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Abstract 

The main aim of this thesis is to reveal the chemical structures of the solid-liquid interphase in 

lithium ion batteries by NMR spectroscopy in order to understand the working mechanism of 

electrolyte additives for achieving stable cycling performance.  

In the first part, a combination of solution and solid-state NMR techniques, including dynamic 

nuclear polarization (DNP) are employed to monitor the formation of the solid electrolyte 

interphase (SEI) on next-generation, high-capacity Si anodes in conventional carbonate 

electrolytes with and without fluoroethylene carbonate (FEC) additives. A model system of 

silicon nanowire (SiNW) electrode is used to avoid interference from the polymeric binder. To 

facilitate characterization via one- and two-dimensional NMR, 13C-enriched FEC was 

synthesized and used, ultimately allowing a detailed structural assignment of the organic SEI. 

FEC is found to first defluorinated to form soluble vinylene carbonate (VC) and vinoxyl 

species, which react to form both soluble and insoluble branched ethylene-oxide-based 

polymers.  

In the second part, the same methodology is applied to study the decomposition products of 

pure FEC or VC electrolytes containing 1 M LiPF6. The pure FEC/VC system simplifies the 

electrolyte solvent formulation and avoids the interaction between different solvent molecules. 

Polymeric SEIs formed in pure FEC or VC electrolytes consist mainly of cross-linked PEO 

and aliphatic chain functionalities along with additional carbonate and carboxylate species. The 

presence of cross-linked PEO-type polymers in FEC and VC correlates with good capacity 

retention and high Coulombic efficiencies of the SiNWs anode. Using 29Si DNP NMR, the 

interfacial region between SEI and the Si surface was probed for the first time with NMR 

spectroscopy. Organosiloxanes form upon cycling, confirming that some of the organic SEI is 

covalently bonded to the Si surface. It is suggested that both the polymeric structure of the SEI 

and the nature of its adhesion to the redox-active materials are important for electrochemical 

performance. 

Finally, the soluble decomposition products of EC formed during electrochemical cycling have 

been thoroughly analyzed by solution NMR and mass spectrometry, in order to explain the 
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capacity-fading of Si anodes in a conventional EC-based electrolyte and address questions that 

arose when studying the additive-containing electrolytes. The detailed structures for the EC-

degradation products are determined: a linear oligomer consist of ethylene oxide and carbonate 

units is observed as the major degradation product of EC.  
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Chapter 1 Introduction 

1.1 Introduction to lithium ion batteries  

Lithium ion batteries (LIBs) have been widely applied in portable electronics and have drawn 

increasing attention for potential applications in electrical vehicles (EV) and distributed grid-

storage.1,2  Vehicle electrification is now seen as a promising way to reduce the carbon emission 

and to improve the urban air quality. Countries including UK, France, Germany and China 

have announced plans to ban the sales of internal combustion engine vehicles by 2030 in order 

to meet the carbon reduction target. Though EVs are almost exclusively powered by LIBs, its 

market share is only 2 % and sales rely heavily on supporting government policy.3 For EVs to 

be more widely adopted, key properties of LIBs must be improved, including energy density, 

cycle life, cost, safety, fast-charging rate and grid compatibility.4  

The current widely-used, commercial LIB chemistry is shown in Figure 1.1. The cell consists 

of a lithium transition metal oxide as the cathode, graphite as the anode and an organic liquid 

electrolyte. The state-of-the-art electrode materials and their future outlook are briefly 

summarized below.  

Cathode materials 

Most cathode materials are lithium transition metal oxides with a layered structure (LiMO2, 

M=Co, Ni, Mn, etc) that provides channels for Li ion diffusion. Pioneering works by 

Whittingham and Goodenough on ionic conductor and guest-host chemistry led to the widely 

applied cathode materials used at present. Among the layered oxides, LiCoO2 was the first 

material to be successfully commercialized by Sony in 1991. Though LiCoO2 offers a long  
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Figure 1.1 Schematics of basic components in a lithium ion battery cell and a mosaic model of the solid electrolyte 

interphase (SEI) adapted from ref.5 

cycle life, only approximately 0.5 mol Li ion can be removed per unit cell because further 

delithiation destabilizes the layered structure, limiting the capacity of LiCoO2 to 140 mAh/g.  

To reduce the cost and increase the energy density further, the general strategy is to substitute 

cobalt with other transition metals. Nickel, manganese and cobalt (NMC) or nickel, cobalt and 

aluminium (NCA) type layered oxides are currently the two most widely used positive 

materials in EVs.5 In NMC, the Mn4+ is inactive in the structure, whereas the Co3+/4+ offers a 

one-electron redox process, and part of the nickel can offer two electron processes for the 

Ni2+/4+ couples. Hence, the higher the Ni content, the higher the capacity for different 

compositions of NMC cathodes. For example, the capacity of NMC-111 (LiNi1/3Mn1/3Co1/3O2) 

is ~160 mAh/g, whereas NMC-811 (LiNi0.8Mn0.1Co0.1O2) possess a theoretical capacity of 200 

mAh/g. However, high Ni content cathodes exhibit significantly shorter cycle lives and lower 

thermal stabilities. Synthesizing NMC particles with Ni-rich cores and Mn-rich shells has been 

proposed as a feasible way to mitigate the capacity fading.6 Currently, intense research is being 

performed to improve the NMC-811 material. Another type of future cathode materials are the 

Li-rich oxides which incorporate lithium, nickel and manganese into the cobalt layer.8 The Li-

rich NMC cathode offers significantly higher capacity (~300 mAh/g) as it is thought to exploit 
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the anion redox activity of oxygen, but it suffers from slow kinetics, rapid voltage fading and 

capacity fading that hinder its implementation in the near future.7  

Anode materials 

With respect to the anode chemistry, carbonaceous materials such as graphite are widely used 

in the anode.8–10 The operating voltage of graphite (50–200 mV vs. Li+/Li) is similar to that of 

Li metal, which means that graphite can offer high voltage in a full cell. The commercialization 

of graphite anodes is closely related to the careful selection of electrolyte and additives as the 

operating voltage of the anode is below the stability window of the electrolyte solvents (<1.2 V 

vs. Li+/Li). During cycling, a passivation layer called the solid electrolyte interphase (SEI) 

forms on the anode surface to prevent further electrolyte degradation as illustrated in Figure 

1.1. In propylene carbonate (PC) based electrolyte, solvent co-intercalation with the Li ions 

occurs that exfoliates the graphite sheets. By replacing PC with ethylene carbonate (EC), the 

nature of the SEI layer is altered and EC enables reversible Li ion insertion/extraction into/from 

graphite layers. Another anode material is lithium titanate (Li4Ti5O12, LTO), which is 

nominally SEI-free as its operating voltage is around 1.55 V vs. Li+/Li and it is within the 

stability window of the solvents. LTO anodes provide fast charging capabilities at the expense 

of a reduced overall cell potential.11  

For next-generation anodes, Si-based materials and Li metal are expected to play an important 

role, because they both offer high capacities as well as low operating voltages. Unfortunately, 

the large volume variation of Si that occurs during lithiation/delithiation results in poor 

interfacial stability and unabated SEI growth. The major issues related to adopting Si anodes 

will be discussed in detail in the later sections. For Li metal, mossy and needle-like structures 

form (also known as Li dendrites) during Li deposition. These dendrites can penetrate the 

separator leading to cell short-circuiting, thermal runaway, and even explosion. During charge, 

non-uniform Li dissolution takes place on the dendritic Li and dead Li forms, which lowers the 

energy density of the cell as more Li metal is needed to compensate for the Li loss. Strategies 

to overcome these difficulties include surface coating, a judicious selection of electrolyte 

formulations, and finding a compatible solid electrolyte that exhibits sufficient ionic 

conductivity.  
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Electrolytes 

Commercial LIBs typically contain organic liquid electrolytes based on lithium 

hexafluorophosphate (LiPF6) dissolved in a mixture of linear and cyclic alkyl carbonate 

solvents. The bulky PF6
- anion (Figure 1.2) is a soft Lewis acid that delocalises the negative 

charge and has low dissociation energy with Li cations so that its salt has high solubility as 

well as a high cation transference number (i.e. the portion of ionic conductivity arising from Li 

cations). Moreover, the PF6
- anion passivates the aluminium current collector used on the 

cathode, thus enabling Al to operate at high voltage. Similar super acid anions including 

bis(trifluoromethanesulfonyl)imide (TFSI), and bis(oxalato)borate (BOB) are currently used 

as additives or replacement salts.8  

The requirements for electrolyte solvents include high dielectric constant (to dissolve the Li 

salt) low viscosity and wide operating temperature. The state-of-the-art solvents are based on 

alkyl carbonates and normally a mixture is used to meet the criteria listed above. For example, 

the cyclic carbonates (e.g. EC), which are highly polar and rather viscous, are diluted with fluid 

linear carbonates such as dimethyl carbonate (DMC). To tailor the performance of LIBs, 

various additives are commonly added into the baseline electrolyte with concentration less than 

5 wt%. Since the choice of solvents affects the solvation sheath of the Li ions, the properties 

of the SEI can be modified to achieve certain functions. While EC is indispensable for graphite 

anodes, additives such as fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are 

particularly useful to extend the cycle life of alloy-type anodes. FEC and VC coordinate with 

Li ions and are preferentially reduced to form an effective SEI. 

The main issue with liquid organic electrolytes is their poor intrinsic safety, especially at 

elevated temperatures. To replace the volatile and flammable liquid electrolyte, Li ion 

conductive solid electrolytes are attracting increasing attention. There are generally two types 

of solid electrolytes: polymer-based and inorganic-ceramic based. Poly(ethylene oxide) (PEO)-

type solid polymer electrolytes have been used in batteries in an EV-sharing programme called 

Bluecar for urban transportation with limited drive-ranges.12 However, the ionic conductivity 

and oxidation stability of PEO-based electrolytes still need to be improved. Promising 

inorganic solid electrolytes based on sulfides have been reported to have even higher ionic 

conductivity than liquid electrolytes,13 however, problems remain to be solved regarding  



 

5 

 

 

Figure 1.2 Chemical structures of lithium salts and solvents in the electrolyte (a), and various additives (b) 

summarized from ref. 14. Cyclic carbonate solvents: ethylene carbonate (EC) and propylene carbonate (PC); linear 

carbonates: dimethyl carbonate (DMC), diethyl carbonate (DEC) and the asymmetric ethyl methyl carbonate 

(EMC). Additives include carbonate based: fluoroethylene carbonate (FEC), vinylene carbonate (VC), 

difluoroethylene carbonate (F2EC)15 and vinylene ethylene carbonate (VEC)16. Ether-based solvent: 1,3-

dioxolane (DOL); ester-based additive: succinic anhydride (SA)17; silane-based additives: monomethoxy 

trimethyl silane (MTMS), dimethoxy dimethyl silane (DMDMS) and trimethoxy methyl silane (TMMS).18 Boron-

based anion receptor additive: tris(pentafluorophenyl)borane, (TPFPB)19, for stabilizing LiPF6. And other Li salt 

additives: LiPO2F2, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(oxalato)borate (LiBOB) and 

lithium difluoro(oxalate)borate (LiDFOB). 

conforming the solid active material to the solid electrolyte interphase and maintaining the 

interfacial reactions during cycling.  

Solid electrolyte interphase 

The principle of SEI formation is illustrated in Figure 1.3. The intrinsic thermodynamic 

stability window of the electrolyte is determined by the energy separation between the lowest 

occupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) (denoted 

Eg in Figure 1.3) of the electrolyte. The open circuit voltage (OCV) of the cell is determined 

by the electrochemical potentials between the anode (µA) and the cathode (µC), which is 
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normally wider than Eg. During the first discharge process, electron flow in to the anode, 

pushing up the energy level of anode above the LUMO of the electrolyte to µA’ (Figure 1.3b). 

Thus, the electrons from the anode tend to reduce the electrolyte unless a passivation layer 

(SEI) creates a barrier for electron transfer. Similarly, when electrons are pulled out of the 

cathode, the potential of the cathode decreases to an energy level of µC’ below the HOMO that 

can oxidize the electrolyte. In this case, a cathode electrolyte interphase (CEI) forms to block 

electron transfer from the electrolyte to the cathode, thus preventing further oxidation of the 

electrolyte. The formation of SEI and CEI expands the stability window of the electrolyte, 

enabling the cell to operate in a kinetically stable environment.  

 

Figure 1.3 Electron energy diagram of a lithium ion battery cell (a) before and (b) after cycling. The Fermi energy 

levels of the anode and the cathode are denoted as µA and µC, respectively. Eg represents the thermodynamic 

stability window of the electrolyte. OCV is the open circuit voltage.  

1.2 Silicon anodes 

To increase the energy density further requires electrode materials with higher capacities and/or 

larger differences between the anode and the cathode electrochemical potentials. Silicon is one 

of the most promising anode materials because of its high capacity (3579 mAh/g for Si vs. 372 

mAh/g for graphite) and its relatively low operating voltage (0.4 V vs. Li+/Li). Other favourable 

features of Si include its earth-abundance, low environmental impact and the mature industrial 

infrastructure already available. Unfortunately, the lithiation of Si electrodes is accompanied 

by its large volume expansion (~300%, for the formation of Li3.75Si),20 which leads to 

pulverization for large Si particles (>150 nm) in the initial cycles. The large volume variation  
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Figure 1.4 Electrode structure and binder design for Si anodes. (a) Main failure modes for Si anodes. (b) General 

strategies for modifying active materials by using Si-C composite or SiOx. (c) Various binder concepts for Si 

anodes. SEI, solid-electrolyte interphase. Figure adapted from ref. 21,22. 

of the Si anode over long-term cycling results in delamination of the active material. Moreover, 

the continuous exposure of fresh Si surface during cycling causes uncontrolled SEI growth and 

poor cycling performance.5 These major degradation routes of the Si anode are summarized in 

Figure 1.4a. To date, various strategies have been employed to stabilize the Si anode that 

include 1) electrode structural engineering, 2) binder design and 3) a careful selection of 

compatible electrolyte formulations. 

1.2.1 Electrode structures 

A risk-reduction route to gradually improve the anode capacity is by using Si-C composite. 

Mixing Si with various carbon sources such as carbon nanotubes and/or graphene results in 

improved electronic conductivity of the Si electrode.23–27 Encapsulating Si within the carbon 

cage potentially avoids direct contact between the electrolyte and the Si surface (Figure 1.4b).28 

Though these hierarchal Si-C composites have been reported to significantly improve the cycle 

life of Si anodes, these delicate structures require lengthy synthesis steps and the Si-C 
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composite powder generally has poor tap density, rendering them unrealistic for industrial 

applications. Today, a low content of Si (< 5 %) is incorporated into the Si-C composite, thus 

it is necessary to reach low lithiation voltage to achieve the fully capacity of graphite (~0.05 V 

vs. Li+/Li). However, highly reactive lithium silicide (e.g. Li15Si4) forms in the low voltage 

region that exacerbates electrolyte reduction. 

The first commercialized Si-based material was silicon monoxide (SiO). SiO is currently added 

into the carbon-based anode at 2-5 % and its low usage reflects the limitations on current Si 

technology. SiO has a better cycle life than pure Si, which has been attributed to the buffering 

layer formed during the initial cycle (Figure 1.4b). The buffer matrix prevents direct contact 

between the highly reactive lithium silicide and the electrolyte, thus minimizing further 

electrolyte reduction.29 One drawback of SiO is its large irreversible capacity loss during the 

first cycle, necessitating a prelithiaiton step during fabrication to compensate for the capacity 

loss.  

1.2.2 Polymeric binder 

Practical electrodes are formed from a composite consisting of active material, conductive 

carbon, and polymeric binder as depicted in Figure 1.4c. The interactions between these 

components are critical for long-term cycling performance. Desired properties for the 

polymeric binder include 1) strong adhesion to the active material and the current collector, 2) 

low electrolyte uptake (to prevent solvent contact with the Si surface), and 3) high elasticity to 

accommodate the volume variations of Si during cycling.  

Conventional binders, such as PVDF used in graphite anodes, are not suitable for Si anodes. 

PVDF has weak Van der Waals interactions with the Si surface, and it swells in carbonate 

electrolytes, leading to poor electrochemical performance.30 Poly(carboxylic acid)-type 

polymer binders such as carboxyl methyl cellulose (CMC) and polyacrylic acid (PAA) have 

been reported to greatly enhance the cycle life of Si and other alloy-type anode materials.31 The 

carboxylic acid group potentially interacts with the hydroxyl groups on the Si surface in the 

form of hydrogen bonding or ion-dipole interactions, depending on the pH of the prepared 

electrode slurry.32 The pH also influences the conformation of the polymer. In neutral pH 

solvent, linear polymer is more stretched and is distributed more evenly within the composite 
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electrodes.33 However, CMC and PAA are all linear polymers with poor mechanical properties. 

Recently, a cross-linked PAA polymer with high elasticity has been synthesized that shows 

promising results, allowing micron-sized Si to be cycled with stable capacities for 400 cycles.34 

1.2.3 Electrolytes for Si anodes 

Apart from structural engineering and polymer binder design, one of the most cost-effective 

ways to improve the performance of the Si anode is to find a compatible electrolyte. For 

example, ether-based electrolytes such as 1,3-dioxolane (DOL) form a stable SEI on Si, 

however, the oxidation voltage of ether-based solvents is generally lower than alkyl carbonates 

resulting in severe oxidation when cycled at high voltage. Derivatives from alkyl carbonate-

based solvent such as fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are two of 

the most popular additives in LIBs. The electron-withdrawing group in FEC and the 

polymerizable double bond in VC make them more vulnerable to reduction. Their 

electrochemical reduction products and their reduction mechanism are the main focus of this 

thesis. Other additives for Si anodes are listed in Figure 1.2, which include siloxanes,18 lithium 

bis(oxalato)borate (LiBOB) and lithium difluoro(oxalate)borate (LiDFOB) salts.35  

1.3 Solid electrolyte interphase 

Much effort has been dedicated to understanding the nature of the SEI that forms on Si anodes, 

with a variety of techniques employed including FTIR,36,37 XPS,38–40 TOF-SIMS,41 SEM, 

TEM,42,43 EIS,44 Raman45 and NMR spectroscopy.46–49 Previously detected SEI components in 

the EC/DMC system include a combination of inorganic and organic species, such as LiF, 

LiOH, Li2CO3, ROCO2Li, ROLi and PEO-type oligomers or polymers. Of note, XPS 

measurements on the SEI using depth-profiling have shown that the SEI composition varies 

with the distance from the Si surface; the region near the electrode contains more inorganic Li 

salts, while the portion closest to the electrolyte at the surface has more organic species.38 The 

composition of SEI is likely dynamic and air-sensitive: its thickness and spatial arrangement 

may vary depending on the electrolyte formulations as well as the cycling conditions (e.g. 

cutoff-voltages, cycle number, temperature, etc.). 
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Figure 1.5 Degradation products in standard EC-based electrolyte and its influence on the composite electrode. 

(a-b) Major reduction products of EC. (c) Schematic showing microscale processes within the Si electrodes after 

cycling. A cross-section of the cycled composite electrode revealed by the FIB/SEM. Figure adapted from ref.48 

1.3.1 Understanding SEI in baseline electrolyte 

Fundamental studies have been performed to understand the SEI composition formed on the Si 

composite electrode in standard EC-based electrolytes (Figure 1.5). It is widely agreed that 

lithium ethylene decarbonate (LEDC) is an important component of the organic SEI that forms 

from two-electron reduction of EC.50,51 Other organic species such as lithium ethylene 

carbonate (LEC) and lithium butylene dicarboante (LBDC) have also been identified via 

detailed homonuclear 13C and heteronuclear 1H-13C NMR correlation experiments.47 Apart 

from the short chain oligomers, the major insoluble organic SEIs from EC are reported to be 

PEO-type polymers.48 Moreover, the SEI formation in the standard electrolyte correlates well 

with the increased tortuosity and pore clogging of the electrode as observed using focused ion 

beam and scanning electron microscopy, as illustrated in Figure 1.5c.48  With a thickening SEI, 

capacity fading is primarily attributed to the slow Li ion kinetics, since the increased electrode 

tortuosity severely limits Li ion diffusion through the electrode and thus uniform lithiation.  
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1.3.2 Understanding the role of additives 

 

Figure 1.6 Reduction products of FEC and VC proposed in the literature. (a) A Li ion conductive polyene-type 

cross-linked polymer derived from a four-electron reduction process of FEC proposed in ref 52 based on the 

observations from on-line electrochemical mass spectrometry. (b) A poly(VC) type polymer from the reduction 

of FEC and VC based on ssNMR data. 13C chemical shifts are assigned on the structures and coloured in blue. 

Structure taken from ref.41 

Among the numerous possible electrolyte additives, FEC and VC are two of the most widely 

used and have been shown to improve the capacity retention of Si anodes and other types of 

electrode materials.9,53 However, the mechanisms by which these additives modify the nature 

of the SEI are not well understood due to the inherent difficulties associated with characterizing 

disordered interfacial structures. Characterization of the few nanometer-thick SEI layer is 

further convoluted by the fact that the material is usually air-sensitive and amorphous, the 

former presenting challenges in sample preparation and the latter with structural assignment 

with, for example, diffraction-based techniques. Despite these difficulties, electrolyte 

breakdown products in the presence of FEC have been characterized by a variety of 

spectroscopic and modelling approaches to provide insight into the chemical composition of 

the SEI on Si anodes.  

Organic SEI from FEC/VC: poly(VC) or polyene? 

The organic SEI derived from VC was characterized by Ota et al., who used solution NMR 

spectroscopy and gas chromatography to prove that poly(VC)-type species were formed on 

graphite cycled in pure VC electrolyte.46 The formation of poly(VC) has been further 

confirmed by Ouatani et al., who directly synthesized poly(VC) via radical polymerization and 

compared the XPS valence spectra of synthetic poly(VC) with the SEI formed on graphite.54 
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Moving from graphite to Si, the addition of VC also enhances the electrochemical performance 

for Si, and its beneficial effect is generally attributed to the polymeric species that are formed.55 

Though poly(VC) is often mentioned in the literature, there is no clear picture about its 

structural details nor an estimation of its molecular weight.  

Fourier transform infrared (FTIR) spectroscopy suggested that FEC likely transforms to VC 

through HF elimination and subsequently polymerises to form poly(VC)-type species.36 Strong 

evidence for the poly(VC) structure comes from a study reported by Michan et al., who used 

solid-state NMR (ssNMR) to analyse the precipitate formed by chemically reducing FEC with 

lithium naphthalenide.49 A 13C NMR resonance at 100 ppm, which had not been previously 

observed in the decomposition products of EC, was assigned to an acetal carbon (a protonated 

carbon environment adjacent to two oxygen groups), and represents a potential cross-linking 

unit in poly(VC) as shown in Figure 1.6b. Of note, acetal carbons were observed in pioneering 

NMR studies of the SEI formed on graphite by Leifer et al.56 However, some of the resonances 

in Michan et al.’s work49 were partially obscured by the presence of excess lithium 

naphthalenide in the precipitate which complicated further analysis. Perhaps more importantly, 

the chemically induced FEC-polymer may differ from the organic SEI generated through 

electrochemical reduction, necessitating further studies on SEI decomposition products formed 

in battery materials over the course of cycling. 

In contrast to poly(VC), polyene is proposed to form from the reduction of FEC mainly based 

on elemental analysis techniques and mass spectrometry.57 Nakai et al. studied the reduction 

of FEC on Si by X-ray photoelectron spectroscopy (XPS) and time of flight–secondary ion 

mass spectrometry (ToF-SIMS)  and found evidence for oxygen-deficient species such as 

polyene.41  The presence of low-oxygen content polyenes was further supported by energy-

dispersive X-ray spectroscopy (EDS) and on-line electrochemical mass spectrometry (OEMS) 

performed during the reduction of FEC-based electrolyte on Si anodes.13 For example, Jung et 

al. studied the Si anode with 1 M LiPF6 in EC: EMC (3:7 wt/wt) + 5 % wt FEC electrolyte by 

OEMS and observed the evolution of CO2, H2 and C2H4 gases during the electrochemical 

decomposition of FEC.52 The authors assumed that the origin of the H2 gases comes from the 

reduction of FEC, and proposed a four-electron reduction mechanism for FEC leading to the 

formation of polyene as shown in Figure 1.6a. However, Metzger et al. from the same group 
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showed that the H2 evolution stems solely from the reduction of the trace amount of water in 

the graphite/Li half-cell, since the detected amount of H2 corresponds well to the typical H2O 

contamination in carbonate electrolyte and H2 does not increase during cycling once all H2O is 

reduced.58 The dispute in the organic SEI chemical structure requires more thorough studies in 

this area. 

Interphase between SEI and Si: fluorosilicate or siloxanes? 

During cycling, the Si surface can be modified by reacting with electrolyte. XPS work reported 

by Philippe et al. suggested that Si can be oxidized during cycling, forming lithium silicates 

and fluorosilicates in the presence of LiPF6.
16 Nakai et al. suggested that FEC can protect the 

Si surface against electrolyte oxidation, probably due to the formation of a passivation layer on 

Si surface.41 A recent detailed XPS study by Schroder concluded that the reduction of FEC 

leads to the formation of a kinetically stable SEI comprising predominately inorganic lithium 

fluoride and lithium oxide, which improves lithiation kinetics.40 

The nature of the interactions between the SEI species and the Si surface are critical for the 

stability of the SEI. However, the surface structures of cycled Si remain elusive due to the 

inherent difficulty in characterizing the buried interphase. Despite these difficulties, XPS 

studies have reported that, in the cycled Si electrode, the Si 2p peak corresponding to SiO2 

shifts to a lower binding energy, indicating that SiO2 may be reduced due to alloying with Li 

or the formation of a Si-C species.60–62 However, detailed information concerning the nature of 

the chemical species and structure of the cycled Si surface is still lacking. 

1.3.3 Ionic and electronic properties of SEI 

Apart from the chemical structures, little is known about the ionic and electronic properties of 

the interphase. It is well accepted that an ideal SEI should be Li ion conductive to facilitate the 

Li ion transport for high power applications. Other requirements of the SEI include that it is 

electronically insulating (i.e. prevents electron tunnelling) and exhibits low solvent permeation, 

so that fewer solvent molecules would be reduced as illustrated in Figure 1.7a.  
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Figure 1.7 Properties of SEI. (a) Schematic showing SEI should be Li ion conductive, but prevent solvent 

permeation or electron tunnelling to create new SEI. (b) Mechanism of Li ion transport in the SEI film.63 (c) 

Schematic of the Li ion transfer steps at the graphite/electrode interphase: the desolvation process is more 

energetically demanding than the diffusion of bare Li ions through the SEI.44 

Lu and Harris were the first to measure the Li ion self-diffusion process in the SEI by using 6Li 

and 7Li isotope labelling.63 The SEI was first formed using 6LiCl salt and was subsequently 

soaked in bulk electrolyte containing natural abundant 7Li nuclei. The Li+ self-diffusion process 

is reflected by the ratio of 6Li/7Li measured by SIMS across the SEI (Figure 1.7b). A two-phase 

Li ion transport process is verified: Li+ ions first diffuse through the porous organic SEI layer, 

then migrate through the dense inorganic layer via interstitial defects.63 

In a working cell, the Li ion diffusion process at the electrolyte/electrode interphase is more 

complicated. The Li ions should first desolvate at the SEI-electrolyte interphase; the bare Li 

ions, then, diffuse through the SEI. For the graphite anode, it is difficult to distinguish between 

these two processes and the overall activation energy barrier (Ea) for them was found to be 

50−100 kJ/mol by electrochemical impedance spectroscopy (EIS) as shown in Figure 1.7c.9 To 

elucidate which is the rate limiting step, Xu et al. used a nominally SEI-free LTO anode and 
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measured its Ea under the same condition as that for graphite and found it to be ~ 50 kJ/mol. 

The similar Ea values for a SEI-free LTO anode and a SEI-containing graphite anode suggests 

that it is the desolvation step, rather than the step of Li+ diffusion through the SEI, that is more 

energetically demanding. Nevertheless, the authors also acknowledged that this conclusion 

applies to the graphite anode under ideal conditions, but it may change if a denser and more 

resistive SEI forms on alloy-type anodes. In general, the selection of solvent mixture alters the 

coordination shell of the Li ions, and it further influences the desolvation process, thereby 

affecting the rate performance of the battery. 

To probe the role of electronic tunnelling through the SEI, an indirect approach has been 

employed where redox active ferrocene is injected into a cycled plastic bag cell.64 After 

injection, ferrocene diffuses to the electrode surface to form ferrocenium if the SEI is not 

completely formed and electron tunnelling occurs. Alternatively, if the porosity of the SEI is 

large, ferrocenes easily diffuse to the electrode surface, close enough for electron-transfer to 

take place. By monitoring the evolution of the open circuit voltage and the cell impedance, 

important information can thus be obtained regarding the completeness of the SEI and the 

reduction kinetics within the SEI.  

1.3.4 Artificial interphase  

While sacrificial electrolyte additives such as FEC and VC can form a relatively stable SEI, 

unwanted side products such as CO2 and H2 gases evolve from the SEI-forming process, which 

are detrimental for commercial bag cells. As the additives are continuously decomposed, the 

depletion of the additives is reported to result in sudden cell failures.52 The consumption of 

additives would be more severe in commercial LIBs as much less electrolyte volume is used. 

Therefore, artificial SEIs have been designed with the aim of protecting Si anodes with fewer 

side-effects.  

Pioneering work by Piper et al. reported a polymer-coating method that results in superior 

electrochemical performance for Si anodes.65,68,69 The Si nanoparticles were first mixed with 

polyacrylonitrile (PAN) solution to form conformal coatings. The slurry was then cast onto a 

Cu current collector and subjected to heat treatment to form the cyclic-PAN coating layer. The 

pyridine-type conjugated polymer offers both high Li ionic and electronic conductivities and it  
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Figure 1.8 Examples for artificial SEI designs. Schematic of the general strategies for SEI studies (middle). (a) 

Coating Si nanoparticle with cyclic poly(acrylonitrile).65 (b) Solid polymer electrolyte with high Li ion 

conductivity.66 (c) A highly elastic binder for Si anode: the stress-strain curve of polyacrylic acid (PAA) and cross-

linked polyrotaxane-PAA.34 (d) Artificial SEI with covalent bond to the Si particle.67  

is used as the binder as well as the conductive matrix for the Si electrode. However, it is still 

unclear how the cyclic-PAN stabilizes the Si particles.  

With respect to the Li ion conductivity, knowledge accumulated in the solid polymer 

electrolytes (SPE) area is relevant for designing an artificial SEI. A novel SPE consisting of 

cross-linked polyethylene-poly(ethylene oxide) was reported by Khurana et al.70 Its structure 

is shown in Figure 1.8b with the PEO part providing Li ion conductivity and PE part offering 

mechanical stability. With optimized chain length and the weight percentage of plasticizer, the 

SPE exhibits high ionic conductivity (>1.0 × 10−4 S/cm) at room temperature. Moreover, 

though this SPE has a low modulus, it shows excellent resistance to Li dendrite growth, which 
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is unexpected based on the widespread belief that only mechanically strong SPE suppresses Li 

dendrite formation. 

A mechanically flexible SEI is desirable for alloy-type anode materials so that large volume 

variations of the electrode can be accommodated. The highly elastic polymeric binder 

illustrated in Figure 1.8c is a recent breakthrough in this field. By incorporating polyrotaxanes 

in the conventional linear polyacrylic acid (PAA), the mechanical properties of the polymer 

are altered to be highly elastic. The sliding ring in the polyrotaxane acts like a pulley to lower 

the stress of an applied force. This polymer binder even enables stable cycling of micron-size 

Si without severe pulverization.34  

Apart from the desirable properties mentioned above, the interface between the SEI and the 

electrode is crucial for charge transfer. Gao et al. reported an artificial SEI consisting of 

PEO − VC type oligomers that are anchored on the SiNP via click chemistry.67,71 The authors 

emphasized that the covalent bonding between the SEI and Si nanoparticles helps to maintain 

stable electrochemical performance. Such interfacial engineering is also relevant for solid 

electrolytes, as most ionic or electronic resistance comes from the grain boundaries and the 

interfacial region in these materials. 

