been proposed to explain, at least in part, clinical symptoms 

and cognitive deficits associated with depression. CSPT loops connect regions of the PFC – 

including vmPFC and dACC – with the basal ganglia and thalamus in a parallel but 

overlapping manner to support a multitude of behavioural and cognitive functions (Haber, 

2016). Evidence for the importance of CSPT circuitry in mood disorders includes (i) structural 

and functional imaging studies showing evidence of alterations in CSPT components 

associated with depression (Furman et al., 2011; Marchand and Yurgelun-Todd, 2010; 

Rogers et al., 1998) and (ii) a higher prevalence of depression associated with 

neurodegenerative and vascular diseases with involvement of CSPT circuitry (Lauterbach et 

al., 1998; Marchand, 2010; Walterfang et al., 2011). 
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The ventral caudate and nucleus accumbens (forming, together with the olfactory tubercle, 

the ventral striatum) are arguably the most consistently implicated striatal subregions in 

depression. Patients with remitted depression show hyperactivation of the caudate and 

accumbens during negative picture viewing (Admon et al., 2015), and currently depressed 

patients show hypoactivation of the accumbens and ventral caudate during rewards 

(Pizzagalli et al., 2009; Smoski et al., 2009). Aberrant ventral striatal functional connectivity 

also predicts future risk for developing depression (Pan et al., 2017). Given the anatomical 

evidence that vmPFC subregions – particularly sgACC/25 –  project strongly to the ventral 

striatum (Haber, 2016), vmPFC-ventral striatal limbic circuitry has been the focus of many 

studies examining CSPT changes associated with depression.  

Several fMRI studies have revealed vmPFC-ventral striatal CSPT circuit changes in 

depressed subjects – including reduced activity within the vmPFC and ventral striatum during 

the anticipation of reward and during unexpected reward delivery (Segarra et al., 2016; 

Smoski et al., 2011). Keedwell et al. showed anhedonic symptoms (but not depression 

severity) were positively and negatively correlated with BOLD responses in vmPFC (BA10, 

32)-amygdala and vmPFC-ventral striatum circuitry, respectively.  Meta-analytic approaches 

have consistently identified volumetric abnormalities within limbic CSPT circuits: reduced 

volume in the prefrontal cortex – especially sgACC/25 and OFC – together with reduced 

volume in the ventral caudate and putamen (Bora et al., 2012; Koolschijn et al., 2009). 

Combining the results of multiple independent studies, a meta-analysis of functional resting-

state network connectivity in depression has shown reduced connectivity between vmPFC 

and ventral striatum suggestive of blunted positive emotion and reward anticipation (Kaiser et 

al., 2015). 

1.5.3.3 Default mode network model 

Given the association between rumination in depression and the self-referential operations 

performed by the DMN (Raichle et al., 2001), it is perhaps no surprise that increased 

dominance of the DMN has emerged as a theory of depression. One of the regions most 

consistently implicated in the DMN is the rostral (r)vmPFC, corresponding to rostral BA10 

and sometimes extending into frontopolar BA9 (Andrews‐Hanna et al.). fMRI approaches 

have shown reliable increases in functional connectivity between the DMN (rvmPFC and 

posterior cingulate cortex, PCC) and caudal vmPFC, specifically sgACC/25, associated with 

depression (Hamilton et al., 2015). Thalamic involvement is also evident, with increased 

connectivity between sgACC/25, the mediodorsal thalamus (MDT) and DMN which has also 

been linked to higher levels of rumination (Berman et al., 2011; Zhu et al., 2012). Mutually 

propagating activation between sgACC and rvmPFC (via the thalamus) predicts high levels 

of rumination about depressive symptoms (Hamilton et al., 2011b).  
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What does this increased connectivity represent? Consider the function of sgACC/25. As 

discussed, elevated sgACC/25 activity has been seen during tonic and acute elevations in 

negative mood: at baseline in depression (Drevets et al., 1997; Mayberg et al., 1999, 2005); 

during negative affective stimulation in depression (Laxton et al., 2013); during transient 

sadness in healthy controls (Mayberg et al., 1999); and during neuroinflammatory challenge 

in healthy controls (Harrison et al., 2009). Caudal vmPFC subregions including sgACC/25 

also have a physiological role in regulating parasympathetic tone (again, discussed 

previously). Related to its function in the context of the DMN, sgACC/25 has been implicated 

in behavioural withdrawal and energy conservation (Critchley et al., 2003; Matthews et al., 

2005; Yang et al., 2009); given the role of these regions in negative affect, this suggests that 

the withdrawal is emotionally-laden, with a significant affective component.  

These roles of sgACC/25 and the role of DMN in self-referential cognition and internalisation 

have led Hamilton and colleagues to propose that increased functional connectivity between 

DMN-sgACC/25 represents a neural correlate of increased depressive rumination. In 

depression, the function of the DMN – biasing towards self-referential thinking processes – 

and the sgACC/25 – supporting negatively affectively-laden behavioural withdrawal – are 

linked, resulting in pathological rumination: self-focused, negatively valenced and withdrawn 

thinking processes (FIGURE 1-28). This union underlies maladaptive thought patterns. 

Interestingly, this model also proposes an explanation for the increased functional 

connectivity between MD thalamus and DMN in depressed patients. SgACC/25 does not 

directly project to nodes of the DMN (except for subregions of the rvmPFC) (Johansen-Berg 

et al., 2008), but does project to MD thalamus (which itself projects to DMN components) 

suggesting that the increased correlation of activity between sgACC/25 and DMN is (at least 

in part) mediated by projections through MD thalamus.  
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1.5.3.4 Clinical implications of vmPFC dysfunction in depression 

An understanding of vmPFC function has clinical significance regarding the diagnosis and 

treatment of depression for several reasons: 

• Which symptoms of depression are specifically linked to vmPFC dysfunction? 

Given that depression is a heterogeneous condition, it is critical to understand 

vmPFC dysfunction in the context of specific symptoms, rather than in a nebulous 

clinical construct. Indeed, this is the impetus behind the Research Domain Criteria 

(RDoC) approach, spearheaded by the USA’s National Institute of Mental Health. The 

RDoC approach explores basic ‘dimensions of functioning,’ spanning the full range of 

human behaviour from normal to abnormal. For example, physiological systems 

involved in reward processing, when dysfunctional, manifest as anhedonia – whereas 

physiological systems involved in punishment, when dysfunctional, could manifest as 

anxiety/low-mood. As a syndrome, depression can manifest as varying degrees of 

dysfunction within separable physiological systems. It is important to understand the 

neurobiology and neuropathology underlying these specific domains of functioning 

and their disruption, to better account for individual variability in symptoms. 

• Is vmPFC activity a biomarker of treatment response? vmPFC activity in baseline 

or task-related settings may reflect a neural biomarker of a patient’s sensitivity to 

different treatment modalities. If this were the case, it would be advantageous for 

clinicians when identifying optimum treatments.  

• Could vmPFC represent a viable treatment target? Given its extensive 

involvement in depressive symptoms, the vmPFC is a candidate brain region for 

targeted interventions in the treatment of depression – including DBS (Mayberg et al., 

2005).  

1.5.3.4.1 vmPFC linked to specific symptoms of depression: low mood and anhedonia  

The two core symptoms of depression are enhanced negative mood and anhedonia. As 

outlined in 1.5.3.1, extensive evidence implicates vmPFC in enhanced negative mood: 

transient sadness induction studies in healthy controls; blood flow changes in the resting 

state of depressed patients; and changes associated with successful depression treatment 

all point to a role of vmPFC subregions. Note that the latter two lines of evidence link altered 

activity in vmPFC to the disorder, and not the symptom per-se. 

Comparatively few studies have assessed the role of vmPFC subregions in anhedonia. 

Those that have implicate both state anhedonia in depressed patients and trait anhedonia in 

healthy controls to over-activity in a rostral region of vmPFC corresponding to BA10 and 

pgACC/32 (TABLE 1-9).  
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Reference Image Description 

Human vmPFC in anhedonia   

(Dunn et al., 

2002) 

BA10, 24, 25, 32 

18F-FDG PET, continuous 

performance task: the psychomotor 

anhedonia cluster of the Beck 

Depression Inventory correlates with 

higher activity in anterior cingulate 

and vmPFC regions in both unipolar 

and bipolar depressed patients.  

(Mitterschi-

ffthaler et al., 

2003) 

 

 

 

 

 

 

BA10, 24 (purple = increased 

activity) 

fMRI, picture viewing: Depressed 

patients show increased activation of 

BA10 and dACC/24 during the 

presentation of positive stimuli. 

(Kumari et al., 

2003) 

 

BA10, 24, 25 (red = increased 

activity) 

fMRI, picture viewing: Depressed 

patients show increased response in 

BA10 and sgACC/24,25 associated 

with reduced positive emotion whilst 

viewing positive pictures.  

(Keedwell et 

al., 2005) 

 

BA10, 24, 32 

fMRI, picture viewing: Increased 

response of rostral vmPFC region to 

happy stimuli correlated with 

anhedonia severity and negatively 

correlated with happy mood ratings.  
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(Harvey et al., 

2007) 

 

BA10, 32 

fMRI, picture viewing: NB/ trait 

anhedonia assessed in healthy 

controls. pgACC/32 activity 

positively correlated with trait 

anhedonia during processing of 

pleasant information (not during 

negative information).  

(Young et al., 

2016) 

 

BA10, 25 

fMRI, resting-state and task-based: 

this study used a caudal vmPFC 

subregion (BA10, 25; identified 

based on activation likelihood meta-

analysis of studies implicating 

vmPFC in depression) as a seed 

region. Connectivity of this region to 

reward-related structures is 

negatively correlated with anhedonia 

(but not general distress) during 

positive music listening. 

   
 

Table 1-9 Neuroimaging studies showing vmPFC activity associated with anhedonia. 

Activity within a rostral vmPFC region corresponding to pgACC/32 and BA10 is associated with 

increased anhedonia in healthy controls (trait anhedonia) and in depressed patients (state 

anhedonia). Some studies also show changes in function/connectivity within a caudal, subgenual 

region associated with anhedonia (Dunn et al., 2002; Young et al., 2016). 

 

Keedwell et al. examined the neural responses to happy and sad autobiographical memory 

stimuli to determine whether anhedonia severity (assessed using the FCPS) is positively 

correlated with vmPFC activity and negatively correlated with ventral striatal activity during 

the presentation of positive (and not negative) stimuli (Keedwell et al., 2005). Their study 

found that a large area of vmPFC (predominantly pgACC/32 and BA10) showed greater 

activation to happy stimuli correlated with anhedonia severity; by contrast, large areas of the 

ventral striatum showed reduced activation to happy stimuli correlated with anhedonia 

severity. No correlation was found between anhedonia severity and responses in reward 

areas to sad stimuli, suggesting that these patterns of activity change are strictly related to 

appetitive stimuli. The conclusions that can be drawn from this study are somewhat limited 

as all but one of the participants were taking antidepressants.  

Further insight into the role of the rostral vmPFC in anhedonia comes from neuroimaging 

studies in healthy controls assessing trait anhedonia (Harvey et al., 2007). Trait anhedonia is 
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an enduring personality trait that varies within the population (Blanchard et al., 2001), and 

can be considered a vulnerability factor for neuropsychiatric illness (Hasler et al., 2004; 

Pizzagalli et al., 2005); therefore, structural changes apparent in individuals with high trait 

anhedonia could provide insight into changes occurring early-on in the disease course. An 

additional advantage conferred by studying trait anhedonia in healthy controls vs. state 

anhedonia in depressed patients relates to disease-associated confounds. In depressed 

cohorts, it is difficult to disentangle changes in brain activity related to anhedonia, changes 

related to other symptoms, and changes related to stable personality traits vs. acute changes 

in clinical state. Harvey et al. assessed trait anhedonia using the CPAS and related this to 

brain activity during the presentation of positive and negative affective picture stimuli. In 

addition to demonstrating a negative correlation between anterior caudate volume and trait 

anhedonia, a significant positive correlation was identified between BOLD signal in vmPFC 

(BA10, 14 and 32) and trait anhedonia. Note that in both Harvey et al. and Keedwell et al., 

the measure of anhedonia is a questionnaire, and it remains unclear whether self-report 

anhedonia is more closely associated with deficits in hedonic processing, anticipatory 

processing or motivational function.  

Elevated activity within the vmPFC associated with state and trait anhedonia could be 

interpreted in two ways. First, in depressed patients, prefrontal areas are ‘over-inhibiting’ 

subcortical emotion-generating regions during the presentation of positive stimuli, suggesting 

a primary problem in the vmPFC. Second, the increase in activity is compensatory, directing 

attention to positive stimuli to improve mood, suggesting a primary problem in other 

structures. Given that several subcortical structures such as the striatum and amygdala show 

decreased volumes associated in MDD (Beyer and Krishnan, 2002), this might suggest a 

primary subcortical cause with prefrontal compensation. However, further work is needed to 

clarify this. Indeed, work presented in Chapter 4 of this thesis suggests that over-activity 

within sgACC/25 is sufficient to cause the physiological and behavioural correlates of 

anticipatory and motivational anhedonia.  

More recently, Young and colleagues directly addressed the role of caudal vmPFC 

(corresponding to sgACC/25) in anhedonia, attempting to address the discrepancy between 

the large body of work implicating sgACC/25 in depression, and the dearth of work 

implicating this region in anhedonia (Young et al., 2016). Anatomical evidence showing 

connectivity between sgACC/25 and components of the reward system – such as the 

nucleus accumbens (Ongür and Price, 2000) – would suggest that dysfunction within this 

prefrontal region would have an impact upon reward processing. Young and colleagues 

identified an sgACC/25 ROI based on a review of vmPFC subregions implicated in mood 

disorders (see TABLE 1-9). In patients with depression, connectivity of this region to key 
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emotion and reward-related structures (including ventral striatum) was negatively correlated 

with anhedonia (but not general distress) during positive music listening. Resting state 

sgACC/25 connectivity did not distinguish anhedonia from general distress in either health 

controls or depressed patients. This demonstrates that anhedonia is associated with task-

dependent engagement of sgACC/25 connectivity when encountering pleasant stimuli, but 

not a static difference in intrinsic resting-state function.  

1.5.3.4.2 vmPFC as a biomarker for treatment response 

Activity and connectivity of the vmPFC has shown promise as a predictor of response to 

multiple different types of treatments.  

• Pharmacotherapy. Pre-treatment resting-state functional connectivity between 

posterior vmPFC (sgACC/25 and BA10) and dACC correlates with successful 

treatment outcome (Kozel et al., 2011). 

• CBT. Pre-treatment activity in rostral vmPFC (BA10) has been positively associated 

with responses to CBT (Ritchey et al., 2011), whereas activity in caudal vmPFC 

(caudal BA10) has been negatively associated with CBT outcomes (Siegle et al., 

2006). 

• rTMS. The efficacy of rTMS to dlPFC is related to higher pre-treatment resting-state 

functional connectivity between vmPFC and dmPFC (Salomons et al., 2014), and 

between vmPFC, striatum, VTA and dmPFC (Downar et al., 2014b). 

• ECT. Redlich and colleagues identified a positive association between pre-treatment 

sgACC/25 volume and individual responses to ECT (Redlich et al., 2016). 

• DBS. Responders to DBS of white matter underlying sgACC/25 show stronger 

connectivity between sgACC/25, dACC/24 and ventral striatum (Riva-Posse et al., 

2014). 

Broadly speaking, it seems the effects of various treatment modalities can be predicted by 

neuroimaging correlates of vmPFC function. Consistent with these findings, changes in 

vmPFC BOLD signal have been identified pre-treatment to post-treatment. A meta-analysis 

has shown increased anterior vmPFC activity (BA10) in response to positive emotions 

following successful pharmacological treatment (Ma, 2015). Reduced activity in a region of 

posterior vmPFC including sgACC/25 has been observed following successful 

pharmacological, surgical and rTMS treatment of depression (Hiser and Koenigs, 2018). 

These data would suggest separable roles for rostral and caudal zones of vmPFC in the 

response to depression treatments.  
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1.5.3.4.3 vmPFC as a target for treatment 

The apparent pivotal role of vmPFC dysfunction in depression has meant it has become a 

popular target for neurosurgical interventions. The first of such interventions were surgical 

ablations of vmPFC and its efferent pathways to treat refractory depression, including 

subcaudate tractotomy (Bridges et al., 1994) and leucotomy (Sachdev and Sachdev, 2005). 

Although reasonably efficacious, these strategies are associated with gross damage to 

relatively large regions of cortex/white matter, and have several side-effects (Catani et al., 

2013). 

One of the most promising surgical interventions was developed in 2005, involving targeted 

DBS of grey matter (and adjacent white matter) in sgACC/25 (Mayberg et al., 2005). DBS 

involves stereotactic implantation of electrodes into a specific brain region. These electrodes 

are connected to a subcutaneous generator which provides power and controls stimulation 

(typically continuous). DBS is relatively well-tolerated and the most common adverse effects 

are associated with the neurosurgery rather than long-term issues with the implant itself 

(Delaloye and Holtzheimer, 2014).  

The initial proof-of-concept study implanted DBS electrodes into six patients with treatment 

resistant depression. Following six months of chronic grey/white matter sgACC/25 DBS, four 

of these patients were in remission/near remission (Mayberg et al., 2005). An expanded 

study including 20 patients showed a 60% one-year response rate with a remission rate of 

50% (Lozano et al., 2008). Encouragingly, symptoms of depression associated with 

enhanced negative affect, reduced positive affect and disrupted cognition all improved. 

Subsequent studies of sgACC/25 DBS have shown remission rates associated with chronic 

stimulation ranging from 33% to 58% (Delaloye and Holtzheimer, 2014). In a recent double-

blind sham-controlled trial, Puigdemont and colleagues reported reversal of symptoms in five 

treatment resistant patients, with long-term high frequency stimulation associated with 

optimal antidepressant response (Puigdemont et al., 2015). Blinded discontinuation of DBS 

is associated with a resurgence of depressive symptoms which ameliorate when stimulation 

is restarted (Holtzheimer et al., 2012). 

As more and more studies investigate the efficacy of sgACC/25 DBS, optimal stimulation 

parameters are also being elucidated. Longer pulse durations influence pathways further 

from sgACC/25, with suggestions that activation of the sgACC/25-accumbens network could 

contribute to the antidepressant response (Johansen-Berg et al., 2008). Furthermore, the 

optimal electrode placement does not appear to be in grey matter of sgACC/25 – rather, it 

lies in adjacent white matter (Lozano et al., 2012). It appears that the beneficial effects of 

sgACC/25 DBS are associated with a direct impact on multiple fibre bundles passing through 

sgACC/25. These include: 
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• Bilateral forceps minor of the anterior corpus callosum connecting right and left 

mPFC; 

• Bilateral cingulum bundles connecting ipsilateral sgACC/25 to pgACC, dACC and 

mid-cingulate cortex; 

• Bilateral medial branch of the uncinate fasciculus connecting sgACC/25 to rostral 

vmPFC anteriorly, and to accumbens, thalamus and other subcortical regions 

posteriorly; and 

• Frontostriatal fibres connecting sgACC/25 to ventral caudate and nucleus 

accumbens.  

Tractography in individual patients may facilitate optimal placement of electrodes within white 

matter, given that these critical neuronal tracts appear to be necessary for the antidepressant 

response. Riva-Posse and colleagues have shown that electrode placements can be 

successfully selected based on individual tractography maps (Riva-Posse et al., 2014). After 

one year of stimulation, nine of eleven patients were responders and six were in remission. 

This highlights the potential utility of connectomic approaches to guide future sgACC/25 DBS 

surgical targeting.  

1.5.4 Anxiety disorders 

1.5.4.1 Defining Anxiety 

In defining anxiety, it is important to distinguish the construct from fear. Fear and anxiety are 

overlapping states centred on threat. In some ways, these two constructs are similar: both 

involve negative subjective feelings, and both involve bodily manifestations. However, in 

several ways they are distinct (Öhman, 2008): 

• Subjective experience: Fear has been described as a sense of impending disaster 

eliciting a defensive reaction (fight or flight) whereas anxiety is associated with an 

ineffable and unpleasant feeling of foreboding.  

• Identifiable eliciting stimulus: Fear has an identifiable eliciting stimulus (with a 

definite location in space and time) whereas in anxiety the nature and location of the 

threat is obscure (except e.g. phobias). 

• Temporal relationship to potentially aversive outcome: Fear is often peri-stimulus 

whereas anxiety is often pre-stimulus (an anticipatory response to threatening 

stimuli). 

Anxiety is an adaptive response, but if unregulated or inappropriately regulated, it becomes 

biologically and socially maladaptive, impairing daily function. The transition from an adaptive 

to maladaptive response represents the transition from physiological to pathological anxiety – 

an anxiety disorder.  
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1.5.4.2 Classifying Anxiety Disorders 

Anxiety disorders are a heterogeneous group of conditions and the classification of anxiety 

disorders is subject to continuous flux. From DSM-IV to DSM-V, the category of Anxiety 

Disorders split into three separate categories (American Psychiatric Association, 2013): 

1. Anxiety Disorders including separation anxiety disorder, selective mutism, specific 

phobia, social phobia, panic disorder, agoraphobia and generalised anxiety disorder 

(GAD). 

2. Obsessive-Compulsive Disorders including OCD, body dysmorphic disorder, 

hoarding disorder, trichotillomania and excoriation disorder. 

3. Trauma and Stressor-Related Disorders including reactive attachment disorder, 

disinhibited social engagement disorder, PTSD, acute stress disorder and adjustment 

disorder. 

The prototypical anxiety disorder is Generalised Anxiety Disorder (GAD). GAD is defined as 

at least 6 months of excessive worry about everyday issues in a manner that is 

disproportionate to any inherent risk, causing significant distress or impairment. According to 

DSM-V, at least three symptoms out of a possible six are needed to make a diagnosis 

(American Psychiatric Association, 2013): restlessness or nervousness, easy fatigability, 

poor concentration, irritability, muscle tension or sleep disturbance. Other neuro-vegetative 

complaints are also common such as sweating, palpitations, dizziness and gastric 

discomfort. The diagnosis is one of exclusion, because clinicians need to rule out potential 

causes (including other medical conditions, medications or substances) before a diagnosis of 

GAD can be proposed.  

1.5.4.3 Epidemiology of Anxiety Disorders 

Collectively, anxiety disorders are the most prevalent mental disorders, associated with large 

societal burden (Bandelow et al., 2017). Approximately one-third of the population is affected 

by an anxiety disorder at some point in their lifetime. Female:male ratios for prevalence rates 

are somewhat variable, although studies consistently show that anxiety disorders are more 

prevalent in women (Lieb et al., 2005). Prospective studies suggest that anxiety disorders 

are chronic, starting in childhood, adolescence or early adulthood, reaching peak prevalence 

in middle age and then becoming less common in elderly cohorts (Lenze and Wetherell, 

2011).  

1.5.4.4 Aetiology and Pathophysiology of Generalised Anxiety Disorder 

1.5.4.4.1 Genetic accounts  

Genetic studies show a moderate a degree of heritability, with genetic linkage accounting for 

approximately one-third of the variability in trait levels of anxiety in children (Albano et al., 
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2003). Symptoms of anxiety disorders show increased correlation amongst monozygotic 

twins compared to dizygotic twins (Eley et al., 2015). A meta-analysis of GWAS studies in 

GAD has found that different studies identify different genome-wide significant regions, 

suggesting that there are small contributions of multiple individual genes, typical of a 

polygenic pattern of inheritance (Otowa et al., 2016). 

1.5.4.4.2 Behavioural accounts 

A classical learning theory approach posits that patients develop an anxiety response to a 

situation when they have been previously punished in those same situations, resulting in the 

formation of an aversive conditioned emotional response. Avoidance responses are triggered 

by negative reinforcement, and this instrumental behaviour prevents extinction of the 

conditioned emotional association, maintaining the maladaptive anxiety. This is formally 

proposed in Mowrer’s two factor theory of fear and anxiety (Mowrer, 1960): classically 

conditioned acquisition of fear is followed by operantly conditioned avoidance of fear cues 

leading to fear maintenance due to a lack of unreinforced exposure that would normally 

cause extinction of the conditioned response. Whilst intuitive, Mowrer’s account does not 

explicitly differentiate between physiological, adaptive anxiety and pathological anxiety 

interfering with daily function. Furthermore, it does not explain why certain individuals are 

more likely to develop maladaptive patterns of behaviour. 

1.5.4.4.3 Cognitive accounts 

As is the case in depression, it is appreciated that cognitive biases contribute to pathological 

phenotype of anxiety. Not only can cognitive factors influence behavioural avoidance, but 

patients can exhibit a cognitive (imagined) avoidance. This typically involves shifts in 

attention away from the negative stimulus. Borkovec posited that cognitive avoidance may (i) 

contribute to the initial development of anxiety (excessive focus on potential threat); (ii) 

facilitate the maintenance of anxiety (through the redirection of attention); and (iii) mitigate 

the effect of behavioural therapies such as flooding (Borkovec, 1985). Indeed, according to 

the DSM-V, the central defining characteristic of GAD is a cognitive process, ‘worry,’ which is 

closely linked to rumination and self-directed attentional processes (American Psychiatric 

Association, 2013). 

1.5.4.4.4 Stress and dysfunction within the HPA axis 

Single major negative life events increase the risk of developing GAD threefold (Blazer et al., 

1987). In the year preceding diagnosis, male patients tend to report financial and 

occupational stressors as events precipitating pathological anxiety, whereas female patients 

tend to report parenting stress, financial stress and interpersonal problems as precipitant 

(see BMJ Best Practice: Generalised anxiety disorder, https://bestpractice.bmj.com/topics/en-

gb/120). A history of early childhood separation is also more common in GAD populations 

https://bestpractice.bmj.com/topics/en-gb/120
https://bestpractice.bmj.com/topics/en-gb/120
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(Taher et al., 2015). In addition to these major negative life events, patients with GAD report 

significantly more minor life events compared to non-anxious controls, and patients perceive 

these events as being significantly more stressful than non-anxious controls (Brantley et al., 

1999).  

Given its role in the stress response, the HPA axis would be a major candidate for a 

physiological system in which disruption leads to anxiety disorders. However, despite this 

rationale, plasma cortisol and CRH levels are normal in patients with GAD (c.f. patients with 

depression) (Catalán et al., 1998; Kelly and Cooper, 1998). Other studies using the 

dexamethasone suppression test as a probe of HPA axis function have reported a non-

suppression rate of only 30% (compared to 50% in depressed patients) suggestive of 

potential dysfunction in cortisol regulation in a subset of patients with GAD (but certainly not 

all patients) (Tiller et al., 1988). 

1.5.4.4.5 Neurobiological changes 

The diversity of neurobiological structures involved in ‘normal’ anxiety responses (FIGURE 

1-29) is reflected in the myriad of neuroanatomical changes that have been implicated in the 

aetiology and pathophysiology of anxiety disorders, including changes in the hippocampus 

(Yamasue et al., 2008), amygdala (De Bellis et al., 2000) and vmPFC (these are discussed 

in more detail below, see 1.5.5).  

 

Figure 1-29 Components of a normal anxiety response and their neurobiological correlates. 

Anxiety responses involve at least three components: (i) detection of contextual threat and 

discrimination between contexts; (ii) generation and regulation of defensive responses and (iii) 

continual monitoring of the environment. The hippocampus is critical in contextual monitoring and 

discrimination, as revealed by the impairments in contextual conditioning associated with lesions of 

the ventral hippocampus in rodents (Phillips and LeDoux, 1992). The Bed Nucleus of the Stria 

Terminalis (BNST) has an established role in sustained fear/anxiety, where it mediates the 
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autonomic, endocrine and behavioural responses during situations of threat (Goode and Maren, 

2017; Lebow and Chen, 2016). CRH-containing neurons in the BNST output to the amygdala, which 

in turn can activate the HPA axis (Davis et al., 2010). Unimodal and polymodal sensory cortex are 

important in continual monitoring of the environment. Various subregions of the PFC have been 

implicated in all of these functions, together with an integrative function in coordinating 

physiological, behavioural and cognitive responses. 

 

1.5.4.4.6 Dysfunction within neurotransmitter systems 

Given the function of benzodiazepines – first line anxiolytic drugs – in enhancing GABAergic 

transmission, this neurotransmitter has been extensively implicated in the pathophysiology of 

anxiety disorders. Reduced GABA receptor levels; changes in levels of endogenous 

allosteric GABA receptor modulators; and changes in subunit composition of GABA receptor 

levels have all been proposed as mechanisms by which neuronal inhibition is reduced in 

pathological anxiety (Nuss, 2015). GABAergic tone in the amygdala seems to be particularly 

important – direct infusions of GABA agonists into the amygdala reduce measures of fear 

and anxiety in preclinical models (Barbalho et al., 2009), and benzodiazepine administration 

specifically attenuates amygdala activation to fearful stimuli in humans (Del-Ben et al., 2012). 

GABAergic interneurons of the amygdala are found in the intercalated cell masses, which 

receive the main glutamatergic input from IL and are well-placed to gate information transfer 

within the amygdala.  

Anxiety disorders also involve alterations in several of the monoamines, including 5HT and 

NA. Until relatively recently, the precise contribution of 5HT to anxiety was controversial. For 

example, increased 5HT levels appear to be ‘anxiogenic’ in response-conflict models, 

whereas escape models suggest 5HT is ‘anxiolytic’ (Graeff, 2002). To explain these findings, 

it has been suggested that inhibitory avoidance (exhibited during response-conflict 

procedures) vs. escape represents anxiety vs. panic, and that 5HT had different roles in 

these emotions. Deakin and Graeff suggest that avoidance is enhanced by 5HT release in 

vmPFC and amygdala, whereas escape is inhibited by 5HT release in the dorsal PAG 

(Deakin and Graeff, 1991; Graeff, 1991) (FIGURE 1-30). In terms of translation to the clinical 

state, inhibitory avoidance behaviours are more relevant to GAD, whereas escape 

behaviours are related to panic disorder. Given that MRS techniques cannot measure levels 

of 5HT, new techniques are needed to enable targeted measurement of 5HT levels in 

vmPFC/dorsal PAG, to compare between healthy controls and GAD patients. 



Chapter 1: General Introduction 

135 
 

 

Figure 1-30 Deakin-Graeff model of 5HT in anxiety and panic. Until the late 20th/early 21st 

century, the role of 5HT in fear and anxiety was highly controversial. Whilst manipulations targeting 

the 5HT system suggest an anxiogenic role of 5HT in conflict models, escape models suggested an 

anxiolytic role. To resolve this apparent disparity, Deakin and Graeff suggest that avoidance 

behaviours represent anxiety, whereas escape behaviours represent panic – and that 5HT has 

different roles in these functions. Accumulating evidence points specifically to 5HT in the forebrain 

(vmPFC/amygdala) promoting avoidance, and 5HT in the dorsal PAG inhibiting escape. 

 

The elevated T-maze has been developed as a paradigm to simultaneously assess of both 

escape and avoidance behaviours in rodents, and therefore provide evidence for this 

hypothesis. The T-maze consists of three arms – two open arms and one enclosed arm. 

Following familiarisation with the maze over several multiple trials, rodents exhibit inhibitory 

avoidance when placed in the enclosed arm, refraining from exploring the maze owing to the 

unpleasant nature of the open arms. By contrast, when placed in an open arm, rodents will 

perform an escape response to reach the safe closed arm (Zangrossi and Graeff, 2014). 

Selective lesions of the DRN using the 5HT toxin 5,7-dihydroxytryptamine (5,7DHT) impairs 

avoidance when placed in a closed arm (anxiolytic) but facilitates escape in the open arm 

(panicogenic), consistent with the Deakin-Graeff model (Sena et al., 2003). Chronic 

administration of drugs used to treat panic disorder have been shown to enhance the 

inhibitory effects of 5HT in the dorsal PAG on escape behaviour via receptor sensitisation 

(see (Zanoveli et al., 2005) using imipramine) and enhanced 5HT efflux (Zanoveli et al., 

2010) thereby having a dual action to increase 5HT levels in dorsal PAG. The pattern of 

changes induced by 5HT manipulations of the adjacent MRN are different: 5,7DHT lesions to 

the MRN also have anxiolytic effects on inhibitory avoidance but do not affect escape 

behaviour (Andrade et al., 2004). 

Enhancement of 5HT2C-mediated neurotransmission in the amygdala is thought to underlie 

the acute anxiogenic effects of TCAs/SSRIs seen in the first few days of treatment (Sinclair 

et al., 2009) – indeed, intra-BLA injections of the 5HT2C agonist MK212 elevates inhibitory 
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avoidance but does not affect escape (Vicente and Zangrossi, 2012). The anxiogenic effects 

of the antidepressant imipramine are completely blocked by intra-BLA administration of the 

5HT2C antagonist SB-242084 (Vicente and Zangrossi, 2012). The anxiolysis associated with 

chronic antidepressant treatment appears to be related to desensitization of 5HT2C receptors 

in the BLA, causing an anxiolytic (rather than anxiogenic) effect (Zangrossi and Graeff, 

2014). 

The role of catecholaminergic neurotransmission in stress has also led to its investigation as 

a candidate for dysfunction in anxiety disorders. Some studies suggest over-activity of NA 

locus coeruleus neurons is associated with pathological anxiety, although data are 

inconsistent (Nutt, 2001). A recent meta-analysis has shown that treatment with SNRIs such 

as venlafaxine and NA reuptake transporter inhibitors such as reboxetine and atomoxetine 

are efficacious, and associated with reduced incidence of panic disorder and reduce phobic 

symptoms (Montoya et al., 2016). Therefore, contrary to the prediction made by the 

enhanced NA transmission hypothesis, drugs which increase NA levels in synaptic clefts 

appear to ameliorate anxiety symptoms. However, further work is needed to 

comprehensively delineate the contributions of noradrenergic transmission to anxiety.   

1.5.4.5 Treatment of Anxiety Disorders 

Treatment of anxiety disorders is aimed at improving symptoms and reducing/eliminating 

disability. Pharmacotherapy is considered first line, but CBT and cognitive therapy are 

considered equal first-line treatment options, especially in patients who do not wish to take 

drugs.  

Amongst options for pharmacotherapy, first line treatments are predominantly SSRIs 

(citalopram, paroxetine and sertraline) (Gale and Oakley-Browne, 2005), SNRIs (duloxetine, 

venlafaxine) (Nicolini et al., 2009) or pregabalin (Bandelow et al., 2012). SSRIs have shown 

efficacy in treating GAD in children, adolescents and elderly patients (Ipser et al., 2009; 

Schuurmans et al., 2009) and in preventing relapse (Allgulander et al., 2006). In patients with 

co-morbid depression, SNRIs have been shown to be particularly effective (Mancini et al., 

2010). Long-acting benzodiazepines such as clonazepam can be used at the start of 

SSRI/SNRI therapy to attenuate some of the side effects during the delay in onset of action 

(approximately 4 weeks) (Bandelow et al., 2012) provided patients do not have a history of 

substance abuse.  

1.5.4.6 Animal Models and Tests of Anxiety-Like Behaviour 

Attesting to either their versatility, imprecision or perhaps both, animal models of anxiety 

disorders are very similar to those of depression, including as chronic stress (Campos et al., 

2013). The correspondence between these models may also reflect similar underlying 
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neurobiological bases, or even that the disorders are so inter-related that they are 

inseparable at the resolution of preclinical models. As has been mentioned, depression and 

anxiety disorders are highly comorbid (Lamers et al., 2011).  

Several tests of innate (sometimes termed ‘unconditioned’) anxiety have been developed for 

use in rodents, such as the elevated T-maze, elevated plus maze, open field test and light-

dark box (Kumar et al., 2013). These assays exploit the conflict between an animal’s innate 

drive to explore, and the inhibition associated with a novel, mildly aversive environment 

(either brightly lit or exposed) (McCormick and Green, 2013). For instance, in the elevated 

plus maze, the animal is placed in the centre of an elevated platform with two open arms and 

two enclosed arms (Pellow et al., 1985). The open arms combine elements of unfamiliarity, 

openness and elevation. In this model, there is a drive to explore the open arms but a 

conflicting aversion to the elevated, open spaces. Indeed, the elevated plus maze has been 

referred to as an unconditioned spontaneous behavioural conflict model (Bourin et al.). The 

proportion of time spent in the open vs. closed arms is computed as a measure of the 

animal’s state anxiety.  

Tests such as the elevated plus maze are practically straight-forward to carry out. Construct 

validity of this test has been demonstrated, as anxiogenic drugs reduce the proportion of time 

spent in open arms whereas anxiolytic drugs increase this measure (Pellow et al., 1985). The 

main measure used in the elevated plus maze shows face validity – but additionally, levels of 

freezing/immobility behaviours and defaecation are higher in the open arms (Pellow et al., 

1985) showing that animals exhibit a repertoire of anxiety-like behaviours on this task. 

Attesting to the predictive validity of this test, it has been frequently used to pre-screen new 

medications for anxiety disorders (Walf and Frye, 2007). Despite these advantages, it cannot 

be known whether these assays are measuring a sense of ‘ineffable foreboding’ or ‘worry’.  

1.5.5 Ventromedial prefrontal cortex in anxiety disorders 

The extensive involvement of vmPFC in depression implicates it in anxiety by virtue of the 

significant overlap in incidence and symptom criteria between the two disorders (Ressler and 

Mayberg, 2007). Given that multiple lines of evidence implicate vmPFC in the regulation of 

fear- and anxiety-related behaviours in non-clinical populations, it follows that dysfunctional 

activity within this brain region may be related to symptoms of anxiety disorders in clinical 

populations. vmPFC dysfunction has been implicated in multiple different types of anxiety 

disorder despite their heterogeneity, suggestive of common neurobiological substrates 

mediating aspects of their symptomatology. 
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1.5.5.1.1 Post-traumatic stress disorder (PTSD) 

PTSD is characterised by anxiety and intrusive thoughts following an accident or injury 

(American Psychiatric Association, 2013). Neurobiological models of PTSD consistently 

implicate the mPFC – including vmPFC – in the aetiology and pathogenesis of the disease 

(Brown and Morey, 2012; Shin and Liberzon, 2010). The dominant view is that decreased 

activity in the vmPFC results in impaired inhibition of subcortical limbic structures which 

become over-active, manifesting as disrupted emotion regulation (Hughes and Shin, 2011). 

In an influential meta-analysis, Moser and colleagues found evidence for this: PTSD patients 

show decreased vmPFC activity in a subgenual (sgACC/25 and BA10) region in response to 

emotional but not neutral scenes (Moser et al., 2015). However, several other meta-analyses 

suggest a more complex, nuanced picture of the pattern of vmPFC dysfunction in PTSD. A 

meta-analysis by Thomaes et al. evidenced increased vmPFC activity in a more rostral (but 

still subgenual, BA10) region in during the encoding of negative words (Thomaes et al., 

2013). Similarly, a recent meta-analysis of resting-state brain function (abrogating confounds 

of paradigm-related methodological differences) has shown increased pgACC/32 activity 

(extending into dACC and BA10) in patients who develop PTSD compared to trauma 

exposed controls (Wang et al., 2016). These studies are inconsistent with the dominant view 

that PTSD patients have impaired emotion regulation owing to a hypoactive vmPFC. The role 

of the vmPFC in PTSD therefore merits further study.   

1.5.5.1.2 Panic Disorder 

Panic disorder is characterised by recurrent unexpected panic attacks along with a persistent 

concern about having future attacks (American Psychiatric Association, 2013). Consistent 

with studies measuring activity changes following fear/panic induction using pharmacological 

agents (see 1.2.4.2), enhanced activity in d/pgACC has been observed in panic disorder 

patients during imagery of high vs. low anxiety situations (Bystritsky et al., 2001). A similar 

bilateral perigenual region (pgACC/24,32) shows hyperactivity during happy face perception 

in medicated panic patients (Pillay et al., 2007). Structural studies also suggest decreased 

grey matter volume in pgACC/32 associated with the disorder (Uchida et al., 2008). Taken 

together, these studies suggest that activity in pgACC/24,32 is most consistently related to 

symptoms of panic disorder.  

1.5.5.1.3 Social and specific phobia 

Increased vmPFC (rostral BA10, pgACC/32) activation in response to negative facial 

expressions has been reported in patients with social phobia (Amir et al., 2005; Blair et al., 

2008). Indeed, a meta-analysis of neuroimaging studies in social phobia suggests the most 

consistent prefrontal change associated with the disorder is over-activity in a rostral region of 

vmPFC corresponding to BA10 (Brühl et al., 2014). 18F-FDG PET imaging has also 
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evidenced decreased metabolism of more caudal regions – including sgACC/25 and caudal 

BA10 – during resting-state functional imaging in social phobics compared to healthy controls 

(Evans et al., 2009). Following treatment with tiagabine, activity in an overlapping region 

increases, suggestive of a role for hypoactive caudal vmPFC in the pathophysiology and 

treatment response in social phobia.  

Studies implicating the vmPFC in specific phobias are relatively scarce – meta-analytic 

approaches instead identify a mid-dACC region associated with symptomatology and 

treatment response across a variety of fear-evoking stimuli (Ipser et al.). However, Hermann 

and colleagues found lower vmPFC (BA10) activity in blood phobics vs. healthy controls 

during symptom provocation (Hermann et al., 2007). The relevance of vmPFC dysfunction to 

blood phobia likely relates to both a failure of emotion regulation but also the critical 

importance of autonomic dysregulation associated with blood phobias in particular.  

1.5.5.1.4 Generalised Anxiety Disorder (GAD) 

The literature on neurobiological changes associated with GAD is small. Increased activity 

across the rostro-caudal extent of the dACC, extending into pgACC/32 and BA10, has been 

observed when paediatric GAD patients are instructed to attend to their own subjective fear 

when observing fearful faces (McClure et al., 2007). Similarly, in a mixed cohort of GAD and 

social anxiety patients, increased intolerance of uncertainty in a decision-making task was 

associated with increased activity in a large vmPFC region spanning caudal and rostral BA10 

(Krain et al., 2008).  

Activity within vmPFC subregions has been implicated as a biomarker of successful 

treatment response as well as a predictor of treatment response in GAD patients. Successful 

treatment with CBT has been linked with reduced caudal BA10 and sgACC/25 activity when 

patients are presented with fearful and angry faces (Fonzo et al., 2014). Activity of a more 

superior region (dorsal aspects of pgACC/32 and dACC/24) seems to successfully predict 

treatment response in GAD patients to venlafaxine (Whalen et al., 2008). Note that this 

region is similar to the region of rostral dACC/24 and pgACC/32 whose activity predicts 

treatment response in depression.
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1.6 SUMMARY 

Subregions of the primate vmPFC sit at the interface of physiology, affect and cognition, and 

are consistently implicated in the aetiology and pathogenesis of mood and anxiety disorders. 

Despite this, we know almost nothing about the causal contributions of these regions to 

specific symptoms associated with these conditions. In the experiments described in the 

subsequent chapters, subregions of marmoset vmPFC are pharmacologically manipulated 

and the effects on baseline physiology (Chapter 3), autonomic and behavioural aspects of 

appetitive processing (Chapter 4) and autonomic and behavioural aspects of aversive 

processing (Chapter 5) are measured. The results of these experiments are relevant to 

preclinical neuroscience and psychiatry alike, as they are the first to show that causal 

manipulations of NHP vmPFC can induce changes in behavioural and autonomic domains 

associated with peripheral cardiovascular dysfunction, impaired reward processing and 

enhanced anxiety.  
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2 MATERIALS AND METHODS 

 

Abbreviation Meaning 

18F-FDG PET 18Fluorine-fluorodeoxyglucose positron emission tomography 

AAV Adeno-associated virus (DREADDs) 

ACTH Adrenocorticotropic hormone 

ANOVA Analysis of variance  

AP Anteroposterior  

BDNF Brain-derived neurotrophic factor 

BP Blood pressure 

CaMKIIa Calcium/calmodulin dependent protein kinase promoter (DREADDs) 

DHK Dihydrokainic acid 

DREADD Designer receptor exclusively activated by designer drug 

EAAT2 Excitatory amino acid transporter-2 

eEF2 Eurkaryotic elongation factor 2 

ET Endotracheal  

GABA γ-aminobutyric acid  

GCR Glucocorticoid receptor 

HA Haemagglutinin (DREADDs) 

HI Human intruder 

hM3/4Dq/i Protein-engineered muscarinic receptor (DREADDs) 

HR Heart rate 

hSyn Human synapsin promoter (DREADDs) 

ICSS Intra-cranial self-stimulation 

IRES Internal ribosomal entry site (DREADDs) 

LM Lateromedial 

LSD Least squares difference 

MAP Mean arterial pressure 

mCitrine Fluorescent tag (DREADDs) 

SEM Standard error of the mean 

vlPFC Ventrolateral prefrontal cortex 
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The materials and methods described herein are common to much of the experimental work 

carried out in this thesis. More specific methods can be found in individual chapters.  

