
 
 
 
 

Novel methods for biological network 

inference: an application to circadian Ca2+ 

signaling network 

 

 
 

University of Cambridge 

Downing College 

 

by 

Junyang Jin 
 
 

Supervisor:                                   Co-Supervisor: 
Prof. Alex Webb                               Prof. Jorge Gonçalves 

 

May 2018 

 
A dissertation submitted for the degree of 

Doctor of Philosophy 

 
 





 
 
 

Summary	
Novel methods for biological network inference: an application to circadian Ca2+ signaling 
network 
Junyang Jin 
 
    Biological processes involve complex biochemical interactions among a large number of 
species like cells, RNA, proteins and metabolites. Learning these interactions is essential to 
interfering artificially with biological processes in order to, for example, improve crop yield, 
develop new therapies, and predict new cell or organism behaviors to genetic or 
environmental perturbations. For a biological process, two pieces of information are of most 
interest. For a particular species, the first step is to learn which other species are regulating it. 
This reveals topology and causality. The second step involves learning the precise mechanisms 
of how this regulation occurs. This step reveals the dynamics of the system. Applying this 
process to all species leads to the complete dynamical network. Systems biology is making 
considerable efforts to learn biological networks at low experimental costs. The main goal of 
this thesis is to develop advanced methods to build models for biological networks, taking the 
circadian system of Arabidopsis thaliana as a case study. A variety of network inference 
approaches have been proposed in the literature to study dynamic biological networks. 
However, many successful methods either require prior knowledge of the system or focus 
more on topology. This thesis presents novel methods that identify both network topology 
and dynamics, and do not depend on prior knowledge. Hence, the proposed methods are 
applicable to general biological networks. These methods are initially developed for linear 
systems, and, at the cost of higher computational complexity, can also be applied to nonlinear 
systems. Overall, we propose four methods with increasing computational complexity: one-
to-one, combined group and element sparse Bayesian learning (GESBL), the kernel method 
and reversible jump Markov chain Monte Carlo method (RJMCMC). All methods are tested 
with challenging dynamical network simulations (including feedback, random networks, 
different levels of noise and number of samples), and realistic models of circadian system of 
Arabidopsis thaliana. These simulations show that, while the one-to-one method scales to the 
whole genome, the kernel method and RJMCMC method are superior for smaller networks. 
They are robust to tuning variables and able to provide stable performance. The simulations 
also imply the advantage of GESBL and RJMCMC over the state-of-the-art method. We envision 
that the estimated models can benefit a wide range of research. For example, they can locate 
biological compounds responsible for human disease through mathematical analysis and help 
predict the effectiveness of new treatments. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

Acknowledgement	

  I would like to express my sincere gratitude to my supervisors, Prof. Alex Webb and Prof. 
Jorge Gonçalves, for their patient guidance and professional instructions on biological and 
mathematical aspects. Without them, it would be impossible for me to combine these two 
fields of research. Their supervision has been crucial for me in accomplishing this project. 
  I would like to thank the circadian signal transduction group. The group members have 
offered generous help in setting up and guiding me through experiments. Their professional 
knowledge of biology also helped me a lot during my research.  
  I also spent much time visiting the systems control group of Luxembourg Centre for Systems 
Biomedicine. Many of the group members are dedicated in the theoretical development of 
network inference. I am very grateful to them for sharing their latest research outcomes. I 
have benefited a lot from the discussion with these researchers. 
  In addition, I want to especially thank Prof. Ye Yuan, the former PhD student of Prof. Jorge 
Gonçalves, who provided me his expertise in control engineering and kindly invited me to visit 
his lab in China. 
 Finally, I really appreciate my parents’ and friends’ support during my PhD life. Without them, 
I could hardly have made any progress. 
 
 
 
 
 
 
 
 
 
 
 
 

  



 



 
 
 
 
 
 
 
 
 

Disclaimer	

  This dissertation is the result of my own work and includes nothing which is the outcome 
of work done in collaboration except as declared in the Preface and specified in the text. 
  It is not substantially the same as any that I have submitted, or, is being concurrently 
submitted for a degree or diploma or other qualification at the University of Cambridge or 
any other University or similar institution except as declared in the Preface and specified in 
the text. I further state that no substantial part of my dissertation has already been 
submitted, or, is being concurrently submitted for any such degree, diploma or other 
qualification at the University of Cambridge or any other University or similar institution 
except as declared in the Preface and specified in the text 
  It does not exceed the prescribed word limit for the relevant Degree Committee. 
 

Junyang Jin 
Downing College 
May 2018 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

i 
 

i 

 

Contents	

NOVEL	METHODS	FOR	BIOLOGICAL	NETWORK	INFERENCE:	AN	
APPLICATION	TO	CIRCADIAN	CA2+	SIGNALING	NETWORK	.................................	1 

Chapter 1. .......................................................................................................................................... 1 

Introduction ....................................................................................................................................... 1 
1.1 General structure of biological networks ................................................................................... 2 
1.2 Inference methods for biological networks ................................................................................ 3 
1.3 Development of novel model-based methods.......................................................................... 10 
1.4 Thesis overview....................................................................................................................... 13 

Chapter 2. ........................................................................................................................................ 15 

Methodology ................................................................................................................................... 15 
2.1 Linear and nonlinear dynamic systems .................................................................................... 16 
2.2 Mathematical modeling of biochemical reactions .................................................................... 18 
2.3 System identification ............................................................................................................... 24 
2.4 Conclusion .............................................................................................................................. 27 

Chapter 3. ........................................................................................................................................ 29 

One-to-One method to infer dynamic networks ............................................................................... 29 
3.1 One-to-one method ................................................................................................................ 29 
3.2 Discussion ............................................................................................................................... 31 
3.3 Conclusion .............................................................................................................................. 32 

Chapter 4. ........................................................................................................................................ 33 

Applied Sparse Bayesian Learning to sparse network inference ....................................................... 33 
4.1 Sparse network inference ........................................................................................................ 34 
4.2 Bayesian approaches and point estimation via optimization..................................................... 35 
4.3 Full Bayes and Empirical Bayes approaches .............................................................................. 39 
4.4 Variational representation ....................................................................................................... 43 
4.5 Sparse Bayesian Learning ........................................................................................................ 45 
4.6 Description of sparse linear networks ...................................................................................... 48 
4.7 Inference problem of ARX-based networks .............................................................................. 49 
4.8 Combined group and element sparse Bayesian learning........................................................... 51 
4.9 Algorithms to solve Type II maximization ................................................................................. 55 
4.10 Extension to nonlinear ARX models ....................................................................................... 61 
4.11 Conclusion ............................................................................................................................ 62 



 

ii 
 

ii 

Chapter 5. ........................................................................................................................................ 63 

Sparse network inference based on kernel methods ........................................................................ 63 
5.1 Kernel methods in system identification and machine learning ................................................ 64 
5.2 Reproducing kernel Hilbert space ............................................................................................ 66 
5.3 RKHS and stochastic process.................................................................................................... 72 
5.4 Interpolation based on kernel methods ................................................................................... 74 
5.5 Bayesian formulation of kernel methods.................................................................................. 76 
5.6 Kernel functions for impulse responses ................................................................................... 78 
5.7 Sparse linear networks described by DSFs................................................................................ 81 
5.8 Formulation of inference problem ........................................................................................... 83 
5.9 Bayesian estimation of impulse responses ............................................................................... 85 
5.10 Estimation of hyperparameters ............................................................................................. 86 
5.11 Models with measurement noise .......................................................................................... 90 
5.12 Conclusion ............................................................................................................................ 91 

Chapter 6. ........................................................................................................................................ 93 

Sparse network inference using reversible jump Markov chain Monte Carlo ................................... 93 
6.1 MCMC approach ..................................................................................................................... 94 
6.2 MH-within-PCG sampler .......................................................................................................... 97 
6.3 Reversible jump Markov chain Monte Carlo ............................................................................. 98 
6.4 Model formulation .................................................................................................................. 99 
6.5 Problem formulation ............................................................................................................... 99 
6.6 Full Bayesian model for DSF ................................................................................................... 101 
6.7 Sampling full Bayesian model with fixed topology .................................................................. 104 
6.8 Assembly of reversible jump MCMC and MH-within-PCG ....................................................... 108 
6.9 Computational cost of RJMCMC ............................................................................................ 112 
6.10 Simulation ........................................................................................................................... 113 
6.11 Conclusion .......................................................................................................................... 123 

Chapter 7. ...................................................................................................................................... 124 

Network inference of synthesized circadian models ....................................................................... 124 
7.1 Synthesized models of circadian systems ............................................................................... 125 
7.2 General procedure ................................................................................................................ 127 
7.3 Inference of the Millar 10 model ........................................................................................... 128 
7.4 Comparison with state-of-the-art methods ............................................................................ 138 
7.5 Conclusion ............................................................................................................................ 145 

Chapter 8. ...................................................................................................................................... 146 

Inference of the circadian Ca2+ signaling network ........................................................................... 146 
8.1 The circadian clock in plants .................................................................................................. 147 
8.2 Inference procedure .............................................................................................................. 150 
8.3 Blue light pathway of the Ca2+ signaling network ................................................................... 154 



 

iii 
 

iii 

8.4 Red light pathway of the Ca2+ signaling network .................................................................... 155 
8.5 The Ca2+ signaling network under white light ......................................................................... 157 
8.6 Interactions among light pathways ........................................................................................ 158 
8.7 Conclusion ............................................................................................................................ 159 

Chapter 9. ...................................................................................................................................... 161 

Conclusion...................................................................................................................................... 161 
9.1 Novel inference methods for sparse biological networks ........................................................ 162 
9.2 Red light controls the feedforward and feedback loops of [Ca2+]cyt ......................................... 164 
9.3 Future work .......................................................................................................................... 165 

Bibliography ................................................................................................................................... 175 
 
 
 
 
 
 
 
 
 





 

1 
 

1 

 
 
 
 
 
 
 
 
 

Chapter	1.	 	

Introduction	

  Biological networks form an essential part of the real world from ecosystems in nature, over 
cell systems in plants, to neural networks of human body. Although there are diverse biological 
networks, their operation involves some principle systems, including metabolic networks, 
signaling networks, protein-protein interaction networks, gene regulatory networks and gene 
co-expression networks. Identifying these networks is fundamental to interfering artificially 
with biological processes for the purpose of developing therapies to treat disease, improving 
crop yield and predicting cell or organism behaviors to genetic and environmental 
perturbations. For example, the discovery that neurodegeneration is a regulated cell-
autonomous process of programmed cell death highly supports the development of protective 
therapies to Parkinson’s disease [1], [2]. Another example is genetically-modified crops that 
are studied to meet the worldwide demand for quality foods [3], [4]. While learning these 
networks is important, few such networks are understood with complete structure and less is 
known on their dynamical behavior over time. Hence, it is necessary to seek effective and 
efficient ways to infer biological networks. 
  Studying biological networks via experiment is usually costly and time-consuming whereas 
systems biology that computationally and mathematically models complex biological systems 
is a complementary approach (e.g. [5], [6], [7]). Mathematical modeling has played an 
important role in understanding, predicting and even manipulating biological processes. For 
example, cell-specific responses to the cytokine TGF𝛽 was found determined by variability in 
protein levels through mathematical modeling [8]. While pluripotent stem cell (PSC) gene 
regulatory network is largely unknown, a model was developed to predict network states in 
response to external stimuli [9]. A model was proposed to simulate a vector-borne disease and 
evaluate the impact of an imperfect vaccine [10].  
  Building mathematical models for an unknown biological network from experimental data 
is a type of reverse engineering. Various methods have been developed to infer biological 
networks (e.g. [11]–[13]). Although remarkable success has been achieved (e.g. [14]–[16]), 
there are still plenty of issues concerned in applications, including lack of prior knowledge, 
incomplete data collection, large-scale networks, stability of constructed models, etc. This 
thesis presents novel methods to infer complex biological networks. 



 

2 
 

2 

1.1 General structure of biological networks 

  Nodes and edges are basic elements of a network. Nodes represent units of a network and 
edges indicate interactions among these units. For a biological network, nodes can denote a 
wide range of biological units from species in an ecosystem, over genes and proteins of 
photosynthesis systems of plants, to neurons in the brain. At any given time, nodes are 
associated with a quantity such as molecular concentration. A network might contain all 
existing species within a cell, or an organism, or only a subset of those. It depends on decisions 
on what is important to capture in a particular system. Often, networks are constrained to a 
relatively small number of species due to the complexity of a system and/or the available 
data/information about the system. It is common to see gene, protein or metabolic networks, 
but not all combined. Or one can find detailed networks of a particular (relatively small) 
cellular process. 
  Another principle attribute of biological networks is dynamical behavior over time. Direct 
observations of this feature can be obtained from experiments. For example, the expression 
level of genes evolves with time. Under this context, edges (links) reveal causal relationship 
among these nodes, for example, downstream and upstream regulations of transcripts and 
signal transduction pathways of neurons. Links in causal networks are defined as follows. We 
say a link from A to B exists if, after removing all other nodes in the network, B at any time 
depends on past and present values of A. Figure 1.1.1 (left column) shows a simple example 
of a gene regulatory network containing three genes that are regulated in sequence. Note that 
one cannot add a link from gene A to gene C if all three genes are considered because, by 
physically removing gene B, gene A and gene C are disconnected. Nevertheless, if one only 
constructs a network of gene A and gene C without gene B because, for example, gene B is not 
measurable, the original network becomes the one in the right column. In this case, the 
transitivity from gene A to gene C is preserved because they are physically connected via gene 
B even if gene B is not observable.  
  A complete knowledge of a biological network consists of two parts: topology (causal 
relationship among nodes) and internal dynamics (interaction mechanisms between nodes). 
In graph theory [17], causal network topology can be expressed as a directed graph. The graph 
is written as an ordered pair 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of nodes (units) of the network 
and 𝐸 is a set of ordered pairs of edges. For example, an edge between nodes 𝑥 and 𝑦 
expressed as (𝑥, 𝑦) represents a cause-effect from 𝑥  to 𝑦. While topology captures the 
interaction map (like a map of a city), dynamics capture the flow (like the traffic in that city) 
and how this changes over time. Mathematical models are effective tools to describe internal 
dynamics. Commonly used models include ordinary differential equation (ODE), stochastic 
differential equation (SDE) and partial differential equation (PDE) [18]. 
 



 

3 
 

3 

 
Figure 1.1.1: A gene regulatory network. Left column shows the ground truth network 
consisting of four genes. Right column shows the network, where gene B is a hidden node but 
the transitivity from gene A to gene C is preserved. 

1.2 Inference methods for biological networks 

  Topology and dynamics of most biological networks are largely unknown. Network inference 
aims to learn the topology of the target biological network and construct a mathematical 
model to represent its internal dynamics. A large number of inference methods have been 
developed to infer biological networks. However, since most biological networks involve 
substantial nodes, topology and internal dynamics are not always explored simultaneously. 
Here, we review some mainstream techniques that are used in practice. A thorough overview 
of this topic can be found in [19]–[23]. We start by introducing methods that mainly focus on 
inferring network topology. 
 

1.2.1	Correlation-based	methods	
  Correlation-based methods are widely used to infer associations between nodes [23]. The 
inference result indicates whether two nodes are related according to some metric. However, 
it may or may not detail causal relationship. Hence, a biological network is not fully learned 
with this type of method.  
  The computational cost of correlation-based methods is cheap and scales well with respect 
to the number of nodes. Correlation-based methods are usually applied where there are not 
enough data to support a complete inference of the target network. There are two important 
classes of correlation-based methods: value-based methods and rank-based methods. Value-
based methods include Pearson’s correlation [24], [25], distance covariance [26], [27], Theil-
Sen estimator [28], [29], and partial correlation and information theory [30], [31].  
  Pearson’s correlation measures the strength of the linear relationship between two random 
variables and is given by: 

(1.2.1) 

𝑐𝑜𝑟𝑟 =
∑ (𝑥/ − �̅�)(𝑦/ − 𝑦2)3
/45
(𝑛 − 1)𝑆9𝑆:

 

where {𝑥/} and {𝑦/} are samples of two random variables, �̅� and 𝑦2 are sample mean, and 
𝑆9  and 𝑆: are standard deviations. 
  Distance covariance examines the statistical dependence of two random variables: 

(1.2.2) 

𝑑𝑐𝑜𝑣(𝑋, 𝑌) =
1
𝑛@
A 𝑋/BC 𝑌/BC

/B
 

where 

A B C A C



 

4 
 

4 

𝑋/B = |𝑥/ − 𝑥B|, 𝑌/B = |𝑦/ − 𝑦B| 
𝑋/BC = 𝑋/B − 𝑋2/,: − 𝑌2:,B + 𝑋2, 𝑌/BC = 𝑌/B − 𝑌2/,: − 𝑋2:,B + 𝑌2  

𝑋2, 𝑌2: grand mean of matrix 
𝑋2/,:, 𝑌2/,:: row mean of matrix 

𝑋2:,B, 𝑌2:,B: column mean of matrix 
 
  Theil-Sen estimator is a robust way to fit a line to sample points on a plane defined as: 

(1.2.3) 

𝑇𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛 L𝑚/B =
𝑦/ − 𝑦B
𝑥/ − 𝑥B

: 𝑥/ ≠ 𝑥B, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛P 

   
  Partial correlation and information theory applies Data Processing Inequality (DPI) to rule 
out indirect interactions: 

(1.2.4) 

𝑃𝐶𝐼𝑇9: =
𝑐𝑜𝑟𝑟(𝑥, 𝑦) − 𝑐𝑜𝑟𝑟(𝑥, 𝑧)𝑐𝑜𝑟𝑟(𝑦, 𝑧)
U(1 − 𝑐𝑜𝑟𝑟(𝑥, 𝑧))@(1 − 𝑐𝑜𝑟𝑟(𝑦, 𝑧))@

 

 
  Rand-based methods are more robust to outliers than value-based methods [23]. Kendall 
measure is one of the most commonly used methods [32]: 

(1.2.5) 

𝐾(𝑥, 𝑦) =
𝑐𝑜𝑛(𝑥W, 𝑦W) − 𝑑𝑖𝑠(𝑥W, 𝑦W)

0.5𝑛(𝑛 − 1)
 

where 𝑥W  and 𝑦W are the ranked expression profiles of genes 𝑥 and 𝑦, and 𝑐𝑜𝑛 and 𝑑𝑖𝑠 
denote the number of concordant and disconcordant pairs, respectively. 
  Other rank-based methods include inner composition alignment (ICA) [33] and Hoeffding’s 
coefficient [34]. 
 

1.2.2	Causality-based	methods	
  One of the most well-known causality measures is Wiener-Granger causality (WGC) [35], 
[36]. It is used to infer causal influence between two variables. Given time series of variables 
𝑋 and 𝑌, if using the past records of both 𝑋 and 𝑌 improves prediction of 𝑋 using time 
series of 𝑋  only, 𝑌  is said to be G-cause 𝑋 . Granger test is a method based on the 
hypothesis that the underlying system is a linear multivariate stochastic process. It has been 
widely applied to measure the interactions among subdomains of brain using MEG, SEEG and 
EEG data [35]. Nevertheless, this method is less effective for nonlinear systems [23]. 
  Convergence cross mapping framework (CCM) is another causality-based method [37], [38]. 
CCM reconstructs a phase space for each variable using the delay-coordinate embedding 
method, where the attractor manifolds of phase spaces are used for estimation. The 
correlation coefficient between the original time series and the estimated ones is a measure 
of CCM causal influence. The strength of causality is reflected by the value of correlation 
coefficient. If the coefficient of an ordered pair of variables is non-positive, one variable has 
no influence on the other. The method requires a considerable amount of data and the system 
should be chaotic, so that the trajectory takes values close to its past values. Additionally, the 
method is very sensitive to noise [39]. 



 

5 
 

5 

   

1.2.3	Information-theoretic	based	methods	
  Mutual information (MI) is a basic information-theoretic method to quantify pairwise 
dependence between two variables. MI indicates how much knowing one variable helps learn 
the other [40], [41]. The dependence is determined by the similarity between joint distribution 
and factored distribution: 

(1.2.6) 

𝑀𝐼(𝑥, 𝑦) =A A 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 `
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)a:9

 

where 𝑝(𝑥, 𝑦)  is joint probability distribution of 𝑥  and 𝑦 , and 𝑝(∙)  denotes marginal 
probability distribution. MI measure is symmetric and non-negative. Hence, the obtained 
networks are undirected. Calculating MI requires estimating the probability distributions from 
data. Nevertheless, how to attain unbiased MI measure is still an open question [23]. 
  Relevance network approach (RELNET) [42], [43], context likelihood of relatedness (CLR) 
[44], maximum relevance/minimum redundancy feature selection (MRNET) [45] and accurate 
reconstruction of cellular networks (ARACNE) [46] are all commonly used MI-based network 
reconstruction methods. RELNET and CLR methods are not able to distinguish direct and 
indirect relationships. MRNET and ARACNE attempt to remove indirect relationships. However, 
MRNET can only achieve a local optimal solution since it applies a greedy algorithm. ARACNE 
only considers indirect relationships within each triplet and requires a large amount of data 
[23]. 
  Another information-based method is called maximum information coefficient (MIC) [47], 
[48]. The principle of MIC is that if a relation exists between two variables, the scatterplot of 
their data can be partitioned using a grid. For a grid (x-by-y), a probability distribution induced 
on each possible box of the grid is constructed, where the probability of a box is proportional 
to the number of data points falling inside the box. MI is calculated for each box based on the 
induced distribution. 𝑚9,: is the maximum MI over all boxes of the grid (x-by-y). MIC is the 
maximum 𝑚9,: over all ordered pairs (𝑥, 𝑦). However, it was argued that MI-based methods 
are more suitable than MIC to equitably quantify associations in large datasets [41]. 
 

1.2.4	Graphical	Gaussian	model	(GGM)	
  Graphical Gaussian models generate undirected graphs of biological units [49], [50]. Edges 
in the graph show pairwise dependence of two nodes conditioned on all the other nodes. Each 
node in the graph is a random variable and all the nodes are assumed to be jointly Gaussian 
distributed with 0 mean and covariance matrix 𝐶. GGM is constructed based on covariance 
matrix 𝐶. In principle, two nodes are independent conditional on the remaining units if and 
only if the corresponding element in inverse covariance matrix 𝐶c5  is zero. To estimate 
covariance matrix 𝐶, nodes are considered as a multivariate Gaussian distribution. In this case, 
we assume time series data are independently sampled from that distribution. 𝐶  is 
approximated by the empirical estimation: 

(1.2.7) 

𝐶d =
1

𝑛 − 1A (𝑋e − 𝑋2)(𝑋e − 𝑋2)f
3

e45
 

where 𝑋e is a vector containing the time series of all the nodes at time instance 𝑡 and 𝑋2 is 



 

6 
 

6 

the mean of the time series. 
  A variant of GGM is graphical Lasso (Glasso) [51]. The inverse covariance matrix is estimated 
directly via the maximum a posteriori method (MAP) where a penalty is added to impose 
sparsity to the matrix: 

(1.2.8) 

𝐶c5 = argmax
m

log det	(𝑆) − 𝑡𝑟𝑎𝑐𝑒(𝐶d𝑆) − 𝜆‖𝑆‖5 

 

1.2.5	Bayesian	network	(BN)	
  Bayesian networks are a widely applied probabilistic graphical model, which is described as 
a directed acyclic graph (DAG) [52], [53]. Nodes of the graph are random variables and directed 
edges present conditional dependence among nodes. Consequently, each node is associated 
with a probability function that takes a set of parent nodes as conditioned random variables. 
Exact inference (computing the probabilities exactly) in Bayesian networks is NP-hard [54]. 
Therefore, in real-world applications, constraints either on topological structure of the graph 
or conditional probabilities are imposed and approximate inference (computing probabilities 
with reasonable precision) is conducted (e.g. bounded variance algorithm [55]). Another 
alternative is to implement a heuristic search of local structure around some variables using 
algorithms such as children algorithm [56] and Markov blanket algorithm [57]. 
  One advantage of BN is that it allows unobservable nodes, which is very important for 
studying biological networks as normally not all the biological units can be measured. However, 
a general BN may not indicate causal relationships among nodes as directed edges are based 
on conditional dependence. In addition, since a Bayesian network is a DAG, information only 
flows in one direction and no feedback loops are allowed in the network. 
 

1.2.6	Model-based	inference	
  All the methods introduced above only infer network topology or even just reveal partial 
information of network structure. To fully understand a biological network, learning internal 
dynamics is also essential to interpret underlying mechanisms of the network. Model-based 
methods use dynamical models to describe internal dynamics. Meanwhile, model structure 
indicates network topology. A dynamical model can not only help understand a biological 
network but also predict its behavior under various conditions without real experimental 
observations [58]. Additionally, by comparing dynamical models of a biological system under 
different conditions (e.g. treatment, mutation, environmental stimuli and location of 
organisms), one can find systematic changes between these models, thus understanding 
crucial internal mechanisms. Its power to assist learning biological networks has drawn 
increasing attention in the field of systems biology. One successful application is on 
Arabidopsis circadian clock [59]–[64]. 
  Although the inference methods above are easy to use and applicable to a wide range of 
biological networks, they cannot identify system dynamics, thus causing limited performance. 
In contrast, model-based methods considerably improve inference accuracy by exploring 
internal dynamics. The trade-off is that model-based methods have higher requirements on 
data quality (e.g. sampling frequency, information richness, length of time series) and can be 
computationally demanding. Next, we introduce model-based methods that have been widely 



 

7 
 

7 

used to infer biological networks. 
 
1). Compressive sensing based methods (CS)  
  Compressive sensing based methods have been popular in recent years [65], [66]. This 
paradigm was originally developed to reconstruct signals using limited data. The basic idea is 
to formulate system identification as a linear regression problem and solve a regularized 
optimization problem: 

(1.2.9) 

𝑤w = argmax
x

‖𝑌 − Φ𝑤‖@@ +𝜆‖𝑤‖5 

where 𝑌  are outputs of the model (e.g. shifted time series, derivatives), Φ  is called 
dictionary matrix and 𝑤 contains model parameters. The formulation of Φ highly depends 
on the postulated model. For example, Φ can be simply a stack of column vectors consisting 
of the time series of nodes (in case the model is linear) [67], or it can be constructed using 
nonlinear basis functions (nonlinear models) [68], [19]. There are many other variants of this 
Lasso-type method, such as elastic net method [69], time-varying sparse regression (Tesla) [70] 
and sparse Bayesian learning (SBL) [71]. Most compressive sensing based methods require 
tuning regularization variable 𝜆  that controls the trade-off between data-fitting and 
regularization, which demands extra computation efforts and causes information loss. 
 
2). Hierarchical Bayesian regression model (HBR) 
  Hierarchical Bayesian regression model uses a linear regression model to describe 
regulations from other nodes to a specific node [72]. The likelihood of the target node is 
assumed to be Gaussian: 

(1.2.10) 
𝑝(𝑦|𝑤, 𝜎@,Φ, k) = 𝒩(Φw,𝜎@𝐼) 

where 𝑦 are outputs related to the target node (e.g. shifted time series, derivatives), Φ is a 
dictionary matrix containing data of the other nodes, 𝜎@ is noise variance in the model, 𝑘 is 
the index for sets that contain regulators of the target node and 𝑤  contains model 
parameters. The prior distribution of 𝑤  is set to be Gaussian as the conjugate of the 
likelihood: 

(1.2.11) 
𝑝(𝑤|𝛾, 𝜎@) = 𝒩(0, 𝛾𝜎@𝐼) 

  Gamma distributions are used as conjugate priors for both 𝜎c@ and 𝛾c5. A uniform prior 
is assigned to topology index 𝑘. 
  The resulting posterior distribution for the linear regression model is: 

(1.2.12) 
𝑝(𝑤, 𝛾, 𝜎@, 𝑘|𝑦,Φ) ∝ 𝑝(𝑦|𝑤, 𝜎@,Φ, k)𝑝(𝑤|𝛾, 𝜎@)𝑝(𝛾)𝑝(𝜎@) 

  Finally, Markov chain Monte Carlo method (MCMC) is used to draw samples of all the 
variables from the posterior distribution (1.2.12). The collected samples can be used to infer 
network topology and estimate model parameters. 
  Other variants of HBR include Bayesian spline autoregression (BSA) [73] and non-
homogeneous hierarchical Bayesian model [72]. HBR contains a sampling loop in its framework 
leading to heavy computational burdens. The method is computationally prohibitive for large-



 

8 
 

8 

scale networks. 
 
3). Gaussian process methods 
  Gaussian process is an important tool in non-parametric Bayesian statistics, where prior 
distributions are defined for functions instead of parameters [74], [75]. Applications of 
Gaussian process are very flexible and depend on the models proposed to describe a network. 
Here, we describe one simple case. More details will be discussed in later chapters. Assume 
the following model is used to describe interactions from other nodes to a specified node: 

(1.2.13) 
𝑦e = 𝑓(𝑥e) + 𝑒e 

where 𝑦e are scalar outputs related to the target node (e.g. shifted time series, derivatives), 
𝑥e is a vector containing data of a particular set of nodes (indexed by 𝜋), 𝑒e is white Gaussian 
noise with noise variance 𝜎@ and 𝑓(∙) is an unknown function. 
  Assume function 𝑓(∙) is contained in a predefined functional space that is characterized 
with kernel function 𝑘(∙,∙). Function 𝑓(∙) can be interpreted as a Gaussian process with zero 

mean and covariance matrix 𝐾, where 𝐸 �𝑓(𝑥/)𝑓�𝑥B�� = [𝐾]/B = 𝑘�𝑥/, 𝑥B; 𝛽� and 𝛽  is a 

hyperparameter controlling the properties of the kernel function. It can be shown that the 
likelihood of the model is a Gaussian distribution. Given data 𝑌 = [𝑦5, … , 𝑦3]′  and 𝑋 =
[𝑥5, … , 𝑥3]f, the likelihood is 𝑝(𝑌|𝑋, 𝜎@, 𝛽, 𝜋)~𝒩(0, 𝜎@𝐼 + 𝐾). Variables, 𝜎@ and 𝛽 can be 
estimated by maximizing the likelihood function.  
  Assuming a uniform prior is assigned to 𝜋, the conditional posterior distribution of 𝜋 is: 

(1.2.14) 

𝑝(𝜋|𝑌, 𝑋, 𝜎@, 𝛽) =
𝑝(𝑌|𝑋, 𝜎@, 𝛽, 𝜋)𝑝(𝜋)

∑ 𝑝(𝑌|𝑋, 𝜎@, 𝛽, Π)𝑝(Π)�
 

 
  Moreover, the probability of a specific edge from node 𝑗 to the target node 𝑖 is: 

(1.2.15) 

𝑝(𝑗 → 𝑖|𝑌, 𝑋, 𝜎@, 𝛽) =A 𝐼(𝑗 ∈ 𝜋)𝑝(𝜋|𝑌, 𝑋, 𝜎@, 𝛽)
�

 

where 𝐼(∙) is the indicator function. 
  Evaluating (1.2.14) and (1.2.15) requires enumerating all possible sets of regulators of the 
target node (indexed by 𝜋). This task is computationally prohibitive for large networks. In 
practice, a constraint is usually imposed to the cardinality of these sets (e.g. |𝜋| ≤ 3) [76]. 
Nevertheless, it is possible that the number of links connecting to a node exceeds the 
maximum cardinality, thus causing systematic errors during inference. 
 
4). Gaussian Bayesian network (BGe) 
  Gaussian Bayesian networks [77], [78] regard output 𝑦e of the model (related to a specific 
node) and other nodes (regulating this specific node) at any time instance 𝑡 as joint Gaussian 
distributions. Samples at different time instances are assumed to be independent: 
𝑝(𝑧e|𝜇, Σ, 𝜋) = 𝒩(𝜇, Σ)  and 𝑝(𝑧5, … , 𝑧3|𝜇, Σ, 𝜋) = ∏ 𝒩(𝜇, Σ)3

e45  where 𝑧e = [𝑦e, 𝑥e] , 𝑥e 
contains the data of a particular set of regulators (nodes) indexed by 𝜋, and 𝜇 and Σ are 
unknown mean and covariance matrix, respectively. 



 

9 
 

9 

  A conjugate normal-Wishart prior is imposed to mean 𝜇 and precision matrix 𝛴c5 so that 
the marginal distribution, 𝑝(𝑧5, … , 𝑧3|𝜋) = ∬𝑝(𝑧5, … , 𝑧3|𝜇, Σ, 𝜋)𝑝(𝜇, Σ|𝜋)𝑑𝜇𝑑Σ  can be 
computed in closed-form [74]. 
  Finally, assuming regulator sets are uniformly distributed, the posterior distribution of 
regulator set 𝜋 is: 

(1.2.16) 

𝑝(𝜋|𝑧5, … , 𝑧3) =
𝑝(𝑧5, … , 𝑧3|𝜋)𝑝(𝜋)

∑ 𝑝(𝑧5, … , 𝑧3|Π)𝑝(Π)�
 

 
  Similar to (1.2.14), a constraint can be set on the cardinality of set 𝜋  to avoid the 
combinatorial search of all possible groups of regulators. This method considers the model as 
a multivariate Gaussian process. However, correlations among time instances of 𝑧e  are 
simplified to be independent. 
   
5). Mixture Bayesian network 
  The setting of mixture Bayesian network models [79], [80] is analogous to that of Gaussian 
Bayesian networks, in that time series are treated as independent samples from a distribution. 
Instead of using a normal joint Gaussian distribution to describe the relation between the 
target node and its regulators in BGe, a Gaussian mixture model is adopted where the number 
of mixture components, 𝛮 is unknown and needs to be determined.  
  In addition, parameters of the mixture model including means and covariance matrices are 
considered deterministic but unknown. For fixed 𝛮 , these variables are optimized by 
maximizing the likelihood function. Following that, Bayesian information criterion (BIC) is used 
to determine the best value of 𝛮 for each set of regulators. Finally, BIC is employed again to 
decide the optimal regulator set. Compared with BGe, this method applies a more general 
stochastic process (mixture Gaussian) to represent the model. Nevertheless, correlations 
across time instances of 𝑧e  are not explored, similar to BGe. 
 
6). Dynamic Bayesian network (DBN) 
  Dynamic Bayesian networks are the extension of Bayesian networks (BN), where a DBN not 
only describes dependence among nodes at each time step but also includes transitions across 
time [81]. In a DBN, each time slice is presented as a normal BN, which is conditionally 
dependent on the previous ones. The structure and dependence of intra-slice (inside a time 
slice, i.e. static BN) or inter-slice (between different time slices) subnetworks need not be 
identical, resulting in a generalized graphical representation for many existing models 
including hidden Markov models and Kalman filters [81]. Although, in general, a DBN is still a 
DAG, adding feedback loop into the model is straightforward. For example, if node 𝐴e  is 
affecting node 𝐵e  at time 𝑡, a feedback can be realized by connecting node 𝐵e  to node 
𝐴e�5. 
  In practice, modeling with a general DBN is infeasible because its dimension increases 
considerably with the number of biological units and time instances, and the computational 
complexity of the conditional probability table becomes prohibitive. Therefore, to reduce 
computational complexity, one can use an identical structure for each intra-slice subnetwork 
and make inter-slice subnetworks a Markov chain of low order (e.g. first order Markov leading 



 

10 
 

10 

to a two-slice temporal Bayes net) [82]. To further simplify the model, one can assume the 
nodes of a DBN are linearly related, leading to a linear state space model [83]. Hence, when 
solving network inference, it may be more practical to begin with a concrete dynamical model 
rather than a general DBN.  

1.3 Development of novel model-based methods 

   A biological network is a complex dynamic system containing a large number of 
interlocking feedback loops. To fully understand such a complicated network, we need to learn 
its topology and internal dynamics. One critical assumption about network topology is that a 
biological network is not fully connected but rather sparse [19]. A biological unit in a network 
is controlled by not all but only part of the others. Internal dynamics of a network show how 
nodes interact with each other. In particular, they reveal mechanisms of dynamical behavior 
in response to entrainment from external signals and enforced systematic or environmental 
variations such as mutation and treatment. Internal dynamics and input-output relationships 
of a network are relevant but not identical. For example, two networks are allowed to have 
the same input-output map but completely different internal dynamical behavior and vice 
versa [84], [85]. In principle, network topology and internal dynamics must be learned 
simultaneously because they are intimately related. For example, imposing sparsity constraints 
on network topology when identifying internal dynamics is crucial in many inference methods 
such as compressive sensing based methods. 
  We have introduced some methods that infer connectivity among nodes whereas internal 
dynamics remain unknown (e.g. correlation-based methods, information-theoretic based 
methods). Meanwhile, many existing system identification methods focus on identifying input-
output dynamics of a system for the purpose of control or prediction. Although these 
estimated models have small generalization errors, their model structure can be totally 
different from the target network. For example, prediction error minimization method 
identifies a model purely based on data-fitting, thus always generating a fully connected 
network. Therefore, common system identification methods cannot be used directly to infer 
networks. We have presented several model-based inference methods and discussed their 
limitations. However, some important issues are not considered in these methods, such as 
hidden nodes and system stability. In particular, how to deal with hidden nodes whose number 
and identity are unknown and impose system stability is problematic when inferring biological 
networks. 
  This thesis develops novel model-based inference methods to study biological networks so 
that both internal dynamics and network topology are learned from data. Consequently, 
internal dynamics are fully interpreted by the established model and network topology is 
explicitly shown by the model structure. In particular, we target on several problems of interest 
in network inference, including limited data source, sparsity of network topology, stability of 
constructed models, existence of unobservable nodes and large-scale networks. These are 
typical properties we find in systems biology. 
 

1.3.1	General	framework	
  Network inference aims to find a mathematical model whose structure and internal 



 

11 
 

11 

dynamics are consistent with the target network given measured data. Therefore, the 
inference procedure mainly consists of five steps: collecting data, selecting a model class, 
expressing model equations, identifying the proposed model (including model structure and 
system dynamics) and validating the estimated model.  
  The quality of data can influence selection of model classes. For example, if only limited 
data are available, a simple model class may be preferred to avoid over-fitting.  
  Different models can represent a biological network with different depth. Nonlinear models 
are most appropriate to extract the nature of biological systems. Linear models, on the other 
hand, have simpler expressions and are easy to analyze. The selection of model classes 
depends on various aspects such as prior knowledge of the network and quality of data. 
  Techniques used to determine model structure and identify system dynamics highly rely on 
how a model is expressed. If a model is parametrized by variables, the objective is to estimate 
model parameters. Alternatively, if a model is characterized by system dynamics, functional 
estimation may be conducted instead (e.g. estimating impulse responses of a linear model). 
One of the most important issues that must be considered during identification is model 
parsimony. Model parsimony is related to selection of model complexity, where a selected 
model must be both descriptively accurate and simple [86]. This results in a trade-off between 
fitting data and penalizing model complexity. Information criteria including Akaike’s 
information criterion (AIC), Bayesian information criterion (BIC) and minimum description 
length (MDL) are commonly used to promote model parsimony. There are many other 
methods that apply relaxations to information criteria and solve model selection problems via 
numerical optimization (e.g. compressive sensing based methods). 

Finally, it is important to validate the estimated model based on simulation or prediction on 
a new dataset that is not used for identification. 
 

1.3.2	Mathematical	models	to	describe	biological	networks	
Models used to describe biological networks can be classified in two categories: grey-box 

models and black-box models [87], [88]. Grey-box models are postulated according to physical 
or biological laws [18]. Construction of these models requires prior knowledge of the target 
network, including causality among certain biological units and types of biochemical reactions 
involved. Hence, grey-box models have explicit biological explanations. In contrast, black-box 
models are postulated in terms of inputs and outputs without any knowledge of their internal 
operations. Prior knowledge of a network is not necessary to propose a black-box model. 
Linear models are typical black-box models and widely applied in systems biology. Unlike grey-
box models, internal dynamics of black-box models may not have biological interpretations. 

This thesis considers both grey-box and black-box models. If the working mechanism of a 
biological network is well known, one can use grey-box models. For example, a gene regulatory 
network involves interactions among genes and proteins so Hill functions and Michaelis-
Menten kinetics can be used to construct grey-box models [18]. If little or no prior knowledge 
is available and unobservable nodes exist, one can use black-box linear models to describe the 
target network. The main linear models we consider include state space model, Output-Error 
model (OE), autoregressive model with exogenous inputs (ARX) and dynamical structure 
function (DSF). State space models generalize all linear and nonlinear systems. Identifying a 
state space model requires full state measurements, which are not available in many real-



 

12 
 

12 

world applications. OE models have a simple model structure, thus easy to identify. However, 
they ignore process noise in biological systems. Identification of ARX models can be formulated 
as a linear regression problem so a variety of methods are available to promote sparse 
topology. Nevertheless, applications of linear ARX is limited in ‘model power’ since only a few 
networks can be well-approximated by linear ARX in practice whereas construction of 
nonlinear ARX requires prior knowledge and full state measurements. DSF is a very general 
linear model but some constraints on its model structure must be imposed due to theoretical 
limitations. 

 

1.3.3	Novel	methods	for	network	inference	
This thesis develops novel methods to infer biological networks. Parametric and non-

parametric approaches will both be considered. We will specially focus on how to impose 
sparsity for network topology and system stability. 

We formulate the system identification problem in the Bayesian framework to capture 
stochastic properties of biological networks (including intrinsic, extrinsic and measurement 
noise). Prior distributions are proposed to encourage sparse network topology or to enforce 
system stability. Bayesian techniques are applied to tackle resulting intractable probabilistic 
models. In particular, deterministic approximations (e.g. empirical Bayes) and stochastic 
approximations (e.g. Markov chain Monte Carlo sampling) form the backbone of the proposed 
methods.  

Consequently, four inference methods are discussed in this thesis, including one-to-one, 
combine group and element sparse Bayesian learning (GESBL), the kernel method and 
reversible jump Markov chain Monte Carlo method (RJMCMC). One-to-one is inspired by the 
traditional pairwise inference of correlation-based methods, where a dynamical system is 
estimated for each ordered pair of nodes. Since this method is heuristic and intuitive, we only 
discuss it in a short chapter. The method will be compared with other methods through 
simulation. GESBL is developed to impose sparse network topology. Unlike pairwise 
identification of one-to-one, GESBL infers the entire network in one shot. The novelty of GESBL 
is that it imposes both element and group sparsity (i.e. model complexity and network sparsity) 
at the same time. The kernel method is introduced to identify DSFs that are proposed to deal 
with unobservable nodes. The main contribution is focused on problem formulation where 
identification of DSFs is greatly simplified and the kernel method can be applied to impose 
system stability. The limitations of DSFs are also discussed. In addition, inference with 
measurement noise is considered, which has a huge impact on network sparsity but is not 
specifically discussed in previous research. Finally, RJMCMC approach further improves the 
kernel method. RJMCMC provides a more effective way to determine model structure by 
encouraging a global search of network topology. Moreover, it offers an accurate evaluation of 
inference confidence. 
 

1.3.4	Performance	criteria	for	inference	results	
  If the ground truth of the target network is known, we can compare the estimated network 
with the true one. We mainly adopt three performance criteria to evaluate inference results. 
True Positive Rate (TPR) equates to the percentage of the true links in the ground truth 
network that are identified in the inferred network. False Positive Rate (FPR) is equal to the 



 

13 
 

13 

percentage of the null links in the ground truth network that are identified incorrectly. 
Precision (Prec) is the fraction of the number of correct true links over the total number of 
true links in the inferred network. 
  TPR indicates how many true links in the ground truth network are captured, which 
determines whether the inference result provides rich information. Low TPR suggests many 
true links are missed. FPR implies the amount of inference error. High FPR shows many true 
links in the inferred network are false. Prec reveals reliability of the inferred network. If Prec is 
low, correct and wrong true links are not distinguishable in the inferred network. To conclude, 
a good inference result should have high TPR and Prec, and low FPR. 
 

1.3.5	Validation	of	the	proposed	methods	via	Monte	Carlo	simulations	
  Monte Carlo simulations are conducted to validate our proposed inference methods. First, 
we apply our methods to infer networks that fall exactly into the proposed model class. These 
models are generated randomly. Simulations are implemented under different conditions to 
investigate the critical factors that can influence the algorithm performance. 
  To evaluate the performance of the proposed methods when inferring real biological 
networks, we take circadian clock of Arabidopsis as a case study. The ground truth network is 
represented by synthesized circadian models (Millar models [61], [62]). These models are 
highly nonlinear and have analogous dynamics to the real circadian system. Simulated data are 
collected under different conditions. The proposed methods are also compared with state-of-
the-art methods. 

1.4 Thesis overview 

  This thesis focuses on developing novel methods to infer sparse biological networks. These 
methods are discussed in sequence as complexity of the postulated models grows. Both 
parametric and non-parametric identification approaches are considered. Overall, we discuss 
four inference approaches called one-to-one method, combined group and element sparse 
Bayesian learning (GESBL), the kernel method and reversible jump Markov chain Monte Carlo 
method (RJMCMC).  
  We take the circadian clock of Arabidopsis as a case study. We validate the proposed 
inference methods on synthesized circadian models and test their performance under 
different experimental conditions. These methods are also compared with state-of-the-art 
methods. We then apply the best methods to infer the circadian Ca2+ signaling network using 
real experimental data. The findings of the signaling network further demonstrate the 
effectiveness of the proposed methods. 
  Next is an outline of each chapter. Chapter 2 introduces the main mathematical machinery 
to model biological systems, including dynamic models for basic biochemical reactions and 
system identification techniques employed to estimate those models.  

From chapter 3 to chapter 6, we discuss different methods to infer sparse networks. 
Chapters 3 and 4 are parametric identification methods while chapters 5 and 6 are non-
parametric. In addition, chapters 4 and 5 apply Bayesian deterministic approximation 
techniques while chapter 6 is equipped with stochastic approximations. Overall, chapter 3 
reviews one-to-one for further comparison. Chapter 5 mainly applies the existing kernel 



 

14 
 

14 

methods to identify the proposed DSFs. Chapter 4 and 6 present novel inference methods 
GESBL and RJMCMC. 

We begin with a heuristic inference method called one-to-one in chapter 3. Networks 
consisting of chain links are considered. As a complement to correlation-based methods, a 
dynamic system is estimated for each ordered pair of nodes. The method can be applied to 
infer large-scale networks.  

Chapter 4 introduces system identification under the Bayesian framework. It also discusses 
deterministic and stochastic approximations employed as two major techniques in this project. 
This chapter applies ARX and nonlinear ARX models to describe sparse networks. Group and 
element sparse Bayesian learning are combined (GESBL) to impose sparse topology and model 
parsimony.  

Chapter 5 adopts a general linear model termed DSF to describe the target network. This 
model encodes dynamics of hidden nodes whose measurement is not available. The kernel 
method endowed with empirical Bayes is applied for identification, avoiding the challenging 
problem of model selection. In this case, stability of the estimated system is guaranteed. 

Chapter 6 establishes a full Bayesian model based on DSF, where network topology is 
treated as a random quantity. A sampling method called RJMCMC is applied to explore the 
Bayesian model. RJMCMC encourages a global search of the optimal topology as well as 
unknown variables. In addition, the full Bayesian model enables evaluation of inference 
reliability.  

Chapter 7 validates all the methods by inferring the synthesized circadian systems. Millar 
models are chosen as dynamical networks analogous to the real circadian clock. Through 
Monte Carlo simulations, the proposed methods are also compared with state-of-the-art 
methods under different experimental conditions, including light transitions and sampling 
frequency. 

Chapter 8 apples the best methods according to the previous simulations to infer the 
circadian Ca2+ signaling network using real experimental data. Without prior knowledge, linear 
models are used to describe the network. The signaling network under different light 
conditions is inferred independently. The inferred networks are compared to locate the key 
clock genes that are responsible for the interaction between the circadian clock and [Ca2+]cyt 
in different light pathways. 

Chapter 9 concludes the thesis and discusses the future research. 
 
 
 
 
 
 
 
 
 
 
 
 



 

15 
 

15 

 
 
 
 
 
 
 
 
 

Chapter 2.  

Methodology 

  Much research has been conducted to learn about biological networks such as circadian 
clocks in plants. These networks consist of complex dynamics including interlocking loops 
among network components such as genes and proteins. Studying such networks through 
experimentation is normally time-consuming and expensive. Mathematical modeling has been 
a prevalent way to understand causal relationships between species and internal dynamics of 
biological networks. With the models, one can analyze intrinsic attributes of a network, predict 
network behavior under various conditions and compare dynamics of different networks.  
  Building models from data consists of two main steps: selection of model type and system 
identification from data. Dynamical systems theory provides various types of mathematical 
models, each with unique properties. Different combinations of these properties lead to 
different systems, such as nonlinear time-varying systems, nonlinear time-invariant systems 
and linear time-invariant (LTI) systems.  
  One can use nonlinear systems for modeling. The model structure is postulated to be 
consistent with the natural attributes of the target biological system while the model 
parameters are unknown (grey-box models). Describing biological systems with grey-box 
nonlinear models involves partial or complete knowledge of the regulatory topology and 
regulatory mechanisms (types of dynamical functions). In contrast, no prior knowledge and 
assumption are required to set up linear models (black-box models). However, these models 
may not have physical interpretations. 
  After choosing a model class, the next step is to identify the system using measured data. 
There is a wide range of system identification techniques available, such as Predication Error 
Minimization (PEM), Maximum Likelihood (ML), Instrumental Variable (IV) [89], Linear 
Regression, Kernel methods [40], [90], [91] and Sparse Bayesian Learning (SBL) [68], [71]. Some 
of them are only applicable for linear models while others have wider applicability. While these 
methods are highly popular and successful in different areas of applications, they also have 
limitations in network inference. For example, PEM is not able to explore network topology 
and SBL cannot impose system stability. Hence, this project contributes to improving the 
existing methods and developing novel ones.  

Next is a summary of this chapter. Section 2.1 reviews fundamental concepts of dynamic 



 

16 
 

16 

systems relevant to this work. Section 2.2 briefly discusses several basic mathematical 
equations that naturally arise in biochemical reactions. Section 2.3 discusses the basic 
principle of system identification. Finally, section 2.4 concludes the chapter and emphasizes 
the major problems to be solved. 
  The notation of this chapter is standard and will be used throughout this thesis. 𝐼 denotes 
the identity matrix. For 𝐿 ∈ ℝ3×	3, 𝑑𝑖𝑎𝑔{𝐿} denotes a vector which consists of diagonal 
elements of matrix 𝐿  and [𝐿]/B  presents the 𝑖𝑗th entry. 𝑏𝑙𝑘𝑑𝑖𝑎𝑔{𝐿5, … , 𝐿3}  is a block 
diagonal matrix. 𝑡𝑟𝑎𝑐𝑒{𝐿}  denotes the trace of the matrix. 𝐿 ≽ 0  means 𝐿  is positive 
semi-definite. ‖𝑤‖¢£¤

@  represents 𝑤¥𝐿c5𝑤 . For 𝑙 ∈ ℝ3 , 𝑑𝑖𝑎𝑔{𝑙}  denotes a diagonal 
matrix whose diagonal elements come from vector 𝑙. [𝑙]/B denotes the 𝑗th element of the 
𝑖th group of 𝑙. 𝑙 ≥ 0 means each element of the vector is non-negative. 𝑣 = 𝑙§  is also a 
vector where 𝑣/ = (𝑙/)§ .  𝑣𝑒𝑐{𝑥5, . . , 𝑥3} = [𝑥5, … , 𝑥3]′  means to vectorise elements 
{𝑥5, . . , 𝑥3} . A vector 𝑦(𝑡5:	𝑡@)  or 𝑦e¤:e¨  denotes a row vector 
[𝑦(𝑡5) 𝑦(𝑡5 + 1) ⋯ 𝑦(𝑡@)	] . 𝒩(𝑤|𝜇, Σ)  denotes a Gaussian distribution of 𝑤  with 
mean 𝜇 and covariance Σ. 

2.1 Linear and nonlinear dynamic systems 

  One of the most important steps in modeling, if not the most important, is to choose the 
model class. On one hand, the model class has to be rich enough to capture key dynamical 
behavior in the data. On the other hand, complex models may lead to over-fitting and are 
difficult to identify. This thesis is focused on time-invariant nonlinear or linear systems. For 
both simplicity of explaining the methods and to reduce computational complexity, most of 
the key developments are done for linear systems. We then explain how they can be extended 
to nonlinear systems. 
  The standard form of a continuous time-invariant nonlinear system in state space form is 
expressed as: 

(2.1.1) 
�̇�(𝑡) = 𝑓�𝑥(𝑡), 𝑢(𝑡)�									
𝑦 = ℎ�𝑥(𝑡), 𝑢(𝑡)�	 

𝑥 ∈ ℝ3, 𝑢 ∈ ℝ, 𝑦 ∈ ℝ® 
where 𝑥(𝑡) denote the state variables, 𝑢(𝑡) are the inputs to the system and 𝑦(𝑡) are the 
measured outputs. This form of a nonlinear system is quite general, the system structure is 
very flexible and it can describe complex dynamics. Although nonlinear systems are suitable 
to describe complex biochemical reaction networks, their identification can require rich 
datasets and high computational power. Given that a large amount of experimental data is 
very limited, we introduce a simpler model class known as linear systems. 
  The standard form of a continuous time-invariant linear system in state space form is:   

(2.1.2) 
�̇�(𝑡) = 𝐹𝑥(𝑡) + 𝐺𝑢(𝑡) 
𝑦(𝑡) = 𝐻𝑥(𝑡) + 𝐼𝑢(𝑡) 
𝑥 ∈ ℝ3, 𝑢 ∈ ℝ, 𝑦 ∈ ℝ® 

where 𝐹, 𝐺, 𝐻  and 𝐼  are system matrices. When modeling complex nonlinear systems, 
linear systems can be thought as linearization around some state (assuming the original 



 

17 
 

17 

nonlinear system is differentiable at that state). Then, trajectories near the linearized state can 
be good approximations of the original nonlinear system. If the linearized state is an 
equilibrium point (𝑥±, 𝑢±), then the nonlinear system (2.1.1) satisfies 𝑓(𝑥±, 𝑢±) = 0, with 
𝑦± = ℎ(𝑥±, 𝑢±). In this case, the linearized system around this equilibrium is: 

(2.1.3) 

𝛿�̇� =
𝜕𝑓
𝜕𝑥
(𝑥±, 𝑢±)𝛿𝑥 +

𝜕𝑓
𝜕𝑢
(𝑥±, 𝑢±)𝛿𝑢 

𝛿𝑦 =
𝜕ℎ
𝜕𝑥
(𝑥±, 𝑢±)𝛿𝑥 +

𝜕ℎ
𝜕𝑢

(𝑥±, 𝑢±)𝛿𝑢	 

𝛿𝑥 = 𝑥 − 𝑥±, 𝛿𝑦 = 𝑦 − 𝑦± 
 

  Most biochemical systems will have intrinsic, extrinsic and measurement noise. Noisy linear 
systems can be expressed as stochastic differential equations (SDE) [92], [93]: 

(2.1.4) 

𝑑𝑥(𝑡) = [𝐹𝑥(𝑡) + 𝐺𝑢(𝑡)]𝑑𝑡 + 𝑈Λ
5
@𝑑𝑊(𝑡)	

𝑦(𝑡) = 𝐻𝑥(𝑡) + 𝐼𝑢(𝑡) + 𝑣(𝑡) 
𝑥 ∈ ℝ3,𝑤· 	∈ ℝ3, 𝑢 ∈ ℝ, 𝑦 ∈ ℝ®, �̅� ∈ ℝ®  

where 𝑑𝑊(𝑡) is called process noise and is the increment of a Wiener process, and 𝑣(𝑡) is 
measurement noise: 

(2.1.5) 
𝑑𝑊(𝑡) = 𝑊(𝑡 + 𝑑𝑡) −𝑊(𝑡)~𝒩(0, 𝑑𝑡) 

 
  The stochastic dynamic model in (2.1.4) is just one model of noise. More complicated 
models are discussed in [92]. 
  The goal of modeling is to find the model parameters in the above equations from both 
prior knowledge and data. A common tool in system identification is called prediction error 
minimization. It is an indirect method since it first estimates a discrete-time system using 
sampled input-output data and then converts the system back to continuous-time [58], [94]. 
To discretize the continuous-time system in (2.1.4), assume the input 𝑢  takes piecewise 
constant values (Zero Order Hold) within a sampling period. The resultant discrete-time linear 
model corresponding to (2.1.4) is [92]: 

(2.1.6) 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤(𝑘)		

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝑣(𝑘) 
where 

𝐴 = 𝑒¹¥ , 𝐵 = ∫ 𝑒¹W𝑑𝜏𝐺¥
¼ , 𝐶 = 𝐻, 𝐷 = 𝐼 

𝐸{𝑤(𝑘)} = 0, 𝑐𝑜𝑣{𝑤(𝑘), 𝑤(𝑙)} = 𝑄𝛿(𝑘 − 𝑙) 

𝑄 = ∫ 𝑒¹W𝑄¾𝑒¹¿W𝑑𝜏¥
¼ , 𝑄¾ = 𝑈Λ𝑈 

𝛿(𝑘): Kronecker delta function 
T: sampling period 

 



 

18 
 

18 

  State space models are just one way to describe dynamical systems. In practice, the choice 
of mathematical models is flexible and depends on other aspects. For example, if not all the 
states can be measured, the system may not be identifiable since there may exist multiple 
realizations that explain the same input-output data. In this case, dynamical structure function 
(DSF) would describe a dynamical network by encoding hidden states as transfer functions. 
Hence, this thesis is not constrained to state space models. Rather, we will consider several 
model types including auto-regression with exogenous inputs model (ARX) and DSF. We will 
also develop corresponding identification methods to identify these models.  

2.2 Mathematical modeling of biochemical reactions 

2.2.1	Stochastic	systems	of	biochemical	reactions	
  There are two approaches widely used to describe the time evolution of a biochemical 
system. One is a deterministic approach, which treats a reaction process to be continuous and 
completely predictable. The system is described by a set of ordinary differential equations (e.g. 
reaction-rate equations described by mass action kinetics). The other method regards the 
process as stochastic due to inherent microscopic random molecular fluctuations. The 
stochastic model uses random-walk processes, governed by differential equations termed 
master equation to present the dynamics [95]. It is argued that a stochastic formulation has 
much firmer biological basis than the deterministic one [95]. However, master equations are 
usually mathematically intractable (problem of moment closure). Numeric stochastic 
simulation algorithms are typically used to simulate the chemical master equation. Such 
algorithms provide an equivalent realization of a stochastic model [95]. 
  We start by describing stochastic systems as these are more general, at the cost of increasing 
complexity in modeling, analysis and simulation. Stochastic systems can be simplified to 
deterministic systems with process noise, also known as stochastic differential equations 
(which we consider in this thesis). This subsection reviews some results from the literature on 
how to simplify stochastic systems.  
  Suppose the thermally equilibrized mixture of chemical species 𝑆/	(𝑖 = 1,… ,𝑁) with its 
molecular population or number of molecules denoted by 𝑋/(𝑡)	(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑖𝑛𝑡𝑒𝑔𝑒𝑟)  is 
contained in volume 𝑉. These N species interreact through M chemical channels 𝑅Â	(𝜇 =
1,… ,𝑀) . The stochastic reaction constant, 𝑐Â  which characterizes physical properties of 
molecules and the temperature of the system is then defined to describe the chemical kinetics 
such that: 

(2.2.1) 
𝑐Â𝑑𝑡 = average probability of a combination of reactant molecules in  

           channel 𝑅Â  will react within the next infinitesimal time interval 𝑑𝑡 
 

  This constant is also connected with the deterministic reaction-rate constant [95].  
  The stochastic reaction constant is used to derive various stochastic models to describe a 
biochemical system. One exact consequence of it is the master equation which is a traditional 
method to present the time evolution of a chemical reaction [96]: 

(2.2.2) 



 

19 
 

19 

𝑑
𝑑𝑡
𝑃(𝑥, 𝑡|𝑥¼, 𝑡¼) =AÃ𝑎B�𝑥 − 𝑣B�𝑃�𝑥 − 𝑣B, 𝑡Ä𝑥¼, 𝑡¼� − 𝑎B(𝑥)𝑃(𝑥, 𝑡|𝑥¼, 𝑡¼)Å	

Æ

B45

 

where 
𝑥 = (𝑋5,… , 𝑋Ç)¥: state vector denoting the molecular population of species 
𝑎B: propensity function 
𝑣B: state change vector 
𝑣B/: change in the number of 𝑆/  molecules due to 𝑅B  reaction 
𝑃(𝑥, 𝑡|𝑥¼, 𝑡¼): conditional probability of 𝑥(𝑡) given 𝑥(𝑡¼) 
 

  The master equation implies the time evolution of a jump-type Markov process of a state 
vector. If it can be solved, then the statistical property of a chemical process is fully known. 
However, the solution is normally mathematically intractable. 
  Another consequence of (2.2.1) is the next-reaction density function [96]: 

(2.2.3) 

𝑝(𝜏, 𝑗|𝑥, 𝑡) = 𝑎B(𝑥) expÉA𝑎§(𝑥)𝜏
Æ

§45

Ê 

0 ≤ 𝜏 ≤ ∞; 𝑗 = 1,… ,𝑀 
where 𝑝(𝜏, 𝑗|𝑥, 𝑡)  denotes the probability that next reaction 𝑅B  will occur in the 
infinitesimal time interval [𝑡 + 𝜏, 𝑡 + 𝜏 + 𝑑𝜏) given 𝑥(𝑡). 
  The next-reaction density function is the basis of stochastic simulation algorithms which 
construct realizations of the state vector and such realizations are consistent with the master 
equation [96]. Other by-products of the master equation include chemical Kramers-Moyal 
equation and Foker-Plank equation.  
  We can calculate the expected value of 𝑥/(𝑡) by multiplying the master equation in (2.2.2) 
by 𝑥/(𝑡) and sum over 𝑥. We would then obtain an equivalent set of differential equations 
given by:  

(2.2.4) 

𝑑
𝑑𝑡
𝐸(𝑥/) =A𝑣/B𝐸[𝑎B(𝑥)]

Æ

B45

 

where 𝐸(∙) denotes the expected value. As explained in [12], “whenever fluctuations are not 
important, the species evolve deterministically according to” 

(2.2.5) 

𝑑𝑥/
𝑑𝑡

=A𝑣/B𝑎B(𝑥)
Æ

B45

 

  This deterministic equation, known as reaction rate equation of conventional chemical 
kinetics, is a good approximation of the original master equation provided that the populations 
of all species are very large compared to 1. The systems and data we analyze in this thesis 
satisfy this assumption to some extent. To include some level of intrinsic noise, and also 
extrinsic noise, we next introduce stochastic differential equations, which is the model we will 
use throughout the thesis. This choice of model class strikes a balance between accuracy and 



 

20 
 

20 

complexity. 
  The stochastic differential equation derived from the mater equation in (2.2.6) is known as 
the chemical Langevin equation. This equation evaluates the uncertainty of a chemical 
reaction with considerably less complexity than the master equation, by regarding the 
chemical system as a continuous Markov process. Unlike the master equation, Langevin 
equation assumes the molecular population to be real number instead of positive integer [97]: 

(2.2.6) 

𝑑𝑥/(𝑡) =A𝑣B/𝑎B(𝑥(𝑡))𝑑𝑡
Æ

B45

+A𝑣B/𝑎B�𝑥(𝑡)�
5
@𝑁B(0,1)

Æ

B45

𝑑𝑡5/@	 

where 𝑁B(0,1) are independent Gaussian random variables with mean 0 and variance 1. The 
term, 𝑑𝑡5/@  in the equation indicates 𝑥/(𝑡)  is non-differentiable. However, for heuristic 
reasons, it is often assumed that its derivative exists [97]. As a result, a more convenient 
expression of the Langevin equation is: 

(2.2.7) 

𝑑
𝑑𝑡
𝑥/(𝑡) =A𝑣B/𝑎B(𝑥(𝑡))𝑑𝑡

Æ

B45

+A𝑣B/𝑎B�𝑥(𝑡)�
5
@ΓB(𝑡)

Æ

B45

	 

ΓB(𝑡) = lim
Ïe→¼

𝑁B(0,
1
𝑑𝑡
) 

𝑐𝑜𝑣 �ΓB(𝑡), ΓB(𝑠)� = 𝛿(𝑡 − 𝑠)	(𝐷𝑖𝑟𝑎𝑐	𝑑𝑒𝑙𝑡𝑎	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

𝛿(0)𝑑𝑡 = 1 ⇒
1
𝑑𝑡
= 𝛿(0) 

where ΓB(𝑡) are independent white Gaussian noise. 
  The Langevin equation separates a chemical reaction into two parts. The first term is the 
deterministic component of the differential equation, while the second term represents the 
random process originating from molecular random fluctuations (including both intrinsic and 
extrinsic noise). The Langevin equation belongs to the class of SDE, which supports 
mathematical modeling using general linear or nonlinear SDE. Figure 2.2.1 summarizes the 
classes of systems discussed above.  
 
 



 

21 
 

21 

 
Figure 2.2.1: Hierarchical network of mathematical modeling of biochemical reaction. 
Modeling is classified into two categories: deterministic and stochastic. They each have 
different kinds of models to describe the biochemical reaction either on a macroscopic or 
microscopic level. Grey boxes highlight main properties of the corresponding model. Green 
boxes show major steps of manipulation of transformation.  
 

2.2.2	Enzyme	kinetics	of	biological	networks	
  Biological networks are composed of a large number of biochemical reactions. Many of 
these reactions depend on proteins termed enzymes, which play a critical role in the catalysis 
of metabolites. While differential equation models were initially used to model enzyme 
kinetics, they are now used to capture dynamics of most biochemical systems. Since these 
equations play such a central role in biochemical modeling, next we review their derivation. 
  In enzyme kinetics, substrates are catalyzed into products. Models of these products have 
been derived from basic chemical mass action kinetics [18], [19]. Assume that a substrate 𝑆 
reacts with an enzyme E to form a complex 𝑆𝐸. This complex is then converted to a product 
𝑃 plus the enzyme, which is now free to react with another substrate. The entire process is 
expressed as follows [98]:  

(2.2.8) 

𝑆 + 𝐸
𝑘5
⇌
𝑘c5

𝑆𝐸
§¨→𝑃 + 𝐸 

where 𝑘5, 𝑘c5 and 𝑘@ are constants presenting the reaction rate. 
  The law of mass action indicates the rate of a reaction is proportional to the product of 
reactant concentrations. Applying the law to the expression (2.2.8) leads to a series of ordinary 
differential equations (ODE): 

(2.2.9) 



 

22 
 

22 

𝑑𝑠
𝑑𝑡
= −𝑘5𝑒𝑠 + 𝑘c5𝑐	

𝑑𝑒
𝑑𝑡

= −𝑘5𝑒𝑠 + (𝑘c5 + 𝑘@)𝑐	

𝑑𝑐
𝑑𝑡

= 𝑘5𝑒𝑠 − (𝑘c5 + 𝑘@)𝑐	

𝑑𝑝
𝑑𝑡

= 𝑘@𝑐 

where 𝑠, 𝑒, 𝑐 and 𝑝 denote the concentration of 𝑆, 𝐸, 𝑆𝐸 and 𝑃, respectively. Note that 
since enzyme 𝐸  is only a catalyst which facilitates the reaction, its total concentration is 
conserved. This feature of the enzyme is also reflected from the equation (2.2.10): 

(2.2.10) 
𝑑𝑐
𝑑𝑡
+
𝑑𝑒
𝑑𝑡

= 0	 ⟹ 𝑐 + 𝑒 = 𝑒¼ = 𝑐𝑜𝑛𝑡	 

  Substituting (2.2.10) into (2.2.9) simplifies the model to three ODE equations: 
(2.2.11) 

𝑑𝑠
𝑑𝑡
= −𝑘5𝑒¼𝑠 + (𝑘c5 + 𝑘5𝑠)𝑐	

𝑑𝑐
𝑑𝑡

= 𝑘5𝑒¼𝑠 − (𝑘c5 + 𝑘5𝑠 + 𝑘@)𝑐	

𝑑𝑝
𝑑𝑡

= 𝑘@𝑐 

  The ODEs in (2.2.11) are solved by assuming the formation of complex 𝑆𝐸 is very fast, after 
which its equilibrium of the reaction can be reached. This is also known as the quasi-steady 
state approximation [99]. Such assumption is reasonable if the concentration of the enzyme is 
small compared with the substrate [98]: 

(2.2.12) 
𝑑𝑐
𝑑𝑡

= 0 

𝑐(𝑡) =
𝑒¼𝑠(𝑡)

𝑠(𝑡) + 𝐾
 

				𝑣 = −		
𝑑𝑠
𝑑𝑡

=
𝑑𝑝
𝑑𝑡

=
𝑘@𝑒¼𝑠
𝑠 + 𝐾

	 

where 𝐾 = §£¤�§¨
§¤

 is called the Michaelis constant. Equation (2.2.12) is known as Michaelis-

Menten kinetics. 
  The above example discusses the case where the enzyme has one binding site so that it can 
only combine with one substrate molecule. However, in practice, an enzyme can have multiple 
binding sites. A reaction is called cooperative if an enzyme is able to bind more than one 
substrate molecules. One feature of cooperative reactions is that the binding of one substrate 
molecule at one site can influence the following binding of other substrate molecules to the 
remaining binding sites and this behavior is called allosteric effect [18]. If a substrate after 
binding to one site promotes the binding activity at another site, this substrate is known as an 
activator. Otherwise, it is an inhibitor. This phenomena is described by another function called 



 

23 
 

23 

the Hill function [98]: 
(2.2.13) 

𝑉 =
𝑄𝑠3

𝐾 + 𝑠3
	 

where 𝑉  is reaction velocity, 𝑄  and 𝐾  are constants, and 𝑛  is positive but not 
necessarily an integer. 
  A reaction can have positive, zero or negative cooperativity if 𝑛 < 1, 𝑛 = 1 or 𝑛 > 1, 
respectively. Cooperativity indicates whether a substrate is an activator or inhibitor. 
  Michaelis-Menten kinetics and Hill functions are currently used not only to model enzyme 
kinetics, but also general biochemical networks on a macroscopic level. They have proved 
quite effective in building models such as the Millar models in [59]–[61], [63], [100] describing 
the circadian system of Arabidopsis. In those models, degradation of mRNA and proteins is 
described by Michaelis-Menten functions while transcriptional activities (activation or 
inhibition) are presented by Hill functions [58]. Reaction rates of translation processes are 
directly proportional to concentrations of mRNAs. 

