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High turnover in the haematopoietic system is sustained by stem and progenitor cells, 
which divide and mature to produce the range of cell types present in the blood. This 
complex system has long served as a model of differentiation in adult stem cell systems 
and its study has important clinical relevance. Maintaining a healthy blood system 
requires regulation of haematopoietic cell fate decisions, with severe dysregulation of 
these fate choices observed in diseases such as leukaemia. As transcriptional regulation 
is known to play a role in this regulation, the gene expression of many haematopoietic 
progenitors has been measured. However, many of the classic populations are actually 
extremely heterogeneous in both expression and function, highlighting the need for 
characterising the haematopoietic progenitor compartment at the level of individual 
cells. 
 
The first aim of this work was to chart the single-cell transcriptional landscape of the 
haematopoietic stem and progenitor cell (HSPC) compartment. To build a 
comprehensive map of this landscape, 1,654 HSPCs from mouse bone marrow were 
profiled using single-cell RNA-sequencing. Analysis of these data generated a useful 
resource, and reconstructed changes in gene expression, cell cycle and RNA content 
along differentiation trajectories to three blood lineages. 
 
To investigate how single-cell gene expression can be used to learn about regulatory 
relationships, data measuring the expression of 41 genes (including 31 transcription 
factors) in 2,167 stem and progenitor cells were used to construct Boolean gene 
regulatory network models describing the regulation of differentiation from stem cells 
to two different progenitor populations. The inferred relationships revealed positive 
regulation of Nfe2 and Cbfa2t3h by Gata2 that was unique to differentiation towards 
megakaryocyte-erythroid progenitors, which was subsequently experimentally 
validated. 
 
The next study focused on investigating the link between transcriptional and functional 
heterogeneity within blood progenitor populations. Single-cell profiles of human cord 
blood progenitors revealed a continuum of lympho-myeloid gene expression. Culture 
assays performed to assess the functional output of single cells found both unilineage 
and bilineage output and, by investigating the link between surface marker expression 
and function, a new sorting strategy was devised that was able to enrich for function 
within conventional lympho-myeloid progenitor sorting gates. 



 
The final project aimed to study changes to the HSPC compartment in a perturbed state. 
A droplet-based single-cell RNA-sequencing dataset of 44,802 cells was analysed to 
identify entry points to eight blood lineages and to characterise gene expression changes 
in this transcriptional landscape. Mapping single-cell data from W41/W41 Kit mutant 
mice highlighted quantitative shifts in progenitor populations such as a reduction in 
mast cell progenitors and an increase towards more mature progenitors along the 
erythroid trajectory. Differential gene expression identified upregulation of stress 
response and a reduction of apoptosis during erythropoiesis as potential compensatory 
mechanisms in the Kit mutant progenitors. 
 
Together this body of work characterises the HSPC compartment at single-cell level 
and provides methods for how single-cell data can be used to discover regulatory 
relationships, link expression heterogeneity to function, and investigate changes in the 
transcriptional landscape in a perturbed environment. 
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Chapter 1

Introduction

Parts of this sections have been adapted from the news and views articles and the review by
F. Hamey, which were written as part of this PhD (Hamey and Göttgens, 2017, 2018; Hamey
et al., 2016).

1.1 Haematopoiesis

Blood contains a complex mixture of specialised cell types, ranging from the erythrocytes
which transport oxygen around the body, to the lymphocytes such as T cells that make up a
vital part of the immune system. It has been estimated that an adult human has a turnover
of around 1012 blood cells per day (Ogawa, 1993). To sustain itself, in order to continue
performing all of its vital functions, the haematopoietic system requires constant production
of new cells. This process is known as haematopoiesis.

Remarkably, the whole complex mixture of blood cell types can be generated from a single
cell: the haematopoietic stem cell (HSC) (Bryder et al., 2006). Experiments in the 1960s from
Till and McCulloch demonstrated that there are cells in the bone marrow with the abilities of
self-renewal, where a cell can give rise to more cells of the same type, and differentiation
towards multiple blood lineages (Till and McCulloch, 1961). Extensive research over the
past 60 years has refined our knowledge of haematopoiesis, and led to the discovery of a
number of haematopoietic stem and progenitor cell (HSPC) populations. The existence of
cells such as common myeloid progenitors (CMPs), capable of producing both erythroid and
myeloid colonies (Akashi et al., 2000), and common lymphoid progenitors (CLPs), restricted
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to only lymphoid output upon differentiation (Kondo et al., 1997), supported the model of a
haematopoietic tree, where cells undergo stepwise differentiation along branches towards
different fates, gradually becoming more specialised (Fig. 1.1). Multipotent progenitors at
the top of the hierarchy were further characterised to identify the true stem cells capable of
indefinite self-renewal (long-term HSCs or LT-HSCs), those cells with limited self-renewal
capacity (short-term HSCs or ST-HSCs) and cells that had lost self-renewal but retained the
ability to differentiate towards all of the blood lineages (multipotent progenitors or MPPs).
Haematopoiesis is a widely-used model in stem cell biology due to the accessibility of
material, the clinical relevance of the blood system, and the existence of sophisticated assays
that are able to test for stem and progenitor function, which are lacking in many other adult
stem cells systems.

LT-HSC

ST-HSC

MPP

LMPP
CMP

MEP GMP CLP

Erythrocyte Megakaryocyte

Platelets

Mast
Cell

Basophil NeutrophilMacrophage Dendritic
cell

NK cell B cell T cell

Plasma cell

Fig. 1.1. The haematopoietic tree. Classic view of the haematopoietic hierarchy based
on Moignard et al. (2013) and Wilson et al. (2015). LT-HSC, long-term haematopoietic
stem cell; ST-HSC, short-term haematopoietic stem cell; MPP, multipotent progenitor;
MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-macrophage progenitor; CMP,
common myeloid progenitor; LMPP, lymphoid-primed multipotent progenitor; CLP, common
lymphoid progenitor; NK cell, natural killer cell.
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1.1.1 Cell fate decisions in haematopoiesis

Maintaining the correct numbers of mature cell types in this complex system requires
careful balancing of cell fate decisions. Many serious blood disorders, including several
leukaemia, show evidence of severely disrupted haematopoietic decision-making (Tenen,
2003), highlighting the need to understand the processes regulating HSPC differentiation.
There are a wide range of factors regulating haematopoiesis, such as extrinsic signalling
and epigenetic regulation. Amongst these lies transcriptional control, with a number of
transcription factors known to play key roles in blood cell differentiation (Shivdasani and
Orkin, 1996). For example, the transcription factor protein Scl (encoded by the gene Tal1)
has been demonstrated to have a key role in haematopoiesis, with disruption of Tal1 causing
defects in the erythroid and megakaryocyte lineages (Hall et al., 2003; Kallianpur et al., 1994;
Shivdasani et al., 1995a). Another example of transcriptional control comes from neutrophil
differentiation, which is regulated by the transcription factor Gfi1, with mice that do not have
Gfi1 expression lacking production of neutrophils (Hock et al., 2003; Karsunky et al., 2002).
Therefore, investigating how the transcriptional landscape of a given cell changes during
haematopoiesis is at the heart of understanding the cell fate decisions in this system.

A major benefit for the haematopoiesis community is that researchers are able to identify cells
from different haematopoietic populations based on the levels of surface marker proteins,
thereby allowing characterisation of cell types within the HSPC compartment. Surface
marker-based strategies have been instrumental in work to establish the structure of the
haematopoietic hierarchy, with methods existing for identifying a large number of HSPC
populations, including all of the cell types in the haematopoietic tree model displayed in Fig.
1.1.

1.2 Single-cell biology

For maintenance of a healthy tissue, stem and progenitor cells must regulate their functional
output at the population level. Yet for multipotent cell types, differentiation is a stochastic
process occurring at the level of individual cells (Klein and Simons, 2011; Simons and
Clevers, 2011). This realisation, coupled with rapid advances in single-cell profiling tech-
nologies, has led to an explosion in single-cell studies across multiple fields, and in particular
in haematopoiesis (Hamey et al., 2016).
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1.2.1 Evidence of heterogeneity within HSPC populations

Experiments assaying the functional output of HSC populations with seemingly homogeneous
surface marker profiles have revealed clear differences in the functional output of these cells
upon transplantation, with evidence for HSC subpopulations with a range of lineage biases
(Dykstra et al., 2007). Such variation within the classical surface marker-defined HSPC
populations underlines the importance of considering the properties of individual cells, rather
than relying on measurements that represent population averages (Fig. 1.2). In order to
facilitate this, many approaches make use of fluorescence-activated cell sorting (FACS) as
a means of isolating cells. By staining cells with combinations of fluorophore-conjugated
antibodies that each mark different proteins, single cells can be separated based on their
fluorescence, where this is an indicator of surface marker expression levels (Lindström, 2012).
This ability to purify specific haematopoietic populations has allowed major advances such as
repeated refinement of the HSC compartment to enrich for functional LT-HSCs, which possess
the ability to reconstitute the blood system after serial transplantation (Kent et al., 2009; Kiel
et al., 2005; Morita et al., 2010). Representing a significant advance in FACS technology,
index sorting is a technique that allows measurements for FACS parameters to be recorded
as each cell is sorted into a plate before analysis using one of a wide selection of different
assays (Osborne, 2011; Schulte et al., 2015). By collecting this information, the results of
experimental techniques such as functional and gene expression assays can be related to
the FACS profiles of individual cells, which can be used to devise improved purification
strategies and link molecular profiles to functional output (Wilson et al., 2015).

Heterogeneous population

Bulk analysis

Single-cell analysis

Obscures heterogeneity

Population average
Individual
measurements

Characterise individual cells

Fig. 1.2. The importance of single-cell analysis. When profiling a population, bulk analy-
sis can only provide information about its average properties. This is particularly a problem
for heterogeneous populations, as any variance due to different cell states will be obscured.
Single-cell techniques overcome this limitation by allowing individual cells to be charac-
terised.
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Single-cell functional studies have also helped to question the classic view of the blood
stem and progenitor hierarchy (Laurenti and Göttgens, 2018). Notta et al. (2016) found
that whilst there were multipotent cells in human adult haematopoiesis, these were in fact
mainly from the stem cell compartment. The majority of downstream progenitors were
seemingly unipotent in functional assays, in contrast to the classical idea in the hierarchical
model of stepwise loss of potential. Traditional bulk assays could not have revealed this
behaviour of individual cells, again emphasising the real need for performing analysis at
the single-cell level. Genetic barcoding of cells is another single-cell technique that has
been used to reassess the established definitions of haematopoietic progenitor populations
(Naik et al., 2014). Here, cells from a population of interest are first isolated, and then each
one is labelled with a different genetic barcode. These cells can then be transplanted into
lethally irradiated mice. Once the bone marrow has been successfully repopulated, cells
from the different blood lineages can be isolated and sequencing performed to reveal the
groups of cells with shared barcodes, and by extension a shared origin. This approach allows
the lineage output of individual cells to be tested in vivo. Perié and colleagues used such a
barcoding approach to assess the lineage output of CMPs, a population originally described
as producing both erythroid and myeloid cells (Akashi et al., 2000). In this study, barcodes
were found to be mostly restricted to either erythroid or myeloid lineages, rather than being
seen in a combination of these fates, suggesting that lineage restriction during haematopoiesis
largely occurs before the CMP stage (Perié et al., 2015). Again, this type of study emphasises
the necessity of performing functional analysis at a single-cell level and highlights some of
the limitations that can affect conclusions based on bulk data.

1.2.2 Single-cell expression profiling

After observing large variation in the function of cells within haematopoietic populations,
the next question to ask is what lies behind this functional heterogeneity? One way that
researchers have attempted to answer this is by profiling gene and protein expression across
HSPC populations. Historically, expression profiling was limited to being performed at
the population level, due to the need for a sufficient amount of starting material to detect
expression of genes or proteins. However, in the past few years technological advances
have enabled the levels of multiple genes, or proteins, to be measured simultaneously at the
single-cell level. These new technologies have resulted in the generation of increasingly
large datasets, and have provided a range of insights into the haematopoietic system.
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As discussed in Section 1.2.1, FACS is one way in which researchers can measure the
expression of numerous proteins for an individual cells, and has proved a powerful tool in
understanding the heterogeneity across single-cell molecular profiles. Whilst FACS can
measure up to 30 parameters for each cell (Chattopadhyay and Roederer, 2015), this number
is however limited by the availability of dyes with distinct fluorescence and the ability of
software to distinguish between the different wavelengths of fluorescence emitted by the
dyes. In contrast, mass cytometry (commercially available from Fluidigm as Cytometry
by Time of Flight, or CyTOF), labels antibodies targeting proteins of interest with stable
isotopes of rare metals, rather than the fluorescent dyes used in FACS. Quantification of these
metal-tagged antibodies is then performed using time-of-flight mass spectrometry and allows
over 40 parameters to be measured for each cell (Bendall et al., 2012; Spitzer and Nolan,
2016). This technology has been used to measure a wide range of cellular features, such as
cell cycle state in human bone marrow progenitors (Behbehani et al., 2012) and to investigate
phenomena such as immune signalling in human bone marrow in response to drug inhibition
(Bendall et al., 2011).

Studying the expression pattern of high numbers of genes in individual cells is also possible,
and has proved a valuable tool for dissecting heterogeneity with haematopoietic populations.
Techniques initially developed for generating bulk expression data have been extended to
work on single cells. Microarray technology, which can quantify the expression of thousands
of messenger RNA (mRNA) transcripts from a sample, consists of a slide printed with a large
number of DNA sequences, called probes. Transcripts are converted to complementary DNA
(cDNA) that then hybridises to the probes with matching sequences. Material from different
samples is labelled with different fluorescent dyes, and the resulting fluorescence intensity
allows quantification of gene expression. Development of new cDNA amplification methods
allowed generation of sufficient material from individual cells for use with microarray
profiling (Kurimoto et al., 2006).

Another method for measuring gene expression is quantitative reverse transcription poly-
merase chain reaction (qRT-PCR). This technique is targeted to measure expression of
selected genes by amplifying specific mRNA transcripts using the polymerase chain reaction
(PCR), with the inclusion of a fluorescent reporter that is generated with each amplification
cycle. A higher number of starting molecules results in increased concentration of the reporter,
enabling quantification of gene expression. Single-cell qRT-PCR allows the expression of
multiple genes to be measured at the single-cell level (Sanchez-Freire et al., 2012; Ståhlberg
and Bengtsson, 2010). The Fluidigm BioMark™ system provides a commercially available
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approach for capturing the profiles of up to 96 genes, and it has been shown that this number
can be extended using multiplexing approaches (Guo et al., 2013a). As this technology
can only detect expression of specific molecules, the genes must be hand-picked by the
investigator before carrying out the experiment, which requires knowledge about relevant
gene expression in the system. In the context of haematopoiesis, single-cell qRT-PCR has
been widely used, including in studies investigating cellular heterogeneity (Guo et al., 2013a;
Wilson et al., 2015) and transcriptional regulation (Moignard et al., 2013, 2015; Pina et al.,
2012, 2015).

This technique is, however, limited by the requirement to pre-select genes before analy-
sis, which reduces the opportunity to discover novel genes involved in the transcriptional
regulation of a system. A transcriptome-wide approach is instead offered by single-cell RNA-
sequencing (scRNA-seq), which reverse transcribes the mRNA from a single cell, amplifies
the resulting cDNA and then performs library preparation for sequencing (Kolodziejczyk
et al., 2015). The first study performing RNA-sequencing (RNA-seq) at the single-cell level
profiled only a handful of mouse blastomeres and oocytes, using single-cell sequencing as
a means to assess gene expression in the early stages of development where there is very
limited material (Tang et al., 2009). After this work, new protocols rapidly followed that
vastly improved the cellular throughput and sensitivity of scRNA-seq (Hashimshony et al.,
2012; Islam et al., 2011; Ramsköld et al., 2012). Following cell isolation and lysis, the
majority of methods use poly(T) priming for capturing and reverse transcribing mRNA,
with the exception of DP-seq from Bhargava et al. (2013), which instead uses a library of
designed primers that bind the transcripts and initiate reverse transcription. The second strand
synthesis step is then performed using either poly(A) tailing, as in the original Tang et al.
(2009) protocol (Hashimshony et al., 2012; Sasagawa et al., 2013), or template-switching
(Islam et al., 2011; Ramsköld et al., 2012). Different approaches also result in different
regions of the transcripts being amplified for sequencing, with many methods opting for
either 5’ (Fan et al., 2015; Islam et al., 2011) or 3’ (Hashimshony et al., 2012; Nakamura
et al., 2015; Soumillon et al., 2014) counting, where reverse transcription is restricted to
either the 3’ or 5’ end of the transcript. The SMART-Seq protocol, later appearing in the
optimised form of SMART-Seq2, uses an alternative strategy to obtain full length transcripts,
which can enable the investigation of features such as alternative splicing (Picelli et al., 2013;
Ramsköld et al., 2012). To amplify material before library preparation either PCR (Islam
et al., 2011; Nakamura et al., 2015; Ramsköld et al., 2012; Tang et al., 2009), or in vitro
transcription (IVT) (Hashimshony et al., 2012; Sasagawa et al., 2013) can be used, with IVT
enabling linear amplification, opposed to the exponential amplification of PCR.
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Amplification is an essential step in obtaining sufficient material for sequencing, but inevitably
introduces biases as not all transcripts are equally amplified. Duplicate reads originating from
amplification of the same transcript cannot be distinguished from reads aligning to the same
gene but originating from different transcripts. To combat this, several methods now include
the addition of barcodes to uniquely mark reads coming from a single mRNA molecule (Fu
et al., 2011; Hug and Schuler, 2003). These barcodes, known as unique molecular identifiers
(UMIs) are incorporated into the sequencing libraries and allow duplicate reads arising from
the amplification process to be identified and corrected for (Kivioja et al., 2012). A number
of scRNA-seq protocols now incorporate this feature (Fan et al., 2015; Grün et al., 2014;
Hashimshony et al., 2016; Islam et al., 2014; Jaitin et al., 2014; Sasagawa et al., 2018;
Soumillon et al., 2014).

Another challenge in performing scRNA-seq comes from the high cost per cell, especially
in plate-based methods such as SMART-Seq2, which require the use of large amounts of
reagent (Picelli et al., 2013). Several approaches have been developed to address this issue in
an attempt to both decrease cost and increase the throughput of scRNA-seq methods. Jaitin
et al. (2014) proposed the massively parallel single-cell sequencing framework (MARS-Seq),
where cells are index-sorted into 384-well plates and labelled in the first step of reverse
transcription with a unique barcode in each well, before being pooled for bulk processing
during subsequent steps. This approach reduces the cost of generating sequencing libraries,
but results in much shallower sequencing depth per cell. CytoSeq, and more recently
Microwell-Seq, use microwell technology to capture cells in a plate with a very high number
of wells (Fan et al., 2015; Han et al., 2018). Cells are lysed within wells so that mRNA
hybridises to barcoded beads, allowing material to be pooled before the following stages
to reduce the amount of reagents needed per cell. Droplet-based microfluidic protocols,
which have been used very widely, represent another approach for performing scRNA-seq
on high numbers of cells. These work by capturing individual cells in droplets along with
barcoded beads. Cells are lysed within droplets so that their transcripts are barcoded before
pooling by merging the drops, meaning that tens of thousands of cells can be processed in an
experiment. These high-throughput droplet-based methods were first published as Drop-seq
(Macosko et al., 2015) and InDrop (Klein et al., 2015), and a commercial platform is also
available in the form of the 10x Chromium™ system from 10x Genomics (Zheng et al.,
2017). Finally, another high-throughput approach which has been described is SPLiT-seq,
which uses multiple rounds of barcoding on pools of cells, where cells are re-pooled between
each round of barcoding, so that each cell ends up with a unique barcode without the need
for expensive reagents or equipment (Rosenberg et al., 2018). With a range of technologies
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available, the best choice for a specific project ultimately depends on the research question
of interest, with lower-throughput methods such as SMART-Seq2 costing more per cell, but
resulting in a more complete picture of a cell’s transcriptome than methods that profile tens
of thousands of cells.

1.2.3 Technical limitations of single-cell gene expression data

Working with single-cell gene expression data presents a range of technical challenges. The
total RNA content of cells can vary widely, prohibiting using the measured gene counts
directly when making comparisons between cells. Instead, data must first be normalised to
account for the amount of starting material. A common approach in the analysis of single-cell
qRT-PCR data is to adjust the expression values in each cell relative to the expression of one
or more housekeeping genes, with the assumption that these genes are expressed at a constant
level in all cells. For scRNA-seq data, as expression measurements are often very noisy, and
as many more genes are measured in comparison to qRT-PCR, normalisation is not carried
out based on the values of two or three genes. Instead, a range of normalisation techniques
have been suggested, including applying normalisation from methods originally developed
for use with bulk expression data, such as the normalisation from the DESeq method (Anders
and Huber, 2010). Here, each cell is normalised by a size factor, which is a value that aims
to represent the amount of material captured from that cell. DESeq calculates size factors by
scaling each gene count by its geometric mean across all cells, and then taking the median of
these scaled values in a cell as its size factor. Using the median value attempts to avoid the
calculation being influenced by highly expressed differential genes.

However, single-cell data can violate the assumptions necessary for the DESeq size factor
normalisation to work, as analysis of heterogeneous populations can mean that a large number
of genes are differentially expressed. Additionally, scRNA-seq measurements are also zero-
inflated due to so-called dropouts in gene expression (where a gene is in fact expressed at
a low level but not detected) and any zero value measured for a gene precludes its scaling
by a geometric mean, as this will be zero. Therefore it can be the case that only a handful
of genes are actually used in the DESeq size-factor calculation for a single-cell dataset. To
combat this, Lun and colleagues suggested a strategy using cell pooling to normalise single-
cell data (Lun et al., 2016a). Here, size factors are calculated for pools of cells, and then
deconvolution techniques are applied to recover size factors for individual cells. The authors
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demonstrate that their method improves performance compared to approaches including
DESeq, particularly on datasets containing cells with very heterogeneous expression.

A strategy suggested for quantifying the variation in material sequenced for different RNA-
seq samples was the use of synthetic spike-ins, such as the set of 92 molecules from the
External RNA Controls Consortium (ERCC) (Jiang et al., 2011). These synthetic transcripts
are added in the same quantities to each individual sample in an experiment, and so can
be used to give an indication in the variance due to technical sources. The expression of
spike-in genes is used as an input for the BASiCS method, which models gene counts as
Poisson variables and estimates size factors as model parameters based on the expression
data (Vallejos et al., 2015). This approach provided accurate quantification on simulated
datasets, but due to its complexity the method is limited by the number of cells it can be
applied to.

When the transcriptome is measured using scRNA-seq, tens of thousands of genes can
be detected across a dataset. However, many of these will only be detected at very low
levers, and their variation across the data will mainly be driven by technical, rather than
biological, factors. In particular, genes with very low average expression can exhibit the
largest variances. To identify genes with variation exceeding a technical level (known as
“highly variable genes”), Brennecke and colleagues quantified the relationship between
variance and the expression level of technical spike-ins, and used this to identify genes with
variation exceeding this threshold (Brennecke et al., 2013). The BASiCS method also allows
highly variable genes to be determined, again using spike-in expression (Vallejos et al., 2015).
When spike-in genes are not used in the generation of a dataset, highly variable genes can
instead be identified as those with extreme variance values in comparison to other genes with
similar expression levels (Macosko et al., 2015).

1.3 Resolving heterogeneous populations

Single-cell expression profiling results in complex datasets, measuring the expression of tens
to thousands of genes in often hundreds or thousands of cells. Often these cells represent a
mixture of heterogeneous populations. This raises computational challenges of how to use
the data to understand biological structure within the system.



Introduction 11

Component 1

C
om

po
ne

nt
 2

Component 1

C
om

po
ne

nt
 2

Separate different
populations Capture continuous

structure

Dimensionality reduction

Clustering Pseudotime

Component 1

C
om

po
ne

nt
 2 Cluster 1

Cluster 3

Cluster 2

Pseudotime
Pseudotime

E
xp

re
ss

io
n 

le
ve

l

A

B C

Fig. 1.3. Computational techniques for analysing single-cell expression data. (A) Di-
mensionality reduction techniques visualise high-dimensional data in a low-dimensional
space. This can be useful for separating different groups of cells within the dataset (left
panel) or for visualising continuous structure within a dataset related to processes such as
differentiation (right panel). (B) Unbiased clustering techniques can be applied to single-cell
data to explore similarities between cells and assign cells to different groups. (C) Single-cell
expression profiles can be ordered to reconstruct lineage differentiation based on the assump-
tion that the cells closest in the differentiation process will have the most similar molecular
profiles. A population containing cells at different stages of maturity can be arranged into
this ordering, known as pseudotime. This then allows properties such as changes in the
expression of genes or proteins to be investigated along the differentiation trajectory.

1.3.1 Dimensionality reduction

The molecular profiles generated using single-cell technologies such as mass cytometry, qRT-
PCR and scRNA-seq form datasets with high numbers of dimensions. Direct interpretation
of such data is far from straightforward. Making sense of multidimensional data is not a
challenge unique to single-cell biology: a concept from machine-learning and statistics,
known as dimensionality reduction, has been widely applied to population expression data to
discover similarities and differences between samples from different cell types or conditions.
Dimensionality reduction methods enable complex high-dimensional data to be embedded in
a low-dimensional space (most frequently two or three dimensions) allowing the differences
between groups of cells to be visualised (Fig. 1.3A). Dimensionality reduction methods
that have been applied to single-cell data include principal component analysis (PCA) and
independent component analysis (ICA) (Pina et al., 2015; Trapnell et al., 2014). PCA
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applies a linear transformation to the data to calculate positions for each observation in a
new coordinate system where the new axes (principal components or PCs) are orthogonal.
The PCs are identified so that each component explains the maximum variance within the
data. These are ordered so that PC1 has the largest variance, followed by PC2 with the next
greatest, meaning that by plotting the data in the first two or three components it is often
possible to see separation of different cell states, as this should drive a large part of the
variance in the dataset. PCA has been used to help interpret single-cell expression data in
numerous studies, for example by revealing differences due to ageing and differentiation
in HSC populations profiled using scRNA-seq (Kowalczyk et al., 2015). ICA is another
method which applies a linear transformation to the data, but instead of maximising the
variance of each component, ICA treats the observed data as a combination of independent
signals from several sources, and searches for components that aim to represent these source
signals. When ICA is applied to single-cell data, it attempts to find a representation where
each component captures a different signal that causes variation within the dataset, which
can prove useful in representing structure within the data related to differentiation (Macaulay
et al., 2016; Trapnell et al., 2014).

However, these linear techniques can struggle with capturing more complex structures. This
means that they do not always provide the most suitable visualisation of expression profiles
generated using single-cell technologies, for example data originating from multiple lineages
in a differentiating tissue. A widely-used and powerful approach allowing visualisation of
highly heterogeneous data is t-distributed stochastic neighbour embedding (t-SNE) (van der
Maaten and Hinton, 2008). t-SNE embeds the data in a low-dimensional space by iteratively
searching for a distribution of distances between objects in a new coordinate system that
matches the distribution of pairwise distances in the high-dimensional space. This results
in the cells with similar expression profiles, and therefore the shortest high-dimensional
distances, being positioned close together in the embedding. Many different studies have
applied t-SNE to single-cell expression data, with diverse aims ranging from visualising the
overlap between different haematopoietic populations (Wilson et al., 2015), to demonstrating
how data profiling human haematopoietic cells from different tissues can be integrated (Zheng
et al., 2018), to understanding the complex structure present within the developing mouse
embryo (Ibarra-Soria et al., 2018; Scialdone et al., 2016). Amir et al. (2013) developed the
viSNE algorithm, which is based on t-SNE, specifically for visualising mass cytometry data in
order to explore heterogeneities within leukaemic bone marrow. Aided by this visualisation,
the authors observed phenotypic differences between wild-type (WT) and cancerous bone
marrow samples, and were able to detect the rare phenotype of minimal residual disease,
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which is linked to relapse in patients who are in remission. Along with those highlighted
here, many other studies have demonstrated that t-SNE is a powerful tool for representing
data that profile a heterogeneous mixture of cell types. This is also supported by the fact the
t-SNE is incorporated into many single-cell analysis pipelines (Butler et al., 2018; Lun et al.,
2016b; Wolf et al., 2018).

One of the challenging aspects of studying differentiation in stem cell systems arises from
the difficulties in developing strategies for isolating cells at different stages of the differen-
tiation process. Single-cell profiling can be used to capture molecular changes throughout
differentiation. To visualise such datasets, it is often useful to apply a dimensionality re-
duction technique that is suited to representing the continuous nature of differentiation
(Fig. 1.3A). Work from Fabian Theis’ lab demonstrated that diffusion maps (Coifman et al.,
2005) could be adapted for use with single-cell expression data (Haghverdi et al., 2015).
This method calculates distances between cells in a low-dimensional space based on the
lengths of diffusion-like random walks in the high-dimensional data. A recent study by
Moignard et al. (2015) used single-cell qRT-PCR profiling and diffusion maps to visualise
the differentiation of cells during early blood development. Their analysis showed that this
dimensionality reduction technique could successfully arrange cells in a low-dimensional
structure recapitulating the progression from earlier to later time points during embryonic
blood development.

Another method which has proved to be very powerful at representing complex data structures
is a visualisation technique known as force-directed graphs. To calculate the force-directed
graph, cells are first connected based on similarities in their expression profiles, with connec-
tions forming the edges in a graph. Edges can be weighted by the strength of the similarity
between cells, or be limited to only the strongest connections for each cell. The embedding
is then generated by edges in the graph causing an attracting force between cells, which is
balanced by a repelling force between the cells to find an arrangement in two dimensions.
Due to their scalability to large datasets, this technique has previously been applied to mass
cytometry data to visualise connections between different haematopoietic cell types (Levine
et al., 2015; Spitzer et al., 2015). Force-directed graphs have also proved adept at representing
the branching differentiation structure in scRNA-seq datasets, for example capturing the
branching hierarchy of the HSPC compartment (Giladi et al., 2018; Tusi et al., 2018; Zheng
et al., 2018). Implementations of force-directed graph algorithms are available in several soft-
ware programs, including an interactive tool from the Klein lab for applying force-directed
graphs to single-cell gene expression data, which allows exploration of gene expression
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patterns in different regions of the graph (Weinreb et al., 2018a). Another recent algorithm
that has been proposed for the visualisation of single-cell expression data is uniform manifold
approximation and projection (UMAP) (McInnes and Healy, 2018), which is computationally
efficient on large datasets, and has already been applied to provide insightful representations
of single-cell data (Wang et al., 2018).

1.3.2 Clustering single-cell profiles

Whilst dimensionality reduction allows cellular heterogeneity to be visualised, it can often
also be useful to assign cells to discrete groups, as this allows different cell states present
within a sample to be compared. Assigning cells to subpopulations by relying on prior
knowledge is not always possible, due to lack of marker genes, or even desirable, as it
may miss unexpected or unannotated cell types. Instead, clustering methods can be used to
separate cells into groups in an unbiased way, based on information such as their molecular
profiles (Fig. 1.3B). The expression of specific genes within each cluster can then be used
to identify known cell types or find novel marker genes for the different populations. Well-
established clustering methods such as hierarchical clustering have been extensively applied
to single-cell data to split samples into groups (Drissen et al., 2016; Grover et al., 2016;
Guo et al., 2013a; Moignard et al., 2013; Wilson et al., 2015). These methods work by
calculating distance measurements between cells, which represent the similarities in their
gene expression profiles. Cells are then assigned to clusters based on their proximities in
expression space.