2.1 SUBJECTS AND HOUSING 

2.1.1 Subjects 

Nineteen marmosets (Callithrix jacchus, 11 females and 8 males), bred on-site at the 

University of Cambridge Marmoset Breeding Colony, took part in the studies described in this 

thesis. They were broadly divided into three cohorts: cohort one for the neutral condition and 

negative-affect related studies (described in Chapter 3 and Chapter 5), cohort two for the 

positive-affect related studies (described in Chapter 4) and cohort three for studying the 

effects of peripheral administration of cortisol (Chapter 6). Details of the individual subjects 

taking part in each cohort (including details of specific experiments they took part in) are 

outlined in TABLE 2-1, TABLE 2-2 and TABLE 2-3. Note that two subjects (Subject 9 and 

Subject 16) contributed to more than one cohort (Subject 9: cohorts two and three; Subject 

16: cohorts one and two).  
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Table 2-3 Subjects and Housing: cohort three, for peripheral cortisol studies. A tick indicates 

that the subject took part in that phase of the study. Orange shading indicates the subject is 

deceased, whereas green shading indicates that the subject is still alive. +Subject 9 lost her cannula 

implant and moved into this cohort after having contributed to positive-affect related studies shown in 

TABLE 2-2. All of these subjects had also received surgery to infuse a DREADDs viral construct into 

sgACC/25 – three were infused with the construct AAV8-CaMKIIa-HA-hM3Dq-IRES-mCitrine, and one 

was infused the construct AAV8-hSyn-HA-hM4Di-IRES-mCitrine. DREADDs-related manipulations 

were carried out at a separate time to cortisol related manipulations. The results of DREADDs 

manipulations are not reported in this thesis. 

 

2.1.2 Housing 

Marmosets were housed in male/female pairs, and males were vasectomised to prevent 

pregnancies during experimental testing. They were kept in a 12-hour light-dark cycle (lights 

on at 7 a.m., lights off at 7 p.m.) in a controlled environment of 22 ± 1oC temperature and 50 

± 1% humidity. Their home cages (dimensions: 280 x 120 x 98cm) were stainless-steel 

backed with high pressure laminate side-walls, plastic trays at the bottom and clear plastic 

verandas at the top (FIGURE 2-1). Each cage contained a nest box, a food tray and wealth of 

environmental enrichment including swings, ropes and ladders. Animals all had ad libitum 

access to water. Animals in cohort one were fed a varied diet including fruit, rusk, malt-loaf 

(Soreen, Manchester, UK), peanuts, boiled eggs, sandwiches and weekend treats. Animals 

in cohort two and three were fed a restricted diet from Sundays to Thursdays consisting of 

pellets (20g, Special Diet Services, Witham, Essex, UK) with orange on Monday and pellets 

and carrots on Tuesday to Thursday and Sunday. On Fridays, animals were given rusk 

(Farley’s Rusk, Heinz Foods Ltd., UK), pear and a sandwich with a filling consisting of 

Nutrica Complan Original (Complan, Trowbridge, Wiltshire, UK), boiled egg, Mazuri Powder 

(Special Diet Services), multivitamin drops (Abidec; Omega Pharmaceuticals Ltd., London, 

UK) and vitamin D3 drops (Special Diet Services). On Saturdays, animals were given 

banana and a sandwich. All procedures were carried out in accordance with the UK Animals 

 

Subject 
and sex 

Cannulation 
target 

Experimental history 

FRACTIONATING 
ANHEDONIA 

ANXIETY 

Appetitive 
Pavlovian 

discrimination 

Sucrose 
Preference 

HI test 

9+ F 
sgACC/25, 
pgACC/32 

DREADDs (AAV8-CaMKIIa-
HA-hM3Dq-IRES-mCitrine) 

✔ ✔ ✔ 

17 M 
sgACC/25, 
pgACC/32 

DREADDs (AAV8-CaMKIIa-
HA-hM3Dq-IRES-mCitrine) 

✔ ✔ ✔ 

18 F 
sgACC/25, 
pgACC/32 

DREADDs (AAV8-CaMKIIa-
HA-hM3Dq-IRES-mCitrine) 

✔ ✔ ✔ 

19 M 
sgACC/25, 
pgACC/32 

DREADDs (AAV8-hSyn-HA-
hM4Di-IRES-mCitrine) 

✔ ✔ ✔ 
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(Scientific Procedures) Act 1986 and the University of Cambridge Animal Welfare and Ethical 

Review Body. The PPL number for the experiments described in this thesis is P09631465.   

 

Figure 2-1 Subjects and Housing: home cage. The home cage housed the animals and was 

used for sucrose preference testing and HI testing. A Entire home cage, dimensions: 280 x 120 x 

98cm. B Clear plastic verandas forming the roof of the home cage. C Nest box. D Food tray. E 

Plastic tray forming the floor of the home cage. 

 

2.2 SURGICAL PROCEDURES 

Animals in cohorts one and two all underwent at least two aseptic surgical procedures: one 

to implant a telemetric blood pressure monitor into the descending aorta, and one to implant 

intracerebral cannulae targeting either sgACC/25 alone or both sgACC/25 and pgACC/32. 

Animals undergoing 18F-FDG PET imaging underwent a third procedure to implant a vascular 

access port for the administration of radioactive ligands. Telemetric blood pressure monitors 

were always implanted first, before any behavioural testing.  

Animals in cohort three all underwent telemetry surgery. They additionally underwent 

stereotaxic surgery to infuse a DREADDs viral construct into sgACC/25 (see TABLE 2-3). 

The results of the DREADDs experiments are not reported in this thesis. 
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2.2.1 Pre-surgical Procedures 

Marmosets were weighed within seven days of surgery. Surgery did not take place if there 

was a >10% decrease in weight compared to the previous week. 24 hours before telemetry 

surgery, animals were given prophylactic antibiotic treatment with amoxicillin and clavulanic 

acid (Synulox; 50mg/ml solution; Pfizer, Kent, UK) To minimise the risk of emesis during 

induction or recovery from anaesthetic, animals were not fed for at least 12 hours prior to 

surgery.  

On the day of surgery, animals were pre-medicated with ketamine hydrochloride (KetaVet; 

0.10ml of a 100mg/ml ketamine hydrochloride solution, intramuscular; Henry Schein, 

Melville, NY, USA) before being given a long lasting non-steroidal anti-inflammatory 

analgesic (Carprieve; 0.03ml of a 50mg/ml carprofen solution, subcutaneous; Pfizer, Kent, 

UK). Animals were placed in an incubator at 38oC until fully sedated. Once sedated, 

marmosets were transferred to a heat mat to maintain body temperature and the hands/feet 

were shaved so a pulse oximeter could be fitted with adequate contact. Incision sites were 

also shaved. For telemetry surgery, the abdomen was shaved from the superior border of the 

femoral triangle to the xiphoid process of the sternum. For cannulation surgery, the scalp 

was shaved taking care to avoid the ear tufts as these are important social signals. For 

soloport surgery, the left anterior and posterior triangles of the neck were shaved for 

visualisation of the internal jugular vein in the carotid canal, together with the back from the 

iliac crest to a horizontal line at the inferior border of the scapulae when the arms were fully 

abducted. The animal was then weighed, and this weight was recorded on record sheets.  

2.2.2 Anaesthetic Procedures 

Once sedated, shaved and weighed the animal was transferred to the surgical suite. An 

anaesthetic machine (Compact Anaesthesia Systems; VetTech Solutions Ltd., Cheshire, UK) 

was set up together with a scavenger system. Anaesthesia was induced using a facemask 

covering the mouth and nose, delivering the inhalational anaesthetic isoflurane (4% in 0.5-

1.0 L/min O2; Novartis Animal Health, Herts, UK). Once the animal was fully anaesthetised 

(as assessed by an absence of deep-tendon reflexes in ankle extensors and quadriceps 

muscles), it was intubated. During intubation, a researcher held the marmoset at the angle of 

the jaw in one hand, whilst the index finger of the other hand hooked onto the marmoset’s 

canine. A second researcher prepared the endotracheal (ET) tube and a Q-tip soaked with 

the anaesthetic lidocaine (IntuBeaze; Dechra, Shrewsbury, UK). The lidocaine was applied to 

the epiglottis to relax it, and the ET tube was inserted. The gas supply was then switched 

from the facemask to the ET tube. A combined pulse-oximeter and capnograph (MicroCap 

Handheld Capnograph; Oridion Capnography Inc., MA, USA) monitored O2 saturation (95-

100%), heart rate (200-250bpm), breathing rate (12-20 breaths per minute) and end-tidal 
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CO2 (35-45mmHg). Core body temperature was monitored using a rectal thermometer (36-

38oC, TES-1319 K-type digital thermometer; TES Electrical Electronic Corp., Taipei, Taiwan). 

2.2.3 Telemetry Surgery 

Marmosets undergoing telemetry surgery were implanted with a transmitter probe which 

continuously detected and transmitted an arterial BP trace via radio-frequency signals 

(FIGURE 2-2A). 

 

Figure 2-2 Surgical Procedures: telemetry surgery. A Telemetry probe. The probe body 

contains a battery, signal emitter and sensor. The catheter is filled with a non-compressible fluid 

and bio-compatible gel at the catheter tip. The tip is coated with an anti-thrombogenic film. B 

Implantation procedure. Blood flow in the descending (abdominal) aorta was briefly occluded and a 

transverse incision was made in the arterial wall. A catheter introducer with a grooved tip was used 

to lift a flap at the incision site. The catheter was introduced using forceps and guided into the 

vessel through the groove of the catheter introducer. Once the catheter was in place and an 

adequate signal was detected, the catheter was secured in place with Vetbond glue and a patch. 

 

Once the animal was under stable anaesthesia, it was placed in a supine position on a sterile 

drape laid over the heat mat. The upper and lower limbs were secured in place using 

masking tape to facilitate access to the abdomen. The abdomen was cleaned using 

chlorhexidine (Chloraprep SEPP applicators; BD, Berkshire, UK) and covered with an Ioban-

2 antimicrobial incision drape (3M, St Paul, MN). A laparotomy was performed with a midline 

incision extending from the xiphoid process to the level of a horizontal line connecting the 
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anterior superior iliac spines. The skin and rectus sheath was cut using a scalpel blade, and 

the anterior abdominal muscle wall was cut using scissors. To visualise the abdominal aorta, 

the intestines were positioned to the sides of the peritoneal cavity and lightly held in place 

using metal retractors. If the intestines had to be exteriorised, they were kept moist using 

swabs soaked with sterile saline. The abdominal aorta was exposed from the level of the 

coeliac trunk to its bifurcation into the common iliac arteries. This portion was separated from 

the surrounding viscera, fat and connective tissue using two soft pressure swabs. Once the 

vessel was fully isolated, an 8cm piece of thread was passed under the aorta 1cm above the 

bifurcation. A haemostat clamped the two ends of the thread, lifting the vessel in preparation 

for implantation and exerting a small amount of pressure to limit reflux.  

To restrict blood flow, an experimenter used an index finger to apply pressure to the aorta at 

the level of the coeliac trunk, and slight tension was placed on the thread at the base. 

Pressure was maintained for no more than three minutes to minimise the risk of ischaemia. 

The vessel was punctured 1cm above the bifurcation using a 23-gauge needle (bent at 

approximately 60o with the bevelled edge facing upwards). The catheter cuff of the telemetry 

probe was inserted using a grooved catheter introducer and passed into the aorta until the 

cuff and a small length of tubing (approximately 1.25cm in total) was contained within the 

lumen of the vessel (FIGURE 2-2B). Once correctly positioned, the experimenter’s index 

finger was gradually released over ten seconds. Approximately 10µL of Vetbond tissue 

adhesive (3M Animal Care Products, St. Paul, MN, USA) was applied to the puncture site. 

The glue dried for 30 seconds and the site was monitored for any leakages for a further 

minute. After the integrity of the seal was established, correct placement of the catheter was 

then checked using an AM radio (tuned to 600Hz) and a magnet. The magnet was passed 

over the probe body (resting on the abdominal surface) to activate the probe, and the radio 

was held directly above the probe body to detect the telemetry signal. A clear fluctuating tone 

(corresponding to the cardiac cycle) indicated correct placement. After the signal was 

checked, a small 0.25cm2 cellulose patch was placed over the insertion site and a further 

10µL of glue was applied to secure the patch and catheter in place.  

The thread and retractors were then removed, and the abdominal viscera were moistened 

with sterile saline. The intestines were gently moved back into position and the probe body 

was gently rested on top, with the long axis of the probe placed along the midline. The 

catheter was directed rostrally and kinks were removed. Tabs on the probe body were 

sutured into the abdominal wall using non-absorbable sutures (Ethilon 3-0 W; Ethicon Inc., 

Puerto-Rico, USA). After closure of the muscle wall, the signal was checked again and then 

the probe was switched off using the magnet. It was not turned on again until behavioural 

testing started after recovery. Finally, the skin was closed with a continuous stitch of 
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absorbable suture material (Vicryl 3-0 W9444; Ethicon Inc., Puerto-Rico, USA) with the 

dermis of either side of the suture opposed together and glued using Vetbond. The gas 

anaesthetic was stopped, and 1.0-2.5ml of sterile saline (volume depended on the length of 

the surgery) warmed to body temperature was administered to replace fluid loss. Once the 

animal started to rouse, the ET tube was removed, and the animal was supplied with 

additional oxygen until it could maintain O2 saturations of 95-100% independently. The 

animal was then transferred to an incubator and monitored during recovery.  

Once fully recovered, the animal was given 0.25ml Synulox and returned to their home cage 

with food and water. Post-operative analgesia consisted of 0.1ml Metacam (1.5mg/ml 

meloxicam; Boehringer Ingelheim, Ingelheim/Rhein, Germany) given orally each morning for 

three days following surgery. Synulox was administered orally for 5 days following surgery to 

reduce the risk of infection. The animal was allowed a minimum of 10 days recovery prior to 

starting behavioural testing.  

2.2.4 Cannulation Surgery 

Marmosets undergoing cannulation were implanted with 26-gauge double guide cannulae 

(Plastics One; Roanoke, Virginia, USA) targeting bilateral sgACC/25 alone (7.0mm long, 1.0-

1.4mm apart) or both bilateral sgACC/25 and bilateral pgACC/32 (2.0-3.5mm long, 1.0-

1.2mm apart). 

Once animals were under stable anaesthesia, they were secured in a stereotaxic frame 

modified for the marmoset (FIGURE 2-3, David Kopf Instruments; Los Angeles, California, 

USA). Ear bars were carefully positioned into the ear canal of each ear to prevent lateral 

movements and adjusted in the lateromedial (LM) direction until the marmoset was centred 

in the frame. A mouth bar was placed against the hard palate of the marmoset, and eye bars 

were positioned in the supraorbital notch of the eye sockets. Lacrilube ointment (Allergan, 

Bucks, UK) was administered around the eyes and eye bars to prevent the eyes from drying 

out. The scalp was cleaned using chlorhexidine and an Ioban-2 antimicrobial drape was 

placed on the scalp. A vertical incision was made along the scalp to expose the skull and 

skin flaps were held in place using a retractor.  
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Figure 2-3 Surgical Procedures: Stereotaxic frame for cannulation surgery. The stereotaxic 

frame was specially modified for the marmoset. The marmoset was secured on the frame using ear 

bars (e), eye bars (i) and a mouth bar (m).  

 

The coordinate system (in mm) in the stereotaxic set-up used the inter-aural line (at the apex 

of the ear bars) as the anteroposterior (AP) zero coordinate (positive in the anterior direction) 

and the superior sagittal sinus at AP +17.5 as the LM zero coordinate (positive to the 

animal’s right). Positioning of guide cannulae to target sgACC/25 and pgACC/32 was 

adjusted in-situ to account for variation in frontal-lobe size between marmosets. This was 

achieved by measuring cortical depth at a standard coordinate (AP +17.5, LM -1.5) – a 

‘depth-check.’ The depth-check was done using a smooth dental broach (Micro-Mega, 

Besancon, France) lowered vertically through the brain. Measurements were taken at the 

cortical surface with the dura removed, and at the base of the skull. The cortical depth was 

calculated by measuring the difference between the cortical surface and base. If the depth at 

this position fell outside the range of 5.8-6.8mm, the AP measurement was adjusted in steps 

of 0.5mm (anteriorly if the depth was >6.8mm, and posteriorly if the depth was <5.8mm). The 

depth was re-assessed until it fell within this range. AP alterations were noted, and 

subsequent AP coordinates were adjusted. The coordinate for pgACC/32 cannulae used the 

correction from this general depth check. Owing to previous variability in cannula position 

targeting sgACC/25, an additional depth check was performed at AP +14.0 LM -1.0 (+/- any 

correction from the general depth check) to more specifically determine the depth around 

sgACC/25. A depth between 8.9-9.3mm was considered acceptable, and in a similar fashion 

the AP measurement was adjusted in steps of 0.5mm until the depth fell within this range. 

The final position of sgACC/25 cannulae was the sum (+/-) of the general depth-check 

correction and sgACC/25 depth-check correction. 

When the location of the cannula was determined, a cortical surface reading was taken with 

the guide prongs, and the guide cannula could then be lowered into the cortex using the 

stereotaxic arm. Cannuale targeting sgACC/25 were lowered vertically downwards; cannulae 
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targeting pgACC/32 were rotated at an angle of 25o towards the anterior in the AP direction. 

The target depth for sgACC/25 cannulae was 66.7% of the total depth measured, down from 

the cortical surface. The target depth for pgACC/32 cannulae was 3.5mm from the cortical 

surface. The guide was lowered until it could be lowered no further (owing to obstruction of 

adjacent skull). The injector projection lengths (beyond the end of the guide cannulae) for 

infusions were modified based on the difference between the target depth for the guide and 

the depth achieved. Final projection lengths consisted of this correction plus a standard 

length (1mm beyond the end of the guide for sgACC/25; 1.4mm beyond the end of the guide 

for pgACC/32).  

Steel screws (0.80mm, 1/16”; Plastics One) were fastened to the skull surrounding the guide 

cannulae to facilitate adhesion of cement to the skull. A layer of Super-Bond dental adhesive 

(Sun Medical, Shiga, Japan) was painted onto the skull surface, providing an optimal 

bonding surface for the acrylic cement. The acrylic cement was then applied onto the Super-

Bond, underneath skull screws and around the guide cannulae. The cement was 

smoothened using a spatula to prevent any sharp edges. Once the cement had dried, loose 

skin in-front and behind the cannula implant was sutured using absorbable sutures (Vicryl 3-

0 W9444; Ethicon Inc., Puerto Rico, USA). At the end of surgery, marmosets were given 

0.18ml of dexamethasone I.M. (3.8mg/ml; Aspen Pharma, Berkshire, UK) to prevent any 

brain swelling. Stainless steel dummy cannulae were placed into the guide cannulae to 

maintain patency, and brass or aluminium protective caps were screwed over the top using 

the thread on the guide cannulae.   

After the surgery was completed, the anaesthetic was switched off and the ET tube was 

removed. The animal was monitored as above, until it maintained O2 saturations of 95-100% 

independent of additional oxygen supply. The marmoset was placed in a pre-heated 

incubator to recover and was monitored until full recovery, after which it was returned to its 

home cage with food and water. All animals were given the analgesic Metacam for three 

days following surgery. 

2.2.5 Soloport Surgery 

Marmosets undergoing 18F-FDG PET imaging were implanted with a subcutaneous soloport 

system (Solomon Scientific, Skokie, IL, USA) with a catheter in the jugular vein.  

Once the marmoset was under stable anaesthesia, a large drape was laid over the heat mat. 

The marmoset was re-positioned on the heat pad in a prone position with its head facing the 

surgeon and face turned towards the left side to expose the left triangles of the neck (for 

targeting of the left jugular vein). The skin was cleaned with chlorhexidine and a sterile 

marker was used to draw on the position of the vein. A small transverse incision was made 
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below the tips of the scapulae across the back. Using blunt dissection, a space was created 

subcutaneously below the incision line which would contain the body of the soloport. The 

marmoset was then turned onto its side, resting on its hips and arms. The animal’s head was 

tilted to stretch the neck for maximum exposure, and an Ioban-2 antimicrobial drape was cut 

to cover the neck. A small 2cm incision was made along the line of the sternocleidomastoid 

muscle taking care not to cut too deeply and damage underlying structures in the carotid 

canal. The internal jugular vein was visualised, and retractor clips kept the incision site open. 

Space was made around the vein using blunt scissors to gently separate the connective 

tissue. Once there was enough space, the flat end of a metal spatula was placed underneath 

the vessel. The vein was constantly bathed in saline to maintain moisture and to prevent the 

vein sticking to the spatula. Additional connective tissue enveloping the vein was removed 

and the spatula was rotated to further free the vein. Further blunt dissection superiorly 

towards the jaw line ensured there was enough space for the loop of the catheter without any 

kinks.  

Using a hollow skin tunnelling tool, the surgeon tunnelled subcutaneously from the neck 

incision to the back incision, with a twisting action as the tool advanced. The catheter was 

threaded through the skin tunnelling tool from the back towards the neck. Once the end of 

the catheter was visualised in the neck, the soloport and catheter was flushed with 1.0ml 

heparinised saline (HepSal; Wockhardt UK Ltd., Wrexham, UK) to ensure no blockages had 

developed during threading of the catheter. With the catheter tip in the neck and the vein 

isolated on the spatula, a small transverse cut was made from the midline of the vein towards 

the edge. A blunt 26-gauge needle bent at 45o was inserted into the cut vein. The catheter 

was inserted to the side of the needle which facilitated smooth entry of the catheter tip into 

the lumen of the vessel. As the catheter entered the jugular vein, the needle was slowly 

removed. Once inserted, the catheter was glued in place using 10µL Vetbond and allowed 30 

seconds to dry. A 1.0ml syringe with Huber needle attached was then inserted into the 

soloport and drawn back until the catheter and soloport was filled with blood. A second 1.0ml 

syringe with Huber needle was used to flush the entire system with a further 1.0ml of HepSal. 

The catheter tubing was adjusted to ensure a gentle loop back to the soloport and enough 

slack was left for neck movement. A 0.25cm2 cellulose patch was then placed over the 

vessel and 10µL Vetbond was used to glue it in place. The neck and back were then with 

sutured absorbable sutures (Vicryl 3-0 W9444; Ethicon Inc.). 

After the surgery was completed, the anaesthetic was switched off and the ET tube was 

removed. The animal was monitored as above, until it maintained O2 saturations of 95-100% 

independent of additional oxygen supply. The marmoset was placed in a pre-heated 

incubator to recover and was monitored until full recovery. Once fully recovered, the animal 



Chapter 2: Materials and Methods 

154 
 

was given 0.25ml Synulox and returned to their home cage with food and water. Animals 

were given the analgesic Metacam for three days following surgery, and Synulox was 

administered orally for 5 days following surgery to reduce the risk of systemic infection. To 

maintain patency of the soloport system, the soloport was flushed with 0.5ml of HepSal 

following surgery at regular intervals: +1 day, +3 days, +6 days, +10 days, +15 days and 

weekly thereafter.  

2.3 BEHAVIOURAL TESTING APPARATUS 

2.3.1 Carry Box 

Animals were trained to enter a transparent Perspex carry box (dimensions: 240 x 230 x 

200mm) in which they were transported to and from the behavioural testing apparatus. One 

face of the carry box could be removed and acted as a door. The Perspex carry box could be 

secured inside a testing chamber using a latch. The marmoset remained inside this box 

during testing. The door and opposite surface had a circular window (diameter 35mm) 

together with eight smaller air holes (diameter 15mm). 

2.3.2 Testing Chambers 

Behavioural testing took place within sound-attenuated automated testing chambers in a 

dark room. The chambers were lit with LED strips consisting of individually controllable red, 

blue and green lights which could be turned on together to generate a white ‘houselight.’ All 

chambers were equipped with a computer-controlled speaker system through which auditory 

stimuli could be played. Three video cameras positioned in the test chambers allowed for 

continuous monitoring of the animal during testing, with the live feed being transmitted to a 

monitor in another room. Videos were recorded using software (CyberLink PowerDirector, 

CyberLink Corp., Vaals, ND) for subsequent behavioural scoring. The chambers were 

adaptable with a modular design – the floor was removeable, such that the same chamber 

could be used for multiple different behavioural paradigms requiring different sets of 

equipment (e.g. both appetitive and aversive Pavlovian conditioning). The floor of the 

apparatus concealed a telemetry receiver (part of the PhysioTel Telemetry System; Data 

Sciences International, St. Paul, MN, USA) which received a continuous transmission of HR 

and BP information from telemetry probes implanted into the animals (see 2.6.1). 

In this thesis, two testing chambers (each with a modular design) were used: one for the 

neutral condition and all Pavlovian conditioning procedures (equipped with removeable 

foodbox modules [Chapter 4] and SmartGlass [Chapter 5]), and a second for the 

progressive ratio (equipped with a touchscreen and milkshake delivery apparatus). 

Photographs of the first testing chamber are shown in FIGURE 2-4A, B and the second in 
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FIGURE 2-4C. In both cases, the chamber was controlled by the Whisker control system 

(Cardinal and Aitken, 2010) and in-house software.  

 

Figure 2-4 Behavioural Testing Apparatus: testing chambers. Two testing chambers were 

used. A First testing chamber for the neutral condition and all Pavlovian conditioning procedures. 

During the neutral condition (Chapter 3), snake extinction conditioning (Chapter 5) and fear 

discrimination testing (Chapter 5), the testing chamber appeared as shown. The operation of the 

SmartGlass is described in Chapter 5. During appetitive Pavlovian conditioning testing (Chapter 4 
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and Chapter 6), the floor could be removed and replaced with the foodbox apparatus (B).  B Food-

box module for appetitive Pavlovian discrimination testing in-situ (Chapter 4 and Chapter 6). C 

Second testing chamber for progressive ratio testing (Chapter 4).  

 

2.3.3 Home Cage 

The sucrose preference test and human intruder (HI) test were carried out in the animals’ 

home cage (FIGURE 2-1). During sucrose preference sessions, animals were divided in their 

home cage, which involved inserting laminated opaque sheets into the cage to divide it into 

four quadrants. Prior to commencing testing sessions, animals were fully habituated to the 

dividing procedure by dividing the cage and leaving the animals in one quadrant for 10-15 

minutes at a time. Once habituated, sucrose preference testing took place in the top left or 

top right quadrant. During HI sessions, animals were divided in the top right quadrant. 

2.4 DRUG TREATMENTS 

The drug used most extensively is this thesis is dihydrokainic acid (DHK), an inhibitor of the 

excitatory amino-acid transporter-2 (EAAT2) present on astrocytes. This drug and its dose 

was chosen primarily based on a study in 2012, showing that intra-IL infusions of DHK 

reduce motivation for ICSS, and importantly do not have gross effects on motor ability nor do 

infusions induce seizure-like patterns on EEG measurement (John et al., 2012). By inhibiting 

EAAT2, DHK should increase extracellular glutamate levels and indeed microdialysis studies 

have shown that administration of DHK increases extracellular glutamate levels (Fallgren and 

Paulsen, 1996) and intracerebroventricular administration of DHK in the rat increases cFos 

expression, particularly in IL (Bechtholt-Gompf et al., 2010), consistent with its putative role 

as an over-activating agent. However, it is important to note that it is not clear which cell 

populations are having their activity increased by DHK infusions – cFos expression could be 

in pyramidal output neurons, but also in inhibitory interneurons, and therefore the functional 

consequences of DHK infusions is more complicated than global over-activation of a brain 

region. Furthermore, the effect of DHK on glutamate levels will not be restricted to an 

elevation in glutamate within the synaptic cleft; instead, there will be a global increase in 

concentration akin to an effect on volume transmission. Thus, the elevated levels of 

glutamate will affect both synaptic and extra-synaptic metabotropic and inotropic glutamate 

receptors. These caveats must be borne in mind when interpreting the effects of DHK 

infusions. 

The second method employed to over-activate brain regions in this thesis is a cocktail of two 

drugs – CGP52432/LY341495 (CGP-LY) – which target mGlu2/3 and GABAB receptors, 

respectively. These receptors have been shown to negatively modulate glutamate in the 

prefrontal cortex and hippocampus (Chalifoux and Carter, 2011; Nicoletti et al., 2011) and 
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combined administration of these two drugs increases evoked (but not spontaneous) D-[3H]-

aspartate (a non-metabolisable analogue of glutamate) release in ventral hippocampal slice 

preparations and do not cause nonspecific motor changes when infused into the ventral 

hippocampus of awake rats (Marrocco et al., 2012). By increasing evoked release, this drug 

cocktail can be thought of as increasing the sensitivity of brain regions to excitatory inputs.  

Muscimol/baclofen is a combination of a GABAA/GABAB receptor antagonist, and was 

chosen to silence the activity in particular brain regions as it has been used in the present 

author’s laboratory previously to inactivate vlPFC and OFC (Clarke et al., 2015). These drugs 

have been used extensively in preclinical research to silence neuronal activity in a myriad of 

brain regions (although they may not have identical effects – for example, see (Pulman et al., 

2012) for different effects of muscimol and baclofen in the accumbens).  

The mechanism of action of ketamine is poorly understood and hotly debated. Classically, 

ketamine is described as an NMDA receptor antagonist but at clinical dose ranges, it has 

effects on many other receptors (Tyler et al., 2017) – although these effects are weaker than 

its action at the NMDA receptor (Roth et al., 2013). Hypotheses regarding ketamine’s 

antidepressant action are discussed in more detail in Chapter 1, section 1.5.1.5.3. 

Citalopram is an SSRI drug used as first-line (along with sertraline and fluoxetine) in the 

treatment of moderate to severe depression with consistently demonstrable efficacy (Cipriani 

et al., 2012; Montgomery and Djärv, 1996). Whilst the antidepressant effects of citalopram 

take approximately 2-6 weeks to develop, acute doses of citalopram have substantial effects 

on amygdala responses to fearful faces (Murphy et al., 2009) suggesting that therapeutically 

relevant actions of SSRIs can occur at much shorter timepoints. Acute intramuscular 

injections of citalopram have been used in the present author’s laboratory to modulate 

marmoset responses to an uncertain threat in the form of a human intruder (Santangelo et 

al., 2016). 

Naloxone is a non-selective opioid antagonist. Its mechanism of action is not fully 

understood, although evidence suggests that it antagonises the effects of opioids (both 

endogenous and exogeneous) through competitive antagonism of µ, κ and δ opiate receptor 

subtypes, with the greatest affinity for the µ receptor. Clinically, naloxone is given 

intramuscularly and intranasally to treat opioid overdoses. In both rodents and humans, 

naloxone administration reduces the consumption of appetitive foodstuffs (Drewnowski et al., 

1995; Philopena et al., 1996). However, only sucrose consumption – and not sucrose 

preference (over water) – is affected by naloxone in rats responding for sweet and neutral 

solutions (Rockwood and Reid, 1982). Likely by devaluation of the outcome, naloxone 

administration reduces operant motivational responding (as measured by a progressive ratio 
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schedule of reinforcement) to obtain a sucrose solution in a dose-dependent fashion (Cleary 

et al., 1996). 

Cortisol is the main endogenous glucocorticoid hormone released by the zona fasciculata of 

the adrenal cortex. The predominant focus when studying the action of cortisol is on the 

slow, emerging genomic effects of cortisol mediated by the dimersation and nuclear 

translocation of cytosolic GCR. However, there are also rapid, non-genomic effects of cortisol 

which occur within 15 minutes of intravenous administration (Strelzyk et al., 2012) – some of 

this signalling is ‘classical’-GCR dependent (blocked by mifepristone) whereas other aspects 

of this action are insensitive to mifepristone. In both cases, these effects are insensitive to 

inhibitors of protein synthesis and are therefore non-transcriptional (Dallman, 2005). Acute 

cortisol administration has effects on human subjective arousal responses and neuroimaging 

correlates (Sudheimer et al., 2013). The timepoint of one hour used in this thesis probably 

reflects a combination of rapid, non-genomic and slower, genomic actions of cortisol. 

Intramuscular cortisol administration at a similar timepoint has been shown to affect maternal 

behaviours in marmosets previously (Saltzman and Abbott, 2009) and the pre-treatment 

time/dosage was based on work in this study.  

For a summary of doses, pre-treatment times and (where appropriate) infusion parameters of 

the drugs used in this thesis, see TABLE 2-4.  
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Drug or drug 
cocktail 

Chapter(s) Mechanism Route Dose Pre-
treatment 

Dihydrokainic acid 
(DHK) 

3, 4, 5 
EAAT2 

antagonist 
Central 
infusion 

1.35μg/μL 
Rate of 

0.5μL/min 

10 
minutes 

CGP52432/LY341495 

(CGP-LY) 
4 

GABAB 

/mGlu2/3 
receptor 

antagonist 

Central 
infusion 

10ng/μL 
CGP52432 
100pg/μL 
LY341495 

Rate of 
0.5μL/min 

15 
minutes 

Muscimol/Baclofen 4 

GABAA 

/GABAB 
receptor 
agonist 

Central 
infusion 

11.4ng/μL 
muscimol 

0.214μg/μL 
baclofen 
Rate of 

0.25μL/min 

25 
minutes 

Ketamine 4, 5 
NMDA 

receptor 
antagonist 

Intramuscular 
injection 

0.5mg/kg n/a 

Citalopram 4 SSRI 
Intramuscular 

injection 
10mg/kg 

30 
minutes 

Naloxone 4 

Non-
selective 

opioid 
receptor 

antagonist 

Intramuscular 
injection 

10mg/kg 
10 

minutes 

Cortisol 6 
GCR 

agonist 
Subcutaneous 

injection 
5, 20 and 
40mg/kg 

60 
minutes 

      
 

Table 2-4 Drug Treatments: Mechanism, route of administration, dose and pre-treatment time 

for drugs used in experimental manipulations in this thesis. Pre-treatment refers to the time 

interval between completion of infusion and entry of the animal into the behavioural testing 

apparatus. All centrally administered drugs were infused over 2mins and injectors were left in place 

for 1min to facilitate adequate diffusion. 

 

2.4.1 Intracerebral infusions in awake marmosets 

Intracerebral infusions in awake marmosets were carried out in a separate minor procedures 

room. All instruments used were sterile. The area was sprayed down with Anistel (Tristel 

Solutions, Newmarket, UK) and surfaces were wiped. The syringe pump, syringes and 

injectors were set-up on a sterile field (FIGURE 2-5A). If the drug solution was frozen, it was 

taken out of the freezer at this point to thaw whilst setting up. Injectors were connected to 

tubing (0.3mm diameter; VWR International Ltd., UK) fitted to gas-tight 10µL Model 701RN 

Hamilton syringes (FIGURE 2-5B; Hamilton, Reno, NV, USA) attached to an infusion pump 

(Kd Scientific, Holliston, Massachusetts, USA). The entire infusion system was air-tight and 

filled with saline. Small air bubbles were drawn up into the set-up and the injector was 

immersed into drug/vehicle solution and the drug/vehicle was drawn up beyond the position 
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of the bubble. Small permanent marks were used to check that fluid was moving in the 

system (FIGURE 2-5C).  

For all sterile drug treatments, the marmoset was held gently in a researcher’s hand. The 

caps and cannula blockers were removed from the guide and the site was cleaned with 70% 

ethanol. The injector was inserted into the guide cannulae. Bilateral infusions were carried 

out over two minutes at a rate dependent on the drug being infused. Following infusion, the 

injector was left in place for a further minute to allow the drug to diffuse before injector 

removal. Sterile cannula blockers were placed in the guide cannulae lumen, and sterile 

brass/aluminium caps were screwed back on before the animal was returned to their home-

cage.  

 

Figure 2-5 Drug Treatments: intracerebral infusions in awake marmosets. A Infusion set-up. 

Hamilton syringes were connected to an injector with PTFE infusion lines. The Hamilton syringes 

were mounted on a syringe pump with an adjustable rate. B Hamilton syringe. C Infusion line. Prior 

to an infusion, the syringes and lines were filled with 0.9% sterile saline. A bubble was manually 

drawn up, and then drug (or vehicle) was drawn up such that the fluid after the bubble was the 

substance to be infused. The bubble was marked with permanent marker. This was used to assess 

fluid movement – as can be seen, the bubble has moved beyond the initial markings.   

 

2.4.2 Systemic drug treatments 

Monkeys were taken into a separate room, held by a researcher. For intramuscular 

injections, the lateral aspect of the thigh was cleaned with alcohol before injection. An insulin 

syringe was used to inject at 45o to the surface of the skin into the body of the quadriceps 

muscle. No more than 0.1ml of fluid was injected via this route at any one time.  

For subcutaneous injections, an area of skin in between the shoulder blades was cleaned 

with alcohol before injection. This skin was pinched upwards and an insulin syringe was used 
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to inject at a 20o angle. The area was massaged briefly to encourage the distribution of fluid 

beneath the skin. The volume injected via this route was 0.8ml/kg. 

2.5 SALIVARY CORTISOL SAMPLING 

Salivary cortisol samples were taken using a cotton bud. When the cotton bud was soaked 

with saliva, the end was snipped off and placed in an Eppendorf tube and sealed. The 

Eppendorf tubes were closed and placed at -20oC for storage, for no more than one month. 

The samples were analysed using the Salimetrics® salivary cortisol assay (Stratech, 

Newmarket, UK).  

‘Pre’- and ‘post’-manipulation samples were always taken as a pair and analysed together as 

part of the same batch to minimise the effect of any systematic variation between batches. 

The ‘pre’ sample was typically taken before a testing session (e.g. during an infusion or 

injection), whereas the ‘post’ sample was taken after. Previous work in NHPs has shown that 

salivary cortisol responses in response to an ACTH injection stressor start at 15 minutes and 

peak at 45 minutes (Heintz et al., 2011) – meaning that salivary cortisol samples adequately 

reflect fluctuations in circulating cortisol over the typical length of a testing session (between 

15-30 minutes). Within single studies, salivary samples were taken at the same time of day 

(within one hour) to minimise the influence of circadian rhythms.  

2.6 DATA ACQUISITION AND PRELIMINARY ANALYSIS 

2.6.1 Telemetry data collection and analysis 

BP data were continuously transmitted by the implanted probe to a receiver in the 

behavioural testing chamber. Each component was part of the PhysioTel system (Data 

Sciences International, St. Paul, MN, USA), using short range telemetry to record data from 

untethered animals (FIGURE 2-6). An ambient pressure reference monitor (APR-1) 

continuously recorded ambient pressure. The absolute pressure measured by the telemetry 

probe and the ambient pressure data were collated using a matrix data acquisition system 

(MX-2) together with interface software to transfer the recorded data to a Spike2 datafile 

(version 8.12; Cambridge Electronic Design [CED], Cambridge, UK) on an acquisition 

computer.  The acquisition computer computed the animal’s BP by comparing the absolute 

pressure measured by the probe and the ambient pressure measured by the APR-1. This 

could be used for offline analysis. 

Outliers and recording failures were removed (values >200mmHg or <0mmHg, and other 

abnormal spikes) and gaps were treated as missing values, although data collection was 

highly reliable overall. Systolic and diastolic events were extracted as local maxima and 

minima for each cardiac cycle. MAP was calculated for each cycle using the following 
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formula: MAP = diastolic BP + 
1

3
(systolic BP – diastolic BP). HR values were derived from 

inter-beat intervals.  

2.6.2 Behavioural Analysis 

Behavioural data were collected via video recording systems and scored offline by an 

experimenter and research assistant. Refer to individual chapters for more detailed 

behavioural methodologies.  

 

Figure 2-6 Data Acquisition and Preliminary Analysis: telemetry data acquisition and 

analysis. An MX2 matrix system gathered pressure information from the animal via a receiver, and 

ambient pressure using an ambient pressure reference monitor. Absolute and ambient pressure 

information was interfaced to the data acquisition computer which could be used to calculate the 

animal’s BP and generate a continuous telemetric readout. 

 

MX2 Matrix 2.0 with router 
and POE switch 
Interface between receiver 
and acquisition computer  
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2.7 STATISTICAL ANALYSIS 

Data were inputted into GraphPad Prism v8.00.178 for Windows (GraphPad Software, La 

Jolla, CA) for statistical analysis. Significance was set at α=0.05 in all cases. The design of 

all studies was repeated-measures, within-subject. Analyses were typically carried out as 

follows: 

• Single group of data: summarised with mean ± SEM. If appropriate, a one sample t-

test was used to compare data to a hypothetical mean. 

• One factor with two levels: analysed with a two-tailed paired t-test.  

• One factor with three or more levels: analysed with a one-way repeated-measures 

analysis of variance (ANOVA). 

• Two factors: analysed with a two-way repeated-measures ANOVA. 

• Three factors: analysed with a three-way repeated-measures ANOVA. 

Parametric tests were conducted as the sample size was too small to detect violations in 

normality, and magnitudes of effects were generally similar across animals. In most cases, 

post-hoc tests were corrected for using Sidak’s correction for multiple comparisons. When 

planned comparisons were made based on data from pre-existing literature (for instance, the 

effects of naloxone on sucrose consumption), post-hoc p-values were computed from 

Fisher’s Least Squares Difference (LSD) test and remain uncorrected. For precise details of 

the statistical analyses conducted, refer to individual chapters. 

2.8 POST-MORTEM ASSESSMENT OF CANNULA PLACEMENT 

Animals were pre-medicated with ketamine hydrochloride before being euthanized with 

pentobarbital sodium (Dolethal; 1ml of a 200mg/ml solution, i.e.; Merial Animal Health, 

Essex, U.K.). Animals were then perfused transcardially with 500ml 0.1M phosphate-buffered 

saline, followed by 500ml of 4% paraformaldehyde fixative solution over approximately 15 

minutes. The brain was removed and left in the 4% paraformaldehyde fixative solution 

overnight before being transferred to 30% w/v sucrose solution for at least 48 hours. Brains 

were then sectioned on a freezing microtome (coronal sections; 40 or 60µm), mounted on 

slides and stained with cresyl-violet. The sections were viewed under a Leitz DMRD 

microscope (Leica Microsystems, Wetzlar, Germany). The cannula locations for each animal 

were schematized onto drawings of standard marmoset brain coronal sections and 

composite diagrams were then male to illustrate the extent of overlap between animals. 
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3 CARDIOVASCULAR CHANGES INDUCED BY OVER-

ACTIVATING PRIMATE SGACC/25 BUT NOT 

PGACC/32 

 

Abbreviation Meaning 

ANOVA Analysis of variance 

BA Brodmann area 

BOLD Blood oxygen level dependent 

BP Blood pressure 

CAN Central autonomic network 

CSI Cardiac sympathetic index 

CVI Cardiac vagal index 

DMN Default mode network 

EAAT2  Excitatory amino acid transporter-2 

HPA Hypothalamo-pituitary-adrenal 

HR Heart rate 

HRV Heart rate variability 

IBI Inter-beat interval 

IL Infralimbic (cortex) 

MAP  Mean arterial pressure 

NHP Non-human primate 

pgACC Perigenual anterior cingulate cortex 

PL Prelimbic (cortex) 

RMSSD Root mean squared standard deviation 

sgACC Subgenual anterior cingulate cortex 

vmPFC Ventromedial prefrontal cortex 

VNS Vagal nerve stimulation 
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3.1 ABSTRACT 

Subregions of the ventromedial prefrontal cortex (vmPFC) are appreciated as critical 

structures in the regulation of both the cardiovascular system and HPA axis, and 

dysfunctional activity within the vmPFC – together with dysregulated cardiovascular and 

endocrine physiology – has been implicated in disorders associated with enhanced negative 

emotion, including depression and anxiety. However, whether these changes are causally 

linked is unknown. Here we show for the first time that over-activity in sgACC/25 – but not 

pgACC/32 – profoundly alters cardiovascular function in an emotionally neutral condition. 

This same manipulation has no effect on HPA axis activity as measured by salivary cortisol 

concentration. Specifically, sgACC/25 over-activity is associated with reduced HRV and 

reduced vagal tone, changes which are commonly observed in depression, anxiety and 

psychopathology more generally. The data presented here are the first to elucidate a causal 

link between elevated activity in sgACC/25 and cardiovascular changes characteristic of 

psychiatric disease and suggest that sgACC/25 is a critical component of the neurobiological 

‘link’ between mood disorders, anxiety disorders and cardiovascular disease. 

3.2 INTRODUCTION 

Dysfunctional cardiovascular (Carney et al., 2001; Khawaja et al., 2009) and endocrine 

(Keller et al., 2017) activity is a physiological hallmark of both mood and anxiety disorders 

(Carney et al., 2001; Chalmers et al., 2014; Faravelli et al., 2012; Keller et al., 2017; Khawaja 

et al., 2009). Beyond over-activity in vmPFC subregions being implicated in the diagnostic 

symptoms of these disorders (Drevets et al., 2008b; Hamilton et al., 2011a; Harrison et al., 

2009; Mayberg, 1997; Mayberg et al., 2005), these same regions have an involvement in 

homeostatic cardiovascular and HPA axis regulation. A large region of rostral and caudal 

vmPFC – including both sgACC/25 and pgACC/32 – has been implicated in the central 

regulation of autonomic function (Beissner et al., 2013), termed the central autonomic 

network (CAN) (Loewy and Spyer, 1990). The CAN is a critical regulatory system involved in 

visceromotor and neuroendocrine control to maintain a constant internal milieu (Benarroch, 

1993). Given these functions – together with the implication of over-activity in these areas in 

the symptoms of mood/anxiety disorders – it begs the question as to whether over-activity 

within vmPFC subregions such as sgACC/pgACC contributes to aspects of physiological 

dysfunction associated with these disorders.  

There are indications from several lines of correlational neuroimaging work that human 

sgACC/25 and pgACC/32 are associated with different aspects of autonomic function. 