Mathematical models introduced to describe biochemical reactions in this section are 
established strictly on physical laws. These models fully interpret the network topology and 
internal dynamics of a biological network. Constructing such complex nonlinear models 
requires comprehensive understanding of the target network. As the target network is mostly 
unknown in practice, assumptions are often made according to experimental observations as 
a compromise. For example, the model structure of Millar models is fixed a priori during 
inference. Only model parameters that control the property of biochemical processes are 
estimated from data. Models constructed in this way can normally predict new experimental 
observations accurately, because model parameters are estimated to fit a large amount of data. 
Nevertheless, the network topology indicated by model structure may not be consistent with 
the ground truth. In particular, as the size of the network grows, updating model structure 
based on subjective hypothesis becomes prohibitive and the risk of introducing biased 
information increases. 
  To infer large-scale networks, it is essential to reduce the reliance on prior knowledge and 
assumptions. Embedding detection of network topology (i.e. determination of model 
structure) into the inference procedure can effectively avoid biased result and produce reliable 
estimation. In order to do that, a compromise is made between model complexity and 
accuracy. One method is to approximate complex nonlinear functions by pre-fixed basis 
functions. Model structure is then determined by selecting basis functions (e.g. [76], [68]). The 
demand of prior knowledge is maximally reduced by using black-box models. Black-box models 
give no insight on the connectivity between internal nodes. However, as a return, black-box 
nonlinear models are allowed to have much higher model complexity, thus representing 
dynamics of the target network more accurately. With a high degree of freedom of model 
structure, black-box nonlinear models are difficult to identify. By linearization (discussed in 
section 2.1), these models are further simplified by linear systems. Linear models have decent 
model structure. Therefore, it is more convenient to deal with hidden nodes, impose sparsity 
and promote system stability using linear models. In addition, linear models are easier to 
analyze and compare. Early work using linear models achieved great success [101]–[103]. 
Biologically, a linear model is valid if the experiment is designed so that highly nonlinear 



 

24 
 

24 

transitions are avoided and all the activities stay in a linear regime [103]. 
  This thesis focuses on linear models and grey-box nonlinear models in which a dictionary of 
nonlinear functions (e.g. Michaelis-Menten kinetics and Hill function) is used to formulate the 
model. Internal dynamics and network topology are both inferred from the data with limited 
prior knowledge and mild assumptions. In what follows, we discuss the general framework to 
identify these models. 

2.3 System identification 

  System identification consists of three stages: collecting data, selecting a model class, and 
expressing and identifying the proposed model. A thorough treatment of system identification 
can be found in [88], [89], [104], [105]. For biological systems, experimental data can come, 
for example, from microarrays or sequencing data. In practice, it is common that some species 
(e.g. proteins) of a biological network are not measured due to high experimental cost. As a 
result, only the expression level of genes (concentrations of mRNAs) is available, which is called 
incomplete data scenario [21].  
  Various types of models have been discussed in the last section, which can be used to model 
a biological network. The selection of model classes highly depends on practical conditions, 
including quality of data, computational power and prior knowledge. For example, if the data 
scenario is incomplete, linear models are more suitable to tackle non-measured species. Also, 
if the source of data is limited, a simple model class is preferred to avoid over-fitting. Overall, 
one must combine all factors to strike a balance between model complexity and inference 
accuracy. 
  Once a model class is chosen, the model can be expressed in different ways. System 
identification methods are used to estimate the proposed model. Based on the type of model 
expressions, identification methods are divided into two classes: parametric and non-
parametric. For parametric identification, the goal is to determine unknown system 
parameters [89]. For non-parametric identification, system dynamics are estimated (e.g. 
impulse responses of a linear system) [88].  
 

2.3.1	Experiment	design	
  According to the theory of system identification, the input-output data recorded from the 
conducted experiment have a critical impact on the accuracy of identified models. To produce 
maximally informative data, the system must be sufficiently excited. In other words, the 
underlying dynamical behavior of a system should be fully activated, given the designed input. 
Such inputs are called persistently exciting [89]. 
  The richness of dynamical properties of linear models can be reflected on the frequency 
domain. The frequency content of a linear model is mainly presented within a certain 
frequency band. Hence, to sufficiently excite a linear model, the frequency bandwidth of the 
input signal must at least cover the bandwidth of the system. Input signals that contain a wide 
range of bandwidth include step signals and impulse signals. Furthermore, an input must be 
able to distinguish different models in a model class. Roughly speaking, given that input, the 
frequency content of the outputs of any two different models is not identical. 
  The discussion of persistently exciting inputs for nonlinear systems is much more complex. 



 

25 
 

25 

Intuitively, an input signal must activate every node of the network for at least a certain 
amount of time across the whole experiment so that all nodes contribute to the response of 
the system to the input. 
  However, biological experimental data often do not fulfill this requirement, either because 
of constraints on experimental conditions or intrinsic properties of a biological system. For 
example, light conditions of an experiment cannot be freely adjusted. The spectrum of 
circadian clock genes tends to concentrate around the oscillation frequency. As a result, 
estimated models are only reliable within a narrow frequency domain. 
 

2.3.2	Identifiability	of	models	 	
  Identifiability is a central concept in identification problems. Given a persistently exciting 
input, identifiability is related to the question: whether different values of model parameters 
lead to equal models [89]. If the input-output property of the ground truth system can be 
equally represented by different models in the same model class, the identification problem 
is ill-conditioned because the true system is not identifiable. A model structure may not be 
identifiable at all values of model parameters. For example, a SISO second order linear system 
is not identifiable if pole-zero cancellation exists. There are no general rules to guarantee 
identifiability of all models. Hence, identifiability is discussed in terms of different model 
structures. Normally, constraints are required to guarantee the identifiability of a model 
structure and these constraints become stricter for complex models. For example, 
multivariable ARX models are globally identifiable whereas some conditions on coprime 
factorization of system matrices must be satisfied for ARMAX models [89]. We will discuss this 
issue in the following chapters with respect to particular model classes used to describe the 
target network. 
 

2.3.3	Model	selection	
  In practical applications, the selection of model classes depends on many aspects, including 
prior knowledge, engineering intuition and data. It is common that the true model class is 
unknown. Often, models are selected from the combination of multiple model classes. Even if 
the model class is known a priori, one may not adopt this model class for identification due to 
the quality of data. In practice, experimental data are limited. A complex model fits better the 
training data than a simple one. However, if the proposed model is over complicated, the 
model will fit the noise in the data, thus leading to poor prediction of new observations. Hence, 
the estimated model does not present the key dynamics of the system. Normally, an upper 
bound for the number of parameters in a model is 3 to 5 times less than the number of data 
points [90]. This over-fitting problem is commonly encountered in real-world applications. To 
avoid this problem, model complexity must be penalized (model parsimony). Information 
criteria such as AIC, BIC and MDL are widely used for this purpose. Other approaches apply 
smooth penalties for model parsimony. Introducing penalties causes a trade-off between bias 
and variance of estimation. A strong penalty can dramatically reduce estimation variance but 
also increase bias, on the other hand [106].  
 

2.3.4	Identification	methods	
  A variety of system identification techniques have been developed for diverse model classes. 



 

26 
 

26 

We briefly introduce some of them that are intimately related to the proposed methods in this 
thesis. More details will be discussed in the following chapters. 
 
1). Maximum Likelihood (ML) and Maximum A Posteriori (MAP) 
  ML and MAP are basic identification methods. They are widely applied in practice. ML treats 
model parameters as deterministic but unknown variables and estimates them by maximizing 
the likelihood function of the proposed model so that the resulting model is mostly likely to 
produce the observed data [89]. MAP follows the Bayesian framework which regards model 
parameters as random variables and introduces prior distributions to reflect initial belief. For 
example, priors can be designed for the purpose of model parsimony. Consequently, MAP 
maximizes the posterior distribution of model parameters given the observed data [90], [40]. 
 
2). Sparse Bayesian Learning (SBL)  
  SBL is widely applied in compressive sensing. The original motivation was to find a sparse 
representation for a target signal [107], [108]. Meanwhile, it has been applied by the system 
identification community to impose sparsity. Many identification problems are formulated to 
express an unknown function using basis functions from a pre-defined dictionary [68], [109]. 
Hence, a sparse representation can effectively avoid over-fitting and help detect network 
topology under the context of network inference. For example, SBL has been applied to 
inference of biochemical reaction networks [110] and online fault diagnosis for nonlinear 
power systems [111].  
  SBL adopts the Bayesian framework, where priors are introduced for model parameters. 
Nevertheless, instead of conducting a point estimate like MAP, SBL takes the mean of model 
parameters. As marginalizing the Bayesian model is intractable, SBL applies empirical Bayes to 
approximate the true distribution. This Bayesian relaxation is also applied in this thesis. 
 
3). Kernel-Based identification and Gaussian process regression  
  The kernel method as a non-parametric method is widely applied in system identification 
community and its usage is still growing nowadays [112]–[117]. A thorough survey can be 
found in [118]. The kernel method works well for both nonlinear and linear models. It identifies 
the dynamics of a system rather than estimates model parameters. Generally speaking, the 
kernel method searches for a function that characterizes the dynamics of a system (e.g. 
impulse responses of a linear system) within a functional space of infinite dimension. As a 
functional space is associated to a unique kernel function, using a kernel function that is 
consistent with the dynamical property of the target system can greatly improve estimation 
accuracy.  
  The kernel method is intimately related to Gaussian process regression [74]. Hence, the 
identification problem raised by the kernel method can be recast under the Bayesian 
framework [119]. Consequently, Bayesian methods are applied to further improve the 
algorithm performance. One important instance is to use empirical Bayes to optimize the 
parameters of the kernel function that controls the property of the functions contained in the 
functional space [117]. Moreover, if these parameters also determine network topology, this 
Bayesian routine naturally accomplishes the task of topology detection [113]. 
 



 

27 
 

27 

4). Markov chain Monte Carlo method (MCMC) 
  MCMC is a tool to draw samples from a distribution. It is frequently used in system 
identification because, in many cases, there is no analytic solution to the integral of a Bayesian 
model. With MCMC, the integral can be well estimated from samples. Compared with SBL that 
approximates the true distribution analytically, MCMC generates samples that asymptotically 
distribute as the true one. Hence, many problems that are solved using deterministic 
approximations (e.g. empirical Bayes) can also be tackled by MCMC approaches. MCMC has 
been very active in identification of nonlinear dynamical systems [120]–[123]. While it was 
also applied to infer the topology of biological networks [124], [125], little attention has been 
paid to system dynamics.  
  One of the variants of MCMC is reversible jump MCMC (RJMCMC). RJMCMC draws samples 
from a distribution whose random variables have flexible dimensionality [126]. In this project, 
we apply RJMCMC to infer networks where the dimension of random variables is related to 
the unknown topology. 
 
5). Prediction Error Minimization (PEM)  
  One of the most widely applied methods to identify linear systems is PEM. PEM is an indirect 
method to estimate a continuous-time (CT) model. It first identifies a discrete-time (DT) model 
from data and then converts it into a CT model. Although there exist methods to estimate a 
CT model directly using discrete-time data, they suffer from the difficulty in dealing with non-
measurable time-derivatives [94]. PEM has a well-established property that, if the true system 
is contained in the proposed model structure and there are infinite data points, the estimated 
model will converge to the true system with variance dying out [89]. However, since the 
available data in practice are limited and noisy, the performance of PEM is degraded [91].   

2.4 Conclusion 

  This chapter presents basic methodologies to infer biological networks. To infer a general 
network, a mathematical model is first postulated to describe the target network. With 
measured data of the network, the model is identified using system identification techniques. 
The estimated models reveal topology and internal dynamics of the unknown biological 
network. Moreover, systematic comparison of these models (using e.g. 𝜐-gap [103], [127]) 
can help locate the target of treatment or find out dynamical changes due to mutations. 
  Various types of models can be used to describe a biological network on either microscopic 
(molecular population) or macroscopic levels (species concentration). A variety of methods 
have been developed to identify different types of dynamical systems. Usually, the goal of 
identification is to construct a model that captures dynamics (input-output relation) of the 
target system with small generalization errors for the purpose of, for example, control and 
prediction. Hence, two aspects are particularly important in modeling biological systems: 
model class and model parsimony. A rich model class is chosen to effectively describe system 
dynamics while model parsimony favors models with lower complexity to reduce 
generalization errors. Nevertheless, as the internal structure of a dynamical system is not a 
main concern, model structure is not part of identification in many cases. 
  Ignoring model structure is not a problem in some applications. For example, the input-



 

28 
 

28 

output relation of a linear system is invariant under linear transformation even if its internal 
dynamics completely change. However, to fully understand biological networks, it is 
imperative to learn about internal dynamics. As model structure is intimately related to 
internal dynamics, its detection must be embedded in the identification procedure. Hence, 
many prevalent identification methods are not suitable to infer biological networks. The main 
objective of this project is to develop novel methods for network inference. The main issues 
we concern include lack of prior knowledge, incomplete measurement of network species, 
requirement of sparse network topology, constraints on system stability, scaling computational 
cost to infer large-scale networks, etc. 
  This project applies black-box LTI systems and grey-box nonlinear systems to model 
biological networks. Identification of the proposed models is based on time series data. Little 
or even no prior knowledge of the target network is necessary for inference. Internal dynamics 
and topology of the target network are both inferred from data.  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

29 
 

29 

 
 
 
 
 
 
 
 
 

Chapter	3.	 	

One-to-One	method	to	infer	dynamic	networks	

  Compared to normal system identification problems, network inference includes an 
additional step: detecting network topology. Many statistical methods have been developed 
to infer network topology in a pairwise manner [14]–[16], [25]. For example, correlation-based 
methods estimate correlations between each pair of nodes and Winner-Granger causality 
measures dependence of each ordered pair of network units. These methods require no prior 
knowledge, scale well with the size of networks and are computationally cheap. They have 
been applied to infer large-scale networks using high-throughput data. However, the main 
disadvantage of these methods is that they are focused on learning connectivity of the target 
network whereas its internal dynamics are not fully explored.  
  This chapter discusses a method that, for some links in the network, finds both topology 
and dynamics. Moreover, just like the above methods, it scales. Furthermore, inference is 
purely based on time series data without any prior knowledge. We call this method one-to-
one since it infers a link between each ordered pair of nodes.  
  This framework was initially proposed in [103] and further discussed in [102] and [128]. 
Later, this method was applied to infer the circadian clocks of Arabidopsis and Barley [103], 
[129]. Although the method is heuristic, as a co-author of some of the completed work (e.g. 
[102], [129]) and for the sake of further comparison with other proposed methods in this thesis, 
I would like to present more details about this method in this short chapter. 
  This chapter is organized as follows. Section 3.1 presents details of one-to-one. Section 3.2 
discusses the strength and weakness of one-to-one. Finally, section 3.3 concludes the chapter 
and discusses the future research. 

3.1 One-to-one method 

We infer a network in a pairwise manner like correlation-based methods. The link between 
an ordered pair of nodes in a network is described by a SISO OE model as: 

(3.1.1) 
𝑦(𝑡) = 𝐺(𝑞c5, 𝜃)𝑢(𝑡) + 𝑒(𝑡) + 𝑐 



 

30 
 

30 

where 𝐺(𝑞c5) is a strictly proper transfer function: 
(3.1.2) 

𝐺(𝑞c5, 𝜃) =
𝑏5𝑞c3�5 + 𝑏@𝑞c3�@ +⋯+ 𝑏3
𝑎5𝑞c3 + 𝑎@𝑞c3�5 + ⋯+ 1

 

   
and 𝑞c5 is the time delay operator. 𝑦(𝑡) ∈ ℝ denotes the output of the system, 𝑢(𝑡) ∈ ℝ 
the input, 𝑒(𝑡) ∈ ℝ  i.i.d. Gaussian noise and 𝑐  a constant presenting the offset of the 
system. 𝑎 and 𝑏 are model parameters contained in 𝜃 and 𝑛 is the system order. For an 
ordered pair of nodes, (𝑥, 𝑦), we associate it with a directed link, 𝑥 → 𝑦 representing a 
regulation from 𝑥 to 𝑦. Therefore, the corresponding OE model for this link takes 𝑥 as the 
input and 𝑦 as the output. 
  Model parameters 𝜃 , offset 𝑐  and system order 𝑛  are unknowns that must be 
determined. Hence, the aim of the inference problem is to identify OE models of each ordered 
pair of nodes from high-throughput time series data. For a network composed of 𝑁 nodes, 
there are 𝑁(𝑁 − 1) possible links in total. Therefore, at least 𝑁(𝑁 − 1) OE models need to 
be identified. We use the prediction error minimization (PEM) method to identify these OE 
models (function tfest in Matlab). 
  The predictor of an OE model is [89]: 

(3.1.3) 
𝑦Ú(𝑡) = 𝐺(𝑞c5, 𝜃)𝑢(𝑡) + 𝑐 

where 𝑦Ú(𝑡) is the predicted output at time instance 𝑡 given past measurements of outputs 
and inputs. 
  Model parsimony is essential for one-to-one because it avoids over-fitting and reduces 
sensitivity to undirected links that cause false positives. To impose model parsimony in 
accordance to high-throughput data, only 1st and 2nd order OE models are identified for each 
link. The AIC criterion is used to select the best system order. After modeling, we obtain a fully 
connected network, where each link is described by either a 1st or a 2nd order OE model. Model 
fitness measures how well estimated models reproduce the data. We will use this metric to 
evaluate confidence of inferred links. A threshold on fitness can be set to select true links. 
Consequently, the resulting network topology is reflected by the remaining links (in case of 
using thresholds) and their associated internal dynamics described by the OE models. In 
practice, to further reduce false positives, a stronger penalty for system order can be applied 
(e.g. AICc) or we can restrict the models to 1st order. 
  To conclude, the algorithm of one-to-one is stated below: 
 
Algorithm One-to-one method (with thresholds) 
1: Given high-throughput time series data of a network containing 𝑁 nodes. 
2: Set threshold T for model fitness. 
2: For 𝑖 = 1: 𝑁 (index of nodes as inputs) 
3:  For 𝑗 = 1:𝑁 (index of nodes as outputs) 
4:   If 𝑖 ≠ 𝑗 do 
5:    Estimate OE models of 1st and 2nd order: model = tfest(data, order) 
6:     Calculate model fitness: fitness = compare(data,model) 
7:    Calculate AIC: AIC = aic(model) 



 

31 
 

31 

8:    Keep the model with the lowest AIC 
9:    Store the model if its model fitness is higher than threshold T 
10:   end if 
11:  End for 
12: End for 
 

Note that offset c in the model can be seen as the output of a zero order model with a step 
function as the input. Hence, the resulting OE model has two inputs: the actual input of the 
model and a second “virtual” input that represents offset c. The offset can be estimated along 
with transfer function 𝐺(𝑞c5, 𝜃) using Matlab code tfest(data, [order, 0]). 

3.2 Discussion 

One-to-one is straightforward to implement and has low computational cost. Therefore, it 
can be used to infer large-scale networks. In particular, one-to-one can be used to reveal 
interactions among nodes where a complete inference of the network is not needed. As one-
to-one only estimates low order models, the method is suitable to deal with high-throughput 
data. 

The methods using pairwise inference schemes (e.g. correlation-based methods and 
information theoretic methods) can suffer from three types of systematic prediction errors: 
fan-out error, fan-in error and cascade error [130]. Fan-out error happens when a node is 
controlling more than one other node. In this case, those regulated nodes usually show 
dependence in the inferred network even if they are not linked by directed edges in the true 
network. Fan-in error is caused by a node regulated by more than one other node. This is an 
intrinsic error of the pairwise inference framework. Cascade error is due to shortcuts between 
two nodes, where there is an indirect pathway from one node to the other. 

One-to-one is robust to fan-out error because dependence among nodes is determined by 
the identified dynamics of regulations represented by models rather than by statistical tests 
of correlations. Nevertheless, one-to-one can still be influenced by fan-in and cascade errors. 
For fan-in error, each node in the network can only be controlled by at most one other node. 
One-to-one may still work with multiple inputs if they share similar dynamics.  

Regarding cascade error, one-to-one cannot distinguish direct links from indirect ones thus 
leading to false positives. For example, if node A is controlled by node C via an intermediate 
node B and both links can be described by 1st models (Figure 4.2.1), this indirect link from node 
C to node A can be expressed by a 2nd model. One-to-one picks this indirect link with high 
fitness causing a false positive. This cascade error is due to the fact that regulations from other 
nodes to the target node are explored independently. In fact, given node B, node C has no 
contributions to node A. Unfortunately, one-to-one is not able to detect such dependence. 
Nevertheless, if an indirect link passes through many nodes or intermediate links have complex 
dynamics, this error may be avoided because an OE model up to 2nd order cannot represent 
complex dynamics of that indirect link. As a result, one-to-one filters out transitive pathways 
containing more than two direct links. Another way to reduce cascading error is to determine 
whether the product of the transfer functions from C to B and B to A is similar to the transfer 
function from C to A. If so, the inferred link from C to A is likely to be a false positive. 



 

32 
 

32 

 

 

Figure 3.2.1: A chain link. A, B and C present three nodes. Red solid arrows denote direct links. 
The red dashed arrow presents a shortcut from C to A. Two direct links are described by 1st 
order OE models. Although the link from C to A does not exist, the relation between A and C 
can be well expressed by a 2nd order OE model if noise and offset are small. 

3.3 Conclusion 

  This chapter presents a model-based method called one-to-one to infer biological networks 
using high-throughput data. Both network topology and internal dynamics of the target 
network are inferred from data. The network is reconstructed in a pairwise manner. An OE 
model is estimated for each ordered pair of nodes representing dynamics of a one-way 
regulation, where one node is treated as the input and the other as the output. Models are 
selected using the AIC criterion to avoid over-fitting. A threshold is set to discard models with 
low fitness.  
  One-to-one is easy to implement and can be applied to general large biological networks 
with no prior knowledge. This method demands very limited data because only low order 
models are estimated, thus suitable to deal with high-throughput experimental data with a 
small number of samples. The computational burden of one-to-one is light and scales 
quadratically with respect to the number of nodes. Therefore, it can be used to infer large-
scale networks. 
  Nevertheless, one-to-one has several drawbacks. First of all, it is only suitable to infer 
networks consisting of chain links. Systematic errors occur if a node is controlled by more than 
one node. One-to-one also suffers from cascade error if fast dynamics exist in a pathway that 
can be well approximated by low order systems. Hence, this method cannot distinguish direct 
links from indirect links, leading to false positives. As the complexity of the target network 
grows, the performance of one-to-one is expected to degrade since internal dynamics of the 
network cannot be fully interpreted by OE models up to 2nd order. Additionally, inputs of the 
network are not considered by one-to-one. 
  For future developments, one-to-one can be improved in two ways. First, more advanced 
mathematical models should be used to describe networks to capture complex internal 
dynamics. Second, the proposed inference method should infer interactions among nodes 
simultaneously rather than independently to avoid cascade error and fan-in error.  
 
 
 



 

33 
 

33 

 
 
 
 
 
 
 
 
 

Chapter	4.	 	

Applied	 Sparse	 Bayesian	 Learning	 to	 sparse	 network	

inference	

  Many large biological networks, e.g. metabolic and genetic networks have sparse network 
topologies [131]–[133]. Indeed, most molecules have great affinity and can bind to only a 
small number of other molecules [19]. Hence, within the field of molecular biology, it is 
reasonable to impose sparse network topologies during inference. Different methods handle 
sparsity constraints in different ways. For example, mutual information based methods 
measure dependence between each pair of nodes, which is used to decide the network 
topology (i.e. selection of edges) based on a heuristic threshold [134], [135]. Several model-
based methods, that identify internal dynamics of a biological system, introduce penalties or 
prior distributions to implicitly or explicitly impose sparse network topologies during inference. 
Examples include Gaussian process via estimation of hyperparameters of kernel functions 
[136], [137], compressive sensing via Lasso type penalties [138] and hierarchical Bayesian 
regression via prior distribution of model parameters [139]. Network topology and internal 
dynamics are intimately related and they must be learned simultaneously. Incorporating 
sparsity as prior knowledge of network topology into inference can greatly improve accuracy 
of estimated models. 
  Although the one-to-one method presented in the previous chapter is a model-based 
approach, it produces sparse networks through a heuristic threshold for model fitness. One-
to-one infers a network in a pairwise manner that highly relies on data-fitting. Model 
parsimony is only considered locally for individual edges (i.e. model selection via AIC for 
estimated 1st and 2nd order models) whereas promoting sparse network topologies requires 
global model parsimony for the entire network, i.e. models for some edges are directly 
eliminated during identification to reduce global model complexity (e.g. sum of equally 
weighted system order of all edges). Although inferring all edges simultaneously is essential 
to avoid systematic errors of inference, an exact optimization of model parsimony can be 
computationally prohibitive for large-scale networks because it demands an exhaustive search 
of all possible topologies.  
  This chapter resorts to compressive sensing frameworks to relax the problem of model 



 

34 
 

34 

selection. A weighted penalty is used to impose sparsity of network topology. While the 
weight for penalties normally requires tuning (e.g. cross validation), we apply a technique 
called sparse Bayesian learning (SBL) that is tuning-free.  
  Linear multivariable ARX models are used to describe sparse biological networks. 
Identification of the model is performed directly from time series data without any prior 
knowledge. The novelty of the proposed method lies on the combination of element and 
group sparse Bayesian learning to introduce penalties for complexity, both in terms of 
element (order of non-zero connections) and group sparsity (network topology). The 
framework is further extended to nonlinear ARX models. Data from simulated random 
networks indicate that our method, on average, performs better than previous methods, with 
considerably higher performance when networks have few links (as, for example, in the case 
of as ring structures). Simulation results will be presented in chapter 6 to have a comparison 
with other proposed methods. 
  This chapter is organized as follows. Section 4.1 introduces the background of sparse 
network inference. Section 4.2 discusses commonly used MAP approaches and Bayesian 
frameworks to impose sparsity patterns. Section 4.3 introduces full Bayesian models and 
Bayesian techniques to tackle intractable Bayesian estimation. Section 4.4 presents variational 
representation of sparsity inducing prior distributions and section 4.5 discusses SBL and its 
underlying mechanisms. Section 4.6 introduces multivariable ARX models, while section 4.7 
formulates the network reconstruction problem. Section 4.8 proposes combined group and 
element sparse Bayesian learning (GESBL) and section 4.9 presents algorithms to solve the 
proposed inference problem. Section 4.10 extends the framework to nonlinear ARX models. 
Section 4.11 concludes the chapter. 

4.1 Sparse network inference 

  Sparsity is an inherent property of many practical networks. In biology, most molecules bind 
with a small number of other molecules. Hence, sparsity can be used as a constraint to model 
networks and compensate for the sometimes low number of samples and high amount of 
noise. 
  As we assume no prior knowledge of the target network and would rather infer the network 
purely based on measured data, black-box linear models defined in terms of inputs and 
outputs can be adopted to describe networks, including ARX, ARMAX and Box-Jenkins. 
Standard system identification methods, such as the prediction error method (PEM) or 
Maximum-likelihood (ML), are applicable to identify these models [89], [140], [141]. However, 
these methods alone do not capture topology and sparsity with finite source of data. For 
example, assuming no prior knowledge of the topology, PEM generates full transfer matrices 
even if the ground truths are sparse [113]. That is because these methods only identify input-
output relationships of a system via data-fitting rather than exploring internal structure and 
dynamics. 
  A remedy is to promote model parsimony to favor sparsity. Under the Bayesian framework, 
model parsimony is realized by introducing prior distributions. Bayesian inference methods 
such as hierarchical Bayesian regression (HBR) [90] are effective to infer sparse networks. 
Although these methods enable evaluation of uncertainty of inferred networks, they require 



 

35 
 

35 

an exhaustive search of all possible topologies, thus being computationally demanding. 
Maximum a posteriori methods (Type I method) including least absolute shrinkage and 
selection operator (LASSO), Tikhonov regularization, FOcal Underdetermined System Solver 
(FOCUSS) and SGL are all methods that penalize model complexity through deterministic 
optimization [107], [142]–[144]. For example, a LASSO algorithm was used to infer the 
topology of a linear MIMO system from steady-state data [145]. Similar work inferred sparse 
multivariable ARX models with the fixed polynomial order using a greedy algorithm, Block 
Orthogonal Matching Pursuit (BOMP) [146], to favor sparse network topologies [147].  
  Whilst these approaches effectively reduce over-fitting, the weighting variable, which 
controls the trade-off between data-fitting and model complexity (sparsity), must be a priori 
chosen or evaluated independently, using methods such as cross-validation. Unfortunately, 
this increases the computational burden, causes information waste and can bias the solution.  
  There are, however, alternative methods that do not require tuning variables. One such 
method is sparse Bayesian learning (Type II method). SBL is a well-known method in machine 
learning and widely applied for compressive sensing. SBL can be recast as a specific type of 
MAP methods, where the particularity lies on the usage of inseparable penalties to promote 
sparsity [71], [108], [148], [149]. SBL has also been introduced to system identification 
community. It was applied to identify grey-box nonlinear systems [68], [110]. The nonlinear 
model structure is captured either by element SBL or by group SBL, depending on the type of 
data available and selected model classes. 
  Obtaining sparse representations, as in modeling biochemical systems, requires both 
element and group sparsity. However, currently there are no methods that combine these two 
types of sparsity constraints. Hence, this chapter considers the parametric identification of a 
sparse network described by a multivariable ARX model. The goal is two-fold: (a) to infer the 
network topology and (b) to achieve accurate estimation of model parameters including the 
polynomial order.  

4.2 Bayesian approaches and point estimation via optimization  

  Many system identification problems can be formulated and solved as a linear regression 
problem, depending on the structure of the postulated models. Various techniques have been 
developed to solve regression problems whose parameter vectors have special properties such 
as sparsity. Under the context of system identification, attributes of the formulated parameter 
vector are related to the model class that is chosen in accordance to specific applications. We 
consider methods that are developed to solve sparse linear regression problems.  
  A linear regression model is defined as follows: 

(4.2.1) 
𝑦 = Φ𝑤 + 𝜀 

where Φ ∈ ℝ3×  is a dictionary matrix consisting of basis vectors, 𝑤 ∈ ℝ  is a sparse 
vector (many elements are 0) of unknown parameters, 𝑦 ∈ ℝ3 is observed data and 𝜀 ∈ ℝ3  
is Gaussian noise with an isotropic covariance matrix [90]. The objective is to estimate 
parameter vector 𝑤, given the observed data and dictionary matrix. In many practical cases, 
a large number of basis vectors are present relative to the number of data points (𝑛 ≪ 𝑚). 
Therefore, estimating 𝑤 is an under-determined problem. Without extra constraints on 𝑤, 



 

36 
 

36 

there may exist infinite solutions. 
 

4.2.1.	Point	estimation	via	deterministic	optimization	
  A fundamental method to solve a linear regression problem is least squares. The spirit of 
this method is to find 𝑤 that can best fit the observed data in the sense of minimizing fitting 
errors measured by sum of squares [150]: 

(4.2.2) 

𝑤w = argmin
x
‖𝑦 − Φ𝑤‖@@ 

 
  The solution set is equivalent to the one of a linear equation: ΦfΦ𝑤 = 𝑦. Since Φ is fat 
and not full column rank, the solution is not unique and forms an affine set. More importantly, 
the solution is not sparse due to noisy measurements. 
  A typical remedy is to add a penalty (regularizer) to the data-fitting term leading to a 
canonical regularized optimization problem [108]: 

(4.2.3) 

𝑤 = argmin
x
‖𝑦 − Φ𝑤‖@@ + 𝜆𝑔(𝑤) 

where the least squares term measures the data-fitting error, 𝑔(∙) is a fixed function to 
penalize vector 𝑤  and 𝜆  is a non-negative tuning variable that controls the trade-off 
between data-fitting and regularization. Evaluation of 𝜆 cannot be directly embedded into 
optimization as it may cause an ill-posed problem. This variable is normally estimated using, 
for example, cross validation to reduce generalization errors. 
  The harshest penalty for sparsity is ℓ¼ norm that penalizes element-wise deviation from 
zero, where ‖𝑤‖¼ equates to the number of non-zero elements in 𝑤. Nevertheless, finding 
the global minimum of the resulting optimization problem is combinatorial thus NP-hard [108]. 
A remedy is to apply other penalties that are relaxations of ℓ¼  norm. Usually, 𝑔(∙)  is 
selected to be permutation invariant (i.e. 𝑔(𝑤) = 𝑔(𝑃𝑤) where 𝑃 is a permutation matrix), 
sign invariant (i.e. 𝑔(𝑤) = 𝑔(|𝑤|)) and concave on the positive orthant [151]. Generally, the 
solution is sparser if the penalty is more concave, thus better approximating ℓ¼  norm. 
However, the trade-off is that the number of local optima increases combinatorically as the 
concavity of penalties [107]. By using such penalties, sparsity of suboptimal solutions is 
guaranteed by Theorem 4.2.1. 
 
Theorem 4.2.1: Every local minimum of the cost function, 𝑓(𝑤) = ‖𝑦 −Φ𝑤‖@@ + 𝜆𝑔(𝑤) has 
at most 𝑛 non-zero elements regardless of the tuning variable 𝜆  if 𝑔(∙) is permutation 
invariant, sign invariant and concave on the positive orthant. 
 
Proof: 
  Assume 𝑤∗ is a local minimum of the cost function, 𝑓(𝑤) we have that: 

∃𝜖 > 0 such that ∀𝑤 ∈ 𝐶5 = {𝑤|	‖𝑤 −𝑤∗‖@ < 𝜖} 
𝑓(𝑤) > 𝑓(𝑤∗) 

  Let 𝑒∗ = 𝑦 − Φ𝑤∗ and 𝐶@ = {𝑤|	𝑦 − Φ𝑤 = 𝑒∗}. For 𝑤 ∈ 𝐶5⋂𝐶@, we have that: 
𝑔(𝑤) > 𝑔(𝑤∗) 



 

37 
 

37 

  So, 𝑤∗ is also a local minimum of the following optimization problem: 

argmin
x
𝑔(𝑤) 

Subject to: Φ𝑤 = 𝑦 − 𝑒∗ 
  Based on the theorem in [151], every local minimum of the above optimization problem has 
at most 𝑛 non-zero elements.  
 
  Theorem 4.2.1 implies that even if the global optimum cannot be achieved, suboptimal 
solutions of (4.2.3) are always sparse. 
  We illustrate some widely applied regularizers that all satisfy the conditions in Theorem 
4.2.1. One well known algorithm is LASSO that uses ℓ5-norm as the penalty [150], [144]: 

   (4.2.4) 

𝑤 = argmin
x
‖𝑦 − Φ𝑤‖@@ + 𝜆A |𝑤é|



é45
 

  The penalty function 𝑔(𝑤) = ∑ |𝑤é|
é45  is the best convex relaxation to ℓ¼  norm. 

Actually, on the positive orthant, it is a linear function. Since the cost function is convex, the 
solutions are all global optima. 
  Another proposed regularized optimization problem adopts a penalty in the form of 
Gaussian entropy [107]: 

(4.2.5) 

𝑤 = argmin
x
‖𝑦 −Φ𝑤‖@@ + 𝜆A log |𝑤é + 𝜖|



é45
 

where 𝜖 > 0. 
  As 𝜖  approaches 0, the penalty becomes steep around the origin thus resulting in an 
extremely sparse solution.  
  The last one generalizes the LASSO type algorithm and is called FOCUSS [152], [153]: 

(4.2.6) 

𝑤 = argmin
x
‖𝑦 −Φ𝑤‖@@ + 𝜆A |𝑤é|®



é45
 

where 𝑝 ∈ [0,1]. 
  The penalty in this case is 𝑙® -norm (not a valid norm defined in a strict sense). As 𝑝 
approaches 0 , the penalty becomes strongly concave and leads to sparse solutions. 
Nevertheless, the number of suboptimal solutions also increases combinatorially.   
  The algorithms presented above are designed to solve regression problems whose 
parameter vectors are element sparse. Certainly, parameter vectors are allowed to have other 
types of sparsity, for example, group sparsity and combination of both element and group 
sparsity. Penalties have also been developed to impose these kinds of sparsity. 
  If a parameter vector is group sparse, group LASSO (GLASSO) as a variant of LASSO can be 
used [154]–[156]: 

 (4.2.7)	

𝑤 = argmin
x
‖𝑦 − Φ𝑤‖@@ + 𝜆A ‖𝑤é‖

§

é45
 

where ‖∙‖  denotes the Euclidean norm and 𝑤é  is the 𝑟th group of 𝑤 . This regularizer 
penalizes the size of each group of the parameter vector. 



 

38 
 

38 

  A direct blend of GLASSO and LASSO called sparse group LASSO (SGL) was developed to 
estimate element and group sparse parameter vectors [143], [157]: 

 (4.2.8)	

𝑤 = argmin
x
‖𝑦 − Φ𝑤‖@@ + 𝜆5A |𝑤é|



é45
+ 𝜆@A ‖𝑤é‖

§

é45
 

 
  It should be noticed that all the algorithms above assign the same form of penalty functions 
to each element and group of 𝑤, and these elements and groups are penalized independently. 
We will introduce inseparable penalties induced in the Bayesian framework which not only 
impose sparse solutions but also tremendously reduce the number of local optima. 
 

4.2.2	Bayesian	framework	of	linear	regression	
  Designing penalties to regularize parameter vectors directly is non-trivial and, in most 
circumstances, intuitive. For example, one may choose Tikhonov regularization [158] to avoid 
over-fitting but ℓ5 norm to impose element sparsity [159], [145]. Furthermore, evaluation of 
the tuning variable that controls the trade-off between data-fitting and regularization often 
demands extra computation efforts. In contrast, many problems that are difficult to formulate 
directly in the way of deterministic optimization can be easily cast under the Bayesian 
framework. Formulation of identification problems is naturally derived from the stochastic 
properties of a system. Unknown parameters or functions to be determined are treated as 
random quantities and used to formulate full Bayesian models. With Bayesian techniques, 
prior distributions can be updated during inference using observed data to counteract possible 
bias caused by prior knowledge. More importantly, Bayesian frameworks enable evaluation of 
model uncertainty in contrast to a point estimation by optimization, which is essential for 
other applications (e.g. simulation and prediction). 
  The linear regression model (4.2.1) raises a conditional distribution of the observed data 
given the parameter vector. This distribution is normally called likelihood function: 

 (4.2.9) 
𝑝(𝑦|𝑤)~𝒩(𝑤|Φ𝑤, 𝜆) 

where 𝜆 is the variance of the Gaussian noise.  

  By maximizing the likelihood, max
x

𝑝(𝑦|𝑤) , a point estimate of 𝑤  is found from the 

parameter space so that the resulting model is most likely to reproduce the observed data. It 
is straightforward to see that the resulting optimization problem is the same with least squares. 
  In system identification, such an approach is called maximum likelihood (ML). The main 
advantage of ML is estimation consistency. With infinite source of data, the estimate will 
converge to the ground truth [89], [160]. Nevertheless, due to the lack of data in practice, the 
solution may not be sparse and unique. 
  Under the Bayesian framework, we incorporate prior knowledge to assist inference. 
According to Bayesian paradigms, model parameters are treated as random variables. A prior 
distribution for 𝑤  is introduced to reflect initial belief. The knowledge of 𝑤  is further 
improved once the observed data are available. Consequently, the uncertainty of model 
parameters is evaluated from the posterior distribution based on Bayes’ rules: 

(4.2.10) 



 

39 
 

39 

𝑝(𝑤|𝑦) =
𝑝(𝑦|𝑤)𝑝(𝑤)

𝑝(𝑦)  

where 
(4.2.11) 

𝑝(𝑦) = ê𝑝(𝑦|𝑤)𝑝(𝑤)𝑑𝑤 

 

  By estimating 𝑤  as the maximum of the posterior distribution: max
x

𝑝(𝑦|𝑤)𝑝(𝑤), we 

achieve another point estimation. This approach is also known as maximum a posteriori (MAP) 
[40]. It has a direct link with regularized optimization methods. By introducing a prior in the 

form of 𝑝(𝑤) ∝ exp ë	 − 5
@
𝑔(𝑤)ì, MAP results in the same regularized optimization problem 

(4.2.3). Penalties that are used to enforce sparse solutions can be introduced as factorial priors 
(permutation invariant) for the parameter vector in Bayesian models, i.e. elements of 𝑤 are 
independent random variables. Therefore, LASSO is equivalent to introducing a Laplace prior 

(𝑝(𝑤) ∝ 𝑒𝑥𝑝 ë−5
@
∑ |𝑤é|
é45 ì), Gaussian entropy to using a Jeffrey prior (𝑝(𝑤) ∝ ∏ 5

|xí�î|

é45 , 

𝜖 > 0) and FOCUSS to applying a generalized Gaussian prior (𝑝(𝑤) ∝ 𝑒𝑥𝑝 ë−5
@
∑ |𝑤é|®
é45 ì, 

𝑝 ∈ [0,1]). These priors are all sparse inducing priors widely used in Bayesian estimation [161], 
[107].  
  Bayesian inference prefers to estimate 𝑤  by evaluating the entire parameter space 
characterized by a probabilistic measure (e.g. mean of posterior distribution), which requires 
a complete knowledge of the Bayesian model. However, the posterior distribution, 𝑝(𝑤|𝑦) is 
normally known up to a constant since the integral (4.2.11) is usually intractable. This integral 
is inevitable if we want to evaluate the confidence of 𝑤 within a range (i.e. 𝑃(𝑤5 < 𝑤 ≤

𝑤@) ∝ ∫ 𝑝(𝑦|𝑤)𝑝(𝑤)𝑑𝑤x¨
x¤

). Additionally, for the purpose of prediction, we would like to 

calculate 𝑝(𝑦|𝑦ï) = ∫ 𝑝(𝑦|𝑤)𝑝(𝑤|𝑦ï)𝑑𝑤  where 𝑦ï  is the observed output. As a result, 
approximations must be made to the true Bayesian model as a compromise, namely 
approximate inference. 
  Another remarkable feature of the Bayesian framework is that it allows to update prior 
distributions during inference. Prior distributions induced by initial belief of a system can be 
inaccurate, thus causing biased estimation. Adjusting prior distributions during inference 
forms a feedback loop in the inference procedure, which generates a more robust estimate. 

4.3 Full Bayes and Empirical Bayes approaches 

  To construct priors whose properties can be adjusted with a sufficient degree of freedom, 
one can parametrize prior distributions by additional variables called hyperparameters. Full 
Bayesian treatment also regards hyperparameters as random variables and introduces priors 
for them (hyperpriors) [40], [90]. For example, a Gaussian prior is conditioned on the scale 
parameter and an Inverse-Gamma distribution can be used as the hyperprior. As a result, the 



 

40 
 

40 

final probabilistic model has a hierarchical structure. The number of layers can be increased 
by introducing other hyperparameters, each of which is conditionally independent on the 
former one [106]. Figure 4.3.1 shows a two-layer hierarchical model compared with a three-
layer counterpart. A full Bayesian model is described by a joint posterior distribution of model 
parameters and hyperparameters. For a two-layer model, we have: 

(4.3.1) 

𝑝(𝑤, 𝛽|𝑦) =
𝑝(𝑦|𝑤)𝑝(𝑤|𝛽)𝑝(𝛽)

𝑝(𝑦)  

 
  There are other ways to construct flexible prior distributions. We will discuss more details 
in the next section. For the sake of simplicity, we focus on full Bayesian models with a 
hierarchical structure in this section. 
  In practice, we evaluate the uncertainty of model parameters, 𝑤, which is indicated by the 
marginal posterior distribution: 

(4.3.2) 

𝑝(𝑤|𝑦) =
𝑝(𝑦|𝑤)𝑝(𝑤)

𝑝(𝑦) = ê𝑝(𝑤, 𝛽|𝑦)𝑑𝛽 

where 
(4.3.3) 

𝑝(𝑤) = ê𝑝(𝑤|𝛽)𝑝(𝛽)𝑑𝑤 

 
  The construction of such hierarchical models seems cumbersome. As the actual prior is 
𝑝(𝑤) = ∫𝑝(𝑤|𝛽)𝑝(𝛽)𝑑𝑤 instead of 𝑝(𝑤|𝛽), the question is why not use 𝑝(𝑤) directly?  
  The reason to apply hierarchical models is three-fold. First, we should note that although 
the expression of 𝑝(𝑤) may be complex or even intractable, its decomposition 𝑝(𝑤|𝛽) and 
𝑝(𝛽) are analytical. In other words, hierarchical structure provides a flexible way to postulate 
novel priors. Another benefit is that 𝑝(𝑤, 𝛽|𝑦) can be easily evaluated up to a normalization 
constant even if 𝑝(𝑤|𝑦) does not have a closed form. In the end, we have access to 𝑝(𝑤|𝑦) 
by exploring 𝑝(𝑤, 𝛽|𝑦) numerically using, for example, sampling schemes [162], [40]. Second, 
introducing hyperparameters enriches ways to manipulate complex Bayesian models. For 
example, empirical Bayes is one of the powerful Bayesian techniques that can be used to 
approximate intractable Bayesian models where hyperparameters are optimized to minimize 
the approximation error [90]. Finally, introducing hyperparameters allows us to solve complex 
inference problems more efficiently using algorithms such as expectation-maximization [163].  
   



 

41 
 

41 

 
Figure 4.3.1: Hierarchical Bayesian model. The left one has two layers and the right one has 
three layers. Nodes present random variables and arrows indicate dependence. 
 
  Due to the intractability of integral (4.3.2) or (4.3.3), 𝑝(𝑤|𝑦) is usually not analytical. To 
deal with this problem, approximation schemes are applied to the true distribution, 𝑝(𝑤|𝑦). 
These methods fall broadly into two categories: stochastic and deterministic approximations 
[90]. Stochastic techniques rely on numerical sampling methods (e.g. Markov chain Monte 
Carlo [164]) that are able to draw samples from the full Bayesian model, 𝑝(𝑤, 𝛽|𝑦). Under 
some mild conditions and given infinite computational resource, the generated samples are 
distributed asymptotically as the true Bayesian model, 𝑝(𝑤, 𝛽|𝑦)  [90]. By using these 
samples, one can establish the empirical distribution, �̂�(𝑤|𝑦) that converges to the true 
marginal distribution, 𝑝(𝑤|𝑦) as the number of samples grows [162], [165]. In practice, 
sampling methods are often computationally demanding, thus only suitable for small scale 
problems. We will discuss stochastic approximations further in chapter 6. 
  In contrast to stochastic techniques, deterministic approximation schemes scale well to 
large applications. These methods approximate the true posterior distribution analytically [90]. 
Deterministic approximations consist of two main steps. A candidate distribution, �̂�(𝑤|𝑦) is 
first introduced to approximate 𝑝(𝑤|𝑦) . Then, a criterion that measures the distance 
between the approximate and the true distribution (𝑑(�̂�(𝑤|𝑦), 𝑝(𝑤|𝑦) ≥ 0 where 𝑑(∙,∙) 
can be a metric in some applications) is designed. Finally, the candidate distribution, �̂�(𝑤|𝑦) 
is optimized to minimize the approximation error that is measured by the metric. Two widely 
applied deterministic approximations are empirical Bayes and variational inference. In general, 
�̂�(𝑤|𝑦)  in empirical Bayes is constructed using prior, 𝑝(𝑤|𝛽) , that is conditioned on 
hyperparameters. The hyperparameters are optimized to minimize the gap between �̂�(𝑤|𝑦) 
and 𝑝(𝑤|𝑦). In contrast, variational inference expresses �̂�(𝑤, 𝛽|𝑦) = 𝑞(𝑤|𝑦)𝑞(𝛽|𝑦) as the 
factorial of mean-filed, within which factors are optimized instead of hyperparameters. 
Consequently, the true 𝑝(𝑤|𝑦) is approximated by 𝑞(𝑤|𝑦). We will focus on empirical Bayes 
in this thesis as its formulation is more straightforward and its underlying mechanisms are 
easier to analyze. 
  To be detailed, empirical Bayes can use part of the full Bayesian model to construct 
approximate distributions. The prior, 𝑝(𝑤) is expressed in a hierarchical form (e.g. 𝑝(𝑤) =
∫𝑝(𝑤|𝛽)𝑝(𝛽)𝑑𝑤). Normally, the bottom layer of the hierarchical model is discarded and the 
corresponding hyperparameter is no longer a random variable but an unknown deterministic 
parameter to be estimated.  



 

42 
 

42 

  Figure 4.3.2 shows a two-layer hierarchical model compared with the one used for 
approximations by empirical Bayes. Since the hyperparameter is not a random variable, the 
empirical Bayes model only has one layer. Hyperparameter, 𝛽 becomes a tuning variable of 
the prior expressed as 𝑝(𝑤|𝛽). 
 

 
Figure 4.3.2: Hierarchical Bayesian model and empirical Bayes model. The left one 
(hierarchical Bayesian model) has two layers and the right one (empirical Bayes model) has 
only one layer. Nodes in solid circles present random variables whilst the ones in dashed circle 
are deterministic but unknown parameters. Edges indicate independence. 
   
  Empirical Bayes approximates the true posterior distribution, 𝑝(𝑤|𝑦)  by the one 
conditioned on the fixed but unknown hyperparameter, 𝛽: 

(4.3.4) 

𝑝(𝑤|𝑦) ≈ 𝑝(𝑤|𝑦, 𝛽) =
𝑝(𝑦|𝑤)𝑝(𝑤|𝛽)

𝑝(𝑦|𝛽)
 

 
  Normally, 𝑝(𝑤|𝛽) is carefully chosen so that 𝑝(𝑤|𝑦, 𝛽) has an analytical expression. A 
traditional way is to introduce a conjugate prior for 𝑤 given likelihood 𝑝(𝑦|𝑤) [40]. 
  The hyperparameter, 𝛽 is estimated by the maximum likelihood method: 

(4.3.5) 

𝛽d = argmax
ò

𝑝(𝑦|𝛽) 

where random variable 𝑤  is marginalized out from the joint distribution, 𝑝(𝑦|𝛽) =
∫ 𝑝(𝑦|𝑤)𝑝(𝑤|𝛽)𝑑𝑤. Estimating hyperparameters in this way is called evidence maximization 
or type II maximization [90].  
  An alternative way to interpret empirical Bayes is to treat 𝑝(𝑤|𝛽) as the prior without 
introducing hyperpriors, where the density function is parametrized by hyperparameter 𝛽 
and 𝛽 is deterministic but unknown. As hyperparameter 𝛽 controls the property of 𝑝(𝑤|𝛽) 
(e.g. length scale of distributions), empirical Bayes actually optimizes the prior, 𝑝(𝑤|𝛽) 
through 𝛽 using (4.3.5) so that the prior better reflects the nature of random variable 𝑤 
according to observed data. With this optimal prior distribution 𝑝(𝑤|𝛽d) , the posterior 
distribution of 𝑤 is: 

(4.3.6) 	



 

43 
 

43 

𝑝�𝑤Ä𝑦, 𝛽d� =
𝑝(𝑦|𝑤)𝑝(𝑤|𝛽d)

𝑝(𝑦)
 

 
  Although introducing hyperparameters via the hierarchical structure of priors is 
straightforward, the criterion of empirical Bayes formulated in this way to measure the 
distance between �̂�(𝑤|𝑦)  and 𝑝(𝑤|𝑦)  is implicit. However, by applying an alternative 
representation of priors, we will have a clearer view and better insight of the underlying 
mechanisms of empirical Bayes. 

4.4 Variational representation 

  In Bayesian probabilistic models, Gaussian priors are widely used because, given a 
logarithmically quadratic likelihood, the integrals of the resulting posterior distributions that 
are normally required by, for example, model prediction and parameter estimation have 
analytical solutions. Nevertheless, in many cases, Gaussian priors are not consistent with prior 
knowledge thus causing biases to inference results. For example, a sparse prior with heavy 
tails that are not exponentially bounded can reflect sparse properties of parameters whereas 
a Gaussian prior cannot. In practice, a much richer class of priors is required. Unfortunately, 
these non-Gaussian distributions often cause intractable problems. Variational representation 
of probability distributions is an alternative way to accommodate non-gaussianity so as to take 
advantage of tractability of Gaussian models [166]. This kind of representation allows to 
describe non-Gaussian densities in a deterministic way using Gaussian distributions. Hence, 
the merit of Gaussian models is retrieved when applying deterministic approximation 
techniques. Applications of variational representation include variational inference and sparse 
Bayesian learning. 
  There are mainly three types of variational representations: a) convex bounding, b) 
hyperpriors and c) variational Bayes [166]. In particular, convex bounding and hyperpriors are 
mainly used in empirical Bayes while variational Bayes is applied in variational inference. 
  Convex bounding (convex type representation) is based on a theorem of convex analysis 
that almost all the convex functions can be presented by the supremum of affine functions as 

𝑓(𝑤) = 𝑠𝑢𝑝
ò
𝛽𝑤 − 𝑓∗(𝛽)  where 𝑓(∙)  is a convex function and 𝑓∗(∙)  is the convex 

conjugate of 𝑓(∙) [150]. The target density function is first transformed into a convex function 
(e.g. 𝑓(𝑤) = log	(𝑝(𝑤))) and then bounded by a set of affine functions [167]. In the end, 𝛽 
turns out to be the hyperparameter of the approximate density function. 
  Hyperpriors (integral type representation) introduces latent random variables 
(hyperparameters) along with their priors (hyperpriors). The target density is described in a 
hierarchical structure, where latent variables are integrated out from the joint density (i.e. 
𝑝(𝑤) = ∫𝑝(𝑤|𝛽)𝑝(𝛽)𝑑𝑦). Hyperparameter 𝛽 can be the variance or scale parameter of the 
conditional distribution, 𝑝(𝑤|𝛽) [71]. Obviously, the priors introduced in the last section 
belong to this category.  
  Instead of characterizing densities via hyperparameters, variational Bayes expresses a 
distribution in the form of factorial mean-field (e.g. �̂�(𝑤) = ∏ 𝑝/(𝑤/)3

/45 ). Variational 
inference approximates densities based on the theory of calculus of variations. Factors, 



 

44 
 

44 

𝑝/(𝑤/) of the mean-field are estimated to minimize the distance (e.g. measured by Kullback-
Leibler divergence) between the approximate and the target density. Consequently, 
𝑝(𝑤5,𝑤@, … ,𝑤3) ≈ ∏ 𝑝/(𝑤/)3

/45  [90].  
   

4.4.1	Convex	type	variational	representation	
  In this type of representation, densities are described by the supremum over Gaussian 
densities [166]: 

(4.4.1) 

𝑝(𝑤) = 𝑠𝑢𝑝
òó¼

𝒩(𝑤|0, 𝛽c5)𝜑(𝛽) 

where 𝜑(𝛽) is a positive function. 
  The expression indicates that a sufficient condition for a density to have a convex type 
representation is that − log 𝑝(√𝑤) is closed and concave on (0,∞). The following theorem 
also reveals the necessary condition for (4.4.1) to hold. 
 
Theorem 4.4.1 [166], [107]: A probability density 𝑝(𝑤) = exp[−𝑔(𝑤@)] can be expressed in 
a convex type variational form if and only if − log 𝑝�√𝑤� = 𝑔(𝑤) is concave on (0,∞) 
where 𝑔∗(∙) is a concave conjugate of 𝑔(∙) and  

𝜑(𝛽) = ö
2𝜋
𝛽
exp	[𝑔∗(

𝛽
2
)] 

 
  Many widely known densities can be expressed in this variational form including 
Generalized Gaussian containing Laplace distribution (𝑒𝑥𝑝	(−𝛾|𝑤|®) with 𝑝 ≤ 2), Student’s 
t and symmetric 𝛼-stable densities with 0 < 𝛼 ≤ 2. All these densities can be used as sparse 
inducing priors. This property of variational representation motivates a specific classification 
of distributions. 
 
Definition 4.4.1 [166]: A symmetric probability density, 𝑝(𝑤) is strongly super-gaussian if 
− log 𝑝�√𝑤� = 𝑔(𝑤)  is concave on (0, ∞)  and strongly sub-gaussian if − log 𝑝�√𝑤� =
𝑔(𝑤) is convex on (0,∞). 
 
  Almost all the sparse inducing priors are super-gaussian [108]. These priors have heavy tails 
that lead to a more concentrated peak around 0 compared to a normal Gaussian distribution. 
In practical applications where collected data are noisy, sparse inducing priors effectively 
accommodate outliers while a Gaussian distribution shifts away from zero mean, thus failing 
to impose sparse results. 
 

4.4.2	Integral	type	variational	representation	
  In contrast to convex type representation, integral type representation describes a density 
by an integral over the scale parameter of a Gaussian distribution [163]: 

(4.4.2) 

𝑝(𝑤) = ê 𝒩(𝑤|0, 𝛽)𝑑𝜇(𝛽)
ù

¼
 



 

45 
 

45 

where 𝜇(∙) is non-decreasing and bounded on (0,∞).  
  A choice for 𝜇(∙)  is a cumulative distribution function, 𝐹(𝛽) . Hence, the variational 
representation becomes: 

(4.4.3) 

𝑝(𝑤) = ê 𝒩(𝑤|0, 𝛽)𝑝(𝛽)𝑑𝛽
ù

¼
 

where 𝑝(𝛽) is the density function corresponding to 𝐹(𝛽). 
  The density, 𝑝(𝑤) is expressed in a hierarchical form with a latent random variable to be 
the scale parameter of a Gaussian distribution. For example, if the hyperprior, 𝑝(𝛽)  is 
exponentially distributed, the resulting 𝑝(𝑤) is a Laplace distribution [168]. The following 
theorem states the necessary and sufficient condition for integral type variational 
representation. 
 
Theorem 4.4.2 [166]: A density, 𝑝(𝑤) can be expressed in the integral type variational form 
if and only if 𝑝�√𝑤� is completely monotonic on (0,∞). 
 
  It should be noticed that functions that are represented in the integral type variational form 
can also be described by convex type representation [166]. Hence, convex type representation 
is more general than the integral type. In what follows, we will use convex type representation 
to develop novel inference methods. 

4.5 Sparse Bayesian Learning 

  Sparse Bayesian learning (SBL) is originally developed to solve linear regression problems 
whose parameter vector is sparse using the technique of empirical Bayes [71].  
  From the Bayesian perspective, we can establish the posterior distribution for the model, 
𝑝(𝑤|𝑦) using the likelihood function, 𝑝(𝑦|𝑤) and an introduced factorial prior distribution, 
𝑝(𝑤) that is able to induce sparsity (sparse inducing priors): 

(4.5.1) 
𝑝(𝑦|𝑤)~𝒩(𝑦|Φ𝑤, 𝜆) 

𝑝(𝑤) ∝ exp ú	−
1
2
𝑔(𝑤)û 

𝑝(𝑤|𝑦) ∝ 𝑝(𝑦|𝑤)𝑝(𝑤) 
where 𝜆 is the variance of the Gaussian noise.  
  With a sparse inducing prior, the posterior distribution is normally skewed and may have 
multiple modes. Instead of searching for the most likely value of 𝑤, SBL takes the posterior 
mean as the estimate. Since the integral of expectation is intractable, SBL applies empirical 
Bayes to approximate the true posterior distribution.  
  SBL uses convex type variational representation to describe the sparse inducing prior, 𝑝(𝑤): 

(4.5.2) 

𝑝(𝑤) =ü𝑝(𝑤é)


é45

= max
òý¼

𝒩(𝑤|𝟎, 𝐵)𝜑ò(𝛽)	



 

46 
 

46 

𝑝(𝑤é) = max
òíý¼

𝒩(𝑤é|𝟎,𝐵é)𝜑é
ò(𝛽é) 

 
  Based on the variational representation, we get a lower bound of the prior that is 
parametrized by hyperparameter 𝛽: 

(4.5.3) 
𝑝(𝑤) ≥ �̂�(𝑤|𝛽) = 𝒩(𝑤|𝟎, 𝐵)𝜑ò(𝛽) 

 
  The lower bound, �̂�(𝑤|𝛽) is used to approximate the true prior, 𝑝(𝑤). Although the lower 
bound density, �̂�(𝑤|𝛽)  is improper (i.e. its integral is not 1 ), we can still achieve a 
normalized posterior distribution of 𝑤. As the mean of the Gaussian likelihood is a linear 
function of 𝑤 , �̂�(𝑤|𝛽)  is the conjugate prior thus resulting in a Gaussian posterior 
distribution:   

(4.5.4) 

�̂�(𝑤|𝑦, 𝛽) =
𝑝(𝑦|𝑤)�̂�(𝑤|𝛽)

∫ 𝑝(𝑦|𝑤)�̂�(𝑤|𝛽)𝑑𝑤
= 𝒩(𝑤|𝜇ò, Σò) 

where Β = 𝑑𝑖𝑎𝑔{𝛽} and 
Σò = B− BΦ′(𝜆𝐼 + ΦBΦ′)c5Φ	
𝜇ò = BΦ′(𝜆𝐼 + ΦBΦ′)c5𝑦 

 
  SBL uses �̂�(𝑤|𝑦, 𝛽) to approximate the true 𝑝(𝑤|𝑦) so that the posterior mean can be 
easily calculated due to gaussianity. The gap between 𝑝(𝑤|𝑦) and �̂�(𝑤|𝑦) is measured as 
𝑑(𝑝(𝑤), �̂�(𝑤)) = ∫𝑝(𝑦|𝑤)|𝑝(𝑤) − �̂�(𝑤)|𝑑𝑤 that is the misaligned mass between the true 
prior, 𝑝(𝑤) and the approximate, �̂�(𝑤) weighted by the likelihood, 𝑝(𝑦|𝑤) [108]. It is 
easy to prove that function 𝑑(∙,∙) is a valid metric on the convex cone consisting of non-
negative functions on ℝ. Hyperpameter 𝛽 is optimized to minimize the metric: 

(4.5.5) 

𝛽d = argmin
ò
ê𝑝(𝑦|𝑤)|𝑝(𝑤) − �̂�(𝑤)|𝑑𝑤	

= argmin
ò
−ê𝑝(𝑦|𝑤)�̂�(𝑤)𝑑𝑤	

= argmax
ò
�̂�(𝑦|𝛽)	

= argmin
ò
𝑦′(𝜆𝐼 + ΦBΦ′)c5𝑦 + log|𝜆𝐼 + ΦBΦ′| − 2A log𝜑é

ò(𝛽é)


é45
 

where log 𝜑é
ò(𝛽é) is usually set to be a constant for convenience, which in turn makes the 

true prior, 𝑝(𝑤) a Student’s t distribution [71], [108]. 
  Obviously, based on the designed criterion, we end with the same ML estimation of 
hyperparameter 𝛽 discussed in (4.3.5). The resulting ML problem can be efficiently solved 
using the Expectation-Maximization (EM) algorithm. The estimation of noise variance 𝜆 can 

also be embedded into the type II maximization (4.5.5) (i.e. argmax
ò,"

�̂�(𝑦|𝛽, 𝜆)) and updated 

within each iteration of the EM algorithm. 



 

47 
 

47 

  Once 𝛽d  is determined, we achieve an approximate posterior distribution �̂��𝑤|𝑦; 𝛽d�, from 
which we can easily calculate its mean 𝜇ò#  as the estimate of 𝑤 and evaluate the confidence 

around it (e.g. ∫ 𝒩(𝑤|𝜇ò# , Σò#)
Â$#�î
Â$#cî

𝑑𝑤 ). The estimate, 𝑤w = 𝜇ò#  is sparse if 𝛽d  is sparse. 

Moreover, 𝑤w  and 𝛽d  share the same sparsity pattern. 
  SBL estimates 𝑤 by solving a dual problem (4.5.5) in a hyperparameter space. Therefore, 
it is not clear how SBL enforces sparse solutions. This question cannot be simply explained by 
the introduced sparse inducing prior as it is approximated by its lower bound in the algorithm. 
To answer the question, it is necessary to retrieve the estimation of 𝑤 back to the original 
parameter space.  

  First, note that 𝑦′(𝜆𝐼 + ΦBΦ′)c5𝑦 = min
x
𝜆c5‖𝑦 −Φ𝑤‖@@ + 𝑤fBc5𝑤 . By substituting it 

into (4.5.5), we have: 
(4.5.6) 

min
x
‖𝑦 −Φ𝑤‖@@ + 𝜆𝑔m%¢(𝑤) 

where 
(4.5.7) 

𝑔m%¢(𝑤) = min
ò
𝑤fBc5𝑤 + log|𝜆𝐼 + ΦBΦ′| − 2A log𝜑é

ò(𝛽é)


é45
 

  It is easy to see that the solution, 𝑤w  to (4.5.6) equates to 𝜇ò# . 

  According to (4.5.6), SBL is equivalent to introducing a prior 𝑝(𝑤) ∝ exp	[−5
@
𝑔m%¢(𝑤)] 

and then solving a canonical MAP problem. Nevertheless, such a prior is non-factorial in 
contrast to that of traditional MAP methods (discussed in section 4.2.1). In other words, 
elements of parameter vector 𝑤  are correlated due to non-factorial priors rather than 
independent if priors are factorial. As indicated by (4.5.7), the correlation is related to the 
predefined dictionary matrix, Φ and is also influenced by the noise variance. As a result, the 
prior is adjusted with respect to measured data. 
  More importantly, it has been shown in [108] that the penalty function, 𝑔m%¢(𝑤)  is 
equivalent to: 

(4.5.8) 

𝑔m%¢(𝑤) = min
&ý¼

A 2U𝑧é|𝑤é|


é45
− ℎ∗(𝑧) 

where ℎ∗(𝑧) is the concave conjugate of log|𝜆𝐼 + ΦBΦ′|. 
  As a result, 𝑔m%¢(𝑤) is permutation invariant, sign invariant and concave on the positive 
orthant (as it is the minimum of a family of affine functions of 𝑤). Therefore, the conditions 
of Theorem 5.2.1 are satisfied and SBL is guaranteed to produce sparse solutions. In addition, 
as the noise variance approaches 0, the global minimum of SBL is the maximally sparse 
solution to the regression problem and no MAP problem with separable penalties (factorial 
priors) can have fewer local optima than SBL if some conditions on the dictionary matrix are 
met [108]. This statement implies great advantages of SBL over normal MAP methods. 
 
Remark 4.5.1: The optimization problem (4.5.5) of SBL can also be derived using a sparse 



 

48 
 

48 

inducing prior represented in the integral type variational form and then following the 
framework of empirical Bayes (see [71]). Nevertheless, the criterion to measure the gap 
between the true posterior distribution and its approximation is implicit in this case. 
Therefore, we prefer to discuss SBL with priors represented in the convex type variational form. 
 
  Fortunately, system identification problems of many mathematical models can be recast as 
a linear regression problem. As a result, SBL can be applied to favor sparse parameter vectors, 
which in turn imposes sparse network topologies. 
 
Remark 4.5.2: So far, we have only discussed element SBL that imposes element sparsity to 
parameter vector 𝑤. If 𝑤 is group sparse, group SBL (GSBL) can be applied [169], [170], 
[148]. GSBL is a minor variant of SBL where each group of elements shares a unique 
hyperparameter so that elements in a group have the same sparsity pattern.  

