Quantum Information Processing using
the Power-of-SWAP

Generation, Characterization and Application of
Quantum Entanglement in Physical Systems with
SWAP'/" Gates

Mrittunjoy Guha Majumdar

Department of Physics
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Christ’s College November 2018






I would like to dedicate this thesis to my loving parents Rupendra Guha Majumdar and
Karabi M. G. Majumdar, and my brother Tirthankar Guha Majumdar.






Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 60,000 words including appendices, bibliography, footnotes,

tables and equations and has fewer than 150 figures.

Mrittunjoy Guha Majumdar
November 2018






Acknowledgements

I would like to acknowledge the unmatchable support and guidance from my PhD supervisor
Professor Crispin H. W. Barnes. His continued belief in me and the project played a key role
in the completion of the project. I would also like to acknowledge the role played by my
research group colleagues Dr. Edmund Owen, David Arvidsson-Shukur and Hugo Lepage,
in terms of discussions on conceptual points and helping with simulations of some of the
applications of Power-of-SWAP based quantum computing. I would also like to acknowledge
the support and guidance given by Dr. Jacek Mosakowski and Dr. Alexei Andreev early in
the project.

I would like to acknowledge the contribution of Niall Devlin and Yordan Yordanov. Yor-
dan helped me with looking into one of the ways of finding the quantum vector states for
Power-of-SWAP based quantum computing, while discussions with Niall were helpful in
devising ways to characterize entanglement using permutation symmetries of states. I would
also like to acknowledge the contributions of Sathyageeshwar Subrahmanian, Department
of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, with
whom I worked on the sections on studying the accessibility of quantum states using circuits

comprising entirely of SWAP'/",

I would also like to acknowledge the contribution of my family and friends for being
there with me during the highs and lows of this project, strong and steadfast in their support.






Abstract

This project is a comprehensive investigation into the application of the exchange interaction,
particularly with the realization of the SWAP!/" quantum operator, in quantum information
processing. We study the generation, characterization and application of entanglement in such
systems. Given the non-commutativity of neighbouring SWAP!/ gates, the mathematical
study of combinations of these gates is an interesting avenue of research that we have
explored, though due to the exponential scaling of the complexity of the problem with the
number of qubits in the system, numerical techniques, though good for few-qubit systems, are
found to be inefficient for this research problem when we look at systems with higher number
of qubits. Since the group of SWAP!/ operators is found to be isomorphic to the symmetric
group S,, we employ group-theoretic methods to find the relevant invariant subspaces
and associated vector-states. Some interesting patterns of states are found including one-
dimensional invariant subspaces spanned by W-states and the Hamming-weight preserving
symmetry of the vectors spanning the various invariant subspaces. We also devise new
ways of characterizing entanglement and approach the separability problem by looking at
permutation symmetries of subsystems of quantum states. This idea is found to form a
bridge with the entanglement characterization tool of Peres-Horodecki’s Partial Positive
Transpose (PPT), for mixed quantum states. We also look at quantum information task-
oriented ‘distance’ measures of entanglement, besides devising a new entanglement witness
in the ‘engle’. In terms of applications, we define five different formalisms for quantum
computing: the circuit-based model, the encoded qubit model, the cluster-state model,
functional quantum computation and the qudit-based model. Later in the thesis, we explore
the idea of quantum computing based on decoherence-free subspaces. We also investigate
ways of applying the SWAP!/" in entanglement swapping for quantum repeaters, quantum

communication protocols and quantum memory.
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Chapter 1
Introduction

“A classical computation is like a solo voice—one line of pure tones suc-
ceeding each other. A quantum computation is like a symphony—many lines of

tones interfering with one another.”
— Seth Lloyd

At a conference, in 1981, co-organised by MIT and IBM, Richard Feynman, in his famously
irreverent way, urged the world to build a quantum computer. He said: “Nature isn’t classical,
dammit, and if you want to make a simulation of nature, you’d better make it quantum
mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.” In the
early twentieth century, quantum theory brought about a revolution, unmatched by most other
contemporary ideas, besides Einstein’s Relativity arguably. It had an elegant mathematical
theory that explained the bizarre behaviour of subatomic particles. Although in 1932 John
von Neumann [2] had encapsulated the basic elements of a nonrelativistic quantum theory in
a coherent whole, it was Einstein, Podolsky, and Rosen (famously referred to, collectively, as
EPR) [3] and Schrodinger [4] who first recognized what they referred to as ’spooky action at
a distance’, which later formed the backbone of Quantum Information Theory. Paradoxically,
quantum entanglement, considered to be the most nonclassical manifestation of quantum
mechanics, was used by Einstein, Podolsky, and Rosen in their attempt to ascribe values
to physical quantities prior to measurement. It was Bell who showed that in fact it was
entanglement which ruled such a possibility of a hidden variable theory out in 1964 [5]. He
did this by positing his famous no-go theorem that if local hidden variables exist, experiments
could be performed involving quantum entanglement where the result would satisfy a Bell
inequality. However, Aspect et al [6] and Kwiat et al [ 7] found violations of these inequalities

in experiments [8].



2 Introduction

It wasn’t until the last decade of the twentieth century that it was realised that the world of
quantumness could be used to define and manipulate bits and logic operations in a computer.
Quantum computation came into focus primarily after it was found that certain problems that
could not be solved using classical algorithms or methods could be solved using quantum
computation and algorithms, in far lesser time if a classical counterpart existed. A primary
example of an early problem that was solved in this manner was that of factoring large
numbers by Peter Shor using a quantum algorithm [9]. Today one has various methods in the
domain of quantum algorithms to solve cryptosystems (such as the RSA cryptosystem) and
even certain NP-hard problems. It has thus become clear that a quantum computer, once built,
would be something to be reckoned with, and an extremely useful tool for computational
purposes. In C. Altman’s words, "An omni-linked world populated with intelligent artifacts
will bring sweeping changes to virtually every facet of modern life — from science and
education to industry and commerce — leaving no segment of society unaffected by its ad-

vance'. Quantum computation may just be the most intelligent of them all, by quite a distance.

One may ask,

"What makes Quantum Mechanics a powerful tool for computational pur-

poses?"

One explanation is that the basis for computation is infinite-dimensional since quantum
mechanics allows for superposition, constrained by normalization conditions. At the very
foundation of this formalism (of quantum computation) is the quantum bit (or qubit) [10],
which is a quantum system that, like an ordinary classical bit, has two accessible states (often
denoted by |0) and |1)) but, unlike an ordinary computer bit, could exist in a superposition of
these two states:

al0)+Bl1),a,B €C,lal*+|B =1 (1.1)

where o and 3 are probability amplitudes. There are two primary physical operations that
can be performed on pure qubit states: operation by a quantum logic gate and measurement
in standard basis. Mathematically, upon being operated by a quantum logic gate, the qubit
undergoes a unitary transformation. Using standard basis measurement, information about
the state of the qubit can be obtained.

The other key reason for the power of quantum mechanics for computation purposes is
that qubits can display entanglement, which is an important distinguishing feature between
a quantum bit and a classical bit. Entanglement is a nonlocal property which allows qubits

to express higher correlations than in classical systems. Entanglement conditions allow



for subsystem manipulation of a quantum system such that multi-partite algorithms can be
realized efficiently and quickly.

So, a key question is

"How much better is quantum computation better than its classical counter-
part?"

The answer to this question is still not known conclusively, just as is the case for the comput-
ing power of classical machines. This question has to be addressed on two fronts: qualitative
and quantitative. Quantitatively, the answer has an unexpected form: quantum-ness and the
computational tools associated with it do not speed up all tasks of information processing
by a uniform amount [11]. Considering how the number of steps required to complete
a computational task grows with the number of (quantum) bits involved, it is found that
different computational tasks have different degrees of speed-up. Some tasks are not faster
than their classical counterparts at all. An example of the same would be the computation task
of finding the n'" iterate of a function f(x): f(f(...f(x)...)). Some processes are moderately
faster than their classical counterparts, such as search-algorithms for finding an element
in a database of n entries [12], while certain other quantum computational processes are
exponentially faster than their classical counterparts, such as Shor’s algorithm for factoring

an n-digit number [9].

Communication has both qualitative and quantitative improvements for the quantum case
over the classical counterparts [13, 14]. For certain tasks there is a quadratic reduction of
the amount of data communicated for the completion of the task, if quantum states are used
rather than classical states [15]. For example, the appointment scheduling problem is one
such case [16]:

Let Alice and Bob be the two users of the quantum computation process. Both are very
busy but would like to meet up. They need to find a convenient time when they are both
free for doing so. They each have a calendar, which we consider to be n-bit strings x
(for Alice) and y (for Bob). If the calendar is free on day i, for Alice (Bob), then x; = 1
(vi = 1). Mathematically, Alice and Bob want to find a day such that x; = y; =1 or

establish that no such index exists.

Kalyanasundaram and Schnitger [17] proved that the appointment scheduling problem re-
quires at least cn classical bits of communication in the worst case, whereas Burhman et al
[15] showed that this problem can be solved with the exchange of ¢\/nlog(n) quantum bits
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using Grover’s search algorithm [12], where c is some real positive constant and sufficiently
large n. For other computational tasks there is an exponential gap between the quantum model
and its classical counterpart. One famous example of this is the set disjointness problem
[18, 19] that relates to the allocation of non-overlapping sections of a shared memory in a

distributed computation protocol:

Let W be a set of size n. Alice and Bob want to generate a pair of subsets (U,V), such
that U C W is known to Alice, V. C W is known to Bob, and the pair (U,V) is a random
variable that is uniformly distributed on the set of all pairs with |U| = |V| = \/n and
Unv|=0.

Ambainis et al [19] showed that the set disjointness problem can be solved with the commu-
nication of only O(log(n)) quantum bits, while it can be done by any classical probabilistic

protocols with communication of atleast O(+/n) bits.

Last but not the least, there are tasks that are can be accomplished only using quantum
models and that have no classical counterparts. One such computational task is Quantum
Cryptography, which provides confidentiality of communication between parties that is
impossible to be realized classically [20]. This is also true for winning strategies for some

games, such as the guessing games, which can only be possible using quantum resources
[21-24].

1.1 Physical Realization of Quantum Computation

Having looked into the manner in which quantum computing can make computational tasks
and processes faster and qualitatively more efficient than classical counterparts, we need to

look into the question of
"How can quantum information processing be physically realized?"

According to David P. DiVincenzo [25], there are certain essential conditions for the realiza-
tion for the physical realization of Quantum Computation:

1. Well-characterized qubits and a scalable physical system: Given the importance of
the qubit as the fundamental building block of quantum information processing, the
qubits in any physical realization should be well defined and characterized. A qubit
is a two-level state, conventionally defined as |0) and |1). Any physical realization of
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a quantum bit should have a well-defined separation of these two levels, which are
usually related to distinct values of certain properties of the qubits (such as energy
and polarization), and in case the qubit does have other levels, the physical process
should be designed such that the probability of the system ever going into these level
is infintesimal. Other physical parameters, including the internal Hamiltonian of the
system, couplings between the states of the qubit and to external fields that are used
for manipulations of the qubit, besides the interactions of the qubit with other qubits,
must be known. There is a great variety of physical realizations of qubits that have
been implemented, such as charge qubits [26-28], spin qubits [29-33] and flux qubits
[34-36].

2. Easy initialization of the state of the qubits to a simple fiducial state |000...):
Ease of implementation of a quantum computation is linked to the ease of initializa-
tion of the quantum bits used to a known value before the process. Qubits can be
initialized using quantum operations [37—41], spin injection [42, 43], resonant cou-
pling with a tunable environment [44] or measurements [45-51]. Processes such as
microwave-induced cooling of superconducting qubits [52], Purcell filters [53], cooling
the collective motion of trapped ions [54], production of photonic qubits using ultravi-
olet light impinged on -Barium Borate (BBO) crystals [55], fine-structure splitting
[56] and rapid electric-field ionization of a resonantly excited exciton [57] are some
of the physical processes to initialize quantum bits in physical implementations of
quantum computation. Certain kinds of implementations such as Nuclear Magnetic
Resonance (NMR) cannot be a feasible implementation of quantum computation until
the problem of the inability to cool macroscopic materials to their ground state (which is

taken as the qubit |0)) in bulk spin-resonance quantum computation is resolved [58, 59].

3. Relevant Decoherence times longer than the gate operation time: Decoherence
is the physical phenomenon of qubits becoming entangled with their environment,
thereby effectively "collapsing’ the state of the quantum computer to a definite quantum
state [60—62]. Decoherence is significant in the domain of quantum physics as it is
the principal mechanism for the emergence of classical behavior in quantum systems
with the loss of quantumness [63]. As the quantum nature of the qubits and quantum
computer is fundamental for the advantage of using them over their classical counter-
parts, presence of decoherence is counterproductive to an efficient implementation of
quantum computation [64]. Thus, the time taken for decoherence to set in should be

longer than the time taken for any unique quantum features or processes in a quantum
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information process to be carried out. The decoherence time should be for the ’relevant’
degrees of freedom for the computation; for instance, for a quantum computer that
uses the spin-degree of freedom, decoherence in position or orbital of the qubit is
not relevant. Since decoherence is very system-specific, caution has to be taken to
gauge where exactly what kinds of timescales are involved. There have been a lot of
experimental studies to study decoherence in physical systems. Michel Brune and
his colleagues [60, 65] at Ecole Normale Supérieure performed experiments in which
they manipulated electromagnetic fields into a Schrodinger-cat-like superposition state
using rubidium atoms, in which they found two primary characteristic results: the fast
evolution of the system comprising of the atoms and the measurement device towards
a statistical mixture state during a measurement process, and faster rate of decoherence
for greater distances between components of a multiparticle system. Sackett et al [66]
used ion traps to study the decoherence of ions because of radiation. Kokorowski et al
[67] studied the decoherence in spatially separated atomic superpositions due to spon-
taneous photonic scattering. Cheng and Raymer [68] found the averaged decoherence

rate times for optical beams traversing dense, multiple-scattering dielectric media.

4. Universality of accessible Quantum Gates: Any quantum information process
or algorithm is specified in terms of a sequence of unitary transformations acting on
some of the qubits that comprise the quantum computer. This is usually no more than
three qubits, as in the case of the Toffoli gate. The way this is usually done is to identify
Hamiltonians that can generate these unitary transformations: U = eiHTt, where ¢ is the
time of operation of the Hamiltonian H. Even though we would ideally like to be able
to realize any random unitary transformation with a physical process, the number of
such transformations accessible using a certain Hamiltonian related to the physical
process is limited. The point that helps is that we need only a limited number of basic

universal gates to realize all possible quantum operations.

DiVincenzo [69] gave a proof that showed that quantum gates operating on two
(quantum) bits are sufficient to construct any general quantum circuit. Barenco et al
[70] showed that a set of gates that consists of all one-qubit gates and the two-qubit
CNOT gate Ucnor : Uenor (x,y) — (x,x@y) acting on qubits (x,y) is universal. But
what happens if one has interactions in a physical system that cannot be shut off, such
as certain two-body interactions in Nuclear Magnetic Resonance (NMR) Quantum
Computing? In such cases one uses selective 'refocussing’ sequences of the control-

lable interactions to correct for these stray interactions. Leung et al [71] presented a
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scheme that couples any pair of spins in a hetero-nuclear spin system, and showed that
in many systems, selective recoupling is possible, thereby presenting an instance of a

refocussing sequence that can implemented efficiently.

Other problems, such as inability to turn on the desired interaction between a pair of
qubits, arise in implementations of quantum computing. For example, no direct interac-
tion is available between the ionic qubits in an ion-trap scheme in the ion-trap scheme
[72-74]. In such cases, auxiliary quantum systems (or "bus qubits’) are introduced
to work around this problem; for instance, the vibrational state of the ion chain in an
ion-trap is used for mediating the ’interactions’. However, since each quantum system
has a certain amount of decoherence associated with it, the introduction of such an
auxiliary system leads to increasing decoherence, as seen in cavity-quantum electro-
dynamics and ion-trap schemes. Besides, quantum gates have random and systematic
errors associated with the Hamiltonians used to implement them [75]. These are further
sources of decoherence and can be corrected for, by error correction methods. The
unreliability factor because of random errors is in the same vicinity as the decoherence
threshold: the magnitude of random errors should be roughly 10~% — 107 per gate
operation for a successful implementation of a quantum information processing task
[75-79]. For error correction, gate operations using coded qubits should be realizable.
For most popular error correction techniques, the so-called ’stabilizer codes’ are used.
Stabilizer codes are used to ascertain the occurrence of an error and to determine the

kind of error (such as bit flip or phase flip error) that may have taken place.

Definition 1.1. An [n, k| stabilizer quantum error-correcting code has the encoding of
k logical qubits into n physical qubits. The stabilizer S for the error-correcting code is
an Abelian subgroup of the n-fold Pauli group I1,,: S C I1,, which does not contain the
operator the n-qubit identity operator: —/ @ n. The simultaneous eigenspace +1 of the

operators comprises the codespace.

Error-correcting codes have physical qubits that comprise logical qubits with the
base-level quantum gates being the regular one-qubit and CNOT gates [80—83]. In
some cases, such as in implementations of quantum error-correcting codes using
quantum-dot [84, 85] or semiconductor impurities [86, 87], only two qubit gates are
enough to implement general quantum computation when blocks of three or four qubits
are used as logical qubits [88].
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5. Measurement: The role of measurement of properties of a quantum particle is
as important as the evolution of it, under the, or without the, influence of external
quantum operations [45, 89]. The concept of quantum measurement is placed at the
core of the problem of the interpretation of quantum mechanics [90, 63]. According
to the Copenhagen interpretation, generally, any physical system does not have any
definite properties before being measured, and quantum mechanics can only predict
the probabilities with which a certain measurement will produce a particular result
for the property for which the measurement was carried out [91, 92]. Practically, for
any successful implementation of quantum computation, we require a qubit-specific

measurement capability in the physical system.

Measurements can be of two-kinds: strong and weak measurement [45, 60, 93]. Quan-
tum wave-function collapse due to measurement of observables associated with a
quantum system is one of two processes by which such systems can evolve in time,
with the the other process being the continuous evolution via the Schrédinger equation.
One can avoid the collapse of the wavefunction using what is known as a weak mea-
surement, which gives very little information about the state of the quantum system but
also perturbs it very slightly, thereby not leading to the collapse of the wavefunction
[94, 95]. Weak measurements have been used in precision metrology [96], for protect-

ing entanglement from thermal noise [97] and quantum phase estimation [98].

A point of interest here is that while an efficiency of 100% is desired in any quantum
computation, one can make-do with a lot less due to a trade-off between quantum
efficiency and available resources. In general, if quantum efficiency € is available for a
computation with a single qubit, then copying it to more than é qubits and measuring
all of these will result in a reliable outcome. So, a quantum efficiency of 5% would be
usable for quantum computation if twenty copies are used of the same output qubit.
Even with quantum efficiency lower than 1% one can have a successful quantum com-
putation, such as in the bulk model of Nuclear Magnetic Resonance (NMR) Quantum
Computing, with a macroscopic number of copies of the same quantum computer
running simultaneously. The final measurement is done as an ensemble average over

the whole sample.

6. The ability to interconvert stationary and flying qubits: Realization of an interface
between stationary and flying qubits is required for distributed quantum computation

and long-distance quantum communication [99]. While stationary qubits are often used
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in scalable quantum computation, quantum communication research has largely been
based on the use of single-photons as flying qubits that can carry quantum information
over long distances. For such an application and quantum information processing
task, the availability of a quantum interface between flying and stationary qubits is
crucial, as is done in systems such as those with entanglement between a solid-state
spin qubit and a photonic flying qubit [100-105]. The demonstration of spin—photon
entanglement has enabled distant spin-based entanglement [106], unconditional quan-
tum teleportation [107] and been used in quantum repeaters [108], besides being useful
in helping connect few-qubit nodes in a quantum network [109, 110], such as the
Quantum Internet [111].

7. The ability faithfully to transmit flying qubits between specified locations

Quantum Computing can be realized in a number of physical systems, following from
DiVincenzo’s criteria for a successful implementation of quantum computation. Quantum
Computation has been realized in physical systems such as photonic systems [112—-114],
electron spins and quantum dots [115-118], nuclear spin [119-121], optical lattices [122—
1241, Josephson junctions [125, 126] and superconducting circuits [127, 128]. Irrespective of
the physical system the quantum computing architecture is realized on, the important point
on this front is to check whether the quantum computing thus realized is universal, and can be
used for any general computation or information processing task. DiVincenzo’s criteria give
us a list of physical conditions for the successful realization while the universality conditions

give us conditions relating to the ’software’ of this computing formalism.

1.2 Universality in Quantum Computation

It has been known for several years that the theory of quantum computers is fundamentally
different from that of the classical theory of computation, which is essentially given by the
theory of the universal Turing machine. We may identify three important differences. Firstly,
the properties of quantum computers are not postulated inabstracto as in the case of classical
Turing machines but are derived entirely from the laws of physics. One cannot capture
the correct quantum theory by intuition alone, as was often done by pioneers in classical
computation theory such as Turing, Godel and Church [129-131]. One cannot falsely assume
that its foundations are self-evident or purely abstract.
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Secondly, quantum computers can perform certain classical tasks, such as factorization
such as the Shor’s algorithm [9] and quantum search algorithms such as the one given by
Grover [132] which have no classical analogues using similar number of resources. These
algorithms and processes can be overwhelmingly more efficient than any known classical
algorithm. Thirdly, quantum computers can perform new computational tasks, such as
quantum cryptography [133—136], which are beyond the reach and scope of any classical
computer. However, given that there seem to be a wide variety of things we can do with a
quantum computer, the key point to be resolved is whether a system can realize all possible

computations, in what is known as the Universality problem. The key question then is
"What makes a certain system capable of universal quantum computation?"

Computation can be thought of as the transformation and creation of symbols (’output’)
from other symbols (’input’), with these ’symbols’ being physical objects here. A ’universal
set of components’ would be one which is adequate for the construction of computers that
can perform any physically possible computation, and a universal computer would be a
single machine that can perform any physically possible computation. The three concepts
of universality i.e. in the computers, in the components therein and the computation itself,
are all closely linked, since if the solution to a computation problem could be created by a
certain physical system (computer) but there was no systematic way to build that computer,
then the solution would not be ’computable’. Moreover, for any universal computer, there

has to be a universal set of components that is needed to build it.

These ideas are formally encapsulated in the Church-Turing hypothesis, which states that any
real-world computation can be translated into an equivalent computation involving a Turing

machine. David Deutsch asserted this as a physical principle in 1985 [137]:

Every finitely realizible physical system can be perfectly simulated by a universal model

computing machine operating by finite means.

The reason the realm of classical physics and Universal Turing Machines don’t go well
together is because the former is continuous while the latter is discrete. This is, however, not

the case for quantum systems.

To understand how this happens, one has to understand that the idea of computational
equivalence of two computers is fundamentally different for quantum computers due to
the fact that even though input states fed into such a computer can be controlled, the act

of measurement gives rise to a probabilistic outcome. Given this idiosyncratic property of
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quantum systems, we say that any two quantum computing machines are computationally
equivalent under given labellings (of 'input’ and ’output’) if in any possible experiment(s) in
which their inputs are prepared equivalently under the input labellings’, the measured values
of the observables (corresponding to the output’ labelling) for the two machines would be
statistically indistinguishable and the probability distribution functions for the outputs from
the two machines would be identical. Given two quantum computing machines a composite
machine, whose set of computable functions contains the union of the computable functions
of the individual computers, can be constructed. The question then is why cannot we just

keep on taking such unions ad infinitem to realize all possible algorithms?

The answer lies not in logic but in physics. As Deutsch [137] put it, one soon reaches
a point where adding additional hardware to a computing system does not alter the number
of computable functions for the computer. Moreover, functions for computers that map real
numbers to others, this set of functions is always a subset of the ones that can be realized
using Turing Machines. All Turing Machine-computable functions are recursive functions,
since they depend on each intermediate halting configuration of the system, and it is known
that the set of recursive functions is denumerable and infinitely smaller than all the functions

from real numbers to themselves.
The way around this is encapsulated in Deutsch’s words ‘by finite means’. If we think
of the computing process happening in a sequence of steps who duration has a non-zero
lower bound, then it operates ‘by finite means’ if

a) Only one finite subsystem of the system is in motion during any one step

b) The motion depends only on the state of a finite subsystem

¢) The rule that specifies the motion of the subsystem(s) can be given in a finite

manner, mathematically.

Turing machines are seen to satisfy these conditions, as do universal quantum computer,
while classical computers do not since classical systems tend to be continuous and therefore

the condition of a discrete input is not possible in that case.
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1.2.1 Universal Quantum Computation using Heisenberg Hamiltonian
and Exchange Interaction

The Heisenberg Hamiltonian is ubiquitous in condensed matter physics. Be it in spin chains
[138-140], Kagome lattices [141, 142], ferromagnetic films [143] or intermolecular exchange
interaction [144], the Heisenberg Hamiltonain has played a key role in various applications
of condensed matter systems, including in quantum computing [115, 145, 25, 146]. Recent
solid-state approaches to realize quantum computation have used quantum dots, nuclear
spins and electron spins, many of which directly employ the Heisenberg Hamiltonian and
exchange interaction [115, 25]. In architectures for circuit-based quantum computing, the
basic two-qubit quantum gate can be generated by using a tunable exchange interaction
between spins:

H =Y J;jS:.S; (1.2)

iJ

while the one-qubit gates are realized using a controlled local magnetic field [147]. There is
however a small problem in this method: compared to the Heisenberg operation, the one-
qubit operations are a lot slower, and require much more materials and device complexity,

thereby potentially contributing to an increase in the decoherence rate.

Universal Quantum Computation for the Heisenberg Hamiltonian, particularly using ex-
change interaction without local magnetic fields, was proposed by DiVincenzo et al [25].
In their proposal, the Heisenberg interaction alone is sufficient to implement any quantum
computer circuit. However, this is done using encoded logical qubits: three qubit encoding
for one-qubit gates and ten qubit encoding in two-qubit operations. Even though this archi-
tecture has lesser complexity than its counterparts that have single-qubit gates using local
magnetic fields, the encoding does lead to a significant increase in resources needed for large

multi-qubit cases.

In this project, we look into the kinds of computations that can be realized using a se-
quence of Power-of-SWAP gates on single qubits. The accessibility of the states and the
entanglement generated therein using such circuits is explored and studied closely, besides
the investigation and improvement of five different models of quantum computing using
SWAP'/".
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1.3 Non-Commutativity of SWAP'/" Gates and Group The-

ory

The SWAP'/" quantum gate has certain characteristics that make it interesting to study. One
of the most important characteristic properties of this gate is that, unlike gates such as the
CPHASE gate, combinations of the SWAP'/ gate are not commutative in general. There are
two factors which particularly define the non-commutativity of combinations of SWAP/"
gates:

1. Kind of states: Since the SWAP'/" gate only operates upon two-qubit states of the
form

ly) = a|01) + B[10); 0, € C (1.3)

For states of the form
ly') = 8100) +€[11);8,e € C (1.4)

the SWAP!/" gate does not change the state at all. Hence, wherever we have states

with components that are of the latter form, the commutativity of states follows through.

For example, the state |y);, = |000) 23 (Where the subscripts denote the index number
of the qubits) will have commutativity relation [v/ SWAP,,v/SWAP»3] = 0 and the

order of operation of the v/ SWAP on the first and second or second and third qubits is

not important. The output state is always |y),,, = |000).

2. Distance between qubits: The distance between qubits for consecutive opera-
tions of SWAP!/ gates is very important. If these consecutive operations are on any

common qubit(s), the non-commutativity of the SWAP!/n gate comes through.

For example, for the input state |y);, = |010) 23, the following operations are consid-
ered:

VSWAP 12/ SWAP3|010) — £010) 4 1]100) + 1(1—4)|001)

VSWAP3v/SWAP;15|010) — £(010) + (1 —i)[100) + 5|001)

which shows us that the commutative relation [v/ SWAP,,/SWAP»3] = 0 is violated
for this case.
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However, for a state like |y);, = |0101) 234, consecutive operation of /SWAP on
non-common, unshared qubits such as the (12) and (34) leads to a commutation
relation of the form [v/SWAP,,v/SWAP34] =0

1.4 Entanglement and Separability

Often we are told that at the fundamental level of nature, one requires a quantum description
of reality rather than a classical one. However, the meaning of this and all its possible
implications are not trivial [148]. Mathematically, the possible pure states of a quantum
system form a vector space, the Hilbert space H. Let us consider a multipartite quantum
system consisting of n subsystems. As per the classical description of the system, the total
pure state space of the system is given by the Cartesian product of the n subsystem spaces,
which means that the total state is always a product state of the subsystems. However, in the
quantum formalism, the total Hilbert space H is a tensor product of the subsystem Hilbert
spaces: H = ®]_  H;. Then the superposition principle allows us to write the total state of
the system as

W)=Y i iin) ®...®in) (1.5)

i1yeensin
which cannot in general be described as a product of states of individual subsystems
(W) # |y1) ®@...®|y,). Thus, it is not possible, in general, to assign a single state vec-
tor to any one of the subsystems. This effectively expresses the phenomenon of entanglement
that, in contrast to the occurrence of classical superposition, allows us to create an exponen-

tially large superposition with only a certain linear amount of physical resources.

In practice, one encounters mixed rather than pure states in nature. Entanglement of mixed
states is no longer equivalent to being non-expressable as product of subsystem states, as
in the case of pure states. Instead, one calls an n-qubit mixed state entangled if it cannot be

written as a convex combination of product states [149]:
p#Y pipi®..0p] (1.6)
i

where p = |y)(y| and the partial density matrix p; can be found by tracing out all the
qubits except the k' qubit. Here p; is the probability of finding the composite system in the
state p{ ®...® py. The states that do not follow the condition in equation (2) are said to be

separable. In practice, it is often difficult to decide if a given state is separable or not based
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on this definition alone, in what comprises the separability problem, which will be discussed
later in this chapter. The aforementioned definition is negative, since a state is said to be
entangled if it cannot be written in the form in equation (2). Physically, the definition of an
entangled state is usually made in terms of the physical resources needed for the preparation
of that state [149]: a multipartite state is said to be entangled if it cannot be prepared from
classical correlations using only local quantum operations. We also have a positive definition
of entanglement proposed recently by Masanes et al [150], which defines the phenomenon
in terms of the non-locality in quantum states rather than in terms of their preparation. For
the set C of bipartite states that do not violate the Clauser-Horne-Shimony-Holt (CHSH)
inequality with a single copy, even after stochastic local operations without communication,
we have [150]

Theorem 1.1. A bipartite state ¢ is entangled if, and only if, there exists a state p € C
such that c ® p is not in C.

Entanglement is important also because it is the basis for the idea of decoherence, the
loss of quantum-ness, of a quantum particle due to entanglement with its environment. How-
ever, entanglement has lately been found to be a very specific type of quantum correlation.
In this chapter, we will approach this topic via two distinct methods: one involving the use
of the concept of quantum discord (and entanglement) while the other is using separability

criterion for multipartite quantum systems.

1.4.1 The Separability Problem

The fundamental question in the theory of quantum correlations and entanglement is is which
states are separable and which are not. The case for a pure bipartite system is simple: any
bipartite pure state |Wap) € Hap = Hy ® Hp is called separable only if it can be written as a
product of two vectors corresponding to Hilbert spaces of the subsystems:

|Was) = [9a) | W) (1.7)

If the quantum state | W) is written in terms of an orthonormal product basis {|€/,) ® |e{;)}

as
dy—1dp—1

\Wag) = Z Z Ylel) @ leh) (1.8)

then it is a product only if the matrix of coefficients {A has rank 1. More generally, the
rank of this matrix: r(y) < min[ds,dp]| is called the Schmldt Rank of the vector . This is
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always equal to either of the ranks of the reduced density matrices: p = Trp|Wag)(Was|
and pp = Tra|Wap)(Wap|. There always exists a product basis {|&},) ® |é})} in which the

vector can be expressed as
r(y)

lwag) = Y ailéy) @ [ef) (1.9)
=0

where the strictly positive numbers a; = {,/p;} correspond to the nonzero singular eigenval-
ues [110] of AY, and p; are the nonzero elements of the spectrum of either of the reduced
density matrices.

For more practical cases, due to the presence of noise from the environment and decoherence,
and the emergence of mixed quantum states from pure ones, we must study the separability
of mixed states as well. Any bipartite state p4p defined on Hilbert space Hyp = H4 @ Hp is

separable [149] only if it cannot be represented or approximated by states of the form

k
PaB= Y, PiP4 @ Ph (1.10)

i=1
where pj‘ and pé are defined on local Hilbert spaces H4 and Hg. Horodecki [151] showed
that shown that any separable state on the Hilbert space H = H4 ® Hp can be written as
a convex combination of N pure product states with N < (dim(H))?. Thus, the set of all
separable states defined in this way is found to be convex, compact, and invariant under the

product unitary operations Uy ® Up.

However, the problem of determining whether a state psp is separable or not remains.
In particular, the separable decomposition of the state may not have anything in common
with the eigen-decomposition. So for instance, there are many separable states that have
entangled or non-product eigenvectors.

1.4.2 Separability Criteria for Bipartite Case

There are a number of standard criterion for determining the separability of a quantum system
in a bipartite case. In this sub-section we will discuss about the same, before moving onto an
algorithm developed for this project to determine the separability class of a certain quantum
state.
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Density Matrices, PPT Criterion and Best Separable Approximation (BSA)

A quantum system consisting of two subsystems is separable if its density matrix can be

written as

p=Y ajliy(jl® k)| (1.11)
ijkl

where states |i) and |j) are in the Hilbert Space H4 while |k) and |I) are in the Hilbert Space
Hp for the composite system Hy @ Hp.

A necessary condition for separability of quantum states was given by Peres in 1996 [152].
It is called the positive partial transpose (PPT) criterion. It considers the partial transpose

(with respect to the party B) of the aforementioned density matrix, which is

pr =107 (p) =Y alli(jl@ (k)" =Y abliy(jl@ )kl = Y ajliy(jl® k)]
ijki ijkl ijkl
(1.12)

The statement of the PPT criterion is then given by
Statement 1.1. If p is separable, then all the eigenvalues of p’# are non-negative.

There is a slight exception for the test: If the eigenvalues are non-negative, and the dimension
is larger than 6, the test is inconclusive. The physical significance and interpretation of the

partial transposition is in terms of a partial time reversal in the system.

Lewenstein, Karnas and Sanpera [153, 154] took the study of Density Matrices for sep-
arability further by putting forward the idea of the Best Separable Approximation (BSA) of
these Density Matrices. The range of entangled density operators can be studied to formulate
an algorithm of optimal decomposition of mixed states into a separable part and an insepara-
ble part. In this method, projections on product vectors are subtracted from a given density

matrix in such a way that the remainder remains positively defined.

Theorem 1.2. For any density matrix p and and for any (fixed) countable set V of
product vectors belonging to the range of p: |eq, fo) € R(p), there exist A(V) > 0 and

a separable matrix
=Y AxPs (1.13)
(04

where Py = |eq)|fa){(ea|{fal|, while all Ay > 0, such that 5p = p — Ap > 0, and that
ps (V) provides the optimal separable approximation (OSA) to p since Tr(dp) is mini-
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mal or, equivalently A is maximal. There exists also the best separable approximation
pX (V) for which A = maxy A(V). Also, A(V) < A(V') when V' C V.

Generally, one could define the best separable approximations p; of p by seeking that
|p — ps|| is minimal with respect to some norm in the Banach space of operators. Here
we minimize Tr(p — Aps) with respect to all pss such that p — Aps > 0. But a natural next
question would be: how does the process of constructing best separable approximations of
a given density matrix work? For understanding this, we will need to give two definitions first:

Definition 1.2(a). A non-negative parameter A is called maximal with respect to a
density matrix p, and the projection operator P = |y){y/| if p — AP > 0, and for every
€ > 0, the matrix p — (A + €)P is not positive definite.

Definition 1.2(b). A pair of non-negative parameters (Aj,A;) is called maximal
with respect to a density matrix p and a pair of projection operators P; = |y1){y1],
P, = |y)(ysl, if p — APy — AP, > 0, Aj is maximal with respect to p — Ao P> and to
the projector Py, A, is maximal with respect to p — AP and to the projector P, and

the sum A + A, is maximal.

Given these definitions, one can put forward a second theorem to see how the process of
construct the best separable approximation of a density matrix works.

Theorem 1.3. Given the set V of product vectors |eq, fo) € R(p), the matrix p)(V) =
Y o APy 1s the optimal separable approximation (OSA) of the density matrix p if

¢ all Ay are maximal with respect to po = p — Y o/£q A Poy and to the projector
Fo

* all pairs (Ag,Ag) are maximal with respect to pog = P — Y724, Ao Poy and to
the projection operators (Py, Pg).

If p is a density matrix for a two qubit system, Lewenstein and Sanpera said that p has a

unique decomposition of the form

p=(1=2)|w)(y|+2Aps (1.14)

where p; is a separable density matrix, |y) is a pure entangled state and the parameter

A €0, 1] is maximal.
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Positive Maps and Separability

The PPT criterion, discussed in the previous section, initiated a general discussion of the
problem of separable states in terms of linear positive maps [155] since the PPT criterion
demands the positivity of the operator [I4 ® Tg](pap), where Ty is the transposition map
acting on the second subsystem of the composite system. The transposition map is a positive
map: it maps a positive operator on Hp into a positive one, but it is not completely positive.
A map U is completely positive only if / ® u is positive for identity map / on any finite-
dimensional system. It has been recognized that any positive map M, which is not completely

positive, provides a necessary, nontrivial separability criterion in the form
[Ia ® Mg)(pag) > 0 (1.15)
This would correspond to the non-negativity of the spectrum of the following matrix:

M(poo) ... M(Pod,—1)

M(pwo) - M(pra,1)

[In ® M)(paB) = (1.16)

M(pa,—10) - M(Pay—1d,-1)

with p;; = (i| ® I|pag|j) ®I. This condition provides a necessary and sufficient condition for
separability. The state p4p 1s separable only if the condition (12) is satisfied for all Positive
(P) but not Completely Positive (CP) maps M: v(Hg) — v(H4) where Hy and Hp describe
the left and right subsystems of the system AB.

In low dimensions, the sufficiency of the PPT criterion for separability follows from the
fact that all positive maps M:v(C%) — v(C?) where d =2,d' =2, and d = 2,d’ = 3 are
decomposable:

Myee =M + ME).T (1.17)

where Mgz, stand for some Completely Positive (CP) maps and T stands for transposition.
Horodecki et al [155] showed that among all decomposable maps the transposition map T is
the strongest map: there is no decomposable map that can reveal entanglement which is not

already detected by the transposition map.
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1.4.3 Separability Criteria for Multipartite Case

A pure n-qubit state |y _y,),) is called k-separable only if it can be written as a product of k

substates:

(Wik—sep) = |¥1) @ |v2) ®... @ |y) (1.18)

A mixed state py_p 18 called k-separable only if it has a decomposition into k-separable

pure states:

Pr-sep = 2, Pil Wi sep) (Wk—sep| (1.19)
Some of the interesting cases of multipartite separability are given by
* An n-qubit state is called fully separable only if it is n-separable.
* A state is called genuinely n-partite entangled only if it is not bi-separable (2-separable)

* The pure states composing a k-separable mixed state may be themselves k-separable
under different partitions. Thus, in general, a k-separable mixed state is not separable
with respect to any specific partition, thereby making k-separability difficult to observe

in such cases.

o If a state is k-separable, it is automatically also k’-separable for all k' < k.

Permutation Operators and Separability

Any separable quantum state has a certain symmetry in the separable qubits for a superposi-
tion state. This can be probed and analysed by permuting these qubits across the superposition.
To formulate a criterion for k-separability, let us define certain permutation operators F;;
operating on two copies of an n-partite state.

Definition 1.3. Permutation Operators swap the i/ and j" subsystems of two copies

of a quantum state respectively:

Pij|w0102--van> ® |lllb]b2...bn> = |Walaz..,ai_lbjai+1...an> ® |Wb1b2,..bj_1aibj+]...bn> (120)

where the g; and b; indicate the subsystems of the first and second copy of the state,
respectively.

If we consider the effect of the permutation operator on the separable partition & in a state,

PLip ™ Py = p** (1.21)

aij —
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where permutation operators Py;; are the operators permuting the two copies of all subsystems
contained in the /' subset and ;" subset of the partition & respectively. Now, if the state p is

a pure state and we have a general separable state @) = |¢) ® |¢2),

(011p192) = /(1]p|91) (2]p|92) (1.22)

Due to the presence of two indices in the permutation operator (i, j), we can write the term

V (011p[91)(92]p192) as TTF ;- 1(\/<¢1!P|¢1><¢2|P\¢2>)k2 Considering [¢) = |¢1) ®[92)

k 1 k 1 k 1
T1 (Varlplon @alplea)) = [T (/(orl(0alp™2lon)le2))s = [T (9lp™*10))>"
o o o (1.23)
Using equations (17) and (18),
k 1
H ((§|PL;;p“Py;10))2* = (d1]p|¢2) (1.24)

l',J_

Now, if we consider P, the total permutation operator for permuting the two copies of a

state, we have

Fiot|9) = Frot|91) @ 92) = [92) © |¢1) (1.25)

We can write the RHS of equation (20) as

(9110192) = v/(0lp101) (911p192) = 1/ (921(01 102101} 02) (1.26)

Using equations (21) and (22),

(011p102) = /(021 (01172191 192) = \/(011(021Prp™2101)102) = 1/ (9|Prsp ™/ 9)
(1.27)

Using equation (20) and (23), we have
1
\/ (®1Porp®2]9) — H (9|PL;ip“*Py;;[0)) % =0 (1.28)
i,j=1
If we include all the partitions in the quantum state for the second term in equation (24), we

Ji01Pmp10) — ¥ T (0170 Paiflo))3 <0 (1.29)

{a}i,j=1

have
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This is because of the contribution of the other partitions being non-negative diagonal terms
which make the equation above stand true. This comprises a theorem and criterion formulated

by Ma et al for k-separability based on permutation operators:

Theorem 1.4. Every k-separable state satisfies

k 1
\ (010%2Por|0) = Y (T (91PL;;0%°Puijl )2 <0 (1.30)

{a} i,j=1

1.5 Decoherence-Free Subspaces

One of the biggest problems in the physical realization of quantum computation is the
fragility of quantum systems and the presence of noise and decoherence [156, 157, 64, 60,
61, 158, 159, 62, 160]. Therefore the protection of quantum information is an important task
in the realm of quantum information processing. Decoherence-Free Subspaces are one of
the key areas of research in this direction [161]. The fundamental rationale behind the use
of this technique is the presence of logical qubits that are encoded within these subspaces
which do not decohere because of reasons of symmetry. To explore this idea further, let us
begin by assuming that we have two systems: A and B, defined by the Hilbert spaces H4 and
Hp, respectively. The dynamics of these two systems can be generated by

H=H,+Hg+Hyp (1.31)

where H4 and Hp are the Hamiltonians corresponding to the pure dynamics of systems A
and B, respectively, and Hyp is the interaction between the two systems. Using the Kraus
representation for this system, we have for the reduced dynamics of A for an initial state
pa(0),
pa(0) = pa(t) = Y Ka(t)pa(0)KG (1) (1.32)
(04

after the partial trace over system B is completed. The Kraus operators K () satisfy the
relation Y, K&(t)Ka (t) = I4Vt, where I is the identity operator on the system (A). This
representation results in non-unitary evolution in the system Hilbert space Hy. In this context,

we can define decoherence as:

Definition 1.4 (Decoherence). The phenomenon of non-unitary evolution of an open quan-

tum system is known as decoherence.
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An open system which undergoes purely unitary evolution is said to be decoherence-free.
For example, if we have a process where a participant Alice wants to send a message (in
the form of more than one bits) to Bob, and a third participant Eve wants to mess it up by
flipping the bits: |0) — |1),|1) — |0). Given N bits shared by Alice with Bob, and when all
Eve can do is to flip all bits simultaneously, we can have Alice and Bob agree to encode their
bits into logical bits with the bit-string pairs x;x>...xy and y1y;...yn, where y; = x; & 1. This
encoding strategy gives N — 1 logical bits given N physical bits. Thus, for very large values
of N, the number of logical bits is almost the same as the number of physical bits.