There are also clustering methods that have been developed specifically for partitioning
single-cell profiles, such as the approach by Jaitin et al. (2014), who applied a probabilistic
mixture model to scRNA-seq data in order to organise cells into groups with distinct gene
expression profiles. This approach was applied to scRNA-seq data characterising haematopoi-
etic progenitors from the classical CMP, granuolocyte-macrophage progenitor (GMP) and
megakaryocyte-erythroid progenitor (MEP) populations (Paul et al., 2015). By clustering
cells based on their transcriptional profiles, the authors were able to assign the majority of
cells to either the erythroid-megakaryocyte or the granulocyte-monocyte lineages. Their
analysis questioned the existence of common progenitors within the CMP gate, instead
arguing that these cells were in fact already committed to one of the two lineages. This study
was in agreement with the work measuring the functional output of CMPs using genetic
barcoding (Perié et al., 2015).
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The outcome of clustering algorithms can be influenced by the gene set on which they are
calculated. Many researchers opt for identifying a set of highly variable genes on which to
perform this type of downstream analysis, as discussed in Section 1.2.3. Another approach
developed for use on scRNA-seq data aimed to find the optimal gene set by using an iterative
process to select “guide genes” for the clustering (Olsson et al., 2016). By using the genes
with expression patterns corresponding to an initial set of clusters as guides to define a
gene set for re-clustering over several iterations, the authors were able to discover clusters
corresponding to multiple haematopoietic lineages in expression profiles from mouse bone
marrow HSPCs (Olsson et al., 2016). This was used to dig deeper into the specification
towards granulocyte and monocyte lineages, and to understand how loss of the genes Irf8

and Gfi1 altered this cell fate decision.

Graph-based clustering has proved a powerful tool in identifying different cell states in the
large single-cell protein expression datasets generated by mass cytometry, as this approach is
easily scaled for use with large numbers of cells and high-dimensional data. Here, a graph is
constructed where each cell is a node and edges between nodes represent the similarities in
expression profiles of the corresponding cells. PhenoGraph is one such unbiased algorithm
that searches for highly connected groups of nodes (cells) within the graph to identify clusters
of cell types (Levine et al., 2015). Levine et al. (2015) used this method to investigate
intratumour heterogeneity in acute myeloid leukaemia (AML) by obtaining single-cell mass
cytometry data to measure protein expression and activation in samples from AML patients
and healthy bone marrow donors. Application of PhenoGraph revealed differences in the
distribution of cell types in the bone marrow between AML and healthy samples. Graph-based
clustering has also been applied to single-cell gene expression data from haematopoiesis to
group similar expression profiles from very sparse data where shallow sequencing results in
a high dropout rate across cells. Pooling cell profiles using graph-based clustering can reveal
changes in gene expression that would be obscured when only considering the sparse data
(Giladi et al., 2018).

1.4 Reconstructing differentiation from snapshot data

During haematopoiesis, cells become increasingly specialised as they commit to fates corre-
sponding to the different blood cell types. Isolating and collecting populations at different
stages of differentiation, followed by bulk profiling using techniques such as RNA-seq, goes
some way to describing changes occurring during cell differentiation, but is limited by the
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time resolution of the data collected, and must assume that cells are synchronised throughout
the differentiation process. As discussed in Section 1.2.1, there is actually a great deal of
heterogeneity within the classical HSPC populations, with studies for example identifying
evidence of functional biases within the stem cell compartment (Dykstra et al., 2007; Grover
et al., 2016) and emphasising the diverse nature of CMPs (Paul et al., 2015; Perié et al., 2015).
Single-cell technologies also allow unbiased profiling of systems, such as bone marrow or
tumour tissues, which contain cells at multiple stages of differentiation. Researchers realised
that by isolating these cells and performing single-cell molecular profiling it was possible to
reconstruct the differentiation process in silico, thereby providing insights into how features
such as gene and protein expression are altered as cells mature (Fig. 1.3C). Early work
recognised that dimensionality reduction techniques, such as PCA, could embed cells in a
low-dimensional space where coordinates in one component approximately correspond to
differentiation, and that these coordinates could be used as a rough measure for the differenti-
ation stage of a cell (Guo et al., 2010). However, dimensionality reduction often does not
neatly capture a process such as differentiation in a single component, and in particular will
struggle with situations such as branching towards multiple lineages. This led to a range of
different techniques for attempting to reconstruct differentiation from single-cell data, which
will be discussed in the following text.

1.4.1 Constructing a lineage tree from single-cell data

There are a wide range of approaches available for inferring orderings of single cells that
aim to arrange cells into a sequence that represents their progress through a process such
as differentiation. Fundamentally, these all work using the same concept: the cells closest
together in terms of the biological process will have the most similar expression profiles, and
therefore be closest together in the expression space. Even in a system as well-characterised
as haematopoiesis, the exact structure of the haematopoietic tree remains under debate
(Adolfsson et al., 2005; Guo et al., 2013a; Notta et al., 2016), and several studies have
used single-cell expression profiling as a tool to address this question. By measuring
their expression state, individual differentiating cells can be clustered into groups and the
closest groups connected into a structure representing a lineage hierarchy. The spanning-tree
progression analysis of density-normalised events (SPADE) algorithm uses this approach to
build lineage hierarchies from flow and mass cytometry data collected from bone marrow
cells (Qiu et al., 2011). This method first calculates a density-dependent sample of the data
to ensure that rare populations are not obscured. Cells in this sample are then clustered based
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on their expression profiles, and the most similar clusters are linked into a tree (a graph where
the edges form no closed loops) with the aim of representing the lineage hierarchy. SPADE’s
strengths lie in its inclusion of rare populations in the hierarchy and the fact that is does not
require prior information to infer the lineage structure. However, different random density-
dependent samples obtained by SPADE lead to different clusters, and can therefore produce
alternative tree structures, meaning there is a limitation to the stability of this approach.

The SPADE algorithm was used by Guo et al. (2013a) to construct a lineage tree resembling
the haematopoietic differentiation hierarchy, with the aim of investigating the much debated
question around the starting point of lineage commitment for HSCs. Recent studies show that,
in contrast to the initial beliefs of the field, this likely occurs before the split into CLPs and
CMPs (Notta et al., 2016; Paul et al., 2015; Perié et al., 2015). Guo et al. (2013a) also chal-
lenged the view that commitment occurs at the CMP stage, collecting more than 1,500 single
cells for qRT-PCR profiling and quantifying the expression of 280 genes for commonly-used
surface markers across all of these cells. The lineage tree constructed with SPADE showed
that CMPs were found in both the megakaryocyte-erythrocyte and the lympho-myeloid
lineages. Computational analysis followed by in vitro validation identified a new surface
marker (CD55) that was able to separate the megakaryocyte-erythrocyte potential from CMP
and MPP populations. The authors also observed that the megakaryocyte-erythrocyte cells
were closely connected to the LT-HSC branch, and used in vitro tracing experiments to show
that the megakaryocyte colonies emerged first in HSC cultures, supporting the close connec-
tion between these cell types seen in the in silico analysis. This study demonstrated how
computationally constructing differentiation hierarchies can provide insight into biological
systems such as haematopoiesis.

In a more recent study, Spitzer et al. (2015) described a computational method, Scaffold,
to arrange immune cells profiled by single-cell mass cytometry into a “reference map” of
the murine immune system. This approach involves an initial clustering step followed by
the construction of a graph using the clustered cells. Scaffold uses the method of force-
directed graphs (discussed in Section 1.3.1) to find a visualisation based on the similarity
between cell types. Here, similar clusters are pulled close together in the force-directed
graph, whereas dissimilar clusters lack a strong attracting force and consequently lie far apart.
The resulting graph links cells in a structure representing the immune system hierarchy. The
authors constructed Scaffold maps for cells from several different samples, which enabled
comparison of immune system organisation in different tissues, genetic backgrounds and
species. Using the Scaffold map revealed that circadian rhythm affected the distribution of
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immune cells, with some of the immune cell populations fluctuating depending on the time
of day.

1.4.2 Ordering cells in pseudotime

An exciting extension of inferring differentiation hierarchies, which link together groups of
cells, is to order each individual profile by progress through differentiation. Assuming that
gene and protein expression change continuously as cells differentiate, and that a sample
contains cells spread at a sufficient density throughout differentiation to cover enough
of the process, it was hypothesised that single-cell expression profiles could be arranged
in “pseudotime”, where the position of a cell in pseudotime corresponds to its progress
through differentiation (Fig. 1.3C). Based on these simple assumptions, several different
algorithms have been designed to solve this computational ordering problem and reconstruct
differentiation trajectories. Trapnell et al. (2014) designed the Monocle algorithm, which
first performs a dimensionality reduction on the data before constructing a graph on cells
with edges weighted by the distances in this low-dimensional representation. The minimum
spanning tree on the graph (the tree connecting all cells with the lowest total edge weight)
is found and cells are ordered in pseudotime based on their position in this tree, allowing
changes in gene expression patterns to be investigated. Using this approach, the authors
reconstructed the differentiation of human primary myoblasts, and were also able to identify
a branching process towards an alternative cell fate present in their data.

Around the same time another algorithm, Wanderlust, was also developed and applied to
single-cell mass cytometry data to capture B cell development in human bone marrow
(Bendall et al., 2014). Wanderlust constructs a pseudotime ordering by first considering
a k-nearest-neighbour graph on the single-cell expression data (each cell is connected to
the k most similar other cells, where k is an integer parameter that can be chosen by the
user). The ordering of cells is based on the length of paths through this graph originating
from a user-defined starting cell, which can be identified either based on experimental
metadata or the expression of marker genes. Wanderlust can cope with very large numbers
of cells, and uses subsampling methods to obtain a stable ordering, avoiding the possibility
of “short circuits” through the data (a route missing out part of the differentiation trajectory).
Distances through the graph are calculated based on the distance of a cell from randomly
chosen waypoints, another strategy aiming to increase stability, and are calculated in an
iterative process. Bendall et al. (2014) used mass cytometry to study 44 parameters across
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B-cell lymphopoiesis, collecting cells across B cell development in order to reconstruct a
developmental trajectory. Using Wanderlust, the authors confirmed that all of the landmarks
of B cell lymphopoiesis were correctly ordered along their inferred trajectory. This ordering
revealed that the expression of CD24 and terminal deoxynucleotidyl transferase increased
prior to an increase in expression of the canonical B cell markers, and early B cell progenitors
were subsequently identified using the expression of these markers. This study also provided
additional insights such as observing that changes in signalling occurred in parts of the
trajectory corresponding to developmental checkpoints, an observation made possible because
the dynamics of different signalling molecules had been reconstructed across differentiation
using the concept of pseudotime.

Despite the exciting potential of pseudotime analysis, both the Monocle and Wanderlust
algorithms suffer from limitations. The use of the minimum spanning tree in Monocle
was unstable and susceptible to short circuits through the data, and Wanderlust could not
be used to identify branches where a differentiation trajectory separates towards multiple
lineages. Many alternative algorithms for constructing pseudotime orderings have since
been suggested. To provide a more robust method that could deal with branching towards
different fates, Haghverdi et al. (2016) developed diffusion pseudotime (DPT), which built
upon the ideas of diffusion maps to order single-cell profiles. DPT is a distance measure
between cells based on the length of random walks through the single-cell expression
space, and like diffusion maps is robust when applied to noisy data. Branch points are
identified by considering the correlation between orderings from the start and end of the
main trajectory. The authors applied DPT to single-cell qRT-PCR of cells collected during
mouse developmental haematopoiesis (Moignard et al., 2015) to reconstruct the expression
changes of genes throughout this process.

There have also been updates to both the Monocle and Wanderlust algorithms, to overcome
some of their earlier limitations. In 2016, the authors of the Wanderlust paper introduced
Wishbone, which improves the selection of waypoints compared to the original algorithm
to avoid potential problems arising due to the presence of outliers within the data, and also
uses these waypoints to identify cells lying a on branch towards an alternative cell fate (Setty
et al., 2016). In their study, the authors were able to use Wishbone to correctly identify a
branch point in T cell differentiation. The updated version of Monocle, Monocle 2, uses
reverse graph embedding (Mao et al., 2017) to learn a low-dimensional representation of the
data that reproduces their structure, including any branches (Qiu et al., 2011). The number
of branches does not need to be predetermined by the user, which is an advantage of this
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approach. Cells are then projected onto the low dimensional representation to order them
through pseudotime.

1.4.3 Inferring the fate of individual cells

Although assigning cells to discrete branches is in keeping with the classical model of the
haematopoietic hierarchy, there have been studies suggesting that haematopoiesis occurs as a
continuous, rather than a stepwise, process (Laurenti and Göttgens, 2018). A recent study
by Velten and colleagues profiled human bone marrow HSPCs using scRNA-seq (Velten
et al., 2017). As there is extensive pre-existing knowledge about the start and end points of
individual trajectories from HSCs to mature cell types in this system, the authors chose not to
apply one of the existing pseudotime algorithms and instead developed a new approach that
did not assume a branching structure. This led to the innovation of the STEMNET algorithm,
which uses marker genes that are specifically expressed in the different blood lineages to
build a classifier and score the profile of each cell for both its lineage bias and the strength of
its commitment. Assessment of these scores across the whole dataset enables cells possessing
the potential for multiple fates to be identified, and also the precise combinations of multi- or
bipotent fates that exist to be characterised. In human bone marrow, the combined results of in

vitro culture and xenotransplantation assays along with the STEMNET predictions challenged
the classical step-by-step branching mode of haematopoiesis. Strikingly, the authors showed
that there was a lack of well-defined hierarchically organised discrete progenitor populations,
with the majority of cells in fact appearing to be either multipotent, or committed to just a
single fate.

Work from the Grün lab also decided to focus on predicting the fate of individual cells using
scRNA-seq data with their algorithm, FateID (Herman et al., 2018). Similar to STEMNET,
FateID applies a classification approach to single-cell data by considering the expression
states of terminal cells in the trajectories, but FateID instead adopts an iterative process for
inferring cell fates by working “backwards” along the trajectories, updating the cell states
used to build the classifier at each step. The authors applied their method to scRNA-seq
data of mouse HSPCs to investigate lineage priming within the haematopoietic progenitor
populations, and could classify cells primed towards several blood cell fates. When comparing
with the STEMNET algorithm, they found that FateID could resolve lineage priming in earlier
progenitor populations. The authors attributed this to the iterative classification process of
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their approach, which in contrast to STEMNET does not rely only on the expression of the
more mature marker genes.

Another approach has been suggested by Weinreb and colleagues, who developed an algo-
rithm called population balance analysis (PBA), which uses the concept of flux conservation
in a homeostatic system to infer cell fates (Weinreb et al., 2018b). By considering biased
random walks through the single-cell data, PBA solves equations modelling the differenti-
ation dynamics in order to infer a temporal ordering and assign fate probabilities to each
cell. The authors apply this algorithm to InDrop scRNA-seq data of mouse HSPCs to assign
cells towards seven different fates (Tusi et al., 2018; Weinreb et al., 2018b), uncovering
evidence for a shared basophil (or mast cell) and erythroid progenitor. However, PBA does
have limitations due to the prior knowledge that it is necessary to provide as input to the
algorithm, with users required to input information about the rates of cell entry to and exit
from the system corresponding to the different lineages.

1.5 Identifying and modelling regulatory relationships

To better understand how multipotent cells in a system such as haematopoiesis choose
between different fates it is important to define the underlying regulatory programmes
governing their cell fate decisions (Göttgens, 2015; Peter and Davidson, 2015). One of
the ways in which cell fate decisions are controlled is through transcription factor proteins
binding to specific regions of DNA in order to regulate gene expression. Although many
transcription factors have been identified as key haematopoietic regulators, they do not
act in isolation but, along with the cis-regulatory modules that they bind to, form part of
transcriptional regulatory networks. Identifying the interactions in these networks can help to
explain how regulatory programmes control differentiation. However, network reconstruction
directly from experimental evidence has largely been limited to the simplest forms of life due
to the sheer number of possible regulations and the complicated network structures present
in complex organisms. Instead, many studies have focused on the more feasible approach of
inferring regulatory networks from gene expression data, which requires data to be collected
from multiple experimental perturbations or conditions to establish interaction between genes.
Network inference from bulk expression data is therefore constrained by both small sample
size and also the fact that it masks heterogeneity within cell types. Single-cell data represent
a powerful alternative for identifying new regulatory relationships, as each cell provides an
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observation with its own expression levels, meaning that the number of samples is vastly
increased.

1.5.1 Identifying regulatory relationships

Measuring single-cell gene expression provides potentially thousands of observations of
the levels of a gene across individual cells. Such large sample sizes can be used to identify
potential regulatory relationships by considering the strength of the correlations between
genes (Fig. 1.4A). Setting a threshold on correlation can then be used to construct putative
networks consisting of connections between the genes with high correlations. A number
of studies have taken this approach to calculate correlation between genes using single-
cell expression data, and have been able to identify and experimentally validate regulatory
relationships between highly correlated genes (Moignard et al., 2013; Pina et al., 2015).
These studies take advantage of the statistical power that comes with having numerous
observations of gene expression measurements to search for genes with very similar (or in the
case of negative regulation very dissimilar) patterns, as such patterns would be expected of
regulatory pairs. Moignard et al. (2013) used single-cell qRT-PCR to measure 18 transcription
factors that were well-known to be involved in the regulation of haematopoiesis. By profiling
several populations from the HSPC compartment, the authors calculated correlations between
the transcription factors to reveal two new regulatory links. In the correlation analysis, strong
positive correlation was seen between Gata2 and Gfi1b, and Gata2 and Gfi1. Experimental
work established that this represented two previously unknown regulatory relationships, with
Gata2 activating both Gfi1 and Gfi1b. Another studying also applying correlation techniques
to single-cell qRT-PCR data was able to identify Ddit3 as a key player in the commitment
between erythroid and myeloid lineages (Pina et al., 2015).

As well as work considering the correlation of genes in single-cell data, other studies
have explored different statistical techniques for inferring regulatory relationships. An
investigation into a signalling network in T cells used mass cytometry data to develop
an algorithm, DREMI. This calculates the interaction strength between pairs of proteins
based on a quantity known as mutual information, which is a measure of the dependence
between two variables (Krishnaswamy et al., 2014). Applying DREMI to the mass cytometry
measurements was able to identify differences in signalling interactions between different
experimental conditions and provided insight into how the signalling network evolves over
time after a stimulation.
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Fig. 1.4. Inferring regulatory relationships from single-cell expression data. (A) Quanti-
ties such as correlation between gene pairs can be calculated using single-cell gene expression
measurements. As shown in this gene–gene correlation heatmap, some pairs will exhibit
positive correlation and some pairs negative correlation, suggestive of activating or repressing
regulatory relationships, respectively. Thresholds can be chosen to select the most strongly
correlating gene pairs. (B) If A and B both activate gene C this could correspond to two
different scenarios, which are represented here using Boolean logic functions. It could be
that either A or B alone will cause activation of C, as shown on the left with the Boolean Or
function. Alternatively, it could be that binding of both A and B is required for activation
of C, as shown by the And gate and truth table. (C) Regulatory networks can be modelled
using Boolean functions. Gene expression measurements for single cells can be converted
into binary (ON/OFF) expression by choosing a threshold. Computational methods applied
to these binary data allow inference of regulatory relationships, represented here by Boolean
And/Or functions.
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There are also many methods designed for use on bulk expression data that use different
techniques for inferring regulatory relationships, such as GENIE3 (Huynh-Thu et al., 2010),
which applies a regression problem to identify the most likely regulators of each gene from
the expression data, or relevance networks and the ARACNE algorithm, which use mutual
information to identify gene regulatory networks (Butte and Kohane, 2000; Margolin et al.,
2006).

1.5.2 Modelling regulatory networks

Identifying the regulatory relationships controlling cell fate decisions can provide important
insight into how a system works. But, in the case of a system such as haematopoiesis, one of
the reasons we are interested in this regulation is that when it fails it can lead to outcomes
such as leukaemia. So in addition to identifying the nature of HSPC regulatory networks,
an exciting objective is to construct executable models of the system. These are models
where expression states can be simulated so that the outcome of network perturbations can
be predicted (Fisher and Henzinger, 2007). Often, literature curation is used as a starting
point for constructing these models, where previously established regulatory relationships
from the literature are encoded in a framework allowing simulation of cell states. For
example, Bonzanni et al. (2013) used literature curation to model a blood stem cell regulatory
network. By considering the properties of this network, they found that initially the model
did not readily allow differentiation towards the erythroid fate. By searching for additional
interactions that would make this differentiation step easier, the researchers identified, and
then experimentally validated, repression of Fli1 by Gata1. This demonstrates how executable
network modelling can be used identify novel regulation from a starting point of literature
curation.

Another approach that can be used to model regulation is Bayesian network modelling, which
is a computationally efficient method of network inference that allows perturbations to be
simulated. Schütte et al. (2016) applied dynamic Bayesian network modelling to model
regulatory relationships between transcription factors, where regulation was identified by
transcription factor binding data from HSPCs. This model could be simulated to investigate
the effect of knock-down or overexpression of different genes. Differential equation-based
modelling can also be used to capture the behaviour of gene regulatory networks, where
the interaction between groups of genes is described as a system of differential equations
that capture activating or repressing regulation. Such an approach was applied to single-cell
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data by Ocone et al. (2015), who used the GENIE3 algorithm to identify putative edges in
a network model. The edges were then encoded as regulatory relationships using ordinary
differential equations, followed by model selection to identify the best fit to a pseudotime
ordering constructed from the single-cell data in order to choose the most suitable model.
The authors applied this to single-cell qRT-PCR data from Moignard et al. (2013), and were
able to reconstruct the regulatory Gata2-Gfi1-Gfi1b triad that had been found and validated
by the authors of the original study. However, this type of model is limited to relatively small
networks of genes due to the computational requirements of the method.

Of course, regulatory relationships are not always as simple as direct activation from one
gene to another. Instead, transcription factors can be involved in combinatorial binding,
where the presence of multiple proteins is required to influence the expression of a gene. To
capture the logical nature of such relationships, interactions can be abstracted as Boolean
functions where expression of a gene is either “on” or “off”, with these functions forming part
of a Boolean network (Fig. 1.4B). With this type of abstraction it becomes possible to model
and simulate regulatory networks efficiently. Models can be characterised by examining the
nature of their attractor states (expression states where gene expression remains stable under
the regulatory rules), which can be calculated both under normal and perturbed conditions
(Garg et al., 2008). Boolean network modelling has been used to encode literature-curated
models in systems ranging from adult haematopoiesis to embryonic development in the sea
urchin (Bonzanni et al., 2013; Peter et al., 2012). A Boolean framework has also been used in
network inference, such as in the study by Dunn et al. (2014), who used bulk gene expression
data to construct a network model of pluripotency in embryonic stem cells. Here, correlations
were calculated between genes to describe an ensemble of possible network models, and this
was constrained by perturbation data to find the models with the best fit.

Single-cell expression data also offer exciting potential in this area, as gene expression
levels can be converted to binary data for each cell, describing a large number of possible
Boolean states (Fig. 1.4C). It has been demonstrated that single-cell gene expression data
can be used to computationally infer Boolean models in systems including embryonic blood
development (Moignard et al., 2015) and embryonic stem cells (Xu et al., 2014). Moignard
et al. (2015) used single-cell qRT-PCR data to construct a state transition graph across
blood development, where each pair of cells with change in a single gene was linked in the
graph. Regulatory networks encoding rules describing the transitions through this graph
along the trajectories towards two cell fates were then identified by encoding the problem
as Boolean satisfiability problem and searching for solutions (Woodhouse et al., 2015). In
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their work studying pluripotency in embryonic stem cells, Xu et al. (2014) used single-cell
data to add Boolean logic to a regulatory network model constructed from literature curation.
Single-cell expression profiles were treated as stable states of the network, and possible
regulatory relationships supporting the stable expression of the single-cell profiles were
found. Algorithms have also been suggested for refining existing Boolean network models
based on the expression space represented by single-cell expression data (Lim et al., 2016).
These studies represent a few examples of how Boolean network modelling can be applied
to a variety of biological systems, and how it represents a powerful tool for understanding
regulatory networks due to the ease with which it allows perturbations to be simulated.
However, a drawback of Boolean modelling is the abstraction of gene expression levels
to binary on/off states, which discounts any possible influence of quantitative expression
differences. To try and address this problem, extensions to the Boolean modelling framework
have been suggested that allow more than two discrete expression levels for each gene to be
considered (Collombet et al., 2017).

1.6 Understanding shifts in the transcriptional landscape

As well as using single-cell data to reveal heterogeneity and discover regulatory relationships,
profiling the expression states of individual cells can reveal how the transcriptional landscape
of a system changes in response to a perturbation (Fig. 1.5A). In the context of haematopoiesis
this is particularly relevant, as dramatic shifts in cell states can occur in diseases, like
in the case of AML where a large expansion of GMP and lymphoid-primed multipotent
progenitor (LMPP) cells occurs in many patients (Goardon et al., 2011). To understand how
these alterations in cell fate decisions come about it is important to look at changes in cell
state across the haematopoietic compartment, particularly as immature cells high up in the
haematopoietic hierarchy can have the potential to initiate disease (Bonnet and Dick, 1997).
Performing single-cell profiling can reveal changes in the cell type composition of samples
from different conditions, be these due to disease, ageing or in response to a drug, and also
allow the molecular differences in individual cells to be investigated (Fig. 1.5A).

1.6.1 Comparison with a reference dataset

Whilst single-cell analysis represents an exciting tool for the comparison between data from
different conditions, it is often not a straightforward task to make these comparisons. Even
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Fig. 1.5. Single-cell expression data can be used to contrast different conditions. (A)
Population densities can shift in response to different conditions, such as disease. Such
population shifts can be revealed by single-cell analysis, which then also allows comparison
of the changes at the molecular level. (B) Computational methods can be used to match up
data from multiple experiments or conditions. Left panel, new cells can be matched to groups
in an existing reference data set. This can also be used to identify new cell types that do not
exist in the reference population. Right panel, cells arranged in ordered sequences can be
matched to identify overlapping stages, even when the items originate from different sources,
such as different species.

data profiling exactly the same types of cells from the same system can exhibit differences
in measured gene expression levels due to technical reasons if these cells are collected
on different days, or by different people, or with different equipment. Biological effects
such as stress due to disease or perturbation can also cause changes in cell state making
the comparison between datasets challenging. Some studies have suggested an approach
of comparing new or perturbed data to a reference sample to investigate how cells change
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across conditions (Fig. 1.5B, left panel). For example, in their analysis of Kit+ mouse bone
marrow representing steady-state haematopoiesis, Tusi et al. (2018) generated scRNA-seq
data for bone marrow treated with EPO to stimulate erythroid differentiation. Their approach
was to “map” the EPO-stimulated bone marrow cells to the reference landscape in order to
compare differentially expressed genes along the erythroid differentiation trajectory. First,
the EPO-stimulated cells were projected into a reduced dimension PCA space calculated
on the untreated bone marrow cells, and then their nearest neighbours in this reference data
found. Gene expression was then smoothed across the differentiation landscape so that the
expression could be compared between the two conditions in the matched cells.

The concept of creating a “reference” map of a system was also explored in the mouse
immune system, with the Scaffold map algorithm discussed in Section 1.3.1 (Spitzer et al.,
2015). Here, the use of force-directed graphs allowed intuitive visualisation of a complex
system, but also enabled the authors to relate cells from different tissues, mouse strains and
even species to the reference cell types found in the mouse bone marrow. As the immune
system represents a well-annotated system, the authors first used manual curation to identify
cells corresponding to several major populations in the bone marrow. These main groups
were used as the backbone for analysis of all of the other samples, with samples first being
clustered in an unsupervised fashion into small clusters, and distances between the clusters
and reference groups calculated based on similarities in their expression profiles measured on
surface proteins and transcription factors using mass cytometry. Positions of the main nodes
were calculated using force-directed graphs on the bone marrow data, and these positions
were fixed and used as anchors for force-directed graphs calculated in the different datasets.
This allowed the authors to visualise how the population distributions changed across the
immune system compared to bone marrow in tissues such as the blood, liver and lungs, and
also in different mouse strains.

Kiselev et al. (2018) present an approach for mapping cells from a new experiment onto
an annotated reference dataset. Their algorithm, scmap-cluster, calculates distances in
gene expression space to match cells from a new dataset to their most similar cluster in the
reference data. Scmap first identifies a subset of features on which to perform the calculations,
as not all of the genes contain relevant information but can instead introduce unwanted noise.
Interestingly, the authors find that selecting genes with a higher than expected frequency of
zero expression values produces more accurate mappings than selecting highly variable or
random genes, an observation that may be useful for other types of scRNA-seq data analysis.
Although the algorithm attempts to match cells to a reference set, the cells remain unassigned
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if they do not show gene expression patterns similar to those in the reference data. This is an
essential consideration, as there will be incomplete overlap among the cell types present for
many comparisons.

1.6.2 Combining and aligning datasets

Comparing cells to a reference transcriptome is a powerful tool for understanding how
the expression landscape of a system changes across different conditions, and will be an
important step in utilising the vast amounts of data from initiatives such as the Human Cell
Atlas project (Regev et al., 2017; Rozenblatt-Rosen et al., 2017). However, it is sometimes
desirable to integrate data from different sources, for example data that profile different
mixtures of populations. For this, so-called “batch correction” tools are often necessary to
stop technical differences between samples from causing the data from different sources to
separate in the analysis. Batch correction is not a phenomenon unique to single-cell data, and
methods such as ComBat were originally developed for adjusting the expression values of
microarray expression data across experiments (Johnson et al., 2007). ComBat has also been
applied to single-cell gene expression, and has been reported as being successful in removing
batch effects between data from different days and sources (Büttner et al., 2017).

Methods have now also been developed specifically for use with single-cell data (Butler et al.,
2018; Haghverdi et al., 2018). MNN correction, from Haghverdi et al. (2018), explores the
concept of using mutual nearest neighbours between two datasets to perform batch correction.
These represent pairs of cells across the two datasets that are the amongst the k-nearest
neighbours of one another when the nearest neighbours of one dataset are found in the other
dataset. If a cell type is present in both of the datasets then these cells should be mutual
nearest neighbours of each other. The authors then use the differences in gene expression
between mutual nearest neighbour groups to allow batch-corrected expression across the data
to be calculated, and the two datasets to be combined. MNN correct was able to combine
data from two datasets profiling mouse bone marrow haematopoietic populations, despite
the incomplete overlap of cell types and the very different sequencing protocols used for
generating these data.

Butler et al. (2018) also describe an algorithm which can be used for combining expression
datasets from multiple sources. Here, the authors use a method called canonical correlation
analysis to find common structures across the two datasets. This is used to embed each
dataset in its own low-dimensional space where the structures match between the datasets.
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An approach call dynamic time warping is then used to align the coordinate systems of the
two datasets, to correct for “stretching” due to features such as differences in the density of
populations. The algorithm can then embed data from different sources in a shared coordinate
space, allowing the data to be visualised and clustered together.

Another related approach is relevant for data capturing a continuous differentiation process,
to compare between pseudotime orderings on data and ask if, when, and how these processes
diverge. Alpert et al. (2018) developed cellAlign, which uses dynamic time warping to align
sections of two trajectories with shared expression patterns, thereby enabling the comparison
of expression dynamics (Fig. 1.5B, right panel). Excitingly, not only is cellAlign able to
compare whole transcriptomes to ask where trajectories diverge, but can also investigate
specific genes or gene modules to assess differences between conditions. The authors
analysed scRNA-seq data from preimplantation embryos to identify gene modules with
different patterns of temporal behaviour across human and mouse development, thereby
demonstrating the ability of their algorithm to contrast data from very different sources.

1.7 Aims of this work

To understand the regulation of cell fate decisions in haematopoiesis it is necessary to
understand how the heterogeneity in HSPCs is linked to differentiation towards the different
blood fates. The idea of this PhD project was to explore the concept of a “transcriptional
landscape” of haematopoiesis—that is the gene expression space that cells can occupy
during haematopoietic differentiation. This is related to the concept of the epigenetic
landscape discussed in 1957 by Conrad Waddington (Waddington, 1957). Waddington
described a theoretical potential landscape through which cells rolled from the multipotent
hilltops down to the valleys representing more restricted cell fates. Advances in single-cell
technologies allowing thousands of cells to be profiled simultaneously provide an opportunity
to reconstruct the transcriptional landscape and characterise how cells move through it
from HSCs to the different mature blood cell types. The work presented in this thesis
uses computational methods to investigate haematopoiesis at the single-cell level with the
following aims.