SgACC/25 has been linked to modulation of parasympathetic activity at rest owing to its 

connectivity to components of the DMN (Hamilton et al., 2011a), together with a strong 

positive association of activity within this region to the high frequency component of HRV 
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(Allen et al., 2015). Studies in humans have also implicated activity in sgACC/25 in 

parasympathetic regulation during emotional processing (Lane et al., 2013). PgACC/32 

shows strong inverse correlations with HR during handgrip tasks and situations of emotional 

stress (Gianaros and Wager, 2015; Goswami et al., 2011; Wager et al., 2009), such that 

decreased activity within pgACC/32 is associated with increased HR. This suggests that 

activity within pgACC/32 provides tonic, top-down inhibition of HR which is released when 

cardiac output needs to increase. However, a definitive role for these subregions in cannot 

be determined from these studies alone: beyond a (potentially differential) role for pgACC/32 

and sgACC/25 in cardiovascular modulation, the causal roles of these regions remains 

unclear based on the results of correlative neuroimaging studies alone.   

Interventional studies in rodents provide further insight into the differential roles of the 

putative homologues of sgACC/25 and pgACC/32 – IL and PL respectively – in 

cardiovascular regulation. IL and PL constitute rodent ‘visceral motor cortex’ (Terreberry and 

Neafsey, 1983). Anatomical tract-tracing studies show that whilst IL directly projects to 

basomedial amygdala, hypothalamic nuclei and brainstem autonomic control centres, PL 

projects to insula, claustrum, thalamus and basolateral amygdala (Vertes, 2004). These 

connectivity patterns suggest that IL is a major cortical autonomic motor structure, whereas 

the function of PL is integrative, acting as a site of convergence for limbic, cognitive and 

autonomic inputs. Functional studies have tended to support this: stimulation of IL induces 

baseline physiological changes, whereas stimulation of PL has no baseline effect but 

regulates autonomic changes induced by amygdala/hypothalamic stimulation (Al Maskati and 

Zbrożyna, 1989). Recent work has identified PL opioid and angiotensin receptors as being 

critical in generating the cardiovascular components of the stress response induced by acute 

restraint (Brasil et al., 2018; Fassini et al., 2014), further supporting a role for PL in the 

regulation of autonomic function during situations of arousal. Having said this, IL is not 

limited to a role in baseline cardiovascular function: IL has also been related to 

cardiovascular responses during stress, but in contrast to PL, it is proposed to attenuate 

these responses (Müller-Ribeiro et al., 2012).  

Despite being apparently anatomically homologous (Haber, 2016), whether rodent PL/IL 

regions are functionally analogous to human pgACC/32 and sgACC/25 remains uncertain. 

Interventional pharmacological manipulations carried out in marmosets in the present 

author’s laboratory have shown that sgACC/25 inactivations have profound cardiovascular 

effects in an emotionally neutral condition to increase HRV and increase vagal tone, whereas 

inactivations of pgACC/32 have an effect limited to a modest elevation in BP (Wallis et al., 

2017). However, the consequences of over-activity in these subregions – an arguably more 
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translationally relevant change – has yet to be investigated. Furthermore, the consequences 

of over-activity on neuroendocrine function remains unclear. 

The aim of this study was to investigate the causal relationship between over-activity in 

sgACC/25 or pgACC/32 to cardiovascular and endocrine changes in an emotionally neutral 

condition. In this condition, animals were habituated to and tested in a highly familiar testing 

apparatus. Over-activation of sgACC/25 was induced using the drug DHK – an EAAT2 

inhibitor. This drug is particularly relevant as reduced EAAT2 expression has been measured 

in post-mortem brain tissue of depressed patients (Miguel-Hidalgo et al., 2010) and in animal 

models of depression (Zink et al., 2010). Using telemetric monitoring, the effects of over-

activation of sgACC/25 and pgACC/32 on HR, MAP and HRV were determined. Salivary 

cortisol samples were taken before and after the session to measure the effects on HPA axis 

function as indexed by cortisol output. 
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3.3 METHODS 

3.3.1 Subjects 

Five marmosets (two females, three males) took part in this study. These marmosets were 

Subjects 1-5 of cohort one, described in 2.1.1 SUBJECTS. The marmosets were housed and 

cared for as described in 2.1.2 HOUSING. 

3.3.2 Surgical Procedures  

Five marmosets underwent two surgical procedures prior to taking part in the study: one to 

implant a telemetric blood pressure probe and one to implant intracerebral cannulae 

targeting sgACC/25 and pgACC/32 (see 2.2 SURGICAL PROCEDURES).  

3.3.3 Behavioural testing apparatus and paradigms  

Animals were placed inside a Perspex carry box inside a testing chamber as described in 2.3 

BEHAVIOURAL TESTING APPARATUS. Briefly, the testing chamber consisted of three white 

walls, a white plastic floor and a telemetry receiver beneath the floor.  

3.3.3.1 Habituation sessions 

After recovery from telemetry and cannulation surgery, marmosets were trained to enter a 

Perspex carry box in which they were transported to the apparatus. During habituation 

sessions, monkeys were placed inside the testing chamber with the houselight turned on. 

Initial habituation sessions were approximately five minutes long, with the length gradually 

extended to a maximum of 20 minutes over a period of 5-7 days. The total number of 

habituation sessions depended on the individual animal’s rate of acclimatisation to the 

apparatus. The animal was judged to have habituated when HR reached a consistent, stable 

level across two days (± 10%) and based on the experimenter’s assessment of the animal’s 

behaviour (relaxed and still with a non-vigilant posture). Two animals from the cohort of five 

failed to habituate to sessions longer than 15 minutes (showing agitated behaviours in the 

last 5 minutes, including excessive movement and grooming in the box), so their sessions 

were capped just short of this length (12 minutes). This meant that data were analysed over 

minutes 1-10 of test sessions. Minute 0 was excluded, as during this minute animals re-

acclimatise to the apparatus following transportation by the experimenter. Minutes 1-10 were 

analysed because (i) habituation data were available for all five animals over minutes 1-10 

and (ii) all animals appeared calm from behavioural and cardiovascular readouts over this 

period.  Habituation sessions meant that the testing chamber became as emotionally neutral 

as possible, such that the cardiovascular/endocrine outputs being measured were closely 

reflecting an ‘at rest’ state. However, the context cannot be assumed to be completely 

neutral. For example, the testing chamber may act as a mild negative context as animals are 

confined to a smaller area, away from their partner.  
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3.3.3.2 Mock infusion sessions 

After animals were habituated to standard habituation sessions, mock infusion sessions were 

carried out. In these, animals were handled by an experimenter prior to the testing session 

as if they were having an intracerebral infusion. This meant animals became acclimatised to 

the infusion procedure prior to actual experimental manipulations. Animals were deemed to 

have acclimatised when no discernible cardiovascular or behavioural effects of the mock 

infusion could be observed in the following 20-minute testing session. This typically took 1-2 

sessions.  

3.3.3.3 Experimental manipulation sessions 

Experimental manipulation sessions were identical to mock infusion sessions, except prior to 

the testing session animals were infused with either saline vehicle or DHK into sgACC/25 or 

pgACC/32 (see 3.3.4). 

3.3.4 Drug treatments 

Within-subject intracerebral drug treatments were carried out as described in 2.4.1 

INTRACEREBRAL INFUSIONS IN AWAKE MARMOSETS. The pharmacological compounds used 

in experimental manipulations in this study were: 0.9% saline (vehicle control) and DHK (an 

EAAT2 inhibitor). Over-activation using this method is of particular relevance, since EAAT2 

shows reduced expression levels in post-mortem cerebral tissue samples of depressed 

patients (Choudary et al., 2005b; Miguel-Hidalgo et al., 2010) and in animal models of 

depression (Zink et al., 2010). EAAT2 inhibition results in over-activation through inhibition of 

glutamate reuptake. 

3.3.5 Salivary cortisol sampling 

Salivary cortisol samples were taken and processed as described in 2.5 SALIVARY CORTISOL 

SAMPLING. Specifically, a salivary sample of cortisol was taken during the infusion as a ‘pre’ 

sample before the test session. After the animal had finished the test session, a second 

‘post’-test salivary sample of cortisol was taken.  

3.3.6 Data acquisition and preliminary analysis  

Telemetry data, including MAP and HR values, were collected as described in 2.6.1 

TELEMETRY DATA COLLECTION AND ANALYSIS. The following HRV measures were also 

quantified:  

• The root mean squared standard deviation (RMSSD) of the time difference between 

consecutive IBIs (higher values indicate more variability) as this metric has been 

shown to be resistant to changes in respiratory sinus arrhythmia (Shaffer and 

Ginsberg, 2017);  
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• Indices of parasympathetic (cardiac vagal index, CVI) and sympathetic (cardiac 

sympathetic index, CSI) activity derived from Poincare plots of successive IBIs (as 

described in (Toichi et al., 1997)); and 

• CSI/CVI ratio. 

3.3.7 Statistical analysis 

3.3.7.1 Cardiovascular data 

As mentioned above, data were analysed over minutes 1-10 of test sessions. The 0th minute 

was excluded to allow time for acclimatisation to the apparatus after transport. Minutes 1-10 

were chosen because (i) habituation data were available for all five animals over minutes 1-

10 and (ii) all animals appeared calm from behavioural and cardiovascular readouts over this 

period.  

To illustrate successful habituation to the apparatus, a one-way ANOVA was conducted to 

measure the effect of session on HR and MAP responses in the first, penultimate and final 

habituation sessions. Planned comparisons were carried out between the first vs. 

penultimate and first vs. final habituation sessions using Fisher’s LSD test (p values 

uncorrected).  

The main analyses were conducted on data obtained within individual regions, since the 

hypothesis in question was whether sgACC/25 and/or pgACC/32 contribute to cardiovascular 

dysfunction independently of one another. To do this, sgACC/25 over-activation was 

compared to infusions of saline (vehicle) control on individual measures using two-tailed 

paired t-tests. PgACC/32 over-activation was compared to infusions of saline vehicle in the 

same way. Second-by-second HR and MAP values across entire sessions were analysed 

with an ANOVA performed with R version 3.4.1 using the lme4 package (Bates et al., 2014) 

for linear mixed-effects modelling, with statistical tests from the lmerTest package 

(Kuznetsova et al., 2016) using type III sum of squares with the Sattherwaite approximation 

for degrees of freedom, reported to the nearest integer. Fixed effect factors included 

treatment (control vs. over-activation) and time; the random effect factor was subject 

(individual marmosets) to take into account inter-individual differences between animals.  

An additional set of analyses directly compared the two regions, to determine whether there 

was a differential effect of sgACC/25 and pgACC/32 over-activation on individual measures 

of cardiovascular activity. This was done using two-way repeated measures ANOVAs of the 

form M2 × A2 where M is a factor with two levels (manipulation: control vs. over-activation) 

and A is a factor of two levels (area: sgACC/25 vs. pgACC/32).  
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3.3.7.2 Salivary cortisol samples 

A ratio of salivary cortisol measured from ‘post’ samples compared to ‘pre’ samples was 

calculated, and the ‘post’:’pre’ ratio was compared between control and over-activation 

conditions. In addition to the precautions taken by testing animals at approximately the same 

time of day, the calculation of this ratio controls for day-to-day fluctuations in absolute levels 

of salivary cortisol. Additionally, the ratio values for individual manipulations were compared 

to a hypothetical value of 1.0 using a one-sample t-test to determine if the ratios significantly 

differed from a value of ‘no change.’  

3.3.8 Post-mortem histological processing 

Of the cohort of five animals used in this study, four are still alive. Brain sections were 

prepared and visualised as described in 2.8 POST-MORTEM ASSESSMENT OF CANNULA 

PLACEMENT.   
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3.4 RESULTS 

3.4.1 Post-mortem assessment of cannula placement 

Histological analysis revealed that cannulae successfully targeted pgACC/32 and sgACC/25 

in the one animal for which post-mortem tissue is currently available (FIGURE 3-1). The other 

animals constituting this cohort are still alive.   

 

Figure 3-1 Cannula placements. Location of pgACC/32 and sgACC/25 cannulae for the animal 

where post-mortem placements are available. 

 

3.4.2 Habituation to the testing apparatus  

The number of habituation sessions required before experimental manipulations took place 

was 28 ± 9 (mean ± SEM). There was a significant reduction in HR and MAP across the first, 

penultimate and final habituation sessions indicating successful habituation as measured by 

these cardiovascular indices (FIGURE 3-2A, B). The mean ± SEM change in HR from first to 

last session was 116 ± 13bpm, and the mean ± SEM change in MAP was 16 ± 6mmHg.  
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Figure 3-2 Mean HR and MAP responses across the first, penultimate and final habituation 

sessions prior to experimental manipulations. Relevant graphs show mean ± SEM. N=5. A 

There was a significant difference in HR across these sessions (effect of session: F1.439,5.755=18.26, 

p=0.004), with planned comparisons using Fisher’s LSD test revealing a significant difference 

between first vs. penultimate (p=0.021) and first vs. final (p<0.001) sessions. B There was a 

significant difference in MAP across these sessions (effect of session: F1.289,5.156=8.80, p=0.027), 

with planned comparisons using Fisher’s LSD test revealing a significant difference between first vs. 

penultimate (p=0.028) and first vs. final (p=0.047) sessions. 

 

3.4.3 SgACC/25 over-activation profoundly alters baseline cardiovascular activity, 

but pgACC/32 over-activation has no effect 

Over-activation of sgACC/25 (n=5) had no effect on baseline MAP (FIGURE 3-3A) but 

significantly increased HR (FIGURE 3-3B). Over-activation significantly reduced HRV as 

measured by RMSSD (FIGURE 3-3C) and altered sympathetic-parasympathetic balance 

manifesting as an increase in CSI/CVI ratio (FIGURE 3-3D). This change was driven 

predominantly by a significant reduction in the CVI (FIGURE 3-3E); CSI showed a tendency to 

increase, but this was not significant (FIGURE 3-3F). 

The 10-minute analysis window (60-660s) was split into 600, 1s time-bins and HR/MAP 

values were calculated within each bin for control and over-activation conditions. Second-by-

second MAP values are plotted in FIGURE 3-3G, and second-by-second HR values in 

FIGURE 3-3H. SgACC/25 over-activation did not significantly increase MAP, but significantly 

raised HR throughout the analysis window.  
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Figure 3-3 SgACC/25 over-activation had profound effects on baseline cardiovascular 

function. Relevant graphs show mean ± SEM. P values for A-F reported from the two-tailed paired 

t-tests. N=5. A SgACC/25 over-activation had no effect on baseline MAP (p=0.920). B SgACC/25 

over-activation significantly increased baseline HR (p=0.008). C SgACC/25 over-activation 

significantly reduced baseline HRV as measured by the RMSSD of successive IBIs (p=0.003). D 

The balance of sympathetic:parasympathetic input to the heart was shifted as indicated by an 

increase in the CSI:CVI ratio (p=0.032). E The change in CSI:CVI ratio appeared to be driven by a 

reduction in CVI (p<0.001). F There was less consistent effect to increase CSI (p=0.100). G From 



Chapter 3: Cardiovascular changes induced by over-activating primate sgACC/25 but not pgACC/32 

175 
 

second-by-second MAP values plotted across the entire 10-minute analysis window, whilst there 

was a time dependent effect of sgACC/25 over-activation, it had no effect to systematically change 

MAP (manipulation × time, F1,5941=24.8, p<0.0001; effect of manipulation, p=0.790). H From 

second-by-second HR values plotted across the entire analysis window, it is evident that sgACC/25 

over-activation systematically increases HR (manipulation × time: F<1, NS; main effect of 

manipulation: F1,4=27.55, p=0.006). 

 

Over-activation of pgACC/32 (n=5) using DHK had no effect on any cardiovascular measure 

(FIGURE 3-4A-F). Second-by-second MAP (FIGURE 3-4G) and HR (FIGURE 3-4H) plots 

confirm a lack of effect on MAP and HR measures throughout the session. 

3.4.4 Differential effects of sgACC/25 and pgACC/32 over-activation on baseline 

cardiovascular activity 

We additionally directly compared the effects sgACC/25 vs. pgACC/32 on individual 

measures, to determine whether over-activation of these regions differentially affected 

indices of cardiovascular activity as indicated by a significant manipulation x treatment 

interaction:  

• HR: There was evidence of a significant differential effect of sgACC/25 vs. pgACC/32 

over-activation on HR (manipulation × area, F1,4=11.34, p=0.028). 

• RMSSD: There was a trend towards a differential effect of sgACC/25 vs. pgACC/32 

over-activation on RMSSD (manipulation × area, F1,4=5.14, p=0.086). 

• CSI/CVI ratio: There was a trend towards a differential effect of sgACC/25 vs. 

pgACC/32 over-activation on CSI/CVI ratio (manipulation × area, F1,4=6.26, p=0.067). 

• CVI: There was evidence of a significant differential effect of sgACC/25 vs. pgACC/32 

over-activation on CVI (manipulation × area, F1,4=13.08, p=0.022). 

There was no evidence of a differential effect on other cardiovascular measures, namely 

MAP (manipulation × area, F<1, NS) and CSI (manipulation × area, F1,4=2.88, p=0.165). 
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Figure 3-4 PgACC/32 over-activation had no effect on baseline cardiovascular function. 

Relevant graphs show mean ± SEM. P values for A-F reported from two-tailed paired t-tests. N=5. 

PgACC/32 over-activation had no effect on A baseline MAP (p=0.604), B baseline HR (p=0.797), C 

HRV as measured by the RMSSD of successive IBIs (p=0.567), D sympathetic:parasympathetic 

balance as measured by CSI:CVI ratio (p=0.964), E CVI (p=0.780) or F CSI (p=0.960). G From 

second-by-second MAP values plotted across the entire analysis window, whilst there was a time 

dependent effect of pgACC/32 over-activation, it had no effect to systematically change MAP 

(manipulation × time, F1,5560=117, p<0.0001; effect of manipulation, p=0.911). H From second-by-
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second HR values plotted across the entire analysis window whilst there was a time dependent 

effect of pgACC/32 over-activation, it had no effect to systematically change HR (manipulation × 

time, F1,5561=4.02, p=0.045; effect of manipulation, p=0.652). 

 

3.4.5 Both sgACC/25 and pgACC/32 over-activation have no effect on baseline 

salivary cortisol levels 

In three animals, we collected salivary cortisol samples before (‘pre’) and after (‘post’) saline 

control and over-activation manipulations of sgACC/25 and pgACC/32. Neither sgACC/25 

nor pgACC/32 over-activation had any effect on baseline salivary cortisol levels as measured 

by the ratio of ‘post’:‘pre’ salivary cortisol levels (FIGURE 3-5A, B). However, it is important to 

note that there was substantial variability in the ‘post’:‘pre’ ratios for the control infusions into 

pgACC/32 (FIGURE 3-5B) which may have obscured any differences. Further work is needed 

to more comprehensively clarify the effects of pgACC/32 manipulations on cortisol levels 

under baseline conditions.  

 

Figure 3-5 Neither sgACC/25 nor pgACC/32 over-activation has an effect on baseline salivary 

cortisol levels. Relevant graphs show mean ± SEM. N=3. A SgACC/25 over-activation had no 

effect on the ratio of ‘post’:‘pre’ cortisol ratios (two-tailed paired t-test, p=0.960). Neither control nor 

over-activation manipulations significantly altered the post:pre ratio from a value of 1.0 (indicating 

no change; one sample paired t-test, p=0.731 for control and p=0.603 for over-activation). B 

PgACC/32 over-activation had no effect on the ratio of ‘post’:‘pre’ cortisol ratios (two-tailed paired t-

test, p=0.281). Neither control nor over-activation manipulations of sgACC/25 significantly altered 

the ‘post’:‘pre’ ratio from a value of 1.0 (indicating no change; one sample paired t-test, p=0.223 for 

control and p=0.785 for over-activation). 
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3.5 DISCUSSION 

In this chapter, the effects of sgACC/25 and pgACC/32 over-activation were assessed in a 

relatively emotionally neutral condition (a familiar environment in which the animals had been 

habituated). The data presented here show for the first time that sgACC/25 over-activation is 

causally related to altered cardiovascular function but has no effect on outputs of the HPA 

axis under baseline conditions. PgACC/32 over-activation appears to have no effect on either 

cardiovascular or HPA axis function.  

3.5.1 ‘At rest’ cardiovascular function is profoundly altered by sgACC/25 over-

activation 

Over-activity in sgACC/25 has been implicated with enhanced low mood, depression 

(Drevets et al., 2008b; Harrison et al., 2009; Mayberg et al., 2005; Phan et al., 2002) and 

anxiety (Krain et al., 2008). These disorders are typified by enhanced negative emotion but 

are associated with altered cardiovascular function – particularly a reduction in HRV (Brunoni 

et al., 2013; Chalmers et al., 2014; Stapelberg et al., 2012; Wang et al., 2013). 

Understanding the mechanistic basis of the relationship between psychiatric disease and 

peripheral cardiovascular change is crucially important for several reasons: 

• Mood disorders and cardiovascular disease are frequently co-morbid. Over 40% 

of patients with acute coronary syndrome have significant depressive symptoms 

(Carney et al., 2001) which frequently persist after discharge from hospital (Bush et 

al., 2005).  

• Mood and anxiety disorders are associated with an increased risk of 

cardiovascular disease. Bulk data from prospective studies which include measures 

of depression symptom severity together with outcome measures from cardiovascular 

disease are supportive of depression as an important risk factor (Davidson, 2012; 

Frasure-Smith and Lespérance, 2005). Several studies have also found support for a 

link between anxiety disorders and the development of coronary heart disease 

(Vogelzangs et al., 2010). 

• Depressive mood changes are significant negative prognostic indicators in 

patients with cardiovascular disease. A meta-analysis by van Melle and 

colleagues found that post-myocardial infarction (MI) depression is associated with a 

2-2.5x increased risk of poorer cardiovascular outcome, together with an increased 

risk of new cardiovascular events (van Melle et al., 2004).  

Subregions of the vmPFC have been implicated in cardiovascular regulation in rodents 

(Loewy and Spyer, 1990), NHPs (Wallis et al., 2017) and humans (Beissner et al., 2013). 

The combined implication of these subregions in both mood disorders and cardiovascular 
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regulation renders them a natural target for investigation into the causal basis of 

physiological dysfunction associated with psychiatric disease. However, the causal 

consequences of over-activity in NHP vmPFC subregions such as sgACC/25 and pgACC/32 

on autonomic function have never been investigated. Here we demonstrate for the first time 

that sgACC/25 over-activity is causally related to cardiac changes characteristic of disorders 

associated with enhanced negative emotion.  

Whilst not affecting baseline MAP, sgACC/25 over-activation significantly increased resting 

HR and reduced HRV as indexed by a reduction in the RMSSD of successive IBIs. Analysis 

of the geometric characteristics of the Poincare plot of IBIs meant that changes in 

cardiovascular indices could be fractionated into changes in vagal tone (CVI) vs. changes in 

sympathetic output (CSI) according to methods described in (Toichi et al., 1997). This 

analysis revealed that the cardiovascular effects of sgACC/25 over-activation appeared to be 

mediated predominantly by a reduction in CVI, although there was a trend effect to increase 

CSI.  

The subgenual portion of the vmPFC (including sgACC/25 and BA10) has been related to 

vagal reactivity previously: variation in the high-frequency component of HRV (thought to 

reflect mainly parasympathetic tone) is strongly correlated with sgACC BOLD signal (Allen et 

al., 2015; Lane et al., 2013). How changes in BOLD signal relate to sgACC/25 output 

remains unclear – nevertheless, these studies do support a correlative link between 

sgACC/25 activity and vagal reactivity. Here, we have shown that this relationship may be 

causal. A predominant influence of sgACC/25 on parasympathetic – rather than sympathetic 

– branches of the ANS would also explain why over-activation is associated with an increase 

in HR (under predominant parasympathetic control through vagal innervation of the sinoatrial 

node), without an effect on MAP (predominant sympathetic control through vasomotor 

actions at the arteriolar level) (Thomas, 2011) in ‘at rest’ conditions.  

Given the causal relationship between reduced vagal tone and sgACC/25 function 

demonstrated herein, one might speculate that VNS – a novel treatment for depression – 

may exert some of its therapeutic effects through modulation of sgACC/25. Indeed, chronic 

stimulation of the vagal nerve reduces subgenual prefrontal metabolism with the earliest 

changes detectable in sgACC/25 itself, extending rostrally to encompass the whole of sgACC 

(including BA10/14) over a 6-12 month period (Nahas et al., 2007; Pardo et al., 2008). The 

efficacy of VNS remains to be determined, although chronic stimulation seems to be 

particularly beneficial in reducing symptom severity (Sackeim et al., 2001; Schlaepfer et al., 

2008). Further experiments could explore (i) the effects of stimulating the vagal nerve on 

metabolic activity within marmoset sgACC/25; (ii) whether ligating the vagus nerve mimics 
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the effects of sgACC/25 over-activity in the common marmoset; or (ii) whether lesions of 

sgACC/25 result in chronic changes in parasympathetic nervous function.  

The lack of effect of pgACC/32 over-activity on baseline cardiovascular function suggests 

that dysfunctional activity within this region associated with mood disorders is not causally 

related to tonic alterations in autonomic function. However, activity and connectivity of a 

perigenual region including pgACC/32 has been associated with cardiovascular responses 

during physical exertion and emotional stressors (Gianaros and Wager, 2015; Gianaros et 

al., 2007; Ryan et al., 2011). Therefore, whilst over-activity in pgACC/32 may not be related 

to ‘at rest’ cardiovascular changes, it may be important in cardiovascular responses during 

physical or emotional stress and in situations of task-dependent modulation.   

3.5.2 Endocrine function 

The results reported here indicate that neither sgACC/25 nor pgACC/32 over-activation is 

causally related to baseline increases in levels of cortisol. This is consistent with rodent work, 

showing that lesions targeting IL and PL do not alter baseline cortisol levels (Diorio et al., 

1993). Whilst HPA axis dysregulation is widely reported in depressed patients (Keller et al., 

2017) and patients with anxiety (Faravelli et al., 2012), whether these patients tonically 

hyper-secrete cortisol under baseline conditions remains an issue of contention. Some 

estimates place the fraction of depressed patients hyper-secreting cortisol as high as 50% 

(Cowen, 2002) although the rate generally depends on the population of patients being 

sampled and is, in some cases, much lower (Cowen, 2002; Maes et al., 1993; Strickland et 

al., 2002). Furthermore, elevated cortisol secretion does not appear to be specific to 

depression – individuals dealing with chronic difficulties (for example, caring for relatives with 

dementia) can show increased cortisol secretion without necessarily having a mood disorder 

(Da Roza Davis and Cowen, 2001). Therefore, whether elevated basal cortisol levels should 

be expected from a manipulation that induces other translationally-appropriate physiological 

changes is unclear. The effects of over-activity in primate sgACC/25 on cortisol dynamics 

during stress are further explored in Chapter 5.  

3.6 CONCLUSION 

The results presented here demonstrate the causal contributions of over-activity in sgACC/25 

to cardiovascular dysfunction associated with mood and anxiety disorders. The link between 

cardiovascular disease and elevated cardiovascular mortality associated with such 

psychiatric conditions may be mediated – at least in part – by sgACC/25 over-activity 

induced reductions in vagal tone. Targeted treatments aimed at modulating sgACC/25 over-

activity (such as DBS) may therefore have beneficial effects on peripheral cardiovascular 

function; and conversely, treatments modulating parasympathetic tone (such as VNS 

therapy) may have central effects mediated through sgACC/25. The intimate relationship 
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between subjective and physiological states means that treatments modulating either of 

these domains will invariably have an impact on the other, with changes in both potentially 

contributing to therapeutic efficacy. 
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4 FRACTIONATED ANHEDONIA INDUCED BY OVER-

ACTIVATING PRIMATE SGACC/25 

A version of this chapter has been accepted for publication in the journal 

Neuron. 

 

Abbreviation Meaning 
18F-FDG PET 18Fluorine-fluorodeoxyglucose positron emission tomography 

5HT Serotonin  

ANOVA Analysis of variance 

BrkP Breakpoint 

CGP/LY CGP52432/ LY341495 

CPAS Chapman Physical Anhedonia Scale 

CS Conditioned stimulus 

DAB Diaminobenzidine 

dACC Dorsal anterior cingulate cortex 

DHK Dihydrokainic acid 

dmPFC Dorsomedial prefrontal cortex  

DSM Diagnostic and Statistical Manual of Mental Disorders  

EAAT2 Excitatory amino acid transporter-2  

FCPS Fawcett-Clark Pleasure Scale 

FR Fixed ratio 

GABA γ-aminobutyric acid 

HR Heart rate 

IL Infralimbic (cortex) 

MAP Mean arterial pressure 

MDD Major depressive disorder 

mPFC Medial prefrontal cortex 

MRF Medullary reticular formation 

MRI Magnetic resonance imaging  

NHP Non-human primate 

NMDA N-methyl-D-aspartate (receptor) 

NS Not significant  

NST Nucleus of the solitary tract  

OA Over-activation 

PFC Prefrontal cortex 

pgACC Perigenual anterior cingulate cortex 

PL Prelimbic (cortex) 

SEM Standard error of the mean 

sgACC Subgenual anterior cingulate cortex 

SpO2 Oxygen saturations 

SSRI Selective serotonin reuptake inhibitor 

SUVR(c) Standard uptake value ratio (normalised to cerebellum) 

US  Unconditioned stimulus 

vmPFC Ventromedial prefrontal cortex 
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4.1 ABSTRACT 

Anhedonia is a core symptom of depression, but its neurobiological mechanisms remain 

unknown. Correlative neuroimaging studies implicate dysfunction within the vmPFC, but the 

causal role of specific subregions has not been investigated. We addressed these issues by 

combining intracerebral microinfusions with cardiovascular and behavioural monitoring in 

marmoset monkeys to show that over-activation of NHP sgACC/25 causes anticipatory but 

not consummatory anhedonia, whereas manipulations of adjacent pgACC/32 have no effect. 

We further show that sgACC/25 over-activation induces motivational anhedonia. 18F-FDG 

PET imaging reveals over-activation induced metabolic changes in a circuit involved in 

reward processing and interoception. Treatment with ketamine ameliorates anticipatory 

anhedonia and reverses associated metabolic changes, highlighting its utility in reward-

related dysfunction. These results demonstrate a causal role for primate sgACC/25 over-

activity in selective aspects of anhedonia, and ketamine’s modulation of an affective network 

to exert its action. 

4.2 INTRODUCTION 

MDD is a common and debilitating condition which contributes significantly to global disease 

burden (Ferrari et al., 2013). Anhedonia – defined as a loss of interest or pleasure in all or 

almost all activities – is a core feature of MDD as outlined by the DSM-V (American 

Psychiatric Association, 2013). The clinical importance of anhedonia is illustrated by its high 

prevalence (Kessler et al., 2009; Pelizza and Ferrari, 2009) and its robustness as a negative 

prognostic indicator (Fawcett et al., 1990; McMakin et al., 2012; Spijker et al., 2001; Uher et 

al., 2012). Despite this, anhedonia remains poorly characterized both psychologically and 

neurobiologically.  

Psychologically, the majority of studies fail to recognize its distinct behavioural subtypes, 

including anticipatory, motivational and consummatory components (Der-Avakian and 

Markou, 2012; Treadway and Zald, 2011). Instead, clinical and preclinical measures of 

anhedonia are almost exclusively consummatory. Clinical studies use scales to measure 

anhedonia such as the FCPS (Fawcett et al., 1983) and the CPAS (Chapman et al., 1976), in 

which the items are primarily concerned with the hedonic (consummatory) responses to 

reward. Similarly, rodent studies typically measure sucrose consumption as an overall index 

of anhedonia (Slattery et al., 2007; Tye et al., 2013). However, there is a fundamental 

disconnect between the construct assessed in these studies and the pattern of impairments 

manifested in depressed patients, who typically display anhedonic symptoms in anticipatory 

and motivational domains (Klein, 1987; Treadway and Zald, 2011) with intact consummatory 

responses (Amsterdam et al., 1987; Berlin et al., 1998; Dichter et al., 2010). It is also 

important to recognise that anhedonia is linked to apathy – sometimes termed amotivation – 
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and that apathy likely represents the instrumental, motivational components of anhedonia 

generally thought of as a problem with behavioural activation (especially in the context of 

neurological disorders such as Parkinson’s disease) (Husain and Roiser, 2018). 

Neurobiologically, whilst correlative human neuroimaging studies have implicated subregions 

of the vmPFC in the aetiology of depression, the precise anatomical locus of these changes 

varies throughout the sgACC/pgACC. In depressed subjects, over-activity in sgACC 

(including sgACC/25) has been reported (Drevets et al., 2008a; Keedwell et al., 2009; 

Mayberg et al., 2005), together with increased resting-state functional connectivity of this 

region to the default-mode network (Greicius et al., 2007). In neighbouring pgACC (including 

pgACC/32) there are variable reports of under-activity (Fitzgerald et al., 2008; Ito et al., 1996; 

Mayberg et al., 1994) and over-activity (Drevets et al., 1992; Ebert and Ebmeier, 1996; Ebert 

et al., 1994). Comparatively few studies have assessed the involvement of these regions in 

anhedonia specifically. Those that have link anhedonia in depressed patients (Keedwell et 

al., 2005) and trait anhedonia in healthy controls (Harvey et al., 2007) to over-activity in a 

perigenual region encompassing pgACC/32. Crucially, whether these changes are causal or 

compensatory remains unknown and this question cannot be answered with neuroimaging 

alone. Whilst interventional studies in rodents have attempted to address the issue of 

causality, progress has been hampered and translation made difficult owing to (i) a lack of 

functional equivalence between rodent vmPFC and human vmPFC (Myers-Schulz and 

Koenigs, 2012; Wallis et al., 2017), (ii) a failure to differentiate between the functionally 

distinct PL and IL vmPFC sectors in the rodent (for example, Ferenczi et al., 2016) and (iii) a 

lack of validity of the rodent sucrose consumption test as a measure of anhedonia relevant to 

depression (Dwyer, 2012). The issue is therefore best addressed by using interventional 

studies in non-human primates in which the anatomical organization of the vmPFC most 

closely resembles that of humans, and by recognizing the distinct subtypes of anhedonia. 

The present study determines whether over-activity in sgACC/25 and under-/over-activity in 

pgACC/32 reported in depressed humans can cause anhedonia in marmosets. To establish 

causality, we pharmacologically manipulated these regions and assessed the impact on both 

autonomic (cardiovascular) and behavioural arousal. Utilizing two separate measures 

allowed us to bridge an additional translational gap associated with the assessment of 

emotion: rodent studies typically assess behaviour, whilst human studies often measure 

physiology and subjective responses using questionnaires. To maximize translational 

potential and to fully characterize any resultant anhedonia, we determined the impact of 

manipulations on (i) an appetitive Pavlovian conditioning task measuring reward anticipation 

(during the CS) and reward consumption (during the US) independently; (ii) an instrumental 

progressive ratio task measuring reward motivation; and (iii) the sucrose preference test 
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measuring reward consumption analogous to the assessment used in rodents. Our 

hypothesis was that an experimentally-induced anhedonia possessing face validity to the 

clinical state would lead to diminished reward anticipation and motivation, but not reward 

consumption.  

Although clearly important, the vmPFC and its subregions do not operate in isolation. 

SgACC/25 and pgACC/32 function within a wider network of cortical and subcortical areas 

involved in the regulation of cognition, behaviour and physiology (Etkin et al., 2011). A 

comprehensive account of the role of vmPFC subregions in anhedonia necessitates 

investigation of their interaction with downstream structures, which may contribute to the 

behavioural and physiological phenotypes observed following their manipulation. By 

combining intracerebral infusions with 18F-FDG PET imaging, we sought to determine the 

network of brain regions associated with specific symptoms of anhedonia.  

An appreciation of the neurobiological substrates underlying distinct components of 

anhedonia will facilitate the development and evaluation of novel treatments. Ketamine has 

recently emerged as a promising glutamate-based antidepressant, demonstrating efficacy in 

treating reward-processing deficits which are otherwise resistant to conventional medication 

such as SSRIs (Argyropoulos and Nutt, 2013; Lally et al., 2014, 2015; Nutt et al., 2007; 

Parsaik et al., 2015). Whilst sub-anaesthetic doses of ketamine have been found to reverse 

consummatory anhedonia in rodent models of depression (Garcia et al., 2009; Li et al., 

2011), the effect of ketamine on highly relevant components of anhedonia has not been 

investigated. Furthermore, the neural mechanisms by which ketamine exerts its efficacious 

action remain unclear. Consequently, we determined the efficacy of ketamine to alleviate 

anhedonic deficits and associated circuit-wide changes induced by selective manipulations of 

marmoset vmPFC. In doing so, we aimed to provide novel insight into the neurobiological 

basis of ketamine’s action.   
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4.3 METHODS 

4.3.1 Subjects  

Nine marmosets (seven females, two males) took part in this study. These marmosets were 

Subjects 8-16 of cohort two, described in 2.1.1 SUBJECTS. The marmosets were housed and 

cared for as described in 2.1.2 HOUSING.  

4.3.2 Surgical procedures  

Nine animals underwent two aseptic surgical procedures: one to implant intracerebral 

cannulae targeting either sgACC/25 alone or both sgACC/25 and pgACC/32, and one to 

implant a telemetric blood-pressure monitor into the descending aorta. Four of these animals 

underwent a third procedure to implant a vascular access port for administration of 

radioactive ligands (see 2.2.5 SOLOPORT SURGERY). 

4.3.3 Behavioural testing apparatus and paradigms 

4.3.3.1 Appetitive discriminative conditioning 

Behavioural testing took place within a sound-attenuated box in a dark room. The test 

chamber was lit by a 3W bulb (houselight), located in the middle of the ceiling of the 

chamber. A removeable module consisting of two electrically controlled food-box units was 

attached to the left and right walls of the internal frame of the apparatus. A telemetry receiver 

was concealed beneath the floor of the apparatus. Each food-box was cylindrical (internal 

diameter 52mm and length 51mm). When the carry box was fitted into the internal frame of 

the apparatus, the positions of the windows were aligned with the food-boxes. The inside of 

each food-box could be illuminated by a 28V, 0.04W encased light bulb. Access to both food-

boxes was restricted by black and opaque Perspex doors, which could be opened remotely 

to allow access. The chamber contained computer-controlled speakers through which 

auditory stimuli could be played, and three cameras used to record the animal during testing 

using video software (CyberLink, Power Director, CyberLink Corp.). The video display was 

shown on a monitor outside of the testing apparatus meaning the animal could be observed 

by the experimenter during testing. The apparatus was controlled by the Whisker control 

system (Cardinal and Aitken, 2010) and in-house software. 

Prior to conditioning, all marmosets were habituated to the sight and sound of the food-box 

doors opening and closing. During these sessions, high incentive food (several pieces of 

marshmallow) was presented in either the left or right food-box and the door of the food-box 

was opened after 120s. When the animal stopped showing a startle response (i.e. rearing 

and jumping) to the opening of the door and started consuming marshmallow within 40s, they 

were advanced to conditioning sessions. The mean number of habituation sessions was 10 ± 

1 (mean ± SEM). 
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Marmosets were then exposed to two novel auditory cues and the cardiovascular arousal 

response (MAP) was measured. The cue that produced the smallest arousal response 

became the CS+ and the cue that produced the largest arousal response became the CS-. 

The animals were then trained on an appetitive Pavlovian conditioning paradigm: the CS+ 

was associated with food reward (US+; marshmallow, net weight approximately 5.8-6.2g) 

and the CS- was associated with no reward (US-). A trial consisted of a 20s CS period during 

which one of the cues was played. At the end of this period, one of the food-boxes opened, 

accompanied by the houselight offset, the onset of the food-box light and presentation of 

either an empty box (US-) or the high-incentive food reward (US+). The auditory CS 

continued to be played for the entire 120s duration of the US period. In multiple-trial 

sessions, the offset of the US period was indicated by termination of the CS, closure of the 

black opaque food-box door and onset of the houselight. If the trial was the last in a session, 

all lights were turned off at the end of the US period indicating session termination. The 

intervals between trials were pseudorandomly varied between 70-110s. There were either 

one or two trials in each session with no more than one CS+/US+ trial; if present, the 

CS+/US+ trial was always the final trial. Thus, a session could consist of a single CS-/US- or 

CS+/US+ trial, two CS-/US- trials or one CS-/US- trial and one CS+/US+ trial (see TABLE 4-1 

for testing schedule).  

Day Session  ITI (s)  

Mon CS-/CS- 110, 70  

Tue CS+ 70  

Wed CS-/CS+ 100,80 (± saline infusion) 

Thurs CS- 90  

Fri CS-/CS+ 70, 110 (± drug infusion) 

    

    

Mon CS- 100  

Tue CS-/CS- 100, 80  

Wed CS-/CS+ 110,70 (± saline infusion) 

Thurs CS- 80  

Fri CS-/CS+ 80, 100 (± drug infusion) 
 

 

Table 4-1 Schedule for training on the Appetitive Discrimination paradigm. No more than five 

sessions containing a CS+ were given over a 10-day period. Infusions of saline or drug were 

carried out on CS-/CS+ sessions. ITIs were pseudorandomly varied across sessions. The mean ITI 

was 90s. 
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Infusions were always conducted on sessions containing both CS-/US- and CS+/US+ trial 

types which lasted 460s in total. Marshmallows were chosen as the food reward since 

marmosets invariably favour them over other types of food (Caldwell et al., 2009). 

Behavioural and cardiovascular measurements were taken both during the CS and US 

periods as well as the 20s baseline periods immediately prior to the onset of the CS. 

Marmosets undergoing 18F-FDG PET scanning were trained on a modified version of the 

Pavlovian conditioning paradigm. The length of the session was increased from 460s to 

1800s to facilitate adequate ligand uptake during testing. Marmosets were habituated to the 

increased length of the session by gradually increasing the time spent in the testing 

apparatus over approximately 12 habituation sessions (12 ± 1.4, mean ± SEM). At 600s and 

1200s, the opaque door of the rewarded food-box opened for 20s revealing the high-

incentive food reward, after which it closed again. During this period, marmosets could see 

the reward without being able to access it – the sight of reward is also known to act as an 

appetitive CS (Braesicke et al., 2005). At 1660s, the CS+ auditory cue was played for 20s 

after which the rewarded food-box opened for 120s as before (US+). The CS+ continued to 

be played for the entire 120s of the US+ period. Marmosets received at least 5 of these 

sessions before undergoing the first PET scan. Owing to the requirement for anaesthesia 

during PET scanning, marmosets were unable to consume food reward on the day of the 

scan. Therefore, in sessions conducted on the day of scanning, animals were removed from 

the apparatus at 1680s (immediately after experiencing the CS+) and the session was 

terminated without a US+. 

4.3.3.2 Progressive ratio 

Behavioural testing took place within a sound-attenuated box in a dark room, in a chamber 

similar to that described above with foodbox units replaced with a touchscreen (Campden 

Instruments, Loughborough, UK) and milkshake spout. When the carry box was fitted into the 

internal frame of the apparatus and the door removed, the marmosets had access to the 

touchscreen. The stimulus presented on the screen was a white circle (300 pixels in 

diameter) displayed to the left or right of the central spout via the Whisker control system.  

When appropriate, a reward of cooled banana milkshake (Nestlé) was delivered through a 

centrally placed spout for 5s. A brief tone (0.5s, 80dB) played from speakers at the back of 

the testing chamber signalled reward availability.  

Marmosets were first familiarized with the delivery of banana milkshake from the spout. They 

were then trained to respond to stimuli presented on a touchscreen for reward. Once 

marmosets were reliably and accurately making >30 responses in 10 minutes to a green 

square presented to the left or right of the licker (see (Roberts et al., 1988)), the stimulus was 

changed to a white circle presented at a fixed location (the animal’s preferred side). Fixed 
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ratio (FR) response schedules were then introduced to familiarize marmosets with the 

requirement to make repeated responses for reward. Marmosets progressed from FR1 → 

FR2 → FR3 → FR5 → FR7 response schedules when their performance at each level was 

stable. After FR7, marmosets were trained on a progressive ratio schedule of reinforcement 

taken from (Pryce et al., 2004). In this schedule, the response increment from trial n to n+1 

starts at +1 and then doubles every eight trials until a maximum increment of 8 (+1 → +2 → 

+4 → +8 until end). After two minutes of inactivity (or a session length of 30 minutes), 

marmosets ‘timed-out’ and were removed from the apparatus. The total number of responses 

marmosets made prior to timing-out was considered the breakpoint.   

4.3.3.3 Sucrose preference test  

The sucrose preference test was carried out in animals’ home cages (see 2.3.3 HOME 

CAGE). During a testing session, animals were divided into the top left or top right quadrant 

of the cage and the nest-box was removed. 

Marmosets were presented with two bottles identical in appearance: one water bottle and 

one containing sucrose (25g in 250g water). This concentration of sucrose was decided upon 

based on pilot experiments showing that it was the minimum concentration needed to obtain 

reliable preferences of over 90%. Each session lasted two hours, and from session to 

session the left-right position of the two bottles was varied. Every 30 min, an experimenter 

briefly removed each bottle and weighed it, before replacing it in the same position. The 

amount of sucrose consumed and sucrose preference (sucrose/[sucrose+water]) was 

measured over the session. Once marmosets achieved stable sucrose preference >90% 

over two sessions, experimental manipulations took place. The number of sessions required 

to obtain this was 4.5 ± 0.6 (mean ± SEM). 