1.4 Outline of the thesis 

In this thesis, the main focus is to understand the chemical compositions of the SEI formed on 

the Si anode, and the working mechanisms of electrolyte additives: FEC and VC. Various NMR 

techniques have been employed to elucidate the structures of the SEI. The relevant 

methodologies are described in detail in Chapter 2.  

In Chapter 3, the SEI components formed in a standard electrolyte with 10 vol % FEC were 

thoroughly analysed. Based on both the soluble and insoluble organic and inorganic species 

observed, a decomposition mechanism of FEC is proposed. With the presence of FEC, a cross-

linked polymer forms and is identified as a key component for Si electrode stability.  

To avoid interactions between different solvents, pure FEC and VC electrolytes with 1 M LiPF6 

salt were prepared. The SEI derived from these electrolytes were characterized in Chapter 4. 
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The cross-linked polymer has been verified using 13C-homonuclear correlation spectroscopy 

and the percentages of each component revealed by quantitative NMR. Furthermore, the 

interfacial region between the SEI and Si as a function of cycling was first revealed by 29Si 

DNP NMR and organosiloxanes were found to form on the Si surface. 

In Chapter 5, the chemical structure of the electrochemical degradation products of EC are 

resolved by a comprehensive NMR study. Key oligomers are identified, and a failure mode 

when cycling Si in additive-free-EC based electrolyte is proposed. Finally, conclusion and 

future directions in artificial SEI and additive designs are presented in Chapter 6.  
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Chapter 2 Methodology 

2.1 Chemical vapor deposition (CVD)  

Nanowires used in this work are synthesized using a bottom-up method: chemical vapor 

deposition (CVD). In CVD growth, chemical vapor such as silane (SiH4) is catalytically 

decomposed on metal nanoparticles to form liquid alloy droplets, which then precipitate along 

certain directions to form nanowires. The growth mechanism is known as the vapor-liquid-

solid (VLS) mechanism and was proposed by Wagner in the 1960s72 based on two 

observations: (1) certain metal impurities are prerequisite for silicon nanowire (SiNW) growth 

and (2) small nanoparticles are located at the tip of the SiNW. A schematic of the VLS growth 

is shown in Figure 2.1a. The growth recipe used in this work is illustrated in Figure 2.1b. The 

sample should be heated up above the eutectic point for the Au−Si system (364 ˚C), then the 

continuous feeding of Si source into Au−Si alloy leads to the supersaturation and SiNW 

growth.73 A typical growth temperature is set to 500–570 ˚C for a moderate growth rate as 

higher temperature induces severe side reactions between the SiNW and the substrate.  

A homemade cold-wall CVD system used in this work is shown in Figure 2.2. Several 

parameters such as vacuum level and vapor flow rate are important for the growth. A high 

vacuum atmosphere (~10-8 mbar) is achieved by a turbomolecular pump. The flow of gases in 

the reactor is controlled by mass-flow controllers (MFC). Finally, the growth temperature, the 

most crucial parameter, is controlled by the DC current and is monitored by an infrared 

pyrometer based on black-body emissivity.  

In general, CVD is a versatile tool to synthesize SiNWs with varied chemical structures and 

properties. For example, n-type SiNWs with increased electronic conductivity can be 

synthesized using a mixture of SiH4 and PH3 gases.74 Heterostructures can also be synthesized  
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Figure 2.1 Schematic of the VLS growth mechanism for SiNWs (a), adapted from ref 75. (b) A growth recipe used 

in this work. (c) Morphologies of SiNWs taken by SEM and TEM. 

 

Figure 2.2 Chemical vapor deposition reactor for growth of SiNWs. 
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by increasing the growth temperature: SiH4 decomposes at high temperature to form 

amorphous Si (a-Si) on the wall of crystalline SiNWs (c-Si). This side reaction has been utilized 

to form an a-Si/c-Si ‘core-shell’ structure, which has been reported to have improved 

electrochemical performance in lithium ion batteries.76 

2.2 Electrochemistry 

For testing cycling performance, half-cells consisting of the material of interest (Si in this case) 

and Li metal are commonly employed. In the half-cells, a large amount of electrolyte and 

excess Li metal are used to ensure that the voltage change and the cycle life reflect the 

properties of the electrode materials. For a given material, two parameters are important: the 

theoretical specific capacity, noted as Cth (in mAh/g), and the average cycling voltage vs. 

Li+/Li, as the energy density of the cell is determined by the product of cell capacity and the 

voltage difference between cathode and anode: (Energy density) = (Cell Capacity) × 

(Voltage). Cth is a measure of the ability of a material to store Li ions per unit mass: 𝐶𝑡ℎ =

 
∆𝑥∙𝐹

𝑀
 ×  

1000

3600
, where ∆𝑥 is the number of Li ions (in moles) that react with one mole of electrode 

material, F is the Faraday constant, and M is the molecular weight of the active material.  

Galvanostatic cycling (constant current with voltage cut-offs) is routinely used to test half-

cells. The cycling rate is expressed using the C rate: C/n means a full (dis)charge of the cell to 

its theoretical capacity in n hours. By varying the cycling rate, kinetic information about 

electrochemical reactions can be obtained. Moreover, the voltage curves are useful for 

understanding the structural changes of the electrodes. 

2.2.1 Galvanostatic voltage-capacity curve 

As mentioned above, the voltage-capacity curve of the half-cell reflects the structural change 

and specific chemical reactions within the electrode material. A flat voltage plateau indicates 

a solid-solution reaction (i.e. single-phase reaction), whereas, a sloping voltage profile infers a 

two-phase reaction. The reason behind it is explained in the equations listed in Table 2.1. When 

the lithium ions are uniformly inserted or removed from the host without large structural 
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changes, a solid solution reaction takes place, where x in LixSi is a variable. Thus, the chemical 

potential of the phase varies continuously with lithium content and the voltage of the cell also 

changes as the reaction proceeds. Hence, the voltage-capacity curve for the solid-solution 

reaction is represented by a slope. If a two-phase reaction occurs, the chemical potentials of 

the products remain the same, as the Li compositions in these two phases are fixed. Therefore, 

a constant cell voltage or  a plateau will be observed in the voltage-capacity curve. 

Table 2.1 Summary of the thermodynamics of the solid solution and two-phase reaction in a cell. 

solid-solution reaction 

(x varies) 

two-phase reaction 

(x and y are fixed) 

𝑥 𝐿𝑖+ +  𝑥 𝑒− + 𝑆𝑖 → 𝐿𝑖𝑥𝑆𝑖 𝑦 𝐿𝑖+ +  𝑦 𝑒− + 𝐿𝑖𝑥𝑆𝑖 → 𝐿𝑖𝑥+𝑦𝑆𝑖 

∆𝐺𝑟
° = ∆𝐺𝑓

°(𝐿𝑖𝑥𝑆𝑖) ∆𝐺𝑟
° = ∆𝐺𝑓

°(𝐿𝑖𝑥+𝑦𝑆𝑖) − ∆𝐺𝑓
°(𝐿𝑖𝑥𝑆𝑖) 

E𝑐𝑒𝑙𝑙
° =

∆𝐺𝑓
°(𝐿𝑖𝑥𝑆𝑖)

𝑥𝐹
 E𝑐𝑒𝑙𝑙

° =
∆𝐺𝑟

°

𝑦𝐹
 

 

2.2.2 Differential Capacity Analysis  

To clearly identify the voltage plateaus, it is common to take the first differentiation of the 

voltage-capacity plot to generate the dQ/dV plot, where the peak height indicates the flatness 

of the plateau and the peak area is a measure of the plateau’s capacity. A dQ/dV plot can also 

be used to ascertain some phase transformation. For example, Si can be fully lithiated to form 

c-Li15Si4. This highly reactive phase, c-Li15Si4, persists during the delithiation process and 

leads to a two-phase reaction, which is different from the delithiation of amorphous LixSi. Thus, 

a sharp peak ~450 mV in the dQ/dV plot (corresponding to a two-phase reaction) is a good 

indication that c-Li15Si4 forms on discharge. Understanding the phase transformation is useful 

to rationalize the capacity fading upon cycling.  
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2.3 Nuclear magnetic resonance (NMR)  

In this work, NMR is heavily used to understand the molecular structure of amorphous species. 

Since its discovery by Rabi, Bloch, and Purcell in the 1940s, NMR has become an 

indispensable tool for chemists to reveal the chemical and structural information of solid and 

liquid phase samples. Solution NMR techniques are routinely used in organic chemistry and 

biochemistry to solve chemical structures as well as to understand the dynamics of small 

molecules. For insoluble materials, solid-state NMR (ssNMR) has an advantage in that it 

provides atomistic information about amorphous species, which cannot be easily obtained by 

diffraction-based techniques. Though ssNMR suffers from sensitivity issues when probing 

nuclei such as 13C and 29Si, recent progress in hyperpolarization techniques shows promising 

routes to overcome this; dynamic nuclear polarization (DNP)77 is one of the most promising 

methods and has been successfully applied in materials systems including catalysts, perovskites 

and thin-film polymers.78 A short introduction to the principles of NMR and DNP is given here, 

with the focus on the spin interactions and specific pulse sequences relevant to the work 

undertaken in this thesis; excellent reference books with further details about NMR can be 

found elsewhere.79–81  

2.3.1 NMR basics 

Most nuclei possess an intrinsic spin, which is described by the nuclear spin quantum number 

(I) that takes integer or half-integer values. For a spin-I nucleus, there exist 2I+1 spin states: -

I, -I+1, …, +I. In the presence of an external magnetic field B0, the energy level of the spin 

states splits due to the Zeeman interaction between B0 and the magnetic dipole moment. The 

splitting energy (Δ𝐸) between consecutive spin sates is given by: 

 Δ𝐸 = ℏ|𝜔0| =  −ℏ𝛾𝐼𝐵0 (2.1) 

where 𝛾𝐼 is the gyromagnetic ratio, ℏ is the reduced Planck’s constant, and 𝜔0 = −𝛾𝐼𝐵0 is the 

so-called Larmor frequency.  

In the microscopic view, these polarized spins rotate around the magnetic field at the Larmor 

frequency (Figure 2.3a). For common nuclei subject to modern magnetic field strengths 
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(B0 = 5–20 T), 𝜔0 lies within the radio frequency region (~108 Hz). For NMR-active nuclei in 

a macroscopic sample at thermal equilibrium, nuclear spins occupy energy levels according to 

the Boltzmann distribution. The equilibrium population difference gives rise to a bulk nuclear 

magnetization, which can be represented by a vector, M, aligned with the z-axis.  

 

Figure 2.3 (a) Vector model representation of the bulk magnetization M in an external B0 field. Nuclear spins 

align (spin up) or against (spin down) the applied field, creating a Zeeman energy splitting. (b) Application of a 

90˚ pulse along x-axis (viewed from the rotating frame, denoted as xR). The rf pulse creates a static B1 field along 

the x-axis and B0 is reduced to ∆B. (c) Free precession of the magnetization within the xy-plane in the rotating 

frame. 

In the simplest NMR experiment, a short radio frequency (rf) pulse is applied near the Larmor 

frequency and the rf power determines the nutation frequency of the spins around the applied 

rf axis (in the range of ~104 Hz). In the vector model under a rotating frame of reference (at the 

Larmor frequency), the rf pulse produces a static field 𝐵1 that causes nutation of M about 𝐵1 

at a frequency of 𝜔1 = −𝛾𝐵1  for the duration of the pulse, 𝑡𝑝  (Figure 2.3b). The rf pulse 

(denoted as 𝛽𝜙) is characterized by its flip angle (𝛽 = 𝜔1𝑡𝑝) and its phase (𝜙). The pulse angle 

is the nutation angle for M, and the phase indicates the direction along which 𝐵1 lies. After a 

90x˚ pulse, M is nutated to the -y axis in the transverse (xy) plane, and its precession about the 

z-axis is observed in the rotating frame determined by the reduced field (∆B). Note that in a 

rotating frame, the B0 field is reduced to ∆𝐵 =
Ω

𝛾
= (𝜔𝑟𝑓 − 𝜔𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔,𝑓𝑟𝑎𝑚𝑒)/𝛾, where Ω is the 

difference (“offset”) between the Larmor frequency and the frequency of the chosen rotating 

frame (Figure 2.3c) which arises due to spin interactions that modify the Larmor frequency 

(described later). The precession of M is recorded by a quadrature detector in the xy-plane. The 

recorded complex-valued data as a function of time is known as the free-induction decay (FID). 

The Fourier transform (FT) of the FID translates the time-domain information to a frequency-
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domain signal. The experiment is then repeated multiple times to perform signal averaging so 

that a spectrum with improved signal-to-noise ratio can be obtained.  

2.3.2 Spin interactions 

Apart from the large Zeeman interaction (~ 107–109 Hz), additional spin interactions lead to 

subtle shifts in the energy splitting of the spin states, which is the source of the local structural 

sensitivity of NMR. For paramagnetic materials, unpaired electron spins interact with nuclear 

spins (known as the hyperfine interaction, with a strength of 102–105 Hz), leading to large NMR 

shifts. For metals, Knight shifts (103–106 Hz) are induced by the coupling of nuclei with 

unpaired conduction electrons. Nuclei with I ≥ 1 (such as 7Li, 23Na) have additional quadrupole 

coupling interactions (103–107 Hz), which arise from the coupling of the nuclear quadrupolar 

moment and the electric field gradient (EFG), if present, due to the asymmetry of the local 

charge distribution. For diamagnetic samples, three important spin interactions are present: (1) 

the chemical shift (102–105 Hz), which arises from electron shielding around the nucleus, (2) 

dipolar coupling (103–105 Hz) and (3) scalar coupling (1–103 Hz) between 

homo-/hetero-nuclei, which are mediated through space and through bond, respectively. In this 

work, the SEI mainly consists of diamagnetic species (with 1H, 13C, 7Li and 19F as the important 

NMR-active nuclei) and the three interactions mentioned above are explained in detail in the 

following sections. 

2.3.3 Chemical shift 

The chemical shift (CS) interaction is known to be the dominant shift mechanism in 

diamagnetic systems. Paired diamagnetic electrons around a nucleus are capable of generating 

a magnetic field, B’, which is proportional to B0 but in the opposite direction, thus shielding 

the nucleus from the external magnetic field. While shielding occurs for a single nucleus, 

deshielding can happen within a molecule, where the B’ fields generated by different nuclei 

undergo counter interactions with each other. Since the electron distribution around a nucleus 

is rarely a sphere, a shielding tensor is used to describe the shielding effect. The tensor contains 

both isotropic (i.e. orientation-independent for the molecule with respect to the external B0 

field) and anisotropic parts (i.e. orientation-dependent). In solution, the rapid tumbling motion 
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of the molecule averages the anisotropic component to zero on the NMR timescale; however, 

in solid-state NMR of powder samples, the chemical shift anisotropy (CSA) leads to a broad 

peak containing a distribution of chemical shifts. Though the resolution is reduced, the powder 

pattern line shape potentially provides important information about the local structure and 

symmetry around the nucleus.  

Heavier atoms tend to have more low-lying energy states than lighter atoms, leading to a larger 

chemical shift range for heavy isotopes. For example, the common chemical shift range for 1H 

is only 10 ppm, while for 13C it is around 200 ppm. Moreover, the chemical shift of a given 

nucleus correlates with the electronegativity of the neighboring functional groups. Nuclei 

bonded to electron-withdrawing groups are less shielded and have a higher chemical shift. 

These empirical rules are often used for spectral assignments in this thesis.  

2.3.4 Dipole-dipole coupling (through space) 

Direct dipole-dipole (DD) coupling refers to the interaction between two nuclei through space 

without involving the electron clouds. The through-space interaction can be easily rationalized: 

a nuclear spin is intrinsically a magnet that generates a magnetic field surrounding itself; the 

second nuclear spin interacts with this magnetic field and this interaction depends on the 

distance between the two spins as well as their orientations in the magnetic field. The 

Hamiltonian for dipolar coupling between two spins I and S separated by a distance 𝑟𝐼𝑆 is 

expressed as:  

 
ℋ̂𝐷𝐷 = 𝑑𝐼𝑆  (

𝑰 ∙ 𝑺

𝑟𝐼𝑆
3 − 3

(𝑰 ∙ 𝒓)(𝑺 ∙ 𝒓)

𝑟𝐼𝑆
5 ) 

(2.2) 

where the vector r is a line joining the nuclear magnetic dipoles moment I and S, and 𝑑𝐼𝑆 is 

the dipolar coupling constant that is given by:  

 
 𝑑𝐼𝑆 = −

1

4𝜋

𝛾𝐼𝛾𝑆ℏ

𝑟𝐼𝑆
3  

(2.3) 

The dipolar Hamiltonian can be expressed in spherical polar coordinates in the rotating frame, 

where we effectively observe the spins in an NMR experiment. During the frame 
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transformation, both time-dependent and time-independent terms are generated. A good 

approximation is obtained by preserving the time-independent terms to obtain the so-called 

first-order average Hamiltonian. In this simplified form, the homonuclear dipolar coupling is 

given by:  

 
ℋ̂𝐷𝐷
ℎ𝑜𝑚𝑜 = 𝑑𝐼𝑆(3𝑐𝑜𝑠

2Θ𝐼𝑆 − 1) (𝐼𝑧𝑆𝑧 −
1

2
(𝐼 𝑥𝑆𝑥 + 𝐼𝑦𝑆𝑦)) 

(2.4) 

where Θ𝐼𝑆 is the angle between the vector r that joins the spins I and S and the external B0 

field. Note that the hats above the operators I and S are omitted here to simplify the notation. 

For heteronuclear spin pairs, the magnetic field generated by one spin (I) is far off from the 

resonance frequency of other spins (S); therefore, some interactions can be omitted. The 

heteronuclear dipolar coupling Hamiltonian is truncated further and is given by:  

 ℋ̂𝐷𝐷
ℎ𝑒𝑡𝑒𝑟𝑜 = 𝑑𝐼𝑆(3𝑐𝑜𝑠

2Θ𝐼𝑆 − 1)𝐼𝑧𝑆𝑧 (2.5) 

In a liquid, the direct dipole-dipole coupling between nuclear spins averages to zero, however 

in a solid sample this interaction cannot be ignored. For high-𝛾 nuclei that are close in space, 

such as 1H and 19F, the strong homonuclear dipolar interaction can significantly broaden the 

spectral lines. Magic-angle spinning and dipolar decoupling are essential techniques to 

minimize this interaction in high-resolution ssNMR spectra. For two dilute spin-half nuclei 

with heteronuclear dipolar coupling, the line-broadening effect is absent, but its powder NMR 

line shape has a horn-like pattern, also known as a Pake doublet, from which the heteronuclear 

dipolar constant can be derived and internuclear distances can be determined.  

2.3.5 J-coupling (through bond) 

Indirect dipole-dipole coupling, also known as J-coupling or scalar coupling, refers to the 

coupling between two nuclei that are mediated by their bonding electrons. Because of the Pauli 

exclusion principle, the two electron spins in a bonding orbital are paired with opposite values 

of the spin quantum number and exist in an equal mixture of two states: an ‘up-down’ state and 

a ‘down-up’ state. If a nuclear spin is now placed close to one electron with its magnetic 

moment pointing in the same directions as that of the electron, one electron spin state will be 

slightly favoured over the other state. Therefore, the electron spin distribution is slightly shifted 
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by the presence of the nuclear spin, with electrons close to the nucleus polarized in the same 

direction, while other electrons distant from the nucleus are polarized in the opposite way. The 

second nucleus that is bound to the first nucleus with shared electron pairs thus feels a non-

zero magnetic field and this field can be reversed if the magnetic moment of the first nucleus 

changes. In this way, the two nuclei are indirectly coupled to each other via their interactions 

with the bonding electrons.  

J-coupling patterns in 1H NMR provide useful information about the spin system, whereas 13C 

solution NMR is normally 1H decoupled for simplicity in interpreting the spectra. Unlike 

solution NMR, J-coupling is rarely observed in solid-state NMR spectra as it is typically an 

order of magnitude smaller than other interactions. However, transfer of magnetization via this 

interaction can be used to probe chemical bond connectivity, as J-coupling acts exclusively 

through regions of shared electron density (e.g. covalent bonding and hydrogen bonding). The 

2D correlation experiments in solution NMR which are used in this work are mainly based 

upon the J-coupling interaction.  

2.4 NMR experiments 

In this section the basic principles of 1D NMR and 2D homonuclear and heteronuclear 

correlations experiments are summarized. Two-spin systems with J-coupling are considered 

here. First, the basic product operators for two-spin systems are introduced, then these 

operators are used to rationalize the pulse sequences used for 1D and 2D NMR experiments. 

As will be seen later, spin states can be manipulated by rf pulses so that magnetizations can be 

transferred between coupled spins. By selectively observing the J-coupled systems in a 

molecule, it can be possible to assign the network of the molecule unambiguously.  

2.4.1 Spin operators 

For spin-½ nuclei, the x, y and z components of the magnetization are represented by the spin 

angular operators Ix, Iy and Iz, respectively. At equilibrium, the nuclei possess an Iz 

magnetization aligned with the B0 field. For an uncoupled single spin, only transverse 

magnetization (Ix, Iy) is observable in an NMR experiment. For a two-spin system with  
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Figure 2.4 Product operators for two spin system (left). Example of in-phase, anti-phase and multi-quantum 

operators (middle). Diagrams for determining the result of rotating in-phase operators about x, y or z axis under 

a 90˚ pulse (right, blue circles), and effect of the J-coupling on in-phase and anti-phase operators under free 

precession (right, red circles).  

J-coupling, there are 15 product operators as shown in Figure 2.4, left. Among them, only 

operators containing one transverse magnetization (also known as single quantum coherence) 

are observable, whereas multiple-quantum operators are not directly observable. For example, 

I1x and 2I1xI2z both contain the transverse magnetisation on the first spin and they are thus 

observable. The difference between these two operators is that I1x is an in-phase operator that 

leads to a doublet for the first spin with the same sign, whereas 2I1xI2z represents anti-phase 

magnetization that gives doublets containing opposite signs for the first spin (shown in Figure 

2.4, middle).  

An NMR experiment comprises rf pulses and the various delays between them. The effect of a 

rf pulse is to rotate the magnetization about x, y or z axis. The rotation direction induced by a 

90˚ pulse is summarized in the blue circles in Figure 2.4, right. Since only hard pulses are 

considered here, we assume that the effect of nutation is nuclei-specific. In other words, 

heteronuclei will not be affected by an on-resonance rf pulse. 

During the free precession period, spins rotate around the z-axis. For an uncoupled single spin, 

its Hamiltonian is given by 𝐻̂𝑓𝑟𝑒𝑒 = Ω𝐼𝑧 , where Ω is the offset of the spin as illustrated in 

Figure 2.3c. For a J-coupled two spin system, the Hamiltonian under free evolution contains 

an extra J-coupling term and is written below: 

 𝐻̂𝑓𝑟𝑒𝑒,𝑡𝑤𝑜 𝑠𝑝𝑖𝑛𝑠 = Ω1𝐼1𝑧 +Ω2𝐼𝑧2 + 2πJ12𝐼1𝑧𝐼2𝑧 (2.6) 
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where J12 is the scalar coupling constant between spins 1 and 2. Evolution under coupling 

renders the interconversion between the in-phase and anti-phase terms as illustrated in the red 

circles in Figure 2.4, right. For example, after evolving freely after time t, the in-phase 

magnetization Ix becomes cos(πJ12t)I1x + sin(πJ12t) 2I1yI2z, which contains its original operator 

and the newly generated anti-phase term 2I1yI2z. This calculation is also displayed in Figure 2.5 

as step 2 to 3. By setting the evolution time to be t = 1/(2J12), the in-phase term is converted to 

a pure anti-phase term (highlighted with a red triangle in Figure 2.5). Neglecting the evolution 

of offset magnetization, it is clear that anti-phase terms can be generated in a coupled spin 

system by a single pulse and a proper delay time.  

2.4.2 Spin echo 

One basic NMR pulse sequence is the spin echo, which comprises a 90˚ pulse and a 180˚ pulse 

separated by two equal free precession periods prior to the acquisition of the FID. In the vector 

model of this pulse sequence, the Iz magnetization is first rotated to the -y axis after the 90˚x 

pulse, and dephasing then takes place during the free evolution period. The subsequent 180˚x 

pulse inverts the magnetization back towards the +y axis. After the same evolution period, only 

the coherent magnetization, such as the offset magnetization, is refocused. Moreover, in the 

spin-echo pulse sequence, the FID can be acquired starting from the echo top, and so the 

resulting NMR spectrum has a flatter baseline and fewer artifacts than a single pulse 

experiment. 

The above analysis performed in the vector model concludes that the spin echo sequence 

refocuses the offset magnetization, but this does not consider the effect of coupling between 

spins. Omitting the effect of offset, the product operator analysis of the pulse sequence for a 

coupled two-spin system is given in Figure 2.5. The analysis prior to the 180˚x pulse is identical 

to that of the single pulse experiment. The application of the 180x˚ pulse does not affect the 

cos(πJ12 τ)I1x term in step 3, therefore, only the anti-phase term sin(πJ12 τ)I1y I2z is considered 

in step 4. The 180x˚ pulse inverts the signs of both spins 1 and 2 (e.g. from y to -y for spin 1 

and from z to -z for spin 2, according to the pulse effect illustrated by the blue circles in Figure 

2.4). Thus, the overall product operator remains unchanged. In other words, the spin-echo 

sequence is equivalent to a single pulse followed by a free evolution time of 2τ and another  
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Figure 2.5 Analysis of single 90˚ pulse and spin echo pulse sequence on a two-spin system with J-coupling. The 

evolution of offset is ignored here, but the offset is recovered in the spin echo pulse sequence. The black rectangle 

denotes a 90˚ pulse and the white a 180˚ pulse; the same notation is used in the pulse sequences described below.   

180˚ pulse. With τ = 1/(4J12), the same conversion from in-phase terms to anti-phase terms can 

be achieved.  

Anti-phase states are crucial for coherence transfer and for generating multiple-quantum 

coherence. For example, by applying a 90˚ pulse along the y axis when the state of the spin 

system contains anti-phase magnetization 2I1x I2z, coherence transfer between the two spins 

takes place.  

2𝐼1𝑥𝐼2𝑧
   
π

2
𝐼1𝑦+

π

2
𝐼2𝑦   

→         − 2𝐼1𝑧𝐼2𝑥 (coherence transfer) 
(2.7) 

As shown in Equation ((2.7), the transverse magnetization, which is a coherence, is transferred 

from spin 1 to spin 2. This can be utilized in heteronuclear systems (e.g. 1H and 13C) in order 

to enhance the 13C signal. The INEPT pulse sequence has been devised to induce such a 

coherence transfer. Apart from the coherence transfer, double-quantum coherence can be 

generated from the anti-phase term when the 90˚ pulse is applied along the x axis instead of 

the y axis. The transformation is given here: 
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𝐼1𝑥𝐼2𝑧
   
π

2
𝐼1𝑥+

π

2
𝐼2𝑥   

→         − 𝐼1𝑥𝐼2𝑦 (Double quantum excitation) 
(2.8) 

The double-quantum coherence is useful to filter uncoupled system and selectively probe 

dipolar coupled or J-coupled spins in 2D homonuclear or heteronuclear correlation experiments 

as discussed below.  

2.4.3 Two-dimensional NMR basics  

The introduction of two-dimensional NMR experiments enables us to unravel problems with 

increasing complexity. A general 2D NMR experiment can be summarized as follows: 

preparation → evolution (t1) → mixing → detection (t2). In the preparation period, coherence 

is excited from the equilibrium state, then it evolves freely during t1. The evolution period is 

not a fixed time in a 2D experiment; rather it is incremented systematically in a series of 

separate experiments (t1 =∆1, 2∆1, 3∆1…) until enough data points are generated for the so-

called indirect dimension. Next comes the mixing period, during which the evolved 

magnetization is converted into observable signals and then recorded during the detection 

period, t2. A time domain matrix is generated from the 2D experiment, and performing a double 

Fourier transformation with respect to both t2 and t1 gives 2D NMR spectra that contain the 

correlation information. 

2.4.4 Homonuclear correlation spectroscopy (COSY)  

COSY is a homonuclear experiment used to identify J-coupled spins and is thus useful to 

determine the covalent bonding network in the molecule(s) of interest. A basic pulse sequence 

for COSY is shown in Figure 2.6. The analysis of this pulse sequence using product operators 

is given below the sequence. The first 90˚x pulse rotates both spins from Iz to the -y axis. During 

the free precession period (t1), the magnetization evolves under the offset as well as the J-

coupling between the two spins. The offset values are related to the chemical shifts of the 

nuclei. The corresponding product operator analysis shows that anti-phase terms are generated 

from the J-coupling (e.g. sin(Ω1𝑡1) sin(πJ12𝑡1)2𝐼1𝑦𝐼2𝑧). Moreover, after the evolution period, 

all of these terms acquire a t1 frequency label with the offset from spin 1 (Ω1).  
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Figure 2.6 Basic pulse sequence for COSY with simplified product operator analysis given below the sequence.  

The final 90˚x pulse acts on both spins and induces coherence transfer from 2I1yI2z to 2I1zI2y. 

The last term −sin(Ω1𝑡1) cos(πJ12𝑡1)2𝐼1𝑧𝐼2𝑦 , marked with a red triangle in Figure 2.6 is 

observable, and contains both transverse magnetization in spin 2 that can be observed in t2 and 

an offset of spin 1 in the t1 dimension; therefore, this term corresponds to a cross-peak in the 

2D COSY spectrum. The third term, sin(Ω1𝑡1) cos(πJ12𝑡1)𝐼1𝑥 , is an in-phase term and is 

observable as the offset of spin 1 in both the t1 and t2 dimensions, and thus appears as a diagonal 

peak in the COSY spectrum. In the analysis above, only J-coupled spins lead to the appearance 

of anti-phase terms and subsequently contribute to the appearance of cross-peaks in the COSY 

experiment. Therefore, COSY selectively probe the covalent bonding network. 

In practice, double quantum filtered COSY (DQF COSY) is used to achieve proper phasing for 

both diagonal and cross-peaks. In this modification, by adding a third 90˚ pulse, the second, 

multiple quantum, term (I1xI2y) can be turned into an observable anti-phase magnetization 

(I1xI2z). Most COSY experiments in this work are performed using DQF COSY.  

2.4.5 Heteronuclear correlation experiments 

2D heteronuclear correlation spectra are particularly useful to identify basic units and 

molecular fragments in the system of interest. For the analysis of small organic molecules, 1H–

13C correlation experiments are essential to assign overlapping 1D proton peaks. Here, the two 

most commonly used pulse sequences, HSQC and HMBC, and their working mechanisms are 

summarized. 
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Figure 2.7 Pulse sequences for (a) HSQC and (b) HMBC and the corresponding operator analyses. The coherence 

transfer step is highlighted in yellow and the multiple quantum generation step is highlighted in blue.  