4.6 Description of sparse linear networks  

  We use a parametrized multivariable ARX model, ℳ∗(𝑤∗) to describe a sparse network of 
𝑝 nodes and 𝑚 inputs [89]: 

(4.6.1) 
𝐴(𝑞c5;𝑤∗)𝑌(𝑡) = 𝐵(𝑞c5; 𝑤∗)𝑌(𝑡) + 𝐸(𝑡) 

where 
𝐴(𝑞c5; 𝑤∗) = 𝐼 + 𝐴d5𝑞c5 +⋯+ 𝐴d3(∗ 𝑞

c3(∗ 	

𝐵(𝑞c5; 𝑤∗) = 𝐵)5𝑞c5 + ⋯+ 𝐵)3*∗ 𝑞
c3*

∗
 

 
  𝑞c5  is the time shift operator. 𝑌(𝑡) ∈ ℝ®  are the nodes of the network, 𝑈(𝑡) ∈ ℝ  
denote inputs, and 𝐸(𝑡) ∈ ℝ®  are i.i.d. white Gaussian noise with a diagonal covariance 
matrix. 𝑛+∗  and 𝑛,∗  are polynomial orders (system order). 𝐴d/ ∈ ℝ®×® and 𝐵)/ ∈ ℝ®×  are 
polynomial coefficients. They are contained in the parameter vector, 𝑤∗ . 𝐴(𝑞c5;𝑤∗) is a 
polynomial matrix that implies the connectivity among nodes including self-loops. Similarly, 
𝐵(𝑞c5; 𝑤∗)  is a polynomial matrix that decides how the inputs control the nodes. The 
topology of the network is reflected by the non-zero elements in 𝐴(𝑞c5; 𝑤∗)  and 
𝐵(𝑞c5; 𝑤∗) whereas system dynamics are dominated by the input-output map of the model 
[171]: 

(4.6.2) 
𝑌(𝑡) = 𝐺-(𝑞c5; 𝑤∗)𝑈(𝑡) + 𝐺±(𝑞c5; 𝑤∗)𝐸(𝑡) 

where 𝐺∗(𝑞c5; 𝑤∗) denotes the transfer matrix of the model, ℳ∗(𝑤∗): 
(4.6.3) 

𝐺-(𝑞c5; 𝑤∗) = 𝐴c5(𝑞c5; 𝑤∗)𝐵(𝑞c5; 𝑤∗)	
𝐺±(𝑞c5; 𝑤∗) = 𝐴c5(𝑞c5; 𝑤∗)	
𝐺∗(𝑞c5;𝑤∗) = [𝐺-(𝑞c5;𝑤∗) 𝐺±(𝑞c5;𝑤∗)] 

 
  It is shown in [89] that multivariable ARX models are strictly globally identifiable with fixed 



 

49 
 

49 

system order. In practice, the true system order is unknown. For ARX model (4.6.1), we 
construct a model set of ARX, ℳ(𝑤)  that contains the ground truth model 
(∃𝑤⋆:	𝐺(𝑞c5; 𝑤⋆) = 𝐺∗(𝑞c5;𝑤∗) ) but with much higher model complexity. The system 
dynamics of ℳ(𝑤⋆) are the same with ℳ∗(𝑤∗). ℳ(𝑤⋆) is parametrized in a way that the 
coefficients of the excessive polynomial terms compared to ℳ∗(𝑤∗)  are 0  while the 
remainings are equal to 𝑤∗. It should be noticed that 𝑤⋆ is unique with respect to 𝑤∗ and 
ℳ(𝑤⋆) is globally identifiable. As a result, the identification problem of the model, ℳ(𝑤⋆) 
is well-posed. Consequently, the estimation of polynomial orders of ℳ∗(𝑤∗) is converted 
into the selection of non-zero model parameters of ℳ(𝑤) . With the estimated model, 
ℳ(𝑤⋆), the polynomial order of ℳ∗(𝑤∗) is indicated by the highest order of non-zero 
polynomial terms and model parameters of ℳ∗(𝑤∗) are shown by non-zero polynomial 
coefficients.  

4.7 Inference problem of ARX-based networks 

  Given the postulated model, we would like to formulate its identification as a linear 
regression problem and see how the sparse topology of the network and model complexity 
are reflected by the structure of the parameter vector. 
  To guarantee the ground truth model, ℳ∗(𝑤∗) is contained in the model set, ℳ(𝑤), the 
polynomial order, 𝑘 is set sufficiently large. We parameterize subsystems for each node in 
the same way. For the 𝑖th node:  

(4.7.1) 
𝑦/(𝑡) = −[𝐴(𝑞c5)]/5𝑦5(𝑡) −⋯+ {1 − [𝐴(𝑞c5)]//}𝑦/(𝑡)	
											+[𝐵(𝑞c5)]/5𝑢5(𝑡) +⋯+ [𝐵(𝑞c5)]/𝑢(𝑡) + 𝑒/(𝑡) 

 
  𝑦B(𝑡) denotes the jth node, 𝑢B(𝑡) the jth input, 𝑒/(𝑡) i.i.d. Gaussian noise and: 
 

[𝐴(𝑞c5)]// = 𝑎5//𝑞c§ + 𝑎@//𝑞c§�5 +⋯+ 𝑎§//𝑞c5 + 1	

[𝐴(𝑞c5)]/B = 𝑎5
/B𝑞c§ + ⋯+ 𝑎§c5

/B 𝑞c@ + 𝑎§
/B𝑞c5	

[𝐵(𝑞c5)]/5 = 𝑏5
/B𝑞c§ +⋯+ 𝑏§c5

/B 𝑞c@ + 𝑏§
/B𝑞c5	

𝑘 ≥ max	{𝑛+∗ , 𝑛,∗ } 
 
where 𝑎 and 𝑏 denote coefficients of polynomial terms. Hereafter, 𝑤 is a vector that only 
includes the parameters of subsystem (4.7.1) of the 𝑖th node. 
  Assume the availability of time series data collected from discrete time indices 1 to 𝑡 for 
each node and input. For the 𝑖th node, we define the following matrices and vectors: 

(4.7.2) 

𝑦 = 0
𝑦/(𝑡)	
⋮

𝑦/(𝑘 + 1)
2, 𝑤 = 0

𝑤5
⋮

𝑤®�
2 

Φ = ÃΦ5Ä⋯ ÄΦ®�Å 
𝜆 = 𝐸{𝑒/(𝑡)@}, 𝐸{𝑒/(𝑡)} = 0 



 

50 
 

50 

𝑤é = L
Ã𝑎5/é ⋯ 𝑎§/éÅ′ if			1 ≤ 𝑟 ≤ 𝑝

Ã𝑏5
/(éc®�5) ⋯ 𝑏§

/(éc®�5)Å′ if			𝑝 < 𝑟 ≤ 𝑝 + 𝑚
 

Φ53é3® = 0
−𝑦é(𝑡 − 𝑘: 𝑡 − 1)	

⋮
−𝑦é(1: 𝑘)

2, Φ®4é3®� = 5
𝑢éc®(𝑡 − 𝑘: 𝑡 − 1)	

⋮
𝑢éc®(1: 𝑘)

6 

where 𝑦 ∈ 	ℝec§	, 𝑤 ∈ 	ℝ§(®�) and 	Φ ∈ 	ℝ(ec§)×§(®�). 
  Vector 𝑤 is divided into 𝑝 + 𝑚 groups, each of which contains polynomial coefficients 
with respect to a specific node or input. For example, 	𝑤7  consists of coefficients of 
[𝐴(𝑧c5)]/7 of node 3. Elements within each group are indexed so that 𝑤éB  denotes the 𝑗th 

coefficient, 𝑎B/é of [𝐴(𝑧c5)]/é . It should be noticed that if node or input 𝑟 does not control 

node 𝑖, group 𝑤é  or 𝑤é�®  equates to 0. In addition, within each group, coefficients of 
excessive polynomial terms are 0  ( 𝑤éB = 0  if 𝑟 ≤ 𝑝 , 𝑗 > 𝑛+∗  or 𝑟 > 	𝑝 , 𝑗 > 𝑛,∗ ). 
Consequently, 𝑤 is both group and element sparse. The group sparsity pattern of estimated 
𝑤  indicates the network topology while the zero structure within each group implies 
polynomial orders. 
  With the defined matrices and vectors, we have the following model: 

(4.7.3) 
𝑦 = Φ𝑤 + 𝜀 

where 𝜀 = [𝑒/(𝑡)		𝑒/(𝑡 − 1)⋯𝑒/(𝑘 + 1)]′. 
  Hence, the identification problem is equivalent to estimating an element and group sparse 
parameter vector of a linear regression model.  
  The likelihood function based on Bayes’ rules is: 

(4.7.4) 

𝑝(𝑦|𝑤, 𝜆) =
1

(2𝜋𝜎@)
ec§
@
𝑒𝑥𝑝 `−

1
2𝜆
‖𝑦 −Φ𝑤‖@@a 

where the conditioning on the inputs and other nodes is suppressed for simplicity. It should 
be noticed that dictionary matrix Φ is correlated with the observed data, 𝑦. Hence, the 
likelihood is not trivially Gaussian. 
 
Remark 4.7.1: For a homogeneous dataset which is collected from multiple experiments 
subject to the same experimental conditions, the likelihood function is the product of that of 
individual experiment. In contrast, given a heterogeneous dataset, the problem can be 
formulated in a similar way where some groups of 𝑤 share the same sparsity pattern [172]. 
Hence, our framework can still be applied to deal with heterogeneous datasets with minor 
modifications. 
   

Although likelihood function (4.7.4) is not presented in a standard Gaussian form, its 
logarithm is a quadratic function with respect to 𝑤. By maximizing the likelihood, we end with 
the PEM method. With infinite data points, PEM is guaranteed to converge to the ground truth 
model [89]. In practice, given limited data, PEM may suffer from over-fitting. In addition, 
coefficients of the excessive polynomials of the estimate remain non-zero and the resulting 



 

51 
 

51 

network is full-connected. In other words, the estimated 𝑤 is not sparse. Therefore, penalties 
for both network topology and model complexity are essential. Referring to (4.7.2), a sparse 
network causes a group sparse 𝑤, whereas sparsity within each group indicates reduced order 
of polynomials. A direct framework of MAP to achieve those two kinds of sparsity is Sparse 
Group Lasso (SGL) [143]. Nevertheless, we resort to SBL in order to simplify the tuning process 
and achieve better performance. 
 
Remark 4.7.2: In practice, only a few networks can be sufficiently interpreted by ARX models 
whereas nonlinear ARX models (NARX) are a better choice. NARX has been widely applied in 
control engineering [173], systems biology [110] and machine learning [174]. We will see that 
our framework can be directly extended to NARX. We will discuss this issue in the following 
sections.   

4.8 Combined group and element sparse Bayesian learning 

4.8.1	Sparsity	inducing	priors	
  Full Bayesian treatment requires introducing a prior distribution for 𝑤 . We define a 

distribution 𝑝(𝑤) in a general form as: 𝑝(𝑤) ∝ exp ë−5
@
∑ 𝑔�𝑤B�B ì. Since 𝑤 is sparse, a 

sparse inducing prior like Generalized Gaussian, Student's t or Logistic is assigned to 𝑝(𝑤). 
However, estimating 𝑤  as the posterior mean is intractable because the posterior 
distribution, 𝑝(𝑤|𝑦) is non-Gaussian and not analytical.  

To tackle the problem, we apply SBL as a deterministic approximation scheme. As discussed, 
parameter vector 𝑤 is both element and group sparse. There are priors able to induce either 
of these two types of sparsity. We use these priors to construct a novel one that can impose 
both of them at the same time. 

Priors that are able to induce element sparsity to 𝑤 ∈ 	ℝ§(®�) can be expressed in the 
convex type variational form as [68], [175]: 

(4.8.1) 

𝑝(𝑤) = ü 𝑝(𝑤é)
®�

é45

= max
òý¼

𝒩(𝑤|𝟎,𝐵)𝜑ò(𝛽)	

𝑝(𝑤é) =ü𝑝(𝑤éB)
§

B45

= max
òíý¼

𝒩(𝑤é|𝟎,𝐵é)𝜑é
ò(𝛽é)	

𝑝�𝑤éB� = max
òí8ý¼

𝒩(𝑤éB|0, 𝛽éB) 𝜑éB
ò (𝛽éB) 

where subscript 𝑟 denotes the 𝑟th group in a vector and subscript 𝑗 the 𝑗th element in that 
group. 𝛽 = 𝑣𝑒𝑐9𝛽5,… , 𝛽®�: ∈ 	ℝ§(®�)  is a vector of hyperparameters and 𝛽é =
𝑣𝑒𝑐{𝛽é5, … , 𝛽é§} ∈ 	ℝ§ . 𝐵  is the covariance matrix of a Gaussian distribution and is 

parameterized by vector 𝛽  as 𝐵 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔9𝐵5,… , 𝐵®�: and 𝐵é = 𝑑𝑖𝑎𝑔{𝛽é}. 𝜑éB
ò (𝛽éB) 

is a positive function that depends on the prior, 𝑝(𝑤) . 𝜑é
ò(𝛽é) = ∏ 𝜑éB

ò (𝛽éB)§
B45  and 



 

52 
 

52 

𝜑ò(𝛽) = ∏ 𝜑é
ò(𝛽é)

®�
é45 . 

  To impose group sparsity, the hyperparameters of each group are unified so that elements 
in a group share the same sparsity pattern [110], [169]: 

(4.8.2) 

𝑝(𝑤) = ü 𝑝(𝑤é)
®�

é45

= max
;ý¼

𝒩(𝑤|𝟎, Γ)𝜑;(𝛾)	

𝑝(𝑤é) = max
;íý¼

𝒩(𝑤é|𝟎, 𝛾é𝐼) 𝜑é
;(𝛾é)	

where 𝛾 = 𝑣𝑒𝑐9𝛾5, … , 𝛾®�:ℝ®�  is a vector of hyperparameters and Γ =
𝑏𝑙𝑘𝑑𝑖𝑎𝑔9𝛾5𝐼, … , 𝛾®�𝐼:. 𝜑é

;(𝛾é) is a positive function and 𝜑;(𝛾) = ∏ 𝜑é
;(𝛾é)§

é45 . 
 
Remark 4.8.1: In practice, the group of 𝑤  that presents auto-regression of ARX can be 
excluded from the group sparsity inducing prior to improve the estimation accuracy. 
  

According to the expression of element and group sparsity inducing priors, neither of them 
is suitable to impose both kinds of sparsity. The hyperparameters in (4.8.1) are independent 
so that the resulting lower bound �̂�(𝑤|𝛽) exhibits no correlations among components within 
each group. Hence, (4.8.1) is powerless to impose group sparsity. In contrast, the lower bound 
�̂�(𝑤|𝛾)  of (4.8.2) prohibits element sparsity within each group because of the shared 
hyperparameter, thus too rigid. To promote element and group sparsity at the same time, we 
combine (4.8.1) and (4.8.2) to deduce a new distribution: 

(4.8.3) 

𝑝(𝑤) = 𝐶 max
òý¼,;ý¼

𝒩(𝑤|𝜀,B)𝒩(𝑤|𝟎, Γ)𝜑ò(𝛽)𝜑;(𝛾) 

where 𝐶 is the normalization constant that can be absorbed by positive functions 𝜑ò(𝛽) or 
𝜑;(𝛾) and is independent on hyperparameters, 𝛽 and 𝛾. 𝜀 is the expected value of 𝑤. As 
𝑤 is element sparse within each non-zero group, 𝜀 is set close to 𝟎 (‖𝜀‖ ≈ 10c7). Hence, 
we achieve an improper prior as the lower bound of the original one: 

(4.8.4) 
�̂�(𝑤) = 𝒩(𝑤|𝜀,B)𝒩(𝑤|𝟎, Γ)𝜑ò(𝛽)𝜑;(𝛾)	

≤ 𝑝(𝑤) 
 
  The prior in (4.8.4) shows that two types of sparsity are controlled by two series of 
hyperparameters, 𝛽  and 𝛾 , respectively. As 𝛾é  approaches 0 , the 𝑟 th group of 𝑤  is 
enforced to 0 regardless of 𝛽é. That means the group sparsity can be determined from a 
hyperparameter space of dimension 𝑝 + 𝑚 instead of 𝑘(𝑝 +𝑚) if only element sparsity 
inducing priors are applied. Furthermore, within a non-zero group (𝛾é > 	0), hyperparameter 
𝛽é ∈ 	ℝ§  enables extra freedom to characterize the elementary values of 𝑤é  while GSBL 
only allows one degree of freedom via 𝛾é ∈ 	ℝ . The value of these hyperparameters is 
unknown and remains to be determined using observed data. 
 
Remark 4.8.2: The conventional way to promote element and group sparsity is to use 



 

53 
 

53 

hierarchical Bayesian by introducing two hyperparameters for group and element sparsity 
independently, where one hyperparameter is conditioned on the other. However, the 
hyperparameter which is deeper in the hierarchy has a weaker impact on the inference 
procedure [163]. This means that the resulting penalty is not able to impose both group and 
element sparsity. As such, multiplying two priors makes sense since both hyperparameters 
influence 𝑤 directly.   
 

4.8.2	Bayesian	approximation	to	posterior	distribution	
  Although prior �̂�(𝑤) is improper, we can still deduce a normalized posterior distribution 
of 𝑤 as:   

(4.8.5) 

�̂�(𝑤|𝑦) =
𝑝(𝑦|𝑤)�̂�(𝑤)

∫𝑝(𝑦|𝑤)�̂�(𝑤)𝑑𝑤
 

 
  Clearly, �̂�(𝑤|𝑦) is Gaussian since 𝑙𝑜𝑔	(�̂�(𝑤|𝑦)) is a quadratic function of 𝑤: 

(4.8.6) 
�̂�(𝑤|𝑦)~𝒩(𝑤|𝜇, Σ) 

where 
Σ = [(Γc5 + 𝐵c5) + 𝜆c5Φ′Φ]c5	
𝜇 = Σ(𝜆c5Φf𝑦 − 𝐵c5ε) 

   
  The sparsity of the estimated 𝑤 (i.e. 𝐸(𝑤|𝑦) = 𝜇) depends on hyperparameters 𝛽 and 
𝛾 . They are optimized using (4.5.5), which is called evidence maximization or type II 
maximization [90], [107]: 

(4.8.7) 

(𝛽∗, 𝛾∗, 𝜆∗) = arg min
ò,;,"ý¼

ê𝑝(𝑦|𝑤)|𝑝(𝑤) − �̂�(𝑤)|𝑑𝑤	

= arg min
ò,;,"ý¼

−2 logê𝑝(𝑦|𝑤)�̂�(𝑤)𝑑𝑤	

= arg min
ò,;,"ý¼

−2 log �̂� (𝑦|𝛽, 𝛾, 𝜆) 

 
Remark 4.8.3: It should be noticed that not all the sparsity inducing priors can lead to a sparse 
solution under the framework of SBL. That is, the selection of functions 𝜑ò(𝛽) and 𝜑;(𝛾) 
influences the sparsity pattern of the final result. It was shown that one reasonable choice is 
that −𝑙𝑜𝑔𝜑(∙)  is concave and non-decreasing [108]. For simplicity, we set 𝜑(∙)  as a 
constant. Therefore, it can be ignored in the following discussions. 
 
  In fact, the estimation of 𝑤 can be embedded into problem (4.8.7) as follows: 
 
Proposition 4.8.1: The estimation of 𝑤 as the posterior mean in (4.8.6) can be embedded 
into the type II maximization (4.8.7), thus resulting in the optimization problem: 

	ℒ: min
x,ò,;,"

𝜆c5‖𝑦 −Φ𝑤‖@@ + ‖𝑤‖>£¤
@ + ‖𝑤 − 𝜀‖?£¤

@  



 

54 
 

54 

                        + log|Β + Γ| + log|𝜆𝐼 + Φ(Γc5 + Βc5)c5Φ′| 
subject to: 

𝛽 ≥ 0, 𝛾 ≥ 0, 𝜆 ≥ 0 
 
Proof: 
  First, note that: 

(A1) 

−2 logê𝑝(𝑦|𝑤)�̂�(𝑤)𝑑𝑤	

= −2 logê
1

(2𝜋𝜎@)
ec§
@
𝑒𝑥𝑝 `−

1
2𝜆
‖𝑦 − Φ𝑤‖@@a𝒩(𝑤|𝜀,B)𝒩(𝑤|𝟎, Γ)𝑑𝑤	

= −2 logê exp(𝐸x)𝑑𝑤 + log|𝜆𝐼| + log|Β| + log|Γ| 

where by ignoring all the constant terms, we have: 

𝐸x = −
1
2
Ã𝜆c5‖𝑦 −Φ𝑤‖@@ + ‖𝑤‖>£¤

@ + ‖𝑤 − 𝜀‖?£¤
@ Å 

By completing the squares: 
(A2) 

−
1
2
Ã𝜆c5‖𝑦 −Φ𝑤‖@@ + ‖𝑤‖>£¤

@ + ‖𝑤 − 𝜀‖?£¤
@ Å	

= −
1
2
Ã(𝑤 − 𝜇)fΣc5(𝑤 − 𝜇) + 𝐸:Å 

where  
Σ = [(Γc5 + 𝐵c5) + 𝜆c5Φ′Φ]c5	
𝜇 = Σ(𝜆c5Φf𝑦 − 𝐵c5ε) 

𝐸: = min
x
𝜆c5‖𝑦 −Φ𝑤‖@@ + ‖𝑤‖>£¤

@ + ‖𝑤 − 𝜀‖?£¤
@  

In addition, note that: 
(A3) 

−2 logê exp @−
1
2
[(𝑤 − 𝜇)fΣc5(𝑤 − 𝜇)]A𝑑𝑤	

= − log|Σ|	
= log|(Γc5 + 𝐵c5) + 𝜆c5Φ′Φ| 

Using (A2) and (A3), the integral (A1) becomes: 

−2 logê𝑝(𝑦|𝑤)�̂�(𝑤)𝑑𝑤	

= 𝐸: + log|(Γc5 + 𝐵c5) + 𝜆c5Φ′Φ| + log|𝜆𝐼| + log|Β| + log|Γ|	
= 𝐸: + log|𝐼 + (Γc5 + 𝐵c5)c5𝜆c5Φ′Φ| + log|𝜆𝐼| + log|Β + Γ|	
= 𝐸: + log|𝐼 + 𝜆c5Φ(Γc5 + 𝐵c5)c5Φ′| + log|𝜆𝐼| + log|Β + Γ|	
= 𝐸: + log|𝜆𝐼 + Φ(Γc5 + 𝐵c5)c5Φ′| + log|Β + Γ| 

  Consequently, we end with: 

ℒ: min
x,ò,;,"

𝜆c5‖𝑦 −Φ𝑤‖@@ + ‖𝑤‖>£¤
@ + ‖𝑤 − 𝜀‖?£¤

@  



 

55 
 

55 

                        + log|Β + Γ| + log|𝜆𝐼 + Φ(Γc5 + Βc5)c5Φ′| 
subject to: 

𝛽 ≥ 0, 𝛾 ≥ 0, 𝜆 ≥ 0 

4.9 Algorithms to solve Type II maximization 

  The optimization problem ℒ is nonlinear and non-convex. However, the cost function has 
some good properties, which encourage the usage of more advanced algorithms other than 
traditional gradient descent methods. It turns out that the cost function can be decomposed 
into a difference of two convex terms. Therefore, the optimization problem is solved as a 
Difference of Convex Programming (DCP). In addition, we prefer to employ distributed 
algorithms because, in practice, the inference problem often has to deal with large-scale 
networks and enormous datasets. We find that the resulting DCP can be further decomposed 
using Alternating Direction Method of Multipliers (ADMM) which makes it possible to tackle 
large-scale networks and utilize limited computational power more efficiently. 
 

4.9.1	Convex-Concave	Procedure	
  The cost function is separated into two parts in the following way: 

(4.9.1) 

ℒ: min
x,ò,;,"

𝑢(𝑤, 𝛽, 𝛾, 𝜆) − 𝑣(𝛽, 𝛾, 𝜆) 

where 
𝑢(𝑤, 𝛽, 𝛾, 𝜆) = 𝜆c5‖𝑦 −Φ𝑤‖@@ + ‖𝑤‖>£¤

@ + ‖𝑤 − 𝜀‖?£¤
@ 	

𝑣(𝛽, 𝛾, 𝜆) = − log|Β + Γ| − log|𝜆𝐼 + Φ(Γc5 + Βc5)c5Φ′| 
 
Proposition 4.9.1: Functions 𝑢(𝑤, 𝛽, 𝛾, 𝜆)  and 𝑣(𝛽, 𝛾, 𝜆)  are both jointly convex with 
respect to their own variables. 
 
Proof: 
  To see functions 𝑢(𝑤, 𝛽, 𝛾, 𝜆) and 𝑣(𝛽, 𝛾, 𝜆) are convex, we need to prove each term of 
these functions is jointly convex. To check the convexity of 𝑢(𝑤, 𝛽, 𝛾, 𝜆), we consider the 
epigraph of its terms defined as 𝑒𝑝𝑖	𝑓	 = 	 {(𝑥, 𝑡)|𝑥 ∈ 𝑑𝑜𝑚	𝑓, 𝑓(𝑥) < 	𝑡	} [150]. It is known 
that: 
 

𝜆𝐼 ≻ 0, 𝜆c5‖𝑦 −Φ𝑤‖@@ < 𝑡 is equivalent to 

ú
𝜆𝐼 𝑦 − Φ𝑤

(𝑦 − Φ𝑤)′ 𝑡 û ≻ 0 

 
  Hence, the term 𝜆c5‖𝑦 − Φ𝑤‖@@  is jointly convex as is same with ‖𝑤‖>£¤

@  and 
‖𝑤 − 𝜀‖?£¤

@  since their epigraphs are convex sets described by LMIs. 
  For the function 𝑣(𝛽, 𝛾, 𝜆), first note that − log|∙| is a convex function in 𝑆�. Since Β + Γ 
is an affine function of Β and Γ, − log|Β + Γ|  is jointly convex with respect to Β and Γ. 
The second term of the function seems more complex. To prove its convexity, we first consider 



 

56 
 

56 

the following lemma. A similar lemma with lower dimension of function domain can be found 
in [150]. 
 
Lemma: Suppose a function 𝑓(𝑥) = ℎ(𝑔5(𝑥), … , 𝑔§(𝑥)) where ℎ(𝑧5, … , 𝑧§):ℝ§ → ℝ	 and 
𝑔é: ℝ3 → ℝ, then 𝑓(∙) is concave if ℎ(∙) is concave and non-decreasing in each argument 
and 𝑔é  is concave. 
  The proof of this lemma is straightforward by checking the Hessian matrix: 
 

∇@𝑓 = 𝐽E′∇@ℎ𝐽E +A
𝜕ℎ
𝜕𝑧F

§

F45

|EG	∇
@𝑔F 	 

where 𝐽E denotes the Jacobian matrix of the function 𝑔 = [𝑔5,… , 𝑔§]′. 

  Let ℎ(𝑥5, 𝑥) = log|𝑥5𝐼 + Φ𝑑𝑖𝑎𝑔(𝑥)Φ′|  and 𝑔5(𝛽, 𝛾, 𝜆) = 𝜆 , 𝑔éB(𝛽, 𝛾, 𝜆) =
𝛾𝑟𝛽𝑟𝑗
𝛾𝑟+𝛽𝑟𝑗

 with 

𝑥 ∈ ℝ§(®�) , 𝑟 ∈ [1, 𝑝 +𝑚] and 𝑗 ∈ [1, 𝑘], then ℎ�𝑔5, 𝑔55, 𝑔5@, … , 𝑔(®�)§� = log|𝜆	𝐼 +
Φ(Γc5 + Βc5)c5Φ′|. Obviously, ℎ(∙) is jointly concave with respect to 𝑥5 and 𝑥. 
  Since the Hessian matrix of 𝑔5  is 0, we only need to check the gradient of ℎ(∙) with 
respect to 𝑥: 

𝜕ℎ
𝜕𝑥é

= 𝑡𝑟𝑎𝑐𝑒{Φ′(𝑥5𝐼 + Φ𝑑𝑖𝑎𝑔(𝑥)Φf)c5Φ𝑑𝑖𝑎𝑔(𝑒é)}	

= ∆éé  
where ∆= Φ′(𝑥5𝐼 + Φ𝑑𝑖𝑎𝑔(𝑥)Φf)c5Φ and 𝑒é is a vector with its 𝑟th element 1 and all 
the others 0. 
  Since matrix ∆  is at least semi-positive definite, its diagonal elements must be non-
negative. As a result, ℎ(∙)  is non-decreasing in each argument. We finally calculate the 

Hessian matrix, 𝐻 of 𝑔éB(𝛽, 𝛾, 𝜆). Note that matrix entries 𝐻II =
J¨Eí8
Jòí8

¨ , 𝐻FF =
J¨Eí8
J;í¨

 and 

𝐻IF = 𝐻FI =
J¨Eí8
Jòí8J;í

 with all the other entries 0, where 𝑞 = (𝑟 − 1)𝑘 + 𝑗  and 𝑙 = (𝑝 +

𝑚)𝑘 + 𝑟. It is always possible to find a permutation matrix, 𝑃 such that: 
 

𝑃f𝐻𝑃 = ú𝐻# 𝟎
𝟎 𝟎

û 

where 

𝐻# =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−
2𝛾é@ �𝛾𝑟 + 𝛽𝑟𝑗�

�𝛾𝑟 + 𝛽𝑟𝑗�
4

2𝛾é𝛽éB �𝛾𝑟 + 𝛽𝑟𝑗�

�𝛾𝑟 + 𝛽𝑟𝑗�
4

2𝛾é𝛽éB �𝛾𝑟 + 𝛽𝑟𝑗�

�𝛾𝑟 + 𝛽𝑟𝑗�
4 −

2𝛽éB@ �𝛾𝑟 + 𝛽𝑟𝑗�

�𝛾𝑟 + 𝛽𝑟𝑗�
4

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
  Obviously, matrix 𝐻#  is semi-negative definite so that 𝐻  is also semi-negative definite, 
which indicates function 𝑔éB(𝛽, 𝛾, 𝜆) is concave. For 𝑔5, it is an affine function. According to 
the lemma above, log|𝜆	𝐼 + Φ(Γc5 + Βc5)c5Φ′| is jointly concave with respect to 𝛽 , 𝛾 



 

57 
 

57 

and 𝜆. 
 
  Now, the optimization problem is transferred into a difference of convex programming (DCP). 
It can be solved using sequential convex optimization techniques. Here, we use convex-
concave procedure (CCCP) which is a kind of majorization-minimization (MM) algorithms using 

the linear majorization function [91], [176]. For min
9
𝑓(𝑥) where 𝑓(𝑥) = 𝑢(𝑥) − 𝑣(𝑥), and 

𝑢(𝑥) and 𝑣(𝑥) are convex, we can solve it iteratively by: 
(4.9.2) 

𝑥3�5 = argmin
9
𝑢(𝑥) − 〈𝑥,∇𝑣(𝑥3)〉 

where 〈∙,∙〉 denotes inner product. 
  Therefore, in each iteration, we solve a convex problem: 

(4.9.3) 
(𝑤3�5, 𝛽3�5, 𝛾3�5, 𝜆3�5)	

= arg min
x,ò,;,"

𝑢(𝑤, 𝛽, 𝛾, 𝜆) −
𝜕𝑣
𝜕𝜆
|òT,;T,"T𝜆 − ∇ò

f 𝑣|òT,;T,"T𝛽 − ∇;f 𝑣|òT,;T,"T𝛾 

subject to  
𝛽 ≥ 0, 𝛾 ≥ 0, 𝜆 ≥ 0 

where 

−
𝜕𝑣
𝜕𝜆

= 𝑡𝑟𝑎𝑐𝑒{Δ}	

−Ã∇ò𝑣ÅéB = �𝛽éB + 𝛾é�
c5
+
𝛾é@[ΦfΔΦ]II
(𝛽éB + 𝛾é)@

	

−
𝜕𝑣
𝜕𝛾𝑟

=AV
1

𝛾𝑟 + 𝛽𝑟𝑗
+
𝛽éB@ [ΦfΔΦ]II
(𝛾𝑟 + 𝛽𝑟𝑗)@

W
§

B45

	

Δ = [𝜆𝐼 + Φ(Γc5 + Βc5)c5Φ′]c5	
𝑞 = (𝑟 − 1)𝑘 + 𝑗 

 
  By optimizing 𝛽, 𝛾 and 𝜆 first, we get analytical expressions for their optimal solutions 
as functions of 𝑤: 

(4.9.4) 

𝛽éB
ï®e =

Äxí8cXí8Ä

YEí8
$

, 	𝛾éB
ï®e = ‖xí‖

YEí
Z

, 𝜆ï®e = ‖:c[x‖¨
UE\

 

where 

𝑔éB
ò = −Ã∇𝑣ò|òT,;T,"TÅéB	

𝑔é
; = −Ã∇𝑣;|òT,;T,"TÅé	

𝑔" = −
𝜕𝑣
𝜕𝜆
|òT,;T,"T 

 



 

58 
 

58 

  It is easy to see that solutions (4.9.2) are feasible since they are non-negative. Therefore, 
sub-problem (4.9.3) can be further simplified by substituting (4.9.4): 

(4.9.5) 

𝑤3�5 = argmin
x
Y𝑔"‖𝑦 −Φ𝑤‖@ + A ]Y𝑔é

;‖𝑤é‖@ +AY𝑔éB
ò Ä𝑤éB − 𝜀éBÄ

§

B45

^
®�

é45

 

 
  The optimization (4.9.5) can be solved as a Second Order Cone Program (SOCP). It is a 
reweighted LASSO type problem with some minor variants. The first term of the data-fitting 
error is measured by ℓ@-norm rather than by sum of squares in (4.2.8). Without estimating 
noise variance 𝜆, (4.9.5) can be reformulated into a standard reweighted SGL problem. In 
addition, the second term of (4.9.5) blends ℓ5 and ℓ@ norms to impose element and group 
sparsity of 𝑤 at the same time. The weights of these two terms are updated automatically in 
each iteration. 
  A special attention should be paid to the estimation of noise variance 𝜆 [71], [170]. Under 
some circumstances, 𝜆 can be compensated by hyperparameters thus unidentifiable. The risk 
decreases as more data points are available for identification. The estimated noise variance 
has a significant impact on the final result [169]. If the algorithm fails to produce a reasonable 
estimate of 𝜆, other schemes should be considered. One traditional method is cross validation. 
In this way, 𝜆 is not regarded as the noise variance but rather a tuning variable. Another 
approach is to fit the data first with an ARX model of high order and use the residual error as 
the approximation of the sampled noise [113]. The empirical noise variance can then be 
calculated from the error. To summarize, Algorithm 4.9.1 represents the procedure above. 
 
Algorithm 4.9.1 Solve ℒ using CCCP 
1: Initialization: set (𝛽¼, 𝛾¼, 𝜆¼) 

2: Calculate 𝑔éB
ò , 𝑔é

; and 𝑔" using (4.9.4) 

3: For 𝑡 = 1:𝑀𝐴𝑋 do 
4:   Solve the reweighted convex problem: 

𝑤3�5 = argmin
x
Y𝑔"‖𝑦 −Φ𝑤‖@ + A ]Y𝑔é

;‖𝑤é‖@ +AY𝑔éB
ò Ä𝑤éB − 𝜀éBÄ

§

B45

^
®�

é45

 

 
5:   Update 𝛽3�5, 𝛾3�5 and 𝜆3�5 using (4.9.4) 

6:   Update 𝑔éB
ò , 𝑔é

; and 𝑔" using (4.9.3) 

7:   If ‖𝑤3�5 − 𝑤3‖ ≤ 𝜖 
8:    Break 
9:   end if 
10: End for 
 

4.9.2	Alternating	Direction	Method	of	Multipliers	(ADMM)	
   If a network possesses a large number of nodes, leading to high dimensional variables, 



 

59 
 

59 

solving (4.9.5) directly will be very inefficient or even computationally infeasible due to 
hardware limitations. In this case, we split the optimization problem into a series of small scale 
sub-problems to reduce computational burden so that they can be coped with in parallel. It 
turns out that by splitting the cost function, (4.9.5) can be formulated as a sharing problem 
and solved using ADMM algorithms [109], [177]. 
  The optimization problem (4.9.5) can be treated as a sharing problem in the form of 
∑𝑓é(𝑥é) + 𝑔(∑𝑥é)  where 𝑥é  denotes the 𝑟 th group of 𝑤 , and 𝑔(∙)  and 𝑓é(∙)  are 
convex. Rewrite the sharing problem in the ADMM form: 

(4.9.6) 

𝑤3�5 = argmin
x
Y𝑔" _𝑦 − A 𝑧/

®�

é45

_

@

+ A ]Y𝑔é
;‖𝑤é‖@ +AY𝑔éB

ò Ä𝑤éB − 𝜀éBÄ
§

B45

^
®�

é45

 

subject to 
Φé𝑤é − 𝑧é = 0 

where 
Φ = ÃΦ5Ä⋯ ÄΦ®�Å 

 
  The scaled form of ADMM becomes [177]: 

(4.9.7) 

𝑤é3�5 = argmin
xí

Y𝑔é
;‖𝑤é‖@ +AY𝑔éB

ò Ä𝑤éB − 𝜀éBÄ
§

B45

+
𝜌
2
‖𝜙é𝑤é − 𝜙é𝑤é3 + Φ𝑤222223 − 𝑧̅3 + 𝑢3‖@@	

𝑧̅3�5 = argmin
&̅
Y𝑔"‖𝑦 − (𝑝 + 𝑚)𝑧̅‖@ +

(𝑝 + 𝑚)𝜌
2

‖𝑧̅ − 𝑢3 −Φ𝑤222223�5‖@@	

𝑢3�5 = 𝑢3 +Φ𝑤222223�5 − 𝑧̅3�5 
where 

Φ𝑤222223 =
1

𝑝 + 𝑚
A Φé𝑤é3
®�

é45

 

 
 The original optimization problem of 𝑤 ∈ 	ℝ§(®�) is now decomposed into a series of sub-
problems, each of which scales as 𝑤é ∈ 	ℝ§ . Hence, the computational burden per iteration 
is greatly relieved. 𝑤-update is a standard SGL problem which can be efficiently solved using 
the accelerated generalized gradient descent algorithm [143]. 𝑧̅-update is a group LASSO 

problem and has analytical solutions. Let �̂� = 𝑧̅ − :
®�

, the original 𝑧̅-update becomes: 

(4.9.8) 

�̂�3�5 = argmin
&̅

1
2
b𝑧̅ +

𝑦
𝑝 +𝑚

− 𝑢3 −Φ𝑤222223�5b
@

@
+
U𝑔"

𝜌
‖�̂�‖@ 

so that  



 

60 
 

60 

�̂�3�5 =
𝑐

‖𝑐‖@
(‖𝑐‖@ −

U𝑔"

𝜌
)� 

where 

𝑐 = −
𝑦

𝑝 +𝑚
+ 𝑢3 +Φ𝑤222223�5 

 
  Note that 𝑤-update can be solved in parallel independently. 𝑧̅ and 𝑢-update are then 
solved in sequence after collecting 𝑤-update. 
 

4.9.3	Expectation-Maximization	(EM)	
  The EM method is another traditional technique used to solve (4.8.7). It also belongs to the 
class of majorization-minimization (MM) methods and is a special case of DCA (Difference of 
Convex Functions Algorithm). While a DC function has infinite many DC decompositions, the 
way to decompose the function can greatly influence the performance of an algorithm [178]. 
  To maximize a likelihood function 𝐿(𝜃) = 𝑙𝑜𝑔	𝑝(𝑦|𝜃), EM implements Expectation (E step) 
and Maximisation (M step) iteratively. In the E step, the function, 𝑄(𝜃, 𝜃3) =
𝐸9|:,cT[log 	𝑝(𝑦, 𝑥|𝜃)] = ∫ log 𝑝(𝑦, 𝑥|𝜃)𝑝(𝑥|𝑦, 𝜃3) 𝑑𝑥  is calculated where 𝑥  is the 
unobservable latent random variable. In the M step, the optimization problem, 𝜃3�5 =
argmax 𝑄(𝜃, 𝜃3)	  is solved [179], [90]. The generated sequence, {𝜃3}  leads to the 
increased likelihood function (𝐿(𝜃3) < 𝐿(𝜃3�5)). In our case, we regard 𝑤 as the latent 
variable. Following the standard procedure of EM, the algorithm is described in Algorithm 
4.9.2. 
 
Algorithm 4.9.2 Solve ℒ using EM method 
1: Initialization: set (𝛽¼, 𝛾¼, 𝜆¼) 
3: For 𝑡 = 1:𝑀𝐴𝑋 do 
4:   E step: Formulate 𝑝(𝑤|𝛽3, 𝛾3, 𝜆3, 𝑦) 
5:    M step: solve 

(𝛽3�5, 𝛾3�5, 𝜆3�5) = argmin
x
𝐸x|òT,;T,"T{ln 𝑝(𝑦, 𝑤|𝛽, 𝛾, 𝜆)} 

5:   Update solutions of M step as: 

𝛾é3�5 =
1
𝑘
A[Σ3]II + �𝜇éB3 �

@
§

B45

	

𝛽éB3�5 = [Σ3]II + �𝜇éB3 − 𝜀éB�
@
	

𝜆3�5 =
‖𝑦 − Φ𝜇‖@@ + 𝜆3 ∑ ∑ 1 − 𝜏éB[Σ3]II§

B45
®�
é45

𝑁
 

    where 

𝜏éB = �𝛽éB3 �
c5
+ (𝛾é3)c5, 𝑞 = (𝑟 − 1)𝑘 + 𝑗, 𝑁 = 𝑘(𝑝 +𝑚) 

7:   If ‖𝜇3�5 − 𝜇3‖ ≤ 𝜖 
8:    Break 
9:   end if 



 

61 
 

61 

10: End for 
 
  The cost of EM per iteration is dominated by the inversion of covariance matrix Σ in (4.8.6). 
At first glance, the required work seems computationally demanding (𝑂[𝑘7(𝑝 +𝑚)7 ]). 
Nevertheless, by applying the Sherman-Morrison-Woodbury formula, the cost is reduced to 
𝑂([𝑘(𝑝 + 𝑚)(𝑡 − 𝑘)@]). Consequently, the total cost per iteration is 𝑂([𝑘(𝑝 + 𝑚)(𝑡 − 𝑘)@]) 
assuming the scale of the target network is large and the measured data are limited (𝑡 − 𝑘 ≪
	𝑘(𝑝 +𝑚)).  

4.10 Extension to nonlinear ARX models 

  In reality, most networks are nonlinear (e.g. genetic regulation networks). To cope with this 
fact, we extend our method to nonlinear ARX models (NARX) whose nonlinear terms are linear 
in parameters. As a grey-box model, a NARX is built based on a predefined dictionary of basis 
functions. Its identification is normally formulated as a sparse basis selection problem [111], 
[180]. 
  Consider a network with 𝑝 nodes and 𝑚 inputs: 𝐴(𝑞c5;𝑤)𝑌(𝑡) = 		𝐵(𝑞c5; 𝑤)𝑈(𝑡) +
	𝐹(𝑡; 𝑤) + 	𝐸(𝑡), where the form of matrices 𝐴(𝑞c5;𝑤) and 𝐵(𝑞c5; 𝑤) is exactly the same 
with (4.6.1). 𝐹(𝑡; 𝑤) is a vector of nonlinear functions depending on the past values of nodes 
and inputs. Each element of 𝐹(𝑡; 𝑤) is a linear combination of basis functions. The topology 
of the network is reflected by the non-zero elements in 𝐴(𝑞c5; 𝑤), 𝐵(𝑞c5; 𝑤), and nonlinear 
terms of 𝐹(𝑡;𝑤) whereas the system dynamics are dominated by the elements in these 
matrices. 
  We parametrize each node of the network in the same way as (4.7.1). For the 𝑖th node: 

(4.10.1) 
𝑦/(𝑡) = −[𝐴(𝑞c5)]/5𝑦5(𝑡) −⋯+ {1 − [𝐴(𝑞c5)]//}𝑦/(𝑡)	
											+[𝐵(𝑞c5)]/5𝑢5(𝑡) +⋯+ [𝐵(𝑞c5)]/𝑢(𝑡) + 𝐹/(𝑡) + 𝑒/(𝑡) 

  where 

𝐹/(𝑡) =AA𝑐B/é
F

B45

𝑓B/é(𝑡)
®

é45

	

𝑓B/é(𝑡) = 𝑔B/é[𝑦é(𝑡 − 𝑘: 𝑡 − 1), 𝑢(𝑡 − 𝑘: 𝑡 − 1)] 

  𝐹/(∙) is a linear combination of nonlinear basis functions 𝑔B/é(∙), depending on the past 

evolution. Coefficient vector 𝑐/  is divided into 𝑝  groups, each of which represents the 
regulation from one other node. Within each group 𝑐/é , there are 𝑙 elements corresponding 
to 𝑙 basis functions. 
  Vector 𝑐/  is group sparse since some nodes do not control the 𝑖th node. In addition, 𝑐/  is 
also element sparse within each group because only a few nonlinear terms match the 
dynamics of the network. For instance, a group of nonlinear terms (e.g. Hill functions) forms a 
dictionary to present the potential transcription activity of a transcriptional factor associated 
to a specific node (gene). The coefficients of this group are 0 if this transcriptional factor does 
not regulate the target. Besides, only a specific type of Hill functions in this group is 



 

62 
 

62 

appropriate, which is determined by whether such a transcription is repressive or active. 
  Following the same framework discussed before, identification of NARX models can be cast 
as a linear regression problem whose parameter vector is both element and group sparse. 
Therefore, the developed method in this chapter applies. 

4.11 Conclusion 

  This chapter applies multivariable ARX models to describe sparse networks. Network 
inference is performed using time series data only. Given limited data and without prior 
knowledge of the network topology and model complexity, sparsity is imposed to favor sparse 
topology and model parsimony. The identification problem is formulated as a linear regression. 
Since the parameter vector is both group (in terms of sparse topology) and element sparse (in 
terms of reduced system order), the newly proposed method (GESBL) combines group and 
element SBL to promote both kinds of sparsity. GESBL effectively enforces sparse topology (by 
using a unified hyperparameter for each group of model parameters). Meanwhile, GESBL also 
allows a sufficient degree of freedom for parameter estimation (by applying another series of 
independent hyperparameters for each element within a group). The resulting optimization 
problem is a blend of reweighted LASSO and group LASSO, which indicates the efficiency of 
GESBL to impose both kinds of sparsity. This framework is further extended to nonlinear cases.  
  Overall, the value of this approach is that model parsimony and sparsity of network topology 
are both imposed at the same time whereas normally only one of them can be achieved by 
other methods. In addition, the estimation of weighting variables is greatly simplified. While 
many real-world systems are nonlinear and cannot be well approximated by linear ARX models, 
GESBL is especially useful to identify NARX models, where group sparsity in terms of sparse 
topology and element sparsity with regard to the basis selection are equally important. 

However, our approach cannot be used to identify other complex linear models (e.g. ARMAX 
and dynamical structure functions (DSF)) because identification of these parametrized models 
cannot be formulated as a linear regression. Moreover, stability of these models as a priori 
condition is not reflected by the proposed prior distribution in our framework. Hence, there is 
no guarantee that estimated models are stable. 
  Further developments should extend this framework to identify more general models. 
Additionally, novel prior distributions must be developed to impose system stability. One of 
the options to solve these problems is kernel methods, which is discussed in the next chapter. 
 
 
 
 
 
 
 
 
 
 
 



 

63 
 

63 

 
 
 
 
 
 
 
 
 

Chapter	5.	 	

Sparse	network	inference	based	on	kernel	methods	 	

  Biological networks are complex dynamical systems containing a large number of feedback 
loops. Accurate mathematical modeling of such networks highly relies on the selected model 
class. Normally, complex models are more capable of capturing internal dynamics of a 
network than simple models. Nevertheless, identification of complex models is difficult and, 
sometimes, requires prior knowledge. NARX models discussed in the last chapter are powerful 
for interpreting interactions among biological units, however, prior knowledge about internal 
working of the target network is necessary for their construction. In contrast, establishment 
of black-box linear models demands no prior knowledge. We have used linear ARX models as 
a specific type of linear systems to describe a network. Although ARX models have a simple 
structure, they are not able to represent complex dynamics of most real-world networks. 
Therefore, we resort to linear state space models that generalize linear systems. 
  In practice, only a relatively small number of biological units can be measured. Unless there 
is priori information on unmeasured units, they cannot be modelled and thus are hidden 
nodes in the network. While most methods to identify nonlinear models require full state 
measurements, linear models can handle hidden nodes by encoding them as transfer 
functions. For an ARX model, the information of hidden nodes is implicitly encoded in 
polynomial terms. Roughly speaking, the number of hidden nodes is a monotonically 
increasing function of polynomial orders. However, applications of ARX models are limited by 
their ‘model power’. Hence, this chapter applies a general linear state space model to describe 
biological networks so that all the nodes of a network are explicitly represented by state 
variables. This chapter first explains how to remove hidden nodes from linear state space 
models. Then, by expressing a linear model non-parametrically, the problem of model 
selection is greatly simplified because there is no need to specify the number of hidden nodes 
and their corresponding biological interpretations. 
  Biological networks are naturally stable dynamical systems. Hence, it is necessary to model 
a biological network with a stable mathematical model. Stability analysis of a nonlinear model 
is difficult and enforcing system stability during its identification is even more challenging. 
Although it is possible to impose system stability to a parametrized linear model, the resulting 
identification problem can be very difficult to solve. This chapter presents a method that 



 

64 
 

64 

enforces system stability in a non-parametric way, so that the inference problem is well-posed 
and easy to solve. 
  In this chapter, we introduce dynamical structure functions (DSF) to describe a network. 
The model is derived from state space expressions whose hidden states are removed from the 
model. We express DSF models in a non-parametric way, where system properties are 
characterized by impulse responses. The objective of identification is to estimate these 
impulse responses. Hence, in contrast to the parameter estimation of one-to-one and GESBL, 
we consider functional estimation instead. To guarantee system stability, a functional space 
called reproducing kernel Hilbert space (RKHS) is established using a kernel function, any 
function within which is a stable impulse response. Consequently, the identification problem 
is formulated as to find the optimal impulse responses in that functional space. The problem 
can also be cast from Bayesian perspectives. Empirical Bayes is applied to optimize the 
hyperparameters of the kernel function that control network topology and internal dynamics. 
Simulations on ARX models show that this kernel approach is robust to process noise and 
effectively produces sparse networks. Further tests on dynamical structure functions (DSF) 
imply its strong ability to infer general linear networks. All the simulation results will be 
presented in chapter 6 to have a comparison with other methods. 
  Overall, the advantage of the kernel method is that it guarantees the internal stability of 
generated networks and avoids problematic model selection. The main drawback is that the 
proposed optimization problem is highly nonlinear so the method suffers from local optima. 
In addition, the kernel method does not allow evaluation of inference confidence since the 
true probabilistic model is approximated by an analytical function. 
  The main contribution of this chapter is to formulate the system identification problem of 
DSFs in a non-parametric way and solve the problem using prevalent kernel methods that have 
been intensively studied in recent years. In addition, the identification problem with 
measurement noise is discussed. 
  Section 5.1 provides an overview of kernel methods. Section 5.2 introduces reproducing 
Hilbert space (RHKS) that is the core of kernel methods. Section 5.3 relates RKHS with Gaussian 
process so as to build up a bridge between the kernel and Gaussian process regression. Section 
5.4 discusses solving regression problems using kernel methods while section 5.5 recasts 
kernel regression under the Bayesian framework. Section 5.6 introduces feasible kernel 
functions for RKHS of stable impulse responses. Section 5.7 proposes DSF models to describe 
networks. Section 5.8 formulates the network reconstruction problem. Section 5.9 discusses 
Bayesian estimation of impulse responses. Section 5.10 applies empirical Bayes for 
hyperparameter estimation of kernel functions. Section 5.11 discusses models with 
measurement noise. Finally, section 5.12 concludes the whole chapter. 

5.1 Kernel methods in system identification and machine 

learning 

   System identification and machine learning are two deeply studied areas. However, there 
was little interaction between them until a few ago [118]. For linear system identification, ML 
and PEM as the mainstream of identification techniques have been devoted to a long history 



 

65 
 

65 

of theoretical contributions. In the field of machine learning, models are trained to learn the 
underlying patterns contained in observed data. In terms of diverse demands of applications 
(e.g. pattern recognition, data classification and regression), various methods have been 
developed [90], [40]. It is believed that these methods have much to offer to solve system 
identification problems. 
  In many applications, the target function to be estimated has special properties. For 
example, in system identification, the impulse response of a dynamic system is normally stable. 
Hence, the feasible solution is included in a set of functions that possess the same properties. 
One can construct a dictionary of candidate functions. The resulting functional space is a finite 
dimensional vector space. Consequently, functional estimation is cast as a basis selection 
problem (e.g. [180], [68], [170]). Nevertheless, building a suitable dictionary can be a 
combinatorial task. Also, since only finite number of basis functions are considered, it is highly 
possible that the target function cannot be well approximated by their linear combinations. 
An alternative is to parametrize a candidate function with unknown variables. In this way, a 
family of functions is characterized by variables in a finite dimensional Euclidean space. For 
example, empirical Bayes uses a class of distributions, �̂�(𝑤|𝑦, 𝛽)  that are dominated by 
hyperparameter 𝛽  to approximate the true posterior distribution, 𝑝(𝑤|𝑦) . It is also a 
fundamental routine applied by parametric system identification techniques, where a model 
structure maps a space of model parameters to a set of models. In either way, the target 
function is characterized by a finite dimensional vector space (e.g. functional space and 
Euclidean space).  
  The power of kernel methods lies on a particular infinite dimensional functional space called 
Reproducing Kernel Hilbert Space (RKHS) which is employed as the feasible domain of 
functional estimation. Without doubt, RKHS includes much richer forms of functions thus 
offering a better approximation. More importantly, since there is a one-to-one 
correspondence between RKHS and kernel functions, the construction of a RKHS is converted 
to the design of kernel functions. Consequently, a RKHS is the closure of the span of a kernel 
function [181]. 
  Kernel methods have been merged with the theory of Gaussian process and applied with 
increasing frequency in system identification community nowadays. They have been used to 
identify both nonlinear and linear systems. For example, a mixture of Gaussian kernels were 
used to identify linear parameter-varying (LPV) Box-Jenkins models [114]. The same type of 
kernel was employed to identify general nonlinear systems including NFI, NARX and NARMAX 
without specifying the model structure [182]. Kernel methods were also used to identify 
systems with input uncertainties, including Hammerstein models and cascaded linear systems 
[106]. The stable spline kernel was developed to identify stable linear SISO continuous-time 
systems [183]. It was later applied to identify linear discrete-time systems [91], [106], [113], 
[116], [184].  
  Kernel-based methods have been used to infer biological networks, representing gene 
regulation, metabolic process and protein-protein interactions, where a substantial part of the 
network is known a priori [185]–[190]. Connectivity among biological units is indicated by a 
distance measure of projected nodes in a feature space whereas internal dynamics of the 
network remain unknown.  
  In this chapter, we infer biological networks using model-based methods so that network 



 

66 
 

66 

topology and internal dynamics are both learned from data. Black-box linear state space 
models are adopted to describe the target network. A kernel-based method is applied to 
estimate impulse responses of the propose linear model. The stable spline kernel is used to 
impose stability. Automatic Relevance Determination (ARD) is introduced to promote sparse 
network topologies. 

5.2 Reproducing kernel Hilbert space  

5.2.1	Norm,	inner	product,	Banach	space	and	Hilbert	space	
  In general, kernel methods propose an optimization problem, where feasible solutions are 
constrained in a predefined functional space called RKHS. To introduce RKHS, we first briefly 
review some basic concepts in functional analysis. A thorough treatment can be found in [191], 
[192].  
  A vector space over the field of real numbers is a set of objects (vectors) equipped with 
operations of addition and scalar multiplication that satisfy certain axioms, for example, 
commutative and associative laws for addition, and distributive and associative laws for scalar 
multiplication. 
  To measure distance between objects of a general set, a function called metric that maps 
each pair of objects to a non-negative number is defined. In a vector space, the metric is 
induced by the norm of vectors. The norm satisfies axioms of points separation, positive 
homogeneity and triangle inequality. A vector space with a norm is called a normed vector 
space, which induces the concept of convergence of sequences. 
  A sequence of objects in a vector space is said to be a Cauchy sequence if the distance 
between any two elements converges to 0. It is known that every convergent sequence is 
Cauchy but a Cauchy sequence may not converge. 
  A vector space is said to be complete if every Cauchy sequence converges to a vector of this 
space. A complete normed space is called a Banach space. 
  To define geometrical concepts such as angles between vectors, a notation of inner product 
is introduced. It is a function that maps each pair of vectors to a real number. An inner product 
is positive definite, symmetric and linear in its first argument. A vector space equipped with 
an inner product is said to be an inner product space or pre-Hilbert space. One can always 
define a norm induced by an inner product so a pre-Hilbert space is also a normed space. 
  A space is said to be a Hilbert space if it is a complete inner product space (i.e. Banach space 
with an inner product). 
  A linear operator is a function that maps each vector of a normed space into another 
normed space and satisfies properties of homogeneity and additivity. If the image of an 
operator (not necessarily linear) is contained in ℝ, the operator is called a functional. It is 
known that the following three statements are equivalent: a) a linear operator is continuous 
at one point, b) a linear operator is continuous at all points, c) a linear operator is bounded. 
  In a Hilbert space ℋ, all continuous linear functionals 𝐿 can be expressed in the inner 
product form 𝐿 = 〈∙, 𝑔〉 for some 𝑔 ∈ℋ according to the Riesz representation theorem. 
 

5.2.2	Definition	of	Reproducing	Kernel	Hilbert	Space	(RKHS)	
  There are three key words contained in RKHS: a) reproducing, b) kernel and c) Hilbert. 



 

67 
 

67 

‘Reproducing’ originates from a particular property of a RKHS (reproducing property). ‘Kernel’ 
implies that a RKHS is associated with kernel functions. ‘Hilbert’ reveals that a RKHS is a specific 
type of Hilbert space consisting of functions. We begin with a straightforward definition of 
RKHS. To distinguish a RKHS from other Hilbert spaces, we first introduce evaluation functional. 
 
Definition 5.2.1 (Evaluation functional) [193]: Let ℋ be a Hilbert space of functions 𝑓: 𝑋 →
ℝ defined on a non-empty set 𝑋. For a fixed 𝑥 ∈ 𝑋, map 𝛿9:ℋ → ℝ is a functional that 
evaluates a function of ℋ at the point 𝑥, 𝛿9(𝑓) = 𝑓(𝑥). 
 
  The evaluation functional of a Hilbert space is not necessarily continuous (bounded). A RKHS 
is defined to be a functional Hilbert space with a continuous evaluation functional. Surprisingly, 
with this simple condition, a RKHS is particularly well-behaved compared with other Hilbert 
spaces. The special property that makes RKHS very useful is called reproducing property. 
 
Definition 5.2.2 (RKHS) [194]: A Hilbert space ℋ of functions 𝑓: 𝑋 → ℝ defined on a non-
empty set 𝑋 is said to be a reproducing kernel Hilbert space if its evaluation functional is 
continuous for any 𝑥 ∈ 𝑋. 
 

5.2.3	Reproducing	kernels	and	kernel	functions	
  As mentioned before, a RKHS is related to a kernel function. Actually, a RHKS is characterized 
by a reproducing kernel. It will be shown later that a kernel function is equivalent to a 
reproducing kernel. However, currently, we regard these two as different concepts. We begin 
with the definition of reproducing kernels. 
 
Definition 5.2.3 (reproducing kernels) [195]: Let ℋ be a Hilbert space of functions 𝑓: 𝑋 →
ℝ defined on a non-empty set 𝑋. A function 𝑘: 𝑋 × 𝑋 → ℝ is called a reproducing kernel of 
ℋ, if: 
1). ∀𝑥 ∈ 𝑋, 𝑘(∙, 𝑥) ∈ℋ 
2). ∀𝑥 ∈ 𝑋, ∀𝑓 ∈ ℋ, 〈𝑓, 𝑘(∙, 𝑥)〉ℋ = 𝑓(𝑥) (reproducing property) 
 
  The relation between a RKHS and a reproducing kernel is indicated by the following theorem. 
 
Theorem 5.2.1 (Existence and uniqueness of reproducing kernels) [193]: A Hilbert space is a 
RKHS if and only if it has a reproducing kernel. Moreover, this reproducing kernel is unique. 
 
  Theorem 5.2.1 implies that each RKHS is associated with a unique reproducing kernel. Hence, 
we can define a map from a set of RKHS to a set of reproducing kernels. Equivalently, a Hilbert 
space has a reproducing kernel if and only if its evaluation functional is continuous. It is easy 
to see that the reproducing kernel of a RKHS is associated to the evaluation functional as 
𝛿9(𝑓) = 𝑓(𝑥) = 〈𝑓, 𝑘(∙, 𝑥)〉ℋ, which coincides with the Riesz representation theorem.  
  In addition to the reproducing property, a reproducing kernel has another important feature 
that helps unify the concept of reproducing kernels and kernel functions. 
 



 

68 
 

68 

Definition 5.2.4 (positive definite functions) [40]: A symmetric function ℎ:𝑋 × 𝑋 → ℝ is 
positive definite if ∀𝑛 ≥ 1, ∀𝑦 ∈ ℝ3, ∀𝑥/ ∈ 𝑋, 𝑖 = 1,⋯ , 𝑛: 

AA𝑦/𝑦Bℎ(𝑥/, 𝑥B)
3

B45

3

/45

≥ 0 

or equivalently 

𝐶 = 0
ℎ(𝑥5, 𝑥5) ⋯ ℎ(𝑥5, 𝑥3)

⋮ ⋱ ⋮
ℎ(𝑥3, 𝑥5) ⋯ ℎ(𝑥3, 𝑥3)

2 ≽ 0 

 
  It can be shown that for any Hilbert space ℋ , the inner product can induce a positive 
definite function as ℎ(𝑥5, 𝑥@) = 〈𝜙(𝑥5),𝜙(𝑥@)〉ℋ  where 𝜙: 𝑋 →ℋ . A simple extension 
implies that a reproducing kernel is positive definite since by letting 𝜙(𝑥) = 𝑘(∙, 𝑥) , 
𝑘(𝑥5, 𝑥@) = 〈𝑘(∙, 𝑥5), 𝑘(∙, 𝑥@)〉ℋ. 
  In contrast to reproducing kernels, a kernel function is defined below: 
 
Definition 5.2.5 (Kernel functions) [193]: A function 𝑘:𝑋 × 𝑋 → ℝ is said to be a kernel if 
there exists a Hilbert space ℋ and a map 𝜙: 𝑋 →ℋ such that ∀𝑥5, 𝑥@ ∈ 𝑋: 

𝑘(𝑥5, 𝑥@) = 〈𝜙(𝑥5),𝜙(𝑥@)〉ℋ  
 
  Function 𝜙 is called a feature and space ℋ is a feature space in machine learning [90]. 
Based on the definition, a reproducing kernel is a kernel function because for RKHS ℋ , 
𝑘(𝑥5, 𝑥@) = 〈𝑘(∙, 𝑥5), 𝑘(∙, 𝑥@)〉ℋ  where 𝜙(𝑥) = 𝑘(∙, 𝑥). However, it is not certain whether a 
kernel function is a reproducing kernel. Another important question is that whether it is 
possible to construct a Hilbert space using any kernel function and how positive definite 
functions are involved. 
 

5.2.5	Construction	RKHS	from	kernel	functions	
  To answer the questions above, we begin with constructing a RKHS from a special space 
called pre-RKHS. We then argue that any positive definite function can be used to establish a 
pre-RKHS where the function has the reproducing property. A RKHS is then generated by 
completing the pre-RKHS. Hence, a positive definite function is a reproducing kernel. Finally, 
we are able to conclude that reproducing kernels, positive definite functions and kernel 
functions are equivalent. 
  To construct a RKHS, we first define a pre-RKHS as: 
 
 Definition 5.2.6 (pre-RKHS) [193]: An inner product space ℋ¼  of functions 𝑓:𝑋 → ℝ is 
said to be a pre-RKHS if: 
1). The evaluation functional 𝛿9 is continuous on ℋ¼. 
2). Any Cauchy sequence {𝑓3} in ℋ¼ that converges pointwise to 0 also converges in ℋ¼ 
norm to 0. 
 
  Based on a pre-RKHS, we can construct a RKHS according to the following theorem: 
 



 

69 
 

69 

Theorem 5.2.2 (construction of RKHS) [193]: Let ℋ be a set of all functions 𝑓:𝑋 → ℝ, for 
which there exists a Cauchy sequence {𝑓3}  in ℋ¼  converging pointwise to 𝑓 . Then the 
space ℋ is a RKHS equipped with the inner product: 

〈𝑓, 𝑔〉ℋ = lim
3→ù

〈𝑓3,𝑔3〉ℋg 

where {𝑓3} and {𝑔3} are any Cauchy sequences of ℋ¼ converging pointwise to 𝑓 and 𝑔 
respectively. The corresponding reproducing kernel is the representer of the evaluation 
functional (according to Riesz theorem). 
 
  Theorem 5.2.2 shows that once a pre-RKHS is constructed, we can use it to deduce a RKHS. 
The question is how to build a pre-RKHS using a positive definite function and how this 
function is related to the reproducing kernel of the resulting RKHS in the theorem above. It 
turns out that a pre-RKHS can be obtained by a finite linear span of functions derived from a 
positive definite function. 
 
Theorem 5.2.3 (Moore-Aronszajn) [196]: Let 𝑘: 𝑋 × 𝑋 → ℝ be a positive definite function. 
Let ℋ¼ = 𝑠𝑝𝑎𝑛{𝑘(∙, 𝑥)|𝑥 ∈ 𝑋} equipped with the inner product: 

〈𝑓, 𝑔〉ℋg =AA𝛼/𝛽B𝑘�𝑦B, 𝑥/�


B45

3

/45

 

where 𝑓 = ∑ 𝛼/𝑘(∙, 𝑥/)3
/45  and 𝑔 = ∑ 𝛽/𝑘�∙, 𝑦B�3

B45 . 

  Then ℋ¼ is a pre-RKHS. Moreover, 𝑘 is a reproducing kernel and is associated to a unique 
RKHS. (This RKHS can be derived from ℋ¼ using the last theorem.) 
 
  Summarizing all the discussions above, we have following statements: a) a reproducing 
kernel is a positive function, b) any positive function is a reproducing kernel, c) any reproducing 
kernel is a kernel function and d) any kernel function is positive definite. It is then easy to see 
that reproducing kernels, positive definite functions and kernel functions are exactly the same 
(see Figure 5.2.1). Hence, we can also construct a RKHS using any kernel function according to 
the Moore-Aronszajn theorem. Since a kernel function is associated with a unique RKHS, the 
map from the set of RKHS to the set of kernel functions is bijective. 
 



 

70 
 

70 

 
Figure 5.2.1: Relation among reproducing kernels, positive functions and kernels. One 
concept is implied by another if there is an arrow pointing to it. Any concept can be reached 
from any other one so these three concepts are equivalent.  
 
Remark 5.2.1: It is now clear that we can use any kernel function to construct a covariance 
matrix since a kernel is positive definite, which builds a bridge between kernel methods and 
Gaussian regression. Actually, a RKHS has a statistical interpretation that will be discussed later.  
 

5.2.6	Operations	of	kernels	

  One of the most widely used kernels is the Gaussian kernel, 𝑘(𝑥5	, 𝑥@) = 𝑒𝑥𝑝	(− ‖9¤c9¨‖¨¨

@h¨
). 

It characterizes a RKHS consisting of smooth functions. There are many other kernels such as 
polynomial kernels, Fisher kernels and exponential kernels [40]. By using operations of kernels, 
we are able to construct novel kernels using the existing kernel functions. 
  Two basic operations are sum and scale of kernels. For any two kernels, 𝑘5  and 𝑘@ 
defined on 𝑋 × 𝑋 , 𝑘7 = 𝛼𝑘5 + 𝛽𝑘@  is also a valid kernel for ℋ§i  given α, 𝛽 ≥ 0 . This 
property inspires multi-kernel regression, where a kernel is represented by a linear 
combination of multiple kernel functions and Automatic Relevance Determination (ARD) is 
used to select proper kernels [91]. Furthermore, if 𝑘5 and 𝑘@ are non-negative functions, 

ℋ§i = 9𝑓5 + 𝑓@|𝑓5 ∈ℋ§¤, 𝑓@ ∈ℋ§¨: is a RHKS with the norm ‖𝑓‖ℋki
@ = min

l4l¤�l̈
m‖𝑓5‖ℋk¤

@ +

‖𝑓@‖ℋk¨
@ n. 