4.3.4 Drug Treatments 

Central and peripheral drug treatments were carried out as described in 2.4 DRUG 

TREATMENTS. The pharmacological compounds used in experimental manipulations in this 

study were: 0.9% saline (vehicle control), DHK (an EAAT2 inhibitor), CGP52432/ LY341495 

(a combination of a GABAB and mGlu2/3 receptor antagonist), muscimol/baclofen (a 

combination of a GABAA and GABAB receptor agonist), citalopram (an SSRI), naloxone (a µ-

opioid receptor antagonist) and ketamine (an NMDA receptor antagonist). For details of 

doses and pre-treatment times, see TABLE 2-4. 

4.3.5 PET imaging 

Each animal selected to undergo PET scanning received three 18F-FDG PET scans with a 

microPET Focus-220 scanner (Concorde Microsystems, Knoxville, TN) with the first scan 

approximately 2 weeks after port implant surgery, and the interval between scans 
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approximately 2 weeks. On the day of a scan, animals received no breakfast to lower blood 

glucose concentration and hence increase the transport of 18F-FDG into brain tissue, thereby 

increasing the cerebral 18F-FDG signal-to-noise ratio. The animal received an infusion of 

either saline vehicle or DHK approximately 10 minutes prior to a bolus injection of 

approximately 70MBq of 18F-FDG administered subcutaneously via the vascular access port. 

After 30 minutes of the behavioural paradigm described in 4.3.3.1, the animal was 

anaesthetised. The animal was then placed on a heat-pad on the scanner bed and attached 

to monitoring equipment. Heart rate, SpO2 and respiration was monitored continuously. The 

bed of the scanner was positioned to locate the brain in the centre of the PET scanner field-

of-view, where both sensitivity and resolution are optimal. For consistency, PET data 

acquisition started 70 minutes after the 18F-FDG injection and lasted for 45 minutes. The 

energy and coincidence timing windows used were 350-650keV and 6 nanoseconds, 

respectively. 

The listed mode data were histogrammed into 9 x 5 minute 4D sinograms and then 

reconstructed using Fourier rebinning (Defrise et al., 1997) followed by the 2D ordered 

subsets expectation maximization algorithm installed on the scanner (6 iterations, 16 

subsets). As post-injection transmission scanning was not feasible, attenuation correction 

used a mean non-attenuation corrected 18F-FDG image to determine a body outline, within 

which a uniform attenuation coefficient (0.096cm-1) was ascribed. This was combined with a 

standard attenuation map of the carbon fibre bed determined from transmission scanning. 

The combined attenuation map was forward projected using software installed on the 

scanner to produce an attenuation correction factor sinogram, and image reconstruction was 

repeated with attenuation correction applied. Corrections were also applied from randoms, 

dead-time, normalization, sensitivity and decay.  

4.3.6 Data acquisition and preliminary analysis  

For studies involving telemetric measurements, MAP and H R values were collected as 

described in 2.6.1 TELEMETRY DATA COLLECTION AND ANALYSIS. MAP is used as the 

principal cardiovascular measure for two reasons: firstly, in the appetitive discriminative 

conditioning paradigm, cardiovascular conditioning was less variable with MAP values 

compared to HR values (see 4.4.2). Secondly, MAP was unaffected by DHK infusions in the 

neutral condition, whereas HR values are confounded by a baseline cardiovascular effect 

(Chapter 3).  

4.3.6.1 Appetitive discriminative conditioning 

A mean MAP and HR value was calculated over the 20s CS period. The immediate 20s 

preceding each CS period served as its baseline for comparison purposes: the CS directed 

autonomic measures were calculated as the difference between the mean value for CS 
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period and the mean value for the baseline period (e.g. MAPCS – MAPbaseline). The principal 

measure for the consummatory period was the US directed MAP response, calculated as the 

difference in MAP response between the US period (calculated as a mean MAP response 

after the animals began consuming the reward) and 20s CS period (MAPUS – MAPCS). MAPCS 

was factored in to the response during the US in order to quantify MAP responses over-and 

above any response to the CS (which continued playing during the US period).  

Behaviour during the discrimination was recorded and subsequently scored by an 

experimenter and a blinded research assistant. Behaviours were scored separately during 

the anticipatory period and consummatory period. The anticipatory (i.e. during the CS) 

behaviours scored were CS directed orienting behaviours known as ‘head-jerks’ (Reekie et 

al., 2008). The number of anticipatory head-jerks was compared to the value in the 20s 

preceding baseline period to give a CS directed score. The consummatory behaviour scored 

was the amount of reward consumed across the 120s period (g). Additionally, locomotion 

was scored as the total time an animal spent in motion (movement of all four limbs plus 

movement about the body axis) during the CS+ period (s). These were correlated against 

MAP changes to determine if reductions/increases in locomotion were associated with the 

observed autonomic changes.   

4.3.6.2 Processing of PET data  

MR imaging of the animals was not possible due to the cannulae implanted in the brain, 

preventing the use of MRI-based spatial normalization. Instead, first, the mean FDG image of 

each scan was manually, rigidly registered to an FDG brain template produced from another 

FDG study in the colony that included MRI. The FDG brain template was constructed by 

averaging n=21 FDG images transformed to template space using registration 

transformations obtained by warping MRI images (co-registered to the FDG images) to an 

MRI template. Secondly, for each subject, the three FDG scans rigidly registered to the FDG 

template were averaged, the resultant image was non-rigidly registered (affine and non-

linear) to the FDG template using ‘ANTS’ (Avants et al., 2008), and this transformation was 

applied to each of the three rigidly registered FDG scans. Use of a single spatial 

normalization transformation per subject rather than per FDG scan was adopted after it was 

found – using the n=21 FDG scans with MRI – that this approach provided ROI PET values 

with a higher correlation to those obtained using MRI-based spatial normalization (R2=0.89 

vs. R2=0.87). For each scan, a standard uptake value ratio (SUVR) map was created for 

voxel-wise analysis by dividing the mean PET image by a cerebellum ROI value (SUVRc). 

Normalization by the cerebellum signal was designed to minimize the confounding influence 

of inter-scan differences in tracer availability, plasma glucose concentration, the effect of 

anaesthesia on cerebral blood flow and metabolism, and basal cerebral glucose metabolism.  
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4.3.7 Statistical analysis 

Where appropriate, data were inputted into GraphPad Prism v8.00.178 for Windows 

(GraphPad Software, La Jolla, CA) for statistical analysis. Significance was set at α=0.05 in 

all cases. In ANOVAs, multiple comparisons were corrected for using Sidak’s multiple 

comparisons test unless planned comparisons were being made, in which case Fisher’s LSD 

test was used. 

4.3.7.1 Appetitive discriminative conditioning 

To illustrate successful discrimination between CS+ and CS-, a two-tailed paired t-test was 

conducted on CS directed cardiovascular and behavioural measurements in sessions prior to 

drug manipulations. Cardiovascular discrimination between US+ and US- was assessed in 

the same way. CS measurements taken during drug manipulation sessions were compared 

to infusions of saline vehicle using a two-way repeated-measures ANOVA of the form C2 × 

M2 where C is a within-subject factor with two levels (CS type: CS+, CS-) and M is a within-

subject factor with two levels (manipulation type: saline, drug). Significant interactions were 

subjected to Sidak’s multiple comparisons test applied to vehicle vs. drug data for CS+ and 

CS- (to ascertain whether there were changes in responses to the CS+ selectively, CS- 

selectively or both). US+ measurements taken during drug manipulations were compared to 

infusions of saline vehicle using a two-tailed paired t-test. In addition, CS directed changes in 

locomotion were correlated with CS directed MAP changes across saline, DHK and 

CGP52432/ LY341495 infusion sessions into sgACC/25. R2 values were calculated to ascertain 

the strength of correlation between MAP change and locomotion change across infusion 

types.  

For the ketamine study, cardiovascular and behavioural measurements were subjected to a 

two-way repeated-measures ANOVA of the form C2 × T3 where C is a within-subject factor 

with two levels (CS type) and T represents timepoint with three levels (4 hours, 1 day, 7 

days). Significant interactions were subjected to Sidak’s multiple comparisons test, applied to 

vehicle vs. drug data across CS type. Ketamine control data were analysed using a two-way 

repeated-measures ANOVA of the form C2 × M2 as described above. Cardiovascular and 

behavioural data from citalopram control and citalopram manipulation studies were analysed 

using two-way repeated-measures ANOVAs of the form C2 × M2 as described above. 

4.3.7.2 Progressive ratio  

For control and drug sessions, a percentage change in the number of responses at 

breakpoint was calculated compared to the previous day. A two-tailed paired t-test was 

conducted on percentage change values for control vs. drug sessions.  
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4.3.7.3 Sucrose preference test  

During drug manipulation sessions, a two-tailed paired t-test was conducted to compare 

preference values over the first 30-minute window in control vs. drug sessions. Sucrose and 

water consumption over the first 30-minute window were analysed using a two-way 

repeated-measures ANOVA of the form M2 × S2 where M is a within-subject factor with two 

levels (manipulation type) and S is a within-subject factor with two levels (solution type). To 

compare the effect of drug manipulations on cumulative consumption of sucrose vs. 

cumulative consumption of water across the entire two-hour testing session, data were 

subjected to a three-way repeated-measures ANOVA of the form M2 × S2 × T4 (M: within-

subject factor of two levels [manipulation type]; S: within-subject factor of two levels [solution 

type]; T: within-subject factor of four levels [time window]). In the case of naloxone 

manipulations, planned comparisons were made between naloxone and control 

manipulations at each timepoint for water and sucrose solutions separately using Fisher’s 

LSD test.   

4.3.7.4 PET conditioning 

A ratio was calculated for cardiovascular and behavioural measures during the CS+ for 

control scans vs. over-activation, and over-activation scans vs. over-activation with ketamine. 

A one sample t-test was performed to determine whether the ratio significantly differed from 

a hypothetical value of 1.0 (no difference). 

4.3.7.5 PET scanning  

SPM8 (Wellcome Trust Institute for Neurology, UCL, UK) was used for voxel-based analysis. 

A general linear model was configured with covariates for subject and condition (saline 

control vs. DHK vs. [DHK + Ketamine]) and changes in activity were tested with Student’s t-

test at each voxel. Prior to estimating the model, images were smoothed with a filter size of 

1mm3 using a locally adapted Gaussian kernel to include only those voxels inside a brain 

mask. In mitigation against type I errors expected due to multiple comparisons, an adjusted 

p-value of p<0.005 was applied with an extent threshold adjusted for search volume of 26 

voxels. 

4.3.8 Post-mortem histological processing 

4.3.8.1 Assessment of cannula placement 

For all eleven animals, brain sections were prepared and visualized as described in 2.8 

POST-MORTEM ASSESSMENT OF CANNULA PLACEMENT.   

4.3.8.2 Immunohistochemical assessment of cFos expression 

One hour prior to perfusion, an animal was infused with DHK in the left sgACC/25 and saline 

vehicle contralaterally. The animal was euthanised, perfused and brains were sectioned 



Chapter 4: Fractionated anhedonia induced by over-activating primate sgACC/25 

194 
 

before the tissue was immunohistochemically processed for cFos expression to provide 

additional evidence that DHK is activating neurons within sgACC/25. It is important to note 

that this method alone does not distinguish between pyramidal neurons and interneurons. 

Sections were washed for 3 x 10 minutes in 0.01M PBS and incubated for 10 minutes in 10% 

methanol/10% H2O2 v/v solution to inhibit endogenous peroxidase activity. Sections were 

then washed and blocked for two hours with 3% normal goat serum before being incubated 

overnight with the primary antibody (1:2000 Rabbit polyclonal to cFos; ab190289, Abcam, 

Cambridge, UK). The following day, sections were washed and incubated for two hours with 

the secondary antibody (1:500 Goat Anti-Rabbit IgG H&L [Biotin]; ab6720, Abcam). After 

secondary incubation, sections were incubated in an avidin/biotin complex solution for 30 

minutes (Vector Labs, Peterborough, UK) and then reacted in 3,3’ diaminobenzidine (DAB) 

chromogen for 15 seconds (ImmPact DAB SK-4105, Vector Labs). Following DAB reaction, 

sections were transferred to ice-cold PBS and mounted on gelatin-coated slides. Slides were 

dehydrated, cover-slipped using DPX mounting medium (Sigma-Aldrich, MI, US) and 

visualized using a Leitz DMRD microscope and the two hemispheres were compared 

qualitatively.   
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4.4 RESULTS 

4.4.1 Post-mortem assessment of cannula placement and cFos expression 

Histological assessment using cresyl violet staining confirmed that marmosets had cannula 

implanted successfully into sgACC/25 and/or pgACC/32 (FIGURE 4-1A). In one marmoset 

cFos expression was assessed following unilateral infusion of DHK (used to over-activate 

sgACC/25) into left sgACC/25, compared to a contralateral infusion of vehicle (saline) 

control. Throughout the rostro-caudal extent of sgACC/25, DHK elevated cFos expression 

levels compared to the contralateral side (FIGURE 4-1B). This serves as evidence 

demonstrating that infusions of DHK successfully increase activity of neurons within 

sgACC/25 (as measured by immediate early gene expression).  

 

Figure 4-1 Cannula placements and cFos expression. A Histological assessment of cannula 

placement using cresyl violet staining. Representative sections are shown with pgACC/32 and 

sgACC/25 cannulation sites indicated. A schematic diagram shows the cannula placements for all 

monkeys reported in this chapter. B cFos expression was assessed in one marmoset following 

DHK infusion in left sgACC/25, and saline infusion in right sgACC/25. DHK infusions (inset A) – but 

not saline infusions (inset B) – caused robust cFos expression in sgACC/25. 
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4.4.2 SgACC/25 over-activation blunts anticipatory but not consummatory arousal 

for reward, whereas pgACC/32 manipulations have no effect 

Following surgery and recovery (experimental outline shown in FIGURE 4-2A), marmosets 

(n=6) acquired appetitive Pavlovian discriminative cardiovascular and behavioural arousal 

responses to an auditory cue (CS+) predicting the presence of high-incentive food reward 

(US+), but not to a second auditory cue (CS-) predicting the absence of food reward (US-; 

FIGURE 4-2B, C). Successful discrimination was evident in cardiovascular responses as an 

increase in MAP during the CS+ (compared to the 20s-preceding baseline period) but not 

during the CS- (FIGURE 4-2D). During the US+ period in which the animals consumed the 

food reward, a rise in MAP was observed above the rise seen during the CS+ with no change 

during the US- (FIGURE 4-2E). Marmosets fail to show MAP rises when consuming non-

preferred foods (Braesicke et al., 2005), suggesting that the increase observed during the 

US+ period was due to hedonic – rather than ingestive – factors. HR responses were 

variable: whilst there was a trend towards discrimination during the CS period (mean ± SEM 

difference between CS+ and CS-: 31 ± 14bpm, p=0.077), no discrimination was evident 

during the US period (mean ± SEM difference between US+ and US-: 2.9 ± 14bpm, NS). 

MAP is therefore used as the principal cardiovascular measurement throughout the study 

owing to its sensitivity as a discriminative measure of anticipatory and consummatory 

arousal.  

Behaviourally, both discriminative conditioned CS directed and conditioned US directed 

behaviours were exhibited during the CS period. The principal CS directed behaviour was a 

rapid ‘head-jerk,’ previously described in rodents (Holland, 1977) and marmosets (Braesicke 

et al., 2005; Reekie et al., 2008) as an orienting response to an auditory appetitive CS. 

Animals developed increased head-jerking behaviour during the CS+ but not the CS- 

(FIGURE 4-2F). The US directed measure used was nose-poking towards the feeder box, but 

this was highly variable and did not discriminate between CS type (mean ± SEM difference 

between CS+ and CS-: 0 ± 1, NS). During the US+, the amount of food consumed was used 

as the principal behavioural index of reward consumption. The latency to begin eating food 

reward was also measured.  



Chapter 4: Fractionated anhedonia induced by over-activating primate sgACC/25 

197 
 

 

Figure 4-2 Experimental outline and conditioned discrimination. Relevant graphs show mean 

± SEM for sessions immediately prior to experimental manipulations. N=6. A Experimental 

overview. Following telemetry surgery, marmosets were habituated to the testing apparatus for 5-

10 sessions, trained on the appetitive discrimination task until criterion was reached (significant 

MAP discrimination over three CS+/CS- sessions, two-tailed paired t-test) and then cannulated to 

target sgACC/25 and pgACC/32. Following re-attainment of criterion post-surgery, experimental 

manipulations took place. B Diagram of conditioning apparatus. During discrimination sessions, two 

auditory cues predicted either the presence (CS+/US+) or absence (CS-/US-) of a high incentive 

food reward (marshmallow). A telemetry receiver placed underneath the apparatus recorded 

cardiovascular measurements which were sent to a computer in an adjacent room. C Example 

MAP trace during baseline (‘BL,’ 20s immediately prior to CS), CS (20s) and US (120s) periods for 

a rewarded and non-rewarded trial within a conditioning session. Values are calculated as a 

difference from the mean MAP during baseline. Animals showed an anticipatory MAP rise during 

the CS+ and a further consummatory rise during the US+. D Animals showed CS directed (CS 

minus baseline) anticipatory MAP responses to the CS+ but not the CS- (two-tailed paired t-test, 

p=0.013). E Animals showed US directed (US minus CS) consummatory MAP responses to the 

US+ but not the US- (two-tailed paired t-test, p=0.017). F Behaviourally, animals showed rapid 

orienting responses (head-jerks) to the CS+ but not the CS- (two tailed paired t-test, p=0.003). 
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To over-activate sgACC/25, marmosets received infusions of DHK to reduce glutamate 

reuptake (n=5) and/or CGP52432/ LY341495 (CGP/LY; GABAB receptor antagonist/mGlu2/3 

receptor antagonist) to increase pre-synaptic glutamate release (n=6). DHK-induced over-

activation of sgACC/25 resulted in anticipatory but not consummatory anhedonia, selectively 

reducing MAP and behavioural responses during the anticipatory CS+ period (FIGURE 4-3A, 

B) but not during the consummatory US+ period (FIGURE 4-3C, D). CGP/LY over-activation 

of sgACC/25 also resulted in anticipatory but not consummatory anhedonia (matching the 

effect seen with DHK), by reducing anticipatory CS+ responses (FIGURE 4-3E, F) but not 

consummatory US+ responses (FIGURE 4-3G, H). 

Neither manipulation caused a significant change in locomotor activity (FIGURE 4-4A-C), nor 

were there any changes in the latency to eat the food reward (TABLE 4-2).  
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Figure 4-3 SgACC/25 over-activation impairs anticipatory responses but not consummatory 

responses. Relevant graphs show mean ± SEM. N=5 for reduced glutamate reuptake. N=6 for 

increased pre-synaptic glutamate release. A SgACC/25 over-activation by reducing glutamate 

reuptake (DHK) blunted anticipatory cardiovascular arousal in a CS-dependent manner (infusion × 

CS, F1,4=10.63, p=0.031) decreasing responding to the CS+ but not the CS- (effect of infusion: CS+, 

p=0.006; CS-, p=0.301). B The same manipulation also blunted anticipatory behavioural arousal in 

a CS-dependent manner (infusion × CS, F1,4=72.25, p=0.001), decreasing responding to the CS+ 

but not the CS- (effect of infusion: CS+, p<0.001; CS-, p=0.407). C There was no significant effect 

on consummatory cardiovascular arousal during the US+ (two-tailed paired t-test, p=0.451). D 
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There was no effect on reward consumption during the US+ (two-tailed paired t-test, p=0.241). E 

SgACC/25 over-activation by increasing pre-synaptic glutamate release (CGP/LY) also blunted 

anticipatory cardiovascular arousal in a CS-dependent manner (infusion × CS, F1,5=14.39, p=0.013) 

decreasing responding to the CS+ but not the CS- (effect of infusion: CS+, p=0.014; CS-, p=0.634). 

F The same manipulation blunted anticipatory behavioural arousal in a CS-dependent manner 

(infusion × CS, F1,5=48.08, p=0.001) decreasing responding to the CS+ but not the CS- (effect of 

infusion: CS+, p<0.001; CS-, p=0.839). G There was no significant effect on consummatory 

cardiovascular arousal during the US+ (two-tailed paired t-test, p=0.129). H There was no effect on 

reward consumption during the US+ (two-tailed paired t-test, p=0.665). 

 

Figure 4-4 Locomotor activity during saline and drug sessions. Relevant graphs show mean ± 

SEM. A No correlation is evident between CS directed change in MAP and CS directed change in 

locomotion across infusion type (control, DHK and CGP/LY; R2=0.052). B There was no difference 

in locomotion during control or over-activation by reducing glutamate reuptake (DHK; two-tailed 

paired t-test, p=0.434). C There was no difference in locomotion during control or over-activation by 

increasing pre-synaptic glutamate release (CGP/LY; two-tailed paired t-test, p=0.279).  

 

Infusion Latency (s, 

mean±SEM) 

P 

value 

Infusion Latency (s, 

mean±SEM) 

P 

value 

sgACC/25 control 14.44 ± 2.35  pgACC/32 control 15.05 ± 4.60  

sgACC/25 DHK 23.36 ± 8.91 0.252 pgACC/32 DHK 6.03 ± 1.49 0.244 

sgACC/25 CGP/LY 12.91 ± 2.95 0.485 pgACC/32 CGP/LY 13.75 ± 5.50 0.800 

sgACC/25 MB 20.13 ± 7.28 0.609 pgACC/32 MB 20.13 ± 7.28 0.776 

      
 

Table 4-2 Consummatory (US+) latencies to start eating food reward. P values reported from 

two-tailed paired t-tests for drug sessions vs. control (saline) sessions. MB: muscimol/ baclofen.  



Chapter 4: Fractionated anhedonia induced by over-activating primate sgACC/25 

201 
 

 

Both methods of over-activation caused elevations in heartrate during the 20s pre-CS 

baseline period, but whilst CGP/LY caused significant elevations in baseline MAP, DHK 

infusions did not (matching the effects reported in Chapter 3; FIGURE 4-5A-D).  

 

Figure 4-5 Baseline (20s period before CS) effects of sgACC/25 over-activation on HR and 

MAP. Relevant graphs show mean ± SEM. N=5 for reduced glutamate reuptake and inactivation. 

N=6 for increased pre-synaptic glutamate release. A Over-activation of sgACC/25 by reducing 

glutamate reuptake (DHK) increased baseline HR (two-tailed paired t-test, p=0.029). B Reducing 

glutamate reuptake had no significant effect on baseline MAP (two-tailed paired t-test, p=0.097). C 

Over-activation of sgACC/25 by increasing pre-synaptic glutamate release (CGP/LY) tended to 

increase baseline HR (two-tailed paired t-test, p=0.051). D Increasing pre-synaptic glutamate 

release increased baseline MAP (two-tailed paired t-test, p=0.014). 
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In contrast to sgACC/25 over-activation, we found no effect of sgACC/25 inactivation 

(muscimol/baclofen; GABAA/GABAB receptor agonist) on arousal during either reward 

anticipation or consumption (FIGURE 4-6A-D). 

 

Figure 4-6 SgACC/25 inactivation had no effect on appetitive anticipatory or consummatory 

arousal. Relevant graphs show mean ± SEM. N=5. A SgACC/25 inactivation by GABAA/GABABR 

agonism (muscimol/baclofen infusion) had no effect on anticipatory cardiovascular arousal (infusion 

× CS, F<1, NS; main effect of CS, F1,4=31.76, p=0.005). B The same manipulation had no effect on 

anticipatory behavioural arousal (infusion × CS, F1,4=1.59, p=0.276; main effect of CS, F1,4=35.27, 

p=0.004). C There was no significant effect on consummatory cardiovascular arousal during the 

US+ (two-tailed paired t-test, p=0.226). D There was no significant effect on reward consumption 

during the US+ (two-tailed paired t-test, p=0.220). 

 

 

Despite numerous neuroimaging studies implicating both under- and over-activity in 

pgACC/32 in depression and anhedonia, we found that neither bilateral pgACC/32 over-

activation (using DHK or CGP/LY) nor bilateral pgACC/32 inactivation (using 

muscimol/baclofen) had any effect on anticipatory CS or consummatory US arousal (FIGURE 

4-7A-L). This suggests that activity changes in pgACC/32 are not causally related to 

anhedonic deficits and may reflect deficits in using reward information in decision making 

(Amemori et al., 2015) or alternatively, compensatory changes.  
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Figure 4-7 Neither pgACC/32 over-activation nor pgACC/32 inactivation impairs anticipatory 

or consummatory arousal. Relevant graphs show mean ± SEM. N=4 for inactivation and 

increased pre-synaptic release. N=3 for reduced glutamate re-uptake. A PgACC/32 over-activation 

by reducing glutamate reuptake (DHK infusion) had no effect on anticipatory cardiovascular arousal 

(infusion × CS, F1,2=7.77, p=0.108; main effect of CS, F1,2=10.07, p=0.087). B Reducing glutamate 

reuptake had no effect on anticipatory behavioural arousal (infusion × CS, F<1, NS; main effect of 

CS, F1,2=342.3, p=0.003). C Reducing glutamate reuptake had no effect on consummatory 

cardiovascular arousal during the US+ (two-tailed paired t-test, p=0.966). D Reducing glutamate 

reuptake had no effect on reward consumption during the US+ (two-tailed paired t-test, p=0.742). E 

PgACC/32 over-activation by increasing pre-synaptic glutamate release (CGP52432/LY341495 

infusion) had no effect on anticipatory cardiovascular arousal (infusion × CS, F1,3=1.55, p=0.301; 

main effect of CS, F1,3=11.45, p=0.043). F Increasing pre-synaptic glutamate release had no effect 

on anticipatory behavioural arousal (infusion × CS, F1,3=6.00, p=0.092; main effect of CS, 
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F1,3=63.71, p=0.004). G Increasing pre-synaptic glutamate release had no effect on consummatory 

cardiovascular arousal during the US+ (two-tailed paired t-test, p=0.450). H Increasing pre-synaptic 

glutamate release had no effect on reward consumption during the US+ (two-tailed paired t-test, 

p=0.484). I PgACC/32 inactivation by GABAA/GABABR agonism (muscimol/baclofen infusion) had 

no effect on anticipatory cardiovascular arousal (infusion × CS, F<1, NS; main effect of CS, 

F1,3=16.50, p=0.027). J Inactivation had no effect on anticipatory behavioural arousal (infusion × 

CS, F1,3=1.77, p=0.275; main effect of CS, F1,3=62.85, p=0.004). K Inactivation had no effect on 

consummatory cardiovascular arousal during the US+ (two-tailed paired t-test, p=0.646). L 

Inactivation had no significant effect on reward consumption during the US+ (two-tailed paired t-test, 

p=0.122). 

 

4.4.3 SgACC/25 over-activation impairs reward motivation on a progressive ratio 

schedule of reinforcement 

To characterize the anhedonic deficit further, the effects of over-activation of sgACC/25 

(using DHK) on instrumental progressive ratio performance were assessed. Marmosets (n=3) 

were trained to respond to a visual stimulus on a touchscreen under increasingly demanding 

reinforcement requirements until a breakpoint (two minutes of inactivity) was reached 

(FIGURE 4-8A, B). Bilateral over-activation of sgACC/25 significantly impaired progressive 

ratio performance, reducing the breakpoint to levels significantly below both the previous day 

(-70.3 ± 12.5%; mean ± SEM) and control infusions (-69.5 ± 11.6%; mean ± SEM) (FIGURE 

4-8C). This impairment was independent of individual marmosets’ baseline level of 

responding – higher and lower responders showed similar, marked deficits (FIGURE 4-8D).  

4.4.4 SgACC/25 over-activation has no effect on sucrose preference or 

consumption, despite these being common preclinical analogues of anhedonia 

We also sought to investigate reward consumption in a manner directly comparable to rodent 

studies using a sucrose preference test adapted for marmosets (n=4; FIGURE 4-8E). 

Measurements of sucrose and water consumption were taken every 30 minutes across a 

two-hour testing session, with an a priori interest in the first 30-minute window owing to the 

rapid action of the intracranial infusions. In the session prior to manipulations, marmosets 

showed a high preference for sucrose solution over water and consumed large amounts of 

sucrose in both the first 30 minutes and across the two-hour testing window (FIGURE 4-8F, 

G). As a positive control, we assessed the effects of peripheral injections of the opioid 

antagonist naloxone – a putative modulator of the hedonic ‘liking’ system. In the first 30 

minutes of the session, naloxone had no effect on sucrose preference (FIGURE 4-8H) but did 

reduce both sucrose consumption and water consumption (FIGURE 4-8I). Across the entire 

two-hour period, naloxone reduced sucrose consumption without affecting water 

consumption with the strongest effects at later timepoints (FIGURE 4-8J). When assessing 
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potential consummatory effects induced by sgACC/25 over-activation, we therefore 

measured both sucrose preference (reduced in rodent models of depression) and absolute 

sucrose consumption (reduced by naloxone and in rodent models of depression) to fully 

ascertain the presence of any potential consummatory impairment. Over-activation of 

sgACC/25 had no effect on sucrose preference or consumption in the first 30 minutes 

(FIGURE 4-8K, L) nor did it have any effect on these measures across the two-hour session 

(FIGURE 4-8M), demonstrating that whilst over-activity in this region can cause anticipatory 

and motivational impairments, it has no obvious effect on reward consumption.  
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Figure 4-8 SgACC/25 over-activation impairs reward motivation on a progressive-ratio 

schedule of reinforcement but has no effect on sucrose preference or consumption. Relevant 

graphs show mean ± SEM. N=3 for progressive ratio. N=4 for sucrose preference. A Marmosets 

were trained to press a circular stimulus on a touchscreen to earn milkshake reward under 

increasing response demands until breakpoint was reached (two minutes with no response). B Task 

design. The response increase from trial n to n+1 starts at +1 and then doubles every eight trials 

until a maximum increment of +8 (+1 → +2 → +4 → +8 until end). Responses at trial 20 are 

highlighted. C SgACC/25 over-activation by reducing glutamate reuptake (DHK) decreased the 

number of responses marmosets made before breakpoint was reached. D Response profiles in 

control and over-activation sessions for each animal. The two-minute timeout period signifying the 



Chapter 4: Fractionated anhedonia induced by over-activating primate sgACC/25 

207 
 

breakpoint (BrkP) is shaded. E In the sucrose preference test, marmosets were presented with two 

identical bottles in their home-cage: one containing sucrose, and one containing water. A session 

lasted two hours with measurements taken every 30 minutes. The first 30-minute timepoint was of a 

priori interest owing to the rapid actions of the intracranial infusions. F Prior to experimental 

manipulations, marmosets showed a high preference for sucrose during the first 30 minutes of the 

session (92.9 ± 1.5%), consuming 32.3 ± 3.2g sucrose and 2.3 ± 0.2g water (mean ± SEM). G 

Cumulative consumption profile in the session prior to experimental manipulations. Marmosets 

consumed significantly more sucrose at every timepoint measured (solution [water, sucrose] × 

timepoint [four, 30-minute time-bins], F3,9=26.97, p<0.0001; effect of solution, p<0.0001 at every 

timepoint). H The opioid antagonist naloxone had no effect on sucrose preference in the first 30 

minutes of the session (two-tailed paired t-test, p=0.952). I Naloxone reduced both water and 

sucrose consumption in the first 30 minutes of the session (solution × manipulation, F1,3=4.25, 

p=0.131; main effect of manipulation, F1,3=18.00, p=0.024). J Across the two-hour session, 

naloxone reduced cumulative sucrose consumption but not cumulative water consumption (solution 

× manipulation, F0.532,1.597=30.47, p=0.046). Planned comparisons conducted on sucrose and water 

measurements at each timepoint using Fisher’s LSD test revealed a significant decrease in sucrose 

consumption following naloxone treatment at 90 minutes (p=0.010) and 120 minutes (p=0.024), with 

no significant effect on water consumption at any timepoint. K Over-activation of sgACC/25 by 

reducing glutamate reuptake had no effect on sucrose preference in the first 30 minutes of the 

session (two-tailed paired t-test, p=0.800). L Over-activation of sgACC/25 had no effect on sucrose 

or water consumption in the first 30 minutes of the session (solution × manipulation, F1,3=1.05, 

p=0.381; main effect of manipulation, F1,3=1.70, p=0.283). M Across the two-hour session, over-

activation of sgACC/25 had no effect on cumulative sucrose or water consumption (solution × 

manipulation, F<1, NS). 

 

4.4.5 SgACC/25 over-activation is associated with metabolic changes in a circuit 

including dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and 

insula 

To determine the brain regions involved in the anticipatory anhedonia induced by over-

activation of sgACC/25, marmosets (n=4) underwent 18F-FDG PET imaging to assess 

regional metabolic activity. Each subject had two counter-balanced scans: one following a 

saline control infusion, and one following over-activation of sgACC/25 (using DHK) (FIGURE 

4-9A). In all cases, animals were injected with 18F-FDG and then received a Pavlovian 

conditioning session in the test apparatus for 30 minutes before being scanned under 

anaesthesia (FIGURE 4-9B). In the voxel-based analysis, a subtraction image was produced 

(i) for (over-activation – control) to determine brain regions which were over-active following 

sgACC/25 over-activation; and (ii) for (control – over-activation) to determine brain regions 

which were under-active. In parallel, we obtained cardiovascular (n=3 owing to one telemetry 

probe failure) and behavioural (n=4) readouts during the PET conditioning session 
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immediately prior to the scan to confirm whether the manipulations replicated the anticipatory 

anhedonia described in 4.4.2.  

 

Figure 4-9 18F-FDG PET imaging revealed metabolic changes in a network of brain regions 

associated with interoception and reward processing following sgACC/25 over-activation. 

Relevant graphs show mean ± SEM. N=3 for cardiovascular arousal. N=4 for behavioural arousal. 

N=4 for all PET images; clusters discussed are significant at the level of p<0.005 with an extent 

threshold adjusted for search volume of 26 voxels. A Following implantation of a subcutaneous port 

into the internal jugular vein, marmosets were trained on a modified version of the appetitive 

Pavlovian conditioning paradigm (see B) in preparation for scanning. Saline control and DHK scans 

were counterbalanced. B On the day of a scan, animals received an infusion of DHK or saline 

immediately followed by radioligand injection through the port. The PET conditioning session (inset) 

lasted 30 minutes (to facilitate adequate ligand uptake), consisting of two 20s periods of the sight of 
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reward without access, and a final 20s CS+ period. During training, the CS+ was followed by a 

120s US+. On scan days, the animals were immediately removed from the apparatus when the 

CS+ period terminated, anaesthetised and then scanned. C Subtraction images calculated from 

voxelwise subtraction of SUVRc values for over-activation (OA) scans – saline control scans, 

showing brain regions with increased activity following sgACC/25 over-activation. Increased 

metabolic activity was observed in sgACC/25 (centre), together with a region of dmPFC spanning 

dmPFC/8b,9 and dACC/24c (surviving p<0.001). More caudally, increased metabolic activity was 

observed in the left ventral insula. D Subtraction images calculated from voxelwise subtraction of 

SUVRc values for saline control scans – OA scans, showing brain regions with reduced activity 

following sgACC/25 over-activation. Reduced metabolic activity was observed in a region 

encompassing brainstem 5HT neurons and, more caudally, brainstem autonomic control centres 

including the NTS and MRF. E Cardiovascular and behavioural responses were measured during 

the CS+ period in the PET conditioning sessions immediately prior to scanning. Compared to saline 

scans, over-activation of sgACC/25 significantly blunted cardiovascular (ratio of MAP response to 

saline scans; one-sample t-test to 1.0, p=0.048) and behavioural (ratio of head-jerk response to 

saline scans; one sample t-test to 1.0, p<0.001) arousal. 

 

PET imaging revealed that over-activation of sgACC/25 increased 18F-FDG uptake in 

sgACC/25 (confirming that the drug manipulation increases metabolism in sgACC/25) 

together with significant increases in uptake in dmPFC/8b,9, dACC/24c and left ventral insula 

(FIGURE 4-9C). SgACC/25 over-activation also lowered metabolic activity in a brainstem 

region encompassing components of the serotonergic raphe nuclei (rostral group B9), the 

NTS and the medullary reticular formation (MRF, FIGURE 4-9D). Importantly, over-activation 

of sgACC/25 on the day of scanning replicated the reduction in behavioural and 

cardiovascular appetitive arousal during CS+ presentation (FIGURE 4-9E).  

4.4.6 Acute administration of ketamine, but not citalopram, reverses anticipatory 

anhedonia induced by over-activation of sgACC/25 

To determine whether the novel antidepressant ketamine could reverse symptoms of 

anhedonia induced by over-activation of sgACC/25, marmosets (n=4) received a single 

intramuscular injection of ketamine (0.5mg/kg) followed by over-activation of sgACC/25 

(using DHK) at 4 hours, 1 day and 7 days after injection whilst undergoing behavioural 

testing on the appetitive Pavlovian conditioning paradigm (FIGURE 4-10A). These time-points 

were chosen to coincide with clinical literature showing rapid (4 hour time-point) and 

relatively sustained (1 day and 7 day time-points) effects of a single acute administration of 

ketamine to improve scores on depression scales (Abdallah et al., 2015). In three animals, 

we also determined the endpoint of ketamine’s action. 

In a control experiment, ketamine alone (in the absence of sgACC/25 over-activation) had no 

effect on either autonomic or behavioural components of appetitive arousal compared to 
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vehicle control (FIGURE 4-10B). Whilst over-activation of sgACC/25 4 hours following 

ketamine injection still resulted in anticipatory anhedonia, over-activation at 1 day and 7 days 

post-injection did not: despite receiving infusions of DHK, animals showed a MAP rise and 

head-jerking response selectively to the CS+ (FIGURE 4-10C). Therefore, at these time-

points, ketamine successfully reversed the anticipatory anhedonic deficit induced by over-

activation of sgACC/25. In two of the three animals where the end-point was assessed, 

ketamine’s action had abrogated by three weeks; in the third animal, by four weeks 

(indicated by the return of the over-activation induced blunting of CS+ arousal).  

We also determined the sensitivity of the anticipatory anhedonia to an acute dose of the first-

line SSRI antidepressant citalopram (10mg/kg; FIGURE 4-10D). Acute citalopram has been 

shown to have rapid and profound effects on marmosets’ responsivity to a human intruder 

(Santangelo et al., 2016). In a control experiment, an intramuscular injection of citalopram in 

the absence of sgACC/25 over-activation had no effect on either autonomic or behavioural 

components of appetitive arousal (FIGURE 4-10E). Unlike ketamine, acute citalopram 

administration failed to reverse either the autonomic or behavioural components of over-

activation induced anticipatory deficit, suggesting that acute doses are ineffective in treating 

the anticipatory anhedonia (FIGURE 4-10F).  



Chapter 4: Fractionated anhedonia induced by over-activating primate sgACC/25 

211 
 

 



Chapter 4: Fractionated anhedonia induced by over-activating primate sgACC/25 

212 
 

Figure 4-10 A single intramuscular injection of ketamine ameliorates the cardiovascular and 

behavioural anticipatory anhedonia induced by over-activation sgACC/25 in a time-

dependent manner – whereas acute citalopram has no effect. Relevant graphs show mean ± 

SEM. N=4 for ketamine study. N=5 for citalopram study. A Timeline of ketamine study. Marmosets 

received a single intramuscular injection of ketamine (t=0) followed by over-activation of sgACC/25 

(DHK) 4 hours, 1 day and 7 days later. B Ketamine alone (CS-/CS+ sessions in between DHK 

timepoints) had no effect on cardiovascular (infusion × CS, F<1, NS; main effect of CS maintained, 

F1,3=86.5, p=0.003) or behavioural (infusion × CS, F1,3<1; main effect of CS maintained, F1,3=31.69, 

p=0.011) responses. C Ketamine had a time-dependent effect to reverse the cardiovascular 

(timepoint × CS, F2,12=14.71, p<0.001) and behavioural (timepoint × CS, F2,12=19.59, p<0.001) 

aspects of the anticipatory anhedonia induced by sgACC/25 over-activation (DHK infusion). 

Compared to control infusions of saline vehicle (not shown), sgACC/25 over-activation 4 hours after 

ketamine administration still resulted in significant blunting of cardiovascular (infusion × CS, 

F1,3=60.46, p=0.004; effect of infusion on CS+, p=0.003) and behavioural (infusion × CS, 

F1,3=25.59, p=0.015; effect of infusion on CS+, p=0.012) arousal. Over-activation 1 day following 

ketamine administration evidenced amelioration of the cardiovascular (4 hours vs. 1 day: CS+, 

p<0.0001; CS-, p=0.863) and behavioural (4 hours vs. 1 day: CS+, p<0.0001; CS-, p=0.371) 

impairments compared to 4 hours. Similarly, over-activation 7 days following ketamine 

administration evidenced amelioration of the cardiovascular (4 hours vs. 7 days: CS+, p<0.001; 

CS-, p=0.704) and behavioural (4 hours vs. 7 days: CS+, p<0.0001; CS-, p=0.767) impairments 

compared to 4 hours. D Timeline of acute citalopram study. Marmosets received a single 

intramuscular injection of citalopram followed by over-activation of sgACC/25 (DHK) 30 minutes 

later. E Citalopram alone had no effect on cardiovascular (infusion × CS, F1,4=1.17, p=0.340; main 

effect of CS, F1,4=19.39, p=0.012) or behavioural (infusion × CS, F<1, NS; main effect of CS, 

F1,4=30.29, p=0.005) arousal. F Compared to sgACC/25 over-activation alone, acute citalopram 

had no effect on the cardiovascular (infusion × CS, F<1, NS) or behavioural (infusion × CS, 

F1,4=1.19, p=0.338) components of anticipatory anhedonia. Compared to control infusions of saline 

vehicle (not shown), sgACC/25 over-activation with acute citalopram still resulted in significant 

blunting of cardiovascular (infusion × CS, F1,4=8.74, p=0.042; effect of infusion on CS+, p=0.016) 

and behavioural (infusion × CS, F1,4=462, p<0.0001; effect of infusion on CS+, p<0.0001) arousal. 

 

4.4.7 Reversal of anticipatory anhedonia by ketamine is associated with 

normalization of metabolic activity in dmPFC and dACC, and deactivation of 

the insula 

Marmosets (n=4) received an additional third scan consisting of sgACC/25 over-activation 

(using DHK) following an injection of ketamine 1 day earlier, coinciding with a timepoint at 

which anticipatory anhedonia was reversed. Subtraction images were computed for (i) (over-

activation – [over-activation + ketamine]) to determine brain regions showing decreased 

metabolic activity following administration of ketamine; and (ii) ([over-activation + ketamine] – 
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over-activation) to determine brain regions showing increased activity following 

administration of ketamine. Ketamine administration 1 day prior to scanning reversed 

metabolic changes within the dmPFC, dACC and left ventral insula (corresponding to the 

regions showing elevated activity following sgACC/25 over-activation; FIGURE 4-11A). No 

prefrontal or subcortical regions showed significant increases in activity. 

To determine whether ketamine normalized metabolic activity to control levels or diminished 

activity below control levels, a (iii) third subtraction image was calculated for (control – [over-

activation + ketamine]). Results from this comparison show that whilst activity in 

dmPFC/dACC returned to control levels, activity in the left insula was reduced below activity 

levels observed in the control condition (FIGURE 4-11B). Therefore, in the context of 

sgACC/25 over-activation, ketamine normalises activity within dmPFC/dACC but deactivates 

the left insula. Cardiovascular and behavioural data obtained on the day of scanning showed 

that ketamine successfully reversed the DHK-induced anticipatory anhedonic deficit (FIGURE 

4-11C).  