2.4.5.1 Heteronuclear Single Quantum Correlation (HSQC) 

HSQC is used to determine directly bonded heteronuclei, e.g. protons and carbons. A basic 

version of the HSQC pulse sequence is shown in Figure 2.7a. For the analysis here, spin 1 is 

1H and spin 2 is 13C. The first period is a spin-echo which, with the choice of delay to be τ =

1

4𝐽12
, results in a complete conversion from the in-phase to the anti-phase term for the coupled 

spins as seen in Section 2.4.2. For one-bond 13C–1H coupling, where 1JCH ≈  150 Hz, the delay 

time is around τ ≈ 1 − 2 ms. Next, the second 90˚y pulse on spin 1 and the 90˚x pulse on spin 

2 lead to a coherence transfer from -2I1xI2z to -2I1zI2y, which then evolves under t1. Only the 

offset on spin 2 affects the evolution as the subsequent 180˚ pulse on spin 1 in the middle of 

the t1 period refocuses both the offset of spin 1 and the coupling between spin 1 and 2. During 

the t1 evolution period, the -2I1zI2y term evolves to form −cos(Ω2𝑡1) 2𝐼1𝑧𝐼2𝑦 +

 sin(Ω2𝑡1) 2𝐼1𝑧𝐼2𝑥 as shown in Figure 2.7a; both of the evolved terms acquire a frequency label 

according to the offset of spin 2. The final 90˚x pulse on both spins transfers the magnetization 

back to spin 1 (e.g. −cos(Ω2𝑡1) 2𝐼1𝑧𝐼2𝑦 →−cos(Ω2𝑡1) 2𝐼1𝑦𝐼2𝑧), while the remaining term is 

multiple-quantum and thus remains unobservable. The resulting spectrum, therefore, contains 

only a cross peak with the chemical shift of 1H (Ω1) in the direct dimension and the chemical 

shift of the respective J-coupled carbon (Ω2) in the indirect dimension.  
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2.4.5.2 Heteronuclear Multiple-Bond Correlation (HMBC) 

In the HMBC pulse sequence, a multiple-quantum coherence is excited, and correlation 

between heteronuclei (such as 1H and 13C) via 2-4 intervening chemical bonds can be 

determined. HMBC is particularly useful for assigning quaternary carbons, as such carbons do 

not appear in the HSQC spectrum.  

The start of the HMBC pulse sequence is similar to HSQC, in that the 1H magnetization is first 

rotated from I1z to -I1y, which is followed by a free precession period of 2τ. By setting τ =
1

4𝐽12
, 

the in-phase term is completely converted to an anti-phase term (-I1y → 2I1xI2z). Next, a 90˚x 

pulse on 13C gives rise to a double-quantum term (2I1xI2z → -2I1xI2y). The step which generates 

double-quantum coherence is highlighted in blue in Figure 2.7b, and is different from HSQC, 

in which a coherence transfer is induced. The DQ coherence evolves in the t1 period and 

acquires a frequency label containing the offset of spin 2. Lastly, the final 90˚x pulse converts 

the multiple-quantum term into an observable anti-phase magnetization.  

Unlike HSQC, multiple-bond 1H-13C J-couplings are much smaller and have a wider range than 

one-bond J-coupling constants (nJCH, where n = 2–4, ranges from 3–10 Hz vs. 1JCH ≈ 150 Hz). 

Therefore, the delay time in HMBC experiments is much longer than that in HSQC (~20–80 

ms vs. 1–2 ms) and it is difficult to choose a fixed delay time. One solution is to record several 

spectra with different delays. If this is very time consuming, one can instead set the delay 

according to the largest expected long-range coupling constants. Because this free precession 

delay is much longer in HMBC, spin-spin (T2) relaxation of the transverse magnetization also 

leads to signal loss. Therefore, the anti-phase term generated at the end of the pulse sequence 

is directly observed instead of refocused using another spin-echo, which would lead to severer 

signal loss. Finally, 1H decoupling is not applied during the acquisition as this would collapse 

the anti-phase peak to zero. 
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2.4.6 Diffusion ordered spectroscopy (DOSY) 

 

Figure 2.8 Principle of a DOSY experiment. (a) A basic DOSY pulse sequence based on the spin-echo. (b) 

Schematic of the spatial encoding and decoding along the z-axis due to the gradient pulses. (c) Data processing 

procedure to extract the diffusion coefficients for different chemical shifts and (d) a schematic the 2D DOSY 

spectrum showing the separation of a mixture with different diffusion coefficients. 

DOSY is employed to separate a mixture of molecules in the solution-state based on their 

diffusivity differences. The DOSY pulse sequences are derived from spin-echo or stimulated 

echo under the effect of pulsed field gradient (PFG) and a basic version is shown in Figure 

2.8a. The first 90˚ pulse rotate the magnetization to the y-axis, creating a magnetization ribbon 

in the yz-plane. Then a constant-gradient pulse twists the magnetization ribbon into a helix as 

shown in Figure 2.8b. The pitch of the helix is given by Λ = 2𝜋/𝑞, where 𝑞 = 𝛿𝛾𝑔 is the 

product of the duration (𝛿) and the amplitude (𝛾𝑔) of the gradient pulse. The gradient amplitude 

is determined by the gyromagnetic ratio of the observed nucleus (𝛾) and the gradient strength 

(𝑔). The smaller the pitches, the higher the resolution for measuring the diffusion process.82 

After the first gradient pulse, the spatial positions of the spins are encoded. Then a diffusion 

time, ∆, follows to allow motions to occur. Finally, the second gradient pulse decodes the 

spatial information and brings the spins back into the yz-plane to form an echo if no diffusion 

or spin-spin lattice (T2) relaxion takes place. In the presence of diffusion motion, the intensities 

of the echo decays as the strength of the gradient increases. A quantitative formula describing 

it is given below: 



 

37 

𝐼 = 𝐼𝑜exp (−𝐷𝑞
2(∆ −

𝛿

3
)) 

(2.9) 

Where 𝐼 is the observed intensity, 𝐼𝑜 is the unattenuated signal intensity and 𝐷 is the diffusion 

coefficient. With an optimized diffusion time and gradient pulse length, a pseudo 2D data is 

recorded by varying the gradient strength. Then the diffusion coefficient can be derived by 

fitting the exponential intensity decay versus the square of the gradient strength as shown in 

Figure 2.8c and the equation is given by: 

log (
𝐼
𝐼𝑜
)

𝛾2𝛿2(∆ −
𝛿
3)
=  −𝐷𝑔2 

(2.10) 

Finally, a 2D DOSY spectrum is presented by plotting the chemical shifts in the F2 dimension 

and the diffusion coefficients in the F1 dimension (Figure 2.8d). The centre of a 2D cross peak 

in F1 dimension corresponds to the calculated diffusion constant, while the width of the peak 

correlates with the fitting error. 

In a DOSY experiment, several factors are crucial for the successful separation of a mixture 

with overlapped signals. These include gradient linearity, temperature stability and a set of 

optimized parameters. Systematic errors arise when joule heating or transient eddy currents are 

induced by the PFG pulses. To compensate for these imperfections, advanced pulse sequences 

have been designed. The longitudinal eddy current delay sequence with bipolar gradient pulse 

pairs (“ledbpgp2s”) is employed in this thesis to separate the soluble degradation products in 

the cycled electrolyte. 

2.4.7 Solid-state NMR techniques 

Solid-state NMR (ssNMR) experiments are typically performed using powdered samples 

which contain randomly-distributed crystallites with all possible orientations with respect to 

the external B0 field. In this situation, anisotropic spin interactions can lead to severely 

broadened spectra. Some essential techniques such as magic-angle spinning (MAS) and high-

power decoupling are required to obtain high resolution ssNMR spectra.  
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Figure 2.9 Essential techniques in solid-state NMR. (a) Illustration of magic-angle spinning. The shielding tensor 

is represented here by an ellipsoid, and its z-axis in the principal axis frame is noted as ZPAF. (b) Illustration of the 

basic principle underyling the Lee-Goldburg homonuclear decoupling sequence (the offset is chosen so that the 

effective field is tilted at the magic angle). (c) The cross-polarization pulse sequence, with a high power 1H 

decoupling sequence such as TPPM used for heteronuclear decoupling.  

2.4.7.1 Magic-angle spinning 

By spinning the sample physically at a specific angle (the “magic” angle) with respect to the 

external B0 field, it is possible to average to zero the anisotropy associated with the chemical 

shift as well as hetero/homonuclear dipolar couplings. The anisotropic part of these spin 

interactions all contain an angle-dependent term 3 cos 𝜃2 − 1, where 𝜃 is the angle between B0 

and the z-axis in the principal axis frame of the tensor describing the interaction (ZPAF) as 

shown in Figure 2.9a. During the rotation of the sample, the 𝜃 value varies but the angle (𝛽) 

between the ZPAF and the spinning axis is fixed for each crystallite in a rigid solid sample. The 

average of the 3 cos 𝜃2 − 1 term over the course of the rotation is given by: 〈3 𝑐𝑜𝑠2 𝜃 − 1〉  =

 
1

2
(3 𝑐𝑜𝑠2 𝛽 − 1)(3 𝑐𝑜𝑠2 Θ − 1), where Θ is the angle between B0 and the spinning axis. By 

fixing Θ = 54.74° (the magic angle), this spatial term can be averaged to zero. The magic-

angle spinning speed needs to be faster than the than the magnitude of the anisotropy in 

frequency units; otherwise spectral artifacts known as spinning sidebands radiate out from the 

central isotropic peak, separated by a multiple of the spinning speed, and lead to reduction in 

the signal intensity of the isotropic peak. 

MAS experiments are often performed with rotor synchronization. During such an experiment, 

the length of the pulse sequence itself is a multiple of the rotor period – for example in a spin 

echo sequence choosing the interpulse delays so as to be equal to one (or more) rotor periods. 



 

39 

The FID is also recorded at certain multiples of the rotor period, so that the sample returns to 

its starting position during the acquisition. The Fourier transformation of the FID then yields a 

spectrum similar to that of the static (not spinning) sample but with reduced broadening from 

the dipolar or CSA interactions. 

2.4.7.2 Homo/Heteronuclear decoupling 

In cases where a fast MAS rate cannot be obtained, homonuclear decoupling can be achieved 

using a multiple pulse sequence. In particular, Lee-Goldburg (LG) decoupling is often used for 

1H homonuclear decoupling in the indirect dimension during a 2D experiment. In LG 

decoupling, the transmitter frequency of the rf pulse is deliberately chosen so that an offset is 

created in the rotating frame, and the effective field is tilted at the magic angle with respect to 

the B0 field as illustrated in Figure 2.9b, so as to minimize the homonuclear coupling between 

protons.  

In a heteronuclear system such as that containing 13C and 1H, MAS is largely ineffective in 

removing the heteronuclear dipolar coupling between 13C and 1H. The peak-broadening effect 

of heteronuclear coupling can be avoided by using high-power decoupling, where 1H spins are 

irradiated on resonance while the 13C FID is recorded. During high power decoupling, 1H spins 

undergo repeated Zeeman transitions, with magnetization rapidly oscillating between positive 

and negative. Since the heteronuclear dipolar coupling strength depends on the net 

magnetization of 1H along the z-axis as shown in Equation (2.5, the time-averaged dipolar 

coupling for 1H–13C is zero under high-power decoupling conditions. 

The dipolar coupling constant for directly bonded 1H–13C spin pairs is about 22 kHz. The 

proton decoupling power needs to be set at least three times larger than the dipolar interaction 

strength, that is, >66 kHz, in order to fully remove the effects of heteronuclear dipolar coupling. 

A common decoupling pulse sequence is TPPM (two pulse phase modulation), as shown in 

Figure 2.9c. It consists of a repeated series of two pulses with flip angles slightly smaller than 

180° and phases that differ by 10–70°. The optimal decoupling condition depends on the MAS 

rate and needs to be optimized. Another commonly used decoupling scheme is SPINAL64,83 

which is more efficient and more tolerant to experimental imperfections. Both TPPM and 

SPINAL64 are employed in this thesis. 
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2.4.7.3 Cross-polarization 

Cross-polarization (CP) transfers the larger polarization of 1H spins to nuclei such as 13C or 

29Si in order to enhance the sensitivity of NMR experiments on low-𝛾  and low natural-

abundance spins. CP transfer is mediated by through-space dipolar interactions and the 

corresponding pulse sequence is shown in Figure 2.9c. First, a 90°x pulse creates 1H 

magnetization along the -y axis, then a contact pulse is applied simultaneously to both 1H and 

13C spins. In the double double-rotating frame, the contact pulse appears stationary along the -

y axis, and the resulting spin-lock field along the -y axis maintains the spin polarization. The 

dipolar coupling between 1H and 13C depends on an operator containing IzSz as shown in 

Equation (2.5, which acts only in a direction perpendicular to the spin-lock field. Thus, the 

dipolar operator cannot alter the net spin polarization along the spin-lock field, nor the net 

energy of the combined 1H–13C spin system. Nevertheless, the dipolar interaction between the 

1H and 13C spins can mediate energy exchange between the 1H and 13C spin baths. That is, the 

energy emitted from 1H transitions is absorbed by the 13C spins to build up a larger 13C 

magnetization along the -y axis. When the Hartmann-Hahn condition is met (i.e. when the 13C 

contact pulse is the same amplitude as that for 1H), the energy gaps of the rotating frame 1H 

and 13C spins are the same, thus the spin transition process results in no net energy change. 

Finally, the enhanced 13C magnetization is recorded during high-power proton decoupling. The 

Hartmann-Hahn condition for CP transfer under MAS is different from that under static 

conditions, and is given by: 

𝜔𝐻 = 𝜔𝐶 + 𝑛𝜔𝑟  (2.11) 

where the nutation frequencies for 1H and 13C are 𝜔𝐻 and 𝜔𝐶, respectively, 𝜔𝑟is the rotation 

(MAS) frequency of the sample, and n is an integral number. A ramped contact pulse on 1H is 

commonly used to cover a range of possible Hartmann-Hahn conditions for a non-uniform 

sample, which normally gives better signal enhancement. The CP pulse sequence is an essential 

component in generating enhanced transverse magnetization for low-𝛾 nuclei and is the starting 

point for most of the correlation experiments in this thesis. 
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2.4.7.4 Homo/heteronuclear correlation experiments 

Different from solution NMR, where J-couplings are exploited for correlation experiments, 

homo/heteronuclear correlation experiments in ssNMR mainly depend upon dipolar 

interactions. This is because typical dipolar coupling constants in solid sample are an order of 

magnitude larger than J-coupling constants, and the latter are usually too small to observe. 

However, the dipolar interaction is suppressed (averaged out) by fast MAS, leading to the 

acquisition of high-resolution ssNMR spectra. The dipolar interaction can be reintroduced 

under MAS using a multiple pulse sequence such as DRAMA or C7, so that spatial correlation 

information about the spin system can nonetheless be obtained.84 

 

Figure 2.10 Pulse sequence corresponding to a homonuclear correlation experiment based upon dipolar coupling 

interactions. The C7 sequence is used to excite double quantum coherence under MAS. For the proton decoupling 

depicted in the upper section, dark grey denotes heteronuclear decoupling, while light grey denotes homonuclear 

decoupling. A schematic of the double quantum–single quantum correlation spectrum is illustrated on the right. 

The C7 sequence, which is used to generate a double quantum (DQ) coherence between the 

dipolar-coupled spin pairs, consists of 7 × (2𝜋𝜙 2𝜋−𝜙) pulses with an adjusted rf amplitude 

so that the duration of the composite pulses is a multiple of the rotor period. The phase of the 

2𝜋  pulse, 𝜙 , increases by 
2𝜋

7
 during each step. The underlying principle of the C7 pulse 

sequence in generating DQ coherence is beyond the scope of the current explanation and can 

be found in Ref. 79. The generated DQ coherence is then used for a homonuclear correlation 

experiment. 

A typical pulse sequence for homonuclear correlation using multiple-quantum coherence is 

shown in Figure 2.10. The first CP step creates 13C transverse magnetization in the xy-plane, 
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which is then returned to the z-axis by the following 90˚ pulse. Using this enhanced 

longitudinal magnetization on 13C, DQ coherence is generated with the aid of a recoupling 

pulse sequence such as C7. The DQ coherence then evolves during t1 before being transferred 

back to the z-axis (and converted to zero quantum coherence, ZQ) by a reconversion pulse. The 

final 90˚ pulse converts this ZQ coherence to transverse magnetization which is observed in 

the t2 period. A Fourier transform of the 2D data results in a DQ spectrum in the indirect 

dimension (f1), and a SQ spectrum in the direct dimension (f2). This so-called DQ–SQ 

correlation spectrum acquired using C7 pulse sequence can be used to identify networks of 

dipolar-coupled spins.  

 

Figure 2.11 Pulse sequence corresponding to heteronuclear correlation experiments based upon dipolar coupling 

interactions.   

Similar to the homonuclear correlation experiments just described, 2D heteronuclear 

correlation spectroscopy (HETCOR) can be used to confirm spectral assignment by, for 

example, correlating the chemical shifts of protons with another nucleus (e.g. 13C) via their 

dipolar coupling interactions. The HETCOR pulse sequence is shown in Figure 2.11. The 

sequence starts with a 90˚ proton pulse to create transverse magnetization, which then evolves 

during t1 (with simultaneous application of a homonuclear proton decoupling pulse such as 

LG); this magnetization is subsequently transferred to 13C via a CP step. The resulting 13C 

magnetization is then detected under conditions of high-power proton decoupling (e.g. 

SPINAL64). Since CP is mediated via dipolar coupling, CP transfer is only possible for spins 

with close spatial proximity (around a few Å). A short CP contact time should be chosen in 

order to selectively probe 13C nuclei that are spatially close to the 1H spins. 
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2.4.8 Dynamic nuclear polarization (DNP) 

Though ssNMR provides atomic information about bulk materials, sensitivity becomes the 

limiting factor when ssNMR is applied to study surface structures. One solution to that problem 

is the use of hyperpolarization methods. Dynamic nuclear polarization (DNP) is one of the 

most promising methods, which takes advantage of the higher equilibrium polarization of the 

electron and increases the sensitivity of low-γ nuclei such as 13C, 29Si, and 17O under microwave 

irradiation. The theoretical enhancement for 1H is about a factor of 660 at 100 K (Figure 2.12a).  

 

Figure 2.12 Principles and applications of DNP NMR. (a) The polarization difference between electrons (green) 

and 1H (black) as a function of temperature at a field strength of 14 T. DNP transfer mechanisms: (b) the solid 

effect, induced by zero-quantum (middle) or double quantum (bottom) microwave irradiation; these transitions 

rely on hyperfine interactions (Ahfi) between the nucleus and the electron; (c) the cross effect, which involves two 

electrons and one nucleus, and its corresponding energy diagram when irradiating with microwaves at one 

frequency. The strong electron–dipolar coupling (dee) allows mixing of states 2, 3, 6 and 7 which are important 

for polarization transfer from electrons to nuclei. (d) Example of the use of DNP NMR to obtain surface 

information on a nanoporous silica-derived material. Figure adapted from ref 85,86. 

Contemporary MAS DNP experiments are usually based on either the solid effect (SE), which 

exploits the coupling of an electron-nuclear spin pair, or the cross effect (CE), utilizing a pair 

of electrons in the form of a biradical and a nuclear spin. CE is currently the most commonly 

used polarization transfer mechanism for measurements at ~100 K, while SE is the mechanism 

of choice for 25 K or lower.85  
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In SE, microwave irradiation excites the nominally forbidden zero and double quantum 

transitions for electron and nuclear spin pairs. The microwave amplitude, 𝜔𝜇𝑊, must meet the 

matching condition given by:  

  𝜔𝜇𝑊 = 𝜔𝑂𝑆 ∓ 𝜔𝑂𝐼 (2.12) 

where 𝜔𝑂𝑆 and 𝜔𝑂𝐼 are the Larmor frequencies for the electron and nucleus, respectively. The 

difference between these frequencies corresponds to the energy of the DQ transitions, whereas 

their sum is equivalent to that of the ZQ transitions (Figure 2.12b). The hyperfine interaction 

(Ahfi) between the nucleus and the electron causes a small degree of electron-nuclear spin state 

mixing, and excited DQ/ZQ transitions result in a greater nuclear polarization. The SE 

enhancement factor scales as B0
-2. 

In contrast to the SE, the CE makes use of allowed single quantum (SQ) transitions. Continuous 

microwave irradiation at the Larmor frequency of one of the electrons leads to a build-up of 

non-equilibrium polarization, the condition is described as  𝜔𝜇𝑊 =  𝜔𝑂𝑆,1 ∨ 𝜔𝑂𝑆,2 . If the 

difference between the Larmor frequencies of the two electrons is equal to the nuclear Larmor 

frequency (that is ∆𝜔𝑂𝑆 = |𝜔𝑂𝑆,1 − 𝜔𝑂𝑆,2| = 𝜔𝑂𝐼), the built-up polarization can be transferred 

to the nucleus by a concerted e-e-n triple spin flip (states 2 to 7 and states 3 to 6 in Figure 

2.12c). The relevant matching condition can be summarized below: 

  (∆𝜔𝑂𝑆 = |𝜔𝑂𝑆,1 − 𝜔𝑂𝑆,2| = 𝜔𝑂𝐼) ⋀  (𝜔𝜇𝑊 =  𝜔𝑂𝑆,1 ∨ 𝜔𝑂𝑆,2)  (2.13) 

Organic biradicals, which are two radicals tethered via an organic linker with controlled 

spacing and geometry orientations, have been synthesized to meet the conditions required for 

the CE. It is worth noting that the CE is less affected by high magnetic field and has a much 

greater probability in transferring polarization than does SE. 

With recent advancements in both hardware and theory, DNP NMR has been used to study 

biomaterials as well as inorganic and hybrid materials. For example, surface-enhanced 13C 

DNP NMR reveals the organic species on the surface of nanoporous silica (Figure 2.12d).87 

Without DNP, such experiments would require expensive isotope labelling and long 

experimental times. In addition, the signal enhancement provided by DNP enables 2D 
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correlation experiments to be performed, and thus more detailed structural information can be 

obtained.  

In this work, DNP NMR is performed using the CE, with a schematic of the relevant DNP 

experiments illustrated in Figure 2.13. Since the SEI sample is water sensitive, non-aqueous-

based DNP radical-solvent system (so-called “DNP matrix”) is chosen, which consists of a 

nitroxide-based biradical (TEKPol)88 dissolved in dichlorobenzene (DCB)88,89 or 

tetrachloroethane (TCE). The powder sample is impregnated by the DNP juice to wet the 

surface of the SEI with biradicals. Microwave irradiation induces polarization transfer from 

electrons to protons, or the nucleus of interest, via the cross effect.  

 

 

Figure 2.13 Schematic of the DNP NMR experiments performed in this work. 

In a direct DNP experiment, the magnetization is transferred from electrons to nuclei and 

directly acquired from the latter. By contrast, in an indirect DNP experiment, the 
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hyperpolarized 1H magnetization is first distributed throughout the sample via 1H spin 

diffusion, then the magnetization on 1H is transferred to the nuclei of interest via dipolar 

coupling techniques (i.e. cross polarization). Typically, indirect DNP NMR experiments 

provide better sensitivity for surface species in the SEI as the surface components are more 

protonated than the bulk, and 1H spin diffusion is more effective than for other nuclei. Both 

direct and indirect DNP techniques are used in this thesis to study the SEI structure with 

favorable signal enhancement. 
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Chapter 3 Identifying key degradation products of 

fluoroethylene carbonate 

 

3.1 Introduction 

Fluoroethylene carbonate (FEC) is one of the most important electrolyte additives and its 

degradation products are believed to be the key for achieving performance enhancement, 

however, the detailed structural information about its reduction products is still unclear. Here, 

a combination of solution and solid-state NMR techniques was used to characterize both the 

soluble and insoluble decomposition products of FEC. In order to overcome the inherently low 

sensitivity issue of NMR, uniformly labelled 13C3-FEC was synthesized by Nis-Julian H. 

Kneusels (University of Cambridge). The samples were then prepared by cycling binder-free 

silicon nanowires (SiNWs) in conventional ethylene carbonate (EC)-based electrolyte with and 

without 10 vol% FEC. The cycled SiNWs were then used for ssNMR experiments with 

dynamic nuclear polarization (DNP) enhancement to provide a more comprehensive 

understanding of the organic SEI. The results clearly show that chemically distinct products 
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such as vinylene carbonate (VC) and poly(VC) shown in scheme 3.1 are formed in the presence 

of FEC, which may be responsible for the increased cycle life.  

Scheme 3.1. Structures of ethylene carbonate (EC), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 

and a possible structure of the polymer “poly(VC)” as reported in reference 49. 

 

3.2 Experimental 

3.2.1 Materials 

Sulfuryl chloride (Sigma-Aldrich, 97%) was purified by distillation under reduced pressure. 

Acetonitrile (Sigma-Aldrich) was dried over anhydrous CaH2 and distilled prior to use, all other 

materials were used as received: 13C3-ethylene carbonate (Sigma-Aldrich, 97%, 13C-labelled 

99 atom-%), ethylene carbonate (EC) (Sigma-Aldrich, anhydrous, ≥99%, ≤0.005% H2O), 

dimethyl carbonate (DMC) (Sigma-Aldrich, anhydrous, ≥99%, ≤0.002% H2O), LP30 

electrolyte solution (1M LiPF6 in EC/DMC, Sigma-Aldrich, battery grade, ≥99.99%), 

aazobisisobutyronitrile (Sigma-Aldrich, 98%), carbon tetrachloride (Sigma-Aldrich, 99.9%), 

and potassium fluoride (Acros Organics, 99%, anhydrous). 

3.2.2 Synthesis of 13C3-fluoroethylene carbonate 

13C3 FEC was synthesized from 13C3-EC via chlorination of EC and subsequent fluorination 

using standard Schlenk techniques under N2 atmosphere.13C3-EC (200 mg, 2.27 mmol, 1.00 

equiv) was suspended in 5 mL of carbon tetrachloride. Sulfuryl chloride (0.19 mL, 2.38 mmol, 

1.05 equiv) and azobisisobutyronitrile (AIBN) (15 mg, 0.91 mmol, 0.04 equiv) were added, 

and further AIBN was added twice every 30 min. The reaction mixture was left stirring at 65 

°C for 16 h before the solvent was removed in vacuo, and the liquid residue was purified by 

column purification (silica 100:1, dichloromethane, Rf = 0.50). 13C3-Chloroethylene carbonate 

(180 mg, 1.47 mmol, 65%) was received as a clear colourless liquid.  
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Anhydrous potassium fluoride (2.50 g, 43.0 mmol, 29.3 equiv.) was suspended in 7 mL of 

acetonitrile abs. and 13C3-chloroethylene carbonate (180 mg, 1.47 mmol, 1.00 equiv), 

dissolved in 3 mL acetonitrile abs., was added. The mixture was stirred at 75 °C for 16 h, and 

then filtered, and the solid residue was washed with 10 mL of acetonitrile. The filtrates were 

combined, and the solvent was removed in vacuo. The dark liquid was purified by column 

purification (silica 100:1, dichloromethane, Rf = 0.45). 13C3-FEC (40 mg, 0.38 mmol, 26 %) 

was separated as a clear colourless liquid.  

3.2.3 Synthesis of silicon nanowires  

Silicon nanowires were synthesized by chemical vapor deposition (CVD) as previously 

described.90 Briefly, 50 nm gold was thermal-sputtered onto 20 µm-thick stainless steel 

(SUS304, Agar Scientific) foil. The gold-coated stainless-steel foil was cut into 1 × 1 cm2 

substrates, which were transferred into the CVD chamber. The substrates were heated in 1 mbar 

of argon atmosphere at 510–530 °C for 10 min to anneal the gold catalyst. After annealing, a 

mixture of argon and silane gases (Ar/SiH4= 100 sccm / 20 sccm) was introduced. The growth 

was carried out in 15 mbar at 510–530 ˚C for 15 min. The substrates were weighed before and 

after CVD growth to determine the mass of SiNWs. The average mass loading of SiNWs was 

around 0.5–0.8 mg / cm2. 

3.2.4 Electrolyte preparation and coin cell assembly  

The five different electrolyte formulations used here are listed in Table 3.1. The LP30 + 13C3-

EC enrichment of electrolytes was prepared by mixing 13C3-EC with a non-labelled EC/DMC 

in a 1:1:2 v/v/v ratio, then dissolving the LiPF6 salt into the solvent to achieve a final 

concentration of 1 M. The LP30 + FEC and LP30 + 13C3-FEC electrolytes were prepared by 

either adding 0.5 mL of FEC or 13C3-FEC into 5 ml of commercial LP30 electrolyte.  

Table 3.1 Electrolyte formulation with 1M LiPF6 in different solvent mixtures 

electrolyte solvents abbreviation 

EC/DMC = 50/50 (v/v) LP30 

13C3 EC/EC/DMC = 25/25/50 (v/v/v) LP30 +13C3-EC 

EC/DMC/FEC = 50/50/10 (v/v/v) LP30 + FEC 

EC/DMC/13C3 FEC = 50/50/10 (v/v/v) LP30 +13C3-FEC 

13C3 EC/EC/DMC/FEC=25/25/50/10 (v/v/v/v) LP30 +13C3-EC + FEC 
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SiNWs electrodes were then assembled into Li-half 2032coin cells using the five electrolytes. 

Porous glass fibre mats (Whatman GF/B, 1 mm thick) were used as separators and around 10 

drops (~0.15 mL) of electrolyte were used for each cell. All the assembling procedures were 

carried out in an Ar filled glovebox (H2O < 0.1ppm, O2 < 0.1ppm). The coin cells were 

discharged/charged at a constant current (C/30, 120 mA/g) between 0.001 V and 2 V for 30 

cycles using a Biologic VSP or MPG-2. Approximately 50 days were needed to complete 30 

cycles. The slow cycling protocol ensures that the electrolyte solvents are held at a low voltage 

for sufficiently long time for extensive SEI formation. The electrochemical results obtained for 

the enriched electrolyte were similar to those of the non-enriched electrolyte: the cycling 

performance is mainly influenced by the presence of FEC.  

3.2.5 Solution NMR  

After the SiNW coin cells finished the first and 30th cycles, the cells were disassembled in an 

Ar filled glovebox. The glass fibre separators were extracted and soaked in 0.75 mL DMSO-

d6 for 2–3 min. The solution was then transferred to an airtight J-Young tube. Spectra were 

recorded on a 500 MHz Bruker Avance III HD, with a DCH (carbon observe) cryoprobe or 

Bruker AVANCE 400 equipped with a BBO probe. 1H and 13C NMR spectra were internally 

referenced to DMSO-d6 at 2.50 ppm and 39.51 ppm, respectively. Details information about 

the pulse programs can be found below: 

• 1D 1H NMR spectra were recorded a using 30˚ pulse. 

• 1D 13C{1H} NMR spectra were recorded using either the standard 30˚ observe pulse, 

using ‘waltz16’ pulse-gated decoupling or with the udeft91 sequence. In cases where 1H 

decoupling artifacts were too intrusive; they were minimized by changing the 

decoupling sequence to ‘bi_waltz65_256’.92  

• HQSC spectra were recorded using the ‘hsqcedetgpsp.3’ pulse program: 2D H-1/X 

correlation via double inept transfer. Acquisition was phase sensitive using 

‘Echo/Antiecho-TPPI’ gradient selection with decoupling during acquisition, and trim 

pulses in inept transfer with multiplicity editing during selection step. Shaped pulses 

were used for inversion on f2-channel for matched sweep adiabatic pulses. The pulses 

are calibrated to achieve ‘dept135’ editing of the spectra acquired. F2 (1H) was acquired 

using a time domain of 1816 points, F1 (13C) 256 increments, over 13 ppm and 190 

ppm. The relaxation delay was 0.8 s and 4 scans per slice were used. 
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• HMBC spectra were recorded using the ‘hmbcetgpl3nd’ pulse program: 2D H-1/X 

correlation via heteronuclear zero and double quantum coherence. Acquisition was 

phase sensitive using Echo/Antiecho gradient selection, with three-fold low-pass J-

filter to suppress one-bond correlations; no decoupling during acquisition. The long-

range coupling parameter was set to 10 Hz. F2 (1H) was acquired using a time domain 

of 4096 points, F1 (13C) 768 increments, over 12 ppm and 250 ppm. The relaxation 

delay was 2 s and 16 scans per slice were used. Processed into magnitude data with the 

‘xf2m’ command. 