1. To profile the transcriptional landscape of the haematopoietic stem and progenitor cell
compartment at a single-cell level
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2. Identify regulatory programs controlling differentiation using single-cell expression
data

3. To use the transcriptional landscape in order to learn how cells are guided on different
routes through differentiation and understand how this control is altered in perturbed
haematopoiesis





Chapter 2

Materials and methods

As significant parts of this thesis correspond to published work, sections of this chapter
describing data generation and methods have been adapted from the following publications:
Dahlin et al. (2018); Hamey et al. (2016); Karamitros et al. (2018); Nestorowa et al. (2016).
Where any of the methods in a section were carried out by collaborators this is clearly written
at the start of the section, as well as at the opening of the relevant chapter. Work was carried
out by F. Hamey unless stated otherwise.

2.1 Cell isolation

Mouse bone marrow progenitors were isolated by Sonia Nestorowa, Nicola Wilson, and
Mairi Shepherd. Details can be found at the start of Chapters 3, 4, 6 and 7. Human
cord blood progenitors were isolated by Bilyana Stoilova, Dimitris Karamitros and Zahra
Aboukhalil.

2.1.1 Isolation of mouse HSPCs for SMART-Seq2 scRNA-seq

Over two consecutive days the bone marrow of 10 female 12-week old C57BL/6 mice was
harvested, and from it haematopoietic stem and progenitor cells were collected. On each day,
cells from four mice were pooled together, and the cells from the remaining individual mouse
were analysed separately. This was performed as a quality control measure to ensure that any
populations identified in the analysis were not present in only a single animal. Bone marrow
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was lineage depleted using the EasySep Mouse Hematopoieitic Progenitor Cell Enrichment
Kit (STEMCELL Technologies). Cells were sorted into three different gates: the LSK gate
(Lin- c-Kit+ Sca1+), the Progenitor (Prog) gate (Lin- c-Kit+ Sca1-), and the LT-HSC gate
(Lin- c-Kit+ Sca1+ Flk2 - CD34-). Full details of the antibodies used for isolating cells can
be found in Nestorowa et al. (2016).

2.1.2 Isolation of mouse HSPCs for single-cell qRT-PCR

Bone marrow cells were isolated from the femurs, tibiae and iliac crest of 8-12 week old
C57BL/6 mice and lineage depleted as described above. The gene expression profiles for
LT-HSCs, cells from one of the ST-HSC sorting strategies, LMPPs, CMPs, MEPs and GMPs
were obtained from the data previously published by Wilson et al. (2015). Additional ST-
HSC cells were sorted as Lin- c-Kit+ Sca1+ IL7Ra- CD34+ Flt3-, MPPs as Lin- c-Kit+ Sca1+

IL7Ra- CD34+ Flt3+, and pre-megakaryocyte-erythroid progenitors (preMegEs) (Pronk et al.,
2007) as Lin- c-Kit+ Sca1- CD41- CD150+ FcγRlow. Each cell type was sorted onto a separate
plate for processing.

2.1.3 Isolation of mouse HSPCs for droplet-based scRNA-seq

Bone marrow cells from six 10 week old C57BL/6 mice were harvested from the crushed
femora, tibiae and ilia, and pooled before sorting. Red blood cell lysis was performed, and
the sample was lineage depleted using the EasySep Mouse Hematopoietic Progenitor Cell
Enrichment Kit. Cells were then sorted into two different gates: the LSK gate (Lin- c-Kit+

Sca1+) and the LK gate (Lin- c-Kit+). 3 LK samples and 3 LSK samples were sorted, all
from the same pool of cells. In a later experiment, LK samples were similarly sorted from
two W41/W41 mice and processed separately using the same protocol.

2.1.4 Isolation of human progenitors

Fresh cord blood samples were processed 16-34 hours after collection. First, the mononuclear
cells were separated and then CD34+ cells were isolated from these samples using FACS.
The sorting strategies for lympho-myeloid progenitor populations were as follows: LMPPs,
Lin- CD34+ CD38- CD90neg-lo CD45RA+ CD10-; multi-lymphoid progenitors (MLPs),
Lin- CD34+ CD38- CD90neg-lo CD45RA+ CD10+; GMPs, Lin- CD34+ CD38+ CD45RA+



Materials and methods 35

CD123+. Full details of antibodies for isolating cells can be found in Karamitros et al.
(2018).

2.2 Single-cell gene expression profiling

Single-cell gene expression profiling of mouse HSPCs was performed by Sonia Nestorowa
and Nicola Wilson, and details can be found at the start of Chapters 3, 4, 6 and 7. Gene
expression profiling of human cord blood progenitors was performed by Dimitris Karamitros
and Bilyana Stoilova. Sequencing data were aligned and reads counted by Evangelia Diamanti
and Rebecca Hannah.

2.2.1 SMART-Seq2 scRNA-seq profiling

scRNA-seq analysis was performed on both mouse bone marrow and human cord blood
HSPCs using the SMART-Seq2 protocol as described previously (Picelli et al., 2014; Wilson
et al., 2015) with the Illumina Nextera XT DNA preparation kit used for preparation of
RNA-seq libraries. Synthetic ERCC spike-ins were added in equal concentrations to each
well on the plate to allow quantification of technical variance across the samples (#4456740,
Life Technologies). Pooled libraries of mouse HSPCs were initially sequenced using the
Illumina HiSeq 2500 system and then resequenced using the Illumina HiSeq 4000 system
with single-end 125 base pair reads. Pooled libraries of human progenitors were sequenced
using the HiSeq 2000 using 75 base pair paired-end reads. Cells from two cord blood donors
were sequenced separately. Reads were aligned using GSNAP (Wu and Nacu, 2010) and
assigned to Ensembl genes (release 81) by using HTSeq (Anders et al., 2014). Aligned reads
for the resequenced mouse data were combined using the SAM file output from GSNAP
before counting using HTSeq. Mouse and human sequencing data were deposited in NCBI’s
GEO with accession numbers GSE81682 and GSE100618, respectively.

2.2.2 Droplet-based scRNA-seq profiling

Droplet-based scRNA-seq was performed using the 10x Chromium™ system (10x Genomics)
(Zheng et al., 2017), with cells sorted and processed according to the manufacturer’s protocol.
The 6 WT samples were barcoded with a sample barcode and all sequenced across the
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same 8 lanes of an Illumina HiSeq 4000. W41/W41 samples were barcoded and sequenced
along with a number of samples for a separate study. Data were deposited in NCBI’s
GEO, with accession number GSE107727. Sample demultiplexing, barcode processing,
and gene counting were all performed using the count command from the Cell Ranger v1.3
pipeline (https://support.10xgenomics.com/single-cell-gene-expression/software/overview/
welcome), with experimentally determined expected cell numbers given as input to the count
command.

2.2.3 Single-cell qRT-PCR profiling

Gene expression profiling on mouse haematopoietic cells using single-cell qRT-PCR was
performed as previously described (Moignard et al., 2013; Wilson et al., 2015). Single-cell
qRT-PCR data for 416B cells were obtained from a previously published study (Schütte et al.,
2016), and cells from the HoxB8-FL cell line were profiled using the same protocol as for
the bone marrow cells. Gene expression profiling on human cord blood progenitors was
performed as previously described (Quek et al., 2016) and details of the TaqMan assays can
be found in the supplementary material of Karamitros et al. (2018).

2.3 Quality control and normalisation

Quality control and normalisation of mouse single-cell qRT-PCR data was performed by
Nicola Wilson and Sonia Nestorowa. All scRNA-seq data and human single-cell qRT-PCR
data were processed by F. Hamey.

2.3.1 Processing SMART-Seq2 scRNA-seq data of mouse HSPCs

Quality control measures were applied to the data to filter out low quality profiles, including
those that were likely to correspond to empty wells. Cells were removed from further analysis
if they had under 200,000 reads mapping to nuclear genes, under 4,000 genes detected (where
detection was defined by at least two reads mapping to that gene in a cell), over 10% of
mapped reads mapping to mitochondrial genes, or over 50% of mapped reads mapping to the
ERCC spike-ins. Cells that passed quality control were then normalised using the scran R
package with an initial clustering step to group cells with similar expression profiles before

https://support.10xgenomics.com/single-cell-gene- expression/software/overview/welcome
https://support.10xgenomics.com/single-cell-gene- expression/software/overview/welcome
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normalisation (Lun et al., 2016a). ERCC spike-ins were used to estimate technical variance
of the sequencing data following the method of Brennecke et al. (2013). This approach
fits a relationships between the variance and mean expression of the spike-ins to represent
technical variation, and searches for biological genes with variance exceeding this threshold.
These are denoted as the “highly variable genes”. Using this method 4,290 genes were
identified as having a squared coefficient of variance exceeding the level of technical noise,
and were therefore used for downstream analysis such as clustering and dimensionality
reduction.

When PCA was performed on the dataset, there were 20 cells that clearly separated from the
others in PC3. Genes driving this separation (based on PC3 loadings) were lymphoid genes
(genes with the most negative loadings in PC3 were Iglj3, Tnfrsf17, Iglc3, Iglj1, Iglc2, Iglc1,
Slamf7, Fcrla and Igkj5). Based on this it was concluded these 20 cells were contaminating
mature lymphoid cells and they were removed from the data as a result, to avoid them
influencing further analysis.

Alternative normalisation of gene expression counts using the ERCC spike-ins was performed
by calculating size factors with the scran package computeSpikeFactors function. These size
factors were then used to normalise each cell by dividing its gene counts by its size factor.
Normalised reads were then adjusted to account for batch effect differences in the ERCC
concentration across days by using the ComBat function (SVA R package), with the sorting
gate (LSK, Prog or LT-HSC) as an adjustment variable.

2.3.2 Processing SMART-Seq2 scRNA-seq data of human progenitors

Cells were removed from further analysis if they had under 500,000 reads mapping to nuclear
genes, more than 20% of mapped reads mapping to mitochondrial genes, more than 20% of
mapped reads mapping to ERCC spike-ins, or fewer than 750 high coverage genes (defined
as having at least ten counts per cell). 163 out of 166 and 157 out of 249 cells passed quality
control from donors 1 and 2, respectively. The method of Brennecke et al. (2013) was used to
identify genes exceeding technical variance based on the expression of ERCC spike-ins. In
visualisation and clustering analysis, the data showed batch effects between the two donors
and so were processed separately. The Seurat R package was used to regress out plate effect
for each donor, and was applied to set more stringent variable gene thresholds, identifying
1,605 and 1,273 variable genes in donors 1 and 2, respectively. These genes were used for
downstream analysis.
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2.3.3 Processing droplet-based scRNA-seq data

The default Cell Ranger barcode filtering was used to identify 46,447 unique barcodes from
combined LSK and LK cells from the WT samples, and 14,675 from the W41/W41 samples.
This filtering ranks the barcodes by the number of UMI counts associated with each barcode,
and calculates a cutoff for the number of UMIs per barcode. Barcodes with more associated
UMIs than this cutoff are retained as cells. The cutoff is calculated using the expected number
of cells, N, which is given as input to the Cell Ranger pipeline. The 99th percentile of the
top N barcodes is taken as estimate, m, of the maximum number of UMIs for a cell. The
cutoff is then calculated as m/10. Plots of UMI counts against ranked barcodes were visually
inspected to ensure there was only one distinct mode in the distribution, as recommended
in the Cell Ranger support documentation. Downstream analysis of data was performed
using the python Scanpy module (Wolf et al., 2018). Each sample was separately filtered for
potential doublets (arising from two cells entering the same droplet during cell capture) by
simulating synthetic doublets from pairs of scRNA-seq profiles. Observed profiles were then
assigned doublet scores based on a k-nearest neighbour classifier applied to PCA transformed
data. This classifier assessed the proximity of the observed profiles to the simulated doublet
profiles. Code for performing this simulation and scoring was kindly provided by Samuel
Wolock, from Allon Klein’s lab and is now available as the Scrublet method (Wolock et al.,
2018). Based on the distributions of these doublet scores, the 1% and 4.5% of cells with
the highest doublet scores from each LSK or LK sample, respectively, were removed before
further analysis. 1452 WT and 845 W41/W41 cells in total were excluded as potential
doublets.

Cells with over 10% of UMI counts mapping to mitochondrial genes, that had fewer than 500
genes detected, or with the total number of UMI counts further than 3 standard deviations
from the mean were also excluded. After quality control, 44,802 WT and 13,815 W41/W41

cells were retained. Cells were normalised so that the total count for each cell summed to
10,000. All further analysis was performed on these transformed counts. For the WT data,
5,032 variable genes were identified and for the W41/W41 data 5,033 variable genes were
identified by following the method of Macosko et al. (2015) implemented using the Scanpy
function, with minimum cutoffs of expression = 0.001 and dispersion = 0.05. Gene counts
were log-transformed using the transformation x → log(x+1). For dimensionality reduction
and clustering, each gene was scaled so that it was zero-centred.
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Initial visualisations of the data using diffusion maps revealed a prominent “gap” in the
erythroid branch of the WT data where it looked like cells separated into two routes along
the differentiation trajectory. Differentially expressed genes between these cells were found
to be significantly enriched in cell cycle related genes. To remove this effect, any of the
differentially expressed genes intersecting with a list of cell cycle genes downloaded from
Reactome (http:www.reactome.org/), and any other genes that had Pearson correlation
coefficient > 0.2 with any gene in this intersection were excluded from visualisation and
clustering analysis. 4,664 genes in the WT data and 4,754 genes from the W41/W41 were
carried forward for this analysis.

2.3.4 Processing single-cell qRT-PCR data

For mouse cells ∆Ct (change in cycle-threshold) values were calculated by normalising the
expression level for each gene to the mean expression of housekeeping genes Ubc and Polr2a

within the same cell (Guo et al., 2010). Before downstream analysis, all house keeping
genes (Ubc, Polr2a, Eif2b1 in mouse data) were removed. Additionally, as Cdkn2a was not
detected in any cells, and as Egfl7, Gfi1 and Sfpi1 all suffered technical issues, these were
also excluded from the analysis in Chapter 4. All quality control and normalisation measures
were performed in the R programming language with custom scripts. Single-cell qRT-PCR
data from Wilson et al. (2015) and the new ST-HSC, MPP and preMegE populations were
normalised together.

For human cells, amplification curves with a Quality Score of < 0.65 as well as any Ct values >
27 were treated as undetected expression. Seven cells lacking the expression of both measured
housekeeping genes (B2M and GAPDH) were removed from further analysis. One additional
cell with a large outlying number of detected genes was also removed. Housekeeping gene
ACTB was measured in the assay but displayed a very different expression profile to B2M and
GAPDH, which both had similar expression patterns, and so was not used for normalisation
or further analysis. Normalised ∆Ct values were calculated by subtracting the mean of B2M

and GAPDH from the gene expression values in each cell. The housekeeping genes were
then excluded from further analysis. Genes detected in fewer than 20 cells, with a variance
of less than 1 across all cells, or without expression in any of the MLP, GMP or LMPP
ten-cell control samples assayed by qRT-PCR alongside single-cell cells were also removed
from further analysis. After quality control, these data measured 74 genes in 919 single
cells.

http:www.reactome.org/
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2.4 Index data

Index data for mouse HSPCs were collected by Sonia Nestorowa and Nicola Wilson, and
normalised by Blanca Pijuan Sala. Index data for human cells were collected by Dimitris
Karamitros, Bilyana Stoilova and Zahra Aboukhalil, and normalised by F. Hamey.

2.4.1 Index data of mouse bone marrow HSPCs

Using index sorting, levels of surface marker proteins (EPCR, CD48, CD150, CD16/32,
c-Kit, Sca1 and CD34), DAPI, Lineage markers and forward-scattered light-height (FSC-H)
were measured for each cell. The flowCore R package was used to extract and compensate
the index data, and the ComBat function (SVA package) used to normalise the data across the
two days that cells were sorted on, with the sorting gate (LSK, Prog or LT-HSC) included as
an adjustment variable. Scatter plots of normalised data were then used to retrospectively
assign cells to populations, with thresholds chosen based on gating strategies in the literature.
E-SLAM cells were gated as EPCR+ CD48- CD150+, rather than EPCR+ CD48- CD150+

CD45+, as CD45 was not included in the panel of measured surface markers. Two types of
retrospective gates were assigned. The first (broad gating) assigned every cell to a population.
The second (narrow gating) left gaps between gates to describe more specific populations,
and therefore some cells remain unclassified in this gating. Broad gating was performed
to ensure each cell was assigned a cell type, and the narrow gating was performed as it
provided a more accurate representation of how the gates would be defined for conventional
sorting.

2.4.2 Index data of human progenitors

Index sorting was used to record levels of FSC-H, side-scatter (SSC), Hoechst and expression
of Lineage markers, CD34, CD38, CD45RA, CD10, CD90 and CD123 for each cell assayed
by scRNA-seq, single-cell qRT-PCR, or in single-cell cultures. When cells sorted on different
days were analysed together the index data was normalised across batches separately for each
cell type (MLP, GMPP, LMPP) using the ComBat function from the SVA R package. When
devising new sorting strategies to enrich for function, thresholds were defined based on the
maximum expression of CD10 and CD45RA for LMPPs with myeloid output (LMPPly and
LMPPmix cells) and the maximum CD38 expression of GMPs with lymphoid and lympho-
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myeloid output (CD38hi GMPs). The percentages of GMPs or LMPPs above or below these
maxima were calculated, and the corresponding percentages of cells sorted in the strategies
shown in Chapter 5.

2.5 Clustering of single-cell data

2.5.1 Clustering mouse HSPC SMART-Seq2 data

Gene expression profiles were clustered based on the log-transformed normalised expression
values (x → log2(x+1)) of highly variable genes using the Scanpy python module, version
1.0. Profiles were transformed into PCA space, and then the 15 nearest neighbours for each
cell were calculated based on cosine distance between cells in this PCA space using the top
20 PCs. The cells were then clustered using louvain clustering, implemented in the Scanpy

louvain function. An initially high resolution of 2.0 was used with the aim of over-clustering
the data, and the resolution iteratively decreased until each pairwise comparison of differential
expression between groups (using a t-test) yielded at least 50 differentially expressed genes
(Z-score from t-test > 2.576). This resulted in a resolution of 0.9 being used for clustering,
assigning each cell to one of seven clusters. To identify highly expressed genes in each
cluster, the list of all Ensembl genes was first filtered to those that were annotated as protein
coding genes and were expressed in at least 10 cells across the whole dataset. For each
cluster, the genes were then filtered to those that were expressed (log-transformed normalised
count greater than 4) in at least half of the cells in that cluster, and these were tested for
differential expression against cells from all other clusters using a Wilcoxon rank-sum test
with Benjamini-Hochberg correction for multiple testing. Genes with false discovery rate <
0.001 were then ranked by fold change, and the top 10 genes with the highest fold change
are shown in the heatmap in Fig. 3.2.

2.5.2 Clustering human progenitor single-cell data

To avoid separation due to donor batch effects, the scRNA-seq profiles of human cord
blood progenitors were clustered separately for each donor. PCA was performed on the
highly variable genes using the Seurat package and cells were clustered using the Seurat

FindClusters function applied to the top 10 PCs. Differential genes between a cluster and the
rest of the data were found using the Seurat FindAllMarkers function, and the top genes for
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each cluster are visualised in the heatmaps in Fig. 5.3. Single-cell qRT-PCR profiles were
clustered using hierarchical clustering on both genes and cells using the hclust R function
(stats package) with dissimilarity measure 1 - Spearman’s correlation and agglomeration
method Ward.D2. Cells were assigned to three clusters by applying the cutree function (stats

package) to the results of the hierarchical clustering.

2.5.3 Clustering droplet-based scRNA-seq data

For WT data, clustering of the LSK and LK cells together was performed on diffusion map
coordinates calculated using the 4,664 variable genes, by using the Scanpy louvain clustering
function to cluster cells based on the k-nearest neighbour graph with 15 nearest neighbours.
The coarse clustering was performed with resolution = 0.175, resulting in 16 different clusters,
and the fine clustering was performed with resolution = 2.0, resulting in 63 different clusters.
Fine clusters were assigned a colour for visualisation purposes corresponding to the colour
of the coarse cluster to which the majority of their members belonged.

For comparison with the W41/W41 data, WT LK cells were clustered using louvain clustering
(Scanpy igraph method) with 15 nearest neighbours. To assign W41/W41 LK cells to clusters,
the W41/W41 data were projected into the PCA space of the WT data. The nearest WT
neighbours of each W41/W41 cell were then calculated based on Euclidean distance in the
top 50 PCs. W41/W41 cells were assigned to the same cluster that the majority of their 15
nearest WT neighbours belonged to. Marker gene expression across these projected clusters
was checked to ensure that the clustering assignment made biological sense.

2.6 Dimensionality reduction

2.6.1 Visualisation of mouse HSPC SMART-Seq2 profiles

Mouse bone marrow HSPCs were visualised using the dimensionality reduction method
of diffusion maps (Haghverdi et al., 2015). Diffusion map dimensionality reduction was
performed using the DiffusionMap function from the destiny R package (Angerer et al., 2016)
with centred cosine distance and σ = 0.16. The parameter σ controls the probabilities of
cell transition in the random walks on the high-dimensional data, with higher σ meaning that
cells do not diffuse as far. The input for this function was log-transformed normalised counts
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of highly variable genes. The first few components of the diffusion map were inspected and
the top three components selected for plotting, based on the size of their eigenvalues and
the fact that these components captured differentiation towards the three major lineages. 3D
plots were generated using the scatter3D function from the plot3D R package.

2.6.2 Visualisation of mouse HSPC qRT-PCR profiles

The diffusion map dimensionality reduction was calculated on the normalised ∆Ct values of
the 41 genes that passed quality control using the DiffusionMap function from the destiny R
package, with centred cosine distance and σ = 0.3.

2.6.3 Visualisation of droplet-based scRNA-seq profiles

PCA was performed on the log-transformed, scaled and normalised variable genes, using
the pca Scanpy function. For visualisation, a k-nearest neighbour graph with k = 7 was
constructed, with edge distances calculated from the Euclidean distances between cells in the
top 50 principal components. The resulting edge list of the k-nearest neighbour graph was
exported into Gephi 0.9.1 (https://gephi.org/), where the graph coordinates were calculated
using the ForceAtlas2 layout. When the expression of marker genes was plotted in the
landscape, cells with the highest gene expression were plotted on top, as the high number of
observations required points to overlap in the plots. With this method it could always be seen
which regions of the graph were positive for expression of a given gene.

2.6.4 Visualisation of human progenitor single-cell profiles

Single-cell data were visualised with diffusion maps (Haghverdi et al., 2015) using the
DiffusionMap function from the destiny R package with Euclidean distance.

2.6.5 Projection of qRT-PCR datasets

Single-cell qRT-PCR data for 416B and HoxB8-FL cell lines were projected onto the dif-
fusion map embedding of Section 2.6.2 using the dm.predict function from the destiny R
package.
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2.7 Reconstructing differentiation trajectories

2.7.1 Pseudotime ordering of mouse HSPC SMART-Seq2 data

From the diffusion map dimensionality reduction, cells belonging to the stem cell population
and to the erythroid, granulocyte-macrophage and lymphoid lineages could be clearly identi-
fied. To find cells lying on these three lineage branches, the diffusion map embedding was
first used to identify a start cell (within the tip of the E-SLAM population) and end cells for
each of the three lineages by choosing cells at the tips of the remaining branches. Cells on
three broad trajectories from the stem cells to the three tip cells were then identified following
the method of Ocone et al. (2015). For this, a k = 30 nearest neighbour graph was constructed
using Euclidean distance between cells in the first four diffusion components. The first four
components were used based on the magnitude of their corresponding eigenvalues. The
shortest path from the start to each end cell was found using Dijkstra’s algorithm, and each
lineage branch was then formed from the n = 100 nearest neighbours of each cell on this
backbone path. Cells on a branch were then ordered in pseudotime using custom R code
implementing the Wanderlust algorithm with default parameters (Bendall et al., 2014).

To identify up- or downregulated genes along the three trajectories, log-transformed gene
expression values were smoothed by calculating the mean expression for a sliding window of
20 cells along the pseudotime ordering. Spearman’s correlation between pseudotime values
and the smoothed expression was calculated for each gene, and genes with correlation > 0.5
or <−0.5 were identified as up- or downregulated, respectively.

2.7.2 Pseudotime ordering of mouse HSPC qRT-PCR data

Based on the diffusion map coordinates, two lineages branches were identified in the single-
cell data linking HSCs to MEPs and HSCs to LMPPs. This was done following the method of
Ocone et al. (2015). For this, three cells types, the molecular overlapping population (MolO)
HSCs defined by Wilson et al. (2015), MEPs and LMPPs, were highlighted on the diffusion
map, and by using this three-dimensional diffusion map visualisation a start and end cell were
selected for each trajectory from within the relevant highlighted populations. Branches and
trajectories were then constructed as in Section 2.7.1 using the top four diffusion components.
The top four components were selected based on the magnitude of their corresponding
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eigenvalues. The pseudotime ordering was constructed using the expression levels of both
transcription factor-encoding and non-transcription factor-encoding genes.

2.7.3 Pseudotime ordering of droplet-based scRNA-seq data

Pseudotime ordering was performed using the dpt function from the Scanpy python module,
with the root cell chosen as the cell with the highest MolO score (see Section 2.11).

2.8 Cell cycle scoring of individual cells

2.8.1 Assigning cell cycle states to SMART-Seq2 data

Cells were assigned to cell cycle categories following the method of Scialdone et al. (2015)
implemented in the cyclone function (scran R package) using the mouse cell cycle markers
distributed along with this package. Cells with G1 score > 0.5 were assigned to the “G0/G1”
phase, cells with G2M score > 0.5 to the “G2/M ” phase and remaining cells to “S” phase.
There were no cells with G1 and G2M scores both exceeding 0.5.

2.8.2 Assigning cell cycle states to droplet-based scRNA data

To calculate G2/M marker gene scores, the set of 200 Hallmark G2/M checkpoint genes was
downloaded from the Molecular Signatures Database (Liberzon et al., 2015). To calculate
the score for the set, G, of genes in the droplet-based scRNA-seq landscape, a geometric
mean-based score was calculated on the normalised UMI count, x, of each gene in the set.
This score was given by exp[∑g∈G log(xg +1)/m] where |G|= m.

2.9 Identifying differentially expressed genes

2.9.1 Finding differential expression in the abstracted graph

The expression of all genes detected in at least two cells was compared between pairs of
clusters using the Wilcoxon rank-sum test to calculate a p-value. The fold-change between
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the average log-transformed expression in each cluster was also calculated. Adjusted p-values
were then calculated using the Benjamini-Hochberg correction for multiple testing. Genes
were treated as significantly differentially expressed if they had adjusted p-values < 0.05 and
log2 fold-change of > 0.5. For visualisation in the Fig. 6.7C & D heatmaps, the upregulated
genes for the first nodes along either the erythroid or megakaryocytic trajectories were filtered
to genes unique to each trajectory, and these were ranked by adjusted p-value. The genes
with the top 20 most significant adjusted p-values are displayed in the heatmap.

2.9.2 Finding differential expression between WT and W41/W41 cells

Differential expression analysis was performed between WT and W41/W41 clusters using
edgeR applied to the UMI counts (Robinson et al., 2010). P-values were corrected for multiple
testing (Benjamini-Hochberg correction). Genes were labelled as up- or downregulated based
on positive or negative fold-changes and ranked by adjusted p-value. The top 200 up- and
downregulated genes between each cluster pair were recorded. Full lists can be found in
supplementary table S1 of Dahlin et al. (2018). To calculate the significance of overlap
between the differentially expressed genes and annotated gene sets, the top 200 up- or
downregulated genes for each cluster were input into the Molecular Signatures Database
online tool (http://software.broadinstitute.org/gsea/msigdb/index.jsp) and overlaps between
these and the Hallmark gene sets were computed (Liberzon et al., 2015; Subramanian et al.,
2005).

2.10 Gene set enrichment analysis

2.10.1 Pseudotime-correlated genes along E, GM and L trajectories

Gene set enrichment analysis was performed using Enrichr (Chen et al., 2013). All results
with adjusted p-value < 0.05 (Benjamini-Hochberg correction for multiple testing) were
treated as significant. The most significant non-overlapping terms are shown in the figures in
Chapter 3. When investigating the cell cycle effect, a list of cell cycle genes was downloaded
from Reactome (http://www.reactome.org/), and mouse orthologues for each gene found
using the Ensembl BioMart online tool. These orthologues were used to filter gene lists
before performing enrichment analysis using Enrichr.

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://www.reactome.org/
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2.10.2 Analysis on absolute RNA content

The ERCC-normalised counts were summed for each cell to estimate the total RNA content
per cell. One-way analysis of variance (ANOVA) tests were applied to calculate the signifi-
cance of differences in FSC-H and RNA content between cell types. To identify which genes
were downregulated in absolute terms along pseudotime, the previously obtained downregu-
lated lists were filtered to remove any genes than had a less than two-fold expression change
between the first 10% and final 10% of cells in an ordered pseudotime trajectory. Again,
gene set enrichment analysis was performed using Enrichr.

2.11 Visualising gene expression signatures

To plot a score for a set of genes, G, in the droplet-based scRNA-seq landscape, a geometric
mean-based score was calculated using the normalised UMI count, x, of each gene in the
set. This score was given by exp[∑g∈G log(xg +1)/m] for m genes. To visualise HSC gene
expression and calculate the “MolO” score, this score was calculated using the 29 genes
previously identified as being enriched in functional HSCs (MolO genes from table S3 from
Wilson et al. (2015)).

2.12 Transcriptional regulatory network modelling

2.12.1 Inferring the network

Network inference was performed using the expression of transcription factors measured
using single-cell qRT-PCR. The first step in the network inference method is to identify
potential regulatory relationships between pairs of transcription factor encoding genes. This
was done by calculating pairwise partial correlation coefficients across the whole dataset
using the pcor function from the ppcor R package. Correlation coefficients were filtered to
retain only the pairs of genes with significant interaction between them, using a threshold
of p-value < 0.01. Gene pairs were then ranked by the magnitude of their correlation
coefficients, and the strongest correlations were retained as edges in a gene correlation
network. Positive correlation between gene G1 and gene G2 was then treated as possible
activation of gene G1 by gene G2, or of gene G2 by gene G1, as the correlation relationship
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cannot be used to infer the direction of regulation. Negative correlation was treated as
potential repression acting in either direction. Self-activation was added to the potential
activating or repressing relationships for each gene, as self-activation is a widely-used motif
in transcriptional regulation that cannot be revealed by correlation analysis. Combinations
of these regulatory relations describe a set of possible Boolean functions governing the
expression of each gene, with each rule featuring one or more regulators (Fig. 4.6B).

The next step was to search for the regulatory rules best describing the regulation of each
gene. Whilst high correlation between a pair of genes can be an indication of a regulatory
relationship, additional information is required to determine if the regulation is direct,
establish the direction of regulation between genes, and understand if it is part of a regulatory
event that requires the involvement of multiple transcription factors. The pseudotime ordering
of cells was used as the basis for a scoring mechanism applied to the set of possible Boolean
functions from the correlation network. To reduce the search time of the algorithm, the search
was restricted to functions of the form F = F1 ∧¬F2 with each Fi a Boolean function made
from AND and OR gates with at most two inputs per gate. F1 represents the activating part
of the function, consisting of at most four activating transcription factors for a gene, and F2

the repressing part of the function, formed from at most two repressing transcription factors.
This restriction approach was used by Moignard et al. (2015) in their Boolean function
search.