This is however still an example in the classical realm. The most basic form of Decoherence-
Free Subspace emerges for the case of collective dephasing. Let us say that we have a system
of N qubits that is symmetrically coupled to a ‘bath’, another quantum system, and undergoes
a dephasing process (U.y): |0) Yea, |0), |1) Ued, pi0 |1), effectively putting a random phase
¢ between the basis states |0) and |1). If we now define two logical qubits: |0.) = |01)
and |1.) =|10), we can see that the combination |y) = a|0z) + B|1.) Yea, ¢'|y), and the
overall phase acquired is clearly unimportant. Hence, we find that the two-dimensional
subspace

DFS,(1) = Span{|01),]10)} (1.33)

is decoherence-free, given the collective dephasing operation. Similarly, we find that the sub-
spaces DF S,(2) = Span{|00)} and DFS,(0) = Span{|11)} are decoherence-free subspaces
too, as they acquire an overall phase of 1 and % respectively upon the operation of the col-
lective dephasing. However, since the phases are different for the different decoherence-free

subspaces, there is no coherence between the subspaces.

We generalize this to N qubits: let Ay denote the number of 0’s in a computational ba-
sis state. Then, any subspace spanned by states with constant Ay is decoherence-free against
collective dephasing, and can be denoted by DF Sy (Ay).

1.5.1 Decoherence-free Subspaces for Vectors associated with  SWAP
and SWAP!/" Quantum Gates

Assuming we are given a system in which our computation is taking place and a ‘bath’ is

connected to the system, the Hamiltonian governing the whole system can be written as

H=H,QIp+14QHp+ Hpp (1.34)
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where Hy acts only on the system, Hp acts only on the bath, and Hyp governs the interaction

between the two. Without loss of generality, we can write the interaction Hamiltonian as
Hpp = ZAoc ® By (1-35)
(04

where each Ay is a pure-system operator and each By, is a pure-bath operator. The Hilbert
space can be written H = Hy ® Hp, and Hy = Hg & Hy (Hg 1s the ‘good’ portion and Hy is

the decoherence-affected, “noisy” subspace) where

Hg = Span{|y;) } (1.36)
Hy = Span{|v;)} (1.37)
Hp = Span{|B;)} (1.38)

Let us have the following assumptions

* The system is initialized in the good subspace

Ps=pc®0 =Y rij| %) (¥ H0 (1.39)
i

* The basis states of the good subspace are the eigenvectors of the interaction hamiltonian

AqlYi) = calt) ca €C (1.40)

* The basis states of the good subspace, when acted on by the system Hamiltonian,

remain within the good subspace

Hyly:) € Hg (141)

With these assumptions in hand and considering U (t) = e~"f*, we can posit the follow-

ing theorem:

Theorem 1.5. The evolution of an open system A, in contact and interacting with a ‘bath’ B,
represented together in the Hilbert Space H = H4 ® Hp, is given by

pa(t) = Uajng (PG (0)) Uy (1.42)

where Hy = Hg @ Hy, with Hg being the ‘good’ portion of the system and Hy being the

decoherence-affected, ‘noisy’ subspace, and Uy g, (1) = e "HaliG! s the projection of the
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unitary operator Uy (¢) only on the good subspace. pg(0) is the initial state in the good
subspace.

Proof. Let us take the state |y) = |¥)a ® |Bj)p. Using equations (1.34), (1.35), (1.40)
and (1.41),

H|y) = (Hy®@Ig+ 1y @ Hg+ Hap)(|%)a ® |B;)B)
= (Ha®Ig+ 1, @Hp+Y Aa ®Bo)(|%:)a @ |Bj)B) (1.43)

Simplifying these terms,

Hal¥i)a ®|Bj)s+1%)a ® Hg|Bj) + (;Aa ®Bo)(|%)a ®|B;)s)
= Ha|%)a®|Bj)s + ()4 ® Hp|Bj)s + (§6a|%>A ® Ba|B;)s)
= (Ha@1Ip)(|7)a @ [B))B) + |%)a ® Hp + ;CocBa) 1Bj)s
= (Hy®1Ig+1a @ Hp)(|%)a®|Bj)s) (1.44)
where Hp acts only on the ‘bath’. If we use this hamiltonian in the unitary evolution operator,
U(t) = e (Ha®lHh@Hy )t — 17, (1) @ U (1) (1.45)
where U,(t) = e~ where x =A,C and He = I, @ Hp.
To find p(¢) we apply this unitary operator to p(0) with p4(0) = pg(0) & 0.
p(1) =U(pa(0) ® ps(0))U" = Ux(p(0) &0)Uf ® UcppU. (1.46)
Taking the partial trace with respect to the ‘bath’ subsystem,
pa(t) = Tra[Ua(pc(0) & 0)U; @ UepsU/] = Ua(pc(0) © 0)U; (1.47)
If we project the operator Uy to the good subspace UAG = Uy|n,;» We have

Pa(t) = Unjrig (PG (0) Uy (1.48)
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This completes the proof. L]

In our project, we look at how decoherence-free subspaces emerge naturally out of the
idea of invariant subspaces for the SWAP'/" operators.

1.6 Cluster-State Quantum Computation

Cluster State Quantum Computation [162—-165] is a method of quantum computing which
relies on generation, manipulation and read-out of qubits constituting a cluster-array of
elements. Information is introduced into the cluster, processed, and read out from the cluster
by one-particle measurements. Entanglement generated in the cluster basis serves as the
underlying resource for quantum computation. Cluster states can be created efficiently in
a physical system with an Ising-type interaction, at low temperatures, between two-state

particles in a lattice. In Raussendorf’s model [162], to create a cluster state |¢)c on the

—{  DMeasured Qubits

+ Qubits before Measurement

—é% Qubits after Measurement

Fig. 1.1 Representation of Static Cluster State Model. In this illustrative example of a static
cluster state, A is the cluster before the single-qubit measurements on the cluster, while B
is the cluster after the single-qubit measurements are performed. The blank positions in B
represent qubits that have been removed from the cluster-state after measurement

cluster C from a product state ®|+), (with a € C), where 6?|+), = £|+), , the interaction
is switched on for a finite time interval, and is switched off thereafter (|+), = %(|O> +|1)).
A cluster of neighboring particles can become entangled in a single step since the (Ising)

Hamiltonian acts uniformly on the entire lattice. To process information (and the logical
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qubits) with this cluster one needs to only measure the particles in a certain basis and
order. The point to note is that there exist both physical and logical qubits on such lattice-
clusters: the former are the physical elements comprising the lattice while the latter can be
composed of a combination of physical qubits that can be operated upon in a regularized
manner. Measurements of qubits in the ¢, basis effectively remove the respective qubits

from the cluster, thereby providing us with a method to structure the cluster state on the lattice.

One can effectively define and isolate functionally useful qubits in *wires’ of quantum
data, while removing the remaining qubits from the structure altogether. The 6, measurement
effectively projects the cluster state into a composite state of the measured qubits and the
unmeasured ones. On the sub-cluster comprising of the unmeasured qubits, quantum gates
can be implemented using measurements of observables oy, oy (the Pauli matrices) and their
linear combinations. Observables of the form cos(0)0; = sin(6)o, are measured to realize
arbitrary rotations of logical qubits. The sequence and measurement basis for the cluster
qubit measurements is of paramount importance for subsquent qubit measurements in a
quantum ‘wire’ in the cluster, thereby creating a temporal order of measurements that has
primary significance.

One can establish the universality of a quantum architecture or model by checking if any
quantum logic network can be simulated efficiently on it. It is found that Cluster State
Quantum Computing does realize this condition, with the realization of a set of Universal
Quantum Gates. Cluster states are quantum states of two-level systems (qubits) located on a
cluster. This cluster is a connected subset of a simple cubic lattice in d > 1 dimensions. The

cluster states |@,)c obey the set of eigenvalue equations

K9(ge)e = (—1)%|x)c (1.49)
with
K@ =¥ 2o (1.50)

Here a refers to lattice points on the cluster and b € Neighbourhood(a). x := {Kk, €
{0,1}|a € C} is a set of parameters which specify the cluster state.

Some examples of cluster states on 2 and 3 qubits are as follows,

1

9)c, \/5(\0>1\+>2+\1>1|—>2) (1.51)
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o
V2

|@)c, is local unitary equivalent to a Bell state and |¢)c, is local unitary equivalent to the

9)c; (1)110)2]4)3 +[=)1[1)2=)3) (1.52)

Greenberger Horne-Zeilinger(GHZ) state:

) =
V=

Ways to create a cluster state in principle are to measure all the correlation operators K @ qe

(10)110)2[0)3 + [1)1]1)2[1)3) (1.53)

C of on an arbitrary |C|-qubit state. Another way with the creation of a product state
|+)¢c = ®|+)a,a € C and the operation of the unitary transformation S():

sO= T s« (1.54)
a,beClb—acyy,

is applied to the state |[+). For the cases of dimension d = 1,2,3, we have y; = {1}, » =
{(1,0)7,(0,1)"} and 13 = {(1,0,0)7,(0,1,0)7,(0,0,1)"}, and the two-qubit transformation
S is such that the state e |1), x |1}, acquires a phase of & under its action while the
remaining states [0), x |0)3, [0}, % |1); and |1), x |0), acquire no phase. Thus S* has the
form

5% = 10),(0] @ I®) + 1)4(1| @ o? (1.55)

Boykin et al [166] proved that Hadamard (H), 7 (7r/8) and CNOT comprise a universal set

of gates. In Raussendorf’s model, the CNOT gate can be realized in the following way:
CNOT

The CNOT gate can be realized using a simple four-qubit mechanism. In the config-
uration shown in Figure 1.2, qubits 1 and 4 are the input target and control qubits
respectively. We can summarize the operation as follows, with the appropriate initial-
ization (in the o, basis). An entanglement operation, given by the CPHASE between
connected qubits, as shown in Figure 3, is performed and then subsequently qubits 1

and 2 are read out in the o, basis:

. . S . .
i1)1:®[+)2@[+)3®ig)az = [51)1.x®[52)2x @Usy, |i1 +igmod2)3 ;@ 4i)4, (1.56)

where Us,, = 62(3)Sl+16)£3)52 02(4)51, with measurement results s; = 0/1 projecting a

particular qubit to the s;) state. Raussendorf, in his cluster state model, also discussed
how to realize a CNOT gate (Figure 1.3) using a 15 qubit basis. A CNOT gate can be
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4

Fig. 1.2 Realization of CNOT gate on a Cluster State

2 3 4 5 6 7

Control . .....
s [l
Target W .....

9 10 11 12 13 14 15

B
£l x

Fig. 1.3 Realization of CNOT gate on a Cluster State using fifteen qubits
realized on a cluster state of 15 qubits with all measurements performed simultaneously.

Step 1: Prepare the state |Y)c,s = [Win){1,0) @ |+)iVi € C15,i # 1,i # 9.

Step 2: Entangle the cluster qubits Cy5 using the unitary operation S (€15),

Step 3: Measure all qubits of C;s except for output qubits 7, 15. These measure-
ments can be performed simultaneously. Qubits 1, 9, 10, 11, 13 and 14 are measured
in the o,-eigenbasis and qubits 2-6, 8 and 12 in the o,-eigenbasis.

Dependent on the measurement results, the following gate is realized:
Utnor = Uz,enorCNOT (c,t) (1.57)

where

(c) (t) (c) (t)
UE,CNOT — Gx( )Yx ( i Z( )Y Q1% (158)
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with

B = 52+ 53+ 55+ 56 (1.59)

%gt) =52+ 53+ 58 +510 + 512 + 514 (1.60)

Y = 51+ 53+ 54+ 55+ 55+ 59+ 571+ 1 (1.61)

B = 59511+ 513 (1.62)

Here, the s; represent the measurement outcomes on the qubits i.
Arbitrary Rotation

One can realize a general one-qubit rotation (Figure 1.4) via one-qubit measurements

on a cluster state. An arbitrary rotation Ug,, € SU(2) can be realized on a chain of five

£ x
1 2 3 4 5 u [
pooE- .,

.:i:(—_

Fig. 1.4 Realization of arbitrary rotation on a Cluster State

qubits. We consider a rotation in its Euler representation
Urot|€, M, 7] = Uy[7]|U,[N]Ux[€] (1.63)

where the rotations about the x- and z-axis are Uy[a]| = exp(—iao,/2), U;la] =
exp(—iao;/2). Initially, the first qubit is prepared in some state |y;,), which is
to be rotated, while the other qubits are prepared in |+). After the five qubits are
entangled by the unitary transformation S, the state |y;,) can be rotated by measuring
qubits 1 to 4. At the same time, the state is also swapped to site 5. The qubits 1, 2, 3
and 4 are measured in appropriately chosen bases

1

ﬁ(!0>j+ei¢j|1>),

Bi(9;) ={ (10); —e'%|1))} (1.64)

N
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where the measurement outcomes s; € {0,1} for j = 1,2,3,4 are obtained. Here,
s; = 0 means that qubit j is projected into the first state of B;(¢;). The basis states
of all possible measurement bases for this selection lie on the equatorial plane of the
Bloch sphere.

Step 1: Preparation of the state |Wj,)s = |Win)1 ® |[+)i,1=2t0 5.

Step 2: Entanglement of the five qubits of the cluster Cs via the unitary operation
S(©3),

Step 3: Measurement of Qubits 1 to 4 in the following basis and order
* Measurement of Qubit 1 in B;(0)
(—e(=1)")
* Measurement of Qubit 3 in B3(—n(—1)%).
(—T(=1)717%)

* Measurement of Qubit 2 in B,

* Measurement of Qubit 4 in By

Using this procedure the rotation Uy, is realized:
Ugor[€:M,7] = Uz rotUror[€, 1, 7] (1.65)
The random byproduct operator has the form
Uz ot = O 405173 (1.66)

This can be corrected for at the end of the computation process. There is a subgroup of
rotations which form the subgroup of local operations in the Clifford group, which is
the normalizer of the Pauli group. These include the Hadamard and 7 gates.
Physical Realization of Cluster State Quantum Computation
Cluster States have been realized on a number of physical systems. In this section, we
will briefly review the work done on two of the most popular physical realizations of the
cluster state model of quantum computation.

Ionic Systems

The qubits for these systems are defined on ions, as shown in Figure 1.5. The two states of a
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qubit are identified with two of the internal states of the ion; for instance, a ground state |g) =
|0) and an excited state |¢) = |1). One defines the state of the quantum computer on a set of
N cold ions interacting with laser light and moving in a linear trap [72]. It is the macroscopic
superposition state of quantum registers |x) = |xy_1)n—1...|x0)0, and with x = YV x,,2" (the

binary decomposition of x), given by

2N _q
V)= Y al= ) ol (1.67)
x=0

EZ{OJ }N

In this system independent manipulation of each qubit is carried out by directing different
laser beams to each of these ions. The situation is depicted in Figure 2.16, wherein N
ions are confined in a linear trap [167, 72], and are made to interact with different laser
beams in standing wave configurations. The confinement of the motion along X, Y and
Z directions can be described by a harmonic potential of frequencies v, < v, v,. The
ions are laser cooled in all three dimensions so that they undergo very small oscillations

around the equilibrium position [167, 72, 168]. For ionic systems, a number of groups

AT

_-——

Fig. 1.5 Basic Circuit-Element of Ionic Quantum Computer with ions as the physical qubits
and manipulation by interaction with laser light and movement of the ions in a linear trap

have implemented gate-sets, including two qubit phase gates. Home et al [168] imple-
mented a two-qubit quantum logic gate between a pair of trapped 40 Ca ions with 83%
fidelity, while Leibfried et al [169] demonstrated a universal geometric -phase gate between
two beryllium ion qubits, based on coherent displacements induced by an optical dipole force.

We consider N two-level ions confined in a linear trap. We simultaneously drive the N
ions with a laser beam, tuned to @y — v — d (@ is the frequency of the transition |e) — |g),
v is the frequency of the center-of-mass mode of the collective motion of the two ions, § <
v, hx1). The Hamiltonian for this system is given by

N N .
H=va'a+am ) (c); Z ioyy=0nlata) 0o L H.C.) (1.68)
j=1 j=1
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This can be written as

N N
Z lej) e]|aa Z g i) g]]a a)]
= v = (1.69)
2 ) oo itk
k=1

where (07); = 3(le;)(e;j| - ;) (5] G;“ = lej)(g;l and 0" = [g;){e;| with ;) and |g;) being
the excited and ground states of the j* ion. a' and a are the creation and annihilation
operators for the center-of-mass mode of the collective motion of the two ions, Q and ¢ are
the Rabi frequency and phase of the laser field. The first two terms in Equation (1.68) describe
phonon-number dependent Stark shifts, and the third term describes coupling between the ;"
and k' ions induced by virtual vibrational excitation. Let us denote the first line (in equation
1.68) as H; and second line as Hy. Since [Hj,H] = 0 the evolution operator (for time of

evolution 7) is
Uy = ¢ Tt (1.70)

Let us assume that the ions are initially in the state |e;g2g3...gn). For simplicity, we suppose
that the vibrational motion is initially in the Fock state |n). After an interaction time 7 the

state of the system is

[y (1)) =e "% %1 gr¢3...gn) )
v o 11ae N — 14 e INTA
_el[(N 2)n IMT[ N |e1g2g3...g1v> (1.71)
e—iNTl_l
+—(|g1e2g3...gN)+...+\g182g3---€N>)]|”>

N

For certain values of N and 7 gives us particular states of interest.
Photonic Systems

Recently, cluster-state entanglement was demonstrated over the continuous variables repre-
sented by the quantum amplitudes of the qumodes (electromagnetic field). One such setup is
shown in Figure 1.6. This was achieved in the time domain [170, 171], with 104 sequentially
addressable entangled qumodes, and in the frequency domain [172], with 60 simultaneously
addressable entangled qumodes.The setup for the generation of continuous variable cluster
states, as worked on by Alexander et al [1], is shown in Figure 1.6. An Optical Polarization

Oscillator is pumped at two frequencies 2vy = Av, one of each polarization (Y and Z).
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delay Z polarization separate even/odd frequency-encoded quantum wires
. . frequencies .
B ,. OPO
/ ~ ’ 2ug + Av
L i
8 8
odds < T ]
(b) (a) Av, dv
. MZI N (&, 6v)
evens < |

NN ]

M
TRL IR

+— Node index

7
5 P I8
t=3 t= «——— Direction of propagation
8 Halfwave plate at angle B to the
Z (P)BS - (Polariring) Beam Splitter horizontal principal axis of the erystal
(rotates polarixation by 28)
/ 50:50 Beamsplitter (or Mirror) MEI = Mach- Zelnier interfe

Fig. 1.6 Basic Circuit-Element of a Photonic Quantum Cluster State Computation System [1]
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Each pump produces a number of two-mode squeezed states over the frequency comb of the
Optical Polarization Oscillator eigenmodes. These modes have linewidth § v and are spaced

by the spectral range Av. The output frequencies

V, = Vo +nAv (1.72)

has a corresponding frequency index n and an associated macronode index m = (—1)".

Phasematching any two frequencies V,, and v,y requires n+n’ = £1, and all Two-Mode
Squeezed States are generated between adjacent node indices. The well-known two-mode

squeezing states Hamiltonian is given by
H=ihEa'h" +H.c (1.73)

where & is the overall coupling constant and 4" and bt correspond to the two modes. It was
shown by Chen et al [172] that a Hadamard Interferometer, implemented by a /8 Halfwave
plate can be used to entangled squeezed modes. This was used to create cluster states on the
beams, seperated into odd and even states by a Mach-Zehnder Interferometer [173, 172, 1].

In this project, we use the SWAP 1/n operator to implement cluster state quantum-computation,

using states generated from an initially separable state.

1.7 Quantum Communication and Quantum Memory

Quantum communication refers to the exchanging of information via the transferring of a
quantum state from one location to another [108, 174—176, 110]. The basic motivation for
quantum communication, much like any task in quantum information processing, allows
tasks to be performed in a far more efficient way than its classical counterparts [15]. One
of the best known applications of quantum communication is in Quantum Key Distribution
(QKD) [177-180]. The realm of quantum-communication theory covers varied fields such as
quantum communication complexity [181, 16, 182] and superdense coding [183, 184].

There are a number of ways to realize quantum communication, with the most popular
realization being based on photonic systems [185, 186, 174, 187-192]. In such systems, the
photons act as the ‘flying’ mediating qubits. For a standard quantum communication protocol,
a user, say Alice, encodes her state into a quantum communication channel, which is usually
an entangled quantum system. This entanglement is exploited to prepare the quantum state

at another location, say at Bob’s terminal [193]. Certain quantum communication models do



36 Introduction

not use entanglement as their underlying resource [194].

One of the key problems faced during the realization of quantum computation and communi-
cation is that of decoherence and noise. The error probability for quantum communication
using noisy channels scales exponentially with the length of the channel. Quantum repeaters
are a widely popular element of quantum communication protocols to tackle this problem
[108]. Another method to optimally communicate over noisy channels is to divide the
network into sections with the capability of keeping quantum states in what are known
as quantum memories [195]. The implementation of a quantum communication protocol
requires the ability to control the transfer of a message effectively in the time domain as
well, and quantum memories assist in the same. Quantum memories are not only helpful in
dynamically decoupling a subsystem as and when required [196], they can also be a safe and
robust way of storing qubits, especially if supported by concepts such as decoherence-free

subspaces [197], as has been looked into, in our project.

The Power-of-SWAP has an inherent symmetry that conserves the Hamming weight of
the quantum state representation, and this is built into a system of quantum memory that
protects the storage qubits from leakages that break this symmetry. The tuning of the cou-
pling constants for the exchange interaction is found to be an effective tool for transporting
quantum states from qubit(s) to a quantum storage unit within the constructed quantum
memory. As part of our project, we have looked into the use of the Power-of-SWAP for

realizing certain quantum communication protocols and quantum memory.



Chapter 2

Methods

“Quantum theory provides us with a striking illustration of the fact that we
can fully understand a connection though we can only speak of it in images and

parables.”
— Werner Heisenberg

The physical system that we consider comprises of the Heisenberg Hamiltonian with spin-
spin coupling. The Heisenberg exchange model is a many-body quantum model, which has
has been applied to fields as varied as multipolar exchange interactions and high-temperature

superconductivity.

In 1928, Werner Heisenberg proposed the (Heisenberg) model, noting that the interactions
had a certain spin-free nature and the model had a symmetric-group character [198, 199].
These two aspects have been of particular interest, particularly to the likes of Eugene Wigner,
the pioneer in the foundation for the theory of symmetries in quantum mechanics, and famous
chemist F. A. Matsen [200-202]. In 1971, he looked into the spin-free group-theoretic nature
[203]. Later, alongwith Cosgrove and Picone, he also looked into a symmetric group-theoretic
solution of a special, uniform interaction case of the model in 1971 [204], and relations
to spin-correlations in 1975 [205]. Let us briefly follow Heisenberg and Matsen’s view in
seeking a symmetric-group algebraically motivated solution to the Heisenberg Hamiltonian,

which for a collection of N doublet spin-1/2 sites, is given by
H=Y JP 2.1)
P

where P is a permutation acting on the indices of the sites of the system and Jp is a coupling

constant. Often, the non-zero Jp are assumed to be only for transpositions P = ij, which
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interchange the indices of nearest neighbour sites i and j. In the spin-space, the Dirac-identity
1
(ij)=28:.8;+ 5 2.2)

may be used to express the hamiltonian in terms of the spin operators. Clearly, H is an
element of the group algebra of the symmetric group S, acting on the N spin indices. If we
consider the unitary evolution operator U for the hamiltonian H obtained from (1) and (2) in

the time-dependent case,

H(t) =Tp(t) S 1.5 2.3)
Up(t) = ”L‘exp[—% /0 "H( V] = rexp[—%JP(t')?i.? v 2.4)

For a constant interaction Jp(7) = Jo and time Tss.t.% = wmod (27),Up(1,/2) = Up(1,)'/?
performing the so-called ’Square-Root-of-SWAP’ gate, that is functionally given by,

1 0 0 0
0 T+ fa-=i) o
U = 2 2 2.5
VSWAR o T(1—i) 1(1+i) 0 (23)
0 0 0 1

The /SWAP gate is a powerful tool for generating entanglement in physical systems. It is a

universal operator and any quantum multiqubit gate can be constructed from only v SWAP
and single qubit gates. Looking at the entangling power of a general SWAP'/ gate [206]:

1 2

E(SWAP'/™) = 5 (1=cos(=>))

n

2

o
thereby showing that the entangling power of the v/ SWAP, which is %, is the maximum among
all the partial swap operators. As much as the v/ SWAP is a powerful tool for entanglement

generation, we would like to approach the subject of quantum information processing from a

we see that the extremum is when sin(<F)) = 0, which can be solved for the maxima at n = 2,

more general standpoint, beginning with all SWAP'/ gates:

1 0 0 0
0 %(1 +ei7r/n> %(l _ eiﬂf/n) 0
Uswapi/n = 0 %(1 _ ei”/") %(1 +ei7r/n) 0
0 0 0 1
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For effectively using the SWAP'/" for the generation, characterization and application of
quantum entanglement, we must investigate the entanglement generated by applying these
operators on any general quantum state. Since separable states are easily available in nature,
we shall pose the question:

"What kinds of states can be accessed by the operation of SWAP!/n operators
on any general quantum state, especially separable quantum states, and what is

the entanglement within the states so produced? "

After resolving these questions, we shall look into ways of applying this entanglement in
quantum information processing. Let us look at some numerical methods to approach this

problem.

2.1 Numerical Methods

The first way to approach this problem is by using numerical methods to see what kinds
of quantum states are accessible, given the independence in choosing an initial state and
combination of / SWAP gates.

2.1.1 Accessible States

It is of utmost importance to check what kind of states are accessible using the v/SWAP gates.
We begin this section with a numerical survey of the states one can access. Let us start with
the simple example of three qubits. We can have three qubits with v/SWAP gates between all
of them, as shown in Figure 2.1.

Application of only a single gate will give 24 instances and associated states:

|win) | Gate Combination | Wour)
1000) A 1000)
1000) B 1000)
1000) C 1000)
001) A 001)
001) B L +aloo1)+L(1—i)o10)
001) C L(1+4)|0o01) + (1 —)[100)
010) A L(1+1)|010) + £ (1 —i)[100)
1010) B 1(1+1)[010) + 1 (1 —i)|001)




40 Methods

010) C 010)
011) A T(+a)o11)y +1(1—i)101)
011) B 011)
011) C S(1+0)[011) + 1(1—i)|110)
100) A $(1+1)[100) + 1 (1 —1)|010)
100) B 100)
1100) C $(1+1)[100) + 1 (1 —1)|001)
1101) A s(1+i0)[101) + 1 (1 —i)|011)
1101) B $(1+10)[101) + 1 (1 —i)|110)
1101) C 101)
110) A 1110)
110) B T(1+10)[110) + 1 (1 —i)|101)
110) C S(1+10)[110) + (1 —d)|o11)
1111) A 1111)
1111) B 1111)
1111) C 1111)

Table 2.1 Table of cases for Three-Qubit States with one gate

Now if we have two gates, either distinctive or the same twice, which are operated upon

the qubits sequentially, we have the following 72 cases and associated accessible states

|Win) | Gate Combination | Wour)
1000) AA 1000)
1000) AB 1000)
000) AC 1000)
1000) BA 1000)
1000) BB 1000)
000) BC 1000)
000) CA 1000)
000) CB 1000)
000) cC 1000)
1001) AA |001)
001) AB I(1+1)loo1) + 1j010) — ;y1oo>
1001) AC 2(1+41)|001) — £010) + 3| 100)
1001) BA $(1+1)[001) + 1(1—1)|010)
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001) BB 1010)

001) BC £]001) 4 £|010) + 1 (1 — )| 100)
1001) CA $(1+1)[001) + 1 (1 —1i)|100)
1001) CB £1001) + 1(1—)|010) + 1| 100)
001) CC 100)

Table 2.2 Table of cases for Three-Qubit States with two gates

Let us take the example of all the three gates operated sequentially, once each, over the
three qubits for all possible three-qubit separable input states (Table 1). For this instance of
applications of the gates on three qubits, we have 216 instances.

|win) | Gate Combination | Wour)

1000) ABC 1000)

1000) ACB 1000)

1000) BCA 1000)

1000) BAC 1000)

1000) CBA 1000)

1000) CAB 1000)

1001) ABC 11001y + 1(1—#)[010) + 1 (3 —)[100)
1001) ACB 11001y + 1(3—#)[010) + 1 (1 —)[100)
1001) BCA 11001) + 1[010) + 1 (1 —)|100)
|001) BAC —1(1—1)|001) 4 (3 —1)[010) + 3|100)
|001) CBA 21001) + 3 (1 —)[010) + %|100)
1001) CAB ~1(1—14)j001) + 11010) + 1(3 —)[100)
010) ABC I(1—1)|oo1) + 1[010) + 3| 100)
010) ACB 11001y — 1(1—14)[010) + £(3 —i)|100)
1010) BCA $(3—1)[001) — X(1—1)|010) + 5|100)
1010) BAC 11001) + £]010) + 3 (1 — i) 100)
010) CBA L(1=1i)loo1) + 1|010) + 1(3 —i)|100)
010) CAB 1(3—1)001) + £]010) + 1(1 —i)|100)
011) ABC —1(1—1)|011) 4+ $(3—14)[101) + 3|110)
011) ACB £]011) + 3]101) + 3(1 —i)|110)
011) BCA Loty + 13 -il1o1)+1a—ij10)




42 Methods

011) BAC Loty + (1 —il1o1)+ 13 —ij110)
011) CBA —La—pjotn)+ Loy + 13 -i)110)
011) CAB fo1t)y + (1 —a)101) + 1110)
1100) ABC 11001) + (3 —4)[010) — (1 —)|100)
100) ACB $(1—1)|001) + 1(010) -+ £|100)
1100) BCA I(1=9)]001) + 1(3—1)[010) + £[100)
1100) BAC 1(3-1)]001) + 1(1—14)[010) + £[100)
1100) CBA $(3—1)[001) + 1]010) — % (1 —i)|100)
1100) CAB 21001y + (1 —)[010) + £100)
101) ABC 21011) + £]101) + 3 (1 —i)|110)
101) ACC 13 —io11y -t —ij|1o1)+1[110)
1101) BCA 5011y — 3 (1—4)[101) + 1(3 —i)[110)
1101) BAC T(1—1)|011) + £[101) + 3| 110)
101) CBA T3 =i)o11)y+ 4|101) + L1 —d)|110)
1101) CAB T =d)jo11y+Lj101) + 13 —i)|110)
1110) ABC 13 =dl011)+ (1 —4)[101) + £[110)
1110) ACB T(1=dlo11)+1(3—14)[101) + £[110)
110) BCA 2(1—i)|o11) + 1[101) + £|110)
1110) BAC 21011) + 2(3 —i)[101) — 3(1 —1i)|110)
1110) CBA Horty +L(1—a)101) + £]110)
1110) CAB 13 —i)o11) + 1101y — I(1—i)[110)
1111) ABC 1111)

1111) ACB 1111)

111) BCA 1111)

[111) BAC 1111)

[111) CBA [111)

1111) CAB 1111)

Table 2.3 Table of cases for Three-Qubit States

For four gates, we have 648 cases and associated states that are accessible. Hence, for
k-gates, we have the following number of cases and associated output states, for all separable
three qubit gates:

Nace; =3x8 (2.6)
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Fig. 2.1 Configuration for three qubit state |123) and v/SWAP gates 'A’,’B’ and 'C’

This result can be generalized for /-qubit separable input states:
Nuce, = 15 x 2! (2.7)

As can be seen, the problem grows exponentially with the number of qubits in the input
(separable) states. The number of gates also scale this value exponentially. Certain cases are
degenerate but the problem, all in all, grows exponentially with the number of qubits in the
input state and the number of gates being operated with on the input state. As a result, this is

a problem that cannot be treated numerically.

2.1.2 SWAP as a Permuting Operation

Permutation refers to the act of arranging (rearranging) all the elements of a (an) disordered
(ordered) set into a certain order or sequence. For example, anagrams of the word ‘CAT’
(‘CAT’, ‘CTA’, ‘ACT’, ‘ATC’, ‘TAC’ and ‘“TCA’) are permutations of the letters of the word
‘CAT".

There are a lot of ways to generate all n! permutations of n elements. Over forty algo-
rithms have been published during the past half a century for generating all the permutations
of n elements [207-210]. Even though initially the relevance of permutation generation meth-
ods was for tackling computational problems where the elements are permutations such as the
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assignment problem, given the presence of better techniques for tackling such problems now,
the relevance of permutation-generation lies in their instructive role in illustrating certain
fundamental computational concepts such as the relationship between counting, recursion
and iteration [210].

The problem of permutation generation has certain inherent computational constraints includ-
ing the number of permutations for large values of n elements and the time taken to compute
them all by simple permutation enumeration. For example, the number of permutations
for 15, 16 and 17 elements are 1307674368000, 20922789888000 and 355689428096000
respectively, and, for a a permutation generation program that produces a new permuta-
tion each microsecond, the time needed to compute all these permutations by permutation
enumeration methods are 2 weeks, 8 months and 10 years respectively [210]! For this
very reason, for most practical applications, an area of interest has been the development
of combinatorial search techniques that are more efficient than permutation enumeration
methods. Finding permutations based on exchanges of elements is one of the most efficient

methods for permutation-generation [211, 210].

Two of the most famous permutation-generation algorithms using element exchanges are
Steinhaus-Johnson-Trotter and Heap’s algorithm. In this next section, we will briefly look

into these algorithms.

Steinhaus-Johnson-Trotter Algorithm

Named after Hugo Steinhaus, Selmer Johnson and Hale Trotter, the Steinhaus-Johnson-
Trotter algorithm generates all the permutations of n elements by swapping two adjacent
elements of the sequence each time a new permutation has to be generated [212].

The algorithm has three primary steps, as follows,

Step 1: Let x; be the position where the value i is placed in permutation 7 For each i
from 1 to n. If the order of the numbers from 1 to i — 1 in the permutation 7 defines an
even permutation, let

yi=xi—1 (2.8)

otherwise, let
vi=xi+1 (2.9)
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Step 2: Find the largest number i for which y; defines a valid position in permutation

7 that contains a number smaller than i.
Step 3: Swap the values in positions x; and y;.

Heap’s Algorithm

Proposed by B. R. Heap in 1963, the Heap’s algorithm generates all possible permutations of
n elements by generating every permutation from the previous one by simply interchanging a
single pair of elements, leaving the other n — 2 elements undisturbed [211, 210, 213]. The
Heap’s algorithm is simpler than the Steinhaus-Johnson-Trotter algorithm since it does not

compute an offset for the pair of elements that are swapped.

The steps for the algorithm are as follows:

Suppose we have a permutation containing n different elements.

Step 1: First we set a counter (i) to 0.

Step 2: We initiatie a loop and perform the following steps repeatedly until i = n.
(2.a). We use the algorithm to generate the (n — 1)! permutations of the first n — 1
elements. In each of these permutations, the last element is added to the end of the

permutation.

(2.b). If n is odd, we switch the first element and the last element, while if n is

even we switch the i element and the last element.

The counter is increased by one: i — i+ 1 and the process is repeated in the loop.

We studied both these algorithms for defining our permutation matrices, especially for larger
symmetric groups associated with higher number of qubits.
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2.1.3 Transpositions, Cycles and Permutation Matrices

Since the swapping of adjacent elements is a specific manner of permuting elements, as best
shown in the algorithms in the previous section, we expect the swap operation to be part of

the Permutation Group.

Definition 2.1. A group G whose elements are permutations of a given set N is called
the permutation group. The group operation for the permutation group is the composition of

permutations in G.

The group of all permutations of a set N comprises the symmetric group of N and thus
the permutation group of a set N is a subgroup of the symmetric group of set N. Permutation
Groups and Symmetric Groups will be discussed at greater length in the section on Analytic
Methods. If we relax our condition on the swap operation and go from swapping adjacent
elements to swapping any two elements in the system, we have a numerical system that spans
a larger section of the Hilbert Space. If this is further expanded to more number of elements
being permuted, we move towards the general definition of the permutation group. A point
of interest for us here, given the focus on SWAP and SWAPY/ " is the manner in which a
general permutation element can be expressed in terms of a SWAP operation. To look more
closely at this, we will have to explore the idea of transpositions, the mathematical concept

that realizes a SWAP operation among elements (qubits, in our study).

Definition 2.2. A transposition is an exchange of two elements of an ordered list with
all the other elements staying the same. Therefore, a transposition is a permutation of two

elements.

For example, the swapping of elements 2 and 5 in the list 123456 is a transposition to
take it to list 153426. We can see that a transposition is what a SWAP fundamentally does.
It transposes the qubits upon which it is operated. A general permutation is more than a

transposition and can be expressed as a cycle.

Definition 2.3. A permutation cycle is a subset of a permutation whose elements exchange
places with one another.

For example, for the original ordering {1,2,3,4}, a permutation 3-cycle (143) refers to
the first element being replaced by the fourth, the fourth by the third, and the third by the
first: 1 — 4 — 3 — 1, to give us the new ordering {3,2,4,1}. Cycles and transpositions are
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closely linked in that we have a way to express one in terms of the other. We shall now state
and prove a theorem that shows how every permutation (cycle) can be expressed as a product

of transpositions.

Theorem 2.1. Every permutation of n elements can be expressed as a product of trans-

positions.

Proof. Let m be a permutation on a set A with n elements. Choosing an element a(ll) €A and
let agl) = n(agl)), agl) = nz(agl)) and so on till agl) = (agl)) for some m; € NUO. Since

A is finite, m; < n. This gives us the first cycle

1 = (@VdlVal"..al)) (2.10)

If m < n, then let us choose an element agz) € A, which is not present in the first cycle.

Let agz) = n(a(lz)), agz) = ﬂz(a(lz)) and so on till agz) =" (agz)) for some m, € NUO. This
gives us the second cycle
C = (a(lz)agz)agz)...a,(?%)) (2.11)

If my +my < n, then we continue with the construction of such disjoint cycles till we have
my +my + ... +m; = n for some t € N, and then the permutation can be represented as a

product of disjoint cycles:

DMl 4Dy (qDg@ @ Dy (00,6 0y (2.12)

n={(a;’ay ay’ ..am )(a)"ay a3’ ...am,)...(a; ay’ a3’ ...ay,

Now suppose we have two permutation cycles: C and C; on A. We assume that C| and C;
fix the elements al(f ), f>2,ie{l,2,...,ms}. Fixing refers to the case where a permutation

does not make changes when operating upon an element.

If we now taken an element x = al(]),i €{1,2,3,....,m},

ciG(a) =iy =@ ) =al)dl), =al) (2.13)
oCi(@) = eaci@) = Go(afly) =alt) (2.14)

A similar case can be shown for {al@},i €{1,2,3,...,mp}.
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For {al(f )}, f>2,ie{l1,2,3,...,ms}, when both the permutations leave the elements un-

changed,
aiCa) =i (@) = i) = o all) | = o)’ (2.15)
C:Ci(a)) = G (€1 (@) = Co(a!)) = o) (2.16)

Using (18), (19), (20), (21), we can generalize to say that all disjoint cycles are commutative.

C1C2(X) =0 ( (x)Vx €A (2.17)
Now, since
T = (agl)agl)agl)...agl))(agz)agz)agz)...ag,%z))...(agt)ag)ag)...afflt)) (2.18)
and
(agl)ag)agl)...a%l)) = (a(ll)a,(,il))(agl)a%l)_l)...(agl)agl)),l €{1,2,...,t} (2.19)
we have,
T = (agl)a,(n]l))(agl)a,(n]l)il)...(agl)aél)) ...... (agt)a,(ﬁt))(agt)aﬁél)fl)...(agt)ag)) (2.20)

The theorem is thereby proven. B

A convenient representation of these permutations lies in permutation matrices. A per-
mutation matrix [214] is a matrix that is obtained by permuting the rows of an n X n identity
matrix according to some permutation of the numbers from 1 to n. Thus, every column and
row contains just one 1 with Os everywhere else. Every permutation has a unique permutation

matrix corresponding to it.

The permutation matrices for transpositions represent SWAP operators between the ele-
ments (as qubits) that are being permuted. Due to this close link between permutation
matrices and our operators of interest (SWAP and even the SWAP!/ ™), we work on the idea
that any permutation of these qubits can be represented by the permutation matrices.

Finding the permutation matrices for smaller number of elements is easy but doing so
for higher number of elements (as in the case for higher number of qubits in our project) gets
cumbersome. To resolve this numerical problem, we find an algorithm to find the permutation
matrices for a general n-qubit quantum state using a bubble-sort method. For example, we

start with the case of three qubits y = |123). The cycles that are possible for three qubits are
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0, (12), (23), (13), (123) and (132). If one were to begin with a 8 x 8 identity matrix

(2.21)

o O O = O O O O
o O =, O O O O O
o = O O O O O O
- O O O O O o O

S O O O O O O
S O O O O O —= O
S O O O O = O O
S O O O = O O O

then by moving rows in a certain specific way, one can create the permutation matrices for

these cycles.

(): Identity matrix remains unchanged.

(23):
Plk] < Plk+1],k=2,6 (2.22)

(12):
Plk| <> P[k+2],k=3,4 (2.23)

(13):
Plk| <> Plk+3],k=2,4 (2.24)

(123):
P[2k| — P[4 +k],k=1,2,3 (2.25)
P2k+1] — P[1 +k],k=1,2,3 (2.26)

(132):
P[1+k| — P2k+1],k=1,2,3 (2.27)
P[4+ k| — P[2k],k=1,2,3 (2.28)

Now let us look at specific cases that are permissible under the Young’s Tableau criteria. For
this, let us take the example of four qubits. For four qubit states y = [1234), we start with a
16 x 16 identity matrix, as previously for the case of three qubit states. The cycles that are
possible for four qubits and are permissible by the Young’s tableau criteria are (1)(2)(3)(4),
(12)(3)(4), (13)(2)(4), (14)(2)(3), (12)(34), (13)(24), (123)(4), (124)(3), (134)(2) and (1234).
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(): Identity matrix is left unchanged.
(12):
Plk] <> Plk—4],k=9,10,11,12 (2.29)
13):
Plk] <> P[k—6],k=9,10,13,14 (2.30)
14):
Plk| <> P[k—7]),k=9,11,13,15 (2.31)
12)(34):
Plk] <> Plk+1],k=2,14 (2.32)
Plk| <> Plk+4],k=5,6,7,8 (2.33)
(13)(24):
Plk] <> Plk+3],k=2,7,12 (2.34)
Plk| <> Plk+ 6],k =3,8 (2.35)
P[k] <> Plk+9],k=4 (2.36)
(123)4):
Plk] < P[k+6],k=3,4 (2.37)
Plk| < Plk—2],k=5,6 (2.38)
Plk| < Plk+4],k=1,8 (2.39)
Plk] < Plk—4],k=9,10 (2.40)
Plk| < Plk+2],k=11,12 (2.41)
(124)(3):
Plk] < Plk+17],k=2,4 (2.42)
Plk] < P[k—7],k=15,13 (2.43)
Plk| < Plk—3],k=5,7 (2.44)
Plk] < Plk+4],k=16,8 (2.45)
Plk| < P[k—4],k=09,11 (2.46)

P[] « Pk+3],k = 10,12

(2.47)
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(134)(2):
Plk] « Plk+7],k=2,6 (2.48)
Plk] + Plk+7],k=2,6 (2.49)
P[] + Plk—1],k=3,7 (2.50)
P[] « Plk+6],k =4,8 (2.51)
P[] + Plk—6],k=9,13 (2.52)
P[k] « Plk+1],k = 10,14 (2.53)
Plk] « Plk—17],k=11,15 (2.54)

(1234):

Plk] « Plk+7),k=2 (2.55)
P[]  Plk—7],k=15 (2.56)
P[2k] < Plk+7),k=2,3,4,5,6,7 (2.57)
P2k +1] + Plk],k=1,2,3,4,5,6,7 (2.58)

Let us look at the cases individually.