• 13C–13C COSY spectrum was recorded using pulse program ‘cosydcqf’: 2D 

homonuclear X-nucleus shift correlation. Acquired in ‘QF’ mode. F2 (13C) was 

acquired using a time domain of 4096 points, F1 (13C) 1024 increments, over 236 ppm. 

The relaxation delay was 3 s and 40 scans per slice was used. 

• 1D 19F NMR spectra were recorded using a 90˚pulse with inverse-gated waltz16 1H 

decoupling and a recycle delay of 30 s. 

3.2.6 Solid-state NMR 

After cell disassembly, the SiNW electrodes were dried under vacuum overnight (~16−20 h) 

to remove the DMC and FEC; this procedure also removes most of the EC.48 Note that the 

electrodes were not rinsed. After drying, the SiNW electrodes were scratched from the substrate 

and packed into rotors for multinuclear ssNMR measurements.  

1H–13C cross polarization (CP) of LP30 +13C3-EC sample was performed on a Bruker Avance 

III 700 (16.4 T) spectrometer using a 3.2 mm HXY probe at MAS frequency of 20 kHz, with 

a CP contact time of 1 ms. RF nutation frequency were (1H) 92.5 kHz (50 – 100 % linearly 

ramped during CP93), (13C) 82.5 kHz, and SPINAL-6483 1H decoupling at 80 kHz. A total of 

3482 scans separated by a 3 s recycle interval were acquired over 3 h. The LP30 +13C3-FEC 

sample was measured on a Bruker Avance III HD 500 (11.7 T) spectrometer using a 2.5 mm 

HX probe at MAS frequency of 10 kHz, with a CP contact time of 2 ms and SPINAL-64 1H 

decoupling at 80 kHz. A total of 24576 scans separated by a 3 s recycle delay were acquired 

over 20.5 h. 1H and 13C, shifts were externally referenced to adamantane at 1.87 and 38.6 ppm 

(of CH2 group), respectively. The experimental parameters are summarized in Appendix A, 

table A.2. 
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3.2.7 DNP NMR 

The cycled SiNW samples were sealed under Ar and transferred to the Nottingham DNP MAS 

NMR Facility in three layers of sealed plastic bags. The samples were then quickly pumped 

into the N2-filled glovebox. Since the SiNWs were in the delithiated state, we assumed that 

there was no reaction between N2 and the electrode material. The sample was diluted with 

predried KBr powder by mixing homogeneously in a mortar. A minimum amount of radical 

solution (4 mM TEKPol in 1,2-dichlorobenzene, DCB)88,89 was added to wet the powder. The 

resulting paste-like samples were packed into the center of 3.2 mm sapphire MAS rotors and 

sealed with PTFE film. The rotor was capped with a Vespel drive cap and quickly inserted into 

the precooled DNP NMR probehead for measurement.  

All DNP NMR experiments were performed on a 14.09 T AVANCE III HD spectrometer, 

corresponding to 1H Larmor frequency of 600 MHz, with a 395 GHz gyrotron microwave 

(MW) source and using a 3.2 mm triple resonance wide-bore probe. All experiments were 

performed at 12.5 kHz MAS frequency. A microwave source power of 11 W (at the source, 

equivalent to 110 mA collector current) was used for 1H–13C DNP experiments. All MW on/off 

experiments were performed with a train of saturation pulses prior to a longitudinal relaxation 

delay followed by signal excitation. The characteristic build-up time of the enhanced 1H 

polarization was measured via a saturation recovery experiment. The 1H enhancement ratios 

with the microwave on versus off are listed in Appendix A, table A.1. 1H–13C CP experiments 

were performed with 90 – 100 % ramp on the 1H channel and 100 kHz 1H decoupling using a 

swept-frequency two-pulse phase modulation (SWf -TPPM) sequence94. The relaxation delay 

in the CP experiments varied between 4 and 7 s, with a CP contact time of 2 ms. Note for the 

LP30 +13C3-FEC sample, only 1 mg was used for measurement. The small sample amount is 

due to the small quantity of 13C3-FEC that was obtained in the synthesis. 

3.3 Results 

3.3.1 Electrochemistry  

The electrochemical performance of SiNWs cycled in LP30 and LP30 + FEC electrolytes is 

shown in Figure 3.1. In in Figure 3.1a, the discharge/charge (lithiaton/delithiation) capacities 

on the order of the theoretical capacity of Si (3579 mAh/g) were obtained for both LP30 and  
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Figure 3.1. Electrochemical performance of SiNWs half-cells cycled with LP30 electrolyte (1 M LiPF6 in 

EC/DMC=50/50, v/v, black), and LP30 with 10 vol % FEC (LP30 + FEC, red) electrolytes at a rate of C/30 (120 

mAg-1) between 0.001–2 V at room temperature. (a) Galvanostatic charge-discharge profiles and the 

corresponding dQ/dV plots of SiNWs cycled in LP30 and LP30 + FEC in the 1st, 2nd, and 30th cycles, (b) the 

cycling stability and (c) the coulombic efficiency for LP30 (black squares) and LP30 + FEC (red dots). The open 

dots/squares denote the discharge/lithiation capacity and the filled denote the charge/delithiation capacity.

LP30 + FEC electrolytes during the first two cycles. However, over long-term cycling, obvious 

deviations are observed between LP30 and LP30 + FEC samples. At the 30th cycle, the LP30 

sample exhibits only 55% capacity retention whereas the LP30 + FEC sample retains 89% of 

the initial charge capacity (Figure 3.1b). 

The voltage profile of SiNWs cycled in LP30 and LP30 + FEC during the first two cycles are 

similar (Figure 3.1a, left), indicating that both systems undergo similar structural 

transformations during the initial discharge/charge cycles. During the first discharge, the 
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voltage quickly drops from the open circuit voltage (OCV) to 0.2 V with a small lithiation 

capacity, suggesting little SEI formation on the SiNWs from OCV to 0.2 V. The dQ/dV plot 

(Figure 3.1a, right) reveals the reduction process of FEC at 1.2 V and the reduction of EC at 

0.8V during the first cycle. A flat discharge profile is then observed at approximately 0.1 V, 

which corresponds to the conversion of crystalline Si to amorphous lithium silicide (a-LixSi).95 

Further lithiation results in the formation of crystalline Li15Si4
 (c-Li15Si4), which is manifested 

as a characteristic process at approximately 0.4 V in the charge voltage curve. The 0.4 V 

process corresponds to the delithiation of c-Li15Si4 and the formation of amorphous silicon (a-

Si).96 The c-Li15Si4 phase is highly reactive and induces severe electrolyte decomposition.97 

For the second discharge, the SiNWs show a voltage profile characteristic of a-Si. The two 

sloping processes at about 0.25 V and 0.10 V correspond to the lithiation stages (a-Si + x Li+ 

→ a-LixSi, where x is approximately 2.5 and 3.5 for the processes at 0.25 V and 0.1 V, 

respectively).90 On the 30th cycle, the voltage profiles of the SiNWs cycled in LP30 or 

LP30 + FEC diverge (Figure 3.1a). Here, the SiNWs cycled in the presence of FEC maintain a 

voltage profile that is similar to that of the second cycle. In contrast, the onset of lithiation in 

the 30th cycle of the SiNWs is lower in LP30 than in the LP30+FEC sample as seen more 

clearly in the dQ/dV plot (Figure 3.1a, 30th cycle), suggesting a larger internal resistance inside 

the cell. This can be attributed to the formation of a more resistive SEI and increased electrode 

tortuosity, which limits Li ion diffusion through the bulk of the electrode and ultimately 

decreases lithiation capacity unless extremely low currents are used.48,98 

The Coulombic efficiency (CE, defined as the delithiation capacity divided by the lithiation 

capacity) of SiNWs in LP30 and LP30 + FEC is compared in Figure 3.1c. During the first five 

cycles, the FEC sample shows a slightly lower CE than the LP30 sample, which may be due to 

the preferential decomposition of FEC over EC. From cycles 5 to 30, the average CE of LP30 

+ FEC is 96.2%, which is an improvement over LP30 alone (average CE 94.0%) but is still 

much lower than required for a practical cell, emphasizing the need for further understanding 

of the chemistries that influence CE.  

3.3.2 Soluble degradation products as measured by solution NMR.  

Electrolytes from cells after the first and 30th cycles were compared with pristine electrolytes 

using 1H solution NMR spectroscopy (Figure 3.2) and a series of two-dimensional (2D) 

correlation experiments. Several new 1H NMR signals were detected in the cycled LP30 

electrolyte between 3 and 5 ppm (Figure 3.2a) that are not present in the FEC-containing  
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Figure 3.2. 1H solution NMR of (a) LP30 and (b) LP30 + FEC (c) LP30+13C3 FEC (LP30 + 10 vol% 13C3 FEC) 

before cycling (pristine), and after the 1st and 30th cycles. The y scale of the 5–10 ppm region is enlarged by 33 

times compared to the 3–5 ppm region. 13C satellites are marked with an asterisk. All spectra were measured with 

a magnetic field strength of 9.4 T, except for the 30th cycle LP30+13C3 FEC sample was measured at 11.7 T.

samples (Figure 3.2b and c) indicating that very different soluble breakdown products are 

formed.  In the LP30 samples, these include an intense singlet at 4.30 ppm that appears after 

the first cycle (yellow shading) and several multiplets (blue shading, labelled from a–d) at 4.19, 

3.62, 3.52 and 3.4–3.1 ppm.  

The singlet at 4.30 ppm is assigned to lithium ethylene dicarbonate (LEDC),99 which is 

supported by 2D 1H–13C heteronuclear single quantum correlation (HSQC) and 1H-13C 

heteronuclear multiple bond correlation (HMBC) experiments performed on cycled LP30 

electrolytes extracted from Li symmetric cells (Figure A.1 in Appendix A) as well as previously 

reported DFT shift calculations.47 LEDC is a decomposition product of EC, which is formed 

via a ring-opening reduction of EC, followed by a dimerization and the elimination of ethylene 

gas (see schemes presented in the discussion).42 Interestingly, LEDC disappears by the 30th 

cycle, suggesting that LEDC is a metastable species that decomposes upon further cycling. 
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Decomposition of LEDC is consistent with theoretical predictions that indicate that LEDC is 

thermodynamically unstable on contact with the lithiated silicides.51,100 The multiplets labelled 

a–d are assigned to oligomers comprising different linear polyethylene oxide (PEO) species, 

i.e., R-OCH2CH2O- /R’-OCH3 groups and is fully characterized in Chapter 5. Similar PEO 

species or oligomers have also been previously detected by mass spectroscopy.101–103  

The 1H NMR spectra of the LP30 + FEC electrolyte after 30 cycles exhibits three distinct new 

sets of resonances in the 9.5–9.7 ppm region (three singlets), a singlet at 7.77 ppm, and a cluster 

of multiplets at approximately 5.0–6.2 ppm (Figure 3.2b, shaded red and labelled x, y, and z, 

respectively), which are all absent in the LP30 sample. These three sets of resonances are also 

observed in the cycled LP30 + 13C3-FEC with further splitting of the peaks resulting from the 

13C labelling. Assignment of the species present in the FEC-containing samples was facilitated 

by a combination of 2D correlation NMR spectroscopy and J-coupling pattern analysis of the 

13C-labelled sample (vide infra). By contrast, the 1D 1H NMR spectra of the LP30 sample only 

shows a small singlet at 8.42 ppm in this spectral region after 30 cycles, which can be assigned 

to lithium formate on the basis of its unique chemical shift.104 Lithium formate can form via 

reduction of CO2 and proton abstraction from other organic molecules in solution (see 

discussion).47 The resonances seen in the 5–10 ppm region of the 1H NMR spectra indicate that 

distinct chemical species are formed in the presence of the FEC additive that are not formed in 

LP30 alone. 

In addition to chemical composition, the 1H NMR data also provides information on the relative 

populations of electrolyte breakdown products. In Figure 3.2, the 1H NMR resonances in the 

5–10 ppm region are magnified by a factor of 33, over the 3–5 ppm region. The intense peaks 

of the degradation product seen in the LP30 sample (peaks a–d in Figure 3.2a) in the latter 

region suggest that more soluble oligomers are present in the electrolyte. In contrast, the 1H 

NMR peak intensities associated with the decomposition products found in the LP30 + FEC 

sample are significantly weaker than those in the LP30 sample, suggesting less soluble SEIs 

are formed in the presence of FEC. 

Two-dimensional (2D) correlation NMR spectroscopy experiments were then performed with 

13C3-FEC sample, in order to carry out a more in-depth characterization of the structure of the 

decomposition products, 13C3-FEC being synthesized as described in the experimental section 

using a modification of a published route.105 The HSQC spectrum of the LP30 + 13C3 FEC  
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Figure 3.3. 2D solution NMR spectra of the LP30 + 13C3 FEC electrolyte after 30th cycles. (a) 1H-13C HSQC with 

13C decoupling, blue and red represent positive and negative peaks, respectively. (b) 13C–13C COSY spectra. The 

off-diagonal peaks are marked with dashed squares. Possible structures are given next to the corresponding peaks; 

species containing aldehyde terminal groups are shaded in blue and the cross-linking units are shaded in red. 

samples (Figure 3.3a) shows two cross peaks between the 1H NMR signals at 9.53–9.34 ppm 

with the 13C NMR signals at 188.5 and 195.7 ppm, respectively, which are consistent with a 
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Table 3.2 Summary of the assignments from HSQC, HMBC and 13C COSY experiments for cycled LP30 +13C3 

FEC electrolyte. 

Samples Index 

Shift / ppm 
Possible assignments 

HSQC HMBC 13C COSY 

1H 13C 13C 13C 13C 
 

LP30 + 13C

3 

FEC 

x 9.50 196 68.3/71.9 197.1 72.3 HC(=O)-CH2OR 

y 7.76 134.1 153.6 
  

RCH=CHOCOOR'/ VC 

z1 6.07 99.1 
 

98.8 70.2 
ROCH2CH(OR')2 

z2 5.88 100.6 
 

100.3 70.2 

z3 5.78 65.8 66.4/153.2 
  

ROCOOCH(CH2OR)2 

z4 5.23 66.7 68.2 / 203.3 204.0 68.8 HC(=O)-CH2OCH2R 

 

terminal aldehyde/vinoxyl species, HC(=O)-R. The HMBC spectrum (Figure A.5 in Appendix 

A) shows that there are multiple vinoxyl oligomers, with the HC(=O) groups being bound to 

ethylene oxide (-CH2O-) carbons with 13C chemical shifts of either 68.3, 71.9 or 73.8 ppm (all 

these 13C shifts are consistent with a formula such as HC(=O)CH2OR). The carbon connectivity 

of this structure is further supported by 13C–13C correlation spectroscopy (COSY, Figure 3.3b), 

which shows a cross peak between the vinoxyl carbons at 204.0 ppm and the ethylene oxide 

carbons (-CH2O-) around 68–73 ppm (see Table 3.2 for a summary of all 2D correlation peaks).  

In addition to the vinoxyl species, other soluble components are also observed in the 2D NMR 

spectra. According to the HSQC spectrum in Figure 3.3a, the 1H NMR peak at 7.77 ppm (y) 

belongs to a proton directly bound to a sp2 hybridized carbon (as indicated by the 13C chemical 

shift of 132.9 ppm). In addition, the corresponding 1H−13C HMBC spectrum (Figure A.5) 

shows that the proton giving rise to y is also 2–3 bonds away from a carbonate group, since a 

13C cross peak is observed at 153.8 ppm. Thus, y likely originates from a highly symmetric 

decomposition product of FEC, e.g., either vinylene carbonate (VC) or lithium vinyl 

dicarbonate (LVDC), both of which contain the chemical fragment OCH=CHR. Note that in 

the non-labelled sample (or under 13C decoupling), a singlet at 7.77 ppm is observed, whereas 

in the 13C3 FEC sample, a distinct pattern of multiplets is observed (Figure 3.2b and c, region 

y). Of note, the splitting pattern observed in the 13C labelled sample contains further 

information that allows us to unravel the environments that give rise to the peaks in region y. 
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3.3.3 Assignment of VC from analysis of the J-coupling 

 

Figure 3.4. Multiplet pattern of cycled LP30 +13C3 FEC in region y, (a) experimental pattern (the inset on the 

upper right-hand corner is the J-coupling constants of VC obtained from the 1H NMR spectrum of VC as illustrated 

in Figure A.6); (b) simulated pattern of a four-spin system AA’XX’ (cis-H-CR=CR-H) with the J-coupling 

constants used in the simulation listed on the upper right corner.

The experimental 1H NMR spectrum in region y of the cycled LP30 +13C3 FEC sample is 

compared with the simulated 13C2 VC spectrum as shown in Figure 3.4. In order to simulate 

the proton-splitting pattern of 13C2 VC, various J coupling constants (1JCH, 2JCH, 1JCC, 3JHH, 3JCH) 

were extracted from the 1H NMR spectrum of natural abundance VC, which is also associated 
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with a 1H shift of 7.77 ppm (Figure A.6 in Appendix A). The experimental J coupling constants 

are listed on the inset of Figure 3.4a. These J coupling constants were then used to simulate the 

1H NMR spectrum of 13C2 VC, by considering the four-spin system, AA’XX’ (Figure 3.4b). 

Here, we simplified the simulation by omitting 3JCH and, as a result, neglected the coupling to 

the carbonate group even though this sample originated from 13C3- labelled FEC. (We note that 

in an AA’XX’ system, each proton (A) is coupled to a different carbon (X), which gives 

second-order multiplets because 1JCH is different from 2JCH). The appearance of the spectrum is 

defined by the four coupling constants (1JCH, 2JCH, 1JCC and 3JHH). 

The peak position and its intensity can be calculated as described by Pople.106–108 A least 

squares minimization was carried out to adjust the J coupling constants in order to match the 

experimental pattern. Figure 3.4b shows the simulated 13C2 VC pattern with the corresponding 

J coupling constants. The simulation provides an excellent match to the experimental spectrum 

with the exception that the 3JCH coupling (9.1 Hz) is omitted since we only considered a four-

spin system; including this would lead to the observed 9.1 Hz splitting of all of the peaks. In 

contrast, LVDC, which contains carbonate groups on both ends of the molecule, will have a 

more complex JCH multiplet pattern: 4JCH (<10 Hz),109 in addition to 3JCH couplings, will exist, 

leading to additional splitting of the 1H signals (a doublet of doublets). Therefore, region y can 

be assigned to VC, not LVDC. LVDC is also excluded on the basis of the measured 3JHH value 

(1.5 Hz), this coupling constant likely arising from a cis-conformation (as in VC) rather than a 

trans one, which would be associated with a larger 3JHH value.110  

3.3.4 Assignment of branched oligomers and vinoxyl species   

The third region, labelled z, in the 1H NMR of the cycled LP30 + 13C3 FEC sample shows 

multiplets at 6.07, 5.88, 5.78, and 5.20 ppm (which are labelled as z1, z2, z3 and z4 in Figure 

3.3a). From the peaks observed in the HSQC spectrum, the 1H resonances z1 and z2 are 

connected to carbon resonances at 99.1 and 100.6 ppm, respectively. These resonances can be 

assigned to protonated carbons with two oxygen groups attached (-CH(OR)2) on the basis of 

their chemical shifts (and their similarity to the shifts found in polysaccharides with similar 

local environments111). In the 13C–13C COSY spectrum (Figure 3.3b) the branched carbons at 

100.3 and 98.8 ppm are directly bound to the ethylene oxide carbon at 70.2 ppm, suggesting a 

motif structure: ROCH2CH(OR)2. This key observation is indicative of the formation of 

branched oligomers in the FEC-containing electrolyte, which appear after prolonged cycling.  
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Similarly, structural assignments for the 1H NMR z3 and z4 resonances can be made. The 1H 

resonance z3 is connected to a 13C resonance at 65.8 ppm in the HSQC spectrum and the 

protons are 2–3 bonds away from carbons with 13C resonances at 66.4 and 153.2 ppm in the 

HMBC spectrum. These resonances can be assigned to a branched carbon near a carbonate 

group and two ethylene oxide groups (ROCOOCH(CH2OR’)2) based on their chemical shifts. 

The z4 proton is bound to a carbon at 66.7 ppm. The HMBC spectrum shows that z4 is further 

bonded to carbon atoms with 13C resonance at 68.2 and 203.3 ppm. The chemical structure of 

z4 can therefore be assigned to the methylene units in the vinoxyl species 

(HC(=O)CH2OCH2R), which confirms our identification of the vinoxyl species in region x. 

3.3.5 13C ssNMR and DNP NMR detection of the SEI 

Characterization of the insoluble species in the SEI was carried out with 13C3-labelled EC, 13C3-

labelled FEC electrolyte, and electrolyte/additive formulations (see Table 3.1 for electrolyte 

formulation) using a combination of ssNMR and DNP NMR spectroscopies. Cycled SiNWs 

were extracted from cells without rinsing and were dried under vacuum overnight to remove 

EC/DMC/FEC before measurement. Figure 3.5 shows a comparison of the 1H–13C cross 

polarization (CP) NMR spectra measured at room temperature (RT) using conventional 

ssNMR and the spectra acquired with DNP NMR at 100 K. All DNP spectra show intense DCB 

solvent peaks at 120 and 140 ppm with the corresponding spinning sidebands at 40–55 ppm 

(Figure 3.5) due to the addition of the DNP biradical solution (4 mM TEKPol in DCB). Apart 

from these solvent peaks, there is no obvious difference in the species detected via ssNMR and 

DNP NMR, suggesting that the biradical solution has not altered the chemical structure of the 

SEI. Moreover, the sensitivity provided by low temperature DNP is obvious: the room 

temperature (RT) spectrum of the LP30 + 13C3 FEC sample took approximately 20 h, whereas, 

under DNP conditions (100 K), a similar signal-to-noise ratio spectrum was achieved within 

1.3 h and allowed characterization of the SEI via 1H–13C heteronuclear correlation (HETCOR) 

experiments (Figure 3.6). 

LP30: The 13C NMR spectrum of LP30 containing 25 vol % enriched EC (LP30 + 13C3 EC, 

Figure 3.5a) is dominated by a broad peak at 68 ppm with a shoulder at 61 ppm. In addition, a 

semicarbonate resonance at 160 ppm is observed.  The shoulder at 61 ppm becomes sharper in 

the spectrum acquired with DNP at 100 K, likely due to reduced dynamics of the organic SEI 

species at lower temperatures, as observed in the previous reported DNP experiments 

performed on graphene electrodes.112 The broad 13C resonance at 68 ppm (labelled C1) is 
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correlated to a proton at 4.5 ppm in the HETCOR (Figure 3.6a), allowing C1 to be assigned to 

either the carbon in ethylene oxide (-CH2CH2O-) or to residual EC. The shoulder at 61 ppm in 

the 13C ssNMR spectrum (labelled C2) shows a one-bond correlation to a proton resonance at 

approximately 3.75 ppm, and is assigned to an ethylene oxide carbon with a terminal alcohol 

(RCH2OH).47 Three other local maxima are observed in the HETCOR spectra between C1 and 

C2 (numbered 3, 4 and 5 in Figure A.9), the different shifts possibly being a result of different 

PEO chain lengths and/or a variation in terminal groups of polyethylene oxide. The intensity 

of aliphatic carbons in both the conventional and DNP 13C NMR spectra is low, which suggests 

that the SEI formed here primarily consists of polyethylene oxide that contains few aliphatic 

units. 

 

Figure 3.5 1H-13C CP NMR spectra of SiNWs cycled in LP30 with 25 vol %13C3 EC (LP30 + 13C3 EC). (a) and 

LP30 with 10 vol% 13C3 FEC (LP30 + 13C3 FEC) (b) electrolytes, for 30 cycles. The RT spectra were measured 

at room temperature by conventional ssNMR, while the 100 K spectra were measured using DNP NMR with the 

microwaves turned on. Ortho-dichlorobenzene (DCB) was used as a radical solvent in the DNP experiments and 

its isotropic resonances are labelled “DCB”; the spinning sidebands of all the resonances are marked with 

asterisks. Possible structures are given next to the various isotropic resonances where R represents CH/CH2/CH3 

groups.
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Figure 3.6 2D 1H-13C heteronuclear correlation (HETCOR) DNP-NMR of SiNWs cycled in LP30+13C3 EC 

electrolyte (a) and LP30 + 13C3 FEC electrolyte (b) for 30 cycles. Spinning sidebands arising from the DCB solvent 

are marked “ssb”; artefact peaks marked with # are due to spin locking along the effective field arising from the 

proton decoupling and they appear at the 1H carrier frequency.113 Full spectra and additional experimental details 

can be found in the Appendix A.

LP30 + FEC: Similar carbon environments at 68 ppm and 160 ppm are observed in the 

spectrum of LP30 with 10 vol % of 13C-enriched FEC (LP30 +13C3 FEC, Figure 3.5b), along 

with two new peaks: a 13C resonance at 103 ppm that is present in both the ssNMR and DNP 

spectra, as well as a weak resonance at approximately 34 ppm that is much more clearly 

resolved in the DNP spectrum. The main peak at 68 ppm has a different peak shape compared 

to that observed in the LP30 + 13C3 EC spectrum, and no shoulder at 61 ppm is observed. The 

signal at 68 ppm in the RT spectrum is broadened near the baseline, possibly indicating that 

two peaks are superimposed in this region. It is hypothesized that the sharp peak at 68 ppm is 

due to residual EC. The broader component of the peak as well as the 13C resonance at 68 ppm 

is consistent with a distribution of different ethylene oxide environments (-CH2CH2O-).47 In 

contrast to the LP30 + 13C3 EC sample, the SEI signal at 68 ppm becomes broader when 
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measured at 100 K (Figure 3.5b). Here, spectral broadening may be a result of sample 

heterogeneity, leading to a wider distribution of chemical shifts at low temperature. 

The HETCOR spectrum of the FEC-containing sample (Figure 3.6b) has three extra peaks at 

103, 75–85, and 34 ppm, labelled A, B, and D, respectively, which are absent in the 

LP30 + 13C3 EC sample. The broad peak, B, is correlated to a 1H peak at around 4.5–5.0 ppm. 

At least four components (B1–B4) can be resolved, which are assigned to branched ethylene 

oxide units (-CHRO) with different substituting groups or chain lengths. The 13C resonance at 

34 ppm (peak D) is correlated a 1H resonance at 1.3 ppm and is assigned to RCH2R’ units.  

Both the aliphatic units (peak D) and the series of resonances round 80 ppm (peak B) are only 

present in the FEC-containing sample and imply that the structure that originates from FEC is 

more complex than a simple linear ethylene oxide polymer.   

In the HETCOR spectrum, the peak at 103 ppm (peak A) is bound to protons that resonate 

between 4.2–5.2 ppm, and can be assigned to a protonated carbonate bound to two oxygens 

based on prior DFT shift calculations of proposed cross-linked VC polymers (see Scheme 3.1 

and discussion).49 This unique chemical shift is consistent with branched structures and was 

observed in the spectrum of chemically reduced FEC.49 The peak at 103 ppm is not due to 

residual FEC as no FEC was detected by 19F ssNMR (Figure A.7). Interestingly, similar 

resonances were also detected in solution NMR of cycled LP30 + FEC electrolyte (resonance 

z1 and z2: the proton at 5.78 ppm is bonded to a carbon at 100 ppm in HSQC, Figure 3.3a), 

suggesting that these might be the precursors that eventually form the insoluble, higher 

molecular weight SEI polymers as will be discussed later. Similar cross-linking units are 

present as glycosidic linkages in natural polysaccharides and also exhibit 13C resonances close 

to 100 ppm.111 

3.4 Discussion 

Different electrolytes with 13C3 enriched EC and/or 13C3 enriched FEC were cycled in SiNW 

half-cells to study the organic electrolyte degradation products. FEC-containing electrolytes 

display an obvious improvement on the cycle life of Si anodes compared to electrolytes that do 

not contain FEC. The SiNWs cells were stopped at the delithiated state after the first and 30th 

cycle for ex-situ NMR analysis. The cycled electrolytes were examined by solution NMR and 

the electrodes by solid-state and DNP NMR spectroscopies. Both soluble and insoluble 
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chemical structures detected in LP30 samples with and without FEC are listed in Schemes 3.2 

and 3.3 along with possible formation reactions.  

Scheme 3.2. Possible Reaction Schemes Consistent with the Chemical Signatures Detected by Solution and Solid-

State NMR for the LP30 Sample: (2.1) Reduction of Ethylene Carbonate,114,119 (2.2) Anionic Polymerization of 

EC, (2.3) Formation of Lithium Formate, and (2.4) Two Possible Reactions for the Formation of ROH116,120 

For the LP30 sample, soluble products such as LEDC, lithium formate and PEO-type oligomers 

are detected in the cycled electrolyte and their respective formation pathways are shown in 

Scheme 3.2. The insoluble SEI that forms from LP30 mainly consists of ethylene oxides (-

CH2CH2O-), ethylene oxides with hydroxide terminal units (RCH2OH) and carbonate (-

OCOO-) units. The presence of these ethylene oxide species is consistent with the PEO-type 

and lithium alkyl carbonate polymers formed from EC that were reported by Shkrob.114  

Previous studies on EC decomposition115–117 suggest that EC can undergo one-electron ring-

opening reduction to form a lithium alkyl carbonate anion radical (Scheme 3.2.1). The radical 

can then dimerize and form LEDC with concurrent loss of ethylene gas, which has been 

previously detected by GC-MS (Scheme 3.2.1).118 To form oligomers or polymers, the alkyl 

carbonate radical anion can elongate the chain via a nucleophilic attack on the EC. 

Alternatively, it can lose CO2, forming an ethylene oxide radical anion (CH2CH2O
-).119 This 

radical anion can also attack EC to initiate anionic polymerization (Scheme 3.2.2).119 In either 
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case, the resulting polymer will primarily consist of linear carbonates and ethylene oxide units 

which are consistent with the ssNMR data in this study as well as those published in previous 

report.48 During these processes, lithium formate can be formed by the reduction of CO2, 

resulting in a lithium carbon dioxide radical with subsequent hydrogen abstraction from other 

species in the solution (Scheme 3.2.3).49   

Short-chain lithium alkyl carbonates such as LEDC are highly soluble and thus are unable to 

protect the Si anode, as they are easily detected in the cycled electrolyte. LEDC is only 

transiently detected in the first cycle electrolyte and not in the electrolyte extracted after 

multiple cycles, confirming its instability.51 Significant amounts of PEO-type oligomers are 

present in the electrolyte after prolonged cycling, which suggests that the degradation products 

derived from LP30 are highly soluble. Since they ae not part of the SEI, they will not help 

preventing further electrolyte decomposition. Their formation contributes to the irreversible 

consumption of lithium and it agrees well with the capacity fading observed in the 

electrochemistry of the LP30 sample (Figure 3.1b). 

The insoluble polymeric SEI formed from LP30 contains similar chemical units to those 

detected in the solution NMR. Note that significant amounts of hydroxide-terminated groups 

(RCH2OH) are detected in the ssNMR of the LP30 sample, which is consistent with previous 

study.48 Hydroxide terminal units can be formed via protonation of the alkoxide (RCH2O
-) or 

by the hydrolysis of lithium alkyl carbonate (Scheme 3.2.4).116,120 Although the 13C CP NMR 

is not quantitative, the long contact time used in the experiments here (1–2 ms) ensures a 

homogenized 1H polarization transfer throughout the molecule, allowing a semi-quantitative 

comparison. The higher percentage of hydroxide-terminated carbon versus ethylene oxide 

carbon in the LP30 sample suggests a higher population of polymers with shorter chain lengths 

compared to highly polymerized PEO species. Such short-chain polymers/oligomers are likely 

to be chemically similar to the oligomers detected in the cycled electrolyte (peak a–d in 

Figure 1a). These short-chain polymers derived from EC do not appear to be able to form a 

stable SEI on the Si anode and thus, cannot prevent further electrolyte breakdown.  