Gene expression in each cell along the pseudotime trajectory was first discretised into “ON”
or “OFF” expression states, by setting any detected values of gene expression to 1, and any
undetected values to 0. Each pair of cells positioned k steps apart in the pseudotime ordering
was then treated as an input-output pair Pi = (Ii,Oi) for a Boolean function, where [Ii]G

indicates the binary expression of gene G in input cell Ii. Each function F for a gene G was
given a score S(F) = ∑i si(F) where

si =

1, if [F(Ii)]G = [Oi]G

0, otherwise

for the pseudotime pairs Pi = (Ii,Oi). This calculates the number of times the value of the
gene G as predicted by F applied to Ii equals the value of G in the corresponding output
cell Oi. The step size used for the result in Chapter 4 was k = 3 between pseudotime pairs.
A random sample of 10 genes was run with different sizes of k to test the sensitivity of the
approach to this parameter choice, and this showed that there was good agreement between
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the pseudotime rule scoring for different k (Fig. A.1). The top-scoring functions for each
gene can then be considered the best functions for that gene. To identify the top-scoring
functions, the problem was encoded as a Boolean satisfiability problem (de Moura and
Bjørner, 2008) using the Python Z3 solver (https://github.com/Z3Prover/z3/). Python code
that can be run to identify rules for each gene can be found at https://github.com/fionahamey/
Pseudotime-network-inference. The procedure is summarised in Algorithm 2.1.

Algorithm 2.1. Procedure for network inference

1: Set rule agreement threshold t = T ▷ T is user-defined choice
2: Construct set of pseudotime input-output pairs {Pi}
3: for all genes G in dataset do
4: Let FG be an empty set of functions describing rules for each gene
5: while FG is empty do
6: Search for existence of function F such that S(F)> t across pairs {Pi}
7: if Such an F exists then
8: repeat
9: Find F and add to set of functions FG

10: Search for existence of new F such that S(F)> t and F /∈ FG
11: until No new F exists
12: else
13: Let t = t − ε ▷ ε is user-defined choice
14: end if
15: end while
16: end for
17: return FG for all genes

For many genes the method gave several functions with equally high scores. In this case the
results were simplified to the minimum set of simplest functions. For example, if functions
“Gata1 → Tal1” and “Gata1 ∧ Nfe2 → Tal1” had equal scores, then the former would be
chosen as it is simpler and contained within the latter. When rules could not be simplified in
this way multiple rules were retained. MEP and LMPP network models have been deposited
in BioModels and assigned the identifiers MODEL1610060000 and MODEL1610060001,
respectively (Chelliah et al., 2015). The full list of rules is available in Appendix A.

2.12.2 Stable state analysis of the network

One way of assessing the behaviour of Boolean network models is by considering their
attractor states, or stable states. These represent states that when reached by the network

https://github.com/Z3Prover/z3/
https://github.com/fionahamey/Pseudotime-network-inference
https://github.com/fionahamey/Pseudotime-network-inference
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have no further changes in the expression of any genes. For clarification, these will be
defined more formally as follows. If the state of a network at time t is given by Xt ,
where Xt = (X1(t), . . . ,Xn(t)) is a vector of gene expression states G1, . . . ,Gn, then con-
sider the transformation T : Xt → Xt+1, which represents the transition function of the
network model. Network transitions can be modelled using either synchronous or asyn-
chronous updates. With synchronous updates Xt+1 = (F1(X1(t)), . . . ,Fn(Xn(t))), so the
expression of each gene is updated simultaneously according to a Boolean function Fi.
With asynchronous updates, for each transition T a gene Gk is randomly selected so that
Xt+1 = (X1(t), . . . ,Fk(Xk(t)), . . . ,Xn(t)), so that the expression of only one gene is altered
at a time. This can lead to stochastic behaviour from the network, and is more suited for
modelling systems with a range of possible cell fates. A state X∗ is then defined as stable if
∀t ≥ t∗ where t∗ ∈ Z, Xt+1 = Xt under transformation T .

Stable states of the network were identified using the GenYsis algorithm with asynchronous
updates (Garg et al., 2008). All alternative rules for a gene were considered in stable
state analysis in the form of OR rules. This ensures that any stable states found are in the
intersection of the stable states of all of the possible networks. To identify stable states
reachable from MolO expression starting states, the Boolean rules for each network were
encoded and simulated with asynchronous updates until the network stabilised and no genes
changed in expression. These simulations were carried out in the R programming language
with custom scripts. For both MEP and LMPP network models 1000 simulations were run
starting from each of the 237 binary expression states corresponding to MolO cells, and the
stable states of the simulations were recorded.

To project stable states onto the diffusion map, the stable states were compared to the profiles
of bone marrow data converted to binary expression values. The nearest neighbour of each
state was identified and highlighted in the diffusion map. If more than one neighbour was the
best match for a state then the continuous gene expression levels of these nearest neighbours
were averaged and this average expression state was projected onto the diffusion map using
the dm.predict function.

2.13 Chromatin immunoprecipitation sequencing

Chromatin immunoprecipitation sequencing (ChIP-seq) data were generated and analysed by
Nicola Wilson, Sonia Nestorowa and Rebecca Hannah. ChIP-seq assays were performed as
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previously described (Wilson et al., 2010). Samples were amplified using the Illumina TruSeq
ChIP Sample Prep Kit and sequenced using the Illumina HiSeq 2500 System. Sequenced
reads were mapped to the mm10 mouse reference genome using Bowtie2 (Langmead and
Salzberg, 2012), converted to a density plot, and displayed as UCSC genome browser custom
tracks. Peaks were called using MACS2 software (Zhang et al., 2008).

2.14 Luciferase assays

Luciferase assays were performed by and analysed by Sonia Nestorowa and Sarah Kinston.
Luciferase and LacZ constructs were generated using standard recombinant DNA techniques.
The coordinates of chromosomal regions tested were: chr8:122699004-122701098 for
the Cbfa2t3h promoter, chr8:122699111-122699377 for the Cbfa2t3h min promoter, and
chr15:103258245-103258850 for the Nfe2 enhancer. Both WT and GATA2 mutant constructs
were generated, where GATA2 binding sites were fully mutated to prevent any binding
activity. Luciferase assays were performed as previously described (Bockamp et al., 1995).
Luciferase assays were performed in the 416B cell line for stable transfections.

2.15 Single-cell functional assays

Single-cell functional cultures were performed by Dimitris Karamitros, Bilyana Stoilova
and Zahra Aboukhalil, who also quantified the functional output of the culture experiments.
LMPPs, GMPs and MLPs were cultured in 96 well plates in SGF15/2 culture (containing
cytokines SCF, G-CSF, FLT3L, IL-2 and IL-15) or, for one of the LMPP enrichment exper-
iments, SF7b culture (containing SCF, FLT3L and IL-7). Both culture conditions support
lymphoid and myeloid output. After 2-2.5 weeks in culture, flow cytometry was performed
to assess lineage output, and wells were considered positive if they contained more than
15 CD15+, CD14+, CD56+ or CD19+ cells. Full details can be found in (Karamitros et al.,
2018).
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2.16 Graph abstraction

The graph abstraction method was developed by Alex Wolf as the result of discussions with
F. Hamey. Code for performing the graph abstraction was provided by Alex Wolf as part of
the Scanpy module. The droplet-based sequenced data were analysed by F. Hamey.

2.16.1 Constructing the abstracted graph

The abstracted graph was calculated on the fine louvain clustering of LSK and LK data
together using the Scanpy paga function to perform partition-based graph abstraction from
Scanpy version 1.1 (Wolf et al., 2018, 2017). This works by first connecting cells in a
k-nearest neighbour graph, as for performing the louvain clustering. In this case, the number
of nearest neighbours used was k = 15 and distances between cells were given by Euclidean
distance between diffusion map coordinates in the top 20 diffusion components. A confidence
ci j is then calculated between clusters i and j to represent the strength of the connection
between these two clusters in the abstracted graph. Confidence ci j is given by the ratio of the
number of edges between clusters i and j and the geometric mean of the number of edges
originating from i and the number of edges originating from j. So ci j =

1
2(ei j +e ji)/

√
k2nin j

where ei j is the number of edges originating from cluster i leading to cluster j, k is the k

parameter for the k-nearest neighbour graph, and ni is the number of nodes in cluster i. This
ratio compares how many edges are observed between the two clusters compared to how
many would be expected under a random distribution of edges. A confidence threshold
of 0.007 was used to filter edges in the paga plot function. The abstracted graph node
coordinates were positioned using the Force Atlas 2 algorithm in Gephi applied to the filtered,
weighted edges.

2.16.2 Plotting average gene expression on the abstracted graph

To plot gene expression (or gene signatures) on the graph nodes, the mean value of the
normalised UMI counts for a gene (or the gene signature scores for each cell) was calculated
for each cluster. These averages were then visualised on the abstracted graph, with a scale
ranging from the minimum to the maximum value for the means of the nodes of the connected
component of the graph.
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2.16.3 Finding trajectories through the abstracted graph

The node with the highest MolO score (at the top of the abstracted graph) was used as
a starting point for the trajectories. End points for erythroid, megakaryocyte, neutrophil,
monocyte and lymphoid progenitors were identified based on marker gene expression and
the structure of the abstracted graph. The shortest paths through the abstracted graph from
the starting node to each lineage end point were found using the get_shortest_paths function
from the python igraph module, with edge weight between nodes i and j given by the number
of edges from i to j in the single-cell k-nearest neighbour graph. These shortest paths were
taken as the trajectories.





Chapter 3

A single-cell reference map of murine
haematopoiesis

Parts of this section have been modified from Nestorowa et al. (2016), on which F. Hamey is
joint first author. Experimental work for this project was carried out by Sonia Nestorowa
and Nicola Wilson (isolation of primary bone marrow cells, scRNA-seq profiling), and by
David Kent and Mairi Shepherd (isolation of primary bone marrow cells). RNA-seq data
were aligned by Evangelia Diamanti. Index data normalisation was performed by Blanca
Pijuan Sala, who also made the website for interactive plotting of the single-cell data. All
computational analysis of aligned scRNA-seq data was carried out by F. Hamey.

3.1 Background

The haematopoietic system is maintained by differentiation of multipotent cells towards
the mature blood cell types. Many changes in gene expression occur during the transition
of stem cells and progenitor populations to specialised blood cells, with the dynamics of a
number of genes playing important roles in cell fate decision-making during differentiation.
To understand how these decisions are regulated, it is necessary to study cells at different
stages of maturation, and so over the past three decades researchers have worked to purify
populations of haematopoietic cells characterised by their differentiation potential (Beerman
et al., 2010; Challen et al., 2010; Kent et al., 2009; Kiel et al., 2005; Morita et al., 2010).
Strategies for isolating these cells use the expression of cell surface marker proteins to
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separate populations using FACS, and have allowed gene expression datasets to be generated
across haematopoietic populations.

Although these isolation strategies have led to many significant advances, they remain limited
in their purity, as changes in cell state that alter the transcriptome of a cell are not always
detectable in the relatively small number of surface markers measured. To combat this, a
recent innovation has been to combine measurement of cell surface markers with single-cell
gene expression profiling, thereby providing insight into gene expression heterogeneity
within the classically defined haematopoietic populations. For example, Paul et al. (2015)
used scRNA-seq to profile over 2,700 haematopoietic progenitor cells, including CMPs,
GMPs, and MEPs, to investigate heterogeneity within the CMP population by simultaneously
capturing cell surface marker levels and gene expression.

However, although studies evaluating the gene expression of several different haematopoietic
cell types at the single-cell level existed prior to this work, published data were either limited
in the range of cell types they covered, for example by not profiling HSCs alongside more
mature progenitors, or were restricted to measuring fewer genes such as by using single-
cell qRT-PCR (Grover et al., 2016; Kowalczyk et al., 2015; Moignard et al., 2013; Paul
et al., 2015; Wilson et al., 2015). As many HSPC populations exhibit a large degree of
heterogeneity at the single-cell level, it was reasoned that a high resolution single-cell dataset
allowing comparison of all cell types from early haematopoiesis would provide a valuable
tool for the haematopoietic research community, and would enable investigation of gene
expression changes occurring during differentiation towards alternative blood lineages.

The focus of this work was to generate and analyse a scRNA-seq dataset with the aim of
providing a reference transcriptional landscape of haematopoiesis. This chapter describes
the processing of over 1,600 scRNA-seq profiles of HSPCs from mouse bone marrow to
visualise diversification of cells from stem cells to three different mature lineages and shows
how changes in properties such as gene expression, RNA content, and cell cycle can be
investigated using transcriptomic data.
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Fig. 3.1. Bone marrow HSPCs can be transcriptionally profiled at the single-cell level.
(A) Experimental overview of the study. Index-sorting was used to isolate haematopoietic
cells from mouse bone marrow for transcriptional profiling using scRNA-seq. Table sum-
marises the number of cells and number of genes detected per cell after quality control
filtering. Cells were sorted in three different gates based on surface marker expression. LSK,
Lin- c-Kit+ Sca1+; Prog, progenitor; LT-HSC, long-term haematopoietic stem cell. (B) Visu-
alisation of overlap between the sorting gates and populations in the classic haematopoietic
hierarchy. Boxes indicate which cell types are covered by the sorting gates. (C) Flow cytom-
etry diagrams displaying the gates used to isolate cells. Numbers indicate the percentage of
cells within a gate for each plot. L-S-K+, Lin- Sca1- c-Kit+; L-S+K+, Lin- Sca1+ c-Kit+.

3.2 Capturing single-cell transcriptional profiles across
haematopoiesis

To obtain a comprehensive map of murine haematopoiesis covering stem and early progenitor
populations, cells were isolated from primary mouse bone marrow and index-sorted in three
different gates (Fig. 3.1A). As the aim of this work was to characterise gene expression
changes occurring during differentiation, cells were sampled from two main broad gates: the
LSK gate (Lin- c-Kit+ Sca1+) and the Progenitor (Prog) gate (Lin- c-Kit+ Sca1-) (Fig. 3.1B,
C). In the bone marrow, cells from the LSK gate are found at a much lower frequency than
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those in the Prog gate (Fig. 3.1C), therefore cells from these two populations were sorted
separately to ensure sufficient coverage of the upper tiers of the haematopoietic hierarchy.
Following the same reasoning, additional LT-HSCs (Lin- c-Kit+ Sca1+ Flk2- CD34-) were
sorted as these represent a rare population within the LSK gate (Fig. 3.1C).

In total, 216 LT-HSC, 852 LSK and 852 Prog index-sorted cells were then profiled using
scRNA-seq to measure gene expression, as previously described (Picelli et al., 2014). After
quality control filtering to remove empty and low quality profiles, 155 LT-HSC, 701 LSK
and 798 Prog profiles were carried forward for further analysis. A high sequencing depth
per cell resulted in a median of over 8,600 genes detected for each cell type (Fig. 3.1A). In
scRNA-seq experiments it is known that a high number of genes either show low variation
across cells, or have very low average expression and therefore their variation can be greatly
influenced by technical noise. To identify biologically highly variable genes, synthetic ERCC
spike-in controls were used to provide an estimate of technical variance (Brennecke et al.,
2013), finding 4,290 genes with variance exceeding the estimated technical threshold. This
set of highly variable genes was used for downstream analysis.

3.3 The transcriptional profiles of haematopoietic progeni-
tor cells show priming towards different blood lineages

To investigate heterogeneity within these scRNA-seq data, unbiased clustering of the molec-
ular profiles was performed using the expression of the 4,290 highly variable genes. This
grouped cells into seven clusters (Fig. 3.2). Cluster 1 cells showed high expression of genes
with previously established expression in HSCs, such as Procr, Trim47, and F11r (Sugano
et al., 2008; Wilson et al., 2015). These cells originated from the LT-HSC and LSK gates,
indicating that this cluster contained the most immature cells. The majority of cluster 2
cells were found in the LSK gate with a very small number of cells from the LT-HSC gate,
suggesting that this cluster contained early, possibly uncommitted, progenitors. Cluster 3 was
formed from mostly Prog cells and showed high expression of erythroid genes such as Pklr

and Ank1 (Arinobu et al., 2007; Rank et al., 2009). Cluster 5 was formed from almost entirely
Prog cells and was revealed to have megakaryocyte progenitor identity based on the expres-
sion of genes such as Pf4, Itga2b, and F2r (Rowley et al., 2011). Of the remaining clusters,
cluster 6 was also formed from a majority of Prog cells and expressed myeloid marker genes
including Mcpt8, Fcgr3 and Ms4a3, suggesting specification towards granulocyte/monocyte
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lineages in these cells (Dwyer et al., 2016; Hulett et al., 2001; Nimmerjahn and Ravetch,
2006). The final cluster, cluster 7, was mostly formed from LSK cells, and expression of
Flt3 and Dntt indicated these cells had a lymphoid identity (Rothenberg, 2014), consistent
with the observation that the classical LMPP population falls within the LSK sorting gate.
Together, this clustering separated cells into groups corresponding to different haematopoietic
populations, ranging from stem cells at the top of the haematopoietic hierarchy, down to
progenitor cells expressing markers of several different lineages.

3.4 Transcriptional profiling reveals a continuum of
differentiation towards three cell types

Whilst clustering is a useful tool for identifying and characterising the gene expression
of subpopulations within a dataset, it has the effect of forcing cells into discrete groups,
which may not be the most suitable approach for representing cells undergoing a continuous
process. Dimensionality reduction techniques can help to visualise the underlying structure
within gene expression data and, in particular, the method of diffusion maps has been
particularly successful in capturing the branching structure present within single-cell data
from differentiating cells (Coifman et al., 2005; Haghverdi et al., 2015; Moignard et al., 2015).
The diffusion map calculated on the highly variable genes showed good agreement with the
unbiased clustering (Fig. 3.3A) and the cell type identity previously assigned to each group
was supported by checking the expression of marker genes across the clusters (Fig. 3.3B).
Visualising the expression of these marker genes in the diffusion map landscape demonstrated
that the first three diffusion components captured a structure representing haematopoietic
differentiation towards three main lineages (Fig. 3.4). Expression of Procr and Hoxb5

highlighted the blood stem cell region at the top of the diffusion map, corresponding with
cluster 1 cells (Balazs et al., 2006; Chen et al., 2016). Cells differentiating towards the
erythroid lineage were marked by expression of Klf1 and Gypa and could be found in cluster
3 (Dzierzak and Philipsen, 2013). Cluster 6 cells coincided with an area showing high
expression of myeloid marker genes Mpo and Ctsg, therefore representing the granulocyte-
macrophage lineage (Olsson et al., 2016). Finally, cluster 7 cells occupied a region of the
diffusion map with high expression of lymphoid genes Ighv1-81 and Dntt (Rothenberg, 2014).
The scRNA-seq profiles therefore capture differentiation towards the erythroid, granulocyte-
macrophage and lymphoid lineages, with this differentiation recapitulated by the coordinates
of cells in the first three diffusion components.
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Fig. 3.3. Dimensionality reduction captures continuous specification towards different
blood lineages. (A) Diffusion map of the 1,654 scRNA-seq profiles. The embedding was
calculated on highly variable genes. Cells are coloured by cluster, with colours corresponding
to those in Fig. 3.2. DC, diffusion component. (B) Violin plots of marker gene expression
across clusters. Colours match those in panel A.

3.5 Retrospective gating links the transcriptome with cell
surface phenotype

When isolated for scRNA-seq profiling, cells were index-sorted, meaning that both transcrip-
tional profiles and surface marker expression were available for each cell. Surface markers
Sca1, Flk2, CD34, CD48, CD16/32, CD150 and EPCR all showed expression patterns
restricted to specific regions of the diffusion map, consistent with the gene expression-based
annotation of the transcriptional landscape. Notably, EPCR was highest in the cells iden-
tified as HSCs at the top of the diffusion map, matching the raised expression levels of
Procr (the gene encoding EPCR) in these cells. Interestingly, the forward-scatter (FSC-H)
showed a gradient across the data, with erythroid and myeloid progenitors having higher
FSC-H than the HSCs, consistent with the larger size of these more mature cells. So that
others could freely view gene and surface marker expression patterns within these data,
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Fig. 3.4. Single-cell transcriptional profiles capture continuous differentiation towards
the three main blood lineages. Diffusion map of cells coloured according to the expression
of the lineage marker genes shown in Fig. 3.3B. The colour corresponds to a log2 scale
of expression ranging between 0 and the maximum value for each gene. DC, diffusion
component.

an interactive website was created by B. Pijuan Sala, based on the analysis described here
(http://blood.stemcells.cam.ac.uk/single_cell_atlas.html).

Although cells were sorted in only three broad gates, the additional surface marker infor-
mation from index-sorting allowed cells to be “retrospectively gated” into conventional
haematopoietic populations (Fig. 3.6A). Highlighting the cells falling within different ret-
rospective gates on the diffusion map revealed cell type distributions consistent with the
expression patterns of marker genes for different lineages (Fig. 3.6B). Three different LT-
HSC sorting strategies were considered in decreasing order of stringency: E-SLAM (CD48-

CD150+ CD45+ EPCR+), L- S+ K+ CD34- Flk2- CD48- CD150+ and the LT-HSC sorting
strategy defined in Fig. 3.1. The varying purity of these sorting strategies (assessed by the
enrichment for cells capable of long-term repopulation upon transplantation) is reflected in
the heterogeneity of the cell type positioning in the diffusion map, with the most specific
strategy (E-SLAM) occupying the least heterogeneous region in the diffusion map. This
retrospective gating approach allows the transcriptome to be related to cellular phenotype,
and as the cell types in Fig. 3.6 all represent well-established haematopoietic gating strategies
this provides a useful resource for comparison with other datasets.

http://blood.stemcells.cam.ac.uk/single_cell_atlas.html
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Fig. 3.5. Cell surface markers show expression patterns across the transcriptional
landscape. Diffusion map coloured according to index-sorting data for each cell. CD48,
CD150 and EPCR were not used for sorting cells. Colour corresponds to normalised
expression values ranging between the minimum and maximum value for each marker. Flow
cytometry data were normalised across two different sort days. FSC-H, forward-scattered
light-height; DC, diffusion component.

3.6 Single-cell profiles can be ordered along differentiation
trajectories

Both clustering and dimensionality reduction of the scRNA-seq profiles revealed differentia-
tion of cells towards mature blood lineages. The next step was to investigate whether the
recently described concept of pseudotime ordering could be used to capture gene and protein
changes during differentiation (Bendall et al., 2014; Trapnell et al., 2014). As the diffusion
map embedding captured three lineage branches, differentiation trajectories were identified
from HSCs towards erythroid (E), granulocyte-macrophage (GM) and lymphoid (L) lineages
(Fig. 3.7A). By ordering cells along these three trajectories, it was possible to visualise
how the index-sorting parameters changed along pseudotime (Fig. 3.7B), with several of the
surface proteins displaying clear dynamics throughout differentiation. In particular, EPCR,
which was not used for isolation of cells, showed a decrease along all three trajectories.

Using the pseudotime orderings, sets of genes showing either up- or downregulation during
differentiation were identified for each trajectory (Fig. 3.8A). Gene set enrichment analysis
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Fig. 3.6. Index-sorting allows scRNA-seq profiles to be retrospectively assigned to
haematopoietic progenitor populations. (A) Strategy used for retrospective gating of
cells. (B) Diffusion map plots coloured by cell type assigned by the retrospective gating.
Each population of interest is highlighted in purple in an individual panel, with all other cells
in grey. DC, diffusion component.

was performed to investigate processes related to these genes. Fig. 3.8B displays significant
terms related to each set of genes. Many enrichment terms were consistent with their
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Fig. 3.7. Single-cell molecular profiles can be computationally ordered towards three
main blood lineages. (A) Diffusion map highlighting cells in three differentiation trajec-
tories. Cells were ordered from HSCs along erythroid (E), granulocyte-macrophage (GM)
and lymphoid (L) trajectories. The pseudotime value for each cell indicates its position in
the differentiation trajectory, with blue early in pseudotime and red late in pseudotime. DC,
diffusion component. (B) Dynamics of surface marker expression and FSC-H throughout
pseudotime. Index data is scaled so that each variable ranges from 0 (low) to 1 (high) in
each trajectory. The cell type bar along the top of each heatmap indicates the retrospective
gating for each cell. Unassigned cells (in grey) were cells that fell in between the narrow
gates drawn for retrospective gating (see Chapter 2 for details).

corresponding trajectory, such as Neutrophil degranulation for the genes upregulated along
the GM trajectory, and Megakaryocyte erythrocyte progenitor for genes upregulated along
the E trajectory. Interestingly, both the E and GM upregulated genes had highly significant
cell cycle-related terms, which was not the case for genes increasing in expression along the
L trajectory.
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Fig. 3.8. Computational ordering reveals genes dynamically expressed during differen-
tiation. (A) Normalised expression of genes positively (up) or negatively (down) correlated
with the pseudotemporal ordering for E, GM and L trajectories. Mean normalised expression
(black line) is plotted with ± standard deviation shown by shaded grey regions. For each
plot, n indicates the number of genes in up or down groups. Gene expression was smoothed
by a sliding window of size 20 along the pseudotime ordering. (B) Results of enrichment
analysis on the above gene sets. Significant terms are shown along with their adjusted p-value
(Benjamini-Hochberg method for correction for multiple hypothesis testing).

3.7 Single-cell data give insight into cell cycle activation
during differentiation

As genes upregulated during E and GM differentiation were seen to be significantly related to
the cell cycle, it was next decided to investigate the cell cycle status of the stem and progenitor
cells. Single-cell transcriptional profiles were assigned to either G0/G1, G2/M or S phases
based on their gene expression, by using the method of Scialdone et al. (2015). Calculated
for each of the 1,654 profiles, the assigned cell cycle categories were consistent with the
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Fig. 3.9. Computational cell cycle assignment highlights changes in cell cycle state
along erythroid and granulocyte-macrophage trajectories. (A) Diffusion map with cells
coloured by computationally assigned cell cycle category. Cells were assigned to G0/G1, S
or G2/M categories based on their transcriptional profiles. DC, diffusion component. (B)
Proportion of E-SLAM, LMPP, GMP and MEP cells assigned to each cell cycle category.

observations from the gene set enrichment analysis, with the highest proportion of S and
G2/M category cells in regions corresponding to the E and GM trajectories (Fig. 3.9). Along
the L trajectory the vast majority of cells were assigned to the G0/G1 category, suggesting
that transcriptional diversification and lineage specification occurs prior to widespread cell
cycle activation in this lineage.

Further gene set enrichment analysis was then performed to investigate which processes,
other than cell cycle, were linked to E and GM differentiation. The upregulated E and
GM gene lists were filtered by removing genes overlapping with a curated set of 405 cell
cycle genes, and then enrichment analysis was performed. Genes unique to either the E
or GM trajectory were annotated with terms related to consistent biological functions such
as Neutrophil degranulation (GM only). In the Reactome Pathways category, upregulated
genes common to both trajectories showed enrichment for terms related to mitochondrial
adesnosine triphosphate production, which is compatible with the idea that HSC energy
production primarily comes from glycolysis (Simsek et al., 2010; Suda et al., 2011; Takubo
et al., 2013), but cells later switch to mitochondrial oxidative phosphorylation as a means
of energy production. Mitochondrial oxidative phosphorylation may not be suitable for
HSCs as it generates intermediate free oxygen radicals that can damage DNA, potentially
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Category E only E & GM GM only

Molecular function

Biological processes

Reactome (Pathways)

Cell types 
(Mouse gene atlas)

MGI mammalian 
phenotype 

Megakaryocyte
erythrocyte progenitor
3.0 x 10-12

Folding of actin by 
CCT/TriC
3.7 x 10-10

Reticulocytosis
4.5 x 10-9

RNA binding
4.2 x 10-7

Heme O biosynthetic
process
1.0 x 10-6

Bone marrow
4.5 x 10-5

Metabolism of nucleotides
6.5 x 10-5

Respiratory electron 
transport, ATP synthesis
by chemiosmotic coupling,
and heat production by 
uncoupling proteins
0.014

No significant terms

mRNA binding
1.5 x 10-5

Maintenance of DNA
methylation
1.8 x 10-3

Granulocyte monocyte
progenitor
9.0 x 10-6

Immunoregulatory
interactions between a 
Lymphoid and a 
non-Lymphoid cell
0.032

Abnormal neutrophil
physiology
3.6 x 10-7

Protease binding
0.011

Neutrophil degranulation
2.4 x 10-12

Gene set enrichment 
analysis 

Genes correlating with
pseudotime analysis 

Remove cell cycle genes

Gene set enrichment analysis 

Terms shown with adjusted p-values (Benjamini-Hochberg method for correction for multiple hypotheses testing) 

E GM

Cell cycle

370

32

68
1

67

51

321

Fig. 3.10. Excluding cell cycle genes from gene set enrichment analysis gives insight
into other processes occurring during differentiation. Cell cycle annotated genes were
removed from the gene sets upregulated during E and GM differentiation shown in Fig. 3.8.
Gene set enrichment analysis was performed on genes unique to the E trajectory, unique to
the GM trajectory, and those shared between both trajectories after the removal of the cell
cycle related genes. Terms with adjusted p-value < 0.05 (Benjamini-Hochberg correction for
multiple testing) were considered significant.

causing problems in HSCs as they can reside in the bone marrow for a long time (Yu et al.,
2013).

Motivated by these observations, the pseudotime dynamics of hydrogen ion transmembrane
transport genes and cell cycle genes was investigated (Fig. 3.11). The expression of these
gene sets increased along both GM and E trajectories, but showed no substantial increase
along the L trajectory. These genes start increasing in the shared E and GM part of the
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trajectory, indicating a change in these processes occurs before the decision towards either
erythroid or granulocyte-macrophage fate is made.
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Fig. 3.11. Specific gene modules share upregulation along E and GM trajectories. Av-
erage expression of hydrogen ion transmembrane transport genes and cell cycle genes along
pseudotime trajectories. Each gene was normalised by the median of all 3 trajectories for
plotting. The average expression is coloured by the stage of the trajectory, and means are
shown with ± standard deviation in grey.

3.8 Single-cell data relate RNA content to differentiation

An essential step in processing gene expression data is applying a normalisation method to
account for differences in sequencing depth between samples of cells. Several approaches
for normalising raw sequencing counts exist, and a number of these have been applied to
single-cell data. For the analysis in Fig. 3.2-3.11 the commonly used approach of size factor
normalisation was applied to the data. This aims to adjust for the amount of starting material
that was sequenced in each cell. However, HSCs are known to be smaller and generally more
quiescent than progenitor cells such as MEPs, and so are expected to contain less mRNA.
The previous analysis identified sets of genes downregulated during differentiation (Fig. 3.8),
but differences in mRNA content between HSCs and more mature cells raised the possibility
that a decrease in the size factor-normalised expression values for a gene along pseudotime
might not correspond to a decrease in the absolute number of mRNA molecules.

To address this question an alternative normalisation method was devised. All cells had been
processed for sequencing with synthetic transcripts (ERCC spike-ins) added to each well
at equal concentrations. Ideally, spike-in levels in each sample should exactly correspond
to the sequencing depth for that cell. However, it was clear that the spike-in concentrations
in this experiment were not constant across all lanes (Fig. 3.12A), but instead exhibited a
batch effect linked to the day that plates were prepared for sequencing. Therefore, cells were
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first normalised by ERCC spike-in content, and then these normalised values were adjusted
for batch effect across the different sequencing lanes (Fig. 3.12B). Each plate contained
a mixture of LT-HSC, LSK and Prog cells, and this plate design was vital in making this
normalisation possible. Estimates of mRNA content based on this normalisation suggested
that cells on the E trajectory had the highest mRNA levels, followed by those in the GM
trajectory (Fig. 3.13A). This showed a similar trend to the distribution of FSC-H values,
which are an indicator of cell size (Fig. 3.13B-C).