Using the stringent criterion applied in the voxel-based approach, there was no apparent 

effect of ketamine on metabolic activity in sgACC/25 itself. However, using an atlas-defined 

region of interest (ROI) (Paxinos et al., 2011), we examined the mean 18F-FDG uptake in 

sgACC/25 across control, over-activation and [over-activation + ketamine] conditions to 

determine if the beneficial effect of ketamine depends – at least in part – on modulation of 

sgACC/25 activity in response to DHK-induced reductions in glutamate reuptake. Across all 

four subjects, we found that ketamine administration reduced the increased metabolic activity 

associated with DHK infusions into sgACC/25 (). These data suggest that the efficacy of 

ketamine is related to (likely neuroplastic-mediated) alterations in the responsivity of 

sgACC/25 to elevated levels of extracellular glutamate.  
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Figure 4-11 Reversal of anticipatory anhedonia by ketamine is associated with metabolic 

changes within dmPFC, dACC and insula. Relevant graphs show mean ± SEM. N=3 for 

cardiovascular arousal. N=4 for behavioural arousal. N=4 for all PET images; clusters are 

significant at the level of p<0.005 with an extent threshold of 26 voxels. A Subtraction images 

calculated for over-activation (OA) – [OA + ketamine (Ket)] scans, showing regions with reduced 

activation following ketamine 1 day earlier. Reversal of anticipatory anhedonia was associated with 

reduced activity in dmPFC, dACC and left insula. B Subtraction images calculated for control– [OA 

+ ketamine] scans revealed that activity in the dmPFC/8b,9 and dACC/24c region was no different 

from control scans, indicating that ketamine had normalised over-activity in these regions to control 

levels. However, activity in the left insula was reduced even compared to control conditions, 

suggesting that ketamine administration caused deactivation of the insula. C On the day of 

scanning, ketamine administration 1 day earlier ameliorated blunted cardiovascular (ratio of MAP 

response, one-sample t-test to 1.0, p=0.017) and behavioural (ratio of head-jerk response, one 

sample t-test compared to 1.0, p=0.038) arousal compared to over-activation alone. 
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Manipulation Hemisphere 
sgACC/25 SUVR values by subject 

Mean ± SEM 
□ ▽ ◇ ◑ 

Control 
Left 0.856 1.028 0.843 0.822 0.887 ± 0.047 

Right 0.785 1.002 0.842 0.833 0.866 ± 0.047 

Over-

activation 

Left 1.069 1.157 0.921 1.019 1.041 ± 0.049 

Right 1.023 1.040 0.933 0.992 0.997 ± 0.023 

Over-

activation + 

Ketamine 

Left 1.017 0.974 0.882 0.807 0.920 ± 0.047 

Right 0.967 0.905 0.880 0.807 0.890 ± 0.033 
 

 

Table 4-3 Measurements of SUVR changes across control, over-activation and [over-

activation + ketamine] in an atlas-defined sgACC/25 ROI. Within this ROI, there was a 

significant effect of manipulation on SUVR values (manipulation × hemisphere, F2,6<1, NS; 

effect of manipulation: F2,6=6.22, p=0.034). Planned comparisons using Fisher’s LSD test 

revealed a significant difference between control vs. over-activation (p=0.016) and over-

activation vs. [over-activation + ketamine] (p=0.037) conditions, but not for control vs. 

[over-activation + ketamine] (p=0.530) conditions.     
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4.5 DISCUSSION 

Despite being a core symptom of depression, anhedonia is poorly characterised, and its 

neurobiological basis remains unknown, severely retarding the development of effective 

treatments. In the present study, we addressed these issues using interventional 

manipulations in marmosets to causally implicate sub-regions of the vmPFC in precisely 

defined subtypes of anhedonia (anticipatory vs. motivational vs. consummatory). We show 

that over-activity in marmoset sgACC/25 (but not over-activity or reduced activity in 

pgACC/32) selectively blunts anticipatory arousal for reward without affecting its 

consumption, and profoundly diminishes motivation for reward.  

4.5.1 Fractionating anhedonia  

Over-activation of marmoset sgACC/25 – achieved with two different methods (reducing 

glutamate reuptake and increasing pre-synaptic glutamate release) – blunted anticipatory 

cardiovascular and behavioural responses to a cue predicting food reward (CS+) but did not 

robustly affect cardiovascular or behavioural responses associated with consumption of the 

reward (US+). As both methods reduce anticipatory arousal, this suggests that elevated 

glutamate levels within sgACC/25 are sufficient to cause anticipatory anhedonia independent 

of the precise mechanism through which these increases occur. However, whether the 

effects of elevated glutamate levels are through increasing activity in pyramidal output 

neurons or inhibitory interneurons within sgACC/25 remains unclear. Furthermore, through 

actions at presynaptic mGluRs, elevated glutamate levels may locally suppress certain 

clusters of neurons. Further immunohistochemical work coupled with cFos expression may 

clarify the population of neurons and the pattern in which these cells are affected by the 

pharmacological manipulations described in this chapter.  

SgACC/25 over-activation also diminished appetitive motivation as assessed by reduced 

breakpoints on a progressive ratio task. Whether it is possible to separate anticipatory and 

motivational impairments remains unclear. Impairments in Pavlovian reward anticipation 

impact upon instrumental performance through Pavlovian-to-instrumental transfer, 

conditioned reinforcement and conditioned approach (Dickinson and Balleine, 1994; Holland, 

1977; Mackintosh, 1974). In depressed patients, deficits in reward motivation are thought to 

be driven by a primary decrease in anticipatory pleasure (Sherdell et al., 2012). Therefore, 

motivational impairments may not result from deficits in goal-directed performance per se; 

rather, from a reduced influence of Pavlovian cues signalling reward which would otherwise 

support responding.  

Whilst we found no impact of sgACC/25 over-activation on behavioural or cardiovascular 

consummatory arousal, the measurement of reward consumption in the Pavlovian 

conditioning paradigm (arousal during two minutes of consumption of high incentive food) is 
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different to consumption assessed in the rodent sucrose preference test which is typically 

measured over a longer time period (Ferenczi et al., 2016; Tye et al., 2013). Thus, we also 

determined if any effect of sgACC/25 over-activation could be detected on a version of the 

sucrose preference test adapted for marmosets. We measured both sucrose consumption 

(which was significantly reduced by the opioid antagonist naloxone acting as a positive 

control) and sucrose preference (both measures being affected by rodent models of 

depression) to fully characterize marmosets’ consummatory profile following sgACC/25 

manipulations. SgACC/25 over-activation had no effect on either sucrose consumption or 

sucrose preference, providing no support for an involvement of sgACC/25 in consummatory 

anhedonia.  

These data illustrate that the transient anhedonia induced by pharmacological over-activation 

of sgACC/25 possesses face validity when compared to the anhedonic state observed in 

depressed patients, who typically show anticipatory and motivational deficits rather than 

consummatory ones (Forbes et al., 2009; Klein, 1987; McFarland and Klein, 2009; Smoski et 

al., 2009). The contrasting findings across different reward domains illustrates the importance 

of careful consideration of the psychological constructs impaired in psychiatric disorders. 

Furthermore, these findings suggest that the sucrose preference test is insufficient if used in 

isolation – sgACC/25 over-activity blunts aspects of reward processing not measured by this 

test. 

The anhedonic deficits displayed were not due to a general blunting of emotional arousal 

since the same manipulation induces heightened behavioural arousal to an HI (see Chapter 

3). This highlights the opposing effects of sgACC/25 over-activity across emotional domains 

and implicates this region in adapting behaviour to emotional context. In addition, these data 

implicate sgACC/25 over-activity in symptoms of anxiety which commonly manifest in 

depressed patients (Kessler et al., 2003). Indeed, several studies have identified elevated 

activity in a subgenual region (including area 25) associated with sustained and 

unpredictable threat (Alvarez et al., 2011; Hasler et al., 2007b). 

4.5.2 Circuit-wide changes associated with over-activation induced anhedonia 

To characterize the circuit affected by sgACC/25 over-activation, we used 18F-FDG PET 

imaging combined with intracerebral microinfusions. PET imaging revealed increased 

metabolic activity in sgACC/25, dmPFC/dACC and left ventral insula following over-activation 

of sgACC/25. Elevated connectivity between these regions has been observed in depressed 

populations (Connolly et al., 2013; Sheline et al., 2010) but is seldom related to anhedonia. 

Nevertheless, the increase in dmPFC/dACC activity is consistent with previously reported 

results of increased activity in a similar region during reward anticipation in currently 

depressed or remitted patients compared to controls (Dichter et al., 2012; Gorka et al., 2014; 
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Knutson et al., 2008). Similarly, an over-active insula has been observed during the 

anticipation of rewards in groups at high-risk of depression (Gotlib et al., 2010) and following 

presentation of positively-valenced pictures in depressed patients (Mitterschiffthaler et al., 

2003).  

Reduced activity following sgACC/25 over-activation was seen in a region encompassing 

brainstem 5HT neurons (B9 group of raphe nuclei). The importance of interplay between 

vmPFC and 5HT neurons has been appreciated in terms of stress controllability (Amat et al., 

2005), but more recently a role for 5HT neuronal signalling during reward anticipation has 

been demonstrated (Li et al., 2016). More caudally, we observed reduced activity in 

autonomic control centres in the region of the NST. Several tract tracing studies have 

identified connectivity between primate vmPFC, hypothalamus and autonomic effector 

regions in the brainstem (Ghashghaei and Barbas, 2002; Joyce and Barbas, 2018; Rempel-

Clower and Barbas, 1998) through which regions including sgACC/25 can modulate 

autonomic function during baseline and task conditions (Rudebeck et al., 2014; Wallis et al., 

2017). 

4.5.3 Ketamine as an efficacious treatment for over-activation induced anhedonia  

Ketamine has emerged as a fast-acting antidepressant with efficacy in otherwise treatment 

resistant cases (Berman et al., 2000; Murrough et al., 2013b). Unlike current first-line 

medication, treatment with ketamine ameliorates reward-related dysfunction in both bipolar 

and unipolar depression (Lally et al., 2014, 2015). Whilst clinical studies have observed 

variable antidepressant effects within 4 hours of treatment, consistent effects are observed 1 

day later which are sustained for 3-7 days (Abdallah et al., 2015). Here, we show that 

ketamine did reverse anticipatory cardiovascular and behavioural anhedonia induced 

specifically by sgACC/25 over-activation. We did not observe an anti-anhedonic effect of 

ketamine at 4 hours, but ketamine did reverse the over-activation induced anticipatory deficit 

1 day and 7 days following administration. This supports the hypothesis that the anti-

anhedonic effects of ketamine are contingent upon neuroplastic mechanisms rather than 

acute changes in glutamate levels associated with antagonism of NMDA receptors (Melo et 

al., 2015).  

Ketamine not only ameliorated the anticipatory anhedonia induced by sgACC/25 over-

activation but also reversed the associated elevated activity within sgACC/25, dmPFC/dACC 

and left ventral insula. Activity in the former two regions was normalized, whereas activity in 

the insula was inhibited below control levels. Reduced activity within sgACC/25 itself is 

consistent with neuroimaging studies which have shown that successful treatment of 

depression using SSRIs is associated with reduced activity within sgACC/25 (Mayberg et al., 

2000). Normalisation of activity in dmPFC/dACC following ketamine differs from a recent 
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clinical study in which the efficacious action of ketamine was associated with increased 

(rather than reduced) metabolism in these same regions (Lally et al., 2015). However, these 

opposing effects may be related to ketamine’s actions at different timepoints: patients in Lally 

et al. were imaged 2 hours following ketamine administration, whereas in the present study 

marmosets were imaged 24 after administration. The rapid vs. slow actions of ketamine are 

associated with different effects on neural circuitry, increasing dACC-mPFC functional 

connectivity acutely (Grimm et al., 2015) but decreasing it 24 hours later (Scheidegger et al., 

2012). 

4.5.4 Translational considerations  

This study was designed to address several challenges faced in the translation of preclinical 

studies to humans: specifically, issues of homology; issues of symptom heterogeneity; and 

issues concerning the quantification of emotion.  

Firstly, concerning homology, the important contributions that NHP studies make to 

understanding prefrontal dysfunction in psychiatric disorders are exemplified herein. The high 

degree of cytoarchitectonic similarity between marmoset and human vmPFC (Burman and 

Rosa, 2009) means marmosets are an ideal species to parcellate the contributions of vmPFC 

subregions, including sgACC/25, to symptoms of depression. The putative anatomical 

homologue of primate sgACC/25 is rodent IL (Heilbronner et al., 2016), activations of which 

have been shown to reduce appetitive motivation (John et al., 2012) (although see (Gasull-

Camós et al., 2017)). However, whether primate/rodent homology necessarily implies 

functional analogy is far from clear – indeed, we have shown opposite effects on the 

regulation of negative emotion following inactivations of marmoset sgACC/25 to those seen 

in rodent IL studies (Wallis et al., 2017). Secondly, concerning symptom heterogeneity, the 

impairments in anticipatory and motivational – but not consummatory – domains provides 

neurobiological evidence for the fractionation of anhedonia into separable subtypes. It is 

imperative that these subtypes are recognized both preclinically and clinically: depressed 

patients may present with selective impairments with distinct underlying neural mechanisms 

and hence differing optimal treatment strategies. Finally, anhedonia is a complex emotional 

construct consisting of behavioural and physiological changes that cannot be adequately 

measured using single experimental outputs. Whilst informative, studies examining 

subjective, autonomic or behavioural components of emotion in isolation fail to account for 

the complex nature of emotion. Future work must delineate the precise psychological and 

physiological functions that sgACC/25 subserves in the regulation of positive and negative 

emotion and isolate the pathophysiological processes that can lead to chronic elevations in 

sgACC/25 activity associated with mood disorders.  
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4.6 CONCLUSION 

The insights into sgACC/25 dysfunction gained from this study have wide-ranging 

implications for both preclinical and clinical research into reward-processing deficits in 

depression. The significance of an over-active sgACC/25 has – until now – been completely 

unexplored in the context of anticipatory and motivational anhedonia, yet we have revealed a 

critical causal role for this region in blunted reward processing characteristic of the anhedonic 

state and revealed the network of altered activity induced by such over-activation. 

Furthermore, these results highlight the anti-anhedonic effects of ketamine through reversal 

of anticipatory anhedonic impairments induced specifically by over-activation of sgACC/25. 

As well as progressing our understanding of treatment strategies in depression, by 

employing a multifaceted approach to quantify emotion in marmosets we have made 

significant progress in bridging the translational divide between rodents and humans. Overall, 

this study demonstrates the critical role that interventional studies in primates must play to 

further our understanding of the neurobiological mechanisms underlying symptoms of 

emotion dysregulation characteristic of psychiatric disorders.
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5 ENHANCED CARDIOVASCULAR AND BEHAVIOURAL 

CORRELATES OF NEGATIVE EMOTION INDUCED BY 

OVER-ACTIVATING PRIMATE SGACC/25 

 

Abbreviation Meaning 
18F-FDG PET 18Fluorine-fluorodeoxyglucose positron emission tomography  

ANOVA Analysis of variance  

BA Brodmann area 

CRH Corticotropin releasing hormone  

CS Conditioned stimulus 

dACC Dorsal anterior cingulate cortex  

DHK Dihydrokainic acid 

EAAT2 Excitatory amino acid transporter-2 

EFA Exploratory factor analysis 

GAD Generalised anxiety disorder 

GCR Glucocorticoid receptor 

HARS Hamilton Anxiety Rating Scale 

HI Human intruder  

HR Heart rate  

IL Infralimbic (cortex) 

ITI Inter-trial interval 

KMO Kaiser-Meyer-Olkin 

MAP Mean arterial pressure 

mPFC Medial prefrontal cortex 

NMDA N-methyl-D-aspartate (receptor) 

NS Not significant 

pgACC Perigenual anterior cingulate cortex 

PTSD Post-traumatic stress disorder 

SAD Social anxiety disorder 

SEM Standard error of the mean 

sgACC Subgenual anterior cingulate cortex 

TSAB Time spent at back 

TSAF Time spent at front 

US Unconditioned stimulus 

vmPFC Ventromedial prefrontal cortex 

VS Vigilant scanning  
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5.1 ABSTRACT 

A cardinal feature of depression is enhanced negative emotion, which has been fractionated 

into several inter-related constructs: low mood, despair and learned helplessness, enhanced 

intolerance of uncertainty and, in some cases, impaired fear regulation. These clusters 

overlap with patterns of dysfunction seen in anxiety disorders – perhaps unsurprising, given 

that these disorders are highly co-morbid (Gorman, 1996; Lamers et al., 2011; Pollack, 

2005). Whilst elevated activity within sgACC/25 has been implicated in negative emotion and 

mood disorders – together with normalisation of this activity following successful treatment – 

whether these activity changes are causally related to increases in negative affect remains 

unknown. Here we combine targeted intracerebral microinfusions with cardiovascular and 

behavioural monitoring in marmoset monkeys to show that over-activation of sgACC/25 

heightens behavioural and cardiovascular arousal in aversive contexts, elevates circulating 

cortisol levels and appears to blunt stress recovery. The same manipulation elevates anxiety 

responses to an uncertain threat in the form of an unfamiliar human. When tested for its 

ability to reverse enhanced intolerance of uncertainty following sgACC/25 over-activation, 

ketamine failed to reverse the impairments, suggesting differential efficacy in treating reward-

related (Chapter 4) and anxiety-related symptoms.  

5.2 INTRODUCTION 

Having established the effects of sgACC/25 over-activity on appetitive behavioural and 

cardiovascular arousal (Chapter 4), the experiments described in this chapter aimed to 

determine the effects of sgACC/25 over-activity on negative emotion. Enhanced negative 

emotion is a feature of mood and anxiety disorders, which are themselves highly co-morbid 

(Gorman, 1996; Lamers et al., 2011; Pollack, 2005). Although difficult to parcellate, elevated 

negative emotion can be conceptualised as consisting of enhanced low mood (subjective 

sadness), despair and learned helplessness, impaired fear regulation (for example, fear 

generalisation, impaired fear extinction and impaired recovery following stressors) and 

enhanced intolerance of uncertainty. The former component is intractable with animal 

studies, whereas aspects of the latter three are (FIGURE 5-1). The work described in this 

chapter will focus on two of these aspects: fear regulation – as indexed by fear 

generalisation, extinction and stress-recovery – and intolerance of uncertainty.  
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Figure 5-1 Tractability of constructs in negative emotion with animal studies. Psychiatric 

diseases such as mood and anxiety disorders are typified by enhanced negative emotion. 

Enhanced negative emotion is multi-faceted, including subjective sadness, despair and learned 

helplessness, intolerance of uncertainty and impairments in fear regulation. Whilst the subjective 

components of enhanced negative affect cannot be assessed using animal studies, aspects of 

learned helplessness, enhanced intolerance of uncertainty and impairments in fear regulation can 

be measured behaviourally. 

 

Fear generalisation and impairments in fear extinction associated with impaired fear 

regulation are most strongly related to anxiety disorders. Excessive fear generalisation has 

been observed in patients with PTSD, GAD and panic disorder (Anastasides et al., 2015; 

Dymond et al., 2015; Lissek et al., 2010), and the propensity to generalise fear responses 

during fear conditioning procedures has been linked to high trait levels of anxiety (but not low 

mood) in healthy controls (Park et al., 2018). State and trait anxiety have also been linked to 

impaired fear extinction, with patients/high trait-anxious controls typically showing slower CS-

noUS learning (Dibbets and Evers, 2017; Milad et al., 2014). Although fear extinction has 

rarely been studied in depressed populations, preliminary studies suggest that fear extinction 

is unaffected by symptoms of depression (Dibbets et al., 2015). Neurobiologically, several 

studies link vmPFC activity to fear regulation – specifically, in fear generalisation (Greenberg 

et al., 2013; Lissek et al., 2014) and in the recall of fear extinction (Milad et al., 2007a; 

Phelps et al., 2004). 

One aspect of impaired fear regulation that may be transdiagnostic across anxiety and 

depression is blunted stress recovery. Recovery from stress has received comparatively little 

attention compared to responses during stress itself (Linden et al., 1997). However, a meta-

analysis comparing cortisol dynamics in healthy controls vs. depressed patients has shown 

similar baseline and stress-induced levels of cortisol between groups, much higher cortisol 

levels in depressed patients during recovery (Burke et al., 2005) which has been linked to 
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rumination (LeMoult and Joormann, 2014). Similarly, trait and state anxious3 individuals show 

slower physiological and subjective recovery from stress (Willmann et al., 2012). A large 

region of vmPFC (throughout its rostrocaudal extent, including BA10, 14 and 25) is 

associated with positive emotions during stress recovery, supporting a role for this region in 

top-down regulation of emotion generating structures following stress exposure (Yang et al., 

2018a). Several studies have also implicated vmPFC activity in the related role of signalling 

stress controllability (Bhanji and Delgado, 2014; Sinha et al., 2016). 

Intolerance of uncertainty is “a dispositional characteristic that results from a set of negative 

beliefs about uncertainty and its implications, and involves the tendency to react negatively 

on emotional, cognitive and behavioural levels to uncertain situations and events” (Buhr and 

Dugas, 2009). Intolerance of uncertainty is sometimes considered conceptually and 

empirically synonymous with anxiety – indeed, it is a core feature of GAD (Dugas et al., 

1997, 2004). However, recent evidence suggests that intolerance of uncertainty is actually a 

transdiagnostic construct – in a heterogeneous group of patients with depressive and anxiety 

disorders, Boswell et al. found that intolerance of uncertainty significantly correlates with pre-

treatment depressive and worry symptoms (Boswell et al., 2013). Enhanced intolerance of 

uncertainty has also been associated with increased vmPFC (BA10) activation to aversive 

CSs during fear extinction paradigms (Morriss et al., 2015).  

Therefore, emergent evidence from several lines of work has made it apparent that vmPFC 

activity is linked to multiple aspects of negative emotion: fear extinction, fear regulation/stress 

recovery and intolerance of uncertainty. Furthermore, disrupted vmPFC activity has been 

directly linked to psychopathology typified by enhanced negative emotion: both anxiety 

disorders (Shin and Liberzon, 2010) and depressive disorders (Mayberg et al., 2005). 

However, whether over-activity within the vmPFC is causally linked to the enhanced negative 

affect characteristic of these disorders remains unknown.  

From correlative human neuroimaging studies, there is a growing appreciation that over-

activity in  caudal regions of vmPFC – in particular sgACC/25 – may play a crucial role in 

negative emotion and its abnormal expression in both depression and anxiety (Alvarez et al., 

2011; Hasler et al., 2007b; Mayberg et al., 2005; Phan et al., 2002). However, the causal role 

of this subregion remains unclear. Using the marmoset, we took a multi-dimensional 

approach to address causal links between over-activity in this region and negative emotion: 

• Assessment of fear extinction using a fear conditioning/extinction paradigm with an 

ethologically relevant US (Snake Extinction);  

                                                 
3 State anxiety refers to transient manifest feelings of insecurity, whereas trait anxiety is a stable 
personality characteristic reflecting the tendency to respond with state anxiety in anticipation of 
threatening situations.   
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• Assessment of fear learning and stress recovery during a discriminative aversive 

Pavlovian conditioning paradigm (Fear Discrimination); and 

• Assessment of intolerance of uncertainty and anxiety using the human intruder (HI) 

test;  

In so doing, we sought to derive a comprehensive account for the role of NHP sgACC/25 in 

anxiety- and fear-related behaviours relevant to mood and anxiety disorders. Owing to the 

acute, transient nature of these manipulations, impacts on behavioural and autonomic 

function would reflect a role of vmPFC subregions in state anxiety rather than trait anxiety.  

As described in Chapter 4, the novel antidepressant ketamine successfully ameliorated 

symptoms of anticipatory anhedonia induced by sgACC/25 over-activation. Whilst a plethora 

of studies have demonstrated the efficacy of ketamine in mood disorder settings, far fewer 

studies have investigated ketamine’s function in the context of anxiety disorders. The first 

study investigating the effects of ketamine on anxiety symptoms was carried out in 2017 – 

the effects of three subcutaneous doses (0.25, 0.5 and 1.0mg/kg) on treatment refractory 

GAD/SAD were assessed (Glue et al., 2017). Whilst minor improvements were observed at 

the lowest dose, 0.5 and 1mg/kg doses produced anxiolytic responses in ten of 12 patients – 

measurable within one hour of dosing and sustained for seven days. Subsequently, an 

uncontrolled open-label study assessed the safety, efficacy and tolerability of weekly/bi-

weekly subcutaneous ketamine injections in the treatment of GAD and SAD (Glue et al., 

2018). The authors reported that ketamine dosing was well tolerated, and patients 

experienced “marked improvements in functionality and in their personal lives.” A 

randomised, placebo-controlled trial examining the effects of ketamine on SAD also 

observed promising beneficial effects on social anxiety scores (Taylor et al., 2018). We 

therefore sought to determine the ability of ketamine to reverse anxiogenic deficits – as 

measured by enhanced intolerance of uncertainty on the HI paradigm – associated with 

sgACC/25 over-activation (should there be evidence of any). Not only would this provide 

further insight into the neural basis of ketamine’s action, but it would also serve as a direct 

comparison to the effects of ketamine on symptoms of anhedonia induced by the exact same 

manipulation.  
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5.3 METHODS 

5.3.1 Subjects 

Eight marmosets (three females, five males) took part in this study. These marmosets were 

Subjects 1-7 of cohort one and Subject 16 of cohort two, described in 2.1.1 SUBJECTS. The 

marmosets were housed and cared for as described in 2.1.2 HOUSING.  

5.3.2 Surgical procedures 

Eight marmosets underwent two surgical procedures prior to taking part in the study: one to 

implant a telemetric blood pressure probe and one to implant intracerebral cannulae 

targeting sgACC/25 and pgACC/32 (see 2.2 SURGICAL PROCEDURES). PgACC/32 cannulae 

were not used in this study. 

5.3.3 Behavioural testing apparatus and paradigms 

5.3.3.1 Snake Extinction test 

During the Snake Extinction test, animals were placed inside a Perspex carry box inside the 

testing chamber (described in 2.3 BEHAVIOURAL TESTING APPARATUS). The white walls of 

the chamber had points onto which context panes (laminated sheets consisting of different 

patterns) could be attached. One wall consisted of a pane of switchable SmartGlass 

(smartglass International®, Dublin, Ireland). The opacity of the SmartGlass pane can be 

altered when voltage is applied, changing from opaque to transparent. When the SmartGlass 

became transparent, it revealed an additional section of the testing chamber. During 

acquisition of fear conditioning, this section contained a rubber snake on a mount. During 

habituation, extinction and extinction recall, this section contained a mount without a rubber 

snake.  

A single block of the Snake Extinction test consisted of five sessions, run over five 

consecutive days (FIGURE 5-2). In the first two sessions, subjects were habituated to the 

context and the US-: this involved 12 x 5s presentations of the SmartGlass illuminating (but 

remaining opaque) with an ITI of 110-130s. In the third session of the block – acquisition – 

the CS was introduced. The CS was a 15s, 70dB auditory cue. The CS persisted for the 5s 

of the US to co-terminate with the US and the end of the trial. The first three CS 

presentations were paired with the US-. Following the first three presentations of CS/US-, the 

experimenter switched on the voltage supply to the SmartGlass pane: the US+ was 5s and 

consisted of the SmartGlass pane illuminating and becoming transparent, to reveal a 

chamber containing a rubber snake on a mount. There were then six pairings of the CS with 

the US+. During acquisition, CSs were presented with an ITI of 160-180s. In the fourth 

session – extinction – 20 CS/US- pairings were presented with an ITI of 60-80s to promote 

the extinction of conditioned fear. Infusions of saline vehicle or DHK were carried out 
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immediately prior to the extinction session to determine the effects of sgACC/25 over-

activation on the extinction of conditioned fear. In the final, fifth session – extinction recall – 

12 CS/US- pairings were presented with an ITI of 70-110s to test for recall of fear extinction.  

 

Figure 5-2 Snake Extinction testing paradigm. Figure adapted from Wallis et al., 2017. In the 

Snake Extinction paradigm, a single block consists of five sessions spread over five consecutive 

days. The first two sessions consisted of habituation to the context and habituation to the 

SmartGlass being switched on (12 x US-) with no auditory cues. The mean MAP responses during 

habituation sessions were used to normalise the MAP responses in subsequent acquisition and 

extinction/recall sessions. On the third session, a novel auditory cue (to-be ‘CS’) was presented for 

three trials paired with 3 x US- (to habituate to the novel cue) and then this same cue was 

presented for six trials paired with 6 x US+ (presentations of the rubber snake, revealed as the 

SmartGlass became transparent) to become a CS. On the fourth and fifth sessions, marmosets 

were tested for extinction (20 x CS/US-) and extinction recall (12 x CS/US-) where the CS was 

presented in extinction. Each time a session block was repeated, the test apparatus was covered 

with distinctive patterned context panels to create a different context, and a different CS was used 

(shown right). Context, cues and context/cue combinations were counterbalanced across animals. 
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Blocks of five sessions were repeated three times within each subject. The three blocks 

included two control infusions of saline vehicle and one infusion of DHK. The first block 

(always saline) was used as a habituation block – the habituation sessions of this block were 

not comparable to the second and third blocks because the animal had never experienced 

an aversive US in the chamber prior to the first block. Therefore, the second and third blocks 

were the blocks used in data analysis, and saline vehicle and DHK infusions were 

counterbalanced within these blocks. There was a minimum of a one-week gap between 

each block. To minimise fear generalisation across blocks, patterned context panels were 

used to vary the context, and different sounds were used as the CS to distinguish each block 

as a new round of fear conditioning. Wall panels and CS sounds were counterbalanced 

across sessions. 

5.3.3.2 Fear Discrimination test 

During the Fear Discrimination test, animals were placed inside a Perspex carry box inside 

the testing chamber as above. The SmartGlass pane was not used during Fear 

Discrimination testing.  

Marmosets were first exposed to two novel auditory cues (20s) and the cardiovascular 

arousal response (MAP) was measured. The cue that produced the smallest arousal 

response became the CS+ and the cue that produced the largest arousal response became 

the CS-. The animals were then trained on an aversive Pavlovian Fear Discrimination 

paradigm (FIGURE 5-3): the CS+ was associated with 30s of darkness, with 10s of 85dB 

white noise pseudo-randomly presented either in the first, second or third 10s window of the 

darkness (US+). The CS- was associated with a 0.5s 80dB neutral 2kHz tone (US-). The 

CS+ continued to play during the entire 30s period of the US+, whereas the CS- terminated 

prior to tone onset. ITIs were pseudo-randomly varied between 100-160s. Each session 

consisted of two to four trials with no more than one CS/US+ trial in a single session. See 

TABLE 5-1 for the testing schedule. Infusions were always conducted on CS-/CS+/CS- 

sessions which lasted between 470-500s. This session structure was chosen for several 

reasons: 

• The first CS- would measure if there were any abnormal responses simply to the first 

(neutral) auditory cue; 

• Responses during the CS/US+ would measure if there were abnormally elevated 

responses to fear-predicting cues (CS+), fearful stimuli themselves (US+) and/or 

during the recovery following a fearful stimulus (post US+);  

• The second CS- would measure if there were any abnormal responses to the neutral 

cue after presentation of an aversive stimulus; and 



Chapter 5: Enhanced cardiovascular and behavioural correlates of negative emotion induced by over-
activating primate sgACC/25 

229 
 

• Comparing responses between the first and second CS- would indicate whether there 

was an overall generalisation effect, or a generalisation effect specific to the pre- or 

post-CS/US+ period (or no generalisation at all).  

 

Figure 5-3 Fear Discrimination paradigm. A Schematic diagram of the Fear Discrimination 

apparatus. B Animals learnt to distinguish between two auditory CSs. The CS- predicted a 0.5s 

US-, consisting of a non-aversive 80dB 2kHz tone. The CS+ predicted a 30s US+, consisting of 30s 

of darkness with 10s of 85dB white noise unpredictably presented either in the first, middle or last 

10s window. The CS+ co-terminated with the US+. 

 
 

  Schedule 1 Schedule 2 

Week 1 

Mon -/-/- Mon -/-/+ 

Tue -/- Tue -/-/- 

Wed +/-/-/- Wed -/-/+/- 

Thu -/-/- Thu -/- 

Fri -/+/- Fri -/+/- 
 

Week 2 

Mon -/-/+/- Mon -/-/- 

Tue +/-/- Tue +/-/- 

Wed -/- Wed -/- 

Thu -/+/- Thu -/+/- 

Fri -/-/- Fri -/-/- 

     
Table 5-1 Experimental testing schedule for Fear Discrimination. + represents CS+/US+; - 

represents CS-/US-. There were no more than five CS+/US+ presentations over a two-week 

period. Infusions were carried out on highlighted days. 
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5.3.3.3 Human Intruder (HI) test 

The HI test was carried out in the marmosets’ home cage. During the test, the animal was 

separated from its cage mate in the upper right quadrant (dimensions: 94 x 60 x 98cm) 

(FIGURE 5-4A). The upper right quadrant had a fixed configuration: a nest-box in the top right 

corner, an upper and lower perch, a front shelf, a middle shelf, a back shelf and a rope. The 

cage mate was placed in the lower left quadrant to minimise its vision of the human intruder 

and to reduce any disturbance to the test subject. A video camera mounted on a tripod was 

positioned approximately 100cm away from the cage front at an angle to maintain an 

adequate view of the entire upper right quadrant during the test. This was connected to a 

microphone positioned approximately 15cm away from the cage front, used to record 

vocalisations. During the test phase, the HI stood on a 20cm stool placed 40cm away from 

the front of the cage to maintain a fixed height and made eye contact with the test subject at 

all times. 

 

Figure 5-4 HI testing apparatus. Taken from Shiba, 2012 (PhD thesis). A The home cage is 

shown left, consisting of various environmental enrichment objects. Highlighted and shown right is 

the test quadrant in which the animal is separated during HI testing. The objects which remain in 
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place during HI testing are labelled. B The HI test lasted 15 minutes and consisted of three phases: 

an 8-minute separation condition without an HI; a 2-minute intruder condition; and finally, a 5-

minute post-intruder condition (not shown). C Latex masks were used to disguise the HI, facilitating 

the use of a single individual in a repeated-measures design within single animals. 

 

The HI test lasted 15 minutes in total (FIGURE 5-4B). The first 8 minutes constituted the 

‘separation’ condition, in which the animal was recorded without the presence of the HI. This 

served as a habituation period. After the separation condition, the intruder entered the room 

and stood on the stool, beginning the two-minute ‘intruder’ condition. Throughout the intruder 

period, the HI maintained eye contact (whenever possible) with the test subject. The HI then 

left the room, and the subjects’ behaviour was recorded for a further five minutes (‘post-

intruder’ condition). At the end of the recording, the marmoset was undivided from the test 

quadrant and the recording equipment was removed.  

The HI wore a white lab coat, blue lab gloves, blue trousers and one of set of realistic human 

masks (FIGURE 5-4C). The use of different masks disguised the HI as a novel intruder, 

facilitated a repeated-measures, within-subject design using a single individual as the 

intruder. The order of masks was counterbalanced between subjects.  

The HI test was carried out twice per subject with a minimum of 10 days between 

consecutive tests. Infusions of either saline vehicle or DHK were carried out. In the first two 

subjects, the order of infusions was counterbalanced. When we observed a preliminary 

indication of an anxiogenic effect of DHK infusion (see below), subsequent subjects in the 

study received infusions of saline vehicle first, and DHK second. This was to mitigate against 

the confounding effects of possible habituation on the interpretation of DHK effects if saline 

control was given second (the control anxiety score could be lower because of habituation, 

rather than an anxiogenic effect of DHK). Subjects taking part in the ketamine study 

underwent a third HI test (always last) to over-activate sgACC/25 1 day after having received 

ketamine. 

5.3.4 Drug treatments 

Central and peripheral drug treatments were carried out as described in 2.4 DRUG 

TREATMENTS. The pharmacological compounds used in experimental manipulations in this 

study were: 0.9% saline (vehicle control), DHK (an EAAT2 inhibitor) and ketamine (an NMDA 

receptor antagonist). For details of doses and pre-treatment times, see TABLE 2-4. 

5.3.5 Salivary cortisol sampling 

In the case of acquisition and extinction sessions of the Snake Extinction test, salivary 

cortisol samples were taken and processed as described in 2.5 SALIVARY CORTISOL 
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SAMPLING. Specifically, samples were taken (i) during the (mock, in the case of acquisition) 

infusion (‘pre’) and (ii) after the acquisition/extinction session (‘post’ sample).  

5.3.6 Data acquisition and preliminary analysis  

For studies involving telemetric measurements, MAP and HR values were collected as 

described in 2.6.1 TELEMETRY DATA COLLECTION AND ANALYSIS. MAP is used as the 

principal cardiovascular measure for two reasons: firstly, in both tests, cardiovascular 

conditioning was less variable with MAP values compared to HR values (Snake Extinction 

not shown, but for Fear Discrimination see 5.3.7.3). Secondly, MAP was unaffected by DHK 

infusions in the neutral condition, whereas HR values are confounded by a baseline 

cardiovascular effect (Chapter 3).  

5.3.6.1 Snake Extinction test 

The mean MAP values during the 15s CS and 5s US period were calculated. MAP values 

were averaged in pairs (referred to as CS pairs, as in (Sierra-Mercado et al., 2011)) and 

normalised to the mean MAP response across the two habituation sessions within the same 

block (which reflected the MAP arousal to the context prior to acquisition). CS directed MAP 

responses were also calculated as MAPCS – MAPbaseline (15s pre-CS periods) and averaged 

across CS pairs during acquisition. CS directed responses are CS specific, and so reflect 

cue-based (as opposed to context-based) conditioning. To examine the profile of the 

cardiovascular responses across the entire acquisition, extinction and extinction recall 

sessions, MAP values were binned into 1s intervals. 

Behaviour was scored offline from video-recordings of the session. The behaviour scored 

was vigilant scanning (VS) – attentive scanning of the surroundings accompanied by a tense 

body posture (Agustín-Pavón et al., 2012; Mikheenko et al., 2010; Wallis et al., 2017). 

Absolute and CS directed VS measures were calculated and averaged across CS pairs as 

above but were not normalised to habituation sessions as animals did not scan prior to 

acquisition.  

5.3.6.2 Fear Discrimination test 

The mean MAP during the 20s BL, CS and 30s US+ period was calculated; CS directed, US 

directed (MAPUS – MAPCS) and absolute responses are reported. The behaviour scored was 

VS – both absolute and CS directed VS are reported. To examine the profile of the 

cardiovascular response across the entire CS-/CS+/CS- session, MAP values were binned 

into 1s intervals. The ten, 1s bins period following termination of the US+ was defined as the 

recovery (R) period – this period is of a priori interest as impaired stress recovery is a key 

feature of psychiatric disorders (Burke et al., 2005).   
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5.3.6.3 HI test 

A behavioural analysis program (JWatcher v1.0, UCLA and Macquarie University) was used 

to score behaviour during the two-minute intruder phase. The behavioural measures were:  

• Distance measures. The proportion of time spent in each depth and height zone 

(FIGURE 5-5A, B) was scored. The average height/depth was calculated by 

multiplying the proportion of time spent in each zone by the distance of the middle 

point of that zone from the floor/front of the quadrant.  

• Locomotion. Locomotion is defined as translational movement in which all four limbs 

change location. The percentage of time spent in locomotion was scored.  

• Head and body bobs. Head and body bobs are marmoset behaviours indicative of 

anxiety (Agustín-Pavón et al., 2012; Carey et al., 1992; Santangelo et al., 2016). The 

number of head and body bobs was scored. 

• Vocalisations. When confronted with a human intruder, marmosets exhibit a 

repertoire of vocal responses – these include tsik, tsik-egg, tse, tse-egg and egg 

calls, separated based on differences in duration and frequency range (FIGURE 5-6) 

(Bezerra and Souto, 2008). Audio editing software (Audacity v2.2.2, 

https://sourceforge.net/projects/audacity/) was used to extract audio from the video 

recordings which was converted into a waveform (Syrinx, v2.6h). 

https://sourceforge.net/projects/audacity/
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Figure 5-5 Dimensions of HI test quadrant. Taken from Shiba, 2012 (PhD thesis). A Top view 

and B front view of the test quadrant with the dimensions of all objects. The location zones are 

highlighted in different colours, and the locations of their respective midpoints in the 

horizontal/vertical planes are shown left, in cm.  
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Figure 5-6 Vocalisations made during the HI test. Taken from Santangelo et al., 2016. The 

typical bandwidth and frequency patterns of the five calls scored are shown, visualised using Syrinx 

(v2.6h). 

 

5.3.7 Statistical analysis 

Data were inputted into GraphPad Prism v8.00.178 for Windows (GraphPad Software, La 

Jolla, CA) for statistical analysis. Significance was set at α=0.05 in all cases. In all ANOVAs, 

multiple comparisons were corrected for using Sidak’s multiple comparisons test.  

5.3.7.1 Snake Extinction test: control condition 

5.3.7.1.1 Acquisition 

To determine if animals had successfully acquired the fear association under control 

conditions, a two-tailed paired t-test was conducted comparing normalised MAP and 

absolute VS values between the final pre-acquisition CS pair (3-4 [CS4 still being ‘pre’-

snake]) and the final acquisition (post-acquisition) CS pair (8-9). The same analysis was 

carried out on CS directed MAP/VS values.  

5.3.7.1.2 Extinction and Extinction Recall 

To determine if animals successfully extinguished the fear association across 20 CSs 

presented in extinction, two analyses were carried out. First, best-fit lines were generated for 

each animal’s MAP/VS extinction profile using linear regression. The gradients of these best-

fit lines were compared to a hypothetical value of 0 (a flat line) using a one-sample t-test. 

Second, the MAP/VS arousal responses were compared between the first CS pair (1-2) and 

last CS pair (19-20) using a two-tailed paired t-test, to determine if they were significantly 

different from one another. Extinction recall MAP and VS responses were plotted, and the 
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gradients of MAP/VS best-fit lines were compared to a hypothetical value of 0 using a one-

sample t-test (to see if animals continued to extinguish on this day, or if there was successful 

recall and therefore no further extinction). 

5.3.7.2 Snake Extinction test: drug manipulations 

5.3.7.2.1 Acquisition 

To determine if there was any difference in acquisition profiles during the to-be-control and 

to-be-over-activation blocks, the normalised MAP and absolute VS values of the final pre-

acquisition CS pair were compared to the final acquisition (post-acquisition) CS pair across 

both blocks using a two-way repeated measures ANOVA of the form M2 × P2: M is a factor 

with two levels (manipulation) and P is a factor with two levels (CS pair; pre- vs. post-

acquisition).  

‘Post’:’pre’ salivary cortisol ratios were calculated for each acquisition block (three subjects, 

two blocks each for a total of six blocks). These ratios were compared to a hypothetical value 

of 1.0 (no change) using a one-sample t-test, to determine if acquisition significantly elevated 

salivary cortisol. 

5.3.7.2.2 Extinction and Extinction Recall 

Normalised MAP and absolute VS values during the CS periods of the extinction phase were 

analysed using a two-way repeated measures ANOVA of the form M2 × P10 where M is a 

factor with two levels (manipulation type) and P is a factor with ten levels (CS pair). 

Normalised MAP and VS values during the extinction recall phase were analysed using a 

two-way repeated measures ANOVA of the form M2 × P6 where M is a factor with two levels 

(manipulation type) and P is a factor with six levels (CS pair). 

Further analysis sought to determine whether there was a non-CS specific (contextual) effect 

of sgACC/25 over-activation on cardiovascular MAP or behavioural VS values during 

extinction/extinction recall sessions. For cardiovascular arousal, this was done by comparing 

MAP profiles across the entire extinction/extinction recall session (excluding the first minute). 

To statistically compare the MAP profiles, an ANOVA was performed with R version 3.4.1 

using the lme4 package (Bates et al., 2014) for linear mixed-effects modelling, with statistical 

tests from the lmerTest package (Kuznetsova et al., 2016) using type III sums of squares 

with the Satterthwaite approximation for degrees of freedom, here reported to the nearest 

integer. Factors included fixed effect factors: treatment (saline control, or over-activation with 

DHK) and time; and a random effect factor of subject (i.e. the individual marmosets) to 

account for inter-individual differences between animals. To determine if there was a 

contextual effect on behavioural arousal, baseline (pre-CS) VS values were averaged across 
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extinction/extinction recall sessions and compared between control and over-activation 

conditions using a two-tailed paired t-test. 

5.3.7.3 Fear Discrimination test: illustrating discrimination 

To illustrate successful discrimination between CS+ and CS-, a one-way repeated measures 

ANOVA was carried out comparing MAP and VS responses to the first CS-, CS+ and second 

CS- on the CS-/CS+/CS- session immediately prior to infusions. Additionally, a two-tailed 

paired t-test was carried out to compare CS+ responses to mean CS- responses. US 

directed (US minus CS) MAP responses were compared to a hypothetical value of 0 (no 

change compared to CS period) using a one-sample t-test.  

5.3.7.4 Fear Discrimination test: drug manipulations 

For drug manipulation sessions, it was first determined if there were any differences in CS 

directed MAP/VS responses. A two-way repeated-measures ANOVA of the form M2 × C3 was 

carried out where M is a factor with two levels (manipulation type) and C is a factor with three 

levels (CS type: first CS-, CS+ or second CS-). A two-tailed paired t-test was carried out to 

compare US directed responses during the US+ period.  

Further analysis sought to determine whether there was a non-CS specific (contextual) effect 

of sgACC/25 over-activation on absolute MAP or VS values. Absolute MAP values during the 

baseline and CS periods were compared across infusion type using separate two-way 

repeated-measures ANOVAs of the form M2 × B3/C3 where M is a factor with two levels 

(manipulation type) and B/C is a factor with three levels (baseline/CS type: first, second or 

third). Absolute VS values were statistically tested in an identical way. The MAP profile 

across the entire session (excluding the first minute) was also assessed and statistically 

compared using an ANOVA was performed with R version 3.4.1 using the lme4 package 

(Bates et al., 2014) for linear mixed-effects modelling, with statistical tests from the lmerTest 

package (Kuznetsova et al., 2016) using type III sums of squares with the Satterthwaite 

approximation for degrees of freedom, here reported to the nearest integer. Factors included 

fixed effect factors: treatment (saline control, or over-activation with DHK) and time, and 

random effect factors: subject (i.e. the individual marmosets) to account for inter-individual 

differences between animals. 