Very different chemical motifs were detected in the solution and solid-state NMR of the 

FEC- containing sample (Scheme 3.3, top). Specifically, minor amounts of vinoxyl species, 

VC, and a possible cross-linking site are present as the soluble products in the cycled 

electrolyte. Note that PEO-type oligomers were not detected by solution NMR in the FEC 
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Scheme 3.3. Possible Reaction Schemes Consistent with the Chemical Signatures Detected by Solution and Solid-

State NMR for the LP30 + FEC Sample: (3.3.1) Reduction of Fluoethylene Carbonate, (3.3.2 and 3.3.3) Examples 

of Reactions between VC and Vinoxyl Radicals as the Initial Steps for Radical Polymerization To Form Poly(VC), 

(3.3.4 and 3.3.5) Reactions between Alkene Termination and Vinoxyl Radicals, (3.3.6) Possible Reactions 

between Vinoxyl Radical B and Aldehyde Species, Forming the Vinoxyl Units of the Type Detected by Solution 

NMR, (3.3.7) Reaction between Secondary Radical Formed in (3.3.5) and Aldehyde Species, Forming Branched 

Structure Found in Solution NMR, and (3.3.8) Possible Reaction between Alkene Termination with Reduced EC 

Intermediate. 

a

                                                 

′
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sample. The absence of soluble PEO-type species suggests that FEC can effectively suppress 

the formation of soluble oligomers formed in the LP30 sample.  

Vinoxyl species are present in both the first and 30th cycle, indicating that they form during the 

initial stage of FEC decomposition. In contrast, VC and branched oligomers are only found in 

the 30th cycle of the FEC-containing sample. We speculate that VC may be highly reactive and 

thus, rapidly being consumed to form other species in the initial formation cycles. However, 

after long-term cycling, a stable SEI forms and VC begins to accumulate in the electrolyte. The 

observed conversion of FEC to VC is also consistent with the mechanistic studies performed 

by Balbuena and co-workers using density functional theory and ab initio molecular dynamics 

simulations methods.121 The branched soluble oligomers detected in the cycled electrolyte 

appear to be similar to the species present in the insoluble portion of the SEI, but with shorter 

chain lengths (i.e. lower molecular weight species and higher solubility; they therefore saturate 

in the electrolyte and likely prevent further SEI dissolution). The soluble components may also 

serve as precursor for the insoluble SEI polymers. Another possibility is that the chemical 

structures of the soluble oligomers are different from the insoluble polymer as they are formed 

by different reactions. Certain pathways lead to short-chain oligomers, while other reactions 

form insoluble polymers.  

The insoluble SEI products formed from the FEC-containing sample are consistent with 

ethylene oxides and carbonate species along with the minor structural features as follows: 

acetal carbons (with 13C chemical shift at 103 ppm), branched ethylene oxides (with 13C 

chemical shift at 75–85 ppm), and aliphatic carbons (with 13C chemical shift at 34 ppm), which 

are shaded in red, yellow and green, respectively (Scheme 3.3, top). The observation of 

ethylene oxides and carbonate species is consistent with prior NMR,49 XPS41,122 and FTIR 

studies123. 

Scheme 3.3 summarizes the possible reduction reactions of FEC, which are based on the 

species detected in this study and prior experimental and theoretical work. First, FEC is 

defluorinated, forming an EC radical (denoted as radical A) and LiF (Scheme 3.3.1), as 

proposed by Nie.42 As fluorinated carbon species are not detected by solution or solid-state 

NMR (Figure A.7), we suggest that FEC defluorinates prior to further reaction. At this stage, 

the formed EC radical can abstract hydrogen from other species in solution and convert back 
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to EC.  Alternatively, the EC radicals can disproportionate to form VC and EC. Experiments 

using mass spectrometry in conjunction with additional NMR to compare decomposition 

products using unlabelled and 13C-labelled EC and FEC are currently underway in our 

laboratory to determine which reaction pathway is occurring and will be reported in a future 

study. If the EC radicals disproportionate to form VC and EC in the LP30 + 13C3 FEC sample, 

the 13C3-labelled EC that is generated can be reduced as suggested in Scheme 3.2 and 

subsequently contribute to the PEO-type signal that is detected in 13C ssNMR (Figure 3.5a).  

Radical A is identical to the radical that results from EC via H abstraction. However, although 

its existence has been proposed, such cyclic EC radicals have not been experimentally observed 

in the absence of FEC or VC, even under cryogenic conditions (77 K) during the irradiation of 

EC.114 The inability of EC to form such an EC radical may be one explanation for the difference 

in the decomposition products seen with EC and FEC. Once formed, radical A can lose 

hydrogen to form VC, otherwise, radical A can lose CO2, forming the vinoxyl radicals as shown 

in Scheme 3.3.1. Due to resonance, there are two forms of the vinoxyl radicals: one with the 

radical centre on the carbon (CH(=O)CH2, radical B) and the other with the radical centre on 

the oxygen (OCH=CH2, radical C). While the vinoxyl radicals have not been directly detected 

in this work, such radicals have been observed in a radiolysis experiment on FEC and were 

proposed to initiate the formation of highly cross-linked polymers.124 Because our NMR results 

only revealed stable vinoxyl species instead of unstable vinoxyl radicals, we now propose 

possible reaction schemes that result in the formation of vinoxyl species as well as some 

branched units with predicted chemical shifts similar to those observed experimentally 

(Scheme 3.3.2–Scheme 3.3.8). Vinoxyl species can, for example, be formed by the vinoxyl 

radicals (either B or C) attacking the sp2 hybridized carbon in VC. When radical B reacts with 

VC (Scheme 3.3.2), it can form a structure that contains an aldehyde terminal group, an 

aliphatic carbon, and a branched ethylene oxide (shaded in blue, green and yellow, respectively, 

with corresponding NMR parameters given). If VC reacts with radical C (Scheme 3.3.3), the 

radical will be transformed into a stabilized carbon radical, which has a branched acetal carbon 

(shaded in red) and an alkene termination. These newly formed radicals (in the form of RCH 

R’) can abstract H from other species in solution to stabilize themselves (forming RCH2R’). 

Alternatively, these secondary radicals can then further react with the vinyl group in VC to 

form poly(VC).49,100,118  
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Note that neither alkene units (13C shifts at 120−140 ppm) nor aldehyde carbon (13C shift at 

200 ppm) are observed by ssNMR. We hypothesize that such terminations can be consumed 

by further reacting with the vinoxyl radical and resulting in chain elongation.125 Such terminal 

groups would be present in very low quantities and therefore, below the detection limit of 

ssNMR. Furthermore, decomposition products that contain alkene terminal units can undergo 

reactions similar to those of VC (Scheme 3.3.4 and 3.3.5), forming a mixture of polymer 

products that is consistent with the cross-linked species detected in this study.  

Interestingly, the chemical structures observed in solution can be rationalized by considering 

the radical attack of the aldehyde terminal group. When radical B reacts with a molecular 

species with an aldehyde group (Scheme 3.3.6), a new radical containing the vinoxyl units 

(CH(=O)CH2OR, shaded in blue) is formed. When the secondary radical formed in Scheme 

3.3.5 attacks an aldehyde group (Scheme 3.3.7), a cross-link containing the acetal carbon forms 

(ROCH2CH(OR)2, shaded in red). These two chemical units are consistent with the soluble 

products identified by solution NMR (Figure 3.3). It is speculated that the radical attack on the 

aldehyde group will lead to oligomers that have short-chain lengths and remain solubilized. In 

contrast, radical attack on the alkene terminal group is more likely to form higher molecular-

weight polymers that are incorporated into the insoluble portion of the SEI.  

The reduced EC intermediate (alkyl carbonate anion radical) can also react with the alkene 

carbon as illustrated in Scheme 3.3.8. The anion radical (RCH2) that forms from reduced EC 

can attack the alkene group and graft the PEO chain to the decomposition products of FEC. If 

it occurs, this reaction also consumes the anion radicals and reduces the possibility of anionic 

polymerization of EC. In Scheme 3.3.8, RCH2R’ (shaded in green) could, in principle, originate 

from the decomposition of EC. To determine whether this reaction takes place, 13C CP NMR 

of the SiNWs cycled in LP30 + 13C3 EC + FEC (see Table 1 for electrolyte formulation) was 

performed. The resulting 13C CP NMR spectrum shows an extra set of resonances that span the 

range of 15–40 ppm (Figure A.8). The presence of additional 13C NMR peaks in the region of 

15–40 ppm strongly suggests that FEC contributes to the formation of the aliphatic carbon 

signal and the result is consistent with the mechanism proposed in Scheme 3.3.8.  

Although alkene termination is not directly observed in solid-state NMR, we speculate that sp2 

carbon/alkene termination is necessary to create the cross-linked polymer and may play an 
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important role in capacity retention in general. Recent reports indicate that novel additives, 

such as methylene ethylene carbonate that contain sp2 hybridized carbons show promise for 

increasing capacity retention in LIBs.126,127 The SEI formed in the presence of FEC clearly 

shows cross-linked species, whereas the SEI formed in the standard EC/DMC electrolyte 

mainly contains linear PEO-type polymers, providing a molecular rationale for the observed 

increase in capacity retention in LIBs when FEC additive is used. Similar cross-linking units 

are also present as glycosidic linkages in natural polysaccharides, (which exhibit similar 13C 

resonances at approximately 100 ppm111) many of which have been successfully demonstrated 

as a binder for Si that improves capacity retention, further suggesting that this structural motif 

may impart stability to the SEI.128–130  

The mechanical properties of the branched polymer derived from FEC may be more elastic, 

which can accommodate the volume expansion that occurs in Si during cycling. Additional 

experiments are required to determine whether the polymers formed from FEC differ in their 

Li ion conductivity from the linear PEO-like species formed from EC and whether the reduced 

overpotentials seen on cycling in the presence of FEC are due to a thinner SEI or to improved 

Li transport. 

3.5 Conclusions 

Organic species in the SEI on SiNWs were characterized by solution and solid-state NMR to 

understand the role of FEC as an electrolyte additive in performance enhancement in LIBs. 

After long-term cycling, the standard EC/DMC electrolyte decomposes and forms a variety of 

soluble oligomers in addition to the transient formation of LEDC. The addition of FEC into the 

electrolyte allows the formation of a stable SEI and suppresses the decomposition of EC/DMC, 

resulting in increased coulombic efficiency after the first few cycles. The 1H and 13C NMR 

spectra provide compelling evidence for the defluorination of FEC to form soluble vinoxyl 

species (HCOCH2OR) and VC. Importantly, we emphasize that we have conclusively shown 

that FEC converts to VC instead of LVDC by 1H NMR using 13C-labeled FEC. Oligomers with 

characteristic peaks that can be assigned to protonated carbons bonded to two adjacent oxygen 

groups due to cross-linking units were also identified. These oligomeric precursors presumably 
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react further to form insoluble polymeric species in the SEI, with similar cross-linking groups. 

Neither these cross-linking units nor the vinoxyl species are observed in the absence of the 

FEC additive.  

The vinoxyl species are signatures for the formation of the vinoxyl radicals that are believed to 

initiate the polymerization that eventually results in a highly cross-linked network.124  While 

the study of Shkrob et al. focused on the reduction products of FEC alone,124 we too, detect 

similar vinoxyl species and cross-linking motifs when FEC is used as an additive in EC-

containing electrolytes. Based on our NMR results, we find that the stepwise elimination of 

CO2 results in a polymeric species that contains a mixture of aliphatic units (13C shifts at 34 

ppm) and cross-linking motifs (13C shifts at 103 ppm) similar to poly(VC), with several regions 

of PEO-type structures (13C shifts 72−65 ppm). Overall, FEC breakdown products (e.g. 

increased population of cross-linking moieties) lead to a suppression of soluble, linear PEO-

type polymeric products that occur in the standard cycled LP30 electrolyte. 

It is speculated that the formation of cross-linked polymer is key to the higher stability of SEI 

formed on Si anodes in the presence of FEC, motivating studies with additives that may 

promote cross-linking. Further insight into the molecular nature of the SEI and the parameters 

that impart stability offer the opportunity to tailor the SEI chemistry to maximize performance 

in LIBs. 
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Chapter 4 Probing the interfacial structure 

between the SEI and the Si anode 

 

4.1 Introduction 

In this chapter, 1 M LiPF6 in either pure FEC or VC electrolytes without EC are prepared for 

studying their decomposition mechanisms. Solid electrolyte interphase (SEI) formed in these 

pure FEC and VC electrolytes are characterized by conventional and DNP-enhanced solid-state 

NMR. The structure-performances relationship is found for the organic SEI and Si anodes: 

heterogeneous cross-linked polymers are formed during the reduction of FEC and VC, which 

consist of cross-linked PEO-type polymers and aliphatic chains, and the presence of the highly 

cross-linked polymers correlates with good capacity retention. The interfacial region between 

the SEI and Si surface is also revealed for the first time by NMR spectroscopy. 
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4.2 Experimental 

Coin cells: SiNWs were grown by chemical vapor deposition (CVD) as described previously.90 

13C3-labelled FEC was synthesized by using a previously reported procedure.131 Li half-cells 

were then assembled with the SiNWs electrodes in 2032-type coin cells, using the freshly 

prepared electrolytes listed in Table 1. Borosilicate glass fiber was used as the separator and 

around 10 drops (~0.15 mL) of electrolyte were used for each cell. Coin cell assembly was 

carried out in an Ar filled glovebox (H2O < 0.1 ppm, O2 < 0.1 ppm). The coin cells were 

discharged/charged at room temperature at a constant current (C/30, 120 mA/g) between 

0.001 V – 2 V vs Li/Li+ for the first cycle using a Biologic VSP, MPG-2 or Lanhe (Wuhan, 

China) battery test systems. After the first cycle, the coin cells were then cycled at C/10 (360 

mA/g). Approximately 30 days were needed to complete 50 cycles. After cycling, the cells 

were disassembled in the glovebox and the SiNW electrodes were dried under vacuum 

overnight (~16-20 h) to remove excess electrolyte solvents without rinsing. 

Table 4.1 Electrolyte formulations with 1 M LiPF6 in different solvent mixtures 

Electrolyte solvents Abbreviation 

EC/DMC = 50/50 (v/v) LP30 

EC/DMC/FEC = 45/45/10 (v/v/v) LP30 + FEC 

FEC (fluoroethylene carbonate)  FEC 

VC (vinylene carbonate) VC 

FEC/13C3 FEC = 95/5 (v/v)  13C3 FEC 

 

Solid-state NMR measurements (1H, 13C) were performed at 11.7 T with a Bruker Avance III 

spectrometer equipped with a 2.5 mm probe-head at a MAS speed of 30 kHz for 1H NMR 

spectra and 10 kHz for 1H−13C CP NMR spectra. The π/2 pulse lengths were 2.7 µs for 1H. The 

chemical shifts of 1H, 13C were referenced with adamantane (1H at 1.87 and 13C at 38.6 ppm). 

Between 64−256 transients were collected using recycle delays of 15 s for 1H experiments. 1H-

13C CP NMR spectra were acquired with a CP contact time of 2 ms, a recycle delay of 3 s and 

21k – 28k scans. RF nutation frequencies were (1H) 92.5 kHz (50-100% linearly ramped during 

CP), (13C) 82.5 kHz, and SPINAL6483 (1H) decoupling at 80 kHz. 13C direct excitation of 13C3 
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FEC 100 sample was measured with recycle delay of 60 s and 5648 scans over the duration of 

102.5 hours. 

DNP NMR experiments were performed on a 14.1 T Bruker Avance III HD spectrometer with 

a 395 GHz gyrotron microwave source and using a 3.2 mm triple resonance wide-bore probe 

at the Nottingham DNP MAS NMR Facility. The sample transfer and preparation procedure 

have been described before,131 with the exception that a radical solution of 16mM TEKPol 

dissolved in 1,1,2,2-tetrachloroethane (TCE) instead of dichlorobenzene was used to achieve 

better signal enhancement. The sample mass, dilution ratio of KBr and the volume of radical 

solutions are listed in Table 4.2.  

Table 4.2 Summary of the DNP NMR samples 

Sample 

No. 

Sample 

description 

Sample 

mass (mg) 

KBr 

(mg) 
Radical solution 

Radical 

volume (µL) 

1H 

ϵon/off 

1 FEC30 5.7 13.0 16 mM TEKPol in TCE/d-

TCE/CDCl3 (56/24/20, v/v/v) 

4.0 5 

2 FEC50 6.2 18.0 16 mM TEKPol in TCE/d-TCE 

(80/20, v/v) 

4.0 16 

3 13C3FEC10

0 

4.0 15.0 16 mM TEKPol in TCE/d-TCE 

(80/20, v/v) 

4.0 3 

4 VC50 5.0 15.0 16 mM TEKPol in TCE/d-TCE 

(80/20, v/v) 

4.0 13 

 
5 LP30, 50 

cycles 

9.5 24.0 16 mM TEKPol in TCE 6.0 16 

6 LP30, 1st 

cycle 

5.4 14.7 16 mM TEKPol in TCE 3.5 16 

7 FEC, 1st 

cycle 

8.1 21.0 16 mM TEKPol in TCE 5.0 6 

8 VC, 1st 

cycle 

6.6 17.0 16 mM TEKPol in TCE 4.0 10 

 

1H–13C CP and 1H–29Si CP DNP NMR spectra were acquired with a 90−100% ramped contact 

pulse93 on the 1H channel and 100 kHz 1H decoupling using swept frequency two pulse phase 

modulation (SWf -TPPM)94 sequence with MAS frequency of 12.5 kHz. The relaxation delay 

was 3-4 s, and the CP contact time 2 ms for 13C and 5 ms for 29Si. 29Si DNP direct excitation 

spectrum was acquired using high powder proton decoupling with a recycle delay of 10 s and 

3072 scans at a spinning speed of 12.5 kHz. 
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Double quantum (DQ)–single quantum (SQ) 13C–13C dipolar correlation spectra were acquired 

using POST-C784 for DQ excitation and reconversion at a MAS rate of 8 kHz. The mixing time 

is 2 ms. Proton decoupling was achieved by a SWf-TPPM sequence with 100 kHz RF amplitude 

on the 1H channel. 256 transients were recorded for each of 128 complex points interleaved, 

by using a 2 s of recycle delay for the recovery of 1H magnetization. 

1H−29Si HETCOR spectra were measured using 5 ms contact time, continuous wave Lee 

Goldberg (CWLG) proton decoupling, 2048 scans per slice with 32 increments and a recycle 

delay of 3 s with MAS frequency of 12.5 kHz. 

4.3 Results 

4.3.1 Electrochemistry 

The electrochemical performance of SiNWs cycled in Li half-cells using the electrolytes listed 

in Table 4.1 are shown in Figure 4.1. The features in the first discharge/charge curves of the 

SiNWs in Figure 4.1a are similar to one another, indicating that pure FEC and pure VC based 

electrolytes do not affect the Si lithiation and delithiaton mechanisms. However, the 

corresponding dQ/dV plot in Figure 4.1b reveals that FEC and VC are preferentially 

decomposed as early as 1.3 V vs. Li/Li+, whereas LP30 electrolyte decomposition starts around 

0.8 V. The process at around 0.2 V is due to the lithiation of gold, which is used as a catalyst 

for SiNWs growth. In the 50th cycle (Figure 4.1c), both the pure FEC and VC samples maintain 

similar voltage curves with the characteristic Si de/lithiation plateaus. However, the voltage 

profile of the LP30 sample shows a lower lithiation voltage (0.24 V vs. Li/Li+) than the SiNWs 

cycled in pure FEC and VC electrolytes (~0.35 V), with the lower lithiation voltage reflecting 

an increase in resistance, which may come from the reduced porosity of the electrodes and a 

thicker SEI.48 The delithiation voltage curves are similar for all three samples in the 0–0.42 V 

range, but after this point they begin to diverge, as manifested in a change in the peak intensity 

around 0.42–0.70 V in the dQ/dV plots (Figure 4.1d). A lower delithiation capacity is obtained  
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Figure 4.1. Electrochemistry of SiNWs cycled in standard LP30, LP30 + 10 vol % FEC, and 1 M LiPF6 in FEC 

or VC, electrolytes (colored in black, dark red, red and blue, respectively. The voltage profiles and the dQ/dV 

curves of the SiNWs at the 1st cycle (a-b) and the 50th cycle (c-d) for LP30, FEC and VC. Discharge/lithiation 

capacity versus cycle number (e) and the corresponding Coulombic efficiency (CE) during cycling (f) for all four 

electrolytes. The initial CE is shown in the insert in (f). Capacity loss (defined as the lithiation capacity minus the 

delithiation capacity) during each cycle (g) and accumulated capacity loss versus cycle number (h). The capacity 

loss of the 1st cycle is shown in the insert in (g). The legend in (g-h) is the same as in (e). Cells were cycled at 

C/30 for the 1st cycle, then at C/10 for later cycles between 0.001 V – 2 V. 
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in the LP30 sample after 50 cycles than with pure FEC and VC electrolytes in this voltage 

range, as seen in Figure 4.1c; this may again be related to the transport properties and resistance 

of the SEI as suggested by the work of Michan et al.48, which showed that most of the capacity 

could be regained when the cells containing LP30 only were cycled at extremely low rates. 

In general, SiNWs cycled with FEC or VC-containing electrolytes show improved capacity 

retention when compared to standard LP30 electrolytes without any additives (Figure 4.1e). 

After 50 cycles, the LP30 sample retains only 58% of the initial capacity; whereas, cells cycled 

with FEC or VC based electrolytes retain 73–81% of their initial capacities (see Table B.1 in 

Appendix B for details). The Coulombic efficiencies (CE) (defined as the delithiation capacity 

versus lithiation capacity) of SiNWs cycled in FEC- and VC- containing electrolytes show 

marked differences (Figure 4.1f). SiNWs cycled with pure VC show the highest average CE of 

99.1% from the 2rd to the 50th cycle. FEC-containing samples exhibit a slightly lower average 

CE of 98.8% with pure FEC and 98.4% for LP30 + FEC sample. Yet, both FEC-containing 

samples are higher than the standard LP30 sample (97.8%). The CE provides a measure of the 

irreversible reactions that occur during each cycle (e.g. Li+ and/or solvent consumption), the 

higher the CE, the more reversible the reaction is. The CEs of FEC and VC samples, while 

noticeably improved over those in LP30 electrolytes, are still less than 99.5%. Pure FEC and 

VC electrolytes outperform the LP30 based electrolyte, as their capacity loss during each cycle 

(i.e. the lithiation capacity minus the delithiation capacity) and the accumulated capacity losses 

across multiple cycles are all smaller than LP30 samples (Figure 4.1g and h).  

13C3 labelled FEC is synthesized and prepared as an electrolyte (1M LiPF6 in FEC/13C3 FEC) 

for cycling with SiNWs and for further NMR studies. The electrochemical performance of 13C3 

FEC sample is shown in Figure B.1 and it exhibits similar capacity retention to the 13C natural 

abundance FEC and LP30+FEC samples. The electrochemical results suggest that the cells 

containing the 13C3 FEC synthesized as part of this study are representative of cells cycled in 

pure (non-enriched) FEC electrolytes. 

Additional electrochemical impedance spectroscopy data (Figure B.2) and rate performance 

data (Figure B.3) also suggest that the SEI formed in FEC has a higher Li+ conductivity than 

those formed in LP30 electrolyte. Further chemical analysis was then carried out to understand 

the observed electrochemical differences. 
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4.3.2 Organic SEI components revealed by 1H and 13C ssNMR  

 

Figure 4.2. 1H MAS NMR spectra (a-c) and 1H-13C CP MAS NMR spectra (d-f) of SiNWs cycled in LP30, LP30 

+ 10 vol% FEC, pure FEC and VC electrolytes for the 1st, 30th and 50th cycle. Spectra of SiNWs cycled in 95% 

natural abundance FEC+5 vol% 13C3 FEC for 100 cycles are included in (b, e). All spectra were measured at room 

temperature using conventional ssNMR. 

Figure 4.2 shows the 1H and 1H−13C CP NMR spectra of SiNWs cycled in all the electrolyte 

formulations after the first, 30 and 50 cycles in the delithiated state. The results and assignments 

for the LP30 and LP30 + FEC system have been discussed in detail previously131, but are 

included here to facilitate comparison with the pure FEC and VC systems. For SiNWs cycled 

in the standard LP30 electrolyte with and without 10 vol% FEC (Figure 4.2a and d), the organic 

SEI mainly consists of PEO-type polymeric species (-CH2CH2O-) as indicated by both the 
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prominent 1H and 13C resonances at 4.7 ppm and 70 ppm, respectively.47,48 On adding 10 vol% 

FEC, an extra 13C resonance at approximately 103 ppm is seen (Figure 4.2d), which is assigned 

to a cross-linking acetal carbon (RCH(OR’)2) moiety.131  

Similar to the LP30 + FEC sample, 13C NMR spectra of SiNWs cycled in pure FEC and VC 

(Figure 4.2e and f) also contain acetal carbons (100–108 ppm) and ethylene oxide carbons (70–

77 ppm), consistent with the presence of cross-linked PEO-type polymers and the formation of 

poly(VC)-like polymers. However, although both FEC and VC induced SEIs show a beneficial 

effect in terms of the capacity retention of the Si electrode, the chemical compositions of FEC- 

and VC-derived polymers are not identical.  

The acetal carbons in VC and FEC samples have 13C chemical shifts at 108 and 103 ppm, 

respectively. Based on the prior study by Leifer and coworkers56, the chemical shift is 

influenced by the R group in the acetal carbon, the 108 ppm in the VC sample being tentatively 

attributed to an acetal carbon connected to a cyclic R group, potentially in a poly(VC) type 

cross-linking species49; the 103 ppm component of the broader peak in the FEC sample is likely 

an acetal carbon bound to linear R groups, with the FEC samples also containing the higher 

frequency peak but in smaller proportions. Note that small differences in chemical shifts will 

also likely result from differences in the nearby chemical species and from different polymer 

conformations. The assignments of these shifts to acetal carbons is validated by DFT NMR 

shift calculations described in the Appendix B.7, which were performed to explore the effect 

of different functional groups on the carbon shifts. 

The presence of poly(VC) in the VC samples is supported by the 1H and 13C NMR of the 

ethylene oxide region: the most intense 13C peak of the pure VC sample (77 ppm) is 7 ppm 

higher in frequency than that of the FEC sample (Figure 4.2e and 2f) indicating a more strained 

polymer (e.g. poly(VC)36,49) is present. The 1H NMR shows a similar trend: the main broad 

peak is at around 5.1 ppm for pure VC samples (Figure 4.2c), yet the primary 1H resonance is 

observed at approximately 3.8 ppm for FEC samples (Figure 4.2b). The broad 5.1 ppm peak is 

assigned to a proton on branched ethylene oxide (–CHO-) in poly(VC), consistent with the 

solution NMR result reported by Ota et al.46 Note that the broad peak in 1H NMR at around 5.1 

ppm in the VC sample can also arise from vinylic protons (HCR=CR2), but such an alkene 

carbon is only present in small amounts in the 13C NMR spectra.  
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In contrast to the LP30-containing systems, SEIs produced from pure FEC or VC contain a 

higher concentration of aliphatic species, as indicated by the 13C resonances between 0–40 ppm 

(Figure 4.2e and 2f). Aliphatic carbons can be formed by reducing FEC and VC, with the 

release of CO2 gas (see discussion for more details) and involve reactions of more than one 

FEC/VC molecule. Methoxide groups (ROCH3) are also seen for all the FEC and VC samples, 

which are manifested as a 1H peak at 3.5 ppm and a sharp 13C peak at 59 ppm and are correlated 

to one another in the 1H–13C heteronuclear correlation (HETCOR) spectrum (Figure B.8). The 

assignment is further supported by the narrow peak width of the 59 ppm 13C NMR resonance, 

where the relatively sharp peak can be explained by motional averaging due to fast rotation of 

the methoxide group. 

In order to improve the signal to noise ratio in the 13C NMR spectra of 13C natural abundance 

samples, DNP NMR was used to compare the SEIs formed in LP30, FEC, and VC electrolytes 

after 50 cycles (Figure 4.3a). With a signal enhancement of around 15 for each sample, 1H–13C 

CP DNP NMR reveals the finer details concerning the polymeric species in the 100–200 ppm 

region. Figure 4.3a shows that sp2-hydridized carbon species (-CH=CH-) with 13C resonances 

in the range of 120–140 ppm are present in both FEC and VC samples (shaded in grey), but 

not in the LP30 sample. SiNWs cycled in FEC contain additional aldehyde carbons (HC(=O)R) 

with a 13C resonance at 210 ppm. Lithium carboxylate species (RCOO-Li+) with a 13C 

resonance around 180 ppm are also more pronounced in the FEC sample. Both FEC and VC 

samples contain an intense 13C NMR peak at 155 ppm and a weak signal at 170 ppm that can 

be assigned to alkyl carbonate (ROCOOR’ ) and Li2CO3, respectively.112 For the LP30 sample, 

the intense 13C peak at 160 ppm is assigned to lithium alkyl carbonate (ROCOO-Li+), likely 

from the terminal carbonate species found in linear oligomers or polymer chains.47 In short, 

13C DNP NMR shows that, apart from the cross-linked PEO polymer, the organic SEIs derived 

from FEC and VC also contain lithium/alkyl carbonates and additional small amounts of 

unsaturated carbons. 
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Figure 4.3. (a) 1H-13C CP DNP NMR (105 K) spectra of SiNW cycled in LP30 (black), FEC (red) and VC (blue) 

for 50 cycles, where the intense (truncated) peak at 74 ppm is due to the DNP solvent tetrachloroethane (TCE); * 

= spinning sidebands. (b) Conventional, room temperature 13C CP NMR of SiNW cycled in FEC + 5% 13C3 FEC 

for 100 cycles (i) measured by 1H-13C CP, (ii) measured by 13C direct excitation (DE) with a recycle delay of 60 s 

to extract quantitative information. 

13C NMR spectra were also recorded for SiNWs cycled with 13C-enriched electrolyte (FEC + 

5 % 13C3 FEC after 100 cycles, abbreviated as 13C3 FEC100) using room-temperature NMR 

techniques (Figure 4.3b). The 1H–13C CP NMR spectrum (Figure 4.3b, i) of 13C3 FEC100 is 

comparable to the spectrum of SiNWs cycled in FEC for 50 cycles (FEC50) obtained using 

DNP NMR (Figure 4.3a). The striking resemblance between the spectra of FEC50 and 

13C3FEC100 suggests that the chemical units of the organic SEI formed in FEC from the 50th 

to the 100th cycle are chemically similar, indicating that the chemical units of the polymeric 

SEI are stable during cycling at this point, though the SEI thickness may vary. Although no 

quantitative comparisons of these spectra were performed, we did not see any significant 

alteration in the chemical species found in the SEI, following the preparation of the sample for 

the DNP experiment, though it is possible that some of the organic components may dissolve 

in the TCE solvent used for DNP experiments.  