For a 2-cycle, the idea is that one can understand exactly which swap is needed by
looking at the placeholder index-values for the respective cycle. So for a cycle (ij) in

an n-qubit state |123...i...j...n), we have the swap
Plk] > Plk+ (2" —2"77)] (2.59)

The next point is to look for which states have to be swapped for different kinds of
cycles. The numbers over which the iteration will run will be determined by the value
of the placeholder index of the qubit j. So for instance, an (ij) cycle will have the first
24=J vector states unchanged, the next 2*~/ states put into the aforementioned swap
equation (65), and so on till 5 after which it is symmetrically repeated. The distance

between the vectors comprising the complementary set will be 24~ — 24—/

For cases where we have more than one 2-cycles simultaneously, the effects of each
individual one add up. So, for instance if we have the cumulative cycle (i1 j1)(iz2j2)

and due to cycle (i;j;) we have a swap a; <> b, while due to cycle (iyj,) we have a
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swap b < cy, then for the cumulative cycle, we will have the swap a; < c;.
Algorithm:

For an n-qubit state, we have the following algorithm for the finding of the various generators

required in the Cayley tree for the system under consideration:
1. We define the identity matrix P = Ipnxon

2. We find the matrix for the element (12), say T, by firstly initializing it with the P

matrix defined above: T = P. We then carry out the following steps:
TRV 2+il TRV 4+4],i=1,2,3,...,2" 2 (2.60)
This gives us the matrix T for the element (12).

3. We next find the matrix for the element (1234...n), say Q, by firstly initializ-
ing it with the P matrix defined above: Q = P. We then carry out the following steps to
find the matrix itself.

Plj+i] < PR i), j+i< 2l (2.61)
for the j step.

As has been seen in this chapter previously, every additional qubit to be considered for a
SWAP-based circuit makes the number of accessible states grow exponentially. As a result,
even though we have devised a simplistic manner of generating random permutation matrices
for swaps among various elements/qubits, we need to find a more systematic and standardized
manner of analysing this problem. But before doing that, let us look at the concept of locus

of accessible states.

2.2 Locus of Accessible States for Multiple Power-of-SWAP
Gates

The locus of all the accessible quantum states that can be reached by the operation of multiple

Power-of-SWAP gates is of primary interest to know the kind of quantum states that can
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be reached from an arbitrary separable states, which are easier to prepare. This helps in
optimally carrying out the quantum processing tasks, given separable state resources to begin
with.

For the two-qubit case, let us begin with a state of the form
|Win) = a@|00) + B|01) + 7|10) + 5|11) (2.62)

If we have a parameter ¢ € [0, 1] and the SWAP-gate is the unitary generated by the Heisenberg
Hamiltonian for evolution time # = 1, then we can generate the fractional SWAP by doing
the Hamiltonian evolution for time ¢ € (0, 1). For time steps of the form ¢t = 1/m,m € Z, we
obtain the so-called n'"* Power-of-SWAP (SWAP 1/ ) gates.

In the two-qubit case, let’s fix a Power-of-SWAP circuit of depth m, such that for each
i=1,...,m, we apply a U; = SWAP" with y; = 1/n; for n; € Z. Let us look at only the
subspace spanned by {|01),|10)}. We have

UmUm—l e

Vi) 5wy = o'[00) + B'|01) + /|10) + 8']11), (2.63)

Since our unitaries are parity preserving, o' = a, 6’ = 6. Now we can consider the inverse
problem: fix the initial and final states, and a precision parameter € € (0, 1), and compute a

sequence ny, ..., n, such that U(") := U,,U,,— ... U; brings |y;,) within the &-ball around
(W) e, [[wy) —Ulwin)| < €

Noting that U (') = eTHswar we can also first solve for the time parameter I" and then

obtain the sequence {n};. Let us do this for € = 0. Taking the |00),|11) subspaces as

0 e

which we can solve for I to get the conditions (assuming o # f3)

Jar _2B'—(B+y) _ 2Y—(B+7)

B—v B-y

for which to have a solution, we require B’ +7vy = B +7.

invariant, we have the matrix equation

1_|_einF 1 _ein:F
1— eiTL’F 1_|_ei7'cr

1
2

(2.65)
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For the three-qubit case, we have the operator of the form
U = exp(a2Hi2 + 003H3 + o13H)3) (2.66)

where H;; represents the hamiltonian for SWAP between i"" and j* qubits.

So we have
0 0 0 0 0 0 0 0
0 op3+og3 — 003 0 — 03 0 0 0
0 — 003 o2 + 003 0 — 02 0 0 0
0 0 0 o1 + 03 0 — 02 —03 0
U=exp
0 —a3 —02 0 o2 + 043 0 0 0
0 0 0 —02 0 Ol + 03 — 003 0
0 0 0 —013 0 — 003 aiz+ops 0
0 0 0 0 0 0 0 0
(2.67)

Solving for this operator, we found conditions on the coefficients 12, 03 and ;3. Since the
Power-of-SWAP operators conserve Hamming weight, this symmetry allows us to consider
the states with the same Hamming weight for the purposes of our analysis. Let us begin with
Hamming weight 1 i.e. states that are spanned by {|001),|010),|100)}. Before we move
on to the conditions and considering a = o12,b = 03, ¢ = 03, let us define the following
variables (A, B and C):

A=\a?+b2+c2—ab—ac—bc (2.68)
B=ab+bc+ac (2.69)
C=a+b+c (2.70)
We then have the mapping

0 0

o o

B B’

0 0
U — 2.71)

Y Y

0 0

0 0

0 0
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and the relations:

P +c?+(—a—A)(—a+A) N (—ab+b* —ac+c? —bA — cA)ellc—4)

3B 3B—A4C(C—A)+3(C—A)?

(B2 + 24 (b+c)(—a+A))elct4)
3B—4C(C+A)+3(C+A)?
(—b% +ac+bA)el(€—4) (—b% +ac — bA)e!(C+4)

3B_4C(C—A)—3(C—A7 ' 3B_4C(C+A)+3(C+A)?

(ab—c? +cA)eC—4) (ab—c? —cA)el(CHA)
3B—4C(C—A)+3(C—A)? 3B—4C(C+A)+3(C+A)

a =1

1
+{3+

1
e by @72

(—=b% +ac+bA)el(C—4) (—=b% +ac — bA)el(C+4)
3B—4C(C—A)+3(C—A) " 3B—4c(C+A)+3C+a2’*
P+ b+ (—c—A)(—c+A)  (a®+b>—ac—bc—aA —bA)e'C—A)

3B 3B—4C(C—A)+3(C—A)?
(> + b2+ (a+b)(—c+4))e
3B_4C(C+A)+3(C+A)?

1 (—a? +bc+aA)el(C—4) (—a? +bc —aA)el€+4)

T3 3 acc_A)+3(C AR T3B_aciCra) r3crap ! EY

=5+

+{

/= {1 N (ab — c* + cA)e'C—A) (ab — c* — cA)e(CHA) Lo
3 3B_4C(C—A)+3(C—A7  3B—4C(C+A)+3(C+A)?
(—a®+be+aA)elCA) (—a®+ be — aA)el(€+4)
3B—4C(C—A)+3(C—A)? 3B—4C(C+A)+3(C+A 2 1P
+{(12—|—C'2+ (=b—A)(—b+A) N (a* —ab — bc+ ¢? — aA — cA)e' €4
3B 3B—4C(C—A) +3(C—A)
(a>+c* 4 (a+c)(—=b+A))elCHA)
3B 4C(C+A)+3(C+A)

1
+{3+

Yy (2.74)
These equations give the condition:

a+B +yY=a+B+y (2.75)
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()

This should also follow true for states with Hamming weight 2: U — with the

m\ o

<\

O < m o v o oo
2

)

condition
S+e+v=58+¢€+V (2.76)

The result given above can be generalized to the case of higher-number of qubits. For any

combination of Power-of-SWAP and general N-qubit input state of the form

|v) = 0|000...00) + a1 |000...01) + ... + oo [111...11) (2.77)
being transformed to

|w') = Bp|000...00) + 5;]000...01) + ... + Bon|111...11) (2.78)

we derive a condition for the coefficients of the vector basis states with the same Hamming

weights.

Theorem 2.2. For the set of all coefficients associated with vector states with the same

Hamming weight i as {aé‘hw)m} in the input quantum state, the set of all coefficients associ-

ated with vector states with the same Hamming weight { ("};W) (»} in the output quantum state
(here k and k' denote the indices of the coefficients in each such set), we have

k _ K
Z a(hw)@ - Zﬁ(hw)m (2.79)
k k'
for any N-qubit case.
Proof. This proof will be divided into two parts:

(a) We first consider the case for the operation of Power-of-SWAP gates on distinct qubits,

without any qubit being operated upon by more than one Power-of-SWAP gate. Then, we
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can represent the resultant operator as

U= H(@,-US%PI/”) (2.80)

J

Here i refers to the i’ qubit and j refers to the j refers to the j* step/application. Using the
mixed product property of tensor products, we have

U =&i[[Uswan,, ) (2.81)
J !
Now, we know that
1 0 0 0
iv.(L iy (L
0 0 La4eMy La— M) o
[Tv = _— . (2.82)
; SWAPl/nj o | YN 1 iYi()
J s(1=e™7) s(1+e™"7) 0
0 0 0 1

Studying the tensor product properties, we see that the sum of the elements in a row of the

operator U equal 1. As a result, the theorem result follows from this.

(b) Let us take the case where the operators that can operate on common qubits. We

can represent the operator

Ui = Uswar,;,, @ Uswap,,, © .- @Uswap, (2.83)

in compact form as

Ut)re = (Sm)ra221.0%22401 (Sm=1) 122 [ e22 |+ (S0 j22m ¢ 02 (2.84)

where r and ¢ refer row and column indices respectively. Sy represents the k" Power-of-

SWAP gate and % denotes the modulo operation.

Now, if the operator (U;) is one that has the first qubit undisturbed, and subsequent qubits
operated upon by Power-of-SWAP gates. If we consider the case considered for Uj, we have
even number of qubits and hence the last qubit will be left undisturbed in U;. Then, the form

of this operator is

Ui = hx2®@Uswap,,, @ Uswap,,, @ .- @Uswap,, @ hx2 (2.85)
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1
where I, = (0 1) . The compact form of this matrix can be written as

(UZ)V’,C’ = (Sm> |7 /2] %2441,|c" /2| %24 +1 (Sm—1 )r’%23,c’%23 (S1 )r’%22’"+1,c’%22"’Jrl (2.86)

Now if we multiply operators U; and U, and simplify, we shall see that the sum of the rows
of the resultant operator U = U;.U, 1s always 1. This can be extended to more number of

constituent operators. ll

This is a powerful theorem and result since it, along with the normalization condition,
helps us determine the kinds of states that are derivable from the operation of just Power-of-

SWAP gates on a general N-qubit state.

Having seen the locus of states accessible by our operators in a finite time, we see a certain
sparseness in the distribution. The problem grows exponentially with the different orders
of operation of the SWAP-based operators. The question is how to tackle this increasingly
complex problem and not only determine the locus of accessible states but also the kinds of
states that can be accessed.

The answer to the problem lies in group theory.

2.2.1 Invariant Subspaces

Even though the number of accessible states grows with each additional qubit added to
the physical system, there are certain fundamental points that act as constraints on this
ever-so-increasing set of states and keep them within specific subspaces of the Hilbert space.
The concept of invariant subspaces has been an important one in operator theory and has

played an important constraining role in such cases [215-217].

Definition 2.4. An invariant subspace of a linear transformation 7 : V — V is a subspace W
of the vector space V that is preserved by T: T(W) C W.

As we saw on the section on the locus of accessible state using Power-of-SWAP gates,
we have input states only going to certain, specific kinds of output states. This is because
of the certain interesting characteristics of these operators and associated constraints on the

kinds of states one can access with these operators operating on specific input states.
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Parity Conservation: The SWAP, v/SWAP and the SWAP" have the interesting property
that they conserve the parity of a quantum state, i.e. the number of |0)s and |1)s in the
states are maintained. This is because of the structure of these operators. For instance, the
Power-of-SWAP operator has the form

1 0 0 0
0 %(1 —i—em/”) %(1 _ein/n) 0

1 it/ny 1 in/n (2.87)
0 0 0 1

A state with parity 0 (|00)) goes to a state with parity 0(|00)) under the operation of a
Power-of-SWAP gate, a state with parity 1 (|01)/|01)) goes to a state with parity 1(%(1 +
e™m)|01) + 3 (1 —e™/m)|10)/4 (1 — /™) |01) + (1 + ¢™/™)|10)) under the operation of a
Power-of-SWAP gate and a state with parity 2 (|11)) goes to a state with parity 2(|11)) under
the operation of a Power-of-SWAP gate. This is also true for multiple SWAP operators oper-
ating on multi-qubit states. Fundamentally, this is because of the fact that the SWAP-based
operators do not cause any flip of qubits. This constraint on parity under operation by a
SWAP-derivative gate creates subspaces with constant parities.

Even though this gives us a rough idea about the kinds of vectors that should be present in
a certain invariant subspace, it does not tell us anything about the number of vectors that
should comprise the basis for an invariant subspace.

Symmetry: The symmetries within the structure of the Power-of-SWAP operator causes us to
have further constraints on the accessibility of states, starting with a specific input state. For in-
stance, the symmetry of the operator for states |01) and |10) causes |01) 4 |10) — |01) + |10),
irrespective of the value of n in SWAP!/". As a result, the perfectly symmetric Dicke state,
for instance, always maps back on to itself, irrespective of the numbers or kinds of Power-of-
SWAP gates used. This idea is explored further in the section on permutation symmetry in
Analytic Methods.

For multiqubit states, the more the number of complementary states with respect to a
Power-of-SWAP, lesser is the dimension of the subspace. For example, complementarity un-
der action of Power-of-SWAP of qubits 1-2 (%“OU +110))12) and 3-4 W%“OU +110))34)
in a six qubit state reduces the number of vectors needed to compose the invariant subspace

than in the case of a state with only the 1-2 or 3-4 have a complementary state.



60 Methods

2.3 Analytic Methods

Sets of symmetries of an object that are closed under composition and under taking inverses
are best addressed by what are known as Groups. For instance, the Dihedral Group D, 1s
the group of symmetries of the regular n-sided polygon in a plane while the Orthogonal
Group O(n) is the group of distance-preserving transformations that preserve a fixed point in
a Euclidean space of dimension n. Some of these groups are used to describe symmetries in
Physics. For example, the physical symmetry underlying special relativity can be expressed
using the Poincaré groups while point groups are used to help understand symmetries in

molecular chemistry.

The birth of Group Theory was intricately woven into the development of methods for
finding solutions of polynomial equations of degree higher than four. The earliest work
on this can be dated back to the late 1650s, in a work by Johannes Hudde. He worked
on the theory of equations, and more particularly on the maxima and minima for a given
equation. He gave an ingenious method to find multiple roots of an equation, which can be
found in a letter entitled Epistola secunda, de maximis et minimis (1658), sent to the Dutch
mathematician Franciscus van Schooten and published later as an appendix to his edition of

Descartes’s La Géométrie:

If in an equation two roots are equal and if it be multiplied by any arithmetical progres-
sion, i.e. the first term by the first term of the progression, the second by the second
term of the progression, and so on: I say that the equation found by the sum of these

products shall have a root in common with the original equation.

Around a centure later, in 1740, Nicholas Saunderson noted that finding the quadratic factors
of a biquadratic expression necessarily leads to an equation of degree six; an idea later
elaborated by Le Sceur and Waring in the eighteenth century.

It was later in 1770 and 1771 that Joseph-Louis Lagrange formulated in his seminal papers
the theory of resolvents that was a foundational stone for Galois theory as well. A Resolvent
of an algebraic equation f(x) = 0 of degree n is an algebraic equation g(y) = 0, with coeffi-
cients that rationally depend on the coefficients of f(x), such that if the roots of this equation
are known, the roots of the given equation can be found by solving simpler equations of
degrees not exceeding n. Lagrange was interested in understanding solutions of polynomials

in several variables, and got the idea to study the behaviour of polynomials when the roots of
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the equation are permuted. This led to what is known as Lagrange’s Theorem [218]

If a function f(xy,...,X,) of n variables is acted on by all n! possible permutations of
the variables and these permuted functions take on only r values, then r is a divisior of

n!.

Lagrange’s method of resolvents fails to give a general formula for solutions of equations of
degree equal to or higher than five since it is found that the auxiliary equation involved has a
degree that is higher than the original one. However, the significance of this method lies in
the fact that it exhibits the formulas for solving equations of second, third and fourth degrees

as manifestations of one overarching principle.

It was Evariste Galois who used the word Group when he developed Lagrange’s theory.
Galois found that if {ry,r,...r,} are the roots of an equation, there is always a group of
permutations of the r’s such that firstly, every function of the roots that remain invariable by
the swapping of elements of the group is rationally known, and secondly (and conversely),
every rationally determinable function of the roots remains invariant under the swapping
of the elements of this group. Groups similar to such Galois groups are called permutation
groups today. This was a concept that was investigated in particular by Augustin-Louis
Cauchy, who formulated a number of important theorems in early group theory. Having
worked on permutation groups, it was the British Mathematician Arthur Cayley who first
defined the concept of finite groups in his publication On the theory of groups, as depending
on the symbolic equation 6, =1 (1854). Cayley’s theorem [219] states that every group G is
isomorphic to a subgroup of the symmetric group acting on G. The theorem considers any

group as a permutation group of some underlying set.

Group theoretic concepts emerged in the nineteenth century in the domains of geome-
try and number theory. Group theory became an increasingly independent subject as it was
popularized by the likes of Joseph Alfred Serret, Camille Jordan and Eugen Netto. Other
group theorists of the 19th century were Joseph Bertrand, Charles Hermite, Ferdinand Georg
Frobenius, Leopold Kronecker, Emile Mathieu, William Burnside, Leonard Eugene Dickson,
Otto Holder, Eliakim Hastings Moore, Peter Ludwig Mejdell Sylow and Heinrich Martin
Weber. The convergence of the ideas of group theory in permutation groups, geometry and
number theory into a uniform theory started with Camille Jordan’s Traité des substitutions
et des équations algébriques (1870) and von Dyck (1882) who first defined a group in the

contemporary sense of the word. Jordan gathered all the applications of the mathematical
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concept of permutations he could find, from number theory, algebraic geometry, function
theory, and gave a unified presentation that included the works of Cauchy and Galois. In
doing so, he made explicit the notions of homomorphism and isomorphism, and introduced
the idea of solvable groups.

The abstract conception of group theory emerged slowly, extracting an idea that was rele-
vant in multiple fields and that was common to permutation groups, transformation groups
and abelian groups, each of which were formulated and developed independently over the
seventeenth, eighteenth and nineteenth centuries. It took around a century from Lagrange’s
work in 1770 to Jordan’s formulation of groups for the concept of groups to evolve. In 1854,
Arthur Cayley gave the modern definition of group for the first time and it is with this that
we shall like to conclude this historical journey of group theory

A set of symbols all of them different, and such that the product of any two of them (no
matter in what order), or the product of any one of them into itself, belongs to the set,
is said to be a group. These symbols are not in general convertible [commutative], but

are associative.

A group G is a set of elements alongwith an operation . that combines any two elements a
and b to form a third element, a.b. To qualify as a group, the set and operation, (G, ¢), must
satisty the Group Axioms:

L. Closure: V{a,b} € G = abe G

II. Associativity: V{a,b,c} € G, (a.b).c = a.(b.c)

IIL. Identity Element: Je € G|Va € G,e.a=a.e =a

IV. Inverse element: Va € G,3b € Gla.b = b.a = e. b is often denoted by a~!.

A group G is called Abelian if the binary operation is commutative, i.e., a.b = b.a for
all {a,b} € G.

In our project, we investigate and employ a particular kind of group called the permu-
tation group, as discussed previously in the section on Numerical Methods. This group was
first conceived when Lagrange was working on the Lagrange’s theorem [220]. Interestingly,
Lagrange did not prove Lagrange’s theorem. The contemporary way of defining groups did
not exist during his times. As discussed previously, Lagrange was interested in polynomial

equations, and in understanding the existence and nature of the roots. What he actually ended
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up proving was that if a polynomial in n variables has its variables permuted in all n! ways,
the number of different polynomials that are obtained is always a factor of n!. Since the
permutations of n elements are actually a group (formally known as the Symmetric Group,
which is used prominently in our thesis), the number of such polynomials is the index in the
group of permutations of n elements of the subgroup H of permutations which preserve the
polynomial. Hence, the size of H divides n!, which is the number of all permutations of n

elements. This is just a particular case of what we now call the Lagrange’s Theorem.

2.3.1 Permutation Symmetry, Parity and Conjugacy Classes

Groups were introduced and defined as a set with a binary operation which is closed. The
group that we have been interested in for this project is the symmetric group [221, 222].
The symmetric group encapsulates the idea of permutation symmetry in the different kinds
of permutation cycles within the structure of the group, and this idea is reflected in the
invariance under group action on the basis of vector states associated with the group.

Definition 2.5. A permutation of a set S is a bijection on S and the set of all such func-
tions, with respect to function composition, is a group called the Symmetric Group on S,
denoted by §,, the symmetric group on n elements.

Example 2.1. Consider the symmetric group S3 of permutations on 3 elements. It is given by

e:123 — 123 or ()
a:123 =213 or (12)
b:123 — 132 or (23)

ba:123 — 312 or (132)
ab: 123 — 231 or (123)
aba: 123 — 321 or (13)

The notation (132) means that the permutation sends 1 to 3, 3 to 2, and 2 to 1. We can write
a general permutation on m elements as (iy,...,i,) in what is called a cycle notation, and
this permutation (iy,...,i,) is called an m-cycle. When m = 2, we obtain a transposition. A
point to be noted here is that several different cycles can represent the same permutation. For
instance,

(132) = (321) = (213) (2.88)

and not every permutation is a cycle. For example, if we consider 1 —2,2 — 1,3 =+ 4,4 — 3,
this permutation is not a cycle but rather the product of two disjoint cycles: (12) and (34).
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We say that two cycles (iy,...,i5) and (ji, ..., j;) are disjoint if and only if

{in, sy {1,y =0 (2.89)

Such a decomposition of a permutation into product of disjoint cycles holds true in general.
Every element of the symmetric group S, can be expressed uniquely as a product of disjoint
cycles, up to notational redundancy within each cycle, and ordering of the cycles. Further-

more, every m-cycle can be written as a product of transpositions.

The representations as a product of transpositions are not unique. For instance,
(2,5,3,6) = (2,6)(2,3)(2,5) = (5.2)(3,5)(6,3) = (1,7)(2,6)(2,3)(2,5)(1,7)  (2.90)
However, we can define an invariant of a permutation, called the Parity of the permutation.

Definition 2.6. (Parity) An element of the symmetric group S, is said to be even if it
can be expressed as a product of an even number of transpositions. Otherwise, it is said to be
odd.

An important theorem relating to the parity of elements of the permutation group relates to

the unique parity of every element in the group:

Theorem 2.3. For n > 2, every element of the symmetric group S, has a unique parity,

even or odd.

Proof. We will introduce an ordering on the permutations by calling the switching number of
a permutation ¢ the number of ordered pairs (i, j) with i < jbut o(i) > o(j). The important
point to note here is that the switching number of a permutation is always an invariant.
Let s be the switching number of permutation o, and let T be an arbitrary transposition:
T = (ij). Without loss of generality, we can assume that i comes before j in the permutation

o(l),...,0(n). By applying 7 to o, we switch i and j, and we now have

(1,2,.;6 ' (@), o, 7)) 2 (6(1),6(2),csdy ey oy ooy O (1))
5 (6(1),06(2),....7(0), ... T(j), ..., o(n)) (2.91)

where the first vector is ordered, but not the second and the third.
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To understand the effect of the transposition 7 on the switching number of o (we are

computing the switching number of 7o essentially and see how it differs from that of ©), we

need to note that we are looking at all the ordered pairs (k,1),k <, in (1,2,...,n):

1. For the ordered pair (6~ !(i),6~!(}j)), upon applying o there are two options (a) the
ordering is preserved (i < j) and the switching number does not change; however when
applying 7, the ordering is reversed, and thus s — s+ 1. (b) the ordering is changed,
but 7 changes again the ordering, so that s — s — 1.

2. Let us now assume that i < j (if not we can do the same with j > i). Then
for every index [ such i < I < j, we can look at the non-ordered pairs (i,7) and (I, j). It
might be that 6! (i) is either greater or smaller than 6! (I), yielding one ordered pair
or the other, and similarly for 6! (j) and 6! (/). Thus each ordered pair may or may
not contribute to the switching number of 7, but after 7 is applied, i and j are reversed,
and thus, at once, both (i,/) and (/, j) are changed. Thus the switching number either
increases by two, decreases by two, or does not change at all. We can write down the

cases explicitly as follows:
(67 (D), 07 (1), (a7 (1), 071 () =+ (L0), (1)) = (D), (Li)i <1< j (292)

thus the switching number of o is ¢ including no switch for these two pairs, and that of

70 has two switches for these two pairs, thus is of s+ 2.
(071 (i),0 (1), (07 (j),0 (1) = (0., (1.1) = (L), (1) <1< (2.93)

and the switching number of o is here ¢ including one switch for the second pair, and
that of 7o has one switch for the first pair, but none for the second, thus a total of s.
The case (6~ 1(1),071(i)), (61 (1),67'(j)) also gives s, and lastly

(071 (1),07 (D), (671 ()0~ (D) = (1), () = (L)), (i 1)i <1< j  (2.94)

has a switching number of s for ¢ including two switches for these two pairs, and 7o

has no switch, thus totalling s — 2.

3. All the non-ordered pairs (k,[), where | < i< jandk <lork>l,orl> j>iand
k <l or k > [ do not induce any change in the switching numbers, since by swapping i
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and j, we do not change the ordering of the pairs.

This shows that given a permutation ¢ with switching number s, composing with one trans-
position always changes the parity of the switching number. However, since the switching
number is invariant, this means that it always takes an even number of transpositions applied
to o to keep the same switching number. This establishes that the parity of any permutation

is always either even or odd, but not both. l

The set of even permutations forms a subgroup of the symmetric group S, called the alter-
nating group, denoted by A, [223]. Note that if 7 is an odd permutation, then the coset TA,
consists only of odd permutations, and conversely, if ¢ is an odd permutation, then 7~ ! o is
even, so G € TA,. This shows that |4,| = |S—2’"

One of the simplest permutation groups is the symmetric group S3. The group S3 is the set of
all permutations of three distinct, distinguishable objects, where each element corresponds to
a particular permutation of the objects as per a given reference order. Since the first object
can be put into any one of three positions, the second object into either of two positions that
remain, and the last object can only be put into the remaining position, there are 3 X2 x 1 =6

elements in the set:

1 2 1 2 1 2

e= X ,a= 3 b= 3 , (2.95)
1 2 3 2 13 1 32

. 1 2 3 d= 1 2 3 fe 1 23 (2.96)
321 31 2 2 31

In this notation, the top line represents the initial order of the objects and the bottom line
represents the effect of the permutation. The composition law corresponds to performing
successive permutations and is undertaken out by rearranging the objects according to
the first permutation and then using this as the reference initial order to rearrange the
objects as per the second permutation. A geometric realization of S3 can be established by
considering the symmetry transformations of an equilateral triangle (Fig 1). The elements
a, b, and ¢ correspond to reflections through lines which intersect the vertices at 3, 1, and
2, respectively, and d and f correspond to clockwise rotations of this triangle by 27” and %7:
radians, respectively. The effects of these transformations on the positions of the vertices of
the equilateral triangle is identical with the corresponding elements of the symmetric group

S3 and there is a one-to-one correspondence between these transformations and the elements
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+O— Qubit Node

—L— Entangler

Fig. 2.2 Symmetry transformations of an equilateral triangle labelled by the corresponding
elements of the symmetric group $3

of the symmetric group. Also, this correspondence is preserved by the composition laws
in the two groups. Two such groups that have the same algebraic structure are said to be

isomorphic to one another and are said to be, for all purposes, identical.

Conjugacy Classes and Class Equation

Two elements a and b of a group G are conjugate if there is an element g in the group called
the conjugating element such that
a=ghg ! (2.97)

Conjugation is an example of an equivalence relation, denoted by “=”, and is defined by the

following conditions:

1. Reflexivity: a=a
2. Symmetry: If a=b, then b =a
3. Transitivity: If a=band b =c, thena=c

Let us check whether the conjugacy corresponds to an equivalence relation. We consider

each of these conditions in turn. By choosing g = e as the conjugating element, we have
a=eae ' =a (2.98)

This gives
a=a (2.99)
If a = b, then a = ghg~ ', which we can rewrite as g~ lag = g~ (g_l)_1 = b s0 b = a, with

g~ ! as the conjugating element.

Finally, to show transitivity, the relations a = b and b = ¢ imply that there are elements



68 Methods

g1 and g7 such that b = glagl_1 and ¢ = gzbgz_1 . Thus, ¢ = gzbgz_1 = (gvzglagl_lgz_1 =
(g281)a(g2g1) " so c is conjugate to a with the conjugating element g g,. Therefore, conju-
gation fulfills the three conditions of an equivalency class.

One important consequence of equivalence is that it permits the assembly of classes: sets of
equivalent quantities. In particular, a conjugacy class is the total set of elements that can be
obtained from a given group element by conjugation operation. Group elements in the same
conjugacy class have various common properties. For instance, all elements of the same class
have the same order: Order n of an element a is the smallest integer such that a* = e. An
arbitrary conjugate b of a is b = gag~'. Thus,

b = (gag~')(gag ')(gag ') =ga"g ' =geg ' =e (2.100)

Now that we have defined the equivalence properties of the conjugacy relations, let us
look more closely at how these conjugacy relations constitute conjugacy classes that com-
pose the set X. Let G be a finite group and X a set over which the action of G is defined.
We shall again consider the conjugation (X = G), given by: g.x = gxg~!, x € X. Recall that
orbits under this action are given by

B(x)={gxg"',g € G} (2.101)

Let us notice that x always is in its orbit B(x) (taking g = 1). Hence, if we have an orbit of

size 1, this means that gxg ™!

=x <= gx = xg and we get an element x in the center Z(G)
of G. Thus, elements that have an orbit of size 1 under the action by conjugation are elements

of the center.

Recall that the orbits B(x) partition X: X = LIB(x) where the disjoint union is over a set of

representatives. We get
Gl =YL IB)| = Z(G)|+ ¥ IB)| = 1Z(G)| + L[G : Stab(x)] (2.102)

where the second equality is arrived at by splitting the sum between orbits with one element
and orbits with at least two elements, while the third follows from the Orbit-Stabilizer

Theorem. By remembering that Stab(x) = Cg(x) when the action is the conjugation, we can
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write
G| =Z(G)|+ Y [G : Cs(x)] (2.103)

This formula is called the class equation.

Example 2.2. Consider the dihedral group Dy of order 8:
Ds={1,s,r, r2,1’3,rs,r2s,r3s},s2 =1, =1,srs=r" (2.104)
We have that the center Z(Dy) of Dy is {1,r?}. There are three conjugacy classes given by
{r, r3}, {rs,r3s}, {s, r2s} (2.105)

Thus
|Da| =8 =[Z(D4)| +|B(r)| +|B(rs)| + |B(s)| (2.106)

Representation of Groups

Consider finite groups G and G’ with elements {e,a,b, ...} and {¢’,d’,V’, ...} and that may
not be of the same order. Suppose there is a mapping ¢ between the elements of G and G’

which preserves their composition rules: if ' = ¢(a) and b’ = ¢(b), then
¢(ab) = ¢(a)p(b) = d'b’ (2.107)

If the order of the two groups G and G’ is the same, then this mapping ¢ is said to be an

isomorphism and the two groups are said to be isomorphic to one another, denoted by G ~ G'.

If the order of the two groups is not the same, then the mapping is called a homomor-
phism and the two groups are homomorphic to one another. Hence, an isomorphism is a
one-to-one correspondence between two groups, whereas a homomorphism is a many-to-one
correspondence. An isomorphism is found to preserve the structure of the original group
but due to a homomorphism, some of the structure of the original group is sometimes lost.
For instance, as seen previously in this chapter, the symmetric group S3 is isomorphic to the

planar symmetry operations of an equilateral triangle.

Definition 2.7. A representation of dimension n of a group G is a homomorphism or
isomorphism between the group of nonsingular n X n matrices with complex entries and

the elements of G. The ordinary matrix multiplication is the composition law for such groups.
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An isomorphic representation is named as a faithful representation and a homomorphic
representation is called an unfaithful representation. As per this definition, if elements a and
b of G are assigned matrices D(a) and D(b), then

D(a)D(b) = D(ab) (2.108)
The nonsingular nature of the matrices is need since the inverses must be contained in the set.

Representations of groups are important in quantum mechanics for various reasons. Firstly,
the eigenfunctions of a certain Hamiltonian transform under the symmetry operations of
that Hamiltonian according to a particular representation of that group. Secondly, quantum
mechanical operators are often written in terms of their matrix elements and so it is more
convenient to write symmetry operations in a similar kind of matrix representation. Lastly,

the algebra of matrices is usually simpler to carry out than abstract symmetry operations.

Reducible and Irreducible Representations

Given a matrix representation
{D(e),D(a),D(b),...} (2.109)

of an abstract group with elements {e,a,b, ...}, we can obtain a new set of matrices which
also form a representation of the group by simply performing a transformation that is known

as a equivalence, similarity or canonical transformation,
{BD(e)B~',BD(a)B~',BD(b)B~!,...} (2.110)

Such (similarity) transformations arise quite naturally, for instance, in carrying out a change
of basis for matrices. Hence, suppose one begins with the matrix equation b = Aa relating
vectors a and b through a transformation A. Now if we wish to express this equation in a
different basis which is obtained from the original basis by applying a transformation B, we
can write

Bb = BAa = BAB 'Ba (2.111)

so in the new basis, our equation becomes b’ = A’a’ where b’ = Bb, a’ = Ba, and A’ = BAB!.
A similarity transformation can therefore be rendered as a sequence of transformations in-

volving, firstly, a transformation to the original basis (B_l), then the transformation A, and
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finally transforming back to the new basis (B).

Let us take the case where we have representations of dimensions m and n, and we construct

a representation of dimension m + n by forming block-diagonal matrices of the form:

{<D(€) 0 >,<D(a) 0 >’<D(b) 0 >} 0112
0 De) 0 Da) 0 D(b)

where D(e),D(a),D(b),... are n-dimensional representations and D' (e),D'(a),D’ (D), ... an
m-dimensional representation of the group G. Each of these m + n-dimensional matrices
created in this way is called a direct sum of the n- and m-dimensional component matrices.
The direct sum is denoted by @’ to distinguish it from the ordinary addition of two matrices.

Hence, we can write the representation in equation (2.112) as
{D(e)®D'(e),D(a) ® D (a),D(b) DD (b),...} (2.113)

The representations that form this direct sum can be either identical or distinct, and the
block-diagonal form can be continued indefinitely simply by incorporating additional repre-
sentations in such diagonal blocks. However, we are simply reproducing the properties of
the known representations in all such constructions. Thus, even though representations are a
convenient way of associating matrices with group elements, the freedom we have in con-
structing representations, best seen in equation (2.112), does not readily help in demonstrating
that these matrices embody any intrinsic characteristics of the group that they represent.
To overcome this problem of nonuniqueness posed by representations that are related by
similarity transformations we consider the trace of an n x n matrix A. The utility of the trace

of a matrix representation stems from its invariance under similarity transformations
tr(A) = tr(BAB™Y) (2.114)

The significance of this invariance is that, although there may be an infinite variety of repre-
sentations related by similarity transformations, each such representation has the same trace.
But using the trace alone does not resolve the problem of nonuniqueness of representations.
To address this problem, we introduce the concept of an irreducible representation. Repre-
sentations such as the one in equation (2.112) are called reducible since they are the direct
sum of multiple representations. Representations that are not block diagonal but obtained
from block-diagonal representations using similarity transformations are still deemed to be

reducible because they are obtained from matrices which originally were in block form.
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Definition 2.8. If the same equivalence (similarity) transformation transforms all of the
matrices of a representation into the same block form, then such a representation is said to be
reducible. Otherwise, the representation is said to be irreducible.

By definition, irreducible representations cannot be expressed in terms of any represen-
tations of lower dimensionality. As a result, one-dimensional representations are always
irreducible.

We have seen that there is considerable flexibility in constructing group representations.
We can restrict this freedom by showing that any representation can be expressed only in
terms of unitary matrices. The following theorem allows us to think of group representations
as proper and improper complex rotations since the property of unitarity, when applied to

operators,since it enables changes of bases while preserving the orthogonality of bases.

Theorem 2.4. Every representation can be brought into unitary form by a similarity transfor-
mation.

Proof. Let {A,A3, ...,A‘G‘} be a d-dimensional representation of a group G. From these

matrices we can form a matrix H given by the sum

|G|

H=Y A} (2.115)
a=1
This matrix is Hermitian since
Gl Gl
H =Y (AeA})" =Y AcAl,=H (2.116)
o=1 a=1

Now it is seen that any Hermitian matrix can be diagonalized by some unitary transformation
U. Denoting the diagonalized form of H by D, we have D = UTHU,
|G| |G| |G|
D=Y U'AALU = Y (U'AU)(UALU) = Y (UTAU)(UTAU)T  (2.117)

a=1 a=1 a=1

We use the notation Ay, = UTA4U and see that the diagonal elements of D are real,

Dkk—ZZ Aa)ij(A Jk—ZZ a)kj(Aa)i; = ZZ!Aa )il (2.118)



2.3 Analytic Methods 73

fork=1,2,...,d, and positive, because the summation over j includes a diagonal element of

the identity, which is a d X d unit matrix. Thus, the diagonal matrix DY/ 2

DI 0 .. 0
1/2

O D22 coe 0

1/2

o o0 . DY

and D~1/2, given by a similar expression, have positive entries.

We now form the matrices

By =D '?A,D'/? (2.120)
from which we obtain
Bl = (D '?4,D'/*)" = D'/?A} D=1/ (2.121)
Now
ByBl, = (D7'?A,D'/?)(D'?AT D7'/?) = D~1/2A,DA},D~'/? (2.122)
Using the definition of D,

BoBl =D'?Y AAgALALD ™' =DV Y (AaAp)(AaAp)' DV (2.123)
j j

Since the Ay are a representation of G, so are the Ay, since UU™ =T and UT = U~!, leading
to an equivalence Al = UA,U'. Hence, the product AaAﬁ is another matrix Ay in this
representation. The sum over all B means that the set of Ay obtained from these products

contains the matrix corresponding to each group element only once.

BuBj,=D"'?Y A,AlD"'/>=D~'2pDp~12 = (2.124)
Y

Therefore, B, which are formed from the original representation using the similarity trans-
formation
By, =D~ '2u~'AaUuD'? = (UD'*)~'A(UD'/?) (2.125)
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are unitary representations of G. Thus, without loss of generality, we may always assume
that a representation is unitary. ll

Properties of Irreducible Representations

The identification of whether a representation is reducible or not is a tedious task if it relies
solely on the methods of linear algebra. In this section, the foundation for a more systematic
approach to this question will be lay by deriving the fundamental theorem of representation
theory known as the Great Orthogonality Theorem. The central role of this theorem in the
applications of group theory to physical problems is due to the fact that it leads to simple cri-
teria for determining irreducibility and provides a way to identify the number of inequivalent

representations for a given group G.

The Great Orthogonality Theorem is based on two lemmas of Schur [224]. These lemmas
are concerned with the properties of matrices that commute with the matrices of irreducible

representations.

Great Orthogonality Theorem

The Schur’s lemmas are restrictions on the form of matrices that commute with all the matri-
ces of irreducible representations. The group property enables us to construct matrices that
satisfy Schur’s First and Second Lemmas, and this is the basis for the Great Orthogonality
Theorem.

Theorem 2.5. (Great Orthogonality Theorem) Suppose {A1,As, ...,A|g|} and {A], A}, ...,ATG‘}
are two inequivalent irreducible representationsof a group G that has elements {g;, g2, .., g|G|}
and have dimensionalities d and d’, respectively. The matrices A, and A}, correspond to the

element g4 in G. Then we see that

Y (A%)ij(AL) =0 (2.126)

o

For elements of a single (unitary) irreducible representation,

G
Z(Azc)ij(Aa)i’j’ = %5@1’/51',/ (2.127)

o
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Proof. Considering the d’ x d’ matrix
M=Y A XA, (2.128)
o
where X is taken to be an arbitrary matrix with &’ rows and d columns.
We pre-multiply M by the matrix Ab,
ApM = Za"A;;AﬁxXA&l = ;AEA&XA&IA?AB = %‘,AbA’aX(AﬁAa)*lAﬁ (2.129)

Since the Aq and A, form representations of G, the products AgAg and AjAj also are

representation matrices Ay and Ag,, respectively.
I ag / -1 —
ApM = ;AYXAY Ag = MAg (2.130)
We now consider the cases of equivalent and inequivalent representations individually:

Case 1: d # d' or, if d = d’ and the representations are inequivalent. Schur’s Second
Lemma then implies that M must be the zero matrix. Using (2.128), we see that this

requires
M =Y Y (A0)iiX;p(Ag") jr =0 (2.131)
a jj
We can rewrite this as
jJ a

Since X is arbitrary, each of its entries may be varied independently and arbitrarily
without affecting the vanishing sum. The only way we can ensure that is to require that
the coefficients of the X vanish

Y (Ay)ii(Ag" ) r =0 (2.133)

a

Since the representations are unitary, we have

Y (AL)ij(Ay) jr =0 (2.134)

o
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This is the first part of the Great Orthogonality Theorem.

Case 2: d = d’ and the representations are equivalent. Then, according to Schur’s First
Lemma, M = cl, and so
M=Y AeXAy' =cI (2.135)
o

Taking trace of this equation and using the cyclic property of the trace of a product of

elements,

tr(cl) =cd =tr()_ AaXAy') = Y tr(AcXAy') = Ztr (XA'Ag)
o o

—er = |Gltr(X) (2.136)
Simplifying these equations
G
c= uzfr( X) (2.137)
d
Using this in equation (2.135),
Hrr(x) =Y AoXxAy' (2.138)
d - “

Expressing this in terms of the matrix elements,

Z Z AO‘ l] (X jl = 611 ZX]] (2.139)
This can be written as

G
Z Z A‘x lJ 1>j/i/ |d|51 1’5JJ] (2140)

For any independent variation of the elements of matrix X, the coefficient of these

elements in (2.140) must vanish

_ G
Z(Aa)ij(Aal)j’i’_| ’5 70 (2.141)
o
Since the representation is unitary,

G
¥ (i3 e — 8,4, (2.142)

o
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This is the second part of the Great Orthogonality Theorem.

We can combine the two statements of the Great Orthogonality Theorem as

Ik G
Z(AI(;)U(AI&)I"]" = | |5l l/5j ]’5k 14 (2.143)

04
This expression helps us to understand the motivation for calling this theorem the Great
Orthogonality Theorem:

Let us consider the matrix elements of the irreducible representations as elements in

vectors in a space of dimensionality |G|:
Vi = [(AD)ij, (4D, (Al )] (2.144)

According to the Great Orthogonality Theorem, two such vectors are orthogonal if
they differ in any one of the indices i, j or k, since (2.143) and (2.144) can be used
to write

|Gl

VEVEy =808k (2.145)

In a |G|-dimensional space there are at most |G| mutually orthogonal vectors. Now,
suppose we have irreducible representations of dimensionalities d;,d>, ... where the
dy > 0,d; € Z. For the k representations, there are dj choices for each of i and J,
and there are d,f matrix elements in each matrix of the representation. Summing

over all the irreducible representations, we have

Y d; < |G| (2.146)
k

Hence, the order of the group acts as the upper bound for the number as well as the
dimensionalities of the irreducible representations, and a finite group can have only

a finite number of irreducible representations.

Example 2.3. For the symmetric group S3, we have the order of the group |G| = 6. S3
has two one-dimensional irreducible representations and one two-dimensional irreducible
representation. Hence, using equation (2.146),

Ydai=1"+1"+2°=6 (2.147)
k
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and so the Great Orthogonality Theorem tells us that there can be no additional distinct

irreducible representations of S3.

2.3.2 Characters and Character Tables

In the previous sections, we proved the orthogonality between the matrix elements corre-
sponding to different irreducible representations of a group. However, for various applications
of group theory, only the traces (within classes of group elements) called characters are
required. An application, for instance, involves determining whether a given representation

is reducible or not.