During the 10s recovery period after the US+, a ratio was calculated comparing the MAP 

value in each 1s bin to the MAP value in the final 1s bin of the US+ period. Ratio values for 

control and over-activation conditions were compared using a two-way repeated measures 

ANOVA of the form M2 × T10 where M is a factor with two levels (manipulation type) and T is 

a factor with ten levels (ten 1s time bins).  
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5.3.7.5 HI test 

An exploratory factor analysis (EFA) with a principal axis factoring extraction method has 

been performed on HI Test scores from sessions carried out as part of a screening 

procedure on 171 marmosets from the colony (unpublished data). This model predicts the 

extent to which the different behaviours in the human intruder test are driven by an 

underlying latent variable. Initial runs of the exploratory factor analysis included: percentage 

of time spent at front (TSAF) and time spent at the back (TSAB) of the cage, average height, 

percentage of time spent in locomotion, number of bobs, egg calls, tsik call, tsik-egg calls, 

tse calls, and tse-egg calls. Instead of average depth, the TSAF/TSAB were used, as these 

measures reflect approach and avoidance movements respectively and appear more 

sensitive to changes in anxiety levels of the marmosets (unpublished findings). Tse calls 

were removed from the exploratory factor analysis as its measure of sampling adequacy was 

below the standard of 0.5 defined in Field, 2009 (MSA = 0.424) leaving a total of nine 

variables. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy for the final model 

verified the sampling adequacy for the analysis, KMO = 0.82 (‘great’ according to (Hutcheson 

and Sofroniou, 1999)). Bartlett’s test of sphericity was significant (χ2 [36] = 460.84, p<0.001), 

indicating that correlations between items were sufficiently large for a factor analysis. Due to 

the low level of communalities after extraction, the scree plot was consulted to decide the 

number of factors to extract instead of using Kaiser’s criterion (Field, 2013). Only 1 factor 

was extracted based on the point of inflection on the Scree plot (FIGURE 5-7A). This factor 

accounted for 39.7% of the variance. There were 16 (44.0%) nonredundant residuals with 

absolute values greater than 0.05, below the recommended value of 50%, reflecting that the 

one factor model is a good fitting model. The pattern in which the items cluster on this factor 

suggest that this factor represents the animal’s anxiety (FIGURE 5-7B) with high scores 

reflecting increased depth and height in the cage, together with increases in vigilant bobbing 

and egg calls. 
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Figure 5-7 The use of an exploratory factor analysis (EFA) to extract latent variables 

explaining variance in behaviour. A An EFA was carried out as part of a screening procedure on 

171 marmosets in the University of Cambridge Marmoset Breeding Colony to predict the extent to 

which marmosets’ responses to an HI are driven by underlying latent factors. In total, nine factors 

were extracted. The point of inflection on the Scree plot suggests a one factor model is sufficient, 

accounting for 39.7% of the total variance in responding across the colony. B The loading of each 

behavioural measure onto the factor. Each measure loads positively (dark grey) or negatively (light 

grey) with different weights indicated by values above the arrows. The pattern in which behaviours 

cluster onto the factor suggest that the factor represents marmosets’ anxiety towards the HI (anxiety 

score): a higher score is associated with increased depth from the cage front, increased height and 

increased vigilance in the form of head bobbing and egg vocalisations. 

 

A two-tailed paired t-test was conducted on the EFA-derived anxiety scores for saline control 

vs. sgACC/25 over-activation to determine if sgACC/25 over-activation had any effect on 

anxiety levels during periods of uncertainty. Individual measures were compared using 

individual two-tailed paired t-tests to determine which behaviours were driving the change in 

anxiety scores. 

5.3.7.6 Ketamine study (HI test) 

The statistical analysis of behavioural data to generate the anxiety scores was performed 

using EFA, as described above. A one-way repeated-measures ANOVA was carried out to 

compare the effects of control, over-activation and (over-activation + ketamine) 

manipulations on anxiety scores.  

5.3.8 Post-mortem histological processing 

Of the cohort of eight animals used in this study, five are still alive and undergoing 18F-FDG 

PET akin to that described in the previous chapter. For the three animals where post-mortem 

data are available, the brain sections were prepared and visualised as described in 2.8 

POST-MORTEM ASSESSMENT OF CANNULA PLACEMENT. 

  

A B 
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5.4 RESULTS 

5.4.1 Post-mortem assessment of cannula placement 

Histological analysis revealed that of the three animals assessed, all had cannulae 

successfully targeting sgACC/25 (FIGURE 5-8). The other animals constituting this cohort are 

still alive.   

 

Figure 5-8 Cannula placements. Location of sgACC/25 cannulae for the three animals where 

post-mortem placements are available. 

 

5.4.2 Animals show both cue- and context-directed conditioning following Snake 

Extinction acquisition sessions under control conditions 

On the acquisition session of control Snake Extinction blocks, animals successfully acquired 

conditioned fear as indicated by an increase in normalised MAP and absolute VS responses 

measured in the post-acquisition CS pair compared to the pre-acquisition CS pair (FIGURE 

5-9A, B). CS directed acquisition of cardiovascular MAP arousal was variable: specifically, 

there was no significant difference between pre- and post-acquisition phases for CS directed 

MAP values (FIGURE 5-9C). This suggests that increases in MAP arousal during the CS 

period are predominantly driven by contextual associations. By contrast, behavioural VS 

responses were CS specific, as there was a significant difference in CS directed VS 

behaviour between pre- and post-acquisition phases (FIGURE 5-9D). 

To further evidence contextual cardiovascular/behavioural conditioning effects in addition to 

cue-specific learning, (i) absolute MAP responses were plotted across the entire session to 

qualitatively determine if there was a systematic elevation in MAP following snake 

presentation; and (ii) mean baseline (15s pre-CS period) VS responses were compared 

between pre- and post-acquisition trials. In the baseline period, no auditory cues are 

presented and so changes in behavioural arousal during this period must reflect an 

increased response to the context. When MAP arousal was plotted across the entire 

acquisition session, it was apparent that there was a systematic increase in MAP levels 
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following snake exposure which was not specific to any discernible CS period (FIGURE 5-9E). 

Behaviourally, baseline VS responses increased in two out of three animals and in the third 

animal remained at zero; across all three subjects, this increase was not significant (FIGURE 

5-9F).  

In sum, these data suggest that the principal measures extracted from the Snake Extinction 

study – normalised MAP and absolute VS values during CS pair periods – reflect a 

combination of context- (MAP and to some extent, VS) and cue- (VS) driven responding. 

5.4.3 Animals show extinction and recall of extinction under control conditions 

Under control conditions, animals exhibited successful extinction across the ten CS pairs 

presented in extinction, evidenced by a significantly negative gradient (determined from best-

fit lines of individual subjects) for normalised MAP (FIGURE 5-9G) and absolute VS (FIGURE 

5-9H) responses across the session. Successful extinction was also evident as a significant 

difference in normalised MAP (FIGURE 5-9G) and absolute VS (FIGURE 5-9H) values 

between the first CS pair (CS 1-2) and last CS pair (CS 19-20) presented during extinction. 

On the following extinction recall day, the gradient of best fit lines did not significantly differ 

from 0 for either MAP arousal (FIGURE 5-9I) or VS arousal (FIGURE 5-9J) indicating that 

animals successfully recalled extinction and no further extinction took place.   

5.4.4 Salivary cortisol levels are higher following acquisition 

In addition to the behavioural and autonomic measures described above, salivary cortisol 

samples were taken before and after acquisition for both to-be-control and to-be-over-

activation blocks. These samples indicated that ‘post’-acquisition levels of cortisol were 

significantly higher than ‘pre’-acquisition levels of cortisol as indexed by a ‘post:‘pre’ ratio 

significantly greater than 1.0 (FIGURE 5-9K). Therefore, the physiological responses to snake 

presentation are not limited to the cardiovascular domain, but additionally include elevated 

activity in the HPA axis as indexed by salivary cortisol. The sensitivity of the paradigm to 

changes in HPA axis activity meant we could go on to assess cortisol dynamics on day of 

extinction, comparing control and over-activation conditions (see below).  
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Figure 5-9 Features of acquisition, extinction and extinction recall under control conditions 

in the Snake Extinction paradigm. Relevant graphs show mean ± SEM. N=3. A Marmosets 

successfully acquired a fear association during acquisition, as indicated by a significant difference in 

normalised MAP response between the final pre-acquisition and post-acquisition CS pair (two-tailed 

paired t-test, p=0.021). B Successful acquisition was also evident in absolute VS responses (two-

tailed paired t-test, p=0.036). C CS directed (cue specific) MAP arousal was more variable – there 

was no significant difference between pre- and post-acquisition CS pairs (two-tailed paired t-test, 

p=0.641). This indicates that MAP conditioning was predominantly context-directed. D There was 

reliable CS directed VS conditioning (two-tailed paired t-test, p=0.039), suggesting that behavioural 

arousal was CS-specific. E Further evidence for contextual learning is evident when MAP 
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responses were plotted across the acquisition session: following snake presentation, MAP arousal 

was systematically elevated in a manner not restricted to CS periods. The observable peaks 

represent exposures to the US (indicated with arrows). F Behaviourally, two out of three animals 

showed elevated levels of VS during baseline periods (and one showed no change), suggestive of a 

contextual behavioural response (although this increase was not significant; two-tailed paired t-test, 

p=0.258). In sum, these data suggest a mixed pattern of cue- (VS) and context- (MAP, VS) 

conditioning. G On the subsequent day, animals exhibited successful extinction of MAP arousal, as 

evidenced by significantly negative extinction gradients (one-sample t-test compared to 0, p=0.021), 

together with a significant decrease in MAP arousal during the first (CS 1-2) vs. last (CS 19-20) CS 

pair presented in extinction (two-tailed paired t-test, p=0.020). F Successful extinction was also 

evidenced in VS arousal – gradients were significantly negative (one-sample t-test compared to 0, 

p=0.010) and there was a significant difference between the first and last CS pair (two-tailed paired 

t-test, p=0.027). I Profile of MAP arousal responses during extinction recall. The gradient of 

individual best fit lines were not significantly different from 0 (one-sample t-test compared to 0, 

p=0.199) indicating that no further extinction of MAP arousal took place on the extinction recall day. 

J Profile of VS arousal responses during extinction recall. The gradient of individual best fit lines 

was not significantly different from 0 (one-sample t-test compared to 0, p=0.631) indicating that no 

further extinction of behavioural arousal took place on the extinction recall day. K ‘Post’:’pre’ ratios 

of salivary cortisol samples showed that salivary cortisol levels were significantly higher post-

acquisition (one-sample t-test compared to 1.0, p=0.043), suggesting that this behavioural session 

is associated with an endocrine response. 

 

5.4.5 SgACC/25 over-activation increases cardiovascular and behavioural arousal 

during fear extinction, which remain elevated on the following extinction recall 

day 

5.4.5.1 Acquisition 

There was no difference in the level of cardiovascular (FIGURE 5-10A) or behavioural 

(FIGURE 5-10B) acquisition attained during to-be-control vs. to-be-over-activation blocks.  

5.4.5.2 Extinction and Extinction recall 

Infusions of saline vehicle (control) or DHK (over-activation) into sgACC/25 were carried out 

on the following day, immediately prior to the extinction session. Whilst over-activation of 

sgACC/25 had no effect on the rate of MAP extinction, it significantly, systematically 

increased MAP arousal during the CS periods (FIGURE 5-10C). The same effect was 

observed on VS behaviour: the rate of VS extinction was unchanged, but levels of VS in CS 

periods were significantly higher following sgACC/25 over-activation (FIGURE 5-10D). On the 

following extinction recall day, MAP and VS responses were again significantly higher during 

CS periods for animals which had undergone sgACC/25 over-activation the day before 

(FIGURE 5-10E, F). Furthermore, on extinction recall days, the manipulation × CS pair 
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interaction term showed a trend towards significance for MAP (p=0.054) and was significant 

for VS values (p=0.049), suggesting that extinction recall profiles were steeper for over-

activation vs. control conditions. In the case of over-activation, it appears that animals 

continue to extinguish their responding over the following day. 

To determine if the increases in CS period arousal were contributed to by contextual effects 

of sgACC/25 over-activation, whole-session MAP responses and baseline VS behaviour 

were assessed for both extinction and extinction recall sessions. During extinction sessions, 

over-activation resulted in significantly elevated MAP arousal, the degree of which decreased 

over the session (indicated by a significant manipulation x time interaction across the entire 

session, FIGURE 5-10G). Increased baseline VS behaviour was observed in all three animals 

(although owing to inter-individual variability in magnitude, this increase was not significant, 

p=0.187) (FIGURE 5-10H). These data suggest that sgACC/25 over-activation has a general 

effect to increase arousal in the aversive context. Given that there was no evidence for a 

difference in the rate of extinction within the CS periods (FIGURE 5-10C), the reduction in the 

magnitude of MAP arousal increase across the entire session may relate to the DHK effect 

slowly wearing-off over the 30 minute session (as DHK effects have previously been shown 

to last 15-30 minutes, (John et al., 2012)) rather than an increase in the rate of extinction. 

The significant contextual effects on cardiovascular arousal were also apparent during 

extinction recall, manifesting as a significant manipulation x time interaction for MAP values 

plotted across the entire session (FIGURE 5-10I). Given that no infusion happened on this 

day, the different slope cannot reflect an effect of the drug wearing off: instead, the 

interaction term suggests that over-activation the day before meant animals continued to 

extinguish their elevated arousal on the subsequent recall day. Increases in baseline VS 

behaviour were also apparent in all three animals on extinction recall (although again not 

significant, p=0.078) (FIGURE 5-10J). Collectively, these data support enhanced context-

associated arousal following sgACC/25 over-activation – most consistently in the 

cardiovascular domain, but potentially exhibited in the behavioural domain too. 
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Figure 5-10 SgACC/25 over-activation increases cardiovascular and behavioural arousal 

during fear extinction, which remain elevated on the following extinction recall day. Relevant 

graphs show mean ± SEM. N=3. A There was no significant difference in acquisition of MAP 

responses across control and sgACC/25 over-activation blocks (manipulation × CS pair: F<1, NS; 

main effect of manipulation: F<1, NS). B There was no significant difference in acquisition of VS 

responses across control and sgACC/25 over-activation blocks (manipulation × CS pair: F1,2=1.59 

p=0.334; main effect of manipulation: F1,2=4.26, p=0.175). C SgACC/25 over-activation 10 minutes 

prior to extinction did not affect the rate of MAP extinction (manipulation × CS pair: F<1, NS), but 
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systematically enhanced cardiovascular arousal measured across CS pairs (main effect of 

manipulation: F1,2=239, p=0.004). D SgACC/25 over-activation did not affect the rate of behavioural 

extinction (manipulation × CS pair: F9,18=1.26, p=0.323) but systematically enhanced VS behaviour 

measured across CS pairs (main effect of manipulation: F1,2=24.8, p=0.038). E On the subsequent 

extinction recall day, the manipulation × CS pair interaction for MAP arousal showed a trend 

towards significance (F5,10=3.24, p=0.054) suggesting that the two recall lines had different 

gradients and that animals continued to extinguish their MAP arousal during extinction recall (the 

main effect of manipulation was significant: F1,2=34.5, p=0.028). F For VS behaviour, the gradient of 

extinction recall was different (manipulation × CS pair: F5,10=4.41, p=0.049) with levels of VS 

differing most in early CSs (Sidak’s multiple comparisons test: pairs one and two, p<0.001) but 

reaching similar levels by the final CS pair (p=0.244) suggesting that animals continued to 

extinguish their behaviour during extinction recall. G SgACC/25 over-activation systematically 

elevated cardiovascular arousal during extinction in a fashion which decreased over time as 

indicated by a significant manipulation x time interaction (F1,10671=409, p<0.0001; main effect of 

manipulation: F1,2=6.96, p=0.118), suggestive of a contextual effect. Given the lack of interaction 

effect measured during the CS period in isolation (C), this interaction may reflect an effect of the 

drug wearing-off across the ~30-minute session rather than differences in the rate of extinction. H In 

all three animals, baseline VS increased following over-activation, although this was not significant 

(two-tailed paired t-test, p=0.187). I SgACC/25 over-activation systematically elevated 

cardiovascular arousal during extinction recall in a fashion which decreased over time as indicated 

by a significant manipulation x time interaction (F1,8318=329, p<0.0001; main effect of manipulation: 

F1,2=7.10, p=0.116). There was no infusion this day (and this effect cannot therefore be an effect of 

drug wearing-off), therefore these data support the suggestion that animals which received 

sgACC/25 over-activation on the previous extinction day continued to extinguish their arousal over 

extinction recall. J In all three animals, baseline VS was increased on the extinction recall day, 

although this increase was not significant (two-tailed paired t-test, p=0.078). 

 

5.4.6 SgACC/25 over-activation elevated salivary cortisol concentrations following 

extinction 

Salivary cortisol samples were acquired pre- and post-session on the extinction day. The 

ratios of ‘post’:’pre’ salivary cortisol were significantly higher following over-activation 

compared to control infusions, and effect observed in all three animals (FIGURE 5-11) 

indicating that whilst sgACC/25 does not affect cortisol levels in neutral conditions (Chapter 

3), it appears to elevate HPA axis activity in aversive contexts. Note that salivary cortisol 

levels are but one measure of HPA axis output, and levels of cortisol in the saliva are 

determined by many factors (Ash et al., 2018). Therefore, further work is needed to 

determine whether this reflects a causal influence of sgACC/25 over-activity on HPA axis 

activity, or an indirect effect.  
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Figure 5-11 Ratio of ‘post’:‘pre’ salivary cortisol levels during extinction days under control 

and over-activation conditions. Following over-activation of sgACC/25, the ratio of ‘post’:‘pre’ 

cortisol was significantly higher across all three animals (two-tailed paired t-test, p=0.014). 

 

5.4.7 Animals successfully acquired differential arousal responses to the CS+ and 

CS- on the Fear Discrimination paradigm  

On the Fear Discrimination paradigm, animals were trained to distinguish between two 

auditory cues – a CS+ which predicted the presentation of 30s of white noise (85dB) and 

darkness (US+), and a CS- which predicted the presentation of a neutral 0.5s 2kHz tone 

(80dB) (see FIGURE 5-3). Sessions containing CS-/CS+/CS- were assessed for the 

experimental purposes outlined in 5.3.  

Animals successfully acquired cardiovascular discrimination, as evidenced by an increase in 

CS directed MAP responses to the CS+ but not the first/last CS- in CS-/CS+/CS- sessions 

immediately prior to infusions (FIGURE 5-12A). HR conditioning was more variable – whilst 

there was a trend towards discrimination, it was not significant (p=0.056; FIGURE 5-12B). 

During the US period, animals exhibited significant increases in MAP in response to the US+, 

over-and-above the rise observed during the CS+ (US directed, FIGURE 5-12C). Animals 

also successfully acquired behavioural discrimination, as evidenced by an increase in CS 

directed VS responses to the CS+ but not the first/last CS- in CS-/CS+/CS- sessions 

immediately prior infusions (FIGURE 5-12D). 
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Figure 5-12 Animals successfully acquired conditioned aversive Fear Discrimination. Data 

from CS-/CS+/CS- sessions immediately prior to experimental manipulations. Relevant graphs 

show mean ± SEM. N=4. A Animals successfully discriminated between CS types based on CS 

directed MAP responses (effect of CS type: F1.826,5.477=10.37, p=0.015). Sidak’s multiple 

comparisons test revealed a significant difference between the CS+ and the second CS- (p=0.044) 

and a trend towards a difference between the CS+ and the first CS- (p=0.052). Compared to the 

mean CS- response, there was a significantly higher MAP response to the CS+ (two-tailed paired t-

test, p=0.013; not shown). B Animals showed a trend towards significant discrimination based on 

HR values (effect of CS type: F1.307,3.922=6.96, p=0.056). Compared to the mean CS- response, 

there was a significantly higher HR response to the CS+ (two-tailed paired t-test, p=0.010; not 

shown). Nevertheless, given the sensitivity of MAP responses to reflect conditioned discrimination 

(and the lack of effect of over-activation on MAP levels in the neutral condition; Chapter 3), MAP 

values were used as the principal cardiovascular measure in the Fear Discrimination study. C 

During the US+ period, animals exhibited cardiovascular arousal over-and-above levels shown 

during the CS+ (US directed change in MAP; one-sample t-test vs. 0, p=0.037). D Animals showed 

behavioural discrimination between CS types based on CS directed VS responses (effect of CS 

type: F1.216,3.649=17.14, p=0.016). Sidak’s multiple comparisons test revealed a significant 

discrimination between the CS+ and both the first (p=0.045) and second (p=0.047) CS-. Compared 

to the mean CS- response, there was a significantly higher VS response to the CS+ (two-tailed 

paired t-test, p=0.022; not shown). 
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5.4.8 SgACC/25 over-activation systematically increased cardiovascular and 

behavioural arousal during Fear Discrimination testing 

Over-activation of sgACC/25 had no significant effect on CS directed MAP or VS responses 

compared to control infusions of saline vehicle (FIGURE 5-13A, B), nor was there any effect 

on the US directed response (mean ± SEM difference between control and over-activation: -

3.2 ± 1.6mmHg, NS). However, for both MAP and VS measures, absolute values were 

typically higher during both the baseline and CS periods (baseline period MAP showed a 

trend towards a main effect of manipulation, p=0.052, whereas all other measures showed a 

significant main effect of manipulation; FIGURE 5-13C, D), indicating a contextual effect not 

specific to the CS period. To determine whether the effects on MAP arousal were present 

throughout the session, MAP values were plotted across the entire ~500s period. This plot 

(FIGURE 5-13E) indicated that MAP values were significantly, systematically higher following 

over-activation compared to control infusions.  

5.4.9 SgACC/25 over-activation may impair recovery from a stressor 

To determine whether the recovery from a stressor (US+) was affected by sgACC/25 over-

activation, the 10s period following US termination was analysed. Specifically, a ratio was 

calculated comparing MAP value in the final 1s bin of the US+ period, to the MAP value in 

the subsequent ten, 1s bins following its termination. These ratios were calculated to try and 

account for the generalised effect over-activation had to increase MAP arousal. Analysis of 

this period indicated that, following US+ termination, MAP values remained higher for longer 

in the case of sgACC/25 over-activation compared to control infusions (a significant time x 

manipulation interaction, together with a longer time taken to reach pre-US+ levels of 

arousal; FIGURE 5-13F). This tentatively suggests that recovery from a stressor is slowed 

following sgACC/25 over-activation.  
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Figure 5-13 SgACC/25 over-activation enhances cardiovascular and behavioural arousal 

during an aversive Pavlovian Fear Discrimination paradigm. Relevant graphs show mean ± 

SEM. N=4. A SgACC/25 over-activation had no significant effect on CS directed MAP responses 

(manipulation × CS type, F2,6=2.66, p=0.149; main effect of CS type maintained: F2,6=19.28, 

p=0.002). B SgACC/25 over-activation also had no significant effect on CS directed VS responses 

(manipulation × CS type, F<1, NS; main effect of CS type maintained: F2,6=16.58, p=0.004). C 

SgACC/25 over-activation tended to increase MAP during both baseline (left; manipulation × BL 

type, F<1, NS; main effect of manipulation: F1,3=9.84, p=0.052) and CS (right; manipulation × BL 

type, F2,6=1.12, p=0.386; main effect of manipulation: F1,3=13.47, p=0.035) periods. D SgACC/25 

over-activation significantly increased VS behaviour during both baseline (left; manipulation × BL 

type, F<1, NS; main effect of manipulation: F1,3=11.81, p=0.041) and CS (right; manipulation × BL 

type, F<1, NS; main effect of manipulation: F1,3=54.46, p=0.005) periods. E Given that sgACC/25 

over-activation was associated with increased arousal during both baseline and CS periods, 

second-by-second MAP values were plotted across the entire session. MAP arousal was 

significantly elevated but the magnitude of this decreased across the session (manipulation × time, 

F1,3814=8.33, p=0.004; main effect of dose: F1,3.1=3.1, p=0.034). F Analysis of the 10s post-US+ 

recovery period indicated that the recovery of MAP arousal (calculated as a ratio to the MAP 

response in the final 1s bin of the US+) was significantly slower following sgACC/25 over-activation 

compared to control conditions (manipulation x time, F9,27=2.38, p=0.040), with Sidak’s multiple 

comparisons test revealing a significant difference in MAP arousal at 2s (p=0.028), 3s (p<0.001), 4s 

(p<0.0001), 5s (p<0.0001), 6s (p<0.001), 7s (p<0.001) and 10s (p=0.044) time-bins. Dashed lines 

indicate the ratio value of the final 1s time-bin prior to US+ onset compared to the final 1s of the 
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US+ period. Whilst the mean level of MAP arousal reached this value by the second/third time-bins 

in control conditions, the mean MAP arousal failed to reach this level across the entire 10s recovery 

period following sgACC/25 over-activation. 

 

5.4.10 SgACC/25 over-activation profoundly increases anxiety responses to the HI 

Over-activation of sgACC/25 enhanced responsivity of marmosets to the HI, as assessed by 

an increased anxiety score derived from EFA (FIGURE 5-14A). The increase in anxiety score 

was driven by the following measures: 

• Reduced TSAF (FIGURE 5-14B). Mean ± SEM difference, over-activation – control: -

24.4 ± 6.6%. Two tailed paired t-test, p=0.008. 

• Increased TSAB (FIGURE 5-14C). Mean ± SEM difference, over-activation – control: 

24.0 ± 8.5%. Two tailed paired t-test, p=0.009. 

• Increased average height (FIGURE 5-14D). Mean ± SEM difference, over-activation 

– control: 15.5 ± 4.2cm. Two tailed paired t-test, p=0.008. 

These measures indicate that animals were spending significantly more time high up and at 

the back of the cage. Also contributing to the enhanced anxiety score was a small but 

significant decrease in locomotion (FIGURE 5-14E) seen in seven out of eight animals (mean 

± SEM difference, over-activation – control: -3.3 ± 1.3%; two-tailed paired t-test, p=0.040). 

Decreases in locomotion reflect increased ‘stillness’ and reduced approach of the marmoset 

towards the HI (Santangelo et al., 2016). Bobs (FIGURE 5-14F) and vocalisations (FIGURE 

5-14G-K) showed more variation – none of these measures significantly differed between 

control and over-activation conditions.  

The responses of animals across all conditions reported here are shown in TABLE 5-2.  
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Figure 5-14 SgACC/25 

over-activation 

increases anxiety 

responses to an HI. 

Overall anxiety score 

shown top, with 

individual measures 

below. P values 

reported from two-tailed 

paired t-tests. N=8. A 

SgACC/25 over-

activation increased 

anxiety responses to an 

HI, regardless of the 

level of anxiety animals 

exhibited under control 

conditions (p<0.001). B 

Time spent at front 

(TSAF, %; p=0.008). C 

Time spent at back 

(TSAB, %; p=0.009). D 

Height (cm; p=0.008). E 

Locomotion (%; 

p=0.040). F Number of 

bobs (count; p=0.656). 

G Number of tsik calls 

(count; p=0.129). H 

Number of tsik egg calls 

(count; p=0.485). I 

Number of tse calls 

(count; p=0.402). J 

Number of tse egg calls 

(count; p=0.857). K 

Number of egg calls 

(count; p=0.231) 
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5.4.11 Ketamine does not reverse increases in anxiety associated with sgACC/25 

over-activation 

To assess the responsivity of a specific component of the sgACC/25 over-activation induced 

phenotype to treatment, four animals were injected with ketamine, and 1 day later were 

tested on the HI paradigm combined with sgACC/25 over-activation (FIGURE 5-15A). This 

timepoint corresponds to one of the timepoints at which ketamine successfully reversed 

anticipatory anhedonia (Chapter 4). Ketamine administration one day prior to over-activation 

had no effect on anxiety scores in the HI test – in all four animals, the anxiogenic effect 

associated with sgACC/25 over-activation was still present (FIGURE 5-15B).  

 

Figure 5-15 Ketamine does not reverse increases in anxiety associated with sgACC/25 over-

activation. Relevant graphs show mean ± SEM. N=4. A Animals received a single intramuscular 

injection of ketamine, followed by over-activation of sgACC/25 and HI testing 1 day later. B 

Treatment type had a significant effect on anxiety scores (F1.127,3.380=15.8, p=0.022). The result for 

over-activation alone is shown for this cohort of four animals (middle bar), demonstrating a 

significant effect to increase anxiety scores (p=0.006). Over-activation following ketamine 

administration 1 day earlier still resulted in significantly elevated anxiety scores (right bar, p=0.046). 

Additionally, there was no difference in anxiety scores between over-activation alone and over-

activation following ketamine administration (p=0.939). 
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5.5 DISCUSSION 

To summarise, the major findings of the studies presented in this chapter are as follows: 

• SgACC/25 over-activation systematically enhances cardiovascular and behavioural 

arousal during the extinction of conditioned fear (Snake Extinction), the effects of 

which carry over to extinction recall;  

• SgACC/25 over-activation systematically enhances cardiovascular and behavioural 

arousal during a novel aversive Pavlovian conditioning (Fear Discrimination) 

paradigm;  

• SgACC/25 over-activation profoundly increases anxiety as measured by intolerance 

of uncertainty during exposure to an unfamiliar HI; and 

• When tested on this specific aspect of the enhanced negative affect associated with 

sgACC/25 over-activation, ketamine fails to ameliorate associated impairments. 

Together with these findings, there are two additional tentative conclusions implied by the 

results of these studies: 

• Whilst having no effect on cortisol levels in neutral conditions, sgACC/25 over-

activation appears to elevate cortisol levels in aversive contexts; and 

• SgACC/25 over-activation may slow stress recovery following presentation of an 

aversive stimulus. 

The data presented in this chapter therefore causally implicate sgACC/25 over-activity in the 

elevated negative affect considered a hallmark of anxiety and mood disorders.  

5.5.1 SgACC/25 over-activity enhances cardiovascular and behavioural arousal to 

aversive contexts 

We explored the consequences of sgACC/25 over-activity on (i) fear extinction during the 

Snake Extinction paradigm and (ii) fear learning/stress recovery during an aversive Pavlovian 

Fear Discrimination paradigm. 

In the Snake Extinction paradigm, cardiovascular arousal was not CS specific as evidenced 

by the variability in CS directed MAP values during acquisition. Instead, MAP arousal 

responses were evidenced in the absolute MAP values following snake presentation. This 

suggests that the increase in cardiovascular arousal observed in CS periods during 

acquisition – together with its decline during extinction/extinction recall – likely reflects 

changing responses to the context. The lack of reliable CS specific cardiovascular 

conditioning may be related to (i) latent inhibition from three pre-acquisition exposures of the 

CS; (ii) the use of a single, short acquisition session to acquire the CS/US association 

(consisting of only 6 trials); or (iii) the highly aversive nature of the US, which may promote 
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fear generalisation from cue to context. Such factors, either acting alone or in combination, 

may make it difficult for animals to resolve cue-context competition during learning. 

Behaviourally, VS proved to be a better measure of CS specific fear – animals successfully 

acquired CS directed VS responses. Note that there also was some evidence of increased 

baseline VS following snake presentation which would reflect a response to the context (as it 

was exhibited outside of the CS period). The mixed pattern of cue- (VS) and context- (MAP 

and to some extent, VS) dependent learning is consistent with previous work using the 

Snake Extinction paradigm in the present author’s laboratory (Wallis et al., 2017). 

Given the characteristics of the learning animals exhibited on this paradigm, the enhanced 

cardiovascular/behavioural arousal during the CS period associated with sgACC/25 over-

activation likely reflects an increase in both context- and cue-associated arousal. This is 

further corroborated by the systematic nature of elevated MAP and VS arousal responses 

across the session and in baseline periods. On subsequent extinction recall days, MAP/VS 

arousal was also elevated but the magnitude of the increase appeared to decay across 

session, suggesting that animals were continuing to extinguish on the following day.  The 

context-associated effects of sgACC/25 over-activity are consistent with studies in humans 

which show elevated sgACC activity associated with contextual conditioning (Alvarez et al., 

2008) and during sustained or unpredictable threat (i.e. threats not predicted by discrete 

cues) (Alvarez et al., 2011; Hasler et al., 2007b). In comparison, dACC has been implicated 

in cue-specific differential autonomic responses to CSs but not to contexts (Milad et al., 

2007b). Note however that the subgenual region associated with contextual threat in these 

studies is not always sgACC/25 – in some cases, the zone of elevated activity is more rostral 

in sgACC/10.  

In the Fear Discrimination paradigm, CS specific conditioning was evident in both CS 

directed MAP and VS responses, but this was seemingly unaffected by sgACC/25 over-

activation. However, when the absolute MAP and VS values were assessed for baseline and 

CS periods separately, it was evident that there was a non-specific systematic increase in 

MAP and VS responses (in the cardiovascular domain, this was also apparent when MAP 

responses were plotted across the entire session). The effects of sgACC/25 over-activation 

on the Fear Discrimination paradigm also appear to be related to elevations in MAP/VS 

arousal directed to the context. 

Therefore, across two different paradigms, it is apparent that sgACC/25 over-activation 

enhances cardiovascular and behavioural arousal when animals are in aversive contexts. 

Note that the nature of the elevated cardiovascular arousal seems to be different in aversive 

contexts compared to the neutral condition, since elevated HR – but not MAP – responses 

were observed in the neutral condition (Chapter 3). The differential effects of sgACC/25 
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over-activation on MAP and HR across neutral and aversive-associated contexts may relate 

to the differential contributions of the parasympathetic and sympathetic branches of the 

autonomic nervous system to the regulation of HR compared to the regulation of total 

peripheral resistance (and therefore MAP) in the vasculature. Parasympathetic fibres 

innervate the heart and a relatively small number of vessels, so the influence of the 

parasympathetic division is restricted to chronotropic influences on HR. Neural control of BP, 

by contrast, is largely exerted via the sympathetic nervous system because sympathetic 

fibres diffusely innervate arterioles, meaning that alterations in total peripheral resistance can 

be exerted by changing activity in the sympathetic branch of the autonomic nervous system 

(Thomas, 2011). It is possible that in neutral conditions, sgACC/25 has a predominant effect 

on parasympathetic tone to modulate HR, whereas in aversive contexts (where there is 

expected to be an increased sympathetic drive) sgACC/25 activity alters the gain within the 

sympathetic system to modulate MAP.  

Broadly speaking, these results are the opposite to those expected from data pertaining to 

activity within the putative rodent homologue – IL – during extinction. Electrophysiological 

and immunohistochemical evidence suggests that increased activity within IL correlates with 

reduced fear during extinction retrieval (Holmes et al., 2012; Knapska et al., 2012; Milad and 

Quirk, 2002). Pharmacological (Thompson et al., 2010) and optogenetic (Do-Monte et al., 

2015) over-activation of IL also enhances extinction learning. Rodent studies, therefore, 

suggest that increased IL activity is associated with reduced fear responding. The results 

reported herein suggest the opposite is true for the anatomical primate homologue – 

increased activity in sgACC/25 enhances fear responding – and therefore calls into the 

question the idea that sgACC/25 and IL are functionally analogous.  

It is important to emphasise that the results are also different at a subtle level: whilst IL 

manipulations alter rates of extinction learning, no such effect was observed following over-

activation of sgACC/25. The different effects observed may be due factors including: 

• Functional differences between primate sgACC/25 and rodent IL. Beyond 

differences in the direction of the effect, a difference in the ‘nature’ of the effect could 

also be explained by functional differences between sgACC/25 and IL.   

• Differences in conditioning procedures and the associations that are formed. 

As discussed above, cardiovascular and behavioural readouts indicate that during 

acquisition sessions of the Snake Extinction test, both contextual and cue-specific 

associations are formed. If rodent studies obtain a more CS-specific (or, indeed, more 

context-specific) pattern of learning, this may result in different effects.  

At this point, it is worth mentioning that it is not clear from classic rodent fear 

conditioning studies whether the associations that are formed and tested are CS 
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specific. Typically, researchers use different training and testing chambers to make 

the contexts different and therefore the expression of fear at test predominantly CS 

directed – however, baseline levels of freezing are rarely reduced to zero, and the 

problem is made worse when strains of rats/mice are used which show a high degree 

of fear generalisation. A study by Michael Fanselow and colleagues has shown that in 

mice there is a clear positive interaction between baseline (context-directed) fear and 

CS (tone) induced fear, such that baseline levels of freezing seriously confound 

measures of CS-specific fear (Jacobs et al., 2010). 

The contextual effects of sgACC/25 over-activation have relevance to clinical disorders 

associated with elevated anxiety. Both discrete and contextual Pavlovian processes are 

thought to contribute to anxiety disorders (Vervliet et al., 2013) – but contextual arousal is 

particularly relevant to psychopathologies characterized by sustained or ‘free-floating’ 

anxiety when there is no clear threat-eliciting stimulus; exemplified by GAD or symptom 

clusters of PTSD that involve excessive arousal in the absence of threat-eliciting cues 

(Kroes et al., 2017). The generalised elevation in arousal associated with sgACC/25 over-

activation may be consistent with the exaggerated responses to ineffable threat seen in 

these disorders. 

5.5.2 SgACC/25 over-activity may impair stress recovery 

The reliable increases in US+ directed arousal in the Fear Discrimination paradigm provided 

us with an opportunity to investigate cardiovascular recovery following aversive stimulus 

presentation. Whilst the generalised effect of sgACC/25 over-activation to elevate MAP 

complicates interpretation of the stress recovery period (as the cardiovascular response 

potentially has a smaller range in which to decline), analysis of the 10s post-US period 

suggests that the cardiovascular arousal associated with US+ presentation takes longer to 

decay following sgACC/25 over-activation. This tentatively implicates elevated sgACC/25 

activity in impaired stress recovery – a phenotype which is reliably identified in depressed 

patients (Burke et al., 2005). Further caution is also warranted, as it is possible that this 

effect is not specific to the decay of arousal following aversive USs – to investigate this, 

further work is required to determine if sgACC/25 over-activation affects cardiovascular 

arousal following an appetitive US.   

5.5.3 SgACC/25 over-activity increases anxiety as measured by intolerance of a HI 

In response to an HI, marmosets exhibit a complex repertoire of behaviours. An EFA was 

used to predict the extent to which marmosets’ responses are driven by underlying latent 

factors. One factor was extracted, and the pattern in which individual behaviours load onto 

this factor suggest that it represents the animal’s anxiety response. The face validity of this 

EFA-extracted measure is evidenced by, for example, the strong negative loading of TSAF 
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and the strong positive loading of TSAB. These measures are sensitive to classic anxiolytic 

agents (Carey et al., 1992), also attesting to the EFA score’s predictive validity.  

To assess the role of sgACC/25 over-activity in anxiety behaviours associated with 

intolerance of uncertainty, the behavioural profile of animals during confrontation with an HI 

was compared during control and over-activation conditions. Based on the anxiety score 

extracted from EFA, over-activation of sgACC/25 profoundly enhanced anxiety responses. 

The most consistent effects observed were on distance measures including TSAF, TSAB 

and height. There was also a small but significant reduction in locomotion, reflecting 

increased ‘stillness.’ These data are consistent with work in macaques, demonstrating that 

sgACC/25 activity is related to stress responses measured during HI exposure (Jahn et al., 

2010). 

The enhanced anxiety responses associated with this temporary manipulation are not 

necessarily maladaptive: for example, upward flight (increased height) is a normal defensive 

response to predators (Searcy and Caine, 2003). Indeed, enhanced activity in sgACC/25 is 

associated with ‘normal’ negative affect as well as 'abnormal' negative affect in psychiatric 

disorders (Mayberg, 1997) – so whether this acute manipulation represents a sufficient 

change to be considered ‘abnormal’ is not clear. Clinically, the definition of an ‘abnormal’ 

(maladaptive) behaviour relates to an impairment in everyday function (American Psychiatric 

Association, 2013). However, the cognitive and neural factors which tip normal adaptive 

responses into maladaptive ones are undoubtedly multi-factorial, complex and dependent on 

changes within a distributed network of neural structures rather than one single brain region. 

Nevertheless, these data do causally implicate sgACC/25 over-activity in the enhanced 

intolerance of uncertainty which could be maladaptive in the context of mood/anxiety 

disorders. 

5.5.4 Ketamine fails to reverse over-activation associated enhanced anxiety 

responses to an HI 

Despite successfully reversing the anticipatory anhedonic impairments as described in 

Chapter 4, a single dose of ketamine failed to ameliorate the increased anxiety induced by 

sgACC/25 over-activation in response to an HI. As discussed above, evidence for ketamine 

as an efficacious treatment for anxiety disorders remains in early stages, although a small 

number of studies have shown promising initial results (Glue et al., 2017, 2018). These 

studies have assessed the beneficial effects of ketamine using questionnaires (such as the 

Hamilton Anxiety Rating Scale, HARS) (Hamilton, 1959) and interview-based reports. Whilst 

the construct validity of questionnaires is always a concern, the HARS has shown 

convergent validity with clinician-rated and self-report measures of anxiety symptoms (Shear 

et al., 2001). Given that intolerance of uncertainty shows strong correlation with HARS 
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scores (Boswell et al., 2013), the lack of efficacy of ketamine observed here is less likely to 

be related to a fundamental difference in construct being assessed although this is always 

possible. The difference in efficacy is also unlikely related to the time-course of dosing– Glue 

and colleagues report an efficacy within one hour of ketamine administration, with sustained 

improvements over one week (Glue et al., 2018). According to these data, one would expect 

a sustained effect of a single dose of ketamine 1 day later (and indeed, we obtained this in 

Chapter 4). Future work could assess the efficacy of ketamine at earlier timepoints, to see if 

there is a more transient effect to ameliorate elevated anxiety in this HI preparation. 

These results have implications for the mechanistic basis of anhedonia and anxiety induced 

by sgACC/25 over-activation. Given that ketamine successfully reverses anticipatory 

anhedonia but fails to reverse the enhanced anxiety at the 1-day timepoint, this implies that 

there are fundamentally different mechanisms at play underlying the two effects (FIGURE 

5-16). More explicitly, if a common mechanism was involved in the induction of both 

changes, ketamine would be expected to reverse both. Therefore, two separate mechanisms 

must be responsible for the anhedonic/anxiogenic changes. Future work using 18F-FDG 

imaging to investigate the downstream neural consequences of sgACC/25 over-activation 

both with and without ketamine in aversive settings is warranted, to compare the pattern of 

metabolic change with those observed in appetitive settings (Chapter 4).  
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Figure 5-16 Mechanisms of action of ketamine in the context of sgACC/25 over-activation. If 

sgACC/25 over-activation was causing enhanced anxiety and anticipatory anhedonia by a common 

mechanism (top), ketamine would be expected to ameliorate both impairments. By contrast, if two 

independent pathways were involved in enhanced anxiety and anticipatory anhedonia, it is feasible 

that ketamine could act to ameliorate one symptom cluster through effects restricted to one 

mechanism whilst failing to ameliorate the other symptom cluster (bottom). Given that ketamine 

successfully ameliorated anticipatory anhedonic symptoms (Chapter 4) but failed to ameliorate 

enhanced anxiety (present chapter), the data presented in this thesis support the latter suggestion. 

 

5.5.5 SgACC/25 over-activity may potentiate HPA axis activity in aversive contexts 

As discussed in Chapter 3, sgACC/25 over-activation had no effect on salivary cortisol levels 

in the neutral condition. However, following extinction sessions on the Snake Extinction 

paradigm, salivary cortisol levels were elevated compared to pre-extinction levels. This 

suggests that sgACC/25 modulates activity within the HPA axis in aversive contexts. This is 

consistent with work in rodents, implicating regions of the mPFC (including IL) in the 

regulation of cortisol levels during restraint stress but not in baseline conditions (Diorio et al., 

1993).  

The elevation in salivary cortisol associated with over-activation of sgACC/25 could be 

interpreted in two ways (FIGURE 5-17): 
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• Model 1: sgACC/25 provides a direct stimulatory input to CRH+ neurons of the 

hypothalamic PVN and is regulated by a negative feedback loop – the stimulatory 

input is exaggerated by sgACC/25 over-activation; or 

• Model 2: sgACC/25 contributes to a positive feedback loop associated with acute 

stress. SgACC/25 provides inhibitory input to an intermediate structure which inhibits 

the HPA axis. When rapid rises of cortisol levels are needed in situations of acute 

stress, sgACC/25 is activated, enhancing inhibitory input to this intermediate structure 

thereby disinhibiting the HPA axis. In model 2, cortisol would not negatively feedback 

onto sgACC/25.  

Anatomical data supports a direct input from vmPFC subregions including sgACC/25 to the 

hypothalamus, lending support to Model 1. Functional data from McKlveen and colleagues 

also lends support to Model 1, as inhibitory feedback of cortisol (via GCRs) onto the putative 

sgACC/25 homologue IL constitutes a negative feedback loop during situations of stress 

(McKlveen et al., 2013), although this data is confounded by apparent differences in function 

between IL and sgACC/25.  
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Figure 5-17 The relationship between sgACC/25, the HPA axis and peripheral cortisol levels. 

In Model 1, sgACC/25 provides direct excitatory input to the HPA axis and is a target for the 

negative feedback effects of circulating cortisol. Over-activation of sgACC/25 elevates excitatory 

output to the PVN of the hypothalamus, which in turn stimulates more ACTH and cortisol release. 