Quantitative information about the organic SEI in the 13C3 FEC100 sample is obtained from 

direct excitation (DE) room-temperature 13C NMR spectra (Figure 4.3b, ii). The integrated 

intensities of the deconvoluted peaks are summarized in Table 4.3. The organic species in the 

13C3 FEC100 sample primarily consist of aliphatic moieties (41% of the total peak area) and 
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PEO-type oligomers (30%). Relatively small concentrations of alkyl carbonate (11%), 

carboxylate (4%) and lithium carbonate (4%) species are also present in the SEI. The 

quantitative 13C NMR spectrum suggests that the branching units (acetal carbons, C in Table 

4.3) account for 8% of the total integral of the spectrum, indicating that the polymers are highly 

cross-linked. Peak D at 128 ppm (Figure 4.3b, ii), which is attributed to alkene carbons, is also 

present in the deconvoluted spectrum and it is consistent with the DNP NMR spectra of FEC 

and VC samples (Figure 4.3a). Note that such alkene species are also observed as soluble 

products in the cycled FEC and VC electrolyte (Figure B.5). The unsaturated carbon units are 

likely the base units for polymerization.100,131 

Table 4.3. Summary of the intensity and assignments of the peaks obtained by deconvolution of the 13C direct 

excitation ssNMR spectrum of the 13C3 FEC sample 

Label Peak centre / ppm Peak width/ppm Relative Intensity (%) Assignment 

A 33.1 32.2 41 RCH2R' 

B 71.5 11.6 30  -CH2CH2O- 

C 100.7 11.4 8 RCH(OR’)2 

D 129.7 15.9 2 RCH=CHR' 

E 155.3 7.3 11 ROCO2R’ 

F 169.9 4.4 4 Li2CO3 

G 180.9 10.4 4 RCO2Li 

 

4.3.3 Molecular fragments in the organic SEI 

To establish the connectivity between distinct chemical motifs observed in the organic SEI, we 

performed a 2D double-quantum single-quantum (DQ−SQ) 13C homonuclear dipolar 

correlation experiment using POST-C7 with DNP enhancement on the 13C3 FEC100 sample 

(Figure 4.4). In this spectrum, two spins with resonance frequencies v1 and v2 result in a 

correlation at v1 + v2 in the indirect dimension of the 2D spectrum if they are coupled through 

space. Here, the spectrum mainly shows one-bond carbon-carbon correlations. Three broad  
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Figure 4.4. DNP enhanced 2D DQ – SQ 13C – 13C POST-C7 dipolar correlation spectrum of SiNW cycled in 

FEC+ 5% 13C3 FEC for 100 cycles. 1D 1H-13C CP NMR and the total projection in the SQ dimension are overlaid 

on top. The corresponding molecular fragments are listed on the right panel. The branching fragments are colored 

in red; the fragments containing ethylene oxide carbons are colored in blue and the alkyl chains in black.  

peaks are observed in the 13C spectrum with spectral ranges of 10 – 40 ppm, 60 – 85 ppm and 

90 – 110 ppm, which are labelled A, B and C, respectively, consistent with the labelling 

scheme shown in Table 4.3. A is assigned to alkyl groups, B is attributed to PEO-type ethylene 

oxide carbons47 (-CH2-CH2O-) in linear and branched moieties, and C mainly arises from an 

acetal carbon with two oxygen bound to it (-CH(OR)2)
48,56,131. Possible molecular fragments 

based on the one-bond correlations are depicted on the right panel in Figure 4.4. The strongest 

correlation observed is between B4 and C2, followed by B2
’ and B3. The B2

’– B3 correlation is 

assigned to connections between ethylene oxide fragments (-OCH2CH2O-) that are found in 

PEO-type polymers.49 The strongest B4 – C2 correlation indicates that acetal carbon C is 

directly bound to a PEO-type ethylene oxide carbon B, which provides strong evidence that 

the acetal carbon C is, indeed, a branching unit in the PEO-type polymer. Note that B4 has a 

13C shift of 72 ppm (see Table B.3 for all the correlation peaks in Figure 4.4), which can be 

assigned to a linear ethylene oxide (EO) carbon instead of a branched EO unit (-CH2CHRO-,  
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Scheme 4.1. Possible molecular fragments observed in the FEC/VC decomposition products. The cyclic region is 

highlighted in yellow, the branching units are colored in red, ethylene oxide units in blue and alkyl chains in grey. 

Carbons labelled with A- C are consistent with the results from the 2D carbon correlation NMR experiment shown 

in Figure 4. The 13C NMR shifts are derived from Figures 2e and f. The relative concentrations of the different 

species vary between the SEIs formed with different electrolytes. 

 

with 13C shift around 77 ppm)132. Moreover, the B4 – C2 fragment ((RO)2CH-CH2OR’) has the 

same connectivity as that of a soluble decomposition product we previously identified in the 

cycled LP30 + FEC electrolyte131 (the structure is highlighted in the box in Figure 4.4). In the 

presence of FEC, the B4 – C2 branched molecular fragment is found in both the soluble 

degradation products and in the insoluble component; it appears to be a unique decomposition 

product from FEC that is absent in standard LP30 electrolyte. 

Weaker A – B, A – A and A – C correlations are also observed, the latter being assigned to 

acetal carbons connected to aliphatic groups. Within the broad peak A, the A3 environment 

with 13C resonance at 18 ppm is assigned to a terminal methyl group (-CH3)
47, while other A 

sites with 13C shifts spanning from 30–40 pm arise from other alkyl groups (-CH2R, -CHR2, -

CR3). The A1 – A2 correlations correspond to the connections within aliphatic carbon chains, 

while the A3 – B1 and A4 – B2 peaks correspond to PEO-type carbons being bound to aliphatic 

carbons.  

Aliphatic carbons (A) are the major species in the organic SEI (Table 4.3), but its correlations 

to other peaks are weaker than the correlations for B – C and B – B in Figure 4.4. The aliphatic 

carbon chain with A – A correlation is less pronounced probably due to its formation pathway 

that involves more than one molecular fragment. Since only 5 vol % 13C3 FEC is used in the 
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electrolyte, the probability of finding two 13C labelled spin pairs in aliphatic chains is largely 

decreased. 

A possible molecular fragment containing the correlations observed in Figure 4.4 is depicted 

in Scheme 4.1. The branching units are shaded in red, ethylene oxide chains in blue and alkyl 

carbons in grey. Characteristic 13C NMR shifts observed in the cycled FEC/VC sample 

(Figure 2e and f) are also tentatively assigned in this structure. The structure also contains a 

cyclic acetal unit highlighted in yellow, but the poly(VC) found to a larger extent in the VC 

samples is not shown. In part due to the low enrichment level (5% 13C3 FEC in the electrolyte) 

and dipolar truncation, multiple-bond correlations were not obtained. Nevertheless, various 

one-bond correlations detected in the system reflect the heterogeneous polymeric structure that 

is formed. 

4.3.4 Lithiated and fluorinated components in the SEI 

 

Figure 4.5. 7Li and 19F ssNMR spectra of SiNWs cycled 1M LiPF6 in pure FEC or VC electrolytes after 1st, 30th 

and 50th cycles measured at MAS speed of 30 kHz. The grey line in (b) is 19F NMR spectra of glass fiber separator 

after 50 cyclesin FEC electrolytes measured at MAS of 25 kHz. Spinning sideband are marked with asterisks and 

dots. 

Inorganic Li salts are also observed by 7Li and 19F ssNMR (Figure 4.5). For all FEC and VC 

samples, LiF is observed as a distinct peak at -204 ppm in the 19F NMR (Figure 4.5b), with 
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FEC samples containing more LiF than VC samples. Apart from LiF, residual LiPF6 salt (19F 

NMR shift at -74 ppm) is the dominant inorganic species in the SEI, as the samples were not 

rinsed. The PF6
- anion also hydrolyses, forming PO2F2

- (19F chemical shift = -82 ppm) and 

PO3F
- anions (19F doublet = -97 ppm) probably due to presence of trace amount of water 

impurity in the electrolyte or physiosorbed on the surface of the SiNWs. In the 19F ssNMR 

spectra of cycled SiNWs (Figure 4.5), a small peak at -122 ppm was observed, which can be 

assigned to SiOxFy species.48 However, this peak is not consistently observed, and it is 

attributed to the contamination from glass fibre. 

No evidence of a fluorinated polymer is found in the 19F and 13C ssNMR spectra (fluorinated 

polymers resonating between -100 to -130 ppm and 100 to 130 ppm in 19F and 13C ssNMR, 

respectively). The absence of a fluorinated polymer suggests that FEC defluorinates prior to 

further reduction/reaction. The result is consistent with our previous study131 and theoretical 

work from Balbuena’s group.121 

4.3.5 The SiOx-SEI interface 

Figure 4.6a shows the 1H−29Si CP NMR spectra of pristine Si nanoparticles (SiNPs) measured 

with conventional ssNMR compare to SiNWs after the first, 50 and 100 cycles in different 

electrolytes with DNP enhancement. The spectrum of pristine SiNPs is shown here for 

comparison since the SiNPs are expected to show similar surface species to the SiNWs. 

Moreover, SiNPs are available in larger quantities allowing us to collect a spectrum with 

improved signal-to-noise ratio. The spectrum of the pristine SiNPs mainly consists of sharp 

resonances from bulk crystalline Si (-82 ppm)133 and Q-site hydroxyl-terminated silicates (29Si 

resonances at -102 ppm for Q3 and -112 ppm for Q4, where Qn represents (SiO)nSi( (OH)4-n 

environments).134 The weak peak at -50 ppm is tentatively assigned to the amorphous Si 

component in the nanoparticles.135 

After cycling, the Si surface changes dramatically and di- (D), tri- (T), substituted siloxanes 

are observed (Figure 4.6a). We excluded the formation of hydrogen terminated Si species 

because no dramatic intensity decrease was observed in the 1H−29Si dipolar dephasing 

experiment for all the resonances observed in the 29Si NMR spectra (Figure B.11), indicating 

that there are no Si−H bonds.  
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Figure 4.6 29Si NMR spectra of cycled Si using different techniques. (a) 1H−29Si CP DNP NMR of SiNWs after 

the first, 50 and 100 cycles; pristine silicon nanoparticles were measured by 1H−29Si CP NMR without DNP and 

its spectrum is included for comparison. (b) 29Si DNP NMR using cross polarization (CP) and direct excitation 

(DE) on SiNWs cycled in LP30 for 50 cycles, with recycle delay of 3.5 s and 10 s, respectively. The CP spectrum 

mainly shows proton-containing surface species, whereas the DE spectrum (grey in b) mainly contains signals 

from the outer SiOx shell on the SiNWs. (c) 1H−29Si HETCOR of SiNWs cycled in FEC for 50 cycles with a 5 ms 

contact time and recycle delay of 3 s. (d) Cartoon showing possible Si surface structures and their corresponding 

chemical shifts; R denotes an alkyl group. The proposed structures are mainly based on the 1H−29Si HETCOR 

result. 29Si shifts of SiOx and Si species are summarized: crystalline silicon (c-Si) -81 ppm; amorphous silicon (a-

Si) -40 to -70 ppm135. 

After the first cycle, a new resonance at approximately -68 ppm arises, which can be tentatively 

assigned either to T3 organosiloxane ((SiO)3SiR, where R is aliphatic carbons)87 or to Q0 single 

(non-bridging) tetrahedral silicate (possibly with some charge-balancing Li+ ions, LinH4-nSiO4, 

where n = 1 to 3). The 1H−29Si HETCOR of the SiNWs cycled in FEC for 50 cycles (Figure 
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4.6c) shows that the 29Si resonance around -66 ppm is connected to hydroxyl group(s) with 1H 

shift at 6.5 ppm, but shows no cross peaks with protons on alkyl carbons (with 1H shift around 

2.0 ppm), indicating that Si−C(H) groups are not present. Therefore, the HETCOR data support 

the assignment of the -68 ppm 29Si resonance to a Q0 silicate rather than T3 organosiloxane. By 

using various CP contact times, we find that the -68 ppm component has a fast CP build-up 

curve (Figure B.10), confirming that this species is in close proximity to protons, suggesting 

that it is associated with a silanol group (LinH4-nSiO4) instead of a proton-free lithium 

orthosilicate (Li4SiO4). Moreover, the intensity of the -68 ppm peak increased dramatically 

after air exposure and a second resonance at -60 ppm is observed (Figure B.12). This may be 

due to the further hydrolysis of the LinH4-nSiO4 and the other Q site species leading to the 

formation of a species that contains more abundant protons.  

The -82 ppm peak in the SiNWs after the first cycle is attributed to Q1 sites ((SiO)Si((OH)3) 

instead of crystalline Si (29Si shift at -81 to -85 ppm)136, as crystalline Si is completely 

amorphised during the first cycle based on the electrochemistry (amorphous Si has a very broad 

29Si shift around -40 to -70 ppm135). The HETCOR spectrum (Figure 4.6c) confirms that the -

82 ppm species is associated with a silanol proton (6.5 ppm)87. Of note, the HETCOR spectrum 

reveals that although the Q1 (-82 ppm) resonance is more distinct, the broad silanol resonance 

spreads from -40 to -120 ppm, the region around -94 ppm corresponding to a Q2 environment 

(i.e., Si(OSi)2(OH)2). The broad resonance reflects the distribution of local environments in the 

amorphous Si(OR)n(R’)(4-n) (n = 0, 1) network, (including Si-OH vs. Si-O-Li+ termination and 

Si-O vs. SiR connectivity). 

Two new 29Si peaks at -18 ppm and -45 ppm become more pronounced in the SiNWs after 50 

cycles. Based on its distinct chemical shift, the -18 ppm peak can be assigned to D2 (SiO)2SiR2 

137 or an alkylsilane (Si)2SiR2
133 (Figure 4.6d). This assignment is confirmed by 1H−29Si 

HETCOR (Figure 4.6c), where the 29Si peak at -18 ppm is only correlated to the protons on 

alkyl species (2.0 ppm). For the -45 ppm Si peak, correlations to both the protons on alkyl 

carbons (2.0 ppm) and hydroxide protons (6.5 ppm) are observed in the 1H−29Si HETCOR 

spectrum, thus the -45 ppm resonance can be ascribed to a T1 site (SiO)SiR(OH)2.
138 Such 

organosiloxane species can be formed via the reduction of the hydroxyl groups on the surface 

forming a Si−C bond (possible reactions will be discussed later). A similar trend is observed 
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in SiNWs after 100 cycles in 13C3 FEC electrolyte: the intensity of organosiloxane species with 

a 29Si shift at -45 ppm increases further, while the relative intensity of the Q3 sites at -102 ppm 

significantly decreases. In general, we find that the hydroxyl terminated species on the Si 

surface are gradually converted to organosiloxanes as a function of cycling. 

Figure 4.6b compares the 29Si NMR spectra obtained by cross polarization (CP) vs. direct 

excitation (DE) of SiNWs cycled in LP30 for 50 cycles. In the 1H→29Si CP experiment, 

polarization of 29Si nuclei located near the surface is enhanced as there are few protons inside 

the bulk Si and CP transfers are only effective up to a few angstroms. In the DE experiment, 

any Si species (both protonated and non-protonated) close to DNP biradicals are enhanced with 

a penetration depth of 1-5 nm.139 The broad peak around -102 ppm in the DE spectrum indicates 

that a wide range of environments are present, including Q3 site hydroxide terminated silicates 

and SiOx non-protonated species. Both the -18 and -45 ppm peaks are also observed but are 

much weaker. These results suggest that the organosiloxane species observed in the 1H−29Si 

CP DNP NMR spectra are at the extreme surface of the SiOx layer and only account for a small 

fraction of the oxide layer (1-5 nm) in the cycled Si anode.  

Apart from the cycle number, the electrolyte solvents also affect the relative intensities of each 

Si component. Though CP DNP NMR is not absolutely quantitative, the intensity difference 

allows an estimation of the relative populations of different Si sites. All spectra are normalized 

by the -68 ppm Q0 silicate peak (arbitrarily selected) to facilitate the comparison. After the first 

cycle, the relative intensity of Q3 site (-102 ppm) in the LP30 sample is much smaller than 

those in the FEC and VC samples. This indicates that native hydroxyl groups are converted to 

the silicate/organosiloxane sites, but that this conversion is more pronounced (or rapid) in LP30 

than in pure FEC and VC electrolytes (i.e. more organosiloxanes and Q0 species are formed in 

LP30). In the 50th cycle, the same trend is observed: the Q3 sites in LP30 are weaker compared 

to VC and FEC, with FEC still having the most intense Q3 peak. The peak intensities of 

organosiloxanes (-18 ppm and -45 ppm) are also slightly larger in the LP30 sample than in the 

FEC and VC samples. In short, the SiOx surface reduction is more pronounced in the LP30 

than in FEC and VC electrolytes. 
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4.4 Discussion 

The SEI derived from pure FEC and VC electrolytes contains a large amount of branched or 

cross-linked PEO, which is similar to LP30 + 10 vol% FEC, but different from the linear PEO-

type polymer observed in the additive-free LP30 sample.47,48,131 In this study, the cross-linking 

units were found to be acetal carbons connected to PEO-type carbons, as confirmed by a 

13C−13C homonuclear correlation NMR experiment (Figure 4.4). Across all samples, we find 

that the presence of the acetal carbon is consistently associated with improved capacity 

retention. Methoxide groups are also observed, which likely represent end (terminal) groups of 

the organic polymer. Of note, the hydroxyl groups in PEO-type solid polymer electrolytes have 

been chemically modified to form methoxide groups, which are expected to reduce the 

polymers’ reactivity towards Li metal140 and potentially increase the chemical stability of the 

SEIs. 

Cross-linked PEO can be formed following the reaction pathway described in our previous 

work.131 Briefly, FEC defluorinates forming an EC radical, which transforms to VC via 

hydrogen loss. Alternatively, the EC radical forms vinoxyl radical (O=CHCH2 or 

OCH=CH2) with concurrent loss of CO2 (Scheme 4.2). VC can also be reduced to a radical 

anion (-OCH=CH), which is stabilized by π conjugation. The vinoxyl radical can react with a 

sp2-hybridized carbon, forming branched species containing acetal carbons, aldehyde and 

alkene terminations (see Chapter 3, Scheme 3.2), all of which are observed in our 13C NMR 

experiments. In EC based electrolyte, no such branched species were observed. One possible 

explanation is that for EC ring-opening reduction dominates, and the reduced species (e.g. 

CH2CH2OCOO-) cannot easily lose protons to form the vinoxyl radicals. Due to the lack of 

vinoxyl radicals and unsaturated carbons, no significant concentrations of branched polymers 

are formed in standard LP30 electrolyte. 

Apart from the cross-linked PEO, the SEIs formed from pure FEC and VC also contain a large 

amount of aliphatic carbons, which are absent in EC based sample. The large quantities of alkyl 

carbons in the FEC and VC samples are consistent with the oxygen-deficient species identified 

by Nakai et al. in the SEI formed on Si thin films in a FEC/DMC solvent.41 Based on XPS and 
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Scheme 4.2. Possible reduction reactions for FEC and VC based on Ref 52,131. 

 

ToF-SIMS results, the authors concluded that the oxygen-deficient species is a polyene type 

polymer. Here, we observed that such oxygen-deficient polymers primarily contain alkyl 

chains instead of unsaturated carbons (with 13C resonances around 120−140 ppm), although a 

small amount of alkenes are observed in pure FEC/VC electrolytes (Figure B.5 in the 

Appendix B). Oxygen deficient species can be formed by further reduction of vinoxyl radicals 

with the formation of Li2O (Scheme 4.2). The reduced species, such as ethenyl radicals52, can 

form dimers that subsequently polymerize, resulting in cross-linked aliphatic chains. Reactions 

with other radicals, including those formed on reductive ring-opening of the cyclic carbonate 

can also generate aliphatic groups; this mechanism is thought to be responsible for LEDC and 

LBDC formation.47 Though we have not observed the radicals, reduction reactions of this 

nature must occur as the aliphatic carbons account for ~41% of the total carbon signal (Table 

4.3). Fewer aliphatic carbons were observed in the EC/DMC system, presumably because the 

major reduction reactions do not involve the formation of ethylene radicals and/or require 

reactions involving radical (re)combination.49 

29Si DNP NMR reveals the bonding nature between the organic SEIs and Si surface. 

Organosiloxane species grow on the Si surface as a function of cycling. The formation of Si−C 

bonds has previously been predicted by Balbuena and coworkers using DFT and ab initio 

molecular dynamic simulations.121 Prior experimental evidence of a Si−C species comes from 

XPS Si 2p spectra, where the SiO2 peak shifts to lower binding energy after cycling (from 103 

eV to 101 eV), indicating that the SiO2 surface undergoes a reduction process during cycling.60–

62 Our XPS Si 2p peaks of cycled SiNWs sample are broad: the 101 eV peak is not well resolved 
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from the 103 eV peak (see Figure B.6 for details). Nevertheless, the XPS data seems to suggest 

that the SEI in the VC sample is thicker than the FEC and LP30 samples after the same number 

of cycles. 

Here, we utilized DNP and revealed detailed molecular structure concerning the Si surface. 

The formation of the organosiloxane is correlated with the reduction of the native oxide layer 

(SiOx) on SiNWs. Reduction of the hydroxyl groups on SiOx surface likely leads to the 

formation of thermodynamically stable species (e.g. LiOH, Li2O and H2) as well as an under-

coordinated silica radical (SiO)2Si(OH) (one possible reaction is illustrated in reaction 1). 

Note that the evolution of H2 gas from the reduction of FEC-based electrolyte has been reported 

by Jung et al. using on-line electrochemical mass spectrometry.52  

(SiO)2Si(OH)2 + 2Li+ + 2e- → (SiO)2Si(OH) + Li2O + 
1

2
H2                                                                 (1) 

The under-coordinated silica species can react further with the solvent, forming Si-C bonds as 

outlined by reactions 2, 3 and 4. Reactions with radicals formed via direct transfer of electron 

from the Li-Si-O surface may also occur.121 

(SiO)2Si(OH) + R-H →  (SiO)2SiR(OH) + H                     (2) 

or (SiO)2Si(OH) + EC → (SiO)2Si(OH)-CH2CH2-O(C=O) O             (3) 

(SiO)2Si(OH)-CH2CH2-O(C=O)O + Li+  + e- 
→ (SiO)2Si(OH)-CH2CH2-O

-Li+ + CO2              (4) 

The D2 site (-18 ppm) observed in 29Si NMR (Figure 4.6) can be formed via the reduction 

reactions proposed above, by substitution of two -OH groups in (SiO)2Si(OH)2 with two R 

groups. The growth of the Dn and Tn species as a function of cycle number indicates a dynamic 

change of Si surface species and a sequential reduction process of the SiOx surface.   

SiNWs cycled in LP30 electrolyte show more severe reduction of SiOx compared to those 

cycled in pure FEC or VC electrolytes. One possible origin for this difference may lie in the 

variation of the polymeric SEI structures. For example, the cross-linked polymer formed from 

FEC and VC may inhibit solvent permeation through the SEI and thus slow down the reaction 

between the solvents and the SiOx surface. Since the EC reduction mechanism occur at lower 

voltages, i.e., EC is more stable, it may be that coupled reactions involving EC reduction and 



 

94 

Si−C bond formation play an important role in reducing the SiOx surface. Finally, the 

differences may also be related to the different changes in silicon morphologies on cycling EC 

vs. FEC/VC electrolytes, leading to variations in the nature and quantities of exposed surfaces. 

Calculations have shown that the lithiated silicon reacts with EC (and related molecules) by 

attack of the carbonate carbon, which does not result in the formation of a long-lived Si−C 

bond.100 Instead breakdown products such as ethylene and Li2CO3, are formed.100 Thus, 

although the exposure of fresh (lithiated) silicon surfaces presumably promotes further 

electrolyte reactions, the fully lithiated silicides may not generate the stable Si−C species seen 

in this study, consistent with our suggestion that they arise from reactions of the silanol groups. 

Perez-Beltran et al. have shown by calculations that reduction of Si−OH groups can lead to the 

formation of Si−H,141 but we see no evidence for them in our NMR studies. 

Since these organosiloxanes are formed on Si surfaces during electrochemical cycling, this 

suggests some stability of the Si−C bonds in the reducing environment. SiNP uniformly coated 

with PEO-VC type polymer that contain such Si−C bonds via click chemistry have been 

demonstrated to improve the cycle life of Si anodes,67 and the formation of such Si−C species 

may also be relevant for strategies involving conformal coating Si with carbon and, in part, 

explain why carbon coatings help increase the CE and capacity retention.23,25 Additional 

information concerning the spatial arrangement of the organosiloxane layer on Si will be 

helpful to understand its passivating ability (e.g. is it a monolayer, or a core-shell structure, or 

simply formed in discrete regions on the surface).142 It is possible that such an interfacial layer 

maybe further tailored to achieve certain binding modes on the Si surface that might help to 

decrease the side reactions between Si and the electrolyte.  

The previous XPS study of the SEI by Schroder et al. suggest that the Si surface can be 

passivated by forming Si−F species.40 In this work, no strong evidence to support the formation 

of Si−F species was found in the 29Si NMR and Si 2p XPS spectra of cycled electrodes: these 

species have 29Si NMR signals at around -105 to -130 ppm143 (Figure B.9) and Si 2p XPS peaks 

around 106 eV144 (Figure B.6), but no obvious peaks were observed in either the XPS or NMR 

spectra. The 19F ssNMR spectra of cycled SiNWs (Figure 4.5), do contain a small peak at -122 

ppm, which is assigned to SiOxFy species. This peak is not consistently observed, however, and 

is attributed to the contamination of the sample by glass fiber (Figure 4.5) from the borosilicate 
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separator. The results imply that while small amounts of Si−F species may be present on the 

electrode surface, they are not the dominant species, as they are below the detection limit of 

19F NMR and XPS. 

According to the well-known mosaic model145 and experimental evidences from XPS and 

TOF-SIMS40, the SEI consists of two layers: the inner SEI close to the electrode surface that 

mainly consists of inorganic Li salts (such as Li2O, LiF and Li2CO3) and the outer layer of the 

SEI which primarily contains the polymeric components. Our 7Li and 19F ssNMR spectra 

(Figure 4.5) shows that LiF, residual LiPF6 salt and PF6
- breakdown products are clearly present 

in the cycled electrodes, with decomposition of both the PF6
- anion and FEC contributes to the 

formation of LiF. The presence of Li2CO3 is also confirmed by 13C NMR as evidenced by the 

13C NMR resonance at 170 ppm. The role of inorganic species in the SEI is still unclear as they 

are observed in all the electrolyte formulations studied here and yet the LiF concentration for 

example, does not correlate with improved electrochemistry. The role of the inorganic Li salts 

may depend on both the chemical structure as well as other factors including particle size, 

spatial distribution in the SEI, and interaction with the organic SEI. However, the important 

conclusion we draw from the 29Si DNP NMR and the multinuclear NMR studies is that the Si 

surface is not entirely covered by inorganic species but is partially bonded to the organic SEI.  

Based on our initial chemical analysis, the difference in the electrochemical performance of 

LP30, FEC and VC can be explained at least in part by the differences in their polymeric SEIs. 

In EC-based electrolyte, linear PEO-type polymers form and some of the degradation products 

are more soluble than those derived from electrolyte containing FEC additives.131 The linear 

PEO-type polymer may not be able to accommodate the volume expansion of Si anode or have 

poorer Li ion conductivity than the branched PEO.146 Furthermore, continuous solvent 

decomposition on the Si surface leads to pore clogging of the electrode, which ultimately 

restricts the Li ion diffusion through the SEI.48 

With the addition of FEC or VC, a heterogeneous polymer forms with specific functionalities: 

the cross-linked PEO/poly(VC) part can conduct Li ions and the aliphatic region may be 

electronic insulating and/or help prevent permeation of polar solvents. However, the cross-

linked polymers formed in pure FEC and VC electrolytes do not form perfect barrier coatings 
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as we still observe the continuous formation of organosiloxanes and Coulombic efficiencies of 

less than 99.5% in these systems.  

The mechanical properties of cross-linked polymers formed in FEC and VC systems may also 

be different from their linear counterpart as they can be more elastic, thus helping to sustain 

the volume expansion of the Si anode and better protect the active material during cycling.147 

In addition to the composition, the microstructure of the polymer (chain length, molecular 

weight, arrangement of repeating units in the backbone, etc.) can also influence the mechanical 

and ionic properties of the SEI, which is outside the scope of this current study. 

To understand the heterogeneous organic SEI detected in the FEC and VC electrolyte better, 

knowledge from the field of solid polymer electrolytes (SPE) is of relevance, where new 

hybrid- and block-co-polymers show promising results for increasing ionic conductivity.148 For 

example, Khurana et al. reported a cross-linked SPE consisting of polyethylene and PEO with 

short chain polyethylene glycol plasticizer, which is chemically similar to the organic SEI we 

detected in the FEC/VC sample. Such SPE was found to exhibit high lithium conductivity (> 

1.0 x 10-4 S/cm at 25 ̊ C) and was able to suppress the growth of Li dendrites.66 The relationship 

between the degree of cross-linking and Li ion conductivity was also explored by Thiam et 

al.,149 who showed that the higher Li ion conductivity of PEO polymers (1.0 x 10-4 S/cm at 

30˚C ) can be obtained by controlling the cross-link density. Correlating the structure of the 

polymeric SEI with the electrochemical performance is key to fully understanding the SEI on 

alloy type anodes. 

It is clear that solvent still penetrates through the SEI and approaches the SiOx surface 

sufficiently closely to allow electron tunnelling and solvent reduction. Strategies that reduce 

solvent penetration are required to improve the SEI and it is speculate that the success of 

cellulose binders150 lies in part due to the strong bonds to the SiOx surface and the fact that it 

does not swell in carbonate electrolytes. 
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4.5 Conclusions 

This work has identified key chemical signatures on the surface and interphase of Si electrodes 

cycled in pure FEC and VC and a standard LP30 carbonate electrolyte with 1 M LiPF6. The 

SiNW electrodes cycled in FEC and VC electrolytes show better electrochemical performance 

than those cycled in standard LP30 based electrolytes. 13C NMR experiments of both 13C 

enriched and natural abundance electrolytes reveal that the organic electrochemical 

decomposition products of FEC and VC mainly consist of cross-linked PEO and alkyl chains 

with carbonate and carboxylate units forming 15% of the carbon content of the FEC-derived 

polymer.  

For the FEC system, 13C-labelled electrolyte was used to perform the 2D 13C−13C correlation 

experiment, which reveals key molecular fragments containing branched acetal carbons. The 

branched polymers formed in VC electrolyte show noticeable difference from FEC sample: the 

cross-linked acetal units and the ethylene oxide regions exhibit higher 1H and 13C ssNMR 

chemical shift in the VC samples than the FEC samples. The chemical shift difference may be 

due to polymer conformations or the nearby chemical species. Since 13C-labelled VC is not 

available, 2D 13C−13C correlation experiment on the VC samples was not performed to confirm 

the formation of poly (VC). 

The highly cross-linked PEO has three potentially positive implications for the stability of Si 

anodes. It may (i) reduce solvent penetration and swelling of the SEI helping to reduce further 

solvent reduction, (ii) accommodate the expansion and contraction of the silicon and (iii) may 

possibly have improved Li ion conductivities than linear PEO found in EC-based 

electrolytes149. Studies are currently underway to test these hypotheses.  

The evolution of the Si surface structure is revealed by 29Si DNP NMR. The hydroxyl 

terminated SiOx is gradually reduced to form organosiloxane species containing Si−C bonds, 

indicating that the Si surface is not entirely covered by inorganic Li salts but some SiOx groups 

are also bonded to organic SEI components. We believe that the Si−C bonds formed on cycling 

have intrinsic stability in the reducing environment. However, the presence of the Si−C bond 

alone does not necessarily correlate to improved electrochemical performance. Likely it is both 

the chemical structures of the organic SEI and the uniformity of the SEI coverage on the active 
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material that influence the cycle life of Si. Overall, this work has provided fundamental insight 

into the chemical species that form on cycling and result in increased Coulombic efficiencies 

and capacity retention in Si anodes for Li-ion batteries. 
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Chapter 5  Electrochemical reduction products of 

ethylene carbonate 

 

5.1 Introduction 

Ethylene carbonate (EC) is one of the most critical components in commercial electrolytes, as 

its decomposition products form a stable passivation layer on the graphite anode, preventing 

further electrolyte degradation. Moving from graphite to high-capacity Si anodes, EC-based 

electrolyte, however, cannot form such a stable interphase: large amounts of soluble 

degradation species has been identified in the cycled electrolytes and continuous capacity 

fading is observed.  