These ERCC-normalised values were then used to investigate whether the absolute expression
of genes downregulated in pseudotime actually decreased during E and GM differentiation.
Gene lists from Fig. 3.10 were filtered by fold-change in expression difference between the
start and end of the pseudotime trajectory to identify those genes showing strong absolute
downregulation. The majority of genes were confirmed to have reduced absolute expression,
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Fig. 3.13. Cells increase in absolute RNA content during differentiation. (A) Diffusion
map coloured by estimated RNA content for each cell. RNA content was estimated by
summing the ERCC-normalised counts per cell. (B) Sum of normalised counts across
different cell types. Significances between cell types were calculated using a one-way
analysis of variance test (**, p < 0.001; ***, p < 0.0001). (C) FSC-H values across different
cell types from index sorting data. Significance was calculated using a one-way analysis
of variance test (**, p < 0.001; ***, p < 0.0001). Boxes summarise the upper and lower
quartiles and median. Whiskers extend to maximum/minimum values or upper/lower quartiles
± 1.5 × interquartile range. Points outside this range are shown as outliers.

with 120/122 genes for the E trajectory and 49/50 genes for the GM trajectory showing clear
downregulation in absolute terms along these trajectories (Fig. 3.14). Genes downregulated
along both E and GM trajectories showed enrichment for terms associated with megakary-
opoiesis, due to downregulation of genes such as Procr and Mpl, which are known to have
high expression in HSCs as well as megakaryocytes. Terms associated with downregulation
along the E trajectory were related to the immune response. The downregulated GM genes
did not show highly significant terms as there were only 12 genes in the set. These data
demonstrate that single-cell analysis allows identification of genes that are more highly
expressed in real terms in individual HSCs than in their downstream progenitors.

3.9 Conclusions

This chapter describes the analysis of scRNA-seq data for 1,654 individual haematopoietic
stem and progenitor cells from mouse bone marrow, providing a comprehensive view of the
transcriptional landscape of the upper tiers of haematopoiesis. Prior to this work, previous
studies had not achieved coverage of such a range of haematopoietic cell types at such high
resolution, in terms of both cell and gene numbers. One of the biggest limitations on the
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Genes
downregulated
in pseudotime

Category E only E & GM GM only

Molecular 
function

Biological 
processes

Reactome 
(Pathways)
Cell types 
(Mouse gene atlas)

MGI mammalian 
phenotype 

No significant terms No significant
terms

Phosphatidylcholine-sterol
O-acyltransferase activator activity
0.022

No significant terms

Post-translational
protein modification
0.042

No significant
terms

No significant
terms

No significant
terms

Neutrophil degranulation
9.7 x 10-3

Decreased B cell
and T cell numbers
5.5 x 10-8

Platelet activation,
signaling and aggregation
5.8 x 10-3

No significant
terms

Hemostasis
9.9 x 10-4

Thrombocytopenia
1.1 x 10-3

Hematopoietic
stem cells
7.7 x 10-4

Gene set enrichment analysis 

Terms shown with adjusted p-values 
(Benjamini-Hochberg method for correction for multiple hypotheses testing) 

83

37

12

GM

E

Fig. 3.14. The majority of genes downregulated in pseudotime show downregulation in
absolute terms. Table displaying the most relevant significant terms from gene enrichment
expression analysis on genes downregulated in absolute terms in E-only, GM-only, and
shared between E and GM trajectories. The numbers of genes showing downregulation in
absolute terms are displayed in the Venn diagram. Terms with an adjusted p-value < 0.05
(using Benjamini-Hochberg correction for multiple testing) were considered significant.

number of cells profiled by scRNA-seq in an experiment comes from the substantial cost
of single-cell sequencing. Compared to plate-based scRNA-seq, such as the SMART-Seq2
technology used in this work, droplet-based sequencing approaches (Klein et al., 2015;
Macosko et al., 2015) or MARS-Seq (Jaitin et al., 2014; Paul et al., 2015) vastly increased
the number of cells that could be profiled for a single experiment. These techniques were
not readily available at the time the data presented in the chapter were generated, and the
increase in cell number comes at the cost of much lower sequencing depth for each cell.
It was therefore decided that using SMART-Seq2 would be more useful in generating a
reference dataset. The sequencing data in this study detected on average over 8,000 genes
per cell, achieving substantial depth. In addition, emerging droplet-based methods did not
enable surface marker levels to be simultaneously captured along with transcriptional profiles,
meaning that retrospective gating as described here would not have been possible. This would
have made the dataset less useful as a resource to the haematopoietic community.
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3.9.1 Heterogeneity in haematopoietic populations

Although cells were captured in three sorting gates, the unbiased clustering partitioned cells
into seven groups, with cells from each gate spread across the clusters. Progenitor cells
mostly separated into erythroid, megakaryocyte, and granulocyte-monocyte clusters. It was
also interesting to see that clustering was able to identify a cluster comprised mainly of
LT-HSCs, either from the LT-HSC gate or from the LSK gate. A number of genes were
identified as differentially expressed between these clusters, helping to explain some of the
heterogeneity in the haematopoietic compartment.

However, although clustering revealed transcriptionally distinct groups of cells within the
bone marrow, the application of diffusion maps emphasised that the data could also be
represented as part of a continuous differentiation landscape. With “snapshot” data sampling
differentiating cells this type of continuous representation may be more appropriate, as
cells are not isolated in discrete groups and instead represent different stages of a contin-
uous process. Indeed some studies have presented evidence for a continuous structure of
haematopoietic differentiation (Velten et al., 2017). The structure realised by the diffusion
map was supported by the fact that previously defined haematopoietic populations were re-
stricted to clearly visible regions in the low-dimensional space. The exception to this was the
CMP population, which has been suggested to be mainly formed from erythroid or myeloid
committed cells (Paul et al., 2015; Perié et al., 2015). The diffusion map supports the idea of
CMPs as a highly heterogeneous population, and in particular the overlap of this population
with the GMP and MEP regions would agree with a lack of true erythroid-granulocyte-
monocyte progenitors in this sorting gate. Capturing the underlying transcriptional structure
of haematopoiesis allowed the inference of pseudotime differentiation trajectories through
the data from stem cells to erythroid, granulocyte-monocyte, and lymphoid lineages. This
type of landscape representation is also useful in representing a reference landscape with
which to compare independent datasets.

3.9.2 Gene expression changes throughout differentiation

As well as allowing cells to be grouped and ordered based on their gene expression, tran-
scriptional profiling also enables the investigation of exactly which genes change between
these groups or along these orderings. Here, this gave insight into differences in cell cycle be-
haviour during erythroid, myeloid and lymphoid differentiation. In particular, differentiation
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towards the lymphoid lineage was observed before an increase in cell cycle activity, suggest-
ing that here cell fate specification occurs independently from cell cycling. By profiling cells
at single-cell resolution we can also obtain insight into properties that would be obscured by
population level analysis. For example, the alternative ERCC-based normalisation allowed
absolute RNA levels to be estimated in each cell. This analysis indicated that E and GM cells
contained more mRNA, in agreement with known low Myc expression in HSCs (Guo et al.,
2009; Laurenti et al., 2008; Wilson et al., 2004), which could be linked with low levels of
transcription in keeping with the quiesence (Wilson et al., 2008) and low metabolic activity
(Suda et al., 2011; Yu et al., 2013) of these cells. Yet even with this absolute normalisation, it
was still possible to find genes with higher absolute expression in HSCs than in more tran-
scriptionally active cells, suggesting that some of these genes may be integral in maintaining
haematopoietic stem cell function.

3.9.3 Future directions

One limitation of this work is that the diffusion map analysis focused only on differentiation
towards the three major blood lineages (E, GM and L), yet assigning cells to only three
trajectories does not fully represent the range of cell types present in the blood. For example,
the unbiased clustering identified a group of megakaryocyte progenitors but the pseudotime
ordering did not construct a separate trajectory towards these cells. Granulocyte-macrophage
progenitors are also treated as one group of cells, although specification towards these
two lineages can been seen in the bone marrow at the transcriptional level (Olsson et al.,
2016). Therefore, whilst this work represents a useful first step in the analysis of these data,
further exploration of pseudotemporal ordering towards more specific blood lineages will be
necessary, and forms the starting point for the work discussed in Chapter 6.

Another interesting question is whether single-cell data can be used to go further than
identifying dynamic genes along differentiation trajectories, and allow us to investigate the
regulatory relationships controlling fate decisions. These ideas motivate the work presented
in Chapter 4.

3.9.4 Summary

In summary, the work in this chapter describes the analysis of a scRNA-seq dataset to
construct a single-cell reference map of the transcriptional landscape of haematopoiesis.
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These data demonstrate how single-cell profiling can give insight into how properties such as
gene expression and cell cycle change throughout differentiation, and are freely available as
a resource to the community.





Chapter 4

Reconstructing stem cell regulatory
network models from single-cell
molecular profiles

Parts of this section have been modified from Hamey et al. (2017). Experimental work and
some of the subsequent analysis was carried out by Sonia Nestorowa (single-cell qRT-PCR
profiling of primary bone marrow cells, quality control and normalisation of single-cell
expression data, analysis of ChIP-Seq data, luciferase assays), Nicola Wilson (single-cell
qRT-PCR profiling of primary bone marrow and HoxB8-FL cells, generation and analysis
of ChIP-Seq data), Sarah Kinston (luciferase assays), Rebecca Hannah (alignment and
analysis of ChIP-Seq data) and David Kent (isolation of primary bone marrow cells for qRT-
PCR). Computational analysis, including dimensionality reduction, developing the network
inference method, and in silico modelling of networks was carried out by F. Hamey.

4.1 Background

In blood diseases such as leukaemia, processes regulating the production of haematopoietic
cells are often dysregulated, leading to an imbalance in mature cell types. Identifying how
blood stem and progenitor cells decide between alternative fates during differentiation is
therefore an important part of understanding blood disorders. Transcriptional regulation is
one process with a role in determining cell fate decisions and controlling differentiation in
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the blood (Göttgens, 2015), with transcription factors acting as part of regulatory networks to
govern gene expression in cells (Peter and Davidson, 2015). Some early attempts at modelling
transcriptional regulation in the blood have used literature-curated regulatory relationships to
construct models (Bonzanni et al., 2013; Chickarmane et al., 2009; Krumsiek et al., 2011).
One disadvantage of such studies is that they can be limited in their ability to discover new
regulatory relationships, as they heavily rely on having good prior knowledge of the system.
Other work has used bulk expression data combined with experimental perturbations to
identify transcriptional regulation. However, the power of single-cell data in uncovering
regulatory relationships is increasingly being recognised. Both Moignard et al. (2013) and
Pina et al. (2015) used correlation analysis of single-cell qRT-PCR data to identify novel
regulatory relationships between pairs of transcription factors. In systems other than adult
haematopoiesis, single-cell expression data have been used to infer Boolean network models
in embryonic stem cells (Xu et al., 2014) and embryonic blood development (Moignard et al.,
2015).

For reliable network inference based on single-cell data it is important to both profile large
numbers of cells and to have confidence in the measured gene expression values. An existing
dataset from the Göttgens lab used single-cell qRT-PCR to quantify the expression of 48
genes, including 33 transcription factors, in over 1,600 HSPCs. These included cells from
four different HSC sorting strategies, along with cells from ST-HSC and four progenitor
populations, therefore capturing a large number of cells in different states from across
haematopoietic differentiation.

This chapter describes a transcriptional regulatory network inference method applied to
these single-cell haematopoietic data. The method uses correlation between transcription
factors combined with pseudotime ordering to infer regulatory relationships, and uncovers
differences in regulation between differentiation towards two blood cell types.
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Fig. 4.1. Profiling the haematopoietic compartment using single-cell qRT-PCR. (A)
Schematic showing the experimental overview. (B) Different sorting strategies used to
isolate haematopoietic populations for gene expression profiling. Data from 9 of the sorting
strategies were previously published (Wilson et al., 2015), and “*” indicates the three new
populations added specifically for the work in this chapter.

4.2 Single-cell qRT-PCR profiling captures the structure
of haematopoietic differentiation

A previously published dataset from the Göttgens laboratory used single-cell qRT-PCR
to profile gene expression in 1,626 cells from HSC, ST-HSC, GMP, CMP, LMPP, and
MEP mouse bone marrow populations (Wilson et al., 2015), with the aim of dissecting
heterogeneity in the stem cell compartment. As the selected genes were heavily biased
towards transcription factors it was reasoned that these data could be used to learn about
haematopoietic regulatory relationships. Because the focus of the original study was to
devise a sorting strategy to enrich for functional HSCs, the majority of cells were from the
LT-HSC and ST-HSC populations. To ensure that the data captured intermediate populations
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from differentiation, the first step of this project was to sort and profile additional populations
(Fig. 4.1). Cells from the pre-megakaryocyte-erythroid progenitor (preMegE), MPP and an
alternative sorting strategy for ST-HSC populations were isolated using FACS and profiled
by single-cell qRT-PCR measuring the same panel of 48 genes as in Wilson et al. (2015).
Combining all of the data together resulted in 2,167 murine HSPC single-cell profiles,
capturing cells at multiple stages of differentiation towards mature blood cell types. The 12
sorting strategies are indicated in Fig. 4.1B. After quality control to remove failed genes, and
the exclusion of housekeeping genes, the expression of 41 genes including 31 transcription
factor encoding genes was retained.

Dimensionality reduction techniques were applied to establish how well these data could
represent the transcriptional landscape of haematopoiesis, and ensure that the new data
integrated with the previously published dataset. Diffusion maps, a non-linear dimensionality
reduction method recently adapted for use with single-cell data (Coifman et al., 2005;
Haghverdi et al., 2015), revealed a low-dimensional landscape consistent with the classic
haematopoietic hierarchy (Fig. 4.2A). This structure was supported by t-SNE and PCA
embeddings, and all three visualisations demonstrated good integration between the new and
old datasets (Fig. 4.2).

4.3 Differentiation trajectories towards two blood lineages
can be constructed from single-cell expression profiles

Wilson et al. (2015) identified a subset of HSCs with increased probability of long-term
multilineage reconstitution upon single-cell transplantation, which they named the molecular
overlapping population (MolO) cells. As well as providing a visualisation of the data, the
diffusion map analysis demonstrated that the HSCs separated from progenitor populations
(Fig. 4.3A), with the MolO cells occupying a distinct region of the diffusion map. Addition-
ally, MEPs, which generate both megakaryocyte and erythroid cells, and LMPPs, producing
both lymphoid and myeloid cells, also occupied separate regions of the diffusion map, with
intermediate cell populations present between the HSCs and more mature progenitors. This
suggested that the diffusion map representation could help to capture cells on differentiation
trajectories from stem cells towards different mature cell types (Fig. 4.3B).
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Profiles of three
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Profiles of three
new populations
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Fig. 4.2. Single-cell expression profiling of haematopoietic genes captures differentia-
tion structure. (A) Diffusion map dimensionality reduction calculated on expression of
41 genes measured by qRT-PCR. Panels from left to right are coloured by sorting gate,
phenotypic cell type, and the integration of new data into the data from Wilson et al. (2015).
DC, diffusion component. (B) t-distributed stochastic neighbour embedding (t-SNE) showing
the same cells, with colours as above. (C) Principal component analysis (PCA) showing the
same cells, with colours as above. PC, principal component.
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Fig. 4.3. Single-cell gene expression data capture differentiation decision between
MEPs and LMPPs. (A) Diffusion map from Fig. 4.2A highlighting cells from three specific
populations. Cells outside these populations are coloured grey. MolO, molecular over-
lapping population from Wilson et al. (2015); MEP, megakaryocyte-erythroid progenitor;
LMPP, lymphoid-primed multipotent progenitor; DC, diffusion component. (B) Schematic
highlighting the fate decision from stem cells to MEP or LMPP progenitor populations.

Motivated in part by the diffusion map structure, the next aim was to use the single-cell data to
understand how transcription factor expression varies throughout differentiation. Coordinates
in the diffusion map space were used to identify cells on differentiation branches from HSCs
to MEPs and from HSCs to LMPPs, following the method of Ocone et al. (2015). As shown in
Fig. 4.4A, this assigned cells to two broad differentiation branches, which were then ordered
by progress through differentiation using the Wanderlust algorithm (Bendall et al., 2014).
The algorithm assigns each cell a pseudotime value, which can then be used to investigate
how properties of the cells change throughout differentiation. Several transcription factors
displayed strong expression dynamics, often exhibiting different behaviour between the two
trajectories (Fig. 4.4B). For example, Notch expression increased through the trajectory to
LMPPs but was almost entirely unexpressed during differentiation towards MEPs. In contrast,
expression of Gata1 was only activated during differentiation towards MEPs. Other genes,
such as Myb, demonstrated increased expression along both trajectories.

Calculating pairwise correlation between transcription factor expression in the two trajectories
revealed groups of genes with similar expression patterns during differentiation (Fig. 4.5).
From this analysis it was apparent that genes with strong correlation in one trajectory could
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Fig. 4.4. Cells can be computationally ordered along differentiation trajectories to-
wards two progenitor cell types. (A) Differentiation trajectories from stem cells to MEPs
(top panel) and to LMPPs (bottom panel) highlighted in the diffusion map. Cells in the
trajectory are coloured by pseudotime value ranging from blue (early in pseudotime) to red
(late in pseudotime). Cells not included in the trajectory are shown in grey. (B) Heatmaps
showing expression of transcription factor encoding genes measured by qRT-PCR. Cells are
ordered by pseudotime along the two trajectories, and the dendrogram for each heatmap
indicates the results of hierarchical clustering on the genes. Colourbars at the top of each
heatmap indicate the cell types along each trajectory, matching the colour key displayed
below the heatmaps.

show a very different relationship in the other. For example, in the MEP trajectory Erg and
Myb were highly negatively correlated, but were positively correlated in the LMPP trajectory.
This raised the possibility that these data could be used to uncover differences in regulatory
relationships between the two trajectories.

4.4 Gene regulatory network models can be inferred from
the pseudotime dynamics of single-cell data

Differences in the behaviour of transcription factors between the two trajectories sug-
gested that these data could be used to help understand transcriptional regulation linked to
haematopoietic differentiation. One of the challenges in inferring transcriptional regulation
from gene expression data is determining the direction of regulation. Correlation based
approaches, such as used by Moignard et al. (2013) and Pina et al. (2015), require additional
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Fig. 4.5. Groups of transcription factors with similar expression patterns change be-
tween MEP and LMPP trajectories. Heatmaps showing Spearman’s correlation of pairs
of genes along the two pseudotime trajectories. Dendrograms indicate results of hierarchical
clustering on genes.

information to discover which are the source and target genes in an activating pair. This
type of information can be obtained from sources such as transcription factor binding assays,
perturbation information, or time course data. Here, it was hypothesised that the dynamics
from the pseudotime ordering could be used to identify regulatory relationships between
transcription factors.

Studies in HSCs (Bonzanni et al., 2013), embryonic stem cells (Dunn et al., 2014; Xu
et al., 2014) and embryonic blood development (Moignard et al., 2015) have all successfully
used Boolean abstraction to capture the behaviour of their respective systems by modelling
transcriptional regulatory networks. However, there are limitations with Boolean modelling,
most notably that gene expression can only take binary values in these models. In an attempt
to address this limitation, the decision was made to develop a hybrid network inference
method based on information about continuous gene expression levels (Fig. 4.6A). Firstly,
potential regulation between genes was identified by taking the gene pairs with the highest
pairwise partial correlations across the data. For each gene, this potential activation or
repression was then abstracted to Boolean functions, giving an ensemble of possible Boolean
functions for each gene (Fig. 4.6B).
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Fig. 4.6. Gene regulatory network models can be inferred from single-cell gene expres-
sion profiles. (A) Overview of steps in the network inference method. (B) Possible regulatory
rules for each gene are identified using a gene-gene correlation network as input. Gene pairs
showing the strongest positive or negative correlations are linked together in the network,
with positive correlation shown in red and negative correlation in blue. These are then treated
as activating or repressing relationships, respectively. The regulators of each gene define a set
of potential Boolean functions governing the expression of that gene. Three of the possible
functions for G1 are shown here. ∧, AND; ∨, OR. (C) The pseudotime trajectory is used
to identify the most suitable Boolean functions. Cells are ordered in pseudotime (based on
continuous expression data) and converted to binary expression profiles. Pairs of cells a fixed
distance apart then represent input–output pairs to the Boolean function. These pairs are
used to score a Boolean function F by comparing F(Ik) to Ok for a pair (Ik,Ok). The highest
scoring function is the one where these values agree for the greatest number of pairs.

In previous studies where single-cell data have been used to infer Boolean regulation each
single-cell profile was considered to be an allowed state of the Boolean network (Moignard
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et al., 2015; Xu et al., 2014). Here, the aim was to use the inferred pseudotime dynamics
to describe permitted transitions between states, and use this to score the ensemble of
functions. Pairs of cells throughout pseudotime were treated as an input to and output from a
Boolean function (Fig. 4.6C), and this was used to investigate which of the functions from
the correlation analysis best fitted the data. A detail description of the method can be found
in Chapter 2. This method was applied to the single-cell qRT-PCR data to identify two sets of
functions: one to construct a network for the HSC to MEP trajectory and another for the HSC
to LMPP trajectory. Fig. 4.7 displays simplified regulatory relationships showing activation
and repression between pairs of genes. The full list of regulatory relationships can be found
in Appendix A. Code for performing the network inference is freely available from GitHub
(https://github.com/fionahamey/Pseudotime-network-inference).

MEP network model LMPP network model
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https://github.com/fionahamey/Pseudotime-network-inference
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4.5 Network analysis identifies biologically meaningful
stable states

The Boolean network models inferred from the single-cell data showed complex structures
(Fig. 4.7), with an average of four regulating transcription factors per gene, often as part of
composite Boolean functions (Table A.1 in Appendix A). To assess whether these networks
recapitulated HSPC biology, analysis was performed to identify stable states of both networks
(Fig. 4.8A). Importantly, when the binary stable states of the models were compared to the
qRT-PCR data (converted to binary expression values), it could be seen that the stable states
of the MEP network model matched only with binary MEP expression profiles and not those
of LMPPs, whereas for the LMPP network model the stable states matches were found within
the LMPP and not MEP cells (Fig. 4.8B). To visualise where the stable states were positioned
in the transcriptional landscape, cells with the observed qRT-PCR profiles most closely
matching the stable states were highlighted in the diffusion map (Fig. 4.9). For the stable
states corresponding to an observed binary expression state in the primary bone marrow data
the matching cell was simply highlighted in the diffusion map. When a stable state was not
present in the binary qRT-PCR data instead the closest matching binary expression profile
(differing in the expression of the smallest number of genes) was identified and highlighted
in the diffusion map. If multiple binary expression states were equally good matches then
their expression in the continuous high-dimensional space was averaged and projected onto
the diffusion map using the destiny dm.predict function. This process revealed that the stable
states of the network models corresponded most closely to expression profiles found along
the relevant trajectories for each network.

A limitation of this analysis is that all stable states of the network are identified, irrespective
of whether they can be reached from a biologically meaningful starting point. To see whether
the states matching with MEP and LMPP binary expression profiles could be reached from
a starting point corresponding to stem cell gene expression, trajectories were simulated
starting from MolO expression profiles. This confirmed that simulations originating from
the MolO states could stabilise on either MEP or LMPP expression states, depending on
the network model used. Together, these results demonstrate that the network models
recapitulate the behaviour of HSCs differentiating towards two different haematopoietic
progenitor populations.
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Fig. 4.8. Stable states of network models can be identified and compared to binary
expression profiles from MEP and LMPP cells. (A) Stable states of MEP network model
showing “ON/OFF” states of each gene. (B) Stable states of LMPP network model. Hhex and
Mitf did not feature in the inferred LMPP network model, other than with a self-activation
link, and so were excluded from the stable state analysis. (C) Gene expression profiles of
MEPs measured by qRT-PCR and converted to binary expression based on whether a gene
was detected in a cell. (D) Binary gene expression profiles of LMPP cells. Dendrograms
indicate hierarchical clustering of stable states or cellular expression profiles.
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Fig. 4.9. Network models exhibit biologically meaningful stable states. Diffusion map
of qRT-PCR profiles indicating three specific cell types (left panel), and with projected stable
states of MEP (centre panel) and LMPP network models (right panel). Colour of the projected
states indicates how closely the stable state matches with a binary expression profile observed
in the single-cell qRT-PCR data, with the darkest colours corresponding to exact matches
and paler colours representing disagreement in one or more genes. DC, diffusion component;
MolO, molecular overlapping population of stem cells; MEP, megakaryocyte-erythroid
progenitor; LMPP, lymphoid-primed multipotent progenitor.

4.6 Differences in network connectivity are supported by
transcription factor binding

When comparing the Boolean models it was noted that two regulatory relationships involving
Gata2 were different between the two networks. Positive regulation of genes Nfe2 and
Cbfa2t3h by Gata2 was present in the MEP network model, but was absent in the LMPP
network model (Fig. 4.7, 4.10A). As validation of these regulatory differences would be
challenging with primary cells, two haematopoietic model cell lines were used instead to
investigate the relationships. These, the 416B cell line (Dexter et al., 1979) and the HoxB8-FL
cell line (Redecke et al., 2013) have been described as having megakaryocyte and lympho-
myeloid potential, respectively. Single-cell qRT-PCR data from these cell lines measuring
the same genes as in the primary HSPCs were projected onto the diffusion map, and this
confirmed that 416B cells resembled cells on the MEP trajectory, and the HoxB8-FL cells
those on the LMPP trajectory (Fig. 4.10B).
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Fig. 4.10. Gata2 regulation unique to the MEP network model is supported by tran-
scription factor binding. (A) Activating relationships found in the MEP but not LMPP
network models. (B) Diffusion map projection of single-cell qRT-PCR data from haematopoi-
etic cell lines. Primary bone marrow HSPCs are shown in grey. (C) ChIP-seq analysis of
GATA2 in 416B and HoxB8-FL cell lines. (D) Luciferase assays showing activity at the
Cbfa2t3h promoter and Nfe2 enhancer in wild-type and GATA2 mutant regulatory regions. *,
p < 0.05; **, p < 0.01; ***, p < 0.001; two-tailed unpaired t-test, n = 3. Error bars show ±
standard deviation. WT, wild-type.

Chromatin immunoprecipitation sequencing (ChIP-seq) data from the two cell lines revealed
strong binding of GATA2 at the Cbfa2t3h promoter and the Nfe2 enhancer in the 416B cell
line, with only very limited binding in the HoxB8-FL cells (Fig. 4.10C). Luciferase assays
were performed in the 416B cell line to confirm that this binding corresponded to positive
regulation. When the GATA2 binding sites in the Cbfa2t3h promoter or Nfe2 enhancer
regions were mutated, a significant reduction in luciferase activity was observed compared
to the activity in non-mutated cells (Fig. 4.10D), supporting the regulation predicted by the
network modelling.

4.7 Conclusions

The work in this chapter describes a transcriptional regulatory network inference method
applied to single-cell qRT-PCR data from murine haematopoietic populations to infer regu-
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latory networks for two alternative differentiation processes. Comparison of the networks
revealed differential gene regulation between the two differentiation trajectories.

4.7.1 Network inference and modelling method

The concept of inferring gene regulatory network models from expression data is well-
established, with many examples from a wide range of systems (Peter and Davidson, 2015).
A variety of approaches have been used to infer and encode these networks, including the
Boolean modelling used for the work described in this chapter. Boolean models have been
successfully used in studies in the blood (Bonzanni et al., 2013; Moignard et al., 2015) and
other biological systems (Dunn et al., 2014; Peter et al., 2012; Xu et al., 2014). Boolean
models remain a popular technique due to the interpretability of encoding regulatory functions
as logical relationships, and their power in allowing simulation of possible network states
(Fisher and Piterman, 2010). Indeed, several studies in the stem cell field have used Boolean
modelling techniques effectively to infer networks from gene expression data. Similar to
Dunn et al. (2014) and Moignard et al. (2015), the work here used observed expression
measurements to encode the solution to the network, but with some key differences. Dunn
et al. (2014) rely on bulk perturbation data for their model, which is much harder to generate
in in vivo systems such as haematopoiesis, and also obscures heterogeneity linked to cell
fate decisions. Moignard et al. (2015) on the other hand used single-cell data, but only
consider binary gene expression, and do not explicitly model a pseudotime ordering, instead
constructing state transitions between cells based on a change in one gene. By not considering
continuous data they may lose accuracy in modelling how cells move between states along
differentiation. Again using single-cell data, Xu et al. (2014) used scRNA-seq data to score
possible Boolean rules, similar to the idea of using the pseudotime ordering, but here they
treated each cell as a stable state of the network, which is not applicable to a differentiating
system such as haematopoiesis.

However, an obvious limitation of Boolean models is their reduction of gene expression
to a binary state, where each gene must be considered “ON” or “OFF”. To overcome this
problem, whilst still maintaining the benefits of a logical modelling formalism, some studies
have chosen to extend Boolean modelling to multilevel modelling, where instead of only
two allowed values gene expression can take one of several discrete levels (Collombet et al.,
2017). This could be interesting to explore in a network inference approach from single-cell
data, but would present a challenge in deciding how to define the thresholds for multiple
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levels of gene expression. An alternative network representation is offered by differential
equation models, as used by the method of Ocone et al. (2015), which used pseudotime
ordering of single-data to infer regulatory relationships. The strength of such models lies
in considering the actual level of gene expression, which could cause different responses at
different thresholds (Wolpert, 1969), but there are computational restrictions on how many
genes can be included in the model. Bayesian models are another alternative, as demonstrated
by Schütte et al. (2016), but these can only consider networks of a certain topology, excluding
cyclical relationships and therefore ruling out motifs such as self-activation. The method
described in this chapter, does not have these restrictions, which is the compensation for
restricting the model to binary expression states.

4.7.2 Examples of known regulation captured by the models

It was reassuring to see that evidence for several examples of transcriptional regulation
inferred by the network models could be found in the literature. One such relationship was
the activation of Gfi1b by Gata2, which was present in both networks. This regulation was
identified by Moignard et al. (2013) as a gene pair with highly correlating expression, and
subsequently validated using ChIP-seq and luciferase assays. A different type of regulatory
relationship with support from experimental studies was seen in the form of the self-activation
of Fli1 in the MEP network model. Donaldson et al. (2005) experimentally validated a small
network of transcription factor interactions, which included a feed-forward activation loop
for Fli1. Prior work also showed that Gata2 activates the transcription factor Tal1 as part of
initiating the blood program (Göttgens et al., 2002), and activation of Tal1 by Gata2 is seen
in both the LMPP and MEP network models.

4.7.3 MEP network specific regulation

Network inference on the single-cell HSPC expression data and subsequent experimental
validation led to the identification of Gata2 regulation unique to the MEP network model,
with this transcription factor activating Cbfa2t3h and Nfe2. The primary role of Gata2
is in regulating haematopoietic stem and progenitor cell function, playing a part in the
formation of haematopoietic cells and in maintaining stem cells (Lim et al., 2012; Rodrigues
et al., 2005; Tsai and Orkin, 1997). Its importance in the haematopoietic system has been
confirmed by observations such as severe haematopoietic defects in Gata2 knock-out mice
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(Tsai et al., 1994). Cbfa2t3h is a known regulator of differentiation towards the erythroid
and megakaryocyte lineages (Fujiwara et al., 2010; Goardon et al., 2006; Hamlett et al.,
2008) and encodes the transcription factor ETO2 (Schuh et al., 2005). It has been shown
that GATA2 binding to Cbfa2t3h activates this gene, which is then followed by ETO2
binding and repressing its own promoter, as part of the initiation of transcriptional programs
driven by Gata1 during erythroid differentiation (Fujiwara et al., 2009). Nfe2 is an upstream
regulator of globin genes and is necessary for generation of megakaryocytes (Ney et al.,
1993; Shivdasani et al., 1995b). By linking an early stem cell regulator in the form of Gata2
to the erythroid-megakaryocyte related genes Nfe2 and Cbfa2t3h in the MEP network model
this provides an insight into how cells can switch from general gene expression programs to
activating lineage specific genes.