The mathematical machinery that is used to assemble the characters of the irreducible
representations of a group is encapsulated in what are called character tables. The construc-
tion of character tables requires two types of input: the order of the group and the number of
classes it contains. Orthogonality relations derived from the Great Orthogonality Theorem
provide constraints on characters of various irreducible representations, which considerably

simplifies the construction of character tables.

2.3.3 Orthogonality Relations of Characters

To begin with, we can show how the statement of the Great Orthogonality Theorem can be
manipulated into an expression solely in terms of the characters of these representations.
This will help us in establishing a sum rule between the number of irreducible representations

and the number of classes in a group.

We begin by setting i = j and j' = i’ in equation (2.143),

. |G
Y (A%)i(AY) ;= |d_k|6i,i’ O it (2.148)
(04

Summing over i and i’ on the left-hand side of this equation, we obtain

L Y (A0 = LIL A L (A6 i] = Lrr(ag)er(4g)” (2.149)

o i i
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Summing over i and i’ on the right-hand side of this equation and considering that }; 1 = dj

for our system, we obtain

Gl Gl Gl
—0; Ok = — O Oy =—0p Yy 1=|G|Op 2.150
; a O Ok =g Ok Zl:; it = g Ok zl: |G| & ( )
Using equations (2.148), (2.149) and (2.150), we can therefore rewrite the Great Orthogonal-
ity Theorem as
Y 1r(AK)ir(AR)* = |Gl 8 (2.151)
o

This expression can be re-written in a more useful form by noting that matrices corresponding
to elements in the same conjugacy class have the same trace. Let us introduce the notation
x for the trace corresponding to all the elements of the « class of the kth irreducible
representation. This is known as the character of the class. If there are noc elements in the
class, then we can write the equation (2.151) in terms of characters as a sum over conjugacy
classes

Znallé(lg)* = |G|Sx (2.152)
(04

The summation here goes from o = 1 to & = C where C represents the number of conjugacy
classes. This statement is also sometimes referred to as the statement for the Great Orthogo-
nality Theorem of Characters.

This theorem can be used to arrive at a relationship between the number of classes of

a group and the number of irreducible representations. We can write equation (2.175) as

Z[(%)‘/Zxé][(%)‘”(xﬁ[)*] = S (2.153)

Let us introduce the vector

(C)e = |G| 2 (Vmixk, Vmax5 s oo/ XE) (2.154)
So we can write the orthogonality equation (2.176) for characters

(©)-(C)e = Sppe (2.155)

~

The vectors (C)y reside in a space whose dimension is the number of classes C in the group.
Hence, the maximum number of a set of mutually orthogonal vectors in this space is C. These

vectors are labelled by an index k that correspond to the irreducible representations of the
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group. Thus,
Number of Irreducible Representations < Number of Conjugacy Classes

It is also possible to obtain an orthogonality relation that has the roles of the irreducible rep-
resentations and conjugacy classes reversed in comparison to that in the Great Orthogonality
Theorem of Characters [1]:

. |G
Yoxe(p) = u5a7ﬁ (2.156)
a N

By following an analogous line of reasoning as above, we can deduce that this relation
implies that the

Number of Irreducible Representations > Number of Conjugacy Classes

Combined with the statement of the Great Orthogonality Theorem of Characters, we have

the following theorem:

Theorem 2.6. The number of conjugacy classes of the group is equal to the number of
irreducible representations of that group.

Example 2.4. The symmetric group S3 has three conjugacy classes. Thus, there are three
irreducible representations which consist of two one-dimensional representations and one

two-dimensional representation.

Theorem 2.7. (Decomposition Theorem) The character ), for the a class of any representa-
tion can be written in terms of the corresponding characters of the irreducible representations

of the group as
1 *
Yo = ) WiXa k= @Zna(x’&) Xo (2.157)
k a

Proof. The same similarity transformation brings all of the matrices of a reducible represen-
tation into the same block-diagonal form. In this form, the matrix Ay can be written as the

direct sum of matrices A’j‘. of irreducible representations.

Given that similarity transformations leave the trace invariant, we can write the charac-
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ter x; of this reducible representation corresponding to the ith class as

Xo =Y axXe.ax > 0,a; € Z (2.158)
k

We can now multiply both sides of this equation by n¢/( )d;/)* , sum over o, and use the

orthogonality relation (2.175),
Y na(xk) %o =Y. ar Y na(x8) 1k = Y. a|Gl8 = |Glay (2.159)
o k a k

Thus, |
ay = — Y na(x5) xa (2.160)
(G

so ay is the projection of the reducible representation onto the k’th irreducible representation.
Now, since the number of irreducible representations equals the number of classes, according
to Theorem 2.8, the orthogonal vectors of characters span a space whose dimensionality is

the number of classes, and so this decomposition is unique.

The Decomposition Theorem helps in reducing the task of determining the irreducible
representations contained within a reducible representation to one of vector algebra. Unless
a certain application requires the matrix-forms of the representations, we do not need to

block-diagonalize a representation to identify its irreducible components.

We can follow a procedure similar to the one that was used to prove the Decomposition
Theorem to derive a criterion to identify whether a representation is reducible or not. We

begin with the decomposition (2.157), take its complex conjugate and consider that a;, € Z:
Xo =Y av(xa)’ (2.161)
k

We now take the product of (2.157) and (2.161), multiply by n, sum over @, and invoke
(2.156),

Zna%a?(é} = Zakak’znaxgz(%g)* = Zakak”G“sk,k’ =[G Zai (2.162)
o k' i Ik %

Thus,
Y nalxal® =1G|Y a; (2.163)
a k
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If the representation is irreducible, then a; = O for all a; except the one corresponding to that
irreducible representation, for which a; = 1. If the representation is reducible, then there
will be at least two of these coeeficient a; which satisfy a; > 0,a; € Z. We can put these
observations into making a simple criterion for reducibility:

1. If the representation is irreducible, then
Y nalxel* =G| (2.164)
04

2. If the representation is reducible, then

Y nalxal* > |G| (2.165)
o

Example 2.5. A representation of the symmetric group S3 is

e—d—f— ((1) ?) (2.166)

1{ -1 =3
a:b:c:§<_\/§ 1) (2.167)

The notation here is given with reference to (2.95) and (2.96). There are three conjugacy

classes of this group, e, a,b,c, and d, f, so we have n| = 1,n, = 3,n3 = 2, respectively.

The characters corresponding to the three classes are found to be
X1=2,20=0,2=2 (2.168)

Now,
- 2
Y nilxl> =12>6=|Gls, (2.169)
i=1
Using the criterion formed earlier, this representation is reducible. To determine the irre-
ducible components of this representation, we use the decomposition theorem. There are
three irreducible representations of the symmetric group S3:
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The one-dimensional identical representation, with characters

3
xi=1lx=1x=1Y nlx>=6=|Gls, (2.170)
i=1

The one-dimensional parity representation, with characters

=11

3
L3 =LY nlx?* =6=Gls, 2.171)
i=1

The two-dimensional coordinate representation, with characters
3 3 3 2 312
X =220 =003 =-1,Y nlx|> =6=1Gls, (2.172)

i=1

We now calculate the values of a; using (2.163). These identify the projections of
the characters of the reducible representation onto the characters of the irreducible
representation. We obtain

a1 =1l,a=1,a3=0 (2.173)

Hence, this particular reducible representation is composed of the identical rep-
resentation and the parity representation, without any contribution from the two-

dimensional coordinate representation. The block-diagonal form of this representa-

e=d=f= ((1) (1)) (2.174)

1{1 o
a ¢ 2(0 —1) @.175)

tion is

Character Tables

Character tables are fundamental to various applications of group theory, especially those
involving the decomposition of reducible representations into their irreducible constituents.
In this section, the construction of character tables for groups will be discussed with an
emphasis on the example of the symmetric group S3. For this, two types of information are
used: sum rules for the number and dimensionalities of the irreducible representations, and
orthogonality relations for the characters of these representations. A point to note here is that

by convention, characters tables are displayed with the columns labelled by the classes and
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the rows by the irreducible representation.

The first step in the construction of the character table is to observe that, since |G|s, =6
and there are three conjugacy classes, there are three irreducible representations whose
dimensionalities must satisfy

d&+ds+d3=6 (2.176)

The unique solution of this equation, for d; > 0,d; € Z,i € {1,2,3},isd) = 1,dr = 1,d3 = 2.

Thus, there are two one-dimensional and one two-dimensional irreducible representations.

In the character table for any group, quite a few entries can be made immediately. The
identical representation, where all elements are equal to unity, is always a one-dimensional
irreducible representation. Similarly, the characters that correspond to the unit element are
equal to the dimensionality of that representation, since they are always calculated from the
trace of the identity matrix with that dimensionality. Therefore, denoting by «, 3, ¥, and &
quantities that are to be determined, the character table for S5 is:

S3 {e} {a7bvc} {dvf}
| 1 | 1
I 1 o [3
I 2 Y 0

where the I';, where i € {1,2,3} for S3, are the conventional labels for the irreducible repre-

sentations.

The remaining entries are determined from the orthogonality relations for characters. Taking

elements for I'; and I'; for the orthogonality relations,
14+3a+2B=0 (2.177)
Taking only the elements for I'; for the orthogonality relations
14302 +2B% =6 (2.178)

Considering, the multiplication table for the symmetric group S3,
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ela|b|c|d|f
elelal|b|c|d|f
alale|d|f|b]|c
b|b|flel|d|c|a
clc|d|flel|lal|b
flflblclale|d
d|d|cl|la|b e

This group multiplication table requires that
P =eb’=ec’=ed =f (2.179)

Since the one-dimensional representations must obey the multiplication table, these products

imply that
a’=1,B>=p (2.180)
Using (2.178) and (2.180),
B=1 (2.181)
Using (2.170) and (2.181),
oa=-—1 (2.182)

Using the orthogonality relation (2.156) between the columns of the character table,
I+o+2y=0 (2.183)

1+B+26=0 (2.184)

Using the values of a and B from (2.181) and (2.182), respectively, in (2.183) and (2.184),
Yy=0,6=-1 (2.185)

Thus, the complete character table of the symmetric group S5 is

S3 {e} {avbvc} {daf}
I 1 1 1
I 1 -1 1
I3 2 0 -1

When character tables are compiled, a notation is used that reflects the fact that the elements

of the group correspond to transformations on physical objects. The notation for the classes
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of §3 are as follows:
1. {e} — E: The identity element

2. {a,b,c} — 30,: Reflection through vertical planes, where vertical stands for
the planes that contain the axis of highest rotational symmetry. In the case of the
symmetric group S3, it is the z-axis. The '3’ refers to the fact that there are three
elements in this class.
3. {d,f} — 2C;: Rotation by 27” radians, where the "2’ refers to there being
two elements in this class. The notation C% is for rotations by %’r radians and so the
class notation is only meant to indicate the type of operation. In general, C, refers
to rotations through 27” radians.

Several notations are also used for irreducible representations. One of the most common is to

use

A for one-dimensional representations
E for two-dimensional representations

T for three-dimensional representations

Subscripts are used in the notation for the representations to distinguish multiple occur-
rences of irreducible representations of the same dimensionality. The character table for S3 is
denoted as that of the group C3,, as that components are interpreted as the planar symmetry

operations of an equilateral triangle.

We can write the S3 character table as

C3V E 3Gv 2C3
A [ 1] 1 1
A 1] -1 ] 1
E 2] 0 -1

2.3.4 Representations of Symmetric Groups S,

The symmetric group S, on a finite set is the group whose elements are all permutation
operations, which are defined as bijective functions from the set of n symbols to itself. The
group operation is the composition of such permutation operations. There are various ways

to denote the elements and their permutations of the symmetric group. For example, let
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us say we have three balls Red (R), Blue (B) and Green (G), as shown in Figure 2. Then
any permutation of these balls can be reached from an initial state, let’s say RGB (linear

arrangement of the balls).

There are various ways to denote the permutations of the elements of the symmetric group,

as well:

1. Square Parantheses [...] denote the new ordering of elements. For example,
[213](RGB) permutes the second ball to the first position, first ball to the second

position and keeps the third ball as it is, giving us the new arrangement (GRB).

2. Cylic notation, represented by the round brackets (...), denotes the subgroups
over which permutation takes place. For example, the case taken in the point above
can be represented in cyclic notation as (12)(3). This tells us that the first and second

balls swap places while the third one stays put.

This result can be generalized to a general symmetric group S,,. If we represent the elements
of the general symmetric group S, as iy, i, ..., , with all being different, the cyclic notation

for the permutations can put as follows:

(l'l — i — i

g ip = i3 — i3 L

(i1i2) (i2-ik) = . ' = (iyip...I) (2.186)
13 14 —14...

kik — iy — 1
( . . .
11— —ID

N Ip— 13— 13 L

(111213)(13...lk) = ) ) ) = (lllz...lk) (2187)
13 =14 —14...

QU — 13— 1
( . . .
n——n

g Ip =iy =13 L

(11...lk)(lkl1) = ] . ] = (1211...lk) (2.188)
13 —>13 —>14...

LIk — 11— 12
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(i) — iy — iy

g h =i =D L

(i1...1x) (igiai1) = 4 . _ _ = (i3iyip...Ig) (2.189)
13 —>13 —>14...

Lk — 12— 13

and so on. Due to the above relations (2.186) - (2.189), one can construct all the group

9 DPD

200 000
200 000
200 000

Fig. 2.3 Illustration of Symmetric Group S3, corresponding to elements shown in Figure 1,
using coloured balls

elements of S, using only the transpositions (12),(13),...,(1n),(23),...,(2n),....,(n—1,n).
This can be further restricted to the set {(12)(23)(34),...,(n—1,n)}.

We can take the example of group Ss to illustrate this point. We will be showing the
relevance of the group S, for our cluster-state quantum computation model later in the thesis.
This group can be formed using only the set {(12)(23)(34)}.

(13) = (12)(23)(12) (2.190)

(14) = (12)(23)(12)(34)(12)(23)(12) (2.191)
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(24) = (23)(12)(34)(12)(23) (2.192)
Interestingly, the product of all elements of the set of transpositions yields the following

0. "™ [1234] 11. &7 [4213)

1. % [2134) 12. "% [1342]
2. % [1324) 13. &% [3142]

3. % [3124] 14. " [1432)

4. 4% (2314 15. % [4132)
5. &, [3214) 16. i [3412]
6. "y [1243] 17. &7 [4312]
7. % [2143] 18. ™ [2341]
8. "ar  [1423] 19. My (3241
9. %) (4123 20. e [2431)
1065 [2413] 0 21. W [4231)

22. @ [3421) 23. @& [4321]

Fig. 2.4 Permutations represented by matrices for the symmetric group S4. Here the red
boxes for matrix-elements have a value of 1 while white boxes have value 0. The straight
arrows between two permutations depict an inversion operation while a curved arrow depicts
a rotation operation

group element of S,:
(12)(23)(34)...(n—1,n) = (123....n) (2.193)

It can be shown that the complete permutation group S, can be generated by (12) and
(123...n).

Matrix Representations of Symmetric Group Sy

An n-dimensional matrix representation of a group element g of the group G is given by a

transformation D(g) of an n-dimensional, complex vector space V;, into itself
D(g):V, =V, (2.194)

The matrix for D(g) is known, once the transformation of the basis vectors é; (i = 1,2,...,n)

of V,, is specified. In this section, we will look into an example of matrix representations of
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symmetric groups, with an emphasis on S4.

One can use the word representation for the vector associate with the S4 group: ABCD. This
can be written as

+B +C +D (2.195)

OO W
o o o ~
o o~ O
o~ o o
- o o o

An example of a symmetric group element is the transformation (12)(3)(4) which is given by

A B
B A
D" (12 — 2.196
(12)] - c (2.196)
D D
The element D" (12) is given by
0100
1 00O
(2.197)
0010
0001
The various group elements are given by
1 00O
0100
D" (I) = 2.198
D=10 01 0 (2.198)
0 001
0100
1 000
D"(12) = 2.199
(12) 0010 ( )
0 001
1 000
0010
D" (23) = (2.200)
0100
0 001
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(2.201)

S O O -
- o O O
S o - O

S — O O

D"(132) = (
D"(123) = (

(2.202)

S O O -
S — O O
— o O O

S O — O

(2.203)

(2.204)

0010
0100
1 00O
0 001

N——— T SN~

D"(13)

1 00O
0100
0001

D" (34) =

0010
D" (12)(34) = (
D" (243) = (

(2.205)

S o — O
S O O -
— O O O
S — O O

(2.206)

~ _
o - O O

S O O -
S o - O

— O O O

~ ~

o~ ©

=) =

N N

I IS

N N
— 0O 0O 0 © —~ o o
oo o~ © O o —
oo ~0O —~ o o o
O —- 0 O o O — O
(\(\

Il I

—~ ~—~

N o

o <

< A

— —

N— N~—

Y 2

Q Q
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D" (24) = (
D" (142) = (
D"(1234) = (

D"(143) =

D"(234) =

D"(1342) =
D"(13)(24) =
D" (1423)
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0010
0100
D" (134) = (2.217)
0001
1000
0100
0001
D"(124) = 2218
29=16 010 (2218)
1000
0001
0100
D"(14) = 2.219
=100 1 0 (2.219)
1000
0010
1
pr(izay = [0 00 (2.220)
0100
1000
0001
0010
D"(14)(23) = 2.221
H@B)= (. | 5 0 (2.221)
1000

2.3.5 Partitions and Young Tableau

The cyclic structure of a group element of S, can be represented by a partition of n.

Definition 2.9. A partition of n is a set of positive integer numbers: [A;,A,,...,A;] with
M>ML>A.. . >and A+ L +A3+...+ A4 =n.

Considering the class structure of the symmetric group S, we see that the conjugacy classes
are given by cycle structures and a particular conjugacy class is specified by giving the n
numbers &;,&y, ..., &,, where &; is the number of i cycles in an element belonging to the

conjugacy class.

Example 2.5. In the group Sg, for (1426)(35) € Se, £ = 0,6 =1, =0,& = 1,&5 =
07&6 =0.
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We can observe that Y7, i&; = n. The specification of a class of the symmetric group

corresponds to the specification of a partition of n that can be defined by the construction:

M=&+&E+...+E, (2.222)
Mh=E6&+...+§&, (2.223)
and so on, with A, = &,.
For the case in Example 2.5,
AM=2 (2.224)
A =2 (2.225)
A3=1 (2.226)
A=1 (2.227)
As =0 (2.228)
As=0 (2.229)

and the sum of these numbers is six.

We use this correspondence in the inventing a graphical description to represent the partition

of the symmetric group, known as Young Diagrams.

Ak

Fig. 2.5 Example of Young Diagram of the Symmetric Group Sy with A; boxes in the first
row, A boxes in the second row, and so on, as determined by the values of the partitions for
a cyclic structure of a group element of S,

Definition 2.10. A Young diagram is a figure of n boxes arranged in horizontal rows in

the following way:
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A1 boxes in the upper row

A2 boxes in the second row

A boxes in the k-th and last row.

Illustration 2.1. The partitions and Young diagrams for the cyclic structures of the symmetric

group Sy are as follows

1. Partition [4]: The elements constituting this conjugacy class are (1234), (1243),
(1324), (1342), (1423) and (1432) in cyclic notation.

Fig. 2.6 Partition [4] of the symmetric group S4 of four elements

In this class, none of the elements permute.

2. Partition [31]: The elements constituting this conjugacy class are (1)(234), (1)(243),
(123)(4), (132)(4), (124)(3), (142)(3), (134)(2) and (143)(2). In this class, one of the

Fig. 2.7 Partition [31] of the symmetric group S4 of four elements

elements permutes with one other element.

3. Partition [22]: The elements constituting this conjugacy class are (12)(34), (13)(24)

and (14)(23). In this class, two of the elements permute with two other elements.

4. PFartition [211]: The elements constituting this conjugacy class are (1)(2)(34),
(DH23)D), (1H(24)(3), (12)(3)(4), (13)(2)(4) and (14)(2)(3). In this class, two of the

elements permute with each other while two others remain unpermutated.
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Fig. 2.8 Partition [22] of the symmetric group S4 of four elements

Fig. 2.9 Partition [211] of the symmetric group S4 of four elements

S. Fartition [1111]: The element constituting this conjugacy class is (1)(2)(3)(4).
In this class, none of the elements permute.

Fig. 2.10 Partition [1111] of the symmetric group S4 of four elements

It is observed that the Young diagrams for a given n classifies all the conjugacy classes of
S,. Since the conjugacy classes are related to the irreducible representations of a symmet-
ric group, it is not surprising that these diagrams are also useful in identifying irreducible
representations of S,,. There is found to be a 1 : 1 correspondence between Young diagrams
and irreducible representations of S,. To define this irreducible representations, one requires

what are known as Young’s Tableau.

Definition 2.11. A Young tableau is a Young diagram in which the n boxes are filled

with the numbers 1, ..., n, each number used only once.
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For example, one of the Young tableau for Sy is shown in Figure 2.11.

1124
3

Fig. 2.11 Young Tableau for a [31] Irreducible Representation of the symmetric group S

Definition 2.12. A standard Young tableau is a Young tableau in which the numbers appear in
ascending order within each row from left to right and within each column from top to bottom.

Example 2.6. For the S4 group, we have the Young Tableau given in Figures 2.12 - 2.16.

There are many other interesting connections between Young tableaux and representations of
Sn. One of this is as follows: Let us say that we have an irreducible representation in S,, and
we want to find its induced representation in S, 1. It is found that the induced representation
is simply the direct sum of all the representations corresponding to the Young diagrams that
are obtained by adding one new square to the original Young diagram at various points below
or to the right of a pre-existing Young diagram element!

Example 2.7. The induced representation of the standard representation from S3 to Sy
is shown in Figure 2.13. Similarly, the restricted representation (construction of the standard
representation of a lower symmetric group from a higher symmetric Group, such as S, from
S3) can be obtained by removing one square from the Young diagram, as shown in Figure
2.14.

2.3.6 Structures of Irreducible Representation

Now that we have found a way to find the number of irreducible representations of the
symmetric group using Young Tableau, it is important to explore a way to find the structure

of the irreducible representations.

Irreps of Symmetric Group S3

As has been discussed previously, the symmetric group S3 can be analysed by looking at a

triangular arrangement of elements ABC, wherein each element is equidistant from every
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w

s

N

s

ArlIWIN|=

—

@]
~—

(e)

Fig. 2.12 Young Tableau of the symmetric group S4 for (a) Partition [4], (b) Partition [22],
(c) Partition [1111], (d) Partition [211] and (e) Partition [31]

other element. This equilateral triangle can be used to derive a set of matrix representations
for S3.

The representation D" (132): D"(132)ABC = BCA has an analogy to a rotation of this
equilateral triangle by an angle of 120°. This transformation is given, in matrix form, as the
rotation matrix for an angle of 120°.

9 _ o —si 9 — o
R— c?s lo=120 5in®|g—120 (2.230)
Sln9|9:1200 0059|6:1200
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Fig. 2.13 Induced representation of the standard representation from S5 to Sy

Sz

= D

S3

Fig. 2.14 Induced representation of the standard representation from S3 to S»

_1 V3
R= (\/g f ) (2.231)
2 2

This simplifies to

58]

The reflection operation around x-axis keeps the x-component of a point on the plane
unchanged while the y-component of the point accumulates a phase of 180°.

1 0
P= (O _1) (2.232)

This is equivalent to taking ABC to ACB. One can construct the various elements of the
group from the transformations {1, P,R,R?, PR, PR?} for S3.

Irreps of the Symmetric Group S,

A group has an infinite number of representations, in principle, even for a finite group like
Sn. So, how can one organize the representations of such a group in an ordered manner?
The answer to this question lies in the concepts of reducible and irreducible representations.
Before going into the concept of reducibility of representations, let us consider the concept
of the equivalence of representations
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ABC BCA

Fig. 2.15 Rotation by an angle of 120° brings elements A to position of C, C to position of B
and B to position of A

B

vd

A/ _ A/
AN AN

N N

C B

Fig. 2.16 Reflection around x-axis brings elements B to position of C, C to position of B,
leaving the element A unaffected in this illustration

Let us consider two n-dimensional representations, D@ and DB, of the group G. If

there exists a non-singular n X n matrix S, such that for all group elements g we have
D% (g)=5"'DPB)(g)s (2.233)

then the two representations D@ and D®) are said to be equivalent.

Irreducible representations or irreps are the building blocks of representations of a group. All
other representations can be constructed out of irreps. The dimensions for the irreps of a
group, such as the symmetric groups S,,, can be found using Young Tableu. In doing so, we
need to look into the concepts of axial distance, hook length and hook product of elements in
Young Tableau.
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Definition 2.13. (Yamanouchi Symbol) A Yamanouchi Symbol of a Young Tableau is
a notation of its elements of the form [y;y,...y,|, where y; represents the position of the
element i in a Young Tableau and takes the value of the row in the Young Tableau in which
the element i is placed.

Example 2.8. The Yamanouchi symbol for the Young Tableau in Figure 2.17 1s [1212].

Fig. 2.17 Young Tableau of Symmetric Group S4 with the associated Yamanouchi symbol
being [1212]

Definition 2.9. The axial distance p(M;x,y) between two boxes x and y of a standard Young
tableau M (M represents the Yamanouchi symbol of the tableau), is the number of steps

(horizontal and/or vertical) to get from x to y, where steps contribute:

+1for | or (2.234)
—1fortor —

Definition 2.10. (Hooklength) The hook length A(i, j) of a box (i, j) in a Young Tableau is
one plus the sum of the number of boxes that are in the same row i to the right of it and the

number of boxes in the same column j below it.

Example 2.9. The hooklength of the element with the black-dot in Figure 2.18 is 3.

Fig. 2.18 Illustration for Hooklength: The hooklength of the box with the black dot is 3. The
boxes with the grey-dots are in the same column or row as the box with the black dot
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Definition 2.11. (Hook-Product) The product of hooklengths of all the boxes in a Young
Tableau is called the Hook-Product.

Example 2.10. The hook-product of the Young Tableau in Figure 2.19 is 12.

Fig. 2.19 Illustration for Hook-Product: The hook-product of the Young Tableau is 3 x 2 x
2x1=12

Definition 2.12. (Dimension of Irreducible Representations) In evaluating the irreps for a
group, one needs to consider the dimension of an irrep given by f[u], which is the number of
possible standard Young tableaux for a given partition. The dimension f[u] of an irrep of S,
corresponding to a Young diagram [ut] (where [u] represents the corresponding partition of
n) can be found from

flu] = (2.235)

where h[u] is the hook-product. The hookproduct /[u] of the Young diagram belonging to
the partition [u], is the product of all numbers in its hook-table.

For the S4 group, we have

flu] = 1 for the partition [4]
flu] = 3 for the partition [31]
flu] = 2 for the partition [22]
flu] = 3 for the partition [211]
flu] =1 for the partition [1111]

Once the dimensions of these irreps have been found, we move on to finding the form
of the irreps. For this, we employ the concept of Young’s orthonormal forms, which are real
and unitary. The irrep [u] of S, is defined in an f[u]-dimensional vector space V4! In this,
we use the orthonormal basis ély where i = 1,2,3, ..., f[u]

(M ey — 5, (2.236)
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To the index i of the basis vector we relate the Yamanouchi symbol M.

In terms of the basis vectors, one obtains the standard form for the matrix representation:

DU ((kk+1))efy) 4y = (P(My Myk+ 1K) +A8 0 (2237)

where A = /1 — (p(My...My;;k+1,k)) 2

Example 2.11. Let us look into the construction of irreducible representations of S4 us-

ing the construction scheme mentioned above.
To begin with, let us take the following basis vectors:

[1234} for the partition [1111]
211]  [211] A[211]

11235 €113 and é,,,; for the partition [211]
[12122]2 and 6[12221]2 for the partition [22]
é[l 111]2, 6[13112]1 and é[13211]1 for the partition [31]
[14}1 | for the partition [4]
where
1 0 0
A[1211213} = é[lzlll}z ={0]> A[1221113] = é[13112]1 =1 vé[1221311} = 5[13211}1 =10 (2.238)
0 0 1

22 L\ 22 0
(o) 48 () 229

Using equation (2.237), we can find the matrix representation for the generator transpositions
(12), (23) and (34).

D(12) = —1 for [1111]

1 0 0
p(12)=|0 -1 o0 | for[211]
0 0 -1

D(12) = ((1) _01> for [22]
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10 0
D(12)=[0 1 0 | for[31]
00 —I
D(12) =1 for [4]
D(23) = —1 for [1111]
_1 V3 o
2 2
=B 1 for [211
D(23)=| ¥ L o |for[2l1]
0 0 -1
_1 V3
D(23) = ﬁz i)for[ZZ]
2 2
1 0 0
D(23)=|0 —1 ¥ | for[31]
0 ¥ 1
2 2
D(23) =1 for [4]

D(34) = —1 for [1111]

-1 0 0
DB4)=| 0 -1 Y8 for[211]
0 ¥ 1

3 3
1 0
D(34) = 0 _1> for [22]
1 8
-3 & o
D(34) = \/?g 10| for[31]
0 0 1

D(34) =1 for [4]

These are the fundamental representations of the S4 group, which can be used to build

various reducible representations.
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2.3.7 Symmetric Group, Heisenberg Hamiltonian and SWAP!/" Quan-

tum Operators

The Symmetric Group, by virtue of its relevance in multiple fields of mathematics and
physics, is an important element of abstract algebra. Not only is it significant as the key
building block in Galois Theory and the mathematical basis of the 100-vertices undirected
graph called the Higman-Sims graph, but is also found to be associated to the all-important
Heisenberg Hamiltonian in Physics. The Heisenberg exchange model is a many-body quan-
tum model, which has has been applied to fields as varied as multipolar exchange interactions
and high-temperature superconductivity.

In 1928, Werner Heisenberg proposed the (Heisenberg) model, noting that the internac-
tions had a certain spin-free nature and the model had a symmetric-group character [2].
These two aspects have been of particular interest, particularly to the likes of the famous
chemist F. A. Matsen. In 1971, he looked into the spin-free group-theoretic nature [3]. Later,
alongwith Cosgrove and Picone, he also looked into a symmetric group-theoretic solution of
a special, uniform interaction case of the model in 1971 [4], and relations to spin-correlations
in 1975 [5].

Let us briefly follow Heisenberg and Matsen’s view in seeking a symmetric-group alge-
braically motivated solution to the Heisenberg Hamiltonian, which for a collection of N
doublet spin-1/2 sites, is given by
H=) IpP (2.240)
P

where P is a permutation acting on the indices of the sites of the system and Jp is a coupling
constant. Often, the non-zero Jp are assumed to be only for transpositions P = ij, which

interchange the indices of nearest neighbour sites i and j. In the spin-space, the Dirac-identity

|
(ij) =2S.S;+ 3 (2.241)
may be used to express the hamiltonian in terms of the spin operators. Clearly, H is an
element of the group algebra of the symmetric group S, acting on the N spin indices. If we
consider the unitary evolution operator U for the hamiltonian H obtained from equations

(2.240) and (2.241) in the time-dependent case,

H(r) = Jp(1)S:.S; (2.242)
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Pt ot L.
Up(1) = Texpl—+ /0 H()dr') = zexpl— /O Ip(t')S:.5 dr' (2.243)

For a constant interaction Jp(¢) = Jy and time rss.t.% = mtmod (21), Up(1s/2) = Up(1,)'/?
performing the so-called ’Square-Root-of-SWAP’ gate, that is functionally given by,

1 0 0 0
0 Ya+i) fa-=-i o

SWAP = %( ) 1 ) (2.244)
0 0 0 1

Given the pre-eminent position of this operator, it is interesting to note that this operator

falls into the symmetric group S, just like the general Heisenberg Hamiltonian. Now, from

our study of representations of (symmetric) groups earlier in this chapter, we know that any

representation of v/ SWAP can be decomposed into the irreducible representations of the

symmetric group S,. But for convenience, we will be using the reducible representation

for the SWAP = /SWAP+/SWAP instead, which are the permutation matrices. This case of
SWAP is extended to the case of SWAP!/" too.

Before moving further, let us see why the similarity transformation for the SWAP should
work for the SWAP'/" as well:

Similarity Transformation for SWAP and /SWAP

By definition, we see that

1_|_ein'/n 1 — ein'/n
Ugyapi/in = TUSWAP + TIZNsz (2.245)

where v, v is a 2V x 2V identity matrix. Premultiplying with S~! and postmul-
tiplying with S, we have
in/n

1+ em/n 1—e
— S 'UswapS+

S UgyapinS = 5 — Tl (2.246)

Since the linear combination of the block-form of Ugyap and a a 2V x 2V identity
matrix maintains the block-form of J; albeit with possibly different matrix-
elements, J, = S_IUSWAPI /S has the same similarity transformation and the

same set of magic-vectors.
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The similarity transformation for SWAP and SWAP'/" are found to be the same.
Hence, the magic vectors associated with the transformation are relevant for both
operations.

Jiy =S 'UswarS (2.247)

where J; is the block-form representation for the SWAP operation.

Having found that the similarity transformation for SWAP applies for v SWAP operator, let
us look at the reducible representations of the SWAP operator. For a general n-qubit system,
we will have a vector of dimensional 2". The SWAP operator will swap the elements of each
of vector-components. For example, a SWAP;,|01101) = [10101), where the first and second
qubits are swapped. This can be realized using a permutation matrix, which we investigated
earlier in the chapter. A permutation matrix is a square binary matrix that has only one entry
of 1 in each row and each column and Os every where else. Each such matrix P represents a
permutation of m elements and multiplied with another matrix, say A, results in permuting

the rows (when pre-multiplying: PA) or columns (when post-multiplying: AP) of the matrix A.

Example 2.12. The permutation matrix Py corresponding to the permutation 7 = G j ?2) :
is given by
1 0000
00010
Pr=10 10 0 O (2.248)
0 00O0°1
00100

The three major properties of any permutation matrix are:
1. A permutation matrix is non-singular.
2. The determinant of a permutation matrix is always +1

3. A permutation matrix Py always satisfies

pnp; =] (2.249)
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Now, that we have the reducible representations of a general SWAP operator in the form
of the permutation matrices, our next task is to see how we could optimally find all the
irreducible representations of the various cases. This is where the concepts of Cayley Graphs
and Cayley Trees come in handy.

2.3.8 Cayley Graph and Cayley Tree

For a lower dimensional symmetric-group, finding the irreducible representations is easy but
as we go to higher dimensions, the number of irreducible representations increases as well,
making it a tedious task to find them. To make matters convenient, we have the concept of
the Cayley Graph.

Definition 2.13. A Cayley graph, also known as a Cayley diagram, is a graph that en-
codes the abstract structure of a group.

Suppose that G is a group and X is a generating set. The Cayley graph I' =T'(G,X) is
a colored directed graph constructed as follows:

1. Each element g € G is assigned a vertex, which is part of the vertex set V(I') of T,
identified with G.

2. Each generator x € X is assigned a color cy.

3. For any g € G, x € X, the vertices corresponding to the elements g and gx are
joined by a directed edge of colour c,. Thus the edge set E(T") consists of pairs of the
form (g, gx), with x € X providing the color.

The Cayley graph I'(G,X) depends on the choice of the set X of generators. For instance, if
the generating set X has k elements then each vertex of the Cayley graph has k incoming and
k outgoing directed edges.

2.3.9 From Separable States to Invariant Subspaces of the Symmetric
Group
Having found a way to efficiently and quickly find the irreducible representations, and having

obtained the reducible representations for the SWAP operator, we come to the fundamen-
tal problem of the thesis relating to the creation of quantum states (and the entanglement
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therein): operating combinations of SWAP'/ gate to a separable quantum state and finding
the output states and patterns of multipartite entanglement in them. Since the SWAP'/" is a
Hamming-weight preserving operator, we will have invariant subspaces with vectors that are
superpositions of states with the same Hamming weight.

The basic system we are working on comprises of a lattice of spin % particles that are
connected by edges with initially dormant SWAP!/" operators that can be switched on for
generating entanglement between the elements. For understanding the kind of states we can
obtain from the system, we will have to look into the group-theoretic aspects of the system
using equivalence relations to find a similarity transformation that can transform the reducible
representations for the SWAP operator and provide us with the magic-vector states for the
SWAP'/" operator (since the similarity transformation for SWAP and SWAP'/" are the same).

Now, if P represents the permutation matrix for the system and 7 represents the block-

diagonal form for the same, by equivalence,
P=5T5"" (2.250)
where S is the similarity transformation for the reducible representation.

In our method, we have found the ways to determine the matrices P and 7. Thus, from
this information we can find S for an N-qubit case by solving the N! simultaneous linear
equations: P;S — ST; = 0, where i denotes a particular group element and i = 1,2,3,...,N!.
A point to note here is that this does not give us a unique value of S and this has to be
determined by imposing the unitarity condition on this matrix.

The magic-vectors for an operator under similarity-transformation is given by
Vi=slv (2.251)

where V is the vector for the untransformed system and V' is the vector for the transformed
system. This provides us with vector states that comprise a complete invariant subspace. Any
state that preserves the permutation symmetry associated with the subspace can be expressed
a linear superposition of the vectors comprising that subspace. It is found that for some states
(and Hamming weights), there are more than one invariant subspace associated with these
states. For instance, in the case of four qubits, there is a [31], [22] and [4] invariant subspaces

associated with Hamming weight 2 (quantum states with two |0) and two |1)). A point to
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note here is that in terms of ascendancy of symmetries, for this case, [4] > [31] > [22]....
Hence, when an arbitrary state with this Hamming weight is given, one needs to see the

highest symmetry of the state and accordingly choose the invariant subspace for it.

This approach is fairly comprehensive and complete, it relies heavily on conceptual tools
like the Cayley Tree, which are not easily found for higher number of qubits. This leads to
difficulty in finding the P, and 7; matrices, and by extension, the S matrix. To get around
this problem, we have explored and investigated an alternative approach using the nullspace

approach.

2.4 Symmetric States and the Nullspace Approach

One of the fundamental properties of the SWAP* gates are that they conserve Hamming
weight of the representation. The number of |0)s and |1)s in a multiqubit state remain the
same. This is a key to proposing an efficient algorithm for finding the vector states associated

with the invariant subspaces for the SWAP? gates.

Let us say we have the following families of n-qubit states:

W; = PERM(]00..011...1)) (2.252)

n—i 1

where PERM defines the permutation function for a given set of qubits.

There is no map, f(Uswapa) comprising of only SWAP? that can take us from one such
family W; to another family W; for i # j. This property can be used to define the set of basis
vector-sets by starting with a completely symmetric state using all the vectors in the family
W; and then finding the nullspace vectors for the same. We have found an algorithm and
realization of the same that can carry out quick and efficient generation of the vector-states

for n-qubits under operation by SWAP% gates.

Let V be the set of basis vectors corresponding to the 2" dimensional Hilbert space of n-qubit
system; V={v,, Vg, .-, Voo, }. In order to decompose the 2" x 2" matrix representation of S,
to block diagonal form a transformation matrix R needs to be found. R is constructed by find-
ing a new set of basis vectors, in which the representation is in block diagonal form. Let us
call this new basis X = {x,x2,..,x,2} and define V;, where i € [0,n]), as the set of of vectors,
corresponding to states with i 15.e.g. for n=2, Vo = {voo}, Vi = {vo1,vio},V2 = {vi11}.The
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Power-of-SWAP operations do not change the number of 1 in the quantum state, therefore
each of V; is invariant subspace, although not necessarily an irreducible one. Therefore, the

task reduces to decomposing each of V;. Also observe that the number of vector in V; is given

by:
|
Vil= s = ('f) (2.253)

A point to note here is that each V; =V, o @ V; 1 D ... DV, and V; ; is isomorphic to V ; for
any i, j,k. Here V; ; are irreducible invariant subspaces.

Algorithm
1. For i =0 (and i = n), Vj (V,,) has a single vector which is one-dimensional invariant
subspace, corresponding to the trivial irrep.

2. For i=l1, from equation (2.276), |Vi| = n, and V| = Vio@Vii. Also Vo = Vo
is isomorphic to V; . Therefore |V} o| = 1 and |V} 1| = n— 1. The one element of V o

can be written as the sum of all vectors in V1, {¥, ¢y, v/v/n}, and Vi 1 can be found by
taking the orthogonal compliment of V; o in V;.

3. The case for i>2, becomes more interesting. We know thatV; =V, o @V, 1D ... D V.
Firstly V; ; and its orthogonal complement space in V;, let us call it O, need to be deter-
mined. We also know that |O|=|V,_| andO==V; PV, 1 P ... PVii_1.

4. To find O, a set of | nl basis vectors {0} need to be formed. The pro-
l —

cedure to form this vectors is as follows:

(a) Label the vectors in V; by their corresponding quantum states. For instance,

n=4, =2, Vi = {voo11,vo101, V0110, --- }

(b) Form all sets of length i of different numbers in the range [1,7], and call them
{sk}. There will be

(c) For each s; form basis vector o, by summing over all vectors of V; which
corresponds to states with 1 at the positions s;. For instance, for n=4, i=2,
01 = Vo011 + V0101 + V1001, 02 = Vo011 + V0110 + V10105
Once, all oy are formed, O is known and V;; can be formed by taking the orthogonal
complement of O inside V;. O is isomorphic to V;_;. Therefore, O can be decomposed
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in the same way as V;_j.

5. By finding the basis vectors of the each V; ; the new basis X is determined and the
transformation matrix R can be constructed by taking its columns to be the vectors of X.

In this manner, the vector states for any arbitrary symmetric group and qubit system can be

used. We find that the number of invariant subspaces, Nj,,, for an n-qubit system is given by:

(n+2)%,if nis even

(n+1)(n+3),if nis odd

Nipy = n>1 (2.254)

Bl A=

The form of, and number of basis vectors comprising, an invariant subspace are related to a
particular symmetry under permutations of the qubits. For instance, the three-qubit quantum
state that is invariant under a proper rotation of all elements is |y) = %(|OOI> +1010) +

|100)) and the conjugacy class related to [3] comprises of only this vector.

If we have a quantum state of the form

lv)=Y [00.011...1); (2.255)
PERM(i) k  on—k

where i is an index related to each permutation of the qubits and the summation is over i,
all the permutations of the qubits. We expect that for any value of k we have invariance
under certain transpositions and their associated conjugacy classes. We find that we need to
know about only specific conjugacy classes for each value of k, under which a state remains
invariant. The transpositions related to the remaining conjugacy classes can be represented
by the transpositions associated to this established set of conjugacy classes.

For even nand k < 7, the relevant conjugacy classes are ¢k = {Cl-(k)} =A{[n],[n—1,1],...;[n—
k,k|}, where the i is the index of the conjugacy classes for a fixed value of k. This is
because the symmetries under transpositions [n — (k+ 1),k + 1],...,[11..(n times)| are en-
capsulated in the existing set C;. An example of this is shown in Figure 2.20 for k =1,
where the [n —2,2] is shown to be an instance of the permutation [1](®3). For even n and
k > 7, the relevant conjugacy classes are Ci(k) ={[n],[n—1,1],...,[n— (n—k),n—k]}. Thus,
there are (n+ 1) basis vector-sets associated with the invariant subspace [n], (n — 1) for
[n—1,1], (n—3) for [n —2,2] and so on till 1 set for [5, 5], with there being 5 4+ 1 kinds
of subspaces that are relevant. As a result, N = 1(2 - 1)((n+ 1)+ 1) = L (n +2)%

124%
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For odd n, we have conjugacy classes Cl-(k) ={[nl,[n—1,1],...,[n—k,k]} for k < 25! and
" Q - [n'z(za)az(za}] i
® 0000 0 - 900000 . .0
o o
[n] ®3

- 00000 . O

Fig. 2.20 Tlustration of representation of permutation [z — 2,2] as an instance of the permuta-
tion [n](®3) for k = 1

Ci(k) ={[n],[n—1,1],...,[n— (n—k),n—k]} for k > “£1. We have (n+ 1) basis vector-sets
associated with the invariant subspace [n|, (n — 1) for [n— 1,1], (n —3) for [n —2,2] and so

on till 2 sets for [%, ”gl] with there being % + 1 kinds of subspaces that are relevant. As

NOWD — Lol 1) (n4-1)+2) = L(n+1)(n +3).

inv 2

a result,

In this manner, we use both numeric and analytic methods to study the quantum states
in a system operated upon by a combination of Power-of-SWAP operators. In the next
chapter, we will be looking at how this resource can be used, by studying the separability

and entanglement characteristics of these states.