Lithium ethylene decarbonate (LEDC) has been reported as the major degradation product of 

EC.116 However, LEDC is highly soluble and cannot passivate the electrodes. Insoluble organic 

SEI components derived from 13C3-labelled-EC electrolytes mainly consist of PEO-type 

polymers 47,48. Similar PEO-carbonate copolymers are observed in EC based system by ssNMR 
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in Chapter 3. Covalent bonds between the polymeric SEI and Si surface are also identified. 

Nonetheless, it is still unclear why these degradation products passivate graphite, but not the 

Si anode. Detailed information about the chemical structures of these polymers remains 

unclear. Further understanding about the connectivity between the ethylene oxide (EO) and the 

carbonate units as well as the conformation of these oligomers are relevant to fully understand 

the SEI’s properties. Solution NMR is a powerful tool for solving the puzzle. Techniques such 

as diffusion ordered spectroscopy (DOSY), and 2D correlation experiments can be used to 

clearly identify these chemical structures. 

As a continuation from Chapter 3, the electrochemical reduction products from both 13C3-

labelled EC and non-labelled EC have been analysed by various solution NMR techniques. 

Additional calculation was performed to find the trend of the 1H and 13C solution NMR shifts 

in these oligomers. Empirical rules summarized from the calculation are then used to aid 

experimental assignment. Unique linear ethylene oxide (EO)-carbonate oligomers with 

methoxide end groups are identified as the major degradation products from EC. Electrospray 

ionization high resolution mass spectrometry (ESI-HRMS) is then used to confirm the chemical 

formulas of these oligomers. 

5.2 Experimental 

Coin cells: silicon nanowires (SiNWs)-Li half cells were prepared using LP30 or LP30+13C3 

EC (1M LiPF6 in EC/13C3 EC/DMC=1/1/2, v/v/v) electrolyte. Cells were cycled at C/30 (120 

mA/g) between 0–2 V for 30–50 cycles. Details about the materials, synthesis of SiNWs and 

coin cell preparation can be found in Chapter 3.  

Solution NMR: after cycling, cells were disassembled, and the separator was soaked in ~0.6ml 

d6-DMSO, then the solution was transferred into an air-tight J-Y NMR tube for solution NMR 

measurement. Spectra were recorded on a 500 MHz Bruker Avance III HD, with a DCH 

(carbon observe) cryoprobe or Bruker AVANCE 400 equipped with a BBO probe. Spectra are 

internal referenced to d5-DMSO (1H at 2.50 ppm and 13C at 39.53 ppm). 13C−13C COSY 

spectrum was recorded using a Bruker COSY-DQF pulse program: F2 (13C) was acquired using 
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a time domain of 4096 points, F1 (13C) 1024 increments, over 236 ppm. The relaxation delay 

was 3 s and 40 scans per slice was used. 

1H Diffusion Spectroscopy (DOSY) experiment was performed using a Bruker pulse program 

‘ledbpgp2s’ with bipolar gradient pulse for diffusion.151 32 spectra with varying gradient 

strengths have been recorded with a diffusion delay of 10 ms and the gradient pulse width of 2 

ms. Linear fitting of the intensity decay versus the gradient using Dynamic Center (Bruker) 

software provides the diffusion coefficients for each species.  

ESI-HRMS: Cycled SiNWs were soaked in acetonitrile for 48 h to dissolve the organic SEI. 

SiNWs were removed by centrifuge and the supernatant was diluted by a factor of 3 for three 

times using CH3CN before the measurements. All procedures were performed in air. ESI-

HRMS experiments were performed in the positive ion mode on a Q-TOF instrument (Waters 

Xevo G2-S) equipped with a pneumatically assisted electrospray ion source (Z-spray) and an 

additional sprayer for the reference compound (LockSpray). The prepared solutions were 

directly introduced via an integrated syringe pump (5−10 L min-1) in the electrospray source. 

The source and desolvation temperatures were kept at 80 and 150 ˚C, respectively. Nitrogen 

was used as a drying and nebulizing gas at flow rates of 350 and 50 L h−1, respectively. The 

capillary voltage was 2.5 kV, the cone voltage 100 V, and the rf lens 1 energy 60 V. Calibration 

of the instrument was performed using the ions produced by a phosphoric acid solution (0.2% 

in H2O/CH3CN, 50/50 v/v). The mass range was 50–1000 Da and spectra were recorded at 1 s 

scan−1 in the profile mode at a resolution of 10,000 full width at half-maximum (FWMH). Data 

acquisition and processing were performed using MassLynx v 4.0 software. 

Calculations of 1H and 13C chemical shift were obtained from ChemDraw Software via 

empirical method. 
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5.3 Results 

5.3.1 Electrochemistry 

 

Figure 5.1 Electrochemical performance of SiNWs cycled in LP30 (black) and LP30+13C3 EC (blue) electrolytes. 

(a) Capacity retention, (b) Coulombic efficiency versus cycle number. (c) The voltage curves at the 2nd, 30th and 

50th cycle and (d) the their corresponding dQ/dV plot of cells cycled in LP30 electrolyte. 

The electrochemical performance of SiNWs cycled in EC-based electrolytes is shown in Figure 

5.1. Though the capacities are slightly different (probably due to the measurement error 

associated with the SiNWs mass), similar capacity fading trends are observed for both LP30 

electrolytes with and without 13C3 labelled EC. Note that the Coulombic efficiency of these 

cells are around 92–97 %, far below the requirement for commercial batteries. The origin of 

the capacity fade can be partially revealed by their voltage curves and dQ/dV plots. Figure 

5.1c–d show that the first lithiation process around 0.2–0.5 V diminishes between 30 and 50 

cycles. This is probably due to the formation of a thick, blocking SEI, which impedes Li-ion 

diffusion and increases the barrier for further lithiation.48 The chemical structure of this 

blocking layer is analysed by solution NMR. 
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5.3.2 1H solution NMR of cycled electrolyte 

 

Figure 5.2 1H solution NMR of the pristine and cycled electrolytes. The intensity is normalized by the most intense 

peak. The 13C satellites are marked with asterisks. 

The 1H NMR spectra of pristine LP30, LP30+13C3 EC, and those electrolytes after the first, 30 

and 50 cycles are shown in Figure 5.2. Strong 1H NMR signals arising from EC, DMC, and 

deuterated DMSO solvent are at 4.48, 3.70 and 2.50 ppm, respectively. After the first cycle, 

one singlet at 4.30 ppm was observed in LP30 electrolyte (coloured in yellow), which is 

assigned to LEDC and the assignment is discussed in detail in Chapter 3. In electrolytes after 

30 and 50 cycles, multiple peaks are observed at around 4.2, 3.6, and 3.5 ppm and in the region 

of 3.0–3.3 ppm (coloured in blue and labelled from a to d). The presence of multiplets in the 

1H NMR spectra indicates the existence of small soluble molecules or oligomers in the cycled 

electrolytes. To understand these new peaks, additional 2D 1H−13C NMR correlation 

experiments were performed.  
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5.3.3 Oligomers identified by 1H–13C correlation NMR 

 

Figure 5.3 2D correlation NMR spectra of electrolytes after 30 cycles: LP30 sample in the upper panel and 

LP3+13C3 EC sample in the lower panel. (a, d) 1H-1H COSY, showing the proton-proton correlation; (b, e) 1H-13C 

HSQC showing the one bond proton-carbon correlation; (c, f) 1H-13C HMBC showing proton-carbon correlation 

through 2 to 4 bonds, one bond correlation artefactin HMBC is marked with "#". 

Figure 5.3 show the 1H–13C one-bond (HSQC) and multi-bonds correlation (HMBC) spectra 

as well as 1H–1H correlation spectra (COSY) of the cycled electrolytes. These 2D spectra 

provide clear assignment of these emerging peaks labelled from a–e in the 1H NMR. For 

example, the protons giving rise to a1 (4.20 ppm) are bound to a carbon with a 13C resonance 

at 67.4 ppm in the HSQC spectra in Figure 5.3b and e, the chemical shift indicating an ethylene 

oxide (EO, -OCH2CH2) unit. Longer correlations between protons and carbons over two to 
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four chemical bonds can be identified by the HMBC spectra: the proton with resonance a1 is 

further bonded to a carbonate carbon at 155 ppm (Figure 5.3c and f). Based on these 

correlations, a chemical fragment can be deduced for a1: ROCOO-CH2CH2OR’ (R and R’ 

denote alkyl groups). This structure is verified by the 1H–1H COSY spectrum (Figure 5.3a), 

which shows that a1 is correlated to both b (3.63 ppm) and c (3.52 ppm), confirming the 

structure of ROCOO-CH2CH2OR’, probably with different R’ groups leading to slightly 

different 1H chemical shifts for b and c. Note that 1H peaks at a1, b, c are all multiplets with 

unidentified J-coupling patterns. This is likely due to the overlapping of 1H peaks with similar 

chemical environments.  

While the same one-bond and multi-bonds correlations are identified for protons at a1, b and c 

in the 1H NMR for both 13C-labelled and non-labelled samples, differences are observed for 

the protons in the d region (3.24–3.28 ppm). For the non-labelled LP30 sample, the proton at 

d2 (3.26 ppm) is connected to a carbon with a 13C shift at 58.5 ppm in the HSQC spectrum 

(Figure 5.3b). Based on the one-bond correlation, d2 is assigned to a methoxide group 

(ROCH3). Such correlation is, however, not visible in the 13C-labelled sample (Figure 5.3e) as 

its intensity is below the contour level shown here. The fact that the correlation intensity for d2 

protons in the 13C3 EC sample is weak indicates that the methoxide group may not come from 

13C3 EC but DMC, which contains mainly 12C isotope (i.e. RO12CH3). Interestingly, multi-

bonds correlation is observed for protons at d2 and an ethylene oxide carbon with 13C resonance 

at 70 ppm for the LP30+13C3 EC sample (Figure 5.3f). This correlation peak has similar 

intensity as those peaks contain protons at a1, b and c. Normally, correlations peak intensities 

are weaker in HMBC spectrum than those observed in the HSQC spectrum. The appearance of 

correlation for d2 in the HMBC but not in HSQC spectrum suggests that the proton at d2 is 

further bound to a 13C isotope, probably formed from 13C3 EC. We now assign the d2 peak to a 

motif with the structure of R13CH2O
12CH3, and it may be the product formed due to a reaction 

between DMC and 3C3 EC.  

A standard workflow is followed to analyse all the features in the 2D correlation NMR spectra. 

First, chemical motifs are identified in the 1H–13C one-bond correlation experiment (HSQC). 

Second, these motifs are linked together by HMQC experiment. Finally, the 1H–1H COSY  
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Table 5.1 Assignments in 2D correlation NMR in Figure 5.3. Correlations value marked with * are not shown in 

the figure but are present in a lower contour level. 

Electrolyte  Index 

Shift/ ppm Possible assignments 

HSQC HMBC 1H–1H COSY 
 

1H 13C 13C 1H 
1H 

index 

 

LP30 

a1 4.20 67.4 155.5/68.6 3.6/3.5 b/c 
a1-b/c 

ROCOO-CH2CH2OR’ 

a3 4.10 - 49.1 3.18 e CH3OH 

b 3.63 68.6 68.6/70.1 4.20 a1 ROCOO- CH2CH2OCH2R’ 

c 3.52 70.0 68.6/70.1 4.20 a1 ROCOO- CH2CH2OCH2R’ 

d2 3.26 58.5 70.0 
  

RCH2OCH3 

e 3.18 49.1 
 

4.10 a3 CH3OH 
        

LP30+ 

13C3 EC 

a1 4.17 67.1 156.9 3.6/3.5 b/c ROCOOCH2CH2OR’ 

b 3.60 68.6 68.6/70.1 4.17 a1 ROCOOCH2CH2OR’ 

c 3.51 70.1 68.6 4.17 a1 ROCOOCH2CH2OR’ 

d1 3.28 51.8 158.7 1.15 
 CH3OCOOLi/R (lithium/alkyl 

methyl carbonate) 

d2 3.24 58.4* 70.1 
  

RCH2OCH3 

 

spectra are used to verify these connections. All the 2D correlation data is tabulated in Table 

5.1. Here, at least three compounds can be identified in the cycled electrolyte: one is noted as 

a1-b-c that consists of a linear chain with carbonate group and ethylene oxide unit (ROCOO-

CH2CH2OCH2R’). The second compound is a3-e, and its formation will be explained later. The 

third is lithium methyl carbonate (LMC, CH3OCOO-Li+) detected as d1 in the 1H NMR spectra.  

We note that the a3-e and LMC molecules are correlated to each other. Figure 5.4 shows that 

d1 proton disappears with the concurrent appearance of the a3-e species after water 

contamination. For the 13C3 EC sample, the a3 peak at 4.07 ppm is clearly a quartet with J = 5.2 

Hz, and the proton peak e at 3.16 ppm is a doublet with J = 5.2 Hz. The peak integral ratio 

between a3 and e is 1:3. Moreover, protons a3 and e are linked to each other in the 1H–1H COSY 

spectrum (Figure 5.3a). Combing all the information, a3-e is unambiguously assigned to 

methanol. It worth noting that methanol shows two singlets in CDCl3 solvent, but it shows a 

well-defined J-coupling pattern when measured in DMSO solvent, probably due to the  
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Figure 5.4 1H solution NMR of cycled LP30 and LP30+13C3 EC electrolytes. The black spectrum is the electrolyte 

measured immediately after cell disassembly, while the blue spectrum is acquired on the same sample but after 

water contamination. After moisture permeates into the NMR tube, the d1 peak at 3.30 ppm corresponding to 

lithium methyl carbonate (LMC, LiOCOOCH3) decreases with the concomitant emergence of new peaks labelled 

as a3 and e that corresponds to methanol. 

viscosity of the solvent used. The complete conversion from LMC to methanol also indicates 

that LMC is highly water-sensitive.  

To separate the mixture, 1H DOSY experiment was performed on the cycled LP30 electrolyte. 

Figure 5.5 shows the that least two compounds (a1-b-c and a3-e) are present in the electrolyte 

besides EC, DMC, d5-DMSO and water impurities. The a1-b-c molecule has a lowest diffusion 

coefficient of 4.3E-10 m2/s, smaller than EC and DMC molecules (6.5 and 7.0E-10 m2/s), 

whereas the methanol (a3-e) has a much higher diffusion rate of 7.5E-10 to 8E-10 m2/s. The 

diffusion rate can be correlated to the radius of hydrodynamic molecule, further confirming 

that a1-b-c should be an oligomer.  

Solving the structure of the a1-b-c oligomer is not easy. First, we note that the 1H peaks at a1, 

b and c between (3.8 to 4.2 ppm) are all protons bound to carbons with 13C shifts around 68–

70 ppm in the HSQC spectra (Figure 5.3b and e), these chemical shifts corresponding to an EO 
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Figure 5.5 1H DOSY of the LP30+13C3 EC electrolyte after 30 cycles. The centre of the peak corresponds to the 

diffusion coefficient and the peak width is associated with fitting error. 

environment. For the 13C3 EC sample (Figure 5.3e), new intense 13C peaks are observed in the 

carbon dimension at 67.1 (marked as A), 68.6 (B) and 70.1 (C) ppm, which are clearly 

correlated to proton peaks at a1, b and c, respectively. The improved 13C signal in the 13C3 EC 

sample confirms that the a1-b-c oligomer arises from the decomposition of EC instead of DMC.  

5.3.4 13C–13C correlation NMR 

With enhanced 13C signal intensity in the 13C-labled sample, the 13C COSY experiment was 

successfully performed to find long-range correlations in the a1-b-c oligomer. A full spectrum 

of the 13C COSY experiment is shown Figure 5.6. An off-diagonal peak indicates a direct 

bonding between the two carbons. Strong correlation peaks between A–B–C in the region of  
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Figure 5.6 Full 13C-13C COSY spectrum of cycled LP30+13C3 EC. The central diagonal peak of 13C3 EC is removed 

for spectrum clarity. 

67–70 ppm are observed and these peaks can be assigned to long-chain PEO, or EO with 

methoxide terminal. Weak cross-peaks for carbons at ~70 ppm and ~60 ppm regions are also 

present and are assigned to EO units with hydroxyl terminals based on their chemical shifts. 

Epoxy carbon bound to a methoxide (RCH2OCH3) has the 13C shift around 70 ppm, while the 

carbon bound to a hydroxyl end group (RCH2OH) should have a lower 13C shift at about 60 

ppm based on empirical calculations.  
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Figure 5.7 13C–13C COSY spectra of cycled LP30+13C3 EC electrolyte after 30 cycles (a-c). The 1D 13C NMR 

spectrum and the extracted 1D slices from the COSY spectra (d). Proposed chemical structures derived from the 

correlation experiments (e).  

An enlarged 13C COSY spectrum in the A-B-C region is shown in Figure 5.7. A cross peak can 

be found between the doublet A1 and doublet C1, confirming the formation of a -O 

13CH2
13CH2O- unit (the doublet arises from 1JCC = 41 Hz). Similarly, carbons pairs A2–B1 and 

A3–B2 should also be both 13C labelled. The 1D slices extracted from the 2D spectra are 

overlaid in Figure 5.7 d. The carbon correlation matches well with the 1H–1H COSY data: 

proton a1 is connected to proton b and c, but b and c are not connected to each other. Questions 

remain as what molecular structure leads to such correlation patterns and what leads to the 

different 1H and 13C shifts in the ethylene oxide region? 
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5.3.5 1H and 13C chemical shifts of oligomers.  

 

Figure 5.8 13C and 1H NMR shift predicted by ChemDraw Software for alkyl carbonate oligomers with different 

ending groups (hydroxide in black square, methoxide in red triangle, carbonate in blue dot) and different chain 

lengths (increasing ethylene oxide units from left to right). The atoms connected to the carbonate are labelled from 

1 and onwards. The experimental 13C and 1H NMR shifts values are draw as solid lines with labels corresponding 

to the peaks observed in 13C and 1H NMR spectra. For oligomers containing methoxide ending group, the 1H and 

13C NMR is also predicted for the methoxide, and they are labelled as the last number.  

A systematic investigation was made of oligomers with different end groups and varying chain 

lengths (HOCO-(OCH2CH2)n-R, R=-OH,-OCH3,-OCOOH, n = 1 - 3) in order to better 

understand the trend of the 1H and 13C shifts for these species. Figure 5.8 summarizes the 

chemical shifts within these oligomers. A general trend is that the ethoxy carbon near a 

carbonate group has a lower 13C shift (~ 67 ppm) than carbons in the PEO chains (~ 70 ppm). 

The ethoxy carbon near a carbonate is labelled as site 1 (the middle panel in Figure 5.8), the 

chemical shift of which is always smaller than the 13C shifts at sites 2 and 3. The lower 13C 

shift is due to the electron withdrawing nature of the carbonate group. On the other hand, the 
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ethoxy carbon bound to the electron donating methoxide group (RCH2-OCH3) has a higher 13C 

shift (~72 ppm) than PEO carbon.  

Experimental 1H and 13C shifts observed in the cycled electrolyte are shown as coloured lines 

in Figure 5.8, and the same labelling scheme is used here as it is in Figure 5.3. Comparing the 

calculation values and the experimental results, proton d2 can be safely assigned to a terminal 

methoxide group. The decrease of 1H shift values from a1 to b and c can be explained by their 

distance to the next carbonate group. The structure derived from the calculation trend is 

consistent with the 2D NMR experimental data, further confirming that a1 is part of a 

ROCOOCH2CH2R fragment. 

5.3.6 Confirmation of oligomers by mass spectrometry 

 

Figure 5.9 ESI-HRMS spectrum of SiNWs cycled in LP30 electrolyte for 30 cycles. The cycled SiNWs were 

soaked in CH3CN, then the solution is diluted before MS measurement. 

The molecular weights of the soluble SEI oligomers are analysed by ESI-HRMS. The result of 

the cycled LP30 sample is presented in Figure 5.9 with experimental values marked on the 

peaks. First, a regular spacing of 44.026 between these peaks is observed and this value matches 

the mass of an ethylene oxide unit with 12C isotope. Second, the experimental molecular mass 

can be assigned to the oligomers shown in Table 5.2 with high confidence. The proposed 

oligomers consist of ethylene oxides units, two carbonates, and methoxide end groups. The 

comparison between the experimental data and the calculation values are summarized in Table 

5.2.  
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The presence of Na+ and the absence of Li+ in the HRMS data is attributed to the sample 

preparation procedures. The cycled SiNWs were soaked in CH3CN solvent to dissolve the 

polymeric SEI, then the solid SiNWs were removed by centrifuge. Since the concentration of 

the polymer solution is unknown, the supernatant was diluted with 1:3 ratio for three times 

with by CH3CN before HRMS measurement to avoid possible damage on the chromatography. 

The Li+ may be diluted below the detection limit during this procedure and Na+ may be 

introduced during sample handling. Nevertheless, the presence of the dicarbonate oligomers is 

reproducible and the result is consistent with a comprehensive study by Gachot et al.,102 who 

reported the same series of degradation products in the EC-based electrolyte after 

electrochemical cycling.  

Table 5.2 Mass spectroscopy data and the proposed structures with their corresponding mass. 

Structure n Mass Experimental mass Calculated 

mass 

Formula 

error / ppm 

 

3 245 245.0638 245.0637 C8H14O7 Na+ 0.4 

4 289 289.0901 289.0899 C10H18O8 Na+ 0.7 

5 333 333.1159 333.1161 C12H22O9 Na+ 0.6 

6 377 377.1419 377.1424 C14H26O10 Na+ 1.3 

7 421 421.1666 421.1686 C16H30O11 Na+ 4.7 

5.4 Discussion 

Oligomers containing ethylene oxide and carbonate units are identified as the major 

electrochemical reduction products from EC. Smaller oligomers have been reported before. For 

example, lithium ethylenedicarbonate (LEDC), dimethyl-2,5-dioxahexane dicarboxylate 

(DMDOHC) and 2-methoxyethyl methyl carbonate (MEMC) as shown in in Scheme 5.1a have 

been observed as singlets in 1H NMR spectroscopy,152 but the structure of the major oligomers 

with more complex 1H patterns remain unsolved.  

Here, we identified one major degradation oligomer of EC, called a1-b-c, based on the 2D 

correlation NMR experiments and mass spectroscopy data. A possible chemical structure of 

a1-b-c is shown in Scheme 5.1b. It contains two carbonate groups separated by three ethylene 

oxide units with methoxide end groups. The assignment of carbon A, B, C and their 
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corresponding proton a, b, c are labelled besides the structure. The correlation peaks observed 

in the 2D HSQC and HMBC NMR spectra are also illustrated on the structure. The proton 

integral ratios obtained from 1H NMR spectra of different samples consistently show that 

a1:b:c:d2 = 1:1:1:0.5 (Figure 5.4). This value is similar to the proton ratio in the proposed 

structure (a1:b:c:d2 = 1:
2

3
:1:0.5).  

Scheme 5.1 Possible reduction products of EC. (a) Small molecules reported in literatures.116,152 (b)oligomers 

identified in this work. Protons labelled from (a-d) are consistent with the labelling in Figure 5.3. Carbon 

correlation observed in Figure 5.7 are marked on the structures. Correlation observed in the 1H–1H COSY are 

denoted as red arrows and the 1H–13C HMBC in black arrows.  

 

The trend of the 13C shifts for carbon A, B and C in the proposed structure is also consistent 

with the calculation results: the ethoxy carbon bound to a methoxide group (carbon C, 70.0 

ppm) has a higher 13C shift than the ethoxy carbon bound to another EO unit (carbon B1 and 

B2, 68.6 ppm) due to the electron donating nature of the methoxide terminal group. As a result, 

the carbon C–A1 unit should show different chemical shifts from the carbon A2–B1 pairs, and 

these assignments are consistent with the observation shown in the 13C COSY spectrum.  

The carbon unit in the middle of the PEO chain is also assigned to carbon C as it should also 

has carbon shift at 70 ppm. Thus, the proposed structure explains the observation of A–B and 

A–C correlations, but not B–C correlations in both 1H and 13C COSY experiment. (Note that 

13C COSY spectrum only shows direct bonded carbon pairs, but not carbons bridged by an 

oxygen) Only three EO units should be in between the two carbonate groups. If more than three 

EO units are present, it should give rise to more PEO-type carbons (~ 70 pm, carbon C) and 
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PEO protons (~3.5 ppm, proton c). Then the proton integral ratio for a1:b:c would not be 1:1:1 

as observed in the experimental data. If only two EO units are in between the carbonate groups, 

the structure is similar to LEDC and we should only observe proton a and b without proton c. 

And the correlation peaks for proton b and c with carbon B and C in HMBC spectra would not 

be detectable.  

The terminal methoxide group is identified by a clear correlation between the proton d2 and a 

carbon with resonance at 70 ppm, which is carbon C in the labelling scheme in the HMBC 

spectra (Figure 5.3c and f). This confirms that proton d2 is connected to the a1-b-c oligomer. 

However, the diffusion coefficient for proton d2 is slightly higher than proton c as shown in 

the DOSY NMR spectrum (4.94E-10 m/s2 for d2 and 4.41E-10 m/s2 for c). This small 

difference may arise from the systematic error in the DOSY experiment. Because proton a3 and 

e exhibits different diffusion coefficients at 7.46E-10 and 8.04E-10 m/s2, respectively, while 

they have been clearly identified to be protons in the methanol molecule. Therefore, it is 

believed that proton d2 is most likely to be the end group for the a1-b-c oligomer instead of 

being a part of another oligomer.  

Based on the ESI-HRMS data, two methoxide end groups instead of hydroxyl groups are 

proposed for the a1-b-c oligomer. Apart from the methoxide containing d2 proton, the other 

terminal group is tentatively assigned to a methoxide bound to a carbonate containing protons 

resonating at d1. The proton d1 in the proposed a1-b-c oligomer may overlap with the proton 

peaks in LMC (CH3OCOO-Li+), thus, its integral is not considered here.  

The proposed structure in Scheme 5.1b corresponds to the structure with n = 4 in Table 5.2. 

Though a series of oligomers are detected by HRMS, these oligomers may form due to the 

decomposition of insoluble SEI (because HRMS was performed on the acetonitrile solution 

that is mixed with SiNW to dissolve the insoluble SEI). Note that the HRMS measurement was 

performed in air with water contamination as water is an inevitable component in the carrier 

phase for HRMS measurement. Therefore, the detected species listed in Table 5.2 only 

indirectly aided our interpretation of the observed NMR data but does not directly contain the 

structural information nor the relative abundance of the degradation product.  
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The proposed a1-b-c oligomers with methoxide terminals should be chemically more stable 

than those terminated by -OH or -OCOOH groups on highly lithiated silicide. However, the a1-

b-c oligomer potentially have a lower affinity to the Si surface than molecules with -O-Li+ or -

OCOO-Li+ end groups. This may be part of the reason why it is observed as the major soluble 

degradation species in the cycled electrolyte. Future modelling on the conformation of this 

oligomer would be helpful to better understand its properties. 

The other major degradation species comes from DMC. A strong singlet at 3.28 ppm (d1) in 

the 1H NMR spectrum is identified as lithium methyl carbonate (CH3OCOO-Li+, LMC). LMC 

forms from the one electron reduction of DMC together with the formation of a methyl radical.  

CH3OCOOCH3 + e•-  
→ CH3OCOO- + •CH3 

Here, LMC is found to be highly water sensitive. When water is present in the sample, the 1H 

resonance at d1 decreases, and new peaks at a3 and e appear. This confirms a hydrolysis reaction 

of LMC to form CO2 and methanol, and the reaction is given below:  

CH3OCOO- Li++ H2O → CO2 + CH3OH +LiOH 

It is worth noting that DMC is not 13C labelled and the fact that we are able to clearly identify 

the formation of LMC via 2D correlation NMR experiments indicates that the concentration of 

LMC formed in the electrolyte must be higher than the detection limit of these NMR 

experiments.  

5.5 Conclusion 

EC is chemically unstable in low voltages window (<1.2 V vs. Li+/Li) and its major 

electrochemical reduction products are identified to be linear ethylene oxide carbonate type 

oligomers by a combination of solution NMR and ESI–HRMS experiments. The major 

oligomer has three EO units in between two carbonate groups and contains methoxide as end 

groups (Scheme 5.1). The major degradation product from DMC, lithium methyl carbonate 

(LMC), is also observed. LMC is unstable in the presence of trace amount of water and 

decomposes to form methanol.  
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All the observed degradation products are of a linear structure and are highly soluble in the 

electrolyte. Oligomers with methoxide terminal groups may have low affinity to the Si surface, 

therefore, they detach from the Si surface and cannot form a stable SEI. Methods to reduce the 

solubility of these oligomers by electrolyte saturation would be helpful for suppressing further 

EC degradation. Lastly, it may be useful to probe the state of health of a battery by monitoring 

the formation of these oligomers quantitatively using either NMR or mass spectrometry. With 

the chemical shift database implemented and all characterization techniques available, solution 

NMR combined with ESI–HRMS can be routinely used to analyse the degradation of other 

electrolyte formulations. 
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Chapter 6 Conclusions and Future Work 

This study investigated the chemical composition of the interfacial species formed on 

high-capacity Si anodes in lithium ion batteries and identified key polymeric species implicated 

in battery performance enhancement. A variety of NMR techniques including dynamic nuclear 

polarization were used to understand the reduction mechanisms of conventional ethylene 

carbonate (EC)-based electrolytes as well as the two most-widely used electrolyte additives in 

lithium ion batteries: fluoroethylene carbonate (FEC) and vinylene carbonate (VC). As such, 

there are many insights derived from this work that have important implications for future 

research on electrolyte additives, surface engineering and solid polymer electrolytes.  

First, a combination of model system and enriched electrolyte is used to analyze the amorphous 

interphase. Silicon nanowires (SiNW) have been employed, for the first time, for the studies 

on the solid electrolyte interphase (SEI) by NMR spectroscopy, because SiNW electrodes 

provide a large specific surface area, ensure electronic wiring and avoid interference from the 

polymeric binders commonly present in conventional composite electrodes. 13C3 enriched FEC 

was successfully synthesized to overcome the sensitivity issue of 13C NMR experiments, 

enabling the detection of organic SEI species. The 13C-labelled FEC leads to unique 1H NMR 

J-coupling patterns after electrochemical cycling, which provide unambiguous assignment of 

the spectra. FEC is found to defluorinate and convert to VC and vinoxyl species in the 

electrolyte, which subsequently react to form an insoluble polymer on the Si anode. Clear 

differences in the organic decomposition products formed with and without 13C3-FEC additive 

are observed by 13C NMR: a crosslinking polymer containing acetal carbon forms in the 

presence of FEC, whereas a linear poly(ethylene oxide)-type polymer forms in the additive-

free electrolyte.  

The advantageous effects of these additives were explored by cycling SiNW with pure FEC 

and VC electrolytes containing 1M LiPF6. An improved electrochemical performance is 

observed for pure FEC and VC electrolytes and the improvements are again linked to the 

presence of a cross-linked polymer formed from the reduction of FEC/VC. Quantitative 
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information about the cross-linked polymer is obtained by 13C NMR, showing that it consists 

of ~40 % alkyl chains, 30 % poly(ethylene oxide), and 10 % crosslinking acetal carbons and 

other carbonate and carboxylate functional groups. With the improved sensitivity obtained by 

DNP NMR, connectivity between these polymeric species is further confirmed by 13C–13C 

correlation NMR, and atomic information about the interphase between the SEI and the Si 

anode is revealed by 29Si DNP NMR. Organosiloxanes are found to form as a function of 

cycling in all electrolyte formulations, suggesting that the Si–C bond is intrinsically stable in 

the reducing environment. This study demonstrated that surface-enhanced DNP NMR methods 

can be successfully applied to study the air- and water-sensitive interphase on battery materials; 

DNP also enables us to probe the buried interphase (e.g. SiOx-SEI) previously considered 

invisible by conventional NMR techniques.  

Finally, an intriguing problem about a soluble degradation product is solved by a combination 

of solution NMR and mass spectrometry. The reduction product of EC has unique 13C and 1H 

shifts in solution NMR, and its chemical structure is determined by 2D correlation and diffusion 

NMR experiments. The degradation product is revealed to be a highly soluble oligomer which 

forms continuously in the EC-based electrolyte; its formation irreversibly consumes Li sources 

and leads to the capacity fading observed in the Si anode.  

These findings shed light on future research on new electrolyte additives and the design of 

passivation layers on alloy-type anodes. First, FEC and VC preferentially undergo reduction 

prior to the more abundant EC molecules. Secondly, in the proposed decomposition 

mechanisms for FEC and VC, species containing unsaturated double bonds or aldehyde groups 

are the precursors for forming cross-linked polymers. Combining this information together, it 

is expected that novel additives containing vinyl or aldehyde groups with high reduction 

potential should also form similar cross-linked polymers that likely exhibit improved cycle life 

for alloy-type anodes. Further experimental screening is needed, however, to optimize the 

electrolyte formulation for Si anodes. 

A second research question relates to the role of inorganic Li salts such as LiF in the SEI. Since 

FEC converts to VC, the functional difference between these two additives can be attributed to 

the formation of LiF or the concentration difference of VC present in the electrolyte. LiF is 

found to be electronically insulating and exhibits low Li ionic conductivity at room temperature, 
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thus its role may depend on other factors such as its morphology, crystallinity, particle size and 

its spatial distribution within the SEI. Further studies are needed to investigate the nature of 

LiF and its interaction with organic SEI components. Properties of the SEI such as electronic 

and Li-ionic conductivity, elasticity and solvent permeability should be measured to fully 

understand SEI’s influence on battery performance. 

Using electrolyte additives at high concentration does not adequately solve the problem of 

capacity retention. Novel artificial coating layers or solid polymer electrolytes are safer 

alternatives to the flammable liquid electrolyte.148 Based on the characterization results 

reported in this thesis, it is hoped that the cross-linked poly(ethylene oxide) material can be 

synthesized with controlled porosity and elasticity to test its compatibility with alloy-type 

anodes. The use of a composite solid polymer electrolyte based on this material together with 

inorganic fillers such as nano SiO2 and LiF may lead to promising results in the future. Apart 

from the bulk properties of the solid polymer electrolyte, the interfacial region between the 

polymer and the active material should also be carefully engineered to achieve certain bonding 

modes (e.g. hydrogen or covalent bonding), so as to reduce the interfacial resistance and to 

maintain strong mechanical integrity of the electrode.  

The studies undertaken in this thesis show that a combination of solution and solid-state NMR 

techniques provides important structural information about the degradation products in the 

liquid electrolyte system. Only by understanding the structure-property relationship in these 

passivation products that are present in conventional batteries will it be possible to find a 

rational way forward to develop artificial SEI coatings or solid polymer electrolytes for next-

generation lithium ion batteries. 
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Appendix A  

Materials 

Battery grade LP30 electrolyte, FEC and VC were obtained from Sigma-Aldrich. The LiPF6 

salt was obtained from Aldrich. DNP solvent TCE (Sigma Aldrich) was dried over molecular 

sieves to remove water. TEKPol radical were kindly provided by the DNP facility in 

Nottingham.  NMR experiments were used to estimate water content using small quantities 30 

l of NMR-grade 2H-DMSO and 0.7 ml of FEC, VC or LP30. Although the 2H-DMSO contains 

trace amounts (15 – 35 ppm) of water complicating the analysis, the natural abundance enriched 

electrolytes all contained < 120 ppm H2O. 

Additional experiment details 

Table A.1. Preparation of DNP NMR samples 

Sample 

No. 
Sample description 

Sample 

mass (mg) 

KBr 

diluent 

mass (mg) 

TEKPol in DCB 

radical 

concentration 

(mM) 

TEKPol in 

DCB 

radical 

volume 

(µL) 

1H 

enhancement 

with 

microwave 

ϵon/off 

1 

SiNW cycled 

LP30+13C3 EC for 

30 cycles 

3 11 4 2.5 12 

2 

SiNW cycled in 

LP30+13C3 FEC for 

30 cycles 

<1 6 4 2 20 
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Table A.2. Solid-state NMR measurement parameters for the 1H–13C CP spectra shown in Figure 3.5 

Parameters 
Samples 

LP30+13C3 EC LP30+13C3 FEC 

Temperature 295K (RT) 100 K (DNP) 295K (RT) 100 K(DNP) 

Magnet 700 MHz 600 MHz 500 MHz 600 MHz 

Rotor (mm) 3.2 3.2 2.5 3.2 

Sample mass 2 mg 5 mg ~1 mg <1 mg 

MAS 20 kHz 12.5 kHz 10 kHz 12.5 kHz 

Contact time 1 ms 2 ms 2 ms 2 ms 

Recycle delay (s) 3 6 3 5 

Number of scans 3482 688 24576 1025 

Measuring time (h) 3 1 20.5 1.3 
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Figure A.1. 1H–13C correlation NMR spectra of the cycled LP30 electrolyte extracted from Li symmetric cells 

100 cycles (a) HSQC, (b) HMBC.  

1H and 13C solution NMR spectra of the cycled LP30 +13C3 FEC electrolyte with enlarged 

spectra are shown in Figure A.2 and A.4, respectively. 1H NMR in the region of 6–7 ppm region 

is shown in Figure A.3, which corresponds to the proton in 13C3 FEC. The multiplet analysis is 

illustrated in Figure A.3 in which six distinct types of J-coupling are observed: two large 1JCF, 

2JHF coupling constants of 200 and 64 Hz, respectively, and four relatively smaller 13C–1H 

J-couplings (2JCH = 7.8 Hz, 3JHH, cis = 6.9 Hz, 3JHH, trans = 4.1 Hz, 3JCH = 1.0 Hz). Analysis of these 

patterns confirms the formation of fully labelled 13C3 FEC.  
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Figure A.2. 1H solution NMR of LP30 +13C3 FEC after 30 cycles, the x, y, FEC and z regions are enlarged and 

are shown in the inserts on the top right. 

 

Figure A.3. Multiplet analysis of 1H NMR of fully enriched 13C3 FEC; the proton region corresponds to the proton 

bound to the fluorinated carbon (labelled in red in the structure). 
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Figure A.4. 13C solution NMR spectra of LP30 + 13C3 FEC after 30 cycles. The insets show enlarged parts of the 

13C NMR spectra. 

There is an extra peak at 124.5 ppm in 13C NMR of cycled LP30 + 13C3 FEC electrolyte, but it 

is not correlated to any protons in HSQC in Figure 3.3a, suggesting it is a non-protonated 

carbon. The 124.5 ppm peak can be assigned to orthocarbonate as previously reported by Leifer 

et al.56  
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Figure A.5. HMBC of LP30 + 13C3 FEC after 30 cycles. External projections of 1D 1H and 13C spectra are 

displayed. No 13C decoupling was applied during acquisition. Artefact peaks are marked with #, one-bond artefacts 

are marked with * 

 

 

Figure A.6. 1H solution NMR of 13C natural abundance vinylene carbonate. (a) blue line is the experimental data, 

green line is the Lorentzian fitting, (b) the difference between the experimental spectrum and the fitting. The 

inserts show the chemical structures of vinylene carbonate with possible 13C labelling positions. The J-coupling 

constants derived from the spectrum are displayed in red. 
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Figure A.7. 19F solution NMR of cycled electrolyte (a–b) and 19F ssNMR of cycled SiNW electrode (c–d). The 

insets in (c) and (d) show the lithium fluoride region at -204 ppm. The spinning side bands in the ssNMR spectra 

are marked with asterisks.  

 

Figure A.8. 13C CP NMR of SiNW cycled in LP30 + 13C3 EC (black) and in LP30 + 13C3 EC + FEC (red) for 30 

cycles. Samples were all measured at 700MHz (1H Larmor frequency) with 500 µs contact time, 3936 scans, and 

a recycle delay of 7 s. 
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Figure A.9. 1H-13C Heterouclear Correlation NMR spectra of SiNW cycled in LP30 + 13C3 EC electrolyte. Panel 

(a) shows the full spectrum with large DCB solvent signal and its spinning sidebands (ssb). The sample region 

with the dashed square is enlarged in Panel (b). Artefact peaks are marked with #, which is due to spin lock at y 

axis during proton decoupling and it appears at the carrier frequency on proton. The artefact is confirmed by 

shifting the carrier frequency of the proton. The spectrum was measured at 12.5 kHz spinning speed and a contact 

time of 50 µs.  A total of 128 increments with 8 scans were acquired over 1.7 hours. Five noticeable peaks are 

marked on the contour plot from 1 – 5. 

Table A.3. Summary of peaks in 1H-13C HETCOR of SiNW cycled in LP30 + 13C3 EC electrolyte  

peak 13C/ppm 1H/ppm 

1 68.20±0.4 4.50±0.20 

2 61.40±0.4 3.75±0.30 

3 61.27 4.48 

4 64.18 4.28 

5 62.72 3.97 
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Figure A.10. 1H–13C Heteronuclear Correlation NMR spectra of SiNW cycled in LP30 + 13C3 FEC electrolyte. 

Panel (a) shows the full spectrum, which contains large DCB solvent signal and its spinning sidebands (ssb), since 

the signal to noise ratio is not ideal, there is some baseline noise. The sample region with dashed square is enlarged 

in panel (b). Artefact peaks are marked with #. The spectrum was measured at 12.5 kHz spinning speed and a 

contact time of 500 µs. A total of 64 increments with 256 scans were acquired over 15 hours.  

Table A.4. Summary of peaks in 1H–13C HETCOR of SiNW cycled in LP30 + 13C3 FEC electrolyte.  

peak 13C/ppm 1H/ppm 

A1 105.1±0.2 5.4±0.6 

A2 104.0±0.2 4.0±0.4 

A3 103.0 5.04 

B1 84.8 4.47 

B2 80.4 5.05 

B3 76.0 4.55 

B4 72.5 4.62 

C 68.0±0.2 4.5±0.4 

D1 35 1.3 
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Appendix B  

B.1 Additional Experimental Details 

Electrochemical Impedance Spectroscopy (EIS) 

The cells were rested in open circuit voltage for 15 h to reach equilibrium before EIS data was 

collected. All EIS measurements were made using a Biologic VMP3 electrochemical station at 

room temperature (18 ± 3 ˚C) using an excitation signal of 10.0 mV amplitude and a frequency 

range from 1 MHz to 0.1 Hz.  

XPS  

XPS spectra were acquired by Steffen Emge and Robert S. Weatherup (University of 

Cambridge) using the scanning photoemission microscopy (SPEM) instrument at the 

Escamicroscopy beamline of the Elettra synchrotron facility (Trieste, Italy). Measurements 

were performed using a 1075 eV X-ray beam that is defocussed to give a ~80 µm diameter spot 

size. Photoelectrons were collected with a SPECS-PHOIBOS 100 hemispherical electron 

energy analyzer with an in-house customized multichannel plate detector. The binding energy 

(BE) scale was calibrated on the hydrocarbon C 1s peak at 284.5 eV. All spectra were collected 

with 30 scans. Samples were transferred using sealed polyethylene glove bags to avoid air 

exposure.  

FTIR 

Dried silicon nanowire (SiNWs) electrodes were characterized using a FTIR spectrometer 

(Agilent, Cary 630) inside an argon-filled glovebox, in attenuated total reflection (ATR) mode 

on a diamond crystal. Each FTIR spectrum was acquired with a resolution of 4 cm -1 with 32 

scans with the range from 600 to 4000 cm-1. 
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B.2 Additional Electrochemistry Data 

Table B.1. Summary of the electrochemical performance of SiNWs cycled in various electrolytes 

Electrolytes 

Capacity Retention 

(50th discharge / 1st 

discharge, %) 

Capacity Retention 

(50th charge / 1st 

charge, %) 

Initial Coulombic 

Efficiency (%) 

Average Coulombic 

Efficiency (from 2nd 

to 50th, %) 

LP30 57.95 61.45 91.73 97.8 

LP30 + FEC 73.66 77.57 93.56 98.4 

FEC 80.62 86.99 91.40 98.8 

VC 73.45 78.89 92.48 99.1 

 

 

Figure B.1. Electrochemical performances for SiNWs cycled in FEC+13C3 FEC and the results from representative 

SiNWs cycled using the electrolyte formulations listed in Table 4.1. (a) Specific lithiation capacity and (b) 

Coulombic efficiency versus cycle number.  

To characterize the ionic properties of the SEI formed in LP30, FEC and VC further, 

electrochemical impedance spectroscopy (EIS) measurements were performed on SiNWs after 

30 cycles in the delithiated state. The Nyquist plots are presented in Figure B.2. The depressed 

semicircle at high frequencies (HF) mainly reflects the charge transfer resistance (Rct) of Li 

ions between different interphases (from the electrolyte to the SEI and from the SEI to Si), and 

the tail in the low frequencies region contains information about the mass transfer rate within 
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the electrode. Note that the EIS is performed in a two-electrode system (i.e., Si vs. Li) and the 

interphases on the Li metal also contribute to Rct. 

A qualitative comparison of the size of the semicircles reveals that the FEC derived SEI has 

the smallest charge transfer resistance, while the VC sample even has a slightly larger Rct than 

the LP30 sample. This agrees well with previous studies, which also showed a lower resistance 

for Si electrodes cycled with the addition of FEC,36,40 and an increased resistance in the 

presence of VC.24 The difference of the resistance developed in the FEC and VC cells is related 

to the SEI thickness, the chemical structures of the SEI as well as the bonding nature between 

SEI and SiOX surface. The results indicate that the FEC-derived SEI may be thinner and/or 

more Li+ conductive than the SEI formed in VC and LP30 electrolytes. 

Impedance analysis of the SEI:  

 

Figure B.2. Electrochemical impedance spectra of SiNW half-cells after 30 cycles in LP30 standard electrolyte 

(black), FEC (red) and VC (blue) electrolytes in the delithiated state. The insert shows the high frequency region. 

Rate performance:  

To confirm the observations in the EIS measurements, additional rate performance tests were 

carried out (Figure B.3). The hypothesis is that FEC samples with lower Rct should have better 

high rate performance than LP30 and VC samples. The FEC sample indeed exhibits the highest 

initial capacity compared to LP30 and VC samples when they are all cycled at high rates of 

C/5 and C/2 (Figure B.3a). However, the capacity retention trends of these samples are different. 
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In the LP30 and FEC electrolytes, the capacity drops with each cycle, when cycling at high 

rates, whereas the VC sample surprisingly shows gradually increasing capacities with cycling, 

indicating improved Li+ transport through the electrode structure.  

 

Figure B.3. Rate performance of the SiNWs cycled in LP30, FEC and VC electrolyte (the 1st cycle at C/30, 2nd to 

30th cycles at C/10, then cycled at C/5, C/2 and again C/10 for 5 cycles each. (a) discharge capacity and (b) 

Coulombic efficiency versus cycle number. Voltage curves of (c) 36th cycle at C/2, (d) 41th cycle at C/10. 

(1 C = 3579 mAh/g, the voltage window is 0.001 – 2 V vs. Li+/Li) 

To examine more closely the behaviour of the VC sample at high currents, the voltage curve 

of the VC cell is compared to that of FEC and LP30 samples (Figure B.3c and d). When cells 

are initially cycled at C/2 in the 36th cycle (Figure B.3c), the VC sample has a larger voltage 

polarization than the FEC sample. During lithiation, the voltage curve of VC almost coincides 

with that of FEC from 2 V to 0.25 V before it quickly reaches 0.001 V at only ~1400 mAh/g. 

During the delithiation process, the onset for the VC sample is about 0.15 V higher than the 

FEC sample, and the delithiation plateau of VC is much higher than the LP30 and FEC cells. 

The discharge capacity of the VC sample then gradually increases when cycled at C/2 and 

approaching the capacity of FEC cell in the 40th cycle. The VC sample recovers its lithiation 

and delithiation capacities when cells are cycled at a slow rate of C/10 after high rate testing 

(Figure B.3d), which indicates that the capacity loss is due to kinetic effects. Moreover, the VC 
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sample consistently shows a higher Coulombic efficiency (CE) compared to LP30 and FEC 

samples at all current densities. The higher CE for VC electrolytes suggests that the VC-derived 

SEI has a better passivating ability and reduces the irreversible capacity loss during each cycle.  

 

Figure B.4. (a–b) The Coulombic efficiencies of multiple SiNWs cells cycled in1M LiPF6 in pure FEC and VC 

electrolytes. (c) dQ/dV from 30th to 50th cycles of cells cycled in FEC and VC electrolytes (FEC in red, VC in 

blue). 

Experiments were performed to assess the effect of variations between SiNW electrodes on the 

electrochemistry, since the SiNWs were synthesized individually by CVD methods in different 

batches. Coulombic efficiencies (CE) of multiple cells used in this study are shown in 

Figure B.4a and b. SiNWs cells cycled in FEC have CEs in the range of 98.0–99.0%, whereas, 

cells cycled in VC electrolyte show a higher CEs (98.8%–99.4%).  While variations are 

observed, the VC samples systematically show higher CEs.   
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Figure B.4c compares the dQ/dV plot of cells cycled in FEC and VC electrolytes. An extra 

peak at 0.58 V is clearly observed in the FEC sample, indicating FEC is continuously being 

decomposed as no lithiation of Si occurs in this voltage. The result is consistent with the lower 

CEs observed in the FEC samples compared to the VC samples, suggesting that VC forms a 

more stable SEI than FEC.  

B.3 Solution NMR Data 

 

Figure B.5. 13C solution NMR spectra of pristine FEC, VC electrolytes and electrolytes after 50 cycles with 1H 

decoupling. 

Pristine FEC and VC electrolytes were measured in d6-DMSO solvent, whereas the cycled FEC 

and VC electrolytes were measured in d3-ACN solvent. d3-ACN solvent was because we 

observed phase separation in the cycled electrolytes and d6-DMSO mixture. In the cycled FEC 

electrolyte, new 13C NMR peaks around 190 and 125 ppm appear and they are assigned to 

aldehyde and alkene carbon, respectively. The cycled VC electrolyte also contains additional 

alkene carbon species with 13C shift spanning from 120-140 ppm. 
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B.4 XPS and FTIR Data 

XPS studies of surface species on the cycled SiNWs 

 

Figure B.6. XPS Si 2p spectra of SiNWs cycled in different electrolyte for 30 cycles in the delithiation state. 

Figure B.6 shows the XPS Si 2p core peaks of SiNWs cycled in LP30, FEC and VC electrolytes 

after 30 cycles in their delithiated sates. All spectra contain a broad peak at ~103 eV that can 

be assigned to silicon oxide (SiOx).
41 The FEC and LP30 samples both show a relatively weak 

peaks centered at ~98 eV that is assigned to elemental Si, whereas, no such Si peak is observed 

in the VC sample. All samples were measured using the same photon energy (1075 eV), and 

thus the Si 2p electrons for all three samples have the same inelastic mean free path (~2.5 nm). 

This corresponds to an information depth of ~7.5 nm (~95% of detected photoelectrons 

originate from within this distance of the surface) and given that the SiOx is expected to be 

closer to the surface that the Si, the variations in the intensity of the elemental Si peak provide 

an indirect measure of the SEI thickness. The Si 2p spectra thus suggest that the VC sample 

has a thicker SEI than those generated from LP30 and FEC. The conclusion is consistent with 

McArthur et al., who used in-situ spectroscopic ellipsometry to measure the thickness of the 

SEI on a-Si film, and concluded that the SEI formed in electrolyte containing 2 wt% VC 

additive is thicker than those formed in standard electrolyte with and without 2 wt% FEC.153 A 

thicker SEI will extend the Li ion diffusion pathway through the interphase before lithiation of 

bulk Si takes place. On the other hand, a thicker SEI potentially prevents electronic tunnelling 
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through the SEI and can better passivate the electrode. Although the thickness of SEI is an 

important parameter, it does not necessarily determine the electrochemistry performance. Xu 

et al. previously demonstrated that the desolvation process of Li ions is the rate-determining 

step in the lithiation of graphite instead of the diffusion rate of Li ions through the SEI.44  

Organosilane Si-C species with a characteristic Si 2p peak at 101 eV as reported by Chan et 

al144 may also be present beneath the broad peak of SiOx in Figure B.6. Fluorosilicate that has 

a Si 2p peak around 106 eV59 is not clearly observable in all samples. The XPS Si 2p results 

are consistent with 29Si NMR, showing the presence of silicate and Si-C species with little 

fluorosilicate on the Si surface.  

 

 

Figure B.7. FTIR spectra of SiNWs cycled in 1M LiPF6 in pure FEC (red) and pure VC (blue) after 1st, 30th and 

50th cycles in the delithiated state without rinsing. 

Figure B.7. shows the FTIR spectra of the SiNWs after cycling in different electrolytes. The 

VC samples contain extra peaks at ~1800 cm-1 that can be assigned to polycarbonate groups 

(ROCOOR’), whereas the 1800 cm-1 peak is hardly observable for the all FEC samples. It is 

noteworthy that in Figure 3.2e and 3.2f, the carbonate species with a 13C peak at 155 ppm is 

relatively more intense in the VC samples than the FEC samples. The presence of a 

polycarbonate suggests that the SEI of the VC samples contains more carbonate groups than 
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the one formed in the FEC samples. Nie et al42 reported similar polycarbonate groups (~1800 

cm-1) for Si thin film electrodes cycled in 1.2M LiPF6 in pure FEC. But it was not reported 

whether the electrode was rinsed or not. Here the electrodes were not rinsed but dried them 

under dynamic vacuum overnight to remove excess solvent.  

B.5 Additional 13C DNP MAS NMR Data 

 

Figure B.8. 1H-13C DNP HETCOR of SiNWs cycled in 1M LiPF6 in FEC for 30 cycles. Contact time of 200 µs is 

used. 

Table B.2. Summary of HETCOR peaks in Figure B.8. 

Label 13C /ppm 1H/ppm Possible assignment 

TCE 74 6.1 TCE 

F1 70 4.1  -CH2CH2O- 

F2 59 3.5  ROCH3 

G1 37 2.3 RCHR2' 

G2 31 1.3 RCH2R' 

 

  



 

147 

Table B.3. Summary of the peaks in 13C-13C correlation spectrum (Post-C7) 

Molecular 

Fragments 
SQ Shift /ppm SQ Shift /ppm DQ Shift / ppm Sum /ppm 

A1-A2 35.2 31.3 64.9 66.5 

B2-A4 75.3 35.5 106.4 110.8 

B2
’-B3 75.6 69.9 142.1 145.5 

B1-A3 76.3 17 91.6 93.3 

C1-A5 97.8 33.8 130.7 131.6 

C2-B4 101.8 71.9 172.2 173.7 

 

B.6 Additional 29Si DNP MAS NMR Data 

 

Figure B.9. 1H-29Si CP DNP NMR spectra of SiNW cycled in VC, FEC after 50 cycles (a), (b) chemical shift 

ranges of organosilicate154, silicate, lithium silicate and fluorosilicate143. 
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Figure B.10. 1H-29Si CP DNP NMR spectra of SiNWs cycled LP30 for 50 cycles with various contact times (a), 

the deconvoluted spectrum (b), the build-up curve of each deconvoluted peak (c).  

 

 

Figure B.11. Spectra of 1H-29Si dephasing experiments of SiNWs cycled with LP30 for 50 cycles, spinning at 12.5 

kHz.  
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Figure B.12. 1H-29Si CP DNP NMR spectra of SiNWs cycled in FEC for 100 cycles before air exposure (black) 

and after air exposure (red).  

B.7 DFT Calculation Results 

Computational details 

Density Functional Theory (DFT) calculations were performed on a set of molecules that 

correspond to some of the proposed polymer building blocks of the SEI system by Erlendur 

Jónssonrun (University of Cambridge). To explore the effect of alkane chain length on the 

chemical shift, the carbon chains were extended systematically, from R=Me to R=Pr (in 

essence Et and Pr for the inner linear part). Another set of molecules was also created with a 

cyclic carbonate functional group. Both of these structures can be seen in Figure B.13, where 

the main carbon of interest has been made explicit in red. 

In each case, the calculations were performed using Orca 4.0.1.2155. The PBE0 functional156 

with the def2-TZVP157 basis set was used for the geometry optimization of the molecules. NMR 

calculations were performed with the same functional and the pcSseg-2158 basis set. The 

TightSCF option was also used. The same procedure was used for the calculation of the 

reference, tetramethylsilane (TMS). 
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Figure B.13. The branched (left) and cyclic systems (right) used for DFT/NMR calculations. The acetal carbon of 

interest is emphasized in the structures. 

 

 

 

Table B.4. The calculated 13C chemical shifts of the cyclic acetal carbons of Figure S14 (where n and R are 

defined). In each case, TMS is used as a reference. 

n R ∆ [ ppm] n R ∆ [ ppm] n R ∆ [ ppm] n R ∆ [ ppm] 

H Me 106.0 Me Me 111.2 Et Me 111.0 Pr Me 111.1 

H Et 104.8 Me Et 110.0 Et Et 109.8 Pr Et 113.1 

H Pr 105.1 Me Pr 110.4 Et Pr 110.3 Pr Pr 114.0 

 

Table B.5. The calculated 13C chemical shifts of the branched acetal carbons of Figure B.13. (where n, R and R' 

are defined). In each case TMS is used a reference. 

n R R' ∆ [ ppm] n R R' ∆ [ ppm] 

1 Me Me 109.9 2 Me Me 109.0 

1 Me Et 108.8 2 Me Et 107.6 

1 Me Pr 109.8 2 Me Pr 108.4 

1 Et Me 110.3 2 Et Me 109.4 

1 Et Et 109.0 2 Et Et 108.2 

1 Et Pr 108.7 2 Et Pr 107.9 

1 Pr Me 110.0 2 Pr Me 109.4 

1 Pr Et 109.1 2 Pr Et 108.1 

1 Pr Pr 113.4 2 Pr Pr 107.8 

 

The branched systems span a shift range between 107.6 to 113.4 ppm. Comparing the ethyl 

and propyl cores (n=1 and 2 in Table B.5) there is a small, yet clear trend of a smaller 13C shift 
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for structure containing propyl cores. Changing the R, R' groups does not result in a clear trend 

here. These results are in line with the experimental values that are assigned in the paper: acetal 

carbon in the cyclic structure has higher 13C shift than acetal carbons in the branched structure.  
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Appendix C  

Morphology change of SiNWs after electrochemical cycling in different electrolytes.  

 

Figure C.1. TEM images of SiNWs cycled in LP30 electrolyte for 30 cycles. 
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Figure C.2. TEM images of SiNWs cycled in 1M LiFP6 in FEC electrolyte for 30 cycles. 
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Figure C.3. TEM images of SiNWs cycled in 1M LiFP6 in VC electrolyte for 30 cycles. 

The effect of electrolyte solvent on the structural evolution of SiNWs is explored. The SiNW 

samples were prepared by rinsing the electrodes with DMC for three times to remove excess 

Li salts followed by drying it under vacuum overnight to remove DMC. The SiNWs were then 

scratched off from the stainless-steel substrate and suspended in DMC solutions, and drop cast 

on the TEM grids. The TEM images were acquired on JEOL JEM-3010 with short time (~5 

min) air exposure. After cycling, the SiNWs become porous and it is difficult to discern the 



 

155 

boundaries between SiNW and SEI. Nevertheless, it is clear that the morphology of the SiNWs 

cycled in VC electrolyte is very different from those cycled in FEC and LP30. The VC samples 

have a smoother surface and the SiNWs are less porous. 

 

Figure C.4. High resolution TEM images of SiNWs cycled in 1M LiFP6 in FEC electrolyte for 30 cycles. 

Crystalline nano-domains with lattice spacings of 1.9 Å, 1.3 Å, 2.6 Å and 2.7 Å are observed at the surface of 

SiNWs, indicating the presence of inorganic lithium salts such as LiF, Li2O and Li2CO3, LiOH (2.76 and 2.56 Å). 
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Figure C.5. SEM and EDX mapping of SiNWs cycled in 1M LiFP6 in VC electrolyte for 30 cycles.. 

The, the C Kα1 and O Kα1 EDX mapping images of the cycled SiNW show a wider width than 

the Si Kα1 image, confirm that the NW is coated by an organic layer. The Si surface is also 

uniformly coated with fluorine-containing species, probably due to LiF instead of fluoro-

polymer.  
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Appendix D  

Silicon nanoparticle composite electrodes 

The same methodology descried in Chapter 3 is applied to study the Si nanoparticle (SiNP) 

composite electrodes to ascertain the reproducibility of the NMR data. The obtained 

electrochemical and NMR data is similar to those presented in Chapter 3. Nevertheless, 

additional data about the mass increase and the morphology change of the SiNP composite 

electrode is presented here with additional information about the SEI growth. 

The SiNP composite electrode is prepared by mixing silicon nanoparticles (Sigma Aldrich, 

diameter < 100nm), CMC (Sigma Aldrich, average Mw=700,000, degree of substitution = 0.90) 

and carbon super P (Timcal) in 1:1:1 weight ratio and adding certain amount of water and 

ethonal. After 10 min mixing in the Zr-jar for high energy ball mill for 10 min; the slurry was 

casted on the Cu foil (15µm thickness) using 100 µm doctor blade. The electrodes were dried 

at room temperature and were punched into ½ inch diameter coin cell electrodes, followed by 

further dying in 100˚C vacuum oven for 3–4 hours. The dried electrodes were then quickly 

transferred into glovebox for cell assembly as described in Chapter 3. The mass loading of 

SiNP is around 0.15–0.20 mg/cm2, and the electrode thickness is around 15–20 µm. 
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Figure D.1. The gravimetric analysis of the SiNP electrode after cycling in different electrolytes at C/30 between 

1 mV and 2 V. The percentage of the mass increase is defined as the mass-gain after cycling over the pristine 

electrode mass. Black square denotes the SiNWs cycled in LP30 electrolyte, red triangle for samples cycled in the 

LP30+10 vol % FEC. The electrodes were extracted from the coin cell without washing but dried in vacuum for 

12–15 hours.  

The mass of SiNP composite electrode increases continuously after cycling. In the conventional 

electrode, the electrode mass increases to 4–5 time after 50 cycles. With the addition of FEC, 

percentage of the mass gain is smaller (~ 2 time), suggesting that less SEI forms in the presence 

of FEC.   
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Figure D.2. SEM of SiNP electrodes. (a-b) Pristine electrode, (c-d) electrode after 30 cycles in LP30 electrolyte, 

(e-f) electrode after 30 cycles in LP30+10 vol% FEC electrolyte. 

The pristine SiNP electrodes and those cycled electrodes were characterized by SEM (Figure 

D.2). The Pristine SiNP electrodes have relatively smooth surface and large porosity (a,b). 

After cycling in LP30 electrolyte for 30 cycles, the SiNP electrodes contain large secondary 

particles with size around 10 µm (c, d) and the porosity of the electrode decreases due to the 

formation of a thick SEI. In contrast, the SiNP electrodes cycled in FEC-containing electrolyte 

for the same number of cycles has a much thinner SEI and show a similar electrode porosity as 

these in the pristine sample. The result is consistent with the gravimetric analysis, confirming 

that a thinner SEI forms with the addition of FEC. 

 