  The product of kernels is also a kernel. For any two kernels, 𝑘5:𝑋 × 𝑋 → ℝ  and 
𝑘@: 𝑌 × 𝑌 → ℝ, 𝑘7�(𝑥5, 𝑦5), (𝑥@, 𝑦@)� = 𝑘5(𝑥5, 𝑥@)𝑘@(𝑦5, 𝑦@) is a kernel on 𝑋 × 𝑌. 
  Other operations include composition, exponentiation and weighting [90]. 
 

5.2.7.	Mercer	representation	of	RKHS	
  Every RKHS contains a pre-RKHS consisting of a finite linear span of kernel functions. It was 
shown that a pre-RKHS is dense in its corresponding RKHS [195]. Although functions in a pre-
RKHS have clear expressions, the limit of a pre-RKHS is still ambiguous. It requires no 
constraints on kernels and metric space 𝑋 to establish a RKHS. Nevertheless, with additional 



 

71 
 

71 

assumptions, Mercer’s theorems develop a unified expression for all the functions of a RKHS. 
  To begin with, we assume domain 𝑋 of a kernel function is a compact metric space and the 
kernel is continuous (Mercer kernel) [90]. Therefore, the kernel can be used to define a linear 
map. 
 
Definition 5.2.7 (Integral operator) [115]: Let 𝑘 be a continuous kernel on a compact metric 
space 𝑋. A linear map 𝑇§:L@(𝑋, 𝑣) → ∁(𝑋) is well-defined by: 

(𝑇§𝑓)(𝑥) = ê𝑘(𝑥, 𝑦)𝑓(𝑦)𝑑𝑣(𝑦) 

where 𝑓(𝑦) ∈ L@(𝑋, 𝑣) is a function of L@ space endowed with a finite Borel measure 𝑣. 
𝑇§  is a map from L@  space to space ∁(𝑋) of continuous functions. 𝑇§  is a self-adjoint, 
positive and compact operator on L@ space. (Space of continuous functions is dense in L@ 
space.) 
 
  Based on the spectral theorem of operators, one can construct an orthonormal basis of L@ 
space in terms of the integral operator. 
 
Theorem 5.2.4 (Spectral theorem) [191]: There is an at most countable orthonormal basis set 
{𝑒/} of L@ space corresponding to positive eigenvalues {𝜆/} of the linear operator 𝑇§ that 
converge to 0 with 𝜆5 ≥ 𝜆@ ≥ ⋯ and ∑ 𝜆// < +∞ so that: 

𝑇§𝑓 =A𝜆/〈𝑓, 𝑒/〉¢¨
/

𝑒/  

where 𝑓(𝑦) ∈ L@(𝑋, 𝑣) and {𝑒/} is a set of eigenvectors of 𝑇§ thus continuous functions: 

𝜆/𝑒/ = ê𝑘(𝑥, 𝑦)𝑒/(𝑦)𝑑𝑣(𝑦) 

 
  Mercer’s theorem indicates that a kernel function can be represented by the eigenvectors 
of its integral operator. 
 
Theorem 5.2.5 (Mercer’s theorem) [74], [195]: Let 𝑘 be a continuous kernel on a compact 
metric space 𝑋 and 𝑣 a finite Borel measure with support 𝑋. Then for ∀𝑥, 𝑦 ∈ 𝑋: 

𝑘(𝑥, 𝑦) =A 𝜆/𝑒/(𝑥)𝑒/(𝑦)
/

 

where the convergence is uniform and absolute on 𝑋 × 𝑋. 
 
  Based on Mercer’s theorem, we have another form of description of functions in a RKHS. 
 
Theorem 5.2.6 [193], [119]: Let 𝑘  be a continuous kernel on a compact metric space 𝑋. 
Define: 

ℋ = L𝑓(𝑥) =A 𝑎/𝑒/(𝑥)
/

|A
𝑎/
U𝜆//

< +∞P 

  The infinite sum is valid and convergence is defined in ℝ. Moreover, ℋ =ℋ§ with the 
inner product: 



 

72 
 

72 

〈A𝑎/𝑒/(𝑥)
/

,A 𝑏/𝑒/(𝑥)
/

〉 =A
𝑎/𝑏/
𝜆//

 

  Additionally, the family {U𝜆/𝑒/} forms an orthonormal basis of ℋ. 

 
  It was further shown that the convergence in Theorem 5.2.6 is uniform and absolute [195]. 
Since 𝑒/s are continuous functions, 𝑓(𝑥) is also continuous. In addition, by taking the square 
integral of 𝑓(𝑥) and using Cauchy-Schwartz inequality, the integral is finite meaning 𝑓(𝑥) ∈
L@(𝑋, 𝑣). To conclude, we have the following theorem: 
 
Theorem 5.2.7 [194], [195]: ℋ§ ⊂ ∁(𝑋). ℋ§ ⊂ L@(𝑋, 𝑣). 
 
  Since a RKHS is characterized by a unique kernel, the property of functions in a RKHS also 
depends on the kernel. A Mercer kernel defined on a compact metric space is square 
integrable. Functions of a RKHS endowed with a Mercer kernel also share the same property 
according to Theorem 5.2.7. This implies that constructing a RKHS composed of functions with 
desired properties is equivalent to designing kernel functions that hold the same properties. 
  Mercer representation can be further extended to non-compact metric spaces, where 
similar theorems apply [181]. Mercer theorem has been used to analyze the RKHS of impulse 
responses of stable linear continuous time systems [183]. 

5.3 RKHS and stochastic process 

  A stochastic process 𝑋(𝑡) is a family of random variables indexed by 𝑡 in an index set, 𝑇. 
Since it is a random variable at each time instance, 𝑋(𝑡) is partially characterized by mean 
𝑚(𝑡), second moment 𝑟(𝑡, 𝑠) and covariance function 𝑘(𝑡, 𝑠): 

(5.3.1) 
𝑚(𝑡) = 𝐸{𝑋(𝑡)}	
𝑟(𝑡, 𝑠) = 𝐸{𝑋(𝑡)𝑋(𝑠)}	
𝑘(𝑡, 𝑠) = 𝐸{[𝑋(𝑡) −𝑚(𝑡)][𝑋(𝑠) −𝑚(𝑠)]}	

= 𝑟(𝑡, 𝑠) −𝑚(𝑡)𝑚(𝑠) 
 
  As covariance matrix 𝐾  with [𝐾]/B = 𝑘(𝑥/, 𝑥B)  is positive semidefinite, covariance 
function 𝑘(𝑡, 𝑠) is a positive definite function based on Definition 5.2.4. Hence, covariance 
functions and kernels are equivalent. We can use a kernel function to define a stochastic 
process. 
  A stochastic process can be represented by a Hilbert space according to the definition below. 
 
Definition 5.3.1 (representation of stochastic processes) [106]: A family of vectors 𝑓e: 𝑡 ∈ 𝑇 
in a Hilbert space ℋ is a representation of the second order stochastic process if 

〈𝑓e, 𝑓r〉ℋ = 𝑟(𝑡, 𝑠) 
 
  According to Definition 5.3.1, it is easy to link a RKHS to a stochastic process. 



 

73 
 

73 

 
Theorem 5.3.1 [197]: Let 𝑋(𝑡)  be a zero mean stochastic process with 𝑟(𝑡, 𝑠) =
𝐸{𝑋(𝑡)𝑋(𝑠)} and ℋ§  be the RKHS with respect to the kernel 𝑟(𝑡, 𝑠). Then the family of 
functions {𝑟(∙, 𝑡) ∈ ℋ§} is a representation of the stochastic process 𝑋(𝑡). 
 
  Theorem 5.3.1 only associates a family of functions of a RKHS to a stochastic process. In fact, 
we can link the entire space of a RKHS to a Hilbert space constructed by a stochastic process. 
  It is known that space 𝐿@	of real-valued random variables 𝑥 with finite second moments 
𝐸(𝑥@) < +∞ is a Hilbert space endowed with the inner product 〈𝑥, 𝑦〉¢¨ = 𝐸(𝑥𝑦). Consider 
a space 𝑙 as a finite linear span of a stochastic process 𝑋(𝑡): 𝑙 = {𝑦|𝑦 = ∑ 𝛼/𝑋(𝑡/)3

/45 , 𝑛 =
1,2,⋯ }. 𝑙  is a subspace of 𝐿@  and its closure 𝐿  is also a Hilbert space with the inner 
product 〈𝑥, 𝑦〉¢ = 𝐸(𝑥𝑦) . Each element 𝑥  of 𝐿  can be represented as the limit of a 

sequence of random variables {𝑥3 ∈ 𝑙}  of space 𝑙 : 𝑥 = lim
3→ù

𝑥3 . As a result, ‖𝑥‖¢ =

lim
3→ù

‖𝑥3‖¢  and 〈𝑥, 𝑦〉¢ = lim
3→ù

lim
→ù

< 𝑥3, 𝑦 >¢ . On the other hand, pre-RKHS ℋ¼ 

consisting of a linear span of the kernel function {𝑟(∙, 𝑡)} is dense in RKHS ℋ§. There is a 
one-to-one correspondence between ℋ¼ and 𝑙 defined by a map 𝑈, which preserves the 
inner product:  

(5.3.2) 

𝑈:A 𝑎§𝑟(∙, 𝑡§)
3

§45
→A 𝑎§𝑋(𝑡§)

3

§45
 

< 𝑓5, 𝑓@ >ℋg=< 𝑈𝑓5, 𝑈𝑓@ >F=A A 𝑎/𝑎B𝑟(𝑡/, 𝑡B)
3

B45

3

/45
 

   

  In addition, to consider the entire RKHS, for any 𝑓 = lim
3→ù

𝑓3  where 𝑓3 ∈ℋ¼ , 𝑈𝑓 =

lim
3→ù

𝑈𝑓3 ∈ 𝐿 is well-defined. Hence, it is easy to prove that 𝑈 is a linear bijective map from 

ℋ§  to 𝐿 . Furthermore, the inner product under this map is preserved: < 𝑓, 𝑔 >ℋk=

lim
3→ù

lim
→ù

< 𝑓3, 𝑔 >ℋk = lim
3→ù

lim
→ù

< 𝑈𝑓3, 𝑈𝑔 >¢ =< 𝑈𝑓,𝑈𝑔 >¢ . To conclude, Hilbert 

space 𝐿  induced by stochastic process 𝑋(𝑡)  with covariance function 𝑟(𝑡, 𝑠)  is 
isometrically isomorphic to the RKHS endowed with the same kernel function 𝑟(𝑡, 𝑠). 
 

Theorem 5.3.2 [119], [106]: The closed linear span 𝐿 = 𝑠𝑝𝑎𝑛{𝑋(𝑡)}  of the zero mean 

stochastic process 𝑋(𝑡)  with second moment 𝑟(𝑡, 𝑠)  is isometrically isomorphic to the 
RKHS with kernel 𝑟(𝑡, 𝑠). 
 
  This one-to-one correspondence implies that a problem posed in a RKHS can be recast in a 
space constructed by stochastic processes, which builds a foundation to discuss kernel 
methods under the Bayesian framework. 
  A Gaussian process is a specific type of stochastic processes. It is completely characterized 



 

74 
 

74 

by mean and second moment. Gaussian processes are mathematically equivalent to many 
models such as Bayesian linear models, neural networks and spline models. Hence, they 
provide a probabilistic approaches to learning in kernel machines [74].  
 
Definition 5.3.2 [74]: A Gaussian process is a collection of random variables, any finite number 
of which have a joint Gaussian distribution. 
 
  With a kernel function, we can completely define a zero mean Gaussian process whose 
covariance function is that kernel. Therefore, Gaussian processes are widely used under the 
Bayesian framework, which inherently adopt the spirit of kernel methods. 

5.4 Interpolation based on kernel methods 

  Consider a generative model: 
(5.4.1) 

𝑦(𝑡) = (𝑇𝑓)(𝑡) + 𝜀(𝑡) 
where 𝑡 ∈ 𝐷, 𝐷 is the domain for functions (e.g. ℝ� and ℤ�), 𝜀 is i.i.d. Gaussian noise 
with variance 𝜎@ , 𝑓  is a function in RKHS ℋ§  endowed with kernel 𝑘(𝑡, 𝑠) and 𝑇 is a 

linear operator with domain ℋ§ . For example, 𝑇 can be an operator (𝑇𝑓)(𝑡) = ∫ 𝑓(𝑡 −e
¼

𝜏)𝑢(𝜏)𝑑𝜏 which can be interpreted as the convolution of input 𝑢(𝑡) with impulse response 
𝑓(𝑡) of a dynamic system. Note that this operator can be directly extended to the discrete-
time case. If 𝑇  is simply an inclusion map: (𝑇𝑓)(𝑡) = 𝑓(𝑡), the model becomes 𝑦(𝑡) =
𝑓(𝑡) + 𝜀(𝑡), which is a basic regression model. 
  Given the observed data of 𝑦(𝑡), the objective is to estimate function 𝑓. In practice, only 
finite data points are available so the collected data are presented as a sequence {𝑦(𝑡/), 𝑖 =
1,2,⋯ , 𝑛}. The model can be rewritten as: 

(5.4.2) 
𝑦/ = 𝑇/𝑓 + 𝜀/  

where 𝑦/ = 𝑦(𝑡/), 𝛿et is an evaluation functional 𝛿et𝑔 = 𝑔(𝑡/) and 𝑇/ = 𝛿et°𝑇 is a linear 

functional. If 𝑇 is a convolution operator, then 𝑇/𝑓 = ∫ 𝑓(𝑡/ − 𝜏)𝑢(𝜏)𝑑𝜏
et
¼ . For an inclusion 

map 𝑇, 𝑇/ = 𝛿et°𝑇 = 𝛿et and the model becomes 𝑦/ = 𝑓/ + 𝜀/  where 𝑓/ = 𝑓(𝑡/).  
  If RKHS ℋ§  is decomposed as the direct sum of two orthogonal vector spaces: ℋ§ =
ℋ¼⨁ℋ5 where the dimension of ℋ¼ is 𝑚. It is easy to show that Hilbert space ℋ¼ is a 
RKHS with kernel 𝑘¼(𝑡, 𝑠) = ∑ 𝜙/(𝑡)𝜙/(𝑠)

/45  where {𝜙/ , 𝑖 = 1,2,⋯𝑚} is the orthonormal 
basis of ℋ¼ . In addition, ℋ5  is also a Hilbert space because every Cauchy sequence 
converges to a vector within ℋ5. Moreover, ℋ5 is a RKHS since its evaluation functional is 
bounded. (Evaluation functional of the whole space, ℋ§  is bounded.) Let 𝑘5(𝑡, 𝑠) =
𝑘(𝑡, 𝑠) − 𝑘¼(𝑡, 𝑠). Then 𝑘5(∙, 𝑠) is a function of ℋ5 for ∀𝑠 ∈ 𝐷 since it is orthogonal to ℋ¼. 
Furthermore, < 𝑓, 𝑘5(∙, 𝑠) >ℋk= 𝑓(𝑠) for ∀𝑓 ∈ℋ5 . Consequently, 𝑘5(𝑡, 𝑠) is the kernel 
for ℋ5 according to Theorem 5.2.3. 
  Assuming linear functional 𝑇/  is bounded, an estimate 𝑓d  of 𝑓  is the solution of the 



 

75 
 

75 

following regularized optimization problem [119]: 
(5.4.3) 

𝑓d = arg min
l∈ℋk

1
𝑛
A(𝑦/ − 𝑇/𝑓)@
3

/45

+ 𝜆‖𝑃5𝑓‖ℋk
@  

where 𝑃5  is the orthogonal projection of 𝑓  onto ℋ5  in ℋ§ . The decomposition of ℋ§ 
depends on the requirement of interpolation. For example, in spline smoothing problems, ℋ§ 
can be a Sobolev-Hilbert space so ℋ5 is a space of functions whose first 𝑚− 1 derivatives 
{𝐷w𝑓, 𝑣 = 1,2,⋯ ,𝑚 − 1} are absolute continuous satisfying (𝐷w𝑓)(0) = 0 and the 𝑚th 
derivative is in 𝐿@ space, and ℋ¼ is the 𝑚 dimensional space of polynomials. In this case, 
‖𝑃5𝑓‖ℋk  penalizes the power of the projection of 𝑓  in ℋ5  as ‖𝑃5𝑓‖ℋk

@ =

∫ (𝐷𝑃5𝑓)@(𝑢)𝑑𝑢
5
¼  [119]. In system identification, ℋ¼ can be a space of impulse responses 

possessing dominant poles of the target system and ℋ5 is a RKHS of stable impulse responses 
[183]. 
  In contrast to the normal regularized optimization problems in section 4.2.1, the feasible set 
of solutions to (5.4.3) is an infinite dimensional functional space rather than a finite 
dimensional Euclidean space. At first glance, solving such a problem is highly complex. 
Nevertheless, it turns out that the solution can be expressed analytically by the merit of the 
reproducing property. 
 
Theorem 5.4.1 [119]: Let {𝜙/ , 𝑖 = 1,2,⋯𝑚}  be orthonormal basis of ℋ¼  and define a 
𝑛 ×𝑚 matrix 𝑁 of full column rank as [𝑁]/B = 𝑇/𝜙B . Then the solution 𝑓d to (5.4.3) is given 
by 

𝑓d =A𝑎/



/45

𝜙/ +A𝑏B𝜉B

3

B45

 

where 𝜉B = 𝑃5𝜂B, 𝜂B  is the representer of the bounded linear functional 𝑇B  according to the 
Riesz representation theorem so that < 𝜂B, 𝑓 >ℋk= 𝑇B𝑓, 𝑓 ∈ℋ§  and 

𝑦 = (𝑦5, 𝑦@,⋯ , 𝑦3)f 
𝑎 = (𝑎5, 𝑎@,⋯ , 𝑎)f = (𝑁f𝑀c5𝑁)c5𝑁f𝑀c5𝑦 

𝑏 = (𝑏5, 𝑏@,⋯ , 𝑏)f = 𝑀c5[𝐼 − 𝑁(𝑁𝑀c5𝑁)c5𝑁f𝑀c5]𝑦 
𝑀 = Σ + 𝑛𝜆𝐼 

[Σ]/B =< 𝜉/ , 𝜉B > 

 
  Theorem 5.4.1 generalizes a special case where the decomposition of ℋ§ is not required 
and 𝑇/ = 𝛿et is the evaluation functional. As a result, problem (5.4.3) becomes: 

(5.4.4) 

𝑓 = arg min
l∈ℋk

1
𝑛
A(𝑦/ − 𝑓/)@
3

/45

+ 𝜆‖𝑓‖ℋk  

 
  Hence, Theorem 5.4.1 is simplified to the representation theorem. 
 



 

76 
 

76 

Theorem 5.4.2 (representation theorem) [118]: Let 𝑘(∙,∙) be the kernel corresponding to 
RKHS ℋ§. Then the solution 𝑓d to (5.4.4) is given by 

𝑓d(∙) =A𝑎/𝑘(∙, 𝑡/)
3

/45

 

where  
𝑎 = (𝑎5, 𝑎@,⋯ , 𝑎3)f = (𝑛𝜆𝐼 + 𝐾)c5𝑦 

𝑦 = (𝑦5, 𝑦@,⋯ , 𝑦3)f 
[𝐾]/B = 𝑘(𝑡/, 𝑡B) 

 
  As linear dynamic systems are characterized by impulse responses and system outputs are 
the convolution (linear operator) of impulse responses with inputs, the framework discussed 
above can be applied to identify non-parametrized linear models (e.g. [183], [113], [198]). In 
addition, this framework can also be used to identify nonlinear systems (e.g. [114], [182]). 

5.5 Bayesian formulation of kernel methods 

  Theorem 5.3.2 shows that a RKHS is equivalent to a space 𝐿 of random variables as the 
closed linear span of a stochastic process in the sense of isometric isomorphism. This relation 
leads to the duality between Bayesian approaches and kernel methods to solve the same 
interpolation problem (5.4.1). 
  The generative model in the functional setting is given by 𝑦/ = 𝑇/𝑓 + 𝜀/ . We consider 
reformulating this model under the Bayesian framework. To begin with, we define the 
counterpart of linear functional 𝑇/  on space 𝐿 spanned by a Gaussian process. 
  Let 𝑇 be a bounded linear functional on RKHS ℋ§ with kernel 𝑘(𝑡, 𝑠). Then, there exists 
a representer, 𝜂(𝑠) = 𝑇𝑘(𝑠,∙)  for 𝑇  in ℋ§  such that 𝑇𝑓 =< 𝜂, 𝑓 >ℋk  for ∀𝑓 ∈ℋ§  
[199]. Due to isometric isomorphism between ℋ§ and 𝐿 that is the closed linear span of 
zero mean Gaussian process 𝑋(𝑡)  with covariance function 𝑘(𝑡, 𝑠) , we can define a 
counterpart, 𝑇¾  for 𝑇  as a linear functional on 𝐿  with its representer as 𝑧 = 𝑈𝜂 ∈ 𝐿 
where 𝑈 is the bijective linear map from ℋ§ to 𝐿 that preserves the inner product (i.e. <
𝑓, 𝑔 >ℋk=< 𝑈𝑓,𝑈𝑔 >¢ ). Hence, 𝑇¾𝑥 =< 𝑧, 𝑥 >¢  for ∀𝑥 ∈ 𝐿 . As a result, 𝑇𝑓 =<
𝜂, 𝑓 >ℋk=< 𝑈𝜂, 𝑈𝑓 >¢=< 𝑧, 𝑈𝑓 >¢= 𝑇¾(𝑈𝑓). For example, convolution functional 𝑇e  on 

ℋ§  (𝑇e𝑓 = ∫ 𝑓(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏e
¼ ) corresponds to a linear functional, 𝑇¾e  on 𝐿  with 𝑧 =

∫ 𝑋(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏e
¼  as its representer , where the integral is defined in quadratic mean [119] 

(i.e. expectation of the square of random variables). 
 
Definition 5.5.1: Let 𝑋(𝑡) be a zero mean Gaussian process with covariance function 𝑘(𝑡, 𝑠), 
𝐿  be a Hilbert space that is the closed linear span of 𝑋(𝑡) and 𝑇  be a bounded linear 
functional on RKHS ℋ§ with kernel function 𝑘(𝑡, 𝑠). 𝑇𝑋 is defined to be a random variable 
of space 𝐿 and equates to the representer of the linear functional 𝑇¾  on 𝐿 which is the 
counterpart of 𝑇 on ℋ§.  



 

77 
 

77 

 
  Now, we are ready to propose a Bayesian probabilistic model as the duality of (5.4.2). For 
ℋ§ =ℋ¼⨁ℋ5  with 𝑘(𝑡, 𝑠), 𝑘¼(𝑡, 𝑠) and 𝑘5(𝑡, 𝑠) to be their corresponding kernels, we 
have [119]: 

(5.5.1) 
𝑦/ = 𝑇/𝐹 + 𝜀/	

𝐹(𝑡) =A𝜃/𝜙/(𝑡)


/45

+ 𝑋(𝑡) 

where 𝜃 = (𝜃5, 𝜃@,⋯ , 𝜃)′  is fix but unknown, 𝜀/~𝒩(𝜀/|0, 𝜎@) , {𝜙/}  is a set of 
orthonormal basis of ℋ¼  and 𝑋(𝑡)  is a zero mean Gaussian process with covariance 
function 𝑘5(𝑡, 𝑠) . With a little abuse of notation, 𝑇/  denotes both a bounded linear 

functional on ℋ§  and its counterpart on 𝐿5 = 𝑠𝑝𝑎𝑛{𝑋(𝑡)} . (Since 𝐿5  is isometrically 

isomorphic with ℋ5 , 𝑇/  (originally defined on ℋ§ ) is well-defined on 𝐿5 . So 𝑇/𝑋  is a 
random variable that is the representer of 𝑇/  on 𝐿5.) 
  Given observations {𝑦(𝑡/), 𝑖 = 1,2,⋯ , 𝑛} , instead of estimating unknown variable 𝜃 , 
Bayesian methods focus on reducing generalization errors of the model. Assuming 𝑇¼  is 
another bounded linear functional on ℋ§, the goal is to estimate 𝑇¼𝐹.  
  Let 𝑇¼𝐹z  be the linear estimator of 𝑇¼𝐹 that has the minimum variance and is unbiased 
given 𝜃. The problem is formulated as [119]: 

(5.5.2) 

min
+
𝐸{�𝑇¼𝐹z − 𝑇¼𝐹�

@
} 

Subject to 

𝑇¼𝐹z =A𝑎/𝑦/

3

/45

	

𝐸�𝑇0𝐹z − 𝑇0𝐹Ä𝜃� = 0 
 

  It turns out that the solution to (5.5.2) is linked to the problem (5.4.3). The unknown 
parameter 𝜃 is implicitly estimated under the Bayesian framework. 
 
Theorem 5.5.1 [119]: 𝑇¼𝐹z = 𝑇¼𝑓 is the solution to (5.5.2) 
where 𝑓 is the solution to the following optimization problem: 

arg min
l∈ℋk

1
𝑛
A(𝑦/ − 𝑇/𝑓/)@
3

/45

+ 𝜆‖𝑃5𝑓‖ℋk  

with = h¨

3
 . 

 
  Theorem 5.5.1 implies that under the context of system identification, we can regard 
impulse responses of a system as a Gaussian process and estimate impulse responses under 
the Bayesian framework. The solution of Bayesian estimation is exactly the same with that of 



 

78 
 

78 

kernel methods. Assuming 𝑇¼ = 𝛿e{ and 𝑇/  is a convolution functional, we formulate system 
identification problems under the functional framework and Bayesian perspectives. For the 
simplicity of demonstration, we consider a SISO continuous time system. The problem can be 
solved using Theorem 5.5.1 and 5.4.1. 
 
Objective: Estimate impulse response 𝑓(𝑡) of a continuous SISO system 
Functional setting:  

𝑦(𝑡) = ∫ 𝑓(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏e
¼ + 𝜀(𝑡)  

where 𝑓 ∈ℋ§  with the kernel 𝑘(𝑡, 𝑠). 
Bayesian model: 

𝑦(𝑡) = ê 𝐹(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏
e

¼
+ 𝜀(𝑡) 

where 𝐹(𝑡)  is a zero mean Gaussian process with covariance function 𝑘(𝑡, 𝑠)  and the 
integral is defined in the sense of quadratic mean. 
  For discrete time systems, the integrals above are replaced by infinite sum. In the Bayesian 
model, infinite sum is also defined in the sense of quadratic mean. 
 
  In practice, kernel functions are usually parametrized by unknown hyperparameters that 
take charge of the property of kernel functions. Estimating these hyperparameters is 
important as they determine how the estimated model interprets data. For kernel methods, 
one common approach is cross-validation, which causes information loss and increases 
computational burden. By casting kernel methods under the Bayesian framework, Bayesian 
techniques can be used to estimate hyperparameters. For example, the empirical Bayes 
method can optimize hyperparameters via type II maximization so that the RKHS of the 
resulting kernel better characterizes the target function [74]. In what follows, we will formulate 
network inference problems under the Bayesian framework. 

5.6 Kernel functions for impulse responses 

  As discussed before, we can treat impulse responses of a dynamical system as a zero mean 
Gaussian process with covariance function 𝑘(𝑡, 𝑠) (kernel function), set up a probabilistic 
model and then formulate the identification problem under the Bayesian framework. The only 
question is what kernels should be used or how to construct a RKHS for impulse responses. 
The property of functions in a RKHS is determined by its kernel function, which encourages 
the study of kernel functions to impose the desired dynamical properties of impulse responses. 
   

5.6.1	Non-parametric	LTI	systems	 	
  So far, we have only proposed parametric dynamic models. Under the framework of kernel 
methods, models are postulated in a non-parametric way, so that the problem of model 
selection is simplified [118]. Without loss of generality, we consider SISO systems. To handle 
both continuous time and discrete time systems, we use an abstract time set 𝒪 (𝒪 = ℝ	𝑜𝑟	ℤ). 
  An LTI SISO system is characterized by impulse response 𝑓:𝒪 → ℝ. For any input 𝑢:𝒪 →



 

79 
 

79 

ℝ, the output of the system 𝑦:𝒪 → ℝ is generated by the convolution of 𝑢 and 𝑓: 
(5.6.1) 

𝑦(𝑡) = ê 𝑓(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏
𝒪

 

where the convolution can be interpreted as an integral or an infinite sum depending on the 
nature of time set 𝒪. 
  Instead of estimating parameters of a parametrized model, the identification problem here 
becomes to estimate the impulse response function, 𝑓 given noisy measurements. 
 

5.6.2	Enforcing	system	properties	using	kernels	
  In practice, dynamical systems usually have some basic properties. The goal is to construct 
kernels so that the corresponding RKHS consists of impulse responses that satisfy the desired 
properties. 
  One of the most important properties of a real-world system is causality. That means the 
output signal of a system at a certain time, 𝑡¼ does not depend on values of the input in the 
future (𝑡 > 𝑡¼). For an LTI system, it is equivalent to claiming that values of impulse responses 
for negative time instances are zero: 𝑓(𝑡) = 0  for ∀𝑡 < 0 . The following theorem 
characterizes kernel functions whose corresponding RKHSs consist of causal impulse 
responses. 
 
Theorem 5.6.1 (causal systems) [199]: A RKHS contains only causal impulse responses if and 
only if the kernel satisfies 

𝑘(𝑡, 𝑠) = 𝐻(𝑡)𝐻(𝑠)𝑘¾(𝑡, 𝑠) 
where 𝐻(𝑡) is the Heaviside step function and 𝑘¾(𝑡, 𝑠) is a kernel defined for non-negative 
time instances: 

𝐻(𝑡) = m1,			𝑡 ≥ 0
0,			𝑡 < 0 

 
  Another important feature of dynamical systems is stability. In most cases, systems to be 
identified are stable in the sense of BIBO (bounded input bounded output) (i.e. ‖𝑦‖ù < +∞ 
if ‖𝑢‖ù < +∞ where ‖∙‖ù denotes infinite norm). For LTI systems, BIBO is equivalent to 

absolute integrability of impulse responses (i.e. ∫ |𝑓(𝑡)|𝑑𝑡𝒪 < +∞ ). Therefore, a RKHS 

consisting of stable impulse responses must be a subspace of 𝐿5(𝒪) space. The following 
theorem provides a necessary and sufficient condition on kernel functions to guarantee 
system stability. 
 
Theorem 5.6.2 (stable systems) [199], [118]: A RKHS is a subspace of 𝐿5(𝒪) space if and only 
if  

∫ }∫ 𝑘(𝑡, 𝑠)𝑓(𝑡)𝑑𝑡𝒪 }𝑑𝑠𝒪 < +∞ for ∀𝑓 ∈ 𝐿ù(𝒪) 

In particular, if 𝑘(𝑡, 𝑠) ∈ 𝐿5(𝒪 × 𝒪), then the corresponding RKHS is a subspace of 𝐿5(𝒪). 
 
  The last property to be considered is time delay. For causal LTI systems, time delay 𝐷 is 



 

80 
 

80 

defined as 𝐷 = inf{𝑡 ∈ 𝒪: 𝑓(𝑡) ≠ 0} which is non-negative. If a system has time delay 𝐷,  
output 𝑦(𝑡¼) is independent on the input for ∀𝑡 > 𝑡¼ − 𝐷. By shifting a kernel function, we 
have a RKHS composed of time-delayed impulse responses. 
 
Theorem 5.6.3 (time-delayed systems) [199]: The RKHS consists of impulse responses with 
time delay 𝐷 if and only if  

𝑘~(𝑡, 𝑠) = 𝑘(𝑡 − 𝐷, 𝑠 − 𝐷) 
with 𝑘(𝑡, 𝑠) being a kernel for causal systems. 
 
  Theorems above demonstrate conditions on kernel functions that must be met to 
characterize dynamics of most practical linear systems. They can be used to check whether a 
proposed kernel function is valid to represent impulse responses. 
 

5.6.3	Stable	spline	kernel	for	discrete	time	systems	 	
 The second order stable spline kernel has been used to characterize Gaussian processes that 
encode BIBO property of impulse responses for continuous time systems [118], [183], [198]: 

(5.6.2) 

𝑘(𝑡, 𝑠; 𝛽) =
𝑒cò(e�r)𝑒cò���	(e,r)

2
−
𝑒c7ò���	(e,r)

6
 

where 𝑘(𝑡, 𝑠; 𝛽) is controlled by hyperparameter 𝛽 > 0 which determines the decaying 
rate of impulse responses [184]. It has been shown that the realizations of such Gaussian 
processes are continuous time impulse responses of BIBO stable systems with probability one 
[183]. Therefore, the stable spline kernel has been used to identify non-parametric continuous 
time systems under the Bayesian framework.  
 
Remark 5.6.1: Other kernel functions such as Diagonal/Correlated kernel (DC) and 
Tuned/Correlated kernel (TC) are also widely used in system identification community [112]. 
Although they have been shown very effective [116], these kernels are mainly verified in 
problems that focus on estimating input-output relationships of dynamical systems. Hence, 
their ability to tackle network inference problems is questionable. The stable spline kernel has 
been applied to infer networks described by Granger causality and achieved great success 
[113]. Therefore, we adopt this kernel in our framework. Monte Carlo simulations also indicate 
that the stable spline kernel outperforms other kernel functions.  
 
  In what follows, we will use the discrete version of the stable spline kernel to represent 
impulse responses of discrete time systems (𝑘:𝒪 × 𝒪 → ℝ,𝒪 = {0,1,2,3, … }). Since impulse 
responses of stable continuous time systems decay exponentially, the sampled version of a 
stable continuous time impulse response is also stable in the sense of discrete time systems. 
Hence, the realizations of Gaussian processes with the discrete stable spline kernel are stable 
discrete time impulse responses with probability one. As a result, this kernel can be used in 
the Bayesian formulation of kernel methods (section 5.5). Under the functional framework of 
kernel methods (section 5.4), we need to check whether the resulting RKHS of the discrete 
stable spline kernel is a subspace of 𝐿5(𝒪). In other words, we have to prove 𝑘(𝑡, 𝑠) ∈
𝐿5(𝒪 × 𝒪) according to Theorem 5.6.2. 



 

81 
 

81 

 
Theorem 5.6.4: The discrete stable spline kernel 𝑘(𝑡, 𝑠) is a function in 𝐿5(𝒪 × 𝒪). 
Proof: First, note that the stable spline kernel is non-negative. Without loss of generality, we 
only need to check the situation where 𝑡 ≥ 𝑠 as the kernel is symmetric with respect to 𝑡 =
𝑠. For 𝑡 ≥ 𝑠, 

𝑘(𝑡, 𝑠; 𝛽) =
𝑒cò(e�r)𝑒còe

2
−
𝑒c7ò�

6
	

≥
𝑒c@òe𝑒còe

2
−
𝑒c7ò�

6
	

=
𝑒c7òe

3
	

> 0 
  Now, we need to prove ∑ ∑ |𝑘(𝑡, 𝑠; 𝛽)|ù

r4¼
ù
e4¼ < +∞. According to the theorem of double 

series, we only need to prove ∑ (∑ |𝑘(𝑡, 𝑠; 𝛽)|ù
r4¼ )ù

e4¼ = ∑ (∑ 𝑘(𝑡, 𝑠; 𝛽)ù
r4¼ )ù

e4¼ < +∞. 

  To begin with, consider a function 𝑘)(𝑡, 𝑠; 𝛽) = ±£$�(���)

@
 where 𝛼 > 0. It is easy to see that: 

∑ �∑ ±£$�(���)

@
ù
r4¼ � =ù

e4¼
5
@
� 5
5c±£$�

�
@
< +∞ for ∀α > 0, 𝛽 > 0 

  If ∃α such that 𝑘(𝑡, 𝑠; 𝛽) ≤ 𝑘)(𝑡, 𝑠; 𝛽) for ∀𝑡, 𝑠 ≥ 0, then the proof is done. To see this, 
note that: 

𝑘)(𝑡, 𝑠; 𝛽) − 𝑘(𝑡, 𝑠; 𝛽) ≥ 0 
⇔ 3𝑒cò�(e�r) − 3𝑒cò(e�r)𝑒cò���	(e,r) + 𝑒c7ò���	(e,r) ≥ 0 

  The above inequality is satisfied if  
3𝑒cò�(e�r) − 3𝑒cò(e�r) ≥ 0	
⇔ 𝑒cò�(e�r) ≥ 𝑒cò(e�r)	
⇔ 𝛼 ≤ 1 

  As a result, for ∀𝛼 ∈ (0,1] , 𝑘(𝑡, 𝑠; 𝛽) ≤ 𝑘)(𝑡, 𝑠; 𝛽)  for ∀𝑡, 𝑠 ≥ 0 , 𝛽 > 0 . Hence, 

∑ �∑ 𝑘(𝑡, 𝑠; 𝛽)ù
B4¼ �ù

/4¼ ≤ ∑ �∑ 𝑘)(𝑡, 𝑠; 𝛽)ù
B4¼ �ù

/4¼ < +∞. 

 
  Theorem 5.6.4 indicates that we can use the discrete stable spline kernel to construct a 
RKHS for causal and stable discrete time impulse responses. 

5.7 Sparse linear networks described by DSFs 

  Since ARX models applied in the last chapter are not suitable to describe networks with 
complex dynamics, we adopt state space models which are the most general expressions for 
LTI systems. The state variables represent nodes of a network. A network is driven by both 
external inputs and process noise. For the simplicity of demonstration, we assume there is no 
measurement noise in the model: 

(5.7.1) 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵-𝑢(𝑡) + 𝐵±𝑒(𝑡)	

𝑦(𝑡) = 𝐶𝑥(𝑡) 



 

82 
 

82 

where 𝑥 ∈ ℝ3 are states of the system, 𝑢 ∈ ℝ denote the inputs, 𝑦 ∈ ℝ®  represent the 
measurements of states and 𝑒 ∈ ℝI  are i.i.d. Gaussian noise with zero mean and covariance 
matrix 𝑃±. Without loss of generality, 𝑃± is assumed to be diagonal. If the covariance matrix 
is full, one can decompose the matrix as 𝑃± = 𝑅Σ𝑅′ using singular value decomposition (SVD) 
[171]. Then, 𝐵±  can be updated as 𝐵±3±x = 𝐵±ïFÏ𝑅  and the covariance matrix can be 

replaced by the diagonal matrix, Σ
¤
¨ . 𝐴 ∈ ℝ3×3 , 𝐵- ∈ ℝ3× , 𝐵± ∈ ℝ3×I  and 𝐶 ∈ ℝ®×3  

are system matrices. 
  In practice, full state measurements are usually unavailable. For example, in biology, only a 
small number of biological units (e.g. concentrations of mRNAs) can be measured while the 
others (e.g. proteins) are unobservable. We treat manifest states (measurable nodes) as 
outputs and unmeasurable nodes as hidden states. Without loss of generality, we assume the 
first 𝑝 < 𝑛 states are measurable so that 𝐶 can be written as 𝐶 = [𝐼 𝟎]. 
  In what follows, we would like to model a network composed of both measured and 
unmeasured nodes. Moreover, we assume the number of hidden states and their biological 
interpretations are unknown. To avoid inferring these hidden states, we have to remove them 
from the model. Dynamical structural function (DSF) is an efficient model that encodes 
information of hidden states via transfer functions [200], [84]. To begin with, we partition the 
states into manifest and hidden states: 

(5.7.2) 

ú𝑦(𝑡 + 1)ℎ(𝑡 + 1)û = ú𝐴55 𝐴5@
𝐴@5 𝐴@@

û ú𝑦(𝑡)ℎ(𝑡)û + ú
𝐵-5

𝐵-@
û 𝑢(𝑡) + ú𝐵±

5

𝐵±@
û 𝑒(𝑡) 

where ℎ ∈ ℝ3c® are hidden states. 
  A DSF is then built by eliminating the hidden states [84], [85]: 

(5.7.3) 
𝑌 = 𝑄𝑌 + 𝑃𝑈 +𝐻𝐸 

where 𝑞 denotes the time shift operator so that 𝑦(𝑡 + 1) = 𝑞𝑦(𝑡) and: 
𝑄 = (𝑞𝐼 − 𝐷)c5(𝑊 − 𝐷)	
𝑃 = (𝑞𝐼 − 𝐷)c5𝑉-	
𝐻 = (𝑞𝐼 − 𝐷)c5𝑉± 

with 
𝑊 = 𝐴55 + 𝐴5@(𝑞𝐼 − 𝐴@@)c5𝐴@5	
𝑉- = 𝐴5@(𝑞𝐼 − 𝐴@@)c5𝐵-@ + 𝐵-5	
𝑉± = 𝐴5@(𝑞𝐼 − 𝐴@@)c5𝐵±@ + 𝐵±5	
𝐷 = 𝑑𝑖𝑎𝑔9𝑊55,𝑊@@, … ,𝑊®®: 

 
  𝑄  is a matrix of transfer functions (transfer matrix) indicating the connectivity among 
manifest nodes. The diagonal elements of 𝑄  are zero. Similarly, 𝑃  and 𝐻  are transfer 
matrices relating inputs and noise to nodes, respectively. Note that elements of 𝑄, 𝑃 and 𝐻 
are strictly proper transfer functions indicating the network is a causal system. The topology 
of the network is reflected by the zero structure of 𝑄 and 𝑃 matrices. If [𝑄]/B  or [𝑃]/B  is 
non-zero, there is an edge from the 𝑗th node or input to the 𝑖th node. In addition, dynamics 
of edges are described by the transfer functions (entries) of 𝑄 and 𝑃. 
  From a DSF, we can deduce the input-output map of the system: 



 

83 
 

83 

(5.7.4) 
𝑌 = 𝐺-𝑈 + 𝐺±𝐸 

where 
𝐺- = (𝐼 − 𝑄)c5𝑃	
𝐺± = (𝐼 − 𝑄)c5𝐻 

 
  With infinite source of data, we can accurately recover the input-output map of a system 
using identification methods like PEM. However, an input-output map can correspond to many 
DSF models with different topologies. To ensure the inference problem is well-posed, we first 
define the reconstruction of DSF from the input-output map. 
 
Definition 5.7.1 (Reconstruction of DSF): 
  Given the input-output map 𝐺 = [𝐺- 𝐺±], the DSF can be reconstructed if there exists a 
unique [𝑄 𝑃 𝐻] which satisfies (5.7.4).  
   
  Unfortunately, based on the definition, a general network may not be identifiable unless 
partial structure of the network is known. The following theorem is a simple extension of the 
work in [84], [200]. 
 
Theorem 5.7.1 (Reconstruction with partial structure): 
  Given a 𝑝 × (𝑚 + 𝑞) transfer matrix 𝐺 = [𝐺- 𝐺±], the DSF can be reconstructed if and 
only if 𝑝 − 1 elements in each column of [𝑄 𝑃 𝐻]′  are known that uniquely specify the 
component of (𝑄, 𝑃, 𝐻) in the null space of [𝐺′ 𝐼]. 
   
  A sufficient condition for reconstructing DSF is that 𝑃  or 𝐻  is diagonal so that 𝑝 − 1 
elements in each column of [𝑄 𝑃 𝐻]′ are known to be 0. 

5.8 Formulation of inference problem  

  To guarantee the identifiability of a network, we assume 𝐻  is diagonal. For biological 
networks, this assumption means each measured node is perturbed by independent intrinsic 
or extrinsic noise. For this assumption to hold, at least 𝐵±5 is diagonal. In addition, without 
loss of generality, we assume 𝑞𝐻 is monic (meaning a direct perturbation of noise exists on 
measured nodes), which is satisfied by scaling the noise covariance matrix. As a result, we do 
not need other prior knowledge of transfer matrices, 𝑄 and 𝑃. The expression of a DSF can 
be rewritten as: 

(5.8.1) 
𝑌 = 𝐹-𝑈 + 𝐹:𝑌 + 𝐸) 

where 
𝐹- = (𝑞𝐻)c5𝑃	
𝐹: = 𝐼 − (𝑞𝐻)c5(𝐼 − 𝑄)	
𝐸) = 𝑞c5𝐸 

 



 

84 
 

84 

  An important fact is that since 𝐻 is diagonal, transfer matrices 𝐹: and 𝐹- have the same 
zero structure as matrices 𝑄  and	𝑃 , respectively. Therefore, 𝐹:  and 𝐹-  also reflect the 
network topology. Since the target network is sparse, 𝐹: and 𝐹- are sparse transfer matrices. 
 
Remark 5.8.1: Note that transfer matrix 𝐻 is strictly proper as indicated by (5.7.2). To deduce 
expression (5.8.1), we first rewrite DSF as 𝑌 = 𝑄𝑌 + 𝑃𝑈 + (𝑞𝐻)(𝑞c5𝐸) . Since (𝑞𝐻)  is 
proper and monic, 𝐹: and 𝐹- are strictly proper transfer matrices. In other words, (5.8.1) 
shows the present outputs depend on the past inputs and outputs. Hence, (5.8.1) can be used 
to deduce the predictor of the network. 
   
  To identify the parametrized model (5.8.1), one has to estimate the system order and model 
parameters of each transfer function in 𝐹: and 𝐹-. Since the order of these transfer functions 
is associated to the number of hidden nodes as well as the connectivity between hidden nodes 
and manifest nodes, model selection requires an exhaustive search of all possible 
combinations of system order. The estimation of model parameters leads to a highly nonlinear 
optimization problem. In addition, it is difficult to impose system stability during identification. 
To formulate a well-posed identification problem, we present (5.8.1) in a non-parametric way, 
where transfer functions are replaced by their impulse responses. For the 𝑖th node, we extract 
its subsystem from (5.8.1), which represents regulations from other nodes and inputs: 

(5.8.2) 

𝑦/(𝑡) =AAℎ/B
: (𝑘)𝑦B(𝑡 − 𝑘) +

ù

§45

®

B45

AAℎ/B- (𝑘)𝑢B(𝑡 − 𝑘) +
ù

§45



B45

𝑒/(𝑡) 

where ℎ/B
:  and ℎ/B-  denote the impulse responses of transfer functions Ã𝐹:Å/B and [𝐹-]/B , 

respectively and are assumed to be stable (i.e. 𝑞𝐻  is minimum-phase). 𝑒/(𝑡)  is i.i.d. 
Gaussian noise with variance 𝜎@. Output 𝑦/ are the convolution of impulse responses with 
inputs and nodes. 
  To cast the system identification problem under the Bayesian framework, impulse responses 
are assumed to be independent zero mean Gaussian processes following the discussion in 
section 5.5. This scheme was originally applied in [113] to infer networks described by Granger 
causality. The covariance functions of the Gaussian processes are kernel functions that lead to 
a RKHS of causal and stable impulse responses. We use the discrete stable spline kernel as the 
covariance function. Consequently, the corresponding Bayesian probabilistic model is: 

(5.8.3) 

𝑦/(𝑡) =AA𝑋/B
:(𝑘)𝑦B(𝑡 − 𝑘) +

ù

§45

®

B45

AA𝑋/B-(𝑘)𝑢B(𝑡 − 𝑘) +
ù

§45



B45

𝑒/(𝑡) 

where 𝑋/B
:(𝑘) and 𝑋/B-(𝑘) are sampled versions of zero mean Gaussian processes with the 

scaled stable spline kernel: 
(5.8.4) 

𝑘2(𝑡, 𝑠; 𝛽) = V
𝑒cò(e�r)𝑒cò���	(e,r)

2
−
𝑒c7ò���	(e,r)

6
W	



 

85 
 

85 

𝑘(𝑡, 𝑠; 𝜆, 𝛽) = 𝜆𝑘2(𝑡, 𝑠; 𝛽) 
 
  The kernel function is controlled by two hyperparameters, 𝜆 and 𝛽. 𝛽 determines the 

decaying rate of impulse responses and 𝜆 takes charge of sparsity of the network. If 𝜆/B
:  or 

𝜆/B-  is 0, then 𝑋/B
:(𝑘) or 𝑋/B-(𝑘) is discarded from the Bayesian model meaning the 𝑗th 

node or input does not control the 𝑖 th node. We will see that estimating 𝜆  under the 
Bayesian framework is related to the Automatic Relevance Determination (ARD) technique, 
which promotes sparsity. 
  As discussed in section 5.5, the infinite sum in the Bayesian model (5.8.3) is defined in the 
sense of quadratic mean and results in a random variable at each time point 𝑡 given past 
records of inputs and nodes. In addition, note that the auto-covariance of the Gaussian process 

is 𝑘(𝑡, 𝑡; 𝜆, 𝛽) = "±£i$�

7
 which decays exponentially fast to 0 with time index 𝑡. Therefore, 

it is acceptable to use partial sum as an approximation to infinite sum in (5.8.3) for the sake of 
practical implementation. The Bayesian model (5.8.3) is approximated as: 

(5.8.5) 

𝑦/(𝑡) =AA𝑋/B
:(𝑘)𝑦B(𝑡 − 𝑘) +

Æ

§45

®

B45

AA𝑋/B-(𝑘)𝑢B(𝑡 − 𝑘) +
Æ

§45



B45

𝑒/(𝑡) 

where 𝑀 is selected to be sufficiently large. From the view of model (5.8.2) in the functional 
setting, 𝑀 is chosen so that the truncated impulse responses contain the most significant 
dynamical behavior of the system (i.e. |ℎ(𝑡)| is small for 𝑡 > 𝑀).  
  Assume time series data from indices 1 to 𝑁 (𝑁 ≫ 𝑀) for nodes and inputs are collected 
for inference. The objective is to estimate the Gaussian processes 𝑋: and 𝑋- at time points 
{𝑡 = 1,2,⋯ ,𝑀}. 

5.9 Bayesian estimation of impulse responses 

  Under the Bayesian framework, impulse responses are estimated as the mean of the 
posterior distribution (𝐸(𝑋(𝑡)|𝑦, 𝑢)). To evaluate the posterior distribution, we define the 
following matrices and vectors associated to the 𝑖th node: 

(5.9.1) 

𝑌 = 5
𝑦Ç/
⋮

𝑦Æ�5/
6, 𝑤 = 0

𝑤5
⋮

𝑤®�
2 

𝐴 = 5
𝑦Çc5:ÇcÆ5 ⋯ 𝑦Çc5:ÇcÆ

®

⋮ ⋱ ⋮
𝑦Æ:55 ⋯ 𝑦Æ:5

®
�
𝑢Çc5:ÇcÆ5 ⋯ 𝑢Çc5:ÇcÆ

⋮ ⋱ ⋮
𝑢Æ:55 ⋯ 𝑢Æ:5

6 

𝜎@ = 𝐸{𝑒/(𝑡)@} 

𝑤é = L
Ã𝑋/é

: (1) ⋯ 𝑋/é
: (𝑀)Å′ if			1 ≤ 𝑟 ≤ 𝑝

Ã𝑋/(éc®)
- (1) ⋯ 𝑋/(éc®)

- (𝑀)Å′ if			𝑝 < 𝑟 ≤ 𝑝 + 𝑚
 



 

86 
 

86 

where 𝑌 ∈ 	ℝÇcÆ	, 𝑤 ∈ 	ℝÆ(®�) and 	𝐴 ∈ 	ℝ(ÇcÆ)×Æ(®�). 
Vector 𝑤 is divided into 𝑝 groups, each of which corresponds to the sampled impulse 

responses of a node or input. As the network topology is sparse, vector 𝑤 is group sparse 
and its sparsity pattern reflects the network topology.  
  For the 𝑖th node, we have the likelihood function of (5.8.5) based on Bayes’ rules: 

(5.9.2) 
𝑝(𝑦Æ�5:Ç/ |𝑤, 𝜎@)	

= ü 𝑝(𝑦ÇcB/ |𝑦5:ÇcBc5/ , 𝑤, 𝜎@)
ÇcÆc5

B4¼

	

= ü 𝑝(𝑦ÇcB/ |𝑦ÇcBc¥:ÇcBc5/ , 𝑤, 𝜎@)
ÇcÆc5

B4¼

	

= (2𝜋𝜎@)c
ÇcÆ
@ 𝑒𝑥𝑝 `−

1
2𝜎@

‖𝑌 − 𝐴𝑤‖@@a 

where the dependence on the other nodes and inputs is suppressed for convenience.  
  The logarithm of the likelihood function is quadratic with respect to 𝑤. The prior of 𝑤 is 
Gaussian because each group of 𝑤 is an independent sampled Gaussian process: 

(5.9.3) 

𝑝(𝑤) = ü 𝑝(𝑤B)
®�

B45

 

where 
𝑝(𝑤B)~	𝒩(𝑤B|0, 𝐾B) 

Ã𝐾BÅer = 𝑘�𝑡, 𝑠; 𝜆B, 𝛽B� 

 
  As a result, the conditional posterior distribution of 𝑤 is also Gaussian: 

(5.9.4) 

𝑝(𝑤|𝑦, 𝜎@, 𝜆, 𝛽) = |2𝜋Σ|c
5
@𝑒𝑥𝑝	 @−

1
2
(𝑤 − 𝜇)fΣc5(𝑤 − 𝜇)A 

where 

Σc5 =
1
𝜎@
𝐴′𝐴 + 𝐾c5	

𝜇 =
1
𝜎@
Σ𝐴′𝑌	

𝐾 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔9𝐾5,… , 𝐾®�: 
 
Let 𝛽 = Ã𝛽5,… , 𝛽®�Å′ and 𝜆 = Ã𝜆5, … , 𝜆®�Å′. Noise variance 𝜎@, and hyperparameters 

𝛽 and 𝜆 are unknown and remain to be determined. 

5.10 Estimation of hyperparameters 

  Hyperparameters 𝛽  and 𝜆  control the dynamics of impulse responses and sparsity of 



 

87 
 

87 

network topology, respectively. A full Bayesian model introduces hyperpriors for these 
hyperparameters leading to posterior distribution 𝑝(𝑤, 𝜎@, 𝜆, 𝛽, |𝑦) . To estimate impulse 
responses, hyperparameters are marginalized out from the model to achieve the marginal 
posterior distribution, 𝑝(𝑤|𝑦) . Nevertheless, 𝑝(𝑤|𝑦)  is intractable because the full 
Bayesian model is highly nonlinear with respect to these hyperparameters. Approximation 
techniques must be applied to tackle the intractable integral. There are two basic options: 
deterministic and stochastic approximations. We will consider stochastic approximations in 
the next chapter. In this chapter, we resort to the empirical Bayes method to approximate 
𝑝(𝑤|𝑦) with 𝑝(𝑤|𝑦, 𝜎@, 𝜆, 𝛽) analytically.  
  Following the discussion of section 4.3, to minimize the gap between the true and the 
approximate distributions, empirical Bayes optimizes hyperparameters by maximizing their 

likelihood function: (𝜎Ú@, 𝜆d, 𝛽d) = arg max
ò,",h¨

𝑝(𝑦|𝛽, 𝜆, 𝜎@) (type II maximization) [71], [117]. By 

marginalizing out impulse responses, the likelihood function of hyperparameters is: 
(5.10.1) 

𝑝(𝑦|𝜎@, 𝜆, 𝛽) ∝
1

|𝜎@𝐼 + 𝐴𝐾𝐴′|
𝑒𝑥𝑝 @−

1
2
𝑌′(𝜎@𝐼 + 𝐴𝐾𝐴′)c5𝑌A 

 
  Hence, the resulting optimization problem is as follows: 

(5.10.2) 

�𝜎Ú@, 𝜆d, 𝛽d� = arg min
ò,",h¨

𝑌′(𝜎@𝐼 + 𝐴𝐾𝐴′)c5𝑌 + log|𝜎@𝐼 + 𝐴𝐾𝐴′| 

  subject to 
𝛽, 𝜆, 𝜎@ ≥ 0 

 
  Note that the cost function in (5.10.2) is highly nonlinear and non-convex. The EM algorithm 
is commonly used to solve (5.10.2) where impulse responses 𝑤 are treated as the latent 
random variable. To further simplify notation, let 𝜃 = (𝛽, 𝜆, 𝜎@) and 𝑍 = 𝑤. In the E step, 
function 𝑄(𝜃|𝜃ec5) = 𝐸�|�,c�£¤[log 𝑝(𝑌,𝑤|𝛽, 𝜆, 𝜎@)] of the current iteration is calculated 
using 𝜃ec5 from the last iteration. Note that: 

(5.10.3)	
𝑄(𝜃|𝜃ec5) = 𝐿5(𝜎@) + 𝐿@(𝛽, 𝜆)	

𝐿5(𝜎@) = ê log 𝑝(𝑌|𝑤, 𝜎@) 𝑝(𝑤|𝛽ec5, 𝜆ec5)𝑑𝑤	

𝐿@(𝛽, 𝜆) = ê log 𝑝(𝑤|𝛽, 𝜆) 𝑝(𝑤|𝛽ec5, 𝜆ec5)𝑑𝑤 

where 𝜇/ec5  is the 𝑖th block of 𝜇ec5  corresponding to a node or input. Σ/ec5  is the 𝑖th 

diagonal block of Σec5. Ã𝐾·BÅer = 𝑘2�𝑡, 𝑠; 𝛽B� is the stable spline kernel without scaling. 

𝐿5(𝜎@) = −
𝑁 −𝑀
2

log 𝜎@ + ê`−
1
2𝜎@

‖𝑌 − 𝐴𝑤‖@@a 𝑝(𝑤|𝛽ec5, 𝜆ec5)𝑑𝑤	

= −
𝑁 −𝑀
2

log 𝜎@ + 𝐸 @−
1
2𝜎@

(𝑌f𝑌 − 2𝑌f𝐴𝑤 +𝑤′𝐴′𝐴𝑤)A	



 

88 
 

88 

= −
𝑁 −𝑀
2

log 𝜎@ −
1
2𝜎@

{𝑌f𝑌 − 2𝑌f𝐴𝐸(𝑤) + 𝐸[𝑡𝑟(𝐴f𝐴𝑤𝑤′)]}	

= −
𝑁 −𝑀
2

log 𝜎@ −
1
2𝜎@

{𝑌f𝑌 − 2𝑌f𝐴𝜇ec5 + 𝑡𝑟[𝐴f𝐴(Σec5 + 𝜇ec5𝜇ec5′)]}	

= −
𝑁 −𝑀
2

log 𝜎@ −
1
2𝜎@

9𝑌f𝑌 − 2𝑌f𝐴𝜇ec5 + 𝜇ec5f𝐴f𝐴𝜇ec5 + 𝑡𝑟[𝐴f𝐴Σec5]:	

= −
𝑁 −𝑀
2

log 𝜎@ −
1
2𝜎@

{‖𝑌 − 𝐴𝜇ec5‖@@ + 𝑡𝑟[𝐴f𝐴Σec5]}	

𝐿@(𝛽, 𝜆) = ê`log|2𝜋𝐾|c
5
@ −

1
2
𝑤′𝐾c5𝑤a𝑝(𝑤|𝛽ec5, 𝜆ec5)𝑑𝑤	

= −
1
2
log|𝐾| −

1
2
𝐸{𝑡𝑟[𝐾c5𝑤𝑤′]}	

= −
1
2
log|𝐾| −

1
2
𝑡𝑟[𝐶c5(Σec5 + 𝜇ec5𝜇ec5′)]	

= −
𝑀
2
A log 𝜆/

®�

/45

−
1
2
A log|𝐾·/|
®�

/45

−
1
2
A 𝜆/c5𝑡𝑟[𝐾·/c5�Σ/ec5 + 𝜇/ec5𝜇/ec5′�]
®�

/45

	

 

  In the M step, 𝜃e = argmax
c
𝑄(𝜃|𝜃ec5) is solved. According to (5.10.3), hyperparameters 

can be estimated independently. The optimal 𝜎@  has a closed-form solution as (𝜎@)e =
5

(ÇcÆ)
{‖𝑌 − 𝐴𝜇ec5‖@@ + 𝑡𝑟[𝐴f𝐴Σec5]}. Optimizing 𝛽 and 𝜆 can be decomposed into small 

sub-problems. 
(5.10.4) 

�𝜆/e, 𝛽/e� = argmin
"t,òt

𝑀 log 𝜆/ + log|𝐾·/| + 𝜆/c5𝑡𝑟[𝐾·/c5�Σ/ec5 + 𝜇/ec5𝜇/ec5′�] 

  The optimal solution for 𝜆/e is determined by 𝛽/e  as: 
(5.10.5) 

𝜆/e =
1
𝑀
𝑡𝑟[𝐾·/c5�Σ/ec5 + 𝜇/ec5𝜇/ec5′�] 

   
  Insert (5.10.5) back into (5.10.4), we have 

(5.10.6) 

𝛽/e = argmin
òt

𝑀log 𝑡𝑟[𝐾·/c5�Σ/ec5 + 𝜇/ec5𝜇/ec5′�] + log|𝐾·/| 

 
  The EM algorithm is summarized as follows. 
 
Algorithm 1 The kernel method equipped with EM 
1: Initialization: set ((𝜎@)¼, 𝛽¼, 𝜆¼) 
2: For 𝑡 = 1:𝑀𝐴𝑋 do 
3:   Update 𝜎@ as 



 

89 
 

89 

(𝜎@)e = 5
(ÇcÆ)

{‖𝑌 − 𝐴𝜇ec5‖@@ + 𝑡𝑟[𝐴f𝐴Σec5]}. 

4:   Update 𝛽 independently by solving 

𝛽/e = argmin
òt

𝑀log 𝑡𝑟[𝐾·/c5�Σ/ec5 + 𝜇/ec5𝜇/ec5′�] + log|𝐾·/| 

5:   Calculate 𝐾·/  using 𝛽/e  and update 𝜆 independently as 

𝜆/e =
1
𝑀
𝑡𝑟[𝐾·/c5�Σ/ec5 + 𝜇/ec5𝜇/ec5′�] 

6: End for 
 
  One advantage of EM is that problem (5.10.2) is decomposed into a series of small-scale 
problems. Hyperparameters are updated independently in each iteration. Hence, the 
algorithm scales well with large networks. However, the algorithm may suffer from numerical 
instability in practice. In each iteration, the inversion of 𝐾·/  is calculated, which can be ill-
conditioned for large values of 𝛽/. It was shown that some kernel functions (e.g. DC and TC 
kernels) have closed-form inversion [201]. Unfortunately, it is not the case for the second order 
stable spline kernel [202]. 
  Problem (5.10.2) can also be solved directly. Since calculating the derivative of the cost 
function with respect to 𝛽 is non-trivial, derivative-free algorithms such as the simplex search 
method are preferred. The resulting algorithm is more numerically stable since the calculation 
of 𝐾·/c5  is avoided. In addition, the algorithm converges faster than the EM algorithm. 
Nevertheless, the algorithm no longer scales with the size of the target network. Also, it easily 
gets trapped at local optimal solutions. The estimation of hyperparameter 𝛽  is relatively 
robust to local optima [74]. However, the evaluation of 𝜆 is very sensitive to the suboptimal 
solutions because its sparsity pattern determines the network topology.  
  Another aspect that must be noticed is the estimation of noise variance 𝜎@. In deterministic 
approximations, even the true value of the noise variance may not be the best choice for 
approximating the posterior distribution. That means 𝜎@ is no longer the noise variance but 
rather a tuning variable to some extent.  
  Compared with the type II maximization of SBL in the last chapter, the cost function differs 
in the choice of the kernel function. For SBL, the kernel function is: 

(5.10.7) 

𝑘(𝑡, 𝑠) = m𝛽e if			𝑡 = 𝑠
0 if			𝑡 ≠ 𝑠

 

where 𝛽é ≥ 0 
  Impulse responses in the RKHS constructed by kernel (5.10.7) are not stable according to 
Theorem 5.6.2. SBL allows the highest degree of freedom to estimate unknown model 
parameters by ignoring correlations among them. As the predictor of ARX models is a FIR 
system (that is inherently stable), impulse responses do not necessarily decay exponentially. 
Hence, correlations among elements of FIRs are weak and SBL is suitable to estimate ARX 
models. For IIR systems (e.g. the predictor of DSFs), the property of system stability causes 
strong correlations among impulse responses at different time points. In particular, impulse 
responses decay exponentially fast to zero for stable systems. As a result, to enforce system 
stability, the kernel function used to construct the RKHS for stable impulse responses must be 



 

90 
 

90 

bounded by exponential functions.  
 

5.10.1	Selection	of	the	inferred	links	
  Under the framework of empirical Bayes, hyperparameter 𝜆 introduces the effect of the 
ARD technique. If 𝜆/ is zero, the corresponding node or input is removed from the model. In 
practice, one does not expect estimated 𝜆/  to be exactly zero due to numerical errors. A 
conventional way is to use a threshold to rule out small 𝜆/. However, it is difficult to determine 
the most proper threshold. In addition, since the stable spline kernel is used, the effect of the 
ARD technique also depends on hyperparameter 𝛽 . Hence, instead of evaluating the 
contribution of a node or input to system dynamics based on 𝜆  only, we refer to the 
estimated impulse responses directly. A node or input is less important if its corresponding 
impulse responses are small. In this section, we propose a heuristic way to select the inferred 
nodes. 
  To begin with, we rank the importance of nodes and inputs in an ascent sequence, according 
to the norm of their estimated impulse responses. Nodes and inputs are then removed one-
by-one from the bottom of the sequence. In each iteration, the corresponding cost function in 
(5.10.2) is evaluated. If the value of the cost function is decreased, the removal is accepted. 
The iteration stops when all nodes and inputs are removed from the model. The algorithm to 
perform the above procedure is as follows. 
 
Algorithm 2 Selection of the inferred links 
1: Solve problem (5.10.2) to get estimated hyperparameters 𝜎Ú@, 𝛽d, 𝜆d. 
2: Calculate 𝑓�	𝜎Ú@, 𝛽d, 𝜆d� where 𝑓(𝜎@, 𝛽, 𝜆) = 𝑌′(𝜎@𝐼 + 𝐴𝐾𝐴′)c5𝑌 + log|𝜎@𝐼 + 𝐴𝐾𝐴′|. 

2: Estimate impulse responses as 𝑤w = 5
h¨
Σ𝐴′𝑌 and calculate the norm for each group. 

3: Rank impulse responses and set the threshold as 𝑅 = 𝑠𝑜𝑟𝑡9Ã‖𝑤w5‖@ ⋯ �𝑤w®��@Å: 

where 𝑠𝑜𝑟𝑡 is the function in Matlab. 
2: For 𝑡 = 1: 𝑝 +𝑚 − 1 do 
3:  Define the set of nodes and inputs to be removed as 

𝐼 = {𝑖|‖𝑤w/‖@ ≤ 𝑅e} 
4:  Set 𝜆d/e to be zero if it is included in set 𝐼 

𝜆d/e = @0 if			𝑖 ∈ 𝐼
𝜆d/ if			𝑖 ∉ 𝐼 

5:  Accept 𝜆d/e if the cost function is decreased 
𝜆d = 𝜆de if 𝑓(𝜎Ú@, 𝛽d , 𝜆de) ≤ 𝑓(𝜎Ú@, 𝛽d, 𝜆d) 

6: End for 

7: Calculate the final estimation of impulse responses using 𝜎Ú@, 𝛽d, 𝜆d as 𝑤w = 5
h¨
Σ𝐴′𝑌 

5.11 Models with measurement noise 

  In previous sections, we assume there is no or small measurement noise. If measurement 



 

91 
 

91 

noise is not negligible, it should be considered in the proposed model. We consider a state 
space model in the innovation form: 

(5.11.1) 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵-𝑢(𝑡) + 𝐵±𝑒(𝑡)	

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑒(𝑡) 
where 𝑒(𝑡) contains information of both process and measurement noise. As the prediction 
error of the model, 𝑒(𝑡) is assumed to be white Gaussian noise. 
  Following the same protocol, the dynamical structure function of (5.11.1) is: 

(5.11.2) 
𝑌 = 𝑄𝑌 + 𝑃𝑈 + (𝐼 − 𝑄 + 𝐻)𝐸 

where 𝑄, 𝑃 and	𝐻 are strictly proper transfer matrices from (5.7.3).  
  Model (5.11.2) can be rewritten as: 

(5.11.3) 
𝑌 = 𝐹-𝑈 + 𝐹:𝑌 + 𝐸 

where 
𝐹- = (𝐼 − 𝑄 + 𝐻)c5𝑃	
𝐹: = 𝐼 − (𝐼 − 𝑄 +𝐻)c5(𝐼 − 𝑄) 

  To see (5.11.3) is physically realizable, we need to verify that (𝐼 − 𝑄 +𝐻)c5 is causal. The 
state space realization of 𝐹 = (𝐼 − 𝑄 + 𝐻) is: 

(5.11.4) 

𝐹~ ú𝐴¹ 𝐵¹
𝐶¹ 𝐷¹

û 

𝐴¹ = 5
𝐴� 0 0
0 𝐴� 0
0 0 𝐴�

6, 𝐵¹ = 0
𝐵�
𝐵�
0
2, 𝐶¹ = [𝐶� 𝐶� 0], 𝐷¹ = 𝐼 

where state space realizations for 𝑄, 𝐻 and 𝐼 are: 

𝑄~ ú
𝐴� 𝐵�
𝐶� 0 û, 𝐻~ ú

𝐴� 𝐵�
𝐶� 0 û, 𝐼~ ë

𝐴� 0
0 𝐼ì 

  Since 𝐷¹  is non-singular, 𝐹c5  exists and is a causal system [171] with the state space 
realization: 

𝐹c5~ ú𝐴¹ − 𝐵¹𝐶¹ −𝐵¹
𝐶¹ 𝐷¹

û 

 
  Moreover, 𝐹-  and 𝐹:  are both strictly proper because 𝐹- → 0 , 𝐹: → 0  as 𝑞 → ∞ . 
Consequently, the predictor of (5.11.2) can be easily derived from (5.11.3). 
  The framework discussed in this chapter can also be used to identify model (5.11.3). 
Nevertheless, transfer matrices 𝐹-  and 𝐹:  are no longer sparse but full. Hence, the ARD 
technique does not apply here. In this case, how to promote network sparsity requires further 
research. 