4.7.4 Limitations from using qRT-PCR data

Although single-cell qRT-PCR data provide a sensitive way of measuring gene expression in
individual cells, any network inferred using these data is restricted to the genes measured by
the assay. These are hand-picked and therefore limit the potential for discovery of regulatory
relationships involving novel genes, inevitably leading to incomplete network models. This
may miss key regulatory relationships and also may lead to the misinterpretation of indirect
regulation between genes as a direct regulatory relationship, due to intermediate regulators
being absent from the assay. In the specific context of this work, the data were previously
published by Wilson et al. (2015), with the aim of dissecting heterogeneity within the stem
cell compartment. The authors therefore chose genes that were biased towards regulators
of stem cells maintenance and, in particular, this choice lacked key regulators of lymphoid
development. There were also technical issues with some genes, including Gfi1, which had
to be excluded from the analysis. Together this means that some important regulators of
haematopoietic differentiation were missing from the network models. Related to the issue
of hand-selecting genes, there was another limitation from using the qRT-PCR data in terms
of incomplete lineage resolution when constructing differentiation trajectories. Whilst a clear
separation between LMPP and MEP progenitors could be observed with the measured genes,
Fig. 4.2 shows that other progenitor populations were not as well resolved, for example GMP
and LMPP populations had substantial overlap in the dimensionality reduction plots. The
work from Chapter 3 demonstrates that these different cell types can be separated based on
the full transcriptome, suggesting that the qRT-PCR gene panel does not fully capture the
transcriptional heterogeneity linked to differentiation that is present within these cells.
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However, avoiding the bias due to hand-picking genes for single-cell qRT-PCR would require
use of technologies such as scRNA-seq to measure gene expression. This would come with
its own challenges for network inference. Inferring a network on hundreds or thousands of
genes would have issues for scalability, and exclude some types of network modelling due to
the number of genes involved. The interpretability of such models would also be challenging,
particularly if simulation of these networks was not possible due to their scale. Another
problem, particularly when considering using Boolean network modelling, arises from the
issue of so-called “dropouts” in scRNA-seq data — when a gene is present in a cell but not
detected in the sequencing data. Dropouts make categorising expression into binary states
more challenging. Single-cell qRT-PCR data do not suffer from these limitations to the same
extent, and therefore represent a useful starting point for network inference as demonstrated
in this chapter.

4.7.5 Future directions

Future work would aim to investigate ways in which regulatory relationships between
transcription factors could be identified in a less biased way, based on scRNA-seq data.
Whilst a full network inference method may not be feasible for the reasons discussed above,
this work could be important in finding previously unknown genes involved in haematopoietic
fate decisions. This idea provided the motivation behind the work discussed in Chapter 6.
Work on extending network inference methods to scRNA-seq data would also explore the
potential of using computational methods to impute missing values in these datasets to
address the issue of dropouts, as this could allow techniques such as Boolean modelling to
be applied to these data (Eraslan et al., 2018; van Dijk et al., 2018).

4.7.6 Summary

In summary, this chapter describes applying a computational network inference method to
single-cell gene expression data to compare differences in transcriptional regulation between
differentiation towards two haematopoietic lineages.



Chapter 5

Dissecting heterogeneity within human
lympho-myeloid progenitors

Parts of this section have been modified from Karamitros et al. (2018), on which F. Hamey
carried out the bioinformatics analysis of single-cell data. Single-cell gene expression
analysis experiments were performed by Dimitris Karamitros and Bilyana Stoilova and
scRNA-sequencing data were aligned by Evangelia Diamanti. Single-cell functional assays
were performed by Dimitris Karamitros, Bilyana Stoilova and Zahra Aboukhalil, who also
analysed and summarised the functional output of these experiments. F. Hamey performed
analysis of single-cell gene expression data (except for the alignment of sequencing data)
and analysis of surface marker expression linked to the functional assays.

5.1 Background

Despite study over many years, the human blood progenitor compartment still remains
incompletely understood, with debate surrounding the exact hierarchy leading to the pro-
duction of mature blood cells (Laurenti and Göttgens, 2018). In particular, in relation to the
lymphoid and myeloid lineages, several progenitor populations with a mixture of lymphoid
and myeloid potential have been described in the human haematopoietic system. LMPPs
have been defined as Lin- CD34+ CD38- CD90neg-lo CD45RA+ CD10- cells, and it has been
shown these can give rise to granulocytes, monocytes, B cells and T cells, but do not produce
erythroid or megakaryocytic output (Goardon et al., 2011). Differing in their expression of
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CD10, multi-lymphoid progenitors (MLPs) are another progenitor population with lympho-
myeloid output. These Lin- CD34+ CD38- CD90neg-lo CD45RA+ CD10+ cells are capable of
producing lymphoid cells (B cells, T cells and NK cells) as well as monocytes and dendritic
cells. However, MLPs do not have the potential to produce granulocytes (Doulatov et al.,
2010). Progenitor populations with stronger bias towards the myeloid lineages also exist,
including GMPs (defined as Lin- CD34+ CD38+ CD45RA+ CD123+), which have residual
lymphoid potential but produce mainly cells belonging to the myeloid lineages (Goardon
et al., 2011; Lee et al., 2015).

Work in the past decade has provided support for a hierarchical model of human haematopoiesis
with LMPPs upstream of both MLP and GMP progenitors (Görgens et al., 2013). However,
recent studies have questioned the idea of this hierarchical organisation, instead arguing
for a model where HSCs differentiate into unilineage blood progenitors without passing
through populations with stepwise loss of lineage potential (Notta et al., 2016; Velten et al.,
2017). Such debate highlights the need for single-cell analysis of blood progenitors. The
work in this chapter focuses on single-cell gene expression profiling of GMPs, LMPPs and
MLPs to examine the transcriptional programs present within these human lympho-myeloid
progenitors, and also considers the results of single-cell functional assays to examine their
functional heterogeneity (Fig. 5.1). The single-cell functional assays identified bipotent
lympho-myeloid progenitors and, by linking the surface marker expression of cells to their
functional output in single-cell assays, new sorting strategies were defined to enrich for
function within the conventional GMP and LMPP sorting gates. Both transcriptional and
functional analyses support the idea of a continuum between commitment to lymphoid and
myeloid cell fates, rather than a discrete hierarchy.

Single-cell
functional assays

Transcriptional
profiles

Human CD34+
cord blood cells

Single-cell
RNA-sequencing

Single-cell
qRT-PCR

Index-sorting

Functional
output

Fig. 5.1. Strategy for assaying heterogeneity within human cord blood progenitors.
Schematic shows how human cord blood progenitors were isolated and assayed at the
single-cell level to measure the gene expression and functional output from individual cells.
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5.2 Single-cell profiling reveals a continuum of gene
expression in human lympho-myeloid progenitors

To investigate transcriptional heterogeneity within lympho-myeloid progenitor populations,
the expression of genes linked to myeloid and lymphoid cell fates was measured in GMPs,
LMPPs and MLPs using single-cell qRT-PCR. After quality control, this resulted in 919
transcriptional profiles of cells from four cord blood donors. Whilst many genes in this
set were only detected at very low levels, hierarchical clustering was able to separate cells
into three clusters (Fig. 5.2A). Cluster 1 was formed from a mixture of mostly LMPP and
MLP cells (Fig. 5.2B), and had higher expression of genes such as MME (CD10) and IGHM

(immunoglobulin heavy constant mu). Cluster 2 had a different cell type composition,
containing mostly GMP and LMPP cells along with a small number of MLPs. Cluster
3 displayed the highest expression of myeloid genes such as MPO and CSF3R and also
contained a small group of cells with expression of more mature myeloid markers PRTN3

and CSF1R. Almost 90% of cells in this cluster were GMPs. Together, this analysis was
able to separate cells into a cluster with higher expression of lymphoid genes, a cluster with
expression of myeloid genes, and a cluster without strong expression of either set of lineage
markers. It was also interesting to see that cells did not simply separate based on FACS
phenotype, instead showing considerable overlap between these sorted populations.

As many of the genes selected for profiling by single-cell qRT-PCR were detected in very
few cells, it was decided to perform less biased analysis using scRNA-seq on the same
three progenitor populations. Cord blood cells were isolated from two donors and processed
separately (Fig. 5.3A, B). Clustering of the single-cell profiles using graph-based clustering
identified three groups with similar cell type composition to the qRT-PCR clusters: cluster
1 composed of mostly LMPP and MLP cells, cluster 2 with more balanced composition
between GMP and LMPP cells, and cluster 3 formed from mostly GMPs (Fig. 5.3C, D).
Differential expression between cells in a cluster and the remaining cells was performed
using the Wilcoxon rank sum test, and the top 10 most significant genes for each cluster
displayed in the heatmaps in Fig. 5.3A, B. This was able to identify lymphoid genes such as
MME, JCHAIN and LTB with highest expression in cluster 1, and myeloid genes including
ELANE, MPO, and PRTN3 with highest expression in cluster 3 cells.
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Fig. 5.2. Single-cell gene expression profiles capture the transcriptional heterogeneity
of human lympho-myeloid cord blood progenitors. (A) Heatmap of gene expression in
human cord blood progenitors measured by single-cell qRT-PCR. Dendrograms indicate
results of hierarchical clustering on genes (rows) and cells (columns). Clustering on cells
separated cells into three clusters. (B) Cell type compositions of clusters shown in heatmap.
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Fig. 5.3. The clustering of qRT-PCR profiles is supported by scRNA-seq data. (A, B)
Heatmaps of gene expression in human cord blood progenitors measured by scRNA-seq.
Cells are from one donor in each panel. (C, D) Cell type composition of the clusters shown
in heatmaps.
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Next, dimensionality reduction was performed to visualise the structure present within the
gene expression datasets. PCA on qRT-PCR and RNA-seq data captured a continuum from
MLPs through LMPPs to GMPs along PC1 (Fig. 5.4A). Visualising the clusters from Fig.
5.2 and 5.3 on the PCA showed that cluster 2 was positioned between clusters 1 and 3,
supporting the idea of cluster 2 having an intermediate gene expression pattern compared to
the lymphoid or myeloid expression of clusters 1 and 3.
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Fig. 5.4. Single-cell data reveal a continuum of lympho-myeloid gene expression. (A)
Principal component analysis dimensionality reductions on human cord blood progenitors
coloured by cell type. Top, middle and bottom panels show qRT-PCR data, RNA-seq
data from one donor, and RNA-seq data from a second donor, respectively. PC, principal
component. (B) Principal component plots coloured by clusterings shown in Fig. 5.2 and 5.3.
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5.3 Conventional sorting strategies can be refined to
enrich for function

As well as assaying transcriptional heterogeneity within lympho-myeloid progenitor popula-
tions, GMPs, LMPPs and MLPs were also isolated for single-cell culture assays to assess their
functional output (Fig. 5.5A). Individual cells were sorted into culture conditions supporting
both lymphoid and myeloid output, and the cultures scored for granulocyte, monocyte, B
cell and NK cell output after 14 days (see Chapter 2 for details). Using FACS to investigate
functional output allowed individual cells to be categorised as having lymphoid, myeloid, or
mixed lympho-myeloid output (Fig. 5.5B). In keeping with the reported lympho-myeloid
biases of these cell types, GMPs produced predominately myeloid cells, and LMPPs and
MLPs had mostly lymphoid output, with MLPs almost entirely giving rise to lymphoid
colonies. Interestingly, a number of cells were found to produce both lymphoid and myeloid
output, showing that these progenitors were not restricted to only one of the myeloid or
lymphoid lineages.

As cells were index-sorted for the functional experiments this meant that cell surface marker
levels were recorded for each individual cell. Dimensionality reduction was performed
on the surface markers measured by index-sorting to see whether cells separated based on
their functional output (Fig. 5.5C-E). Whilst considerable overlap between the functionally
different cells was seen, some regions of the PCA were occupied by predominantly myeloid
or lymphoid cells in the GMP and LMPP populations, respectively (Fig. 5.5C, D). To
determine whether these surface marker levels could be used to separate function within the
conventional sorting gates, pairwise comparisons between the level of each surface marker
were made between different functional outputs (Table 5.1). In particular, this highlighted
significantly different levels of CD38 between all three functional categories amongst the
GMP cells. Closer inspection revealed that GMPs with purely myeloid output had the
highest levels of CD38 (Fig. 5.6A, B). Within the LMPP population both CD10 and CD45RA
levels were significantly higher in lymphoid output cells compared to both lympho-myeloid
and pure myeloid producing cells (Table 5.1, Fig. 5.6C-E). Scatter plots of these surface
markers suggested that GMP and LMPP gating strategies could be further refined to enrich
for function based on these surface marker levels (Fig. 5.6B, E).



102 Dissecting heterogeneity within human lympho-myeloid progenitors

Table 5.1. Linking differences in surface marker levels to functional output. Signifi-
cance in differences between surface marker levels across different functional groups within
a cell type. Values in table represent p-values from Wilcoxon rank-sum test. Ly, lymphoid
output; Ly-My, mixed lymphoid and myeloid output; My, myeloid output.

Marker
Ly vs My Ly vs Ly-My My vs Ly-My

GMP LMPP GMP LMPP GMP LMPP

CD38 1.6 ×10−8 0.041 3.6 ×10−3 0.89 1.6 ×10−11 0.082
CD34 1.2 ×10−3 0.72 0.46 0.38 0.10 0.64
CD123 0.98 0.20 0.87 0.023 0.75 0.42
CD10 2.4 ×10−8 5.1 ×10−4 0.091 2.1 ×10−3 0.19 0.70
CD90 0.84 0.77 0.20 0.019 0.063 0.29
CD45RA 2.0 ×10−3 0.023 5.3 ×10−4 1.8 ×10−6 0.026 0.16

Motivated by the significant differences in CD38, CD10 and CD45RA between GMPs and
LMPPs with different functional output, it was decided to investigate whether subsets of the
GMP and LMPP cell types could be enriched for function using new sorting strategies based
on these markers (Fig. 5.7A, B). CD10hi CD45RAhi LMPPs and CD10lo CD45RAlo LMPPs,
denoted as LMPPly and LMPPmix, respectively, were isolated from cord blood (Fig. 5.7A).
Based on the previous functional analysis it was hypothesised that the LMPPly, but not the
LMPPmix, population would enrich for lymphoid output, compared to conventionally sorted
LMPPs. This hypothesis was supported by the functional output of single-cell cultures of
these progenitors in two different culture conditions (Fig. 5.7Ci, ii). In these assays LMPPly

cells had almost no myeloid output and indeed significantly lower myeloid output than LMPP
and LMPPmix cells (p = 0.0496 and p = 0.0280, respectively, Fisher’s exact test). Similarly,
in an attempt to enrich for myeloid function within GMPs, cord blood cells were also sorted
based on their levels of CD38. CD38hi cells were further sorted based on CD10, CD45RA
and CD123 to isolate the GMP CD38hi population (Fig. 5.7B). CD38int CD45RA+ CD10-

cells, denoted as CD38mid, and CD38lo LMPPs were also sorted. As the CD38lo population
represented only 1 in 108 mononuclear cells it was too rare to be assessed in single-cell
cultures. However, the functional output of CD38hi GMPs and the CD38mid population
was assessed at the single-cell level (Fig. 5.7D). The lymphoid and lympho-myeloid output
of the CD38hi GMPs was significantly lower than that of conventionally purified GMPs
(p < 0.0001 and p = 0.0115, respectively, Fisher’s exact test), showing that CD38hi GMPs
were enriched for myeloid output.
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measured by index-sorting. Cells are coloured based on the cell types present within the
colony they produced.
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Fig. 5.6. Single-cell assays reveal link between surface markers and function in blood
progenitors. (A) CD38 surface marker expression of GMPs grouped by functional output.
p = 1.6×10−11 (myeloid vs lymphoid), p = 1.6×10−8 (myeloid vs lympho-myeloid), and
p = 3.6× 10−3 (lymphoid vs lympho-myeloid), Wilcoxon rank-sum test. (B) CD38 vs
CD34 surface expression in GMPs. (C) CD10 surface marker expression of LMPPs grouped
by functional output. p = 2.1×10−3 (lymphoid vs lympho-myeloid) and p = 5.1×10−4

(lymphoid vs myeloid), Wilcoxon rank-sum test. (D) CD45RA surface marker expression
of LMPPs grouped by output in single-cell functional assays. p = 1.8×10−6 (lymphoid vs
lympho-myeloid) and p = 0.023 (lymphoid vs myeloid), Wilcoxon rank-sum test. (E) CD10
vs CD45RA surface expression in LMPPs. All fluorescence intensities were transformed
using the logicle transform function from the flowCore package and normalised across sort
days within each cell type. Boxes indicate median, upper and lower quartile, and whiskers
extend to either maximum/minimum values, or upper/lower quartiles ± interquartile range.
Points outside this range are shown as outliers.
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Fig. 5.7. New flow-cytometry sorting strategies can purify for function in LMPP and
GMP compartments. (A) Revised sorting strategy of cord blood LMPP cells based on
CD45RA and CD10 expression. Numbers indicate percentages of cells in the parental gate,
which has the sorting strategy written above each panel. (B) Revised sorting strategy of
cord blood GMPs based on levels of CD38 expression. (Ci, ii) Functional output of single
cells from original and revised sorting strategies in two different culture conditions. Sorting
strategies for LMPPly and LMPPmix cells are indicated in panel A. (D) Functional output of
single cells from original and revised sorting strategies based on CD38 expression. GMP
CD38hi and CD38mid strategies are indicated in panel B.

To relate the functional output of lympho-myeloid progenitors to their transcriptional profiles,
the levels of CD10 and CD38 were investigated in the cells profiled using scRNA-seq
(Fig. 5.8A). CD10 levels showed significant differences between the cluster 1 and cluster
3 LMPPs, with cluster 3 LMPPs having significantly lower CD10 expression. As cluster 3
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cells exhibited expression of mainly myeloid genes this was consistent with the functional
enrichment seen in the revised LMPP sorting strategies. Additionally, GMPs in cluster 3
displayed significantly higher CD38 levels than both cluster 2 and cluster 1 GMPs (Fig.
5.8B), again consistent with the gene expression programs of these cells.
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Fig. 5.8. RNA-seq clusters display differences in CD10 and CD38 surface marker ex-
pression. (A) CD10 surface marker expression in LMPP scRNA-seq profiles grouped by
the clustering in Fig. 5.3. Donor 1, p = 0.017; Donor 2, p = 0.029, Wilcoxon rank-sum
test. (B) CD38 surface marker expression of GMPs profiled by scRNA-seq and grouped by
the clustering in Fig. 5.3. Donor 1, p = 0.0044; Donor 2, p = 0.046 (1 vs 3) and p = 0.046
(2 vs 3). Boxes indicate median, upper and lower quartile, and whiskers extend to either
maximum/minimum values, or upper/lower quartiles ± interquartile range. Points outside
this range are shown as outliers.

5.4 Conclusions

The work in this chapter presents an analysis of data describing heterogeneity in human
cord blood lympho-myeloid progenitors at the single-cell level. GMP, LMPP and MLP
populations were profiled using single-cell qRT-PCR, scRNA-seq and single-cell cultures to
assess functional output.
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5.4.1 Single-cell data support a continuum of lympho-myeloid
progenitors

The analysis of single-cell gene expression of GMP, LMPP and MLP progenitors revealed a
continuum of expression from lymphoid to myeloid transcriptional programmes. Profiles with
expression of lymphoid genes largely belonged to MLP and LMPP sorting gates, and those
with a myeloid signature mostly originated from the GMP gate, with a small contribution
from LMPP cells. These observations are in agreement with reported lymphoid/myeloid
biases of these progenitors populations (Doulatov et al., 2010; Goardon et al., 2011; Lee
et al., 2015). However, it was also notable that the three populations showed considerable
overlap in their transcriptional states.

New sorting strategies were devised to enrich for lymphoid and myeloid function within
conventional sorting gates based on the surface marker levels of cells with different functional
output in single-cell assays. CD38hi GMPs were significantly enriched for myeloid output,
and CD10hi CD45RAhi LMPPs were found to give a significant increase in lymphoid output
compared to conventional LMPPs. Together with the gene expression analysis these findings
could suggest a continuum of lympho-myeloid bias in the human progenitor populations,
rather than a strict hierarchical structure (Laurenti and Göttgens, 2018).

5.4.2 Functional assays identify single cell with both lymphoid and
myeloid potential

Within both LMPP and GMP compartments there were a number of cells (10% and 7%
of positive wells, respectively) giving rise to mixed lymphoid and myeloid colonies. This
is particularly interesting in light of recent work that has supported the idea of human
progenitors being mostly unilineage (Notta et al., 2016; Velten et al., 2017). Whilst the
frequency of bipotent progenitors was fairly low, there are limitations to functional culture
assays as a unilineage output from a cell does not necessarily indicate it was restricted to
only one lineage: if specification occurred before cell division in the culture then only one
output would be seen.

The question of whether it was possible to enrich for bipotent lympho-myeloid cells within
the conventional gates was considered, as if these bipotent cells could be isolated then
the transcriptional signatures specific to these cells could be examined. However, these
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cells did not clearly separate from unipotent cells based on their surface marker profiles,
perhaps due to the difference between true potential and functional output, or alternatively
because the limited surface markers measured were not sufficient to distinguish between
these functionally distinct cells.

5.4.3 Choice of cord blood to study progenitor behaviour

The experiments here measuring single-cell function and gene expression were performed
on human progenitors isolated from cord blood. However, differences in the behaviour of
progenitors from cord blood and adult bone marrow have previously been observed (Notta
et al., 2016). Cord blood rather than bone marrow progenitors were used to assay the function
of the lympho-myeloid human progenitors for this work as the LMPP and MLP cells were
too rare in bone marrow (Karamitros et al., 2018). Further experiments would be needed to
investigate whether similar functional output and gene expression patterns could be seen in
bone marrow progenitors.

5.4.4 Future directions

Further investigation of differential expression between the RNA-seq clusters could be ex-
plored to see whether genes encoding surface marker proteins could be used to separate these
more immature cells from more mature populations. This would allow better investigation
of the gene expression programs activated during lymphoid and myeloid differentiation. In
particular, the maturation of LMPP cells to more mature progenitors would be an interest-
ing avenue to explore, as in acute myeloid leukaemia there is a substantial increase in the
number of LMPP-like cells (Goardon et al., 2011), indicating dysregulation of the control of
progenitor numbers in this disease state.

5.4.5 Summary

In summary, this chapter describes the analysis of functional and transcriptional data from
human cord blood progenitors supporting the existence of a continuum in the differentiation
of cells towards either myeloid or lymphoid lineages.



Chapter 6

Characterising transcriptional changes
in the haematopoietic landscape

Parts of this section have been modified from Dahlin et al. (2018), on which F. Hamey is joint
first author. Experimental work for this project was carried out by Nicola Wilson (isolation
of primary bone marrow cells and scRNA-seq profiling) and Mairi Shepherd (isolation of
primary bone marrow cells). Joakim Dahlin and Nicola Wilson provided assistance with
finding marker genes to identify the different haematopoietic lineages. The abstracted graph
algorithm was developed by Alex Wolf. Computational analysis of the data was carried out
by F. Hamey.

6.1 Background

Chapters 3-5 presented analysis demonstrating that single-cell gene expression data can be
used to reconstruct haematopoietic differentiation. Depending on the number of cells, genes
and populations profiled, each dataset provided insights focusing on different aspects of
haematopoiesis. In this previous work, murine bone marrow HSPCs were profiled with both
scRNA-seq and qRT-PCR, yet due to constraints on the number of cells or genes profiled
these data remain limited in their ability to resolve rare progenitor populations. In addition,
both datasets were generated by isolating specific haematopoietic populations, and therefore
were unable to capture representative proportions of the different cells types within the bone
marrow HSPC compartment.
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Recent technological advances have now made it possible to perform single-cell gene ex-
pression assays on increased numbers of cells at reduced cost (Zheng et al., 2017), enabling
transcriptional landscapes to be generated based on much larger sample sizes. It was rea-
soned that this ability to profile so many cells could be used to capture a more representative
snapshot of haematopoietic populations at their true densities within the HSPC compartment,
which would allow insights into how the transcriptional landscape is altered in perturbed
states.

The aim of this work was to generate a high quality unbiased single-cell landscape with
data generated using a droplet-based scRNA-seq method. By capturing high numbers of
cells these data would be able to cover the HSPC populations without the gap between Lin-

c-Kit+ Sca1- and Lin- c-Kit+ Sca1+ gates seen in Chapter 3. It was hoped that from these
data it would be possible to construct differentiation trajectories towards a higher number of
lineages than before, including rare cell types, so that the gene expression changes around
branch points towards different cell fates could be investigated.

6.2 Entry points to eight haematopoietic lineages are
resolved by droplet-based scRNA-seq profiling

A commercial droplet-based scRNA-seq platform (10x Chromium™ from 10x Genomics)
was used to generate single-cell gene expression profiles of HSPCs from mouse bone marrow
(Zheng et al., 2017). To capture progenitor cells at representative densities in the landscape,
bone marrow samples were lineage depleted and sorted based on c-Kit marker expression in
the Lin- c-Kit+ (LK) gate (Fig. 6.1A). After quality control filtering to remove low quality
profiles and potential doublets (see Chapter 2 for details) this dataset detected an average of
around 2,800 genes in 21,809 cells. The LK sorting gate contains both stem cells and more
specialised progenitor populations (Fig. 6.1B), but the most mature progenitors are found
at much higher frequency in the bone marrow (Fig. 6.1A). As stem and early progenitors
are so rare, Lin- c-Kit+ Sca1+ (LSK) cells, a subset of the LK fraction, were also isolated
from the same pooled bone marrow samples and profiled alongside the LK cells (Fig. 6.1A,
B). Together, 44,802 single-cell gene expression profiles were captured with an average of
over 2,500 genes detected per cell. Interestingly, fewer genes were detected on average in the
LSK cells than in LK cells, in keeping with the more quiescent nature of the immature cells
at the top of the hierarchy. This observation is also in agreement with the quantification of
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the SMART-Seq2 scRNA-seq data seen in Chapter 3, which showed that the stem and early
progenitors had lower RNA content than the more mature progenitors.
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Fig. 6.1. Droplet-based scRNA-seq can be used to capture over 40,000 molecular pro-
files from the HSPC compartment. (A) Schematic of how cells were isolated for scRNA-
seq profiling based on c-Kit and Sca1 expression. Table shows post quality-control summary
of the data. LK, Lin- c-Kit+; LSK, Lin- c-Kit+ Sca1+. (B) Diagram depicting which con-
ventional haematopoietic populations are within the sorting gates. (C) Force-directed graph
visualisations calculated on the k-nearest neighbour graph of LSK and LK profiles processed
together. Left-hand panel highlights the LSK cells in red, right-hand panel highlights the LK
cells in purple.

The gene expression data were then visualised using a force-directed layout calculated on
the k-nearest neighbour graph of single-cell profiles, where edges represent the connections
between the most similar cells (Weinreb et al., 2018a). As cells from a single lineage are
closely connected they are positioned closely in the two-dimensional embedding, hence this
method has previously been successfully applied to datasets to represent complex branching
differentiation structures. Highlighting LSK and LK cells separately showed overlap between
the two populations, with LSK cells more tightly positioned at the top of the graph and more
LK cells lying on the branches visible in the two-dimensional structure (Fig. 6.1C). Plotting
gene expression for markers of several haematopoietic lineages on the force-directed graph
demonstrated that cells from different progenitor populations occupied distinct regions of the
landscape (Fig. 6.2). HSCs were marked by expression of Procr and Fgd5, and resided at the
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top of the structure (Balazs et al., 2006; Gazit et al., 2014). Cells from the lymphoid lineage
were highlighted by genes such as Dntt and Flt3 (Rothenberg, 2014), erythroid progenitors by
Klf1 and Epor (Dzierzak and Philipsen, 2013), and megakaryocytic progenitor cells by Pf4

and Itga2b (Rowley et al., 2011). Within the myeloid lineage, Elane and Cebpe expression
identified neutrophil progenitors and Irf8 and Ly68 monocyte progenitors (Olsson et al.,
2016).
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Fig. 6.2. Dimensionality reduction of single-cell profiles visualises branches belonging
to different blood lineages. Force-directed graph embedding of LSK and LK cells coloured
by log-transformed expression of marker genes highlighting the different blood lineages.

As such a high number of cells had been profiled it was also possible to identify rare
populations, including entry points to mast cell, basophil and eosinophil lineages (Fig. 6.3).
Genes Ms4a2 and Cpa3 were expressed in both basophil and mast cell progenitors (Dwyer
et al., 2016), Gzmb and Cma1 marked the mast cell progenitor population (Dwyer et al.,
2016; Pardo et al., 2007) and Prss34 and Mcpt8 highlighted cells in the basophil lineage
(Dwyer et al., 2016; Ugajin et al., 2009). A small group of eosinophil progenitors was also
identified by the expression of genes such as Prg2 and Prg3 (de Graaf et al., 2016; Olsson
et al., 2016).
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Fig. 6.3. Generating a high number of single-cell profiles allows rare progenitor popu-
lations to be identified. Force-directed graph embedding of LSK and LK cells coloured by
log-transformed expression of marker genes for mast cell, basophil and eosinophil lineages.
Regions of interest are enlarged for each plot.

Analysis of the LSK and LK cells together revealed considerable overlap between the two
populations (Fig. 6.1C). To see whether the overall structure of the data was similar in
the LSK or LK populations on their own these two sets of cells were processed separately
and visualised using force-directed graphs (Fig. 6.4A, B). Cells from the LSK gate were
more tightly connected and, whilst regions expressing different marker genes were visible
including populations expressing Klf1 and Elane, many of these were formed from relatively
few cells compared to the corresponding regions in the combined graph (Fig. 6.4A). The
graph calculated on only the LK cells had a more similar shape to the combined graph,
but was less dense in the central region (Fig. 6.4B). Cells expressing HSC gene Procr and
lymphoid gene Dntt were mainly seen in the LSK graph. LSK cells were closer in high
dimensional space to their LSK neighbours than LK cells were to other LK cells, in agreement
with the differences in heterogeneity suggested by the visualisations (Fig. 6.4C).
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Fig. 6.5. Graph abstraction groups cells along paths through differentiation. (A) Force-
directed graph embedding coloured by coarse louvain clustering. This was calculated using
a k-nearest neighbour graph constructed based on the diffusion map coordinates. Ery,
erythroid; Mk, megakaryocyte; MC, mast cell; Ba, basophil; HSC, stem cell; Eo, eosinophil;
N, neutrophil; Mo, monocyte; Ly, lymphoid. (B) Results of graph abstraction calculated on
high resolution louvain clustering of LSK and LK cells. These fine clusters are coloured by
the coarse cluster that the majority of their cells belong to. Edge weights are proportional
to the confidence of a connection between clusters. Only edges with confidence above a
certain threshold are shown. Four clusters W, X, Y & Z had no connections with confidence
above this threshold and are therefore disconnected from the main graph. These clusters were
excluded from further analysis. (C) Abstracted graph with each node coloured by its mean
MolO HSC score. The MolO HSC score for each cell represents the mean of MolO HSC
genes from Wilson et al. (2015). (D) Abstracted graph coloured by the average pseudotime
value for the cells in each node, with pseudotime ordering calculated from the cell with the
highest MolO score. DPT, diffusion pseudotime.
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6.3 The haematopoietic tree can be reconstructed from
single-cell data using graph abstraction

As the location of both stem cells and the entry points to multiple lineages could be detected
within the scRNA-seq landscape, the next question was to ask how these populations were
connected, with the aim of reconstructing differentiation trajectories. Due to the high number
of lineage entry points it was not a simple task to assign cells to differentiation pathways,
as many existing algorithms were only able to cope with simple branching leading to at
most two fates (Haghverdi et al., 2016; Setty et al., 2016). Clustering the data using louvain
clustering based on the k-nearest neighbour graph between cells showed good agreement with
the force-directed graph visualisation (Fig. 6.5A), and was able to assign many of the cells
belonging to the main lineages to separate clusters, including megakaryocyte and lymphoid
progenitors. The clustering also split the trajectory towards erythroid differentiation into
several clusters. However, at this resolution, some of the clusters contained cells that were
known to belong to more than one lineage. One such example was neutrophil and monocyte
progenitor cells (Fig. 6.5A). To separate these progenitors, clustering at a higher resolution
was performed that assigned cells into 63 different clusters.