Chapter 3

Separability and Quantum
Entanglement

“Quantum physics thus reveals a basic oneness of the universe.”
— Erwin Schrodinger

Correlations between properties of particles or elements exist in a lot of physical systems. Be
it spin correlations in quarks or orthographic correlations in astrophysics, these correlations
provide a basis for describing the collective state of two or more particles in nature. In the
quantum domain, we find a unique form of correlation that implies the existence of a state
of a composite system, comprising of constituent elements, which cannot be written as a
product of the states of individual subsystems. Originally called “Verschrdnkung" by Erwin
Schrodinger, this phenomenon is today known as “entanglement" and was first studied by
the trio of Einstein, Podolsky, and Rosen (EPR), and independently by Schrédinger. The

‘spooky’ feature of entanglement lies at the heart of quantum mechanics.

In this chapter, we will look into ways of characterizing this using two different approaches:

one, using separability and the other using entanglement witnesses.

3.1 Separability

The problem of knowing how entangled a certain quantum state is, is of utmost importance
before the entanglement within the quantum state can be used. This constitutes the entan-

glement characterization or quantum separability problem, which is of central importance
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in quantum information theory [225-229]. Different kinds of entanglement can be used
for different applications. Maximally entangled states can be used for applications such as
teleportation [230] and remote state preparation [231] while partially entangled states are
used for applications such as measurement-based quantum computation [162, 163, 165] and
separable states are usually used as ancilla qubits in various quantum computing protocols
[232, 233].

The separability problem for the bipartite case is well understood and an efficient computation
method to determine separability is the Schmidt/Singular Value decomposition[234-236].
An N qubit pure state,

2V 1
W)=Y anln) (3.1)
n=0

is said to be separable under a particular bipartition if it can be written in the form,

P = “PA> o |wB). (3.2)

If it cannot be written in this form then it is said to be entangled. The bipartitions of the
system can be written as the various separability classes: [s, N — s| denoting a general separa-
bility class formed of an s qubit sub-system and an N — s qubit sub-system. Generally, there
will be NCy = ﬁ ways to arrange N qubits into a sub-system of size s.

The case of multipartite separability is more involved and has been shown to be NP-hard
by Leonid Gurvits [237-239]. The exponential growth of the Hilbert Space causes the
separability classes in the multipartite case to be more complex in form and structure. Not
only do the number of separability classes for N qubits scale as the partition function for
N elements, the manner in which these partitions can be filled by different combinations
of elements (qubits) leads to there being a number of partitions for the same separability
class. For example, the separability class [21] for three-qubits, where the first two qubits are
entangled while the last qubit is separable, can have three cases: [21213], [21312] and [2231;].
In the first case, qubit 3 is the separable qubit while in the second and third cases, the qubits

2 and 1 are separable respectively.

An N qubit state is said to be fully separable if it can be written in the form,

N (0
W) = ] (e 10i) + 04" [1,)) (3.3)
®i=1
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where \/ |Oc(()i) >+ |a1(i) 2 = 1. The index (i) denotes the i’ qubit and it runs from 1 to N and
the direct product runs over all N qubits. If a state is not separable in any subsystem of qubits
then it is said to be entangled. Partially separable states are those in which there are two or
more subsystems formed of many qubits. Where N is greater than 2, the bipartite separability
described above is a particular instance of a partially separable state. A state is partially

separable if it can be written in the form,

(1) (1)

ap’,ay e lm;

((2) O] 2) (n) (n) (n)

®) = |y W |yl 2 i)y o g |yl ey (3

(@.a....al

where |y, ",ad) 4 )}

)> denotes the /" subsystem that has m; qubits: {(a;’,ay ,...,am)

which are entangled among themselves and there are n subsystems. There will be '

S1lsa 530
ways to arrange N qubits into the [sq,s7,s53,...] separability class. Due to symmetry, we

introduce an additional factor of % for every subsystem that is equal in size to another.

One of the most thorough methods to classify separability is the comparison method [240].
Each separability class has a standard form for the quantum states associated with it. Com-
paring a general state to this standard form is a good way to check if the state belongs to
the separability class. Let us take the example of four-qubits to illustrate this method. A
four-qubit state could be in one of five different separability classes: the [4] completely
entangled class, the [31] separability class, the [22] separability class, the [211] separability
class and [1111] completely separable class. The standard forms for these classes are as

follows:
[Wii111)) = (a1|0) 4+ b1[1))(a2[0) + b2[1)) (a3]0) + b3[1))(a4|0) + ba[1))

[Wp11)) = (01]00) + @2|01) + 03]10) + a4 [11))(az|0) + b3|1))(a4|0) + b4 (1))

[W22)) = (@1]00) + 2[01) + a3[10) + 04| 11)) (B1|00) + B2|01) + B3[10) + Ba|11))

W/[31]> = (01/000) + 2/001) + 3]010) + 0t4|011) + &5/100) + 0 |101)
+(X7|110> +OC8|111>) X (a4|0> +b4|1>)

Here any permutation of size 1 is expressed in terms of {a;,b;} for the i’ qubit, while for
higher dimensional cycles, the subsystems are expressed in terms of { oy} where k is the
decimal equivalent of Q in the qubit representation |Q) for which o is the multiplicative

constant in the superposition for that susbsystem.
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If we take a random quantum state, say the four-qubit W-state |y) = 3(|0001) + |0010) +
|0100) 4 |1000)), and compare it to these standard forms, we can ascertain the specific
separability class of the state. Since the W-state cannot be expressed in terms of any of the
aforementioned separability classes, the state is completely entangled.

3.1.1 The Thread and Bead Model

Geometric tools like the Bloch representation of vectors can help us study separability con-
ditions of quantum states. As part of my doctoral project, I have also looked into a certain
new model of depicting and studying the separability of quantum states: the thread-and-bead
model. In this model an arbitrary quantum system is represented in terms of threads and
beads. Each state in the superposition in the system is represented by a single thread. Every
qubit in these states has an associated bead: a ‘single’ bead for |0) and a ‘double’ bead for
|1). The important property in this representation is that if two or more beads have the same
nature (‘single’ or ‘double’), they join together only for that bead. This is an effective way to
see how separable a state is: the more it is connected in being ‘beaded together’, the more

separable they are.

The interesting part about this approach is that more entangled these threads are, more
separable are the corresponding states, and vice versa! Let us look at an illustration, in Figure

3.1. The primary problem with this approach that we found relates to the probability factors

[0) [1)

X ¥ ORI

(a) (b) |0) 1)
Fig. 3.1 Illustration of the Thread-and-Bead Model for two qubits: (a) separable state

ly) = %(!00) +110)) and (b) maximally entangled Bell-state |y) = %(|00> +]11))

associated with the beads. Entanglement depends significantly on these factors. A general
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two-qubit state o|0) + B|1) does not have the same entanglement as state o’'|0) + 8’|1) for
o # a',B # B’. To tackle this problem, we proposed a method of changing the girth of the
thread associated with a superposition term depending on the probability factor. This helps
in understanding not only the separability in quantum states, qualitatively, but also nuances

of how entangled a quantum state is.

3.1.2 A Classical Approach to Separability

Separability testing is an NP-hard problem, in general [238, 227]. The difficulty within the
problem can be seen if one attempts to solve the problem by a brute-force approach, for
a fixed dimension. We end up seeing that, even for low dimensions, the problem quickly
becomes intractable. Hence, more sophisticated methods are required for the same. As a
result, the separability problem is quite an important subject of current research in quantum

information theory.

There are two different classical methods we will be discussing in this section: the method
of optimal separable approximation as given by Leinaas et al [241] and a partition-based

classical algorithm that we have put forward.

Classical Separability Check using Optimal Separable Approximations

In their paper Leinaas et al [241] offer a numerical approach in an iterative manner, refining
an estimated separable state towards the target quantum state to be tested, and checking if the

target state can indeed be reached.

Let us assume that we have a test state p. Let p; be a separable state such as a pure product
state. We consider what is known as the direction from ps to p, denoted by 0 = p — ps. In
order to improve the estimate of the separable state p; we look for a pure product state p,

that maximizes the scalar product

s =Tr[(pp— ps)O] (3.5)

or equivalently, maximizes s’ = Tr(p,0).

If s > 0, then it is possible to find a closer separable state p! by mixing in the product
state p,. This search for closer separable states is continued by iteration, either until no
pure product state p,, can be found such that s > 0, which means that s is already the unique

separable state closest to p, or until some other criterion for convergence is satisfied.
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There are two mathematical sub-problems that have to be solved numerically in this al-
gorithm and approach. The first problem is to find the pure product state maximizing the
scalar product s’. The second problem is the quadratic programming problem, which lays out
a method to find the convex combination of a finite number of pure product states which is

closest to the given state p.

To approach the first sub-problem, we must note that a pure product state p, has matrix

elements of the form
(ijlpplkl) = Gix; 08 x/ (3.6)

where ¥ [¢i> = ¥ |2;[* = 1.
We would like to find complex coefficients ¢; and ); that maximize

s'=Tr(ppo) = Y, 6%} Gijsudii (3.7)
ikl

The iteration scheme given below is found to be an efficient numerical method. It may not

give a global maximum, but at least it gives a useful local maximum that may depend on a

randomly chosen starting point.

The method is based on the observation that the maximum value of the variable s’ is the

maximal eigenvalue u in the two linked eigenvalue problems
Y Auwde=poi. ) Bjxi = pux; (3.8)
k l

where
Aik =Y XiCijaXi:Bji =Y 0 ik O (3.9)
7l ik

As aresult, we may start with any arbitrary unit vector |x) =Y. x;|/)p € ##p and compute
the Hermitian matrix A. We compute the unit vector |@) =Y, xi|i)a € %, as an eigenvector
of A with maximal eigenvalue, and then we use it to compute the Hermitian matrix B. Next,
a new unit vector |x) is computed as an eigen-vector of B with maximal eigenvalue, and we

keep iterating the procedure.

This scheme produces a non-decreasing sequence of values for the function s” that must con-

verge to a certain maximum value. This is a local maximum at least, and there corresponds to
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it at least one product vector |¢) ® |x) and product density matrix p, = (|¢)(@|) ® (|x){(x|)-

If s > 0,the above construction of p,, implies that there exist separable states
p. = (1—2A)ps+Ap, (3.10)

with 0 < A < 1, closer to p than p; is. However, it turns out to be inefficient to search only
along the line segment from p; to p,, for a better approximation to p. It is more efficient
to append the new p,, to a list of product states p,; found in previous iterations, and then
minimize

F=Tr(p =Y Mppi)’ (3.11)
A

which is a quadratic function of coefficients A; > 0 with Y ; Ax = 1. This quadratic program-
ming problem is solved by adapting the conjugate gradient method. A given product matrix
Ppk is thrown away if and only if the corresponding coefficient 4; becomes zero when F is
minimized. In practice, this means that we may construct several product states altogether,
but only a limited number of those, typically less than 100 in the cases we have studied, are

included in the final approximation s.

3.1.3 Partitioning Algorithm

This classical approach to studying separability relies on partitioning states and checking for
separability in the various permutations for the separability class.

Algorithm:

1. For an n-qubit state, we start with the simplest separability class [n — 1, 1] and initialize
two registers of strings with [0~ 1) and |0) respectively.

2. We then select the first qubit as our ‘1” in [n — 1, 1] and the remaining quantum state
as ‘n—1°. We then store the first qubit of the first superposition state in the register and
its corresponding remaining subsystem in the second register. We do the same for all the
superposition states. If the entries for all the superposition states are the same in the second

register then we say that the state is separable in ‘[n — 1234, ,, 1]’

3. We then select the second qubit as our ‘1’ in [z — 1,1] and the remaining quantum
state as ‘n — 1°, and carry out the same step as the last. We continue taking all the qubits

individually for as ‘1’ in ‘[n — 1,1].
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4. We move to the next separability class [n —2,2] and carry out the entire process for
different permutations.

5. For multipartite separable states like ‘[ot, 0, ...04] for some positive integer k, we

will need k different registers for the same process as mentioned in the steps above.

The culmination of the realization of this algorithm would be the determination of the

exact separability class of the quantum state under consideration.

3.1.4 Quantum Correlations and Permutation Symmetries

Quantum entanglement has been closely linked to various kinds of symmetries in physics
[242-246]. Entangled many-body systems [247-249] are subject to symmetries that play a
major role in fields such as quantum information theory [250-255]. Symmetries can also help
in determining the nature of entanglement present in these systems [256, 257]. We find that
the connection between quantum non-locality and permutation symmetries, more specifically

local permutability, can be used to characterize the non-local correlations between qubits.

A separable quantum state can be represented as

W) =|y1) @ |y2) @ |y3) @ ... @ |y) (3.12)

for an n-partite separable state. Let us say that we have for each separable sub-system, a

general expansion

i) =Y o lvi) (3.13)
J

Now, if we define local permutation as a permutation operation on the i subsystem that
shifts its constitutent k; superposition terms by one place within the subsystem, keeping the
rest of the system unchanged. Let us denote such a local permutation operator by Uj;, and its
action as

1) @ [¥2) @ ... ® (07 [y1) + 0 |yi2) + ot o W) © - 0 )
U; i i i
D ) @ y2) @ . @ (0 [Wig) + o i)+t 0 [Wigom1)) @ @ | Y) - (B.14)

As can be seen this local permutation operator on the i qubit keeps the state invariant for a

separable state. We will look at two kinds of permutations in this section: firstly, when the
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permutation is confined to the subspace of the subsystem Hilbert space that is spanned by the
initial vectors within the subsystem of the state |y), and secondly, when the permutation is

not confined and can access any part of the subsystem Hilbert Space.

Let us see what happens if we take an entangled state, with the example of the maximally
entangled two-qubit Bell state |y) = %(|OO> +]11)) and operate Uy:

1 1
V2 V2

This clearly changes the state, taking it to another Bell state %UOI) +|10)). In this case,
the permutation is over the confined subspace {|0), |1)} but since this also spans the entire

(100) + [11)) 2 —(jo1) +|10)) (3.15)

one-qubit Hilbert Space, one can simply conclude that a local permutations changes the state
if the state is an entangled state in two-qubits. Is this still the case for higher number of qubits?
Let us take the case of the three qubit W-state

| |

V3 V3

If we perform a general permutation within the confined subspace, as defined above, the

(1001) +[010) +[100)) L2 ——(]000) +001) + |110)) (3.16)

permutation is confined to {00,01, 10}, and the remaining subsystems do not remain invariant
under such a transformation, in general, unless we have a trivial identity element, showing
the non-separability of the W-state. In the latter case, where the permutation can be over the
entire subspace Hilbert Space, this confinement is not present. In this section, we will look

more closely at both these cases.

Local Permutation within a Confined Subspace

If we have a bipartite separable pure state |x) = |¢) ® |w) with partitions € = {@, y}, the
aforementioned local permutation within a confined space can be realized using the operator:

k)

(&0 12) | 61y (8

Uss =10} 5 &5 e (3.17)
(&)

where el(k) represents the I’ vector-state in superposition within the ¥’ partition. In this

(k)

i

(k)

operator, the € is being permuted to the €, vector state. A point to note here is that there
is an inherent cyclicity in this operator for this to work: the last term in superposition is

permuted to the first, for a simple permutation operation that shifts all vector state by one to
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the right in the superposition. If a state is separable in a particular partition, it is found that
the operation of such an operator leaves the state invariant. We can generalize this idea to a

more efficient operator that considers all permutations at once:
k k
Uly, =10 Y Y le/) (e (3.18)
i

with the relative phases not being considered here, for convenience of representation.

It is found that formalism can be extended to the case of mixed states. An N-partite separa-
ble mixed state can be represented by the density matrix: p = |y ){(y1| ® |yo) (yr| ® ... ®
|wnv) (Wiv|. Operating with the operator Uy,

Urs, (1) (w1 @ [v2) (2| @ ... @ [yiv) (yiv )
= (lyvD) (w1l @ [w) (vl @ ... @ [yy) (wn])  (3.19)

where |y) is the vector state that |y;) is permuted into. For the bipartite case p = |y)(y|®
|@) (@], this operation gives us

Ursy (W) (W @10){(9|®) = [9) (W@ |y){9| (3.20)

which gives us the familiar partial transpose form. A point to note here is that, unlike in the
permutation of a pure state where the state was found to be invariant under this operation, the
partial transpose of a density matrix of a separable state is not equal to the density matrix
itself. However, they have certain common shared characteristic properties, such as the
determinant and eigenspectrum, which can be used for characterization of separability. Now,
let us look at two properties of matrices under partial transposition: their determinants and

eigenspectra.

Statement 3.1. A state is separable if and only if the partial transpose of its density matrix

has a non-negative determinant.

Proof. We know that a characteristic equation of a matrix A is given by

det(A— A1) = (—1Y" (A — A1) (A — Aa).e.(A — Ay) 3.21)
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where [ is the identity matrix of the same dimensions as A, A is a variable and {11, 43, ...,4, }

are the eigenvalues of the matrix A. Setting A = 0,
det(A) = 2,12,2)% (322)

Now, if we express p = |y)(y/| and find its eigenvalues, corresponding to the eigenvector

9),
(91pl9) = (#lw)(wlo) = [{#lw)|* > 0 (3.23)
Using equations (3.19) and (3.20),
det(p) >0 (3.24)
For a general Kronecker Product A ® B for n-dimensional A and m-dimensional B, where
ayr a4 ... QAip bll b]g blq
A= a daz ... dy and B — byy by ... bzq ’
Al Qm2 ... Amn bpr bpy ... bpg
antB apB ... a;,B
A®QB— anB apB ... ap,B
amB apB ... au,B
B 0 0O ... 0 alllq alzlq alnlq
. 0O B O 0 a21lq azzlq aznlq
0O 0 0 .. B amily amly ... amnly

=(I,®B)(A®1,) (3.25)

where I, is the identity matrix of dimension . Form=n,p=¢, AQB= ([,, @ B)(A®1,).

Now, considering the determinant of this Kronecker Product
det(A® B) = det (I, ® B)det(A®1,) = det(B)"det(B)™ (3.26)

If our density matrix is separable, it can be expressed as p = p; ® p, for an two-partite

system. Taking the partial transpose over any one subsystem, say, the second subsystem, and
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finding the determinant of the same using equation (3.23)

det(p1©(p2)") =det(p1)det((p2)" )" =det(p1)2det(p2)" = det(p1 @ p2) =det(p) >0
(3.27)

where d; represents the dimensions of the density matrix of the i subsystem, and we have
used the property that det(AT) = det(A) for any matrix A.H

Statement 3.2. A state is separable if and only if the partial transpose of its density matrix

has only non-negative eigenvalues.

Proof. Considering any general matrix A and using the characteristic polynomial of the
transpose of the matrix,

det(AT — A1) =det((A—AI)T) = det(A — AI) (3.28)

where the symmetric property of the identity matrix has been used, besides the property that
det(M") = det(M) for a general matrix M. Thus, the characteristic polynomials of both A
and AT are the same. As a result, the eigenvalues of A7 and A are the same.

Using this result for a density matrix p = p; ® p;, the partial transpose with respect to
the second subsystem: p; ® (p;)7 preserves the eigenspectrum of p. Since the eigenvalues of
p are non-negative, the eigenvalues of the partial transpose with respect to the i’ subsystem

p’i are also non-negative. l

This is actually the statement of the famous Partial Positive Transpose (PPT) condition
[152], which is a necessary and sufficient condition for separability. Thus, we have, starting
with the idea of permuting subsystem-states and partial transposition, independently reached
a set of conditions that corroborate with a necessary and sufficient condition in the PPT

criterion.

One of the key problems in contemporary quantum entanglement and separability char-
acterization is in the realization of conceptual tools and maps, such as the partial transpose,
in physical systems. Horodecki and Ekert [258] proposed the method known as structural
physical approximation (SPA) which provides a way in which non-physical operations that
can detect entanglement such as the partial transpose can be approximated systematically

by physical operations. Lim et al [259] presented a practical scheme to realize a physical
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approximation to the partial transpose.They did this using local measurements on individual

quantum systems and classical communication.

Given this way of realizing the partial transpose, we have developed an algorithm for
determining whether a state is entangled and thereafter which entanglement class it belongs
to. The physical realization of the non-unitary operator that we use in this method would
rely on local measurements and state preparation as well. This is something that we will not
discuss beyond the theoretical formulation of the concept, in this project. Before going on to

our algorithm, we will define an operator that will play a pivotal role in the algorithm:

Theorem 3.1. A multiqubit state |x), with M superposition states, has a bipartite
separability in the partitions €X) = {@, y} for the form |x) = |¢) @ |y) if after the op-

eration of the operator Uy, . (where £k ) represents the partition that has the separable

ek)

qubits)

el a
Urs,up = H®Z| (+k)1 | ’81'(4_)1><8i(k)’ (3.29)
) (g )

the state maps back onto itself. |8l.(k)) represents the i/ superposition state in the g

partition.

Proof. Let us take the composite quantum system:

x) =19)@ly) (3.30)
where "
=) ail¢) (3.31)
i=1
v) =X Bilv) (332)
j=1
Considering the operator U, for the subsystem |y):
(Vir1lx)
Uys I® i i (333)
W= Z/' Wil [y (Wil

An important point here is that there is a certain cyclicity in the indices. So, this

operator takes the n'” state to the first superposition vector-state.
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Thus, the action of this operator is given by

||
HM§

Y)Y B9 1w 22 Bilo) @ 1wy + X sl o i)

(3.34)
In effect, this gives back the same state as in equation (3.30).

If the coefficients (physically, the relative phases) for each of the superposition vector-states
are not considered, then the operator becomes a local permutation operator for the particular
subsystem v, with

U=1&®Py (3.35)

where Py is the permutation operator over partition Y given by a permutation matrix of

dimensions 2% x 2% where k is the number of qubits in y.

We find that the concept of superposition of operators gives us an efficient method to
realize all possible permutations all once. This is done with U =}, I ®Pfl, where P{V isa
distinct permutation operator. So, we can present this idea in a different way by defining a
new Vy;, operator such that,

k k
Vi, =10 LY le/) (€] (3.36)
LJ

Here we are not considering the relative phases but the relevant corrections can be added if the
phases are considered. Then the operation of V,;,, on |x) generates every cyclic permutation
at once. More correctly, Vi, generates multiple copies of every cyclic permutation since
there will still be cases where |y;) # |y;).

If a state |y) is considered as an m qubit state with its superposition states the various

|y;) states, then the operator Vs, may be considered to be an outer product of the form

Visy, = tro|2)(X| (3.37)

Determination of closure after these permutation operations could be achieved in a variety of
ways:

1. If we carry out M — 1 sequential permutation operations, we will have a newly
generated set of states: {|x]),|x5),---,|X};_1) }> where |x/) denotes the state after the
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i"" iteration. This can be compared to the original after each permutation operation. A

possible test is that if the inner product

(xilx) #0

for even one iteration, the state is not closed under that partition.

2. A speed-up may be possible by using certain quantum operations. Considering the

most general symmetric N-qubit state with 2V superposition states,

N) = = ((0) + 1)) (3.38)
We can then use the given state | ), without consideration of relative phases, to form
the state |x_) = |[N) — |x), which contains every N qubit superposition state not present
in |x). It is then reasonable to state to reason that if a new state is generated after a
permutation operation then | (¥ |x—)| # 0 and the state is not closed. If a state is closed
under a particular partition of the system then

| (X=[Visy %) =0 (3.39)

3. If two copies of the same state | ) are taken and the Quantum Roll-Slot Operator
Visy» which was jointly proposed with Mr. N.B. Devlin of Cavendish Laboratory, is
used on one copy, we have the states |x') = V;s,|x) and |x). A point to be noted here
is that the relative phases are not considered in this case. These states can now be
compared to see whether the new state is the same as the reference state. Quantum state
comparison relies on measurements based on projections and Positive-Operator Valued
Measures (POVMs). But before moving on to studying about these, a fundamental

theorem regarding state comparison must be mentioned [260-263]

Theorem 3.2. No quantum measurement can unambiguously confirm when two
quantum systems have been prepared in the same state when each system is
prepared in some unknown pure state. It is only possible to detect when the states

of the two systems are different, with a certain probability.

Proof. The most general kind of quantum measurement, with N possible out-
comes, is described by a set of positive operators 7, where k = 1,...,N and

Y« m = 1. These operators form a set of positive, operator-valued measures
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(POVMs), each of which corresponds to a particular measurement outcome.

Let the initial state of the system be represented by the density operator p,
then the probability of obtaining the result ‘k’ is

P(klp) =Tr(pm) (3.40)

A state-comparison measurement will have three possible outcomes and, thus,
three corresponding POVMs: 7, that corresponds to the states being the same,
7, that corresponds to the states being different and 77 that corresponds to the
outcome being inconclusive. The natural space for these operators is the Hilbert
Space of pairs of quantum particles. The requirements of the measurement

impose the following conditions:
(Wle(ymy)©y) =0 (3.41)

(Y@ (9|m|y)@|0) =0, (w]|¢) <1 (3.42)

for all physically realisable states |y), |¢) of the systems that are being consid-
ered. These conditions make sure that the measurements never give erroneous

results.

Now let us take the trace of the POVM 7, and express this in terms of an
orthonormal product basis {|x;) ® |x;)}:

Tr(m) =Y (ul @ (7 a) @ ) = Y 0l @ (ailmy i) © [x) (3.43)

i,j i

Now, let us take two other alternative orthonormal basis sets: {|y;)} and {|z)}
for the subsystem state spaces. The sets {|y;)} and {|z)} are taken to have no
common elements. Since hese are basis sets, we may write

i) = Y Uijlyj) = ) Vilaw) (3.44)
j k

where U;; and Vj; are unitary transformations. If we substitute these expressions

into equation (3.43), using the bases {|y;)} and {|z) } for the first and second
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subsystems respectively, we find

Tr(my) = Y, UjiValiValyy| @ (zw|myly;) @ lz) (3.45)
ijkj'k
Using the Cauchy-Schwarz Inequality for the square of the modulus of the

tensor-product terms in the sum above, we have

|31 @ (aw|myly)) @120 1> < (3| @ Gzw | myly ) @ |awe) (9] @ (al mylyj) @ |zi) = 0
(3.46)
Since the modulus-squares cannot be less than 0, all the terms in the sum in

equation (3.45) will be equal to zero.
Tr(my) =0 (3.47)
Since the only positive operator with zero trace is the zero operator,
7, =0 (3.48)

Thus, it is impossible to confirm unambiguously and with non-vanishing
probability that two quantum systems have been prepared in the same state,

without any knowledge of their initial states.

We are therefore led to consider a two-outcome measurement with corresponding
POVMs 7, and 7. With such measurements we would be able to determine if

the states of both quantum systems are different, at most.

Equation (3.41) implies that the support of the operator 7, is a subspace of the an-
(Hel)—1/)®l)
V2
Hilbert Space. Since for any bipartite tensor-product state, we have D(D —1)/2

tisymmetric subspace: , where 1 <i < j < D for a D-dimensional

antisymmetric states, we can represent the POVM 1, as

D(D-1)/2

To= Y, tultu)ty] (3.49)
u=1

for some states |¢) that form an orthonormal basis for the antisymmetric sub-
space, and some real, nonnegative coefficients 7, with 0 <7, < 1. The maximum
probability of any pair of different states giving rise to an ‘n’ (not same state)
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result is attained when all 7, = 1, which implies that the optimal POVM element
for detecting any differences between the states of the two quantum systems is

when 7, is the projector onto the perfectly antisymmetric subspace.

Now, since ) mx = 1 and Py + Psymm = 1, where Py and Py, are projectors

onto the antisymmetric and symmetric subspaces respectively, we have
m=1-my—7,=1—-m =1~ Pori = Psymm (3.50)

Thus, the POVM 7, that is responsible for inconclusive results is equal to the

projector onto the perfectly symmetric subspace, Pyypn.

This concludes the important point of optimizing the measurements so that
the probability of detecting a difference between two quantum states can attain

its maximum possible value. [

Thus, given the states |x') = V,5,|x) and [x), we can find out using POVMs whether
they are different. If so, then the state is not separable in the partition under considera-
tion.

These methods can be generalized to the multipartite case. Let us consider a particular
partition of an n-partite quantum state into an [¢], 0, 03, ..., 0t ] separability class. Then |))

can be written as

M L .
2= I1 v (3.51)

i=l®j=1
We can then define the set of n — 1 operators
UV’] :PII/] ®]IW2®]IW’5' (3.52)
Uy, = Ty, @ Py, @1y, (3.53)

and so on, where P, is the permutation operator on the partition o. If we apply this
sequentially in a total of (M — 1)"~! steps, we generate every permutation of the quantum

system required. Generalising the quantum permutation operator defined in equation (3.37)



3.1 Separability 133

to the case applicable to an n-partite system, we have

L

Visy = TICE X v wiD)

k=1
This operator permutes all subsystems over all possible states all at once. This is not as

useful as the operator permuting only one subsystem locally. For a specific subsystem, we
can define the operator

Ui = try,| ) (x|
=Y Y (wd w1 | tud [l (vl ) 355)
i J

we find that one operation is required to carry out all (M — 1)"~! permutation operations at
once. To test for the closure of a particular i/ partition for a given separability class, we
check if

(x'|Uilx) =0 (3.56)

If this is true, then the state is separable in the i partition.

Hybrid Permutation-Based Algorithm for Separability Analysis

Even with the speed-up possible with the elements and concepts presented in the last section,
the problem of the presence of a large number of possible partitions possible for each separa-
bility class remains. This can be further optimized and made quicker using a combination
of quantum and classical steps for a comprehensive hybrid algorithm for determining the

particular separability class and partition for a quantum state.
Step 1: Determining the possible separability classes given a superposition state

Beginning with J, the number of superposition states in the system, we can find

it’s prime factors, preferably using a quantum algorithm like Shor’s algorithm [9]
J:Jal.]a2.]a3... (357)

where Jq, is the number of superposition states for the partition ¢o;. If J is a prime
number, this factorisation would be either be the case for the completely entangled
state [N] or the state is [1, N — 1] separable. There will be instances where this step of

prime factorisation of J does not significantly reduce the number of separability classes
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within this method. This informs us about the kind of separability classes possible for
quantum qubit state. We can further reduce the possibilities of partitions that the state
can have. For a single qubit to be separable, the number of |1) for that qubit within the
superposition is found to be 0, J or %

Theorem 3.3. For a particular qubit |¢) in a quantum state to be separable, the
sum of the number of vector-states in superposition that have |¢) = |1) must be
0, J or %

Proof. Let us say we have o of the superposition states having |0) for the
qubit being considered while 3 of the superposition states have |1) for the the
qubit considered, with the total number of superposition states being J. Let us
gi) and
|¥,), where |¥1) and |¥,) are the subsystems of the state besides the separable

say that the quantum state is a tensor product of three sections: |¥y),

i qubit, with n; and n, qubits in them respectively. Let |¥1) and |¥,) be
superposition of J; and J, vector-states respectively. We need not discuss the
separability of these subsystems, though we know that n; +n, +1 = N, where N
is the total number of qubits.

We can represent the state as

W) = [¥1)(al0) + B[1))i[¥2),/|a]> + B> =1 (3.58)

There can be three cases now: {a #0,B #0}, {a =0, #0} and {a # 0,8 =
0}. In the first case, the total number of superposition terms are J = 2J;J, while
the number of terms with |¢) = |1) are J1J,. Thus in this case, the number of
terms with |g) = |1) is 3. In the second and third cases, the number of terms with
|g) = |1) are 0 and J respectively. Thus, we see that

Se {O,J,g} (3.59)

for the separable qubit []
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This is just a specific case of a more general pattern. if a qubit is part of a larger ny

qubit subsystem for the partition c, then the number of |1)’s for that i’ qubit is

NY = 270> x<Jq (3.60)
Ja

where J, are the number of superposition states in the partition . The qubit is trivially

separable if x = 0 or x = J. Since Jy, can only take values in the range 1 > J, < 2"e,

this limits the set of qubits which be part of a separable ny qubit subsystem. The

condition that we can have for this qubit to be part of separable ny qubit subsystem is

N =P (3.61)
Jao
Step 3: We shall now look at which of the separability classes and partitions a state
lies in. For this, we will define what we call the Trace-Space Coordinates:

11), Urs,, . |X) is closed
ol = § 11+ Urey 0 (3.62)
|0), U,Sa() |x) is not closed

where « refers to a particular separability class and (i) refers to the particular permu-
tation or instance of this. So, if the placeholder values for each qubit is given from
right-to-left, as per convention, we will assign the index i accordingly, depending on

the larger of the bipartitions.

For example, for the three qubit case and [21] separability, we take the 2" qubits
and assign i = 1 for [23,1],i=2to [12,3] and i = 3 to [13,2].

We then find all the coordinates this way and then assign relative phases to the coordi-
nates for the same separability class and add the states to form a sum L*. We then use
positive-operator valued measure (POVMs) with basis-states based on these relative

phases.

So, for instance, for the three qubit states, we have the separability classes [3], [21]
and [111]. However, the trace-method works only for bipartitions and thus we will
only have cases for [21] with i = 1 for [23,1], i =2to [12,3] and i = 3 to [13,2]. Let
us say we have the state |y) = \/LE(|010> +[100)), we have ng]) =0), ngl]) = 1)

and ng]) = |0). Thus, the relative-phase based construction would be of the form:
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721 — Q(l[zl]) + et ng) 1 g2if1 ng]) = [0) + i |1) +ezi.¢1‘0>' This can be deter-
mined using POVMs with basis vectors: |Vjy) = %(\m + ¢/k9«| 1) where ¢, denotes
the separability class specific phase factor.

This completely describes the separability class and partition that a particular state falls into.

Permutations across subspace Hilbert Space for Detection of Entanglement

Permutation of qubits within the Hilbert Space of subspaces and correlations in a quantum
state are found to have a connection that has been explored extensively in the past [251, 264,
265]. We find that permutations of qubits can characterize entanglement. In the previous
subsections, we looked at how permutations within a confined subspace can be helpful in
characterizing separability. In this subsection, we will analyse how permutations can act as

entanglement witnesses. For a general separable mixed quantum state
k k k k k k
p=Lodor) (01" 1210:°) (02" | . Loy oy (.63
k

We know that a general permutation can expressed as a product of transpositions or 2-
cycles 7; ;. For instance, a three element permutation (123) = (12)(13). Let us look at the
expectation value of such an operator on a mixed quantum state,

(T.j) = Tr(Tip) = Tr(Y pilo) (07| @ .. 101) (0 ©16) (0.0 1oy ) (0))
k
— ol (O 2 (0190 P (0E ) P> 0 (3.64)

Thus for a separable state, the expectation value of (7; ;) is positive or zero, and if (T; j) <0,
then the state is entangled. This idea can be extended to higher dimensions using the idea

that any permutation can be written as a transposition of elements (qubits). It then naturally

follows that
<Ti17j1> <Ti27j2> <Tis7js>
’<Ti1,j1>‘2 ‘(Ti27j2>’2 |<Ti57js>’2

where A relates to the A cycle being investigated, T;, ;, denotes the transposition operator for

n — A (3.65)

the I'" transposition between qubits i; and j;, and the system is entangled over the qubits
covered by this permutation A-cycle. While every state that satisfies this condition is non-

separable, not all entangled states satisfy this condition.

For instance, the W-state \%UOOI) +]010) + |100)) gives a value of 3. In fact, all the
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higher dimensional N-qubit W-states give a value of N for the measure in equation (3.65).
These states that are also known as Dicke states [266, 267] have perfect permutation sym-
metry, besides being maximally entangled. Thus, we see that though transpositions and
permutations can help us with characterizing entanglement in certain cases, in some cases,

they do not give us a good idea of the entanglement of a quantum state.

3.2 Quantum Principal Component Analysis and Filtering

In statistics, there is often a need to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables. This is best accomplished
by the procedure called Principal Component Analysis (PCA) that uses an orthogonal trans-
formation to convert a certain data-set into its so-called principal components. In their
seminal paper, Lloyd et al [268] extended this idea to the quantum domain with the Quantum
Principal Component Analysis. Usually, the properties of an unknown quantum state, given
multiple copies of the state, are revealed using measurements of different observables and
the subsequent analysis of the measurement results statistically. Thus, in state tomography
techniques, the state usually plays a passive role, as an entity to only be measured. However,
using Quantum Principal Component Analysis (QPCA), this analysis can be done with an

active role played by the unknown quantum state itself!

Given many copies of a quantum system represented by the density matrix p, it is now
known to be possible to perform the unitary transformation e~?’. This can be carried out
using yet another application of the SWAP operator, which will be explored further. In
this section, I extend this recently found conceptual tool of Quantum Principal Component
Analysis (qPCA) to a hitherto unexplored area: separability and entanglement, with the help
of Peres’ separability criterion for density matrices [152].

Suppose we have n copies of the density matrix p = |y)(y| for a quantum state. Let

us consider having another density matrix o = |¢)(¢| and the quantum SWAP operator S.

trp(e Y (p ® 6)e™Y) = trp((cos(SAt) — tsin(SAL) ) (p @ &) (cos(SAL) + 1sin(SAt)))
(54)? (54)° (54)* (54)°
2! 3! 2! 3!

=trp((1— t+...)—1(SAr+ +..)(p®o)(1— t+..)+1(SAr+

+..

)
(3.66)
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The partial trace operation is over the first variable. Since §* = I, this expression can be
written as
A)? A)? A)? A)?
trp(S%(1— %H...) —lS(AH—%—i—...)(p@G)((I - %t+...)+1S(Ar+%+...)))
=trp((cos(At) —1Ssin(At))(p @ 0)(cos(At) 4+ 1Ssin(At))) (3.67)

Simplifying this equation, we get

trp(cos*(At)p @ 6 + sin®(Ar)Sp @ 68 — tsin(At)cos(At)(Sp & 6 — p ® 6S))

=trp(cos’(Ar)p @0 +sin*(At)o @ p —tsin(At)cos(Ar) (|9) (W] [ w) (9] — [w) (#]@9) (w]))
= cos?(At) G + sin® (At)p — tsin(At)cos(Ar)[p, 0] = 6 —1At[p, 0] (3.68)

where an infinitesmal time period is taken and higher order terms are neglected in the last step.
Repeated application of (3.63-3.65) with n copies of p allows us to construct e ~P"A gelPPA
Thus, repeatedly performing infinitesimal swap operations on p @ ¢ allows us to construct
the unitary operator e’

One of the major applications of density matrix exponentiation is that is allows us to
find the eigenvectors and eigenvalues of an unknown density matrix. Such a quantum
phase algorithm uses conditional applications of e~*P! for varying times ¢ to implement:
\w)|0) — Y wilxi)|7i), where |x;) are the eigenvectors of p and |7) are the corresponding
eigenvalues. Now, if we were to consider the partial transposition of p and feed into this
system, a check on the eigenvalue bin is enough to see if the state is separable. Since a
necessary condition for separability is that the partial transposition of p has only non-negative
eigenvalues, |7;) will have positive entries only, for a separable state.

Separability Filter using qPCA

This methodology can also be used to devise a filter. Let us say that the two states fed
into the qPCA process constitute the same quantum state in a tensor product: T = p ® O,
then partially tracing out this matrix with respect to various partitions and qubits in the
system can either give rise to an exponentiation, in case of a separable state, or else not.
Whether the exponentiation is successful or not can be thereafter tested by trying to find the
eigen-spectrum of constituents of the state, as in the previous section. This gives us a filter

using infinitesmal operation of the swap operator for knowing if a state is separable or not.
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3.3 Quantum Entanglement

Separability and entanglement are two sides of the same coin. One is negation of the
other and vice versa. In this chapter, we have studied and devised tests and conceptual
tools for observing separability in states. In this section, we will investigate entanglement
characterization. As discussed previously, in the early part of the twentieth century, the world
of physics encountered a new (‘spooky’) form of correlations between particles, hitherto
unseen in the realm of classical physics: entanglement. Entanglement is a phenomenon that
occurs when systems of particles are generated or interact in such a way that the quantum
state of each particle cannot be described independently of the state of the others, even when
the particles are spatially separated by large distances! Measurements of physical properties
of the constituents of such systems are found to be correlated. It was only after the turn of
the millenium that it was found that entanglement happens to be a subset of a larger concept:
quantum discord [269-273]. Quantum discord is a measure of the non-classical correlations
between two subsystems of a quantum system. Interestingly, although separability implied
the absence of entanglement, it does not imply the absence of quantum correlations altogether,

as seen in the case of some mixed separable states [274].

3.3.1 SWAP!Y"asan Entanglement Witness

In our formalism of quantum computation, we have used the SWAP'/" gate for generation
of entanglement in physical systems. It is interesting to see that these operators can also be
used to characterize entanglement. In the previous section, we saw how transpositions and
permutations can be used for entanglement characterization. A partial swap or permutation
is also a good conceptual tool for characterizing quantum correlations. We investigate this

for the case of two qubits.

We define the entanglement witness

W =Tr(Uswapin| W) (W) (3.69)

This entanglement witness relies on the symmetry of the Power-of-SWAP operator to give us

distinct results for the cases of entangled and separable states.

To see the action of this entanglement witness, let us consider a basic two-qubit state

lw) = t|00) + B|01) + 7|10 + 8| 11) (3.70)
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with /|| +|B[2+|y|2 +|8|?> = 1. The action of the Power-of-SWAP operator leads to

1 . 1 .
Usiapin| W) = ]00) + B(5(1+¢™/M)]01) + (1~ ™/")][10))
1 . 1 .
+7(5(1 —™M)|01) + 5 +™M)10)) 4+ 8[11)  (3.71)
and the entanglement witness yields

o of* ay* ad*
Ba* BB* By* BG&*

W=T 3.72
"lcar cpr cy s (5-72)
oa* oOp* oy 60°
where
1 in/n 1 in/n
B:ﬁ§(1+e )+Y§(1—e ) (3.73)
CzV%(1+e"”/”)+ﬁ%(1+ei”/") (3.74)
Evaluating the trace in equation (3.69) gives
1 ] * 1 in/n
W=\a\2+(!ﬁ\2+\712)(5(1+e’”/”)+(ﬁ7’*+7ﬁ )E(l—e”/ )+ 181
i} 1 — ¢i%/n
= 1= (1-|af = |5]* ~ 2Re(BY")(——)
5 5 1_ei7r/n
<1-(1-laf? = |8 —20BlIy)(——) (.75

using the triangular inequalities for complex numbers. We see that for this entanglement
witness, the value for the completely separable and maximally entangled states are exactly

the same. Thus, this cannot be used as the entanglement witness.

We next look at a more complex structure of the entanglement witness: Ugy, s pi/n (Ox ®
by2)U swapl/m - Taking the expectation value shows us that this entanglement witness van-
ishes for both separable as well as maximally entangled states. Thus, this cannot be used as

an entanglement witness either.

The problem in both cases is that the structure of the Power-of-SWAP gates is not symmetric
for the presence of maximally entangled states comprising of |00)/|11) and |01)/|10). This
problem can be solved by adding a term to the Power-of-SWAP. Looking at this problem
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theoretically and searching for an appropriate addition, we came across the choice of the

following operator:
W = Tr((Ugyapi/n — (0 ® 60)) W) (W) (3.76)

A point to note here is that there could be variants of this operator that can be considered.

Let us see what it gives for a standard two-qubit state of the form mentioned in equation
(3.59).

eim/n
W= (aa —50°) + () (BB —15")
1+eiﬂ/n * * * *
(—5—)BY +7v ) +(-ad" +867)
eim/n
=(!a|2+|6!2—2Re<a*6))+(1+T)(!ﬁ|2+IY\Z—ZRe(B*m
eim/n
S(|0€|2+!5|2—2|0‘||5|)+(1+T)(\B!2+|7|2—2|5\|YD (3.77)

For the various conditions and cases, we have state-dependent values and hence this is an
instance of device-dependent entanglement witness using the SWAP'/"_ For the maximally

entangled states we have

V) = 5(00) 1)) = W < (| [81)* < 1 (3.78)
eif/n eim/n
0) = J5(00)£[10) =W < (FE)(BI- 1P < (F5—)  6)

using the point that the maximum value of (|a|—|8|)?> = (|| — |7|)? = 1, which can be
determined by defining a function in terms of the normalization condition for these variables

in these cases.

For the completely separable states, we have

ly) = |00) > W =1 (3.80)
ly)=|11) > W =1 (3.81)
14 ¢®/n

W) =01) = W = ( ) (3.82)

2
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¥) =[10) > W = (——) (3.83)
For any other general case, we find intermediate conditions for the entanglement witness
proposed here. It is pertinent to point out that for separable states that are not one of the cases
mentioned in (3.80)-(3.83), we have W > 0.

For the case of ¢/"/" =

—1, which is the case when the operator is just the SWAP oper-
ator, we get the results mentioned by Wang et al [275]. Looking at the steps, cases and

derivation done above, we can posit a theorem

Theorem 3.4. If the expectation value of (Ugypi/n — (0x ® O), given by

W= Tr((USWAP]/" - (Gx® GX))|II/><II/|) (384)

on all separable states is larger than or equal to zero, then the inequality
W <0 (3.85)

gives us a sufficient condition for quantum states to be entangled.

This operator can be constructed using the exchange interaction, along with the opera-
tion of local single qubit rotation (oy) on both qubits simultaneously. This formalism can
be extended to the case of multiqubit states but this would require sequential testing of an
ensemble of copies of the quantum state with the aforementioned operator on various pairs
of qubits. This is a tedious process for multiple qubits (which has been done for the case of
three and four qubits), particularly in the case of the vector states that we have found for
higher dimensional states. As a result, for further characterization of the entanglement in

these states, we use established conceptual tools in the next couple of sections in this chapter.

3.3.2 Characterization of Multipartite Entanglement

Multipartite entanglement has been a subject of quite some interest, due to its application in
evaluating how good a quantum resource-state is for various quantum information processing
tasks. Multipartite entanglement has been studied over the years using a number of conceptual
tools: witness operators [276], negativity [277], geometric measures [226], multipartite
concurrences [278, 279] and entanglement entropy [249]. In this section, we study and

apply certain geometrical and algebraic measures of entanglement on our states. We also
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evaluate a function-oriented characterization of entanglement that directly informs us of the

appropriateness of a quantum state for a quantum information processing task.

Geometrical Measure of Entanglement

The geometric measure of entanglement is an effective means of quantifying entanglement
in multipartite states. For a system |y) comprising of N subsystems, the full corresponding
Hilbert Space H is given by H; ® H, ® ... ® Hly, and the geometric measure of entanglement
is given by

G = min||(|y) —¢))l] (3.86)

where |¢) denotes the set of all possible separable states in this Hilbert Space. For the
purposes of the project, we have looked into various kinds of norms for this definition.
One important kind of norm that we used for this analysis is the Hilbert-Schmidt norm:
||A|| = Tr(ATA). For our states, we have found the geometric measure of entanglement. The
measures for the three- qubit vector-states are given below, while those for higher dimensions

are given in the appendix.

Vector State G Nearest Separable State
vy ] 0605811 —|010)
Wy 10765367 1001)
vy | 0605811 —[101)
vy | 0765367 1110)
vl 0 000)
Wy 10919402 | |001)/]010)/]100)
Wy 10919402 | |011)/|110)/[101)
) 0 111)

Table 3.1 Geometric Measure of Entanglement and Nearest Separable States of the three-qubit
Vector States of the Symmetric Group S3

As is expected, the maximally entangled states have larger distances from their nearest
completely separable neighbours, while the separable states, understandably, have vanishing
distance.

Wei et al [226] gave another measure relating to the geometric characterization of entan-
glement. Even though the concept of distance has a clear geometric meaning, it is useful

to define a characterizing variable that is an entanglement monotone (a quantity that never
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increases on average under Local (quantum) Operations and Classical Communication
(LOCC)). The quantity

E =1—supjs)(v|9)* (3.87)

If we look at the geometric measure G defined above,

G=1/l(lw)—#)]> =v2-2(y|¢) = \/2(1 - \/1 —(1=(y]9)%)) (3.88)

This gives us

G=120-1=(1-E)) (3.89)

However, our interest has been in seeing how these states can be used for various applications
in quantum information processing. As a result, we defined a utilitarian extension to this

definition
E =1 —sup|gyex(®|L|w)? (3.90)

where the set K, instead of being the set of all separable states, is the set of all resource
states for specific quantum information tasks. The operator LL represents a LOCC that can
be operated on our resource state, if needed, to bring them as close to the resource states
as possible. This extension was proposed by us since there might be situations where a
certain quantum state is required in a particular quantum information task but it may be
difficult to establish this state between distant parties. Instead, states generated naturally in
our system could be more easily established with little cost. For such cases, the lessening of
this "deficiency’ in the resource, as given by E, can be used as a measure of the replaceability
of the required state by one of our vector states. Let us look at this idea for some popular
quantum information processing tasks, taking the case of four-qubit vector states.

Distance E of our Resource States for Quantum Teleportation, Superdense Coding and

Quantum Information Splitting:

For three-qubit states, we have the GHZ-like states mentioned by Prakash et al [280] as the
resources used for teleporting arbitrary quantum states. If we take as that our reference set,
we see that the value of E is 0.25, with the vector state from our states being the maximally
entangled W-states. This is understandable since the greater the entanglement in a state,
the greater is the teleportation potential of the state. For a higher number of qubits, the
higher the value of G, the higher will be the teleportation potential and therefore lower the
value of E, as has been checked for quantum states with higher numbers of qubits as well,

by us. An interesting point here is that addition of our basis vector-states can reduce this
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distance further. In the case of three-qubits, taking a state of the form |y) = %|l[/5> + @ ly7)
or |y) = 5|yg) + \/7§]V/6) gives us the value E; = 0.

This same understanding applies to applications like superdense coding and quantum in-
formation splitting (with associated Ey. and Es) respectively) as well, where maximally
entangled states are preferred. Thus we can generalize, using equation (3.74), and say

G2

2
) (3.91)

EI :Esc = Lyqgis = (1 -
This can be understood as the greater the distance of a resource state from the nearest sepa-

rable neighbour, the smaller is its potential to be a resource for teleportation or superdense

coding.

However, since SWAP'/" preserves the number of |0)s and |1)s in a state, this segrega-
tion is not optimal, and rather a superposition of a number of vector states would be more

useful, as mentioned above. Thus we would like to extend our definition here to
E =1 supjgyex ypyer (9] (L Lili))]® (3.92)

where the set K is the set of all resource states optimal for a quantum information task while
F is the set of all vector states that we have found. The LOCC L; operates on state |y);.

Thus this becomes an optimization problem given a set of resource-states.
Distance E of our Resource States for Cluster State Quantum Computation:

For cluster state quantum computation, the resources needed are partially entangled quantum
states. This case is more interesting since the state can neither be completely separable
nor maximally entangled. Our four-qubit vector state |y1) has distance E = 0 from stan-
dard resource state: |y) = —1(]0000) +|0011) +[1100) — |1111)) when operated upon by
[ ® 0y ® I ® oy, where o, is the Pauli X matrix. Interestingly this state has distance £ = 1
for quantum teleportation, quantum information splitting and superdense coding. Thus, the
point to note here is that because the resource-states for different applications have different

entanglement requirements, the £ of the same state for different applications are also different.

In this way, we define a functional, utilitarian definition of entanglement witness.
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Algebraic Methods for Entanglement Characterization

Two of the prominent entanglement measures that have been used widely have been the
tangle and concurrence, which have a connection with the idea of the hyperdeterminant of

the quantum state.

The ’residual entanglement’ or "tangle’ of an N-qubit state is defined as

T(W) = 2| Zaal 0.0, 4B, B>...B,. 4111 145, 5,...5,

X €y B1€arfBr €y 1 Br 1718161282 €y 18,1 €01 EB,S, | (3.93)

where the a terms are the coefficients in the standard basis |y) = Y;, ;.\ @ijiy...iy|i102...iN)

and £1p = —&y = 1 and g = &1 =0.
This measure is defined so that

0<1(y) <1
7(y) = 0 for separable states.

N O R S

. 7(y) = 1 for maximally entangled states.
. () is invariant under qubit permutations and local unitary operations.

Tangle of Three-Qubit States

The tangle for three-qubit states is defined as:

) ) ) )
T(¥) = 4|ag1a100 + ap10a101 + 0014110 T A000d111 — 2@001401141104100
+4apo1a010a111a100 — 2a000401141114100 — 24010401141014100 — 2A001401041014110

+4aoooaoi1ai01a110 — 2ap00do10a101a111 — 2a000a001a110a111|  (3.94)

We find the tangle for our three-qubit vector states. This itself shows the problem with the
tangle. For maximally entangled, separable as well as partially entangled states, the tangle
value vanishes. It is not as good a witness, based on the conditions associated with it for

different kinds of entanglement.

This can be refined and corrected by studying the manner in which the various kinds of states

contribute to the tangle. We create a functionally useful witness that we call the *engle’.
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Vector State

S| OO |IC|C|OC|O A

3
w) o
Table 3.2 Tangle of the three-qubit Vector States of the Symmetric Group S3

Before moving to the definition of the witness, we would like to prove a result:

Statement 3.3: The maximum value of f(x1,x2,x3,...,X5) = X]X2X3X4...Xy is obtained when

X] =Xp =X3= ... = XN.
Proof. We have the function
S (X1,X0,X3, ..., XN ) = X1X0X3X4... XN (3.95)
and the normalization condition x% +x% +... —|-x12V =1
Let us use the concept of constrained maximization and define
g(X1,X2, .0 XN) = X1X2X3X4.. X8 — A(XF+2X5+ ...+ x5 — 1) (3.96)

For the maxima of this equation, we have

og Og og
— =——=..=—=—==0 3.97
6)61 6)62 5xN ( )
This gives us the conditions:
X2X3X4... XN = 2/1)61 (3.98)
X1X3X4.. XN = 2AXx (3.99)

X1X2X3X4... XN—1 = 2AxN (3.100)
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Solving these equations we obtain the condition
X]=X)=X3=..=XN (3.101)
for the maxima of the function. B

Using this concept, we know that the product of coefficients of quantum states would
be maximum when they are equal, which corresponds to the maximally entangled case.

Keeping this in mind, we define a modification of the "tangle’ for the three-qubit states as

S(w) = |2ap0a111 — 3V3agoraoioaioo  —  3V3apriaioiario (3.102)

A point to note here is that this entanglement witness is best suited for systems where states
with different Hamming weight do not mix, as in the case of the physical system that we are
studying.

For our three-qubit vector states, we find

Vector State

o~ lole Sl 5l

Table 3.3 Modified Tangle of the three-qubit Vector States of the Symmetric Group S3

We define the this modification for the four qubits as

$(w) = |2apo00ai111 — 16apoo1@oo10a0100a1000 — 16ao111a1011a1101a1110

—216]ago11a0101a0110a1001a1010a1100|  (3.103)

For our four-qubit vector states,

The problem with this modification is that the terms need all the quantum states with
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Vector State

O PI=| = | OO I—|Ue

O | O =

S S

—

= /—\s =
W WA WL W W= WO W)

el el Ll k=R k=N S

< SIS

) 0
Table 3.4 Modified Tangle of the four-qubit Vector States of the Symmetric Group Sy

the same Hamming weight to be present, for giving a value of this witness. However,
we know that there can be entangled states with lesser than that number, such as |y) =
\%(|0011> +1]0110) +[1001)).

To overcome this problem and define an entanglement witness that provides information
about entanglement for states with the same Hamming weight, we define a new entanglement

witness called "engle’ as

1
¢(r) = W(H(l - |ai|2))f(H(Z|T|S>1,\S)j —Tis,s,),1)  (3.104)
(1- an) " S
where n represents the number of |1) qubits and
Tisy, 1s); = Lif|S); — |5); = |0) or 0 otherwise. (3.105)

The function f : f(x) = 1Vx # 0; f(x) = 0,x = 0. |S); is a subsystem of the i’ superposition

term in a state, with their being N superposition terms, while |S,); denotes the remainder
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subsystem of the quantum state.

In this quantity, there are two parts of the witness: [];(1— %) and f(ITs(X; |Tisy,,15); = Tis,.0s,,1))-
The former tells us about the amount of entanglement, using the symmetry considerations

and Statement 3.1, while the latter removes cases that are separable.

Let us test this for our five qubit vector-states, as tabulated in Table 3.5. Looking at the table,
we can see that this newly defined measure is a good tool to not only study the separability but
also the entanglement using symmetry considerations. The natural extension to this concept
would deal with the situation when states with different Hamming weight are evaluated, and

this comprises the Further Work based on this project.
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Table 3.5 Engle of the four-qubit Vector States of the Symmetric Group S5

Vector State 4
) 0.857299
) | 0.888698
i) 0
) 0
v 0
73 0.857299
W) | 0.888698
i) 0
we) 0
i) 0
) 0.497137
) 0
v 0
i) 0
) 0.989633
vy | 0975028
w2y ] 00957635
i) 0
) 0.497137
vi) 0
vi)) 0
) 0
wiY) 0.989633
W) | 0975028
wY) 0.957635
i) 0
v 0
sg) 1
v35) !
vs) !
sy !
) 0







Chapter 4

Quantum Computation using SWAP'/"
Gates

Quantum Computation is the manipulation of quantum resources and quantum entangle-
ment therein for the purposes of realizing an information processing task. Historically, the
circuit-based model of quantum computation and measurement-based model of quantum
computation have been the most popular. These arise from the key concepts of evolution and

measurement of a quantum particle or system.

The SWAP'/" gate is a powerful tool for carrying out quantum computation, due to its
ubiquity in physical systems such as those with exchange interactions. We have seen that
the locus of states accessible using these gates is restricted to a certain subspace of the
Hilbert space. As a result, it is understood that not all states are accessible by only using the
SWAP'/" gate.

In this chapter, we will be looking at how to realize quantum computation using the SWAP/"

as the key cornerstone of this discussion.

4.1 Circuit-based Quantum Computers using SWAP'/" Gates

In the realm of quantum information, a quantum circuit model of quantum computation
is one wherein a computation is a sequence of quantum gates. These quantum gates are
reversible transformations on a quantum register, a system comprising multiple qubits. The
key paradigm shift, going from classical computation to quantum computation is the presence

of reversible (quantum) logic gates. These logic gates, in contrast to classical logic gates,
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are always reversible due to them being a form of reversible function known as a unitary
mapping. These mappings preserve the Hermitian inner product and a general n-qubit
(reversible) quantum gate is a unitary mapping U from the Hilbert space of n-qubits onto
itself. The pertinent point to be addressed here is regarding the number of quantum gates and

resources required that can optimally approximate any quantum computation.

4.1.1 Universal Gate Set with SWAP!/"

A set of universal quantum gates is a set of quantum gates that can, in a finite sequence
of gates from this set, replicate any arbitrary unitary operation that may be possible on
a quantum computer [70, 281-283, 69]. For physical systems with exchange interaction,
universal quantum gates have been constructed with encoded qubits [25, 284], while the
Loss-Divincenzo Quantum Computer relies on the v/ SWAP and single-qubit gates [115].
As part of this project, we see that this can be extended to the case of any general Power-
of-SWAP SWAP!/". Before doing this, let us look at some of the existing sets of universal

quantum gates:

. _ 1
1. Hadamard Gate: H = 7

E:
4

1 1
( ) 1), the Phase-Shift gate for angle 7: R

comprise a universal

1 0 —i
, Oy = | | : and
0 i 0

1 0
(O Jin/ 4> and the CNOT gate: Ucyor =

S O O =
o O = O
o = O O

quantum gate set. Single qubit rotation gates:

A
Il
S = O O/ N = O O O
—_ O

1 00
1 0 010 .
o, = and CNOT gate: Ucyor = , can also be used to imple-
0 -1 0 00
0 01
ment an arbitrary unitary operation on n qubits and therefore constitute a universal gate
set[285].
1 0 0 —ie
) 0 1 —i O .
2. The Ising Gate: Uyx, = 0 _— 0 and the Phase-Shift gate:
—i

—ie7® 0 0 1



4.1 Circuit-based Quantum Computers using SWAPY/" Gates 155

1 0
R: = (0 is) constitute a universal gate set [286].
e

DiVincenzo and Loss [115] showed that the v/SWAP gate is universal with single-qubit
rotations. This universality is derived in terms of the relation of the v/SWAP gate with the
classical XOR gate, which can be realized using the CNOT gate in the realm of quantum
information processing [287]. This leads us to believe that a generalized case (of any general

Power-of-SWAP can comprise a universal gate set too).

The first step in defining a universal gate set using SWAP® is to realize that no such set can be
made purely out of SWAP? gates since these gates preserve Hamming weight of the quantum
state representation. If we allow single qubit unitary operations, let us see the lowest number
of SWAPY that are required to carry this out. Given this symmetry of the SWAP?* gates, the
cases we look into are: A1|00) + By |11) — A3]00) + B, |11), A1 > +|B1|? = |A2|>+ B> = 1
and C1|01) + D;[10) — CG,|01) 4+ D5|10),|Cy|> + |D1|*> = |C2|* + |D2|* = 1. However, how
is this possible if the SWAP* gate leaves the states |00) and |11) unchanged? This can be
done by using a qubit-flip gate on one of the qubits:

0 1761'77“2 l+ei”a2
‘ 2 2 ,
liemal 0 O 1+ema1
Uy = Uswaper (0x @ hx2)Uswapoa = 1+§m1 0 0 ey (4.1)
2 s s 2
in _ im0
0 14-e %) 1 e2 2 O

The SWAP? also has a fixed accessibility of states, as mentioned previously in this paper.
Since the sum of the coefficients for vectors with the same Hamming weight add to the same
value over an operation of SWAPY gates, states that do not follow this rule cannot be accessed.
To begin with, two Bell-states differing by a relative phase of /" cannot be inter-converted
using SWAP? gates. This can, however, be achieved using a phase-flip operator on a single

qubit, say the second qubit.

_1_|_eimx2 1+eimx2 O
. 2 2 ‘
liemal 0 0 7176171(21
_ _ 2 2
U, =U; (12><2 (024 GZ) = | 1 em 0 0 | eim 4.2)

iToy 1 —ei®

2
11—
0 5 5 0
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Even though this brings in the extreme case of |y4.) = |Wy,) and |@+) — |9y, there are
lots of other states that should be accessible using a general two qubit unitary gate. This
greater independence is seen to come from the application of yet another SWAPY gate:

eI _ im0 eiT0 | pino3
Q " 2 2 OA a
1—e'% 0 O —1—€"*1
— _ 2 2
Us = D2Uswapes = | | giny 0 0 ey (4.3)
2 iToy iTo IO i7To 2
7817I 73’ 3 7@”"’ 2+€l 3
0 5 5 0

This along with local unitary operations {Kj;,L;}, where the index i denotes the qubit being
operated on, should be able to implement any general two-qubit quantum gate. Hence, in the

most general form, any two qubit quantum gate can be realized by the expansion

(K1 ® K2) (Uswapn (0x @ Dy2)Uswape (Ix2 @ 07) X Ugyapes ) (L1 @ L) 4.4)

Any circuit with two-qubit and single-qubit gates can thus be constructed using the SWAP%
gate, alongwith single-qubit unitary operations. This can be presented as a Theorem.

Theorem 4.1. Any unitary operation U € SU(4) acting on two qubits can be realized
using only three SWAP'/ gates, along with single-qubit unitary gates.

Proof. Kraus et al [288] showed that an arbitrary unitary transformation U € SU(4) can be
decomposed into
U= (Ks@Kp)e? (Ly ®Lg) (4.5)

where
d=—i(Y hor®op),k=1.2,3 (4.6)
k

01 0 —i 1 0
0] =0y = ,0) = Oy = ,03 =0, = 4.7
! <1 0> 2 = Oy <i 0) 3=0; (O _1> 4.7)

with % > hy > hy > h3 > 0 since it is seen that the maximal amount of entanglement created

and

by e is symmetric around %, and %-periodic in hy, h, and hs.
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Considering the matrix form of d’ (= id) using equations (4.5), (4.6) and (4.7),

h3 0 0 hy —hy
J — 0 —h3 hi+hy 0
0 hy+hy —hj 0
hl —h2 0 0 h3
hy 0 0 hi—h 0 0 0 0
B 0 00 0 N 0 —hy h+h O
0 00 0 0 hi+hy —h3 O
hi—hy 0 O h3 0 0 0 0

= (h3+h1 = ha) [y ) (Wi | + (hs — hi + ha) |[w—) (y—|
+ (=h3 +h1 +h2) |94 ) (9| + (—h3 — h1 — h2) |9 ) (9|
= Ay, (W) (W |+ Ay (W) (W[ + A0, [94) (04| + A [9-) (9| (4.8)

where |y1) = %(|00> +|11)) and |¢4) = \/Li(|01>j:|10>). By the property of exponentiation

of matrices, we have

= e = Ty (e e 01 (9] e 10.) (0| 49)

A point to note here is the effect of SWAP'/" on the Bell basis:

Uswapi/n|W4) = (W) (4.10)
Ugwapin| V=) =v-) 4.11)
Ugwapi/n|9+) = 9+) (4.12)
Ugapi/n|0—) = ™" |¢_) (4.13)

and the effect of single-qubit rotations:

(0x @) |Wy) = [94), (0x @ 22)[91) = Y1) (4.14)
(0x®@Ipx2)|y-) = —[¢-), (0x @ Lax2)|9-) = —|y) (4.15)
(Lx2®@0x)|yy) =[04), (I2x2 ® 0x) |04 ) = | W) (4.16)
(x2®@ox)|y-) =[¢9-), (bx2® 0x)|9-) = |y_) (4.17)
(o; @) |yy) = |y-), (0 @ ax2) W) = ) (4.18)
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(0:@12x2)04) = |9-),(0: R 2x2)|0-) = |94) (4.19)
(lx2®@oy)|yy) = |y-),(hx2®@0;)|w-) = |yy) (4.20)
(x2®0)[9+) = —19-), (l2x2® 0;)[9-) = —[d) (4.21)

Thus, due to equations (4.10)-(4.21), application of distinct SWAP'/" along with single-qubit
rotations can give independent phases for each of the Bell-basis states. We can now write

equation (4.22) as

L T T P e P A e N R )
= e T () (04 4+ ) g ) (0|
+ 0 )y | 2Oy ) (y ) 422)

We can write the matrix form for convenience,

QRillha—hs) | 2l —hs) 0 0 20l —hs) _ 2i(h—h3)
4 —ilha—hi—hy) 0 14+ eZi(hH—hz) 1— eZi(hH—hz) 0
¢ = 0 | QRill+h) | 4 Q2ilh+h) 0
eZi(hz—hg,) _ eZi(hl—hg,) 0 0 eZi(hz—hg,) +62i(h1—h3)
0 0 0 0
ity | O 1 p2ilhi+hy) 1 _ p2i(hi+ha)
—¢ 0 1—e2illith) 14 p2illn+h)
0 0 0 0
e2illa=h3) | p2ilm=h3)  ( @2ilha=h3) _ p2i(h1—h3)
+e i) 0 09 0 (4.23)
0 00 0
QRilln—hs) _ 2i(hi—h3) () () G2lha—h3) | 2i(n—h)

Observing these matrices, and noting some properties of tensor product of Pauli-matrices
that we studied and that are relevant for this section:

A B ¢ D F E H G
E F G B A D C
I ® oy I® o) — 4.24
( ) I J K L ( ) N M P O ( )
M N O P J I L K
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A B C D -F E —-H G
E F G H B —-A D -C
I ® 0,0 I®o,0,) — 4.25
twoe) | 0 |Ueaa) | T (4.25)
M N O P J -1 L —-K

leads us to a SWAP!/"-matrix based form,

ed = e—i(h3—hl—hz)(S{/VAIﬂ(hl-i-hz)/fr +(® GX)SWAPZ(hz—hs)/F(]@) oy)
— (I® 6,06.)SWAP* " =)/% (1 6.6.)) (4.26)

However, this is not suitable for construction in a circuit model, which is usually used to
sequential application of gates and therefore a multiplication instead of addition of unitary
operators. By observing the matrix form in equation (4.23) we can see that there is a manner

of constructing a decomposition of ¢? in terms of a product of operators:

el = e ih=hi=ho) (qAp2M+h)/T s (1@ 6,)SWAP?M=1)/%(1 9 6,)
x (1® 0,0.)SWAP?~13)/% (1 ¢ 5,6.))
= ¢ i=m=h) (qAp2m+h)/T (] 6, )SWAP? M —T3)/%
x (1® 6. )SWAP* " ~m)/% (19 6.6,)) (4.27)

since (I ® 0y) X (I ® 0,0;) = (I ® 0;). We further simplified this by observing the property
that (0, ® 0,)SWAP'/" (6, ® 6,) for any Power-of-SWAP,

ed — e*i(h_g*h]*hz) (SWAP2(/1]+/12)/727 X <I® GX)SWApz(hlfh_g)/ﬂ'
x (1® 6,)(0,® 6,)SWAP?"2"1)/7 (6% 6.) (I © 0,0;))
— e*i(hrhrhz)(SWAPZ(h1+h2)/7T x (I® GX)SWAPz(hlfh»*)/ﬂ
x (0. @ ) SWAP* " ~)/% (5 % 6,)) (4.28)

This, along with local unitary operations Ki,K>,L1,L, in equation (4.5), can reconstruct
any two qubit unitary operation. This proves that SWAP!/" with single qubit unitary gates
constitutes a universal gate set. l
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4.2 Invariant Subspace-based Quantum Computers using
SWAP!/"

Quantum computers are able to solve certain problems more efficiently than possible con-
ventional classical computer [137, 289, 69, 290, 285, 291]. Quantum algorithms have been
realized on multiple quantum computing platforms, many of which are specifically cus-

tomised in hardware to implement a particular algorithm or execute a computational task.

The three most important sections of a quantum computer are: high-fidelity initialization of
the input quantum state, detection by measurement of the output quantum state at the indi-
vidual qubit level and control of operations by interactions between qubits. In the previous
section, we have defined universality of a set of quantum gates comprising the SWAP'/" and
quantum single-qubit rotation gates. This is sufficient for universal quantum computation.
Later in the chapter, we will be discussing qudit-based quantum computing and cluster state
quantum computing using SWAP'/" gates. In this section, we present our findings of a model
of quantum computing that uses encoded quantum states as resource and that belong to the

invariant subspaces of the symmetric group.

Divincenzo et al [25] defined an encoded quantum computation model based on encod-
ing three physical qubits in one logical qubit. For the case of qubits operated upon by the
exchange interaction, we can have a different model of encoding and quantum computation
that exploits the (permutation) symmetry of the system. For instance, for the three-qubit case,

we can consider the invariant subspace [21] and Hamming weight 1,
al1) +BJ2) = o[ 1)+ B'[2) (4.29)
where U is an operation based on the symmetry of the invariant subspace.

If one were to start with a state that is a superposition of vectors within an invariant subspace
and operate on it with an operator that abides by that symmetry, then the resultant output
state willl remain in the invariant subspace. The selection of invariant subspace depends on
the number of vector states we want as our basis. This directly relates to the dimensionality
of the invariant subspace.

Let us look at the kinds of initializations, operation and measurements that are required for
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this model of quantum computing.

Initialization: Ideally an input quantum state for a quantum computer is separable.
However, in this model of invariant subspace-based quantum computation, the input
state must respect the symmetry of the invariant subspace. As a result, the input state
can be the vector state, of the invariant subspace selected, which is closest to a separable
state. For instance, for three-qubit states with the invariant subspace [21] and Hamming
weight 1, a good input state would be |y,) = %(|001) —1(100y).

Operations: The operations that can be applied on the vector-state are selected based
on the symmetry of the invariant subspace. Firstly, we look at all the Young’s Tableaux
for the invariant subspace. Thereafter, we decompose the cycle-structure into trans-
positions and apply associated SWAP'/" on the vector state. The selection of the
Power-of-SWAP depends on the output state that is required.

Measurements: The measurement basis for the invariant-subspace based quantum

computing model comprises the m vector-states in the invariant subspace
V={Vi,Va, ...V} (4.30)

Theoretically, this measurement can be carried out by projection operators onto the
vector states.

To truly understand the scope of this quantum computation model, let us look at the realization
of a few-qubit cases. We do this by firstly looking at the evaluation of the invariant subspaces
and associated vector-states, and then present the manner in which invariant-subspace based

quantum computation can be realized in these cases.

4.2.1 Three-Qubit Quantum Computer

The simplest quantum computer that can be constructed, which has more than one SWAP/"
involved, is a three-qubit quantum computer. The initial state of this system can be any of
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the following

W = (4.31)

The underlying symmetry of the system is described by the S3 symmetric group. We have
previously discussed the character table and the irreducible representations of this group
in Chapter 2. Using these elements and conceptual tools, it is found that the [21] and [3]
partitions of the S3 group, for the three-qubit states, are the relevant partitions for our systems.

For this system, the invariant subspace-vector states are found to be as follows

) = 7(|001 +1100)) \[|010 (4.32)
(y2) = \/—(|001 — [100)) (4.33)

) = %qonw 110)) — \@101) 434)
) = (1011} +[110) 439)

|ws) = 1000) (4.36)

) = 7(|001>+|010>+|100) 4.37)
y) = %(|011>+1110>+|101) 4.38)

[wg) = [111) (4.39)
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Now, states |y1) - |y») and |y3) - |ys) constitute the first and second families of states,

respectively, for our three-qubit case.

((Rowap)13 ® (l2x2)2)|¥1) — [y1) (4.40)
((Rowap)13 @ (x2)2)|W2) — i|y2) (4.41)
((Rowap)13 @ (x2)2)|¥3) = [¥3) (4.42)
((Rswap)13 @ (l2x2)2)|Wa) — il W) (4.43)

This result is expected since this is a family of states that remains invariant under a [21]

partition transformation, up to a global phase.

The states |Ws), |We), |¥7) and |yg) compose the families: 3, 4, 5 and 6 respectively. For all
these families (3, 4, 5 and 6), the state remains invariant under all possible permutations of
the entanglers: Ryyap ® 1, I ® Rgyap and (Rgwap @) X (I @ Rgyap). This is expected for the
[111] case. Itis also valid for the [3] partition case, which refers to no intermixing of the

states.

Within each family of states, we find a hierarchy based on the classification put forward
by Diir et al [292]. In Family 1, the state |y;) falls in the W-class of states. Using the

transformation
1 {1 0 1 0 1 0
— ® & 4.44
ﬂ(o 1) <0 —2) (0 1) (444

we can obtain the standard W-state: |y ) = \%(IOOU +(010) + |100)).

The other state in Family 1 lies in the A — BC seperable class in the same classification.
It is a partially seperable state of the form:

) = |o>2\%<\01> —10))15 (4.45)

The same is true for Family 2 as well, after the application of an X3 gate, where X represents

the o, pauli matrix operation.

The states |ys) and |yg) are A — B — C seperable states according to Diir’s classification,
while |yg) and |y7) belong to the W-class, with the latter being so under an application of
X3,
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Thus the states are neatly arranged into the following chart:

(P (8 e (P ) swea
— —Crass
V210 1 0 -2 01

A—BC

1 1 1
X®3 % (0 (1)) ® (0 02> ® (0 (1)) — W —Class
B (4.46)

X® 5 A-BC
A—B—-C
W —class
X®3 W —class
A—B—-C

Although, this gives us a neat way of arranging the elements and their classes, it is the
seperable product states that we are interested in, due to the ease of preparation of such states
as input states. States of the form

V2|y1) — |we) = —V/3/010) (4.47)
V2|ys) — ) = —V/3|101) (4.48)

can be considered in this regard. We see that upon application of an entangler combination,
the aforementioned states in equations (18) and (19) produce states that are linear superposi-
tions of the 2-dimensional subgroup and the relevant one-dimensional subgroup mentioned
above.

For example, operating with Rg,,qp ® Ix2 on |010) gives

1 . 1 .
l»U(~/SWA1D®12X2)|()10> = 5(1 +1)[010) + E(l —1)[100)
=Aly1) +Bly) +Clye) (4.49)

It is found that

1 N , 1 :
A= m(l —i)——=(1+1i),B=——=(1-1i),

S

C=—(1 —i)+é(1 +i) (4.50)

Sl -
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States |y) and- |y,) and |y3) - |ya)constitute the first and second families of states, respec-
tively, for our three-qubit case.

((Rswap)13 @ (2x2)2)[W1) — |w1) (4.51)
((Rswap)13 @ (x2)2)|W2) — i) (4.52)
((Rowap)13 @ (x2)2)[w3) = [w3) (4.53)
((Rowap)13 @ (l2x2)2)[Wa) — i) (4.54)

This result is expected since this is a family of states that remains invariant under a [21]

partition transformation, up to a global phase.

The states |Ws), |We), |y7) and |yg) compose the families: 3, 4, 5 and 6 respectively. For all
these families (3, 4, 5 and 6), the state remains invariant under all possible permutations of
the entanglers: Ryyqp @1, I @ Rgpap and (Rgwap @ 1) X (I @ Ryyap). This is expected for the
[111] case. It is also valid for the [3] partition case, which refers to no intermixing of the

states.

Within each family of states, we find a hierarchy based on the classification put forward
by Diir et al [292]. In Family 1, the state |y;) falls in the W-class of states. Using the

transformation
1 {10 1 0 10
—= b2y & 4.55
V2 (0 1) (0 —2) (o 1) (353
we can obtain the standard W-state: |yy) = \%(IOOU +1010) +(100)).

The other state in Family 1 lies in the A — BC separable class in the same classification.

Itisa partially separable state of the form:
v \/§ : .

The same is true for Family 2 as well, after the application of an X3 gate, where X represents
the o, pauli matrix operation.

The states |ys) and |yg) are A — B — C separable states according to Diir’s classification,
while |yg) and |y7) belong to the W-class, with the latter being so under an application of
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X®3,

Thus the states are neatly arranged into the following chart:

1oy (1 o) (10
1
L SW-cl

A-BC

1 0 1 O 1 0
X®3—>%<O 1)@(0 2>®<0 1) — W —Class
B (4.57)

X% 5 A—BC
A-B-C
W —class
X% 5 W —class
A-B-C

Although, this gives us a neat way of arranging the elements and their classes, it is the
separable product states that we are interested in, due to the ease of preparation of such states

as input states. States of the form

V2|y1) — we) = —V/3/010) (4.58)
V2|ys) — ) = —V/3|101) (4.59)

can be considered in this regard. We see that upon application of an entangler combination,
the aforementioned states in equations (18) and (19) produce states that are linear superposi-
tions of the 2-dimensional subgroup and the relevant one-dimensional subgroup mentioned

above.

For example, operating with Ry, ® Ix2 on [010) gives

1 . 1 .
V(/SWAP®,,)(010) = 5(1 +1)[010) + 5(1 —i)[100)
=A|y1) +Blyr) +Clyg) (4.60)

It is found that

A=y Lasiys=—

NG NG (1—i),C =

u—o+éa+o (4.61)

S

1
2v/2
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It is thus found that a higher-dimensional unit of information, based on the vectors in the
invariant subspace, have properties that makes it evolve in a specific way. For instance, the
one-dimensional irrep vectors remain unchanged with the operation of any combination of
SWAP'/" gates, while higher dimensional irreps evolve within their invariant subspace.

4.2.2 Four-Qubit Quantum Computer

% Qubit Node
—— Entangler

Fig. 4.1 Four-Qubit Quantum Computer
For the S4 group, we have

flu] = 1 for the partition [4]
flu] = 3 for the partition [31]
(1] = 2 for the partition [22]
(1]

(1]

f
flu] = 3 for the partition [211]
flu] =1 for the partition [1111]

Let us take the following basis vectors:

LY for the partition [1111]
[1211 13] é[1221113] and é[]22131]] for the partition [211]
é[12122 and é[12221]2 for the partition [22]

é[flll]z, é[fllz]l and é[13211]1 for the partition [31]

éwl | for the partition [4]

é
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where
1 0 0
201 31 201 31 211 31
ez = €2 = | 0| €z =¢n = [ 1 |,€1231 = €211 = | 0 (4.62)
0 0 1

A[22 1\ .2 0
(o) 48 () 6

Using (44), we can find the matrix representation for the generator transpositions (12), (23)
and (34).

D(12) = —1 for [1111]
1 0 0
p(12)=[0 -1 o | for[211]

0

1
D(12) = 0 _1> for [22]

1

D(12)= 10

0

D(12) =1 for [4]

D(23) = —1for [1111]

_1 V3o
2 2
D23)=| ¥ 1 o |for[211]
0 0 -1
_1 3
D(23) = ﬁZ f for [22]
72
1 0 0
D23)=|0 —1 | for[31]
0 ¥ 1
2 2

D(34) = —1 for [1111]
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1 0 0
DB4)=| 0 —1 ¥8|for[211]
8 1
o ¥ |
1 0
D(34) = 0 _1> for [22]
DB34)=| ¥ 1 o] for[31]
0 0 1

D(34) =1 for [4]

Now we have to find the block form for a general 16 x 16 representation of S4. For this we

must investigate the character table of S4. The Character Table for Dy is given by

Representation O | (12)(34) | (12) | (1234) | (123)
Trivial Representation [4] 1 1 1 1 1 o
Sign Representation [1111] 1 1 -1 -1 1 B
Degree 2 Representation [22] 2 2 0 0 -1 Y
Degree 3 (Standard) Representation [31] 3 -1 1 -1 0 o
Degree 3 Standard ® Sign Representation [211] | 3 -1 -1 1 0 €

For the 16 x 16 representation, the trace is 16 for (), 4 for (12)(34), 8 for (12), 2 for (1234)
and 4 for (123). We can now solve for the number of irreps of each kind in the block form of

the permutation matrices.
o+ pB+2y+36+3e=16

a+p+2y—6—e=4
a—pB+6—€=8
o—pB—-0+e=2
o+p—y=4

Solving these equations, we have

e=0,0=3,a=5p=0,y=1

(4.64)
(4.65)
(4.66)
(4.67)
(4.68)

(4.69)
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Table 4.1 : States, Transformations and Entanglement Families for Four-Qubit States

State Transformations Family
I
o . -z 0

1) 0_x®2®lig><22 and ]£®><32®l§ ( 03 1) Lap,

[2) - ABC-D seperable

13) - ABC-D seperable

4y | 5300 witha:%,b:\/g,c:o,d:ﬁ Gabed

|5) o.®I5, witha=3,b=—3 c=—3d=3 Gabed

6) | bxo®wo, @b, witha=3,b=1%c=1d=—-1 Gbed

: & . 1 0
7) L2, © 0% and 15932‘81@ 0 —é> Lap,
8 - ABC-D seperable
P
9) - ABC-D seperable
1 -3 —__1 g___1_

|]O> - S - Gﬂde(a—zﬂ’bl_ 2\/§17C— Zi/gad_l 2\/§)
|]1> O-x®[2><2®0-x®]2><2 and]2®><2®0'z® Gabcd(a:§7b:§,cz_§7d:§)
|12) by @052 @by Lape,(a=0,b=0,c=0)

13) 5% @02 Lap,(@a=0,b=0)

|14) o257, Gaped(a=3,b=1,c=0,d=13)
|15) 0?7, Lup,(a=0,b=0)

|16) 0,157, @0y Lape,(a=0,b=0,c =0)

The symmetric group Sy for our system has the orthogonal vectors as given in Appendix 1,
which correspond to the relevant irreps for the four-qubit case.

As per Verstraete et al [293], a four qubit state can be entangled in nine different ways:

a+d
2

_d b - b_ .
Gabed = ——=(]0000) + [1111)) + aT(\oom +]1100)) + %(\0101) +]1010)) + T‘(\ouo) +11001))

a+b a—>b
LachZT(|OOOO>+|llll>)+ 7 (|0011) + |1100)) +¢(|0101) + |1010)) +]0110)

Layp, = a(]0000) +|1111)) +5(]0101) +|1010)) +[0110) + |0011)
Latb
2

—b
Lap, = a(|0000) + [1111)) (10101) +[1010)) + “T(\onm +]1001))

+——(]0001) +|0010) + [0111) + 1011

1
7 )
Ly, = a(|0000) + [0101) +[1010) 4 |1111)) + ({|0001) + [0110) — i|1011))

Layos., = a(|0000) + [1111)) + (|0011) 4 |0101) +[0110))
Lo,,; = |0000) 4 [0101) + [1000) + |1110)
Lo,,, = |0000) 4 [1011) +|1101) + |1110)
Lo, 05, = |0000) +|0111)
The states obtained for our system can be put into the various families of states with certain
transformations as in Table 4.1.
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The families {[1), |2), [3)}, {|4), |5), [6)}, {[7). [8), [9)}, {[10), [11)}, {[12)}, {[13)},
{|14)}, {|15)} and {|16)} are the vectors that are associated to the different irreps for the
group. These subsets comprise families of four-qubit states. The first and third families have

a vanishing tangle while the second and fourth have a tangle of 1.

4.2.3 Five-Qubit Quantum Computer

—O— Qubit Node

—— Entangler

Fig. 4.2 Five-Qubit Quantum Computer

For the S5 group, we have For the S5 group, we have

flu] =1 for the partition [5]
flu] =4 for the partition [41]

[u]

(1]
flu] = 4 for the partition [2111]
flu] = 6 for the partition [311]
flu] =5 for the partition [32]
flu] =5 for the partition [221]
flu] =1 for the partition [11111]

Let us take the following basis vectors:

- for the partition [11111]

é [1211213] é[1221113] and é[1221311] for the partition [211]
é{{», and é[lzzzl]z for the partition [22]

e [13111]2’ e E3112]1 and é[13211]1 for the partition [31]
é[141}1 | for the partition [4]
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1]2 1]2 1]3
1]2] 3] 2]4] [1]2]5] 3|4 3|5 2|5
415 3|5 34 5] 4] 4]
1]3[4] [1]3]5] e 1
2]5 2]4 B 5]
(a) (b)
1]12]3]4] [1]2]3]5] [1]3]4]5] [1]2]4]5]
15 4] 2] |3
(c)
1]2]3] 1]2]4] 1]2]5]
4 3 3
1]2 1]3 1]4 1]5 5] 5 i
13 2] 12 2] o o o
4 4 3 3
o — = >u 1]3]4] 1]3]5] 1]4]5]
15 15 1S 4] 2] 2] B
15 L4 13
(d) ()

Fig. 4.3 Young Tableau of the Symmetric Group S5 for (a) Partition [32], (b) Partition [221],
(c) Partition [41], (d) Partition [2111] and (e) Partition [311]

Now we have to find the block form for a general 32 x 32 representation of Ss5. For this we

must investigate the character table of Ss.

For the 32 x 32 representation, the trace is 32 for {}

We can now solve for the number of irreps of each kind in the block form of the permutation

matrices.
o+p+4y+456+5e+5v+60 =32 (4.70)

o—B+2y—26+e—v=16 (4.71)

o+pB+e+v—-20=38 (4.72)
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Representation ()| (12) | (12)(34) | (123) | (123)(45) | (12345) | (1234)
Trivial 1 1 1 1 1 1 1 o
Sign 1| -1 1 1 -1 1 -1 B
Standard 4 2 0 1 -1 -1 0 Y
Sign x Standard 4 | -2 0 1 1 -1 0 0
5 x 5 Irrep 5 1 1 -1 1 0 -1 £
5 x 5 Irrep S| -1 1 -1 -1 0 1 %
Exterior Square of Standard | 6 0 -2 0 0 1 0 o
Table 4.2 Character Table for the Symmetric Group S;
o+B+y+0—e—v=2_, (4.73)
oa—B—y+o+e—v=4 (4.74)
o+B—-y—0+0=2 (4.75)
(X—B—8+V:4 4.76)
Solving these equations, we have
a=6,=0,y=4,0=0,e=2,v=0,06=0 4.77)

The Invariant Subspace Vectors for Ss:

The symmetric group S5 for our system has the orthogonal vectors that emerge from the

block form, as given in the Appendix 1. We now analyze which are the various seperable and

entangled states that can be formed of the linear combination of such states.

4.2.4 Six-Qubit Quantum Computer

The Character Table for the group Sg is given by the Table 4.3. In the table, S.E.P.St. means

Second Exterior Power of Standard and T.E.P.St. means Third Exterior Power of Standard.

The character value of each cycle type is as follows:

Cycle {}: 64
Cycle {(12)}: 32
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Cycle {(123456)}: 2
Cycle {(12345)}: 4
Cycle {(123)}: 16
Cycle {(1234)}: 8
Cycle {(123)(45)}: 8

(

(

(

(

)
Cycle {(12)
Cycle {(123
Cycle {(1234

)
Cycle {(12)(34)}: 16

(34)(56)}: 8

)

(456)): 4
)(56)}: 4

The relevant equations to be solved to find the relevant blocks in the block form are as

follows:
a+B+57+56+5v+5u+10e+100 4+ 9k +9¢ + 107 = 64

a—B+3y-30—-v+u+2e—-20-3x+30=32
a—B—y+6+3v—-3u—2e+20—-3x+35=38
o+B+2y+26—v—u+e+o—-21=16
o+B—y—0+2v+2u+e+o—-21=4
a+B+y+0+v+u—2e—-20+k+¢=16
o—B+y—06+v—u+x—-¢=38
a+B—-y-86-v—u+k+§=4
o—pB—-v+u—e+o=3_8
o—B—y+6+e—0c=2
o+pB—-xk—-C+1=4

Solving for the variables, we find

™ B R
Il Il Il I
W —_ W <

(4.78)
(4.79)
(4.80)
(4.81)
(4.82)
(4.83)
(4.84)
(4.85)
(4.86)
(4.87)

(4.88)

(4.89)
(4.90)
(4.91)

(4.92)
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B,o,v,e,0,kx,T=0 (4.93)

This means we have three nine-dimensional blocks, six five-dimensional block and seven

one-dimensional blocks in the block form of the entangler combinations.
For the Sg group, we have the partitions shown in Figures 4.8 - 4.18.
For the S¢ group, we have

flu] = 1 for the partition [6]
flu] =5 for the partition [51]
flu] = 10 for the partition [3111]
fIu] = 10 for the partition [411]
flu] =9 for the partition [42]
flu] = 16 for the partition [321]
flu] =5 for the partition [33]
flu] =5 for the partition [222]
flu] =9 for the partition [2211]
flu] =5 for the partition [21111]
flu] =1 for the partition [111111]

Let us take the following basis vectors:

) for the partition [111111]

33 W33 AB3] AB33 A[33] .
€111222> €121212> €112122> €121122 and €75y, for the partition [33]

A510 W51 L5100 Al A[51] ..
ehitn €112110 €1hia11> €111121 and €y, for the partition [51]

222]  A222]  A222] 222 A222] .
€112233> €121233° €123123° €121323 and €753, for the partition [222]

21111 A21111] AR21111] A21111] 21111 .
€112345° €121345° €123145> 123415 And &{3,5, for the partition [21111]

A[42] A[42] A[42] A[42] A[42] A[42] A[42] A[42] A[42] )
1111220 €11i2120 €111221> €1121120 €1121210 €121112> €1211210 €121211 and €jp,; for the parti-

tion [42]
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2211 A2201] 201] 201] 2201] 2201] 2201]  220] o 211] .
1122340 €123412> €121234> €121342> €1213240 €123142> €123124> €112342 And €y p3y, for the parti-

tion [2211]

A321] AB21]  AI321]  AB21]  AI321]  AB21]  A[321]  AB21]  A[321]  AB321]  A[321]
[1312112}23’ 8[131221}123’ %g}zw %2112]231’ 6121%%%]’ €121213> €123112> €111232° €112312> €112321° €121123°
1231215 €121312> €1213210 €121132 and €1553; for the partition [321]

QB3I B SBUL] ABI] 31 B B B B B e
€111234> €112134> €112314> €112341> €121134> €121314> €121341> €123114> €123141 300 €jp34qy 10T

the partition [3111]

BN N N N N3 3 N L3 N
€111123° €123111° 121311 €121131° €121113> €112311° €112131° €112113> €111231 A0d € 3t0T the

partition [411]

é[161]1111 for the partition [6]

where
1 0 0 0 0
0 1 0 0 0

A33] 33 33 33 A[33]

o =0 e =0 ¢nn=|1]| é2im=|0] ési=|0| forthe
0 0 0 1 0
0 0 0 0 1

partition [33]
1 0 0 0 0
0 1 0 0 0

A[51] 51 g5 51 A[51]

i =10 =0 éhian=| 1| ém = |0 éniin = | 0| forthe
0 0 0 1 0
0 0 0 0 1

partition [51]
1 0 0 0 0
0 1 0 0 0

21222 S22 A222) J222 21222
el = 0,233 =0 ¢n03=| 1| €213 = | 0| él23123= | O | for the

0 0 0 1 0
0 0 0 0 1

partition [222]
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1 0 0 0 0
0 1 0 0 0
A[121]213” 01, A[1221113]5} =10{.¢ [12213]11415} = |1 [12213]41115] 0 [122]3]415]1] 0 | for the
0 0 0 1 0
0 0 0 0 1
partition [21111]
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
é[14121}122 =10 6[1‘321]212 =10 é[14121}221 =10 6[1‘322]112 =10 é[14122}121 =11 6[14122]211 =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ol —lol.é¥, =0l &%, =|0] forthe partition [42]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
A[12122]21%]4 =10[.¢ [121221312}4 =101, A[12122]31432 =10[.¢ [122211213}4 =101, A[12221]312]4 =|1[-e [12221131432 -
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

o, e, =10l 2L =10l 2 =]0] for the partition [42]

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

e [1312112}23 - ) ;@ [1312112]23 - ’ @ [1312112}23 - ) @ [1312112]23 - ’ @ [1312112}23 - ) @ [13121]2]23 -

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
Ol 321 |0 32y 1] .32y |Of .2y |Of B2y |0
0 » €111223 — ol €23~ | » €111223 — 1| fnes = |, » €111223 — ol
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
3211 | O a2y O] 2y O Lp2p O um2p | O
€111223 = 0 » €111223 = ol ‘223 = | » €111223 = 0 » €111223 = 0 for the
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

—_—

partition [32

]
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
A3111] 01 11y O iy |Of iy | O iy | L | .Buiy
€111234 = 0 112134 = 0 »€112314 = 0 0 €112341 = 0 »€121134 = 0 2 €121314 =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
(1) . e [132]1131431 = 8 . @ [132]311]1]4 = g . @ [132]3111431 = g . @ [132]31411]1 = 8 for the partition
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
[3111]
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
S 0 S 0 S Ol ,aryp |0 S L gy
123~ | o |23 = | g [- 23t T | g [ i3 T | g | ¢z o | €11z3u
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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A[411]

_ A411]
» €121113 =

- A411]
» €121131 =

- A411]
> €121311 =

311 = for the partition

— o O O O = O O O O O
S O O = O O O O O O
S O, O O O O O o O
S = O O O O o o o O
- O O O O O o o O O

—
~
—

e

For our system, the relevant blocks are of the dimensions one, five and nine. We can

find the matrix representation for the generator transpositions (12).

D[m””(lz):—l
Dll(12) =1

Since we need one-dimensional irreps with character value 1, the relevant irrep is that

for the [6] partition.

100 0 O
010 0 0
pBIa2y=(o o1 0 o
000 -1 0
000 0 —1
1000 0
0100 0
phI(12)=l0 0 1 0 0
0001 0
0000 —1
10 0 0 0
01 0 0 0
pRP2(12)=10 0 =1 0 0
00 0 —-1 0
00 0 0 -1
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1 0 0 0 0
0 -1 0 0 0
pP2l(12)=10 0 -1 0 0
00 0 -1 0
00 0 0 -1

We see that the trace of these matrices gives us the relevant partition corresponding to
our character table categories. Since we need five five-dimensional irreps with trace 3 and

one five-dimensional irrep with trace 1, the relevant partitions are [51] and [33] respectively.

1 00000 O O O
010000 O O O
001000 O O O
000100 O O O
pH(12)=]lo00 0010 0 0 0
0000O0OT1 O O O
000O0O0OO0O -1 0 O
000O0O0OO0O O -1 O
000O0O0OO0O O O -1
1roo0o o o0 o0 o0 0 o
010 o0 o0 o0 o0 o0 o
oo0o1 0o 0 o0 O 0 o0
000 -1 0 0 O O0 O
p2(12)=10 00 0 -1 0 0 0 0
0oo0o0o o0 0 -1 0 0 O
000 o0 O O -1 0 O
0000 o0 0 o0 o0 -1 0
000 o0 O O 0 0 -1
Since the nine-dimensional irrep we need has a character value of +3, the relevant partition is

[42].
We now find the elements D(23), D(34), D(45) and D(56) for the relevant partitions.
We begin with [6]:

Dll(12) =1
DlI(23) =1
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We consider [33]:
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We consider [51]:
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We consider [42]:
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1 ¥I5.900 0 00 0 0
V5.1 00 0 0 0 0 0
0 0 10 0 00 0 O
0 0 01 0 00 0 0
pD¥@asy=1 0 0 00 -1 L0 0 o0
0 0 00 ¥ 1 o o0 o0
0 0 00 0 0 1 0 0
0o 0 00 0 0 0 -1 ¥
0O 0 00 0 0 0 ¥ I
1 0 0 0 00 0 00
0 -+ ¥ 0 000 00
o ¥ L 0o 000 00
00 0 -+ ¥ o o0 00
p¥lis6)=o 0o o ¥ 1 0o 0 0 0
00 0 0 01 0 00
o0 0 0 0 0 -1 %o
o0 0 0 0 0¥ Lo
00 0 0 00 0 0 1

Now, the permutation D(123456) = D(12)D(13)D(14)D(15)D(16). We can find these

constituent two-element forms for the relevant partitions:

Now,
DBl(13) = DB (12)DB)(23)DBl(12)
DBl(14) = DI (13)DB!(34)DBI(13)
DBl(15) = DB (14))DP! (45) DB (14)
DBl(16) = DI (15))DP! (56)DB)(15)

Invariant Subspace Vectors for Se:

The symmetric group Sg for our system has the following orthogonal vectors that emerge
from the block form, as given in Appendix 1.
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4.2.5 Higher Multiqubit States

We find the vector states for the higher multiqubit states as well, based on the Nullspace
Approach, mentioned in Chapter 2. The cases to the n-qubit case can be generalized using
the application of Ross’s breaking of the Hilbert Space based on the symmetry under parity
for the SWAP!/" gates.

The circuit-based model of quantum computing may be the most popular at the moment,
but it has sources of error (relating to gate operations, noise and leakage errors) that do not
make it the most reliable. The encoded quantum computation models are one step further
towards more resilience and robustness against these errors due to the symmetry properties
of the states. However, the formalism that is most highly regarded for this aspect is the
cluster-state model of quantum computation. Formulated by Raussendorf [163], this model
relies on single qubit measurements and hence is also called the measurement-based model
of quantum computing. In the next section, we look at how the exchange interaction and

SWAP'/" gates can be used to realize cluster-state quantum computing.

4.3 Cluster State Quantum Computation

Cluster states can be generated using SWAP'/" gates. Tanamoto et al [294] showed that this
could be done for VSWAP and iSWAP gates. We get to similar results independently, using
numerical and analytical methods, and go on to define a ‘dynamical’ model of cluster state

quantum computation.

Cluster states are pure quantum states [163] defined on two-level systems arranged on
a cluster-lattice. This cluster is a connected subset of a simple cubic lattice Z; in d>1

dimensions.

The cluster states |(.;,50r) Obey the set of eigenvalue equations

M(a) |¢clusterm> = (_1 )ma "Pcluster) (4-94)

with the correlation operators
M@ =69 g6 (4.95)

Here, b € nbgh(a), the set of all neighboring lattice sites of a, and {cluster,, }:={m, € {0,1}|

a € Cluster} is a set of binary parameters which specify the cluster state.



4.3 Cluster State Quantum Computation 189

4.3.1 SWAP!'/"-based Model of Cluster State Quantum Computation

One of the fundamental differences that a SWAP'/" model has with the usual CPHASE-based
Raussendorf model of cluster quantum computation is that neighboring interactions generally
do not commute: [H;;_1,H;;+1] # 0, as discussed previously, unlike the CPHASE gate:

1 00 O
010 O
U, = 4.96
CPHASE 001 0 (4.96)
0 0 0 -1

which does. As a result, we have, for the evolution operator, e~ =], j e~ For creating
cluster states using such non-commutative interactions, pairwise bonding between the qubits
is needed. So, for an n-dimensional qubit array, cluster states can only be generated in 2n
steps: firstly, two-qubit cluster states are constructed by performing exchange interactions
between pairs of nearest neighbor qubits. These qubit pairs are thereafter connected to each
other using another set of such operations, and a one-dimensional chain (cluster state) is
created. Afterwards, these chains can be connected in various ways to give more complex
structures, such as two-dimensional clusters and ladder clusters. A point to remember here
is that to reach the standard cluster-state form, as formulated by Raussendorf, single qubit
rotation gates are required. Even though it is possible to have a modified Uy Uy, -based cluster
state model, where Uy and Uy, are measurement gates along an arbitrary angle, it is more
convenient to change all bases to a standard form of two-qubit cluster states:

v)e = (10)1]=)2+ D1]+)2) (4.97)
where |+) = %(]0> +[1)). This realization can be carried out using a simple sequence of
steps.

Algorithm

Part I: Generating the two-qubit cluster states

1. We start with a state
|Win) = [+)1]=)2 (4.98)
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2. We apply a general SWAP'/™:
Usyyapy/s| Win) = 10)(10) = /[ 1)) + €T~/ [1)(]0) + €™/ |1)) (4.99)
3. We use the following composite operator:

1 0 0 0
0 e 7m0 0
0 0 eim/n g
0 0 0 -1

(4.100)

to obtain the state |y)2.
Part II: Creating larger cluster states

1. Let us start with the simple case of connecting two qubit-pairs with the states of the
cluster states Cy, and |+)3:

2. We apply the SWAP!/ gate between qubits 2 and 3. This gives the state:

lw,) = (|000) + &™/"|001) — &/™010) — [011) 4 [100) 4 [101) 4 [110) 4 [111))

(4.101)
3. We then operate with the operator:
1 0 0 000 0 O
0 e im/n 0 000 0 O
0 0 —e™m 000 0 0
0 0 0 1 00 0 O
(4.102)
0 0 0 010 0 O
0 0 0 001 0 O
0 0 0 000 —-10
0 0 0 000 0 1

to obtain the cluster state:

W)z = ()10 1+) + =) (1)) (4.103)
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This method can be extended for higher numbers of qubits.

As can be seen, a general SWAP'/" has the problem of the need for the use of a non-local
operator at the end to ‘clean up’ the state to get the cluster state finally. This is, however, not

the case for iSWAP:
00

0 i
i 0
0 00

S O =

Uiswap = (4.104)

- O O O

This gate can be realized by taking J, = J, = J,J; = 0 and t = ¢; in the exchange interaction
H = Js;.sp. Let us see how this affects the creation of cluster states for quantum computation.

1 0 0 0
_ 0 —i 0 0
ISWAP x
0 —i 0
0 0 —1
[+)1=)2 > 10Y|—=) + [1)]+) (4.105)

For three qubits,

(10} =) + 1) N )3 2228 10311003 (10) +il1))2 — i =)1[1)3(10) —i[1))2 (4.106)

1 0
Applying a Phase-Shift Gate R, = (0 > on the third qubit, we get

l

W)= ()10 1+) + =) 1)) (4.107)

If we take two cluster pairs 12 and Cz: |W)¢,, = (|0)] =) +[1)|+))12 and [w)¢,, = (|0)]—) +
1)|4))34 and apply a SWAP'/" gate on qubits 2 and 3, we have

) 2 I o QRUSWAP»3 1)«
|W>C12|W>C34 - =

(10)|0)[+)|=) + )1 [=)+) + D0} =) | =) + 1) [D)[+)[+))  (4.108)

10 . ) .
where Irx» = 0 1) This shows a very interesting property: the resultant cluster state

is ‘twisted’ and there seems to be a Cy324 cluster. This trend is found by us to continue for

higher numbers of qubits too.
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4.3.2 Dynamical Cluster State Quantum Computation Model

The exchange interaction, which is used to realize SWAP!/" gates, often takes place between
moving qubits, such as electrons trapped in a surface acoustic wave. For such qubits, it is

only natural to define a dynamical model of cluster state quantum computation.

The basic element of the dynamical cluster state model, much as in the static cluster state
quantum computation, is the lattice of points that represent the physical qubits (Figure 4.7),
moving in a certain direction. We define the conventional direction of motion for this lattice
to be towards the right. These can be realized with fermions or bosons, depending on the
kind of physical system being considered. For the cases discussed already, for the static
cluster state quantum computation, these could be phonons, photons or ions, among other
possibilities. In the figure, one can see two kinds of basis elements, with the second (Figure
4.20 (b)) being just a selectively time-delayed version of the first orientation (a). Such
time-delayed basis are useful for creating highly entangled cluster states, as worked on by
Yokoyama et al [60]. These qubits are independently initialized to a certain input basis set.
This initialization is intricately linked to the kind of entangling operation and stage one has
for the setup. Some of the possible initialization basis and their corresponding entanglers are

mentioned below:

Entangler Input States
CPHASE |£)
Root-of-SWAP Alternating [0/1)
CNOT |0/1) and |£)

where |+) = %UO) +11))

The entangler is the element in the circuit which facilitates generation of the entanglement
used in cluster state quantum computation. For example, a combination of \%(]m +11)) and
|0) gives us the bell state \%(|00> +|11))when the former is used as the control and the latter
as the target qubit in a CNOT operation. In the case of the Root-of-SWAP entangler, one
can use an antiferromagnetic configuration with alternating spins to realize the initialization
discussed in the table above. A similar configuration can also be used for a general SWAP'/"
entangler.

For the dynamical cluster state model, one can have an interesting characteristic feature of
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the architecture, known as state hopping, as shown in Figure 4.21. One can introduce a state
anywhere on the cluster-lattice and displace it in any direction in the rectangular structure
using o, and 0, measurements. 0, measurements essentially remove a qubit from the cluster
while 6, measurements provide a *wire’, a conduit, for the passage of information from an
arbitrary state to another location. Upon measuring the original location in the o, basis, one
can receive the original state in the new location (up to corrective operations). Measurements
of observables o; effectively remove the respective lattice qubit(s) from the cluster-state.
Such a measurement projects the cluster state ¢ into the tensor product |A) @ |y). Here, |A)
is a product state in the computational basis, and | ) the state of the remaining unmeasured
qubits. In our model, to implement measurements, as in the static cluster state quantum
computation model, we have the measuring elements to the right of the entanglers. The
right-most end of the lattice is measured first. As a result, the information flow is from the
right to left. Hence, initializing an input register, as shown in Figure 4.21, or even the basis
states for a particular gate or algorithmic operation on the right-most column of the physical
qubits, helps to obtain the result further into the cluster, using a combination of projective
measurements and state-hopping. Now that we have laid the fundamental theoretical ground
for further discussion, we would like to introduce the idea of circuit segment concatenation.
In this model, we consider three primary segments of the circuit: initiation of physical qubits
in the Input (I) stage, generation of entanglement in the Entanglement-Generation (E) stage
and finally the Read-out (R) stage.

The Readout (R) stage can be made of time-sequenced array of read-out elements, as

shown below, in Figure 4.24, wherein the yellow elements are the active readout elements.

4.3.3 Deutsch Josza Algorithm

One of the most famous algorithms in the history of quantum information processing has
been the Deutsch Josza algorithm. In this section, I will be describing a new way to do this

using a particular cluster state generated by our physics system:

ly) = %(10101) +10011) +[1100) — 1010)) (4.109)

The Deutsch Jozsa algorithm is an algorithm to distinguish between two classes of two-bit
binary functions: f: {0,1} x {0,1} — {0,1}. The two classes are the constant functions, in
which all input values get mapped to the same output value (either O or 1), and the balanced
functions in which exactly half the inputs get mapped to 0, while the other half get mapped
to 1.
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In my implementation scheme, measurements on each qubit has a definite outcome for
the algorithm. Qubits 1 and 3 are used as the query and ancillary qubits |x)|y) for |x)|y) —
1x)|y @ f(x)). Qubit 2 and the steps associated with it act as the oracle qubit. Qubit 4 helps in
projecting Qubit 3 to the final state that shall implement the algorithm. One has two different
categories of this implementation: one for balanced functions and the other for the constant

function.

Measuring qubits in {|+), |=)}1, {|+),1=)}2, {10}, 1)}3,{|0), 1) }4 (where |£) = I5(|0) £

1)), we have the state

[Wpse) = [H) D) + =) RV + [+)[H)[0)[1) +[=)|-)[0)[1)
= [ DI0) + =) [+H)[1)]0) +[+)[4)10)[0) = [=)|-)[0)|0) + |--)[ =) [1)[1)
+ =)D = [H)=)10)1) = [ [=)[0)[1) = [H)[=)[1)]0) +[=)[=)[1)]0)
= [)=)10)[0) +[=)[=)[0)[0)  (4.110)

Based on the measurement of the disentangler - Qubit 2, and the projective measurement of
Qubit 4, one finds that irrespective of the input |x) qubit, the output is the same. This is the

implementation of the constant function.

Measuring qubits in {[i+), [i=) }1, {|i+),[i=) }2, {[+),[=) }3,{|+),[=) }4 (Where [+) =
1)) and |i£) = %(\m +i|1)) gives us the output

(10)+

S

2

m(li—>|i—>|+>|+> =) [i=) [ =) i) i) | =) [+) + i) i) [+)] =)

+ (DD H) = D)) ) =) = i) i) | =) [+) = [0 [i=) [+)]=))) 1234
4.111)

For the Qubit 2 — 4 combinations, one gets a balanced function output.

4.4 Indefinite Causal Order and Functional Quantum Com-
puting

In classical computing and programming, we have object-oriented and functional models

of information processing. While the former deals with the manipulation of elements and
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resources using operators, the latter relates to the changing of operators to realize a certain
computation. Classical functional computing relies on what is known as A-calculus [295],
which treats functions and data as the same type of objects. It allows for the computation of
both functions of data as well as functions of functions.

This idea can be extended to the realm of quantum information processing too. The idea of
quantum combs has been used for this purpose [296, 297], as have models based on quantum
A calculus [298, 299]. The switch-based model of functional quantum computing [300] is
the realization that we are most interested in. In our project, we extended the idea from being

a control-qubit-based model to a control-qudit-based model.

The model takes as its inputs a set of N quantum operators Uy, Uy,...,Uy_1, a control
qudit |d)¢ and a register of input qubits. In our model, we consider that each operator is

applied just once and we encode the operator in the N-qubit control qudit as follows:

10}y = [000...0)y = [1234...(N — 1)(N)). (4.112)
1)y = [000...1)g = [1234...(N) (N — 1)). (4.113)
12)4 = |000..10)4 = [1234...(N — 1)(N —2)(N))e (4.114)
INDg=[111...1)4 = |(N)(N — 1)...3421), (4.115)

The encoding, marked by |), shows the sequence of the operators as well. The model
coherently orders the quantum operators based on the value of the control-qudit, thereby
creating a meta-operator, a superposition of many different sequential orderings of the same
set of operators, which is then applied to the input qubit. Let us call this entire operation
Oswap and let us take an illustration of this using the simple example of two operators U
and U,. We will then have the control qudit in the states |0); = |12), and |1); = |21),, which
have the following action on the operators:

10),U Us = Uy Uy (4.116)

1)U Uy = UpUy 4.117)
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For a control qudit |¢) = ¢|0); + B|1), and an input state |y),

Oswap|c)(U1U2)|y) = a|0)q + B[1)4(U1U2)|y)
= a|0)aU1 | y) + B[1) 02U |y)  (4.118)

This is an extremely useful tool for a multi-operator lattice-configuration such as the one we
have developed for our model of cluster state quantum computation. Instead of restructuring
the gates manually or even using gate-potentials in a synchronized manner, we can simply

use the appropriate control-qudit to do the same.

4.5 Qudit-Based Quantum Computation using SWAP'/" Quan-

tum QOperator

Quantum gates that are universal for binary quantum logic operations belong to a family of
unitary transforms are seen to be described by three parameters, and this arises out of the

idea that up to an overall phase factor, any two dimensional unitary matrix can be written as

iV
Uh(A, v, 0) = ( ( cosA e sm/l) 4.119)

O Visind  e¥cosh

expressed in the basis states |0) and |1). The three parameters are usually taken to be irrational
multiples of 7 and each other. This this allows even a single gate in to generate all single-
qubit transforms by repeated application. However, we find it to be more useful to consider
these three parameters as arbitrary variables, with U, representing a family of gates that can
be realized by an appropriate choice of three physical controls. One of the properties of U, is
that it can transform any known state of a qubit to |1): «|0) + B|1) 2, |1). U, also contains
the phase gate X, that alters the phase of |1) without affecting |0): |1) RENL 11),]0) iEN |0).

Using these two transformation properties of U,, the two-qubit gates that are universal for

Ar[Un] = (12 O) (4.120)

quantum logic take the form

0 U

The family of gates A, [U>] is universal for binary quantum logic. A unitary transform on any
number of qubits can be simulated by repeated application of these gates on just two qubits

at any one given time.

We can generalize this to the multivalued case. We define Z; as a family of d-dimensional
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transforms that maps a known single-qudit state to |d — 1): 0 |0) + 0 |0) + ... + 0ty_1|d —
1) N |d —1). Similarly, we define the d-dimensional phase gate X; as a function that
does the following: |d — 1) Xa, e?ld —1),|q) Xa, l9),q # d — 1. We can now define the
multivalued analog of A, [U>] as

As[Uy] = (Idi)—d l(f)d) 4.121)

For our system, we devise a very simple way to do this. We will present the formalism using
a state with Hamming weight 1 for n-qubits. This can be generalized to other states with

different Hamming weights. We define the state |d — 1) as the n-qubit W-state:

1
d—1)=|N—-1)—=(—100...01) 4+]00...010) ... +|100...0 4.122
[d=1) =[N-1) \/ﬁ( | )+ ) | ) (4.122)
Now we define the other states by introducing a relative phase of ¢/*in front of each of the

superposition states one-by-one, so as to obtain

1

(100...01) +]00...010) — [00..0100) + ... + |100...0)) (4.123)

1
— —(]00...01 ..010) + ... — +[010...00) — | 100... 4.124
0) = —=(100...01) +[00...010) ... = +]010...00) ~100...0) (4.124)

) . . AP/
In this formalism, we will use the property that - Slid

55 (101)+]10)) == —5(|01) +[10)), 75(|01) —

1/n .
)) SWAP T, ein/ "\/LE(|01> —110)). A point to note here is that even though we could have

110
constructed N logical qubits, we only constructed N — 1. This was because the definition

of Xy, as we do it below, does not allow the consideration of the state: \/LN(|O()...OI> -
|00...010) +|00..0100) + ... 4+]100...0)) for the properties of X; to hold true.

We define the Z; operator as an inverse map, based on the linear combination of vectors
considered and
Xd:b@]z@“‘@IZ@USWAP‘/” (4.125)

This allows us to construct the gate A;[U,;] and therefore do universal qudit quantum compu-

tation using our system.
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—O— Qubit Node

—><— Entangler

Fig. 4.4 Six-Qubit Quantum Computer
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Fig. 4.5 Young’s Diagram associated with S¢ Symmetric Group, for (a) Partition [6], (b)
Partition [33], (¢) Partition [42], (d) Partition [51], (e) Partition [222], (f) Partition [321],
(g) Partition [411], (h) Partition [2211], (i) Partition [3111], (j) Partition [21111] and (k)
Partition [111111]
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iISWAP

ISWAP

Fig. 4.6 Application of the iISWAP gate between cluster-pairs leads to a ‘twisted’ resultant

cluster state

(@)

(b)

Fig. 4.7 Physical Basis for Dynamical Cluster State Quantum Computation. (b) is the
configuration where every even-numbered row is moving at a speed variant with that of the

odd-number rows, unlike in (a), where each row moves at the same speed

Fig. 4.8 Characteristics of a Dynamical Cluster State Quantum Computation Circuit. Input
register (in orange) and state-hopping mechanism (in blue with intermediate physical qubits
in grey) are two such interesting aspects of this model
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Information Flow
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Fig. 4.9 Dynamical Cluster State Quantum Computation. The ® represents measurement in
o, basis while the arrows represent measurements in the oy basis. The ¢, basis measurements
remove the elements from the lattice while a chain of o, measurements creates an information-
carrying ‘wire’

° ° ° 'Y ° ° ENTANGLER

CLUSTER Basis READ-OUT ELEMENTS

Fig. 4.10 Generalized Circuit for Dynamical Cluster State Quantum Computation has three
primary elements: the cluster input that constitutes the physical basis for the creation of the
cluster state, the ‘entangler’ that creates entanglement between the various elements of the
cluster and the readout section that measures elements in the cluster to enact the various
quantum computation operations and algorithms on the cluster
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I

L L]

Fig. 4.11 Readout Elements. The Yellow Elements are active while the Black Elements
are inactive. With a combination of active and inactive read-out elements, one can enact a
quantum computation operation






Chapter 5

Decoherence-free Subspaces, Quantum
Communication and Quantum Memory

“Quantum computation is...nothing less than a distinctly new way of har-

nessing nature.”
— David Deutsch

Having established the significance of quantum entanglement, ways of generating and char-
acterizing it, the most important step in the realm of quantum computation is the application
of quantum entanglement in quantum information processing. The vector states associated
with the SWAP!/" gates belong to a number of families and classes of quantum states, be it
maximally entangled states (like the Dicke States) or partially entangled states (like Cluster
States). Each of these families and states have the potential to be used for different kinds of

quantum information processing tasks.

In this chapter, some of the key tasks will be investigated. This includes Decoherence-
Free Subspaces (DFS), Cluster State Quantum Computation, Quantum Key Distribution

(QKD) and Quantum Communication protocols, using the states found as part of this project.

5.1 Decoherence-Free Subspaces

A decoherence-free subspace is a subspace of Hilbert space of a system that remains in-
variant to non-unitary dynamics [161, 88, 301]. The system is kept decoupled from the
environment and therefore its evolution is completely unitary. Decoherence-free subspaces
can be characterized as a special class of quantum error correcting codes (QECC), as shall be

highlighted later in this chapter. These subspaces isolate quantum information and thereby
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prevent destructive or noisy interactions with the system’s environment. These subspaces
are an important conceptual and physical tool in quantum information, and are found to
be useful when coherent control of a quantum system is required. Loss of coherence of
quantum systems is called decoherence and takes place due to the interaction of a quantum
system with uncontrollable degrees of freedom of the environment of the system. Since
quantum computers cannot be truly and entirely isolated from their environment and thereby
information can be lost due to decoherence, the study of decoherence-free subspaces is of

utmost important for the implementation of quantum computation in the real world.

As per the definition of Decoherence-free subspaces [88], if we consider the dynamics
of a system S coupled to a bath B and let the system evolve unitarily under the combined
system-bath Hamiltonian

H=Hs®Ip+1IsQHp+ H; (5.1)

where Hg and Hp are the system and bath Hamiltonians respectively. Is and Ip are the identity
operator on the system and bath respectively. The last term in the hamiltonian denotes the

interaction Hamiltonian
H =Y Sa®Bgy (5.2)
a=1

where Sy and By, act solely on the system and bath respectively.

The evolution in a subspace H of the system Hilbert space .77 is unitary for all possi-
ble bath states iff

1. The following condition holds true

Sa’l’/>:a(x’w>,aaec (5.3)

for all states |y) that span  and for every operator Sq in Hj.

2. Interaction operators S and B are decoupled initially.

3. Hs|y) has no overlap with states in the subspace that is orthogonal to .
Then the subspace A is called a decoherence-free subspace of J7.

To illustrate the idea of decoherence-free subspaces, let us take the example of one of the key
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quantum gates in this project: the v/ SWAP quantum gate in the interaction Hamiltonian for
the idea of Decoherence-free subspaces,

Hyp = (|0)(0) @ (10)(0]) + (|1){1]) @ (1) (1]) +%(1 +0)(10){0]) @ ([1)(1])

+%(1 +)(11) (1)) @ (10){0]) + %(1 —)(I1)(0)) @ (|0)(1]) +%(1 = )([0)(1]) @ ([1){0])
(5.4)

These terms can be written in the form

HAB - ZtaAaBa,ta < C (55)
a

We have Aq = {[0) (0, [1)(1],]0)(1],[1)(0
we take these as our vectors |Y;), and our single qubit operators as Hy /Hg = Y kG, fx € C,

}, and the eigenvectors for Ay, are %(|O> +11)). If

we see that the single qubit operators operating on the eigenvectors keeps them in the same
‘good’ subspace. Thus, the decoherence-free subspace for two qubits for the /SWAP is given
by

1
DFS sip, = Span{_=(10) 1))} (5.6)

Using these calculations for any power of SWAP, we can see that this is the DF'S for all such

systems. The reason this works for two qubits is because |00) VSWAP, |00), |11) VSWAP, 111)

and Span{|01),10)} 222 Span{|01),]10) 1.

Now, if we take the system A to be one with the operation of the v/ SWAP, connected
to a ‘bath’ with an error-generating operator, we have a three-dimensional decoherence-free

subspace
DFS\/W(Z) = Span{|00)} (5.7)
DFS\/W(O) = Span{|11)} (5.8)
DFS jaap(1) = Span{|01),[10) } (5.9

This follows through for higher number of qubits (and other Powers-of-SWAP gates) as well,
since the v/SWAP has a symmetry under parity. For an N-qubit case, the space spanned by
vectors with the same number of |0)’s and |1)’s is decoherence-free. We can look at this at
greater detail using elements of the Spin-Boson Model [302, 303, 301].
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In this model, N spins form system A and a bosonic field forms the ‘bath’ system B.

We have a hamiltonian of the form

H =

=

Il
.

Y (850 @ b+ 8,07 @bL + 85,07 @ (b + b)) (5.10)
k

1

01 0 —i 1 0
where {o;" = (1 0) ,0; = (i Ol> ,0F = (O _1> } are Pauli operators acting

on the ' spin, by (bZ) is an annihilation (creation) operator for the k" bosonic mode,
and ggk are coupling constants. The Hamiltonian above describes a general interaction
between a system of spins and a ‘bath’ of bosons, exchanging energy through the terms
g;fkcl* Qbr+g;,0; ® bz, and changing phase through the gi £ OF @ (bx+ bZ) term. As
it stands this hamiltonian does not support a decoherence-free subspace: there are
3N Ag operators when comparing to Eq. (5.5), the N triples of local si(2) algebras
{o",07,0%}, each acting on a single qubit, and therefore having a two-dimensional
irrep. The overall action of the total Lie algebra is represented by the irreducible N-fold
tensor product of all local two-dimensional irreps, which means that there are no
one-dimensional irreps. This violates equation (5.10), since that condition is required
for any index « , and thus this hamiltonian has no decoherence-free subspace.

This is no longer the case when a permutation symmetry is imposed on the system-bath

interaction,
Sik =8k (5.11)

This is often called the collective decoherence case. We can now define the Hamiltonian
as
H=Y Aq®By (5.12)
o

where A = YV | o’ By = g,jbk, B_ = gk_bz and B; = g (bx + bZ) The important
part is that now the A, form a global s/(2) angular momentum algebra: [A;,A_]| = A,
and [A;,A+] = 2A.. This forms a highly reducible 2V x 2V representation formed by
the action of the A, operators on all N qubits at once. Since s/(2) is a semisimple Lie
algebra, Eq. (5.10) tells us that the decoherence-free subspace for this system is made

up of those states |y) that satisfy

Aqy) = 0Var (5.13)
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These are states with zero total angular momentum, the ‘singlets’ of the s/(2) Lie
algebra. Their explicit form is well known for the case N = 2, in which case there is

only one singlet:

W) = |s>12:\%(|01>—|1o>) (5.14)
where the notation |s,) denotes a ‘singlet state of qubits 1 and 2’. It is easy to see that
the state

) = @2 1) 2m1.2m (5.15)

is in the N-qubit decoherence-free subspace and there are no decoherence-free subspace
states for N. The method of Young tableaux can be used to derive the dimensionality
formula: 1%, where N is the number of elements and 4 is the hookproduct of the

elements.
N!

¥4+ 1)14

If we look at the encoding efficiency € of the decoherence-free subspace and using

dim[DFS(N)] = (5.16)

Stirling’s approximation for factorials,

e logadim[DFS(N)] 1

N = logs( ) 25 logr(2) =1 (5.17)

G+MHE+DM/
There are a lot of ways to calculate the singlet states for arbitrary N. We could do this by
using group representation theory, using linear algebra or by using angular momentum
addition rules. Let us consider the case of N = 4. The dimensionality formula yields
dim[DF S(4)] = 2, meaning that this decoherence-free subspace encodes one logical
qubit. One of the states is [0z) = |s)12 ®|s)34. The second state that is orthogonal

to the first must be a combination of the triplet states |r_) = |00), |r;) = [11) and
lto) = L\[(|01> +|10)). The combination
2
1
1) = %(IM 12®t4)34 = [t0) 12 ® [t0)3a + [14) 12 @ [1-)34) (5.18)

has total J = 0 and is the second logical qubit. In this manner one can construct total
J = 0 states for progressively, given the dimensions of the logical qubits, higher N.

For two qubits, we see that the subspace spanned by {|00),[11), %(|Ol> +[10))} is deco-

herence free when we have Sy = SWAP!/" in equation (5.2). The case for higher number
of qubits is a little more complex, as can be seen for the three-qubit case: if we take a
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general state with a definite Hamming weight, say $]001) + 7|010) + §|100);3,7,6 € C
that has Hamming weight 1, this is not invariant under the application of a general interac-
tion hamiltonian satisfying the aforementioned conditions. For example, $]001) + y|010) +
81100) S B1001) +(4(1+8) + § (v~ 8))[010) + (1 (y+8) + S (—y+8))]100) £
c(B1001) 4+ 7|010) + §|100))3c € C. We thus see that having a general state with the same
Hamming weight is not invariant under a general interaction hamiltonian, even if all the
coefficients for the vectors in a superposition are equal. We see that the DFS for such states,
given any general SWAP'/"-based system hamiltonian, are specifically the W-states:

DFS, = {|000)} (5.19)

DFS; = {—(|001) 4 |010) 4 |100))} (5.20)

1
V3

DFSy = {—(|011) 4 |101) +|110))} (5.21)

1
V3
DFS; = {|111)} (5.22)

where DF'S; denotes decoherence-free subspace with Hamming weight i.

For the purposes of universal quantum computation, as in the case for qudit-based quantum
computation and invariant-subspace based quantum computation, the fundamental qubits are
encoded qubits that are known as logical qubits. These qubits are encoded in clusters formed
by constituents of a decoherence-free subspace. In this formalism, two types of gates are
needed:

1. Gates that perform operations within a Decoherence-Free Subspace

2. Gates that link two or more Decoherence-Free Subspace clusters (which encode
logical qubits)

5.1.1 Stabilizers for Decoherence-Free Subspaces

As mentioned in the last section, we would like to find a set of universal gates for computation
based on decoherence-free subspaces, with an emphasis on the exchange interaction and the
associated SWAP'/". In order to identify such a set of fault-tolerant gates, we can reframe
the definition of a decoherence-free subspaces into a stabilizer formalism. We define the

Decoherence-free Subspace stabilizer . as a set of operators Oy which act as identity on the
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Decoherence-free subspace states
Oyly) = |y)VO, € .7 (5.23)

if and only if the state |y) is in a decoherence-free subspace. Here 7 is an index that can be

discrete or continuous, while . forms a finite set or group.

A general error process can be described by Kraus operator-sums [83]:
p— Y AupAj (5.24)
u

These (Kraus) operators Ay can be expanded in a basis €; of ‘errors’, which exist in two

types:
(1) Errors that anticommute with stabilizer codes in . and require active correction.

(ii) Errors that constitute the stabilizer & € . and do not affect the code.

Quantum Error Correction Codes (QECC) are designed primarily to deal with the first kind
of errors but they can also be regarded as decoherence-free subspaces for the errors that are
part of their stabilizers. Conversely, decoherence-free subspaces are designed to tackle errors

of the second type but can be used as Quantum Error Correction Codes against type (i) errors.

Using equation (5.3), we can write (So —aq )| W) = 0. A general case could have a summation
over the index: Y o(Sq — aq)|w) = 0. Taking the exponent of this operator and operating on
the state,

explY (Sa—aad)||W) = |¥) (5.25)

(04
This is the condition given in equation (5.22). But instead of equating the two, we introduce
a parameter pq such that

= exp[Z o —aal)pa)|W) = |¥) (5.26)

Thus a natural link between decoherence-free subspaces, stabilizers and quantum error cor-

rection codes emerges.

Coming back to the question of allowed gates, going by this stabilizer picture, we have

to identify gates that take code words to code words and that transform the stabilizer into
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itself. Let |y) € A and O(7)|w) = |w). For an allowed gate, the associated operation U
must be in this subspace .77 as well: O(7')(U|y)) = (U|w)). This can be re-written as:

vo(P"U ) =) = 0[P (P)llv) (5.27)

where [7/( )] denotes a functional of 7 and O[ ()] must cover .. Daniel Gottesman
[304] showed that if . is a unitary group then the set of allowed operations is the normalizer
of ..

We note that so far we have required only that the action of the gate-operator must pre-
serve the subspace at the conclusion of the gate operation. There is no condition on this
during the duration of the gate operation. Bacon et al [88] proposed a stronger requirement
that the state of the system must stay inside the decoherence-free subspace during the en-
tire operation time of the gate. Rewriting the composite operator in equation (5.26) and

considering a general time-dependent case:

Ut)o(p')=o[7 (P)U(t) (5.28)

Since quantum gate-operators are realized using hamiltonians H: U = e~f", we use this idea

in equation (5.28), differentiate with respect to time and evaluate at time t = 0,

HO(P')=0[7'(V)H (5.29)

This gives us a sufficient condition for the generating Hamiltonian for a gate-operator to keep
the state at all times entirely within the decoherence-free subspace that was first given by
Bacon et al [88].

5.1.2 Decoherence-Free Subspaces for Exchange Interaction

Let us consider the dynamics of N interacting spins that are collectively coupled to an
environment with each spin experiencing the same interaction with its environment. We can
) (i)

then write Sq =) ; G&i with 6, denoting operation on the i qubit. If we expand these

operators, they look like the following for an N-qubit case:
S, =0,Rh2®.. Q0L+ hyxy R0, X ... QL+ ...+ hyr X2 X ... ® Oy (5.30)

Sy = Oy RDhy2 X ... DLy« —|—12><2®O'y®...®12><2+...—{—12><2 ®12><2®...®Gy (5.31)

S, =0,03bx2®..00Lx 2+ hxy R0, R..Q00Lhx2+ ... + hxy R Dyr R ... X O (5.32)
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For the condition S |y¥) = aq|¥),aq € C to hold true for each of these forms of S, we must
have states that will give a global and not local phase across the superposition in the operators
Sy, Sy and S;. This is only possible if |y) = |[+) ®|+) ®...® |+) or |-) ®|—) ®...® |—) for
the operator of the form in equation (5.29), |y) = [4+), ®|+), ® ... ® |+)y or | =), ® | =), ®
...®|—), for the operator of the form in equation (5.30), and |y) = |0), ® |0), ®...® |0),
or 1)y ®|1), ®...® |1), for the operator of the form in equation (5.31), where |+) =
%(|O) +|1)) and |£), = %UO) +1i|1)). These can never be simultaneously true. As a
result,

Saly) =0 (5.33)

Using equation (5.33) in equation (5.26),

O(7) = exp[}.(Sa — aal)pallW) = expl Y (~aal)pal|¥) (534)
a a
If we now consider the hamiltonian for the exchange interaction: El|a)|b) — |b)|a), we see
that

O(P)E = exp[Y(~aal)palE = E x exp[}_(~aal)pa] = E x O(7) (5.35)

[0 (04
Thus, given the result in equation (5.29), the operator given by the exchange interaction
preserves the decoherence-free subspace for a ‘collective decoherence’ model. The smallest
number of physical qubits that gives a fully encoded Decoherence-free Subspace qubit
is found to be four [88]. Let us take this case, and consider the states with zero angular

momentum:
01 = 5 (01) ~10)) & (Jo1) — 10) (5.36)

1
V3

Let us now look at the effect of the operation of the various exchange interactions E;;, where

(101) +[10)) ® (01) +10)) +]11) @ |00)) (5.37)

e = = (j00) @ 1)~ 5

the " and j'" qubits are being exchanged.
Ep|0)r — —[0)r, Ena|1)L — 1)L (5.38)

Due to the symmetry of the logical basis states, E34 has the same effect. Looking at the

operation, we can define an encoded Z operator:

Z=—Ep=—Exy (5.39)
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For defining a similar X operator: X|0); — |1)2,X|1), — |0)L is not as straightforward since
no one exchange interaction seems to provide the solution. Therefore, before moving forward
with trying to define this composite operator, let us look at some other cases for the exchange

interaction:

1 1 3
E13/0).— 5(|0101) — [1100) — |0011) +]1010)) = 7 [0} - %mb
1

Ep3|1), — —=(]1001) — =(|0101) 4 [1100) +]0011) + |1010)) + [0110))

3 1
= _§|O>L — §|1>L (5.40)

1
2

(O8]

Again, due to the symmetry of the states, the case for Ey4 gives the same results. Using
operators E1» and E13 (or E34 and E»4), we can define the X operator

_ 1 2 1 2
The ability to implement these primary logical operations is sufficient to implement any gate
in SU(2) on the encoded qubits, by using the Euler angle reconstruction (about any two

orthogonal axes):
exp(—ia)(ﬁ.g))/Z) = exp(—ifo;/2)exp(—ifoy/2)exp(—iao,/2) (5.42)

the resulting rotation is given by the angle @ about the direction specified by the unit vector
n, both of which are functions of ¢, f§ and 6. Mapping (oy,0y,0;) — (X,¥,Z), we can
construct any element of SU(2) in the encoded space by turning on and off the appropriate

exchange interaction.