Under normal circumstances, this elevated cortisol would negatively feedback onto sgACC/25 (as 

well as other structures) to maintain homeostatic ranges of cortisol concentrations, mediated by 

GCRs. In Model 2, sgACC/25 contributes to a positive feedback loop facilitating rapid elevations in 

cortisol levels associated with acute stress. In this model, an intermediate structure (such as the 

hippocampus) normally provides tonic inhibition of the HPA axis – this structure is inhibited by 

feedback from peripheral cortisol, together with inhibitory input from sgACC/25. When sgACC/25 is 

over-activated, the inhibitory input to this intermediate structure is enhanced, thereby disinhibiting 

CRH+ neurons in the PVN and potentiating HPA axis output.  
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5.6 CONCLUSION 

The data presented in this chapter causally implicate sgACC/25 in enhanced arousal in 

aversive contexts associated with sustained threat – namely, enhanced cardiovascular and 

behavioural arousal in contexts associated with aversive stimuli (Snake Extinction/Fear 

Discrimination) – together with enhanced arousal associated with intolerance of uncertainty 

during anxiety-provoking situations (HI). These data also implicate sgACC/25 over-activity in 

prolonged stress recovery following presentation of acute stressors, and in elevated HPA 

axis activity associated with an exaggerated stress response. Further work is warranted to 

determine the precise contribution sgACC/25 makes to contextual information processing, 

and to further elucidate the anatomical connectivity of sgACC/25 to structures involved in 

cardiovascular control and the regulation of the HPA axis.  
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6 BLUNTED REWARD AROUSAL AND ENHANCED 

ANXIETY FOLLOWING PERIPHERAL INJECTIONS OF 

CORTISOL 

 

Abbreviation Meaning 
18F-FDG PET 18Fluorine-fluorodeoxyglucose positron emission tomography 

ACTH Adrenocorticotropic hormone 

ANOVA Analysis of variance  

Cort(Num) Cortisol (dose in mg/kg) 

CRH Corticotropin releasing hormone 

CS Conditioned stimulus 

DA Dopamine 

dACC Dorsal anterior cingulate cortex 

EFA Exploratory factor analysis 

GCR Glucocorticoid receptor 

HI Human intruder 

HPA Hypothalamo-pituitary-adrenal  

HR Heart rate 

IGT Iowa Gambling Task 

IL Infralimbic (cortex) 

MAP Mean arterial pressure 

MCR Mineralocorticoid receptor 

MID Monetary incentive delay  

NHP Non-human primate 

NS Not significant 

OFC Orbitofrontal cortex 

PFC Prefrontal cortex  

PL Prelimbic (cortex) 

PTSD Post-traumatic stress disorder  

PVN Paraventricular nucleus (of the hypothalamus) 

SEM Standard error of the mean 

sgACC Subgenual anterior cingulate cortex 

TSAB Time spent at back 

TSAF Time spent at front 

US Unconditioned stimulus 

vmPFC Ventromedial prefrontal cortex 
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6.1 ABSTRACT 

The thesis so far has explored the consequences of sgACC/25 over-activity on anxiety and 

fear regulation, together with its effects on the anticipatory, motivational and consummatory 

elements of reward processing. However, it remains unclear (i) under what physiological 

circumstances is sgACC/25 activated and (ii) the precise mechanisms by which sgACC/25 

over-activity result in anxiogenic and anhedonic changes. Given the relationship between 

vmPFC subregions and HPA axis regulation, we conducted experiments to determine 

whether peripheral injections of the glucocorticoid cortisol could induce anxiogenic and 

anhedonic changes akin to those observed following sgACC/25 over-activation. Should the 

effects of peripheral cortisol injection be similar, this would support a role for the HPA axis in 

the effects associated with sgACC/25 over-activation – either as a cause, or a consequence. 

We found that subcutaneous injections of 20mg/kg cortisol successfully elevated peripheral 

cortisol to peak circadian levels and to the physiological response to stress, as measured by 

salivary cortisol sampling. In an appetitive setting, acute elevations in cortisol induced the 

behavioural signs of anticipatory anhedonia but did not affect cardiovascular anticipatory 

arousal. Consummatory arousal remained intact as measured during appetitive Pavlovian 

conditioning and during the sucrose preference test. In an aversive setting, cortisol injections 

moderately increased anxiety towards an HI. Therefore, elevated peripheral cortisol levels 

are associated with broadly similar changes across aversive and appetitive settings to those 

observed during sgACC/25 over-activation, although there are notable differences. Altered 

HPA axis functioning may therefore be responsible for some – but not all – of aspects of the 

anxiety/anhedonia induced by sgACC/25 over-activation. These experiments provide a 

foundation upon which future work can build, to precisely delineate the physiological and 

pathophysiological interactions between the HPA axis and sgACC/25. 

6.2 INTRODUCTION 

Stress and dysregulation within the HPA axis has long been implicated in the aetiology and 

pathophysiology of depression and anxiety (Faravelli et al., 2012; Juruena, 2014; Keller et 

al., 2017; Varghese and Brown, 2001). The nature of this relationship remains unclear – are 

these stress-related disorders caused by dysregulation within the HPA axis, or do these 

disorders cause the dysregulation (FIGURE 6-1)? Either way, impaired functioning of negative 

feedback systems involved in regulating the activity within the HPA axis is becoming 

increasingly recognised as a critical feature of the physiological dysfunction associated with 

psychiatric disorders, as a cause or consequence. The failure of negative feedback leads to 

sustained high levels of stress hormones – particularly the glucocorticoid cortisol – which 

have deleterious consequences, including maladaptive physiological changes and negative 

mood (Keller et al., 2017).  
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In parallel to a growing understanding of the link between HPA axis activity and psychiatric 

disorders, there is an evolving appreciation for the importance of limbic structures in 

regulating HPA axis activity, including the vmPFC. In rodents, excitotoxic lesions of both PL 

and IL sectors of the vmPFC alter activity within the hypothalamic PVN neurons responsible 

for stimulating ACTH release from the anterior pituitary (Jankord and Herman, 2008). Both 

sectors have also been implicated in negative feedback control – glucocorticoids act via PL 

to regulate negative feedback during situations of acute stress only, whereas in IL, 

glucocorticoids exert negative feedback effects during both acute and chronic stress 

(McKlveen et al., 2013).  

 

Figure 6-1 The relationship between dysregulation within the HPA axis and stress-related 

disorders such as depression and anxiety. Stress-related disorders psychiatric disorders may 

cause dysregulation within the HPA axis, or alternatively, dysregulation within the HPA axis may 

cause stress-related psychiatric disorders. Patients with these disorders could enter a maladaptive 

‘loop,’ which may be difficult to escape: psychiatric disorders could potentiate dysregulation within 

the HPA axis and vice-versa. Note that a dysregulated HPA axis is not the only cause of these 

psychiatric disorders, just as these disorders themselves are not the only cause of a dysregulated 

HPA axis, and the grey arrows schematically represent the alternative routes through which patients 

could enter this loop. 

 

The precise nature of the interplay between the vmPFC and the HPA axis, together with the 

role that dysfunction within these systems plays in stress-related disorders such as 

depression/anxiety, remains unclear. Evidence for a link between the two is further 

substantiated by several streams of data (from rodents, NHPs and humans) showing that the 

behavioural and cognitive functions mediated by sectors of the vmPFC are also deleteriously 

affected by stress. For instance: 

• Working memory. In rats, chronic stress impairs spatial working memory through a 

D1 receptor mediated hypo-dopaminergic mechanism in the vmPFC (Mizoguchi et 

al., 2000).  
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• Behavioural flexibility. Chronic stress impairs reversal learning and set-shifting 

(Bondi et al., 2008; Danet et al., 2010), and normal performance of both of these 

behaviours is dependent on an intact vmPFC/OFC (Birrell and Brown, 2000; Floresco 

et al., 1997). 

• Decision making. Administration of cortisol either systemically or directly into IL 

impairs performance on a rodent version of the IGT (Koot et al., 2014). 

• Habit formation. Chronic stress promotes habit formation, accompanied by 

widespread atrophy of neurons in the IL and PL (Dias-Ferreira et al., 2009). 

• Emotional behaviours. Chronic stress increases immobility time in the forced swim 

test (de Kloet and Molendijk, 2016), and GCR knockdown in IL has also been shown 

to increase immobility time (McKlveen et al., 2013). 

Consider, therefore, the following lines of evidence. It is apparent that (i) dysregulated HPA 

axis activity is associated with increased susceptibility towards developing mood/anxiety 

disorders; (ii) dysfunction within the vmPFC is associated with mood/anxiety disorders; and 

(iii) the vmPFC is involved in the regulation of HPA axis activity. This begs the question as to 

whether vmPFC dysfunction is causal, resulting in depression- and anxiety-like changes 

through disruptions in HPA axis regulation; whether HPA axis dysfunction is causal, causing 

changes in vmPFC function which then result in depression/anxiety; or alternatively, whether 

the two are independent of one another and contribute to the deleterious phenotype entirely 

separately (FIGURE 6-2).  

 

Figure 6-2 Causality: HPA axis and vmPFC dysfunction associated with depression and 

anxiety. An additional layer of complexity is introduced when the role of vmPFC dysfunction is 

considered in the context of HPA axis dysregulation and psychiatric disorders. Represented in 

orange is the pathway of causation if dysfunctional activity within the vmPFC is causing 

dysregulation within the HPA axis, in turn causing anxiety and depression; in yellow, the pathway of 

causation if dysregulation within the HPA axis is causing vmPFC dysfunction, in turn causing 
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anxiety and depression; and in grey, if the two changes are independently contributing to anxiety 

and depression. 

 

From Chapter 3 and Chapter 5, data in this thesis has provided preliminary evidence for a 

link between vmPFC over-activity and HPA axis activity. Whilst over-activity in sgACC/25 has 

no effect on salivary cortisol levels in an emotionally neutral condition, it does elevate cortisol 

levels following exposure to an aversive context (during Snake Extinction paradigm extinction 

sessions). These data reflect the first demonstration that over-activity in NHP vmPFC is 

causally linked to HPA axis output in contexts associated with negative affective valence.  

The work in this chapter serves as a foundation for further work investigating the interaction 

between the vmPFC and HPA axis in regulating cortisol dynamics. The experiments 

presented here concern the consequences of acute elevations in peripheral cortisol levels on 

anxiety- and anhedonic-like behaviours in the marmoset monkey. Given the effects we have 

observed following over-activation of sgACC/25 to increase intolerance of uncertainty and 

anxiety (measured on the HI test) and reduce reward arousal (measured on the appetitive 

Pavlovian discrimination paradigm), we sought to determine whether peripheral injections of 

cortisol could mimic some – or all – of these changes. The experiments described herein are 

not designed to address the direction of causality related to HPA axis dysfunction, vmPFC 

dysfunction and anxiety/anhedonia symptoms: rather, they address whether the phenotype 

observed following acute elevations in peripheral cortisol (mimicking the endocrine response 

to an acute stressor) is in any way like the phenotype observed following sgACC/25 over-

activation. In so doing, we sought to determine whether elevations in peripheral cortisol could 

explain some of the changes induced by this manipulation. These data are especially 

important in interpreting future data concerning the effects of vmPFC manipulations on the 

HPA axis.  
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6.3 METHODS  

6.3.1 Subjects  

Four marmosets (two male, two female) took part in this study. These marmosets were 

Subjects 9, 17, 18 and 19 of cohort three, described in 2.1.1 SUBJECTS. The marmosets 

were housed and cared for as described in 2.1.2 HOUSING.  

6.3.2 Surgical procedures 

Four marmosets underwent one surgical procedure as part of this study, to implant a 

telemetric blood pressure probe into the abdominal aorta. Subject 9 had previously 

undergone intracerebral cannulation surgery, but the implant detached post-surgery, and so 

Subject 9 was transferred to this cohort. All animals used in this study had also undergone 

stereotaxic surgery to infuse a DREADDs viral construct into sgACC/25 (see TABLE 2-3). 

The results of the DREADDs experiments are not reported in this thesis. However, if any 

DREADDs manipulations had taken place prior to cortisol manipulations, all behavioural and 

cardiovascular parameters had returned to normal before any manipulations pertinent to this 

chapter took place.  

6.3.3 Behavioural testing apparatus and paradigms 

Animals taking part in this study underwent (i) the appetitive Pavlovian discrimination task to 

assess anticipatory and consummatory arousal; (ii) the sucrose preference task to assess 

consumption on a task analogous to that used in rodents; and (iii) the HI test to assess 

anxiety responses. The appetitive Pavlovian discrimination and sucrose preference 

paradigms are described in 4.3.3 BEHAVIOURAL TESTING APPARATUS AND PARADIGMS. The 

HI paradigm is described in 5.3.3 BEHAVIOURAL TESTING APPARATUS AND PARADIGMS.  

6.3.4 Drug treatments 

Peripheral drug treatments were carried out as described in 2.4 DRUG TREATMENTS. The 

pharmacological compounds used in experimental manipulations in this study were: 0.9% 

saline (vehicle control) and hydrocortisone hemisuccinate (cortisol; GCR agonist). 

A 20mg/kg dose of cortisol was chosen as a common dose for all behavioural testing 

paradigms to achieve circulating cortisol levels in between the peak levels reached during 

normal circadian rhythms and in the response to stress observed in marmosets (Ash et al., 

2018). This was based on work reported in another marmoset study, which used a 40mg/kg 

dose and induced supra-physiological cortisol levels (Saltzman and Abbott, 2009). In the 

appetitive Pavlovian conditioning paradigm, multiple doses were tested – 5mg/kg, 20mg/kg 

and 40mg/kg.  

For all manipulations conducted in the context of behavioural testing paradigms, testing 

commenced one hour after cortisol injection. The time course of one hour is consistent with 
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mixed genomic and non-genomic effects of cortisol (Falkenstein et al., 2000). All injections 

were done in the mornings close together in time: between 08:30am and 10:00am for the 

appetitive Pavlovian discrimination task and the sucrose preference task, and between 

11:00am and 12:00pm for the HI test. This was to minimise changes in baseline levels of 

cortisol (which fluctuate throughout the day) (Cross and Rogers, 2004). 

6.3.5 Salivary cortisol sampling 

In the manipulation check, salivary cortisol samples were taken and processed as described 

in 2.5 SALIVARY CORTISOL SAMPLING. Specifically, a ‘pre’ salivary sample of cortisol was 

obtained immediately after injection of 20mg/kg cortisol. A ‘post’-manipulation sample was 

taken one hour later.  

6.3.6 Data acquisition and preliminary analysis  

Telemetric data and behavioural data for the appetitive Pavlovian conditioning paradigm, 

together with behavioural data for the sucrose preference test, were collected and analysed 

as described in 4.3.6 DATA ACQUISITION AND PRELIMINARY ANALYSIS. HI data were collected 

and analysed as described in 5.3.6 DATA ACQUISITION AND PRELIMINARY ANALYSIS. 

6.3.7 Statistical analysis 

Salivary cortisol data collected for the manipulation check were analysed in two ways. Firstly, 

a two-way repeated measures ANOVA was conducted of the form M2 × P2 where M is a 

factor with two levels (manipulation – saline or 20mg/kg cortisol) and P is a factor with two 

levels (‘pre’ or ‘post’). Secondly, ‘post’:‘pre’ ratios were also calculated for saline control and 

cortisol manipulations. These were compared using a two-tailed paired t-test.  

Statistical tests were conducted on appetitive Pavlovian conditioning data as described in 

4.3.7 STATISTICAL ANALYSIS except: 

• Two-way repeated measures ANOVAs were the form M4 × C2 (rather than M2 × C2) 

as there were four levels of manipulation type (control, 5mg/kg, 20mg/kg and 

40mg/kg cortisol) rather than two; and  

• US data were compared using a one-way repeated measures ANOVA (rather than a 

two-tailed paired t-test) as there were four levels of manipulation type (control, 

5mg/kg, 20mg/kg and 40mg/kg cortisol) rather than two. 

Statistical tests were conducted on sucrose preference data as described in 4.3.7 

STATISTICAL ANALYSIS. Statistical tests were conducted on HI data as described in 5.3.7 

STATISTICAL ANALYSIS.  
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6.4 RESULTS 

6.4.1 Subcutaneous cortisol injections successfully raised peripheral cortisol levels 

as measured by increases in salivary cortisol concentrations  

Marmosets received a subcutaneous injection of saline vehicle control or 20mg/kg cortisol 

and the ‘pre’ sample of saliva was taken immediately after injection. The ‘post’ sample was 

taken after a wait time of one hour (FIGURE 6-3A). Injections of 20mg/kg cortisol successfully 

elevated salivary cortisol levels, as measured by a significant increase in cortisol 

concentration from the ‘pre’ to ‘post’ measurement, and compared to the ‘post’ measurement 

under control conditions (FIGURE 6-3B). This increase was also reflected in a significant 

increase in the ‘post’:‘pre’ ratio for cortisol injections vs. control (FIGURE 6-3C).  

The mean ± SEM level of salivary cortisol achieved at the ‘post’ measurement following 

20mg/kg cortisol injection was 342 ± 33µg/dL, equivalent to 9430 ± 916 nmol/L. In a recent 

study by Ash and colleagues, peak AM cortisol levels in marmosets were 7710 ± 6740 

nmol/L (Ash et al., 2018). This means that the levels of cortisol achieved following 20mg/kg 

injections were equivalent to the highest physiological levels obtained during peak 

concentrations in the morning. Ash and colleagues also measured salivary cortisol levels 

following a mild stressor (being handled for weighing), but observed a cortisol decrease to 

levels of 2800 ± 700 nmol/L (the decrease presumably due to negative feedback 

mechanisms, or differences in physiological responses depending on the nature of the 

stressor). The cortisol levels we obtained were higher than this, although they are within the 

same order of magnitude.  
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Figure 6-3 Subcutaneous cortisol injections successfully raise peripheral cortisol levels as 

measured by increases in salivary cortisol concentrations. Relevant graphs show mean ± 

SEM. N=4. A Four marmosets received a subcutaneous injection of saline vehicle control or 

20mg/kg cortisol, followed by retrieval or a ‘pre’ swab of saliva immediately after injection. A ‘post’ 

swab was taken 1 hour later, consistent with the wait time used in manipulations on subsequent 

behavioural paradigms. The ‘pre’ and ‘post’ swabs were analysed using the Salimetrics® salivary 

cortisol assay as described in 2.5 SALIVARY CORTISOL SAMPLING. B Subcutaneous injections of 

20mg/kg cortisol increased salivary cortisol concentrations in a phase-dependent manner 

(manipulation × phase, F1,3=50.77, p=0.006) – there was no difference in salivary cortisol 

concentrations in ‘pre’ samples taken under cortisol vs. control conditions, but there was a 

significant increase in salivary cortisol concentrations in ‘post’ samples (effect of manipulation: ‘pre,’ 

p=0.852; ‘post,’ p=0.004). Furthermore, whilst there was no difference in ‘post’ vs. ‘pre’ samples 

under control conditions, cortisol levels were significantly higher in the ‘post’ vs. ‘pre’ sample 

following cortisol administration (effect of phase: control, p=0.969; cort20, p=0.004). C The ratio of 

‘post’:‘pre’ salivary cortisol concentrations was significantly higher in the case of cortisol 

administration (two tailed paired t-test, p=0.023). 

 

In Chapter 5, sgACC/25 over-activation was reported to elevate salivary cortisol levels 

following extinction. The mean levels of cortisol in the ‘post’ measurement of this study was 

818 ± 186 nmol/L, meaning that the levels of cortisol obtained here were an order of 

magnitude higher. Whilst the results presented below nonetheless provide insight into 

whether elevations in HPA axis output can induce a similar array of changes to sgACC/25 
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over-activation, the actual contribution of increases in levels of cortisol to the over-activation 

induced phenotype will likely be subtler than the magnitude of effects observed here. 

6.4.2 Subcutaneous cortisol injections induce behavioural – but not cardiovascular – 

signs of anticipatory anhedonia, without affecting reward consumption 

At every dose tested (5mg/kg, 20mg/kg and 40mg/kg), injections of cortisol did not affect 

CS+ induced anticipatory MAP responses (FIGURE 6-4A) but did significantly blunt 

anticipatory behavioural arousal, as indexed by a reduced number of head-jerks during the 

CS+ (FIGURE 6-4B). Consummatory cardiovascular arousal to the US+ was also unaffected 

(FIGURE 6-4C), although the US responses in this cohort were significantly more variable 

than those observed in the cohort described in Chapter 4: indeed, only two out of four 

animals showed consistent US directed arousal responses under control (subcutaneous 

saline) conditions. Nevertheless, behaviourally, animals consumed a consistent amount of 

food reward, and this amount was also unaffected at any cortisol dose (FIGURE 6-4D). These 

data indicate that subcutaneous injections of cortisol induce behavioural signs of anticipatory 

anhedonia but do not affect cardiovascular anticipatory arousal, and further, they do not 

reduce consummatory arousal.  

We also assessed the consummatory profile of animals receiving cortisol injections in a 

manner directly comparable to rodent studies, using the sucrose preference test adapted for 

marmosets (as described in Chapter 4). In the session prior to manipulations, this cohort of 

marmosets also showed a high preference for sucrose solution over water and consumed 

large amounts of sucrose in both the first 30 minutes (FIGURE 6-5A) and across the two-hour 

testing window (FIGURE 6-5B). Subcutaneous injections of 20mg/kg cortisol had no effect on 

sucrose preference (FIGURE 6-5C) or consumption (FIGURE 6-5D) in the first 30 minutes, nor 

did they have any effect on these measures across the two-hour session (FIGURE 6-5E), 

demonstrating that there is no obvious effect of this dose on reward consumption. 
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Figure 6-4 Subcutaneous cortisol injections induce behavioural – but not cardiovascular – 

signs of anticipatory anhedonia, without affecting reward consumption. Relevant graphs show 

mean ± SEM. N=4. A There was no effect of any dose of cortisol on anticipatory CS directed 

cardiovascular (MAP) arousal (manipulation × CS, F<1, NS; main effect of CS maintained, 

F1,24=77.67, p<0.0001). B Cortisol manipulations blunted anticipatory behavioural arousal in a CS 

dependent manner (manipulation × CS, F3,9=9.50, p=0.004), reducing head-jerks to the CS+ at 

every dose (effect of manipulation on CS+: cort5, p<0.001; cort20, p=0.002; cort40, p<0.001) 

without affecting responses to the CS- (effect of manipulation on CS-: cort5, p>0.999; cort20, 

p=0.490; cort40, p=0.696). C Cortisol manipulations did not affect US directed cardiovascular 

arousal (effect of manipulation, F<1, NS) although US directed cardiovascular arousal was 

unreliable in this cohort (for example, the US directed response under control conditions did not 

significantly differ from 0: one-sample t-test compared to 0, p=0.439) which confounds 

interpretation. D The amount of reward consumed did not differ at any dose (effect of manipulation, 

F<1, NS). 
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Figure 6-5 Subcutaneous cortisol injections do not affect reward consumption as measured 

in the sucrose preference test. Relevant graphs show mean ± SEM. N=4. A Prior to experimental 

manipulations, marmosets showed a high preference for sucrose during the first 30 minutes of the 

session (94.8 ± 1.0%), consuming 38.6 ± 3.6g sucrose and 1.3 ± 0.3g water (mean ± SEM). B 

Cumulative consumption profile in the session prior to experimental manipulations. Marmosets 

consumed significantly more sucrose at every timepoint measured (solution [water, sucrose] × 

timepoint [four, 30-minute time-bins], F3,9=69.85, p<0.0001; effect of solution, p<0.0001 at every 

timepoint). C 20mg/kg cortisol injections had no effect on sucrose preference in the first 30 minutes 

of the session (two-tailed paired t-test, p=0.809). D 20mg/kg cortisol injections had no effect on 

either sucrose or water consumption in the first 30 minutes of the session (solution × manipulation, 

F1,3=1.26, p=0.344; main effect of manipulation, F1,3=1.49, p=0.310). M Across the two-hour 

session, 20mg/kg cortisol injections had no effect on cumulative sucrose or water consumption 

(solution × manipulation, F0.3903,1.717=5.22, p=0.178; main effect of manipulation, F0.2844,0.8533=1.33, 

p=0.302). 

 

6.4.3 Subcutaneous cortisol injections increased anxiety scores in response to a HI 

Compared to injections of saline vehicle control, all four marmosets showed increased 

anxiety following 20mg/kg cortisol injection as measured by an increased EFA-derived 

anxiety score in response to the HI (FIGURE 6-6A). The effect was not as strong as that 

observed with over-activation of sgACC/25: here, the mean ± SEM difference in anxiety 

score associated with cortisol was 0.49 ± 0.14, whereas the difference in anxiety score 

associated with sgACC/25 over-activation was 0.83 ± 0.11 (Chapter 5). It is worth noting that 

control levels of anxiety in this cohort (-1.26 ± 0.36) were, in general, lower compared to the 

control levels of anxiety measured in Chapter 5 (-0.32 ± 0.24). This could contribute to the 

difference in effect magnitude. For instance, if the effects of anxiogenic agents depend on a 



Chapter 6: Blunted reward arousal and enhanced anxiety following peripheral injections of cortisol 

277 
 

certain baseline level of threat perception, it could be expected that the size of effect is 

smaller as the cohort were not as anxious in control conditions. 

The increase in anxiety score induced by cortisol was driven by a marked reduction in the 

TSAF (FIGURE 6-6B) (-21.4 ± 2%). There was also a significant increase in the number of tse 

calls (FIGURE 6-6I) – however, the increase was small (2.3 ± 0.5 calls) and this measure 

does not significantly load onto the anxiety score (and therefore does not contribute). Other 

measures were more variable and did not show significant increases/decreases across the 

cohort (FIGURE 6-6C-H, J, K). 

The responses of animals across control and cortisol conditions are shown in TABLE 6-1.  



Chapter 6: Blunted reward arousal and enhanced anxiety following peripheral injections of cortisol 

278 
 

 

 

Figure 6-6 

Subcutaneous cortisol 

injections increase 

anxiety responses to 

an HI. 

Overall anxiety score 

shown top, with 

individual measures 

below. P values 

reported from two-tailed 

paired t-tests. N=4. A 

20mg/kg cortisol 

injections increased 

EFA-derived anxiety 

scores (p=0.035). B 

Time spent at front 

(TSAF, %; p=0.002). C 

Time spent at back 

(TSAB, %; p=0.472). D 

Height (cm; p=0.315). E 

Locomotion (%; 

p=0.133). F Number of 

bobs (count; p=0.198). 

G Number of tsik calls 

(count; p=0.182). H 

Number of tsik egg calls 

(count; p=0.370). I 

Number of tse calls 

(count; p=0.018). J 

Number of tse egg calls 

(count; p=0.597). K 

Number of egg calls 

(count; p=0.391). 
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6.5 DISCUSSION 

The work presented here is the first to describe the effects of acute peripheral cortisol 

injections on reward-related and anxiety-related behaviours in NHPs. Subcutaneous 

injections of cortisol successfully increased peripheral levels of cortisol as measured by 

increases in salivary cortisol concentration, confirming the manipulation has the desired 

effect. The cortisol concentrations achieved were consistent with peak circadian levels and 

levels associated with stress exposure but were significantly higher than those associated 

with sgACC/25 over-activation. Cortisol administration blunted behavioural (but not 

cardiovascular) signs of anticipatory arousal without any effect on reward consumption, and 

increased intolerance of uncertainty as measured by increased anxiety scores to the HI. 

6.5.1 Blunted anticipatory but intact consummatory appetitive arousal following 

acute cortisol administration  

In this chapter, the effects of acute cortisol administration to selectively blunt the behavioural 

aspects of anticipatory reward processing, without affecting consummatory reward arousal, 

have been demonstrated for the first time. Existing literature in rodents suggests that cortisol 

can actually increase reward anticipation/motivation by promoting DA release in the ventral 

striatum (Piazza and Le Moal, 1997). However, evidence in humans is contrary to this: acute 

stress appears to attenuate reward sensitivity by blunting signalling activity in the striatum 

and in PFC subregions including dACC (Berghorst et al., 2013; Ossewaarde et al., 2011). 

Montoya et al. examined the effect of acute cortisol administration on striatal and amygdala 

activation during the anticipatory phase of the MID task (see FIGURE 1-26) (Montoya et al., 

2014). This study found that cortisol strongly decreased activity of both regions during 

anticipation of reward. Importantly, this downregulation was associated with subjective 

changes, with subjects receiving cortisol reporting significantly reduced reward preference.  

The effect of acute and chronic stress on reward consumption has been extensively studied 

in the context of feeding behaviours (Yau and Potenza, 2013). It has been appreciated for 

some time that stress can have both activating and inhibiting effects on consummatory 

behaviour (inducing hyperphagia or hypophagia) (Levine and Billington, 1989). On the one 

hand, acute stress induces changes in behavioural, autonomic and endocrine functions 

which promote fight-or-flight reactions, and activities that may conflict with fight-or-flight 

behaviours are usually inhibited, including feeding. However, chronic stress may have 

opposing effects to stimulate eating (Gibson, 2006). Very few studies have assessed the 

effects of acute cortisol on the hedonic, subjective aspect of reward consumption, although 

data from one study suggest that acute cortisol increases the hedonic value of highly 

palatable food-related stimuli whilst simultaneously reducing their incentive motivational 

value (Ferreira de Sá et al., 2014).  
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The fractionated effect of cortisol on anticipatory, but not consummatory, arousal has 

relevance both (i) to the phenotype observed following sgACC/25 manipulations in Chapter 

4 and (ii) to the phenotype observed in depressed patients, who predominantly show 

impairments in anticipatory and motivational domains rather than consummatory domains 

(Der-Avakian and Markou, 2012; Treadway and Zald, 2011). Data already suggest a link 

between symptoms of anhedonia, disrupted cortisol dynamics and alterations in vmPFC 

activity. Dysfunctional cortisol responses (including elevated levels of morning cortisol) have 

been linked to higher levels of anhedonia seen in post-stroke patients with depressive 

symptoms (Terroni et al., 2015), and anhedonic symptoms have been linked to dysfunctional 

regulation of the stress axis by sgACC/25 (PUTNAM et al., 2008). Note that these studies 

used ‘classic’ questionnaire-based assessments of anhedonia, which fail to account for 

differences in reward anticipation and reward consumption. Further work is required to 

ascertain whether (acute or chronic) elevations in cortisol in humans can be associated with 

selective effects on reward anticipation vs. reward consumption, and whether these are 

linked to vmPFC-mediated regulation of the HPA axis. 

Intriguingly, the effects we observed on the anticipatory phase of reward processing were 

selective to the behavioural domain – there were no effects on cardiovascular arousal. To 

date, no study has directly compared the effects of acute elevations of cortisol on 

behavioural and cardiovascular arousal associated with reward anticipation. Possible 

explanations for these differential effects include: 

• The doses of cortisol used in this study are enough to blunt behavioural arousal, but 

not cardiovascular arousal; or 

• Acute cortisol administration has a selective effect on brain regions involved in the 

behavioural but not cardiovascular responses to reward-predicting cues. 

An uncoupling of autonomic and behavioural arousal has been associated with OFC lesions 

(Reekie et al., 2008), but has also been observed in patient groups with schizophrenia 

(Aleman and Kahn, 2005; Williams et al., 2007) and autism (Hirstein et al., 2001). Whether 

dysfunction in HPA axis regulation underlies this disjunction in physiological and behavioural 

function remains a possibility worth investigating, and whether this extends to patients with 

anxiety and depressive disorders remains unknown.  

6.5.2 Elevated anxiety following acute cortisol administration  

In addressing the association between cortisol levels and the expression of anxiety-related 

behaviours, two questions are immediately relevant:  

• Do acute and/or chronic elevations of cortisol induced by drug treatment directly 

affect the expression of anxiety-related behaviours?  
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• Are levels of cortisol elevated – at baseline or in response to stressors – in 

populations with a higher anxious temperament and/or in patients with anxiety 

disorders?  

The HI results presented in this chapter are most pertinent to the first question, where we 

have shown increased expression of anxiety-related behaviours following acute elevations in 

cortisol during exposure to an HI. Specifically, the HI test measures intolerance of uncertainty 

to an unfamiliar human. Whilst no studies to date have measured the effects of exogenous 

cortisol administration on intolerance of uncertainty, several rodent, NHP and human studies 

have assessed the effects of HPA axis manipulations on anxiety behaviours more generally. 

Acute elevations of CRH (which presumably increase cortisol levels) increase the expression 

of anxiety on an open-field test in rodents (Sutton et al., 1982), and chronic elevations in 

glucocorticoids sensitise similar behaviours (Rosen and Schulkin, 1998). Acute elevations in 

CRH also increase social-anxiety behaviours in NHPs (Strome et al., 2002). Comparatively 

few studies have assessed the effects of acute administration of exogenous glucocorticoids 

in humans, although those that have suggest variable effects: a dose-dependent effect to 

increase the startle response (Buchanan et al., 2001) but to reduce in phobic fear (Soravia et 

al., 2006). 

Regarding the second question, higher basal and acute stress-induced cortisol levels have 

been observed in humans with higher trait anxiety levels (Brown et al., 1996; Takahashi et 

al., 2005). In patient populations, higher basal cortisol levels have been observed in panic 

disorder (Wedekind et al., 2000) and in PTSD (Yehuda, 1997) although these results are 

more variable (Young and Breslau, 2004). Furthermore, higher levels of subjective stress are 

associated with higher levels of intolerance of uncertainty in clinical settings (Kurita et al., 

2013). These studies provide evidence for a link between subjective stress, the endocrine 

indices of stress and increased anxiety together with enhanced intolerance of uncertainty. 

The work presented in this chapter goes beyond correlation, implicating elevated levels of 

circulating cortisol as being causally responsible for this relationship.  

Comparing the anxiogenic effects of cortisol to the anxiogenic effects of sgACC/25 over-

activation reported in Chapter 5, it is apparent that the anxiogenic effect of cortisol is more 

limited. The increase in anxiety induced by cortisol is smaller and restricted to an effect on 

TSAF. By contrast, sgACC/25 over-activation impacts upon a range of measures to increase 

anxiety scores: TSAF, TSAB, height and locomotion. Given the potential effects of sgACC/25 

over-activity on cortisol levels in aversive contexts, it is still possible that elevations in cortisol 

concentrations are responsible for some of the anxiogenic effects of sgACC/25 over-

activation. However, the final phenotype appears likely to depend on factors not limited to 

elevations in cortisol (for example, effects on cardiovascular activity). 
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6.5.3 Contributions of elevated cortisol to the over-activation induced phenotype 

In sum, these results indicate that elevated levels of circulating cortisol result in blunted 

behavioural – but not cardiovascular – appetitive arousal and moderate elevations in anxiety 

– in effect, a phenotype more limited in scope and magnitude compared to sgACC/25 over-

activation. Furthermore, the level of cortisol elevation achieved in this chapter was 

significantly higher than the levels measured after over-activation during the Snake Extinction 

test (Chapter 5). Collectively, this would suggest that acute elevations in cortisol alone are 

unlikely to explain the anhedonia- and anxiety-like changes following over-activation. 

However, in a diseased state, elevations in cortisol are chronic and sustained over longer 

periods of time, as are the increases in sgACC/25 activity. In such situations, elevated 

cortisol levels may play a more substantial role. 

6.5.4 Future work investigating the effects of chronic cortisol, and the action of 

cortisol in the context of the ventromedial prefrontal cortex 

The characterisation of the effects of acute cortisol on reward- and anxiety-related 

behaviours serves predominantly as a foundation for future work (FIGURE 6-7). Firstly, it 

would be pertinent to determine the effects of cortisol manipulations on motivational 

processing in the progressive ratio paradigm, to ascertain whether elevations in cortisol 

reduce the motivation to work for reward. Secondly, it is important to establish the effects of 

chronic cortisol on the behavioural paradigms described in this chapter. The most 

translationally-relevant assessment of the effects of cortisol elevations on appetitive and 

aversive behaviours would involve cortisol administration over longer periods of time – 

several days to weeks. Longer administration periods would more closely mimic the chronic 

stress associated with pathological states observed in psychiatric conditions. Chronic 

delivery of cortisol could be achieved using osmotic minipumps (Alzet, Cupertino, CA). [I have 

consulted with manufacturers of these minipumps and established this a future line of investigation.]  
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Figure 6-7 Future studies stimulated by the work presented in this chapter. The first set of 

studies concerns the effects of cortisol on motivational processing. The second set of studies 

concerns the effects of chronic administration of cortisol. The third set of studies concerns the 

interaction between elevated peripheral cortisol levels and activity within sectors of NHP vmPFC – 

particularly sgACC/25. See text for further details. 

 

Thirdly, the interaction between sgACC/25 activity and cortisol levels warrants further 

investigation. This thesis has already discussed the effects of sgACC/25 over-activity on 

salivary cortisol levels – whilst over-activation of sgACC/25 does not appear to impact on 

cortisol levels in neutral conditions, it does appear to elevate cortisol levels following 

exposure to an aversive context. This suggests a causal influence of sgACC/25 activity on 

HPA axis regulation during situations of sustained contextual threat. However, the effects of 

cortisol on vmPFC activity (the ‘other direction’) remain unclear, together with precisely how 

cortisol interacts with the vmPFC more generally. These issues could be tackled with several 

approaches:  

• cFos expression. The effects of peripheral cortisol administration on brain-wide cFos 

expression could be assessed. In rodents, Koot and colleagues have shown that 

acute cortisol injections increase cFos expression in IL (the putative homologue of 

sgACC/25) (Koot et al., 2013).  

• 18F-FDG imaging. Cortisol injections could be performed in the context of 18F-FDG 

PET imaging to determine the effects on regional cerebral metabolism. The 

advantage of this approach would be the ability to carry out three scans: a control 

scan, a scan following acute cortisol treatment and a scan following chronic cortisol 

treatment.  
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• Infusions of cortisol into sgACC/25. Cortisol infusions into IL have been shown to 

have deleterious effects on decision making performance in rodents (Koot et al., 

2014). Using the behavioural paradigms described above, the importance of 

sgACC/25 corticosteroid signalling could be assessed on appetitive/aversive 

processing. This approach would also be amenable to 18F-FDG PET imaging to 

determine the downstream consequences of increasing cortisol levels in sgACC/25.  

These methods would proffer further insight into the precise nature of the interaction between 

peripheral stress hormone levels and activity within the vmPFC. Indeed, the behavioural 

impacts of elevated peripheral stress hormone levels may be mediated – at least in part – by 

central effects to alter activity in vmPFC subregions, given that several studies have shown 

that NHP vmPFC has particularly high concentrations of GCRs and MCRs (Patel et al., 2000; 

Sánchez et al., 2000). Should a link be definitively established between vmPFC activity and 

HPA axis regulation – together with their dysfunction in mood and anxiety disorders – this 

may represent a pathway for targeted treatment, centred on normalising dysfunctional neural 

and endocrine responses to stress. It may also contribute to our mechanistic understanding 

of how altered activity in ventromedial subregions so often seen in psychiatric disorders is 

causally related to specific symptoms.  

6.6 CONCLUSION 

The results presented in this chapter describe the effects of acute doses of cortisol to elevate 

anxiety and induce behavioural signs of anticipatory anhedonia, with no effect on reward 

consumption. These findings resemble in part the changes induced by sgACC/25 over-

activation, although the concentrations of cortisol involved were significantly higher. 

Primarily, these data serve as a foundation for several avenues of future work – including, 

but not limited to, the effects of cortisol on reward motivation; the chronic effects of cortisol; 

the neural correlates of elevated levels of stress; and the interaction between HPA axis 

activity, stress and subregions of the vmPFC – particularly sgACC/25. Detailed 

characterisation of the interactions between peripheral cortisol, vmPFC activity and HPA axis 

output could be invaluable in deepening our understanding of the pathophysiology and 

aetiology of mood/anxiety disorders, together with revealing novel therapeutic targets. 
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7 GENERAL DISCUSSION 

 

 

  

Abbreviation Meaning 
18F-FDG PET 18Fluorine-fluorodeoxyglucose positron emission tomography 

AAV Adeno-associated virus 

ANS Autonomic nervous system 

BAS Behavioural activation system  

BIS Behavioural inhibition system 

BNST Bed nucleus of the stria terminalis 

CaMKIIa Calcium/calmodulin-dependent protein kinase IIa promoter 

CBT Cognitive behavioural therapy 

CNO Clozapine-N-oxide 

CNS Central nervous system 

CS Conditioned stimulus 

CSI Cardiac sympathetic index 

CVI Cardiac vagal index 

dACC Dorsal anterior cingulate cortex 

DHK Dihydrokainic acid 

DMN Default mode network 

dmPFC Dorsomedial prefrontal cortex 

DREADD Designer receptor exclusively activated by designer drug 

EAAT2 Excitatory amino acid transporter-2 

GABA γ-aminobutyric acid 

GAD Generalised anxiety disorder 

GPCR G-protein coupled receptor 

HI Human intruder 

HPA Hypothalamo-pituitary adrenal 

HR Heart rate 

HRV Heart rate variability 

IL Infralimbic (cortex) 

IU Intolerance of uncertainty 

MAP Mean arterial pressure 

MI Myocardial infarction 

mPFC Medial prefrontal cortex 

NHP  Non-human primate 

NMDA N-methyl-D-aspartate (receptor) 

pgACC Perigenual anterior cingulate cortex 

PL Prelimbic (cortex) 

SAD Social anxiety disorder 

sgACC Subgenual anterior cingulate cortex 

siRNA Short inhibitory ribonucleic acid 

SSRI Selective serotonin reuptake inhibitor 

US Unconditioned stimulus 

vmPFC Ventromedial prefrontal cortex 
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For decades, the neural circuitry underlying symptoms of mood and anxiety disorders has 

remained a black box. Whilst correlative human neuroimaging studies have implicated over-

activity in the highly heterogeneous vmPFC, including sgACC/25 and pgACC/32  (Drevets et 

al., 2008a; Mayberg, 1997; Mayberg et al., 2005), we know nothing about the causal role of 

these areas in specific symptoms. Findings from interventional studies in rodents are 

extremely important, but their translational potential is limited since the comparability of 

rodent vmPFC subregions to those of NHPs and humans is unclear. The community at large 

cites anatomical homology as meaning functional analogy, but whether this is the case is far 

from clear (see (Myers-Schulz and Koenigs, 2012) and (Wallis et al., 2017)). 

Despite the dearth of knowledge, to date there have been no studies investigating the 

consequences of over-activity of vmPFC subregions in monkeys. Elucidating the prefrontal 

contributions to symptoms of psychiatric disorders is of major translational importance. It is 

through an understanding of such neural changes that we can begin to appreciate why 

certain treatments are effective, and importantly, to facilitate the development of new 

treatment strategies. Novel therapeutic strategies are needed, with recent estimates placing 

mental illness as the leading cause of global burden of disease as measured by years lived 

with disability (Vigo et al., 2016).  Interventional manipulation studies in NHPs are essential if 

we are to determine the causal neurobiological mechanisms underlying the symptom clusters 

constituting these disorders and how these symptoms respond to treatments.  

The work in this thesis has made several inroads into characterising the autonomic, 

endocrine and behavioural features of over-activity within specific subregions of marmoset 

vmPFC: sgACC/25 and pgACC/32. The methodologies employed in the experiments 

described also illustrate broader considerations when researching psychiatric disorders. 

First, that seemingly unitary clinical symptoms (such as anhedonia and enhanced negative 

emotion) consist of distinct subtypes, which have different neurobiological bases. Second, 

that caution is required when inferring causality from strictly correlative neuroimaging studies: 

for example, whilst dysfunctional activity in a region encompassing pgACC/32 has been 

implicated in impaired reward processing, we have demonstrated that such changes are not 

causally related to impairments in anticipatory or consummatory arousal. Third, the utility of 

employing behavioural, autonomic and endocrine measures of emotion within a single study 

is highlighted, providing an unrivalled opportunity to quantify affect and bridge the gap 

between studies in humans (which often use physiological measures) and rodents (which 

frequently assess behaviour in isolation). Finally, the use of intracerebral microinfusions 

together with 18F-FDG PET imaging represents a novel combination of technologies with 

immense utility, permitting the causal manipulation of brain regions and detailed 

characterisation of the downstream consequences associated with these manipulations.   
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7.1 SUMMARY OF RESULTS 

7.1.1 Peripheral physiological dysfunction associated with sgACC/25 over-activation 

Correlative neuroimaging studies of patients with mood disorders have implicated over-

activity within the vmPFC in mood disorders, and these same subregions are associated with 

the regulation of peripheral autonomic and endocrine function. Given the intimate association 

between physiological changes and psychiatric disorders (including depression and anxiety), 

an investigation of the causal consequences of manipulating these vmPFC subregions in 

NHPs is warranted. If activity changes within these regions are causally linked to 

cardiovascular/endocrine changes in a pattern like that observed in these conditions, this 

would reflect a critical neurobiological link in the association between mental illness and 

physiological dysfunction.  

In Chapter 3, the cardiovascular and endocrine consequences of directly over-activating 

sgACC/25 and pgACC/32 in an emotionally ‘neutral’ condition are reported. Over-activation 

of pgACC/32 had no effect on peripheral cardiovascular function – however, the same 

manipulation of sgACC/25 had profound and extensive effects to elevate HR, reduce HRV 

and shift sympathetic:parasympathetic balance through a reduction in vagal tone. For the 

first time, sgACC/25 over-activity has been causally implicated in physiological changes 

which closely resemble those associated with a wide range of psychiatric disorders including 

depression (Brunoni et al., 2013; Carney et al., 2001; Stapelberg et al., 2012) and anxiety 

(Härter et al., 2003; Vogelzangs et al., 2010).  