The next aim was then to reconcile the discrete clustering approach with the concept of
pseudotime analyses, which identify continuous differentiation trajectories through the data.
For this, an algorithm called graph abstraction was applied (Wolf et al., 2017). This tests
connectivity between clusters, based on the number of edges lying between cells from
different cluster pairs in the k-nearest neighbour graph of cells. Connections with high
confidence compared to a random distribution of edges are retained, and those with low
confidence are removed, resulting in a graph where the nodes correspond to clusters and an
edge suggests a strong similarity between the cells in the linked cluster pair (Fig. 6.5B). As
some clusters only have low confidence connections to the rest of the graph, these nodes
are not connected to the main graph structure (Fig. 6.5B). These disconnected clusters
could be annotated by considering marker gene expression. Cluster W appeared to contain
common dendritic cell precursors, as this group of cells highly expressed genes including
Ctss, Fcer1g, and Pld4. Interferon response genes such as Iigp1 and Ifi1, rather than genes
corresponding to a specific haematopoietic lineage, were high in cluster X. Cluster Y had
elevated expression of Tcf7, Tox, Zbtb16, Gata3 and Il7r, which are genes that have been
described as being expressed in innate lymphoid progenitors (Yu et al., 2016). Finally,
cluster Z cells exhibitied high expression of B cell marker genes including Cd79a, Ebf1



Characterising transcriptional changes in the haematopoietic landscape 117

and Vpreb3. These four clusters may represent contaminating populations or progenitors
with rare intermediate steps that are not captured in the scRNA-seq data, and were removed
from the subsequent analysis as they are not closely related to any other clusters in the
abstracted graph. Constructing the abstracted graph means that the nodes, which represent
groups of cells with similar transcriptional profiles, are linked based on their proximity in the
differentiation landscape. To understand how this clustering partitioned the gene expression
space, a score was calculated for each cell, representing the average expression of the MolO
HSC genes from Wilson et al. (2015) (Fig. 6.5C). MolO genes are a set of genes highly
expressed in the HSC population, and so a high MolO score is expected in the part of the
graph corresponding to the stem cells. The node at the top of the abstracted graph had the
highest average MolO score, with a decreasing score for nodes further into the landscape.
To obtain a measure of the distance from HSCs, pseudotime ordering from the stem cells
was calculated by using DPT (Haghverdi et al., 2016) and visualised along the branches of
the abstracted graph (Fig. 6.5D). Higher pseudotime values could be seen towards the tips
of the branches, in support of graph abstraction capturing the structure of haematopoietic
differentiation.

Average expression of different lineage marker genes was calculated for each node in the
abstracted graph, demonstrating that the clusters were arranged on branches towards the
erythroid, megakaryocyte, neutrophil, monocyte and lymphoid lineages (Fig. 6.6A). As
a demonstration of how the abstracted graph structure can be used as a starting point to
computationally reconstruct differentiation trajectories, shortest paths through the weighted
graph from the HSC node (with the highest MolO score) towards the five different lineages
were found (Fig. 6.6B). With this approach, each trajectory was formed from between 11
and 22 clusters, splitting cells into groups at different stages of differentiation.

6.4 Identification of genes with lineage-specific dynamics
around differentiation branch points

As a proof of concept for an application of constructing trajectories using the abstracted graph,
it was decided to focus on the branching point between erythroid (Ery) and megakaryocyte
(Mk) differentiation. To reveal dynamic genes at this point in the landscape, the first
nodes unique to either the Ery or Mk trajectories were compared to the preceding node
shared between the two trajectories (Fig. 6.7A). Differential expression between these
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Fig. 6.6. Connections between abstracted graph nodes can be used to build differen-
tiation trajectories. (A) Abstracted graph with nodes coloured by the mean expression
of lineage-specific marker genes. (B) Trajectories from haematopoietic stem cells to five
different lineages in the abstracted graph. Nodes lying along a trajectory are coloured from
blue to green in order of differentiation. Ery, erythroid; Mk, megakaryocyte; N, neutrophil;
Mo, monocyte; Ly, lymphoid.

nodes identified 86 genes upregulated for this step of Ery differentiation, and 26 for Mk
differentiation (Fig. 6.7B). The dynamics for the most significant of these genes were then
visualised around the branch point (Fig. 6.7C, D). Several of the genes were known regulators
of differentiation towards erythrocytes or megakaryocytes. For example, Klf1 was amongst
the most significant genes upregulated during Ery but not Mk differentiation. Towards Mk
differentiation Pf4, Gp5 and Cd9, F2r and F2rl2 were all significantly upregulated and are
known to be expressed during megakaryopoiesis. Amongst both gene sets were genes with
clear upregulation in only one trajectory, such as Lpin2 in the Ery trajectory and Rap1b in the
Mk trajectory. Therefore, this approach both identifies known regulators and provides new
candidate genes potentially involved in the fate decision towards these two lineages.

To delve deeper into the gene dynamics around the Ery-Mk branch point, a search was carried
out to identify genes showing expression patterns consistent with lineage priming (Fig.
6.8A). These were defined as genes displaying intermediate expression in the shared node,
along with uprgulation towards one lineage and downregulation towards the other. 12 genes
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Fig. 6.7. Graph abstraction can be used to discover lineage-specific gene sets around
erythroid-megakaryocyte differentiation branching point. (A) Abstracted graph high-
lighting the final shared node lying on both erythroid and megakaryocyte trajectories (orange),
and the succeeding nodes on only the erythroid (red) or megakaryocyte (yellow) trajectories.
(B) Venn diagram showing numbers and overlap of genes upregulated between the shared
and succeeding nodes around the branch point. (C) Heatmap showing expression of the top
20 most significant genes upregulated between shared node and erythroid branch point. Cells
are ordered by pseudotime within each cluster and gene expression is smoothed by a running
average of 50 cells. Expression is scaled between 0 and 1 across the union of the Shared,
Ery and Mk nodes. (D) Heatmap showing the expression of top 20 most significant genes
upregulated between the shared and succeeding nodes around the megakaryocyte branch
point. Ery, erythroid; Mk, megakaryocyte.

displayed expression consistent with Ery priming, and 24 genes had dynamics in keeping
with Mk priming (Fig. 6.8B, C). Interestingly, several transcription factor encoding genes
were amongst those with “primed” expression patterns. For example Bcl11a and Myb were
both upregulated during Ery differentiation and downregulated during Mk differentiation,
and Lmo2, Pbx1, Fli1 and Cited2 were amongst the Mk priming genes. Searching for genes
with these patterns aimed to identify genes involved in regulating the Ery-Mk fate decision,
and such a list therefore represents candidates for future experimental validation.
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Fig. 6.8. Genes exhibit expression dynamics consistent with lineage priming. (A) Di-
agram explaining how differential expression analysis between nodes was used to search
for genes with lineage-priming patterns. (B) Heatmap showing expression of genes with
upregulation along the Ery branch and downregulation along the Mk branch, consistent with
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smoothed by a running average of 50 cells. Expression is scaled between 0 and 1 across the
union of the Shared, Ery and Mk nodes. (C) Heatmap showing expression of genes with
upregulation along the Mk branch and downregulation along the Ery branch, consistent with
Mk priming. Ery, erythroid; Mk, megakaryocytic.

6.5 Conclusions

The work in this chapter presents analysis of a reference transcriptomic landscape of the
HSPC compartment formed from over 40,000 scRNA-seq profiles. Visualising the expression
of marker genes on force-directed graphs of the data identified a complex branching structure
with entry points to eight haematopoietic lineages. An approach combining the concepts
of discrete clustering with continuous pseudotime ordering was then used to assign cells to
several differentiation trajectories starting from stem cells, and to characterise gene expression
changes around a branch point between two haematopoietic lineages.
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6.5.1 The challenges of sampling large cell numbers

Mouse bone marrow is formed from a complex mixture of cells, with frequencies ranging
from very abundant, for example erythroid progenitors, to cells found in much smaller
numbers, such as the very rare LT-HSCs, which represent less than 1 in 1,000 of the LK
bone marrow cells and less than 1 in 20,000 of all nucleated bone marrow cells. Due to the
rarity of such populations, it is vital to profile large enough samples to capture these cells in a
dataset. As HSCs occur in much lower frequencies than many more differentiated progenitors
it was decided to supplement the LK cells with 23,000 cells captured from the LSK gate.
LT-HSCs represent around 1% of LSK cells, so this sample provides greater coverage of the
upper parts of the haematopoietic hierarchy. However, although these additional data were
incorporated into the analysis in this chapter, it is important to note that it is still possible
to perform analysis on just the LK data, which are sampled at representative density across
the transcriptional landscape. This will provide an important reference for comparisons with
perturbation models where haematopoietic populations have shifted, as will be discussed in
Chapter 7.

In switching to droplet-based sequencing to obtain higher cell numbers at a reasonable cost
there is a compromise in the sequencing depth achieved per cell. For example, for the data in
this chapter an average of 2,500 genes were detected per LSK cell, whereas 8,600 genes per
cell were detected for the same population in Chapter 3 when LSK cells were profiled using
SMART-Seq 2. Yet, despite this reduced sequencing depth, it was still possible to separate
cells belonging to different lineages using dimensionality reduction and clustering. Also,
compared to other published datasets profiling similar populations with scRNA-seq methods
allowing such high throughput, the sequencing depth here was comparatively high (Giladi
et al., 2018; Paul et al., 2015; Tusi et al., 2018). This is important if the aim is to use the
data not just to understand the structure of haematopoietic differentiation but also to identify
novel regulators of cell fate decisions.

Another limitation of using droplet-based rather than plate-based sequencing was that re-
taining surface marker information for the individual cells was not possible. This makes
relating the cells to the conventional haematopoietic populations as in Section 3.5 more
challenging, so could make it more difficult to isolate potentially interesting subpopulations
from the data for further analysis. New techniques are now emerging to allow simultaneous
measurement of the transcriptome and a selection of surface markers for each cell using
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barcoded antibodies (Stoeckius et al., 2017), which could be used in future work to address
this limitation of droplet-based scRNA-seq data.

6.5.2 Viewing the data at different resolutions

An interesting observation from this Chapter is how the ability to view data at a range of
resolutions can prove useful in understanding different features of the data. Using the single-
cell profiles allows the whole landscape to be visualised and annotated using marker gene
expression. Alternatively, the abstracted graph represents the data at a different resolution,
which provides a method for identifying strongly connected groups of cells and enables
differential expression to be calculated in specific regions of the graph by grouping similar
cells together. Despite these different resolutions, it is clear that both the single-cell data and
abstracted graphs capture similar structure within the data, as can be seen in Fig. 6.5.

6.5.3 Using graph abstraction to infer the differentiation structure

Graph abstraction is applied to the clustered single-cell data and does not require any
supervision to decide which groups of cells are connected. This is an advantage compared
to some other methods for finding complex differentiation trajectories, such as the PBA
algorithm presented by (Weinreb et al., 2018b), which requires knowledge of the proportion
of different lineages produced by stem cells as an input parameter. When used with the high
resolution clustering, graph abstraction was able to identify branching towards the majority
of haematopoietic lineages known to be present in the data, although it did fail to separate
the very rare eosinophil progenitor population, as this represents a very small number of
cells that did not form their own cluster. A challenge in analysing this type of data covering
a mixture of cell types is that the highly variable genes will be dominated by those genes
varying across the most abundant cell types, and therefore these genes will probably prove
more successful in subdividing these populations. For example, the erythroid progenitor
trajectory contains a very high number of cells and is divided into the highest number of
different clusters. Another interesting observation from the graph abstraction is that some
small populations of cells were not part of the connected graph structure, as they had very
low confidence connections to other groups of cells. In some cases these could correspond to
contaminating populations of cells, or perhaps their preceding progenitor populations are very
rare so do not represent a high enough proportion of a cluster to form any connections.
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6.5.4 Characterisation of gene expression around a branch point

Several of the genes identified as differentially expressed between differentiation towards the
erythroid or megakaryocyte lineages are known to be expressed in one of the two progenitor
populations, demonstrating that this approach can find established lineage-specific genes.
For the remaining genes, further investigation will be required to establish whether they play
a role in the cell fate decision making between the two lineages, and therefore this gene
set should be treated as a list of candidates for possible validation. Searching Ery or Mk
priming patterns revealed a number of genes, including several transcription factors, that
had interesting expression dynamics around the branch point between these lineages. These
genes will need to be investigated for their role in the decision making process by perturbing
progenitors upstream to this branching and assessing any changes in the lineage output of
these cells. Overall, applying graph abstraction to these data demonstrates that this approach
can be useful in understanding gene expression changes at points in the transcriptional
landscape that were previously inaccessible using the conventional strategies for isolating
haematopoietic progenitors. Additionally, combining the differential expression analysis
with pseudotime ordering within clusters could provide a framework for establishing the
order of activation of different genes during the differentiation process.

6.5.5 Future work

Future work will first focus on working to identify potential targets for experimental validation
of the erythroid-megakaryocyte branch point-related genes, based on investigation into the
known roles of these genes and how specifically they are expressed in cells around the
branch point. Characterisation of the genes involved in different lineage fate decisions and at
different stages in individual differentiation trajectories could also be carried out to further
understand which genes are dynamic at specific regions in the landscape. It would also
be interesting to see whether the branch points themselves could be validated by looking
for surface marker combinations expressed by these populations to isolate these cells by
FACS for experimental assays. Additionally, as well as using these data to characterise
normal haematopoiesis, they also have exciting potential for use as a reference dataset for
comparison with perturbed haematopoiesis. This concept forms the basis for the work
presented in Chapter 7.
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6.5.6 Summary

In summary, the work in this chapter has used single-cell gene expression data to identify
entry points to eight different blood lineages, and has shown how graph abstraction can be
used to construct differentiation trajectories within this complex branching dataset. This
allowed characterisation of gene expression changes at specific points in the transcriptional
landscape.



Chapter 7

How does a Kit mutation alter the
haematopoietic landscape?

Parts of this chapter have been modified from Dahlin et al. (2018), on which F. Hamey is
joint first author. Experimental work for this project was carried by Nicola Wilson (isolation
of primary bone marrow cells and scRNA-seq profiling), Joakim Dahlin (isolation of primary
bone marrow cells and FACS analysis), and Mairi Shepherd (isolation of primary bone
marrow cells). Computational analysis was carried out by F. Hamey.

7.1 Background

As discussed in the previous chapter, characterising the haematopoietic landscape using
droplet-based scRNA-seq was motivated by the desire to generate a reference with which to
compare haematopoiesis in perturbed states. To investigate how the landscape can be altered
by a genetic perturbation, it was decided to consider a mouse model with a mutation in the Kit

gene. This gene is widely expressed across the haematopoietic compartment and is involved
in the maintenance of HSCs. The mouse model chosen was the W41/W41 mouse, which has
a V831M mutation in the Kit gene, leading to impaired c-Kit kinase activity (Nocka et al.,
1990). These mice have mostly normal haematopoiesis, but suffer from mild anaemia and a
mast cell deficiency (Geissler and Russell, 1983a,b). The aim of this chapter was to analyse
scRNA-seq data from the HSPC compartment of W41/W41 mice to study how the single-cell
landscape changes in this defective signalling environment.
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This work discusses scRNA-seq data profiling of over 13,000 LK cells from the bone marrow
of W41/W41 mice, and compares this with the reference transcriptional landscape of Chapter
6. Computational analysis of the transcriptional profiles revealed differences in cell type
composition across the samples, as well as providing insights into changes occurring at the
molecular level.

7.2 W41/W41 Kit mutant mice lack a distinct mast cell
trajectory in the single-cell landscape

To see how the haematopoietic progenitor compartment was altered in the presence of
reduced c-Kit signalling, bone marrow HSPCs were isolated from two W41/W41 mice and
processed for droplet-based scRNA-seq, following the same protocol as in Chapter 6. As the
aim was to compare with the existing WT landscape from this earlier chapter, only LK cells
were isolated from W41/W41 bone marrow for comparison with the 21,809 WT LK cells.
Restricting the analysis to only LK cells ensured that the sorting gates sampled the same
populations at representative frequencies (Fig. 7.1A). Cells from W41/W41 bone marrow
were processed using the same quality control criteria as the WT cells, leading to a dataset
consisting of 13,815 transcriptional profiles. To visually inspect differences between the
perturbed and reference datasets, dimensionality reduction in the form of a force-directed
layout was calculated on the W41/W41 cells (Fig. 7.1B). Even though this embedding was
generated independently from the one on the WT cells, the two structures still showed
very similar shapes. Visualisation of marker gene expression on both graphs confirmed the
similarity between their structures. However, one noticeable exception was the lack of a
distinct mast cell branch in the W41/W41 mice, along with reduced expression of mast cell
marker genes such as Cma1 in cells from these animals (Fig. 7.1B, lower panels). These
observations are in agreement with the severe mast cell deficiency seen in the W41/W41 mice
(Ingram et al., 2000). Basophil progenitors, marked by Prss34, were still clearly present in
the W41/W41 bone marrow.
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Fig. 7.1. Droplet-based scRNA-seq can be used to compare the transcriptional land-
scape of a Kit mutant mouse to a WT reference dataset. (A) Schematic showing an
overview of the experiment. WT LK cells were from the dataset discussed in Chapter 6.
(B) Force-directed layouts on the WT and W41/W41 LK cells. Layouts were calculated
independently based on the highly variable genes for each dataset. Gene expression was
normalised separately for each dataset, log-transformed, and then visualised for each pair of
plots using the same colour scale. Insets in lower panels show magnified regions of the plots.
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7.3 Transcriptional landscape of W41/W41 mice displays a
shift towards more mature progenitor populations

Whilst dimensionality reduction was able to reveal qualitative changes in the W41/W41

landscape, it could not be used to quantify any changes in the proportion of different HSPCs.
scRNA-seq is a valuable tool for performing this quantification as it is not necessary to
pre-define haematopoietic populations for isolation using surface-marker levels. In order to
make this comparison it was first necessary to relate W41/W41 cells to their WT counterparts,
to assign cells to a set of progenitor groups common across the two datasets (Fig. 7.2A).
Processing the data together showed a considerable batch effect, with large separation
between the genotypes in dimensionality reductions. Such batch effects are common in
single-cell data from different conditions, with several suggestions for alternative ways
of combining data from different sources (Hamey and Göttgens, 2018; Wen and Tang,
2018). Here, the decision was made to initially cluster WT cells into groups, to provide a
characterisation of the transcriptional states in normal haematopoiesis (Fig. 7.2A, B). Then
W41/W41 cells were mapped to this partitioning by assigning each W41/W41 cell to its most
similar WT cluster, based on the cluster identity of its closest WT neighbours (Fig. 7.2B). It
was reassuring to see that W41/W41 cells were assigned to all 13 clusters of the WT data (Fig.
7.2B). Plotting the expression of haematopoietic marker genes allowed cell type identities
to be assigned to the clusters (Fig. 7.2C). For example, cluster 1 contained the HSCs, as
indicated by high expression of Procr, whereas erythroid progenitor clusters 2, 3 and 5 were
highlighted by Klf1 expression. Distributions of marker gene expression were similar between
the WT and W41/W41 clusters, supporting the cluster assignment of the W41/W41 cells (Fig.
7.2D). Clusters 12 and 13, the two smallest clusters, displayed less consistent expression
patterns but also contained very few cells (96 and 91 cells in the WT data, respectively), and
so more variable distributions were expected for these populations.

Next, to quantify changes in the composition of the HSPC compartment, the fold-change
between the proportion of cells in each cluster for the WT and the W41/W41 datasets was
calculated (Fig. 7.3A). As cells from two different W41/W41 mice were sequenced, this
provided two repeats of how the cell type proportions were altered in the Kit mutant model
in comparison with the WT reference. This analysis revealed some dramatic changes in the
perturbed environment. Cluster 3 showed the biggest change in the proportion of cells, with
around a 4-fold decrease in the percentage of cluster 3 cells in the W41/W41 data. Inspection of
marker gene expression indicated that this cluster corresponded to early erythroid progenitors
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(Fig. 7.2C, D). Further along the erythroid trajectory, increases were seen in the proportion of
cells in both clusters 2 and 5, with the more mature cluster 5 erythroid progenitors showing an
over two-fold increase in W41/W41 mice. Other populations exhibiting a relative expansion
in the W41/W41 mice were clusters 8 and 11, which corresponded to monocyte and neutrophil
progenitors, respectively. The proportion of neutrophil progenitors roughly doubled and
the monocyte progenitors displayed a more modest increase in the mutant bone marrow.
Populations that were under-represented in the mutant landscape included cluster 1, which
contained the stem and early progenitors, and cluster 9, which contained the mast cell and
basophil progenitors. Together, these data suggested an overall reduction in the proportion of
LK populations at the top tiers of the haematopoietic hierarchy, and highlighted a shift along
the erythroid trajectory towards more mature erythroid progenitors.

A recently-described gating strategy was then applied (Tusi et al., 2018) to use FACS
analysis to investigate the changes seen in the transcriptomic data (Fig. 7.3B). In the study
describing this strategy, the authors defined five populations, denoted P1-P5, to isolate
different haematopoietic cell types within the c-Kit+ compartment. Populations P5 →
P2 → P1 represent a progression along the erythroid trajectory, with P5 containing the
multipotent progenitor population. P3 cells were described as basophil progenitors, and
P4 cells as megakaryocyte progenitors. For each of these populations its proportion as a
percentage of the LK cells was calculated in both WT and W41/W41 mice (Fig. 7.3C). These
results validated the shift towards more mature cells along the erythroid trajectory, and also
confirmed reductions in megakaryocyte and basophil progenitor populations similar to the
gene expression-based analysis.
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Fig. 7.3. Reproducible changes in the proportion of different progenitor types can be
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7.4 Identifying molecular effects of impared c-Kit signalling

Single-cell analysis of the W41/W41 bone marrow composition highlighted changes at the
tissue level of the haematopoietic system. However, as well as being used to assign cells
to groups, single-cell transcriptomics data can simultaneously be used to measure the ex-
pression of individual genes. A benefit of performing gene expression analysis in single
cells is that cells can be grouped based on the similarity of their expression profiles before
differential expression is performed between the corresponding WT and W41/W41 clus-
ters. This approach therefore provides the opportunity to search for genes with altered
behaviour in specific regions of the landscape. Differential expression analysis between
pairs of clusters identified Myc as one of the most significantly downregulated genes across
all clusters, consistent with reduced c-Kit signalling in the W41/W41 animals (Fig. 7.4A,
Table 7.1). Computing the overlap between genes upregulated in W41/W41 clusters and
annotated genes sets from the Molecular Signatures Database Hallmark Gene Set Collec-
tion (Liberzon et al., 2015) identified a significant overlap with unfolded protein response
genes, which suggests an induction of a stress response programme in the Kit mutant cells
(HALLMARK_UNFOLDED_PROTEIN_RESPONSE; FDR = 5.74× 10−5). Individual
stress response genes included Atf4, Psat1, Mthfd2 and Imp3 (Fig. 7.4B).

Table 7.1. Significance of differentially expressed genes in Fig. 7.4. Adjusted p-values
(Benjamini-Hochberg correction) are shown for the pairwise comparisons between cells in
WT and W41/W41 clusters. Differential expression was performed using the EdgeR package.

Adjusted p-value for differential expression of gene across WT and W41/W41 cluster

Cluster Myc Atf4 Psat1 Mthfd2 Imp3 Casp3 Casp6 Pdcd4 Bid

1 2.7×10−149 4.8×10−30 2.5×10−03 9.4×10−04 3.4×10−92 1.7×10−21 0.31 3.1×10−58 3.1×10−03

2 0.0 2.4×10−288 1.7×10−46 1.1×10−24 0.00 0.00 1.0 9.7×10−300 3.1×10−06

3 1.4×10−57 1.4×10−04 0.81 0.96 8.0×10−27 1.2×10−24 1.0 6.8×10−35 0.044
4 3.5×10−156 0.0 2.0×10−05 0.39 1.8×10−114 5.0×10−14 1.0 2.5×10−109 0.033
5 0.0 5.9×10−10 2.6×10−118 6.7×10−80 0.0 0.0 1.1×10−15 0.0 2.7×10−27

6 7.7×10−30 3.0×10−36 1.0 0.97 5.1×10−28 1.9×10−12 1.0 2.8×10−35 0.59
7 8.5×10−60 3.3×10−31 7.8×10−04 7.6×10−03 4.8×10−62 9.0×10−10 1.0 4.0×10−98 7.7×10−04

8 4.1×10−85 1.1×10−04 0.033 1.0 2.9×10−70 2.0×10−04 0.025 1.6×10−67 0.031
9 1.5×10−17 4.2×10−22 0.20 0.81 9.8×10−23 7.7×10−09 1.0 1.5×10−25 0.36
10 4.4×10−38 2.5×10−04 2.4×10−06 1.0 5.1×10−60 1.2×10−05 0.27 8.6×10−80 1.0
11 8.5×10−22 2.5×10−04 0.031 1.00 2.6×10−14 0.042 1.0 1.62×10−03 0.25

As it was the erythroid clusters that displayed the strongest changes in relative numbers, focus
was then shifted to search for differentially expressed genes between these clusters. The distri-
bution of cytokine receptors such as Epor was unchanged between WT and W41/W41 clusters
(Fig. 7.4C), suggesting that lineage-specific receptors can compensate for reduced c-Kit
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signalling in these lineage-restricted cells to maintain the relatively normal haematopoiesis
seen in these mice (Wu et al., 1997, 1995). Genes downregulated in the later erythroid
clusters (2 and 5) in the W41/W41 mice possessed significant overlap with apoptosis related
genes (HALLMARK_APOPTOSIS; FDR = 1.19×10−2). In particular, Casp3 was amongst
these genes and specifically downregulated in the later erythroid clusters (Fig. 7.4D), along
with other examples of apoptosis-related genes including Casp6, Pdcd4 and Bid.

In an attempt to look further into the mechanisms of how cluster proportions were altered in
the W41/W41 bone marrow, the scRNA-seq data were used to investigate cell cycle activity
across the single-cell landscape. If differences in cell cycle state were seen between the
WT and W41/W41 populations this could provide an explanation of how HSPC numbers
changed between the two genotypes. Potential changes in cell cycle state were examined
by considering the expression of G2/M marker genes in individual cells. Scoring for the
combined expression of these genes and visualising in the force-directed layout demonstrated
a variation in cell cycle states between different regions of the single-cell landscape (Fig.
7.5A). In particular, the highest cell cycle activity (as indicated by higher G2/M gene
expression) was seen in the erythroid lineage; in contrast the stem and early progenitor
region appeared more quiescent. When the distribution of G2/M scores was visualised for
each cluster it was clear that both the WT and W41/W41 clusters displayed very similar
patterns, rather than showing differences between the genotypes (Fig. 7.5B). From this
analysis it initially seemed that it was not differences in cell cycle regulation causing an
increase in the relative number of late erythroid progenitors. However, on closer inspection
comparing the G2/M scores across WT clusters indicated that cluster 3, containing early
erythroid progenitors, had much lower G2/M gene activity than the later erythroid clusters,
2 and 5. To confirm that the erythroid clustering was indeed due to erythroid maturation,
and not driven by cell cycle effects, the expression of erythroid marker genes was checked
across the erythroid clusters (Fig. 7.5C), confirming a difference in maturity between clusters
3 and 2. Cluster 3 was also the cluster with the most dramatic change in its proportion, with
a very large decrease in this population seen in the W41/W41 bone marrow (Fig. 7.3, 7.6A).
In contrast, the later erythroid clusters 2 and 5, which had higher G2/M gene activity, were
both seen to increase in proportion in the Kit mutant mice. Taken together, these data suggest
that the W41/W41 LK fraction has a reduction in the proportion of more quiescent erythroid
progenitors, which could indicate a compensatory mechanism by which the proportion of
later erythroid progenitors is increased (Fig. 7.6A).
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Fig. 7.4. Local and global differences in signalling programs of c-Kit mutant mice are
revealed by differential expression of scRNA-seq data. (A–D) Violin plots showing the
distribution of selected genes in WT and corresponding W41/W41 clusters, as measured by
scRNA-seq. Distributions are shown for clusters containing at least 100 WT cells. Data from
WT and W41/W41 mice were normalised independently.
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Fig. 7.5. Computational cell cycle scoring reveals uneven distribution of G2/M gene
expression along the erythroid trajectory in Kit mutant mice. (A) Expression of G2/M
marker genes in the WT and W41/W41 droplet-based scRNA-seq data of LK cells. The
colour of cells indicates the combined expression level of these genes, with blue being the
lowest value and red the highest value. (B) Violin plots of G2M score from panel A in
WT and W41/W41 clusters. (C) Violin plots of erythroid genes marking different stages of
differentiation in WT and W41/W41 clusters 1, 6, 3, 2 and 5.
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numbers during erythropoiesis, despite defects at the top of the haematopoietic hierarchy due
to disrupted c-Kit signalling.

7.5 Conclusions

To demonstrate how single-cell gene expression analysis can be used as a tool to gain insights
into perturbed haematopoiesis, this chapter compared scRNA-seq profiles of over 13,000
HSPCs from a Kit mutant mouse model to the dataset representing normal haematopoiesis
discussed in Chapter 6. By matching mutant cells with their closest WT counterparts, this
analysis revealed changes in the proportions of HSPC populations, and identified potential
compensatory processes based on differential gene expression.
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7.5.1 Single-cell transcriptomics as a tool for unbiased comparisons

An important outcome of this work is the demonstration of how single-cell transcriptomics
can be used to better understand perturbed biological systems. The data-driven approach
used here to characterise bone marrow composition is a powerful technique. In particular,
it represents an advance over traditional methods that rely on flow cytometry as these can
only be applied to pre-defined populations. Here, analysis is not limited to conventional
haematopoietic populations, and the whole HSPC compartment can be measured at once.
These data also provide a simultaneous measurement of both changes in cell type composition
and changes at the molecular level. This type of approach will be applicable in many different
systems, including in helping to understand global and molecular alterations in disease
states.

7.5.2 Overcoming batch effects between data from different sources

One challenge in this work was deciding on the best way to integrate the datasets from
different experiments in order to allow comparison between the WT and W41/W41 cells.
Approaches have been suggested for both performing “batch correction” on data from
different sources (Butler et al., 2018; Haghverdi et al., 2018) and for assigning new cells
to an existing annotation in a reference dataset (Kiselev et al., 2018). Here, it was decided
to assign the W41/W41 cells to clusters in the WT landscape, to reveal how populations
changed in comparison to normal haematopoiesis. However, it could be interesting to try
different approaches, as these could potentially reveal new insights, such as the existence of
novel populations in the Kit mutant model. Another difficulty that arose during this work
surrounded the batch effects due to differences in gene detection between the two datasets.
In particular, a higher number of genes were detected for the W41/W41 samples compared
to the WT samples, even though WT cells were sequenced with higher depth. This led to
challenges in normalisation of the data, and made it more complex to interpret the results of
differential expression analysis performed with standard tests.

7.5.3 Altered bone marrow composition of the W41/W41 mice

The approach of mapping W41/W41 cells to WT clusters revealed changes in the cell type
composition of the LK bone marrow fraction, which was subsequently validated by FACS



138 How does a Kit mutation alter the haematopoietic landscape?

analysis. A reduction in the percentage of more immature progenitor cells is consistent
with the idea that c-Kit signalling plays a more important role in the upper tiers of the
haematopoietic hierarchy, whereas during differentiation lineage-specific cytokines reduce
the impact of a deficiency in c-Kit signalling (Wu et al., 1997, 1995). Additionally, the shift
towards a greater proportion of more mature progenitors could be seen as a system-wide
response to adapt to the defects in HSCs and immature progenitors caused by reduced c-Kit
signalling in order to try and recover the numbers of progenitor cells.

It is important to note that a change in progenitor populations as a proportion of the LK
compartment does not necessarily correspond to a change in the actual numbers of these
cells. Unfortunately, due to differences in factors such as lineage depletion between the
experiments, the data collected for this study did not measure the absolute numbers of c-Kit+

cells. However, it has been reported that W41/W41 mice have a decrease in the number of
LK cells, so even populations exhibiting a proportional increase could still exist in smaller
numbers in the W41/W41 bone marrow. In particular, this explains how a shift towards more
mature erythroid progenitors could still be consistent with the phenotype of the W41/W41

mice, as they exhibit mild macrocytic anaemia (Geissler and Russell, 1983a,b). Also, as
the changes measured are proportional it should be noted that some populations will have
differences in proportion due to the effects of changes in the size of other populations.