5.12 Conclusion 

  This chapter applies state space models to describe sparse networks. Considering only a 
small number of biological units can be measured in practice, DSF models are used to 



 

92 
 

92 

represent networks consisting of observable nodes while hidden nodes are encoded through 
transfer functions. DSFs are expressed in a non-parametric way using impulse responses so 
that inference can be carried out without prior knowledge of the number of hidden nodes and 
their biological interpretations. Following the framework of kernel methods, the stable spline 
kernel is used to establish a functional space (RKHS) of causal and stable impulse responses. 
The identification problem is recast in the Bayesian framework. Impulse responses are 
assumed to be independent Gaussian processes whose covariance function is the stable spline 
kernel. The empirical Bayes technique is employed to approximate the intractable marginal 
posterior distribution of impulse responses. Type II maximization is used to optimize 
hyperparameters of the kernel function that determine network topology and internal 
dynamics.  
  One advantage of the kernel method is that the challenging problem of model selection is 
avoided. By using the non-parametric identification framework, the combinatorial search for 
system order of transfer functions is avoided. More importantly, the method guarantees to 
generate a stable system. ARD is naturally embedded into empirical Bayes to promote sparse 
network topologies.  
  The main drawback of the kernel method is that the resulting optimization problem is highly 
nonlinear. Hence, normally only local optima can be achieved. As the sparsity pattern of the 
solution determines network topology, local optima seriously influence the performance of 
the algorithm. In addition, estimating the noise variance is problematic because it behaves as 
a tuning variable rather than a variable controlling statistical properties of process noise.  
  Further developments are three-fold. One is to find a more advanced algorithm that can 
encourage a global search of the optimal solution. The second is to develop a better strategy 
to evaluate the noise variance. The difficulty of its estimation is an inherent problem of 
deterministic approximation techniques. Hence, stochastic approximations can be a potential 
solution which explores the true Bayesian model directly without analytical approximations. 
Finally, it is important to find a way to promote network sparsity with the existence of 
measurement noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

93 
 

93 

 
 
 
 
 
 
 
 
 

Chapter	6.	 	

Sparse	network	inference	using	reversible	jump	Markov	

chain	Monte	Carlo	

  Stochastic dynamical models have been used to describe topology and internal dynamics of 
networks. Model parameters are assumed to be random quantities to reflect model 
uncertainty. By incorporating prior knowledge, full Bayesian models are established to present 
posterior belief of dynamical models given time series data. These probabilistic models can be 
used for system identification, model comparison and prediction of future network behaviors. 
However, manipulation of Bayesian models (such as marginalization and normalization) is 
typically intractable, due to highly complex model expressions. Hence, approximation 
techniques must be used to tackle the problem. Previous chapters are focused on empirical 
Bayes as a deterministic approximation method to analytically approximate a distribution. 
This technique has been applied in GESBL and the kernel method where a Gaussian 
distribution is used to approximate intractable true distributions. The usage of Gaussian 
distributions greatly simplifies Bayesian estimation that requires to perform marginalization 
and calculate expectation. It has been shown that empirical Bayes effectively imposes sparse 
network topologies. However, since the true Bayesian model is replaced by an approximate 
one, it is unlikely to have an accurate evaluation of model uncertainty. Ideally, we would like 
to evaluate the probability of all possible network topologies. In addition, deterministic 
approximations require us to solve an optimization problem that can be highly nonlinear. Local 
optimal solutions can seriously degrade the ability of algorithms to detect network topology. 
Finally, estimation of noise variance is problematic since noise variance is treated as a tuning 
variable to optimize the approximate distribution. An accurate estimation of noise variance 
helps algorithms filter out process noise, thus producing reliable inference results. Hence, 
without strong ability to explore statistical properties of process noise, the performance of 
the developed methods degrades as process noise increases. 

This chapter treats network topology as a new random quantity and embeds it into the full 
Bayesian model. The full Bayesian model is established based on DSFs. Stochastic 
approximations are applied to explore the probabilistic model directly. A sampling method 
called reversible jump Markov chain Monte Carlo (RJMCMC) is used to encourage a global 



 

94 
 

94 

search of network topology by traversing among parameter subspaces of different 
dimensionality, each of which corresponds to a particular network topology. Metropolis-
Hastings-within-Partially Collapsed Gibbs sampler (MH-within-PCG) is carefully designed to 
efficiently draw samples from the full Bayesian model. By exploring the statistical property of 
process noise via sampling, the developed method is robust to noise perturbations. In addition, 
the confidence of the inferred network topology is clearly shown by the empirical marginal 
posterior distribution. Simulations indicate that RJMCMC outperforms SBL, GSBL and the 
kernel method on identifying multivariable ARX models. It is also superior to the kernel 
method when dealing with DSF models. Nevertheless, how to reduce its computational cost 
remains to be an open question.  

  Next is an outline of this chapter. Sections 6.1 discusses basic Markov chain Monte Carlo 
(MCMC) methods. Sections 6.2 and 6.3 illustrate details of MH-within-PCG samplers and 
RJMCMC techniques. Section 6.4 briefly reviews DSFs to describe sparse networks and handle 
hidden nodes. Section 6.5 formulates the network reconstruction problem. Section 6.6 
constructs the full Bayesian model of DSFs and section 6.7 deduces a MH-within-PCG sampler 
with the fixed network topology. Section 6.8 applies RJMCMC to draw samples from the full 
Bayesian model. Section 6.9 discusses the computational cost of the sampler. Finally, section 
6.10 compares different approaches via Monte Carlo simulations. 

6.1 MCMC approach 

  For most real-world applications, exact inference is typically intractable and requires 
approximations [90]. Previous chapters apply deterministic methods to approximate ground 
truth distributions analytically using empirical Bayes. Another way to explore probabilistic 
models are Monte Carlo techniques. They are approximate inference methods based on 
numerical sampling [90], [40]. Stochastic approximation techniques such as Markov chain 
Monte Carlo (MCMC) are widely used in practice where drawn samples are guaranteed to 
asymptotically converge to the target distribution. These samples can be used to evaluate 
intractable marginal probabilistic models. They can also be used to estimate expectation of 
random variables that cannot be calculated in a closed form. 
  MCMC is a very powerful framework, which allows samples to be drawn from a large class 
of distributions. In particular, MCMC can handle complex distributions that cannot be sampled 
directly. For example, MCMC can sample a distribution that is known up to a constant. 
Moreover, MCMC scales well with the dimensionality of the sample space [90]. The basic idea 
of MCMC schemes is to construct a Markov chain so that the distribution of the Markov state 
converges to the target distribution as the length of the chain grows. 
 

6.1.1	Markov	chain	
  Before discussing more details, for the sake of completeness, we briefly review some basic 
concepts of Markov chain. A thorough treatment can be found in books and rich literatures, 
for example, [18], [40], [90], [162], [165], to name a few. 
  A first-order discrete time Markov chain is a stochastic process {𝑋e, 𝑡 ∈ 	 {1,2,3. . . }} 
(Markov state) taking values in an arbitrary state space (ℝ3  in this chapter) so that 
𝑝(𝑥e�5|𝑥5, 𝑥@, … , 𝑥e) = 𝑝(𝑥e�5|𝑥e)  where 𝑥  denotes the value of the state and 𝑝(∙) 



 

95 
 

95 

represents the probability density function. That is, the future of the Markov state is 
independent on the past given the current state. Hence, a Markov chain is fully specified 
provided the probability distribution of the initial state and the conditional probabilities for 
subsequent states called transition probabilities (kernels) [165]. (Note that kernels of a Markov 
chain and kernel functions in the last chapter are different concepts.) In this chapter, we only 
consider homogeneous Markov chains whose transition kernels are independent on time 
index 𝑡. 
  For a general state space 𝑆 , a transition kernel is expressed as 𝑃(𝑥, 𝐵) = Pr	(𝑋e ∈
𝐵|𝑋ec5 = 𝑥) indicating the probability of moving from state 𝑥 into set 𝐵, where 𝑥 ∈ 𝑆 and 
𝐵 is a measurable set in 𝑆. For each fixed 𝑥, map 𝐵 → 𝑃(𝑥, 𝐵) is a probability measure. For 
each fixed 𝐵 , map 𝑥 → 𝑃(𝑥, 𝐵) is a measurable function. The product of two transition 
kernels is defined as 𝑃5𝑃@(𝑥, 𝐴) = ∫𝑃5(𝑥, 𝑑𝑦)𝑃@(𝑦, 𝐴) [165], which can be interpreted as the 
probability of moving from state 𝑥 into set 𝐴 by executing transition 1 (with kernel 𝑃5) 
and 2 (with kernel 𝑃@) sequentially. 
  The marginal distribution of the state at time 𝑡 + 1  can be expressed as 𝜋e�5(𝐴) =
∫𝑃(𝑥, 𝐴)𝜋e(𝑑𝑥) where 𝜋e(∙) is the distribution (probability measure) of 𝑋e. A distribution 
𝜋⋆(∙)  is said to be invariant or stationary with respect to a Markov chain if 𝜋⋆(𝐵) =
∫𝑃(𝑥, 𝐵)𝜋⋆(𝑑𝑥) for any measurable set 𝐵. That means if a Markov chain starts from the 
initial state with the invariant distribution, all the subsequent states will have the same 
marginal distribution as the initial one. A sufficient condition for ensuring the target 
distribution 𝜋⋆(∙) is invariant is to select a transition kernel so that ‘detailed balance’ is 

satisfied: ∫ 𝑃(𝑥, 𝐵)𝜋⋆(𝑑𝑥)� = ∫ 𝑃(𝑥, 𝐴)𝜋⋆(𝑑𝑥)%  for any measurable sets 𝐴  and 𝐵  or 

𝑝⋆(𝑥f)𝑝(𝑥|𝑥′) = 𝑝⋆(𝑥)𝑝(𝑥′|𝑥)  where 𝑝⋆(∙)  and 𝑝(∙ |𝑥)  denote density functions of 
Lebesgue measure with respect to probability measures 𝜋⋆(∙) and 𝑃(𝑥,∙), respectively [165], 
[203]. That is, the probability of moving to set 𝐵 or state 𝑥 from set 𝐴 or state 𝑥′ is equal 
to from set 𝐴 or state 𝑥′ to set 𝐵 or state 𝑥. In other words, the Markov chain is reversible.  
  In practice, a single update mechanism (characterized by a transition kernel) may not be 
sufficient to draw samples from the entire state space. If update mechanisms are not well 
designed, the produced samples cannot accurately represent statistical properties of the 
target random variable, thus leading to a biased estimation of its distribution. Multiple update 
mechanisms can be combined to yield a more efficient sampler. For example, in each iteration, 
Gibbs sampling contains several update steps, each of which only updates one variable with 
others fixed. There are two major ways to combine update mechanisms, composition and 
mixing [165]. The invariant distribution shared by multiple update mechanisms is preserved 
after combination if certain rules are obeyed. These rules are very important for deducing and 
validating novel samplers in following sections.  
  The composition method integrates multiple update mechanisms into a chain so that these 
update mechanisms are executed sequentially. For 𝑚 update mechanisms 𝑈5, 𝑈@, …, 𝑈 
with transition kernels 𝑃5, 𝑃@, …, 𝑃 that all preserve the same invariant distribution, they 
are implemented in the sequence 𝑈5 ⟶ 𝑈@ ⟶ ⋯⟶ 𝑈. The resulting transition kernel of 
the Markov chain turns out to be the product of individual kernels 𝑃(𝑥, 𝐴) = 𝑃5𝑃@⋯𝑃(𝑥, 𝐴) 
[165]. The invariant distribution is preserved in this case. 
  The mixing method executes one of the update mechanisms at a time randomly. Suppose 



 

96 
 

96 

there are 𝑚 update mechanisms 𝑈5, 𝑈@, …, 𝑈  accompanied by fixed probabilities 𝑝5, 
𝑝@, …, 𝑝 where ∑ 𝑝/

/45 = 1. At each iteration, an update mechanism 𝑈/  is selected with 
probability 𝑝/  to generate the next Markov state. The resulting transition kernel of the 
Markov chain in this case is a convex combination of these transition kernels 𝑃(𝑥, 𝐴) =
∑ 𝑝/
/45 𝑃/(𝑥, 𝐴) [165]. In this way, the invariant distribution is preserved. 

  To draw samples from the target distribution, we require the target distribution to be 
invariant for the constructed Markov chain, which means the transition kernel must be 
formulated to meet the ‘detailed balance’ condition. In addition, as 𝑡⟶ +∞, the marginal 
distribution of the Markov state, 𝑝(𝑥e) must converge to the target distribution, irrespective 
of the choice of the initial distribution, 𝑝(𝑥5). This property is called ‘ergodicity’. For a chain 
to be ergodic, it must be irreducible (meaning it is possible to visit all states from any current 
state) and aperiodic (no cycles) [180], [165]. A homogeneous Markov chain is ergodic under 
some mild conditions on the invariant distribution and transition kernel [180].  
 

6.1.2	Metropolis-Hastings	algorithm	(MH)	and	Gibbs	sampler	
  MH algorithms and Gibbs sampling are two widely used MCMC methods to draw samples 
[204], [165], [205]. Since Gibbs sampling can be treated as a special case of MH, we introduce 
MH first.  
  MH algorithms can draw samples from a distribution that is known up to a normalization 

constant. Assume we want to draw samples from distribution 𝑝(𝑥) = 5
�
𝑝�(𝑥)  where 

normalization constant 𝑧 is unknown. In MH algorithms, with current state 𝑥e , a sample 
𝑥®éï®  is drawn from proposal distribution 𝑞(𝑥®éï®|𝑥e) and then accepted with probability 

𝐴(𝑥®éï®|𝑥e) = min m1, ®�(9�í��)I(9�|9�í��)	
®�(9�)I(9�í��|9�)	

n  [206]. If the proposal is accepted, 𝑋e�5 =

𝑥®éï®. If not, 𝑋e�5 = 𝑥e . It can be seen that the transition probability of the Markov chain 
using MH algorithms is 𝑝(𝑥|𝑥′) = 𝑞(𝑥|𝑥f)𝐴(𝑥|𝑥f) and, hence, ‘detailed balance’ is satisfied 
[203]. The choice of proposal distributions is crucial, which determines the statistical property 
of Markov chains. An inadequate choice can result in poor performance of designed Monte 
Carlo samplers (e.g. low convergence speed, high rejection rate) [206]. 
  For Gibbs sampling, consider the target density function, 𝑝(𝑥5, 𝑥@, … , 𝑥) from which we 
want to draw samples. The Markov state is 𝑥 = (𝑥5, 𝑥@, … , 𝑥). At each step, Gibbs sampling 
draws a sample of one variable from its full conditional distribution conditioned on the latest 
update of other variables [207], [72]. At step 𝑡, if 𝑚 = 3, 𝑥e5 is updated by 𝑥e�55  which is 
sampled from distribution 𝑝(𝑥5|𝑥e@, 𝑥e7) . Next, 𝑥e@  is replaced by 𝑥e�5@  sampled from 
distribution 𝑝(𝑥@|𝑥e�55 , 𝑥e7) . Finally, 𝑥e7  is replaced by 𝑥e�57  sampled from distribution 
𝑝(𝑥7|𝑥e�55 , 𝑥e�5@ ). The above procedure is then executed cyclically. It is important to realize 
that the Markov chain is formulated as (𝑥55, 𝑥5@, 𝑥57), (𝑥@5, 𝑥@@, 𝑥@7), …, (𝑥Ç5 , 𝑥Ç@ , 𝑥Ç7 ) instead of 
(𝑥55, 𝑥5@, 𝑥57) , (𝑥@5, 𝑥5@, 𝑥57) , (𝑥@5, 𝑥@@, 𝑥57) , (𝑥@5, 𝑥@@, 𝑥@7), etc. Each intermediate step of Gibbs 
sampling can be regarded as an MH sampling with acceptance probability always being 1 
[165]. The target distribution is the invariant of each intermediate sampling step and, 
therefore, of the whole Markov chain according to the property of composition of transition 
kernels. Constructing a Gibbs sampler is straightforward. However, the applicability of Gibbs 
sampling highly depends on whether conditional distributions can be sampled directly or not 



 

97 
 

97 

[90]. 

6.2 MH-within-PCG sampler  

  In practice, Gibbs and MH sampling are barely used directly. Rather, their variants are 
applied accordingly to handle complex distributions. For example, blocked Gibbs samplers are 
a minor variant of traditional Gibbs samplers which groups two or more variables and samples 
from their joint conditional distribution, by which a better convergence property is achieved 
[208]. Another example is the single-site updating MH sampling where only one component 
of the current Markov state is updated at a time so that the design of proposal distributions is 
simplified [209], [203]. 
  Gibbs and MH sampling can also be combined to build up a more powerful and efficient 
sampler. If the conditional distributions of some sampling steps of a Gibbs sampler cannot be 
sampled directly, we can replace these steps with MH sampling schemes thus generating a 
hybrid sampler (MH-within-Gibbs sampler) [210]. It is also known that by marginalizing out 
some random variables of sampling steps, the convergence property of a sampler can be 
improved [210], [211]. Modified Gibbs samplers based on this idea are called partially 
collapsed Gibbs sampler (PCG) [212], [211]. It is called Metropolis-Hastings within partially 
collapsed Gibbs sampler (MH-within-PCG) for modified hybrid samplers [210]. In this chapter, 
we will use marginalization to improve the performance of samplers. 
  Introducing marginal distributions into a Gibbs sampler to form a PCG is nontrivial. The 
distribution of a sampling step cannot be marginalized directly. Otherwise, the invariant 
distribution of the Markov chain can be changed. However, this issue was not sufficiently 
aware of in much of the previous research. It has been shown that some rules for 
marginalization must be followed to preserve the invariant distribution [210]. To reduce the 
number of conditioned random variables, steps called marginalization, permutation and 
trimming are executed in sequence [211]. Marginalization means to move components of 
Markov states from being conditioned on to being sampled. For example, we can replace 
sampling 𝑥 from 𝑝(𝑥|𝑦, 𝑧) with sampling (𝑥, 𝑦) from 𝑝(𝑥, 𝑦|𝑧), which does not change 
invariant distribution 𝑝(𝑥, 𝑦, 𝑧) of a Gibbs sampler. Permutation means to switch the order 
of sampling steps. Finally, trimming is used to discard a subset of components to be sampled 
but not conditioned on in the next step. For instance, if variable 𝑦 sampled from 𝑝(𝑥, 𝑦|𝑧) 
is not conditioned on in the next step (e.g. sampling 𝑝(𝑦|𝑥, 𝑧)), 𝑝(𝑥|𝑧) can be sampled 
instead. By trimming, the transition kernel is not changed so that the invariant distribution is 
preserved.  
  It is important to realize that sampling steps of a PCG sampler cannot be replaced by their 
MH counterparts directly because it may change the invariant distribution. A MH-within-PCG 
sampler must be derived from the original MH-with-Gibbs sampler following similar rules of 
marginalization, permutation and trimming [210]. The key point is that a full MH step of a MH-
with-Gibbs sampler can be replaced by a reduced MH step followed immediately by a direct 
draw from the complete conditional distribution of those reduced quantities [210]. For 
instance, the MH step to sample 𝑝(𝑥|𝑦, 𝑧) in a MH-with-Gibbs sampler can be replaced by 
the reduced MH step to sample 𝑝(𝑥|𝑦) followed immediately by sampling 𝑝(𝑧|𝑥, 𝑦). After 
this replacement, sampling steps can be reordered and redundant quantities can be trimmed 



 

98 
 

98 

out following the rule of trimming. 
  In this chapter, we apply a MH-within-PCG sampler to draw samples from the full Bayesian 
model of the target network. Gibbs samplers are adopted as basic samplers for sampling. MH 
sampling is inevitably used since not all the conditional distributions can be sampled directly. 
In addition, we intend to marginalize out components to be sampled as much as possible in 
order to improve convergence speed, which leads to MH-within-PCG samplers. 

6.3 Reversible jump Markov chain Monte Carlo 

  Traditional MCMC is used to draw samples from a joint distribution of random variables 
whose dimension (dimensionality of the sample space) is fixed. There are cases where the 
dimension of random variables varies. Under this circumstance, MCMC samplers must jump 
between parameter subspaces of different dimensionality in order to explore the target 
distribution sufficiently. Reversible jump Markov chain Monte Carlo (RJMCMC) was designed 
for this purpose [126], [203], [205], [213]. RJMCMC also generalizes normal MH algorithms. 
  RJMCMC was originally developed for Bayesian model selection [126], where the dimension 
of model parameters varies in accordance to system order. Later, RJMCMC was extended to 
other applications including optimization [214], [215], machine learning [216], [174] and 
system identification [180], [217]–[219].  
  Assume we have a countable collection of Bayesian models	{ℳ§, 𝑘 ∈ 	 {1,2,3. . . }}. Each 
model ℳ§  is characterized by a parameter vector, 𝜃§ ∈ ℝÏk , where the dimension, 𝑑§ 
may differ from model to model. The random variable to be sampled is expressed as 𝑥 =
(𝑘, 𝜃§) which lies in the space, 𝑆§ = {𝑘} ×	ℝÏk given 𝑘. Hence, the entire parameter space 
of 𝑥 is 𝑆 = ⋃ 𝑆§§∈{5,@,7,… }  [203]. 
  Suppose 𝜋(𝑥) is the probability density function of interest. To draw samples from 𝜋(𝑥), 
a reversible Markov chain {𝑋e, 𝑡 ∈ 	 {1,2,3. . . }} is constructed with the invariant distribution 
to be 𝜋(𝑥). Each Markov state 𝑋e is composed of two components, 𝑘e  and 𝜃e§ where 𝑘e  
is the model index and 𝜃e§  is the corresponding unknown model parameter. To traverse 
across the combined parameter space 𝑆, different types of moves are designed, among which 
only one move is selected randomly for each transition. Transition kernels are carefully 
designed so that ‘detailed balance’ is achieved for each move type. The resulting transition 
kernel of the Markov chain is the mixing of the transition kernels of all moves. Consequently, 
invariant distribution 𝜋(𝑥) is preserved [126]. 
  Let (𝑘, 𝜃) be the current state, 𝑋e of the Markov chain where 𝜃 ∈ 	ℝÏk . Based on the 
designed moves, the probability to traverse from current model 𝑘 to the next one 𝑘′ is 𝑝§§f, 
where ∑ 𝑝§§f = 1§f . Note that if 𝑘′ = 𝑘, only model parameters are updated in the next state. 
In addition, it is possible that not all the models can be reached in the next state from the 
current state. Reachability of a new state is determined by the designed moves. Given the 
proposed 𝑘′ with probability 𝑝§§f, 𝜃′ ∈ 	ℝÏk�  is generated as the proposal of the next state. 
One way to generate 𝜃′ is to first produce a random quantity, 𝑈 with probability density 
𝑝𝑟§§f(𝑢|𝜃) and then apply a deterministic map of previous state 𝜃 along with 𝑈. As a result, 
𝜃′ = 𝑔5§§f(𝜃, 𝑈)  where 𝑈 ∈ ℝÏkk�  and 𝑔5§§f: ℝÏk�Ïkk� ⟶ ℝÏk�  is a deterministic map. 
The proposal, 𝑋®éï® = (𝑘′, 𝜃′) is then accepted with probability 𝐴§§f(𝜃′|𝜃). If accepted, 
𝑋e�5 = 𝑋®éï® . If not, 𝑋e�5 = 𝑋e [203]. 



 

99 
 

99 

  It is required that for the move from (𝑘, 𝜃) to (𝑘′, 𝜃′) and the reverse move from (𝑘′, 𝜃′) 
to (𝑘, 𝜃), their corresponding proposals (𝜃, 𝑈) and (𝜃′,𝑈′) must have equal dimension. 
This is called ‘dimension matching’: 𝑑§ + 𝑑§§f = 𝑑§f + 𝑑§f§ [126]. In addition, there must 
exist a deterministic map, 𝑔@§§f: ℝÏk�Ïkk� ⟶ 	 ℝÏkk�  such that (𝜃′,𝑈′) = 𝑔§§f(𝜃, 𝑈) =
(𝑔5§§f(𝜃, 𝑈), 𝑔@§§f(𝜃, 𝑈)) where map 𝑔§§f  is bijective and differentiable [203]. 
  Finally, to achieve ‘detailed balance’, the acceptance probability is designed according to: 

(6.3.1) 

𝜋(𝑘, 𝜃)𝑝§§f𝑝𝑟§§f(𝑈|𝜃)𝐴§§f = 𝜋(𝑘f, 𝜃f)𝑝§�§𝑝𝑟§�§(𝑈f|𝜃f)𝐴§�§(𝜃|𝜃) �
𝜕𝑔𝑘𝑘′(𝜃, 𝑈)
𝜕𝜃𝜕𝑈

� 

where 
𝜃f = 𝑔5§§�(𝜃, 𝑈) 
𝑈f = 𝑔@§§�(𝜃, 𝑈) 

 
  As a result, the acceptance probability equates to: 

(6.3.2) 

𝐴§§�(𝜃f|𝜃) = min @1,
𝜋(𝑘f, 𝜃f)𝑝§�§𝑝𝑟§�§(𝑈f|𝜃f)
𝜋(𝑘, 𝜃)𝑝§§f𝑝𝑟§§f(𝑈|𝜃)

�
𝜕𝑔𝑘𝑘′(𝜃, 𝑈)
𝜕𝜃𝜕𝑈

�A 

6.4 Model formulation 

  We use state space model (5.7.1) to describe a sparse network. Considering some nodes of 
the network are not observable, DSF models are adopted to present the network of 
measurable nodes whereas hidden nodes are encoded by transfer functions. The model is 
expressed in the same way as chapter 5: 

(6.4.1) 
𝑌 = 𝑄𝑌 + 𝑃𝑈 +𝐻𝐸 

 
  𝑌 ∈ ℝ® represent observed nodes of the network. 𝑈 ∈ ℝ denote inputs. 𝐸 ∈ ℝI are 
i.i.d. Gaussian noise with zero mean and a diagonal covariance matrix. 𝑄, 𝑃  and 𝐻  are 
strictly proper transfer matrices which represent internal dynamics of the network. The 
topology of the network is indicated by the zero structure of matrices 𝑄 and 𝑃 where 𝑄 
reflects causal interactions among nodes and 𝑃 shows how inputs enter the network. 
  To guarantee the one-to-one correspondence between a DSF and an input-output map, 𝐻 
is assumed to be diagonal according to Theorem 5.7.1. Moreover, without loss of generality, 
𝑞𝐻 is assumed to be monic and minimum-phase in order to derive the predictor of (6.4.1). 

6.5 Problem formulation 

  The DSF in (6.4.1) can be rewritten as: 
(6.5.1) 

𝑌 = 𝐹-𝑈 + 𝐹:𝑌 + 𝐸) 
where 𝑞 denotes the time shift operator that 𝑦(𝑡 + 1) = 𝑞𝑦(𝑡) and: 

𝐹- = (𝑞𝐻)c5𝑃 



 

100 
 

100 

𝐹: = 𝐼 − (𝑞𝐻)c5(𝐼 − 𝑄) 
𝐸) = 𝑞c5𝐸 

 
  Since 𝐻  is diagonal, transfer matrices 𝐹:  and 𝐹-  have the same zero structure as 
matrices 𝑄 and	𝑃, respectively. Therefore, transfer matrices 𝐹:  and 𝐹-  also indicate the 
topology of the network. Since the target network is sparse, 𝐹: and 𝐹- are sparse matrices. 
  We divide the network into subsystems, each of which presents the regulation of a 
particular node from the others nodes and inputs. These subsystems are expressed in a non-
parametric way using impulse responses so that system order of the transfer functions in 𝐹: 
and 𝐹-  needs not be specified a priori. For the implementation reason, we truncate the 
impulse responses after sample time 𝑇 as chapter 5. 𝑇 is set sufficiently large to catch major 
dynamics of impulse responses which decay exponentially fast. For the 𝑖th node, we have: 

(6.5.2) 

𝑦/(𝑡) =AAℎ/B
: (𝑘)𝑦B(𝑡 − 𝑘) +

¥

§45

®

B45

AAℎ/B- (𝑘)𝑢B(𝑡 − 𝑘) +
¥

§45



B45

�̂�/(𝑡) 

where ℎ/B
:  and ℎ/B-  denote impulse responses of transfer functions Ã𝐹:Å/B  and [𝐹-]/B , 

respectively. These impulse responses are assumed to be stable. Note that if a node or input 
does not control the 𝑖th node, its corresponding term in (6.5.2) is removed from the model. 
  Assume time series data from indices 1 to 𝑁 for each node and input are collected for 
inference. We define the following matrices and vectors associated to the 𝑖th node: 

(6.5.3) 

𝑌 = 5
𝑦Ç/
⋮

𝑦¥�5/
6, 𝑤§ = 0

𝑤§5
⋮

𝑤§l(§)
2 

𝐴§ = 5
𝑦Çc5:Çc¥5 ⋯ 𝑦Çc5:Çc¥

®

⋮ ⋱ ⋮
𝑦¥:55 ⋯ 𝑦¥:5

®
�
𝑢Çc5:Çc¥5 ⋯ 𝑢Çc5:Çc¥

⋮ ⋱ ⋮
𝑢¥:55 ⋯ 𝑢¥:5

6 

𝜎@ = 𝐸{�̂�/(𝑡)@} 
 

where 𝑘 ∈ {1,2,3. . . } is the index for all possible zero structures of [𝐹:(𝑖, : ) 𝐹-(𝑖, : )], each 
of which corresponds to a particular topology. Therefore, we attain a finite collection of models 
{ℳ§} within which model structures are different from model to model. We use a Boolean 
vector 𝐹§ to represent the zero structure (i.e. network topology) of [𝐹:(𝑖, : ) 𝐹-(𝑖, : )] of 
ℳ§ . 𝑓(𝑘)  maps index 𝑘  to the number of non-zero elements in 𝐹§ . 𝑤§ ∈ 	ℝ¥l(§) 
contains all the truncated impulse responses of the non-zero entries of [𝐹:(𝑖, : ) 𝐹-(𝑖, : )] 
and block 𝑤§B ∈ 	ℝ¥ denotes the impulse response of a node or input. 𝐴§ ∈ 	ℝ¥(Çc¥)×	¥l(§) 
includes data of all the associated nodes and inputs that are controlling the 𝑖th node. 𝑌 ∈
ℝÇc¥  contains the data of the 𝑖 th node. 𝜎@  is the noise variance of process noise. 
Superscripts denote the index of nodes and inputs. It should be noticed that the dimension of 
𝑤§ and 𝐴§ varies with index 𝑘 since the number of nodes and inputs that control the 𝑖th 
node changes with respect to topology 𝐹§. Because the ground truth topology is unknown, 
index 𝑘 also remains to be determined. 



 

101 
 

101 

  For the 𝑖th node, we have the likelihood function based on Bayes’ rules: 
(6.5.3) 

𝑝(𝑦¥�5:Ç/ |𝑤§, 𝜎@, 𝑘) = (2𝜋𝜎@)c
Çc¥
@ 𝑒𝑥𝑝 `−

1
2𝜎@

‖𝑌 − 𝐴§𝑤§‖@@a 

 
where the dependence on the initial conditions, nodes and inputs is suppressed for 
convenience.  
  It is then important to introduce prior distributions to promote network sparsity (related to 
the number of connectivity among observed nodes), model parsimony (related to the number 
of hidden nodes and their connectivity with observed nodes) and system stability to the 
proposed model. 

6.6 Full Bayesian model for DSF 

6.6.1	Prior	Distribution	
  The kernel method discussed in chapter 5 treats network topology as a deterministic but 
unknown quantity. Network topology is reflected by estimated non-zero impulse responses. 
Nevertheless, this approach does not allow to evaluate inference confidence and is sensitive 
to local optimal solutions. In addition, the kernel method has difficulty dealing with the noise 
variance. In this chapter, we construct a full Bayesian model where network topology is 
regarded as a random quantity. We explore the full Bayesian model directly via numerical 
sampling rather than through its analytical approximation. Hence, we can assess the 
confidence of the inferred network and reduce the risk of being trapped at local optimal 
solutions. More importantly, numerical sampling offers a good estimation of process noise 
thus making the developed method more robust to noise perturbations. 

Full Bayesian treatment requires introducing prior distributions for all the random variables 
including impulse responses 𝑤§ , noise variance 𝜎@  and topology index 𝑘 . These priors 
reflect initial belief of the system as well as basic properties of these random quantities. In 
addition, parameters of priors (hyperparameter) are also treated as random variables and 
hyperpriors are introduced to these hyperparameters. 
  We follow the Bayesian framework of the kernel method to introduce priors for impulse 
responses. Impulse responses are assumed to be independent Gaussian processes like chapter 
5: 

(6.6.1) 
𝑝(𝑤§I|𝛽§I , 𝜆§I , 𝑘)~𝒩(𝑤§I|𝟎,𝐾§I) 

where 

Ã𝐾§IÅ/B = 𝑘(𝑖, 𝑗) 

𝑘(𝑖, 𝑗) = 𝜆§I𝑘′(𝑖, 𝑗; 𝛽§I) 

𝑘f(𝑖, 𝑗; 𝛽) =
𝑒cò(/�B)𝑒cò���	(/,B)

2
−
𝑒c7ò���	(/,B)

6
 

 
𝐾§I ∈ ℝ¥×¥ is the covariance matrix of the 𝑞th group of 𝑤§. 𝑘′(𝑖, 𝑗; 𝛽) is the discrete 

stable spline kernel controlled by hyperparameter 𝛽 ≥ 0 which determines the decaying rate 



 

102 
 

102 

of impulse responses. The kernel function is also scaled by another hyperparameter, 𝜆 ≥ 0 
that is related to the amplitude of impulse responses [113]. The complete prior for 𝑤§ thus 
is: 

(6.6.2) 
𝑝(𝑤§|𝛽§, 𝜆§, 𝑘)~𝒩(𝑤§|𝟎,𝐾§) 

where 𝐾§ ∈ ℝ¥l(§)×¥l(§), 𝛽§ ∈ ℝl(§), 𝜆§ ∈ ℝl(§) and: 
𝐾§ = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔9𝐾§5,… , 𝐾§l(§): 
𝛽§ = Ã𝛽§5, … , 𝛽§l(§)Å′ 
𝜆§ = Ã𝜆§5, … , 𝜆§l(§)Å′ 

 
  Based on the likelihood function in (6.5.3), we use Inverse-Gamma distribution 𝐼𝐺(𝜎@; 𝑎, 𝑏) 
as the conjugate prior for noise variance 𝜎@ [40], [90]. In the absence of a specific preference, 
𝑎 and 𝑏	are set extremely small (0.001) to make the prior non-informative [180]: 

(6.6.3) 

𝑝(𝜎@; 𝑎, 𝑏) =
𝑏+

Γ(𝑎)
(𝜎@)c+c5𝑒c

,
h¨  

 

  The index, 𝑘  is a positive integer and no bigger than 𝑘+9 = ∑ 𝑪(𝑝 + 𝑚 − 1, 𝑖)®�c5
/4¼  

that equates to the total number of all possible topologies of (6.5.3), where 𝑪 denotes the 

combination operator: 𝑪(𝑛,𝑚) = 3(3c5)⋯(3c�5)
!

. Its prior is the variant of a truncated 

Poisson distribution with rate parameter 𝛼 [174], [180]: 
(6.6.4) 

𝑝(𝑘|𝛼) =
𝛼l(§)/𝑓(𝑘)!

∑ 𝛼l(B)/𝑓(𝑗)!§ (¡
B45

 

 
  It can be seen that topology indices which are mapped to the same number of links by 𝑓(𝑘) 
possess the same probability even if their corresponding zero structures are different.  
  Finally, there are three hyperparameters left. For 𝜆§, we adopt Inverse Gamma distribution 
𝑝(𝜆§; 𝑒, 𝑓) as the hyperprior. This distribution is the conjugate prior of 𝜆§ as it is the scale 
parameter of a Gaussian distribution. We set 𝑒 = 2 and 𝑓 = 1 so that the distribution has 
infinite variance but also puts most of weights over small values. Note that 𝜆§ also serves as 
an ARD parameter to promote sparsity. Under the framework of kernel methods, it is 
determined by solving an optimization problem. In this case, the power of ARD mechanisms is 
limited by the difficulty of finding the optimal solution. In this chapter, we apply a sampling 
method (i.e. RJMCMC) to deliberately set certain elements of 𝜆§ zero in different transition 
moves so that the effect of ARD is maximally activated. We use the same hyperprior 
𝑝(𝛽§; 𝑐, 𝑑)  (i.e. Inverse Gamma distribution) for non-negative hyperparameter 𝛽§ . 
Hyperparameter 𝛽§ controls the decaying rate of impulse responses. We find that its value, 
if bigger than 10, leads to fast decaying impulses responses that represent negligible system 
dynamics. As a result, we set 𝑐 = 2 and 𝑑 = 1 so that the prior concentrates on the region, 
(0,10] but still has infinite variance to support the other regions of the sample space.  



 

103 
 

103 

(6.6.5) 

𝑝(𝛽§; 𝑐, 𝑑) =ü𝐼𝐺(𝛽§/; 𝑐, 𝑑)
l(§)

/45

 

𝑝(𝜆§; 𝑒, 𝑓) =ü𝐼𝐺(𝜆§/; 𝑒, 𝑓)
l(§)

/45

 

 
  A conjugate Gamma distribution, 𝐺𝑎𝑚𝑚𝑎(𝛼; 𝛿5, 𝛿@) for the rate parameter of a Poisson 
distribution is assigned to be the prior for 𝛼 [174], [180]. As 𝛼 is the mean of a Poisson 
distribution, we set 𝛿5 = 0.1 and 𝛿@ = 1 to reflect the belief of sparse topology (𝑓(𝑘) ≪ 𝑝). 
Nevertheless, we will see that this setting barely influences the final posterior distribution. 

(6.6.6) 

𝑝(𝛼) =
𝛿@

¢¤

Γ(𝛿5)
𝛼¢¤c5𝑒c¢¨� 

 

6.6.2	Posterior	Distribution	
  Based on Bayes' rules, we have the posterior distribution of DSFs as: 

(6.6.7) 
𝑝(𝑘,𝑤§, 𝛽§, 𝜆§, 𝜎@, 𝛼|𝑌) 
∝ 𝑝(𝑌|𝑤§, 𝜎@)𝑝(𝑤§|𝛽§, 𝜆§, 𝜎@)𝑝(𝜎@)𝑝(𝛽§|𝑘)𝑝(𝜆§|𝑘)𝑝(𝑘|𝛼)𝑝(𝛼) 

∝ (2𝜋𝜎@)c
Çc¥
@ 𝑒𝑥𝑝 `−

1
2𝜎@

‖𝑌 − 𝐴§𝑤§‖@@a 

×ü|2𝜋𝐾§/|
c5@

l(§)

/

𝑒𝑥𝑝	(−
1
2
𝑤′§/𝐾§/c5𝑤§/) 

× (𝜎@)c+c5𝑒𝑥𝑝	(−
𝑏
𝜎@
) 

×ü𝐼𝐺(𝛽§/; 𝑐, 𝑑)𝐼𝐺(𝜆§/; 𝑒, 𝑓)
l(§)

/

×
𝛼l(§)/𝑓(𝑘)!

∑ 𝛼l(B)/𝑓(𝑗)!§ (¡
B45

× 𝛼¢¤c5𝑒c¢¨� 

where subscript 𝑘  denotes that the quantity dimension depends on index 𝑘 . The 
dependence on initial conditions, other nodes and inputs is suppressed for convenience. 
  By completing squares, (6.6.7) becomes: 

(6.6.8) 
𝑝(𝑘,𝑤§, 𝛽§, 𝜆§, 𝜎@, 𝛼|𝑌) 
∝ 𝑝(𝑌|𝑤§, 𝜎@)𝑝(𝑤§|𝛽§, 𝜆§, 𝜎@)𝑝(𝜎@)𝑝(𝛽§|𝑘)𝑝(𝜆§|𝑘)𝑝(𝑘|𝛼)𝑝(𝛼) 

∝ (2𝜋𝜎@)c
Çc¥
@ 𝑒𝑥𝑝 @−

1
2
𝑌′(𝜎@𝐼 + 𝐴§𝐾§𝐴′§)c5𝑌A 

× |2𝜋𝐾§|
c5@𝑒𝑥𝑝	 @−

1
2
(𝑤§ − 𝜇§)fΣ§c5(𝑤§ − 𝜇§)A 

× (𝜎@)c+c5𝑒𝑥𝑝	(−
𝑏
𝜎@
) 



 

104 
 

104 

×ü𝐼𝐺(𝛽§/; 𝑐, 𝑑)𝐼𝐺(𝜆§/; 𝑒, 𝑓)
l(§)

/

×
𝛼l(§)/𝑓(𝑘)!

∑ 𝛼l(B)/𝑓(𝑗)!§ (¡
B45

× 𝛼¢¤c5𝑒c¢¨� 

where 

Σ§c5 =
1
𝜎@
𝐴′§𝐴§ + 𝐾§c5 

𝜇§ =
1
𝜎@
Σ§𝐴′§𝑌 

 
  Based on the full posterior distribution in (6.6.8), we can easily extract the conditional 
posterior distributions of 𝑤§, 𝜎@ and 𝛼: 

(6.6.9) 
𝑝(𝑤§|𝛽§, 𝜆§, 𝑘, 𝜎@, 𝛼, 𝑌)~𝒩(𝑤§|𝜇§, Σ§) 

𝑝(𝜎@|𝑤§, 𝛽§, 𝜆§, 𝑘, 𝛼, 𝑌)~𝐼𝐺(𝜎@; 𝑎 +
𝑁 − 𝑇
2

,
1
2
‖𝑌 − 𝐴§𝑤§‖@@ + 𝑏) 

𝑝(𝛼|𝑤§, 𝛽§, 𝜆§, 𝑘, 𝜎@, 𝑌) ∝
𝛼¢¤c5�l(§)/𝑓(𝑘)!
∑ 𝛼l(B)/𝑓(𝑗)!§ (¡
B45

𝑒c¢¨� 

 
  In addition, by marginalizing 𝑤§ out from the full distribution in (6.6.8), we get the reduced 
joint posterior distribution of index 𝑘 and hyperparameters 𝛽§ and 𝜆§: 

(6.6.10) 
𝑝(𝑘, 𝛽§, 𝜆§|𝜎@, 𝛼, 𝑌) 

∝ 𝑒𝑥𝑝 @−
1
2
𝑌′(𝜎@𝐼 + 𝐴§𝐾§𝐴′§)c5𝑌A× |𝜎@𝐼 + 𝐴§𝐾§𝐴′§|

c5@ 

×ü𝐼𝐺(𝛽§/; 𝑐, 𝑑)𝐼𝐺(𝜆§/; 𝑒, 𝑓)
l(§)

/

×
𝛼l(§)/𝑓(𝑘)!

∑ 𝛼l(B)/𝑓(𝑗)!§ (¡
B45

 

 
  This marginal distribution will be used later to form PCG samplers. 
 
Remark 6.6.1: If the model contains measurement noise, transfer matrices 𝐹: and 𝐹- are 
full (section 5.11). In this case, the dimension of random variables is fixed. As a result, a normal 
MH algorithm can be used to draw samples from the full Bayesian model. Nevertheless, 
hyperparameter 𝜆§  is no longer an ARD parameter. The Bayesian model cannot promote 
network sparsity. We will address this issue later in chapter 9. 

6.7 Sampling full Bayesian model with fixed topology 

  With the full Bayesian model, we are interested in the posterior probability of network 
topology, 𝑝(𝑘|𝑌) by which we can evaluate the probability of different topologies given 
measured data. We can also estimate the most likely network topology by solving the MAP 

problem, 𝑎𝑟𝑔max
§
𝑝(𝑘|𝑌). Given the estimated 𝑘, we can estimate impulse responses and 



 

105 
 

105 

noise variance by computing their expectation, 𝐸(𝑤§|𝑘, 𝑌) and 𝐸(𝜎@|𝑘, 𝑌), which requires 
to evaluate 𝑝(𝑤§|𝑘, 𝑌)  and 𝑝(𝜎@|𝑘, 𝑌) . However, analytical expressions for 𝑝(𝑘|𝑌) , 
𝑝(𝑤§|𝑘, 𝑌)  and 𝑝(𝜎@|𝑘, 𝑌)  are intractable since we have to perform high-dimensional 
integrals of the nonlinear Bayesian model in (6.6.7) [180]. To solve the problem, this chapter 
applies numerical sampling methods. The true distributions can be accurately approximated 
by the empirical ones built using the samples drawn from the full Bayesian model. A MCMC 
technique is applied in this section to sample the probabilistic model in (6.6.7). Under some 
mild conditions, the empirical distribution will converge to the invariant distribution of the 
Markov chain with probability 1 [165]. The ability of this sampling framework to evaluate the 
uncertainty of both impulse responses and network topology is highly attractive compared 
with deterministic approximation techniques.  
  To begin with, we assume the topology of the target network is known a priori so that 𝑘 is 
fixed. In this case, a traditional MCMC method is capable of sampling the distribution, 
𝑝(𝑤§, 𝛽§, 𝜆§, 𝜎@, 𝛼|𝑘, 𝑌)  since the dimension of random variables is unchanged. We 
marginalize out some random quantities during sampling to improve the convergence 
property. We apply the techniques (marginalization, permutation and trimming) discussed in 
section 6.2 to deduce a MH-within-PCG sampler for 𝑝(𝑤§, 𝛽§, 𝜆§, 𝜎@, 𝛼|𝑘, 𝑌). The designed 
sampler is modified later to sample the full Bayesian model in (6.6.7) where the network 
topology is unknown and treated as a random variable. 
  We first propose a normal Gibbs sampler within which the sampling of 𝛽§  and 𝜆§  is 
blocked together in Sampler 1. 
 
Sampler 1 Block Gibbs sampler 
1: Sample 𝑝(𝑤§e�5|𝛽§e , 𝜆§e , (𝜎@)e, 𝛼e, 𝑘, 𝑌) 
2: Sample 𝑝(𝛽§e�5, 𝜆§e�5	|𝑤§e�5, (𝜎@)e, 𝛼e, 𝑘, 𝑌) 
3: Sample 𝑝((𝜎@)e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, 𝛼e, 𝑘, 𝑌) 
4: Sample 𝑝(𝛼e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, (𝜎@)e�5, 𝑘, 𝑌) 
   
  Steps 2 and 4 in Sampler 1 must be replaced by MH schemes since the distributions of these 
steps cannot be sampled directly. Distributions of these two steps are only known up to a 
constant according to section 6.6. By replacing steps 2 and 4 with MH algorithms, we achieve 
a MH-within-Gibbs sampler in Sampler 2. 
 
Sampler 2 MH-within-Gibbs sampler 
1: Sample 𝑝(𝑤§e�5|𝛽§e , 𝜆§e , (𝜎@)e, 𝛼e, 𝑘, 𝑌) 
2: Sample (𝛽§e�5, 𝜆§e�5) using Metropolis-Hastings with 𝑝(𝛽§, 𝜆§|𝑤§, 𝜎@, 𝛼, 𝑘, 𝑌) as the 
  invariant distribution 
3: Sample 𝑝((𝜎@)e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, 𝛼e, 𝑘, 𝑌) 
4: Sample 𝛼e�5 using Metropolis-Hastings with 𝑝(𝛼|𝛽§, 𝜆§,𝑤§, 𝜎@, 𝑘, 𝑌) as the invariant 
  distribution 
   
  Sampler 2 is proper because the replacement maintains the invariant distributions of the 
original steps. The construction of this hybrid sampler is based on the direct use of the 
composition operation of transition kernels. 



 

106 
 

106 

  We then apply the rule of marginalization to Sampler 2 in order to reduce the number of 
variables being conditioned on. Variable 𝑤§  is marginalized out from step 2 leading to 
Sampler 3. The reduced step is then followed immediately by a direct draw from the full 
conditional distribution of 𝑤§. A quantity is labelled with an asterisk if it is not conditioned on 
in the next step. 
 
Sampler 3 Marginalization 
1: Sample 𝑝(𝑤§⋆|𝛽§e , 𝜆§e , (𝜎@)e, 𝛼e, 𝑘, 𝑌) 
2: Sample (𝛽§e�5, 𝜆§e�5) using Metropolis-Hastings with 𝑝(𝛽§, 𝜆§|𝜎@, 𝛼, 𝑘, 𝑌) as the 
  invariant distribution 
3: Sample 𝑝(𝑤§e�5|𝛽§e�5, 𝜆§e�5, (𝜎@)e, 𝛼e, 𝑘, 𝑌) 
4: Sample 𝑝((𝜎@)e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, 𝛼e, 𝑘, 𝑌) 
5: Sample 𝛼e�5 using Metropolis-Hastings with 𝑝(𝛼|𝛽§, 𝜆§,𝑤§, 𝜎@, 𝑘, 𝑌) as the invariant  
  distribution 
   
  Before we proceed, we give a simple proof to show why the marginalization is valid. 
 
Theorem 6.7.1 (Marginalization of MH-within-PCG): 
  The invariant distribution of an MH step is preserved if this step is replaced by a reduced 
MH step followed immediately by a direct draw from the complete conditional distribution of 
that reduced quantity.  
Proof:  
  Suppose 𝑝⋆(𝑥, 𝑦) is the invariant distribution of a full MH step. After marginalizing 𝑦, the 
sampler becomes a reduced MH sampling from 𝑝⋆(𝑥) followed by a direct sampling from 
𝑝⋆(𝑦|𝑥). Assume 𝑘(𝑥, 𝑥′) is the density of the transition kernel of the reduce MH step. The 
marginal distribution of Markov state is: 

𝑝e�5(𝑥f, 𝑦f) = ê𝑝e(𝑥, 𝑦)𝑝(𝑥f, 𝑦f|𝑥, 𝑦)𝑑𝑥𝑑𝑦 

= ê𝑝⋆(𝑥, 𝑦)𝑘(𝑥, 𝑥′)𝑝⋆(𝑦′|𝑥′)𝑑𝑥𝑑𝑦 

= 𝑝⋆(𝑦′|𝑥′)ê𝑝⋆(𝑥)𝑘(𝑥, 𝑥′)𝑑𝑥 

  Since 𝑝⋆(𝑥′) = ∫ 𝑝⋆(𝑥)𝑘(𝑥, 𝑥′)𝑑𝑥 
𝑝e�5(𝑥f, 𝑦f) = 𝑝⋆(𝑦′|𝑥′)𝑝⋆(𝑥f) = 𝑝⋆(𝑥, 𝑦) 

   
  According to Theorem 6.7.1, the invariant distribution is preserved if two sampling steps 
(reduced MH and direct sampling) are executed contiguously. That means when applying 
permutation to the sampler, these two steps cannot be separated or reordered.    
  𝑤§ is sampled twice in Sampler 3. Its first sample, 𝑤§⋆ in step 1 is redundant because it is 
not conditioned on in the next step and is covered by the sampling in step 3. Since there is no 
need to perform permutation here, we can trim out the first step directly. After trimming, we 
achieve a sampling scheme described in Sampler 4.  

Note that the valid sequence of steps in Sampler 4 is not unique. The arrangement of steps 
3 and 4 is quite flexible. For example, Sampler 4 can be rearranged as 4 → 3 → 1 → 2 . 



 

107 
 

107 

However, not all the permutations are valid. For instance, sequence 2 → 1 → 3 → 4 
(modified Sampler 4) derived from trimming step 3 of Sampler 3 is incorrect because the 
procedure violates the rule of trimming. The direct sampling from 𝑝(𝑤§|𝛽§, 𝜆§, 𝜎@, 𝛼, 𝑘, 𝑌) 
after marginalization cannot be dropped because 𝑤§ is conditioned on in the next step. As a 
result, the sampler 2 → 1 → 3 → 4 no longer preserves the original invariant distribution. 
Unfortunately, this issue was not considered carefully in much of the previous research [210].  

 
Sampler 4 Permutation and Trimming 
1: Sample (𝛽§e�5, 𝜆§e�5) using Metropolis-Hastings with 𝑝(𝛽§, 𝜆§|𝜎@, 𝛼, 𝑘, 𝑌) as the 
  invariant distribution 
2: Sample 𝑝(𝑤§e�5|𝛽§e�5, 𝜆§e�5, (𝜎@)e, 𝛼e, 𝑘, 𝑌) 
3: Sample 𝑝((𝜎@)e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, 𝛼e, 𝑘, 𝑌) 
4: Sample 𝛼e�5 using Metropolis-Hastings with 𝑝(𝛼|𝛽§, 𝜆§,𝑤§, 𝜎@, 𝑘, 𝑌) as the invariant  
  distribution 
   
  The sampled distributions of each step in Sampler 4 have already been discussed in section 
6.6. Sampling steps 2 and 3 are trivial since their target distributions are Inverse-Gamma and 
Gaussian. We only need to design algorithms for steps 1 and 4. For the MH approach, we first 
have to design a proposal distribution for Markov states to produce candidate samples and 
then deduce the corresponding acceptance probability. 
  Since 𝛽§ and 𝜆§ are non-negative, we use truncated normal distributions centered at the 
current states 𝛽§e  or 𝜆§e  with small variance (0.02) as the proposal distributions. Small 
variance is adopted in order to avoid the high rejection rate of proposals but at the cost of 
lower convergence speed. This variance is tuned during inference to achieve an acceptance 
rate around 35%  according to a heuristic rule in [220]. The newly proposed 𝛽§

®éï®  and 
𝜆§
®éï®  can be treated as the perturbed version of the current state. For a Gaussian distribution 

with mean 𝜇 and variance 𝜎, its truncated probability density function on [𝑎, 𝑏] is: 
(6.7.1) 

𝑝(𝑥; 𝜇, 𝜎, 𝑎, 𝑏) =
𝜙 �𝑥 − 𝜇𝜎 �

𝜎 ëΦ �𝑏 − 𝜇𝜎 � −Φ�𝑎 − 𝜇𝜎 �ì
 

where 

𝜙(𝑥) =
1
√2𝜋

𝑒𝑥𝑝 `−
1
2
𝑥@a 

Φ(𝑥) =
1
2
ú1 + 𝑒𝑟𝑓 `

𝑥
√2
aû 

𝑒𝑟𝑓(𝑥) =
1
√𝜋

ê 𝑒ce¨𝑑𝑡
9

c9
 

 
  According to the feasible domain of 𝛽§ and 𝜆§, 𝑎 = 0 and 𝑏 = +∞. 
  To guarantee the invariant distribution of the Markov chain is 𝑝(𝛽§, 𝜆§|𝜎@, 𝛼, 𝑘, 𝑌) , a 
sufficient condition called 'detailed balance' must be met. In what follows, the variables other 
than 𝛽 and 𝜆 are suppressed for simplicity: 

(6.7.2) 



 

108 
 

108 

𝑝(𝛽e, 𝜆e)𝑝𝑟(𝛽®éï®, 𝜆®éï®|𝛽e, 𝜆e)𝐴(𝛽®éï®, 𝜆®éï®|𝛽e, 𝜆e) 
= 𝑝(𝛽®éï®, 𝜆®éï®)𝑝𝑟(𝛽e, 𝜆e|𝛽®éï®, 𝜆®éï®)𝐴(𝛽e, 𝜆e|𝛽®éï®, 𝜆®éï®) 

where superscript 𝑝𝑟𝑜𝑝  denotes the proposed quantity, 𝑝𝑟  represents the proposal 
distribution and function 𝐴(∙) denotes the acceptance probability. 
  The acceptance probability based on (6.7.2) is: 

(6.7.3) 

𝐴(𝛽®éï®, 𝜆®éï®|𝛽e, 𝜆e) = minL1,
𝑝(𝛽®éï®, 𝜆®éï®)𝑝𝑟(𝛽e, 𝜆e|𝛽®éï®, 𝜆®éï®)

𝑝(𝛽e, 𝜆e)𝑝𝑟(𝛽®éï®, 𝜆®éï®|𝛽e, 𝜆e)
P 

 
  The MH algorithm to sample 𝛼 for step 4 in Sampler 4 is designed in the same way. We use 
a Gamma distribution as the proposal distribution for 𝛼 > 0 [174]: 

(6.7.4) 
𝑝𝑟(𝛼) ∝ 𝛼¢¤c5�l(§)𝑒c�(5�¢¨)  

so that 

𝑟(𝛼®éï®|𝛼) =
𝑝(𝛼®éï®)𝑝𝑟(𝛼|𝛼®éï®)
𝑝(𝛼)𝑝𝑟(𝛼®éï®|𝛼)

 

=
𝑒c� ∑ (𝛼)l(B)/𝑓(𝑗)!§ (¡

B45

𝑒c��í�� ∑ (𝛼®éï®)l(B)/𝑓(𝑗)!§ (¡
B45

 

𝐴(𝛼®éï®|𝛼) = min{1, 𝑟(𝛼®éï®|𝛼)} 
 
  Note that step 4 and other sampling steps in Sampler 4 are independent. That is because 
hyperparameter 𝛼 is only related to random variable 𝑘 that is conditioned on by all random 
quantities. As a result, removing step 4 from the sampler will not affect the sampling of other 
random variables. However, if we sample 𝑘 as well (in the following sections), sampling 𝛼 is 
inevitable. For this reason, we prefer to keep the sampling step of 𝛼 in Sampler 4. 

6.8 Assembly of reversible jump MCMC and MH-within-PCG 

If index 𝑘 is not fixed (i.e. the network topology is unknown), we treat 𝑘 as a random 
variable and draw its samples as well from the full Bayesian model in (6.6.8). To do that, we 
first block 𝛽§, 𝜆§ and 𝑘 together in Sampler 5 where the joint posterior distribution is given 
in (6.6.10). 

 
Sampler 5 Block Gibbs sampler 
1: Sample 𝑝(𝑤§e�5|𝛽§e , 𝜆§e , (𝜎@)e, 𝛼e, 𝑘e, 𝑌) 
2: Sample 𝑝(𝛽§e�5, 𝜆§e�5, 𝑘e�5	|𝑤§e�5, (𝜎@)e, 𝛼e, 𝑌) 
3: Sample 𝑝((𝜎@)e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, 𝛼e, 𝑘e�5, 𝑌) 
4: Sample 𝑝(𝛼e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, (𝜎@)e�5, 𝑘e�5, 𝑌) 
   
  Although index 𝑘  is sampled in step 2 of Sampler 5, we find that 𝑘e�5 = 𝑘e  in each 
iteration due to the sampled 𝑤§  in step 1 whose structure determines network topology. 
Therefore, the model class is fixed to the initial ℳ§g. The posterior distribution is not explored 



 

109 
 

109 

sufficiently. To solve this problem, we have to marginalize out variable 𝑤§ in step 2. According 
to the rule of marginalization, after marginalizing variable 𝑤§ out from step 2, 𝑤§ must be 
sampled immediately from its full conditional distribution, thus leading to Sampler 6.  
 
Sampler 6 Marginalization 
1: Sample 𝑝(𝑤§⋆|𝛽§e , 𝜆§e , (𝜎@)e, 𝛼e, 𝑘e, 𝑌) 
2: Sample (𝛽§e�5, 𝜆§e�5, 𝑘e�5) using Metropolis-Hastings with 𝑝(𝛽§, 𝜆§, 𝑘|𝜎@, 𝛼, 𝑌) as the 
  invariant distribution 
3: Sample 𝑝(𝑤§e�5|𝛽§e�5, 𝜆§e�5, (𝜎@)e, 𝛼e, 𝑘e�5, 𝑌) 
4: Sample 𝑝((𝜎@)e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, 𝛼e, 𝑘e�5, 𝑌) 
5: Sample 𝛼e�5 using Metropolis-Hastings with 𝑝(𝛼|𝛽§, 𝜆§,𝑤§, 𝜎@, 𝑘, 𝑌) as the  
  invariant distribution 
   
  Step 1 of Sampler 6 is redundant because 𝑤§⋆ is not conditioned on in step 2. Therefore, 
step 1 can be trimmed out from the sampler. With the first step discarded, we have the final 
sampler in Sampler 7: 
 
Sampler 7 MH-within-PCG 
1: Sample (𝛽§e�5, 𝜆§e�5, 𝑘e�5) using Metropolis-Hastings with 𝑝(𝛽§, 𝜆§, 𝑘|𝜎@, 𝛼, 𝑌) as the 
  invariant distribution 
2: Sample 𝑝(𝑤§e�5|𝛽§e�5, 𝜆§e�5, (𝜎@)e, 𝛼e, 𝑘e�5, 𝑌) 
3: Sample 𝑝((𝜎@)e�5|𝑤§e�5, 𝛽§e�5, 𝜆§e�5, 𝛼e, 𝑘e�5, 𝑌) 
4: Sample 𝛼e�5 using Metropolis-Hastings with 𝑝(𝛼|𝛽§, 𝜆§,𝑤§, 𝜎@, 𝑘, 𝑌) as the  
  invariant distribution 
   
  Steps 2, 3 and 4 have already been discussed in section 6.7. Since index 𝑘 is conditioned 
on in these steps, the dimension of the sampled variables is fixed. Hence, Sampler 4 can be 
used directly for these steps. It can be seen that Sampler 7 can explore different model classes 
(related to differing topologies) ℳ§ if step 1 is well designed. Since the dimension of the 
random variables in step 1 varies with model classes, a normal MCMC method is incapable of 
drawing samples from the target distribution. Therefore, we resort to RJMCMC schemes. 
  The basic idea to draw samples from the reduced marginal distribution, 
𝑝(𝛽§, 𝜆§, 𝑘|𝜎@, 𝛼, 𝑌) is to design different moves for the Markov chain to traverse between 
different parameter subspaces [126]. The proposed moves must ensure that it is possible to 
visit all parameter subspaces so that the entire sample space is sufficiently explored. For this 
purpose, we come up with three types of moves. 
 
Birth move:  
  The number of links in the next state indicated by 𝑓(𝑘e�5) is one more than that of the 
current state (i.e. 𝑓(𝑘e�5) = 𝑓(𝑘e) + 1 ). Furthermore, the zero structure of ℳ§�  and 
ℳ§��¤ only differs at one entry. For example, 𝐹§�  is [1 0 0] and 𝐹§��¤ is [1 0 1]. 
Death move:   
  The number of links of the next state indicated by 𝑓(𝑘e�5) is one less than that of the 
current state (i.e. 𝑓(𝑘e�5) = 𝑓(𝑘e) − 1). Moreover, the zero structure of ℳ§� and ℳ§��¤ 



 

110 
 

110 

only differs at one entry. For example, 𝐹§�  is [1 0 1] and 𝐹§��¤ is [1 0 0]. 
Update move:  
  The topology is unchanged in the next state (𝑘e�5 = 𝑘e) but other random variables are 
updated. 
   
  The attempt to add an extra node (birth move) into the model and remove one node from 
the model (death move) naturally encourages a global search of the parameter subspaces 
[180]. The death move is equivalent to setting an ARD parameter 𝜆§/  zero directly whereas 
the birth move reverses this process and retrieves non-zero 𝜆§/. As a result, the effect of ARD 
is maximally activated. The update move inherently infers internal dynamics of the network 
given the fixed topology.  
  Network topology is represented by the dimensionality of different parameter subspaces 
while model parameters are points contained in these subspaces. Inference methods applying 
deterministic approximations (like the kernel method and SBL) search for the optimal solution 
in a unique parameter space of ℝ(®�)¥  (including all the nodes and inputs), where network 
topology is determined by the zero structure of the solution. The local optimal solutions whose 
zero structure is not consistent with the true topology are equally likely to be picked up by the 
algorithm, depending on the initial point. Although a heuristic search of the optimal solution 
can be conducted by running the algorithm with different initial points, this scheme is very 
inefficient and is prohibitive for high-dimensional parameter spaces. That is mainly because 
the estimation of network topology and model parameters is blended together. In contrast, 
the RJMCMC scheme decomposes the inference task through three types of moves. Topology 
detection is performed via jumps between parameter subspaces while parameter estimation 
is conducted via Monte Carlo sampling. Therefore, RJMCMC provides a more efficient way to 
conduct a randomized global search of the entire sample space. RJMCMC can effectively avoid 
all the local maxima in some parameter subspaces and favor the subspaces whose 
corresponding topologies are similar to the ground truth by paying more frequent visits. 
Although samples may surround a suboptimal point of model parameters representing biased 
internal dynamics (local maxima of the distribution), the topology indicated by that parameter 
subspace can still be correct. 
  To realize 'Birth' and 'Death' moves, we design the procedure in Algorithm 1 and 2. 
 
Algorithm 1 Birth (Add 1 link) 
1: With probability 𝑃%, choose Birth move. 
2: Select a node to be added to the current topology randomly by Uniform distribution  

𝑞%(𝑗|𝑘e) =
1

𝑝 +𝑚 − 𝑓(𝑘e)
 

3: Propose 𝛽®éï®  and 𝜆®éï®  of the 𝑗th node by sampling 𝑝𝑟%(𝛽, 𝜆) = 𝑝𝑟%(𝛽)𝑝𝑟%(𝜆) with 
the hyperparameters of other nodes unchanged. Insert 𝛽®éï®  and 𝜆®éï®  to 𝛽e  and 𝜆e to 
generate 𝛽e�5 and 𝜆e�5. 
4. Accept with probability 𝐴%. 
   
  In Algorithm 1, we adopt 𝑝𝑟%(𝛽) = 𝐼𝐺(𝛽; 𝑐, 𝑑) and 𝑝𝑟%(𝜆) = 𝐼𝐺(𝜆; 𝑒, 𝑓) as the proposal 
distributions for 𝛽 and 𝜆, respectively, which are the same with their prior distributions. By 



 

111 
 

111 

doing so, the calculation of the acceptance probability is simplified. 
 
Algorithm 2 Death (Remove 1 link) 
1: With probability 𝑃~, choose Death move. 
2: Select a node to be removed from the current topology randomly by Uniform distribution  

𝑞~(𝑗|𝑘e) =
1

𝑓(𝑘e) − 1
 

3: Remove 𝛽 and 𝜆 of the 𝑗th node from 𝛽e  and 𝜆e with other elements unchanged to 
generate 𝛽e�5 and 𝜆e�5. 
4. Accept with probability 𝐴~. 
   
  The acceptance probability for birth and death moves is calculated based on ‘detailed 
balance’: 

(6.8.1) 
𝑝(𝛽§e , 𝜆§e , 𝑘e)𝑃%𝑞%(𝑗|𝑘e)𝑝𝑟%(𝛽®éï®, 𝜆®éï®)𝐴% = 𝑝�𝛽§e�5, 𝜆§e�5, 𝑘e�5�𝑃~𝑞~(𝑗|𝑘e�5)𝐴~  

where the Jacobian of the transformation map is the identity matrix. 
  As a result, the acceptance probability is: 

(6.8.2) 
𝑟%(𝛽§e�5, 𝜆§e�5, 𝑘e�5|𝛽§e , 𝜆§e , 𝑘e) 

=
𝑃~
𝑃%

𝑒𝑥𝑝 m−12𝑌′�𝜎
@𝐼 + 𝐴§𝐾§e�5𝐴′§�

c5
𝑌n

𝑒𝑥𝑝 m−12𝑌′(𝜎
@𝐼 + 𝐴§𝐾§e𝐴′§)c5𝑌n

Ä𝜎@𝐼 + 𝐴§𝐾§e�5𝐴′§Ä
c5@

Ä𝜎@𝐼 + 𝐴§𝐾§e𝐴′§Ä
c5@

𝛼[𝑝 + 𝑚 − 𝑓(𝑘e)]
𝑓(𝑘e�5)[𝑓(𝑘e�5) − 1]

 

 
𝑟~�𝛽§e�5, 𝜆§e�5, 𝑘e�5Ä𝛽§e , 𝜆§e , 𝑘e� = 𝑟%c5(𝛽§e , 𝜆§e , 𝑘e|𝛽§e�5, 𝜆§e�5, 𝑘e�5) 

𝐴% = min{1, 𝑟%} 
𝐴~ = min{1, 𝑟~} 

 
  Finally, the update move is shown in Algorithm 3. Since the topology is fixed, the proposal 
distributions and acceptance probability are exactly the same with Sampler 4. 
 