For two qubit gates, we have to construct slightly more complex combinations of gates.
Let us start with the controlled-Phase shift gate (CPHASE). The idea is to introduce a phase
for the last case and not for any of the others. With some clever usage of the exchange

interactions, this can be done:
(—E12 —E56)(—E12—E56 —2[) (543)

This gives us a phase only for the case for [11);. The CPHASE gate has been pre-
viously realized in a different manner by Bacon et al [88] using the operators: h; =
[Exs, E1z + Ens| + [Eis, Ei2 + Exe),hy = X5 (E1j + E2j) and ¢ = 35[h1, (ha,h1)]. As can
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be seen, our operator is a lot simpler in construction.

The CNOT gate can be realized similarly using two logical qubits. We find the form
of this operator in the encoded space to be

1
E(I—Elz)(—E% —2E57) (5.44)

The CNOT gate has been realized previously with two logical qubits comprising of three
physical qubits as well by DiVincenzo et al [25].

Thus, one can obtain a fault-tolerant universal set of gates using just the exchange interaction.

5.1.3 Fault-Tolerant Preparation, Non-Destructive Ancilla-Based Mea-

surement and Decoding of Encoded States

The |0); can be easily constructed by preparing two pairs of qubits in the singlet state.
The other Decoherence-free subspace states, such as |1);, can be obtained by applying the
appropriate operation, in the encoded space, to |0)z. To verify that a state has been correctly

prepared and to decode the state, we need fault-tolerant measurements in the encoded basis
0)L, [0)L.

By measuring {0}, 67, Gg’ , Gf } on the physical qubits, we can distinguish the logical qubits.
However, this operation destroys the Decoherence-free Subspace state. We can resolve this
problem by using ancilla qubits in the process. For instance, to perform a fault tolerant and

non-destructive measurement of Z, we initialize the ancilla qubits to the state

|Wanc> = |0>L (5.45)

Thereafter, we perform an encoded CNOT gate between the decoherence-free subspace state
|y,) and the ancilla qubits:
CNOT
’Xq7yanc> EE— |Xq, (xq —I—yanc)mod2> (5.46)
This encoded CNOT gate can be constructed either by using the universal gates defined earlier
in this section or the direct implementation of a logical CNOT gate. If we now perform a

destructive measurement on the ancilla qubits, we obtain a nondestructive measurement of Z.

We can prevent possible uncontrolled error propagation due to an incorrectly prepared ancilla
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by preparing multiple |0), ancillas and applying CNOT gates between the Decoherence-free
subspace states to be measured and each ancilla. Along with majority voting this provides a
fault-tolerant method for measuring Z. This method can also be used to verify that a state |0)
has been prepared correctly and in a fault-tolerant manner.

5.1.4 Error in Implementation of SWAP'/" Gates

Let us say that our operator for a certain quantum computing task is a specific SWAP!/m
and there is error due to imperfect realization of the same, say due to incorrect timing of
operation, potentially giving rise to an arbitrary SWAP'/" operator with ny # n’. For states
|00)/|11), the state remains unchanged for both the operator and source of noise. The same
goes for the Bell-basis with Hamming weight, except for a global phase in the singlet state.
Thus there is an inherent robustness against imperfect realization of SWAP!/ gate using
the concept of decoherence-free subspaces. In this section, we briefly saw how exchange
interaction leads to change in entanglement pattern of the states. This concept can be used, as
entanglement swapping, for other tasks in quantum information processing, such as quantum
communication.

5.2 Quantum Entanglement Swapping using SWAP'/" and

Quantum Repeaters

In the realm of quantum information processing, entanglement swapping plays a major role
in helping generate entanglement in remote particles. Let us say we start with the n-qubit
state

|win) =(010101...01) (5.47)

Now if we have pairs of qubits locally made to undergo exchange interaction, we shall get a
series of entangled pairs. If the operator is the v/ SWAP and we have even number of qubits,

we will have
Vi) = (%(1 +i)lon) +%<1 —i)|10))...(%(1 +i)lo1) +%(1 —i)[10)) (5.48)

Thus, we have qubit pairs 12, 34, 56, 78, ... , (n-1,n). We found that if we now use exchange
interaction on the pairs 23, 45, 67, 89,...,(n-2,n-1), and then perform single qubit measure-
ments on all qubits from qubits 2 to n-1, we invariably entangle qubits 1 and n. Interestingly,
due to the symmetric way in which the state decomposition over vector states takes place,

the entanglement between qubits 1 and n is always maximal! Thus, using such smaller
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units (pairs) of entangled qubits, we can generate maximal entanglement over more complex
structures and longer distances. Using this, we have found a variant of the conventional

quantum repeater protocol by using exchange interaction instead of projective measurements.

Even though both Bell-measurements (as used in conventional repeater protocols) and
realization of exchange interaction (as in our model) have associated errors, our protocol
is particularly useful for systems that give rise to the exchange interaction, such as in spin-
systems and quantum dots. The maximally entangled state formed in our protocol between
qubits 1 and n can be used for various quantum information processing tasks. This is particu-

larly useful for quantum communication protocols.

5.3 Quantum Communication Protocols

Quantum communication is the process of transferring an arbitrary quantum state from one
place to another. One of its most important applications is Quantum Key Distribution (QKD),
which is very important in quantum cryptography. Traditionally photonic systems have been
the most popular for the realization of quantum communication. For the simple exchange
of quantum information between the elements of a quantum information processing system

over small distances, spin dynamics can help in realizing quantum communication protocols.

5.3.1 A Stationary-Qubit Communication Model

One of the most popular communication models in classical communication is the bus-based
model. In this model, the bus/register is the primary unit of information processing and
information is mediated between buses using flying bits. In the world of quantum informa-
tion processing, this has traditionally been done by carrier particles such as photons. As
part of our project, we observed the short-range and yet effective mediation done by the
exchange interaction in spin-systems. In our stationary-qubit model, we have an integrated
computing-and-communication system. Each computation unit comprises of an array of
spins being driven through channels, such as electrons driven by surface acoustic waves in

semiconductor heterostructures, and made to interact at specific locations in the system.

This leads to rapid development of entanglement in this computing unit. Now, we have a

bunch of particles in an intermediate unit that is kept away from the computing unit, until
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they are required for mediating in the communication protocol. When this is so required, one
particle from the computing bus-unit interacts with the ’flying’ qubit, which subsequently
interacts with other ’flying qubits’ and finally with another computing bus-unit (and its
qubits). In this manner, information is transferred from one computing bus-unit to another. A
simple model in this case would be one where there are a finite number of *flying” qubits, say
one, for instance. Let us tag this qubit as F;. Let there be a target qubit in a second bus-unit,
tagged B;. Let the *flying” qubit F; and bus-qubit B; be initialized to |+) = %(|O> +11)). If
the state on the qubit from the first bus (let us call it By) that is interacting with the flying
qubit is in the state |yp,) = «|0) + B|1), and we operate two distinct Power-of-SWAP gates
between |y) and Fj, and between F; and B;, we have

|WB,FiBy) = %(I0>|0>(06|0> (a(+)2+a(+)i(=)2+B(=)i(=)2)I1))
FOD ((a(=)2 + a(+)1(+)2 + (=)1(+)2)|0) + (e (+H)1 + B(=)1) 1))

+1D10)((oe(=)1 +B(+
+[DH[1)

1

JI0) + (o (=)1(+)2+B(F)1(+)2+B(—)1)[1))
((ot(=)1(=)2+B(H)1(=)2+B(+)1)]0) +B[1))) (5.49)
where (£); = J(1£e™/™)

This model, however, has some associated problems: firstly, the tuning of the interac-
tion for the *flying’ qubits has to be very precise and localized to the area around a qubit in a
manner that does not affect or influence the other *flying’ qubits. As can be seen from the
form of the state, there needs to be a great degree of control for this communication protocol.

Secondly, errors could also arise with greater numbers of such interactions.

5.3.2 Communication using a Chain of Stationary Spins

A natural extension that could take place would be if the interactions between the qubits in
a chain are non-changing and not controllable, and we cannot apply any control fields to
the qubits. Such systems where a large collection of spin are permanently coupled can be
found in bulk materials. These mutual interactions of spins makes them either tend towards
being aligned or anti-aligned with respect to each other, resulting in phenomena such as
anti-ferromagnetism. The term spin chain describes a large class of materials wherein the
spins are arranged in a one-dimensional lattice and are permanently coupled to each other
(with the interaction strength decreasing with distance usually). In the spin-chain model, we
extend the communication model from the single qubit as initially defined to a collection of

"flying’ qubits that transmit a certain amount of information.
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We start our protocol with the initialization of the spin chain, say with all the states in
the state |0)
|y) = |000000...0) (5.50)

We choose the couplings between the qubits in the exchange interaction

H=Y Jsis, (5.51)

i,J
in such a manner that initialization of the spin chain to such a state is easy. For instance, if in
the exchange interaction, we take the coupling constant such that J < 0, we get the case of
the ferromagnets, where the ground state in a magnetic field has all the spins oriented in the
direction of this external field. Much like in the case of the single qubit mentioned above, in
this slightly more involved protocol, a user Alice places an arbitrary quantum state at one

end of the spin chain.

Let us say that Alice is on the N'* site and Bob is on an arbitrary site b on the site. For
instance, if Alice’s state is \%(!0) + 1)), then the state of the spin chain is

Vi) = —
Yin -2

The natural evolution of this spin-chain leads to the state propagating as well being dispersed

(1000..0) 4 [000..01)) (5.52)

along the chain. Let us define the states

lwi) =(1000..0) (5.53)
ly) =1(0100..0) (5.54)
lyi) = [000..01) (5.55)

Due to the Hamming-weight preserving symmetry of the exchange interaction, as discussed
previously, the state |y;,) can only evolve into a superposition of the various |y;) as defined
above and |0000...00). As a result, the state of the spin changes at various points in the chain
and also at Bob’s end. Bob now has to choose an appropriate time to obtain a state that is as

close to Alice’s state as possible,

1
| Whon) = —2(|000--00> +|w)) (5.56)
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The state of the spin at the site b will, in general, be a mixed state. The resultant output state
can be obtained by the partial tracing off of all the spins at the other sites. We find the final
output state by evolving the initial state defined in equation (5.22),

1

[Wour) = (e (—=(1000..00) + [ yw))) ) (5.57)

S

2

where |@) are all possible N qubit states. Practically, in this example, only states with

Hamming weight one will remain. The mixed state density matrix is given by

P = Trizs. (nv—1)|Wour ) (Wour| (5.58)

The transition amplitude depends on the factor (b|e~#!|N).

5.4 Quantum Memory using SWAP'/" Gates

Computation, without memory, is not as optimal and efficient, and quantum computation
is no different in the case of most algorithms and information processing tasks. This is
particularly required in the context of quantum communication, and a way to realize this,
which follows from the previous discussion on quantum communication protocols using a
medium that has constant coupling constant that is always operational, has been formulated
by us, as part of this project.

Let us take the simple case of a system that has three components: the qubit(s) to be stored

Saei)  Se)e) SaNm

A B(1) B(2) B(N]) M
K J

V

Memory Bus

Fig. 5.1 llustration of linear Quantum Memory using SWAP'/" with one input and output
qubit, along with an N-qubit memory bus

(Q4 at location ‘A’ in Figure 5.1), the 'memory bus’ and the qubit(s) in which the information
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is to be stored (Qyy at location ‘M’ in Figure 5.1). The simplest example would be when the

memory-bus is initialized to the state

W) = |000...00) (5.59)

Let us have the initial states of qubits Q4 and Qyy as: |y4) = |1) and |yys) = |0). An impor-
tant point to note here is that though the couplings Sp(;)p(j),i 7 j are operational always, the
SWAP'/"-based couplings Sxp(1) and Sp(y)y are operated only when required.

We begin our protocol by switching on the couplings Sy p(1) and Sp(y)p- Due to the Hamming-
weight symmetry of the SWAP'/", the evolution of the states based on the couplings leads to
a superposition of states with the same Hamming weight. We can select the couplings and

time such that we reach a state as close to the quantum state:

|WaB(1)B(2)...8(vym = 000...001) (5.60)

The simplest case in this is when the quantum-bus is represented by a single qubit. If we
begin with switching on the coupling between Q4 and the memory-bus, keeping the coupling
between the memory-bus and Qp switched off. One can realize the SWAP gate by continuous
operation of the coupling giving a state |Yyp (1)) = |01). We now shut off the coupling Syp(1)
and switch on the one between the memory and the qubit Qp. The SWAP gate is realized and
state transferred to Qp, completing the protocol.

More complicated circuits and systems can be implemented, including those with multi-
ple storage qubits attached to the memory-bus. In the example shown in Figure 5.2, we
can start with the state |Wy(1)4(2)8(1)B(2)B(3)B(4)M(1)m(2)) = [11000000). Using appropriate
coupling and time of interaction, we can reach the state |Wy(1)4(2)8(1)B(2)B(3)B(@)M(1) M(2)> =
|00000011), which completes the protocol.
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SA[Q)B{Z)

B(3)

SA{I)B(I)

SB{I}IB{Q}I

B(1) B(2)
SB{4)M{2)
SB{S)M{I)

M(1) M(2)

Fig. 5.2 Illustration of branched Quantum Memory using SWAP'/" with two input and two
output qubits, along with a four-qubit memory bus
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Conclusion

In this project, we have worked on the generation, characterization and application of quan-
tum entanglement using the SWAP'/ Operator, realized with the Heisenberg Hamiltonian.
The Heisenberg Hamiltonian is ubiquitous in nature and where, on one hand, the SWAP
operator (which can be realized using the exchange interaction) is largely ineffective in
generating entanglement, on the other hand, the partial SWAP operators - the SWAP!/" gates
are found to be efficient in entanglement generation, with the v/SWAP having the highest

entangling power among all Power-of-SWAPs.

For the generation of entanglement, we have looked into numerical as well as analytic
methods, supported by simulations of the physical systems, to generate vector states using
the SWAP!/" Operator. The central question that was tackled in this phase of the project
was regarding the kinds of quantum states that are accessible by just the application of the
SWAP'/" gates on a general quantum state. The approach to resolve this central problem was
firstly done using numerics and algorithms like Heap’s algorithm. Since multiple SWAP'/"
Operators are non-commutative in general, the problem assumes a complicated structure,
and given the expontential scaling of the complexity of the problem with the addition of
qubits, numerical approaches were found to be inefficient for higher number of qubits in the

quantum system.

Having seen that numerical methods could not help us solve this problem beyond a point,
we began employing group-theoretic methods to tackle this problem. This was done after
seeing that the group of multiple SWAP'/" gates is isomorphic to the Symmetric Group §,,.
The vector states for the groups for three, four, five and six qubits were found using the
Cayley-tree formalism as well as the null-space formalism. General trends were found and

some of the characteristics of higher-dimensional vector-states were highlighted, including
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the presence of one-dimensional invariant subspaces that were spanned by the W-states/Dicke
states. We also evaluated the number of invariant subspaces, the symmetry properties of
vectors spanning them as well as entanglement patterns in each subspace for the cases of
few-qubit systems as well as larger systems.

The characterization of the entanglement generated in these systems was done using tests
for separability as well as those for entanglement. For the former, we looked into three
distinct ways of tackling the problem: a graphical method of separability characterization, the
classical approach to separability and the use of permutations and permutation symmetries
to characterize separability. The ‘thread-and-bead” model is a simple graphical method that
we proposed to easily gauge the separability ‘nodes’ as they emerged for the various cases

analysed using this method.

The classical approach to study separability including the comparison method and par-
titioning algorithm, both of which were found to be comprehensive methods of analysing
separability. Lastly, local permutations within confined subspaces and in the entire Hilbert
Space were found to yield interesting entanglement witnesses and tests for separability. In
this section, we then looked at the entanglement characterization using three tools: SWAP!/
operator itself as an entanglement witness, application-based ’distance’ measures and the
‘engle’ that was created to overcome the problems faced by traditional algebraic entanglement
witnesses such as the tangle and concurrence. The application-based ‘distance’ measures
we based on quantum information tasks such as quantum teleportation and communication

protocols, while the idea of the ‘engle’ was based on the symmetry within entangled states.

The application of the entanglement generated was in three-major areas. We studied and
independently devised ways to realized quantum computation using the exchange interaction
and the SWAP!/" gate. This included the circuit-based model, the cluster-state model, the
qudit-based model, the functional model and the decoherence-free subspaces based model
of quantum computing using SWAP'/". A few vital changes in these models included a
more comprehensive approach to devising the cluster-state model for exchange interaction,
beginning with group-theoretic ideas, and moving from a qubit-based to a qudit-based model

for functional quantum computing.

We looked closely into the creation of decoherence-free subspaces using exchange interaction,
including looking at the possibility of faulty realization of SWAP!/" gates that would leave

the decoherence-free subspaces unaffected. These subspaces provided us with a robust and
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noise-proof resource for quantum information processing. We also studied the concept of
entanglement swapping using SWAP!/ operator that was shown to be useful for the purposes
of realizing quantum repeaters and quantum communication protocols. Last but not the least,
we devised a simple model for quantum memory based on the exchange interaction and
SWAP'/" 50 as to be used with the other elements devised and studied in this project, thereby
completing a set of basic quantum information processing elements using the exchange
interaction and SWAP!/" gates.

Thus, using the concept of entanglement generated by SWAP!/" Operator, we have explored
certain key, relevant ideas related to entanglement and quantum information processing.
A possible future direction of study, extending this work could be in contributing more
to the entanglement characterization and looking at the various other applications of the
entanglement generated in such systems, such as in quantum cryptography.
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Chapter 7
Appendix 1: Vectors States

We find the vector states for the various number of qubits in our systems.

7.1 Three-Qubit Vector States

For this system, the magic-vector states are found to be as follows

ly) = \001+1100 \[|01o (7.1)

yo) = f(\001—1100>) (7.2)

lys3) = \011 +110)) \[|101 (7.3)

1) +]11 4

Iu/4> ﬂ( 011) +[110)) (7.4)

lys) = |000) (7.5)

—(|001) + [010) + [100 7.6

!w6>\f(\>!>|) (7.6)
1

Iy = 7(|011>+|11o>+|101) (7.7)

[wg) = [111) (7.8)
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7.2 Four-Qubit Vector States

|1>:%(|o111>+|1011>+|1101>)—\/—§|1110>
V2
2) =Sl + 7(|1011>+|1101>)
3) = %<|1011>—|1101>)
4) = %(—mou) —10101) + [0110) — [1001) + |1010) + [1100})
5) = f(2’0011>+ |0101>+|0110)—\1001>—-]1010>——|1100>)
]6):§(|0011>—|01()1)+\1010>—]1100>)
V3 1
7)== 5710001) + = (0010} +[0100) + |1000))
L V2
|8>_\/_(|0010>+|0100)) f|1000)
9) = \ﬁ(\0010> —10100))
110) = }(2yoon>+ 0101) 0110} 1001} + 31010) + 3[1100))
[11) = 5(10011) ~ 0101) — [1010) +[1100))
112) = [0000)
13) = 5(10001) +[0010) +[0100) + 1000))
114) = —(|0011) + [0101) + |0110) + [1001) + 1010} + |1100))

7
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116) = |1111)
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7.3 Five-Vector Vector States

1) = (—|00111) —]01011) 4-]01101) + |01110) — |10011)

1
3v2
L g1100y) (7.25)

+|10101>+|10110)+\11001>+|11010>)—ﬁ

1
2) = £(101011) ~ [01101) + [10011) ~ [ 10101))

1
+3(~00111) 4 [01110) + [10110) + |11001) ~2[11010)) ~(7.26)

1
3) = —(—]00111) — (11001 ——(|01011) +|01101) + |10011) + 10101 7.27
3) \/5( | )—| )+ \/—(\ )+ )+ )+ )) (7.27)
1
4 —(]01110) 4+ (10110)) + —=(—(01011 01101) +1{10011) + (10101 7.28
4) = \/—(\ )+ ) 2\/—( | ) —| )+ )+ )) (7.28)
5) = %(—yomm +101101) + [10011) — [10101)) (7.29)

These states {|1),]2),|3),|4)and|5)} form the first family of vector states associated to Ss

symmetric group.

16) = 7(yoo1o1> +]00110) 4 [01001) +]01010) — [01100)
1
+]10001) +|10010) — |10100) — |11000)) — ﬁ(|00011>> (7.30)

1
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7
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1
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Sl Sl
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These states {|6),]7),8),|9)and|10) } form the second family of vector states associated to

S5 symmetric group.

1
11) = ——(|00010) 4 [00100) -+ [01000) + 10000 00001 7.35
[11) 2\/§(| )+ )+ )+ ) — \/—| ) (7.35)
112) =~ (100100} + 01000) + [10000)) — ¥ [00010) (7.36)

2\/_ 2 '

1 2

13) = ——(|01000) + [10000)) — 1/ =[00100 7.37
13) = 2 01000)+ 10000)) /2 00100 1.37)
114) = L (Z101000) + |10000)) (7.38)

V2
These states {|11),]12),|13)and|14)} form the third family of vector states associated to S

symmetric group.

1

3
|15) = —\/;(—\OOOIU —100101) — [01001) —[10001))

2

1
+\/—1_5(|00110>+|0101o>+|01100>+|1001o>+|1o100>+|11000>) (7.39)

1 1
[16) = ~500011) + 3(~[00110) —[01010) + 01100} —10010) + [10100) + 11000))

1
+2(100101) + 01001) +[10001)) (7.40)

17) = 7(|01001> +101010) — [01100) + 10001} + [10010) — |10100))
2
+§(—|oo1o1>—\oono>+ynoo>) (7.41)
1
18) = —=(~[01001) —[01010) —01100) +[10001) +[10010) +]10100)) (742

These states {|15),|16),|17)and|18) } form the fourth family of vector states associated to
S5 symmetric group.

19) = ——=(|01111) +[10111) +[11011) +|11101 11110 7.43
19) f(l )+ [10111) +[11011) 4 |11101)) — \/—| ) (7.43)
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! V3
|20>_m(|01111>+|10111>+|11011>)—7|11101> (7.44)
1 2
21) = —(|01111 10111)) — 4/ z|11011 7.45
o1 = qonn + o) - 2oy (1.45)
1
22) = —(|01111) — |10111 7.4
22) = (o111 - 10111) (1.46)

These states {|19),]20),(21)and|22)} form the fifth family of vector states associated to Ss

symmetric group.

123) = ——(|00111) +[01011) +[01101) + 1001 1) + |10101) + |11001))

ﬁ‘h‘
()]

1 /3
+ 5\/;(—\01110) —]10110) — |11010) —|11100)) (7.47)

1
[24) = 5(100111) +[01011) — 01101) +[10011) —[10101) —| 11001))

1

1
+ ¢ (101110) 4 [10110) + [11010)) — 7 [11100) (7.48)

N

1
25) = 3—\/2(—\01011) +101101) 4 [01110) —|10011) + [10101) +|10110))

—I—?(\OOIH) —]11001) — |11010)) (7.49)

1
V6
These states {|23),]24),|25)and|26)} form the sixth family of vector states associated to S

symmetric group.

26) = —(|01011) +[01101) 4 [01110) — |10011) — [10101) — [10110))  (7.50)

127) = [00000) (7.51)
1
28) = ﬁ(\oooow +100010) +00100) + |01000) + |10000)) (7.52)
1
29) = ——(|00011) 4 [00101) 4 [00110) 4 [01001) +- [01010
29) \/ﬁ(l )+ )+ )+ )+ )

+]01100) + [10001) + |10010) + [10100) + |11000))  (7.53)
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1
30) = ——(|00111) 4 [01011) +]01101) + [01110) + 10011
30) \/ﬁ<| )+ )+ )+ )+ )

+]10101) + [10110) + |11001) +[11010) 4 [11100))  (7.54)

|31>_7(|01111>+|10111>+|11011>+|11101>+|11110>) (7.55)

32) =[11111) (7.56)

7.4 Six-Qubit Vector States

3 1 /3 1 /3 1 /3 1 /3
——\/j|000011>+—\/j|000101>+—\ﬁ|000110>+—\ﬁ|001001>+—\ﬁ\001010)
\[\010001 \/7|010010 \[1100001 \[|100010

+— L (~|001100) —010100) — [011000) — [100100) — |101000) — [110000)) (7.57)

2V15

3 1
[2) = ~1000101) + - (000110) + [001001) - [010010) + |100001))

1
+ E(—]OOIOIO) —1010010) — |100010))

1
6(\001100>+\010100> 1011000) + [100100) — [101000) — |110000)) (7.58)
3) = 1(—\000110))+ ! (]001100) 4 [001100)
V2 32
+(010010) -+ [010100) — |011000) + |100010) + | 100100) — [101000) — |110000))
(7.59)
1 1
4) = —(—]001001)) + ——(|001010) + [001100) — |110000
|>ﬂ(| )) 3\/§(| )+ )= )

1

+ ——(|010001) 4 |100001
2ﬁ(l )+ )

+——(—]010010) — [010100) -+ |011000) — |100010) — |100100) + |101000)) (7.60)

1
6v/2
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1
5) = 5(~2|001010) +[001100) +[010010) + [100010) — 110000))

1
+¢(~1010100) + 011000) — [100100) +[101000)) (7.61)

1 1

6) = —=(—[001100) — |110000)) + —=(|010100) + |011000) + [100100) + [101000

\>\/§(! )~ | ) 2\@(! )+ )+ )+ (2)2)
7.

1
17) = 5\/2(—10100()” +1100001))

1
+——(]|010010) 4 [010100) -+ |011000) — |100010) — |100100) — |101000)) (7.63)

2V6
1 1
8) = —(—[010010) +|100010)) + —— (|010100) +|011000) — [100100) — |101000
|>\/§(| )+ >)2\/§(| )+ )| )| )
(7.64)
1
9 = 5 (~1010100) +(011000) +[100100) — 101000)) (7.65)

This forms the first family of 9 vectors.

1 /3
[10) = 51/ 55(~1000111) —|001011) —[010011) —[011100) —[100011) | 101100)

—1110100) — [111000)) + ——(J001101) + [001110) + [010101) +|010110)

1
V30
+]011001) + [011010) + |100101) + [100110) + |101001)

+[101010) +[110001) +|110010)) (7.66)

1 1
11) = —=(—]000111) —|111000)) + —=(—|001101) +-{001110) — [010101
[11) = 5 5(~1000111) ~[111000}) + - (~|001101) +[001110) — 010101)

+1]010110) 4 |011001) — [011010) — |100101) +|100110) + [101001) — |101010)

+[110001) — |110010)) + —=(|001011) +]010011)

1
6v/2
+|011100) 4 |100011) 4 |101100) + [110100)) (7.67)
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1 1
[12) = 5 (~[000111) — [111000)) + £(/001011) +[001101) — 001110 +010011)

+1010101) —|010110) — [011001) 4 |011010) 4 [011100) + [100011) + |100101)

—[100110) — |101001) + |101010) 4 [101100) — |110001) + [110010) + | 110100))
(7.68)

1
[13) = 2(~|001011) —[001101) +- 001110} +|110001) —[110010) — |110100))

1
+¢(1010011) +]010101) —[010110) —[011001) +[011010) +-[011100)

+]100011) + |100101) — |100110) — [101001) + [101010) + |101100)) (7.69)

2 1

114) = \/T_(—|001011> —[110100)) + 3—\/§(|001101> —[001110) +]010011) +|011100)

1
+|100011>+1101100>—|110001>+|11001o>)+6\—@(—|01o101>+1010110>

+]011001) — [011010) — |100101) +[100110) + [101001) — |101010))  (7.70)
1 1

15) = —(|001101) — [001110) — |110001) — |110010)) + ——=(|010101) + [010110

|>\@(| ) —| )= ) —| >>N5(| )+ )

+1]011001) +[011010) +100101) + |100110) 4 |101001) 4 [101010)) (7.71)

1
|16) = m(—!010011> —|010101) 4]010110) — [011001) +[011010) +|011100) 4-[100011)

+]100101) — |100110) 4 [101001) — [101010) — [101100)) (7.72)

1 1
17) = —(—[010011) +[011100) + [100011) — [101100)) + —~
|17) \@( | )+ )+ )= ) e

+1]011001) — [011010) — [100101) + [100110) — [101001) + [101010)) (7.73)

(1010101) — |010110)

1
18) = —=(—|010101) —|010110) +|011001) + |011010
18) = 5 (~1010101) 010110} +]011001) + (011010}

+]100101) + |100110) — [101001) — |101010))  (7.74)
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These nine vectors form the second family for S6.

1 /3
119) = Z\@(—|011101> —]011110) —[101101) — [101110) — |[110101)

1
—[110110) — |111001) — [111010)) + —~(|001111) + 010111
| )~ )~ Wit )+ )

3
+!011011>+]100111>+|101011>+|110011))+\/;\111100) (7.75)

20) =

—~

1
4 (-1011110) —[101110) — [110110) — [111001) +3111010))
+—(/001111) 4 [010111) — [011011) +[100111) —[101011) —|110011))

N =

1
+ 75 (I011101) +[101101) +[110101))  (7.76)

1
121) = ——=(]001111) +|010111) — [011011) — [011101)

3v/2
1
+|100111>—|101011>—|101101>—|110011>—\110101>)+E|111001> (7.77)
122) = ! 1110110) + ! (—=[011110)—|101110))+ ! (J001111) —|110011) —|110101))
V2 2V2 3v2

1

+6\—@(—\010111)+\011011>+|011101>—1100111>+]101011>+|101101>) (7.78)
1

[23) = 5(|001111)  [011101) — [101101) — [110011) +2[110101))

1
+¢(=[010111) +[011011) — [100111) +[101011)) ~(7.79)

1 1
24) = —3(|001111>+1110011>)+m(—|010111>—\011011>—|100111>— 1101011))

(7.80)
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1 /3 1
25 :—\ﬁ —[011110) +]101110)) + —=(]010111) +]011011
125) = 5/ 5 (- )+ ) 2\/6(’ )+ )

+]011101) — |100111) — [101011) — |101101)) (7.81)

1 1
26) = ——(|010111)+[011011) — |100111) —|101011)) + —=(—|011101) +[101101
|>N§(| )+ )| )| >)\/§(| )+ )
(7.82)
1
[27) = (1010111) —[011011) —[100111) +[101011)) (7.83)

These nine vectors form the third family for S6.

1 1
[28) = 5(~[000111) +[111000)) + £ (001011) +[001101) +|001 110} +[01001 1) +-[010101)

+1(010110) — [011001) — [011010) — [011100) + [100011) + |100101) + [100110)
—1101001) — |101010) — |101100) — [110001) — |110010) — |110100)) (7.84)

2 1
129) = g(yoomm +]110100)) + 3\—@(]001101> +1001110) +|010011) — [011100)
1
+]100011) — [101100) — |110001) — [110010)) + ——(—[010101) — [010110)

6v/2
+]011001) +|011010) — |100101) — [100110) — [101001) +|101010)) (7.85)

1 1
30) = —=(—|001101) + [001110) — |110001) + [110010)) + —~
30) \@( | )+ )= | )+ ) NG

+]011001) —[011010) +]100101) — [100110) + |101001) — [101010)) (7.86)

(1010101) — [010110)

1 1
NG 2v6
+]011001) + |011010) — |100101) — [100110) — [101001) — [101010)) (7.87)

31) = —(|010011) — |011100) + |100011) 4 |101100)) + —~=(]010101) + |010110)
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1
32) = —=(—1010101) +|010110) +]011001) — |011010
32) = 5 5(-1010101) +[010110) + 011001} ~ 011010}

+]100101) —[100110) —|101001) +101010)) (7.88)

These five vectors form the fourth family for S6.

5 1
33) = —\@\oooon + ﬁ(yooomm +1000100) +]001000) +|010000) -+ | 100000))
(7.89)

1 2
34) = ——(]000100) + [001000) + |010000) + |100000)) — ——]000010) (7.90
|>2\6(| ) + | ) + | ) + | ) \/§| ) (7.90)
V3 1

35) = —=-]000100) + ——=(|001000) + |010000) + |100000)) (7.91)

2 2V/3

2 1
36) = —\[g |001000) + %(\010000> +]100000rangle) (7.92)

1

37) = —(]100000) — |010000 7.93
37) ﬁ(! )= | ) (7.93)

This forms the fifth family for S6.

2
38) =/ 15(~1000011) —000101) —001001) — 010001) —100001))

1
+ ﬁqoom 10) +[001010) + [001100) + [010010) + [010100) + |011000)
+1100010) + |100100) 4 [101000) + |110000)) (7.94)

1
45
+010001) — 3|010010) +|100001) — 3|100010)) +

1
139) = %\oooom +——(]000101) — 3|000110) +|001001) — 3[001010)

1
——=(]/001100) + 010100
575(1001100) +[010100)
+]011000) +[100100) +|101000) + [110000)) (7.95)
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V3

40) = ~7(~[000101) — 000110)) + -—=(|001001) +-]001010) +-|010001) +|010010)

—\/_

1
+100001) + |100010)) + 7( 001100) — |010100) + |011000)

— 100100) + [101000) + [110000)))  (7.96)

1 1
41) = —(—|001001) — [001010) — [001100) + | 110000)) + ——(|010001) 4 [010010
|>\/6(| )= )= )+ >)2\/6(| )+ )
+1010100) — [011000) + |100001) +[100010) + [100100) — |101000)) (7.97)
1
\42>_7( 1010001) — [010010) — |010100) — [011000)

+]100001) + [100010) + |100100) +[101000))  (7.98)

This forms the sixth family of S6.

143) = ——(—|000111) —[001011) — [001101) +[001110) — 01001 1) — [010101) +|010110)

1
25
—1011001) 4 [011010) -+ |011100) — [100011) — |100101) +[100110) — |101001)

+[101010) + [101100) — |110001) + [110010) + |110100) + |111000)) (7.99)

1 /3
51/ 7g(~000111) —[001011) — 010011) +[011100) — [100011) +[101100)

1
+[110100) +|111000)) + quonm) —[001110) 4 [010101) — |010110) + [011001)

—[011010) 4 [100101) — |100110) + [101001) — |101010) -+ |110001) — |110010))
(7.100)

44) =

1 1
——(—[000111) +|111000)) + ——(—|001101) —[001110) — [010101) — [010110
2\@(! )+ >)3ﬁ(\ )= )= )= )
+1]011001) +[011010) —|10010) — [100110) +|101001) +[101010) 4| 110001) + | 110010))

45) =

1
+m(1001011>+|010011>—|011100+]100011>—|1011oo>—|110100>) (7.101)
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1
46) = 2(~[001011) — 001101) —[001110) +[110001) + |110010) +| 110100))

(1010011) 4 [010101) +[010110) — [011001) — |011010) — |011100) + |100011)

AN =

_l’_
+]100101) + |100110) — [101001) — [101010) — [101100)) (7.102)

1
147) = 2—\/5(—|010011> —1010101) —]010110) — |011001) — [011010) — [011100)

+]100011) + |100101) 4 |100110) + |101001) + [101010) +|101100)) (7.103)

This forms the seventh family of S6.

2
[48) = /55 (~1011110) — [101110) — [110110) [ 111010 — [111100))
1
+——(/001111) 4 |010111) 4 [011011) + [011101) +[100111) +|101011)
V30
+]101101) +|110011) 4 [110101) +[111001))  (7.104)

1
149) = 2\—5(|001111>jL 010111) +[011011) 4 |100111) + |101011) +|110011))

1
+—4\/§(—3!011101> +1011110) —3|101101) 4-[101110) — 3|110101)

1

+]110110) — 3[111001) +|111010)) 7

I111100) (7.105)

1
150) = ﬁqoonm +]010111) — |011011) 4 [100111) — [101011) — [110011))

1
+m(|011101> +]011110) +|101101) 4 [101110) + |110101) + [110110))

+?(—]111001>—|111010>) (7.106)
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\/_
1

+]101011) +[101101) + |101110)) (7.107)

52) = 7(|010111> +]011011) +|011101) 4-[011110)
—[100111) —|101011) — |101101) — [101110)) (7.108)

This forms the eighth family of S6.

1 5
|53) = \/—_(|011111>+|101111>+|110111>+|111011>—|—|111101)) \/;|111110)
(7.109)
1
54) = ——=(|011111) + [101111) +|110111) + |[111011)) — 111101) (7.110)
|54) = 2\/—(! )+ ) \/—!
|55) = ! (|011111)+|101111)+|110111>)—£|111011) (7.111)
=37 3 )
|56) = : (|011111) 4]101111)) \/§|110111) (7.112)
=7 3 )
|57) = 7(|011111>—|101111>) (7.113)
This forms the ninth family of S6.
|58) = |000000) (7.114)
|59) = 7(|000001> +1000010) +|000100) + |001000) + |010000) + |100000)) (7.115)
|60) = 7(|000111> +(001011) 4+]001101) + |001110) 4+ ]010011) + |010101)

+]010110) + [011001) + [011010) + [011100) + |100011)
+[100101) + [100110) + |101001) + [101010) + |101100)
+[110001) + [110010) + |110100) + [111000)) (7.116)
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1
61) = ——(|001111) 4 [010111) +[011011) +[011101) 4 [011110
61) \/B(l )+ )+ )+ )+ )

+]100111) +|101011) 4 [101101) + [101110) +[110011)
+]110101) + |110110) 4 [111001) + |111010) + [111000)) (7.117)

1
|62>:%(|011111>+|101111>+|110111)+\111011>+|111101>+|111110>) (7.118)
163) = \/%qoooom +]000101) + [000110) 4 [001001) + [001010) + [001100)

+]010001) + [010010) 4 [010100) + [011000)
+[100001) + [100010) + |100100) + [101000) + |110000)) (7.119)

64) = [111111) (7.120)






Chapter 8

Appendix 2: Distance Measures and
Nearest Separable Neighbours

The values of the distance measure and the nearest separable states for our four-qubit vector

states are as follows:

Vector State G Nearest Separable State
vy 10517638 |1110)
WYy | 0605811 |o111)
WYy | 0765367 |1101)
WMy | 1.087889 | -|0011)/-[0101)/|0110)/-|1001)/|1010)/|1100)
W)y 0919402 0110)/-/1001)
) 1 10011)/-/0101)/|1010)/-|1100)
WYy 10517638 10001)
Wy | 0605811 |1000)
WYy 0765367 10010)
W)y | 0919402 -|0110)/-|1001)
) 1 10011)/-|0101)/-[1010)/]1100)
v 0 10000)
) 1 10001)//0010)/|0100)/|1000)
W'Yy | 1.087889 | |0011)/]0101)//0110)/|1001)/|1010/|1100)
y?) 1 0111)/[1011)/|1101)/|1110)
Vi) 0 1111)







	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Physical Realization of Quantum Computation
	1.2 Universality in Quantum Computation
	1.2.1 Universal Quantum Computation using Heisenberg Hamiltonian and Exchange Interaction

	1.3 Non-Commutativity of SWAP1/n Gates and Group Theory
	1.4 Entanglement and Separability
	1.4.1 The Separability Problem
	1.4.2 Separability Criteria for Bipartite Case
	1.4.3 Separability Criteria for Multipartite Case

	1.5 Decoherence-Free Subspaces
	1.5.1 Decoherence-free Subspaces for Vectors associated with SWAP and SWAP1/n Quantum Gates

	1.6 Cluster-State Quantum Computation
	1.7 Quantum Communication and Quantum Memory

	2 Methods
	2.1 Numerical Methods
	2.1.1 Accessible States
	2.1.2 SWAP as a Permuting Operation
	2.1.3 Transpositions, Cycles and Permutation Matrices

	2.2 Locus of Accessible States for Multiple Power-of-SWAP Gates
	2.2.1 Invariant Subspaces

	2.3 Analytic Methods
	2.3.1 Permutation Symmetry, Parity and Conjugacy Classes
	2.3.2 Characters and Character Tables
	2.3.3 Orthogonality Relations of Characters
	2.3.4 Representations of Symmetric Groups Sn
	2.3.5 Partitions and Young Tableau
	2.3.6 Structures of Irreducible Representation
	2.3.7 Symmetric Group, Heisenberg Hamiltonian and SWAP1/n Quantum Operators
	2.3.8 Cayley Graph and Cayley Tree
	2.3.9 From Separable States to Invariant Subspaces of the Symmetric Group

	2.4 Symmetric States and the Nullspace Approach

	3 Separability and Quantum Entanglement
	3.1 Separability
	3.1.1 The Thread and Bead Model
	3.1.2 A Classical Approach to Separability
	3.1.3 Partitioning Algorithm
	3.1.4 Quantum Correlations and Permutation Symmetries

	3.2 Quantum Principal Component Analysis and Filtering
	3.3 Quantum Entanglement
	3.3.1 SWAP1/n as an Entanglement Witness
	3.3.2 Characterization of Multipartite Entanglement


	4 Quantum Computation using SWAP1/n Gates
	4.1 Circuit-based Quantum Computers using SWAP1/n Gates
	4.1.1 Universal Gate Set with SWAP1/n

	4.2 Invariant Subspace-based Quantum Computers using SWAP1/n
	4.2.1 Three-Qubit Quantum Computer
	4.2.2 Four-Qubit Quantum Computer
	4.2.3 Five-Qubit Quantum Computer
	4.2.4 Six-Qubit Quantum Computer
	4.2.5 Higher Multiqubit States

	4.3 Cluster State Quantum Computation
	4.3.1 SWAP1/n-based Model of Cluster State Quantum Computation
	4.3.2 Dynamical Cluster State Quantum Computation Model
	4.3.3 Deutsch Josza Algorithm

	4.4 Indefinite Causal Order and Functional Quantum Computing
	4.5 Qudit-Based Quantum Computation using SWAP1/n Quantum Operator

	5 Decoherence-free Subspaces, Quantum Communication and Quantum Memory
	5.1 Decoherence-Free Subspaces
	5.1.1 Stabilizers for Decoherence-Free Subspaces
	5.1.2 Decoherence-Free Subspaces for Exchange Interaction
	5.1.3 Fault-Tolerant Preparation, Non-Destructive Ancilla-Based Measurement and Decoding of Encoded States
	5.1.4 Error in Implementation of SWAP1/n Gates

	5.2 Quantum Entanglement Swapping using SWAP1/n and Quantum Repeaters
	5.3 Quantum Communication Protocols
	5.3.1 A Stationary-Qubit Communication Model
	5.3.2 Communication using a Chain of Stationary Spins

	5.4 Quantum Memory using SWAP1/n Gates

	6 Conclusion
	References
	7 Appendix 1: Vectors States
	7.1 Three-Qubit Vector States
	7.2 Four-Qubit Vector States
	7.3 Five-Vector Vector States
	7.4 Six-Qubit Vector States

	8 Appendix 2: Distance Measures and Nearest Separable Neighbours