7.5.4 Potential compensatory mechanisms identified in response to the
Kit mutation

Differential gene expression analysis was applied to the single-cell data to examine changes
at the molecular level in the Kit mutant cells. The system-wide changes in transcription
factor Atf4 suggest activation of an integrated stress response in the W41/W41 cells (B’chir
et al., 2013; Pakos-Zebrucka et al., 2016), and could be a possible coping mechanism of
how the system responds to c-Kit signalling defects. Specifically in the erythroid trajec-
tory, a reduction of apoptosis-related genes including caspase-3 was seen. During normal
erythropoiesis there are high levels of apoptosis, and so a reduction of Casp3 could be
consistent with the perturbed cells promoting a reduction of apoptosis in order to overcome
defects in earlier progenitors at the top of the haematopoietic hierarchy and minimise the
effect on the erythroid system (Fig. 7.6B). The single-cell analysis also revealed that an
erythroid progenitor population with low G2/M cell-cycle gene activity was depleted in the
W41/W41 mice. This raises the possibility of the W41/W41 cells being “pushed” out of this
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less proliferative population in favour of the more rapidly cycling progenitors in order to
produce more erythroid cells and “catch up” with normal erythropoiesis (Fig. 7.6B).

7.5.5 Future work

One aspect of future work will be to see if the graph abstraction method from Chapter 6 can
be used to give insights into how gene expression differences between different stages of
differentiation are altered in a perturbed state. In particular, focusing the analysis around
specific regions of the landscape where population frequencies shift could help to reveal
whether changes in the activity of particular genes or signalling pathways is linked to these
changes. Additionally, it will be exciting to extend this approach to different mouse models,
particularly to mouse models with a relevance to disease.

7.5.6 Summary

In summary, this chapter discusses an unbiased investigation of tissue- and molecular-
level changes in a Kit mutant mouse model using scRNA-seq data, to understand how the
transcriptional landscape changes in a perturbed signalling environment.





Chapter 8

Discussion

Detailed discussions of the results from this thesis are included at the ends of Chapters 3-7.
This chapter will focus on a more general discussion of the work, describe the challenges
facing single-cell biology and discuss future directions for the field.

8.1 Single-cell characterisation of the haematopoietic
transcriptional landscape

8.1.1 Single-cell landscapes recapitulate haematopoietic differentiation

Three different single-cell profiling techniques were used in this work to measure gene
expression across the haematopoietic stem and progenitor compartment: single-cell qRT-
PCR, plate-based scRNA-seq and droplet-based scRNA-seq. Analysis using dimensionality
reduction techniques and pseudotime methods demonstrated that all of these datasets could
be used to generate representations of single-cell transcriptional landscapes that recapitulated
haematopoietic differentiation, but at a selection of different resolutions. For example, the
arrangement of cell types within dimensionality reductions, identified based on either surface-
marker profiles or marker gene expression, showed good agreement with current models of
the haematopoietic hierarchy. Gene expression dynamics along the pseudotime orderings
constructed using both qRT-PCR and scRNA-seq measurements were consistent with known
biology about lineage-specific transcription factor behaviour. Together, this work highlights
how single-cell gene expression profiling can provide insight into how the transcriptome of a
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cell changes during differentiation, and how this can be used to characterise properties such
as cell cycle state.

8.1.2 Discovering transcriptional regulation

As well as providing a description of how gene expression changes during differentiation, this
work also investigated approaches for identifying how haematopoietic fate decisions are tran-
scriptionally regulated. The analysis in Chapter 4 focused on constructing a transcriptional
regulatory network model for haematopoietic differentiation based on single-cell expression
data. This was made possible due to the high number of transcription factor genes measured
in the qRT-PCR dataset. However, although this method was able to identify differences
in regulatory relationships between differentiation towards two cells fates, it nevertheless
remains limited by the choice of genes. Profiling using scRNA-seq avoids this issue, but
is not suitable for use with the Boolean network inference method due to the high dropout
rate in these data. Searching for transcriptional regulation of cell fate decisions using the
scRNA-seq data has more scope for discovering novel regulation, and so a different approach
was taken to identify dynamic genes around a region of the landscape where the trajectories
branched towards multiple lineages. The genes found by this analysis will be investigated
and validated in future work.

8.1.3 Insights from examining heterogeneity within conventional
haematopoietic populations

An obvious strength of single-cell profiling, and a driving force behind its popularity, is that
it can be used to characterise the heterogeneity within a population. The work in Chapter 5
focused on variation within human lympho-myeloid progenitor populations to devise a new
sorting strategy to enrich for functional output. This was done by examining differences in
surface marker levels between cells giving rise to different mature cell types in single-cell
cultures. The ability of single-cell analysis to characterise heterogeneous populations was
also exploited in Chapter 7, in order to understand how the transcriptional landscape changes
in response to disrupted Kit signalling. This strategy will be relevant for studying changes in
HSPC populations for many different scenarios, for example in the context of infection and
in genetic perturbations related to disease.
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8.1.4 Choosing an appropriate gene expression assay

Increases in both the number of genes and the number of cells measured in a dataset resulted
in improved resolution in terms of distinguishing cells belonging to different lineages, but
at the expense of accuracy in gene expression measurements. In Chapter 6, droplet-based
scRNA-seq data were used to identify entry points to eight different blood lineages, where
these entry points could be used to reconstruct differentiation trajectories through the data.
This offered much better discrimination between cell fates than the single-cell qRT-PCR
data in Chapter 4, where considerable overlap was seen between progenitor populations
such as GMPs and LMPPs, which do separate based on their transcriptional profiles in the
scRNA-seq data. However, measurements of gene expression from the qRT-PCR data are
more accurate and suffer less from the issue of dropouts, particularly in comparison to the
much sparser droplet-based scRNA-seq data. These observations highlight the importance
of choosing the most suitable assay for an experiment. For interrogating the regulatory
relationships between a specific set of genes qRT-PCR offers clear advantages over RNA-seq
data. In contrast, for defining trajectories through the data and identifying novel regulators a
more suitable choice is scRNA-seq. For scRNA-seq there is also the decision about whether
to profile cells using a higher throughput technology, such as the droplet-based sequencing
of Chapters 6 and 7, or to obtain more in depth measurements of lower numbers of cells with
a method such as SMART-Seq2. The generation of a reference transcriptome in Chapter 3
was carried out using the more expensive (on a per cell basis) SMART-Seq2 technology, as
the aim was to make a high-quality dataset that could be related to index-sorting profiles in
order to allow conventional haematopoietic populations to be identified within the dataset.
However, the high-throughput droplet-based data were more suitable for understanding how
the transcriptional landscape changed in response to a perturbation, as this approach could
capture many cells in an unbiased manner to reveal how populations were altered in the
perturbed bone marrow.

8.2 Challenges in the analysis of single-cell expression data

8.2.1 Sparsity and noise in scRNA-seq data

Although scRNA-seq provides a transcriptome-wide view into gene expression, it is important
to recall that only a sample of the mRNA molecules present within a cell are captured for
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sequencing. Generally, due to the prohibitive cost, samples are not sequenced to saturation
for scRNA-seq. In high-throughput methods, such as the droplet-based sequencing from
Chapters 6 and 7, the sampling depth is normally even shallower as profiling more cells in a
sample means fewer sequencing reads are generated for each cell. As discussed in Section
1.2.3, this results in a high frequency of dropouts, with zero-inflation particularly a problem
for lowly-expressed genes. Noise in gene expression measurements limits the potential
of using scRNA-seq gene expression values as input for methods such as transcriptional
regulatory network inference as these rely on accurate reporting of the levels of each gene.
These issues have led to the recent development of imputation methods, where algorithms
are used to infer “missing” values in gene expression data. A range of approaches have been
suggested for this task, including using neural networks (Eraslan et al., 2018), diffusion-
based smoothing (van Dijk et al., 2018), and regression techniques (Li and Li, 2018). These
methods use information from cells across the dataset to try and recover gene expression
values representing transcriptional profiles that are unaffected by dropout. This may become
an essential step of scRNA-seq data analysis in the future. However, one major challenge
with such approaches is knowing how to avoid overfitting, where the gene expression values
are smoothed too far, obscuring biological heterogeneity within the sample.

8.2.2 Limitations in trajectory inference

Over the past four years a wide range of algorithms have been suggested for inferring
differentiation trajectories based on single-cell expression profiles, with several of these
reviewed in Section 1.4. Pseudotime inference techniques provide a powerful approach for
examining gene expression changes in previously inaccessible systems, particularly for in

vivo cells such as the bone marrow cells used to construct haematopoietic differentiation
trajectories for this work. However, trajectory inference remains limited by factors such
as parameter choices (Weinreb et al., 2018b). It is also important to remember that these
methods only allow the inference of pseudotime, not real time. Densities of cells in gene
expression space, and consequently in pseudotime trajectories, do not necessarily correspond
to closeness of these cells in the time it actually takes them to differentiate. This is important
to consider when examining the dynamics of transcriptional changes during differentiation.
Some studies currently investigate “real time” dynamics in a low-throughput manner using in

vitro imaging combined with fluorescent reporters (Etzrodt and Schroeder, 2017), and it will
be interesting to see how this can be related to pseudotime approaches in the future. Flux
through the haematopoietic compartments has also been estimated using cell labelling and
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mathematical modelling techniques (Busch et al., 2015; Sawai et al., 2016), and this could
be useful information to parametrise pseudotime analysis with real time.

8.2.3 Matching transcriptional state with function

Profiling the transcriptional state of a cell using techniques such as qRT-PCR and RNA-seq
necessitates its destruction. It is therefore not possible to obtain measurements of both the
transcriptome and future functional output of the same cell with these methods. Several
studies have taken advantage of index-sorting to link molecular profiles of cells to function
(Tusi et al., 2018; Velten et al., 2017; Wilson et al., 2015). Here, index-sorting is applied
to both the cells selected for expression profiling and those used in functional assays, so
that those with overlapping surface marker levels can be related. Chapter 5 investigated
this approach for human cord blood progenitors, and identified a relationship between the
levels of several surface markers (CD38, CD10 and CD45RA) and the functional output
in single-cell cultures. However, whilst these surface markers could enrich for functional
output, they could not be used to completely purify for function. This could be a limitation of
the surface markers measured, and it is possible that a different set of markers could be used
to accurately classify the different cell types. This highlights the difficultly of investigating
the function of populations defined based on their transcriptome.

8.2.4 Coping with high cell numbers

Another challenge facing the field is ensuring that computational techniques can be applied
to the increasingly large datasets that are being generated. This is particularly pertinent in the
light of initiatives such as the Human Cell Atlas (Regev et al., 2017), which are helping to
drive the generation of vast amounts of data. Several methods that were developed when the
majority of datasets were at most a few hundred cells have high computational complexity,
and so cannot be applied to thousands of cells. With the existence of datasets containing
upwards of one million cells (10x Genomics, 2017), scalability is an essential consideration
when designing new algorithms.
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8.3 Future directions for single-cell biology

8.3.1 Measuring multiple properties of the same cell

As discussed in Section 8.2.3, the expression of cell surface marker proteins is an important
way of being able to interrogate the functional properties of transcriptionally distinct cells
that are identified using gene expression analyses. For plate-based methods such as SMART-
Seq2 (Picelli et al., 2013) and MARS-Seq (Jaitin et al., 2014), it is possible to perform
index-sorting to retain information about the surface markers measured by FACS for each
cell. However, with droplet-based scRNA-seq protocols this is not possible. Instead, a range
of alternative approaches have been suggested for obtaining simultaneous measurements of
the transcriptome along with expression of a number of proteins of interest for individual
cells. CITE-seq (Stoeckius et al., 2017) and REAP-seq (Peterson et al., 2017) are methods
that use DNA-barcoded antibodies in conjunction with droplet-based scRNA-seq to measure
both gene and selected protein expression in a sequencing approach by adding barcodes
to antibodies that get transcribed. As strategies using cell-surface markers are extensively
used for cell type identification across the haematopoietic system these should prove to be
powerful techniques.

This thesis has focused on characterising transcriptional heterogeneity in HSPC populations
to learn more about haematopoietic differentiation. However, transcriptional regulation
is only one aspect influencing cell fate decisions. Techniques measuring a number of
cellular properties at the single-cell level are now available, for example genomic DNA from
individual cells can be profiled to assess variation in DNA copy number and the mutations
present within a population (Gawad et al., 2016). Characterising the epigenome of a cell is
also possible, with methods existing for interrogating DNA methylation (Guo et al., 2013b;
Smallwood et al., 2014), histone modifications (Rotem et al., 2015), chromatin accessibility
(Buenrostro et al., 2015; Cusanovich et al., 2015) and chromatin arrangement (Nagano et al.,
2013) at the single-cell level. Buenrostro et al. (2018) used a single-cell assay for transposase-
accessible chromatin using sequencing (scATAC-seq) to profile chromatin accessibility
in human HSPCs. These data were able to recapitulate the single-cell haematopoietic
landscape by measuring regions of open chromatin. Assessing epigenetic changes across
the haematopoietic landscape will help to reveal how cell fate decisions are controlled, as
the arrangement and accessibility of chromatin is a mechanism used for regulating gene
expression. In this study, the authors also performed single-cell transcriptional profiling on
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the same populations, and used computational techniques to try and match up the scATAC-seq
and scRNA-seq profiles to understand how the transcriptome and epigenome were related
across the haematopoietic landscape.

Excitingly, there are now also numerous protocols for performing single-cell multiomics
techniques, where different properties are measured within the same cell (Chappell et al.,
2018; Macaulay et al., 2017). Genetic mutations occurring in stem and progenitor cells are a
driving factor in many blood disorders including myeloproliferative neoplasms and AML,
and so new techniques allowing simultaneous genome and transcriptome profiling could
prove useful for studying haematopoiesis in the context of disease (Dey et al., 2015; Han
et al., 2014; Macaulay et al., 2015). Several methods have also been described that enable the
measurement of the methylation and gene expression states of the same cell (Angermueller
et al., 2016; Cheow et al., 2016; Hou et al., 2016; Hu et al., 2016), or of both methylation
and gene expression along with chromatin accessibility (Clark et al., 2018). Having access
to both epigenetic and transcriptional states of a cell could help understanding of how
the transcriptional changes in cell state are regulated during differentiation. In particular,
epigenetics may provide information about the potential of a cell (what it “can do”) whereas
transcriptomics provides a window into its current state (what the cell “is doing”). Due
to limitations in the amount of starting material available from individual cells, and the
challenges associated with separating cellular components for performing these parallel
analyses, a number of these methods have restricted sensitivity, or in practice prove very
costly for profiling large numbers of cells. It is likely that it the next few years innovations in
technology will help to address these issues, and that single-cell multiomics datasets will
become more widespread. As a result, it will be important to focus on developing new
computational approaches for integrating and analysing these data.

8.3.2 Combining perturbations with single-cell gene expression
measurements

Single-cell technologies also have powerful potential in understanding how perturbations
can affect the transcriptional landscape. The role of a particular gene in a system can be
tested by knocking it out to observe its effect. Traditionally this would have been a laborious
and time-consuming process. With the advent of CRISPR (clustered regularly interspaced
short palindromic repeats)-associated nuclease Cas9 (Cong et al., 2013; Qi et al., 2013) it
became possible to perform genome-wide knockout screens (Shalem et al., 2014; Wang et al.,
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2014), where individual cells from a population are randomly perturbed by guide RNAs
from a pooled library that targets thousands of genes. After application of the CRISPR
library, cells can be cultured for a period of time. When genes essential for survival have
been knocked out in some of the cells, these cells will die. Sequencing the surviving cells
identifies the nature of their perturbation to reveal the essential genes. Yet, initially, this
approach did not provide a read-out of how the molecular state of a cell was altered after a
genetic perturbation. This led to the development of several methods combining CRISPR
perturbation with high-throughput scRNA-seq. Both the Perturb-Seq (Adamson et al., 2016;
Dixit et al., 2016) and the CRISP-seq (Jaitin et al., 2016) methods use a library of barcoded
guide RNAs targeting different genes, where the barcodes for the guide RNAs are transcribed
and read during sequencing in order to identify which guide RNA was present in a cell. In an
alternative method, CROP-seq, the authors altered a CRISPR-screening construct so that the
guide RNA itself is transcribed during single-cell transcriptional profiling using Drop-seq
(Datlinger et al., 2017). This removed the need for creating a barcoded guide RNA library as
the guide is read directly. These approaches should be able to provide exciting insights into
how the gene expression states of cells across many systems, including haematopoiesis, are
altered in response to loss of different genes. However, there are still challenges to overcome
in the analysis of data generated from these combined CRISPR screening and transcriptional
profiling methods. In particular, the presence of a guide in a cell does not always mean that
the gene has been successfully targeted. Reliably determining whether this has happened
will require computational or experimental innovation.

8.3.3 Revealing the past and the future of individual cells

Profiling a sample using single-cell omics technologies, such as scRNA-seq, aims to de-
scribe the state of each cell at the moment it was captured. Time-course experiments or
computational pseudotime approaches attempt to add dynamics to these type of data, but
cannot actually identify the past or future states of an individual cell. Recently there has
been promising development of new methods offering glimpses into these states, which is
particularly exciting considering the debate surrounding the structure of the haematopoietic
hierarchy.

In a new approach for investigating the organisation of haematopoietic differentiation,
Rodriguez-Fraticelli et al. (2018) used transposon tagging to label cells in steady state
haematopoiesis. Cells in adult mice were labelled during a doxycycline pulse, and after
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a number of weeks different blood lineage and progenitor populations were isolated. Se-
quencing was then performed to reveal which barcodes were present across the different
populations, and in what combinations of cell types they appeared. The authors saw that
very few barcodes within the megakaryocyte populations were shared across other cell
fates, in contrast to the presence of the MEP population within the classical haematopoietic
hierarchy.

The concept of genetically labelling single cells to reconstruct lineage hierarchies has also
been applied in zebrafish, but here has excitingly been combined with single-cell transcrip-
tomic approaches. LINNAEUS (Spanjaard et al., 2018), ScarTrace (Alemany et al., 2018) and
scGESTALT (Raj et al., 2018) all take advantage of the CRISPR-Cas9 system. It was realised
that this system could be used for lineage tracing as Cas9 can be used to generate random
small insertions and deletions in a target gene, known as scars. These scarred regions can
then be sequenced along with the transcriptomes from single cells, allowing both unbiased
cell type identification (based on the transcriptome) and lineage reconstruction (based on the
combinations of scars observed across cells). These methods were used to scar early embryos
in order to investigate lineage separation during development, reveal the clonal structure
of organs in the adult fish and to study zebrafish brain development. Combining lineage
tracing with transcriptional profiling has huge potential for understanding the differentiation
structure of a tissue, and has very recently been extended to mammalian organisms in a
study investigating lineage hierarchies in the gastrulating mouse embryo (Chan et al., 2018).
Nevertheless, considerable challenges arise from the fact that the scars in these methods
are not reliably detected in all cells, and so improvements in the computational methods for
inferring lineage relationships will be needed.

In contrast to lineage tracing techniques which seek to reveal the history of a cell, very differ-
ent work has demonstrated the potential of using single-cell transcriptomics for predicting a
cell’s future. This approach, called RNA velocity, considers the ratio of spliced to unspliced
mRNAs within a cell, reasoning that this ratio changes as cells undergo differentiation at
different speeds (La Manno et al., 2018). The authors applied this algorithm to identify
differentiation trajectories in the developing mouse hippocampus by calculating current and
future states for cells in this system. In work using single-cell transcriptomics to reconstruct
the lineage hierarchy of a whole organism, the flatworm planaria, RNA velocity estimates
showed good agreement with lineage relationships inferred on gene expression counts, and
helped to add direction to connections seen between cell states in this hierarchy (Plass et al.,
2018).
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8.4 Concluding remarks

Over the past few years there has been an explosion in single-cell data generation and analysis
techniques. Studies using single-cell approaches have offered unprecedented insight into
processes such as differentiation and as such have been widely applied across the stem cell
field, amongst many other areas of biology. Work focusing on haematopoiesis has ranged
from modelling transcriptional regulation to probing the structure of the haematopoietic
differentiation hierarchy, with single-cell biology instrumental in revealing a huge amount
about this complex system.

Investigating how the gene expression state of a cell changes during haematopoiesis can
advance our understanding of how this process is regulated. This PhD project therefore
focused on characterising the transcriptional landscape within the haematopoietic stem
and progenitor cell compartment using single-cell gene expression profiling. Datasets
generated as part of this work have been made publicly available, representing a valuable
resource for the haematopoietic community. Analysis of these data allowed computational
reconstruction of differentiation towards several blood lineages, revealing changes in gene
expression and in processes such as cell cycle along these differentiation trajectories. Inferred
transcription factor dynamics were used to discover differences in regulatory relationships
between cells differentiating towards two alternative blood fates. Heterogeneity in the blood
progenitor compartment was also studied using single-cell molecular profiling. Data from
human blood progenitors revealed a continuum of gene expression states in agreement
with the functional heterogeneity observed within these populations. In the mouse, cellular
heterogeneity in the bone marrow HSPC compartment was considered when investigating
how its composition is altered in response to a genetic perturbation. Together, all of this
work highlights the importance of performing analysis at the single-cell level. Future steps
will focus on validating the potential regulators of cell fate decisions identified using the
scRNA-seq landscape, and then expanding this approach to consider the mechanisms behind
how the landscape is altered in perturbed states. The techniques discussed in this thesis
should be widely applicable to investigation of other haematopoietic perturbations, which
will be particularly interesting in the context of disease.
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Appendix A

Transcriptional regulatory network
model rules from Chapter 4

Table A.1. Boolean rules governing the expression of each gene in both the MEP and
LMPP networks. Network rule columns describe the highest scoring rules for each gene.
Agreement columns show agreement level of the rule with pseudotime input-output pairs.
For example, an agreement of 0.98 means that these Boolean rules agreed with 98% of the
pseudotime pairs. ∧, AND; ∨, OR; ¬, NOT.

Gene MEP network rules LMPP network rules MEP
agreement

LMPP
agreement

Bptf Myb ∨ Gata2 ∨ Ikzf1 ∨
Lmo2

Ikzf1 0.98 0.97

Erg ∨ Ikzf1 Nfe2
Smarcc1 Lmo2
Nfe2 Erg ∨ Smarcc1

Myb ∨ Smarcc1

Cbfa2t3h Nfe2 Fli1 0.95 0.82
Myb ∨ Meis1 ∨ Ikzf1 Nfe2
Gata2 ∨ Fli1 ∨ Gata1 ∨
Meis1

Meis1

Ikzf1 ∨ Fli1 ∨ Gata2 ∨
Myb

Ikzf1

Erg Erg ∧ Meis1 Bptf 0.72 0.88
Meis1
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Fli1

Ets1 (Notch ∧ Tcf7) ∧ ¬(Etv6) Ets1 ∧ Notch 0.77 0.57

Ets2 Smarcc1 ∨ Gfi1b ∨ Fli1 Ets2 0.78 0.58

Etv6 Smarcc1 Fli1 0.89 0.90
Meis1

Fli1 Fli1 ∨ Meis1 Meis1 0.91 0.99
Nfe2
Runx1 ∨ Erg ∨ Cbfa2t3h
Smarcc1 ∨ Etv6 ∨
Cbfa2t3h

Gata1 Gata1 Smarcc1 ∧ ¬Fli1 0.88 0.98
Tcf ∧ ¬Fli1
Tcf7 ∧ ¬Erg
Gfi1b ∧ ¬Fli1
Gfi1b ∧ ¬Lyl1
Tcf7 ∧ ¬Nkx2.3
Tcf7 ∧ ¬Lyl1
Tcf7 ∧ ¬Hoxa9
Gata2 ∧ ¬Fli1
Myb ∧ ¬Fli1
Tal1 ∧ ¬Fli1
Hoxa5 ∧ ¬Fli1
Cbfa2t3h ∧ ¬Fli1
Gata2 ∧ ¬Lyl1
Gfi1b ∧ Tcf7
Hoxa5 ∧ ¬(Hoxa9 ∨
Nkx2.3)
Gfi1b ∧ ¬(Hoxa9 ∨
Nkx2.3)
Hoxa5 ∧ ¬(Erg ∨ Nkx2.3)
Myb ∧ ¬(Erg ∨ Hoxa9)
Smarcc1 ∧ ¬(Hoxa9 ∨
Lyl1)
Hoxa5 ∧ ¬(Erg ∨ Hoxa9)
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Cbfa2t3h ∧ ¬(Erg ∨
Hoxa9)
Tal1 ∧ ¬(Erg ∨ Hoxa9)
Hoxa5 ∧ Myb ∧ ¬Hoxa9
Gata2 ∧ ¬(Erg Or Hoxa9)
Smarcc1 ∧ ¬(Erg ∨ Lyl1)
Hoxa5 ∧ ¬(Lyl1 ∨
Nkx2.3)
Myb ∧ ¬(Lyl1 ∨ Nkx2.3)
Smarcc1 ∧ ¬(Lyl1 ∨
Nkx2.3)
Hoxa5 ∧ ¬(Erg ∨ Lyl1)
Myb ∧ ¬(Erg ∨ Lyl1)
Tal1 ∧ ¬(Lyl1 ∨ Nkx2.3)
Cbfa2t3h ∧ ¬(Lyl1 ∨
Nkx2.3)
Cbfa2t3h ∧ ¬(Erg ∨ Lyl1)
Hoxa5 ∧ ¬(Hoxa9 ∨ Lyl1)
Smarcc1 ∧ ¬(Erg ∨
Hoxa9)
Gfi1b ∧ Hoxa5 ∧ ¬Erg
Tal1 ∧ ¬(Erg ∨ Lyl1)
Cbfa2t3h ∧ ¬(Hoxa9 ∨
Lyl1)
Tal1 ∧ ¬(Hoxa9 ∨ Lyl1)

Gata2 Nfe2 Gata2 0.97 0.79
Bptf
Gfi1b ∨ Meis1
Gata1 ∨ Meis1
Cbfa2t3h ∨ Meis1
Cbfa2t3h ∨ Pbx1

Gata3 Gata3 ∧ ¬Myb Tal1 ∧ Gata3 0.72 0.65

Gfi1b Gata1 ∨ Ets2 ∨ Gata2 ∨
Tal1

Gata2 ∧ Gfi1b ∧ ¬Notch 0.86 0.74

Hhex Nfe2 Hhex 0.74 0.56



176 Transcriptional regulatory network model rules from Chapter 4

Hoxa5 Tcf7 Prdm16 ∧ Tcf7 0.87 0.85

Hoxa9 Ikzf1 ∧ Meis1 Meis1 0.65 0.87
Ikzf1
Nkx2.3 ∨ Ets1 ∨ Lyl1 ∨
Hoxa5

Hoxb4 Tcf7 Tcf7 0.84 0.80

Ikzf1 Smarcc1 Bptf 0.93 0.96
Bptf Hoxa9 ∨ Smarcc1 ∨ Myb

∨ Cbfa2t3h
Cbfa2t3h ∨ Hoxa9

Ldb1 Smarcc1 Ikzf1 0.87 0.81
Myb ∨ Lmo2 ∨ Ikzf1 Lmo2

Myb ∨ Smarcc1

Lmo2 Bptf Bptf 0.96 0.98
Nfe2 Meis1
Lyl1 Nfe2
Ldb1 ∨ Meis1 Lyl1 ∨ Notch

Ldb1 ∨ Lyl1
Lyl1 ∨ Tal1
Lyl1 ∨ Nkx2.3

Lyl1 Smarcc1 Nfe2 0.95 0.98
Nfe2 Lmo2
Myb ∨ Hoxa9 ∨ Lmo2 Erg ∨ Smarcc1 ∨ Hoxa9

Myb ∨ Smarcc1
Erg ∨ Lmo2

Meis1 Meis1 ∨ Erg Lmo2 0.88 0.99
Nfe2
Fli1
Nkx2.3 ∨ Runx1
Cbfa2t3h ∨ Etv6
Erg ∨ Hoxa9
Cbfa2t3h ∨ Erg ∨ Runx1

Mitf Fli1 ∧ Mitf Mitf 0.67 0.66
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Myb (Gata1 ∨ Runx1) ∧
¬(Gata3 ∧ Nkx2.3)

Myb ∨ Ldb1 ∧ ¬(Gata3 ∧
Prdm16)

0.83 0.69

Nfe2 Bptf Bptf 0.99 0.99
Lyl1 Fli1
Fli1 ∨ Myb ∨ Lmo2 ∨
Meis1

Lmo2

Cbfa2t3h ∨ Lmo2 ∨ Gata2 Meis1
Gata2 ∨ Myb Cbfa2t3h ∨ Lyl1 ∨ Myb ∨

Fli1
Cbfa2t3h ∨ Fli1
Hhex ∨ Lmo2
Cbfa2t3h ∨ Meis1

Nkx2.3 Nkx2.3 ∧ ¬Gata1 Lmo2 0.85 0.77
Meis1
Hoxa9 ∨ Lyl1

Notch Tcf7 Lmo2 ∧ ¬(Gata2 ∧ Gfi1b) 0.84 0.66
Ets1 ∧ ¬Gata2
Ets1 ∧ ¬Nfe2
Lmo2 ∧ ¬Nfe2
Lmo2 ∧ ¬(Gata2 ∨ Gfi1b)

Pbx1 Meis1 Gata2 ∨ Runx1 0.75 0.71

Prdm16 Fli1 ∧ ¬Myb Hoxa5 ∧ ¬Myb 0.75 0.71

Runx1 Fli1 ∨ Myb ∨ Meis1 Fli1 0.90 0.88
Meis1

Smarcc1 Bptf Ikzf1 0.99 0.98
Lyl1 Fli1
Etv6 ∨ Ldb1 ∨ Ikzf1 ∨
Fli1

Bptf

Fli1 ∨ Myb ∨ Ikzf1 ∨ Ets2 Lyl1 ∨ Etv6 ∨ Ldb1
Ets2 ∨ Etv6 Lyl1 ∨ Myb ∨ Ets2
Fli1 ∨ Gata1

Tal1 Lmo2 ∨ Gata1 ∨ Gfi1b ∨
Gata2

Gata2 ∨ Tal1 0.85 0.64

Tcf7 Notch ∧ ¬Ikzf1 Hoxb4 ∧ ¬Ikzf1 0.97 0.97
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Hoxa5 ∧ ¬Ikzf1 Hoxa5 ∧ ¬Ikzf1
Nkx2.3 ∧ ¬Ikzf1 Gata1 ∧ ¬Ikzf1
Gata3 ∧ ¬Ikzf1 Notch ∧ ¬Ikzf1
Hoxb4 ∧ ¬Ikzf1 Nkx2.3 ∧ ¬Ikzf1
Ets1 ∧ ¬Ikzf1 Ets1 ∧ ¬Ikzf1
Gata1 ∧ ¬Ikzf1 Runx1 ∧ ¬Ikzf1
Gata1 ∧ Hoxa5 Gata3 ∧ ¬Ikzf1
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Fig. A.1. Influence of choice of parameter k on rule scoring. Network inference was run
on 10 randomly selected genes for the MEP model inference using k ∈ {3,5,7,9}. The
rules for each k were ranked by their pseudotime-agreement score, so the top-scoring rule(s)
would get rank 0, the next best scoring rule(s) rank 1, and so on. The top-scoring rules for
each ki were then compared to the results of rule scoring with each other k j ̸= ki. For each
top-scoring ki rule, its rank was found for each of the other k j, and this rank averaged across
all of the top-scoring ki rules for each ki vs k j comparison. These 12 averages (corresponding
to the 12 (ki,k j) pairs) are shown for each gene. An average of 0 means that the top-scoring
rules for the ki were also in the top-scoring rules for k j. The majority of comparisons had
this level of agreement. When the top-scoring rules did not match, this analysis shows that
they were still amongst the high-ranking rules for the other ki.
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