7.1.2 Fractionated anhedonia associated with sgACC/25 over-activation 

A core feature of mood disorders is anhedonia – defined as a lack of ability to experience 

pleasure. The significance of reward-related deficits is becoming increasingly appreciated as 

both an important prognostic indicator and as a symptom that is resistant to current first-line 

therapies. The translational study of anhedonia has been hampered for several reasons: a 

lack of appreciation for the heterogeneous nature of the symptom (anticipatory, motivational 

and consummatory components); a fundamental mismatch between the constructs assessed 

in animal studies (consummatory – the sucrose preference test) and the patterns of 

impairments manifested in depressed patients (predominantly anticipatory and motivational); 

and a lack of clarity regarding the functional equivalence of human and rodent vmPFC 

subregions (Der-Avakian and Markou, 2012; Treadway and Zald, 2011, 2013).  

In Chapter 4, the causal contributions of over-activity in sgACC/25, together with over-

/under-activity in pgACC/32, were investigated with respect to specific subtypes of 

anhedonia. Whilst pgACC/32 manipulations had no effect, sgACC/25 over-activation blunted 

anticipatory and motivational arousal without affecting reward consumption – including no 
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effect on consumption as measured by the sucrose preference test. Not only do these results 

causally implicate sgACC/25 over-activation in a translationally-relevant anhedonic 

syndrome, but they emphasise the need for caution when interpreting the results of 

preclinical animal tests of symptoms of depression. Despite being considered the ‘gold-

standard’ in preclinical assessment of anhedonia, the sucrose preference test is insensitive 

to profound deficits in reward processing which are not restricted to the consummatory 

domain. Using a novel combination of intracerebral microinfusions coupled with 18F-FDG 

PET imaging, we provide evidence for downstream changes in interoceptive- and reward-

related circuitry associated with sgACC/25 over-activation. These changes have implications 

for understanding the role sgACC/25 plays in the regulation of the behavioural and 

physiological aspects of emotion (see below).  

7.1.3 Cardiovascular, behavioural and endocrine correlates of enhanced negative 

emotion associated with sgACC/25 over-activation 

Negative emotions such as fear and anxiety are adaptive, multi-faceted mental states, 

emergent from a complex interaction between cognition, physiology and behaviour. If 

unregulated or inappropriately regulated, these responses can become maladaptive. From 

interventional studies in rodents, a causal role for sectors of the vmPFC – including both IL 

and PL – in regulating fear and anxiety has been revealed. However, the precise function of 

these regions is far from clear. For example, whilst augmenting the excitability of the putative 

sgACC/25 homologue, IL, strengthens extinction memories (Fontanez-Nuin et al., 2011; 

Milad and Quirk, 2012; Santini and Porter, 2010), the same manipulation increases innate 

anxiety behaviours (Bi et al., 2013). Beyond these seemingly contradictory functional 

findings, there remains uncertainty regarding the anatomical and functional similarity of IL to 

regions in the NHP and human. Indeed, recent work from the present author’s laboratory has 

shown opposite effects on fear extinction associated with sgACC/25 inactivation (to enhance 

extinction), compared to those expected from the same manipulations of IL (to impair 

extinction) (Wallis et al., 2017). 

In Chapter 5, we show for the first time that sgACC/25 over-activation in the NHP is causally 

related to both (i) elevated contextual arousal in aversive contexts and (ii) elevated anxiety 

associated with intolerance of uncertainty on the HI paradigm. We also found evidence to 

suggest that sgACC/25 over-activation is associated with impaired stress recovery and 

altered endocrine reactivity in these negative contexts. These results are consistent with a 

role for IL activity in promoting anxiety behaviours but are inconsistent with its putative role to 

enhance fear extinction. They further suggest a central role of sgACC/25 in coordinating 

behavioural, autonomic and endocrine aspects of anxiety responses in aversive contexts 

associated with the sustained potential for threat.   
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7.1.4 The novel antidepressant ketamine and its amelioration of sgACC/25 over-

activation induced changes  

The sequalae of sgACC/25 over-activation are translationally relevant to psychiatric 

disorders – the fractionated pattern of blunted arousal and motivation in appetitive contexts 

closely resembles anhedonia observed in depressed patients, and the elevated contextual 

arousal coupled with exaggerated endocrine reactivity resembles impairments in stress 

regulation associated with depression and anxiety. This offers an invaluable opportunity to 

test the efficacy of antidepressant agents on a transient, pharmacologically-induced state 

with face-validity where the cause is known. In so doing, insights can be gleaned into the 

specific symptoms for which these agents are effective treatments, together with the 

neurobiological basis of their efficacious action.  

In Chapter 4, a single dose of the novel, glutamate-based antidepressant ketamine reverses 

anticipatory anhedonia induced by sgACC/25 over-activation in a time-dependent manner: 

whilst it fails to reverse impairments 4 hours after administration, it successfully reverses 

blunted reward arousal 1 day and 7 days later. The time course of ketamine’s efficacy in this 

preparation closely matches the time course of clinical efficacy reported in clinical literature 

(Abdallah et al., 2015). By contrast, an acute dose of the antidepressant citalopram fails to 

reverse associated anhedonic impairments. In Chapter 5, the same dose of ketamine tested 

at a timepoint at which it showed efficacy in the anhedonic domain fails to reverse acutely 

elevated anxiety following sgACC/25 over-activation on the HI paradigm. Not only does this 

provide novel insight into the therapeutic profile of ketamine, it further suggests that different 

neurobiological substrates are at play in the changes induced by sgACC/25 over-activation. 

7.1.5 Changes induced by peripheral injections of cortisol resemble, but do not 

mimic, changes induced by sgACC/25 over-activation  

The vmPFC has been linked to HPA axis function in both rodents (Diorio et al., 1993; Loewy 

and Spyer, 1990; McKlveen et al., 2013) and primates (Jahn et al., 2010; Sudheimer et al., 

2013). In Chapter 3, it was found that sgACC/25 over-activation has no effect on salivary 

cortisol levels in ‘emotionally neutral’ situations. However, in Chapter 5, sgACC/25 over-

activity was found to elevate cortisol levels after exposure to an aversive context (associated 

with presentation of a rubber snake). In Chapter 6, we investigated whether artificially 

elevating cortisol levels could induce a similar array of changes to sgACC/25 over-activation 

to address whether such changes could, in part or in whole, account for the behavioural and 

physiological dysfunction induced by this manipulation. 

20mg/kg cortisol injections acutely raised cortisol to levels equivalent to peak circadian 

values and values associated with stress exposure in marmosets (Ash et al., 2018), although 
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these levels were higher than those associated with sgACC/25 over-activation (Chapter 5). 

These elevated circulating cortisol levels resulted in blunted behavioural appetitive arousal, 

without affecting autonomic arousal and without affecting reward consumption. On the HI 

paradigm, elevations in cortisol resulted in moderately increased anxiety. These data indicate 

that whilst there are similarities between the cortisol-induced and over-activation induced 

phenotypes, in the appetitive setting the phenotype associated with cortisol injections was 

less extensive, and in the aversive setting it was both less extensive (affecting fewer 

behaviours on the HI test) and smaller in magnitude (despite the levels of circulating cortisol 

being higher). This suggests that even if cortisol is playing a role in the anhedonia and 

anxiety triggered by sgACC/25 over-activation, its role is comparatively limited over time-

courses associated with pharmacological manipulations (acute/short-term). Whilst itself 

informative, the work presented in this chapter primarily serves as a foundation for future 

investigations addressing the consequences of chronic elevations in cortisol levels and 

chronic levels of over-activity in sgACC/25, together with studies aimed at dissecting the 

nature of sgACC/25-HPA axis interactions.  
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7.2 SYNTHESIS OF FINDINGS 

7.2.1 Hypotheses regarding sgACC/25 function 

As is summarized above, sgACC/25 over-activity is associated with a complex myriad of 

changes in behavioural and physiological domains. Although future work is critical, tentative 

accounts for the functions subserved by sgACC/25 can be suggested. I propose two main 

hypotheses below, to try and integrate the findings presented in this thesis and generate a 

parsimonious account of sgACC/25 function (FIGURE 7-1): 

(i) HYPOTHESIS 1: SgACC/25 is important in coordinating fight-or-flight 

reactions, through independent excitatory and inhibitory relationships with 

aversive- and appetitive-related arousal mechanisms, respectively (FIGURE 

7-1A). This explanation posits a direct excitatory relationship of sgACC/25 to 

structures stimulating aversive arousal together with a direct inhibitory/feed-

forward inhibitory relationship to structures stimulating reward-related 

arousal/approach. One immediate issue with this model relates to the lack of 

effect of inactivation to elevate appetitive CS directed arousal (Chapter 4) and the 

lack of effect of over-activation to elevate aversive CS directed arousal (Chapter 

5). However, these findings may be explained if (i) the levels of CS directed 

appetitive/aversive anticipatory arousal were already at ceiling levels under 

control conditions in these Pavlovian paradigms, or alternatively, (ii) if sgACC/25 

is only activated in situations associated with aversive, but not appetitive, affective 

meaning – in which case inactivations would not impact upon appetitive Pavlovian 

arousal.  

The hypothesized position of sgACC/25 in such a circuit would suggest that acute 

changes in its activity stimulate elevated negative arousal and withdrawal 

responses together with inhibition of aspects of reward related processing 

(diminished reward anticipation and motivation) impairing approach behaviour. 

These functions are ideally suited for a brain structure putatively involved in 

survival optimization during situations of threat (Mobbs et al., 2015). Furthermore, 

the baseline cardiovascular effects of sgACC/25 over-activation to diminish 

parasympathetic tone and thereby alter sympathetic:parasympathetic balance 

(Chapter 5) suggests that sgACC/25 is also causally related to the physiological 

changes necessary for a shift from ‘rest-and-digest’ (parasympathetic dominance) 

to ‘fight-or-flight’ (sympathetic dominance).  

In proposing this hypothesis, I note two further considerations regarding the 

precise relationship sgACC/25 has to aversive- and appetitive- related arousal 

mechanisms in this scheme: 
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• Does elevated activity within sgACC/25 stimulate aversive arousal, and 

independently inhibit appetitive arousal? 

• Does elevated activity within sgACC/25 stimulate aversive arousal which 

simply ‘disrupts’ appetitive arousal? 

In the context of the latter explanation, sgACC/25 would not have a functional link 

(whether direct or indirect) to reward-related functions per-se. Instead, the effects 

on motivational and anticipatory reward processing would be a consequence of 

enhanced aversive-related behaviours. I find this account lacking for several 

reasons. First, if the effects on appetitive processing were solely related to 

enhanced negative emotion, over-activation associated impairments would be 

expected across all domains of reward processing including reward consumption. 

In Chapter 4, it was convincingly demonstrated that there is no effect on 

behavioural or autonomic measures of consummatory arousal. Second, there was 

no evidence of increased agitated behaviour associated with over-activation 

during appetitive Pavlovian, progressive ratio or sucrose preference paradigms. 

For example, locomotion scores during appetitive Pavlovian conditioning were no 

different from control infusions, suggesting that there was no freezing or 

hyperlocomotion in this context (both of which can be associated with anxiety). In 

addition, the reduced number of CS directed head-jerks has face validity to a 

state associated with reduced reward anticipation, and not a state of elevated 

anxiety. Third, the contrasting effects of ketamine on reward and anxiety-related 

dysfunction associated with over-activation imply different neurobiological 

mechanisms at play, since a dose of ketamine could restore appetitive behaviour 

in the absence of any change in anxiety behaviour as measured by the HI test 

(discussed in Chapter 5).  

(ii) HYPOTHESIS 2: SgACC/25 increases rumination and worry, manifesting as 

behavioural withdrawal (FIGURE 7-1B). In proposing hypothesis 2, I am 

attempting to integrate findings presented within this thesis with existing literature, 

which consistently implicates sgACC/25 in ‘negative-affect laden withdrawal’ 

associated with rumination (Bratman et al., 2015; Hamilton et al., 2015) together 

with activity in sgACC/25 associated with sustained threat (Alvarez et al., 2011; 

Hasler et al., 2007b, 2008). Rumination has been strongly linked to symptoms of 

both depression and anxiety (Michl et al., 2013; Verstraeten et al., 2011; 

Wilkinson et al., 2013) and in the context of anxiety disorders a closely related 

concept is termed ‘worry.’ Rumination and worry are frequently grouped together 

as reflecting patterns of repetitive negative thinking (Eysenck and Fajkowska, 
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2017; Topper et al., 2017), although the constructs are distinct: rumination is 

typically ‘past-focused’ whereas worry is ‘future-focused’ (Lewis et al., 2017).  

A role for sgACC/25 in the cognitive operations of rumination and worry also links 

to the dominant biopsychological behavioural personality theory proposed by 

Gray positing separate Behavioural Inhibition and Behavioural Activation systems 

(BIS/BAS respectively) (Gray, 1987). Gray suggests that the BIS governs 

avoidance behaviour together with cognitive/behavioural withdrawal in response 

to threat/punishment, whereas the BAS regulates motivated and approach 

behaviour, reward seeking and positive affect. SgACC/25 has been most 

consistently implicated in inhibitory control functions similar to those proposed to 

be served by the BIS (namely, withdrawal) (Hamilton et al., 2015; Matthews et al., 

2009). Nevertheless, some studies have also linked sgACC/25 to the BAS: 

reduced resting state functional connectivity of sgACC/25 to the DMN has been 

associated with higher BAS sensitivity and protective effects against excessive 

rumination (Iadipaolo et al., 2017). These data suggest that sgACC/25 activity is 

positively correlated with functions subserved by the BIS (withdrawal) and 

negatively correlated with functions subserved by the BAS (approach). Whether 

sgACC/25 has direct connectivity to the BAS independent of the BIS is not clear, 

but these two systems are proposed to mutually inhibit one another (Gray, 1987) 

such that an effect on one would invariably impact on the other, resulting in a 

functional link between sgACC/25 activity and both the BAS and the BIS. 

If sgACC/25 increases rumination/worry and – because of an excessive focus on 

internally driven, self-referential processes – behavioural withdrawal, this may 

manifest as impaired responses to discrete appetitive cues in neutral/moderately 

positive contexts (Chapter 4) and exaggerated withdrawal (both behavioural and 

autonomic) in aversive contexts (Chapter 5). Consider the results observed on 

the HI paradigm: following sgACC/25 over-activation, animals showed increased 

depth and height in the cage together with reduced locomotion. Increased 

stillness, together with increased distance maintained from the intruder, is 

arguably face-valid with a state of behavioural ‘withdrawal’ rather than, for 

example, a state of panic. 
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Figure 7-1 Hypotheses regarding sgACC/25 function based on data presented in this thesis. 

A SgACC/25 co-ordinates fight-or-flight responses, stimulating escape and panic responses and 

either inhibiting (shown here) or simply ‘disrupting’ rest-and-digest and appetitive behaviours. B 

SgACC/25 stimulates rumination/worry – or in Gray’s behavioural framework, the BIS – promoting 

withdrawal and inhibiting approach through inhibition of the BAS. In this scheme, withdrawal is 

physiological, behavioural and cognitive, characterised by reduced parasympathetic tone (Chapter 

3), impaired external ‘cue-directed attention’ and reduced motivation (Chapter 4), and increased 

distance/reduced locomotion (‘stillness’) in the HI test (Chapter 5). 

 

Hypothesis 1 would – at a surface level – explain the results observed in this thesis. In this 

hypothesis, sgACC/25 is effectively conceptualised as having a key role in fight-or-flight 

responses: in such situations, it is appropriate to activate escape mechanisms and inhibit 

approach. However, in Chapter 4, there was no evidence that sgACC/25 triggered 

physiological or behavioural changes consistent with a fight-or-flight reaction in appetitive 

contexts. The pattern of results associated with sgACC/25 is more consistent – at a 

theoretical but also ‘face’ level – with hypothesis 2.  

With relevance to both hypotheses, I note that the effects of sgACC/25 seem to be context-

dependent. In Chapter 5, the increased cardiovascular and behavioural arousal associated 

with sgACC/25 over-activation is predominantly context-directed and was not observed when 

an identical manipulation was carried out in a neutral context. This would suggest that 

sgACC/25 has a contextual processing function. Furthermore, with regards to hypothesis 2, 

whether sgACC/25 triggers increased ‘past-based’ (rumination) or ‘future-based’ (worry) 

negative repetitive thinking patterns may depend on contextual information (neutral/appetitive 

vs. aversive contexts). Beyond the functional effects observed in Chapter 5, is there any 

further evidence for sgACC/25’s involvement in contextual processing? In preliminary work, 



General Discussion 

296 
 

we have carried out retrograde tracing studies targeting marmoset sgACC/25 to investigate 

afferent connectivity. In two animals, we have found extensive projections from the 

hippocampal formation (including subiculum, dentate gyrus, CA2 and CA1 subfields) to 

sgACC/25 (FIGURE 7-2). The hippocampal formation is frequently implicated in context 

processing and contextual fear conditioning (Alvarez et al., 2008; Ballesteros et al., 2014). 

Thus sgACC/25 appears to be ideally positioned to receive contextual information and use 

this to modulate its output. 

 
Figure 7-2 Afferent connectivity of sgACC/25: hippocampal formation. A In a stereotaxic 

surgical procedure, two animals (Subject A, red, and Subject B, blue) were infused with the 
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retrograde tracer cholera toxin subunit B into left sgACC/25. The sagittal section shows the AP 

spread of the tracer infusion within sgACC/25 (scale in mm from interaural line). B Ten days later 

animals were perfused, brains sectioned, and immunohistochemically stained cell bodies were 

mapped onto schematic sections of the marmoset brain. Left is a schematic section at the level of 

the hippocampal formation, showing extensive staining in the dentate gyrus (DG), subiculum (Sub) 

and CA2/CA1 cell fields in both subjects. Right is a photomicrograph of the hippocampal formation 

of subject A, with darkly stained bodies throughout the hippocampal formation with the notable 

exception of CA3. Inset shows the CA3/CA2 border zone. 

 
How can hypothesis 2 be investigated further? Combining causal manipulations of sgACC/25 

with imaging techniques facilitates investigation of downstream brain regions whose activity 

is changed by these manipulations. In Chapter 4, sgACC/25 over-activity in an appetitive 

context resulted in downstream hyperactivity in dmPFC, dACC and insula. An analogous 

region of dmPFC/dACC is posited as a key hub in the DMN of both humans (Raichle et al., 

2001) and macaques (Mantini et al., 2011). Therefore, the downstream regions affected by 

sgACC/25 over-activation are themselves associated with internally-directed focus, and in 

the diseased state when this becomes excessive, rumination (Hamilton et al., 2015). This 

supports the suggestion that elevated activity in sgACC/25 may bias attention internally, 

rather than externally. In appetitive contexts, this may reduce the direction of attention to 

external cues which would otherwise act to elevate cardiovascular and behavioural arousal 

(Chapter 4). In aversive contexts, this may promote withdrawal (associated with ‘worry’); a 

phenotype observed in the HI test (Chapter 5). Indeed, elevated connectivity between 

sgACC/25 and insula has been demonstrated during the induction of worry in elderly GAD 

patients (Andreescu et al., 2015). 

The autonomic consequences of both sgACC/25 inactivation (to elevate vagal tone) (Wallis 

et al., 2017) and over-activation (to reduce vagal tone, Chapter 3) also lend further support 

to hypothesis 2. Cardiac vagal tone has been proposed to serve as an index of flexible, 

dynamic emotion regulation as part of polyvagal theory (Porges, 1992) and theoretical 

reviews by Thayer and colleagues have linked worry and rumination with inflexibility in the 

regulation of the cardiovascular system (Thayer and Siegle, 2002). Baseline vagal tone is a 

‘psychophysiological resource’ which organisms can mobilise to increase behavioural and 

cognitive flexibility. Low vagal tone has been specifically linked to rumination and worry, 

conceptualized as ‘emotional inflexibility’ (Pieper et al., 2007). Current theories posit that 

excessive rumination has the effect to release inhibitory prefrontal control over sympatho-

excitatory neural circuits resulting in parasympathetic withdrawal, sympathetic dominance 

and impairments in adaptive behavioural responding (Brosschot et al., 2007; Ottaviani et al., 

2009). Parasympathetic withdrawal (reduced CVI) and increased sympathetic dominance 
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(increased CSI:CVI ratio) were precisely the changes observed following sgACC/25 over-

activation in Chapter 3.  

The thesis has also presented data suggesting that sgACC/25 over-activity is linked to 

increased cortisol output in aversive contexts (Chapter 5). Is there a link between the HPA 

axis and excessive rumination/worry? In both a patient cohort with SAD and in healthy 

controls, Lewis and colleagues found that state/trait levels of worry (but not rumination) were 

associated with increased cortisol reactivity during a social stress test, whereas levels of both 

rumination and worry were associated with elevated cortisol levels during recovery 

(especially in SAD patients) (Lewis et al., 2017). Therefore, the physiological consequences 

associated with sgACC/25 over-activation – both autonomic and endocrine – mirror those 

associated with rumination and worry in humans. 

The idea that elevated activity in sgACC/25 leads to an inflexible, internally-directed state 

relates closely to the hypothesis of Holtzheimer and Mayberg, who propose that depression 

is characterized by a tendency to enter into – but also an inability to shift out of – depressed 

mood states, rather than the presence of a state of low mood per-se (FIGURE 7-3): 

“…we conceptualize the depressive state as an aberrant neural rhythm, 

but the depressive disorder as the brain’s tendency to go into and stay in 

that rhythm inappropriately.” (Holtzheimer and Mayberg, 2011) 

 
Figure 7-3 ‘Stuck-in-a-rut’: depression as an inability to disengage from a negative mood 

state. Figure taken from Holtzheimer and Mayberg, 2011. In their model, a stressor triggers and 

shift from a euthymic “normal” state to a “down” state, characterised by symptoms of enhanced 

negative affect, anhedonia and sickness behaviour. In healthy individuals, the tendency to enter the 
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down state is low and the return to euthymia is quick (green arrows). In individuals with MDD, they 

have a high tendency to enter the down state and an impaired ability to re-enter the normal state 

(blue arrows). When in the down state – a depressive episode – patients may have an even greater 

difficulty returning to normal without psychotherapeutic, pharmacological or more invasive 

treatments. Holtzheimer and Mayberg emphasise that the down state “itself is not abnormal… it is 

the tendency to enter and get stuck in this state that defines depression.”  

 

The idea that depressed patients are ‘stuck-in-a-rut’ is germane with the hypothesis that 

depression and mood disorders are – at least in part – disorders of emotional inflexibility, 

elevated rumination and aberrantly increased levels of self-directed thought. SgACC/25 may 

represent a critical node in the depression network, associated with an increased tendency to 

enter a down state and an impaired ability to exit it. It is worth noting that Holtzheimer and 

Mayberg suggest that the neurobiology of depression should be that of ‘mood reaction and 

regulation, rather than mood state,’ and that a structure involved in mood reaction would 

need to process external and internal stimuli with reference to contextual information.  

In the context of hypothesis (ii), I draw further attention to the finding that sgACC/25 over-

activity increases activity in the insula in appetitive settings (Chapter 4). The consequences 

of this hyperactivity in the network of brain regions whose activity is altered following 

sgACC/25 over-activation is not entirely clear and warrants further investigation. The insula 

forms a critical part of the salience network (Heine et al., 2012), involved in the orientation 

towards salient emotional stimuli and switching between self-referential (DMN) and task-

relevant states (Seeley et al., 2007). The insula is also frequently implicated in interoceptive 

self-focus (Paulus and Stein, 2006). Collectively, these functions imply that the insula serves 

an integrative function, processing both internal and external signals to guide behaviour. I 

suggest three explanations for elevated activity in the insula: 

(i) Activity in the insula represents an error signal. SgACC/25 over-activation in 

an appetitive context may induce a discrepancy between external (in this case, 

appetitive) and internal states (biased towards withdrawal and negative affect 

following sgACC/25 over-activation). 

(ii) Activity in the insula represents a compensatory change. If sgACC/25 over-

activation biases processing towards self-referential functions, the function of the 

insula as part of the salience network may try to compensate and direct attention 

in a task-dependent manner, towards motivationally relevant external stimuli.  

(iii) Activity in the insula reflects its function in visceral sensation. Given that 

sgACC/25 over-activation induces changes in cardiovascular reactivity, the 

activity changes observed in the insula might reflect its function as ‘visceral 
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sensory cortex,’ a function proposed by Neafsey and colleagues (Neafsey et al., 

1993). 

To test explanation (i), future work investigating the downstream neural consequences of 

sgACC/25 over-activation in an aversive setting may provide insight (e.g. 18F-FDG PET 

imaging combined with aversive behavioural testing and sgACC/25 over-activation – already 

under progress). Specifically, would regions such as the insula still be engaged when the 

context and internal state are more congruent (both putatively ‘negative’)? If not, this would 

support explanation (i). Explanation (ii) could be tested by causally manipulating the insula 

with intracerebral microinfusions (or other techniques), to determine if the changes in 

appetitive/aversive contexts are in any way like those associated with sgACC/25 over-

activation. Finally, I would suggest that explanation (iii) is lacking – that the insula is simply 

sensing peripheral changes induced by sgACC/25 over-activation. Whilst this function of the 

insula may be partly responsible for the change in activity, I do not think it is the only one. 

Again, from preliminary tracing experiments there is evidence of both afferent and efferent 

connectivity between sgACC/25 and sectors of the insula (both rostral and caudal sectors) 

(FIGURE 7-4). This suggests that sgACC/25 and rostral/caudal insula are communicating in 

some way, although of course it does not give insight into the functional correlates of this 

cross-talk.  
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Figure 7-4 Afferent (left) and efferent (right) connectivity of sgACC/25: rostral (top) and 

caudal (bottom) insula. Subjects A (red) and B (blue) as described in FIGURE 7-2; Subject C 

(green) also underwent a stereotaxic surgery but was infused with the anterograde tracer 

biotinylated dextran amine, to investigate efferent connectivity. In each schematic drawing, the 

insula is indicated with a black arrow. In Subject A – but less so in subject B – there was evidence 

of afferent connectivity from the insula to sgACC/25. In Subject C, there was evidence of relatively 

extensive terminations in both rostral and caudal insula, illustrating that efferents from sgACC/25 

terminate along the rostro-caudal extent of the insula. Relevant abbreviations: Ins, insula; GI, 

gustatory insula; DI, dysgranular insula; AI, agranular insula; OPAl, orbital periallocortex (a ‘peri-

insular’ region); IPro, insular proisocortex.  

 

The insula is a heterogeneous brain region, consisting of a rostral/anterior and 

caudal/posterior division which themselves are constituted of several subregions: for 

example, the anterior insula consists of the gustatory insula, dysgranular insula and 

agranular insula. The tracing data presented in FIGURE 7-4 suggest that sgACC/25 shows 

afferent and efferent connectivity with most of these subregions. Whether specific zones of 

the insula are important for the impairments in reward processing/elevated anxiety 
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associated with sgACC/25 over-activation certainly needs further investigation. Intriguingly, 

the potential link between insula and vmPFC extends beyond the ‘affective’ domain into the 

cognitive. Recent work in rodents has shown that lesions of the anterior insula reduce the 

development of compulsive habits (Belin-Rauscent et al., 2016), and relatedly, IL lesions 

prevent the development of habits after extended training (Killcross and Coutureau, 2003). 

The similarity in behavioural outcome following anterior insula and IL lesions further supports 

the suggestion that the functions of these regions are linked. Disconnection strategies may 

be invaluable in investigating the importance of IL-vmPFC connectivity in Pavlovian and 

instrumental behaviours.  

Note that the principle manipulation employed in this thesis – pharmacological over-

activation – does not explicitly confirm the necessity of a brain region in a 

cognitive/behavioural function, although it does provide insight into the operations in which 

the region may be involved. By contrast, silencing a brain region via inactivation proffers 

critical, causal information pertaining to functions in which that brain region is required. Work 

described in this thesis, together with previous work from this author’s laboratory, has used 

pharmacological inactivations to glean insight into the operations performed by sgACC/25. 

Specifically, area 25 inactivations (i) enhance parasympathetic tone in neutral conditions 

(Wallis et al., 2017); (ii) reduce the anticipatory arousal in response to CSs predicting an 

aversive US, without affecting arousal to the US itself (Wallis et al., 2017); and (iii) do not 

impair anticipatory or consummatory arousal response during appetitive CS/US pairings (this 

thesis). 

Therefore, whilst sgACC/25 is necessary for regulating resting cardiovascular function and 

elevating arousal associated with negative emotion expectation, it is not required for 

enhancing arousal associated with positive emotion expectation. Work from Rudebeck and 

colleagues corroborates this suggestion, showing that ablative lesions of macaque 

sgACC/25 do not disrupt CS induced autonomic arousal (measured by pupil diameter) during 

appetitive Pavlovian conditioning (Rudebeck et al., 2014). This study did, however, find that 

sgACC/25 lesions disrupt the maintenance of autonomic arousal when a trace interval was 

present between the CS and US period. Although the use of ablative lesion techniques limits 

interpretation of the findings (since the observed phenotype may result from damage to fibres 

of passage), the suggestion that sgACC/25 may be involved in sustaining autonomic arousal 

in the absence of explicit (CS) cues should be investigated. This could be easily tested using 

the appetitive Pavlovian discrimination paradigm, either (i) by introducing a CS-US trace 

interval or (ii) by measuring the decay of autonomic arousal following termination of the CS 

without a US, compared to continued presentation of the CS without a US (‘probe’ sessions 

as described in (Reekie et al., 2008). If sgACC/25 inactivation were to disrupt sustained 
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arousal in the absence of explicit external cues, then this would suggest a direct involvement 

of sgACC/25 in aspects of appetitive behaviour.  

Uncovering the role of sgACC/25 in normal behaviour/physiology may also provide insight 

into whether the deficits associated with over-activation are the result of inappropriately 

activating a physiological system (i.e. ‘normal’ physiological function at an inappropriate time) 

– or whether the deficits are associated with elevating activity to supra-physiological levels 

that would only otherwise be achieved in a pathological state (i.e. abnormal physiological 

function)? 

7.2.2 Novel antidepressant agents 

The efficacy of ketamine demonstrated herein highlights its utility in treating reward-related 

dysfunction relevant to psychiatric disorders. Furthermore, given its sensitivity to treatments, 

the anticipatory anhedonia induced by sgACC/25 over-activation constitutes a valuable 

preparation in testing the efficacy of antidepressants in reward-related domains – whether 

this be chronic administration of SSRIs, or determining the efficacy of novel agents including 

ketamine metabolites such as (2R,6R)-hydroxynorketamine (Zanos et al., 2016). The 

benefits of this preparation over the sucrose preference test lie in its distinction between 

anticipatory and consummatory elements of reward processing, together with its more 

comprehensive quantification of positive affect as measured by both autonomic and 

behavioural aspects.  

The importance of sgACC/25 over-activity in treatment response has long been recognized: 

successful responses to both SSRI therapy and CBT are associated with diminished activity 

within sgACC/25 (Mayberg, 1997), and modulation of sgACC/25 has already been implicated 

in the action of ketamine (Nugent et al., 2014). Whilst structural remodelling in the vmPFC 

has been suggested to be responsible for the effects of ketamine over hours-days, Arnsten 

and colleagues cite the ultra-rapid effect of intranasal ketamine to suggest that rapid actions 

of ketamine depend on short term NMDA receptor antagonism of structures directly above 

the cribriform plate: namely, sgACC/25. It would be interesting to determine (i) the 

consequences of infusions of ketamine directly into sgACC/25 on over-activation induced 

impairments; and (ii) whether direct infusions of ketamine into sgACC/25 could expedite 

ketamine’s effect to ameliorate sgACC/25 over-activation induced impairments.  
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7.3 APPRAISAL OF METHODOLOGICAL APPROACHES 

Theoretical conclusions drawn from the work presented in this thesis must be considered in 

the context of an equally important critical appraisal of the methodological approaches 

employed. The predominant manipulations utilized in this thesis were pharmacological 

manipulations using intracerebral microinfusions via indwelling cannulae. There are both 

advantages and disadvantages associated with this technique, shown in TABLE 7-1. 

Advantages Disadvantages 

Localisation of function by implanting cannulae 

to target specific neural structures 

The radius over which infused drugs spread 

has not been precisely characterised in 

marmosets – however, rodent studies do 

indicate that spread is restricted to single brain 

regions (Allen et al., 2008) 

Manipulation of intact cerebral cortex in the 

absence of significant irreversible damage 

Chronic implants are associated with 

inflammatory responses which can lead to 

localised gliosis (Hayn and Koch, 2015) 

Can be used in combination with non-invasive 

imaging (e.g. 18F-FDG PET) to investigate 

downstream changes in neural circuits 

Pharmacological manipulations are acute, 

whereas dysfunctional activity associated with 

psychiatric disease is chronic 

Administered drugs, in general, do not affect 

fibres of passage (unlike ablative lesions) 

Pharmacological agents are not cell-type 

specific, affecting neurons and interneurons in 

all cortical layers 

Fewer animals needed (no sham and lesion 

group) and increased statistical power as 

animals can act as their own controls in a 

within-subject design 

Relatively labour intensive, requiring continual 

maintenance to ensure patency of guide 

cannulae and prevent infection  

 

 

Table 7-1 Appraisal of methodological approaches. Advantages and disadvantages of 

pharmacological manipulations using intracerebral microinfusions via indwelling cannulae.  

 

I firmly believe that there are several advantages of reversible pharmacological approaches 

over lesion techniques which cannot be gainsaid. Ablative lesions destroy fibres of passage 

which severely confound interpretation regarding the function of cortical regions targeted. 

Whilst excitotoxic lesion approaches avoid this complication (through selective destruction of 

cell bodies), they are nevertheless associated with chronic, compensatory brain changes 

which again confound interpretation.  

Two of the disadvantages associated with reversible pharmacological manipulations 

highlighted above are worth further consideration, as they pertain to the functional 

interpretation of the data presented in this thesis.  

First, ‘pharmacological manipulations are acute, whereas dysfunctional activity associated 

with psychiatric disease is chronic.’ As has been evidenced, acute induction of sgACC/25 

over-activity induces blunted reward processing and heightened anxiety showing face-validity 



General Discussion 

305 
 

to diseased states. However, disease states are not associated with isolated, acute changes 

in brain function – they are associated with chronic, long-term changes in a distributed 

network of structures. For instance, it is a tonic elevation in sgACC/25 activity that has been 

associated with depression compared to acute changes associated with transient sadness 

induction in healthy controls (Holtzheimer and Mayberg, 2011). At a cellular level, sustained 

changes in neural activity are more likely to induce depletion of neurotransmitter at synaptic 

terminals, receptor desensitisation/endocytosis, neuroplastic changes (long term 

potentiation/depression) and structural remodelling. Whilst acute pharmacological 

manipulations may induce some of the short-to-intermediate-term changes (neurotransmitter 

depletion and receptor desensitization), the time course of action of these manipulations 

(minutes to hours) (Lomber, 1999) is simply not long enough to induce neuroplastic or 

structural alterations. At a circuit level, sustained changes in activity of a single brain region 

are more likely to induce compensatory in other brain regions and brain networks 

(themselves an emergent property of the cell-level changes) which may be critical to the 

disease-related phenotype. Ultimately, at a cognitive level, mental illnesses would be 

associated with maladaptive new learning over time, which further contributes to behavioural, 

subjective and executive sequelae of psychiatric disorders. Therefore, acute pharmacological 

manipulations have their limits in terms of informing us about the changes taking place in 

clinically diseased states. 

Does this bring us in a full circle – back to lesions, which permanently damage brain regions? 

Long-term observations of cognitive, behavioural and autonomic changes following 

excitotoxic lesions of specific brain regions may be of use if the pathophysiological change 

associated with the disorder is one of chronically reduced activity (in depression: the 

dACC/dmPFC) (Mayberg, 1997). However, comparing phenotypes associated with total cell 

death vs. chronically reduced activity (where the brain region may still be functioning but at a 

reduced level) remains a problem. Furthermore, in the case of sgACC/25, the 

pathophysiological change is one of over-activity and is therefore not amenable to be studied 

using lesion techniques alone. I would propose that developing methods for the chronic 

administration of pharmacological agents in a brain-region specific manner is of use, 

unveiling the possibility of investigating both chronic increases and decreases in activity. One 

technique to induce chronic increases in activity involves targeted infusions of short inhibitory 

RNA (siRNA) to induce persistent deficits in the translation of – for example – glutamate 

reuptake transporters, thereby increasing extracellular glutamate and post-synaptic neural 

activity (siRNA targeting EAAT2 is being used by Francesc Artigas, where they have 

observed opposite effects to those obtained with temporary pharmacological manipulations 

of the same molecular target using DHK; private communication). Alternatively, Designer 

Receptors Exclusively Activated by Designer Drugs (DREADDs)-based techniques show 
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promise (Roth, 2016), in which receptor ligands could be chronically administered without the 

need for indwelling cannulae (see below).  

Second, ‘pharmacological agents are not cell-type specific, affecting neurons and 

interneurons in all cortical layers.’ A lack of cell-type specificity is an issue associated with 

both lesion- and pharmacological-based approaches. For example, the GABAA/GABAB 

receptor antagonists muscimol/baclofen are likely to inactivate all neurons in their radius of 

spread, since these receptors are found on the cell membranes of glutamatergic pyramidal 

neurons and GABAergic interneurons alike. In theory, the resultant effect of 

muscimol/baclofen infusions into a brain region would therefore be a function of the pre-

manipulation balance of excitation and inhibition (‘turning off’ a dominant inhibitory tone could 

theoretically result in increased output). In reality, the volume and concentration of 

muscimol/baclofen administered likely induces complete silencing of all neurons in the radius 

of spread (Higgs et al., 2014).  

To over-activate sgACC/25, the drug used most extensively in this thesis is DHK – an EAAT2 

glutamate reuptake transporter inhibitor. By virtue of its target, the action of DHK is to some 

extent cell-type specific: EAAT2 is overwhelmingly expressed on astrocytes, glial cells 

responsible for >90% of glutamate reuptake in the CNS (Bar-Peled et al., 1997; Cisneros and 

Ghorpade, 2014). Application of DHK would therefore elevate levels of glutamate in the 

synaptic cleft. However, even though the molecular target of DHK is cell-type specific, the 

consequences of elevated synaptic glutamate will not be specific to a class of neuron. The 

issue remains: whilst pharmacological manipulations are region-specific and cell-body 

specific, they are not cell-type specific.  

DREADDs-based techniques – mentioned above – can overcome issues of cell-type 

specificity and can be used to induce chronic elevation/depression of activity in a regionally-

specific manner. In a one-off surgical procedure, a safe virus (typically adeno-associated 

virus, AAV) is infused into the brain region of interest. The virus contains the genetic 

information necessary for the expression of a protein-engineered G-protein coupled receptor 

(GPCR) which can be excitatory (Gq/Gs-coupled) or inhibitory (Gi coupled). The expression of 

this receptor can be coupled to a specific promoter such as CaMKIIa, which is thought to be 

relatively specific to layer V pyramidal output neurons. These receptors are not active until a 

ligand – typically the metabolite of clozapine, clozapine-N-oxide (CNO) – is administered 

either peripherally or centrally. The ligand, which itself purportedly lacks physiological 

efficacy in isolation (although see e.g. (MacLaren et al., 2016)), acts via the DREADD GPCR 

to induce excitatory or inhibitory changes in specific cell populations. CNO is typically 

administered peripherally, and can be given acutely via injection, or can be delivered via a 

subcutaneous osmotic mini-pump (or in drinking water) to mimic chronic alterations in activity 
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(e.g. in (Donato et al., 2017)). In preliminary work (not presented in this thesis), we have 

infused a CaMKIIa-coupled Gq DREADDs construct into sgACC/25 (Subjects 9, 17 and 18 of 

cohort 3 described in TABLE 2-3) and found that acute subcutaneous administration of 

10mg/kg CNO elevates anxiety on the HI test and impairs arousal responses to an appetitive 

CS+ without affecting reward consumption. These results are the same as those obtained 

from pharmacological over-activation using DHK. DREADDs-based techniques represent a 

promising approach for targeted manipulations of specific cell types in specific brain regions, 

over short- and long-term periods.   
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7.4 FUTURE DIRECTIONS 

The work described in this thesis lays the foundation for several avenues of future work. With 

reference to the proposals outlined in FIGURE 7-5: 

A. Novel, DREADDs-based techniques could be used to activate specific neuronal 

populations within sgACC/25 – in particular, layer V pyramidal output neurons using 

the CaMKIIa promoter. DREADDs techniques could further be used to investigate the 

importance of efferent pathways originating from sgACC/25 in the over-activation 

induced phenotype. For example, by infusing DREADDs virus into sgACC/25 and 

cannulating the insula, amygdala, BNST or nucleus accumbens, CNO could be 

infused into these target structures and trigger region-specific terminal 

neurotransmitter release. This would test the causal contributions of specific 

pathways in, for example, enhanced contextual anxiety vs. reduced reward 

anticipation/motivation. 

B. The effects of chronic sgACC/25 over-activity could be investigated using siRNA 

targeting EAAT2 (thereby directly comparing against acute EAAT2 blockade using 

DHK); or alternatively with chronic administration of CNO (through water or via 

osmotic minipumps) in animals with Gq-coupled DREADDs targeting sgACC/25. 

C. What are the underlying changes responsible for enhanced arousal in aversive 

contexts, but reduced cue-specific arousal in appetitive contexts? Several theories 

have been posited above, but they require investigation. Precisely how to investigate 

increased rumination is difficult, although comparing the results of 18F-FDG PET 

imaging following sgACC/25 over-activation in both appetitive and aversive contexts 

may provide insight into whether similar or different neural structures are involved in 

the different phenotypes. Furthermore, sgACC/25-insula connectivity may underlie 

some of the key features of the over-activation induced phenotype, so infusions 

directly targeting the insula together with disconnection protocols targeting both 

regions may serve to address this. 

In addition, further experimental work could probe the anhedonic-like effects of 

sgACC/25 over-activation. For instance, investigating the effects of over-activation on 

behavioural contrast may provide further insight into whether the effects of this 

manipulation are linked to reduced valuation of reward. In behavioural contrast, the 

magnitude of an instrumental behaviour to obtain reward is proportional to reward 

received on the previous trial (e.g. if a large reward is received, then the animal will 

work harder on the subsequent trial, with the opposite being true for a small reward). 

If sgACC/25 over-activation reduces the behavioural discrimination between different 

reward sizes, this would further support an anhedonic-like effect of the manipulation.   
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D. The similarity – together with distinct differences – in the pattern of changes 

associated with peripheral injections of cortisol to those induced with sgACC/25 over-

activation suggests that further investigation into the links between sgACC/25 activity 

and HPA axis output is important. This work is further warranted by data presented in 

Chapter 5, suggesting that sgACC/25 may elevate HPA axis output in aversive 

contexts. In particular, given data from the rodent implicating vmPFC in negative 

feedback circuits controlling cortisol release (McKlveen et al., 2013), it would be 

intriguing to investigate the function of GCRs within sgACC/25 in relation to the HPA 

axis, together with their importance in broader behavioural and physiological 

functions. This could be achieved by infusing cortisol into sgACC/25 (to activate 

GCRs) or infusing mifepristone (to antagonise GCRs). 

E. Elucidation of the cognitive, behavioural and physiological functions requiring an ‘on-

line’ sgACC/25 may give further insights into the mechanisms at play when its activity 

is disrupted. Previous work in marmosets has shown that sgACC/25 inactivation 

abolishes autonomic and behavioural arousal associated with negative emotional 

expectation (Wallis et al., 2017) but not arousal during positive emotional expectation 

(Chapter 4), and work in macaques (using ablative lesions) has suggested that 

sgACC/25 may be involved in sustaining autonomic arousal in the absence of specific 

cues (Rudebeck et al., 2014). How these functions are linked – or, in the case of 

ablative lesions, whether they are functions of sgACC/25 at all – remains unclear. 

DREADDs based techniques using Gi-coupled constructs could again provide further 

insight into these questions.  
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Figure 7-5 Suggestions for future work based on the data presented in this thesis. Proposals 

A and B concern future methodological approaches for over-activating sgACC/25; proposals C and 

D concern future studies to clarify the mechanistic basis of the over-activation induced phenotype; 

and proposal E concerns future studies probing the neurophysiological function of sgACC/25. See 

text for further details.  

 

In addition to these fundamental questions regarding sgACC/25 function and dysfunction, the 

translationally-relevant profile of symptoms associated with sgACC/25 over-activation 

provides further opportunity to test the effects of existing and novel antidepressant 

compounds and uncover more detail about their mechanism of action. Furthermore, to 

supplement and support this extensive body of functional work, the continuation of retrograde 

and anterograde anatomical tracing studies will provide evidence for connectivity that may be 

affected by, and mediate the consequences of, sgACC/25 manipulations.  
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7.5 CONCLUSION 

Taken together, the results described in this thesis identify the major, causal contributions of 

sgACC/25 over-activity to physiological and behavioural changes that typify symptoms of 

anhedonia, enhanced negative affect and constitute key features of major psychiatric 

disorders such as depression and anxiety. These impairments appear to be differentially 

sensitive to treatment with the novel antidepressant ketamine. Current and future work using 

18F-FDG PET imaging will compare the network-wide changes following sgACC/25 over-

activation in both appetitive and aversive contexts, and the modulation of these circuits by 

ketamine to investigate its potential differential efficacy in specific symptom domains. 
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