Algorithm 3 Update (Retain the current topology) 
1: With probability 𝑃¤, choose Update move. 
2: Propose 𝛽§

®éï®  and 𝜆§
®éï®  using truncated normal distributions. 

3. Accept with probability 𝐴¤. 
 
Note that the probability of three moves (𝑃%, 𝑃~ and 𝑃¤) depends on 𝑘e. We set 𝑃% =

𝑃~ = 0.3 if 1 < 𝑓(𝑘e) < 𝑛 + 𝑝. 𝑃% = 0, 𝑃~ = 0.6 if 𝑓(𝑘e) = 𝑝 +𝑚 and 𝑃~ = 0, 𝑃% =
0.6 if 𝑓(𝑘e) = 1. In addition, 𝑃¤ = 1 − 𝑃% − 𝑃~ in all cases. 

To conclude, we have the final Algorithm 4. 
 

Algorithm 4 Sampler for the full Bayesian model 
1: Initialization: set �𝑘¼, 𝛽§¼, 𝜆§¼,𝑤§¼, (𝜎@)¼, 𝛼¼� 
2: For 𝑡 = 1:𝑀𝐴𝑋 do 
3:   Sample 𝑢~𝒰[0,1] (Uniform distribution) 



 

112 
 

112 

4:   If 𝑢 ≤ 𝑃% then 
5:    Birth move generating (𝛽§e , 𝜆§e , 𝑘e) 
6:   else if 𝑢 ≤ 𝑃% + 𝑃~ then 
7:    Death move generating (𝛽§e , 𝜆§e , 𝑘e) 
8:   else  
9:    Update move generating (𝛽§e , 𝜆§e , 𝑘e) 
10:   end if 
11:   Sample 𝑤§e  from 𝑝(𝑤§e |𝛽§e , 𝜆§e , 𝑘e, (𝜎@)ec5, 𝛼ec5, 𝑌) 
12:   Sample (𝜎@)e from 𝑝((𝜎@)e|𝑤§e , 𝛽§e , 𝜆§e , 𝑘e, 𝛼ec5, 𝑌) 
13:   Sample 𝛼e using Metropolis-Hastings with with 𝑝(𝛼|𝛽§, 𝜆§, 𝑤§, 𝜎@, 𝑘, 𝑌) as the  
    invariant distribution 
14: End for 

 
With the samples {𝑋e, 𝑡 = 1,2,3… , 𝑡+9} , we can establish the empirical posterior 

distribution of 𝑘 as [165]: 
(6.8.3) 

�̂��ℳBÄ𝑌� = �̂�(𝑘 = 𝑗|𝑌) =
1

𝑡+9
A §�(𝑗)
e (¡

e45

 

where 

9(𝑗) = @1 if			𝑗 = 𝑥
0 if			𝑗 ≠	𝑥 

 

The network topology is estimated as 𝑘) = max
§
�̂�(𝑘|𝑌). More importantly, the empirical 

distribution in (6.8.3) reveals the probability of all possible topologies, which indicates the 
confidence of the estimated 𝑘)  over the others.  

Furthermore, impulses responses and noise variance can be evaluated as the mean of 
empirical distributions. If 𝑘) = 𝑗, they are estimated as: 

(6.8.4) 

𝑤w§ = 𝐸)(𝑤§|𝑘 = 𝑗, 𝑌) =
∑ 𝑤§e B(𝑘e)
e (¡
e45

∑ B(𝑘e)
e (¡
e45

 

𝜎@z = 𝐸)(𝜎@|𝑘 = 𝑗, 𝑌) =
∑ (𝜎@)e B(𝑘e)
e (¡
e45

∑ B(𝑘e)
e (¡
e45

 

6.9 Computational cost of RJMCMC 

  The computational cost of the RJMCMC approach is very high due to two aspects. First of 
all, the computational cost of each iteration is expensive. Second, the algorithm is 
implemented in an iterative way so that the cost grows linearly with the total number of 
iterations. Hence, the computational burden can be prohibitive for large-scale networks. 
  The computational cost mainly comes from calculating the inversion and determinant of the 



 

113 
 

113 

full covariance matrix, 𝐶 = 𝜎@𝐼 + 𝐴§𝐾§e𝐴′§. These two operations are executed twice in each 
iteration. They are first calculated in one of the three moves (using the proposed 
hyperparameters) in order to estimate the acceptance ratio. Following that, they are updated 
after sampling noise variance 𝜎@ for the use of the next iteration. The dimension of 𝐶 is 
ℝ(Çc¥)×(Çc¥), where 𝑁 is the length of data, 𝑇 is the length of truncated impulse responses 
and 𝑁 ≫ 𝑇. The matrix dimension is independent on the scale of the network but dominated 
by the length of data. Calculating matrix 𝐶 requires 𝑂((𝑝 + 𝑚)𝑇𝑁@) work while calculating 
the inversion or determinant of 𝐶 requires 𝑂(𝑁7) work using standard methods. Hence, in 
total, calculating 𝐶c5  or |𝐶| demands 𝑂(𝑁7 + (𝑝 + 𝑚)𝑇𝑁@)  work. Assuming rich data 
are available for inference (i.e. 𝑁 ≫ (𝑝 + 𝑚)𝑇), the growth of the computational cost is cubic. 
As the Markov chain normally takes thousands of iterations to converge, the algorithm may 
take days to complete the inference (since the RJMCMC algorithm is implemented for each 
node independently). Therefore, finding a more effective and economical way to manipulate 
matrix 𝐶 is critical. 
  Plenty of techniques have been developed to accelerate these operations such as greedy 
approximations, sub-sampling and Nystrom method. Nevertheless, most of these methods are 
ill-suited for calculating determinants. One of the state-of-the-art methods applies matrix 
factorization of hierarchical off-diagonal low-rank (HODLR) matrices [221], [222]. This method 
calculates matrix inversion and determinant at the cost of 𝑂(𝑛log@(𝑛)). The authors claim 
that their method works for most kernel functions and is simple to use. Nevertheless, the 
method may not scale well for some specific kernels such as those containing oscillation.  

6.10 Simulation  

  Monte Carlo simulations were conducted to compare different approaches including GESBL, 
the kernel method and RJMCMC. To have a thorough investigation of the algorithm 
performance under different conditions, factors involving model classes, sparsity of network 
topologies, noise level and size of datasets were considered. 
  The accuracy of the inferred networks is evaluated using the average of True Positive Rate 
(TPR) and the average of Precision (Prec). TPR reveals the percentage of how many true links 
of the ground truth networks are identified, which implies the information richness of 
inference results. Prec indicates the accuracy of estimation. For example, if Prec is 50%, it 
means that half of the links in the estimated network are wrong and the inference result is not 
reliable. 
 

6.10.1	Identify	Multivariable	ARX	models	
  We first tested different methods on multivariable ARX models. The model structure is fairly 
simple and system dynamics can be characterized by finite impulse responses (FIR). We also 
considered networks possessing a ring structure in Figure 6.10.1. This class of networks is very 
sparse and contains a feedback loop, which should be more challenging to infer. SBL and GSBL 
were also applied to highlight the improvement of GESBL. 
  Monte Carlo simulations were conducted under two different conditions as follows.  
 



 

114 
 

114 

Condition 1: (Random sparse networks, Fixed number of data points, Different noise levels) 
The purpose of this simulation is to compare different inference methods and investigate 

how noise level influences their performance.  
  100  networks were generated with random topologies. The order and coefficients of 
polynomials were also randomized to cover a sufficiently rich class of ARX models. The 
maximum order of each entry of polynomial matrices, 𝐴(𝑧c5) and 𝐵(𝑧c5) was 5. Each 
node was independently driven by an input leading to a diagonal 𝐵(𝑧c5).  
  To be specific, a 10 × 10 sparse polynomial matrix 𝐴(𝑧c5) was first generated. Sparsity 
of the matrix relied on a predefined variable that controlled the probability for [𝐴(𝑧c5)]/B to 
be non-zero. Each polynomial entry of 𝐴(𝑧c5) was yielded by function 𝑑𝑟𝑚𝑜𝑑𝑒𝑙 in Matlab 
so that all the roots were constrained within the unit circle of the complex plane. (Zeros of 
𝐴(𝑧c5) are poles of 𝐴c5(𝑧c5)). The polynomial order was uniformly selected from 1 to 5 
for each matrix entry. The stability of 𝐴c5(𝑧c5) was then checked by calculating its poles 
using function 𝑝𝑜𝑙𝑒 in Matlab. The matrix was discarded if it was unstable (i.e. any pole 
outside the unite circle of the complex plane). The parameters of polynomial matrix 𝐵(𝑧c5) 
were then generated using function 𝑟𝑎𝑛𝑑𝑛 in Matlab as 𝐵(𝑧c5) had no impact on the 
system stability. The polynomial order of 𝐵(𝑧c5) was selected in the same way as 𝐴(𝑧c5).  
The above procedure was repeated until 100 stable models were generated.  
  On average, there were about 36 links in each network (out of 90 possible). Both the exciting 
input (known) and process noise (unknown) were independent Gaussian. The models were 
simulated with different Signal-Noise Ratio (SNR) and 100 time series data points for each 

node were collected. Here, SNR is defined as 𝑆𝑁𝑅 = 10 log5¼
h¦¨

h§¨
	 where 𝜎@ denotes signal 

variance. Input variance 𝜎-@ was fixed to 1. The system order, 𝑘 of the proposed model, 
ℳ(𝑤) for inference was set to 8 so that the generated ground truth model, ℳ∗(𝑤∗) was 
contained in the model structure, ℳ(𝑤).  
 
Condition 2: (Ring networks, Fixed number of data points, fixed noise levels) 
  The simulation is intended to investigate whether our approaches still gain advantages when 
dealing with extremely sparse networks. 
  100 random networks were generated, from a fixed topology: a ring network. There were 
10 nodes in each network and models were generated following the same protocol in 
condition 1. There was only one input applied to node 1. 65 data points for each node and 
input were collected for identification and SNR was set to 20𝑑𝐵.  
 
  The result of condition 1 is summarized in Table 6.10.1 and plotted in Figure 6.10.1. Figure 
6.10.1 shows that in general, the performance of all the methods degrades as the noise 
increases except RJMCMC. While Prec of RJMCMC and GESBL stays beyond 90%, Prec of the 
other methods decays fast as SNR decreases (Prec below 80% at 𝑆𝑁𝑅 = −30𝑑𝐵). When 
𝑆𝑁𝑅 ≥ 10𝑑𝐵, TPR of all the approaches is robust to the change of the noise level. TPR of 
RJMCMC is similar with that of GESBL (𝑇𝑃𝑅 > 90% ) and is higher than the other three 
methods. When the noise overwhelms the input (𝑆𝑁𝑅 = −30𝑑𝐵), RJMCMC still retains high 
TPR (85.9%) whereas TPR of GESBL and the kernel method drops to below 60%. The kernel 
method is outperformed by RJMCMC as the noise level increases. Nevertheless, it always 



 

115 
 

115 

provides higher Prec compared with GSBL and SBL. It should be noticed that although TPR of 
SBL and GSBL is quite high (> 80%) at 𝑆𝑁𝑅 = −30𝑑𝐵, their Prec is very low (< 65%). That 
means the networks inferred by SBL and GSBL are very dense. It is impossible to tell which 
links in their inferred networks are correct. It is clear that the performance of RJMCMC is most 
robust to the noise (𝑃𝑟𝑒𝑐 > 90%, 𝑇𝑃𝑅 > 85%). Most true links in the ground truth networks 
are successfully identified by RJMCMC (𝑇𝑃𝑅 > 85% ) and the confidence of the inferred 
networks is very high (𝑃𝑟𝑒𝑐 > 90%).  

 
Table 6.10.1: Inference of randomly generated ARX networks 

 SNR 
60dB 30dB 20dB 10dB -30dB 

Prec TPR Prec TPR Prec TPR Prec TPR Prec TPR 
RJMCMC 91.3 94.0 90.4 93.1 90.4 94.0 92.0 93.0 98.1 85.9 

Kernel 100 97.3 95.0 92.0 92.9 90.8 88.4 90.8 80.1 53.0 
GESBL 100 99.2 100 98.2 100 97.3 100 93.0 99.6 44.5 

SBL 100 97.8 99.6 97.2 88.1 95.9 59.5 95.9 53.3 94.9 
GSBL 100 76.4 90.8 80.0 81.3 82.2 76.7 82.2 64.4 86.9 

 
 

 
Figure 6.10.1: Precision (left column) and True Positive Rate (right column) of the inferred 
ARX networks. The figure displays the result of inferring random ARX networks under different 
noise levels using various methods. The x-axis represents SNR and the y-axis denotes Prec or 
TPR. Inference results of different methods are labelled with different colors.  
 
  The inference of ring networks is shown in Table 6.10.2. The ring networks only contain 10 
links (of a total of 90 possible links). Hence, high TPR is meaningless unless Prec is also high. 
Otherwise, it is impossible to tell which inferred links are correct.  
  The result in Table 6.10.2 highlights the advantage of GESBL over SBL and GSBL. All three 
methods attain high TPR (> 90%). It should be noticed that GESBL has by far the largest Prec 
(93.2%), meaning that on average 9.2 links are correctly inferred (out of 10) in a total of 

50

60

70

80

90

100

60dB 30dB 20dB 10dB -30dB

Pe
rc

en
ta

ge
 (%

)

SNR (dB)

Prec of inferred networks

RJMCMC Kernel GESBL

SBL GSBL

40

50

60

70

80

90

100

60dB 30dB 20dB 10dB -30dB

Pe
rc

en
ta

ge
 (%

)

SNR (dB)

TPR of inferred networks

RJMCMC Kernel GESBL

SBL GSBL



 

116 
 

116 

9.9 links estimated (out of 90). Prec of SBL and GSBL is extremely low (< 20%), meaning that 
these methods estimate almost all 90 possible links. With no doubt, GESBL is superior to SBL 
and GSBL in inferring extremely sparse networks. Prec of the kernel method (44.6%) is much 
lower than GESBL (93.2%) although it is higher than SBL (11.2%) and GSBL (13.2%). That 
implies the kernel method generates a much denser network than a ring structure. It is 
impossible to tell which inferred links in the network are correct. RJMCMC is no better than 
GESBL but is superior to the other methods. 
 
Table 6.10.2: Inference of randomly generated ring networks (𝑺𝑵𝑹 = 𝟐𝟎𝒅𝑩) 

 𝐒𝐍𝐑 = 𝟐𝟎𝒅𝑩 
Prec TPR 

RJMCMC 79.4 93.1 
Kernel 46.4 95.2 
GESBL 93.2 92.4 

SBL 11.2 100 
GSBL 13.2 97.9 

 
Simulations show that for ARX models, GESBL outperforms all the other methods, 

especially SBL and GSBL. The performance of RJMCMC and the kernel method degrades as 
networks become extremely sparse. It is mainly because of the kernel function adopted. The 
impulse responses of the predictor of ARX models are exactly the polynomial coefficients so 
the predictor is a FIR system. These finite impulse responses are intrinsically stable. 
Correlations among different time points of FIRs are negligible. As a result, the stable spline 
kernel overly constrains impulses responses of ARX models. In contrast, the diagonal 
covariance matrix applied by GESBL is more appropriate, which treats model parameters as 
independent random variables. Additionally, since the covariance matrix constructed by the 
stable spline kernel is only controlled by two hyperparameters, the kernel method and 
RJMCMC provide a lower degree of freedom for parameter estimation compared with GESBL. 

 

 

Figure 6.10.1: A ring network. The network contains 10 nodes which form a ring structure. 
Only one node is driven by an input. 
   



 

117 
 

117 

6.10.2	Identify	DSF	models	
  In this part of simulations, we identified DSF models. Since the stable infinite impulse 
responses (IIF) of DSF models were estimated, GESBL, SBL and GSBL were not suitable. 
Therefore, we concentrated on RJMCMC and the kernel method. 
  Monte Carlo simulations were conducted to investigate the performance of these two 
methods under four different conditions.  
 
Condition 1: (Random sparse networks, Different number of data points, Pure noise) 
  This simulation aims to investigate the worst-case scenario where no inputs are driving the 
system and show how rich data benefit the algorithm performance. 
   100 networks were simulated whose topology and internal dynamics were generated 
randomly. All networks contained 10 measured nodes. Each node was independently driven 
by Gaussian noise with variance 1  (assumed unknown during inference). All DSFs were 
produced from state space models. To be specific, a sparse stable 𝐴 ∈ ℝ5³×5³ matrix was first 
yielded randomly using function 𝑠𝑝𝑟𝑎𝑛𝑑𝑛(𝑛, 𝑛, 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦)  in Matlab. The brute force 
strategy was applied to guarantee that 𝐴 matrix was Hurwitz (i.e. no eigenvalue was outside 
the unit circle of the complex plane) and no isolated nodes existed in the network. The 
structure of one of the generated networks is displayed in Figure 6.10.2. We measured 10 
states so that there were 10 manifest nodes in each network and 5 out of 15 were hidden 
nodes. The length of truncated impulse responses was set to 20. Collected data with different 
number of points were used for inference. 
 
Condition 2: (Ring networks, Different number of data points, Pure noise) 
  This simulation investigates extremely sparse networks containing feedback loops, which 
are more challenging to infer compared with condition 1. 
  The topology of networks was fixed to be a ring as shown in Figure 6.10.1 whereas their 
internal dynamics were generated randomly. The procedure to generate state space models 
for these ring networks was the same with condition 1 except that the topology was fixed. 
 
Condition 3: (Random sparse networks, Different number of data points, Different noise levels) 
  This part of simulation aims to investigate how the measured inputs help the inference. 
  The models generated in condition 1 were employed here. Each measured node was driven 
by an independent input (known) and noise (unknown). Both inputs and noise were set to be 
i.i.d. Gaussian with 0 mean. The variance of inputs was 1 while that of the noise varied.  
 
Condition 4: (Random unidentifiable networks, Different number of data points, No noise) 
  In the previous simulations, all the candidate DSF models can be reconstructed from the 
input-output map (𝐻 is diagonal). Now, we consider the situation where DSFs are not unique 
corresponding to a given transfer matrix 𝐺  in (6.4.2). We would like to see that with 
unidentifiable DSF models and under the best-case scenario (no process noise), whether our 
approaches can still find the ground truth topology.  
  Models were generated with only one input and without process noise, following the same 
procedure in condition 1. Therefore, matrix 𝑃 was a vector which did not meet the conditions 
in Theorem 5.7.1.  



 

118 
 

118 

 

 
Figure 6.10.2: An example of the randomly generated DSF networks 
 
  The result of condition 1 is summarized in Table 6.10.3 and plotted in Figure 6.10.3. It is 
worth realizing that although DSF models were generated randomly, there were no isolated 
nodes. Moreover, feedback loops existed in each network. Since networks were driven by pure 
noise, RJMCMC demands sufficiently long time series data to explore the statistical 
characteristics of the noise. Prec and TPR of RJMCMC and the kernel method increase as more 
data points are available for inference. Prec of RJMCMC stays high regardless of the length of 
data (> 95%). TPR of RJMCMC is low (41.1%) given short time series (100). As more data are 
used, TPR of RJMCMC increases from 41.1% to 83.9%. Clearly, Prec of RJMCMC is much 
higher than the kernel method in all cases, indicating RJMCMC is more robust to process noise. 
Although the highest TPR of RJMCMC (83.9%) is below 90% , it should be noticed that 
inference is conducted under the worst-case scenario (without inputs). It is expected that with 
the measured inputs, the performance of RJMCMC can be further improved.  

 
Table 6.10.3: Inference of randomly generated DSF networks 

 Number of data points 
100 500 1000 

Prec TPR Prec TPR Prec TPR 
RJMCMC 97.0 41.1 96.2 73.9 99.1 83.9 

Kernel 37.6 70.2 81.7 76.1 88.0 77.1 
 



 

119 
 

119 

 
Figure 6.10.3: Precision (Left column) and True Positive Rate (Right column) of the inferred 
DSF networks with no input. The figure displays the result of inferring random DSF networks 
using different length of data. The x-axis denotes the number of data points and the y-axis 
presents the value of Prec or TPR. Results of RJMCMC and the kernel method are labelled by 
different colors. 
 
  The result of condition 2 is recorded in Table 6.10.4 and plotted in Figure 6.10.4. As the 
topology of ring networks is extremely sparse, obtaining high Prec is challenging. The 
advantage of RJMCMC over the kernel method is obvious. Prec of RJMCMC is always above 
95% whereas Prec of the kernel method is below 90%. In addition, TPR of RJMCMC is always 
higher than the kernel method given sufficient data. Since the noise is unknown, both methods 
require long time series data to achieve good inference results. With 1000  data points, 
RJMCMC achieves 96.4% Prec and 89.4% TPR. Although the networks are every sparse, 
RJMCMC always guarantees high Prec indicating the inferred networks are reliable. The global 
search of the parameter subspaces encouraged by RJMCMC greatly benefits the detection of 
network topology. Whereas RJMCMC requires long data sequences to achieve satisfactory 
performance, data are usually limited in practice. In the next simulation, we will see how the 
measured inputs help reduce the size of datasets required to achieve good inference results. 

 
Table 6.10.4: Inference of randomly generated ring DSF networks 

 Number of data points 
100 500 1000 

Prec TPR Prec TPR Prec TPR 
RJMCMC 98.1 52.5 98.6 85.6 96.4 89.4 

Kernel 24.5 78.5 72.2 85.0 87.2 85.0 
 

0

20

40

60

80

100

100 500 1000

Pe
rc

en
ta

ge
 (%

)

Number of data points

Prec of inferred networks

RJMCMC Kernel

0

20

40

60

80

100

100 500 1000

Pe
rc

en
ta

ge
 (%

)

Number of date points

TPR of inferred networks

RJMCMC Kernel



 

120 
 

120 

 
Figure 6.10.4: Precision (Left column) and True Positive Rate (Right column) of the inferred 
DSF ring networks with no input. The figure displays the result of inferring ring DSF networks 
using different length of data. The x-axis denotes the number of data points and the y-axis 
presents the value of Prec or TPR. Results of RJMCMC and the kernel method are labelled by 
different colors. 
 

The result of condition 3 is recorded in Tables 6.10.5-6.10.8 and plotted in Figure 6.10.5. 
Generally, as SNR decreases (i.e. noise grows), RJMCMC demands more data points to achieve 
the best performance. It is remarkable that when there is no noise, RJMCMC is able to attain 
perfect inference (100% Prec and 100% TPR) with only 100 data points. The demand of 
data is 10 times less than the pure noise case (Table 6.10.4). Hence, inputs tremendously 
help inference methods counteract the interference caused by noise. 

Not surprisingly, as the noise grows, the best performance of RJMCMC degrades. The 
highest TPR decreases from 100%  to 82.3%  as SNR decreases to 0𝑑𝐵 . However, the 
highest Prec for each SNR level is always above 95%. In addition, the shortest length of data 
necessary to achieve the best performance increases as SNR decreases. RJMCMC requires at 
least 100, 200, 300 and 600 data points in order to attain good inference results (both 
Prec and TPR higher than 80%) under different SNR levels, respectively. As the noise increases, 
the performance of RJMCMC approaches to the worst-case scenario because the contribution 
of inputs to internal dynamics is overwhelmed by process noise.  

Finally, RJMCMC is clearly superior to the kernel method. Although the kernel method 
provides competitive TPR compared with RJMCMC, RJMCMC presents much higher Prec in all 
cases, meaning the inferred networks are more reliable. As a result, RJMCMC is more robust 
to process noise than the kernel method. 

 
Table 6.10.5: Inference of randomly generated DSF networks (No noise) 

 Number of data points 
45 65 100 

Prec TPR Prec TPR Prec TPR 
RJMCMC 99.5 84.0 99.2 97.5 100 100 

0

20

40

60

80

100

100 500 1000

Pe
rc

en
ta

ge
 (%

)

Number of data points

Prec of inferred rings

RJMCMC Kernel

0

20

40

60

80

100

100 500 1000

Pe
rc

en
ta

ge
 (%

)

Number of data points

TPR of inferred rings

RJMCMC Kernel



 

121 
 

121 

Kernel 84.7 58.3 91.4 91.7 100 100 
 
Table 6.10.6: Inference of randomly generated DSF networks (SNR=20dB) 

 Number of data points 
65 100 200 

Prec TPR Prec TPR Prec TPR 
RJMCMC 94.0 86.8 95.7 94.2 98.7 96.9 

Kernel 70.7 86.7 92.2 91.6 97.4 96.5 
 

Table 6.10.7: Inference of randomly generated DSF networks (SNR=10dB) 
 Number of data points 

100 200 300 
Prec TPR Prec TPR Prec TPR 

RJMCMC 92.0 79.0 93.9 86.1 95.1 88.3 
Kernel 74.1 82.5 79.7 88.3 86.3 91.0 

 
Table 6.10.8: Inference of randomly generated DSF networks (SNR=0dB) 

 Number of data points 
400 500 600 

Prec TPR Prec TPR Prec TPR 
RJMCMC 97.3 79.3 97.8 79.9 97.1 82.4 

Kernel 78.9 79.1 80.6 78.7 81.7 82.7 
 

 
Figure 6.10.5: Precision (Left column) and True Positive Rate (Right column) of the inferred 
DSF networks with inputs using RJMCMC. The figure displays the result of inferring randomly 
generated DSF networks using different length of data under various noise levels. The x-axis 
denotes the number of data points and the y-axis presents the value of Prec or TPR. Results 
under different noise levels are labelled by different colors. 
 
  The result of condition 4 is recorded in Tables 6.10.9 and plotted in Figure 6.10.6. The 
networks were driven by only one input. Hence, DSF models were not unique given the input-

90

92

94

96

98

100

45 65 100 200 300 400 500 600

Pe
rc

en
ta

ge
 (%

)

Number of data points

Prec of inferred networks

No noise 20dB 10dB 0dB

70

75

80

85

90

95

100

45 65 100 200 300 400 500 600

Pe
rc

en
ta

ge
 (%

)

Number of data points

TPR of inferred networks

No noise 20dB 10dB 0dB



 

122 
 

122 

output map. Although prior distributions were imposed to favor sparse topologies, there was 
no guarantee to capture the ground truth. Prec of RJMMC is always above 80% but TPR is 
quite low (< 60%). That means RJMCMC tends to produce a sparse network out of all the 
feasible candidates. However, many true links are missed. Compared with RJMCMC, the kernel 
method presents the opposite result. The kernel method captures most true links in the 
network but with a low Prec value. In this case, the inferred networks cannot be trusted. 
Therefore, RJMCMC is favored over the kernel method since Prec is the first priority in practice. 

 
Table 6.10.9: Inference of unidentifiable DSF networks (No noise) 

 Number of data points 
45 65 100 

Prec TPR Prec TPR Prec TPR 
RJMCMC 82.1 46.0 82.9 54.8 80.4 58.1 

Kernel 52.3 78.8 57.4 74.4 65.8 74.1 
 

 
Figure 6.10.6: Precision (Left column) and True Positive Rate (Right column) of the inferred 
unidentifiable DSF networks. The figure displays the result of inferring randomly generated 
DSF networks using different length of data under various noise levels. The x-axis denotes the 
number of data points and the y-axis presents the value of Prec or TPR. Results under different 
noise levels are labelled by different colors. 
 
  To conclude, simulations of DSF models indicate RJMCMC is superior to the kernel method. 
For identifiable DSFs, most true links of the ground truth are identified and the inferred 
networks are reliable. Even with limited data points, RJMCMC is still able to guarantee high 
Prec. More importantly, RJMCMC is very robust to process noise. The remarkable performance 
of RJMCMC is due to its ability to effectively explore the full Bayesian model and encourage a 
global search of the entire parameter space. The effect of ARD is maximally activated in this 
case, producing sparse networks. Even if a DSF is unidentifiable, RJMCMC still ensures high 
confidence of the inferred networks (Prec> 80%) although many true links are missed (TPR<
60%). 

0

20

40

60

80

100

45 65 100

Pe
rc

en
ta

ge

Number of data points

Prec of unidentifiable 
networks

RJMCMC Kernel

0

20

40

60

80

100

45 65 100

Pe
rc

en
ta

ge

Number of data points

TPR of unidentifiable 
networks

RJMCMC Kernel



 

123 
 

123 

6.11 Conclusion 

   DSF models are used to describe sparse networks, where only a small number of nodes are 
measurable. A full Bayesian model is established to describe the stochastic property of the 
target network, where network topology is also assumed to be a random quantity. Instead of 
approximating the Bayesian model analytically using deterministic approximations, a 
numerical sampling method called RJMCMC is adopted. Inference of network topology and 
internal dynamics is based on the empirical distributions built using samples, which accurately 
reflects the true distributions. The full Bayesian model is explored through a randomized global 
search of the entire parameter space promoted by RJMCMC. RJMCMC traverses parameter 
subspaces of different dimensionality to evaluate the probability of different topologies. 
Simulations show that GESBL outperforms SBL, GSBL, the kernel method and RJMCMC when 
identifying ARX models whereas RJMCMC is superior to the kernel method, dealing with DSFs. 
RJMCMC is able to identify most true links in the network and offer reliable inference results. 
  The main advantage of RJMCMC is that it effectively avoids local maxima of the Bayesian 
model. Since the true Bayesian model is explored stochastically, RJMCMC allows evaluation of 
the confidence of inferred networks. In addition, by estimating noise variance through 
sampling, RJMCMC is robust to process noise. The main drawback of RJMCMC is the high 
computational cost when inferring large-scale networks.  

The future research consists of two aspects. One is to develop a more efficient way to 
further reduce the computational cost of calculating the inversion and determinant of high-
dimensional covariance matrices. The second is to extend RJMCMC to identify nonlinear 
models. The kernel function has been shown very powerful in characterizing nonlinear 
functions, which can be used to construct complex nonlinear systems. Therefore, it is believed 
that the framework of this chapter (i.e. combined RJMCMC and the kernel method) can further 
benefit the inference of nonlinear networks. However, how to deal with the hidden states of 
a nonlinear model is still an open question since they cannot be removed as they can in linear 
models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

124 
 

124 

 
 
 
 
 
 
 
 
 

Chapter	7.	 	

Network	inference	of	synthesized	circadian	models	

  Previous chapters have discussed four different methods of inferring sparse networks: one-
to-one, combined group and element sparse Bayesian learning (GESBL), the kernel method 
and reversible jump Markov chain Monte Carlo (RJMCMC). They are developed sequentially 
to identify mathematical models of sparse networks with increasing complexity.  
  Previous simulations show that GESBL, the kernel method and RJMCMC are able to infer 
networks that accurately fall in their proposed model classes. However, many practical 
biological networks are highly complex and may not be well approximated by the proposed 
model. Hence, the key questions are whether these methods can provide reliable inference 
of real biological networks and what factors can influence their performance. 
  We take the circadian clock of Arabidopsis as a case study. This chapter considers data 
simulated from existing mathematical models. This provides a controlled environment, where 
sampling time and noise variance can be adjusted to explore trade-offs between the different 
methods. In addition, in simulated data, the ground truth is known. In contrast, the next 
chapter considers real data also from the circadian clock of Arabidopsis. Although comparisons 
between methods are harder, since the true system is unknown, we can still test how different 
methods perform with real biological data. 
  To date, around 30 genes have been identified as members of the central oscillator of the 
circadian clock of Arabidopsis [223]. The clock consists of a variety of interlocking feedback 
loops among the clock genes. However, the exact internal working mechanisms of the clock 
have not yet been fully understood. A detailed background review of the circadian clock is 
provided in the next chapter. Here, we mainly introduce the simulation models proposed in 
literatures.  
  The model considered in this chapter, which we call the Millar 10 model [61], [62], was 
generated by fitting nonlinear models to experimental data. A parametrized grey-box 
nonlinear model was first postulated. The model structure was pre-fixed in accordance to the 
hypothetical topology based on experimental observations. The model parameters were 
estimated from data to minimize a designed cost function. The model successfully reflects 
partial dynamics of the real system, and hence is a good candidate to verify our proposed 
inference methods. This model has been widely accepted as the platform to test different 



 

125 
 

125 

inference methods [21], [76]. 
  We use the simulated data of this model for inference. Since the ground truth topology of 
the network is implied by the model structure, we are able to evaluate the performance of 
different methods via TPR, FPR and Prec applied in the previous chapters. From Monte Carlo 
simulations, we can evaluate whether, by applying our developed methods, the inferred 
circadian clock from real experimental data will be reliable or not.     
  Section 7.1 introduces the synthesized circadian model: Millar 10 model. Section 7.2 
explains the simulation setup. Section 7.3 presents the inference of Millar 10 model using the 
four proposed methods. Section 7.4 compares our methods with other state-of-the-art 
methods. Section 7.5 concludes the whole chapter. 

7.1 Synthesized models of circadian systems 

  The circadian system of Arabidopsis has 24h rhythms that are entrained by daylight cycles. 
The circadian system includes complex dynamics among light inputs and interlocking feedback 
loops of the clock genes. To study the internal dynamics of the circadian system, mathematical 
models are identified based on experimental data. The established models can be used to 
predict future behaviors of the circadian system under various conditions. Although the 
network topology implied by these models may differ from the ground truth, it is expected 
that they have analogous system dynamics to the circadian system. In particular, the signals 
are rhythmic, oscillatory and active to light stimuli. Therefore, these models can be treated as 
artificial circadian systems. It is reasonable to believe that the methods that can accurately 
infer these synthesized models are also capable of inferring the real circadian system. 
  One of the synthesized models we will use is Millar 10 [61]. In addition to transcriptional 
control, this model also simulates post-transcriptional and post-translational regulation within 
the circadian system. The model contains 7 genes (LHY, CCA1, PRR7, PRR9, NI, GI, Y and TOC1) 
and their associated proteins. The system is driven by light signals. The network involves three 
loops that account for the morning loop, evening loop and interactions between them. In 
particular, LHY/CCA1 is regulated by TOC1 and PRR7 via a feedforward loop. ZTL is stabilized by 
GI in the presence of light. Dawn and dust sensitivity of the clock is realized by NI-regulated 
LHY/CCA1. The mathematical model is nonlinear and continuous time. The system dynamics 
are based on Hill functions, Michaelis-Menten kinetics and polynomials that represent 
transcription, translation and degradation of genes and proteins. Parameters of the model 
represent the rate of biochemical reactions. Mathematical equations of the model are given 
below [61]: 

(7.1.1) 

𝑑𝑐/ = 𝑓Ct 𝑑𝑡 +A
𝑓Ct (𝑗)

Y}𝑓Ct (𝑗)}

Æ´t
 

B45
𝒩B(0, 𝜎𝑑𝑡) 

𝑑𝑐/ = 𝑓Ct𝑑𝑡 +A
𝑓Ct(𝑗)

YÄ𝑓Ct(𝑗)Ä

Æ´t

B45
𝒩B(0, 𝜎𝑑𝑡) 

where 𝒩B(0, 𝜎𝑑𝑡) are independent Gaussian random variables with zero mean and variance 



 

126 
 

126 

𝜎𝑑𝑡. 𝑐/  and 𝑐/  represent concentrations of mRNAs and proteins, respectively. 𝑓Ct   and 

𝑓Ct  are functions that describe biochemical reactions. 𝑓(𝑗)  represents the 𝑗 th term of 
function 𝑓 . Parameters in these functions are biochemical reaction rates whose physical 
meanings and values can be found in [61]. The SDEs above have similar forms as equation 
(2.2.6). 
  Detailed expressions for functions 𝑓 are listed below. Light signals are denoted by 𝐿 and 
𝐷  where 𝐿 = 1  represents light and 𝐷 = 0  represents darkness. 𝑝 , 𝑔 , 𝑚  and 𝑛  are 
model parameters. 

(7.1.2) 

𝑓Cµ  =
𝑔5+

𝑔5+ + (𝑐¶· + 𝑐¶¸ + 𝑐Ç�)+
V𝐿𝑞5𝑐¶ + 𝑛¼𝐿 + 𝑛5

𝑐¥ïÏ,

𝑐¥ïÏ, + 𝑔@,
W− (𝑚5𝐿 + 𝑚@𝐷)𝑐¢ 

𝑓Cµ = (𝑝5𝐿 + 𝑝@𝐷)𝑐¢ − 𝑚7𝑐¢ − 𝑝7
𝑐¢C

𝑐¢C + 𝑔7C
 

𝑓Cµ �¹ = 𝑝7
𝑐¢C

𝑐¢C + 𝑔7C
− 𝑚º𝑐¢  

𝑓C¿  = V𝑛@
𝑐�Ï

𝑐�Ï + 𝑔ºÏ
+ 𝑛7W

𝑔³±

𝑔³± + 𝑐¢±
−𝑚³𝑐¥  

𝑓C¿ = 𝑝º𝑐¥ − (𝑚»𝐿 + 𝑚¸𝐷)𝑐¥(𝑐�¥¢𝑝³ + 𝑐�¼) − 𝑚½𝑐¥ 

𝑓C¿ �¹ = 𝑝5³
𝑐¥
l

𝑐¥
l + 𝑔»

l − (𝑚@³𝐿 +𝑚@»𝐷)𝑐¥  

𝑓C¾  = 𝐿𝑞@𝑐¶ + (𝑛³𝐿 + 𝑛»𝐷)
𝑔¸r

𝑔¸r + 𝑐¥r
𝑔5»
E

𝑔5»
E + 𝑐¢

E −𝑚·𝑐�  

𝑓C¾ = 𝑝»𝑐� −𝑚5¼𝑐� 
𝑓C¿ = 𝑝¸𝐷(1 − 𝑐¶) −𝑚55𝑐¶𝐿 

𝑓C¿À  = 𝐿𝑞7𝑐¶ + 𝑛¸
𝑔½Á

𝑔½Á + 𝑐¥Á
𝑐¢/

𝑔·/ + 𝑐¢/
− 𝑚5@𝑐¶·  

𝑓C¿À = 𝑝½𝑐¶· − (𝑚57𝐿 +𝑚@@𝐷)𝑐¶· 

𝑓C¿Â  = 𝑛½
𝑐¢eïe
B

𝑔5¼
B + 𝑐¢eïe

B + 𝑛·
𝑐¶·§

𝑔55§ + 𝑐¶·§
−𝑚5º𝑐¶¸  

𝑓C¿Â = 𝑝·𝑐¶¸ − (𝑚5³𝐿 +𝑚@7𝐷)𝑐¶¸ 

𝑓CÃÄ  = 𝑛5¼
𝑐¢ïÏF

𝑔5@F + 𝑐¢ïÏF + 𝑛55
𝑐¶¸

𝑔57 + 𝑐¶¸
−𝑚5»𝑐Ç�  

𝑓CÃÄ = 𝑝5¼𝑐Ç� − (𝑚5¸𝐿 + 𝑚@º𝐷)𝑐Ç� 

𝑓CÅ  = 𝐿𝑞º𝑐¶ +
𝑔5º3

𝑔5º3 + 𝑐¥3
𝑔5³ï

𝑔5³ï + 𝑐¢ï
𝑛5@𝐿 −𝑚5½𝑐¼  

𝑓CÅ = 𝑝55𝑐¼ − 𝑝5@𝐿𝑐�¥¢𝑐¼ + 𝑝57𝑐�¼𝐷 −𝑚5·𝑐¼  
𝑓CÆ¿µ = 𝑝5º − 𝑝5@𝐿𝑐�¥¢𝑐¼ + 𝑝57𝑐�¼𝐷 −𝑚@¼𝑐�¥¢ 
𝑓CÆÅ = 𝑝5@𝐿𝑐�¥¢𝑐¼ − 𝑝57𝑐�¼𝐷 −𝑚@5𝑐�¼  



 

127 
 

127 

7.2 General procedure  

	 	 7.2.1	Simulations	of	the	synthesized	models	 	
  In practice, one type of experimental data available for network inference is microarray data. 
The expression level of the clock genes is measured every 4 hours for 2 days under constant 
light. The quality of a dataset is mainly controlled by two factors: sampling frequency and 
information richness. We did not constrain the simulations of the synthesized models under 
the same condition of microarray. Instead, we simulated the models under different light 
conditions and sampled the data with various frequencies. Inference was conducted using four 
proposed methods in previous chapters. By Monte Carlo simulations, we aim to find out which 
inference methods should be used in practice and what experimental conditions most benefit 
inference. 
  Millar 10 model was simulated for 7 days with 4 days of light-dark cycles followed by 3 days 
of constant light, where the time unit of the models was hour. The first 2 days of data were 
discarded to avoid the transition caused by the initial condition. The input to the model was a 
binary function representing the light signal where 1 denoted light and 0 darkness. The 
simulated data were sampled every 1 hour (high sampling frequency) and 4 hours (low 
sampling frequency), respectively. Different time windows were used to select the data for 
inference, including -48h to -4h (LDLD cycles), -24h to 20h (LDLL cycles), 0h to 44h (LLLL cycles), 
24h to 68h (LLLL cycles) and 48h to 92h (LLLL cycles). To enable a fair comparison, the data 
sampled with the low frequency were interpolated using cubic spline in Matlab at each time 
unit so that the number of data contained in each time window was the same with the high 
sampling frequency. 
  It should be noticed that time windows under different light conditions have different levels 
of information richness. Time window -48h to -4h includes dynamics of light-dark transitions. 
Time window -24h to 20h contains information of light-dark transitions and transitions from 
LD cycles to LL cycles. Time window 0h to 44h has transitions from LD cycles to LL cycles. The 
rest of the time windows are under the steady state of constant light where light transitions 
fade away.  
  In practice, since measuring proteins is expensive, the data of proteins are normally 
unavailable. Therefore, states representing proteins in the models were treated as hidden 
nodes and their data were not used for inference. 
 

7.2.2	Performance	evaluation	
  Different methods were used to infer the synthesized model. Since the ground truth 
topology was known a priori, we calculated True Positive Rate (TPR), False Positive Rate (FPR) 
and Precision (Prec) to evaluate the algorithm performance. To avoid complex comparisons 
among different methods, we compress the information of TPR, FPR and Prec into two major 
criteria: the area under the receiver operating characteristic curve (AUROC) and the area under 
the precision recall curve (AUPREC). A confidence measure is designed to evaluate the 
reliability of each link in inferred networks. As the threshold for the confidence measure varies, 
ROC displays the variation of TPR with respect to FPR while PREC displays Prec versus TPR. As 
a result, a good inference result is indicated by high AUROC and AUPREC. 



 

128 
 

128 

  For the one-to-one method, the confidence of an inferred link is represented by its 
corresponding model fitness. 
  GESBL, the kernel method and RJMCMC are developed under the Bayesian framework. 
Hence, the confidence of inferred links is naturally measured by their marginal posterior 
probabilities. However, since GESBL and the kernel method apply empirical Bayes to 
approximate the true distribution, an accurate estimation of the marginal posterior 
probabilities is not available. Therefore, we resort to the scheme in [21] to evaluate the 
confidence of inferred links. The confidence of an inferred link 𝑗 → 𝑖 is estimated as: 

(7.2.1) 

𝑃(𝑗 → 𝑖|𝐷) =
�𝑤B→/�@

Y∑ �𝑤B→/�@
@

B

 

where 𝑤B→/  contains the estimated model parameters representing the regulation from node 
𝑗  to node 𝑖 . For linear ARX models,	𝑤B→/  denotes polynomial coefficients (see equation 
4.7.2). For DSF models, 𝑤B→/  is equivalent to truncated impulse responses (see equation 
5.9.1). 𝐷 denotes the measured data for inference. 
  The rationale behind (7.2.1) is that link 𝑗 → 𝑖 is more likely to exist if node 𝑗 contributes 
more to the regulation of node 𝑖 compared with all the other nodes.  
  RJMCMC explores the true probabilistic model directly via numerical sampling so the 
marginal posterior probabilities of inferred links can be estimated using empirical distributions. 
For an inferred link 𝑗 → 𝑖, its marginal posterior probability is: 

(7.2.2) 

𝑃(𝑗 → 𝑖|𝐷) =A𝑃(𝑗 → 𝑖, 𝜋|𝐷)
�

 

≈
1
𝑁

A #�
�|B→/∈�	

 

where 𝑁 is the total number of samples and #�  is the number of samples of topology 𝜋. 

7.3 Inference of the Millar 10 model 

  To begin with, the Millar 10 model was simulated 50 times independently. Figure 7.3.1 
displays an example of the simulated data. Scale variable 𝜎 of the noise variance in (7.1.1) 
was set to be 2 × 10c7. The simulated data were sampled at the high (every 1h) or low (every 
4h) frequency. Time windows under different light conditions were used to select the data for 
inference. For each investigated condition (i.e. inference method, time window and sampling 
frequency), inference of Millar 10 was repeated 50 times, each time using one of the 
independent simulations of the model. Algorithm performance was evaluated via AUROC and 
AUPREC. Their values from repeated trials (50 times) were averaged to reduce the uncertainty 
of a single trial. 
 



 

129 
 

129 

 

Figure 7.3.1: An example of the simulated data of Millar 10. Colored bars in the graph present 
light conditions: grey bars for white light and black bars for darkness. 
 

7.3.1	Inference	using	the	one-to-one	method	 	
  The one-to-one method was used to infer the network. An OE model was identified to 
describe the interaction between each ordered pair of genes. Model fitness was used as the 
confidence measure of inferred links. 
  A heat graph is plotted in Figure 7.3.2 based on model fitness. Each graph shows the result 
using a specific time window and sampling frequency. Each grid represents a link pointing from 
a gene labelled in columns to a gene in rows. The brightness of the color is proportional to the 
value of model fitness. In general, inferred networks using the high sampling frequency are 
sparser than the low sampling frequency. Time windows under the steady state (constant light) 
pick more links than time windows that contain light transitions. Some true links in the ground 
truth are always inferred with high confidence, including (TOC1, Y), (PRR7, PRR9), (NI, PRR7), 
(PRR7, LHY), (PRR9, LHY) and (GI, TOC1). On the contrary, there are null links in the ground 
truth that are not correctly identified such as (TOC1, NI) and (NI, GI), leading to false positives.  
 

-48 -36 -24 -12 0 12 24 36 48 60 72 84 96
Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ex
pr

es
si

on
 le

ve
l

Millar 10 model

LHY
TOC1
Y
PRR9
PRR7
NI
GI



 

130 
 

130 

 

 
Figure 7.3.2: Heat graph of the inference of Millar 10 using one-to-one method. Each graph 
shows the result of inference using the data collected with a specified time window and 
sampling frequency. Each grid presents a link pointing from a gene in columns to a gene in 
rows. The brightness of the color for each grid is proportional to the model fitness. (X,Y) 
denotes the link from Y to X. 
 
  Figure 7.3.3 displays AUROC and AUPREC of the inferred networks. For the low sampling 
frequency, time windows under constant light (0h-92h) outperform time windows containing 
light-dark (LD) cycles. The reason for this is that the Fourier transform of signals in LD contains 
mostly energy at the frequency associated with 24h. The transient to LL is likely to excite a 
much wider range of frequencies. In particular, time window 0h-44h, containing the transition 
from LD to LL, provides the highest AUROC and APPREC (𝐴𝑈𝑅𝑂𝐶 = 0.70, 𝐴𝑈𝑃𝑅𝐸𝐶 = 0.66). 



 

131 
 

131 

Time windows under the steady state are slightly worse than time window 0h-44h. AUPREC of 
time windows containing LD transitions is below 50%, indicating that the inferred networks 
are not reliable. At the high sampling frequency, the performance of time window 0h-44h is 
similar to the low sampling frequency and reserves the best performance. Improvement of 
time windows under the steady state is very limited. However, AUROC and AUPRED of time 
windows with LD transitions are greatly improved, which means the one-to-one method takes 
advantage of the information provided by the additional samples. For high samples, the 
performance for all time windows is close. However, as seen earlier in chapter 3, one-to-one 
is not able to fully model complex nonlinear dynamics appearing in some regulations. The 
main reason is that one-to-one applies a simple model class, i.e. OE models and only adopts 
low linear model complexity to describe the network. 
 

 

Figure 7.3.3. AUROC versus AUPREC of the inferred Millar 10 model using the one-to-one 
method. The graph on the left column is the result using the low sampling frequency and the 
graph on the right is for the high sampling frequency. These graphs display AUROC versus 
AUPREC with respect to different time windows. Time windows are labelled in the legend. x-
axis presents AUROC and y-axis presents AUPREC. 
   
  To conclude, the one-to-one method can effectively infer the Millar 10 model with high 
AUROC and AUPREC using time window 0h-44h. Many true links in the ground truth are 
inferred with high confidence and the inferred networks are reliable. Nevertheless, one-to-
one cannot fully interpret some complex dynamics of the system due to the limit of ‘model 
power’. 
 

7.3.2	Inference	using	GESBL	
  Linear multivariable ARX models were used to describe the network. As the optimal 
polynomial order for inference is unknown, the polynomial order was treated as a tuning 
variable during simulations. Low order ARX models cannot approximate complex dynamical 
systems well whereas high order ARX models can cause over-fitting. To strike a balance 
between data-fitting and model complexity, the polynomial order was tuned between 10 to 
20. 
  The resulting heat map is plotted in Figure 7.3.4. The confidence of an inferred link is 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AUROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

PR
EC

Millar 10 (low sample, one-to-one)

-48h--4h
-24h-20h
0h-44h
24h-68h
48h-92h
y = x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AUROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

PR
EC

Millar 10 (high sample, one-to-one)

-48h--4h
-24h-20h
0h-44h
24h-68h
48h-92h
y = x



 

132 
 

132 

averaged over different polynomial orders. Compared with the one-to-one method, inferred 
networks of GESBL are much sparser. In general, inferred networks with the low sampling 
frequency dataset contain less connectivity than the high sampling frequency. Time windows 
under the steady state select more links than those involving light transitions. With the low 
sampling frequency, true links (PRR9, LHY), (PRR7, LHY), (NI, PRR7), (TOC1, Y) and (Y, LHY) in 
the ground truth are captured with high confidence depending on the time windows used. 
However, null link (Y, PRR7) is frequently identified as a true link with high confidence. For the 
high sampling frequency, many regulations from LHY are inferred with high confidence 
regardless of time windows. Inferred networks using time windows with light transitions are 
extremely sparse. Although time windows under the steady state pick more true links, they 
also infer null link (Y, PRR7) incorrectly, leading to a false positive. 
    

 

 



 

133 
 

133 

Figure 7.3.4: Heat graph of the inference of Millar 10 using GESBL. Each graph shows the 
result of inference using the specified time window and sampling frequency. For each graph, 
grids present links from genes in column to genes in row. The brightness of the color for each 
grid is proportional to the average confidence of links inferred with different polynomial orders. 
(X,Y) denotes the link from Y to X. 
 
  AUROC and AUPREC resulting from different polynomial orders are plotted in Figure 7.3.5. 
For each time window, AUROC and AUPREC of all the values of polynomial orders are displayed 
in the same color. For the low sampling frequency, all points gather closely suggesting that the 
algorithm performance is relatively robust to polynomial orders. Time windows containing 
light transitions (0h-44h) are slightly better than those under the steady state. In particular, 
AUROC and AUPREC of time window 0h-44h are always above 60% and 50%, respectively. 
For the high sampling frequency, GESBL becomes more sensitive to polynomial orders. 
Performance of time windows is not significantly improved compared with the low sampling 
frequency. Time window 0h-44h outperforms the other time windows. In general, the one-to-
one method outperforms GESBL equipped with linear ARX models. 
 

 

Figure 7.3.5. AUROC versus AUPREC of the inferred Millar 10 model using GESBL. The graph 
on the left column is the result using the low sampling frequency and the graph on the right is 
for the high sampling frequency. These graphs display AUROC versus AUPREC with respect to 
different time windows. Time windows are labelled in the legend. For each time window, 
AUROC and AUPREC with respect to different polynomial orders are displayed in the same 
color. x-axis presents AUROC and y-axis presents AUPREC. 
 

To conclude, GESBL is able to produce sparse networks. However, the method is sensitive to 
the choice of polynomial orders of linear ARX models. In fact, simulations indicate that GESBL 
fails to enforce model parsimony. Since a linear ARX model is used to approximate the 
nonlinear Millar model, the polynomial order of the model is not upper bounded and model 
parameters are no longer element sparse. However, as the polynomial order increases, over-
fitting occurs. The auto-regression term of an ARX model compensates for the contribution 
from other nodes leading to an extremely sparse topology. Therefore, determination of the 
polynomial order is problematic in practice. Overall, GESBL equipped with linear ARX models 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AUPROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

PR
EC

Millar 10 (low sample, GESBL)

-48h--4h
-24h-20h
0h-44h
24h-68h
48h-92h
y = x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AUPROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

PR
EC

Millar 10 (high sample, GESBL)

-48h--4h
-24h-20h
0h-44h
24h-68h
48h-92h
y = x



 

134 
 

134 

is not suitable to infer complex biological networks. However, we will see later that, by using a 
grey-box nonlinear model, the performance of GESBL is tremendously improved. 

 

7.3.3	Inference	using	the	kernel	method	
  The kernel method applied a DSF model to describe the network. The model was expressed 
in a non-parametric way using impulse responses. For the implementation purpose, impulse 
responses were truncated. As the optimal truncation length was unknown, truncation length 
was treated as a tuning variable. To have a fair comparison with GESBL, the length of truncated 
impulse responses was also tuned between 10 and 20. 
  A heat map is plotted in the same way as GESBL in Figure 7.3.6. The generated networks are 
very sparse. For the low sampling frequency, the true links in the ground truth including (PRR9, 
LHY), (PRR7, LHY), (TOC1, Y) and (NI, PRR7) are identified with high confidence depending on 
the time windows used. All null links from GI are identified with high confidence. Nevertheless, 
almost all regulations from TOC1 are missed. For the high sampling frequency, more true links 
are identified. In general, time windows under constant light infer more links than those with 
LD transitions. However, link (GI, LHY) is only inferred by the time window under LDLD. Null 
links (Y, GI), (Y, NI) and (PRR9, PRR7) are frequently inferred incorrectly by time windows under 
constant light. With the high sampling frequency, time windows have a great impact on 
inference. That is because information loss of the collected data is small and DSFs are capable 
of describing complex dynamics. 
 

 



 

135 
 

135 

 
Figure 7.3.6: Heat graph of the inference of Millar 10 using the kernel method. Each graph 
shows the result of inference using a particular time window and sampling frequency. For each 
graph, grids represent links pointing from genes in column to genes in row. The brightness of 
the color is proportional to the average confidence of links inferred with different truncation 
length of impulse responses. (X,Y) denotes the link from Y to X. 

 

 

Figure 7.3.7. AUROC versus AUPREC of the inferred Millar 10 model using the kernel method. 
The graph on the left column is the result using the low sampling frequency and the graph on 
the right is for the high sampling frequency. These graphs display AUROC versus AUPREC with 
respect to different time windows. Time windows are labelled in the legend. For each time 
window, AUROC and AUPREC with respect to different truncation length of impulse responses 
are displayed in the same color. x-axis presents AUROC and y-axis presents AUPREC. 
 
  AUROC and AUPREC are displayed in Figure 7.3.7. Compared with GESBL, the kernel method 
is much more robust to the truncation length of impulse responses in all cases because all 
points of each time window gather closely. Therefore, the problematic tuning can be avoided 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AUPROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

PR
EC

Millar 10 (low sample, Kernel)

-48h--4h
-24h-20h
0h-44h
24h-68h
48h-92h
y = x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AUPROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

PR
EC

Millar 10 (high sample, Kernel)

-48h--4h
-24h-20h
0h-44h
24h-68h
48h-92h
y = x



 

136 
 

136 

in practice since truncation length does not have a great impact on the final result. For the low 
sampling frequency, time windows under LDLD and LDLL are slightly better than the others. 
Time windows under constant light have very similar performance. In general, AUROC and 
AUPREC of all time windows are both below 60%. The high sampling frequency improves the 
algorithm performance. The kernel method becomes even more robust to the truncation 
length since all points of each time window gather compactly. Roughly speaking, AUROC and 
AUPREC of each time window are both increased by around 5%  compared to the low 
sampling frequency. Obviously, time windows under LDLD and LDLL outperform the others. 
Their AUROC and AUPREC are around 60% and 51%, respectively. 
  To conclude, the main advantage of the kernel method is that it is robust to the tuning 
variable (truncation length of impulse responses), which avoids the problematic tuning 
procedure. In addition, with the high sampling frequency, the kernel method can recover many 
true links (AUROC ≈ 60%). Time windows under LDLD and LDLL are recommended to achieve 
the best performance. Nevertheless, the inferred networks are not reliable (AUPREC ≈ 50%). 
It is difficult to tell which inferred links are correct. The kernel method has to solve a highly 
nonlinear optimization problem where the sparsity pattern of the solution determines 
network topology. Hence, the kernel method is very sensitive to local optimal solutions, which 
influences the accuracy of inferred networks. 
 

7.3.4	Inference	using	RJMCMC	approach	
  To apply the RJMCMC method, the network was described by a DSF. Impulse responses were 
assumed to be Gaussian processes with the stable spline kernel as the covariance function. 
Network topology was treated as a random quantity. Numerical sampling was used to estimate 
empirical posterior distributions of network topology. For implementation purposes, impulse 
responses were truncated. As the optimal truncation length was unknown, truncation length 
was treated as a tuning variable. To be consistent with the kernel method, the length of 
truncated impulse responses was tuned between 10 to 20. 
  A heat map of the inference is plotted in the same way as the kernel method in Figure 7.3.8. 
The inferred networks are very sparse. For the low sampling frequency, true links in the ground 
truth including (PRR7, LHY), (PRR9, LHY), (TOC1, Y) and (NI, PRR7) are successfully inferred with 
high confidence, which, however, depend on time windows. Null links from GI are correctly 
identified. However, most regulations from TOC1 are missed. For the high sampling frequency, 
more true links are identified with high confidence such as (LHY, PRR9), (GI, LHY) and (PRR7, 
PRR9). Nevertheless, null links (Y, PRR7) and (NI, PRR9) are frequently inferred as true links by 
some time windows, leading to false positives. 
  AUROC and AUPREC are displayed in Figure 7.3.9. RJMCMC is very robust to the truncation 
length of impulse responses as all points of each time window gather closely. Hence, similar 
to the kernel method, tuning truncation length is not essential in practice since truncation 
length does not influence the final result critically. The accuracy of inferred networks is greatly 
improved compared with the kernel method. For the low sampling frequency, the 
performance of time windows containing light transitions is similar. These time windows 
outperform the others under the steady state. Time windows under the steady state achieve 
around 60% AUROC and 52% AUPREC whereas time windows containing light transitions 
attain about 63%  AUROC and 58%  AUPREC. For the high sampling frequency, the 



 

137 
 

137 

performance of all time windows is further improved. AUROC and AUPREC of time windows 
under constant light are slightly increased. AUROC and AUPREC of time windows under LDLL 
reach above 65% and 60%, respectively. The time window under LDLL outperforms all the 
others, achieving 70% AUROC and 69% AUPREC as the best result. 
 

 

 
Figure 7.3.8: Heat graph of the inference of Millar 10 using RJMCMC. Each graph shows the 
result of inference using a specified time window and sampling frequency. For each graph, 
grids represent links pointing from genes in column to genes in row. The brightness of the color 
for each grid is proportional to the average confidence of links inferred with different 
truncation length of impulse responses. (X,Y) denotes the link from Y to X. 
 



 

138 
 

138 

 

Figure 7.3.9. AUROC versus AUPREC of the inferred Millar 10 model using RJMCMC. The 
graph on the left column is the result using low sampling frequency and the graph on the right 
is for the high sampling frequency. These graphs display AUROC versus AUPREC with respect 
to different time windows. Time windows are labelled in the legend. For each time window, 
AUROC and AUPREC with respect to different truncation length of impulse responses are 
displayed in the same color. x-axis presents AUROC and y-axis presents AUPREC. 
 
  To conclude, RJMCMC generates sparse network topologies. The performance of the 
method is robust to truncation length of impulse response, which avoids tuning in practice. 
The preference of RJMCMC over the high sampling frequency and the time window under LDLL 
suggests DSF models are very powerful in capturing system dynamics in response to complex 
light transitions. The improved performance compared with the kernel method indicates that 
RJMCMC effectively encourages a global search of the optimal topology, thus reducing the risk 
of being trapped at local maxima of distributions.   

7.4 Comparison with state-of-the-art methods 

  Inference of the circadian clock of Arabidopsis has been intensively studied in the past few 
years. A variety of inference methods have been developed and some success has been 
achieved. In particular, the Millar 10 model has been frequently used as a platform to test 
inference methods. The author of a recently published paper, [76], proposed a novel inference 
method called iCheMA to infer the circadian clock. The method was tested on the Millar 10 
model and compared with a variety of state-of-the-art methods including hierarchical Bayesian 
regression (HBR), LASSO, elastic net, etc. The author claimed that iCheMA outperformed most 
existing methods above. Therefore, this chapter compares our methods with iCheMA. 
 

7.4.1	Simulation	setup	
  Millar 10 was simulated with the increased process noise so that the simulated data were 
comparable with the real microarray data. The noise variance was 5 times higher than that of 
the last section (𝜎 = 10c@). Simulations were conducted 50 times independently, generating 
50 groups of time series for inference. Figure 7.4.1 displays one example of such simulations. 
Data were collected with the low (every 4h) and high (every 1h) sampling frequency. To have 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AUPROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

U
PR

EC

Millar 10 (low sample, RJMCMC)

-48h--4h
-24h-20h
0h-44h
24h-68h
48h-92h
y = x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AUPROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

PR
EC

Millar 10 (high sample, RJMCMC)

-48h--4h
-24h-20h
0h-44h
24h-68h
48h-92h
y = x



 

139 
 

139 

a fair comparison, data under the low sampling frequency were interpolated at each time unit 
(h) so that the number of data points was the same with the high sampling frequency. Due to 
the high computational cost of iCheMA, we only considered time window 0h-44h (consistent 
with the real experimental condition) and time window -24-20h (containing the most complex 
nonlinear dynamics).  
  Inference of the model was repeated 50 times for all methods, each time using one 
simulated dataset. The average of AUROC and AUPREC over 50 trials was calculated to evaluate 
the algorithm performance. Next, we briefly explain iCheMA and compare it to our methods. 
 

 

Figure 7.4.1: An example of the simulated data of Millar 10. Colored bars in the graph present 
light conditions: grey bars for white light and black bars for darkness. 
 

7.4.2	iCheMA	
  iCheMA postulates a simple grey-box physical model to represent the circadian clock. 
Simplified Michaelis-Menten kinetics are used to describe biological processes. The model is 
built on the transcriptional level, where the dynamics of proteins are not considered. The 
dynamical network involving mRNA degradation and transcriptional regulation is expressed by 
a series of ODEs. For the 𝑖th clock gene, the model is written as [76]: 

(7.4.1) 

𝑑𝑥/(𝑡)
𝑑𝑡

= −𝑣¼,/𝑥/(𝑡) + A 𝑣-,/
𝐼-,/𝑥-(𝑡) + (1 − 𝐼-,/)𝑘-,/

𝑥-(𝑡) + 𝑘-,/-∈�t

 

where 𝑥/  denotes a clock gene. Degradation of mRNAs is described by linear terms and 
transcriptional regulation is characterized by Michaelis-Menten kinetics. 𝑣-,/  and 𝑘-,/  are 
maximum reaction rate and Michaelis-Menten parameter, respectively. They are estimated 
during inference. 𝜋/  is a set of clock genes that regulate the 𝑖th clock gene. Since the ground 

-48 -36 -24 -12 0 12 24 36 48 60 72 84 96
Time

0

0.2

0.4

0.6

0.8

1

1.2

Ex
pr

es
si

on
 le

ve
l

Millar 10 model

LHY
TOC1
Y
PRR9
PRR7
NI
GI



 

140 
 

140 

truth connectivity is unknown, 𝜋/  also needs to be determined during inference. The 
indicator function, 𝐼-,/ shows whether the regulation is active (𝐼-,/ = 1) or repressive (𝐼-,/ =
0).  
  The model in (7.4.1) can be rewritten in a regression form. However, the resulting regression 
model is not linear in parameters. The derivative of 𝑥/(𝑡) is treated as the output of the 
regression model and estimated using Gaussian process with the radial basis kernel during 
inference [76].  
  iCheMA introduces priors and hyperpriors for (7.4.1) to establish a full Bayesian model. 
iCheMA explores the network topology and internal dynamics of Millar 10 by exhaustively 
investigating each possible set 𝜋/  along with all combinations of indicator functions, 𝐼-,/. The 
true posterior distribution of the probabilistic model is evaluated by numerical sampling using 
the traditional MCMC method. To reduce the high computational cost arising from the 
combinatorial search, the maximum cardinality of 𝜋/  is set to 3 by iCheMA. 
  The marginal posterior probability for gene 𝑗 being the regulator of gene 𝑖 is evaluated 
via ‘model averaging’: 

(7.4.2) 

𝑃(𝑗 → 𝑖|𝐷) =
∑ 𝑃(𝐷|𝜋/)𝑃(𝜋/)�t|B∈�t
∑ 𝑃(𝐷|𝜋/)𝑃(𝜋/)�t

 

where 𝐷 denotes the measured data. Calculating (7.4.2) requires to integrate the product of 
marginal likelihood 𝑝(𝐷|𝜃, 𝜋/) and prior distribution 𝑝(𝜃|𝜋/) with respect to 𝜃 where 𝜃 
contains model parameters. Nevertheless, only samples from posterior distribution 
𝑝(𝜃|𝐷, 𝜋/)  are available. Hence, marginal conditional distribution 𝑃(𝐷|𝜋/)  cannot be 
evaluated directly. To estimate 𝑃(𝐷|𝜋/), Chib’s method is applied [224]. 
 

7.4.3	GESBL	
  To have a fair comparison with iCheMA, instead of using linear ARX models, we adopt the 
same model (7.4.1) to represent the network. Extension of GESBL to nonlinear ARX models 
has been discussed in chapter 4. While iCheMA implements a combinatorial search of basis 
functions (i.e. linear functions and Michaelis-Menten kinetics), GESBL selects basis functions 
in a single run by imposing sparsity to the model parameters. A basis function is assumed to 
be appropriate if its estimated weight parameter 𝑣-,/  is non-zero. One advantage of GESBL 
over iCheMA is that there is no need to set an upper for the cardinality of 𝜋/  since all clock 
genes are considered simultaneously. 
  It should be noticed that parameter 𝑘-,/  is not linear with respect to the basis function. 
Although 𝑘-,/  can be treated as an unknown deterministic variable and estimated using 
empirical Bayes, the resulting optimization problem turns out to be highly nonlinear. 
Consequently, the update of hyperparameters using the EM algorithm does not have a closed 
form. To simplify the problem, we do not estimate 𝑘-,/  explicitly during inference. Instead, 
each basis function is expanded into a group of its counterparts, within which each element is 
endowed with a particular value of 𝑘-,/. For the low sampling frequency, 𝑘-,/ ranges from 
0.5 to 2 with an increment of 0.5. For the high sampling frequency, 𝑘-,/ is expanded as 
from 0.5 to 5 with an increment of 0.5. The simulations later show that the inference result 
is robust to the setting of 𝑘-,/. Consequently, the resulting model can be written as: 

(7.4.3) 



 

141 
 

141 

𝑑𝑥/(𝑡)
𝑑𝑡

= −𝑣/𝑥/(𝑡) +A A 𝑣-B5
𝑥-(𝑡)

𝑥-(𝑡) + 𝐾B
+ 𝑣-B@

𝐾B
𝑥-(𝑡) + 𝐾B

3

B45



-45,-Í/
 

where 𝑚 is the total number of clock genes and 𝐾 is a finite set of values of 𝑘-,/. With the 
notation of Maltab, 𝐾 = 0.5: 0.5: 2 for the low sampling frequency and 𝐾 = 0.5: 0.5: 5 for 
the high sampling frequency. 𝐾B  denotes the jth element of 𝐾. Note that basis functions 
contain Michaelis-Menten kinetics of both active and repressive forms. 
  The model in (7.4.3) is then recast into a linear regression form as: 

(7.4.4) 
𝑑𝑥/(𝑡)
𝑑𝑡

= Φθ 

where 
Φ = [𝜙5 ⋯ 𝜙] 

𝜙-Í/ = Ï
𝑥𝑢

𝑥𝑢 + 𝐾1
𝐾1

𝑥𝑢 + 𝐾1
⋯

𝑥𝑢
𝑥𝑢 + 𝐾𝑞

𝐾𝑞
𝑥𝑢 + 𝐾𝑞

Ð 

𝜙/ = −𝑥𝑖 
θ = [θ5 ⋯ θ]ʹ 

θ-Í/ = Ã𝑣𝑢11 𝑣𝑢12 ⋯ 𝑣𝑢𝑛1 𝑣𝑢𝑛2 Å 
θ/ = 𝑣𝑖 

 
  Note that the derivative in (7.4.4) is estimated using Gaussian process as iCheMA. As GESBL 
applies empirical Bayes to approximate the true distribution, an accurate estimation of the 
marginal posterior probability of regulations is not available. Therefore, we resort to the same 
scheme in the previous sections to evaluate the confidence of inferred links. The marginal 
posterior probability of link 𝑗 → 𝑖 is estimated as: 

(7.4.5) 

𝑃(𝑗 → 𝑖|𝐷) =
�θ𝑗�@
‖θ‖@

 

   

7.4.4	Other	methods	
  The one-to-one method is used similarly as before. For the kernel and RJMCMC methods, a 
DSF is used to describe the Millar 10 model. Since previous simulations indicate that truncation 
length of impulse responses has little impact on the final result, the length of truncated 
impulse responses is set to 10. 
 

7.4.5	Results	
  The average AUROC and AUPRC of 50 independent trials using each method with time 
window 0h-44h and -24h-20h are plotted in Figure 7.4.2 and 7.4.3, respectively. Figure 7.4.2 
shows that for the low sampling frequency, the performance of one-to-one and RJMCMC is 
similar where one-to-one achieves higher AUPREC (64%) and RJMCMC attains higher AUROC 
(65%). These two methods are obviously superior to the others. The performance of iCheMA 
is better than the kernel method and GESBL, achieving 60% AUROC and 51% AUPREC. 
Among all methods, GESBL presents the worst result with 53% AUROC and 45% AUPREC. 
For the high sampling frequency, the performance of all methods is improved, especially for 



 

142 
 

142 

GESBL and iCheMA. In this case, GESBL achieves the highest AUROC and AUPREC at 76% and 
77%, respectively. The performance of iCheMA is greatly improved with AUROC and AUPREC 
around 69% and 67%, respectively. The performance of RJMCMC and one-to-one is very 
close to iCheMA, whose AUROC and AUPREC are both above 65%. The performance of the 
kernel method is slightly improved but outperformed by the other methods. 
 

 

Figure 7.4.2: AUROC and AUPREC of five inference methods using time window 0h-44h. 
Points in the graph are the averaged AUROC and AUPRC of 50 independent trials.  
 
  For time window -24h-20h in Figure 7.4.3, AUROC and AUPREC of all methods are below 
60% for the low sampling frequency. RJMCMC provides the best result with 59% AUROC 
and 52% AUPREC. One-to-one is the top-two method, followed by GESBL. The performance 
of iCheMA and the kernel method is equally poor, whose AUROC and AUPREC are both below 
50% . Compared with time window 0h-44h, the performance of all methods generally 
degrades. The reason is that information loss of the data at the low sampling frequency 
disables inference methods to explore complex nonlinear dynamics. For the high sampling 
frequency, the accuracy of inferred results is critically improved. RJMCMC presents the highest 
AUROC (75%) and AUPREC (73%). GESBL is the top-two method. iCheMA and one-to-one 
have similar performance. The kernel method is no better than the other methods. 
   

 

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

AUROC

0.4

0.45

0.5

0.55

0.6

0.65

0.7

AU
PR

EC

Millar10 (low sample)

One-to-One
Kernel
RJMCMC
GESBL
iCheMA

0.5 0.55 0.6 0.65 0.7 0.75 0.8

AUROC

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

AU
PR

EC

Millar10 (high sample)

One-to-One
Kernel
RJMCMC
GESBL
iCheMA

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

AUROC

0.3

0.35

0.4

0.45

0.5

0.55

0.6

AU
PR

EC

Millar10 (low sample)

One-to-One
Kernel
RJMCMC
GESBL
iCheMA

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

AUROC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

AU
PR

EC

Millar10 (high sample)

One-to-One
Kernel
RJMCMC
GESBL
iCheMA



 

143 
 

143 

Figure 7.4.3: AUROC and AUPREC of five inference methods using time window -24h-20h. 
Points in the graph are the averaged AUROC and AUPRC of 50 independent trials. 
 
  To evaluate the estimation accuracy of the system dynamics of Millar 10, the identified 
models were validated on a new dataset that was not used for inference. The new dataset was 
simulated following the same procedure in this chapter. The models were used to predict the 
dataset (applying the corresponding predictors discussed in the previous chapters). The 
predicted outputs are compared with the true ones using the following criterion: 

(7.4.6) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 100 V1 −
‖𝑦 − 𝑦Ú‖
‖𝑦 − 𝑦2‖

W 

where 𝑦 denote the collected data (new dataset) of a node, 𝑦Ú are the predicted outputs 
and 𝑦2  are the mean of the collected data. Fitness of each node is averaged over 50 
independent trials. 
  Since one-to-one builds a model for each ordered pair of nodes independently, the 
estimated models cannot be used for prediction. Hence, only the kernel method, GESBL, 
RJMCMC and iCheMA are under consideration. 
 

 
Figure 7.4.4: Prediction fitness of different methods. Each box plot shows the prediction 
fitness of all methods tested on a particular time window and sampling frequency. The average 
fitness of 7 genes is marked by the black points within the whiskers. The red lines indicate the 
median. The whiskers highlight the maximum and minimum data points that are not 
considered outliers. The bottom and top edges of the box represent the 25th and 75th 
percentiles, respectively. The outliers are plotted using the red ‘+’ symbol. 

Kernel RJMCMC GESBL iCheMA

-20

0

20

40

60

80

100

Fi
tn

es
s 

(%
)

Millar 10 (-24h-20h, high sample)

Kernel RJMCMC GESBL iCheMA
-50

0

50

100

Fi
tn

es
s 

(%
)

Millar 10 (-24h-20h, low sample)

Kernel RJMCMC GESBL iCheMA
-20

0

20

40

60

80

100

Fi
tn

es
s 

(%
)

Millar 10 (0h-44h, high sample)

Kernel RJMCMC GESBL iCheMA

-100

-50

0

50

100

Fi
tn

es
s 

(%
)

Millar 10 (0h-44h, low sample)



 

144 
 

144 

 
  Figure 7.4.4 shows the box plot of prediction fitness. In general, the fitness of the high 
sampling frequency is lower than the low sampling frequency because the models have to fit 
more data points with high sample. The fitness of time window -24h-20h is slightly worse than 
time window 0h-44h. Since time window -24h-20h contains the richest light transitions, its 
data are most difficult to fit. Among all the methods, RJMCMC presents the most reliable 
prediction. All points of RJMCMC are distributed compactly compared with the other methods, 
meaning that RJMCMC can provide reasonable prediction for most genes. The performance of 
GESBL is seriously degraded with the low sampling frequency. The fitness variance of iCheMA 
is very high, meaning that the models can only predict the dynamical behavior of a few genes. 
In particular, with time window 0h-44h and the low sampling frequency, the fitness of PRR9 is 
below −100% (i.e. outlier in the plot). The kernel method is weak in prediction as the fitness 
variance of the high sampling frequency is the highest among all the methods for both time 
windows. 
  Simulations show that the performance of GESBL and iCheMA highly depends on the 
sampling frequency. That is because these two methods rely on the estimation of derivatives 
from data. With the low sampling frequency, derivatives cannot be recovered accurately by 
Gaussian regression, thus influencing the algorithm performance. With the high sampling 
frequency, Gaussian regression can effectively estimate derivatives from data so that the 
‘model power’ of grey-box models in (7.4.4) and (7.4.1) is fully explored. In addition, since 
GESBL and iCheMA are focused on fitting the estimated derivatives, they are relatively weak 
in predicting new datasets. 
  We also compare the implementation time of all methods in Figure 7.4.5. Not surprisingly, 
the computational cost of iCheMA is extremely high as it conducts an exhaustive search of 
both network topology and internal dynamics (selection of basis functions) via numerical 
sampling. iCheMA requires around 3 hours to finish a single trial. It is remarkable that the 
computational cost of GESBL is very low. GESBL only takes a few seconds to complete the 
inference, which shows great advantages over the other methods. RJMCMC is less 
computationally intensive compared with iCheMA but still demands much more 
computational power than the remaining methods. The kernel method is the second 
computationally efficient approach. The computational cost of one-to-one grows quadratically 
with respect to the number of nodes. Since one-to-one adopts low order OE models to 
describe the network, its computational cost is much lower than RJMCMC and iCheMA. 
  Overall, RJMCMC is the most reliable method. It provides stable performance with different 
time windows and sampling frequencies. One-to-one also presents satisfactory results. More 
importantly, its computational cost scales with the size of the network. GESBL and iCheMA can 
only be used if high-resolution data are available. The kernel method is outperformed by the 
other methods. 
 



 

145 
 

145 

 
Figure 7.4.5: Implementation time of different methods. The red bars show the average time 
consumed by different methods to finish a single trial. For the purpose of a clear display, y-axis 
is scaled logarithmically with base 2. 

7.5 Conclusion 

  This chapter conducts Monte Carlo simulations to verify the effectiveness of the proposed 
methods including one-to-one, GESBL, the kernel method and the RJMCMC approach. The 
proposed methods and a state-of-the-art approach are compared and tested on the 
synthesized models of the circadian clock. Different experimental conditions are considered 
including sampling frequency, light conditions and noise level. 
  Simulations show that high sampling frequency and light transitions dramatically improve 
the performance of the algorithms. RJMCMC and the kernel method are robust to truncation 
length of impulse responses. Hence, the problematic tuning is avoided. With the proposed 
linear models, RJMCMC, in general, outperforms all the other methods. By using grey-box 
nonlinear models, the accuracy of inference can be further improved. In this case, GESBL is 
superior to most of the proposed methods including the state-of-the-art method, iCheMA. The 
main drawback is that the algorithm performance highly depends on the estimation of 
derivatives. Hence, high-quality data are essential for GESBL. 
  The power of linear models is limited in describing large-scale biological networks that 
involve highly nonlinear interactions among nodes. Although the usage of grey-box nonlinear 
models has achieved certain success, model parameters must be linear with respect to basis 
functions. As a result, black-box nonlinear models are a promising model class to describe 
biological networks. Identification of nonlinear systems using the kernel method has been 
widely studied. Nevertheless, not much attention has been put on this area under the context 
of network inference.  
 
 
 
 

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

PEM GESBL Kernel RJMCMC iCheMA

Ti
m

e 
(m

in
)

Methods

Implementation time



 

146 
 

146 

 
 
 
 
 
 
 
 
 

Chapter	8.	 	

Inference	of	the	circadian	Ca2+	signaling	network	

  The circadian clock of Arabidopsis is a biological network providing regular 24 hour rhythms. 
It has attracted considerable research attention over the years (e.g. [225]–[228]). Learning its 
internal structure and underlying working mechanisms is fundamental to understanding many 
essential biological processes that are regulated by the circadian system. Mathematical 
modeling has been widely used to study the circadian clock, which has helped make 
considerable contributions to this research area [58], [59], [62], [63], [101], [103], [229]–[231]. 
  An active topic relating to the circadian clock is the Ca2+ signaling network. Calcium is 
essential in many signaling pathways as a second messenger. For example, abscisic acid, salt 
stress, and cold shock and touch are sensed, transduced into Ca2+ signals and delivered 
through signaling pathways [232]. A great deal of research has been dedicated to learning the 
interaction between [Ca2+]cyt and the circadian clock. Since cca1-11 mutant abolishes the 
oscillation of [Ca2+]cyt in constant white light, CCA1 is believed to be one of the key components 
involved in [Ca2+]cyt regulation [58]. In addition, this mutation also leads to undetectable 
[Ca2+]cyt oscillation in constant blue and red light [103], which indicates that CCA1 dominates 
[Ca2+]cyt regulation. Mathematical modeling shows that CCA1 is not the only regulator of 
[Ca2+]cyt and [Ca2+]cyt regulation is light induced [103]. [Ca2+]cyt regulation under the blue and 
red light pathways presents very different phenotypes. In particular, experiments show that 
nicotinamide inhibits the blue light pathway whereas the red light pathway is not influenced 
[103], suggesting these two light pathways are physiologically separable. Furthermore, 
mathematical modeling indicates that cross-talks exist between these two light pathways 
when they are both activated under white light. However, such interactions are highly complex 
and hardly interpreted by linear models [233].  
  Previous research in [58], [103], [233] was mainly focused on the feedforward regulation of 
[Ca2+]cyt from the circadian clock. A heuristic strategy was applied to search for the clock genes 
responsible for [Ca2+]cyt regulation from a small group of candidate genes. Such an approach 
becomes unreliable and highly inefficient as more clock genes are under consideration. In 
addition, the feedback from [Ca2+]cyt to the circadian clock remains unknown. 
  This chapter applies the developed methods in this thesis to infer the circadian Ca2+ signaling 
network (including the feedforward and feedback loops of [Ca2+]cyt) of Arabidopsis using high-



 

147 
 

147 

resolution time series data. [Ca2+]cyt and six main clock genes are under consideration. The 
signaling networks under constant white, blue and red light are inferred independently. The 
inferred networks are compared to locate the key clock genes that bridge the circadian clock 
and [Ca2+]cyt in different light pathways. Dynamical models are used to describe the signaling 
network. Without prior knowledge to construct models, black-box linear models are adopted 
for network inference. One-to-one and RJMCMC as the top two methods according to the 
previous simulations are employed to identify the postulated models. System identification is 
purely based on time series data of the network.  
  Section 8.1 introduces background knowledge of the circadian clock. Section 8.2 discusses 
details of the inference procedure. Section 8.3, 8.4 and 8.5 presents the inferred networks 
under constant blue, red and white light, respectively. Section 8.6 compares the signaling 
networks of different light pathways. Section 8.7 concludes the whole chapter. 

8.1 The circadian clock in plants 

  The circadian rhythm is defined as a subset of biological rhythms with a period around 24h 
per cycle. It has been observed in most eukaryotes and in many prokaryotes [234]. It is 
characterized by two main features. Firstly, the circadian rhythm persists under constant 
environmental conditions since it is endogenous and sustained. Secondly, it is temperature 
compensated [235]. Single cells can maintain circadian rhythms and oscillation phases can be 
changed by temperature cycles. Another environmental cue that can affect the phase is light. 
The process of rephrasing is called entrainment. 
  The circadian clock acts as a timekeeper to synchronize biological processes to daily rhythms 
from environment [231]. The circadian rhythm is governed by the circadian clock [234]. The 
circadian system consists of three main blocks: a self-sustained central oscillator, input 
pathways incorporating environmental signals (Zeitgeber) such as light and temperature, and 
output pathways that control various physiological processes. The very different responses of 
the clock to a light pulse at different times indicate the clock self-regulates its sensitivity to 
external stimulus [235]. Temperature works with light to signal seasonal changes and regulate 
seedling process. On the other hand, some clock components regulate a large number of 
downstream genes. Inputs can entrain the circadian clock while outputs can in turn control 
the sensitivity of input pathways. The circadian clock participates in multiple physiological 
processes containing growth, metabolism, and abiotic and biotic stresses through its output 
rhythms [103], [59].  
 

8.2.1	Interlocking	structure	of	the	circadian	clock	
More than 20 genes have already been found to form the circadian clock in Arabidopsis. The 

interaction among these clock genes results in the circadian rhythm. The primary mechanism 
of the circadian clock is based on interconnected transcriptional and translational feedback 
loops [59], [236]. Circadian regulation requires both transcriptional and post-transcriptional 
control. The expression level of genes along with daily oscillation of proteins follows the 
circadian rhythm, which is the main evidence of circadian regulation. It is known that some 
components in the clock can regulate the transcription of other clock genes at different times 
through all day. As a result, these components are classified into four time phases: morning, 



 

148 
 

148 

day, afternoon and evening. Morning and evening genes are characterized by promoter motifs, 
morning element (ME) and evening element (EE), respectively [237], [238].  

The clock also depends on the PRRs family including PRR9, PRR7, PRR5, PRR3 and PRR1 
whose mRNA peaks from morning to dusk in sequence and is positively regulated by CCA1/LHY 
[239]. PRR9, PRR7 and PRR5 act as repressors of CCA1 and LHY during the day. The connectivity 
of these components is more complex than a cascade structure [240], [241].  

GI and ELF3 are also found to be essential clock genes. They interact with other clock-
associated proteins like E3 ubiquitin-ligase COP1. ELF3 negatively regulates input pathways of 
light through gating the light sensitivity at different times of a day [242]. GI has a great impact 
on ZTL thus influencing the degradation of proteins TOC1 and PRR5. ELF3, ELF4 and LUX 
cooperate as main components within the central oscillator [231], [243], [244], [245].  

Generally speaking, different phased components of the clock activate or repress each other 
leading to complicated network mechanisms of timing. In addition to transcriptional 
regulation, the circadian clock also influences post-transcription processes including 
alternatively-splicing and protein-protein interaction [223]. 
  

8.2.2	Input	pathways	
  Entrainment is the mechanism of shifting phase of the clock in response to environmental 
cues to maintain the circadian rhythm. Light-dark cycles are one of the main entrainment 
signals to the clock which accompany daily oscillations of the clock. Phase advances before 
dawn, delays after dusk and persists during the subjective day [246]. Photoreception of light 
with different wave length is mediated by various channels. PHYA, B, D and E take charge of 
the red light sensing while CRY1 and 2 are responsible for the blue light. The resulting impact 
of light entrainment on the clock also depends on fluence rate [247]. 
  Clock functions are influenced by transduced light signals via photoreceptors. Light inputs 
enter the circadian clock via several clock loops [248], [249]. Light also participates in 
proteolysis of clock proteins [250].  
  PHY and CRY families are also outputs of the circadian clock as they have rhythmic 
oscillations in constant light and dark. PHYC peaks around dawn. PHYD and PHYE, PHYB and 
CRY1, and PHYA and CRY2 are maximally expressed at ZT2, ZT6 and ZT10, respectively.  
  Temperature is another environmental cue that can entrain the circadian clock. However, 
effective entrainment of thermocycles requires at least 4℃ of temperature variation between 
the subjective day and night. Clock genes PRR7 and 9 have been found involved in temperature 
entrainment [251], [252], [246]. FBH1 is a key component that modulates warm temperature 
signals and clock responses [253]. 
  Sensitivity of temperature of the circadian clock is much lower than that of light. The 
circadian clock is robust to temperature variation and it maintains accurate timing over a wide 
range of temperature. The mechanism of the clock that protects the circadian rhythm from 
temperature perturbation is called temperature compensation [254], [253]. 
 

8.2.3	Physiological	control	of	the	circadian	clock	
  A variety of physiological and biochemical processes, containing photosynthesis, leaf 
movement, hypocotyl elongation, stomatal movement and circumnutation are under the 
control of the circadian clock through its output pathways [234]. Synchronization of these 



 

149 
 

149 

mechanisms with the time of day optimizes the outputs leading to competitive advantages 
[58]. 
  Rhythmic transcript abundance in steady-state is an essential output of the circadian clock 
[234]. These transcripts are involved in flowering, flavonoid synthesis, lignin synthesis, cell 
elongation, nitrogen fixation, carbon metabolism, mineral assimilation and photosynthesis 
[234]. 
  Photoperiodic response pathway is another well-defined output pathway that controls the 
transition from vegetative growth to flowering [234]. GI has been identified as the main clock 
gene that induces flowering. GI along with SPI activates the circadian expression of CO which 
encodes a zinc-finger protein that is activated by red and blue light [255]. The peak in the 
abundance of CO occurs during the night under short days whereas it appears during the light 
period in long days [255], [256]. The production of active CO induces the expression of a 
putative kinase inhibitor, FT. FT and SOC1 determine flowering time by activating the floral 
identity genes in the shoot apical meristem [257]. 
  Circadian regulation with carbohydrate biochemistry in terms of photosynthesis, starch 
accumulation and feedback in return optimizes the absorption and utilization of solar energy 
by plant [258]. The mechanism allows plants to take advantage of regular environmental 
changes such as those arising from days and seasons, and also random changes, including 
clouds passing across the sun [258]. While light harvesting and photosynthetic CO2 fixation are 
associated to circadian regulation, the nature of mechanisms that underpin the control is not 
clear [259]. That is because the interaction between the circadian clock and chloroplast where 
photosynthesis occurs is poorly known [259]. 
 

8.2.4	Calcium	signals	and	the	circadian	system	
  Ca2+ is at a low concentration because of its cytotoxicity. The intracellular concentration of 
Ca2+ ([Ca2+]) is controlled through the bi-directional reaction of influx due to the high 
electrochemical gradient across the plasma membrane and internal stores inside the 
endoplasmic reticulum (ER) or vacuole, and efflux and buffering which takes charge of 
mediating amplitude and recovering time of calcium signal. Many physiological processes 
generate calcium oscillations in response to biotic or abiotic stimuli based on the reactions 
above. [Ca2+] oscillations are sensed by calcium-dependent proteins to trigger transcriptional 
factors leading to corresponding responses [260]. External entry outside the cell and internal 
stores of Ca2+ are two main sources of signaling cytosolic-free Ca2+ ([Ca2+]cyt). 

The alteration of the concentration of [Ca2+]cyt passes important information that can be 
perceived by downstream targets to coordinate biological processes [261]. Transient 
elevations and short-period fluctuation of Ca2+ signaling can be induced by temporal stimulus 
such as light, temperature and oxidative stress [262], [263]. Even without perturbation, 
[Ca2+]cyt still oscillates with a circadian rhythm in Arabidopsis [264], which is thought to be a 
firm evidence to support the hypothesis that the circadian clock participates the regulation of 
[Ca2+]cyt through a feedforward loop. As [Ca2+]cyt is associated to the transduction of 
environmental signals, it is also expected to affect the operation of the circadian clock, 
particularly via input pathways as a feedback. Nicotinamide is one of a few chemical 
substances which are able to interrupt the circadian oscillation of [Ca2+]cyt. It was found that 
the circadian oscillation of [Ca2+]cyt results from oscillation in the cellular concentration of cyclic 



 

150 
 

150 

adenosine diphosphate ribose (cADPR). cADPR is able to mediate Ca2+ release from the ER and 
vacuole [265]. cADPR is generated due to the enzymatic action of ADP-ribosyl cyclase (ADPRc) 
through the degradation of NAD with nicotinamide as a byproduct. This chemical reaction is 
reversible by excess nicotinamide so nicotinamide is an inhibitor of cADPR. CCA1 represses 
both ADPRc activity and the circadian oscillation of [Ca2+]cyt (Abdul-Awal unpublished). 
Additionally, nicotinamide increases the period of the circadian oscillator and outputs such as 
leaf movement [265]. 

The circadian Ca2+ signaling network involving [Ca2+]cyt, the circadian clock and light as main 
components presents complex dynamics which are reflected by the observed phenotype due 
to internal or external excitation. It was found that loss-of-function mutants of CCA1 abolished 
rhythmic oscillation of [Ca2+]cyt in constant light [266] whereas cca1-1 maintained circadian 
oscillations of LHY, CAB2, CAT2 and CCR2 in constant light [267]. On the contrary, loss-of-
function mutant of ELF3 abolishes circadian oscillations of [Ca2+]cyt, CAB2 and CCR2 in constant 
light [268], [266]. In addition, single mutants of phyB or cry1 completely abolish circadian 
oscillations of [Ca2+]cyt in constant red or blue light. However, phyB cry1 double mutant only 
represses amplitude of circadian oscillation of [Ca2+]cyt in constant light [266]. The above 
observations suggest that interactions of [Ca2+]cyt, the circadian clock and light are realized 
through several channels. These channels are capable of operating individually. Nevertheless, 
they are not physiologically isolated in the network and may regulate each other if certain 
conditions are satisfied. 

8.2 Inference procedure   

  We focused on inferring the Ca2+ signaling network under different light conditions. 
Candidate clock genes under investigation included CCA1, LHY, PRR7, PRR9, GI and TOC1. 
Experiments were conducted under constant white, blue and red light, independently. The 
promotor activities of the clock genes were measured via luciferase luminesce. The 
concentration of [Ca2+]cyt was measured as AEQUORIN (AEQ) bioluminescence. Plants were 
first grown for 9 days in light/dark cycles and then moved to constant light conditions. The 
data under constant light conditions were measured for inference (Figure 8.2.1-8.2.4). In 
particular, the luciferase luminesce data were sampled every 1 hour whereas the AEQUORIN 
(AEQ) bioluminescence data were sampled every 2 hours. To achieve consistent time 
resolution, [Ca2+]cyt data were interpolated using cubic spline (i.e. function ‘interp1’ in Matlab) 
at inter-sample time points.  
 



 

151 
 

151 

 

 
Figure 8.2.1: Promoter activity of clock genes CCA1, LHY, PRR7, PRR9, GI and TOC1 in 
constant blue light. To avoid complex dynamics due to light transitions, the data of the first 
24h were not used. 
Data obtained by Dr Alberto Carignano 
 



 

152 
 

152 

 

 

 
Figure 8.2.2: Promoter activity of clock genes CCA1, LHY, PRR7, PRR9, GI and TOC1 in 
constant red light. To avoid complex dynamics due to light transitions, the data of the first 
24h were not used. 
Data obtained by Dr Alberto Carignano 



 

153 
 

153 

 

 

 
Figure 8.2.3: Promoter activity of clock genes CCA1, LHY, PRR7, PRR9, GI and TOC1 in 
constant white light. To avoid complex dynamics due to light transitions, the data of the first 
24h were not used. 



 

154 
 

154 

Data obtained by Dr Alberto Carignano 
 

 
Figure 8.2.4: AEQ luminesce of [Ca2+]cyt under different light conditions. To avoid complex 
dynamics due to light transitions, the data of the first 24h were not used. 
Data obtained by Dr Alberto Carignano 
  
  The clock genes and [Ca2+]cyt were treated as the nodes of the signaling network and light 
signals were the inputs. One-to-one and RJMCMC approaches were used to infer the network. 
The setup of these methods was the same with the previous simulations. Confidence measure 
was applied to reflect the reliability of inferred links. One-to-one used model fitness as the 
confidence measure whereas RJMCMC adopted the marginal posterior probability of inferred 
links. To avoid complex dynamics in response to the switch between different light pathways, 
the data of the first 24h were not used for inference. To guarantee reliability of inferred results, 
links whose confidence measure was under 70% were removed from inferred networks. 

8.3 Blue light pathway of the Ca2+ signaling network 

  Figure 8.3.1 shows the inferred networks of the blue light pathway. One-to-one shows that 
[Ca2+]cyt is only regulated by CCA1 in the blue light pathway. It is known that CCA1 regulates 
[Ca2+]cyt via cADPR. Nicotinamide is able to repress cADPR, which cuts off the regulation 
pathway from CCA1 to [Ca2+]cyt. Since [Ca2+]cyt is only regulated by CCA1 in the inferred network, 
we envision that nicotinamide abolishes the oscillation of [Ca2+]cyt under constant blue light, 
which is consistent with the experimental observation. Although RJMCMC identifies additional 
regulators of [Ca2+]cyt including TOC1, the regulation pathway from CCA1 presents the highest 
confidence measure (89%).  
  One-to-one network suggests that [Ca2+]cyt regulates PRR9, forming a feedback loop to the 
circadian clock whereas [Ca2+]cyt regulates PRR9 indirectly via CCA1 and TOC1 in RJMCMC 
network. In particular, CCA1 and TOC1 contribute equally to regulating PRR9 ( 100% 
confidence inferred by RJMCMC), which may cause systematic fan-in error of one-to-one. 
CCA1 and TOC1 are regulated by similar genes in two inferred networks. The fact that one-to-
one captures most gene regulators of CCA1 and TOC1 but misses [Ca2+]cyt implies that these 



 

155 
 

155 

genes provide similar regulations whereas [Ca2+]cyt is involved in a very different way. [Ca2+]cyt 
may have a significant impact on CCA1 and TOC1. In addition, CCA1 and TOC1 are most active 
genes in both networks, suggesting they are the central core of the blue light pathway. Blue 
light has been reported to regulate [Ca2+]cyt directly and indirectly via CCA1 in [103]. RJMCMC 
network only reveals that CCA1 is entrained by the blue light signal. Actually, inference results 
show that the probability of blue light directly affecting [Ca2+]cyt is around 60%. Therefore, it 
is highly likely that the direct regulation from blue light involves complex dynamics and cannot 
be fully captured by linear models. 
 

 

 
Figure 8.3.1: Ca2+ signaling network of the blue light pathway. Network (1,1) is inferred by 
one-to-one. Network (1,2) is inferred by RJMCMC. Network (2,1) is the common subnetwork 
shared by networks (1,1) and (1,2). Numbers in the graphs are the confidence measure of 
inferred links. 

8.4 Red light pathway of the Ca2+ signaling network 

  Figure 8.4.1 displays inferred networks of the red light pathway. Compared with the blue 

 75 

 80 

 71 

 88 

 73 
 88 

 78 

 82 

 78 

 71 

 71 

 75 

 75 
 70 

 70 

 81 

 75 

 70 

CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+

 97 

 100 

 89 

 70 

 79 

 100 
 70 

 98 

 93 

 99 

 100 

 99 

 73 

 100  100 
 81 

 100 

 95 

 70 

CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+

Light

CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+

Light



 

156 
 

156 

light pathway, the red light pathway is more complex. No clock genes are identified as the 
regulator of [Ca2+]cyt in one-to-one network, meaning the regulations cannot be described by 
low order linear systems or the regulations involve multiple clock genes each of which 
regulates [Ca2+]cyt in a unique way and cannot be replaced by other genes. Intriguingly, 
RJMCMC presents the opposite result that [Ca2+]cyt is regulated by all clock genes except LHY, 
which verifies the possibility that [Ca2+]cyt is regulated by multiple clock genes. This finding also 
provides a reasonable interpretation to the experimental observation that the oscillation of 
[Ca2+]cyt is not inhibited by nicotinamide under constant red light. Although the regulation 
pathway from CCA1 to [Ca2+]cyt is blocked by nicotinamide, the circadian rhythm of [Ca2+]cyt can 
still be reserved under the regulation of other clock genes. 
  One-to-one reveals that [Ca2+]cyt regulates the clock via CCA1, PRR9, LHY and TOC1 whereas 
RJMCMC shows no clock genes are regulated by [Ca2+]cyt. This means that the impact of [Ca2+]cyt 
on the circadian clock can be, at least, well compensated by the interactions among clock 
genes under constant red light.  
 

 

 

Figure 8.4.1: Ca2+ signaling network of the red light pathway. Network (1,1) is inferred by 
one-to-one. Network (1,2) is inferred by RJMCMC. Network (2,1) is the common subnetwork 

 86 

 75 
 82 

 92 

 90 

 78 

 83 

 71 

 82 

 92 

 89 

 88 

 70 

 89 

 89 

 84 

 85 

 82 

 86 

 71 

 84 

 74 

 79 

 85 

 85 

 78 

 84 
 75 

 77 

 84 

 82 

 80 

 72 CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+

 86 

 97  77 

 100 

 88 

 100 

 87 

 96 

 94 

 100 

 75  98  89 

 93 

 98 

 72 

 98 

 82 

 76 

 79 

 94 

CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+

Light

CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+ Light



 

157 
 

157 

shared by networks (1,1) and (1,2). Numbers in the graphs are the confidence measure of 
inferred links. 

8.5 The Ca2+ signaling network under white light 

  Figure 8.5.1 shows the inferred networks under constant white light. Under constant white 
light, the blue and red light pathways are supposed to be both activated. One-to-one presents 
a heavily nested network whereas RJMCMC network is much sparser. Both networks show that 
[Ca2+]cyt is regulated by CCA1 and PRR9 that have been previously identified as the key 
components in red and blue light pathways in [103]. TOC1 and PRR7 are identified as additional 
regulators of [Ca2+]cyt by one-to-one whereas these two genes regulate [Ca2+]cyt indirectly via 
GI in RJMCMC network.  
  One-to-one suggests [Ca2+]cyt influences the circadian clock via LHY and TOC1 whereas 
RJMCMC infers GI and PRR9 as the targets of [Ca2+]cyt forming a closed loop. The white light 
signal regulates GI and PRR9 in RJMCMC network, which was also accepted to construct Millar 
models in [61], [62], [63]. 

 

 
Figure 8.5.1: Ca2+ signaling network under constant white light. Network (1,1) is inferred by 
one-to-one. Network (1,2) is inferred by RJMCMC. Network (2,1) is the common subnetwork 

 86 

 91 

 75 

 93 

 77 

 80 

 72 

 87 

 86 

 80 

 84 

 83 

 76 

 90 

 91 

 81 

 92 

 88 

 81 

 79 

 86  86 

 90 

 85 

 85 

 86 

 90 

 85 

 81 

 75 

 80 

 90 

CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+
 97 

 99 

 100 

 100 

 100 

 100 

 81 
 75 

 94 

 79 

 100 

 98 

 100 

 72 

 80 

 82 

 94 

 99 

 77 

 81 

CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+

Light

CCA1

GI

LHY

PRR7

PRR9

TOC1

Ca2+

Light



 

158 
 

158 

shared by networks (1,1) and (1,2). Numbers in the graphs are the confidence measure of 
inferred links. 

8.6 Interactions among light pathways  

  Figure 8.6.1 summarizes the interaction between the circadian clock and [Ca2+]cyt. We begin 
with the feedforward regulation from the circadian clock to [Ca2+]cyt. One-to-one networks 
show that CCA1 regulates [Ca2+]cyt under constant blue and white light conditions. TOC1, PRR7 
and PRR9 only regulate [Ca2+]cyt under constant white light. [Ca2+]cyt is free-running under 
constant red light, which is highly unlikely since its oscillation sustains circadian rhythm that is 
mainly preserved by the six genes under consideration. As discussed, this result is probably 
caused by the systematic fan-in error of one-to-one. RJMCMC networks show that CCA1 is 
responsible for [Ca2+]cyt regulation in all light pathways, which is reasonable as it is the key 
component of the central oscillator. All the regulators of [Ca2+]cyt under constant white light 
are also functional under constant red light. GI and PRR9 are identified to regulate [Ca2+]cyt 
under constant red and white light, among which PRR9 was reported as the key element of 
the red light pathway [103]. In addition to the common regulators shared under different light 
conditions, the red and blue light pathways possess their unique regulators that are only 
functional under monotone light conditions. To be specific, PRR7 and TOC1 regulate [Ca2+]cyt 
only under constant red and blue light, respectively. The inferred results indicate that red light 
behaves as an activator of the regulation pathways from the circadian clock to [Ca2+]cyt. In the 
absence of red light (i.e. under constant blue light), most regulation pathways are switched off. 
If the red and blue light pathways work independently, all regulators must be active under 
constant white light since both light pathways are activated. However, it is not the case 
according to the inferred results, meaning two light pathways interact with each other if they 
are both activated. In particular, one light pathway represses the unique regulator of the other. 
To be detailed, PRR7 and TOC1 are no longer the regulators of [Ca2+]cyt under constant white 
light. 
  One-to-one and RJMCMC present very different feedback loops from [Ca2+]cyt to the 
circadian clock. One-to-one indicates that the red light pathway contains all the feedback loops 
from [Ca2+]cyt whereas [Ca2+]cyt does not affect the circadian clock as suggested by RJMCMC. 
Inference results in above sections show that the signaling network is most active in the 
presence of red light, where nested interactions among the clock genes exist. Hence, one 
explanation of the disagreement between one-to-one and RJMCMC is that [Ca2+]cyt regulates 
the target genes in a similar way as other clock genes. In other words, [Ca2+]cyt is not the key 
factor that maintains the operation of the circadian clock in the presence of red light. [Ca2+]cyt 
does not regulate the circadian clock in RJMCMC network because it can be replaced by other 
clock genes. It is worth noticing that one-to-one and RJMCMC both imply that [Ca2+]cyt 
regulates different genes under constant blue and white light. In particular, no genes are 
regulated by [Ca2+]cyt in all pathways. To this point, red light is more like a rail converter that 
switches the feedback loops of [Ca2+]cyt rather than an activator. Meanwhile, red light might or 
might not activate additional feedback loops other than the ones of the blue and white light 
pathways. 
  Finally, CCA1, TOC1 and PRR9 are most significant components that build up the 



 

159 
 

159 

communication between the circadian clock and [Ca2+]cyt. They are identified by both one-to-
one and RJMCMC to be responsible for the cross-talks between the circadian clock and [Ca2+]cyt. 
Other clock genes are probably involved in the interaction indirectly via these genes. 
 
 

 

 
Figure 8.6.1: Ca2+ signaling network under different light conditions. The first and second 
rows display the networks inferred by one-to-one and RJMCMC, respectively. The first and 
second columns present the feedforward regulation to and feedback regulation from [Ca2+]cyt, 
respectively. The red, blue and white light pathways are denoted by red, blue and black circles, 
respectively.  

8.7 Conclusion  

  This chapter applies novel methods to infer the Ca2+ signaling network of Arabidopsis. 
Interactions among the circadian clock and [Ca2+]cyt are learned from high-resolution time 
series data. Six main clock genes and [Ca2+]cyt as the nodes of the signaling network are under 
consideration. Light signals are the inputs of the network. Without prior knowledge to 
construct models, black-box linear models are used to describe the dynamical system. Since 
complex cross-talks exist between different light pathways and cannot be well interpreted by 
linear models according to the previous modeling [103], [233], the blue, red and white light 
pathways are inferred independently. One-to-one and RJMCMC approaches are applied to 
identify the postulated models. Inferred results are compared and analyzed to reveal the Ca2+ 
signaling network under different light conditions. 

CCA1

TOC1
PRR7
PRR9

CCA1

TOC1
LHY

PRR9

Clock→[Ca2+]cyt [Ca2+]cyt→Clock

One-to-One

GI
PRR9

TOC1
CCA1

TOC1

CCA1

GI
PRR9

PRR7

RJMCMC

RJM
CM

C



 

160 
 

160 

  It is found that the Ca2+ signaling network is very different under different light conditions. 
Red light is fundamental to coordinate regulation pathways associated to [Ca2+]cyt. However, 
it plays different roles in controlling the feedforward and feedback loops of [Ca2+]cyt . Blue light 
is the activator of most regulators pathways from the circadian clock to [Ca2+]cyt. In the absence 
of red light (i.e. blue light condition), [Ca2+]cyt is only regulated by a few clock genes. Most 
regulators of [Ca2+]cyt are functional under constant white light. More importantly, when red 
and blue light pathways are both activated under white light, they interact with each other by 
repressing the activity of the unique regulator of the other light pathway. PRR7 and TOC1 that 
regulate [Ca2+]cyt under constant red and blue light respectively no long serve as the regulators 
of [Ca2+]cyt under constant white light. 
  Red light behaves like a switch that controls the feedback loops from [Ca2+]cyt to the circadian 
clock. [Ca2+]cyt regulates different genes under constant blue and white light. According to the 
inferred networks of one-to-one and RJMCMC, red light might or might not activate other 
regulation pathways in addition to the ones under constant blue and white light. 
  CCA1, TOC1 and PRR9 are most responsible for controlling the communication channel 
between the circadian clock and [Ca2+]cyt. They are active in both feedforward and feedback 
loops of [Ca2+]cyt. They also play important roles in multiple light pathways. 
  Current inference only considers six clock genes. It is highly possible that more clock genes 
are involved to bridge the circadian clock and [Ca2+]cyt. Therefore, future study should take 
other clock genes under consideration. In addition, since the interactions among different light 
pathways are nonlinear, nonlinear models are more appropriate to describe the signaling 
network. As a result, novel inference methods need to be developed to identify nonlinear 
models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

161 
 

161 

 
 
 
 
 
 
 
 
 

Chapter	9.	 	

Conclusion	

  Biological networks are dynamical systems involving complex interactions among biological 
units. To fully understand a biological network, it is essential to learn causal relationships 
among biological units (network topology) and internal working mechanisms (internal 
dynamics). Mathematical modeling has been a powerful tool to systematically recover 
unknown biological networks from data. A variety of methods have been developed to infer 
biological networks. Some of these methods are focused on learning network topology where 
static probabilistic models are mostly applied to describe correlations among biological units. 
Many other methods also explore internal dynamics at the same time, employing dynamical 
models to track time evolution of biological systems. Dynamical models provide full knowledge 
of a biological network whose model structure reflects network topology and system 
properties represent internal dynamics. They can be used to simulate, analyze, predict and 
compare the behavior of biological networks under different conditions without repeatedly 
conducting experiments, thus saving considerable time and experimental cost. This thesis 
mainly focuses on developing novel dynamical model-based methods to infer biological 
networks. In comparison to many of the existing methods, the proposed methods in this thesis 
are especially dedicated in addressing issues related to network sparsity, system stability and 
unmeasured nodes. That is because many biological networks have much less connectivity 
than full-connected ones and these networks are intrinsically stable. In addition, many 
biological units are not measured in practical experiments. Therefore, solving these issues is 
imperative in real-world applications. 
  This thesis mainly applies black-box linear models and grey-box nonlinear models to 
describe biological networks. Construction of linear models requires no prior knowledge and 
hidden states can be easily encoded via transfer functions. By expressing linear models in a 
non-parametric way, a biological network can be inferred without knowing the number of 
unmeasured units. In particular, OE models, multivariable ARX models and DFSs are 
considered. Establishment of grey-box models incorporates prior knowledge of the target 
network and is based on physical laws. Hence, this type of model has explicit biological 
interpretations. Identification problems of the proposed models are formulated under the 
Bayesian framework. Prior distributions are introduced to impose model parsimony, network 



 

162 
 

162 

sparsity and system stability. Bayesian techniques are applied to tackle intractable integrals of 
full Bayesian models. Empirical Bayes and MCMC sampling are used to analytically or 
stochastically relax the intractable problem. Overall, four inference methods are discussed, 
including one-to-one, GESBL, the kernel method and RJMCMC. Monte Carlo simulations show 
that these methods are very effective to infer networks that accurately fall in their postulated 
model classes.  
  The synthesized model (Millar 10) of the circadian system of Arabidopsis is adopted as the 
target network to further verify the methods. Models are simulated under different conditions 
to mimic practical experimental data such as microarray. Four proposed methods in this thesis 
are used to infer the network from data. These methods are also compared with a state-of-
the-art method, iCheMA. Simulations show that GESBL equipped with grey-box nonlinear 
models and RJMCMC are superior to the other candidate methods. However, GESBL requires 
high-quality data while RJMCMC causes high computational cost.  
  A case study is conducted to learn the circadian Ca2+ signaling network of Arabidopsis. Six 
main clock genes are under consideration. These clock genes and [Ca2+]cyt are nodes of the 
signaling network. Network inference is purely based on high-resolution time series data. 
Without prior knowledge, linear models are used to describe the network. RJMCMC and one-
to-one methods are applied to infer the signaling network under different light conditions. The 
inferred networks indicate that the light pathways are very different.  

9.1 Novel inference methods for sparse biological networks 

  Mathematical modeling has been widely used to infer biological networks. While many 
methods are focused on learning network topology, a full understanding of a biological 
network also requires knowledge of internal dynamics. Dynamical models are very powerful 
in describing the dynamical behavior of biological networks. With experimental data of the 
target network, dynamical models can be identified using system identification methods. In 
many system identification problems, model structure is not a main concern for the purpose 
of simulation, prediction and control. These problems are focused on identifying input-output 
relationships of the system. Under the context of network inference, determining model 
structure is essential because it reflects network topology. Therefore, many traditional system 
identification methods cannot be used to infer biological networks directly. This thesis 
presents novel methods to infer biological networks. Network topology and internal dynamics 
are both inferred from data with no or limited prior knowledge. 
  Biological networks are intrinsically stable and, in most cases, sparse. Hence, system stability 
and network sparsity are two major principles we consider in this thesis. Additionally, many 
biological species are not measured in practical experiments due to high expense, resulting in 
hidden nodes. Usually, the number of these hidden nodes is unknown, which further 
complicates inference problems. Finally, computational cost of inference methods is also a 
crucial matter in real-world applications. Diverse strategies are considered in this thesis to 
cope with these issues. Black-box linear models are used to describe biological networks so 
that hidden states can be encoded via transfer functions. The model is formulated in a non-
parametric way without specifying the dimension of hidden states. Prior distributions are 
introduced to enforce system stability. The ARD technique is applied to promote network 



 

163 
 

163 

sparsity. The connectivity of biological networks can be inferred in a pairwise manner to scale 
high the computational cost of large networks. Overall, we discuss four inference methods, 
including one-to-one, GESBL, the kernel method and RJMCMC. 
  One-to-one infers the connectivity of a network in a pairwise manner like correlation-based 
methods so that its computational cost scales with the size of the network. To characterize 
internal dynamics, one-to-one identifies an OE model for each ordered pair of nodes where 
the confidence of inferred links is measured via model fitness. This method can be used to 
analyze high-throughput data since only a simple model class with low model complexity is 
adopted to describe the target network. Overall, one-to-one provides more insights of the 
network than correlation-based methods without considerable increase in the demand of 
computational power and data. Theoretically, one-to-one is most suitable to infer networks 
consisting of chain links. The method is sensitive to fan-in and fan-out error. In addition, inputs 
of the network are not considered by this method, which causes systematic errors. 
  GESBL applies the ARD technique to impose network sparsity. In contrast to the one-to-one 
method, all links of a network are inferred simultaneously, thus effectively avoiding systematic 
errors. Linear and nonlinear multivariable ARX models are used to describe the network. 
Identification is formulated as a linear regression problem whose parameter vector is both 
group sparse due to network topology and element sparse in terms of model complexity. 
Group and element sparse Bayesian learning are combined to solve the regression problem. 
Empirical Bayes is applied to tackle the intractable integral of the Bayesian model. The 
computational cost of GESBL is light. Hence, it can be applied to infer large-scale networks.  
  The kernel method adopts DSFs to describe biological networks. Many real-world networks 
can be well approximated by DSFs so they have wide applicability in practical applications. 
DSFs encode information of hidden nodes so they are suitable to deal with incomplete 
datasets. By expressing models in a non-parametric way, DSFs can be proposed without prior 
knowledge of the number of hidden nodes. Gaussian process is used to impose system stability 
and network sparsity is promoted using the ARD technique. By applying empirical Bayes, 
internal dynamics of the models are optimized to interpret experimental data and model 
complexity (number of hidden nodes) is implicitly penalized for model parsimony. The kernel 
method has to solve a highly nonlinear optimization problem so the method is very sensitive 
to local optimal solutions. 
  RJMCMC also adopts DSFs to represent biological networks. In contrast to the kernel 
method, network topology is regarded as a random quantity. Instead of approximating the full 
Bayesian model analytically, RJMCMC explores the Bayesian model via numerical sampling. In 
particular, RJMCMC traverses freely across parameter subspaces of different dimensionality, 
each of which represents one possible topology. Therefore, RJMCMC encourages a global 
search of the sampling space, thus effectively avoiding many local maxima of the target 
distribution. Moreover, the confidence of the inferred topology can be evaluated via empirical 
distributions that converge asymptotically to the true distributions. By exploring the statistical 
properties of process noise, RJMCMC provides robust performance. The exhaustive search 
performed by RJMCMC causes high computational cost that is prohibitive for large-scale 
networks. 
  Simulations show that these developed methods are powerful in inferring networks that fall 
in their postulated model classes. These methods are further tested on the synthesized 



 

164 
 

164 

circadian clock models as a case study to verify their effectiveness on inferring biological 
networks. Simulated data are collected under different sampling frequencies and time 
windows for network inference. It is found that high sampling frequency and rich light 
transitions greatly improve algorithm performance. With high sampling frequency, RJMCMC 
and GESBL equipped with grey-box nonlinear models are superior to the other candidate 
methods. However, GESBL presents poor performance given high-throughput data because 
the method relies on an accurate estimation of derivatives. One-to-one is the top-three 
method. It is more robust to sampling frequency than GESBL. In addition, RJMCMC and the 
kernel method are robust to truncation length of impulse responses. Hence, no tuning is 
required for their applications. A case study of the circadian Ca2+ signaling network using real 
experimental data further indicates the effectiveness of the proposed inference methods. 

9.2 Red light controls the feedforward and feedback loops of 

[Ca2+]cyt  

  The signaling network of Ca2+ is inferred under constant blue, red and white light, 
independently. It is found that most feedforward pathways from the circadian clock to [Ca2+]cyt 
are active under constant red light. Only a few clock genes regulate [Ca2+]cyt under constant 
blue light, which makes the rhythmic oscillation of [Ca2+]cyt less robust to external 
perturbations. Inferred regulation pathways under white light are all contained in the red light 
pathway, which further implies that red light acts as an activator of the feedforward loops to 
[Ca2+]cyt. More importantly, inference results suggest the blue and red light pathways interact 
with each other when they are both activated under white light. PPR7 and TOC1 that are 
identified as regulators of [Ca2+]cyt under monotonic light conditions no longer regulate [Ca2+]cyt 
under constant white light. A light signal represses certain regulators of [Ca2+]cyt that belong to 
the other light pathway.  
  Red light plays very different roles in controlling the feedback loops from [Ca2+]cyt to the 
circadian clock. Inferred results show that the blue and white light pathways share no common 
feedback loops. In addition, red light might or might not activate additional feedback loops. 
Therefore, red light behaves like a switch that swaps the feedback loops of blue light with white 
light. 
  CCA1, TOC1 and PRR9 are identified to be the most important genes involved in the cross-
talks between the circadian clock and [Ca2+]cyt. It is highly likely that CCA1 regulates [Ca2+]cyt in 
all light pathways. [Ca2+]cyt influences the circadian clock mainly through TOC1 and PRR9.  
  Since only a few clock genes are investigated, it is possible that other clock genes participate 
in the interaction in a direct or indirect way. Therefore, it is necessary to consider more clock 
genes during inference. In addition, to learn the interaction among different light pathways, 
experiments should be conducted under various light conditions. Since previous modeling 
indicates that the interaction among light pathways is highly nonlinear, it is better to resort to 
nonlinear models for network inference. 



 

165 
 

165 

9.3 Future work 

9.3.1	Computational	cost	
  Many biological networks have a large number of nodes and highly complex internal 
dynamics. To infer these networks, a large amount of data is required. Analyzing these data 
demands high computational power. Hence, for the purpose of implementation, the 
computational cost of inference methods must be scalable to the size of dataset. One-to-one 
is developed under this consideration where connectivity of a biological network is inferred in 
a pairwise manner. In addition, ADMM method is used to decompose the optimization 
problem of GEBSL into small sub-problems. Although RJMCMC has been shown to be a 
powerful method, the computational cost of RJMCMC is prohibitive for large-scale networks. 
  Manipulation of high-dimensional covariance matrices accounts for the most part of the 
computational cost in RJMCMC sampling loops. In particular, calculation of matrix determinant 
and inversion is the bottleneck of the algorithm. Therefore, more efficient algorithms to 
implement these operations are required. Low-rank approximations of covariance matrices 
are widely used to relieve the computational burden [74], [221]. There are also iterative 
methods such as fast Gaussian transform [269] and Fast Fourier Transform [270]. However, 
many of these methods are ill-suited for computing matrix determinant [221]. We have briefly 
introduced a state-of-the-art method in chapter 6 that can compute matrix inversion and 
determinant for general kernel functions with much lower cost compared to the standard 
methods. However, the main drawback is that the scaling of this method may not be optimal 
for some kernel functions, for example, oscillatory kernels without damping that are typically 
used to describe trajectories of rhythmic biological networks. Hence, further research on this 
topic is still necessary. 
 

9.3.2	Models	with	measurement	noise	
  Since measurement noise does not contribute to the internal dynamics of a network, this 
type of noise always degrades the performance of network inference methods. Additionally, 
in section 5.11, we find that system matrices of a DSF predictor are full if measurement noise 
exists regardless of the sparsity of the target network. Therefore, ARD in the current 
framework does not apply any more. Sparsity of networks cannot be imposed directly through 
system matrices. One way to deal with this problem is to consider measurement and process 
noise separately. In other words, the true trajectory of a state space model is treated as a 
latent random quantity apart from its noisy measurements.  
  The state space model with measurement noise for the target network is expressed as: 

 (9.3.1) 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵-𝑢(𝑡) + 𝐵±𝑒(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣(𝑡) 
where 𝑥 ∈ ℝ3 are states of the system, 𝑢 ∈ ℝ denote the inputs, 𝑦 ∈ ℝ®  represent the 
measurements of states, 𝑒 ∈ ℝI  are the process noise and 𝑣 ∈ ℝ®  are the measurement 
noise. These two types of noise are assumed to be i.i.d. Gaussian with zero mean and diagonal 
covariance matrices 𝐸{𝑒(𝑡)𝑒f(𝑡)} = 𝑑𝑖𝑎𝑔{𝜎±5@ ,… , 𝜎±I@ }, 𝐸{𝑣(𝑡)𝑣f(𝑡)} = 𝑑𝑖𝑎𝑔{𝜎w5@ , … , 𝜎w®@ }, 
respectively. For the simplicity of demonstration, we assume 𝜎±@ = 𝜎±5@ = ⋯ = 𝜎±I@  and 



 

166 
 

166 

𝜎w@ = 𝜎w5@ = ⋯ = 𝜎w®@ . Only 𝑝 out of 𝑛 states are measured whereas other states represent 
hidden nodes. 
  Following the same procedure in chapter 5, the DSF for (9.3.1) is: 

(9.3.2) 
𝑋 = 𝑄𝑋 + 𝑃𝑈 +𝐻𝐸 
𝑌 = 𝑋 + 𝑉 

where 𝑋 ∈ ℝ®  denote the true trajectory of the measured nodes and 𝑌 ∈ ℝ®  represent the 
noisy measurements of 𝑋. 𝑄, 𝑃 and 𝐻 are system matrices. 𝐻 is assumed to be diagonal 
to guarantee identifiability of the network. In addition, 𝑞𝐻 is monic and minimum-phase. 
Since the network is sparse, 𝑄 and 𝑃 are sparse matrices. 
  The DSF in (9.3.2) is rewritten as: 

(9.3.3) 
𝑋 = 𝐹-𝑈 + 𝐹:𝑋 + 𝐸) 
𝑌 = 𝑋 + 𝑉 

where 
𝐹- = (𝑞𝐻)c5𝑃 
𝐹: = 𝐼 − (𝑞𝐻)c5(𝐼 − 𝑄) 
𝐸) = 𝑞c5𝐸 

  Clearly, by separating measurement and process noise, system matrices 𝐹-  and 𝐹:  of 
(9.3.3) retrieve sparsity. Therefore, we can again apply ARD to promote sparse network 
topologies like chapter 5 and 6. 
  By expressing model (9.3.3) in a non-parametric way and truncating impulse responses as 
chapter 5, the 𝑖th node of the network is described by the model below: 

(9.3.4) 

𝑥/(𝑡) =AAℎ/B
: (𝑘)𝑥B(𝑡 − 𝑘) +

Æ

§45

®

B45

AAℎ/B- (𝑘)𝑢B(𝑡 − 𝑘) +
Æ

§45



B45

𝑒/(𝑡) 

𝑦/(𝑡) = 𝑥/(𝑡) + 𝑣/(𝑡) 
where ℎ(𝑘) denote impulse responses of transfer functions of system matrices. 
  Note that the likelihood function for each node of DSF (9.3.3) cannot be considered 
independently because the function depends on the unknown true trajectories of all nodes. 
Therefore, all links of the network must be inferred simultaneously. Assume time series data 
from time indices −𝑀 + 1 to 𝑁 for each node and input are collected for inference. We use 
𝑌¼ and 𝑋¼ to present the data of time indices before 0 (initial condition of (9.3.4)) while 𝑌 
and 𝑋 denote the data of time indices from 1 to 𝑁. To avoid heavy notation, we assume 
there are no inputs in the model (i.e. 𝑚 = 0). The following formulation can be directly 
extended to the case with inputs. The likelihood function for model (9.3.3) is: 

(9.3.5) 

𝑝(𝑌|𝑋, 𝑋¼, 𝜎w@) =ü𝑝(𝑦(𝑁 − 𝑖)|𝑥(𝑁 − 𝑖), 𝜎w@)
Çc5

/4¼

 

= |2𝜋𝜎w@|
c®Ç@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑌 − 𝑋‖¹@W 



 

167 
 

167 

𝑝(𝑋, 𝑋¼|𝑊, 𝜎±@, 𝜎w@) = 𝑝(𝑋¼|𝜎w@)ü𝑝(𝑥(𝑁 − 𝑖)|𝑥(−𝑀 + 1:𝑁 − 𝑖 − 1),𝑊, 𝜎±@)
Çc5

/4¼

 

= |2𝜋𝜎w@|
c®Æ@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑋¼ − 𝑌¼‖¹@W 

× |2𝜋𝜎±@|
c®Ç@ 𝑒𝑥𝑝	Ò−

1
2𝜎±@

_𝑋 −A𝐴B𝑊B

®

B45

_

¹

@

Ó 

where ‖∙‖¹  denotes Frobenius norm and 
(9.3.6) 

𝑌 = 5
𝑦5(𝑁) ⋯ 𝑦®(𝑁)
⋮ ⋱ ⋮

𝑦5(1) ⋯ 𝑦®(1)
6,	𝑌¼ = 5

𝑦5(0) ⋯ 𝑦®(0)
⋮ ⋱ ⋮

𝑦5(−𝑀 + 1) ⋯ 𝑦®(−𝑀 + 1)
6 

𝑋 = 5
𝑥5(𝑁) ⋯ 𝑥®(𝑁)
⋮ ⋱ ⋮

𝑥5(1) ⋯ 𝑥®(1)
6,	𝑋¼ = 5

𝑥5(0) ⋯ 𝑥®(0)
⋮ ⋱ ⋮

𝑥5(−𝑀 + 1) ⋯ 𝑥®(−𝑀 + 1)
6 

𝑊 = [𝑊5′ ⋯ 𝑊®′]f, 𝑊B = Ãℎ5B
: ⋯ ℎ®B

: Å, 𝑊B(: , 𝑖) = ℎ/B
: = Ãℎ/B

: (1) ⋯ ℎ/B
: (𝑀)Å

f
 

𝐴 = [𝐴5 ⋯ 𝐴®], 𝐴B = 5
𝑥B(𝑁 − 1) ⋯ 𝑥B(𝑁 − 𝑀)

⋮ ⋱ ⋮
𝑥B(0) ⋯ 𝑥B(−𝑀 + 1)

6 

𝜎±@ = 𝐸9𝑒B@(𝑡):, 𝜎w@ = 𝐸9𝑣B@(𝑡): 
 

  To construct a full Bayesian model, we introduce prior distributions for impulse responses. 
Impulse responses are assumed to be Gaussian processes with zero mean and covariance 
functions to be the stable spline kernel. Hyperpriors are assigned to the hyperparameters of 
the kernel in the same way as chapter 6. As a result, the full Bayesian model is: 

(9.3.7) 
𝑝(𝑋, 𝑋¼,𝑊, 𝛽, 𝜆, 𝜎±@, 𝜎w@|𝑌) ∝ 𝑝(𝑌|𝑋, 𝑋¼, 𝜎w@)𝑝(𝑋, 𝑋¼|𝑊, 𝜎±@)𝑝(𝑊|𝛽, 𝜆)𝑝(𝛽, 𝜆, 𝜎±@, 𝜎w@) 

= |2𝜋𝜎w@|
c®Ç@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑌 − 𝑋‖¹@W 

× |2𝜋𝜎w@|
c®Æ@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑋¼ − 𝑌¼‖¹@W 

× |2𝜋𝜎±@|
c®Ç@ 𝑒𝑥𝑝	V−

1
2𝜎±@

‖𝑋 − 𝐴𝑊‖¹@W 

× |2𝜋𝐶|c
5
@𝑒𝑥𝑝	 `−

1
2
𝑣𝑒𝑐(𝑊)′𝐶c5𝑣𝑒𝑐(𝑊)a 

× 𝑝(𝛽, 𝜆, 𝜎±@, 𝜎w@) 
where 𝑣𝑒𝑐(∙) means to vectorize a matrix. 𝛽 ∈ ℝ®×® and 𝜆 ∈ ℝ®×® are hyperparameters 
of kernel functions. In particular, [𝛽]/B  and [𝜆]/B  are hyperparameters of kernel function 

𝑘2�𝑡, 𝑠; 𝜆/B, 𝛽/B� = 𝜆/B𝑘/B(𝑡, 𝑠; 𝛽/B) for ℎ/B
:  and: 

𝐶 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔{𝐾·55, 𝐾·5@, … , 𝐾·5®, … , 𝐾·®5, 𝐾·®@, … , 𝐾·®®} 



 

168 
 

168 

𝐾·/B = 𝜆/B𝐾/B: covariance matrix for impulse response ℎ/B
:  

 
  By completing squares with respect to 𝑊, (9.3.7) becomes 

(9.3.8) 

𝑝(𝑋, 𝑋¼,𝑊, 𝛽, 𝜆, 𝜎±@, 𝜎w@|𝑌) ∝ |2𝜋𝜎w@|
c®Ç@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑌 − 𝑋‖¹@W 

× |2𝜋𝜎w@|
c®Æ@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑋¼ − 𝑌¼‖¹@W 

× |2𝜋𝜎±@|
c®Ç@ 𝑒𝑥𝑝	 5−

1
2𝜎±@

A(𝑤/ − 𝜇/)′Σ/c5(𝑤/ − 𝜇/)
®

/45

6 

×ü|2𝜋𝐾/|
c5@𝑒𝑥𝑝	 ú−

1
2
𝑥/′(𝜎±@𝐼 + Φ𝐾·/Φf)c5𝑥/û

®

/45

 

× 𝑝(𝛽, 𝜆, 𝜎±@, 𝜎w@) 
where 

𝐾·/ = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔{𝐾·/5, 𝐾·/@, … , 𝐾·/®} 

Φ = 5
𝑥5(𝑁 − 1:𝑁 −𝑀) ⋯ 𝑥®(𝑁 − 1:𝑁 − 𝑀)

⋮ ⋱ ⋮
𝑥5(0: −𝑀 + 1) ⋯ 𝑥5(0: −𝑀 + 1)

6 

𝑥/ = [𝑥/(𝑁) ⋯ 𝑥/(1)]f 

𝑤/ = Ã(ℎ/5
: )′ ⋯ (ℎ/®

: )′Å
f
 

𝜇/ =
1
𝜎±@
𝛴/Φf𝑥/ 

Σ/c5 =
1
𝜎±@
ΦfΦ + 𝐾·/c5 

 
 Impulse responses 𝑊 can be integrated out from posterior distribution (9.3.8), producing 
the following marginal distribution: 

(9.3.9) 

𝑝(𝑋, 𝑋¼, 𝛽, 𝜆, 𝜎±@, 𝜎w@|𝑌) ∝ |2𝜋𝜎w@|
c®Ç@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑌 − 𝑋‖¹@W 

× |2𝜋𝜎w@|
c®Æ@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑋¼ − 𝑌¼‖¹@W 

×ü|𝜎±@𝐼 + Φ𝐾/Φf|c
5
@𝑒𝑥𝑝	 ú−

1
2
𝑥/′(𝜎±@𝐼 + Φ𝐾·/Φf)c5𝑥/û

®

/45

 

× 𝑝(𝛽, 𝜆, 𝜎±@, 𝜎w@) 
 
  We have discussed two frameworks in this thesis to identify DSFs without measurement 
noise: the kernel method (deterministic approximations) and RJMCMC (stochastic 
approximations). Here, we briefly show how these two approaches are applied to identify DSFs 



 

169 
 

169 

with measurement noise. 
 
1). The kernel method 
  Under the framework of the kernel method in chapter 5, conditional posterior distribution 
𝑝(𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@, 𝑌) is used to approximate the true marginal posterior distribution, 𝑝(𝑊|𝑌). 
Hyperparameters are optimized to minimize the gap between the approximate and the true 
distribution. The optimal hyperparameters are estimated by solving a Type II maximization 
problem: 

(9.3.10) 

(𝛽d, 𝜆d, 𝜎Ú±@, 𝜎Úw@) = arg max
ò,",h§¨,hÔ¨

𝑝(𝑌|𝛽, 𝜆, 𝜎±@, 𝜎w@) 

   
  Problem (9.3.10) cannot be solved directly since 𝑝(𝑌|𝛽, 𝜆, 𝜎±@, 𝜎w@)  is intractable. 
Nevertheless, 𝑝(𝑌|𝛽, 𝜆, 𝜎±@, 𝜎w@) can be achieved by marginalizing 𝑊, 𝑋 and 𝑋¼ out from 
𝑝(𝑌, 𝑋, 𝑋¼,𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@) where 𝑝(𝑌, 𝑋, 𝑋¼,𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@) has a closed-form expression 
according to (9.3.7). Therefore, the EM algorithm is used to solve (9.3.10), treating 𝑊, 𝑋 and 
𝑋¼ as latent random quantities.  
  To further simplify notation, let 𝜃 = (𝛽, 𝜆, 𝜎±@, 𝜎w@)  and 𝑍 = (𝑊,𝑋, 𝑋¼) . In the E step, 
function 𝑄(𝜃|𝜃ec5) = 𝐸�|�,c�£¤[log 𝑝(𝑌,𝑍|𝜃)] of the current iteration is calculated using 
𝜃ec5  from the last iteration. Note that this expectation cannot be calculated analytically. 
Hence, a MCMC sampling framework (e.g. Gibbs sampling) is used in the E step to estimate 
𝑄(𝜃|𝜃ec5), which results in a Monte Carlo Expectation Maximization (MCEM) algorithm [179]. 
With samples {𝑍/e , 𝑖 = 1,2, … , 𝑇}  drawn from 𝑝(𝑍|𝑌, 𝜃ec5)  in iteration 𝑡 , 𝑄(𝜃|𝜃ec5)  is 
approximated as: 

(9.3.11) 

𝑄(𝜃|𝜃ec5) ≈
1
𝑇
Alog 𝑝(𝑌,𝑍/e|𝜃)
¥

/45

 

=
1
𝑇
A𝐿5�𝑌,𝑍/eÄ𝜎w@� + 𝐿@�𝑌,𝑍/eÄ𝜎±@� + 𝐿7�𝑌,𝑍/eÄ𝛽, 𝜆�
¥

/45

 

where 

𝐿5�𝑌,𝑍/eÄ𝜎w@� = −
𝑝(𝑀 +𝑁)

2
log 𝜎w@ −

1
2𝜎w@

��𝑌 − 𝑋/e�¹
@
+ �(𝑋¼)/e − 𝑌¼�¹

@� 

𝐿@�𝑌,𝑍/eÄ𝜎±@� = −
𝑝𝑁
2
log 𝜎±@ −

1
2𝜎±@

�𝑋/e − 𝐴/e𝑊/
e�¹
@

 

𝐿7�𝑌,𝑍/eÄ𝛽, 𝜆� = −
1
2
Ãlog|𝐶| + 𝑣𝑒𝑐(𝑊/

e)′𝐶c5𝑣𝑒𝑐(𝑊/
e)Å 

 

  In the M step, 𝜃e = argmax
c
𝑄(𝜃|𝜃ec5) is solved. According to (9.3.11), hyperparameters 

can be estimated independently. The optimal 𝜎w@  and 𝜎±@  have closed-form solutions: 

(𝜎w@)e =
5

®(Æ�Ç)¥
∑ �𝑌 − 𝑋/e�¹

@
+ �(𝑋¼)/e − 𝑌¼�¹

@¥
/45  and (𝜎±@)e =

5
®Ç¥

∑ �𝑋/e − 𝐴/e𝑊/
e�¹
@¥

/45 . 



 

170 
 

170 

Optimizing 𝛽 and 𝜆 can be decomposed into small sub-problems. 
(9.3.12) 

�𝜆/Be , 𝛽/Be � = arg min
"t8,òt8

1
𝑇
A logÄ𝜆/B𝐾/BÄ + ℎIe ′�𝜆/B𝐾/B�

c5
ℎIe 	

¥

I45

 

where ℎIe  is the 𝑞th sample of ℎ/B
:  from {𝑍§e , 𝑘 = 1,2, … , 𝑇}. 

  The optimal solution for 𝜆/Be  depends on 𝛽/Be  as: 
(9.3.13) 

𝜆/Be =
1
𝑀𝑇

AℎIe ′�𝐾/B�
c5
ℎIe

¥

I45

 

   
  Inserting (9.2.13) back into (9.3.12), we have: 

(9.3.14) 

𝛽/Be = argmin
òt8

𝑀logAℎIe ′�𝐾/B�
c5
ℎIe

¥

I45

+ logÄ𝐾/BÄ 

  
  With the optimized hyperparameters, impulse responses 𝑊 are estimated as the mean of 
the conditional posterior distribution: 𝑊# = 𝐸{𝑝(𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@, 𝑌)}. However, calculating 𝑊#  
requires to perform a high-dimensional integral (i.e. 𝑊# =
∫𝑊𝑝(𝑋, 𝑋¼,𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@, 𝑌)𝑑𝑊𝑑𝑋𝑑𝑋¼ ), which has no analytical solution. In particular, 
distribution 𝑝(𝑋, 𝑋¼,𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@, 𝑌)  is only known up to a constant. Additionally, 
𝑝(𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@, 𝑌)  is non-Gaussian after marginalizing out 𝑋  and 𝑋¼ . As a result, 
numerical sampling methods such as MCMC are used to draw samples from 
𝑝(𝑋, 𝑋¼,𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@, 𝑌) . With the samples of 𝑊 , 𝐸{𝑝(𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@, 𝑌)}  can be 
estimated using the empirical distribution. 
  To conclude, the algorithm to identify (9.3.3) using the kernel method is as follows: 
 
Algorithm 1 The kernel method equipped with MCEM 
1: Initialization: set ((𝜎w@)¼, (𝜎±@)¼, 𝛽¼, 𝜆¼) 
2: For 𝑡 = 1:𝑀𝐴𝑋 do 
3:   Draw samples {(𝑊/

e, 𝑋/e, (𝑋¼)/e), 𝑖 = 1,2, … , 𝑇}  from 
𝑝(𝑊,𝑋, 𝑋¼|(𝜎w@)ec5, (𝜎±@)ec5, 𝛽ec5, 𝜆ec5, 𝑌) 
4:   Update 𝜎w@ as 

(𝜎w@)e =
1

𝑝(𝑀 +𝑁)𝑇
A�𝑌 − 𝑋/e�¹

@
+ �(𝑋¼)/e − 𝑌¼�¹

@
¥

/45

 

5:   Update 𝜎±@ as 

(𝜎±@)e =
1

𝑝𝑁𝑇
A�𝑋/e − 𝐴/e𝑊/

e�¹
@

¥

/45

 

6:   Update 𝛽 independently by solving 



 

171 
 

171 

𝛽/Be = argmin
"t8

𝑀logAℎIe ′�𝐾/B�
c5
ℎIe

¥

I45

+ logÄ𝐾/BÄ 

7:   Calculate 𝐾/B  using 𝛽/Be  and update 𝜆 independently as 

𝜆/Be =
1
𝑀𝑇

AℎIe ′�𝐾/B�
c5
ℎIe

¥

I45

 

8: End for 
9:   Draw samples {𝑊/, 𝑖 = 1,2, … , 𝑇} from 𝑝(𝑊,𝑋, 𝑋¼|𝜎Úw@, 𝜎Ú±@, 𝛽d , 𝜆d, 𝑌) 

10:   Calculate 𝑊# = 5
¥
∑ 𝑊/
¥
/45  

 
  The performance of MCEM highly depends on whether the sampler of the E step is well-
designed. In general, there is no guarantee that the generated sequence will converge to the 
stationary points of the marginal likelihood in (9.3.10). Nevertheless, it is commonly agreed 
that the number of samples, 𝑇 should increase with the number of iterations like simulated 
annealing methods [106]. 
 
2). RJMCMC approach 
  To apply RJMCMC, network topology is also treated as a random quantity and assigned with 
a prior distribution (refer to chapter 6). Therefore, the resulting full Bayesian model is: 

(9.3.15) 
𝑝(𝑋, 𝑋¼,𝑊§,𝛽§, 𝜆§, 𝑘, 𝛼, 𝜎±@, 𝜎w@|𝑌) 
∝ 𝑝(𝑌|𝑋, 𝑋¼, 𝜎w@)𝑝(𝑋, 𝑋¼|𝑊§, 𝑘, 𝜎±@)𝑝(𝑊§|𝛽§, 𝜆§, 𝑘)𝑝(𝛽§, 𝜆§|𝑘)𝑝(𝑘|𝛼)𝑝(𝜎±@, 𝜎w@, 𝛼) 

= |2𝜋𝜎w@|
c®Ç@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑌 − 𝑋‖¹@W 

× |2𝜋𝜎w@|
c®Æ@ 𝑒𝑥𝑝	V−

1
2𝜎w@

‖𝑋¼ − 𝑌¼‖¹@W 

× |2𝜋𝜎±@|
c®Ç@ 𝑒𝑥𝑝	V−

1
2𝜎±@

‖𝑋 − 𝐴§𝑊§‖¹@W 

× |2𝜋𝐶§|
c5@𝑒𝑥𝑝	 `−

1
2
𝑣𝑒𝑐(𝑊§)′𝐶§c5𝑣𝑒𝑐(𝑊§)a 

× 𝑝(𝑘, 𝛼, 𝛽§, 𝜆§, 𝜎±@, 𝜎w@) 
where 𝑘  is the index for network topology. The structure of the quantities labelled with 
subscript 𝑘 changes accordingly with respect to network topology.  
  In contrast to the kernel method, marginal distribution 𝑝(𝑊|𝑌)  is not approximated 
analytically using 𝑝(𝑊|𝛽, 𝜆, 𝜎±@, 𝜎w@, 𝑌). Rather, 𝑝(𝑊|𝑌) is evaluated via numerical sampling. 
Here, we design a sampler for the full Bayesian model in (9.3.15) following the same procedure 
in chapter 6. 
  To begin with, a basic Gibbs sampler is used to sample the model (Sampler 1). Random 
quantities whose structure is related to network topology 𝑘 are grouped together. 
 
Sampler 1 Block Gibbs sampler 
1: Sample 𝑝(𝑋e�5, 𝑋¼e�5|𝑊§

e, 𝛽§e , 𝜆§e , (𝜎±@)e, (𝜎w@)e, 𝛼e, 𝑘e, 𝑌) 



 

172 
 

172 

2: Sample 𝑝(𝑊§
e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5|𝑋e�5, 𝑋¼e�5, (𝜎±@)e, (𝜎w@)e, 𝛼e, 𝑌) 

3: Sample 𝑝((𝜎w@)e�5|𝑋e�5, 𝑋¼e�5,𝑊§
e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎±@)e, 𝛼e, 𝑌) 

4: Sample 𝑝((𝜎±@)e�5|𝑋e�5, 𝑋¼e�5,𝑊§
e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎w@)e�5, 𝛼e, 𝑌) 

5: Sample 𝑝(𝛼e�5|𝑋e�5, 𝑋¼e�5,𝑊§
e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎w@)e�5, (𝜎±@)e�5, 𝑌) 

 
  Conditional distributions for 𝜎w@ and 𝜎±@ in step 3 and 4 are Inverse-Gamma distributions. 
Hence, these two random variables can be sampled easily. The other sampling steps cannot 
be implemented directly due to the complexity of distributions. As a result, these steps are 
replaced by MH samplers. Consequently, we achieve a MH-within-Gibbs sampler (Sampler 2). 
 
Sampler 2 MH-within-Gibbs sampler 
1: Sample 𝑝(𝑋e�5, 𝑋¼e�5|𝑊§

e, 𝛽§e , 𝜆§e , (𝜎±@)e, (𝜎w@)e, 𝛼e, 𝑘e, 𝑌) using MH algorithm 
2: Sample 𝑝(𝑊§

e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5|𝑋e�5, 𝑋¼e�5, (𝜎±@)e, (𝜎w@)e, 𝛼e, 𝑌) using MH algorithm 
3: Sample 𝑝((𝜎w@)e�5|𝑋e�5, 𝑋¼e�5,𝑊§

e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎±@)e, 𝛼e, 𝑌) 
4: Sample 𝑝((𝜎±@)e�5|𝑋e�5, 𝑋¼e�5,𝑊§

e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎w@)e�5, 𝛼e, 𝑌) 
5: Sample 𝑝(𝛼e�5|𝑋e�5, 𝑋¼e�5,𝑊§

e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎w@)e�5, (𝜎±@)e�5, 𝑌) using MH 
algorithm 
 
  Step 2 in Sampler 2 requires sampling a series of high-dimensional quantities. To implement 
this step more efficiently, random quantity 𝑊§

e�5  is marginalized out from step 2 and 
sampled immediately in the next step according the rule of marginalization. Therefore, we 
achieve a MH-within-PCG sampler (Sampler 3). 
 
Sampler 3 MH-within-PCG sampler 
1: Sample 𝑝(𝑋e�5, 𝑋¼e�5|𝑊§

e, 𝛽§e , 𝜆§e , (𝜎±@)e, (𝜎w@)e, 𝛼e, 𝑘e, 𝑌) using MH algorithm 
2: Sample 𝑝(𝛽§e�5, 𝜆§e�5, 𝑘e�5|𝑋e�5, 𝑋¼e�5, (𝜎±@)e, (𝜎w@)e, 𝛼e, 𝑌) using MH algorithm 
3: Sample 𝑝(𝑊§

e�5|𝑋e�5, 𝑋¼e�5, , 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎±@)e, (𝜎w@)e, 𝛼e, 𝑌) 
4: Sample 𝑝((𝜎w@)e�5|𝑋e�5, 𝑋¼e�5,𝑊§

e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎±@)e, 𝛼e, 𝑌) 
5: Sample 𝑝((𝜎±@)e�5|𝑋e�5, 𝑋¼e�5,𝑊§

e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎w@)e�5, 𝛼e, 𝑌) 
6: Sample 𝑝(𝛼e�5|𝑋e�5, 𝑋¼e�5,𝑊§

e�5, 𝛽§e�5, 𝜆§e�5, 𝑘e�5, (𝜎w@)e�5, (𝜎±@)e�5, 𝑌) using MH 
algorithm 
 
  Distribution 𝑝(𝛽§e�5, 𝜆§e�5, 𝑘e�5|𝑋e�5, 𝑋¼e�5, (𝜎±@)e, (𝜎w@)e, 𝛼e, 𝑌) in step 2 of Sampler 3 is 
known up to a constant according to (9.3.9). Therefore, step 2 is a feasible sampling step. Note 
that, the dimension of the sample space in step 2 is also a random quantity. Hence, RJMCMC 
is applied to draw samples. Step 3 can be implemented directly because 𝑊§ has a conditional 
Gaussian distribution.  
  Finally, Sampler 7 in chapter 6 can be used to implement steps from 2 to 6 of Sampler 3 
above with minor modifications. Meanwhile, step 1 that samples the true trajectory of the 
system must be designed carefully. 
  To conclude, we have outlined the identification of DSF models with measurement noise 
under the frameworks of the kernel method and RJMCMC. By considering measurement and 
process noise separately, system matrices of the predictor retrieve sparsity due to sparse 
network topology. Hence, the ARD technique can be used to promote sparsity. Measurement 



 

173 
 

173 

noise does not contribute to the internal dynamics of a network. While process noise helps 
excite the system, measurement noise twists the collected data thus interfering the reliability 
of inferred networks. The existence of measurement noise greatly complicates inference 
procedures. First, sub-networks that present regulations of each node cannot be inferred in 
parallel like the noise-free case, which reduces the efficiency of the developed algorithms. 
Second, the true trajectory of the system is regarded as a latent random quantity and sampled 
both in the kernel method and RJMCMC, which is essential to filter out measurement noise in 
the collected data. Sampling the true trajectory causes high computational cost that increases 
with the scale of a network and the size of datasets. 
 

9.3.2	Application	of	continuous	time	models	
  This thesis mainly applies discrete time models to describe biological networks and presents 
corresponding system identification methods. Identification of continuous time models is 
briefly discussed in chapter 8. In particular, continuous time grey-box nonlinear models are 
identified using the estimated derivatives from data. In this case, a deterministic model 
(without process noise) is used to describe the target network and only measurement noise is 
considered. Since the Wiener process is nowhere differentiable [271], the derivative of the 
trajectory of a SDE model is not well defined. Hence, the derivative-based framework (i.e. 
GESBL and iCheMA) cannot be used to identify SDE models. With high sampling frequency, a 
SDE model can be well approximated by a discrete time stochastic model. Nevertheless, it is 
difficult to tell whether the sampling frequency is fast enough compared to the dynamics of 
an unknown biological network. On one hand, low sampling frequency causes system aliasing 
so that the resulting discrete time model no long represents the true dynamics and the 
corresponding network topology may not be sparse any more [272]. On the other hand, high 
sampling frequency pushes stable poles of a discrete-time system to the unit circle leading to 
numerical instability [104]. In this case, it is more reasonable to identifying SDE directly. 
 

9.3.3	Identification	of	nonlinear	models	
  Black-box linear models are mainly used in this thesis to describe biological networks. Linear 
models bring several advantages on network inference. First, the construction of linear models 
requires limited prior knowledge and assumptions on the target network. Inference is 
performed purely based on experimental data, thus avoiding biased information from 
subjective assumptions. Second, hidden states can be easily removed from the model, which 
is particularly useful to cope with unmeasured biological units. Finally, it is more convenient 
to impose other dynamical properties (e.g. system stability) to the proposed model during 
inference. Nevertheless, most biological networks contain complex internal dynamics. The 
relationship among biological units is highly nonlinear. As the dimension of these nonlinear 
systems grows, linear models cannot provide a good approximation. In addition, linearization 
of a biological network is valid only if the activities of the system stay in a linear regime, 
normally, close to the steady state. Often, experiments are not designed to fulfill this condition. 
Therefore, nonlinear models are more suitable to capture internal dynamics of biological 
networks. 
  Since the model structure of nonlinear models is very flexible, the accuracy of the 
constructed model depends on how much detail of the target network the model can 



 

174 
 

174 

represent. Constructing a model purely based on the physical background of a biological 
network requires comprehensive prior knowledge, which is not possible in most applications. 
While assumptions are normally made based on experimental observations as a compensation, 
one must take the risk of introducing biased information. Moreover, as the size of the target 
network grows, making such assumptions becomes prohibitive. To strike a balance between 
model complexity and accuracy, relaxations are imposed on model structure. For example, 
nonlinear functions of a model are formulated as a linear combination of basis functions 
(chapter 4 and 8). This approach is equivalent to constraining the underlying nonlinear 
functions in a predefined finite dimensional functional space where the functions represent 
physical laws (e.g. Hill functions and Michaelis-Menten kinetics). In this case, model structure 
(network topology) is determined by selecting basis functions. The performance of this 
method replies on how well the system dynamics can be represented by basis functions. To 
have an accurate approximation, the size of the dictionary may overwhelm the size of data, 
leading to over-fitting.  
  To increase the flexibility of model structure for better interpreting system dynamics, black-
box nonlinear models can be used, which completely drop physical background and do not 
specify the working mechanism of biological networks. Kernel methods can be applied to 
establish an infinite dimensional functional space for nonlinear functions in the model. As a 
result, the model structure has a much general form under some mild conditions on the 
property of nonlinear functions such as smoothness and integrability. Identification of this 
type of model has been widely studied whereas determination of model structure is not a 
main concern. Under the context of network inference, model structure (network topology) 
must also be optimized during identification. In the end, model structure is determined by the 
structure of kernel functions. The ARD technique can be used to optimize the structure of 
certain kernel functions, for example, radial basis kernel. Nevertheless, this method can 
perform purely if a kernel function has a complex format, resulting in a highly nonlinear 
optimization problem. Alternatively, numerical sampling methods such as RJMCMC can be 
used to encourage a global search of the optimal solution. Another difficulty in applying black-
box nonlinear models is hidden nodes. For nonlinear models, hidden nodes cannot be trivially 
removed in the same way as linear models. Therefore, inference of hidden nodes is inevitable, 
which brings another problematic issue related to the determination of model complexity. 
 
 
 
 
 
 
 
 
 
 



 

175 
 

175 

Bibliography	

[1] R. E. Ellis, J. Yuan, and H. R. Horvitz, “Mechanisms and Functions of Cell Death,” Annu. 
Rev. Cell Biol., vol. 7, no. 1, pp. 663–698, 1991. 

[2] H. C. Cheng, C. Ulane, and R. E. Burke, “Clinical progression in Parkinson’s disease and 
the neurobiology of Axons,” Ann. Neurol., vol. 67, no. 6, pp. 715–725, 2010. 

[3] A. Datta, “Genetic engineering for improving quality and productivity of crops,” Agric. 
Food Secur., vol. 2, no. 1, p. 15, 2013. 

[4] L. R. Herrera-estrella, “Genetically Modified Crops and Developing Countries,” vol. 124, 
no. November, pp. 923–925, 2000. 

[5] L. Alberghina and H. V Westerhoff, Systems Biology: Definitions and Perspectives (Topics 
in Current Genetics). Springer, 2007. 

[6] A. E. McKee and P. A. Silver, “Systems biology of gene regulation fulfills its promise,” 
Genome Biol., vol. 7, no. 5, 2006. 

[7] N. Le Novère, “The long journey to a Systems Biology of neuronal function,” BMC Syst. 
Biol., vol. 1, pp. 7–9, 2007. 

[8] J. Strasen, “Cell-specific responses to the cytokine TGFβ are determined by variability 
in protein levels,” Mol. Syst. Biol., vol. 14, pp. 1–17, 2017. 

[9] A. Yachie-Kinoshita, K. Onishi, J. Ostblom, E. Posfai, J. Rossant, and P. W. Zandstra, 
“Modeling signaling-dependent pluripotent cell states with Boolean logic can predict 
cell fate transitions,” bioRxiv, pp. 1–16, 2017. 

[10] S. M. Raimundo, H. M. O. Yang, and E. Massad, “Modeling Vaccine Preventable Vector-
borne Infections: Yellow Fever As a Case Study,” J. Biol. Syst., vol. 24, no. 02n03, pp. 
193–216, 2016. 

[11] P. Hillenbrand, K. C. Maier, P. Cramer, and U. Gerland, “Inference of gene regulation 
functions from dynamic transcriptome data.” Elife, vol. 5, no. September2016, pp. 1-
22, 2016 

[12] S. M. Hill et al., “Inferring causal molecular networks: empirical assessment through a 
community-based effort.,” Nat. Methods, vol. 13, no. 4, pp. 310–8, 2016. 

[13] J. Xiong and T. Zhou, “Structure identification for gene regulatory networks via 
linearization and robust state estimation,” Automatica, vol. 50, no. 11, pp. 2765–2776, 
2014. 

[14] F. Azuaje, L. Zhang, C. Jeanty, S. L. Puhl, S. Rodius, and D. R. Wagner, “Analysis of a gene 
co-expression network establishes robust association between Col5a2 and ischemic 
heart disease,” BMC Med. Genomics, vol. 6, no. 1, 2013. 

[15] R. C. Meyer et al., “The metabolic signature related to high plant growth rate in 
Arabidopsis thaliana,” Proc. Natl. Acad. Sci., vol. 104, no. 11, pp. 4759–4764, 2007. 

[16] J. Lisec et al., “Identification of metabolic and biomass QTL in Arabidopsis thaliana in a 
parallel analysis of RIL and IL populations,” Plant J., vol. 53, no. 6, pp. 960–972, 2008. 

[17] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Comprehensive Introduction. 
Dover Pubn Inc, 2003. 

[18] D. J. Wilkinson, Stochastic Modelling for Systems Biology. CRC Press, 2012. 
[19] E. J. Crampin, S. Schnell, and P. E. McSharry, “Mathematical and computational 



 

176 
 

176 

techniques to deduce complex biochemical reaction mechanisms,” Prog. Biophys. Mol. 
Biol., vol. 86, no. 1, pp. 77–112, 2004. 

[20] J. Ross, “Determination of Complex Reaction Mechanisms. Analysis of Chemical, 
Biological and Genetic Networks †,” J. Phys. Chem. A, vol. 112, no. 11, pp. 2134–2143, 
2008. 

[21] A. Aderhold, D. Husmeier, and M. Grzegorczyk, “Statistical inference of regulatory 
networks for circadian regulation,” Stat. Appl. Genet. Mol. Biol., vol. 13, no. 3, pp. 227–
273, 2014. 

[22] A. Koryachko, A. Matthiadis, J. J. Ducoste, J. Tuck, T. A. Long, and C. Williams, 
“Computational approaches to identify regulators of plant stress response using high-
throughput gene expression data,” Curr. Plant Biol., vol. 3–4, no. July, pp. 20–29, 2015. 

[23] W. X. Wang, Y. C. Lai, and C. Grebogi, “Data based identification and prediction of 
nonlinear and complex dynamical systems,” Phys. Rep., vol. 644, no. June, pp. 1–76, 
2016. 

[24] S. Williams, “Pearson’s correlation coefficient.,” N. Z. Med. J., vol. 109, no. 1015, p. 38, 
1996. 

[25] H. L. Kotze et al., “A novel untargeted metabolomics correlation-based network analysis 
incorporating human metabolic reconstructions,” BMC Syst. Biol., vol. 7, p. 107, Oct. 
2013. 

[26] A. Roy and C. B. Post, “Detection of Long-Range Concerted Motions in Protein by a 
Distance Covariance,” J. Chem. Theory Comput., vol. 8, no. 9, pp. 3009–3014, Sep. 2012. 

[27] J. Kong, S. Wang, and G. Wahba, “Using distance covariance for improved variable 
selection with application to learning genetic risk models,” Stat. Med., vol. 34, no. 10, 
pp. 1708–1720, 2015. 

[28] S. Kumari et al., “Evaluation of Gene Association Methods for Coexpression Network 
Construction and Biological Knowledge Discovery,” PLoS One, vol. 7, no. 11, 2012. 

[29] H. Peng, S. Wang, and X. Wang, “Consistency and asymptotic distribution of the Theil-
Sen estimator,” J. Stat. Plan. Inference, vol. 138, no. 6, pp. 1836–1850, 2008. 

[30] A. Reverter and E. K. F. Chan, “Combining partial correlation and an information theory 
approach to the reversed engineering of gene co-expression networks,” Bioinformatics, 
vol. 24, no. 21, pp. 2491–2497, 2008. 

[31] A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes, “Discovery of meaningful 
associations in genomic data using partial correlation coefficients,” Bioinformatics, vol. 
20, no. 18, pp. 3565–3574, 2004. 

[32] M. G. Kendall, “A New Measure of Rank Correlation,” Biometrika, vol. 30, no. 1, pp. 81–
93, 1938. 

[33] S. Hempel, A. Koseska, J. Kurths, and Z. Nikoloski, “Inner composition alignment for 
inferring directed networks from short time series,” Phys. Rev. Lett., vol. 107, no. 5, pp. 
2–5, 2011. 

[34] A. Fujita, J. R. Sato, M. A. A. Demasi, M. C. Sogayar, C. E. Ferreira, and S. Miyano, 
“Comparing Pearson, Spearman and Hoeffding D Measure for Gene Expression 
Association Analysis,” J. Bioinform. Comput. Biol., vol. 7, no. 4, pp. 663–684, 2009. 

[35] S. L. Bressler and A. K. Seth, “Wiener-Granger Causality: A well established 
methodology,” Neuroimage, vol. 58, no. 2, pp. 323–329, 2011. 



 

177 
 

177 

[36] A. Porta and L. Faes, “Wiener-Granger Causality in Network Physiology with 
Applications to Cardiovascular Control and Neuroscience,” Proc. IEEE, vol. 104, no. 2, 
pp. 282–309, 2016. 

[37] H. Ye, E. R. Deyle, L. J. Gilarranz, and G. Sugihara, “Distinguishing time-delayed causal 
interactions using convergent cross mapping,” Sci. Rep., vol. 5, pp. 1–9, 2015. 

[38] A. T. Clark et al., “Spatial convergent cross mapping to detect causal relationships from 
short time series,” Ecology, vol. 96, no. 5, pp. 1174–1181, 2015. 

[39] D. Mønster, R. Fusaroli, K. Tylén, A. Roepstorff, and J. F. Sherson, “Causal inference from 
noisy time-series data — Testing the Convergent Cross-Mapping algorithm in the 
presence of noise and external influence,” Futur. Gener. Comput. Syst., vol. 73, pp. 52–
62, 2017. 

[40] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. 
[41] J. B. Kinney and G. S. Atwal, “Equitability, mutual information, and the maximal 

information coefficient,” Proc. Natl. Acad. Sci., vol. 111, no. 9, pp. 3354–3359, 2014. 
[42] M. Moriyama et al., “Relevance Network between Chemosensitivity and Transcriptome 

in Human Hepatoma Cells1,” Mol. Cancer Ther., vol. 2, no. 2, pp. 199–205, 2003. 
[43] A. J. Butte, P. Tamayo, D. Slonim, T. R. Golub, and I. S. Kohane, “Discovering functional 

relationships between RNA expression and chemotherapeutic susceptibility using 
relevance networks,” Proc. Natl. Acad. Sci., vol. 97, no. 22, pp. 12182–12186, 2000. 

[44] A. Madar, A. Greenfield, E. Vanden-Eijnden, and R. Bonneau, “DREAM3: Network 
inference using dynamic context likelihood of relatedness and the inferelator,” PLoS 
One, vol. 5, no. 3, 2010. 

[45] A. Unler, A. Murat, and R. B. Chinnam, “mr2PSO: A maximum relevance minimum 
redundancy feature selection method based on swarm intelligence for support vector 
machine classification,” Inf. Sci. (Ny)., vol. 181, no. 20, pp. 4625–4641, 2011. 

[46] A. A. Margolin et al., “ARACNE: An algorithm for the reconstruction of gene regulatory 
networks in a mammalian cellular context,” BMC Bioinformatics, vol. 7, no. SUPPL.1, 
pp. 1–15, 2006. 

[47] X. Zhao, W. Deng, and Y. Shi, “Feature selection with attributes clustering by maximal 
information coefficient,” Procedia Comput. Sci., vol. 17, pp. 70–79, 2013. 

[48] D. Reshef et al., “Detecting Novel Associations in Large Data Sets,” Sci. Transl. Med., vol. 
334, no. 6062, pp. 1518–1524, 2011. 

[49] S. Ma, Q. Gong, and H. J. Bohnert, “An Arabidopsis gene network based on the graphical 
Gaussian model,” Genome Res., vol. 17, no. 11, pp. 1614–1625, Nov. 2007. 

[50] X. Wu, Y. Ye, and K. R. Subramanian, “Interactive Analysis of Gene Interactions Using 
Graphical Gaussian Model,” in Proceedings of the 3rd International Conference on Data 
Mining in Bioinformatics, 2003, pp. 63–69. 

[51] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with the 
graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2008. 

[52] N. Friedman, D. Geiger, and M. Goldszmit, “Bayesian Network Classifiers,” Mach. Learn., 
vol. 29, pp. 131–163, 1997. 

[53] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis, “Advances to Bayesian 
network inference for generating causal networks from observational biological data,” 
Bioinformatics, vol. 20, no. 18, pp. 3594–3603, 2004. 



 

178 
 

178 

[54] P. Dagum and M. Luby, “Approximating probabilistic inference in Bayesian belief 
networks is NP-hard,” Artif. Intell., vol. 60, no. 1, pp. 141–153, 1993. 

[55] P. Dagum and M. Luby, “An optimal approximation algorithm for Bayesian inference,” 
Artif. Intell., vol. 93, no. 1–2, pp. 1–27, 1997. 

[56] I. Tsamardinos, C. F. Aliferis, and A. Statnikov, “Time and Sample Efficient Discovery of 
Markov Blankets and Direct Causal Relations,” in Proceedings of the Ninth ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, 2003, pp. 673–678. 

[57] C. F. Aliferis Constantinaliferis, A. Statnikov Alexanderstatnikov, S. Mani, and X. D. 
Koutsoukos, “Local Causal and Markov Blanket Induction for Causal Discovery and 
Feature Selection for Classification Part I: Algorithms and Empirical Evaluation,” J. Mach. 
Learn. Res., vol. 11, pp. 171–234, 2010. 

[58] N. Dalchau, “Mathematical Modelling of Circadian Signalling in Arabidopsis,” University 
of Cambridge, 2008. 

[59] J. C. W. Locke, A. J. Millar, and M. S. Turner, “Modelling genetic networks with noisy and 
varied experimental data: The circadian clock in Arabidopsis thaliana,” J. Theor. Biol., 
vol. 234, pp. 383–393, 2005. 

[60] J. C. W. Locke et al., “Experimental validation of a predicted feedback loop in the multi-
oscillator clock of Arabidopsis thaliana.,” Mol. Syst. Biol., vol. 2, p. 59, 2006. 

[61] A. Pokhilko et al., “Data assimilation constrains new connections and components in a 
complex, eukaryotic circadian clock model.,” Mol. Syst. Biol., vol. 6, no. 416, pp. 1–10, 
2010. 

[62] A. Pokhilko, A. P. Fernández, K. D. Edwards, M. M. Southern, K. J. Halliday, and A. J. 
Millar, “The clock gene circuit in Arabidopsis includes a repressilator with additional 
feedback loops,” Mol. Syst. Biol., no. 574, pp. 1–13, 2012. 

[63] A. Pokhilko, P. Mas, and A. J. Millar, “Modelling the widespread effects of TOC1 
signalling on the plant circadian clock and its outputs.,” BMC Syst. Biol., vol. 7, no. 1, p. 
23, 2013. 

[64] T. Ohara, H. Fukuda, and I. T. Tokuda, “An extended mathematical model for 
reproducing the phase response of Arabidopsis thaliana under various light conditions,” 
J. Theor. Biol., vol. 382, pp. 337–344, 2015. 

[65] W. Li, J. Feng, and T. Jiang, “IsoLasso: A LASSO regression approach to RNA-Seq based 
transcriptome assembly (Extended abstract),” J. Comput. Biol., vol. 18, no. 11, pp. 168–
188, 2011. 

[66] R. J. Tibshirani, “The lasso method for variable selection in the Cox model,” Stat. Med., 
vol. 16, no. March 1995, pp. 385–395, 1997. 

[67] M. Gustafsson, M. Hörnquist, and A. Lombardi, “Constructing and analyzing a large-
scale gene-to-gene regulatory network-lasso-constrained inference and biological 
validation,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 2, no. 3, pp. 254–261, 2005. 

[68] W. Pan, Y. Yuan, J. Gonçalves, and G. Stan, “A Sparse Bayesian Approach to the 
Identification of Nonlinear State-Space Systems,” IEEE Trans. Autom. Control, vol. 61, 
pp. 182–187, 2016. 

[69] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” J.R. Stat. 
Soc. B, vol. 67, no. 2, pp. 301–320, 2005. 

[70] A. Ahmed and E. P. Xing, “Recovering time-varying networks of dependencies in social 



 

179 
 

179 

and biological studies,” PNAS, vol. 106, no. 29, pp. 1–6, 2009. 
[71] M. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine,” J. Mach. 

Learn. Res., vol. 1, pp. 211–244, 2001. 
[72] M. Grzegorczyk, “A Non-Homogeneous Dynamic Bayesian Network with Sequentially 

Coupled Interaction Parameters for Applications in Systems and Synthetic Biology,” Stat. 
Appl. Genet. Mol. Biol., vol. 11, no. 4, 2012. 

[73] E. R. Morrissey, M. A. Juárez, K. J. Denby, and N. J. Burroughs, “Inferring the time-
invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian 
spline autoregression,” Biostatistics, vol. 12, no. 4, pp. 682–694, 2011. 

[74] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning., 
Illustrate. MIT Press, 2006. 

[75] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian Process Dynamical Models for 
Human Motion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 283–298, 
2008. 

[76] A. Aderhold, D. Husmeier, and M. Grzegorczyk, “Approximate Bayesian inference in 
semi-mechanistic models,” Stat. Comput., no. May, pp. 1–38, 2016. 

[77] S. Huang et al., “A Sparse Structure Learning Algorithm for Gaussian Bayesian Network 
Identification from High-Dimensional Data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 
35, no. 6, pp. 1328–1342, 2013. 

[78] D. Geiger and D. Heckerman, “Learning Gaussian Networks,” in International 
Conference on Uncertainty in Artificial Intelligence, 1994, pp. 235–243. 

[79] Y. Ko, C. Zhai, and S. L. Rodriguez-Zas, “Inference of Gene Pathways Using Gaussian 
Mixture Models,” in 2007 IEEE International Conference on Bioinformatics and 
Biomedicine (BIBM 2007), 2007, pp. 362–367. 

[80] Y. Ko, C. Zhai, and S. Rodriguez-Zas, “Inference of gene pathways using mixture Bayesian 
networks.,” BMC Syst. Biol., vol. 3, p. 54, 2009. 

[81] K. P. Murphy, “Dynamic Bayesian Networks: Representation, Inference and Learning,” 
Ann. Phys. (N. Y)., vol. Ph. D., p. 225, 2002. 

[82] Z. Ghahramani, “Learning Dynamic Bayesian Networks,” Adapt. Process. Seq. Data 
Struct., vol. 1387, pp. 168–197, 1997. 

[83] C. A. Pollino and C. Henderson, “Bayesian networks : A guide for their application in 
natural resource management and policy,” 2010. 

[84] J. Goncalves and S. Warnick, “Necessary and sufficient conditions for dynamical 
structure reconstruction of LTI networks,” IEEE Trans. Automat. Contr., vol. 53, no. 7, 
pp. 1670–1674, 2008. 

[85] Y. Yuan, K. Glover, and J. Gonçalves, “On minimal realisations of dynamical structure 
functions,” Automatica, vol. 55, no. December, pp. 159–164, 2015. 

[86] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A 
Practical Information-Theoretic Approach (2nd ed), vol. 172. 2002. 

[87] P. P. J. van den Bosch and A. C. van der Klauw, Modeling, Identification and Simulation 
of Dynamical Systems. CRC Press, 1994. 

[88] P. M. J. Van Den Hof, System Identification for Control, 2004. 
[89] L. Ljung, System Identification: Theory for the User. Prentice Hall, 1998. 
[90] M. Jordan, J. Kleinberg, and B. Scho, Pattern Recognition and Machine Learning. 



 

180 
 

180 

Springer New York, 2006. 
[91] T. Chen, M. S. Andersen, L. Ljung, A. Chiuso, and G. Pillonetto, “System identification 

via sparse multiple kernel-based regularization using sequential convex optimization 
techniques,” IEEE Trans. Automat. Contr., vol. 59, no. 11, pp. 1–33, 2014. 

[92] Z. M. Kassas, “Numerical simulation of continuous-time stochastic dynamical systems 
with noisy measurements and their discrete-time equivalents,” Proc. IEEE Int. Symp. 
Comput. Control Syst. Des., pp. 1397–1402, 2011. 

[93] D. J. Higham., “An Algorithmic Introduction to Numerical Simulation of Stochastic 
Differential Equations,” SIAM Rev., vol. 43, no. 3, pp. 525–546, 2001. 

[94] G. P. Rao, G. P. Rao, H. Garnier, and H. Garnier, “Numerical illustrations of the relevance 
of direct continuous-time model identification,” 15th Trienn. IFAC World Congr. Autom. 
Control, 2002. 

[95] D. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” J. Phys. Chem., 
vol. 81, no. 25, pp. 2340–2361, 1977. 

[96] D. T. Gillespie, “The chemical Langevin equation,” J. Chem. Phys., vol. 113, no. 1, pp. 
297–306, 2000. 

[97] D. T. Gillespie, “The multivariate Langevin and Fokker–Planck equations,” Am. J. Phys., 
vol. 64, no. 10, p. 1246, 1996. 

[98] J. D. Murray, Mathematical Biology: I . An Introduction, Third Edition, vol. 1, no. 1. 2002. 
[99] E. H. Flach and S. Schnell, “Use and abuse of the quasi-steady-state approximation,” IEE 

Proc. - Syst. Biol., vol. 153, no. 4, p. 187, 2006. 
[100] J. C. W. Locke et al., “Extension of a genetic network model by iterative experimentation 

and mathematical analysis.,” Mol. Syst. Biol., vol. 1, p. 2005.0013, 2005. 
[101] N. Dalchau et al., “Correct biological timing in Arabidopsis requires multiple light-

signaling pathways.,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, pp. 13171–13176, 2010. 
[102] A. Carignano, J. Junyang, A. Webb, and J. Gonçalves, “Assessing the effect of unknown 

widespread perturbations in complex systems using the v-gap,” in 2015 54th IEEE 
Conference on Decision and Control (CDC), 2015, pp. 3193–3198. 

[103] A. Carignano, “Genome wide analysis of differentially expressed systems: an 
application to circadian networks,” 2014. 

[104] H. Garnier and L. Wang, Identification of Continous time Models from Sampled Data. 
Springer; 2008 edition, 2008. 

[105] J. Kocijan, Modelling and control of dynamic systems using gaussian process models. 
Springer; 1st ed. 2016 edition, 2015. 

[106] R. S. Risuleo, “System identification with input uncertainties: an EM kernel-based 
approach,” 2016. 

[107] D. P. Wipf, “Bayesian Methods for Finding Sparse Representations,” 2006. 
[108] D. P. Wipf, B. D. Rao, and S. Nagarajan, “Latent Variable Bayesian Models for Promoting 

Sparsity,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6236–6255, 2011. 
[109] W. Pan, A. Sootla, and G. B. Stan, “Distributed reconstruction of nonlinear networks: 

An ADMM approach,” IFAC Proc. Vol., vol. 19, pp. 3208–3213, 2014. 
[110] W. Pan, Y. Yuan, L. Ljung, J. Gonçalves, and G. Stan, “Identifying biochemical reaction 

networks from heterogeneous datasets,” in 2015 54th IEEE Conference on Decision and 
Control (CDC), 2015, pp. 2525–2530. 



 

181 
 

181 

[111] W. Pan, Y. Yuan, H. Sandberg, J. Gonçalves, and G.B. Stan, “Online fault diagnosis for 
nonlinear power systems,” Automatica, vol. 55, no. MAY, pp. 27–36, 2015. 

[112] T. Chen, H. Ohlsson, and L. Ljung, “On the estimation of transfer functions, 
regularizations and Gaussian processes- Revisited,” Automatica, vol. 48, no. 48, pp. 
1525–1535, 2012. 

[113] A. Chiuso and G. Pillonetto, “A Bayesian approach to sparse dynamic network 
identification,” Automatica, vol. 48, no. 8, pp. 1553–1565, 2012. 

[114] M. Darwish, P. Cox, G. Pillonetto, and R. Tóth, “Bayesian Identification of LPV Box-
Jenkins Models,” Proc. 54th IEEE Conf. Decis. Control (CDC), Osaka, Japan, no. Cdc, 2015. 

[115] R. A. Kennedy and P. Sadeghi, Hilbert Space Methods in Signal Processing. Cambridge 
University Press, 2013. 

[116] G. Pillonetto, T. Chen, A. Chiuso, G. De Nicolao, and L. Ljung, “Regularized linear system 
identification using atomic, nuclear and kernel-based norms: The role of the stability 
constraint,” Automatica, vol. 69, pp. 137–149, 2016. 

[117] G. Pillonetto and A. Chiuso, “Tuning complexity in regularized kernel-based regression 
and linear system identification: The robustness of the marginal likelihood estimator,” 
Automatica, vol. 58, pp. 106–117, 2015. 

[118] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Kernel methods in system 
identification, machine learning and function estimation: A survey,” Automatica, vol. 
50, no. 3, pp. 657–682, 2014. 

[119] G. Wahba, Spline Models for Observational Data. SIAM: Society for Industrial and 
Applied Mathematics, 1990. 

[120] P. L. Green, K. Worden, M. Street, and S. Sheffield, “Bayesian and Markov chain Monte 
Carlo methods for identifying nonlinear systems in the presence of uncertainty,” Philos. 
Trans. R. Soc. A, vol. 373, 2015. 

[121] D. Tiboaca, P. L. Green, R. J. Barthorpe, and K. Worden, “Bayesian System Identification 
of Dynamical Systems Using Reversible Jump Markov Chain Monte Carlo,” in Topics in 
Modal Analysis II, Volume 8, 2014, pp. 277–284. 

[122] P. L. Green, “Bayesian system identification of a nonlinear dynamica system using a 
novel variant of Simulated Annealing,” Mech. Syst. Signal Process., vol. 52–53, no. 1, pp. 
133–146, 2015. 

[123] P. L. Green, “Bayesian system identification of dynamical systems using large sets of 
training data: A MCMC solution,” Probabilistic Eng. Mech., vol. 42, pp. 54–63, 2015. 

[124] S. Han, R. K. W. Wong, T. C. M. Lee, L. Shen, S. Y. R. Li, and X. Fan, “A Full Bayesian 
Approach for Boolean Genetic Network Inference,” PLoS One, vol. 9, no. 12, p. e115806, 
Dec. 2015. 

[125] N. B. Agostinho, K. S. Machado, and A. V Werhli, “Inference of regulatory networks with 
a convergence improved MCMC sampler,” BMC Bioinformatics, pp. 1–10, 2015. 

[126] P. J. Green, “Reversible jump Markov chain monte carlo computation and Bayesian 
model determination,” Biometrika, vol. 82, no. 4, pp. 711–732, 1995. 

[127] R. J. Polland, Essentials of Robust Control. 2005. 
[128] L. Mombaerts, A. Mauroy, and J. Gonçalves, “Optimising time-series experimental 

design for modelling of circadian rhythms: the value of transient data,” IFAC-
PapersOnLine, vol. 49, no. 26, pp. 109–113, 2016. 



 

182 
 

182 

[129] L. Mombaerts et al., “Dynamical Differential Expression (DyDE) Reveals the Period 
Control Mechanisms of the Arabidopsis Circadian Oscillator (submitted),” PLoS Comput. 
Biol., 2018. 

[130] D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky, 
“Revealing strengths and weaknesses of methods for gene network inference,” Proc. 
Natl. Acad. Sci., vol. 107, no. 14, pp. 6286–6291, 2010. 

[131] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, “The large-scale 
organization of metabolic networks,” Nature, vol. 407, p. 651, Oct. 2000. 

[132] H. Jeong, S. P. Mason, A. L. Barabási, and Z. N. Oltvai, “Lethality and centrality in protein 
networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001. 

[133] A. Wagner and D. A. Fell, “The small world inside large metabolic networks,” Proc. R. 
Soc. B Biol. Sci., vol. 268, no. 1478, pp. 1803–1810, 2001. 

[134] P. Qiu, A. J. Gentles, and S. K. Plevritis, “Fast calculation of pairwise mutual information 
for gene regulatory network reconstruction,” Comput. Methods Programs Biomed., vol. 
94, no. 2, pp. 177–180, 2009. 

[135] A. J. Butte and I. S. Kohane, “Mutual Information Relevance Networks: Functional 
Genomic Clustering Using Pairwise Entropy Measurements,” in Biocomputing 2000, 
1999, pp. 418–429. 

[136] A. C. Damianou, M. K. Titsias, and N. D. Lawrence, “Variational Inference for Latent 
Variables and Uncertain Inputs in Gaussian Processes,” J. Mach. Learn. Res., vol. 17, pp. 
1–62, 2016. 

[137] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian Processes for Big Data,” in UAI, 2013, 
pp. 282–290. 

[138] R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso,” J. R. Stat. Soc. Ser. B, 
vol. 58, pp. 267–288, 1994. 

[139] P. Congdon, “Applied Bayesian hierarchical methods,” J. Appl. Stat., vol. 39, no. 8, pp. 
1845–1845, 2010. 

[140] S. Gibson and B. Ninness, “Robust maximum-likelihood estimation of multivariable 
dynamic systems,” Automatica, vol. 41, pp. 1667–1682, 2005. 

[141]  a. Wills, B. Ninness, and S. Gibson, “Maximum Likelihood Estimation of State Space 
Models from Frequency Domain Data,” IEEE Trans. Automat. Contr., vol. 54, no. 1, 2009. 

[142] M. Schmidt, “Least Squares Optimization with L1-Norm Regularization,” Optimization, 
vol. 98, no. December, pp. 230–238, 2005. 

[143] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A Sparse-Group Lasso,” J. Comput. 
Graph. Stat., vol. 22, no. 2, pp. 231–245, 2013. 

[144] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing Sparsity by Reweighted ℓ 1 
Minimization,” J. Fourier Anal. Appl., vol. 14, no. 5–6, pp. 877–905, 2008. 

[145] D. Hayden, Y. H. Chang, J. Goncalves, and C. J. Tomlin, “Sparse network identifiability 
via Compressed Sensing,” Automatica, vol. 68, pp. 9–17, 2016. 

[146] Y. C. Eldar, P. Kuppinger, and H. Bölcskei, “Block-sparse signals: Uncertainty relations 
and efficient recovery,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3042–3054, 2010. 

[147] B. M. Sanandaji, T. L. Vincent, and M. B. Wakin, “Exact topology identification of large-
scale interconnected dynamical systems from compressive observations,” in 
Proceedings of the 2011 American Control Conference, 2011, pp. 649–656. 



 

183 
 

183 

[148] S. D. Babacan, S. Nakajima, and M. N. Do, “Bayesian group-sparse modeling and 
variational inference,” IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2906–2921, 2014. 

[149] R. B. Chen, C. H. Chu, S. Yuan, and Y. N. Wu, “Bayesian Sparse Group Selection,” J. 
Comput. Graph. Stat., 2015. 

[150] S. Boyd and L. Vandenberghe, Convex Optimization, vol. 25, no. 3. 2010. 
[151] K. Kreutz-delgado and B. D. Rao, “A General Approach to Sparse Basis Selection: 

Majorization, Concavity, and Affine Scaling,” Comput. Eng., p. 49, 1997. 
[152] Y. C. Eldar and G. Kutyniok, Compressed Sensing. Cambridge University Press, 2012. 
[153] J. Dattorro, Convex Optimization & Euclidean Distance Geometry. Meboo Publishing, 

2015. 
[154] A. Aravkin, J. V. Burke, A. Chiuso, and G. Pillonetto, “Convex vs nonconvex approaches 

for sparse estimation: Lasso, Multiple Kernel Learning and Hyperparameter Lasso,” in 
Proceedings of the IEEE Conference on Decision and Control, 2011, pp. 156–161. 

[155] Z. Qin, K. Scheinberg, and D. Goldfarb, “Efficient block-coordinate descent algorithms 
for the Group Lasso,” Math. Program. Comput., vol. 5, no. 2, pp. 143–169, 2013. 

[156] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped 
variables,” J. R. Stat. Soc. Ser. B (Statistical Methodol.), vol. 68, no. 1, pp. 49–67. 

[157] M. Vincent and N. R. Hansen, “Sparse group lasso and high dimensional multinomial 
classification,” Comput. Stat. Data Anal., vol. 71, pp. 771–786, 2014. 

[158] J. B. Bell, A. N. Tikhonov, and V. Y. Arsenin, “Solutions of Ill-Posed Problems.,” Math. 
Comput., vol. 32, no. 144, p. 1320, 1978. 

[159] S. Society and S. B. Methodological, “Regression Shrinkage and Selection via the Lasso 
Robert Tibshirani,” J.R. Stat. Soc. B, vol. 58, no. 1, pp. 267–288, 1996. 

[160] J. D. Hamilton, Time Series Analysis, 1994. 
[161] D. Wipf and S. Nagarajan, “A New View of Automatic Relevance Determination,” 

Compute, vol. 20, no. 2, pp. 1625–1632, 2008. 
[162] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability. Springer-Verlag, 

1993. 
[163] R. Giri and B. D. Rao, “Type I and Type II Bayesian Methods for Sparse Signal Recovery 

using Scale Mixtures,” IEEE Trans. Signal Process., vol. 64, no. 13, pp. 3418–3428, 2016. 
[164] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction to MCMC for 

machine learning,” Mach. Learn., vol. 50, no. 1–2, pp. 5–43, 2003. 
[165] C. Geyer, “Markov chain Monte Carlo lecture notes,” 1998. 
[166] J. Palmer, D.P. Wipf, K. Kreutz-Delgado, and B.D. Rao, “Variational EM algorithms for 

non-Gaussian latent variable models,” Adv. Neural Inf. Process. Syst., vol. 18, pp. 1059–
1066, 2006. 

[167] D. P. Wipf and B. D. Rao, “Comparing the Effects of Different Weight Distributions on 
Finding Sparse Representations,” Adv. Neural Inf. Process. Syst. 18, no. 1, pp. 1521–
1528, 2006. 

[168] M. A. T. Figueiredo, “Adaptive Sparseness using Jeffreys’ Prior,” Adv. Neural Inf. Process. 
Syst., vol. 1, pp. 697–704, 2002. 

[169] Z. Zhang and B. D. Rao, “Extension of SBL algorithms for the recovery of block sparse 
signals with intra-block correlation,” IEEE Trans. Signal Process., vol. 61, no. 8, pp. 
2009–2015, 2013. 



 

184 
 

184 

[170] D. P. Wipf and B. D. Rao, “An empirical Bayesian strategy for solving the simultaneous 
sparse approximation problem,” IEEE Trans. Signal Process., vol. 55, no. 7 II, pp. 3704–
3716, 2007. 

[171] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. 1996. 
[172] Z. Yue, J. Thunberg, W. Pan, L. Ljung, and J. Goncalves, “Linear Dynamic Network 

Reconstruction from Heterogeneous Datasets,” 2016. 
[173] J. S. Sakellariou and S. D. Fassois, “Nonlinear ARX (NARX) based identification and fault 

detection in a 2 DOF system with cubic stiffness,” in International Conference on noise 
and vibration engineering, 2002. 

[174] C. Andrieu, N. de Freitas, and A. Doucet, “Robust full Bayesian learning for radial basis 
networks.,” Neural Comput., vol. 13, no. 10, pp. 2359–2407, 2001. 

[175] D. Wipf and S. Nagarajan, “Iterative Reweighted l1 and l2 Methods for Finding Sparse 
Solutions,” IEEE J. Sel. Top. Signal …, vol. 4, no. 2, pp. 317–329, 2010. 

[176] B. K. Sriperumbudur, “On the Convergence of the Concave-Convex Procedure,” Nips, no. 
1, pp. 1–9, 2009. 

[177] S. Boyd, “Distributed Optimization and Statistical Learning via the Alternating Direction 
Method of Multipliers,” Found. Trends® Mach. Learn., vol. 3, no. 1, pp. 1–122, 2010. 

[178] H. A. Le Thi, T. Pham Dinh, H. M. Le, and X. T. Vo, “DC approximation approaches for 
sparse optimization,” Eur. J. Oper. Res., vol. 244, no. 1, pp. 26–46, 2015. 

[179] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions. Wiley-Interscience; 
2 edition, 2008. 

[180] T. Baldacchino, S. R. Anderson, and V. Kadirkamanathan, “Computational system 
identification for Bayesian NARMAX modelling,” Automatica, vol. 49, no. 9, pp. 2641–
2651, 2013. 

[181] H. Sun, “Mercer theorem for RKHS on noncompact sets,” J. Complex., vol. 21, no. 3, pp. 
337–349, 2005. 

[182] G. Pillonetto, M. H. Quang, and A. Chiuso, “A new kernel-based approach for 
nonlinearsystem identification,” IEEE Trans. Automat. Contr., vol. 56, no. 12, pp. 2825–
2840, 2011. 

[183] G. Pillonetto and G. De Nicolao, “A new kernel-based approach for linear system 
identification,” Automatica, vol. 46, no. 1, pp. 81–93, 2010. 

[184] G. Bottegal, A. Y. Aravkin, H. Hjalmarsson, and G. Pillonetto, “Robust EM kernel-based 
methods for linear system identification,” Automatica, vol. 67, pp. 114–126, 2016. 

[185] Z. Gillani, M. S. A. Akash, M. M. Rahaman, and M. Chen, “CompareSVM: Supervised, 
Support Vector Machine (SVM) inference of gene regularity networks,” BMC 
Bioinformatics, vol. 15, no. 1, pp. 1–7, 2014. 

[186] J. P. Vert and Y. Yamanishi, “Supervised graph inference,” Adv. Neural Inf. Process. Syst., 
vol. 17, pp. 1433–1440, 2005. 

[187] Y. Yamanishi, J. P. Vert, and M. Kanehisa, “Protein network inference from multiple 
genomic data: A supervised approach,” Bioinformatics, vol. 20, no. SUPPL. 1, pp. 363–
370, 2004. 

[188] M. Kotera, Y. Yamanishi, Y. Moriya, M. Kanehisa, and S. Goto, “GENIES: Gene network 
inference engine based on supervised analysis,” Nucleic Acids Res., vol. 40, no. W1, pp. 
162–167, 2012. 



 

185 
 

185 

[189] J. P. Vert, J. Qiu, and W. S. Noble, “A new pairwise kernel for biological network inference 
with support vector machines,” BMC Bioinformatics, vol. 8, no. SUPPL. 10, pp. 1–10, 
2007. 

[190] T. Kato, K. Tsuda, and K. Asai, “Selective integration of multiple biological data for 
supervised network inference,” Bioinformatics, vol. 21, no. 10, pp. 2488–2495, 2005. 

[191] W. Rudin, Functional Analysis. McGraw-Hill Science/Engineering/Math; 2 edition, 1991. 
[192] P. D. Lax, Functional analysis. Wiley-Interscience; 1 edition, 2002. 
[193] D. Sejdinovic and A. Gretton, “What is an RKHS?,” 2012. 
[194] M. H. Quang, “Reproducing Kernel Hilbert Spaces in Learning Theory,” Brown University, 

2006. 
[195] F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bull. Am. Math. 

Soc., vol. 39, no. 1, pp. 1–49, 2002. 
[196] N. Aronszajn, “Theory of reproducing kernels,” Trans. Am. Math. Soc., vol. 68, no. 3, pp. 

337–337, 1950. 
[197] S. on T. S. Analysis and M. Rosenblatt, “Proceedings of a symposium on time series 

analysis.,” 1963. 
[198] G. Pillonetto, A. Chiuso, and G. De Nicolao, “Prediction error identification of linear 

systems: A nonparametric Gaussian regression approach,” Automatica, vol. 47, no. 2, 
pp. 291–305, 2011. 

[199] F. Dinuzzo, “Kernels for linear time invariant system identification,” SIAM J. Control 
OPTIM., vol. 53, no. 5, pp. 1–17, 2015. 

[200] Y. Yuan, G. B. Stan, S. Warnick, and J. Goncalves, “Robust dynamical network structure 
reconstruction,” Automatica, vol. 47, no. 6, pp. 1230–1235, 2011. 

[201] F. P. Carli, T. Chen, and L. Ljung, “Maximum Entropy Kernels for System Identification,” 
IEEE Trans. Automat. Contr., vol. 62, no. 3, pp. 1471–1477, 2017. 

[202] T. Chen, T. Ardeshiri, F. P. Carli, A. Chiuso, L. Ljung, and G. Pillonetto, “Maximum entropy 
properties of discrete-time first-order stable spline kernel,” Automatica, vol. 66, pp. 34–
38, 2016. 

[203] R. Waagepetersen and D. Sorensen, “A Tutorial on Reversible Jump MCMC with a View 
toward Applications in QTL-mapping,” Int. Stat. Rev., vol. 69, no. 1, pp. 49–61, May 2007. 

[204] H. Nastase, “Introduction to Markov Chain Monte Carlo,” in Handbook of Markov Chain 
Monte Carlo, 2007, pp. 3–48. 

[205] D. I. Hastie, “Towards automatic reversible jump Markov chain Monte Carlo,” 2005. 
[206] C. Andrieu and J. Thoms, “A tutorial on adaptive MCMC,” Stat. Comput., vol. 18, no. 4, 

pp. 343–373, 2008. 
[207] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, “Introducing Markov Chain Monte 

Carlo,” Markov Chain Monte Carlo in Practice. p. 512, 1996. 
[208] G. O. Roberts and S. K. Sahu, “Updating Schemes, Correlation Structure, Blocking and 

Parameterization for the Gibbs Sampler,” J. R. Stat. Soc. Ser. B, vol. 59, no. 2, pp. 291–
317, 1997. 

[209] A. A. Johnson, G. L. Jones, and R. C. Neath, “Component-Wise Markov Chain Monte 
Carlo: Uniform and Geometric Ergodicity under Mixing and Composition,” Stat. Sci., vol. 
28, no. 3, pp. 360–375, 2013. 

[210] D. A. van Dyk and X. Jiao, “Metropolis-Hastings Within Partially Collapsed Gibbs 



 

186 
 

186 

Samplers,” J. Comput. Graph. Stat., vol. 24, no. 2, pp. 301–327, 2015. 
[211] D. A. van Dyk and T. Park, “Partially Collapsed Gibbs Samplers: Theory and Methods,” J. 

Am. Stat. Assoc., vol. 103, no. 482, pp. 790–796, 2008. 
[212] J. S. Liu, “The Collapsed Gibbs Sampler in Bayesian Computations with Applications to 

a Gene Regulation Problem,” J. Am. Stat. Assoc., vol. 89, no. 427, pp. 958–966, 1994. 
[213] P. J. Green and D. I. Hastie, “Reversible jump MCMC,” Genetics, vol. 155, no. 3, pp. 

1391–1403, 2009. 
[214] S. P. Brooks and B. J. T. Morgan, “Optimization Using Simulated Annealing,” J. R. Stat. 

Soc., vol. 44, no. 2, pp. 241–257, 1995. 
[215] S. P. Brooks, N. Friel, and R. King, “Classical Model Selection via Simulated Annealing,” 

J. R. Stat. Soc. B, vol. 65, no. 2, pp. 503–520, 2003. 
[216] C. Andrieu, N. De Freitas, and A. Doucet, “Reversible jump MCMC simulated annealing 

for neural networks,” Uncertaintity in Artificial Intelligence Proceedings, pp. 11–18, 
2000. 

[217] P. T. Troughton and S. J. Godsill, “A reversible jump sampler for autoregressive time 
series,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech 
and Signal Processing, ICASSP '98., vol. 4, pp. 2257–2260, 1998. 

[218] C. Andrieu and A. Doucet, “Joint Bayesian Model Selection and Estimation of Noisy 
Sinusoids via Reversible Jump MCMC,’” IEEE Trans. Signal Process., vol. 47, no. 10, pp. 
2667–2676, 1999. 

[219] J. Vermaak, C. Andrieu, A. Doucet, and S. J. Godsill, “Reversible jump Markov chain 
Monte Carlo strategies for Bayesian model selection in autoregressive processes,” J. 
Time Ser. Anal., vol. 25, no. 6, pp. 785–809, 2004. 

[220] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. 2004. 
[221] S. Ambikasaran, D. Foreman-mackey, L. Greengard, D. W. Hogg, and M. O. Neil, “Fast 

Direct Methods for Gaussian Processes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, 
no. 2, pp. 252–265, 2016. 

[222] S. Ambikasaran and E. Darve, “An O(N log N) Fast Direct Solver for Partial Hierarchically 
Semi-Separable Matrices: With Application to Radial Basis Function Interpolation,” J. 
Sci. Comput., vol. 57, no. 3, pp. 477–501, 2013. 

[223] P. Y. Hsu and S. L. Harmer, “Wheels within wheels: The plant circadian system,” Trends 
Plant Sci., vol. 19, no. 4, pp. 240–249, 2014. 

[224] S. Chib and I. Jeliazkov, “Marginal Likelihood from The Metropolis – Hastings Output,” 
J. Am. Stat. Assoc., vol. 96, no. 453, pp. 270–81, 2001. 

[225] A. N. Dodd et al., “The Arabidopsis circadian clock incorporates a cADPR-based 
feedback loop,” Science, vol. 318, no. 5857, pp. 1789–1792, 2007. 

[226] M. J. Haydon, O. Mielczarek, F. C. Robertson, K. E. Hubbard, and A. A. R. Webb, 
“Photosynthetic entrainment of the Arabidopsis thaliana circadian clock,” Nature, vol. 
502, no. 7473, pp. 689–692, 2013. 

[227] U. Voß et al., “The circadian clock rephases during lateral root organ initiation in 
Arabidopsis thaliana,” Nat. Commun., vol. 6, 2015. 

[228] S. L. Harmer et al., “Orchestrated transcription of key pathways in Arabidopsis by the 
circadian clock,” Science, vol. 290, no. 5499, pp. 2110–2113, 2000. 

[229] E. Herrero et al., “EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the 



 

187 
 

187 

nucleus sustains the Arabidopsis circadian clock.,” Plant Cell, vol. 24, no. February, pp. 
428–43, 2012. 

[230] T. Ohara, H. Fukuda, and I. T. Tokuda, “Phase Response of the Arabidopsis thaliana 
Circadian Clock to Light Pulses of Different Wavelengths,” J. Biol. Rhythms, vol. 30, no. 
2, pp. 95–103, 2015. 

[231] K. Fogelmark and C. Troein, “Rethinking Transcriptional Activation in the Arabidopsis 
Circadian Clock,” PLoS Comput. Biol., vol. 10, no. 7, 2014. 

[232] A. N. Dodd, J. Love, and A. A. R. Webb, “The plant clock shows its metal: circadian 
regulation of cytosolic free Ca2+,” Trends Plant Sci., vol. 10, no. 1, pp. 15–21, Oct. 2017. 

[233] J. Jin, “Mathematical Modeling of the Circadian Ca2+ Signaling Network,” University of 
Cambridge, 2015. 

[234] M. J. Gardner, K. E. Hubbard, C. T. Hotta, A. N. Dodd, and A. A. R. Webb, “How plants 
tell the time,” Biochem. J., vol. 397, no. Pt 1, pp. 15–24, Jul. 2006. 

[235] C. R. McClung, “Plant circadian rhythms.,” Plant Cell, vol. 18, no. 4, pp. 792–803, 2006. 
[236] M. S. Robles, S. J. Humphrey, and M. Mann, “Phosphorylation Is a Central Mechanism 

for Circadian Control of Metabolism and Physiology,” Cell Metab., vol. 25, no. 1, pp. 
118–127, Oct. 2017. 

[237] J. L. Pruneda-Paz, G. Breton, A. Para, and S. A. Kay, “A functional genomics approach 
reveals CHE as a component of the Arabidopsis circadian clock.,” Science, vol. 323, no. 
5920, pp. 1481–5, Mar. 2009. 

[238] D. Alabadı,́ M. J. Yanovsky, P. Más, S. L. Harmer, and S. A. Kay, “Critical Role for CCA1 
and LHY in Maintaining Circadian Rhythmicity in Arabidopsis,” Curr. Biol., vol. 12, no. 9, 
pp. 757–761, Oct. 2017. 

[239] T. Mizuno and N. Nakamichi, “Pseudo-Response Regulators (PRRs) or True Oscillator 
Components (TOCs),” Plant Cell Physiol., vol. 46, no. 5, pp. 677–685, May 2005. 

[240] E. M. Farré, S. L. Harmer, F. G. Harmon, M. J. Yanovsky, and S. A. Kay, “Overlapping and 
Distinct Roles of PRR7 and PRR9 in the Arabidopsis Circadian Clock,” Curr. Biol., vol. 15, 
no. 1, pp. 47–54, Oct. 2017. 

[241] N. Nakamichi, M. Kita, S. Ito, T. Yamashino, and T. Mizuno, “PSEUDO-RESPONSE 
REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the 
Circadian Clock of Arabidopsis thaliana,” Plant Cell Physiol., vol. 46, no. 5, pp. 686–698, 
May 2005. 

[242] H. G. McWatters, R. M. Bastow, A. Hall, and A. J. Millar, “The ELF3zeitnehmer regulates 
light signalling to the circadian clock,” Nature, vol. 408, no. 6813, pp. 716–720, Dec. 
2000. 

[243] S. P. Hazen, T. F. Schultz, J. L. Pruneda-Paz, J. O. Borevitz, J. R. Ecker, and S. A. Kay, “LUX 
ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms,” Proc. 
Natl. Acad. Sci. United States Am., vol. 102, no. 29, pp. 10387–10392, Jul. 2005. 

[244] E. A. Kikis, R. Khanna, and P. H. Quail, “ELF4 is a phytochrome-regulated component of 
a negative-feedback loop involving the central oscillator components CCA1 and LHY.,” 
Plant J., vol. 44, no. 2, pp. 300–313, Oct. 2005. 

[245] M. R. Doyle et al., “The ELF4 gene controls circadian rhythms and flowering time in 
Arabidopsis thaliana,” Nature, vol. 419, no. 6902, pp. 74–77, Sep. 2002. 

[246] M. A. Jones, “Entrainment of the Arabidopsis Circadian Clock,” J. Plant Biol., vol. 52, no. 



 

188 
 

188 

3, pp. 202–209, 2009. 
[247] D. E. Somers, P. F. Devlin, and S. A. Kay, “Phytochromes and Cryptochromes in the 

Entrainment of the Arabidopsis Circadian Clock,” Science, vol. 282, no. 5393, p. 1488 
LP-1490, Nov. 1998. 

[248] Z. Y. Wang and E. M. Tobin, “Constitutive Expression of the CIRCADIAN CLOCK 
ASSOCIATED 1 (CCA1) Gene Disrupts Circadian Rhythms and Suppresses Its Own 
Expression,” Cell, vol. 93, no. 7, pp. 1207–1217, Oct. 2017. 

[249] M. Ni, J. M. Tepperman, and P. H. Quail, “PIF3, a Phytochrome-Interacting Factor 
Necessary for Normal Photoinduced Signal Transduction, Is a Novel Basic Helix-Loop-
Helix Protein,” Cell, vol. 95, no. 5, pp. 657–667, Oct. 2017. 

[250] K. M. David, U. Armbruster, N. Tama, and J. Putterill, “Arabidopsis GIGANTEA protein is 
post-transcriptionally regulated by light and dark,” FEBS Lett., vol. 580, no. 5, pp. 1193–
1197, Feb. 2006. 

[251] P. A. Salomé and C. R. McClung, “PSEUDO-RESPONSE REGULATOR 7 and 9 Are Partially 
Redundant Genes Essential for the Temperature Responsiveness of the Arabidopsis 
Circadian Clock,” Plant Cell, vol. 17, no. 3, pp. 791–803, Mar. 2005. 

[252] N. A. Eckardt, “Temperature Compensation of the Circadian Clock: A Role for the 
Morning Loop,” Plant Cell, vol. 22, no. 11, p. 3506, Nov. 2010. 

[253] J. KUSAKINA, P. D. GOULD, and A. HALL, “A fast circadian clock at high temperatures is 
a conserved feature across Arabidopsis accessions and likely to be important for 
vegetative yield,” Plant. Cell Environ., vol. 37, no. 2, pp. 327–340, Feb. 2014. 

[254] P. D. Gould et al., “The Molecular Basis of Temperature Compensation in the 
Arabidopsis Circadian Clock,” Plant Cell, vol. 18, no. 5, pp. 1177–1187, May 2006. 

[255] P. Suarez-Lopez, “CONSTANS mediates between the circadian clock and the control of 
flowering in Arabidopsis,” Nature, vol. 410. pp. 1116–1120, 2001. 

[256] F. Valverde, A. Mouradov, W. Soppe, D. Ravenscroft, A. Samach, and G. Coupland, 
“Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering,” Science, 
vol. 303, no. 5660, p. 1003 LP-1006, Feb. 2004. 

[257] T. Imaizumi and S. A. Kay, “Photoperiodic control of flowering: not only by coincidence,” 
Trends Plant Sci., vol. 11, no. 11, pp. 550–558, 2006. 

[258] A. N. Dodd, F. E. Belbin, A. Frank, and A. A. R. Webb, “Interactions between circadian 
clocks and photosynthesis for the temporal and spatial coordination of metabolism,” 
Front. Plant Sci., vol. 6, p. 245, Apr. 2015. 

[259] A. N Dodd, J. Kusakina, A. Hall, P. Gould, and M. Hanaoka, “The circadian regulation of 
photosynthesis,” Photosynth. Res., vol. 119, Mar. 2013. 

[260] M. J. Berridge, M. D. Bootman, and H. L. Roderick, “Calcium signalling: dynamics, 
homeostasis and remodelling.,” Nat. Rev. Mol. Cell Biol., vol. 4, no. 7, pp. 517–29, Jul. 
2003. 

[261] G. J. Allen et al., “A defined range of guard cell calcium oscillation parameters encodes 
stomatal movements,” Nature, vol. 411, no. 6841, pp. 1053–1057, Jun. 2001. 

[262] A. M. Hetherington and C. Brownlee, “The generation of Ca2+ signals in plants,” Annu. 
Rev. Plant Biol., vol. 55, no. 1, pp. 401–427, Apr. 2004. 

[263] D. Sanders, J. Pelloux, C. Brownlee, and J. F. Harper, “Calcium at the Crossroads of 
Signaling,” Plant Cell, vol. 14, no. Suppl, pp. s401–s417, Mar. 2002. 



 

189 
 

189 

[264] M. Ikeda et al., “Circadian Dynamics of Cytosolic and Nuclear Ca2+ in Single 
Suprachiasmatic Nucleus Neurons,” Neuron, vol. 38, no. 2, pp. 253–263, Oct. 2017. 

[265] A. N. Dodd et al., “The Arabidopsis Circadian Clock Incorporates a cADPR-Based 
Feedback Loop,” Science, vol. 318, no. 5857, pp. 1789–1792, Dec. 2007. 

[266] X. Xu et al., “Distinct Light and Clock Modulation of Cytosolic Free Ca2+ Oscillations and 
Rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 Promoter Activity in Arabidopsis,” 
Plant Cell, vol. 19, no. 11, p. 3474 LP-3490, Dec. 2007. 

[267] R. M. Green and E. M. Tobin, “Loss of the circadian clock-associated protein 1 in 
Arabidopsis results in altered clock-regulated gene expression,” Proc. Natl. Acad. Sci., 
vol. 96, no. 7, pp. 4176–4179, Mar. 1999. 

[268] D. Alabadı,́ T. