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Mutations in the gene encoding the bone morphogenetic protein type 2 receptor (BMPR2) are 

the most common genetic cause of heritable pulmonary arterial hypertension (PAH). 

However, given the reduced penetrance of BMPR2 mutations in affected families, a major 

outstanding question is the identity of additional factors or pathways that are responsible for 

the manifestation of clinical disease. Furthermore, limited human tissue is available for study 

and usually only from patients with end-stage disease, making it difficult to understand how 

PAH is established and progresses. Alternative human models of PAH are therefore required. 

  

This thesis describes the characterisation of the first human iPSC-derived smooth muscle cell 

(iPSC-SMC) model of PAH and elucidates the role of BMPR2 deficiency in establishing 

PAH-associated phenotypes in iPSC-derived SMCs. To achieve this, I used CRISPR-Cas9 

gene editing to generate wild-type and BMPR2+/- iPSC lines with isogenic backgrounds which 

were subsequently differentiated into lineage-specific iPSC-SMCs that displayed a gene 

expression profile and responses to BMP signalling akin to those present in distal pulmonary 

artery smooth muscle cells (PASMCs).  

 

Using these cells, I found that the introduction of a single BMPR2 mutation in iPSC-SMCs 

was sufficient to recapitulate the pro-proliferative and anti-apoptotic phenotype of patient-

derived BMPR2+/- PASMCs. However, acquisition of the mitochondrial hyperpolarisation 

phenotype was enhanced by inflammatory signalling and required an interaction 

between BMPR2 mutations and environmental stimuli provided by exposure to serum over 

time. Furthermore, I showed that BMPR2+/- iPSC-SMCs had an altered differentiation state 

and were less contractile compared to wild-type iPSC-SMCs, phenotypes which have not 

been observed previously in PAH-derived PASMCs. Finally, RNA sequencing analysis 

identified genes that were differentially expressed between wild-type and BMPR2+/- iPSC-

SMCs and may hence provide further insights into PAH pathobiology. 

 

The iPSC-SMC model described in this study will be useful for identifying additional factors 

involved in disease penetrance and for validating therapeutic approaches that target BMPR2. 
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1.1 – Pulmonary hypertension 
 

The term pulmonary hypertension (PH) describes a range of conditions that can be devastating 

and often fatal, characterised by high blood pressure in the pulmonary artery, with clinical 

symptoms including fatigue, dyspnea (shortness of breath) and presyncope/syncope 

(lightheadedness/fainting) (Lai et al., 2014). For a positive diagnosis of PH, the mean 

pulmonary arterial pressure (mPAP) at rest should be greater than or equal to 25 mm Hg as 

measured using right heart catheterisation (Hoeper et al., 2013a). 

 

1.1.1 – Classification of pulmonary hypertension 
 

Pulmonary hypertension is classified into five main categories based on the underlying cause, 

pathology and haemodynamic profile (Table 1.1): pulmonary arterial hypertension (PAH) 

(Group 1); pulmonary hypertension due to left heart disease (Group 2); pulmonary hypertension 

due to lung diseases and/or hypoxia (Group 3); chronic thromboembolic pulmonary 

hypertension (CTEPH) (Group 4); and pulmonary hypertension with unclear multifactorial 

mechanisms (Group 5) (Simonneau et al., 2013). Pulmonary veno-occlusive disease (PVOD) 

and/or pulmonary capillary hemangiomatosis (PCH), as well as persistent pulmonary 

hypertension of the newborn (PPHN), were previously classified as subcategories of PAH 

(Simonneau et al., 2009). However, because PVOD/PCH and PPHN are thought to carry more 

differences than similarities compared to other PAH subgroups, they are currently classified 

into distinct categories (Groups 1’ and 1”, respectively), although these are not completely 

separated from PAH (Simonneau et al., 2009; 2013). A modification of the existing 

classification is expected in late 2018. 
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Table 1.1.  Classification of pulmonary hypertension (taken from Simonneau et al., 2013) 

 
Source: 5th World Symposium on Pulmonary Hypertension (Nice, 2013) 
 

Group Cause 

 
 
 
 
 
 
 
1 

Pulmonary arterial hypertension (PAH) 
1.1 Idiopathic PAH 

1.2 Heritable PAH 

1.2.1 BMPR2 

1.2.2 ALK1, ENG, SMAD9, CAV1, KCNK3 

1.2.3 Unknown 

1.3 Drug and toxin induced 

1.4 Associated with: 
1.4.1 Connective tissue disease 

1.4.2 HIV infection 

1.4.3 Portal hypertension 

1.4.4 Congenital heart diseases 

1.4.5 Schistosomiasis 

1’ Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis 
1’’ Persistent pulmonary hypertension of the newborn (PPHN) 
 
 
 
2 

Pulmonary hypertension due to left heart disease 
2.1 Left ventricular systolic dysfunction 

2.2 Left ventricular diastolic dysfunction 
2.3 Valvular disease 

2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital 

cardiomyopathies  

 
 
 
 
3 

Pulmonary hypertension due to lung diseases and/or hypoxia 
3.1 Chronic obstructive pulmonary disease 

3.2 Interstitial lung disease 

3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 

3.4 Sleep-disordered breathing 
3.5 Alveolar hypoventilation disorders 

3.6 Chronic exposure to high altitude 

3.7 Developmental lung diseases 

4 Chronic thromboembolic pulmonary hypertension (CTEPH) 
 
 
 
5 

Pulmonary hypertension with unclear multifactorial mechanisms 
5.1 Hematologic disorders: chronic haemolytic anaemia, myeloproliferative disorders, 

splenectomy 

5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis 

5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 
5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure, segmental PH  
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1.1.2 – Pulmonary arterial hypertension 
 

The term PAH describes a subgroup of PH patients characterised haemodynamically by having 

a pulmonary capillary wedge pressure (PCWP) ≤ 15 mm Hg and a pulmonary vascular 

resistance (PVR) greater than 3 Wood units in the absence of left heart disease, lung diseases, 

CTEPH or other rare diseases (Hoeper et al., 2013a). PAH can be classified as being either 

idiopathic (IPAH, where the cause of the disease is unknown), heritable (HPAH, defined as 

present in at least two members of the same family or by the presence of a pathogenic mutation), 

drug- and toxin-induced, or associated with other conditions such as human immunodeficiency 

virus (HIV) infection, congenital heart disease, connective tissue disease, or schistosomiasis 

(Table 1.1) (Simonneau et al., 2013).  

 

In the Western world, IPAH is thought to be the most common form of PAH (30 – 50% of PAH 

cases), whereas HPAH patients with a family history of the disease account for approximately 

6% of PAH cases (Lane et al., 2000; Humbert et al., 2006; Badesch et al., 2010).    

The incidence of PAH is estimated to be between 2.0 and 7.6 cases per million adults per year, 

with a prevalence ranging from 11 to 26 cases per million adults (Humbert et al., 2006; Peacock 

et al., 2007; Badesch et al., 2010; Ling et al., 2012). In patient registries (Table 1.2), PAH is 

approximately twice as common in females than in males and is increasingly being diagnosed 

in older patients (Simonneau et al., 2009; Hoeper and Gibbs, 2014). Symptoms may develop at 

any age, with an estimated 5-year mortality rate of 30% (Humbert et al., 2006; Badesch et al., 

2010).  

 

Currently available therapies target three main signalling pathways which play a key role in 

regulating vascular cell proliferation and pulmonary vascular tone (Humbert et al., 2014; 

Humbert & Ghofrani, 2016; Lau et al., 2017). Prostaglandin analogues such as iloprost 

(Olschewski et al., 2002) and the prostacyclin IP receptor agonist selexipag (Sitbon et al., 2015) 

target the prostacyclin pathway, stimulating the production of cyclic adenosine monophosphate 

(cAMP) which induces vadodilation (Murray, 1990). Phosphodiesterase type V inhibitors such 

as sildenafil and the soluble guanylate cyclase stimulator riociguat target the nitric oxide 

signalling pathway, promoting vasodilation by boosting the levels of cyclic guanosine 

monophosphate (cGMP) (Galie et al., 2005; Ghofrani et al., 2013). By contrast, endothelin-1 

receptor antagonists such as bosentan reduce vasoconstriction by targeting endothelin receptors 

(Rubin et al., 2002). However, although these therapies have contributed to improved life 
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expectancy, they probably do not change the underlying pathology. Patients with end-stage 

PAH require a heart and/or lung transplantation to survive (Lai et al., 2014). 

 
Registry Time 

period 
Sample 

size   
Mean 
age 

(years)  

Females 
(%) 

1-year 
survival 

(%) 

5-year 
survival 

(%) 

References 

 
NIH 

registry 
 

 
1981-1988 

 
187 

 
36 ± 15 

 
63 

 
68 

 
34 

 
Rich et al., 1987 
D’Alonzo et al., 
1991 
 

 
French 
registry 

 

 
2002-2003 

 
674 

 
52 ± 15 

 
62 

 
89 

 
NA 

 
Humbert et al., 
2006  
Humbert et al., 
2010 
 

 
 

REVEAL 
 

 
 

2006-2009 

 
 

2525 

 
 

50 ± 15 

 
 

80 

 
 

88 

 
 

63 

 
Frost et al., 2011 
Benza et al., 2010 
Benza et al., 2012 
 

 
UK and 
Ireland 

 

 
2001-2009 

 
482 

 
50 ± 17 

 
70 

 
93 

 
60 

 
Ling et al., 2012 

 
COMPERA 

 

 
2007-2011 

 
587 

 
65 ± 15 

 
60 

 
92 

 
NA 

 
Hoeper et al., 
2013b 
 

 
New 

Chinese 
Registry 

 

 
 

2008-2011 

 
 

956 

 
 

38 ± 13 

 
 

70 

 
 

92 

 
 

NA 

 
 
Zhang et al., 2011 

 
Czech 
registry 

 

 
2000-2007 

 

 
191 

 
52 ± 17 

 
65 

 
89 

 
NA 

 
Jansa et al., 2014 

 

Table 1.2. Characteristics of pulmonary arterial hypertension registries. NIH: National Institutes 

of Health; REVEAL: Registry to Evaluate Early and Long-term PAH Disease Management; UK: United 

Kingdom; COMPERA: Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary 

Hypertension (adapted from Hoeper & Gibbs, 2014 and Thenappan et al., 2018) 
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1.1.3 – Cellular phenotypes associated with pulmonary arterial hypertension 
 

At the cellular level, pulmonary arterial hypertension is characterised by extensive vascular 

remodelling due to abnormal proliferation, migration and apoptosis of pulmonary artery smooth 

muscle cells (PASMCs), endothelial cells (ECs), and pulmonary artery adventitial fibroblasts 

(PAAFs) (Humbert et al., 2004) (Figure 1.1). During this process, abnormal ECs may release 

factors such as fibroblast growth factor 2 (FGF-2) which promote smooth muscle cell (SMC) 

proliferation or fail to produce agents which inhibit SMC proliferation and induce vasodilation 

(Thompson & Rabinovitch, 1996; Alastalo et al., 2011; Lai et al., 2014). Increased EC apoptosis 

during the early stages of PAH is thought to lead to a loss of smaller pulmonary arteries, whilst 

SMC dedifferentiation, migration, proliferation and clonal expansion result in progressive 

muscularisation of normally non-muscularised distal pulmonary vessels (Rabinovitch, 2008; 

Sheikh et al., 2015). 

 

 
 

Figure 1.1. Vascular remodelling in pulmonary arterial hypertension. Vascular remodelling is 

characterised by increased proliferation of smooth muscle cells, endothelial cells and fibroblasts within 

the pulmonary artery which causes narrowing of the vascular lumen, thus impeding blood flow and 

resulting in elevated pulmonary arterial pressure. AEC, alveolar epithelial cell (from Schermuly et al., 

2011).   
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Furthermore, PAH is associated with metabolic dysfunction such as increased glycolysis and 

mitochondrial abnormalities such hyperpolarisation of the inner mitochondrial membrane 

(Paulin & Michelakis, 2014). In addition, increased elastase and matrix metalloproteinase 

(MMP) activity lead to extracellular matrix degradation and fragmentation of the internal elastic 

lamina (Rabinovitch, 2001; Zaidi et al., 2002; Tuder et al., 2013), whilst platelet activation and 

in situ thrombus formation further obstruct blood flow within pulmonary vessels (Lannan et al., 

2014). Complex, lumen-obliterating plexiform lesions are often found in patients with end-

stage PAH (Tuder et al., 1994) (Figure 1.2). Taken together, these changes ultimately lead to 

the development of right heart failure, which may further be accelerated by increased 

inflammation and formation of reactive oxygen species (Bogaard et al., 2009).  

 

 
 
Figure 1.2. Photomicrographs of lung sections from PAH patients showing the histological 

appearance of plexiform lesions. (A) Plexiform lesions immunostained for the endothelial marker 

CD31 on a single layer of cells lining endothelial channels (arrows) (B) Stromal cells stain positively 

for a-smooth muscle actin (brown). Images taken at approximately 200x magnification (from Atkinson 

et al., 2002). 
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1.1.4 – The genetic basis of pulmonary arterial hypertension 
 

In the year 2000, heterozygous germline mutations in the bone morphogenetic protein receptor 

type 2 (BMPR2) gene were identified as the main genetic cause of heritable PAH (Deng et al., 

2000; Lane et al., 2000). Although mutations in several other genes have also been detected in 

PAH patients (Table 1.3), these are estimated to be present in approximately 8% of PAH cases 

(Gräf et al., 2018). Furthermore, the observation that BMPR2 protein expression is reduced in 

most PAH patients regardless of whether they have BMPR2 mutations (Atkinson et al., 2002) 

highlights the central role of BMPR2 signalling in the pathogenesis of PAH. 

 

To date, over 400 different PAH-associated BMPR2 mutations have been identified, of which 

over 75% were detected in families with PAH (Soubrier et al., 2013; Best et al., 2014; Machado 

et al., 2015). PAH-associated BMPR2 mutations have been detected in almost all exons within 

the gene, including the ligand binding domain, the serine-threonine kinase domain and the 

cytoplasmic tail (Machado et al., 2006). Approximately 70% of BMPR2 mutations are nonsense 

or frame-shift mutations which cause haploinsufficiency due to degradation of the mutant 

transcripts by nonsense-mediated mRNA decay, whereas the remaining 30% result in impaired 

BMPR2 trafficking to the plasma membrane or have reduced kinase activity (Machado et al., 

2006).  

 

Although BMPR2 mutations are present in approximately 82% of HPAH patients (Evans et al., 

2016), only approximately 20% of people carrying BMPR2 mutations go on to develop the 

disease, meaning there may be no history of disease in multiple generations within affected 

families (Lai et al., 2014). Moreover, penetrance of BMPR2 mutations is higher in females than 

in males, with 43% of female versus 14% of male BMPR2 mutation carriers developing PAH 

during their lifetime (Larkin et al., 2012). In addition, BMPR2 expression in HPAH patients is 

considerably lower than the 50% reduction expected due to haploinsufficiency alone (Atkinson 

et al., 2002). Together with the reduced penetrance of BMPR2 mutations, this suggests that 

additional environmental or genetic ‘second hits’ are required to further reduce BMPR2 

expression or signalling to a level that is sufficient to initiate the development of PAH (Morrell 

et al., 2009). However, a major unaddressed question is precisely how reduced BMPR2 

signalling, either alone or via interaction with ‘second hits’, contributes to the development and 

progression of PAH.        
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Gene Symbol 
 

 
Gene Name 

 
References 

 
BMPR2 

 

 
Bone Morphogenetic Protein Receptor Type 2 

 
Deng et al., 2000 
Lane et al., 2000 
 

 
ENG 

 
Endoglin 
 

 
Harrison et al., 2003 

 
ALK1 

 

 
Activin receptor-like kinase 1 

 
Chaouat et al., 2004 

 
BMPR1B 
(ALK6) 

 

 
Bone Morphogenetic Protein Receptor Type 
1B 
 

 
Chida et al., 2012 

 
SMAD4 

 

 
SMAD Family Member 4 
 

 
Nasim et al., 2011 

 
SMAD9 

 

 
SMAD Family Member 9 

 
Nasim et al., 2011 

 
GDF2 

(BMP9) 
 

 
Growth Differentiation Factor 2 
 

 
Wang et al., 2016 
Gräf et al., 2018 

 
CAV1 

 

 
Caveolin-1 

 
Austin et al., 2012 

 
KCNK3 

 

 
Potassium Two Pore Domain Channel 
Subfamily K Member 3 
 

 
Ma et al., 2013 

 
TBX4 

 

 
T-Box 4 
 

 
Kerstjens-Frederikse et al., 2013 

 
EIF2AK4 

 

 
Eukaryotic initiation translation factor 2 alpha 
kinase 4 
 

 
Best et al., 2017 

 
ATP13A3 

 

 
ATPase 13A3 
 

 
Gräf et al., 2018 

 
AQP1 

 

 
Aquaporin 1 

 
Gräf et al., 2018 

 
SOX17 

 

 
SRY-Box 17 
 

 
Gräf et al., 2018 

 
Table 1.3. List of mutated genes identified to date in patients with pulmonary arterial 

hypertension. 
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1.2 – Bone morphogenetic protein signalling 
 
1.2.1 – Bone morphogenetic proteins 

 
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor b (TGF-

b) superfamily of ligands. Originally identified as proteins that induce bone and cartilage 

formation (Urist, 1965; Wang et al., 1988), it is now evident that BMPs also play important 

roles in regulating many other biological functions including morphogenesis, cell 

differentiation, proliferation, and apoptosis (Katagiri & Watabe, 2016). To date, over twenty 

different BMP isoforms have been identified (Bragdon et al., 2011) (Table 1.4). They have 

highly conserved structures that are shared by other members of the TGF-b family, and can be 

classified into several sub-groups, including the BMP-2/4 group, BMP-5/6/7/8 group, BMP-

9/10 group and BMP12/13/14 group (Bubnoff & Cho, 2001; Mazerbourg & Hsueh, 2006). 

BMP-1 is a metalloproteinase which cleaves the C-terminus of type I collagen and is therefore 

not a member of the TGF-b family (Kessler et al., 1996).   

 
 
 
 
 

 
BMP family member 

 

 
Tissue expression in humans 

 
Biological function(s) in humans 

 
BMP2 

 

 
Lung, kidney, pancreas, spleen 

 
Heart formation, skeletal repair/ 

regeneration 
 

 
 

BMP4 
 

 
Heart, lung, skeletal muscle, thymus, 
bone marrow, spleen, brain, spinal 

cord, liver, kidney, pancreas, prostate 
 

 
Skeletal repair and regeneration, 

kidney formation 

   
 
 

BMP5 
 

 
Heart, lung, skeletal muscle, thymus, 
bone marrow, spleen, brain, spinal 
cord, kidney, pancreas, prostate 

 

 
Bone and cartilage morphogenesis, 
limb development, connecting soft 

tissues 

 
 

BMP6 (VGR1) 
 

 
Heart, lung, skeletal muscle, liver, 

kidney, thymus, bone marrow, 
spleen, brain, spinal cord, pancreas, 

prostate 
 

 
Bone morphogenesis, nervous 
system development, cartilage 

hypertrophy 

 
 

BMP7 (OP1) 
 

 
Heart, lung, skeletal muscle, liver, 

kidney, thymus, bone marrow, 
spleen, brain, spinal cord, pancreas, 

prostate 
 

 
Skeletal repair and regeneration, 

nervous system development, 
kidney and eye formation 
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BMP8A (OP2) 
 

 
Heart, lung, kidney, thymus, bone 
marrow, spleen, brain, spinal cord, 

pancreas, prostate 
 

 
Bone morphogenesis, 

spermatogenesis 

 
 

BMP8B 
 

 
Heart, skeletal muscle, bone marrow, 

spleen, brain, spinal cord, liver, 
kidney, pancreas 

 

 
Spermatogenesis 

   
 

BMP9 (GDF-2) 
 

 
Liver 

 
Bone morphogenesis, glucose 
metabolism, anti-angiogenesis, 

development of cholinergic 
neurons 

 
 
 

BMP10 
 

 
Heart, lung, skeletal muscle, liver, 

thymus, bone marrow, spleen, brain, 
spinal cord, pancreas, prostate 

 

 
Heart morphogenesis 

   
 

BMP11 (GDF-11) 
 

 
Thymus, bone marrow, spleen, brain, 

spinal cord, pancreas 
 

 
Patterning mesodermal and neural 

tissues, dentin formation 

   
 
 

BMP12 (GDF-7) 
 

 
 

? 

 
 

Ligament and tendon development, 
sensory neuron development 

 
 

BMP13 (GDF-6) 
 

 
? 

 
Skeletal morphogenesis, normal 

formation of bones and joints, 
chondrogenesis 

 
 

BMP14 (GDF-5) 
 

 
Heart, bone marrow, liver, kidney 

 
Skeletal repair and regeneration 

   
 

BMP15 (GDF-9B) 
 

 
None 

 
Oocyte and follicular development 

   
 

BMP3 (Osteogenin) 
 

 
Heart, skeletal muscle, thymus, bone 

marrow, spleen, brain, pancreas, 
prostate 

 

 
Negative regulator of bone 

morphogenesis 

 
BMP3B (GDF-10)  

 

 
Skeletal muscle, brain, spinal cord, 

pancreas, prostate 
 

 
Regulation of cell differentiation, 

skeletal morphogenesis 

 

Table 1.4.  Overview of bone morphogenetic proteins, their functions and expression (adapted 

from Bragdon et al., 2011) 
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Most BMPs are expressed in a variety of tissues during development, where they often play 

crucial roles, as evidenced by the embryonic lethal phenotype of knock-out animals that are 

homozygous for null mutations in BMPs 2, 4, 8b and 10 (Winnier, 1995; Zhang & Bradley, 

1996; Zhao & Hogan, 1996; Chen et al., 2004). The embryonic lethal phenotype of these 

animals therefore suggests that these bone morphogenetic proteins are necessary for 

development, including vascular development.  

 

1.2.2 – Bone morphogenetic protein receptor signalling 
 

BMPs elicit their effects by binding to type I and type II transmembrane receptors (Shi & 

Massague, 2003; de Caestecker, 2004) (Figure 1.3), which consist of a short extracellular 

domain, a single transmembrane domain, one intracellular domain with serine/threonine kinase 

activity and a C-terminal cytoplasmic tail region (Miyazono et al., 2010). Unlike TGF-b 

proteins, BMPs can bind to type I receptors in the absence of type II receptors, although their 

binding affinities are higher when both receptor types are present (Rosenzweig et al., 1995).  

 

There are three type II receptors - bone morphogenetic protein receptor type II (BMPR2), 

activin receptor type IIA (ActR-IIA) and activin receptor type IIB (ActRIIB). BMPR2 

specifically binds BMPs, whereas ActR-IIA and ActRIIB also act as receptors for activin and 

myostatin (Yu et al., 2005). Activin receptor-like kinases ALK1, ALK2, ALK3 (BMPR-1A) 

and ALK6 (BMPR-1B) serve as type I receptors for most BMPs, whereas TGF-b signals via 

ALK5 (Shi & Massague, 2003). Whilst ALK2 and ALK3 are expressed in many different cell 

types, ALK6 is less widely expressed, and ALK1 is mainly expressed in endothelial cells and 

certain other cell types (Katagiri & Watabe, 2016). 
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Figure 1.3. Overview of bone morphogenetic protein receptor signalling. Activators of BMP 

signalling are listed in the blue box, whereas BMP signalling inhibitors are shown in red boxes. BMP, 

bone morphogenetic protein; ALK, activin receptor-like kinase; BMPR; bone morphogenetic protein 

receptor; ActR, activin receptor; BMPER, BMP binding endothelial regulator; BAMBI, BMP and 

activin membrane bound inhibitor; KCP, kielin/chordin-like protein.  
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BMP2 and BMP4 bind to ALK3 and ALK6, recruiting type II receptors to form an active 

receptor complex (ten Dijke et al., 1994; Macias-Silva et al., 1998). By contrast, BMP6 and 

BMP7 bind to ActR-IIA in a complex with ALK2 or ALK3 (ten Dijke et al., 1994; Yamashita 

et al., 1995; Ebisawa et al., 1999). BMP9 and BMP10 bind to BMPR2 together with ALK1 or 

ALK2 (Brown et al., 2005; David et al., 2007), but can also signal via ActR-IIA or endoglin, a 

co-receptor for TGF-b/BMP signalling (Alt et al., 2012). These signalling combinations are 

summarised in Figure 1.4 below. 

 

 

 
 

Figure 1.4. Summary of interactions between BMP and TGF-b proteins and their receptors. 

Different receptor complexes preferentially bind particular BMP ligands, with TGF-b1 and activin 

predominantly signalling via Smad2/3, whereas bone morphogenetic proteins mainly signal via 

Smad1/5/8 (adapted from Upton & Morrell, 2009).   
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Upon binding of the BMP ligand, type II receptors phosphorylate and activate type I receptors. 

In turn, the activated type I receptor phosphorylates at least one of the receptor-regulated Smads 

(Smad1, Smad5 and Smad8). These BMP-specific R-Smads are then able to form a complex 

with the co-Smad, Smad4, followed by translocation of the resulting Smad complex to the 

nucleus where it can activate or inhibit gene transcription by binding to DNA and interacting 

with transcriptional co-activators (p300, CBP, Runx2, and/or GCN5) or co-repressors (c-Ski, 

SnoN, Tob or SIP1) (Shi and Massague, 2003; Massague et al., 2005; Katagiri & Watabe, 

2016). By contrast, TGF-b ligands signal via Smad2 and Smad3, although TGF-b can also 

signal via ALK1 and ALK2 to activate Smad1 and Smad5 in endothelial cells and some other 

cells (Goumans et al., 2003; Daly et al., 2008). 

 

Downstream targets of BMPR2 signalling include the inhibitor of DNA binding/differentiation 

(ID) proteins which control PASMC proliferation by inhibiting the cell cycle (Yang et al., 

2013), as well as the transcription factors Hey1 and Tcf7 which are involved in Notch and Wnt 

signalling, respectively (Miyazono et al., 2010).  

 

1.2.2.1 – Regulation of BMP signalling 
 

BMP signalling is temporally and spatially regulated at multiple levels via interactions with 

many different intracellular and extracellular signals (Shi & Massague, 2003; Guo & Wang, 

2009) (Figure 1.3). Extracellular BMP antagonists include gremlin, noggin, chordin, follistatin 

and differential screening-selected gene in neuroblastoma (DAN) family members (Katagiri & 

Watabe, 2016), some of which can be up-regulated by BMPs, thus forming negative feedback 

loops (Kameda et al., 1999; Pereira et al., 2000). By contrast, BMP1, kielin/chordin-like protein 

(KCP) and BMP binding endothelial regulator (BMPER) can potentiate BMP signalling 

(Marques et al., 1997; Piccolo et al., 1997; Moser et al., 2003). 

 

At the cell membrane, BMP signalling is inhibited by BAMBI (BMP and activin membrane-

bound inhibitor), which prevents the formation of signal receptor complexes. On the other hand, 

glycosylphosphatidylinositol (GPI)-anchored membrane proteins of the repulsive guidance 

molecule (RGM) family enhance BMP signalling by forming complexes with BMP type I 

receptors (Halbrooks et al., 2007).  
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Intracellularly, Smad6 and Smad7 act as inhibitory Smads by binding to BMP type I receptors, 

thus preventing downstream Smad1/5 activation, thereby negatively regulating BMP signalling 

(Imamura et al., 1997; Heldin & Moustakas, 2012). 

Furthermore, BMP signalling is modulated by ubiquitin-mediated proteasomal degradation of 

Smad1 and Smad5 by the E3 ubiquitin ligase Smurf1, which also interacts with Smad6 to 

mediate degradation of type I BMP receptors (Zhu et al., 1999; Murakami et al., 2003). 

Additional regulation of BMP signalling is achieved by several different microRNAs 

(miRNAs) such as miR-21 and miR-302 (Ahmed et al., 2011; Kang et al., 2012), as well as by 

proteins such as the 12-kDa FK506-binding protein (FKBP12) which binds to and inhibits the 

activation of type I BMP receptors (Spiekerkoetter et al., 2013).   

 

1.2.3 – Cross-talk of BMP signalling with other signalling pathways 
 

In addition to signalling via the Smad-dependent pathways described above, BMPs can also 

signal via mitogen-activated protein kinases (MAPKs), Akt, phosphatidylinositol 3-kinase 

(PI3K), c-Jun amino-terminal kinase (JNK), and small GTPases. These Smad-independent 

pathways interact with Smad-dependent pathways to modulate various cellular responses 

(Katagiri & Watabe, 2016). For example, interactions between TGF-b/BMP, Notch, Wnt, 

Hedgehog (Hh) and other signalling pathways (Figure 1.5) regulate stem cell maintenance, 

organogenesis, and cell fate specification during embryonic development, whilst also being 

important for modulating cell growth in adult tissues (Attisano & Labbe, 2004; Sumi et al., 

2008). Dysregulated Notch and Wnt signalling have also been implicated in pulmonary arterial 

hypertension, as discussed below. 
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Figure 1.5. Simplified schematic summarising some of the main interactions between the Notch, 

Wnt and TGF-b/BMP signalling pathways. Cross-talk between the TGF-b and Notch signalling 

pathways most commonly occurs in the nucleus where the Smad/b-catenin-Lef protein complex 

regulates the transcription of a shared set of target genes. Multiple context-specific protein interactions 

(dashed black lines) between Notch, Wnt and TGF-b signalling also occur in the cell cytoplasm. Dvl, 

Dishevelled; GSK3b, glycogen synthase kinase-3 beta; APC, adenomatous polyposis coli; NICD, Notch 

intracellular domain; TGF-b, transforming growth factor beta; BMP, bone morphogenetic protein; Lef, 

lymphoid enhancer binding factor (adapted from Guo & Wang, 2009 and Andersson et al., 2011).   
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1.2.3.1 – Wnt signalling in pulmonary arterial hypertension 
 

Wnt proteins are secreted molecules which signal via canonical and non-canonical pathways to 

regulate a variety of biological functions. The canonical pathway involves Wnt signalling via 

cytoplasmic b-catenin, which can translocate to the nucleus to regulate the expression of genes 

involved in processes such as cell proliferation, differentiation and survival (Papkoff et al., 

1996). By contrast, the non-canonical Wnt/planar cell polarity (PCP) pathway does not require 

b-catenin accumulation and regulates more specialised functions such as cell motility and 

polarity (Shulman et al., 1998; Veeman et al., 2003). 

Several genes involved in the PCP pathway, such as those encoding ras homolog gene family 

A (RHOA), WNT11, and Dishevelled (DVL), were found to be upregulated in laser-

microdissected pulmonary arterial resistance vessels from patients with IPAH (Laumanns et 

al., 2009). Furthermore, overexpression of the soluble Wnt receptor Secreted Frizzled Related 

Protein 2 (SFRP2) was detected in HPAH patient-derived fibroblasts and lung tissue, as well 

as in the lungs of R899X Bmpr2+/- mice (West et al., 2014). Taken together, these findings 

suggest that reduced BMPR2 signalling in PAH is associated with increased Wnt signalling, 

which may contribute to increased proliferation and migration of pulmonary vascular cells in 

PAH (de Jesus Perez et al., 2009; Takahashi et al., 2016). However, whether this is indeed the 

case is yet to be confirmed.    

 

1.2.3.2 – Notch signalling in pulmonary arterial hypertension 
 

To date, four different Notch receptors (Notch1 – Notch4) and five cell-bound Notch ligands 

of the Jagged (Jag1 and Jag2) and Delta-like (Dll1, Dll3 and Dll4)) families have been 

characterised in mammals (Alva & Iruela-Arispe, 2004). Aberrant Notch signalling has also 

been implicated in the pathogenesis of PAH, although there is controversy as to whether this is 

due to changes in Notch2 or Notch3 expression (Li et al., 2009; Xiao et al., 2013; Yu et al., 

2013; Hurst et al., 2017). For example, Notch1, Notch3 and Jagged 1 were found to be highly 

expressed in animal models of PAH, whilst adenoviral transfection of soluble Jagged 1 (sJag1) 

resulted in significantly reduced proliferation and increased apoptosis of PASMCs from 

pulmonary hypertensive rats (Xiao et al., 2013). Similarly, increased Notch3 expression has 

also been detected in human patient-derived PASMCs (Li et al., 2009); however, Notch3 and 

its downstream target HES1 were found to be decreased in tumour necrosis factor-alpha 

(TNFa)-treated HPAH PASMCs (Hurst et al., 2017). Interestingly, Hurst et al. found that 

TNFa stimulation in HPAH PASMCs induced post-translational cleavage and shedding of 
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BMPR2 at the cell surface, thus diverting BMP signalling via ActR-IIA which promoted 

PASMC proliferation via downstream activation of Notch2 and Src kinases (Hurst et al., 2017). 

This suggests that Notch2 rather than Notch3 signalling contributes to the increased 

proliferation of PASMCs observed in PAH. 

 

1.2.4 – Bone morphogenetic protein signalling in vascular smooth muscle cells 
 

In the lung, BMPR2 is predominantly expressed in pulmonary artery endothelial cells (PAECs) 

and PASMCs (Atkinson et al., 2002). Under normal conditions, BMP2, BMP4 and BMP7 

inhibit the proliferation of vascular smooth muscle cells isolated from the proximal pulmonary 

artery (Farber & Loscalzo, 2004). Disruption of BMPR2 signalling in these cells results in the 

loss of the anti-proliferative effects of BMP4, reduced BMP6 and BMP7 signalling, as well as 

increased PASMC proliferation in response to TGF-b1 (Yu et al., 2005; Dewachter et al., 2009). 

Furthermore, depending on their anatomical and potentially also their developmental origin, 

adult PASMCs may have different responses to the same BMP molecules. For example, 

PASMCs in the proximal vascular branch tend to be growth-suppressed by BMPs 2, 4 and 7 

and may even undergo apoptosis in response to these ligands, whereas BMP2 and BMP4 

stimulate proliferation in PASMCs isolated from smaller pulmonary arteries in the distal 

vascular branches (Yang et al., 2005). This difference in BMP responsiveness between 

proximal and distal PASMCs is an important consideration for developing disease models and 

PAH therapies, as it is predominantly the smaller, more distal vessels that are the site of disease 

initiation (Thenappan et al., 2016).  
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1.3 – Molecular pathogenesis of pulmonary arterial hypertension 
 

1.3.1 – Hypoxia and PAH 
 

The acute response of the pulmonary vasculature to hypoxia involves the constriction of 

precapillary pulmonary arteries in a process known as hypoxic pulmonary vasoconstriction 

(HPV) (von Euler & Liljestrand, 1946) which increases pulmonary vascular resistance and 

pulmonary arterial pressure. By contrast, chronic exposure to hypoxia leads to vascular 

remodelling characterised by the muscularisation of previously non-muscularised pulmonary 

arteries, an increase in the extent of muscularisation of already muscularised arteries, and the 

pruning of smaller peripheral arteries (Arias-Stella & Saldana, 1963; Hislop & Reid, 1976; 

Stenmark et al., 2006). At the cellular level, these structural changes are caused by increased 

proliferation and reduced apoptosis of PASMCs which has been linked to increased expression 

of hypoxia inducible factor-1alpha (HIF-1a) (Ball et al., 2014). 

 

The amount of pulmonary vascular remodelling in response to chronic hypoxia varies both 

between and within species (Grünig et al., 2000; Zhao et al., 2001; Rhodes, 2005; Swenson, 

2013), suggesting that susceptibility to hypoxia-induced pulmonary hypertension is affected by 

genetic background. For example, Tibetan highlanders are less prone to develop pulmonary 

hypertension compared to more recent migrants to high altitude, partly due to natural selection 

of non-coding variants of the HIF pathway genes EPAS1 and EGLN1 (Beall et al., 2010; 

Simonson et al., 2010). Furthermore, Bmpr2+/- mice might be more susceptible to hypoxia-

induced PH compared to wild-type mice (Frank et al., 2008). However, previous work from our 

group has shown that Bmpr2+/- mice exposed to chronic hypoxia for 2-3 weeks display similar 

pulmonary haemodynamics and vascular morphometry compared to wild-type littermates 

(Long et al., 2006). By comparison, targeted delivery of an adenoviral vector containing the 

Bmpr2 gene to the pulmonary vascular endothelium of hypoxic rats significantly reduced 

pulmonary arterial and right ventricular (RV) pressures, RV hypertrophy and muscularisation 

of distal pulmonary arterioles (Reynolds et al., 2007). 

 

 

 

 

 



                                                                                                                            Chapter 1 - Introduction 
 

 21 

However, in most forms of human hypoxic PH [World Health Organisation (WHO) Group 3], 

the pathological changes are less severe compared to those found in PAH patients with BMPR2 

mutations (Pugliese et al., 2015). In contrast to Group 3 pulmonary hypertension in which 

hypoxia is the primary stimulus, PAH is characterised by the normoxic activation of HIF-1a 

signalling in the absence of alveolar hypoxia (Bonnet et al., 2006), although cellular hypoxia 

may contribute to pulmonary vascular remodelling as the disease progresses (Farber & 

Loscalzo, 2005). 

 
1.3.2 – Inflammation and metabolic dysfunction in PAH 
 

Immune dysfunction is a central feature of PAH associated with connective tissue diseases and 

infections, with schistosomiasis probably being the single largest cause of PAH (Graham et al., 

2010; Rabinovitch et al., 2014). In patients with pulmonary hypertension, inflammation is also 

an early consequence of exposure to hypoxia and is one of the proposed “second hits” that are 

thought to be required to trigger PAH establishment and progression (Rabinovitch et al., 2014). 

Hypoxia may promote inflammation by inducing the transcription of HIF target genes such as 

nuclear factor kappaB (NF-κB), a transcription factor which regulates the production of 

inflammatory cytokines (Cummins et al., 2016). In turn, activation of NF-κB can increase HIF 

expression (Eltzschig & Carmeliet, 2011; Fröhlich et al., 2013), thus creating a potential 

feedforward loop between hypoxia, HIF and inflammation (Figure 1.6). 
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Figure 1.6. Signalling crosstalk between inflammation and hypoxia. In addition to increasing HIF 

protein expression, hypoxia also induces the production of inflammatory cytokines which activate 

nuclear factor kappaB (NF-κB), a key transcriptional regulator of cellular immune responses. In turn, 

NF-κB promotes the transcription of HIF-1a, thus creating a potential feedforward loop between 

hypoxia, HIF and inflammation. Inflammation also promotes the production of immunometabolites, 

gasotransmitters such as hydrogen sulphide (H2S) and nitric oxide (NO), and reactive oxygen species 

(ROS) which regulate HIF activity and metabolic processes in immune cells. CREB, cyclic AMP-

response element binding protein; FIH, factor inhibiting HIF; p300, histone acetyltransferase p300; 

PHD, prolyl hydroxylase domain (from Taylor & Colgan, 2017). 

 

Furthermore, HIF can also modulate inflammatory immune responses by controlling cellular 

metabolism (Corcoran & O’Neill, 2016). For example, HIF expression can promote glycolysis 

by increasing the transcription of glycolytic genes (Semenza et al., 1994), which in turn can 

activate a number of immune cell types such as macrophages, dendritic cells, T cells and B cells 

(Corcoran & O’Neill, 2016). Conversely, inflammatory cytokines and ROS influence the 

activity of the HIF pathway, resulting in complex crosstalk between hypoxia, inflammation and 

metabolism (Halligan et al., 2016).  

 

Such crosstalk is evident in pulmonary arterial hypertension, where hypoxia increases IL-6 

expression in human PASMCs (Savale et al., 2009) and a range of pro-inflammatory cytokines 

and chemokines in pulmonary adventitial fibroblasts (Li et al., 2011). Consistent with these 

observations, increased levels of IL-1b, IL-6, IL-8 and TNFa are detected in IPAH patients 

(Humbert et al., 1995; Soon et al., 2010), with increased levels of several of these cytokines 

correlating with increased mortality (Cracowski et al., 2014). 
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Furthermore, prolonged exposure to hypoxia may impair mitochondrial function (Ye et al., 

2016) and increase oxidative stress (Takahashi et al., 2006), which might further exacerbate 

inflammation. Cytokines and HIF-1a are thought to contribute to the hyperglycolytic 

phenotype of PASMCs and pulmonary artery endothelial cells (PAECs) in PAH, even in the 

absence of alveolar hypoxia (Archer et al., 2010). In support of this concept, the pyruvate 

dehydrogenase kinase inhibitor dichloroacetate (DCA) reduced glycolysis and reversed the 

activation of HIF-1a in Fawn-hooded rats which spontaneously develop pulmonary 

hypertension (Bonnet et al., 2006). Taken together, these findings suggest that hypoxic 

signalling and inflammation contribute to the metabolic dysfunction associated with PAH. 

 

The hyperglycolytic phenotype of the vasculature in PH has been compared the phenotype of 

cancer cells which display a metabolic shift from glucose oxidation to glycolysis under aerobic 

conditions (Archer et al., 2010; Tuder et al., 2013). This phenomenon, termed “the Warburg 

effect”, has been observed in SMCs, ECs and fibroblasts from PAH patients and animal models 

of PH (Freund-Michel et al., 2014; Paulin & Michelakis, 2014), and is associated with a more 

highly proliferative phenotype, apoptosis resistance, increased mitochondrial membrane 

polarisation, dysregulation of calcium dynamics and endoplasmic reticulum (ER) stress 

(Michelakis et al., 2002; Vander Heiden et al., 2009; Archer et al., 2010; Semenza, 2011; 

Stenmark et al., 2011; Fessel et al., 2013).  

 

The anti-apoptotic phenotype of PASMCs in PAH can be partially attributed to a failure of pro-

apoptotic mediators to be released from mitochondria via the mitochondrial permeability 

transition pore (MPTP), a voltage- and redox-sensitive channel that closes when the inner 

mitochondrial membrane becomes hyperpolarised (Zamzami et al., 1996; Zamzami & 

Kroemer, 2001; Pastorino et al., 2005). The glycolytic phenotype of PAH has been linked to 

increased activity of the glycolytic enzyme hexokinase 2, which inhibits a portion of the MPTP 

known as the voltage-dependent anion channel (VDAC) (Pastorino et al., 2005). Inhibition of 

the VDAC results in the accumulation of anions within the intermembrane space, thus leading 

to mitochondrial membrane hyperpolarisation, which further prevents MPTP opening and 

induces a relative state of apoptosis resistance (Camara et al., 2010). 
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Mitochondrial membrane hyperpolarisation has been reported in PASMCs from PAH patients 

and in animal models of PH (McMurtry et al., 2004; Bonnet et al., 2006; Sutendra et al., 2011; 

Dromparis et al., 2013; Pak et al., 2013), as well as in BMPR2+/- PAECs which also display 

mitochondrial fission, increased glycolysis and a pro-inflammatory state characterised by 

increased expression of IL-6 and IL-8 (Diebold et al., 2015). Under certain conditions, these 

changes may result in the increased production of reactive oxygen species (ROS) which are 

thought to promote PASMC proliferation (Sanders & Hoidal, 2007), vascular remodelling (Liu 

et al., 2006; Hoshikawa et al., 2001) and contribute to pulmonary vasoconstriction or 

vasodilation (Archer et al., 1986, 2008). However, whether mitochondrial ROS is increased or 

decreased in PAH remains controversial (Aggarwal et al., 2013; Bonnet & Boucherat, 2018). 

  

Furthermore, it is also unclear whether reduction in BMPR2 promotes inflammation directly, 

or whether inflammatory events precede the development of pulmonary hypertension. TNFa 

reduces BMPR2 expression in distal PASMCs and PAECs, stimulates the proliferation of 

BMPR2+/- PASMCs via preferential ActR-IIA signalling, and can promote endothelial cell 

apoptosis (Courboulin et al., 2011; Cracowski et al., 2014; Hurst et al., 2017). The soluble 

TNFa inhibitor etanercept reversed PH progression in rats, which was associated with restored 

Bmpr2 expression (Zhang et al., 2016; Hurst et al., 2017). Similarly, the immunosuppressant 

FK506 (Tacrolimus) restored BMPR2 signalling and reversed severe PH in rats (Spiekerkoetter 

et al., 2013). Taken together, these findings suggest that inflammation contributes to the 

pathogenesis of PAH by reducing BMPR2 expression.  

 

Currently available PAH therapies in humans have been shown to reduce inflammation by 

decreasing the expression of endothelial cell adhesion molecules (Verma et al., 2002; Zardi et 

al., 2005), inhibiting pro-inflammatory cytokine secretion (Finsnes et al., 2001; Zhou et al., 

2007) and by preventing the activation of lymphocytes and dendritic cells (Guruli et al., 2004). 

However, none of these therapeutics specifically target inflammation, and immunosuppression 

per se does not appear to be effective at treating PAH in humans, except in isolated cases where 

PAH has been linked to connective tissue diseases (Jais et al., 2008). This suggests that 

inflammation on its own is not sufficient to initiate the development of pulmonary hypertension 

and that multiple signalling pathways will need to be targeted to develop more effective 

treatments for PAH.   
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1.3.3 – Animal models of pulmonary hypertension 
 

Studying the role of inflammation, hypoxia and metabolic dysfunction in diseased human 

tissues from PAH patients is hampered by their limited availability. As PAH is a rare disease, 

these tissues can only be obtained from patients at the time of heart/lung transplantation. 

Furthermore, patient-derived primary cells have a limited proliferative capacity in vitro, 

meaning that repeated biopsies are often required to study individual mutations. As a result, 

several rodent models of PAH have been developed in an attempt to gain a better understanding 

of the molecular pathogenesis of PAH, as described below. 

 

1.3.3.1 – Monocrotaline injury   
 

Monocrotaline injury in rats is the most commonly used animal model of Group 1 pulmonary 

arterial hypertension (Sztuka & Jasinska-Stroschein, 2017). A single subcutaneous or 

intraperitoneal injection (typically 60 mg/kg) of the pyrrolizidine alkaloid monocrotaline 

(MCT) is sufficient to trigger progressive development of severe PH in rats (Lalich & Mercow, 

1961; Kay et al., 1967). Although the exact mechanism through which MCT triggers PH 

development is poorly understood, it is thought to involve direct damage to the endothelium 

(Jasmin et al., 2001). Rats appear normal during the first two weeks after MCT injection, but 

subsequently develop muscularisation of previously non-muscularised arteries and adventitial 

remodelling which leads to an increase in pulmonary vascular resistance (Pak et al., 2010). 

Furthermore, metabolomic profiling of rat lungs after 14 days of exposure to monocrotaline 

revealed metabolic changes similar to those associated with human PH (Rafikova et al., 2016). 

Taken together, monocrotaline causes right ventricular systolic pressure (RVSP) to increase 

from approximately 25 to 80 mm Hg, with rats dying due to right heart failure after 6-8 weeks 

(Schermuly et al., 2005; Pak et al., 2010).    

 

The MCT model of PH is associated with the accumulation of many inflammatory cell types 

and is therefore useful for studying the contribution of inflammation to pulmonary vascular 

remodelling (West & Hemnes, 2011). Furthermore, MCT-induced PH has been widely used as 

a preclinical model of PAH to test potential therapeutic agents, with over 30 compounds shown 

to be effective at preventing or reversing monocrotaline-induced pulmonary hypertension 

(Stenmark et al., 2009). However, only a few of these experimental agents went on to be tested 

in human subjects (Hill et al., 2017).  
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There are multiple reasons why the MCT model of PH is poor at predicting treatment outcomes 

in any human form of pulmonary hypertension. For example, monocrotaline injury does not 

recapitulate the neointima formation and vascular obliteration of small pulmonary arterioles 

that is observed in human PAH (Yi et al., 2000). Furthermore, PAH is not caused by a single 

trigger and develops more slowly compared to the rapid disease progression observed in MCT-

induced PH (Hill et al., 2017). In addition, monocrotaline may cause off-targets effects such as 

myocarditis, which is not normally observed in human PAH, thus potentially confounding the 

study of right ventricular hypertrophy commonly associated with end-stage disease (Miyauchi 

et al., 1993). Monocrotaline can also have different effects in different species, strains and even 

individual animals due to differences in its hepatic metabolism by cytochrome P450 enzymes 

(reviewed in Stenmark et al., 2009). Futhermore, monocrotaline may damage the liver by 

causing hepatic veno-occlusive disease which is not normally observed in PAH and may hence 

confound the study of PAH-associated phenotypes in MCT rats (Roth et al., 1981; DeLeve et 

al., 1999).  

 

1.3.3.2 – Chronic hypoxia 
 

Unlike monocrotaline, chronic hypoxia is a physiological stimulus that can lead to or accelerate 

the development of pulmonary hypertension in humans (Vender, 1994). Chronic hypoxia is a 

model of Group 3 pulmonary hypertension and usually involves exposing mice and rats to 

normobaric or hypobaric hypoxia for 2 to 4 weeks (West & Hemnes, 2011). The response to 

chronic hypoxia is very predictable and reproducible within a specific animal strain, with most 

of these changes occurring within the first 3 to 4 weeks before stabilising (West & Hemnes, 

2011). Whilst mice display only modest vascular remodelling following exposure to chronic 

hypoxia, exposure to chronic hypoxia in rats causes several PH-associated phenotypes such as 

muscularisation of previously non-muscularised arteries, medial thickening, and increased 

proliferation of PASMCs and adventitial fibroblasts (Stenmark et al., 2009; Pak et al., 2010).  

 

However, there is minimal evidence of vascular obstruction or plexiform lesions, with most 

hypoxia-induced structural changes gradually reversing following removal of the hypoxic 

stimulus (Meyrick & Reid, 1980). Furthermore, it is unclear whether the loss of smaller 

pulmonary vessels that is thought to be associated with human PAH is also present in hypoxic 

rats (Stenmark et al., 2009). There is also a lot of variation in the response to hypoxia with age 

and sex, as well as between and within species (Aguirre et al., 2000). In addition, hypoxic 

pulmonary vasoconstriction is weaker in humans than in rats (Reeves et al., 1979). Therefore, 
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the chronic hypoxia model of PH is more representative of less severe PH, whereas the MCT 

model may have more relevance to advanced stages of PH.    

 

1.3.3.3 – Refinement of the MCT and chronic hypoxia models of pulmonary hypertension 
 

A systematic review and meta-analysis of studies reporting the use of animal models of PH 

revealed that nearly all (94.6%) of the studies reviewed used the MCT and chronic hypoxia 

models (Sztuka & Jasinska-Stroschein, 2017). However, these models do not recapitulate more 

complex phenotypes such as neointimal and plexiform lesions that are often associated with 

advanced PAH in humans (Stenmark et al., 2009). As a result, attempts have been made to 

refine these animal models of PH in order to more closely model the human disease state. 

 

For example, monocrotaline injury in combination with one-sided pneumonectomy in rats 

induces intimal remodelling in distal pulmonary arteries, which is not observed following MCT 

injection alone (Yi et al., 2000), although this model still could not recapitulate the complex 

plexiform lesions found in humans.  

 

Furthermore, unlike exposure to chronic hypoxia alone, the vascular endothelial growth factor 

(VEGF) receptor inhibitor Sugen-5416 in combination with chronic hypoxia causes severe PH 

in rats which persists and progresses after removal of the hypoxic stimulus (Taraseviciene-

Stewart et al., 2001). In addition, Sugen/hypoxic rats display minimal responses to vasodilators 

such as iloprost (Oka et al., 2007) and sometimes develop complex plexiform-like lesions (Abe 

et al., 2010). As a result, whilst the chronic hypoxia model is more representative of Group 3 

PH, the Sugen-5416/hypoxia model is considered to more closely resemble the irreversible 

nature of severe Group 1 PAH in humans. In addition, unlike MCT, Sugen-5416 only affects 

the lungs, where it promotes the selection of apoptosis-resistant ECs which subsequently 

proliferate (Sakao et al., 2005). Moreover, the Sugen-hypoxia model is associated with an 

inflammatory cytokine profile that is similar to that of PAH patients (Taraseviciene-Stewart et 

al., 2001).  

 

1.3.3.4 – Transgenic mouse models of pulmonary hypertension 
 

In addition to the MCT and the Sugen/hypoxia models of PH, gene overexpression, knockout 

and knock-in strategies in mice have led to the development of several transgenic mouse models 

of pulmonary hypertension. For example, whilst heterozygous Bmpr2 knockout (Bmpr2+/-) 
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mice (Beppu et al., 2005) do not develop pulmonary hypertension in the absence of additional 

triggers, chronic administration of the bacterial endotoxin lipopolysaccharide (LPS) induced 

pulmonary hypertension in Bmpr2+/- mice, where it was associated with increased IL-6 and KC 

(an analogue of IL-8) expression in PASMCs (Soon et al., 2015). Bmpr2 deficiency in these 

mice was also linked to reduced expression of extracellular superoxide dismutase (SOD3) 

which scavenges superoxide radicals by converting them into the diffusible second messenger 

hydrogen peroxide (H2O2) (Soon et al., 2015). In line with these findings, the superoxide 

dismutase mimetic tempol reduced inflammation and prevented PH development in Bmpr2+/- 

mice (Soon et al., 2015), whereas lung-specific SOD3 overexpression attenuated pulmonary 

hypertension in hypoxic mice (Nozik-Grayck et al., 2008).   

 

Another Bmpr2+/- mouse model of Group 1 PH was developed by West et al. (2008), who 

generated doxycycline-inducible transgenic mice in which a known, pathogenic heterozygous 

R899X mutation in BMPR2 was placed under the control of the smooth muscle-specific SM22 

promoter. Smooth muscle-specific overexpression of the R899X mutation in these mice 

resulted in the infiltration of inflammatory cells into the perivascular region but only elevated 

RVSPs in about one-third of animals, with some mice developing complex vascular lesions 

(West et al., 2008). By comparison, similar histological changes were observed when West et 

al. used the universal Rosa26 promoter to drive expression of the R899X mutation in all cell 

types, but this time 75% of mice developed increased RVSP after 8 weeks (West & Hemnes, 

2011). By contrast, Bmpr2+/R899X knock-in mice harbouring a heterozygous R899X mutation in 

exon 12 of the endogenous Bmpr2 locus did not display increased RVSP at 3 months of age 

(Long et al., 2015). However, these mice developed elevated RVSP and displayed increased 

muscularisation of distal pulmonary arteries by 6 months of age, although no right ventricular 

hypertrophy was observed (Long et al., 2015). 

 

Furthermore, lung-specific overexpression of the pro-inflammatory cytokine IL-6 in mice 

promoted inflammatory events in distal pulmonary vessels together with the formation of 

neointimal lesions after exposure to chronic hypoxia (Steiner et al., 2009). Conversely, Il-6-/- 

mice exposed to hypoxia for two weeks displayed reduced recruitment of inflammatory cells 

as well as reduced RVSP, RV hypertrophy and medial thickness of muscular pulmonary vessels 

in comparison to wild-type littermates (Savale et al., 2009). Moreover, lung-specific 

overexpression of TNFa, achieved by placing TNFa under the control of the surfactant protein 

C (SP-C) promoter, stimulated the development of severe PH and RV hypertrophy in mice 

(Fujita et al., 2001).  
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Other transgenic mouse models of PH include (i) Tie2 Cre-mediated disruption of Egln1 which 

results in the spontaneous development of progressive PH (Dai et al., 2016), (ii) overexpression 

of the serotonin plasma membrane transporter 5-HTT (Guignabert et al., 2006) and (iii) 

vasoactive intestinal peptide (VIP) knockout (Said et al., 2007). However, these models also do 

not recapitulate the diverse aetiology and complex pathology of human forms of pulmonary 

hypertension.  

 

1.3.3.5 – Other animal models of pulmonary hypertension 
 

Attempts have also been made to generate a mouse model of schistosomiasis infection, which 

is thought to be the single largest cause of PAH worldwide (Graham et al., 2010; Rabinovitch 

et al., 2014). Chronic infection of female C57BL/6 mice with Schistosoma mansoni resulted in 

profound pulmonary vascular remodelling, infiltration of inflammatory cells into the 

perivascular region, severe thickening of the media of small pulmonary arteries, and the 

formation of plexiform-like lesions (Crosby et al., 2010). Furthermore, these mice developed 

significantly increased RVSP and right ventricular hypertrophy at 25 weeks after infection 

(Crosby et al., 2011). 

 

Other animal models of PH include the use of fawn-hooded rats which spontaneously develop 

PH (Sato et al., 1992), as well as ligation of the ductus arteriosus or graft placement between 

the ascending aorta and the main pulmonary artery in fetal lambs (Morin, 1989; Abman et al., 

1989; Belik et al., 1993; Black et al., 1998) to model the development of persistent pulmonary 

hypertension of the newborn (PPHN). 

 

By contrast, there are no animal models of PH secondary to left heart disease (Group 2), and 

there are also no rodent models of CTEPH (Group 4). Although several large animal models of 

chronic CTEPH have been described, they are difficult to create, requiring repetitive 

embolisation of venous thrombi in addition to the use of fibrinolytic inhibitors (Mercier & 

Fadel, 2013). Similarly, animal models of pulmonary hypertension due to multifactorial reasons 

(Group 5) have provided little insight into the pathogenesis of this disease (Ryan et al., 2011). 
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1.3.4 – Challenges associated with studying pulmonary arterial hypertension  
 
Our understanding of PAH is hampered by the limited availability of human tissue which can 

only be obtained from patients with end-stage disease, thus making it difficult to determine how 

PAH is established and how it progresses. Furthermore, these cells have a limited proliferative 

capacity, meaning that repeated biopsies are required to study individual BMPR2 mutations. 

Moreover, as described above, currently available animal models of PAH are associated with 

several limitations and are unable to recapitulate the complex aetiology and pathology observed 

in patients with pulmonary hypertension.  

 

Therefore, alternative human disease models of PAH are required to gain a better understanding 

of PAH establishment and progression. One way in which this could be achieved is through the 

use of induced pluripotent stem cells (iPSCs), which have been used to model a number of 

human diseases, including PAH (West et al., 2014; Sa et al., 2017; Gu et al., 2017; Kiskin et 

al., 2018), as described below. 

 
1.4 – Disease modelling using induced pluripotent stem cells 
 

1.4.1 – Introduction to induced pluripotent stem cells 
 

Embryonic stem cells (ESCs) are derived from the inner cell mass of blastocyst stage embryos 

and are able to limitlessly self-renew whilst having the potential to differentiate into any cell 

type within the human body (Thomson et al., 1998; Kiskinis & Eggan, 2010). However, the 

expansion and differentiation of human ESCs is associated with ethical concerns (Grskovic et 

al., 2011). By contrast, induced pluripotent stem cells are highly similar to ESCs, but are 

generated by reprogramming the nuclei of somatic cells via the ectopic expression of a select 

group of transcription factors (Takahashi & Yamanaka, 2006). 

 

The first iPSCs were generated by retroviral vector-mediated delivery of the transcription 

factors Oct4, Sox2, Klf4 and c-Myc (OKSM) into mouse skin fibroblasts (Takahashi & 

Yamanaka, 2006). This was soon followed by the generation of human iPSCs from skin 

fibroblasts (Takahashi et al., 2007; Yu et al., 2007; Lowry et al., 2008), human peripheral blood 

(Loh et al., 2009; Loh et al., 2010), and other somatic cell types. 

 

Although skin fibroblasts are the most common cell type used for generating iPSCs, the 

genomes of many fibroblast-derived iPSC lines carry copy number variations (CNVs) which 
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could potentially affect their phenotypic behaviour (Hussein et al., 2011; Yusa et al., 2011; 

Martins-Taylor & Xu, 2012). By contrast, previous work in our laboratory has shown that 

human iPSC lines generated by retroviral-based reprogramming of human blood outgrowth 

endothelial cells [BOECs, also known as late-outgrowth endothelial progenitor cells (L-EPCs)] 

display normal karyotypes compared to the genomes of donor-matched circulating monocytes 

(Geti et al., 2012). The majority (>80%) of these BOEC-derived iPSC lines did not acquire any 

CNVs during reprogramming and displayed a reprogramming efficiency that was 

approximately 10-fold higher compared to the two fibroblast lines tested (Geti et al., 2012). 

Furthermore, BOECs are isolated from human peripheral blood (Lin et al., 2000; Medina et al., 

2010) which is less invasive than performing skin biopsies to isolate skin fibroblasts. Taken 

together, these observations highlight some of the advantages of using BOECs to generate 

human iPSC lines.  

 

iPSCs are characterised by their ability to differentiate into the three embryonic germ layers 

(ectoderm, mesoderm and endoderm) (Figure 1.7) and form teratomas after subcutaneous or 

intramuscular injection into immunodeficient mice (Lensch et al., 2007; Takahashi et al., 2007; 

Yu et al., 2007; Park et al., 2008). At the molecular level, iPSCs must (i) express key 

pluripotency genes including OCT4, SOX2 and NANOG (Stadtfeld et al., 2008), (ii) stain 

positively for the embryonic antigens SSEA3, TRA-1-60, and TRA-1-81 (Chan et al., 2009), 

(iii) display functional telomerase expression (Wolf & Goff, 2007), and (iv) lack expression of 

the delivered reprogramming factors with concomitant downregulation of lineage-specific 

genes associated with the adult cell that the iPSCs were derived from (Robinton & Daley, 2012). 

In culture, iPSC colonies can be identified by their cobblestone morphology, prominent nucleoli 

and well-defined individual cell borders (Robinton & Daley, 2012). 
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Figure 1.7. Differentiation potential of pluripotent stem cells. Embryonic stem cells (ESCs) and 

induced pluripotent stem cells (iPSCs) are able to limitlessly self-renew and differentiate into all cell 

types of the three embryonic germ layers (ectoderm, mesoderm and endoderm). ESCs are derived from 

the inner cell mass of blastocyst stage embryos, whereas iPSCs are derived by nuclear reprogramming 

of somatic cells via the ectopic expression of a select group of transcription factors, typically Oct4, 

Sox2, Klf4 and c-Myc. HPSC, haematopoietic stem cell; MSC, mesenchymal stem cell (from Kaebisch 

et al., 2015) 
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1.4.2 – Utility of induced pluripotent stem cells for disease modelling 
 

 
 

Figure 1.8. Disease modelling using induced pluripotent stem cells. iPSC-based disease modelling 

typically involves isolating patient-derived iPSCs, introducing disease-associated mutations into control 

iPSCs using CRISPR-Cas9 gene editing to generate cells with isogenic backgrounds, and differentiating 

these cells into the cell types implicated in the disease being modelled. The iPSC-derived cells are then 

used to study mechanisms contributing to the establishment of disease-associated cellular phenotypes 

and identify molecular targets that could be used for drug screening and personalised medicine (from 

Shi et al., 2017). 

 

 

Human induced pluripotent stem cells offer an invaluable model system for studying the 

molecular pathogenesis of human diseases which have strong genetic components. Unlike non-

human animal models, patient-derived iPSCs are genetically matched to the individual they 

were derived from. Furthermore, whilst patient-derived primary cells are difficult to isolate and 

are of limited supply, iPSCs can be differentiated into virtually any disease-relevant cell type, 

thus providing a potentially limitless supply of patient-specific cells which can be used for drug 

screening and personalised medicine (Figure 1.8). 

 

Since their discovery, iPSCs have been successfully differentiated into a number of different 

cell types, including neurons (Dimos et al., 2008; Ebert et al., 2009; Soldner et al., 2009), blood 

cells (Choi et al., 2009; Ye et al., 2009), adipocytes (Taura et al., 2009), fibroblasts 

(Hockemeyer et al., 2008; Maherali et al., 2008), endothelial cells (Choi et al., 2009; Patsch et 

al., 2015; Sa et al., 2017, Kiskin et al., 2018), and smooth muscle cells (Cheung et al., 2012; 
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Patsch et al., 2015; Kiskin et al., 2018). iPSCs have also been isolated from individuals with 

different diseases and were shown to retain the genetic characteristics of their donor cells (Park 

et al., 2008). This makes patient-specific iPSCs especially useful for studying monogenic 

diseases or diseases with strong genetic components such as HPAH (Ebert et al., 2009; Lee et 

al., 2009). Furthermore, patient-specific iPSCs can be differentiated into large numbers of 

disease-relevant cells which were previously difficult to obtain, such as neurons and 

cardiomyocytes (Shi et al., 2017). This approach would therefore be extremely useful for 

generating pulmonary vascular-like cells to model PAH, as pulmonary artery smooth muscle 

and endothelial cells can only be obtained from patients at the time of transplantation or death. 

 

Another advantage of using iPSCs for disease modelling is their amenability to genetic 

manipulation (Hockemeyer & Jaenisch, 2016). Gene editing efficiency can be improved by 

using zinc-finger nucleases (ZFN) (Hockemeyer et al., 2009; Zou et al., 2009), transcription 

activator-like effector nucleases (TALENs) (Christian et al., 2010; Hockemeyer et al., 2011; 

Sanjana et al., 2012) and the CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic 

Repeats CRISPR-associated protein 9) system (Jinek et al., 2012; Cong et al., 2013; Perez-

Pinera et al., 2013; Shalem et al., 2014) to induce double-stranded DNA breaks at sites of gene 

modification. 

 

Owing to its relatively low cost and ease of use, the CRISPR-Cas9 system has become the most 

commonly used gene editing strategy. CRISPR-Cas9 gene editing has been used to introduce 

disease-associated mutations into wild-type iPSCs (Wen et al., 2014; Murai et al., 2016) and to 

correct such mutations in patient-derived iPSCs (Hotta & Yamanaka, 2015; Seah et al., 2015; 

Deleidi & Yu, 2016; Orqueda et al., 2016; Gu et al., 2017), thus allowing comparisons to be 

made between isogenic lines that are genetically identical apart from the introduced mutation. 

This approach avoids potential confounding effects of inter-line variability on the phenotypes 

being studied and has great utility in investigating the contributions of specific mutations to the 

establishment of disease-associated phenotypes. Given the reduced penetrance of BMPR2 

mutations in PAH (Machado et al., 2009), genetically matched wild-type iPSCs and their gene-

edited counterparts could therefore be very useful for studying the precise role of BMPR2 

mutations in establishing PAH-associated disease phenotypes.  
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1.4.3 – Developing induced pluripotent stem cell models of pulmonary arterial 
hypertension 
 

Owing to the limited availability of diseased pulmonary vascular cells from PAH patients, 

attempts have been made to generate iPSC-derived cells that could serve as surrogates for adult 

cells and be used to study PAH. 

  

West et al. (2014) differentiated two wild-type and two PAH patient-derived iPSC lines 

(derived from skin fibroblasts) into vascular mesenchymal stromal cells (iPSC-MSC) and 

subsequently into EC-like cells (iPSC-ECL), using microarrays to compare their gene 

expression profiles with control and IPAH patient-derived PAECs, as well as with skin 

fibroblasts from IPAH and HPAH patients (West et al., 2014). The authors looked at the effect 

of decreased BMPR2 signalling on gene expression at various stages of differentiation of iPSC-

MSCs and iPSC-ECLs and identified 33 developmental genes and 18 genes related to cell death 

that were specifically upregulated in BMPR2 mutants during differentiation. Among these, the 

Wnt receptors FZD4 and FZD5 and secreted Wnt modulators SFRP1 and SFRP2 were 

upregulated in BMPR2 mutants compared to controls, leading the authors to conclude that 

aberrant BMPR2 signalling may result in increased canonical Wnt/b-catenin signalling in PAH 

(West et al., 2014). In support of these observations, increased expression of the Wnt pathway 

genes FZD4, FZD10 and AXIN2 was detected in lung tissue samples from 22 IPAH patients 

compared to 22 control subjects (Wu et al., 2016), although none of these IPAH patients carried 

BMPR2 mutations. Furthermore, non-canonical Wnt signalling has been associated with 

vasoconstriction and vascular remodelling in IPAH patients (Laumanns et al., 2009).  

 

However, the iPSC model of PAH developed by West et al. (2014) was limited to the analysis 

of just two iPSC-ECL and iPSC-MSC lines that were not genetically matched, and the authors 

also did not characterise iPSC-ECLs in terms of their proliferative and apoptotic responses. 

Furthermore, although BMPR2 mutant iPSC-MSCs were less apoptotic compared to control 

iPSC-MSCs, they were not more proliferative (West et al., 2014). Therefore, further work will 

be required to clarify whether reduced BMPR2 signalling contributes to increased Wnt 

signalling in PAH.  
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In addition to the iPSC model of PAH developed by West and colleagues, iPSC-derived 

endothelial cells were used in two subsequent studies as surrogates for PAECs to model PAH 

(Sa et al., 2017; Gu et al., 2017). Sa et al. (2017) derived iPSCs from skin fibroblasts of HPAH 

and IPAH patients, differentiated these into iPSC-ECs and compared these iPSC-ECs to PAECs 

obtained from the same patients in terms of their ability to recapitulate several PAH-associated 

disease phenotypes (Sa et al., 2017). However, the iPSC-ECs generated by Sa et al. did not 

recapitulate increased proliferation, mitochondrial hyperpolarisation and DNA damage that 

have previously been reported in IPAH and HPAH-derived PAECs (Diebold et al., 2015; Sa et 

al., 2017). 

 

Nevertheless, Sa et al. showed that matched patient-derived iPSC-ECs and PAECs displayed 

similar susceptibility to apoptosis and reduction in BMPR2 signalling, cell adhesion and tube 

formation compared to iPSC-ECs and PAECs from control individuals (Sa et al., 2017). RNA-

Seq analysis of these cells suggested that impaired migration and survival were attributed to 

increased expression of kisspeptin 1 (KISS1) and downregulation of carboxylesterase 1 (CES1), 

respectively (Sa et al., 2017). Furthermore, IPAH/HPAH-derived PAECs and iPSC-ECs 

displayed similar responses to the immunosuppressant FK506 and the neutrophil elastase 

inhibitor, elafin, both of which improved angiogenesis in two patient-derived iPSC-EC and 

PAEC lines. In addition, the authors showed that the lack of a response to FK506 and elafin in 

the other five cell lines was at least partly due to increased expression of the anti-migratory 

factor split guidance ligand 3 (SLIT3), suggesting that SLIT3 might act as a potential genetic 

modifier in PAH (Sa et al., 2017). 

 

The same group subsequently went on to look for other possible genetic modifiers in three 

families with FPAH patients and unaffected mutation carriers (UMCs) (Gu et al., 2017). UMC 

iPSC-ECs displayed increased cell adhesion and survival compared to FPAH-derived iPSC-

ECs harbouring the same BMPR2 mutation, which the authors attributed to increased 

expression of BMPR2 activators and a reduced expression of BMPR2 inhibitors in UMC iPSC-

ECs relative to FPAH iPSC-ECs (Gu et al., 2017). However, preserved UMC iPSC–EC survival 

was not found to be regulated by the BMPR2 pathway (Gu et al., 2017). Instead, baculoviral 

IAP repeat containing 3 (BIRC3), a gene encoding a protein that is thought to protect ECs 

against apoptosis, was upregulated in UMC- relative to FPAH-derived iPSC-ECs in all three 

families. Whilst CRISPR-Cas9-mediated repair of the C118W BMPR2 mutation in FPAH 

iPSC-ECs restored cell adhesion, cell survival and the expression of BMPR2 target genes to 

control levels, BIRC3 expression remained upregulated, suggesting that BIRC3 expression is 
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not regulated by BMPR2 signalling (Gu et al., 2017). siRNA-mediated knock-down of BIRC3 

increased apoptosis in UMC iPSC-ECs, leading the authors to conclude that BIRC3 is 

responsible for the preserved cell survival in UMC iPSC-ECs and may hence act as a protective 

genetic modifier in PAH (Gu et al., 2017). These findings agree with previous work showing 

that reduced BMPR2 signalling in PAECs is associated with increased apoptosis in response to 

injury (de Jesus Perez et al., 2009) and with impaired adhesion and migration (de Jesus Perez 

et al., 2012; Rhodes et al., 2015).  

 

1.4.4 – Limitations of currently available iPSC models of pulmonary arterial 
hypertension 
 
Whilst the studies described above successfully generated iPSC-derived ECs and MSCs that 

could recapitulate several PAH-associated disease phenotypes and could be used to gain insight 

into some of the genes which may be dysregulated in PAH, these studies are associated with 

several limitations. For instance, neither BMPR2 mutant iPSC-MSCs or iPSC-ECs were able 

to recapitulate the hallmark pro-proliferative phenotype of patient-derived BMPR2+/- PASMCs 

and PAECs. Furthermore, most cells used in these studies did not have isogenic backgrounds, 

thus making it very difficult to discern whether the introduction of a specific BMPR2 mutation 

is sufficient to result in the acquisition of PAH-associated cellular phenotypes. Finally, whilst 

Sa et al. (2017), Gu et al. (2017) and West et al. (2014) showed that iPSC-ECs can be used as 

surrogates for PAECs for studying PAH, no iPSC-derived SMCs have yet been described that 

recapitulate PAH-associated PASMC phenotypes.  

 

Therefore, developing protocols for differentiating iPSCs into vascular smooth muscle-like 

cells which could be used as surrogates for PASMCs would provide another critical source of 

cells that could further aid the study of the molecular mechanisms implicated in PAH 

establishment and progression.  
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1.5 – Vascular smooth muscle cell differentiation 
 
1.5.1 – Embryonic origins of vascular smooth muscle cells 
 

When developing protocols for differentiating iPSCs into vascular smooth muscle-like cells, 

the ultimate goal is to generate cells that are akin to the adult cell types being modelled or at 

least that these display functional responses akin to the specific type of primary cell they are 

trying to mimic.  

 

Vascular smooth muscle is a mosaic tissue, with specific vascular beds being derived from one 

or more possible embryonic origins (reviewed in Majesky, 2007). Furthermore, individual 

vessels or even vessel segments may consist of multiple SMC populations that arise from 

distinct progenitor populations which themselves have unique developmental histories 

(Majesky, 2007). For example, lineage tracing has shown that four major embryonic lineages 

contribute to the pulmonary vasculature: (i) Wnt1+ neural crest, which contributes to the SMCs 

at the root of the pulmonary artery (Jiang et al., 2000), (ii) cardiopulmonary progenitors (CPPs), 

which contribute ECs and SMCs to the proximal pulmonary artery and vein (Peng et al., 2013), 

(iii) Wilms’ tumour 1-positive (WT1+) mesothelium, which surrounds the lung and contributes 

widely to both ECs and SMCs throughout the vasculature (Que et al., 2008), and (iv) lateral 

plate mesoderm, which contributes to the PASMCs in peripheral pulmonary arteries (Hall et 

al., 2000).  

 

The ability to recapitulate specific lineages and their vascular derivatives is likely to be critical 

for generating a high-fidelity model of PAH. This is because these SMC populations may 

display distinct, lineage-specific responses to the same stimuli, even under identical 

experimental conditions (Rosenquist et al., 1989; Topouzis & Majesky, 1996). Specific SMC 

subpopulations may also respond to injury in unique ways and may therefore contribute 

differently to the vascular remodelling process (Frid et al., 1997). Furthermore, depending on 

their anatomical origin, SMCs may display opposite responses to hypoxia. Systemic arteries 

relax in response to tissue hypoxia in order to improve blood flow and oxygen supply in hypoxic 

tissues (Detar, 1980; Gupte & Wolin, 2008). By contrast, pulmonary arteries respond by 

contracting, thereby diverting blood flow from poorly ventilated regions towards the more 

oxygenated areas of the lungs – a process termed hypoxic pulmonary vasoconstriction (HPV) 

(von Euler & Liljestrand, 1946). 
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Mammalian lung development begins with the ventral budding of the primordium from the 

foregut to form the lung bud (Perl & Whitsett, 1999). Pulmonary SMCs develop from local 

mesenchymal cells at the distal end of the growing lung bud, with the mesenchymal precursor 

cells gradually migrating in a distal to proximal fashion along the bronchial tree, whereas 

bronchial smooth muscle cells migrate in the opposite direction (Badri et al., 2008). As lung 

development proceeds, BMP4 becomes most highly expressed at the tips of the distal buds, 

suggesting that it plays a role in bronchial branching (Bellusci et al., 1996). Moreover, BMP4 

differentially affects the proliferation and apoptosis of PASMCs depending on their location 

along the bronchial tree. For example, proximal PASMCs are growth-suppressed by BMP4, 

whereas distal PASMCs are not growth-suppressed by BMP4 (Yang et al., 2005). This is an 

important consideration in developing iPSC-SMC models of PAH, as it is the distal PASMCs 

that are thought to be predominantly affected in this disease (Humbert et al., 2004). 

 

1.5.2 – Arterial and venous smooth muscle cells have different functions and identities  
 

In addition to embryonic origin, it is important to consider arteriovenous (AV) specification 

when developing protocols for differentiating iPSCs into distal PASMC-like cells. This is 

because PAH predominantly affects arteries, with arterial and venous SMCs having distinct 

functions and identities (Wong et al., 2005; Deng et al., 2006). For example, arterial SMCs 

isolated from carotid arteries of male rabbits displayed elevated levels of the inhibitory 

proteoglycan decorin compared to SMCs isolated from the jugular vein (Wong et al., 2005). By 

contrast, jugular vein SMCs are more dedifferentiated, displaying reduced adhesion to collagen 

and fibronectin, and are associated with increased activity of the matrix metalloproteases 

MMP2 and MMP9 (Wong et al., 2005). 

Furthermore, Notch3 expression in mice was shown to be required for the maturation of arterial 

SMCs, with vascular smooth muscle cells (VSMCs) from Notch3-/- mice potentially being more 

venous in nature (Domenga et al., 2004). In addition, Li et al. (2011) showed that human arterial 

and venous SMCs differed in terms of their proliferative responses to the platelet-derived 

growth factor (PDGF) isoforms PDGF-AA and PDGF-BB (Li et al., 2011). The authors showed 

that PDGF-AA stimulated the proliferation of arterial but not venous SMCs, whilst human 

saphenous vein SMCs were more proliferative compared to arterial SMCs following 

stimulation with PDGF-BB (Li et al., 2011). Other genes that have been shown to be 

upregulated in arterial versus venous SMCs include regulator of G-protein synthesis 5 (RGS5), 

elastin and vimentin (Adams et al., 2000).  
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However, our current understanding of AV identity in SMCs, unlike in ECs, is very limited and 

modelling AV identity is a major challenge.   
 

1.5.3 – Phenotypic plasticity of vascular smooth muscle cells 
 

Another challenge of developing iPSC-SMC differentiation protocols is the ability to produce 

mature, fully differentiated SMCs.  This is important because unlike skeletal or cardiac muscle, 

VSMCs are not terminally differentiated and are able to undergo transient changes between 

contractile, synthetic and intermediate phenotypic states in response to changes in signalling 

within their local environment (Wolinsky & Glagov, 1967; Owens, 1995). Mature, fully 

developed VSMCs are normally quiescent and have a contractile phenotype characterised by 

an elongated, spindle-shaped morphology, the presence of contractile filaments and the 

expression of contractile protein markers myosin heavy chain 11 (MYH11) and smoothelin 

(SMTN) (Sobue et al., 1999; Owens et al., 2004). However, in response to vascular injury, 

contractile VSMCs undergo phenotypic switching by becoming more proliferative and starting 

to secrete components of the extracellular matrix (ECM) such as collagen, elastin, fibronectin, 

laminin and proteoglycans (Stiemer et al., 1993; Kane et al., 2011). These dedifferentiated 

VSMCs have a ‘synthetic’ phenotype characterised by increased expression of proteolytic 

enzymes such as matrix metalloproteinases (MMPs) and serine elastases (Chelladurai et al., 

2012), reduced MYH11 expression (Owens, 1995) and a less elongated, cobblestone-like 

morphology referred to as an epithelioid (Chamley-Campbell et al., 1979; Hao et al., 2003).  

Phenotypic switching plays an important role in pulmonary arterial hypertension, where 

increased degradation and reduced synthesis of the ECM contributes to vascular remodelling 

(Stenmark & Mecham, 1997; Vieillard-Baron et al., 2003).  For example, the matrix-degrading 

enzymes MMP2 and MMP9 were found to be upregulated in PAH-derived PASMCs and 

patient-derived plasma samples, respectively (Lepetit et al., 2005). Furthermore, increased 

MMP expression has also been detected in the lungs of MCT rats (Schermuly et al., 2004; 

Pullamsetti et al., 2005), as well in cultured SMCs in response to TNFa treatment (Rajavashisth 

et al., 1999).  
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1.5.4 – Developing differentiation protocols for generating iPSC-derived SMCs 
 

The directed in vitro differentiation of iPSCs into different cell types can be achieved by using 

specific concentrations, combinations and sequences of agonists and antagonists of a number 

of different signalling pathways to mimic the signalling events which occur during embryonic 

development (Murry & Keller, 2008; Cheung et al., 2012).  

 

For example, Patsch et al. (2015) developed a chemically-defined differentiation protocol 

which involved using BMP4 treatment and glycogen synthase kinase 3 (GSK3) inhibition to 

differentiate pluripotent cells into mesoderm and subsequently into iPSC-derived ECs or SMCs 

via exposure to vascular endothelial growth factor A (VEGF-A) or PDGF-BB, respectively 

(Patsch et al., 2015). However, although metabolomic and transcriptome-wide expression 

analysis showed that these iPSC-derived ECs and VSMCs displayed a high degree of similarity 

to their respective primary cells (Patsch et al., 2015), these cells were not embryonic lineage-

specific. Therefore, these cells are limited in terms of their ability to model specific SMC 

populations in distinct vascular regions which may display different signalling responses and 

disease susceptibility compared to SMC populations derived from other lineages (Haimovici & 

Maier, 1964; VanderLaan et al., 2004; Yang et al., 2005). 

 

By contrast, by exploiting the principle that a posterior-anterior BMP concentration gradient 

along the primitive streak determines lateral plate mesoderm (LM) and paraxial mesoderm 

(PM) specification during embryogenesis (Dosch et al., 1997), Cheung et al. (2012) used 

varying concentrations of BMP4 to show that origin-specific smooth muscle cells can be 

generated from iPSCs via these two intermediate lineages (Cheung et al., 2012). Using this 

lineage-specific approach together with chemically-defined conditions, the authors showed that 

high BMP4 concentrations inhibit the development of paraxial mesoderm but promote LM 

specification. Once formed, the LM cells could subsequently be stimulated to differentiate into 

iPSC-SMCs by culturing the cells for 12 days in chemically defined medium containing PDGF-

BB and TGF-b1. At the end of the differentiation protocol, over 80% of iPSC-SMCs derived 

from these intermediate populations expressed smooth muscle myosin heavy chain (MYH11), 

a marker which is only thought to be selectively expressed in mature, fully differentiated SMCs 

(Owens et al., 2004). Furthermore, these iPSC-SMCs displayed contractility and calcium 

transients when stimulated with carbachol, thus suggesting that these cells exhibit functional 

responses that are characteristic of adult vascular smooth muscle cells in general (Cheung et 
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al., 2012). However, it was not shown whether these iPSC-SMCs display functional responses 

akin to more specific types of VSMCs such as distal PASMCs.  

 

1.6 – Aims and hypothesis 
 

1.6.1. – Aims and objectives 
 

The overarching aim of this thesis is to develop a human induced pluripotent stem cell-derived 

smooth muscle cell model of PAH associated with mutations in BMPR2.  

 

To achieve this, the specific aims and objectives of this thesis are as follows:  

 

1) To use CRISPR-Cas9 gene editing to introduce a known disease-associated BMPR2 

mutation into a human control iPSC line to generate wild-type and BMPR2+/- iPSCs 

with an isogenic background  

  

2) To differentiate control and BMPR2+/- iPSCs into lineage-specific iPSC-derived smooth 

muscle-like cells and show that these iPSC-SMCs can be used as surrogates for distal 

PASMCs for studying PAH establishment and progression.  

 

3) To determine the extent to which BMPR2+/- iPSC-SMCs recapitulate PAH-associated 

disease phenotypes observed in PASMCs and thus whether the introduction of a single 

BMPR2 mutation is necessary and sufficient to establish PAH-associated cellular 

phenotypes in iPSC-SMCs 

 

1.6.2. – Hypothesis 
 

My hypothesis is that the introduction of a single BMPR2 mutation is necessary but not 

sufficient to establish PAH-associated cellular phenotypes in iPSC-SMCs, with additional 

factors being required to fully recapitulate PAH-associated cellular phenotypes observed in 

PASMCs from PAH patients.   
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2.1 – Characteristics of human iPSC and PASMC lines 
 

The characteristics of the human induced pluripotent stem cell (iPSC) and pulmonary artery 

smooth muscle cell (PASMC) lines used in this investigation are summarised in Table 2.1 and 

Table 2.2 below. Prior to the start of this study, human iPSC lines were generated by 

reprogramming late blood outgrowth endothelial cells (BOECs) isolated from human peripheral 

blood as previously described (Geti et al., 2012; Ormiston et al., 2015). All blood donors 

provided informed written consent in accordance with human study 07/H0306/134 

(Cambridgeshire 3 Research Ethics Committee, UK). For PASMC isolation, the Papworth 

Hospital ethical review committee (Papworth Everard, Cambridge, UK) approved the study, 

and subjects or relatives gave informed written consent.   

 

 

 

 

 

 

 

 

 

 

Table 2.1. Characteristics of human iPSC lines. Prior to the start of this thesis project, human iPSC 

lines were generated from late blood outgrowth endothelial cells from three control subjects (C2, C6 

and C10), three heterozygous BMPR2 mutation carriers (B3, B4 and B11) and one idiopathic PAH 

patient (IPAH1), as described in Geti et al. (2012). The isogenic C2 W9X+/- and C2 ∆Exon1 iPSC lines 

were generated as part of this thesis project, as described in Section 2.4 and in Chapter 3, Section 3.1.     

 

 

 

 

 

 

iPSC line Sex Age Disease 
status 

BMPR2 status 

C2 M 20 No disease Wild-type 
C6 F 40 No disease Wild-type 
C10 M 28 No disease Wild-type 

     
C2 W9X+/- M 20 No disease W9X 
C2 ∆Exon1 M 20 No disease Deletion of 

BMPR2 Exon 1 
B3 M 27 No disease C347R 
B4 F 37 Hereditary 

PAH 
W9X 

B11 M 32 Hereditary 
PAH 

Del in 5’UTR 

     
IPAH1 M 62 Idiopathic PAH Wild-type 
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Table 2.2. Characteristics of human pulmonary artery smooth muscle cell lines 
 
2.2 – Non-commercial cell culture media recipes 
 

All cell culture media were supplemented with antibiotic-antimycotic solution (Thermo Fisher 

Scientific) (1% v/v) containing penicillin (10,000 Units/mL), streptomycin (10,000 µg/mL) and 

amphotericin B (25 µg/mL). Where non-sterile components were added, media were sterile-

filtered through a polyethersulfone (PES) membrane with a pore size of 0.2 µm. 

 

Chemically-defined medium (CDM): IMDM (49.5% v/v), Ham’s F-12 Nutrient Mixture 

(49.5% v/v), chemically defined lipid concentrate (1% v/v) (all from Thermo Fisher Scientific), 

transferrin from human serum (15 µg/ml, Roche), recombinant human insulin (7 µg/ml, Roche), 

and 1-thioglycerol (450 µM, Sigma) (Vallier et al., 2009)  

 

CDM-BSA: Chemically-defined medium (CDM) supplemented with bovine serum albumin 

(BSA) Cohn fraction V (5 mg/ml, Europa Bioproducts) (Brons et al., 2007) 

 

CDM-PVA: Chemically-defined medium (CDM) supplemented with polyvinyl alcohol (1.2 

mg/ml, Sigma) 

 

KnockOut Serum Replacement (KSR) medium: DMEM/F12 (79.5% v/v), Gibco KnockOut 

Serum Replacement (KOSR) (19.5% v/v), MEM Non-Essential Amino Acids Solution (1% 

v/v), L-glutamine (2 mM) (all from Thermo Fisher Scientific) and fibroblast growth factor 2 

(FGF-2) (10 ng/ml, Wellcome Trust – MRC Cambridge Stem Cell Institute, Cambridge, UK) 

 

PASMC 
line 

Sex Age Disease status BMPR2 
status 

32 MP F 58 Centrilobular 
emphysema 

Wild-type 

79 MP M 60 Squamous cell 
carcinoma 

Wild-type 

82 MP F 71 Adenocarcinoma Wild-type 
83 MP F 56 Unknown donor 

control 
Wild-type 

84 MP F 59 Differential 
adenocarcinoma 

Wild-type 

     
56 MP M 58 Hereditary PAH C347R 
67 MP M 22 Hereditary PAH W9X 
73 MP F 30 Hereditary PAH R899X 
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CDM-BSA/KSR (‘BK’) feeder-free iPSC culture medium: CDM-BSA (50% v/v), KSR 

(50% v/v), activin A (12.5 ng/ml), FGF-2 (15 ng/ml) (Wellcome Trust – MRC Cambridge Stem 

Cell Institute, Cambridge, UK) and L-ascorbic acid (50 ng/ml, Sigma). 

 

Feeder-dependent iPSC culture medium: CDM-BSA (25% v/v), KSR (50% v/v) and filtered 

conditioned medium (25% v/v) from irradiated, mitotically inactive mouse embryonic 

fibroblasts (iMEFs) (Wellcome Trust – MRC Cambridge Stem Cell Institute, Cambridge, UK) 

cultured for 24 hours in CDM-BSA + FGF-2 (4 ng/ml). Feeder-dependent iPSC culture medium 

also contains activin A (12.5 ng/ml), FGF-2 (15 ng/ml) and L-ascorbic acid (50 ng/ml).          

 
2.3 – Human pluripotent stem cell and PASMC culture 
 

To aid attachment of human pluripotent stem cells (hPSCs), empty cell culture plates were 

incubated for one hour at 37°C in a 0.2% w/v solution of porcine gelatine (Sigma) in HyClone 

cell culture grade water (GE Healthcare Life Sciences) followed by incubation in DMEM 

supplemented with 10% FBS and 2-mercaptoethanol (55 µM, Sigma) for at least 2 hours at 

37°C. Prior to laying down cells, this medium was aspirated and the plates washed once with 

PBS before laying down cells in their respective cell culture media.  

 

Feeder-free human iPSCs were cultured in BK medium, whereas feeder-dependent iPSCs 

growing on top of a 25% confluent layer of irradiated mouse embryonic fibroblasts (iMEFs) 

were cultured in feeder-dependent iPSC culture medium (See Section 2.2). Feeder-free H9 

human embryonic stem cells (hESCs) were cultured in CDM-BSA supplemented with activin 

A (10 ng/ml) and FGF-2 (12 ng/ml) (Vallier et al., 2009).  

 

Human pulmonary artery smooth muscle cells (PASMCs) from PAH patients carrying 

heterozygous BMPR2 mutations, or from unaffected donor control subjects at the time of 

heart/lung transplantation (Table 2.2), were cultured in high glucose (4.5 g/L) DMEM (Thermo 

Fisher Scientific) supplemented with 10% heat-inactivated foetal bovine serum (FBS) (Sigma) 

and antibiotic-antimycotic solution (1% v/v) (Thermo Fisher Scientific). All cells were 

incubated at 37°C in a humidified atmosphere containing 5% CO2. 
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2.4 – Generation of BMPR2+/- iPSC lines with isogenic backgrounds 
 

2.4.1 – Site-directed mutagenesis 
 

The generation of the W9X targeting construct and the CRISPR-Cas9 targeting strategy used 

to introduce the W9X mutation into exon 1 of the BMPR2 gene are described in Section 3.1 in 

Chapter 3. The W9X mutation was created by site-directed mutagenesis by following the 

QuikChange II Site-Directed Mutagenesis (SDM) kit protocol (Agilent Technologies). The 

polymerase chain reaction (PCR) cycling parameters used for site-directed mutagenesis are 

shown in Table 2.3.  

 

Stage Number of Cycles Temperature Time 
1 1 95°C 5 minutes 

 

2 

 

18 

95°C 30 seconds 

55°C 1 minute 

68°C 5 minutes 30 seconds 
 

Table 2.3. PCR cycling parameters used for site-directed mutagenesis to insert the W9X BMPR2 

mutation into the targeting construct.  

 

2.4.2 – Generation of the ∆Exon1 targeting construct 
 

The targeting strategy used to delete exon1 of the BMPR2 gene is presented in Figure 3.3 in 

Chapter 3. Genomic DNA, extracted from C2 iPSCs using the DNeasy Blood and Tissue kit 

(Qiagen), was used to PCR amplify the left and right homology arms using Pfx50 DNA 

polymerase (Thermo Fisher Scientific) and the primers listed in Table 2.6. The 5’ homology 

arm spans the region chr2: 202,376,583-202,377,403, 883 base pairs upstream of BMPR2 exon 

1, and the 3’ homology arms spans the region chr2: 202,377,511-202,378,844. Each PCR-

amplified product was then TOPO cloned using Zero Blunt TOPO PCR cloning kit according 

to the manufacturer’s instructions (Thermo Fisher Scientific) and used to finalise the construct. 

Using the QuikChange II Site-Directed Mutagenesis kit (Agilent Technologies) protocol, a 

point base pair mutation changing a Sty1 restriction endonuclease site to a PvuI site was created 

285bp downstream of the region where the left homology starts. The GeneArt® CRISPR 

Nuclease Vector (Thermo Fisher Scientific) used for W9X targeting was also used for ∆Exon1 

targeting, and successful introduction of the ∆Exon1 mutation into C2 iPSCs was confirmed by 

Sanger sequencing (performed by Source Bioscience, Cambridge, UK).   
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2.4.3 – Cell electroporation 
 

The W9X and ∆Exon1 DNA targeting vectors (see Section 3.1) were linearised by digestion 

with NotI-HF restriction enzyme (New England Biolabs) at 37°C overnight, followed by DNA 

precipitation to purify DNA from the reaction mixture. DNA precipitation was performed by 

adding 10% by volume of sodium acetate (3M, pH 5.2) to the digestion reaction, vortexing for 

1 minute, adding 2x volume of ice-cold (-20°C) absolute molecular biology grade ethanol 

(Sigma), vortexing for a further 2 minutes and then placing the sample in a -80°C freezer for at 

least 1 hour. Subsequently, the sample was centrifuged at maximum speed (≤17,000 x g) for 20 

minutes at 4°C before discarding the supernatant, washing the pellet with 70% ethanol, 

centrifuging at full speed for 5 minutes, air drying the pellet and finally re-suspending the pellet 

in 12 µl of EB elution buffer (Qiagen).    

    

The linearised targeting vector (2 μg) and CRISPR vector (2 μg) were subsequently co-

transfected into C2 wild-type iPSCs by electroporation using Human Stem Cell Nucleofector 

Kit 1 according to the manufacturer’s guidelines (Lonza). To achieve this, C2 iPSCs growing 

in 6-well plates were washed with 1.5 ml of PBS, trypsinised for 5 minutes at 37 °C using 0.5 

ml of 1x TrypLE Select (Thermo Fisher Scientific) supplemented with 2 mM EDTA (Thermo 

Fisher Scientific) and neutralised using 1 ml of BK medium per well. Cells in the resulting cell 

suspension were then counted before transferring 8 x 105 cells to a separate 1.5 ml centrifuge 

tube and centrifuging these cells at 150 x g for 3 minutes at room temperature prior to gently 

re-suspending the cell pellet in 100 µl of Nucleofector® Solution (Lonza). 2 μg of linearised 

targeting vector and 2 μg of CRISPR vector were then added prior to transferring the cell/DNA 

suspension to a cuvette without introducing any bubbles. The cuvette containing the cell/DNA 

suspension was subsequently inserted into the Amaxa Nuleofector machine (Lonza) and 

electroporated using Nucleofector Program B-016. A separate set of C2 iPSCs were 

electroporated with 2 μg of pmaxGFP vector (Lonza) as a positive control. Subsequently, 500 

µl of warm BK culture medium supplemented with Rho-associated protein kinase (ROCK) 

inhibitor Y-27632 dihydrochloride (1 µM, Tocris Bioscience) was gently added to the cuvette 

before using a supplied pipette (Lonza) to gently transfer the sample into a gelatine-coated 24-

well plate containing 500 µl of warm BK culture medium per well (to achieve a final volume 

of 1 ml of media per well).  
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2.4.4 – Analysis of electroporation efficiency 
 

To determine whether electroporation was successful, the cells were assessed for orange 

fluorescence [indicative of orange fluorescent protein (OFP) expression] and/or green 

fluorescence (indicative of pmaxGFP expression) by flow cytometry approximately 24 hours 

post-transfection. Flow cytometric analysis of OFP and pmaxGFP expression was performed 

by staff at the NIHR Cambridge BRC Cell Phenotyping Hub at the Department of Medicine, 

University of Cambridge using a BD FACSCanto flow cytometer and BD FACSDiva software 

(version 6.1.3).  In addition, transfection efficiency was visually assessed 48 hours after 

electroporation using a Leica DMI3000 B manual inverted microscope equipped with a Leica 

EL6000 external light source for fluorescence excitation.    

 

2.4.5 – Genomic cleavage detection 
 
The efficiency with which the CRISPR construct produced targeted double strand breaks at the 

locus of interest after electroporation was determined using the GeneArt® Genomic Cleavage 

Detection Kit according to manufacturer’s guidelines (Thermo Fisher Scientific). Loci at which 

CRISPR/Cas9 produced targeted double-strand breaks and resulted in insertions/deletions 

(indels) being created by cellular repair mechanisms were amplified by PCR using the CRISPR 

cleavage detection primers listed in Table 2.6. The PCR product was then denatured and re-

annealed in order to enable strands with indels to re-anneal with strands without indels or with 

different indels, thus creating mismatches. These mismatches were subsequently detected and 

cleaved by Detection Enzyme (Thermo Fisher Scientific), with the resultant bands being 

analysed by running a 2% agarose gel with a 2-log DNA ladder (0.1 – 10 kb, New England 

Biolabs) and performing band densitometry using ImageJ software. 
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2.4.6 – Geneticin selection of electroporated iPSCs 
 
Wild-type C2 iPSCs co-transfected with the CRISPR vector and the W9X or ∆Exon1 targeting 

construct were trypsinised 48 hours after electroporation, plated in gelatine-coated 6-cm 

diameter cell culture dishes (Corning) and cultured for at least 5 days in BK medium containing 

Geneticin (G418) (50 ng/ml, Thermo Fisher Scientific). Individual Geneticin-resistant iPSC 

colonies were manually picked using a P1000 pipette tip, trypsinised using 50 µl of 1x TrypLE 

Select (Thermo Fisher Scientific) supplemented with 2 mM EDTA (Thermo Fisher Scientific), 

neutralised with 100 µl of BK medium and laid down in separate wells of a gelatine-coated 24-

well plate containing 400 µl BK medium supplemented with Y-27632 dihydrochloride (1 µM, 

Tocris Bioscience). When confluent, cells in each well were trypsinised and passaged, with a 

proportion of the cells from each passage being pelleted for subsequent genotyping. 

 
2.4.7 – Genotyping 
 
To assess whether the CRISPR targeting strategy resulted in the creation of the desired BMPR2 

mutation, and if so, whether the mutation was heterozygous or homozygous, a pair of 

genotyping primers (Table 2.6) were designed to amplify the homology arm containing the 

W9X or ∆Exon1 site by PCR using the cycling parameters shown in Table 2.4. To determine 

whether targeting was successful, 300 ng of the amplified PCR product was digested for 1 hour 

at 37°C by AatII (for W9X) or PvuI (for ∆Exon1) restriction enzyme (New England Biolabs) 

and subsequently run on a 2% agarose gel with a 2-log DNA ladder. Successful targeting should 

yield 750 bp and 350 bp bands for W9X, or 547 bp and 293 bp bands for ∆Exon1 and was 

further verified by sending the samples off for Sanger sequencing (Source Bioscience, 

Cambridge, UK). 

 

Stage Number of Cycles Temperature Time 
1 1 95°C 5 minutes 

 

2 

 

35 

95°C 15 seconds 

60°C 30 seconds 

68°C 1 minute 15 seconds 

3 1 68°C 5 minutes 

 

Table 2.4. PCR cycling parameters used for genotyping of CRISPR/Cas9-targeted C2 control 

iPSCs.  
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2.5 – Generation of lineage-specific iPSC-derived smooth muscle-like cells 
 

Human iPSCs were differentiated into iPSC-derived smooth muscle-like cells (iPSC-SMCs) 

via lateral plate mesoderm (LM), paraxial mesoderm (PM) or neural ectoderm (NE) 

intermediate populations, as previously described (Cheung et al., 2012), with modifications. To 

generate LM- and PM-iPSC-SMCs, early mesoderm formation was induced by culturing iPSCs 

in gelatine-coated T-25 flasks for 36 hours in CDM-PVA supplemented with FGF-2 (20 ng/ml, 

Wellcome Trust - MRC Centre for Stem Cell Research, Cambridge, UK), LY294002 (10 ng/ml, 

Sigma) and BMP4 (10 ng/ml, Thermo Fisher Scientific). Subsequently, lateral plate mesoderm 

formation was induced by culturing the early mesoderm cell population for a further 3.5 days 

in CDM-PVA + FGF-2 (20 ng/ml) and BMP4 (50 ng/ml), whereas paraxial mesoderm 

formation was induced by culturing the early mesoderm cell population for 3.5 days in CDM-

PVA supplemented with FGF-2 (20ng/ml) and LY294002 (10 ng/ml).  By contrast, 

neuroectoderm specification was induced by culturing iPSCs for 7 days in CDM-PVA 

supplemented with FGF-2 (12 ng/ml) and the ALK4/5/7 inhibitor SB-431542 (10 µM, Tocris 

Bioscience).   

Upon formation of these three intermediate lineages, the cells were subsequently trypsinised 

and SMC differentiation was induced by culturing the cells for at least 12 days in gelatine-

coated T-25 flasks containing CDM-PVA supplemented with PDGF-BB (10 ng/ml, Thermo 

Fisher Scientific) and TGF-b1 (2 ng/ml, Thermo Fisher Scientific) (hereafter referred to as 

‘PT’). In addition to differentiation in PT, lateral plate mesoderm-derived iPSC-SMCs (LM-

iPSC-SMCs) were also differentiated in PT medium supplemented with BMP4 (50 ng/ml) 

(hereafter referred to as ‘PTB’). Where relevant, the iPSC-SMCs at the end of the serum-free 

differentiation protocol were then further matured for 7-14 days in DMEM supplemented with 

10% FBS. 
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2.6 – Microarray hybridisation and analysis 
 
RNA isolated from PASMCs, LM-SMCs, PM-SMCs, NE-SMCs and cDNA libraries were 

hybridised to the Illumina Human HT-12 BeadChip (Illumina Inc., San Diego, 

http://www.illumina.com). All data processing and analysis were performed using the 

algorithms included with the Bioconductor packages beadarray and lumi implemented in R 

software environment for statistical computing and graphics (R Foundation for Statistical 

Computing, Vienna, Austria, http://www.r-project.org). Principal component analysis (PCA) 

and hierarchical clustering was performed and plotted with Perseus software, which used 

complete linkage and Euclidean distance metric to generate the heat maps. 

 

2.7 – RNA extraction 
 

Cell pellets for RNA extraction were either frozen directly or stored in TRIzol Reagent (Thermo 

Fisher Scientific) at -80°C. After homogenisation of the cell pellet, RNA was extracted from 

TRIzol suspension or using the RNeasy Plus Mini Kit (Qiagen) as per the manufacturers’ 

instructions. 

 

2.8 – Reverse Transcription and Real-Time Quantitative Polymerase Chain 
Reaction (RT-qPCR) 
 

1 µg of total RNA per sample, quantified using a NanoDrop Lite UV spectrophotometer, was 

treated with DNase I (Amplification Grade) and subsequently reverse transcribed into cDNA 

using the High-Capacity cDNA Reverse Transcription Kit and a Veriti 96-Well Thermal Cycler 

(all from Thermo Fisher Scientific) by following the manufacturer’s protocol. The PCR 

thermocycler settings were: 25˚C for 10 min, followed by 37˚C for 2 hours and then 85˚C for 

5 min. qPCR reactions were set up in triplicates in MicroAmp Optical 384-Well Reaction Plate 

with Barcode (Thermo Fisher Scientific) PCR plates using SYBR® Green JumpStart™ Taq 

ReadyMix™ (5 µl per well, Sigma), ROX Reference Dye (0.2 µl per well, Thermo Fisher 

Scientific), cDNA made from 10 ng of total RNA, as well as 167 nM of sense and antisense 

primers (sequences listed in Table 2.6). Primers were tested for amplification efficiency by 

assessing cDNA amplification over a 4-log scale using 10-fold serial dilutions of cDNA (from 

1:10 to 1:10,000). Primer efficiencies were calculated from a linear regression line plotted for 

cycle threshold (Ct) against the DNA dilution. Only primers with amplification efficiencies 

between 90% and 110% were used. 
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Quantitative PCR (qPCR) amplification was performed using a QuantStudio 6 Flex Real-time 

PCR System (Thermo Fisher Scientific) using the following thermal cycling parameters: initial 

denaturation at 95°C for 2 minutes, 50 cycles of denaturation at 95°C for 30 seconds, annealing 

at 55°C for 30 seconds, extension at 72°C for 30 seconds, followed by a step at 55°C for 2 

minutes, and then 95°C for 15 seconds, 55°C for 60 seconds, followed by 95°C for 15 seconds 

to generate a melt curve, with a ramp rate of ±1.6°C/s between each step. Data were analysed 

using Life Technologies QuantStudio Software V1.1 and Microsoft Excel by the comparative 

2-(∆∆Ct) method (Livak & Schmittgen, 2001), with gene expression normalised to HPRT or 

HMBS (PBGD) as the internal housekeeping reference gene. 

 

2.9 – Immunocytochemistry 
 

iPSC-SMCs cultured in 24-well cell culture plates were washed with phosphate-buffered saline 

(PBS) (0.5 ml/well) at room temperature and fixed at 4°C overnight with 4% paraformaldehyde 

(PFA, Sigma) in PBS. Cells were subsequently washed for 3 × 5 min in PBS, permeabilised for 

3 × 10 minutes with 0.2% Tween-20 (Sigma) in PBS and blocked for at least 1 hour at room 

temperature with 10% FBS in PBS. Cells were then stained at 4°C overnight with the following 

primary antibodies diluted in 0.1% BSA (Sigma) in PBS: monoclonal mouse anti-myosin 

(smooth) (1:200, M7786, Sigma), monoclonal mouse anti-smooth muscle myosin heavy chain 

11 (1:400, ab683, Abcam), mouse anti-human smooth muscle actin (1:300, M0851, Dako), 

monoclonal mouse anti-calponin (1:5000, C2687, Sigma). Subsequently, cells were washed for 

5 × 5 minutes in PBS at room temperature prior to incubation for 1 hour at room temperature 

with donkey anti-mouse Alexa Fluor 488 fluorochrome-conjugated secondary antibody (1:300, 

Thermo Fisher Scientific). Cells were then washed with PBS for 5 × 5 minutes, incubated with 

4′,6-diamidino-2-phenylindole (DAPI) (1 µg/ml, D9542, Sigma) for 5 minutes at room 

temperature, and washed for 3 × 5 minutes in PBS prior to imaging using a Leica DMI3000 B 

manual inverted microscope with a Leica EL6000 external light source for fluorescence 

excitation. Uncompressed TIFF colour images were captured with a Pixera Penguin 600CL 

digital camera using Image-Pro Plus software (MediaCybernetics). 
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2.10 – Western blotting 
 

Western blotting for Smad1/5 was performed by Dr Liam Hurst prior to the start of this thesis 

project. Proteins were separated by sodium dodecyl sulphate polyacrylamide agarose gel 

electrophoresis (SDS-PAGE) and transferred electrophoretically from the gel to an Amersham 

Hybond P polyvinylidene difluoride (PVDF) membrane (GE Healthcare) via semi-dry 

transfer. After transfer, membranes were blocked in 5% non-fat milk powder (Marvel) in TBS-

Tween 20 for 1 hour and then incubated at 4ºC overnight with primary antibodies directed 

against pSmad1/5 or total Smad1 (1:1000, Cell Signaling Technology) in 5% BSA 

(Sigma). The next day, membranes were washed and then incubated for 1 hour at room 

temperature with secondary antibody (anti-rabbit horseradish peroxidase (HRP), 1:2000) in 5% 

milk. Membranes were visualised by chemiluminescence using Amersham ECL Western 

Blotting Detection Reagent (GE Healthcare). 

 

2.11 – Cell proliferation assays  
 

2.11.1 – Assessing iPSC-SMC proliferation using cell counts 
 

iPSC-SMCs were laid down in triplicates in gelatine-coated 24-well plates at a density of 2 x 

104 cells per well and cultured for 7 days in either CDM-PVA + PT, CDM-PVA + PTB, DMEM 

+ 5% FBS, DMEM + 2% FBS or DMEM + 2% FBS + BMP4 (50 ng/ml). On Day 7, the cells 

in each well were trypsinised for 5 minutes at 37 ºC with 200 µl of TrypLE Select + EDTA (2 

mM), neutralised with 100 µl of PBS + EDTA (2 mM) and counted manually using disposable 

haemocytometer counting grids (Kova International). Proliferation rates were assessed by 

calculating and comparing fold changes in cell number after 7 days in culture for each cell line.  

  

2.11.2 – Assessing proliferation by measuring cellular DNA content   
 

LM-iPSC-SMCs were laid down in triplicates in gelatine-coated 6-well plates at a density of 5 

x 105 cells per well and cultured for 48 hours in CDM-PVA + PT or CDM-PVA + PTB. The 

cells in each well were then trypsinised for 5 minutes at 37 ºC using 0.5 ml of 1x TrypLE Select 

+ EDTA (2 mM), neutralised with 1 ml of CDM-PVA and counted manually using disposable 

haemocytometer counting grids. 2 x 105 cells from each suspension were then transferred into 

separate 5 ml round-bottom polystyrene tubes (BD Biosciences), centrifuged at 300 x g for 5 

minutes and re-suspended in 400 µl of CDM-PVA. 0.8 µl of Vybrant DyeCycle Ruby Stain 

(ThermoFisher Scientific) was then added to the re-suspended cells in each sample before 
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incubating the cells in the dark for 15 minutes at 37ºC and subsequently measuring the 

percentage of cells in each sample which displayed red fluorescence by running the samples on 

a BD Accuri C6 flow cytometer (BD Biosciences) using 488 nm excitation and >670 nm 

emission. An unstained sample containing 2 x 105 C2 control LM-iPSC-SMCs served as a 

negative control.  

 

2.11.3 – Somatostatin proliferation assays   
 

PAH patient-derived BMPR2+/- PASMCs and isogenic iPSC-SMCs differentiated in PTB were 

laid down in triplicates in gelatine-coated 24-well plates at a density of 2 x 104 cells per well 

and cultured for 7 days in CDM-PVA + 5% FBS (for iPSC-SMCs) or DMEM + 5% FBS (for 

PASMCs) in the presence or absence of somatostatin-14 (1 µM, Sigma) or the somatostatin 

analogues lanreotide (1 µM, Sigma), octreotide (100 nM – 1 µM, Sigma) or CH-275 (100 nM 

– 1 µM, Tocris Bioscience). After 7 days in culture, the cells in each well were trypsinised for 

5 minutes at 37 ºC with 200 µl of TrypLE Select + EDTA (2 mM), neutralised with 100 µl of 

PBS + EDTA (2 mM) and counted manually using disposable haemocytometer counting grids 

(Kova International).  

  

2.12 – Apoptosis assays  
 

2.12.1 – Annexin-V-FITC/propidium iodide apoptosis assay 
 

Serum-free LM-iPSC-SMCs were laid down in triplicates in 6-well plates at a density of 2 x 

105 cells per well and cultured for 48 hours in CDM-PVA + PT or CDM-PVA + PTB. 

Subsequently, cells were washed once with PBS and apoptosis was induced for 2.5 hours by 

replacing the growth medium with serum-free DMEM. For the unstained negative control, the 

medium was replaced with fresh CDM-PVA + PT or CDM-PVA + PTB. As a positive control 

for apoptosis, wild-type iPSC-SMCs were treated with staurosporine (50 nM, Enzo Life 

Sciences) during the 2.5-hour serum-free incubation period. Subsequently, all cell samples were 

washed once with PBS, trypsinised for 5 minutes at 37 ºC using 0.5 ml of 1x TrypLE Select + 

EDTA (2 mM), neutralised with 1 ml of CDM-PVA and collected in 5 ml round-bottom 

polystyrene tubes (BD Biosciences). The cells were then centrifuged at room temperature for 5 

minutes at 300 x g before removing the supernatant, adding 1.5 ml of PBS to each cell pellet 

and centrifuging the samples again for 5 minutes at 300 x g. The cells in each tube were then 

re-suspended in 100 µl of Annexin V Binding Buffer (BD Biosciences) before adding 5 µl of 
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fluorescein isothiocyanate (FITC)-conjugated annexin V and 5 µl of propidium iodide (PI) 

(supplied as part of the BD Biosciences FITC Annexin V Apoptosis Detection Kit I) to each 

sample, gently vortexing and then incubating the cells in the dark for 15 minutes at room 

temperature. 400 µl of Annexin V Binding Buffer was then added to each sample to quench the 

reaction before measuring the percentage of cells that were positive for FITC Annexin V 

staining whilst being negative for PI staining by running the samples on a BD Accuri C6 flow 

cytometer. FITC fluorescence was detected in the FL1 channel (533/30 band pass filter), 

whereas PI fluorescence was detected in the FL2 channel (585/40 band pass filter). Unstained 

C2 iPSC-SMCs and C2 iPSC-SMCs stained with either FITC Annexin V or PI (single-stained 

controls) were used for fluorescence compensation and gating.   

 

2.12.2 – Caspase 3/7 cleavage assay 
 

Serum-free LM-iPSC-SMCs were laid down in triplicates in a gelatine-coated 96-well tissue 

culture plate (CELLSTAR, Greiner Bio-one) at a density of 2 x 104 cells per well and cultured 

for 48 hours in 100 µl of CDM-PVA + PT (for cells differentiated in PT) or CDM-PVA + PTB 

(for cells differentiated in PTB) per well. The cells were then cultured for a further 1 hour in 

100 µl of their respective media (to assess basal apoptosis) or switched to 100 µl of serum-free 

DMEM or serum-free DMEM supplemented with staurosporine (50 nM) (to assess induced 

apoptosis). Subsequently, 100 µl of Caspase-Glo 3/7 reagent (Promega) was added to each well 

before mixing the contents of the wells using a plate shaker at 400 rpm for 30 seconds and 

incubating the plate at room temperature in the dark for 1 hour. The contents of each well were 

then transferred to a 96-well white polystyrene microplate (BRAND) and the luminescence of 

each sample measured using a Centro LB 960 microplate luminometer (Berthold 

Technologies).    
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2.13 – iPSC-SMC and PASMC contractility assay 
 

Wild-type and BMPR2+/- LM-iPSC-SMCs matured for 7 days in DMEM + 10% FBS post-

differentiation in PTB, and human wild-type and BMPR2+/- PASMCs, were laid down in 

triplicates at a density of 5 x 104 cells per well in 12-well plates and cultured for 48 hours in 

DMEM + 10% FBS. The cells were then washed for 2 x 3 minutes with warm PBS containing 

0.1% w/v bovine serum albumin (BSA), and subsequently incubated at 37°C for 15 minutes in 

0.1% w/v BSA + carbachol (300 µM, Sigma) in PBS. Carbachol-induced cell contraction was 

assessed by taking time-lapse images of the cells every 30 seconds over a period of 15 minutes 

and using ImageJ software (https://imagej.nih.gov/ij/) to measure percentage changes in 

individual cell surface areas (for n = 10-11 cells per cell line) between t = 0 and t = 15 minutes. 

 

2.14 – Mitochondrial membrane potential assay 
 

The polarisation state of the inner mitochondrial membrane in wild-type and BMPR2+/- LM-

iPSC-SMCs was assessed at three different time points – immediately after the cells finished 

differentiating in serum-free conditions, after the cells had been cultured for one week in 

DMEM + 10% FBS in the presence or absence of exogenous recombinant human TNFα (1 

ng/ml, R&D Systems), as well as after these untreated and TNFα-treated iPSC-SMCs were 

cultured for a further week in DMEM + 10% FBS only (i.e. after a total of two weeks in serum).  

At the end of each time-point, iPSC-SMCs were plated in triplicates at a density of 5 x 104 cells 

per well in gelatine-coated 12-well cell culture plates and cultured at 37°C for 48 hours in their 

respective media, after which the cells were loaded for 30 minutes with tetramethylrhodamine 

ethyl ester (TMRE) (30 nM, Enzo Life Sciences). Subsequently, the cells were incubated for 

30 minutes at 37°C in fresh cell culture medium containing 30 nM TMRE, washed with PBS, 

trypsinised for 5 minutes at 37 ºC using 0.25 ml of 1x TrypLE Select + EDTA (2 mM), 

neutralised with 0.5 ml of CDM-PVA and collected in 5 ml round-bottom polystyrene tubes 

(BD Biosciences) prior to measuring the mean fluorescence intensity of the stained cell 

population in the FL2 channel (585/40 band pass filter) on a BD Accuri C6 flow cytometer (BD 

Biosciences).  

 

To confirm that changes in TMRE staining intensity correctly reflected changes in 

mitochondrial membrane potential, wild-type iPSC-SMCs and PASMCs were incubated for 20 

minutes in DMEM + 10% FBS in the presence or absence of carbonyl cyanide 4-

trifluoromethoxyphenylhydrazone (FCCP, 5 µM), after which the cells were loaded for 30 
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minutes with TMRE (30 nM) in the continuing presence or absence of FCCP (5 µM) prior to 

analysis by flow cytometry. 

 

2.15 – Mitochondrial superoxide staining 
 

Isogenic C2 and C2 W9X+/- LM-iPSC-SMCs were differentiated in PT and laid down in 

triplicates in gelatine-coated 24-well cell culture plates at a density of 7.5 x 104 cells per well 

(for C2 iPSC-SMCs) or 1 x 105 cells per well (for C2 W9X+/- LM-iPSC-SMCs). The cells in 

each well were then cultured for 48 hours in DMEM supplemented with 10% FBS, washed 

with 0.5 ml of Hank’s balanced salt solution containing calcium and magnesium 

(HBSS/Ca/Mg, Thermo Fisher Scientific) and incubated for 30 min at 37 ºC in 500 µl of 

HBSS/Ca/Mg containing MitoSOX Red mitochondrial superoxide indicator (5 µM, Thermo 

Fisher Scientific). Unstained C2 LM-iPSC-SMCs were incubated in HBSS/Ca/Mg as a negative 

control. The cells were then washed three times with warm HBSS/Ca/Mg (500 µl/well) before 

taking representative immunofluorescence images of the cells in each well at 200x 

magnification using a Leica DMI3000 B manual inverted microscope equipped with a Leica 

EL6000 external light source for fluorescence excitation. The level of MitoSOX staining was 

assessed by measuring average image intensities using the “Measure” tool in ImageJ. 

        

2.16 – Seahorse XF glycolysis stress test assay 
 

Glucose-stimulated glycolytic rates in wild-type and BMPR2+/- iPSC-SMCs were assessed 

using the Seahorse XF Glycolysis Stress Test assay according to the manufacturer’s guidelines 

(Agilent Technologies), with modifications. To determine optimal cell densities for plating 

LM-iPSC-SMCs, wild-type and BMPR2+/- iPSC-SMCs were plated in triplicates at cell 

densities of 1 x 104, 2 x 104 or 3 x 104 cells per well in 96-well XF96 V3 PS cell culture 

microplates (Agilent Technologies), and cultured for 14 hours overnight in DMEM 

supplemented with 10% FBS. Cell confluency was then visually assessed by inspecting the 

cells under an inverted light microscope, after which the cells in each well were trypsinised 

using 50 µl of 1x TrypLE Select + EDTA (2 mM), neutralised with 100 µl of DMEM 

supplemented with 10% FBS and counted manually using disposable haemocytometer counting 

grids to assess cell attachment. A plating density of 3 x 104 cells per well resulted in optimal 

(95-99%) cell confluency for wild-type iPSC-SMCs, and the percentage of BMPR2+/- iPSC-

SMCs which attached was found to be approximately 50% lower relative to wild-type iPSC-

SMCs across the plating densities trialled. As a result, plating densities of 3 x 104 cells/well for 
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C2 iPSC-SMCs and 6 x 104 cells/well for isogenic BMPR2+/- iPSC-SMCs were chosen to 

ensure that the glycolysis stress test assay was performed on approximately equal numbers of 

confluent wild-type and BMPR2+/- iPSC-SMCs. 

On the day of the assay, XF Base Medium (Agilent Technologies) was supplemented with L-

glutamine (1 mM, Thermo Fisher Scientific), adjusted to pH 7.4, sterile-filtered through a 0.2 

µm PES membrane and then used to wash the attached iPSC-SMCs two times (200 µl per well 

per wash) prior to incubating the iPSC-SMCs in 180 µl of this XF assay medium at 37 ºC in a 

non-CO2 buffered incubator for 1 hour. During this time, the XF sensor cartridge, previously 

hydrated overnight according to the manufacturer’s guidelines (Agilent Technologies), was 

loaded with the injection compounds (all dissolved in XF assay medium, pH-adjusted to pH 7.4 

and pre-warmed to 37 ºC) listed in Table 2.5. 
 

Injection 
compound 

Stock 
concentration  

Stock  
volume  

Media 
volume  

10X 
concentration 

(port) 

Add 
to 

port 

Final 
concentration 

(per well) 
Port A 
Glucose  
 

 
2.5 M 

 
200 µl 

 
4800 µl 

 
100 mM 

 
20 µl 

 
10 mM 

Port B 
Oligomycin 
A  

 
2.5 mM 

 
20 µl 

 
4980 µl 

 
10 µM 

 
22 µl 

 
1 µM 

Port C 
2-deoxy-D-
glucose 

 
1 M 

 
2000 µl 

 
2000 µl 

 
500 mM 

 
25 µl 

 
50 mM 

    
Table 2.5. Compounds used for loading Seahorse XF sensor cartridge ports  
        

The hydrated sensor cartridge with the added compounds was then loaded into a Seahorse XF96 

analyser (Agilent Technologies). After automated calibration, the utility plate used for 

calibration was replaced with the XF96 V3 PS cell culture microplate containing the iPSC-

SMCs immediately prior to the start of the glycolysis stress test assay.  

Glycolysis was assessed by measuring the extracellular acidification rate (ECAR), which was 

automatically performed by the XF96 analyser four times for 3 minutes (with a 3-minute mixing 

step between each ECAR measurement) both before and after sequential injection of glucose 

(10 mM, Sigma) to stimulate glycolysis, oligomycin A (1 µM, Tocris Bioscience) to maximise 

the glycolytic rate, and 2-deoxy-D-glucose (50 mM, Thermo Fisher Scientific) to inhibit 

glycolysis. The rate of glycolysis was calculated by subtracting the last rate measurement taken 

prior to glucose injection from the maximum rate measurement before oligomycin injection. 
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2.17 – RNA sequencing (RNA-Seq)  
 

2.17.1 – RNA-Seq library preparation 
 

Three wild-type (C2, C6 and C10) and five BMPR2+/- (C2 W9X+/-, C2 ∆Exon1, B3, B4 and 

B11) LM-iPSC-SMC lines (see Table 2.1 for characteristics) were submitted for RNA 

sequencing immediately after being differentiated under serum-free, chemically defined 

conditions in PTB. 

 

After harvesting and extracting RNA from these cells using the RNeasy Plus Mini Kit (Qiagen), 

the RNA concentration of each sample was determined using a Qubit Fluorometer (Thermo 

Fisher Scientific) and RNA integrity was assessed by running each RNA sample on a 

Bioanalyzer (Agilent Technologies) (performed by Dr Frances Burden, Department of 

Haematology, University of Cambridge, UK).   

 

RNA-Seq libraries were generated by Dr Frances Burden and Dr Mattia Frontini as previously 

described (Petersen et al., 2017) by using 1 µg of DNase-treated RNA to generate ribosomal 

RNA-depleted libraries with a TruSeq Stranded Total RNA Library Prep Kit (with Ribo-Zero 

Human/Mouse/Rat, RS-122-2201, Illumina). Libraries were quantified using a qPCR Library 

Quantification Kit (Kapa Biosystems), pooled and sequenced using paired-end 76 bp 

sequencing on a HiSeq 2000 Sequencing System (Illumina). 

 

2.17.2 – RNA-Seq analysis 
 

RNA-Seq analysis was performed by Dr Matthias Haimel and Dr Marta Bleda in Dr Stefan 

Gräf’s group in the Department of Medicine, University of Cambridge. Trim Galore 0.3.7 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with parameters ‘-q 15 --

stringency 3 --paired’ was used to trim PCR and sequencing adapters. Trimmed reads were 

aligned to the Ensembl v70 (Flicek et al., 2013) human transcriptome with Bowtie 1.0.1 

(Langmead et al., 2009), with parameters ‘-a --best --strata -S -m 100 -X 500 --chunkmbs 256 

--nofw -fr’. MMSEQ 1.0.8a (Turro et al., 2011; Turro et al., 2014) was used with default 

parameters to calculate fragment counts and DESeq2 (Love et al., 2014) was applied with 

regularised log transformation to quantify gene expression. Genes with an adjusted false 

discovery rate (FDR) P value < 0.05 were considered differentially expressed. 
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2.18 – Isolation of Bmpr2+/R899X mouse lung tissue 
 

Lung tissue was isolated from Bmpr2+/R899X mice by Dr Xudong Yang and Dr Lu Long as 

previously described (Long et al., 2015). Animal work was conducted in accordance with the 

UK Animals (Scientific Procedures) Act 1986 and approved under Home Office project licence 

number PPL 70/8850.  

 

2.19 - Statistical analysis 
 

Statistical analysis was performed using GraphPad Prism 6 software. Statistical analysis of 

iPSC-SMC data was based on either (i) the number of technical replicates (independent 

experiments performed on the same cells from the same iPSC-SMC differentiation), or (ii) on 

the number of experimental replicates where each experiment was performed using cells from 

independent iPSC-SMC differentiations. When the results from n independent iPSC-SMC 

differentiations were analysed, statistical tests were based on a sample size of n. Similarly, 

when data from n technical replicates were tested for statistical significance, the sample size 

was n. Where statistical analysis was performed, the type of statistical analysis used is stated in 

the corresponding figure legends. 

 

Data were tested for statistical significance using an unpaired two-tailed Student’s t-test, by 

one-way or two-way analysis of variance (ANOVA), or by performing false discovery rate 

(FDR) analysis (for RNA-Seq data). When performing ANOVA analysis, multiple comparisons 

were corrected for using Tukey’s, Dunnett’s or Sidak’s post-hoc tests. Results were deemed 

statistically significant when the Probability (P) value was less than 0.05. For FDR analysis, 

genes were deemed to be differentially expressed when the adjusted P value (Padj) was less than 

0.05.   

 

2.20 – PCR primer sequences 
 

The nucleotide sequences and sources of the PCR primers used in this thesis project are listed 

in Table 2.6 below. 
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Table 2.6. List of PCR primer sequences and their sources 

Primer 
name/ target 
gene 

Forward primer (5’ – 3’) Reverse primer (5’ – 3’) Source/ 
Reference 

Homology arm primers used to amplify a 1 kb region of BMPR2 Exon1 
BMPR2 W9X 
left homology 
arm 

AAGGAAAAAGCGGCCG
CGATCCAGTCAAGGAA
GAGG 

TTGGCGCGCCTCGTTGCA
TTACCTCACAGC 

Designed 
using 
Primer3Plus 

BMPR2 W9X 
right 
homology 
arm 

GGGAATTCCATATGTAA
TCACCAGTGAACAGTG
C 

AAGGAAAAAGGCCAATTA
GGCCATCTGGTGCTATGC
AATACC 

Designed 
using 
Primer3Plus 

BMPR2 
∆Exon1 left 
homology 
arm 

TTAATTAATCACAGGAG
CCATTGACGGG 

CGGCCCTAGGAGGCTCGT
CTTCTCTCCCGT 

Designed 
using 
Primer3Plus 

BMPR2 
∆Exon1 right 
homology 
arm 

GGGAATTCCATATGTGG
CTACCATGGACCATCC 

GGGAATTCCATATGGGAA
CCACATGGCTTATGGC 

Designed 
using 
Primer3Plus 

CRISPR cleavage detection primers 
BMPR2 W9X 
cleavage 
detection 

CTGTATTGTGATACGGG
C 

TGTCAAGATACCACACCC Designed 
using 
Primer3Plus 

CRISPR genotyping primers 
BMPR2 W9X 
genotyping 

TCTCACGGTTGTTCTGC
G 

TATGGAAGTGGGGATAGG Designed 
using 
Primer3Plus 

BMPR2 
∆Exon1 
genotyping 

CAGAGCTGCGGGAGAA
CGAG 

AGGCTCGTCTTCTCTCCC
GT 

Designed 
using 
Primer3Plus 

Site-directed mutagenesis primers used to introduce the W9X mutation 
BMPR2 W9X 
SDM  

GGGATGACgTCgTCGCT
aCAaCGGCCCTGaCGG 

CCGtCAGGGCCGtTGtAGC
GAcGAcGTCATCCC 

Designed 
using 
Primer3Plus 

Mouse qPCR primers 
Sst Proprietary Proprietary QIAGEN 

QuantiTect 
Primer Assay 
QT00239295 

Duox2 ACATATCCTTCCGGGAG
TTC 
 

TGAAGAACTCGTCCTTGG
AG 
 

Designed 
using 
Primer3Plus 

Ucp2 ATGTGGTAAAGGTCCG
CTTC 
 

CAATGGTCTTGTAGGCTTC
G 
 

Designed 
using 
Primer3Plus 

Crlf1 CCCCTGAGAAGCCTTTT
AAC 
 

TAAGAATGTCTCCCCGTGT
G 
 

Designed 
using 
Primer3Plus 

Actb AGTGTGACGTTGACATC
CGT 
 

TGCTAGGAGCCCAGAGCAG
TA 
 

Designed 
using 
Primer3Plus 
 



                                                                                                       Chapter 2 – Materials and Methods 
 

 63 

Human qPCR primers 
SST Proprietary Proprietary QIAGEN 

QuantiTect 
Primer Assay 
QT00004277 

DUOX2 Proprietary Proprietary QIAGEN 
QuantiTect 
Primer Assay 
QT00012236 

UCP2 TGTGGTAAAGGTCCGAT
TCC 

TGGTCTTGTAGGCATTGAC
G 

Designed 
using 
Primer3Plus 

CRLF1 ACCTTCCTCCACACCAA
CTAC 

TCCTCACATGTGTTGTCCT
G 

Designed 
using 
Primer3Plus 

BMPR2 CAAATCTGTGAGCCCAA
CAGTCAA 

GAGGAAGAATAATCTGGA
TAAGGACCAAT 

Upton et al. 
(2009) 

ID1 GACGGCCGAGGCGGCA
TG 

GGGGAGACCCACAGAGCA
CG 

Yang et al. 
(2008) 

ID2 GACCCGATGAGCCTGC
TATAC 

GGTGCTGCAGGATTTCCA
TCT 

Upton et al. 
(2009) 

IL6 Proprietary Proprietary QIAGEN 
QuantiTect 
Primer Assay 
QT00083720 

MYH11 AGATGGTTCTGAGGAG
GAAACG 

AAAACTGTAGAAAGTTGCT
TATTCACT 

Cheung et al. 
(2012) 

HPRT1 GCTATAAATTCTTTGCT
GACCTGCTG 

AATTACTTTTATGTCCCCT
GTTGACTGG 

Larson 
Gedman et 
al. (2009) 

HMBS 
(PBGD) 

ATTACCCCGGGAGACT
GAAC 

GGCTGTTGCTTGGACTTCT
C 

Designed 
using NCBI 
Primer-
BLAST 

SST 
(Somatostati
n) 

Proprietary Proprietary QIAGEN 
QuantiTect 
Primer Assay 
QT00004277 

SSTR1 ACTGACAGCCTTTGATG
GAG 

AGTGGGAGACCCAGAAAA
AG 

Designed 
using 
Primer3Plus 

SSTR2 Proprietary Proprietary QIAGEN 
QuantiTect 
Primer Assay 
QT00081179 

SSTR3 ACCCATATTCTCCCTTC
CTG 

TTCAGACACTCTGCCTTTC
C 
 

Designed 
using 
Primer3Plus 

SSTR4 TCTGCTGGATGCCTTTC
TAC 
 

AGCCATAGAGAATGGGGT
TG 
 

Designed 
using 
Primer3Plus 

SSTR5 Proprietary Proprietary QIAGEN 
QuantiTect 
Primer Assay 
QT00228277 
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3.1 – Generation of BMPR2+/- iPSC lines with isogenic backgrounds 
 

Reduced BMPR2 signalling is central to the pathobiology of pulmonary arterial hypertension. 

However, an important observation in heritable PAH is that BMPR2 mutations exhibit reduced 

penetrance (Rosenzweig et al., 2008; van der Bruggen et al., 2016; Gu et al., 2017). Clinically, 

unaffected BMPR2 mutation carriers appear healthy and yet have a massively increased risk of 

developing PAH (Sztrymf et al., 2008). Furthermore, penetrance is higher in females (45%) 

than in males (15%) (Evans et al., 2016). These observations suggest a requirement for 

additional environmental or genetic triggers for disease initiation and progression. To date, it 

has proved difficult to elucidate these factors due to the lack of appropriate models. Therefore, 

alternative human disease models of PAH are required to gain a better understanding of PAH 

establishment and progression.  

 

Patient-specific iPSCs can be differentiated into disease-relevant cell types and have been used 

to model a number of human diseases, including PAH (West et al., 2014; Sa et al., 2017; Gu et 

al., 2017). However, previous studies have predominantly focused on using patient-derived 

iPSCs with different genetic backgrounds, thus making it difficult to delineate the precise 

contribution of individual BMPR2 mutations to the establishment of PAH-associated cellular 

phenotypes.    

 

To remove the effects that different genetic modifiers may have on the penetrance of cellular 

phenotypes, I therefore commenced this thesis project by generating wild-type and BMPR2+/- 

iPSC lines with an isogenic background. To achieve this, I used CRISPR-Cas9-mediated 

homologous recombination (Cong et al., 2013) to introduce a single pathogenic BMPR2 

mutation (W9X) into a control iPSC line (C2) which was previously derived from a disease-

free individual with no family history of PAH or cardiovascular disease (see Table 2.1 for 

characteristics) (Geti et al., 2012). 
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3.1.1 – CRISPR design 
 

CRISPR-Cas9 genome editing was used to artificially introduce a known, disease-associated 

BMPR2 mutation (W9X) into the C2 iPSC line originating from a wild-type individual with no 

family history of PAH (see Table 2.1). 

 

Prior to the start of this thesis project, a CRISPR-Cas9 system was designed by Dr Amer Rana 

so that the protospacer adjacent motif (PAM) sequence, fused to the 3’ end of a 20 bp guide 

RNA sequence, recognises the PAM sequence constituting the arginine (R7) position within 

exon 1 of the BMPR2 gene. The resulting CRISPR-Cas9 complex is therefore able to introduce 

a double-strand DNA break 2-3 bp upstream of the PAM sequence, resulting in the disruption 

of an endogenous PstI restriction site within the targeted allele (Figure 3.1).  
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Figure 3.1. CRISPR-Cas9 genome editing strategy used to introduce a heterozygous W9X 

mutation into the BMPR2 gene in the C2 control iPSC line. The engineered CRISPR-Cas9 complex 

contains a synthetic guide RNA (gRNA) which recognises a sequence of three nucleotides known as the 

protospacer adjacent motif (PAM) sequence (underlined in green) and interacts with the adjacent 20 

bases immediately upstream of this sequence (underlined in magenta). The Cas9 nuclease introduces a 

double-strand DNA break just upstream of the PAM sequence, thus increasing the efficiency of 

homologous recombination of the W9X targeting construct with the genomic locus. Successful targeting 

would result in the destruction of an endogenous PstI restriction enzyme site and introduction of a new 

AatII site (highlighted in dark blue). Furthermore, a total of 4 silent mutations (lower case nucleotides 

highlighted in red), in addition to the single point mutation (upper case nucleotide highlighted in red) 

required to generate the W9X mutation, were introduced to prevent the CRISPR from directing the 

cutting of the targeting construct and to aid the genotyping of correctly targeted clones. The completed 

targeting vector contains a 2 kilobase pair phosphoglycerate kinase promoter-driven neomycin 

resistance (PGK-Neo) and MC1-DTA (diphtheria toxin A) cassettes to enable positive and negative 

selection of the targeted iPSCs, respectively.  
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To create this CRISPR-Cas9 complex, prior to the start of this thesis project, double-stranded 

DNA sequences encoding the desired CRISPR RNA targets (5’-

GGATGACTTCCTCGCTGCAGgtttt-3’ and 3’-gtggcCCTACTGAAGGAGCGACGTC-5’) 

were cloned into the GeneArt® CRISPR Nuclease Vector (Thermo Fisher Scientific) (Figure 

3.2) which contains an orange fluorescent protein (OFP) reporter to enable assessment of 

transfection efficiency. 

 

 
Figure 3.2. GeneArt® CRISPR Nuclease Vector map. The GeneArt® CRISPR Nuclease Vector with 

orange fluorescent protein (OFP) is 9219 bp in size. Double-stranded oligonucleotide sequences 

encoding the desired CRISPR RNA targets are cloned into the vector where the 3’ overhangs are located. 

The auxiliary trans-activating CRISPR RNA (tracrRNA) allows the Cas9 nuclease to be loaded onto the 

guide RNA, the expression of which is driven by the human U6 promoter. Cas9 nuclease and OFP 

expression are driven by the cytomegalovirus (CMV) promoter. The vector also contains a TK pA 

polyadenylation signal, a self-cleaving 2A peptide linker, F1 and pUC origins of replication, an 

ampicillin resistance gene and a Pol III terminator that helps to stop RNA Polymerase III-mediated 

transcription.  Image reproduced from the GeneArt® CRISPR Nuclease Vector kit manual (Thermo 

Fisher Scientific).  
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3.1.2 – Generation of the W9X targeting construct 
 
To insert a W9X mutation into exon 1 of BMPR2 by CRISPR-mediated homologous 

recombination, a 1 kb genomic fragment including exon 1 (Chromosome 2: 202,376,889 - 

202,377,848) was cloned from the iPSC line C2 using the BMPR2 W9X left and right homology 

arm primer sequences listed in Table 2.6 and by following the Zero Blunt TOPO PCR cloning 

kit protocol (Thermo Fisher Scientific). The W9X mutation was introduced into exon 1 by site-

directed mutagenesis by using 50 ng of genomic DNA (gDNA) template to replace the TGG 

sequence encoding the tryptophan at position 9 in the coding region with a TGA sequence 

encoding a stop codon (Figure 3.1). The SDM primers (sequences listed in Table 2.6) were 

designed in a way that would enable an AatII restriction site to be introduced 22 bp upstream 

of the W9X site within the left homology arm of the targeting construct. Introduction of this 

AatII restriction site would destroy an endogenous PstI site after homologous recombination 

with the targeted allele. Furthermore, a total of 4 silent mutations, in addition to the single point 

mutation required to generate the W9X mutation, were introduced to prevent the CRISPR from 

directing the cutting of the targeting construct and to aid the genotyping of correctly targeted 

clones.  

 

To complete the targeting construct, this engineered 1 kb fragment was cloned into a vector 

upstream of a 2 kb phosphoglycerate kinase promoter-driven neomycin resistance (PGK-Neo) 

positive selection cassette, a second 1.3 kb homology arm corresponding to intron 1 of BMPR2 

(Chromosome 2: 202,377,863 - 202,379,154), and an MC1-DTA (diphtheria toxin A) negative 

selection cassette). In addition to performing test digestion reactions using PstI and AatII 

restriction enzymes, samples were sent for Sanger sequencing (Source Bioscience, Cambridge, 

UK) to verify that the W9X mutation was successfully introduced and that the targeting 

construct was cloned correctly.  

 
 
 
 
 
 
 
 
 



          
                                                                                                                               Chapter 3 – Results (I) 
 

 70 

3.1.3 – Generation of the ∆Exon1 targeting construct 
 

The targeting vector used to generate the W9X targeting construct was also used to generate a 

targeting vector that would result in the deletion of exon 1 of the BMPR2 gene (∆Exon1) 

(Figure 3.3). This work was performed by Dr C-Hong Chang and is described in Section 2.4.2.  

 

 
Figure 3.3. Targeting strategy used to delete exon 1 of the BMPR2 gene. The targeting construct 

consists of a 1.1 kb homology region containing a single PvuI restriction enzyme site, a 2 kb 

phosphoglycerate kinase promoter-driven neomycin resistance (PGK-Neo) positive selection cassette, 

a second 1.3 kb homology arm corresponding to intron 1 of BMPR2, and an MC1-DTA (diphtheria toxin 

A) negative selection cassette. Successful CRISPR-Cas9-mediated homologous recombination would 

result in the introduction of the PvuI site and the insertion of the PGK-Neo cassette into the targeted 

BMPR2 locus. The MC1-DTA expression cassette contains a constitutively active hybrid polyoma virus 

enhancer/herpes simplex virus thymidine kinase (HSVtk) promoter and prevents the survival of cells in 

which random integration has occurred.  
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3.1.4 – CRISPR validation 
 

Having generated the W9X and ∆Exon1 targeting constructs, I next set out to confirm whether 

the CRISPR nuclease vector containing double-stranded DNA sequences encoding the desired 

CRISPR RNA targets and an orange fluorescent protein (OFP) reporter (Figure 3.2) can be 

successfully introduced into control C2 iPSCs by electroporation. Transfected C2 iPSCs 

displayed orange fluorescence when visualised under a fluorescence microscope 48 hours post-

transfection (Figure 3.4 A), indicating successful expression of the transfected CRISPR vector. 

Furthermore, flow cytometric analysis of C2 iPSCs 24 hours post-transfection (performed by 

staff at the NIHR Cambridge BRC Cell Phenotyping Hub) revealed that 86.3% of cells transfected 

with the pmaxGFP control vector displayed green fluorescence (Figure 3.4 B) and that 22.5% 

of the iPSCs transfected with the CRISPR vector displayed orange fluorescence indicative of 

OFP expression (Figure 3.4 C). 
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Figure 3.4. Functional expression of the CRISPR nuclease vector in control C2 iPSCs. (A) 

Representative immunofluorescence images (100x magnification) of control C2 iPSCs transfected by 

electroporation with a GeneArt CRISPR Nuclease Vector containing the desired CRISPR target 

sequences and an orange fluorescent protein (OFP) reporter. Transfection with pmaxGFP vector served 

as a positive control. Transfected C2 iPSCs displayed orange fluorescence, indicating successful 

expression of the transfected CRISPR vector, albeit with a lower transfection efficiency compared to 

the pmaxGFP control vector. (B and C) Flow cytometric analysis of C2 iPSCs approximately 24 hours 

post-transfection revealed that 86.3% of cells were successfully transfected with the pmaxGFP control 

plasmid (B), whereas 22.5% of cells transfected with the CRISPR vector displayed orange fluorescence 

indicative of OFP expression (C). Flow cytometric analysis was performed by staff at the NIHR 

Cambridge BRC Cell Phenotyping Hub at the Department of Medicine, University of Cambridge. PE-

A, phycoerythrin amplitude; FITC-A, fluorescein isothiocyanate amplitude. 
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In addition, I followed the GeneArt Genomic Cleavage Detection Kit protocol (Thermo Fisher 

Scientific) to estimate the efficiency with which the CRISPR construct cleaved genomic DNA 

at the BMPR2 locus in transfected C2 iPSCs. To do this, loci at which CRISPR-Cas9 produced 

targeted double-strand breaks and resulted in insertions/deletions (indels) being created by 

cellular repair mechanisms were amplified by PCR. The PCR product was then denatured and 

re-annealed in order to enable strands with indels to re-anneal with strands without indels or 

with different indels, thus creating mismatches. These mismatches were subsequently detected 

and cleaved by Detection Enzyme, with the resultant bands being analysed on a 2% agarose gel 

(Figure 3.5). CRISPR cleavage efficiency was calculated by performing band densitometry 

and inputting the calculated band intensities into the following formulae: 

 
Cleavage Efficiency = 1 – [(1-fraction cleaved)1/2] 

where 
Fraction Cleaved = Sum of cleaved band intensities/(sum of cleaved and parental band intensities) 

 

Band densitometry revealed that the CRISPR-Cas9 nuclease cleaved approximately 71% of the 

amplified PCR product with an efficiency of 46%. Taken together, these findings suggest that 

the CRISPR nuclease vector was functionally expressed in control C2 iPSCs.   
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Figure 3.5. Analysis of CRISPR cleavage efficiency. The efficiency with which the CRISPR construct 

produced targeted double-strand breaks at the locus of interest after electroporation was determined 

using the GeneArt® Genomic Cleavage Detection Kit (Thermo Fisher Scientific). Loci at which 

CRISPR-Cas9 produced targeted double-strand breaks and resulted in insertions/deletions (indels) being 

created by cellular repair mechanisms were amplified by PCR. The PCR product was then denatured 

and re-annealed in order to enable strands with indels to re-anneal with strands without indels or with 

different indels, thus creating mismatches. These mismatches were subsequently detected and cleaved 

by Detection Enzyme, with the resultant bands being analysed on a 2% agarose gel. Band densitometry 

using ImageJ software revealed that the CRISPR-Cas9 nuclease cleaved approximately 71% of the 

amplified PCR product with an efficiency of 46%. The formulae used to calculate CRISPR cleavage 

efficiency are stated in the main body of the text. M: 2-log DNA ladder (0.1 – 10 kb). 

 

 

 

 

 

 

 

 
 

 

 

 

 

CRISPR +ve 
control 

+ - - + 
M   

Par
en

ta
l 1

10
0 b

p b
an

d

Clea
ve

d 75
0 b

p b
an

d

Clea
ve

d 35
0 b

p b
an

d
0.0

0.5

1.0

1.5

 B
an

d 
in

te
ns

ity
 r

el
at

iv
e 

to
 th

e 
in

te
ns

ity
 o

f t
he

 p
ar

en
ta

l b
an

d 



          
                                                                                                                               Chapter 3 – Results (I) 
 

 75 

3.1.5 – Introduction of BMPR2 mutations into a control iPSC line 
 

The W9X targeting DNA construct was designed in such a way that successful CRISPR-Cas9-

mediated homologous recombination would confer neomycin resistance to the targeted iPSCs 

and result in the disruption of an endogenous PstI restriction enzyme site whilst creating a new 

AatII site within the targeted allele (Figure 3.1).  

 

Having successfully generated the W9X targeting vector, I co-transfected wild-type C2 iPSCs 

with the linearised W9X targeting construct and the CRISPR vector. After 5 days of culturing 

the transfected cells in cell culture medium containing the neomycin sulphate analogue 

Geneticin (G418, 50 ng/ml), over fifty geneticin-resistant iPSC colonies emerged from a 

starting population of 2.4 x 106 transfected cells. Twenty-two of these colonies were picked and 

genotyped by PCR to amplify a 1.1 kb region containing the W9X site. When genotyped, three 

of these picked colonies gave rise to PCR products which were digested by AatII restriction 

enzyme but were not digested by PstI. If homologous recombination is successful, AatII should 

cut the DNA at a single site within the 1.1 kb homology region to produce 750 bp and 350 bp 

bands on an agarose gel, which is what I observed (Figure 3.6 A). Taken together, these results 

suggest that these three iPSC colonies were successfully and correctly targeted.  

 

By contrast, successful CRISPR-Cas9-mediated homologous recombination of the ∆Exon1 

targeting construct would confer neomycin resistance and result in the introduction of a new 

PvuI restriction site within the targeted allele (see Figure 3.3). When genotyped, successfully 

targeted colonies gave rise to PCR products which were digested by PvuI to produce the 

expected 547 bp and 293 bp bands on an agarose gel (Figure 3.6 B). 

 

In iPSCs targeted with the W9X targeting construct, one of the targeted colonies was 

heterozygous for the W9X mutation (C2 W9X+/-), whereas the other two were homozygous (C2 

W9X-/-). By contrast, in iPSCs targeted with the ∆Exon1 targeting construct, two heterozygous 

iPSC colonies (C2 ∆Exon1) were obtained. Successful introduction of the W9X and ∆Exon1 

mutations into C2 iPSCs was confirmed by Sanger sequencing (performed by Source 

Bioscience, Cambridge, UK, and shown for the W9X mutation in Figure 3.6 C). qPCR analysis 

revealed that BMPR2 mRNA expression was significantly lower in C2 W9X+/-, C2 W9X-/- and 

C2 ∆Exon1 iPSCs relative to the C2 control iPSC line (Figures 3.6 D-E), thus further 

suggesting that successful targeting had been achieved. 
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Figure 3.6. Generation of two types of BMPR2 mutations in a human control iPSC line. (A) 

Genotyping to reveal W9X heterozygous and homozygous alleles. Geneticin-resistant iPSC colonies 

were picked and genotyped by PCR to amplify the 1.1 kb homology region containing the W9X site, 

giving rise to PCR products that were not digested by PstI restriction enzyme but were digested by AatII 

to produce the predicted 750 bp and 350 bp band sizes on a 2% agarose gel. (B) Genotyping to reveal 

the ∆Exon1 heterozygous allele (performed by Dr C-Hong Chang). Geneticin-resistant iPSC colonies 

transfected with the ∆Exon1 targeting construct gave rise to PCR products which were digested by PvuI 

to produce the predicted 547 bp and 293 bp band sizes on a 2% agarose gel. (C) Sanger sequencing 

confirmed the introduction of a heterozygous or homozygous W9X mutation into C2 iPSCs. The 

sequence is shown as a reverse complement, with start methionine indicated by an arrow showing the 

direction of the reading frame. (D and E) qPCR analysis showed that the newly generated heterozygous 

(C2 W9X+/- and C2 ∆Exon1) and homozygous (C2 W9X-/-) BMPR2 mutant iPSC lines displayed 

reduced BMPR2 mRNA expression relative to control C2 iPSCs. Data in D and E presented as mean ± 

s.e.m. of n=2-3 independent qPCR analyses performed on cells from the same differentiation (** P < 

0.01, *** P < 0.001, one-way ANOVA with Tukey’s post hoc test (D) and unpaired two-tailed Student’s 

t test (E)). 

A 

C 

B 
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In addition, to check that transfection of the CRISPR vector did not have any confounding 

effects on cell phenotypes being studied, I also carried out a control transfection which involved 

transfecting C2 iPSCs with the CRISPR vector and a pmaxGFP control plasmid (Lonza) only. 

Successfully transfected cells were selected by fluorescence-activated cell sorting (FACS), with 

the resulting C2 pmaxGFP iPSC line displaying a similar proliferation rate compared to the 

wild-type C2 iPSC line (data not shown). 
 

3.2 – Generation of lineage-specific iPSC-derived smooth muscle-like 
cells that can be used as surrogates for distal PASMCs 
 
Previous work has shown that PAH patient-derived iPSCs can be differentiated into 

endothelial-like cells (iPSC-ECs) that recapitulate some PAH-associated cellular phenotypes 

and can be used as surrogates for PAECs (Sa et al., 2017). However, no iPSC-SMC model of 

PAH has yet been described and the derivation of iPSC-SMCs that perfectly represent adult 

PASMCs is yet to be achieved.  

 

When developing protocols for differentiating iPSCs into vascular smooth muscle-like cells, it 

is important to ensure that the right types of cells are being produced and that these display 

functional responses akin to the specific type of primary cell they are trying to mimic. As it is 

the distal PASMCs that are predominantly affected in PAH, I therefore aimed to generate iPSC-

derived smooth muscle-like cells (iPSC-SMCs) with functional responses to BMP4 signalling 

akin to those observed in distal PASMCs (Yang et al., 2005). 

 

Distal PASMCs arise from lateral plate mesoderm, whereas the most proximal PASMCs arise 

from neural crest (Jiang et al., 2000). I thus used previously published lineage-specific, serum-

free and chemically defined SMC differentiation protocols (Cheung et al., 2012) to generate 

iPSC-SMCs from the lateral plate mesoderm (LM-SMCs) and neural ectoderm (NE-SMCs) 

lineages. In addition, I also differentiated iPSCs from the paraxial mesoderm lineage as a further 

comparator, although this lineage is not thought to contribute to distal PASMCs (Wasteson et 

al., 2008). 
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3.2.1 – Lineage-specific iPSC-SMCs express several SMC markers 
 

After differentiating wild-type and BMPR2+/- iPSCs into iPSC-SMCs from lateral plate 

mesoderm, paraxial mesoderm and neuroectoderm, I performed immunostaining to show that 

these cells expressed the smooth muscle markers calponin and smooth muscle actin (SMA) 

(Figure 3.7). Furthermore, I also differentiated isogenic C2 and C2 W9X+/- iPSCs into LM-

iPSC-SMCs and showed that these cells stained positively for smooth muscle myosin heavy 

chain (MYH11) (Figure 3.8), which is considered to be the most robust marker of mature 

vascular smooth muscle cells (Owens et al., 2004). In addition, wild-type C2 LM-iPSC-SMCs 

displayed contractile responses to stimulation with carbachol (300 µM) (see Section 4.3.2). 

Taken together, these findings show that our iPSCs can be differentiated into SMCs using these 

lineage-specific differentiation protocols (Cheung et al., 2012). 
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Figure 3.7. Lineage-specific iPSC-SMCs express the SMC markers smooth muscle actin and 

calponin. Representative immunofluorescence images of wild-type and BMPR2+/- iPSCs differentiated 

into iPSC-SMCs from lateral plate mesoderm (LM), paraxial mesoderm (PM) and neuroectoderm (NE), 

and immunostained for smooth muscle actin (SMA) and calponin (green). Nuclei were visualised using 

DAPI staining (blue). Scale bars are 20 µm. 
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Figure 3.8. LM-iPSC-SMCs express the SMC marker smooth muscle myosin heavy chain. 

Representative immunofluorescence images of C2 wild-type and C2 W9X+/- LM-iPSC-SMCs 

immunostained for smooth muscle myosin heavy chain (MYH11, green). Nuclei were visualised using 

DAPI staining (blue). Scale bars are 100 µm. 

 
 

3.2.2 – Lateral plate mesoderm-derived iPSC-SMCs most closely resemble the gene 
expression profile of distal PASMCs  
 

Having successfully generated iPSC-SMCs from LM, PM and NE lineages, I collaborated with 

Dr Felipe Serrano from Dr Sanjay Sinha’s group to determine which of the three iPSC-SMC 

lineages most closely resembles the gene expression profile of distal PASMCs. To achieve this, 

I also collaborated with Dr Benjamin Dunmore who isolated RNA from PASMCs and with Dr 

Christine Cheung who isolated RNA from LM-, PM- and NE-iPSC-SMCs. Dr Serrano and his 

colleagues then used Illumina Human HT-12 v4 Expression BeadChip microarrays to perform 

a global microarray gene expression analysis, comparing adult proximal and distal PASMCs to 

LM-SMCs, PM-SMCs and NE-SMCs. Since the neural crest is one of the origins of pulmonary 

artery SMCs, a two-dimensional principal component analysis based on differential gene 

expression restricted to 171 neural crest- and SMC-specific genes (Chi et al., 2007; Betancur et 

al., 2010) was also carried out.  

 

In both of these analyses, distal PASMCs were more similar to LM-SMCs compared with NE-

SMCs and PM-SMCs based on the first principal component (Figure 3.9 A). These results 

suggest that, among these three different lineages, LM-SMCs might be the most appropriate 

surrogate for distal PASMCs in terms of gene expression profile.      
 
 

C2 C2 W9X+/- 
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3.2.3 – Lateral plate mesoderm-derived iPSC-SMCs mimic the BMP4 responsiveness 
of distal PASMCs 
 

To further characterise which lineage might serve as a surrogate for adult PASMCs, I examined 

the effect of BMP4 (50 ng/ml) on the growth responses of wild-type iPSC-SMCs from each 

lineage (Figure 3.9 B). After 1 week of exposure to 2% serum and BMP4 (50 ng/ml), SMCs 

from neural ectoderm and paraxial mesoderm origins were growth-inhibited by BMP4, 

consistent with the phenotype of adult-derived proximal PASMCs (Yang et al., 2005). By 

contrast, SMCs from the LM lineage were not growth-suppressed, consistent with responses 

reported in distal PASMCs derived from adults. Since iPSCs from different individuals varied 

in the absolute numbers of SMCs produced during the differentiation process, growth responses 

are presented as fold changes rather than absolute numbers of cells. 

 

Furthermore, I also showed that BMP4-treated wild-type LM-iPSC-SMCs were significantly 

less apoptotic compared to untreated wild-type LM-iPSC-SMCs (Figure 3.9 C), which is in 

line with what has previously been observed using distal PASMCs (Yang et al., 2005).  
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Figure 3.9. LM-iPSC-SMCs display a gene expression profile and responses to BMP4 stimulation 

akin to distal PASMCs. (A) Gene expression patterns of proximal and distal human PASMCs, as well 

as iPSC-SMCs derived from paraxial mesoderm (PM-SMCs), neuroectoderm (NE-SMCs), and lateral 

plate mesoderm (LM-SMCs), were analysed using Illumina HumanHT-12 v4 Expression BeadChip 

microarrays. Gene expression patterns of samples were sorted based on similarity by hierarchical 

clustering. For this analysis, 171 SMC-specific genes were selected based on the wikipathway database 

(WikiPathway WP2064 revision 47071) and were subjected to two-dimensional principal component 

analysis of differential gene expression. (B) LM-SMCs are not growth-suppressed after being cultured 

for one week in cell culture medium supplemented with 2% FBS and BMP4 (50 ng/ml), unlike PM- and 

NE-SMCs. (C) Serum starvation-induced apoptosis in wild-type LM-SMCs, assessed using flow 

cytometric analysis of cells stained with annexin-V-FITC and propidium iodide, is significantly reduced 

in the presence of exogenous BMP4 (50 ng/ml), as previously described for distal PASMCs. Data in (B) 

and (C) presented as mean ± s.e.m. of 3 different iPSC-SMC lines (biological replicates) per group (* 

P < 0.05, *** P < 0.001, one-way ANOVA with Dunnett’s post hoc test (B) and unpaired two-tailed 

Student’s t test (C)). 

 
 
 

B C 

LM-SMCs PM-SMCs NE-SMCs
0.0

0.5

1.0

1.5

2.0

Fo
ld

 c
ha

ng
e 

in
 g

ro
w

th
 r

at
e 

in
 r

es
po

ns
e 

to
 B

M
P

4 
tr

ea
tm

en
t

No change 
in growth

Growth
suppressed

Not growth
suppressed

Wild-type
 proximal-like 
iPSC-SMCs

Wild-type 
peripheral-like

iPSC-SMCs

*
*

0.0

0.5

1.0

1.5

A
nn

ex
in

-V
-F

IT
C

 s
in

gl
e-

po
si

tiv
e 

ce
lls

 r
el

at
iv

e 
to

 u
nt

re
at

ed
 w

ild
-t

yp
e Untreated

+BMP4 (50 ng/ml)

Wild-type iPSC-SMCs

***

Proximal  
PASMCs  Distal  

PASMCs  

LM-SMCs  

PM-SMCs  

NE-SMCs  

A 



          
                                                                                                                               Chapter 3 – Results (I) 
 

 83 

3.2.4 – BMPR2+/- lateral plate mesoderm-derived iPSC-SMCs display reduced BMP 
signalling relative to wild-type iPSC-SMCs  

 

As further validation of the iPSC-SMC model of PAH, I performed qPCR analysis to confirm 

that the mRNA expression of BMPR2 and its downstream target genes ID1 and ID2 was 

significantly reduced in C2 W9X+/- LM-iPSC-SMCs relative to isogenic wild-type C2 LM-

iPSC-SMCs (Figure 3.10 A-C). In addition, similar to what has previously been described in 

adult distal PASMCs (Upton et al., 2013), previous work performed by Dr Liam Hurst in our 

group showed that PAH patient-derived BMPR2+/- LM-iPSC-SMCs display reduced Smad1/5 

phosphorylation in response to BMP4 stimulation (Figure 3.10 D-E). Taken together, these 

findings suggest that lateral plate mesoderm-derived iPSC-SMCs might be suitable surrogates 

for distal PASMCs when developing an iPSC-based disease model of PAH. 
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Figure 3.10. BMPR2+/- LM-iPSC-SMCs display reduced BMP signalling (A-C) qPCR analysis of 

BMPR2 (A), ID1 (B) and ID2 (C) mRNA expression in isogenic C2 and C2 W9X+/- LM-iPSC-SMCs 

cultured for one week in 10% FBS post-differentiation. Data presented as mean ± s.e.m. of the results 

from two (A) or three (B and C) independent differentiations (* P < 0.05, ** P < 0.01, *** P < 0.001, 

unpaired two-tailed Student’s t test). (D) PAH patient-derived LM-iPSC-SMCs display reduced 

Smad1/5 phosphorylation following BMP4 (10 ng/ml) treatment, shown by a representative Western 

blot for phospho-Smad1/5 and total Smad1 (loading control: α-tubulin) in untreated and BMP4-treated 

wild-type (C2 and C10), BMPR2+/- (B3 and B11) and non-BMPR2+/- idiopathic pulmonary arterial 

hypertension (IPAH) (P3) patient-derived iPSC-SMCs, with the corresponding densitometry analysis 

(n=1 per cell line) shown in (E). 
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3.3 – Discussion 
 

In addition to developing the first iPSC-SMC model of PAH associated with mutations in 

BMPR2, one of the main aims of this study was to examine the impact of BMPR2 mutation on 

the establishment of PAH-associated cellular phenotypes without the confounding effects of 

other genetic differences between cell lines. In this chapter, CRISPR-Cas9 genome editing was 

used to either introduce a known causal BMPR2 mutation (W9X) or delete exon 1 of the BMPR2 

gene (∆Exon1) in a wild-type iPSC line from a healthy individual with no family history of 

PAH or cardiovascular disease. This approach resulted in the generation of wild-type and 

BMPR2+/- iPSCs with an otherwise isogenic background, thus removing the effects that 

different genetic modifiers (Gu et al., 2017) may have on the penetrance of cellular phenotypes. 

As a result, any difference in phenotype between the wild-type and genome-edited BMPR2+/- 

iPSC lines can then be attributed to the introduction of the BMPR2 mutation. Although the 

possibility of CRISPR-mediated off-target effects cannot be excluded because these iPSC lines 

were not submitted to whole-genome sequencing, numerous studies have shown that such off-

target effects are rare (Smith et al., 2014; Suzuki et al., 2014; Veres et al., 2014; Chang et al., 

2015; Park et al., 2015; Li et al., 2016) and are thus unlikely to confound the phenotypes being 

studied.  

 

Another important new finding presented in this chapter is that wild-type and BMPR2+/- iPSCs 

differentiated into iPSC-SMCs via lateral plate mesoderm (LM), but not via paraxial mesoderm 

(PM) or neuroectoderm (NE), display a gene expression profile and functional responses to 

BMP4 signalling akin to distal PASMCs. This suggests that LM-iPSC-SMCs might be suitable 

surrogates for distal PASMCs when developing a human iPSC model of PAH. By comparison, 

a recent study using these three lineage-specific iPSC-SMC differentiation protocols (Granata 

et al., 2017) showed that neural crest-derived iPSC-SMCs are the most suitable surrogates for 

SMCs of the aortic root, ascending aorta and arch for studying the development of aortic 

aneurysms in Marfan syndrome. Taken together, these observations highlight the importance 

of using appropriate lineage-specific differentiation protocols in iPSC disease modelling 

studies.  
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It is important to note that the LM-iPSC-SMCs described in this thesis do not perfectly represent 

adult PASMCs. For example, although the gene expression profile of LM-iPSC-SMCs was 

similar to that of PASMCs in terms of the first principal component, it differed in the second 

principal component. Furthermore, because the generation of iPSC-SMCs that distinctly 

represent pulmonary as opposed to systemic smooth muscle cells is yet to be achieved, 

phenotypes that are only present in pulmonary vascular cells cannot be directly studied in this 

model. Nevertheless, because phenotypes such as aberrant proliferation, apoptosis and 

mitochondrial membrane polarisation are not unique to the pulmonary vasculature, this does 

not preclude LM-iPSC-SMCs from being used to develop an iPSC model of PAH. 

 

It is also worth noting that the iPSC-SMCs generated in this investigation might not be 

composed of a single homogenous SMC population. Due to a lack of definitive SMC subtype-

specific cell surface markers, lineage-specific iPSC-SMCs cannot easily be purified by 

fluorescent or magnetic-activated cell sorting (Kumar et al., 2017). Alternative strategies to 

purify iPSC-SMCs could involve generating iPSC-SMCs in which an antibiotic resistance gene 

is expressed under the control of the MYH11 promoter. This would allow iPSC-SMCs to be 

purified whilst still in the dish, as has been previously demonstrated with iPSC-derived 

cardiomyocytes (Kita-Matsuo et al., 2009; Ma et al., 2011).  

 

Nevertheless, Cheung et al. (2012) showed that more than 86% of LM-iPSC-SMCs expressed 

smooth muscle myosin heavy chain (MYH11), which is considered to be the most robust marker 

of mature SMCs (Owens et al., 2004). The LM-iPSC-SMCs described in this chapter were 

differentiated by following the same protocol described by Cheung et al. (2012) and also stained 

positively for the SMC markers smooth muscle actin (SMA), calponin and MYH11. Together 

with the observation that wild-type C2 LM-iPSC-SMCs displayed contractile responses to 

stimulation with carbachol (300 µM) (see Section 4.3.2), these findings suggest that the 

majority of these cells were in fact SMCs.  
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4.1 – BMPR2 heterozygosity in iPSC-SMCs is necessary and sufficient to 
recapitulate several PAH-associated SMC phenotypes 
 

Having generated wild-type and BMPR2+/- LM-iPSC-SMCs with an otherwise isogenic 

background and shown that these cells mimic the BMP4 responsiveness of distal PASMCs, my 

next aim was to address the controversial question of whether genetic reduction of BMPR2 

alone is necessary and/or sufficient to establish major PAH-associated PASMC phenotypes in 

these cells. Compared to PASMCs from unaffected donor controls, PASMCs isolated from 

PAH patients have previously been shown to be more proliferative, less susceptible to 

apoptosis, and display increased inner mitochondrial membrane polarisation (Paulin & 

Michelakis, 2014). I therefore investigated whether BMPR2+/- LM-iPSC-SMCs are able to 

recapitulate these PAH-associated cellular phenotypes under basal serum-free, chemically-

defined conditions in the presence or absence of additional extrinsic growth and/or 

inflammatory stimuli such as serum, BMP4 and TNFα.  

 

4.1.1 – BMPR2+/- iPSC-SMCs are more proliferative relative to isogenic wild-type iPSC-
SMCs under serum-free, chemically-defined conditions 

 

Since increased PASMC proliferation is one of the hallmarks of PAH, I first set out to determine 

whether BMPR2 heterozygosity in iPSC-SMCs is sufficient to recapitulate this pro-proliferative 

PASMC phenotype. I initially differentiated C2 and C2 W9X+/- LM-iPSC-SMCs according to 

the standard LM protocol in serum-free, chemically-defined medium (CDM) supplemented 

with PDGF-BB (10 ng/ml) and TGF-b1 (2 ng/ml) (hereafter referred to as ‘PT’) (Figure 4.1 

A). These cells were subsequently cultured for one week in CDM + PT prior to assessing cell 

proliferation by performing cell counts and by measuring cellular DNA content. Under these 

serum-free conditions, cell counts revealed that there was no significant difference (P > 0.05) 

in proliferation between C2 W9X+/- iPSC-SMCs and isogenic wild-type C2 iPSC-SMCs 

(Figure 4.2 A). By contrast, when proliferation in PT was assessed by measuring cellular 

double-stranded DNA content using Vybrant DyeCycle Ruby stain, C2 W9X+/- iPSC-SMCs 

became significantly (1.5-fold, P < 0.001) more proliferative relative to C2 iPSC-SMCs (Figure 

4.2 B).  
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Figure 4.1. Outline of the iPSC-SMC differentiation and culture conditions used when assessing 

cell proliferation. (A and C) Wild-type and BMPR2+/- iPSC-SMCs were initially differentiated via 

lateral plate mesoderm (LM) according to the standard LM protocol (Cheung et al., 2012) in serum-free, 

chemically-defined medium (CDM) supplemented with PDGF-BB (10 ng/ml) and TGF-b1 (2 ng/ml) 

(referred to as ‘PT’). After differentiation, LM-iPSC-SMCs were cultured for 7 days in either CDM + 

PT (A) or DMEM + 5% FBS (C) prior to assessing cell proliferation by measuring cellular DNA content 

and/or performing cell counts. (B and D) Cell proliferation was also assessed after differentiating wild-

type and BMPR2+/- iPSC-SMCs in the presence of a high concentration (50 ng/ml) of exogenous BMP4 

during the 12-day ‘PT’ SMC differentiation phase (referred to as ‘PTB’) and subsequently culturing the 

cells for 7 days in either CDM + PTB (B) or DMEM + 5% FBS (D). In all four protocols (A-D), lateral 

plate mesoderm formation was induced by culturing iPSCs for 1.5 days in CDM supplemented with 

FGF-2 (20 ng/ml), LY294002 (10 ng/ml) and BMP4 (10 ng/ml) (referred to as ‘FLyB’), after which the 

cells were cultured for 3.5 days in CDM supplemented with FGF-2 (20 ng/ml) and BMP4 (50 ng/ml) 

(referred to as ‘FB50’).  
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Figure 4.2. Proliferation of C2 and C2 W9X+/- iPSC-SMCs under serum-free conditions. Wild-type 

and BMPR2+/- iPSC-SMCs were differentiated under serum-free conditions in chemically-defined 

medium (CDM) supplemented with either PDGF-BB (10 ng/ml) and TGF-b1 (2 ng/ml) (hereafter 

referred to as ‘PT’) (A and B) or PDGF-BB (10 ng/ml), TGF-b1 (2 ng/ml) and BMP4 (50 ng/ml) 

(hereafter referred to as ‘PTB’) (C and D). iPSC-SMC proliferation was assessed by performing cell 

counts after culturing the differentiated cells for 7 days in CDM + PT (A) or CDM + PTB (C), or by 

measuring cellular DNA content via flow cytometric analysis of Vybrant DyeCycle Ruby staining (B 

and D). Data presented as mean ± s.e.m. of three technical replicates based on cells from the same 

differentiation (A and C), or based on the results from three independent differentiations (B and D) [n.s., 

not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001, unpaired two-tailed Student’s t test].  

 

 

In view of the discrepancy between the findings obtained using these two complementary 

proliferation assays, I investigated whether the LM-iPSC-SMC differentiation protocol could 

be modified to better model distal PASMCs. Since BMP4 is highly expressed in the distal lung 

bud during development (Bellusci et al., 1996; Hogan, 1996), I repeated the iPSC-SMC 

proliferation assays after differentiating C2 and C2 W9X+/- LM-iPSC-SMCs in the presence of 

a high concentration (50 ng/ml) of exogenous BMP4 during the 12-day ‘PT’ SMC 

differentiation phase (hereafter referred to as ‘PTB’) (Figure 4.1 B).  
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After these cells were cultured for 7 days in serum-free PTB conditions, C2 W9X+/- iPSC-SMCs 

were significantly (2.5-fold, P < 0.05) more proliferative compared to isogenic C2 iPSC-SMCs 

(Figure 4.2 C). Consistent with these findings, C2 W9X+/- iPSC-SMCs were also significantly 

(2.2-fold, P < 0.01) more proliferative relative to C2 iPSC-SMCs when the proliferation of 

these cells was assessed by measuring cellular DNA content (Figure 4.2 D). Taken together, 

these results suggest that the pro-proliferative phenotype of C2 W9X+/- iPSC-SMCs was more 

pronounced after iPSC-SMCs were differentiated in PTB rather than in PT.  

 

In support of these observations, after iPSC-SMCs were cultured for one week in DMEM + 5% 

FBS post-differentiation, C2 W9X+/- iPSC-SMCs were 1.4 times more proliferative compared 

to C2 iPSC-SMCs after being differentiated in PT (Figure 4.1 C and Figure 4.3 A) but became 

2.4 times more proliferative after being differentiated in PTB (Figure 4.1 D and Figure 4.3 B). 

 

Since adult PAH patient-derived PASMCs are frequently reported to be at least two times more 

proliferative compared to wild-type PASMCs (Courboulin et al., 2012; Wilson et al., 2015; 

Boucherat et al., 2017), these findings suggest that C2 W9X+/- iPSC-SMCs differentiated in 

PTB recapitulate the pro-proliferative phenotype of distal PASMCs from PAH patients more 

closely and robustly compared to C2 W9X+/- iPSC-SMCs differentiated in PT.  

 

After serum-free differentiation in PTB, additional exposure to serum or other factors was not 

required for C2 W9X+/- iPSC-SMCs to be more proliferative relative to isogenic wild-type C2 

iPSC-SMCs. This suggests that BMPR2 heterozygosity in iPSC-SMCs differentiated in PTB is 

necessary and sufficient to recapitulate the pro-proliferative phenotype of distal PASMCs from 

PAH patients. 
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Figure 4.3. Proliferation of C2 and C2 W9X+/- iPSC-SMCs in serum.  Proliferation of C2 and C2 

W9X+/- iPSC-SMCs was assessed by differentiating the cells in CDM-PVA + PT (A) or CDM-PVA + 

PTB (B), after which all cells were cultured for 7 days in DMEM + 5% FBS, trypsinised and counted 

manually using disposable haemocytometer counting grids. Data presented as mean ± s.e.m. of three 

technical replicates based on cells from the same differentiation [n.s., not significant (P > 0.05), * P < 

0.05, ** P < 0.01, unpaired two-tailed Student’s t test].     

 

 

Next, I performed cell counts to investigate whether the difference in proliferation between C2 

and C2 W9X+/- iPSC-SMCs is representative of the relative levels of cell proliferation observed 

in LM-iPSC-SMCs differentiated from wild-type and patient-derived BMPR2+/- iPSC lines that 

were previously generated by our laboratory (Geti et al., 2012; see Table 2.1 for 

characteristics).  

 

Similar to the difference in proliferation between C2 and C2 W9X+/-  iPSC-SMCs assessed by 

cell counts under serum-free PT conditions (Figure 4.2 A), cell counts revealed that patient-

derived BMPR2+/- iPSC-SMCs assayed under serum-free PT conditions displayed a non-

significant (P > 0.05) trend towards reduced proliferation compared to wild-type iPSC-SMCs 

(Figure 4.4 A). By contrast, patient-derived BMPR2+/- iPSC-SMCs became 1.8 times more 

proliferative compared to wild-type iPSC-SMCs when assayed under serum-free PTB 

conditions, although this difference was not statistically significant (P > 0.05) (Figure 4.4 B).  
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Furthermore, BMPR2+/- iPSC-SMCs differentiated in PT and subsequently cultured for one 

week in DMEM + 5% FBS displayed no significant difference in proliferation (P > 0.05) 

compared to wild-type iPSC-SMCs treated the same way (Figure 4.4 C) but became 

significantly (2.4-fold, P < 0.01) more proliferative in DMEM + 5% FBS after differentiation 

in PTB (Figure 4.4 D).  

 

Taken together, these findings suggest that BMPR2+/- iPSC-SMCs differentiated in PTB 

recapitulate the pro-proliferative phenotype of distal PASMCs from PAH patients more 

robustly compared to BMPR2+/- iPSC-SMCs differentiated in PT, thus validating the findings 

observed in isogenic C2 and C2 W9X+/- iPSC-SMCs.  

 

 
 

Figure 4.4. Proliferation of wild-type and PAH patient-derived BMPR2+/- iPSC-SMCs under 

serum-free and serum-containing conditions. Proliferation rates of wild-type and patient-derived 

BMPR2+/- iPSC-SMCs were assessed by differentiating cells in CDM-PVA + PT (A and C) or CDM-

PVA + PTB (B and D), after which the cells were cultured for 7 days in CDM-PVA + PT (A), CDM-

PVA + PTB (B) or in DMEM + 5% FBS (C and D). Subsequently, all iPSC-SMCs were trypsinised and 

counted manually using disposable haemocytometer counting grids. Data presented as mean ± s.e.m. of 

three wild-type and two patient-derived BMPR2+/- iPSC-SMC lines (A and B), or two wild-type and two 

patient-derived lines (C and D) based on cells from the same differentiation [n.s., not significant (P > 

0.05), * P < 0.05, ** P < 0.01, unpaired two-tailed Student’s t test].     
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4.1.2 – BMPR2+/- iPSC-SMCs are less apoptotic relative to isogenic wild-type iPSC-SMCs 
under serum-free, chemically-defined conditions 

 

Next, I used two complementary apoptosis assays to determine whether BMPR2 heterozygosity 

in iPSC-SMCs is sufficient to recapitulate the anti-apoptotic phenotype of PASMCs derived 

from PAH patients. First, I differentiated C2 and C2 W9X+/- iPSC-SMCs in PT or PTB and 

assessed apoptosis under basal serum-free conditions using the Caspase-Glo 3/7 Assay 

(Promega). This assay measures the activity of caspase-3 and caspase-7 in terms of their ability 

to cleave a pro-luminescent caspase-3/7 substrate. My analysis revealed that C2 W9X+/- iPSC-

SMCs were significantly (P < 0.01) less apoptotic relative to C2 iPSC-SMCs, regardless of 

whether they were differentiated in PT or PTB (Figures 4.5 A and C). These results were 

confirmed by flow cytometric analysis of isogenic wild-type and BMPR2+/- iPSC-SMCs which 

were positive for annexin-V-FITC staining but negative for propidium iodide (PI) staining 

(Figures 4.5 B and D).  
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Figure 4.5. Serum-free BMPR2+/- iPSC-SMCs are less apoptotic relative to isogenic wild-type 

iPSC-SMCs. LM-iPSC-SMCs with isogenic backgrounds were differentiated in either PT (A and B) or 

PTB (C and D). (A and C):  Basal apoptosis in serum-free PT (A) or PTB (C) conditions was assessed 

using the Caspase Glo-3/7 Assay which provides a luminescent readout of caspase-3/7 activity. (B and 

D): As a complementary assay, iPSC-SMC apoptosis in PT (B) or PTB (D) was also assessed by flow 

cytometric analysis of iPSC-SMCs positive for annexin-V-FITC staining but negative for propidium 

iodide (PI) staining. Data presented as mean ± s.e.m. of the results from three independent 

differentiations, except for annexin-V-FITC/PI staining of C2 ∆Exon1 iPSC-SMCs differentiated in PT 

(B), which were only analysed in a single experiment. (* P < 0.05, ** P < 0.01, *** P < 0.001, unpaired 

two-tailed Student’s t test (A-C), or one-way ANOVA with multiple comparisons being corrected for 

using Dunnett’s post hoc test (D)).        

     
 

Furthermore, similar to the pro-proliferative phenotype of BMPR2+/- iPSC-SMCs, the anti-

apoptotic phenotype of C2 W9X+/- iPSC-SMCs was more pronounced after iPSC-SMCs were 

differentiated in PTB rather than in PT. 

 

In addition to displaying reduced rates of basal apoptosis relative to wild-type PASMCs, 

patient-derived BMPR2+/- PASMCs are also more resistant to apoptosis induction in response 

to extrinsic stimuli (Zhang et al., 2003). Therefore, I also used the Caspase-Glo 3/7 Assay to 

investigate whether C2 W9X+/- iPSC-SMCs are more resistant to apoptosis induction compared 

to C2 iPSC-SMCs in response to treatment for 1 hour with the protein kinase inhibitor 

staurosporine (50 nM). Although the difference in staurosporine-induced apoptosis was not 

statistically significant (P > 0.05), C2 W9X+/- iPSC-SMCs tended to be almost two times more 

resistant to staurosporine-induced apoptosis relative to C2 iPSC-SMCs (Figure 4.6).  

 

The level of apoptosis resistance observed in C2 W9X+/- iPSC-SMCs differentiated in PTB is 

in line with the level of apoptosis resistance observed in BMPR2+/- PASMCs derived from PAH 

patients (Courboulin et al., 2012; Boucherat et al., 2017). Furthermore, apoptosis resistance in 

C2 W9X+/- iPSC-SMCs was more pronounced after differentiation in PTB rather than in PT. 

Taken together, these findings further support the use of the PTB differentiation protocol for 

generating iPSC-SMCs that can be used to model distal PASMCs. In addition, these results also 

suggest that BMPR2 heterozygosity in iPSC-SMCs is necessary and sufficient to recapitulate 

the anti-apoptotic phenotype of distal PASMCs from PAH patients.  
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Figure 4.6. Staurosporine-induced apoptosis in serum-free C2 and C2 W9X+/- iPSC-SMCs. 

Isogenic C2 and C2 W9X+/- iPSC-SMCs were differentiated in PTB, after which apoptosis was induced 

by culturing the cells for 1 hour in serum-free DMEM in the presence or absence of staurosporine (50 

nM), a broad-spectrum protein kinase inhibitor. Apoptosis was assessed using the Caspase Glo-3/7 

Assay which provides a luminescent readout of caspase-3/7 activity. Data presented as mean ± s.e.m. of 

the results obtained from three independent differentiations and expressed as fold changes in apoptosis 

after 1 hour of exposure to DMEM + staurosporine relative to the level of apoptosis observed after 

exposure to DMEM only [n.s., not significant (P > 0.05), unpaired two-tailed Student’s t test]. 

 

4.1.3 – Isogenic BMPR2+/- iPSC-SMCs display increased IL-6 mRNA expression relative 
to wild-type iPSC-SMCs  

 
In addition to increased proliferation and reduced apoptosis of PAH-derived PASMCs, serum 

levels of the pro-inflammatory cytokine IL-6 are significantly elevated in IPAH patients 

compared to controls (Humbert et al., 1995; Soon et al., 2010). Increased IL-6 expression has 

also been detected in PASMCs isolated from Bmpr2+/- mice with lipopolysaccharide (LPS)-

induced pulmonary hypertension (Soon et al., 2015), as well as in BMPR2+/- PAECs (Diebold 

et al., 2015).  

 

To test whether BMPR2+/- iPSC-SMCs also display increased IL-6 expression, I therefore 

performed qPCR analysis of IL-6 mRNA expression levels in wild-type and isogenic BMPR2+/- 

iPSC-SMCs. C2 W9X+/- iPSC-SMCs differentiated in PT displayed a non-significant trend (P 

> 0.05) towards increased IL-6 expression compared to wild-type C2 iPSC-SMCs (Figure 4.7 

A). However, this difference became statistically significant (P < 0.05) and more pronounced 

after iPSC-SMCs were differentiated in PTB (Figure 4.7 B). Taken together, these findings 

suggest that BMPR2 heterozygosity in iPSC-SMCs differentiated in PTB is sufficient to 

recapitulate the increased IL-6 expression observed in PAH-derived PASMCs. In addition, 

these observations further suggest that iPSC-SMC differentiation in PTB instead of PT 
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generates cells that more strongly re-capitulate PAH-associated phenotypes observed in distal 

PASMCs.    

 

 
 

Figure 4.7. Isogenic BMPR2+/- iPSC-SMCs display increased IL-6 mRNA expression compared to 

wild-type iPSC-SMCs after differentiation in PTB but not after differentiation in PT. Quantitative 

PCR analysis of IL-6 mRNA expression in LM-iPSC-SMCs differentiated in PT (A) or PTB (B) during 

the last 12 days of the LM-iPSC-SMC differentiation protocol. Data presented as mean ± s.e.m. of the 

results from three independent differentiations [n.s., not significant (P > 0.05); * P < 0.05, unpaired two-

tailed Student’s t test]  
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4.2 – BMPR2+/- iPSC-SMCs only recapitulate the mitochondrial 
hyperpolarisation phenotype of patient-derived PASMCs under specific 
conditions  
 

Although I have shown that the iPSC model is able to recapitulate certain PAH-associated 

cellular phenotypes under serum-free conditions, not all phenotypes could be recapitulated 

under these conditions, as described below. 

 

4.2.1 – Inner mitochondrial membrane polarisation in isogenic iPSC-SMCs  

 

Hyperpolarisation of the inner mitochondrial membrane (IMM) is a feature of PASMCs and 

pulmonary artery endothelial cells (PAECs) isolated from patients with end-stage PAH and is 

linked to increased rates of glycolysis, changes in reactive oxygen species (ROS) production 

and vascular remodeling (Pak et al., 2013; Paulin & Michelakis, 2014; Diebold et al., 2015).  
 

First, I determined whether BMPR2 heterozygosity in iPSC-SMCs is sufficient to recapitulate 

IMM hyperpolarisation by performing flow cytometric analysis of isogenic wild-type and 

BMPR2+/- iPSC-SMCs stained with tetramethylrhodamine ethyl ester (TMRE, 30 nM). TMRE 

is a red fluorescent dye that is taken up into mitochondria at a rate that is proportional to the 

charge difference across the IMM, with a higher level of TMRE fluorescence being indicative 

of increased IMM polarisation.  

 

To confirm that changes in TMRE staining intensity in iPSC-SMCs and PASMCs reflect 

changes in mitochondrial membrane potential, I incubated C2 LM-iPSC-SMCs (n=1) and wild-

type PASMCs (n=3) for 20 minutes in the presence or absence of carbonyl cyanide 4-

trifluoromethoxyphenylhydrazone (FCCP, 5 µM), after which the cells were loaded for 30 

minutes with TMRE (30 nM) in the continuing presence or absence of FCCP. FCCP is a 

protonophore which causes mitochondrial uncoupling by dissipating the electrochemical proton 

gradient across the IMM and should hence reduce TMRE fluorescence under non-quenching 

conditions (Brand & Nicholls, 2011). Indeed, FCCP treatment significantly (P < 0.001) reduced 

TMRE fluorescence in wild-type PASMCs (Figure 4.8 A) and also decreased TMRE 

fluorescence in C2 iPSC-SMCs to a similar extent (Figure 4.8 B), confirming that the TMRE 

assay was working as expected. 
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Figure 4.8. Effect of FCCP on inner mitochondrial membrane polarisation in C2 iPSC-SMCs and 

wild-type PASMCs. The mitochondrial uncoupling agent carbonyl cyanide 4-

trifluoromethoxyphenylhydrazone (FCCP, 5 µM) reduced inner mitochondrial membrane (IMM) 

polarisation in wild-type PASMCs (n=3) (A) and C2 iPSC-SMCs (n=1) (B). IMM polarisation was 

assessed by flow cytometric analysis of cells stained with tetramethylrhodamine ethyl ester (TMRE, 30 

nM), a red fluorescent dye that is taken up into mitochondria at a rate that is proportional to the charge 

difference across the IMM. Data in (A) presented as mean ± s.e.m. of the results obtained from three 

different PASMCs lines (*** P < 0.001, unpaired two-tailed Student’s t test).      

 

 

 

 

Having validated that changes in TMRE fluorescence reflected changes in mitochondrial 

membrane potential, I used TMRE staining to assess mitochondrial polarisation in isogenic 

iPSC-SMCs that were differentiated in PTB and assayed under serum-free conditions. 

Surprisingly, flow cytometric analysis of TMRE staining in these cells revealed that BMPR2+/- 

iPSC-SMCs had a significantly (P < 0.001) hypopolarised IMM state compared to their 

isogenic wild-type (Figure 4.10 A). I therefore investigated whether serum-free BMPR2+/- 

iPSC-SMCs might require exposure to extrinsic factors such as serum in order to acquire a 

hyperpolarised IMM state (see Figure 4.9 for an outline of these experiments).  
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Figure 4.9. Schematic outline of the culture conditions used to assess inner mitochondrial 

membrane polarisation in iPSC-SMCs. Wild-type and BMPR2+/- iPSC-SMCs were differentiated via 

lateral plate mesoderm (LM) (Cheung et al., 2012) in serum-free, chemically-defined medium 

supplemented with PDGF-BB (10 ng/ml), TGF-b1 (2 ng/ml) and BMP4 (referred to as ‘PTB’). The 

inner mitochondrial membrane polarisation state (∆Ψm) of iPSC-SMCs was assessed by flow cytometric 

analysis of tetramethylrhodamine ethyl ester (TMRE, 30 nM) staining under the following culture 

conditions:  (A) under serum-free conditions after differentiation in PTB; (B) after being cultured for 1 

week post-differentiation in DMEM + 10% FBS; (C) after being cultured for 1 week post-differentiation 

in DMEM + 10% FBS + TNFα (1 ng/ml); (D) after being cultured for 2 weeks post-differentiation in 

DMEM + 10% FBS; (E) after being cultured for 1 week post-differentiation in DMEM + 10% FBS + 

TNFα (1 ng/ml) and then for further week in DMEM + 10% FBS only. 
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Whilst isogenic BMPR2+/- iPSC-SMCs remained hypopolarised (P < 0.01) after one week of 

exposure to serum (10% FBS) post-PTB differentiation (Figure 4.10 B), C2 W9X+/- and C2 

ΔExon1 iPSC-SMCs became significantly hyperpolarised (P < 0.01 and P < 0.05, respectively) 

relative to C2 iPSC-SMCs after two weeks of exposure to serum (Figure 4.10 C).  

 

In addition, since TNFα has been shown to increase IMM polarisation (Sutendra et al., 2011) 

and is implicated in pulmonary vascular remodeling (Hurst et al., 2017), I also assessed IMM 

polarisation in isogenic wild-type and BMPR2+/- iPSC-SMCs treated for one week with either 

serum alone, or serum plus TNFα (1 ng/ml). As previously observed (Figure 4.10 B), BMPR2+/- 

iPSC-SMCs exposed to serum for one week maintained a hypopolarised IMM compared to 

isogenic wild-type cells (P < 0.05) (Figure 4.10 D). By contrast, C2 W9X+/- iPSC-SMCs 

exposed to serum plus TNFα for one week acquired a hyperpolarised IMM compared to C2 

iPSC-SMCs (P < 0.05). Taken together, these findings suggest that BMPR2 heterozygosity 

alone is not sufficient for increased IMM polarisation in BMPR2+/- iPSC-SMCs but lowers the 

threshold for hyperpolarisation in response to exogenous factors. 

 

Inflammatory stimuli such as TNFα are one of the proposed “second hits” that are thought to 

be required to trigger PAH establishment and progression (Rabinovitch et al., 2014). However, 

it is unclear whether transient exposure to inflammatory stimuli in susceptible individuals is 

sufficient to drive disease progression, or whether PAH progression can be prevented or even 

reversed following cessation of inflammation. In a preliminary attempt to address this question, 

I therefore assessed whether the TNFα-induced hyperpolarised state in BMPR2+/- iPSC-SMCs 

was reversible following TNFα removal.  

 

After one week of exposure to serum only or to serum plus TNFα (1 ng/ml), all cells were 

cultured for a further week in serum only (Figures 4.9 D and E). In isogenic wild-type cells, 

the trend towards hyperpolarisation after one week of exposure to serum plus TNFα was lost 

(Figure 4.10 E compared to Figure 4.10 D). By contrast, C2 W9X+/- iPSC-SMCs remained 

hyperpolarised (P < 0.001) compared to wild-type C2 iPSC-SMCs exposed to TNFα for one 

week (Figure 4.10 E). This suggests that transient exposure of iPSC-SMCs to inflammatory 

stimuli such as TNFα may be sufficient to drive the progression of disease in a BMPR2 mutation 

carrier. 
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Figure 4.10. Inner mitochondrial membrane polarisation in isogenic wild-type and BMPR2+/- 

iPSC-SMCs assayed under serum-free and serum-containing conditions. Inner mitochondrial 

membrane polarisation in isogenic wild-type and BMPR2+/- iPSC-SMCs differentiated in PTB was 

assessed by flow cytometric analysis of cells stained for 30 minutes with tetramethylrhodamine ethyl 

ester (TMRE, 30 nM). (A) Serum-free BMPR2+/- iPSC-SMCs displayed a significantly hypopolarised 

IMM compared to isogenic wild-type cells. (B) After one week of exposure to serum (10% FBS), 

isogenic BMPR2+/- iPSC-SMCs remained hypopolarised compared to C2 iPSC-SMCs. However, 
BMPR2+/- iPSC-SMCs became hyperpolarised compared to isogenic wild-type cells after two weeks of 

exposure to serum (C) or after one week of exposure to serum and TNFα (1 ng/ml) (D). (E) After one 

week of exposure to serum + TNFα, TNFα was removed and all cells cultured for one further week in 

serum only to see if the polarisation state would recover. The polarisation state of BMPR2+/- iPSC-SMCs 

did not normalise after TNFα removal and was significantly higher compared to the polarisation state 

of BMPR2+/- iPSC-SMCs that were exposed to serum only for 2 weeks and was also significantly higher 

than in isogenic wild-type cells treated the same way. Data presented as mean ± s.e.m. of the results 

from two independent differentiations (A) or three technical replicates based on cells from the same 

differentiation (B-E) [n.s., not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001, one-way 

ANOVA with Dunnett’s post hoc test (A-C) or two-way ANOVA with Sidak’s post hoc test (D and E)]. 
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4.2.2 – Isogenic BMPR2+/- iPSC-SMCs are less glycolytic than wild-type iPSC-SMCs 
under serum-free conditions 
 

As the reduced mitochondrial polarisation state of BMPR2+/- iPSC-SMCs compared to isogenic 

wild-type iPSC-SMCs assayed under serum-free conditions was such an unexpected result, I 

went on to assess phenotypes related to IMM polarisation to see if they were also affected in a 

way that is consistent with a hypopolarised IMM state.   

 

For example, in addition to having a hyperpolarised inner mitochondrial membrane state, PAH 

patient-derived PASMCs have previously been shown to be more glycolytic compared to wild-

type PASMCs (Paulin & Michelakis, 2014). I therefore investigated whether BMPR2+/- iPSC-

SMCs assayed under serum-free conditions are less glycolytic compared to isogenic wild-type 

iPSC-SMCs. To achieve this, glucose-stimulated rates of glycolysis in serum-free isogenic 

wild-type and BMPR2+/- iPSC-SMCs were assessed using a Seahorse extracellular flux analyser 

which measures extracellular acidification rates (ECAR) in cells (Figure 4.11).  

 

This assay revealed that C2 W9X+/- iPSC-SMCs were significantly (P < 0.05) less glycolytic 

compared to C2 iPSC-SMCs under serum-free conditions, with C2 ∆Exon1 iPSC-SMCs also 

displaying a non-significant trend (P > 0.05) towards reduced glycolysis relative to the isogenic 

wild-type (Figure 4.11 B). These results therefore appear to be consistent with the reduced 

IMM polarisation state observed in serum-free isogenic BMPR2+/- iPSC-SMCs. 
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Figure 4.11. Serum-free isogenic BMPR2+/- iPSC-SMCs are less glycolytic than wild-type iPSC-

SMCs. (A) Glucose-stimulated glycolytic rates in serum-free wild-type and isogenic BMPR2+/- iPSC-

SMCs differentiated in PTB were assessed using the Seahorse XF Glycolysis Stress Test assay. 

Glycolysis was assessed by measuring the extracellular acidification rate (ECAR) four times for 3 

minutes (with a 3-minute mixing step between each ECAR measurement) both before and after the 

injection of glucose (Port A, 10 mM final concentration) to stimulate glycolysis, oligomycin A (Port B, 

1 µM final concentration) to maximise the glycolytic rate, and 2-deoxy-D-glucose (2-DG) (Port C, 50 

mM final concentration) to inhibit glycolysis. (B) The glycolytic rate of serum-free wild-type and 

isogenic BMPR2+/- iPSC-SMCs was calculated from the ECAR measurements shown in (A) by 

subtracting the last ECAR measurement prior to the injection of glucose from the maximum ECAR 

measurement obtained prior to the injection of oligomycin A. C2 W9X+/-  iPSC-SMCs were significantly 

less glycolytic compared to C2 iPSC-SMCs, with C2 ∆Exon1 iPSC-SMCs also displaying a non-

significant trend towards reduced glycolysis. Data presented as mean ± s.e.m. of the results from n=4 

independent differentiations for C2 and C2 W9X+/- iPSC-SMCs and n=2 independent differentiations 

for C2 ∆Exon1 iPSC-SMCs [n.s., not significant (P > 0.05), * P < 0.05, one-way ANOVA with 

Dunnett’s post hoc test (B)]. 
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4.2.3 – Isogenic BMPR2+/- iPSC-SMCs display reduced mitochondrial superoxide 
staining under serum-free conditions 
 

In addition to being linked to increased glycolysis, increased IMM polarisation may under 

certain conditions drive an increase in reactive oxygen species (ROS) production and promote 

vascular remodeling (Pak et al., 2013; Paulin & Michelakis, 2014). I therefore performed a 

preliminary experiment to investigate whether the reduced IMM polarisation state in serum-

free isogenic BMPR2+/- iPSC-SMCs might be associated with reduced ROS production in these 

cells. ROS production in serum-free wild-type and isogenic BMPR2+/- iPSC-SMCs was 

assessed by staining these cells with the mitochondrial superoxide indicator MitoSOX Red (5 

µM) (Figure 4.12). Analysis of MitoSOX fluorescence intensities in these cells revealed that 

C2 W9X+/- iPSC-SMCs displayed less mitochondrial superoxide staining compared to C2 

iPSC-SMCs. This observation therefore appears to be consistent with both reduced glycolysis 

and reduced IMM polarisation in serum-free isogenic BMPR2+/- iPSC-SMCs compared to wild-

type iPSC-SMCs under serum-free conditions.  
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Figure 4.12. Serum-free isogenic BMPR2+/- iPSC-SMCs display reduced mitochondrial superoxide 

staining compared to wild-type iPSC-SMCs. Representative fluorescence microscope images of C2 

iPSC-SMCs (A) and C2 W9X+/- iPSC-SMCs (B) incubated for 30 minutes at 37 ºC in HBSS/Ca2+/Mg2+ 

buffer containing MitoSOX Red mitochondrial superoxide indicator (5 µM). (C) Immunofluorescence 

image of C2 iPSC-SMCs incubated in HBSS/Ca2+/Mg2+ buffer only. Scale bars are 250 µm. (D) 

MitoSOX fluorescence intensities in C2 and C2 W9X+/- iPSC-SMCs, assessed by measuring average 

image intensities using ImageJ software. Data in (D) presented as mean ± s.e.m. of the intensities of 

three randomly-selected images for each cell line. All cells analysed originated from the same 

differentiation and the experiment was not repeated, hence no statistical analysis was performed. 
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4.3 – Novel cellular abnormalities in BMPR2+/- iPSC-SMCs  
 

4.3.1 – BMPR2+/- iPSC-SMCs have an altered differentiation state that can be reversed 
by treatment with BMP4 

 

In disease, including PAH, vascular SMCs exhibit phenotypic switching between differentiated 

and de-differentiated states. In vitro, differentiated SMCs are characterised by an elongated 

rather than rounded morphology, low proliferation rate, relatively higher expression of proteins 

required for contraction, and increased contractility compared to de-differentiated SMCs 

(Owens et al., 1997; Mam et al., 2010; Christou et al., 2012; Sahoo et al., 2016). It is also 

recognised in a developmental context that cells have to exit the cell cycle to become terminally 

differentiated. Conversely, for cells to enter a proliferative phase, they first need to de-

differentiate (Owens & Wise, 1997; Owens et al., 2004). Given the increased level of 

proliferation observed in BMPR2+/- iPSC-SMCs, I therefore investigated whether BMPR2+/- 

iPSC-SMCs might have a more de-differentiated state compared to wild-type iPSC-SMCs.  

 

Smooth muscle myosin heavy chain (MYH11) is a major contractile protein which is 

considered to be the most robust SMC-specific marker and is highly expressed in mature, fully 

differentiated SMCs (Owens et al., 2004). I therefore performed immunostaining to assess 

MYH11 expression in C2 and C2 W9X+/- iPSC-SMCs and found that MYH11 expression was 

reduced in C2 W9X+/- iPSC-SMCs compared to their isogenic wild-type (Figure 4.13 A). In 

support of this observation, qPCR analysis of MYH11 mRNA expression revealed that MYH11 

was reduced in C2 W9X+/- iPSC-SMCs compared to C2 iPSC-SMCs (Figure 4.13 B). Taken 

together, these findings support the idea that BMPR2+/- iPSC-SMCs might be more de-

differentiated relative to wild-type iPSC-SMCs.  

 

Given that the only difference between wild-type and BMPR2+/- iPSC-SMCs in the system I 

am using is the presence of a deleterious mutation in the BMPR2 gene, the de-differentiated 

phenotype of C2 W9X+/- iPSC-SMCs might be due to the reduced BMPR2 expression in these 

cells. I therefore investigated whether treating C2 W9X+/- iPSC-SMCs with BMP4 might rescue 

the de-differentiated phenotype. Both immunostaining for MYH11 and qPCR analysis of 

MYH11 mRNA expression revealed that exposure to BMP4 (50 ng/ml) increased MYH11 

expression in C2 W9X+/- iPSC-SMCs to the level of MYH11 expression observed in C2 iPSC-

SMCs (Figures 4.13 A and B). Furthermore, BMP4 treatment increased BMPR2 mRNA 

expression in both C2 iPSC-SMCs and C2 W9X+/- iPSC-SMCs (Figure 4.13 C).  
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Taken together, these observations suggest that isogenic BMPR2+/- iPSC-SMCs have a de-

differentiated phenotype compared to wild-type iPSC-SMCs and that this phenotype can be 

reversed by increasing the concentration of BMP4. 

 

 
 

Figure 4.13. Isogenic BMPR2+/- iPSC-SMCs display reduced myosin heavy chain expression which 

can be reversed by treatment with BMP4. (A) Representative immunofluorescence images of C2 and 

C2 W9X+/- iPSC-SMCs cultured in the presence or absence of BMP4 (50 ng/ml) and immunostained 

for smooth muscle myosin heavy chain (MYH11, green). Nuclei were visualised using DAPI staining 

(blue). Scale bars are 10 µm. (B and C) qPCR analysis of MYH11 (B) and BMPR2 (C) mRNA 

expression in these cells showed that C2 W9X+/- iPSC-SMCs displayed reduced MYH11 expression 

relative to C2 iPSC-SMCs. Treatment with BMP4 (50 ng/ml) increased both BMPR2 and MYH11 

mRNA expression in both C2 and C2 W9X+/- iPSC-SMCs, restoring MYH11 expression in C2 W9X+/- 

iPSC-SMCs to the level observed in isogenic wild-type C2 iPSC-SMCs. Data in (B) and (C) presented 

as mean ± s.e.m. of two independent differentiations. 
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4.3.2 – BMPR2+/- iPSC-SMCs and PASMCs are less contractile in response to carbachol 
stimulation  

 

To functionally test the hypothesis that BMPR2+/- iPSC-SMCs are de-differentiated compared 

to wild-type iPSC-SMCs, I next went on to test the level of cell contractility in these cells. To 

achieve this, I stimulated wild-type and isogenic BMPR2+/- iPSC-SMCs with carbachol (300 

µM), took time-lapse images of these cells over a 15-minute period and assessed cell 

contraction by calculating percentage changes in the cell surface areas of 10-11 randomly 

sampled cells per cell line between t = 0 and t = 15 minutes (Figure 4.14 A). Consistent with 

the results of a previous study (Cheung et al., 2012), the average cell surface area of wild-type 

C2 iPSC-SMCs decreased by 15% in response to carbachol stimulation. However, the average 

decrease in cell surface area was significantly (P < 0.001) lower in C2 W9X+/- iPSC-SMCs 

relative to C2 iPSC-SMCs (Figure 4.14 B), suggesting that BMPR2+/- iPSC-SMCs are less 

contractile compared to their isogenic wild-type. Since this phenotype has not been previously 

reported in PAH patient-derived PASMCs, I also assessed carbachol-induced contractility in 

PASMCs from PAH patients with BMPR2 mutations and found that BMPR2+/- PASMCs were 

also significantly (P < 0.01) less contractile than wild-type PASMCs (Figures 4.14 C and D). 

Taken together, these data are consistent with the reduced MYH11 expression observed in 

isogenic BMPR2+/- iPSC-SMCs and further suggest that BMPR2 heterozygosity leads to 

BMPR2+/- iPSC-SMCs having a more de-differentiated phenotype compared to wild-type 

iPSC-SMCs. 
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Figure 4.14. BMPR2+/- iPSC-SMCs and PASMCs are less contractile. (A) Representative bright field 

images of a wild-type C2 iPSC-derived smooth muscle cell taken immediately prior to and after 15 

minutes of incubation in PBS supplemented with carbachol (300 µM) and bovine serum albumin (0.1 

% w/v). Carbachol-induced cell contraction was assessed by using ImageJ software to measure 

percentage changes in cell surface area between t = 0 and t = 15 minutes. (B-D) Quantitative analysis 

of carbachol-induced contractility of n=10-11 randomly sampled cells per cell line revealed that C2 

W9X+/- iPSC-SMCs were significantly less contractile than wild-type C2 iPSC-SMCs (B) and that 

BMPR2+/- PASMCs derived from PAH patients with BMPR2 mutations were significantly less 

contractile than wild-type PASMCs (C and D). A breakdown of the results for individual wild-type and 

BMPR2+/- PASMC lines is shown in (C), with mean contractile responses of the three wild-type and 

three BMPR2+/- PASMC lines presented in (D). Data presented as mean ± s.e.m. [** P < 0.01, *** P < 

0.001, unpaired two-tailed Student’s t test (B and D), or one-way ANOVA with Tukey’s post hoc test 

(C)].  
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4.4 – Discussion 
 

4.4.1 – Contributions of BMPR2 mutations and extrinsic factors to cellular phenotypes 
of pulmonary arterial hypertension 

 

The results presented in this chapter suggest that BMPR2 heterozygosity in iPSC-SMCs is 

necessary and sufficient to recapitulate the pro-proliferative and anti-apoptotic phenotype of 

PAH patient-derived PASMCs, but that additional exposure to serum and/or TNFα is required 

to recapitulate the mitochondrial hyperpolarisation phenotype of PAH-derived PASMCs. This 

highlights the utility of iPSC-SMCs with isogenic backgrounds for studying factors affecting 

disease penetrance and supports the hypothesis of this thesis that BMPR2 heterozygosity in 

iPSC-SMCs is necessary and sufficient to recapitulate some but not all PAH-associated cellular 

phenotypes. 

 

Furthermore, this chapter describes the establishment of the first iPSC-SMC model of PAH. 

Previous studies have focussed on using iPSC-derived mesenchymal stromal cells (iPSC-

MSCs) (West et al., 2014) or iPSC-ECs (West et al., 2014; Sa et al., 2017; Gu et al., 2017) to 

study PAH. However, the BMPR2+/- iPSC-MSCs and iPSC-ECs used in these studies were not 

found to be more proliferative compared to their wild-type counterparts, and comparisons were 

predominantly confined to a limited number of patient-derived cell lines which had different 

genetic backgrounds (West et al., 2014; Sa et al., 2017; Gu et al., 2017). The variability between 

different patient-derived cell lines often means that a large number of lines from different 

patients need to be evaluated in order to detect robust differences in the phenotypes being 

studied. This was evident in this thesis investigation, with only non-significant trends usually 

being observed between wild-type and BMPR2+/- patient-derived iPSC lines, in contrast to the 

reduced variability that was present between cells with isogenic backgrounds.    

 

However, it is important to note that whilst BMPR2 heterozygosity in iPSC-SMCs was 

sufficient for the acquisition of a pro-proliferative and anti-apoptotic phenotype, these 

phenotypes might not be present in human BMPR2 mutation carriers who do not have PAH. 

This discrepancy could be due to a lack of exposure of iPSC-SMCs to protective factors that 

might be provided by serum, endothelial cells or other cell types during differentiation 

(Budhiraja et al., 2004). Furthermore, endothelial cells secrete BMP4, pro-inflammatory 

cytokines and other paracrine signals which stimulate SMC proliferation and pulmonary 
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vascular remodelling in PAH (Frank et al., 2005; Eddahibi et al., 2006), and may therefore 

influence PAH-associated SMC phenotypes. 

 

In addition, the results presented in this chapter argue that the acquisition of a hyperpolarised 

inner mitochondrial membrane state in BMPR2+/- iPSC-SMCs in response to serum and/or 

TNFα exposure might represent a transition from a pre-diseased to a diseased state. This is 

consistent with the notion that inflammation is thought to be a potential ‘second hit’ that is 

required for PAH establishment and progression (Rabinovitch et al., 2014) and is further 

supported by the finding that C2 W9X+/- iPSC-SMCs assayed under serum-free conditions were 

less glycolytic and displayed reduced mitochondrial membrane polarisation compared to C2 

iPSC-SMCs.  

 

Furthermore, C2 W9X+/- iPSC-SMCs also displayed slightly lower mitochondrial superoxide 

staining compared to isogenic wild-type cells when assayed under serum-free conditions. 

Whilst several studies suggest that increased IMM polarisation drives an increase in ROS 

production and promotes vascular remodeling (Pak et al., 2013; Paulin & Michelakis, 2014), 

there have also been conflicting reports of reduced ROS production in PAH (Aggarwal et al., 

2013; Bonnet & Boucherat, 2018). This controversy is likely to be due to the existence of 

multiple cellular sources and types of ROS, their highly reactive nature and the different 

methods used to detect ROS production in cells (Bonnet & Boucherat, 2018). As a result, 

further work will be required to determine relative levels of ROS production between wild-type 

and BMPR2+/- iPSC-SMCs under serum-free and serum-containing conditions. Furthermore, 

future studies could focus on investigating the molecular mechanisms linking mitochondrial 

hyperpolarisation, ROS production, glycolysis and mitochondrial function in iPSC-SMCs. 

 

The findings presented in this chapter also suggest that increased proliferation, reduced 

apoptosis and increased IL-6 mRNA expression in BMPR2+/- LM-iPSC-SMCs were more 

pronounced when these cells were differentiated in the presence of a high concentration (50 

ng/ml) of exogenous BMP4 during the 12-day ‘PT’ SMC differentiation phase (herein referred 

to as PTB). This suggests that differentiation in PTB represents a refinement of the LM-iPSC-

SMC differentiation protocol in terms of its ability to generate cells that can be used as 

surrogates for distal PASMCs when studying PAH. Although the reason for this is unclear, the 

observation that BMP4 is highly expressed in the distal region of the lung bud during 

development (Bellusci et al., 1996) suggests that the addition of BMP4 during differentiation 

might promote the acquisition of a distal cell fate in LM-iPSC-SMCs. 
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4.4.2 – Comparisons with iPSC-derived endothelial cell models of PAH 

 

As well as generating lineage-specific iPSC-SMCs which recapitulated key PAH-associated 

cellular phenotypes observed in distal PASMCs, I also contributed to work carried out by Mr 

Christopher JZ Huang and Dr C-Hong Chang in our group which involved generating an iPSC-

derived endothelial cell (iPSC-EC) model of PAH (Kiskin et al., 2018). Using the same patient-

derived and isogenic iPSC lines described in this thesis, wild-type and BMPR2+/- iPSCs were 

differentiated into iPSC-ECs which formed vascular networks and displayed an enhanced 

expression of arterial EC markers (Kiskin et al., 2018). Using these iPSC-ECs, we then 

investigated whether BMPR2 heterozygosity in iPSC-ECs was necessary and/or sufficient to 

recapitulate key PAH-associated phenotypes observed in patient-derived PAECs (Kiskin et al., 

2018). Interestingly, unlike in iPSC-SMCs, we found that BMPR2 heterozygosity in iPSC-ECs 

required additional exposure to serum to manifest increased proliferation and apoptosis (Kiskin 

et al., 2018). Neither iPSC-SMCs or iPSC-ECs displayed hyperpolarised IMMs as they 

emerged from the serum-free iPSC differentiation protocols. However, in contrast to BMPR2+/- 

iPSC-SMCs which required two weeks of exposure to serum to become hyperpolarised, one 

week of exposure to serum was sufficient to induce IMM hyperpolarisation in BMPR2+/- iPSC-

ECs (Kiskin et al., 2018).  

 

Taken together, these findings demonstrate a clear difference in the contribution of BMPR2 

heterozygosity to establishing PAH-associated cellular phenotypes in SMCs and ECs, thus 

highlighting an important difference between these cell types. This suggests that tailored, cell 

type-specific approaches might be required when developing therapies aimed at reversing or 

preventing pulmonary vascular dysfunction in ECs and SMCs. In iPSC-ECs, potential 

therapeutic interventions might include BMP9 treatment which reverses PH in rodent models 

(Long et al., 2015) and prevented IMM hyperpolarisation in BMPR2+/- iPSC-ECs (Kiskin et al., 

2018). In addition, these findings further support the view that therapies aimed at restoring 

BMPR2 signalling could be beneficial in the treatment of PAH. However, whether BMP ligands 

also reduce IMM polarisation in BMPR2+/- iPSC-SMCs is yet to be determined.  
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Previously, iPSC-ECs derived from PAH patients with BMPR2 mutations did not recapitulate 

the hyperpolarised inner mitochondrial membrane state associated with end-stage PAH (Gu et 

al., 2017). This may have been due to the lack of exposure to an environmental stimulus such 

as TNFα or due to the mixed genetic background of the patient-derived iPSC lines used. 

Supporting the importance of environmental stimuli as modifiers of disease penetrance is the 

observation of discordance for disease in monozygotic twins with BMPR2 mutations (Ormiston 

et al., 2013). 

 

In addition to environmental factors, disease penetrance may also be affected by genetic 

modifiers. For example, the lack of response of some PAH-derived PAEC and iPSC-EC lines 

to the immunosuppressant FK506 and the neutrophil elastase inhibitor, elafin, was attributed to 

increased expression of split guidance ligand 3 (SLIT3) (Sa et al., 2017). In a separate study 

from the same group (Gu et al., 2017), baculoviral IAP repeat containing 3 (BIRC3) was 

identified as being responsible for the preserved cell survival in iPSC-ECs derived from 

unaffected BMPR2 mutation carriers and may hence be a protective genetic modifier in PAH. 

However, the precise roles that putative genetic modifiers such as SLIT3 and BIRC3 play in the 

pathogenesis of PAH are yet to be determined. 

 

4.4.3 – BMPR2+/- iPSC-SMCs have an altered differentiation state 

 

Another interesting new finding presented in this chapter is that BMPR2+/- LM-iPSC-SMCs 

displayed reduced smooth muscle myosin heavy chain (MYH11) expression and carbachol-

induced cell contractility compared to wild-type iPSC-SMCs. This dedifferentiated phenotype 

is consistent with the pro-proliferative, ‘synthetic’ phenotype that vascular smooth muscle cells 

acquire due to phenotypic switching in response to vascular injury (Stiemer et al., 1993; Kane 

et al., 2011; Chelladurai et al., 2012).  BMP4 treatment of BMPR2+/- iPSC-SMCs restored 

smooth muscle myosin heavy chain expression in these cells to levels observed in wild-type 

iPSC-SMCs, and also increased BMPR2 mRNA expression.  

 

It remains unclear whether BMP4 treatment improves the SMC differentiation process, acts by 

reducing dedifferentiation, or whether BMP4 mediates both of these effects. Nevertheless, the 

observations described in this chapter suggest that isogenic BMPR2+/- iPSC-SMCs have an 

altered differentiation state compared to wild-type iPSC-SMCs and that this phenotype can be 

reversed by increasing the concentration of BMP4. In support of these findings, previous work 

has shown that BMP4 maintains the expression of smooth muscle actin in cultured PASMCs 
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and reduces the PDGF-BB-induced dedifferentiation of arterial SMCs (Lagna et al., 2007). 

BMP4 treatment has also been shown to promote a contractile phenotype in VSMCs by 

reducing the expression of small non-coding microRNAs such as miR-96 (Kim et al., 2014). It 

would therefore be interesting to test whether BMP4 treatment improves carbachol-induced 

contractility of BMPR2+/- iPSC-SMCs and PASMCs. Alternatively, future studies could also 

explore the effect of other BMP ligands on MYH11 expression in iPSC-SMCs.      

 

A further question is whether the introduction of the BMPR2 mutation impairs iPSC-SMC 

differentiation or promotes the dedifferentiation of mature, contractile iPSC-SMCs. It cannot 

be ruled out that iPSC-SMCs generated in this study might consist of cells with a mixture of 

differentiation states, since a subset of cells may have disproportionately contributed to the 

altered differentiation state of BMPR2+/- iPSC-SMCs. However, a similar state might be present 

in vivo, where both mature, fully differentiated SMCs as well as less terminally differentiated 

‘non-muscle-like’ cells have been reported to exist in close proximity within the arterial media 

(Frid et al., 1997).  
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5.1 – Differential RNA-Seq gene expression analysis of wild-type and 
BMPR2+/- iPSC-SMCs  
 

Having demonstrated that the iPSC-SMC model could recapitulate known PASMC cellular 

phenotypes relevant to PAH, my next aim was to identify genes that are differentially expressed 

between wild-type and BMPR2+/- iPSC-SMCs and thus provide further insights into PAH 

pathobiology. I therefore isolated and purified RNA from wild-type and both genome-edited 

and patient-derived BMPR2+/-  iPSC-SMCs and submitted these samples for RNA sequencing.  

RNA-Seq libraries were generated by Dr Mattia Frontini and Dr Frances Burden, with the 

resulting libraries being quantified, pooled and sequenced using paired-end sequencing. 

Subsequently, I enlisted the help of Dr Marta Bleda and Dr Matthias Haimel who processed 

and analysed the raw RNA-Seq data. A summary of the RNA-Seq workflow is presented in 

Figure 5.1. 
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Figure 5.1. RNA-Seq workflow. After extracting and purifying RNA from wild-type and BMPR2+/- 

iPSC-SMCs, ribosomal RNA (rRNA)-depleted cDNA libraries were generated using a TruSeq Stranded 

Total RNA Library Prep Kit (Illumina). Libraries were quantified, pooled and sequenced using paired-

end 76 bp sequencing on a HiSeq 2000 Sequencing System (Illumina). Raw RNA-Seq data was 

generated in FASTQ format and subjected to quality control using FastQC software before trimming 

PCR and sequencing adapters using Trim Galore. Trimmed reads were then aligned to the human 

transcriptome with Bowtie. MMSEQ was used with default parameters to calculate fragment counts and 

DESeq2 was applied with regularised log transformation to quantify gene expression.  
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Transcriptional differences between BMPR2+/- and wild-type iPSC-SMCs were analysed under 

serum-free PTB conditions because both apoptosis resistance and increased proliferation were 

caused by BMPR2 heterozygosity alone and were enhanced after differentiation in PTB 

compared to PT. This analysis revealed that genes encoding somatostatin (SST), dual oxidase 2 

(DUOX2) and mitochondrial uncoupling protein 2 (UCP2) were significantly (Padj < 0.05) 

down-regulated in patient-derived (B3, B4 and B11) and genome-edited (C2 W9X+/- and C2 

ΔExon1) BMPR2+/- iPSC-SMCs compared to wild-type (C2, C6 and C10) iPSC-SMCs. By 

contrast, cytokine receptor-like factor 1 (CRLF1) was significantly (Padj < 0.05) upregulated in 

BMPR2+/- iPSC-SMCs compared to controls (Figure 5.2).  
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Figure 5.2. Differential RNA-Seq gene expression analysis of wild-type and BMPR2+/- iPSC-SMCs 

reveals alterations in genes potentially involved in PAH. Volcano plot (A) and hierarchical clustering 

based on Pearson correlation (B) of differentially expressed genes comparing BMPR2+/-  iPSC-SMC 

lines (B3, B4.11, B11, C2 DExon1, C2 W9X+/-) with wild-type controls (C2, C6, C10) after serum-free 

differentiation in PTB. The heatmap in (B) shows the differentially expressed genes in rows and the 

iPSC-SMC samples in the columns. Samples are annotated according to their genotype at the top of the 

heatmap. Genes with a false discovery rate (FDR) adjusted P value < 0.05 were considered differentially 

expressed. Based on this analysis, somatostatin (SST; Padj = 0.00780), dual oxidase 2 (DUOX2; Padj = 

0.00780), and mitochondrial uncoupling protein 2 (UCP2; Padj = 0.0174) were significantly 

downregulated in BMPR2+/- relative to wild-type iPSC-SMCs, whereas cytokine receptor-like factor 1 

(CRLF1; Padj = 0.0329) was significantly upregulated.  

 

 

 

 

To validate these results, I used quantitative PCR to analyse SST, DUOX2, UCP2 and CRLF1 

mRNA expression in serum-free C2 and C2 W9X+/- iPSC-SMCs differentiated in PTB, which 

confirmed the differential expression of these genes between mutants and controls (Figure 5.3). 

However, after culturing PTB-differentiated iPSC-SMCs for one week in 10% FBS, CRLF1 

mRNA expression became significantly reduced rather than increased in C2 W9X+/- iPSC-

SMCs relative to wild-type C2 iPSC-SMCs, whilst SST, DUOX2 and UCP2 expression 

remained reduced (Figures 5.4 A-D).  

 

To determine whether these findings can be validated in a mouse model of PAH, I collaborated 

with Dr Xudong Yang and Dr Lu Long who isolated lung tissue from knock-in mice which 

harbour a heterozygous R899X mutation in exon 12 of the endogenous Bmpr2 locus 

(Bmpr2+/R899X) and develop increased RVSPs by 6 months of age (Long et al., 2015). qPCR 

analysis revealed that Sst, Duox2, Ucp2 and Crlf1 mRNA expression was reduced in the lungs 

of Bmpr2+/R899X mice compared with wild-type littermates (n=3 per group), although the 

difference in Ucp2 expression between wild-type and Bmpr2+/R899X mouse lungs was not 

statistically significant (P > 0.05) (Figures 5.4 E-H). These findings are consistent with the 

reduced expression of these genes in C2 W9X+/- relative to wild-type C2 iPSC-SMCs after one 

week of serum exposure and suggest that exposure to serum may affect the relative expression 

levels of some genes between wild-type and BMPR2+/- iPSC-SMCs. 
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Figure 5.3. qPCR validation of genes that were differentially expressed between serum-free wild-

type and BMPR2+/- iPSC-SMCs. qPCR analysis confirmed the reduced SST (A), DUOX2 (B) and 

UCP2 (C) mRNA expression, and increased CRLF1 (D) mRNA expression observed in C2 W9X+/- 

relative to isogenic wild-type C2 iPSC-SMCs assayed under serum-free PTB conditions. Data in A and 

B presented as mean ± s.e.m. of the results from two independent qPCR analyses (technical replicates) 

performed on cells from the same differentiation (** P < 0.01, *** P < 0.001, one-way ANOVA with 

Dunnett’s post hoc test). qPCR analysis of UCP2 and CRLF1 mRNA expression (C and D) was only 

performed once.  
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Figure 5.4. qPCR analysis of SST, DUOX2, UCP2 and CRLF1 mRNA expression levels in serum-

matured isogenic iPSC-SMCs and in Bmpr2+/R899X mouse lung tissue. (A-D): Somatostatin (SST) 

(A), dual oxidase 2 (DUOX2) (B), mitochondrial uncoupling protein 2 (UCP2) (C), and cytokine 

receptor like factor 1 (CRLF1) (D) mRNA expression was significantly reduced in C2 W9X+/- relative 

to wild-type C2 iPSC-SMCs cultured for one week in 10% FBS post-differentiation. Furthermore, 

exposure to serum + TNFα (1 ng/ml) for one week significantly decreased SST mRNA expression in C2 

iPSC-SMCs (A). (E-H): Reduced SST (E), DUOX2 (F) and CRLF1 (H) mRNA expression in C2 W9X+/- 

iPSC-SMCs after one week of exposure to serum was further confirmed by qPCR in lung tissue samples 

from wild-type and heterozygous Bmpr2 R899X knock-in (Bmpr2+/R899X) mice (n=3 per group). Ucp2 

expression was also slightly lower in Bmpr2+/R899X mouse lungs compared to wild-type littermates (G), 

but this difference was not statistically significant (P > 0.05, n=3 per group). Data in A-D presented as 

mean ± s.e.m. of the results from three independent qPCR analyses (technical replicates) performed on 

cells from the same differentiation [n.s., not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 

0.001, unpaired two-tailed Student’s t test, or two-way ANOVA with Sidak’s post hoc test].  
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5.2 – Investigating the effect of somatostatin on iPSC-SMC proliferation  
 

Among the genes that were differentially expressed between wild-type and BMPR2+/- iPSC-

SMCs under serum-free PTB conditions, somatostatin displayed the most significantly reduced 

expression in mutants relative to controls (Padj = 0.0078). Furthermore, since TNFα has 

previously been shown to reduce somatostatin expression in human coronary endothelial cells 

(Yan et al., 2004), I investigated whether TNFα might also reduce SST expression in iPSC-

SMCs. Indeed, I observed that exposure to TNFα (1 ng/ml) for one week significantly (P < 

0.001) decreased SST mRNA expression in C2 iPSC-SMCs, and also reduced SST expression 

in C2 W9X+/- iPSC-SMCs (Figure 5.4 A), suggesting that inflammatory stimuli may reduce 

somatostatin expression.  

 

Somatostatin is a cyclopeptide that broadly inhibits a number of hormones such as growth 

hormone, insulin and glucagon (Brazeau et al., 1973; Reichlin, 1983). In addition, somatostatin 

and its analogues have also been shown to inhibit smooth muscle cell proliferation (Leszczynski 

et al., 1993; Lauder et al., 1997; Zhao & Foegh, 1997), reduce medial pulmonary artery wall 

thickness in MCT rats (Takahashi et al., 1995) and ameliorate chronic hypoxia-induced 

pulmonary hypertension (Tjen et al., 1992), although the latter finding has been disputed 

(Sidney et al., 1996). Taken together, these observations raise the question of whether the 

reduced somatostatin expression observed in BMPR2+/- iPSC-SMCs might contribute to the 

pro-proliferative phenotype of these cells and thus play a role in the pathogenesis of PAH. 

 

I therefore set out to determine whether somatostatin inhibits the proliferation of iPSC-SMCs 

and PASMCs by culturing isogenic C2 and C2 W9X+/- iPSC-SMCs and PAH patient-derived 

BMPR2+/- PASMCs for 7 days in the presence or absence of somatostatin-14 (1 µM), a 

bioactive form of somatostatin which binds with high affinity to all five somatostatin receptor 

subtypes (SSTR1-5) identified to date (Bruns et al., 1994). Cell counts after 7 days in culture 

revealed that somatostatin-14 had no significant effect (P > 0.05) on the proliferation of C2 

W9X+/- iPSC-SMCs (Figure 5.5 A). Similarly, somatostatin-14 also did not affect the 

proliferation of BMPR2+/- PASMCs (Figure 5.5 B).  
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Figure 5.5. Somatostatin-14 does not significantly affect the proliferation of isogenic iPSC-SMCs 

and BMPR2+/- PASMCs. The effect of somatostatin on the proliferation of isogenic iPSC-SMCs (A) 

and BMPR2+/- PASMCs (B) was assessed by culturing the cells for seven days in CDM-PVA + 5% FBS 

(A) or DMEM + 5% FBS (B) in the presence or absence of somatostatin-14 (SST-14) (1 µM) and 

performing manual cell counts using disposable Haemocytometer counting grids. Data presented as 

mean ± s.e.m. of the results from 2-3 independent differentiations (A) or three different PAH patient-

derived BMPR2+/- PASMC lines (B) and expressed as fold changes in cell number after seven days in 

culture. Statistical analysis was performed using two-way ANOVA with Sidak’s post-hoc test (A) or 

unpaired two-tailed Student’s t test (B). None of the differences in proliferation between treatment 

groups were deemed statistically significant (P > 0.05). 
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While somatostatin-14 may have failed to significantly decrease iPSC-SMC and PASMC 

proliferation due to the large variation in the experimental results and the low number of 

replicates, I wondered whether this lack of an anti-proliferative effect might also partly be due 

to low levels of somatostatin receptor expression in these cells. I therefore performed 

quantitative PCR analysis of SSTR1-5 mRNA expression in isogenic iPSC-SMCs and wild-

type and BMPR2+/- PASMCs, which revealed that the expression of SSTR1, SSTR2, SSTR3 and 

SSTR4 was significantly (P < 0.01) lower in C2 W9X+/- iPSC-SMCs compared to C2 iPSC-

SMCs (Figures 5.6 A-D). Furthermore, C2 W9X+/- iPSC-SMCs displayed a non-significant 

trend (P > 0.05) towards reduced SSTR5 expression (Figure 5.6 E) and BMPR2+/- PASMCs 

also displayed a non-significant trend (P > 0.05) towards reduced SSTR1, SSTR3, SSTR4 and 

SSTR5 expression compared to wild-type PASMCs (Figures 5.6 F and H-J). Taken together, 

these findings raise the possibility that somatostatin-14 may have failed to significantly reduce 

the proliferation of BMPR2+/- iPSC-SMCs and PASMCs due to reduced levels of somatostatin 

receptor expression in these cells. 
 

Possible alternative reasons why somatostatin-14 did not display an anti-proliferative effect 

may be due to its short biological half-life (<3 min) (Patel & Wheatley, 1983) or because it 

might be necessary to target specific somatostatin receptor subtypes to reduce proliferation in 

iPSC-SMCs and PASMCs. I therefore also investigated whether the more stable somatostatin 

analogues octreotide and lanreotide, which preferentially bind to SSTR2 and are clinically 

approved for the treatment of neuroendocrine tumours (Bauer et al., 1982; Caron et al., 1997; 

Murphy et al., 1987; Weckbecker et al., 2003), might be more effective at reducing the 

proliferation of BMPR2+/- iPSC-SMCs and PASMCs. In addition, I also tested whether the 

proliferation of these cells can be reduced by treatment with CH-275, a somatostatin analogue 

that binds with high affinity to SSTR1 (Rivier et al., 2001). However, neither octreotide (100 

nM – 1 µM), lanreotide (1 µM) or CH-275 (100 nM – 1 µM) significantly reduced the 

proliferation of BMPR2+/- iPSC-SMCs or PASMCs (Figure 5.7). Taken together, these 

findings suggest that somatostatin and its analogues do not affect the proliferation of iPSC-

SMCs and PASMCs. Whether somatostatin might have potential other roles in the cellular 

pathogenesis of PAH is yet to be determined. 
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Figure 5.6. Somatostatin receptor mRNA expression levels in iPSC-SMCs and PASMCs. qPCR 

analysis of somatostatin receptor (SSTR1-SSTR5) mRNA expression in isogenic iPSC-SMCs cultured 

for one week in serum after differentiation in PTB (A-E), and in wild-type and BMPR2+/- PASMCs (F-

J). Data presented as mean ± s.e.m. of two independent qPCR analyses performed on the cells from the 

same differentiation (A-E), or three different BMPR2+/- PASMC lines (F-J). [n.s., not significant (P > 

0.05), ** P < 0.01, *** P < 0.001, unpaired two-tailed Student’s t test].  

 

 

 

 

 

 

 
 

Figure 5.7. The somatostatin analogues lanreotide, octreotide and CH-275 have no significant 

effect on the proliferation of isogenic iPSC-SMCs and BMPR2+/- PASMCs. Isogenic iPSC-SMCs 

(A) and BMPR2+ - PASMCs (B) were cultured for seven days in CDM-PVA + 5% FBS (A) or DMEM 

+ 5% FBS (B) in the presence or absence of lanreotide (1 µM) (A), octreotide (100 nM – 1 µM) (B) or 

CH-275 (100 nM – 1 µM) (A and B). Proliferation was assessed by performing manual cell counts seven 

days after plating the cells. Data presented as mean ± s.e.m. of the results from 2-3 independent 

differentiations (A) or three different BMPR2+/-  PASMC lines (B). Statistical analysis was performed 

using two-way ANOVA with Sidak’s post-hoc test (A) or one-way ANOVA with Dunnett’s post hoc 

test (B). None of the differences in proliferation between treatment groups were deemed statistically 

significant (P > 0.05).  
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5.3 – Discussion 
 

The results presented in this chapter describe the identification of genes that were differentially 

expressed between serum-free wild-type and BMPR2+/-  iPSC-SMCs and may hence provide 

further insights into PAH pathobiology. Genes encoding somatostatin (SST), dual oxidase 2 

(DUOX2) and mitochondrial uncoupling protein 2 (UCP2) were significantly down-regulated 

in BMPR2+/- iPSC-SMCs compared to wild-type iPSC-SMCs under both serum-free conditions 

and after one week of exposure to serum. By contrast, whilst cytokine receptor-like factor 1 

(CRLF1) expression was significantly upregulated in serum-free BMPR2+/- iPSC-SMCs 

compared to controls, CRLF1 mRNA expression became significantly reduced in C2 W9X+/- 

iPSC-SMCs relative to the isogenic wild-type after one week of exposure to serum. Consistent 

with this, reduced CRLF1 expression was also detected in the lungs of Bmpr2+/R899X mice 

compared with wild-type littermates.  

 

Whilst several studies suggest that reduced UCP2 and SST expression might be associated with 

PAH (Tjen et al., 1992; Takahashi et al., 1995; Dromparis et al., 2013; Pak et al. 2013; 

Michelakis et al., 2017), DUOX2 and CRLF1 have not previously been studied in the context 

of PAH. The following sections describe some of the known biological functions of SST, UCP2, 

DUOX2 and CRFL1 and discuss the possible roles that these genes may play in the pathogenesis 

of PAH.  
 

5.3.1. – Somatostatin (SST) 

 

Although somatostatin has previously been reported to inhibit smooth muscle cell proliferation 

(Leszczynski et al., 1993; Lauder et al., 1997; Zhao & Foegh, 1997), somatostatin-14 and the 

somatostatin analogues octreotide, lanreotide and CH-275 did not have any significant effect 

on the proliferation of BMPR2+/- iPSC-SMCs or PASMCs. The lack of a significant effect 

observed in this study may be due to the large variability in the data and the low number of 

experimental replicates (n=2-3) associated with the somatostatin proliferation assays. In some 

of the individual experiments, C2 W9X+/- iPSC-SMCs were not more proliferative compared 

to wild-type C2 iPSC-SMCs under basal conditions (see Figure 5.5 A and Figure 5.7 A), 

suggesting potential issues with cell viability or the iPSC-SMC differentiation process in those 

particular cases. Therefore, these experiments would need to be repeated to increase the number 

of replicates and clarify whether somatostatin and its analogues affect the proliferation of iPSC-

SMCs and PASMCs.      
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Alternatively, it can not be ruled out that somatostatin might play a different yet unknown role 

in the cellular pathogenesis of PAH which might involve other cell types. For example, 

somatostatin and its analogues have been shown to reduce the production of pro-inflammatory 

cytokines in rats (Karalis et al., 2004) and in activated human monocytes (Peluso et al., 1996). 

Furthermore, somatostatin receptor subtype 2 (SSTR2) expression has been linked to apoptosis 

induction in mouse embryonic fibroblasts (Guillermet-Guibert et al., 2007). These observations 

raise the question of whether somatostatin reduces inflammation and promotes apoptosis in 

patient-derived PASMCs.  

 

In addition, somatostatin also inhibits growth hormone, insulin, glucagon and thyroid hormone 

secretion (Brazeau et al., 1973; Burgus et al., 1973; Ahren et al., 1978). The reduced 

somatostatin expression observed in BMPR2+/- iPSC-SMCs might therefore contribute to 

insulin resistance and thyroid dysfunction in these cells. Since both insulin resistance and 

thyroid dysfunction been associated with pulmonary arterial hypertension (Chu et al., 2002; 

Zamanian et al., 2009; Scicchitano et al., 2016), it would therefore be interesting to investigate 

whether somatostatin affects inflammation, apoptosis, insulin signalling and thyroid function 

in PAH.  

 

5.3.2. – Mitochondrial uncoupling protein 2 (UCP2) 

 
UCP2 and other UCPs cause mild mitochondrial uncoupling by dissipating the electrochemical 

proton gradient across the inner mitochondrial membrane, which is generally thought to result 

in decreased production of mitochondrial reactive oxygen species (ROS), thus protecting 

against ROS-related cellular damage (Brand & Esteves, 2005). Consistent with this notion, 

increased mitochondrial ROS production has been reported in Ucp3 knockout mice (Vidal-Puig 

et al., 2000; Brand et al., 2002). By contrast, Ucp2 knockout mouse PASMCs display reduced 

ROS production, mitochondrial hyperpolarisation, normoxic HIF-1a activation, increased 

proliferation and resistance to apoptosis (Dromparis et al., 2013; Pak et al. 2013). In line with 

these findings, BMPR2+/- iPSC-SMCs displayed mitochondrial hyperpolarisation and reduced 

UCP2 expression after exposure to serum and/or TNFα, and ROS production was reduced in 

serum-free BMPR2+/- iPSC-SMCs compared to controls. However, in contrast to IMM 

hyperpolarisation observed in PASMCs from PAH patients and Ucp2-/- mice (Pak et al., 2013; 

Paulin & Michelakis, 2014), BMPR2+/- iPSC-SMCs assayed under serum-free conditions 

displayed reduced IMM polarisation relative to controls. Although the reason for this 
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discrepancy is not known, it is tempting to speculate that reduced UCP2 expression might 

precede the acquisition of a hyperpolarised IMM state in BMPR2+/- iPSC-SMCs.  

 

Recently, further evidence supporting the role of UCP2 in the pathogenesis PAH was provided 

by a phase I clinical trial in which IPAH patients were treated with the pyruvate dehydrogenase 

kinase inhibitor, dichloroacetate (DCA) (Michelakis et al., 2017). In most patients, DCA 

improved functional capacity and reduced both mean pulmonary arterial pressures and 

pulmonary vascular resistance. However, IPAH patients harbouring variants in UCP2 and the 

mitochondrial deacetylase sirtuin-3 (SIRT3) which predicted reduced protein function did not 

respond to DCA treatment (Michelakis et al., 2017), suggesting that UCP2 and SIRT3 might 

act as genetic modifiers in PAH.  

 

DCA has previously been shown to reverse the hyperglycolytic phenotype of PASMCs, 

stimulate mitochondria-dependent PASMC apoptosis, improve RV function and reverse PH in 

rat models (Michelakis et al., 2002; McMurtry et al., 2004, Zhao et al., 2013). Furthermore, 

SIRT3 is thought to reduce mitochondrial membrane potential, inhibit ROS production and thus 

limit oxidative stress (Shi et al., 2005). Sirt3 knockout (Sirt3-/-) mice spontaneously develop 

PH, with Sirt3-/- mouse PASMCs displaying increased glycolysis compared to PASMCs 

isolated from wild-type littermates (Paulin et al., 2014). Given the reduced UCP2 expression 

and IMM hyperpolarisation observed in serum-treated BMPR2+/- iPSC-SMCs, it would 

therefore be interesting to investigate SIRT3 expression and the effect of DCA on glycolysis, 

mitochondrial polarisation and apoptosis in these cells. 

 

Furthermore, reduced UCP2 mRNA expression has been detected in adipose tissue of patients 

with hypothyroidism (Gjedde et al., 2010), suggesting that changes in UCP2 expression might 

partially explain why PAH patients sometimes present with thyroid disorders (Scicchitano et 

al., 2016).  The thyroid hormone triiodothyronine (T3) has been reported to increase UCP2 and 

UCP3 expression in the heart and skeletal muscle of rats (Gong et al., 1997; Lanni et al., 1997; 

Lanni et al., 1999), and also stimulates UCP2 and UCP3 mRNA expression in human adipose 

tissue and skeletal muscle (Barbe et al., 2001). T3 also reduced IMM polarisation, increased 

mitochondrial superoxide dismutase [SOD2, also known as manganese superoxide dismutase 

(MnSOD)] expression and improved mitochondrial Complex V activity in human fibroblasts 

with mitochondrial DNA mutations (Menzies et al., 2009). However, T3 did not affect UCP2 

expression in these cells. Whether thyroid hormone affects UCP2 expression in iPSC-SMCs or 

PASMCs is yet to be determined.  
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5.3.3. – Dual oxidase 2 (DUOX2) 
 

DUOX2 belongs to the large family of NADPH-oxidase enzymes which regulate the synthesis 

of H2O2 and reactive oxygen species and play important roles in modulating immune responses, 

hormone synthesis, cell growth and differentiation (Lambeth, 2004; Sirokmany et al., 2016). 

Among the seven isoforms of NADPH oxidase (NOX), NOX1, NOX2 and NOX4 have been 

implicated in the development of PAH (Mittal et al., 2007; Nisbet et al., 2009; Veit et al., 2013; 

Goncharov et al., 2014; Liu et al., 2014). For example, Nox4 expression has been detected in 

human airways and in PASMCs (Djordjevic et al., 2005) and is upregulated in PASMCs in 

response to hypoxia (Diebold et al., 2010). Increased Nox4 expression has also been detected 

in the lungs of patients with idiopathic pulmonary arterial hypertension (Mittal et al., 2007; 

Goncharov et al., 2014). Furthermore, siRNA-mediated inhibition of Nox4 significantly 

reduced the proliferation of PH-derived PASMCs (Mittal et al., 2007) and decreased the 

expression of smooth muscle cell differentiation markers in rat VSMCs (Clempus et al., 2007).  

 

In contrast to the other NADPH oxidase isoforms, relatively little is known about the functional 

role of DUOX2 (Konior et al., 2014). DUOX2 is required for thyroid hormone biosynthesis 

(Dupuy et al., 1999; De Deken et al., 2000), with DUOX2 mutations being associated with 

congenital hypothyroidism and reduced ROS production (Kizys et al., 2017). Decreased ROS 

levels have been linked to mitochondrial hyperpolarisation and apoptosis resistance in PH 

PASMCs (Sutendra et al., 2011), whilst autoimmune thyroid disorders have also been detected 

in PAH patients (Scicchitano et al., 2016). Interestingly, Nox4 is also expressed in human 

thyrocytes and is thought to be upregulated in human thyroid tumours (Weyemi et al., 2010), 

thus suggesting that aberrant Nox4 expression might promote thyroid dysfunction in PAH.  

Furthermore, Duox2 dysfunction has been reported in inflammatory bowel disease (Hayes et 

al., 2015), suggesting that reduced DUOX2 expression may promote inflammation. Taken 

together, these findings suggest that the reduced DUOX2 expression observed in BMPR2+/- 

iPSC-SMCs in this thesis study may play an important but yet unknown role in the pathogenesis 

of PAH.  
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5.3.4 – Cytokine receptor-like factor 1 (CRLF1) 

 

The CRLF1 gene product cytokine-like factor 1 (CLF1) was originally identified as a protein 

that is secreted in a complex with the IL-6 family member cardiotrophin-like cytokine (CLC) 

(Elson et al., 2000), suggesting that CRLF1 plays a role in inflammatory signalling. CRLF1 has 

also been linked to resistance to oxidative stress (Looyenga et al., 2013), making it tempting to 

speculate that the reduction in CRLF1 expression in BMPR2+/- iPSC-SMCs following exposure 

to serum might correlate with the loss of resistance to oxidative stress in these cells. However, 

further work will be required to determine whether this is indeed the case. 

    

Apart from the potential role of CRLF1 in resistance to oxidative stress (Looyenga et al., 2013), 

increased CRLF1 expression has been detected in a mouse model of idiopathic pulmonary 

fibrosis, where it promoted the accumulation of CD4+ T lymphocytes and reduced pulmonary 

fibrosis (Kass et al., 2012). Increased CLF1 gene expression has also been detected in patients 

with osteoarthritis (Tsuritani et al., 2010) and in a mouse model of cardiac fibrosis (Kim et al., 

2016) where it might also play protective roles. For example, increased CLF1 levels have been 

shown to reduce IL-6 expression in a mouse model of arthritis (Nishimoto, 2006; Chao et al., 

2011). However, it is possible that increased CRLF1 expression might also have detrimental 

effects. For example, increased CRLF1 expression has recently been detected in papillary 

thyroid carcinoma (PTC), where it was associated with poor survival (Yu et al., 2018). 

However, the biological role of CRLF1 in PASMCs is yet to be elucidated.  

 

5.3.5 – Thyroid disorders and PAH  

 

Thyroid disorders involving both increased and decreased thyroid function have been detected 

in PAH patients, but the relationship between thyroid function and PAH pathogenesis is poorly 

understood (Chu et al., 2002; Satoh et al., 2010; Scicchitano et al., 2016). The roles of SST, 

UCP2, DUOX2 and CRLF1 in thyroid function described above, together with their differential 

expression between wild-type and BMPR2+/- iPSC-SMCs, therefore raise the intriguing 

question of whether BMPR2 mutations might promote thyroid dysfunction in PAH. Further 

work will be required to investigate whether this is indeed the case. 
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6.1 – Summary of findings 
 

Reduced BMPR2 signalling is a central finding in PAH, both in patient samples and in 

preclinical models of the disease (Atkinson et al., 2002). However, given the reduced 

penetrance of BMPR2 mutations in affected families (Newman et al., 2001), a major 

outstanding question is the identities of additional factors or pathways that are responsible for 

the manifestation of clinical disease. The use of vascular cell types derived from iPSCs provides 

a system to identify such factors. Patient-specific iPSC-ECs have previously been shown to 

recapitulate some PAH-associated cellular phenotypes observed in patient-derived PAECs (Gu 

et al., 2017; Sa et al., 2017). However, other PAH-associated phenotypes, such as inner 

mitochondrial membrane hyperpolarisation, could not be recapitulated. Furthermore, no iPSC-

SMC model of PAH has previously been described. This thesis study addresses these issues. 

 

This investigation describes the first iPSC-SMC model of PAH associated with BMPR2 

mutations and supports the hypothesis that the introduction of a single BMPR2 mutation is 

necessary and sufficient to establish some but not all PAH-associated cellular phenotypes in 

iPSC-SMCs. By generating wild-type and BMPR2+/- iPSC-SMC lines with isogenic 

backgrounds that could be used as surrogates for distal PASMCs, it was possible to show that 

the introduction of a single BMPR2 mutation in iPSC-SMCs was necessary and sufficient to 

recapitulate the pro-proliferative and anti-apoptotic phenotype of PAH patient-derived 

PASMCs. However, additional exposure to serum and/or TNFα was required to recapitulate 

the mitochondrial hyperpolarisation phenotype of PAH-derived PASMCs, thus suggesting a 

potential mechanism through which inflammatory stimuli such as TNFα might influence 

disease penetrance in BMPR2 mutation carriers. Furthermore, BMPR2+/- iPSC-SMCs cultured 

in serum demonstrated prolonged hyperpolarisation despite withdrawal of TNFα, suggesting 

that transient exposure to an inflammatory stimulus may be sufficient to drive disease 

progression in a BMPR2 mutation carrier.  

 

Another important observation in this study was that increased proliferation, IL-6 mRNA 

expression and reduced apoptosis were more pronounced in BMPR2+/- iPSC-SMCs 

differentiated in the presence of exogenous BMP4 (herein referred to as PTB) compared to 

iPSC-SMCs differentiated according to the protocol described by Cheung et al. (2012). These 

findings suggest that differentiation in PTB represents a refinement of the LM-iPSC-SMC 

differentiation protocol in terms of its ability to generate cells that can be used as surrogates for 

distal PASMCs when studying PAH. Although the reason for this is unclear, the observation 
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that BMP4 is highly expressed in the distal region of the lung bud during development (Bellusci 

et al., 1996) suggests that addition of BMP4 during differentiation might promote the 

acquisition of a distal cell fate in LM-iPSC-SMCs. 

 

In addition, this study also revealed that BMPR2+/- iPSC-SMCs have an altered differentiation 

state and are less contractile compared to wild-type iPSC-SMCs – phenotypes which have not 

previously been observed in PAH-derived PASMCs. Finally, RNA-Seq analysis of wild-type 

and BMPR2+/- iPSC-SMCs identified that genes encoding somatostatin (SST), mitochondrial 

uncoupling protein 2 (UCP2), dual oxidase 2 (DUOX2) and cytokine receptor-like factor 1 

(CRLF1) were differentially expressed between wild-type and BMPR2+/- iPSC-SMCs. 

Although somatostatin has previously been reported to reduce smooth muscle cell proliferation 

(Leszczynski et al., 1993; Lauder et al., 1997; Zhao & Foegh, 1997;), somatostatin and its 

analogues octreotide, lanreotide and CH-275 had no significant effect on the proliferation of 

iPSC-SMCs or PASMCs in this thesis study, possibly due to the large variation in the 

experimental results and the low number of experimental replicates. 

 

6.2 – Advantages and limitations of the iPSC-SMC model to study PAH 

 

An important observation in this study was the reduced variability between experiments in 

isogenic cell lines, which contrasted with the results obtained when comparing wild-type and 

patient-derived BMPR2+/- iPSC-SMCs.  The variability between patient-derived cell lines is 

challenging and would require large numbers of lines from different patients to detect robust 

differences. This might be a possible reason why a previous study using patient-derived iPSC-

ECs (Sa et al., 2017) could not recapitulate all PAH-associated phenotypes, thus highlighting a 

major advantage of using iPSC lines with an isogenic background to determine the impact of 

specific mutations. 

 

Furthermore, the iPSC-SMC model described in this study raises a number of interesting 

questions. For example, we still do not know the precise molecular mechanism through which 

BMPR2 mutations, either alone or via interaction with genetic, epigenetic or environmental 

factors, lead to the acquisition of PAH-associated cellular phenotypes. To this end, RNA-Seq 

differential gene expression analysis of iPSC-SMCs cultured under either serum-free or serum-

containing conditions and in the presence or absence of TNFα may reveal genes and molecular 

pathways implicated in the acquisition of a hyperpolarised IMM state. This analysis, together 



                                                                                                                              Chapter 6 – Discussion 
 

 138 

with RNA-Seq differential gene expression analysis of wild-type and BMPR2+/- PASMCs, is 

currently underway.  

 

In addition, although this study showed that BMPR2+/- iPSC-SMCs display significantly 

increased IL-6 mRNA expression compared to wild-type iPSC-SMCs differentiated in PTB, 

IL-6 expression was not analysed at the protein level. An enzyme-linked immunosorbent assay 

(ELISA) could therefore be performed to determine whether BMPR2+/- iPSC-SMCs also 

display significantly increased IL-6 expression at the protein level. 

 

Similarly, whilst the differential expression of SST, DUOX2, UCP2 and CRLF1 was validated 

by qPCR in both iPSC-SMCs and in the lungs of Bmpr2+/R899X mice, this study did not 

determine whether the differential expression of these genes is reflected at the protein level. 

Furthermore, the low number of iPSC-SMC lines submitted for RNA sequencing meant that 

only a very limited number of genes were found to be differentially expressed after performing 

false discovery rate analysis to adjust for multiple comparisons. Analysis of a larger number of 

different wild-type and BMPR2+/- iPSC-SMCs lines might have uncovered additional 

differentially expressed genes.   

 

Finally, the validity of the findings presented in this study could be strengthened by performing 

the reverse experiment in which genome editing is used to correct a BMPR2 mutation to 

determine whether this reverses PAH-associated cellular phenotypes in iPSC-SMCs. It would 

also have been desirable to introduce the W9X mutation into an additional wild-type iPSC line 

to determine whether the contribution of BMPR2 mutation to PAH-associated phenotypes can 

be replicated in an independent cell line. Alternatively, CRISPR-Cas9 gene editing could be 

used to repair the W9X mutation to determine whether this reverses the PAH-associated cellular 

phenotypes observed in this thesis study. In addition, whilst the W9X mutation results the 

insertion of a premature stop codon and hence the production of a truncated protein, missense 

mutations in BMPR2 (eg C118W) which impair BMPR2 trafficking to the plasma membrane 

(Sobolewski et al., 2008) could be introduced in order to determine whether the findings 

presented in this study apply to different types of BMPR2 mutation. Furthermore, screening for 

potential CRISPR-Cas9-mediated off-target effects or single nucleotide variations which may 

spontaneously occur in culture (reviewed in Musunuru et al., 2018) could also be performed to 

limit the possible number of confounders. 
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6.3 – Conclusions and future directions 
 

In conclusion, this study characterises the first iPSC-SMC model of PAH and elucidates the 

role of BMPR2 in establishing PAH-associated phenotypes in iPSC-derived SMCs. It also 

provides new insights into factors that might influence disease penetrance in BMPR2 mutation 

carriers and the mechanisms by which these influence cell phenotypes, through alterations in 

mitochondrial membrane polarisation. This study also revealed that BMPR2+/- iPSC-SMCs 

have an altered differentiation state and are less contractile compared to wild-type iPSC-SMCs 

– phenotypes which have not previously been observed in PAH-derived PASMCs. 

Furthermore, RNA-Seq analysis of wild-type and BMPR2+/- iPSC-SMCs identified several 

novel genes that are differentially expressed between wild-type and BMPR2+/- iPSC-SMCs. 
 

However, further work will be required to elucidate the precise molecular mechanisms through 

which BMPR2 mutations interact with genetic, epigenetic or environmental factors to cause 

PAH establishment and progression. For example, this study could be extended to investigate 

whether any of the phenotypes described in this study are also present in iPSC-SMCs derived 

from unaffected BMPR2 mutation carriers and idiopathic PAH patients. Furthermore, 

comparisons between male and female BMPR2 mutation carriers with or without PAH could 

also be performed in an attempt to provide insights into why PAH predominantly affects women 

but is associated with reduced survival in male BMPR2 mutation carriers (Hatton & Ryan, 2014; 

Jacobs et al., 2014). Future studies could also focus on developing iPSC-SMC and iPSC-EC 

models of other forms of pulmonary hypertension by examining the role of factors such as 

hypoxia. The importance of this is highlighted by the fact that whilst there are several clinically- 

approved therapies for the management of Group 1 PAH (Lau et al., 2017), there are currently 

no approved drugs for treating most other types of pulmonary hypertension, with Group 2 PH 

being the most common form of pulmonary hypertension worldwide (Lam et al., 2009; Strange 

et al., 2012).  

   

Together with the iPSC-derived endothelial cells generated in our group (Kiskin et al., 2018), 

patient-derived iPSC-SMCs hold great promise for drug screening and precision medicine. For 

example, iPSC disease models might be able to identify drug-responsive patient subgroups 

which should improve the quality of clinical trials (Inoue et al., 2014). Furthermore, patient-

derived iPSC-lines could be used to test the efficacy of several drugs, thus enabling the most 

appropriate medication to be chosen for a particular patient rather than determining the 

effectiveness of prescribed medications in patients by trial and error (Chen et al., 2016). 



                                                                                                                              Chapter 6 – Discussion 
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In addition, preclinical studies rely on prospective treatments being tested in animal models 

which do not fully recapitulate the disease pathology observed in humans. By contrast, iPSCs 

are genetically matched to the person from whom they were derived, whilst at the same time 

being stripped of epigenetic changes that are acquired during a person’s lifetime and which 

might confound the phenotypes being studied. This makes iPSC-derived cells especially useful 

for modelling complex diseases such PAH which are caused by a combination of multiple 

genetic and environmental factors.  

 

Wild-type and both patient-derived and isogenic BMPR2+/-  iPSC-SMCs and iPSC-ECs could 

be used to test whether therapeutic interventions aimed at restoring BMPR2 signalling reverse 

the PAH-associated phenotypes described in this study. Such drug screening candidates could 

include (i) the immunosuppressant FK506 (tacrolimus), which activates BMPR2 by binding to 

the BMP inhibitor FK506-binding protein-12 (FKBP12) (Spiekerkoetter et al., 2013), (ii) the 

lysosomal inhibitor hydroxychloroquine, which promotes BMPR2 trafficking to the cell surface 

(Dunmore et al., 2013), and (iii) ataluren, a drug that promotes ribosomal read-through of 

premature stop codons (Drake et al., 2013). The effect of metabolic modulators such as 

dichloroacetate or peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists such 

as rosiglitazone, which reverse PAH in animal models (McMurtry et al., 2004; Nisbet et al., 

2010), could also be tested. However, since PAH is associated with multiple metabolic 

abnormalities beyond aerobic glycolysis (referred to as the ‘Warburg effect’) (D’Alessandro et 

al., 2018), it is likely that multiple signalling pathways might need to be targeted at the same 

time in order to achieve a robust clinical response. 

   

In future studies, iPSC-SMCs could also be generated from PAH patients with mutations in 

other PAH-associated genes, thus extending the study of PAH-associated phenotypes to a 

broader patient population. Furthermore, iPSC-SMCs could be co-cultured with iPSC-ECs or 

combined with adult pulmonary vascular cells in organoid or artery-on-a-chip setups for a more 

comprehensive evaluation of PAH-associated phenotypes in a setting that more closely 

resembles in vivo conditions. In summary, the iPSC-SMC model of PAH described in this study 

will be useful for identifying novel druggable targets that could be used to develop novel 

therapeutic interventions that are desperately needed to treat this devastating and deadly 

disease.     
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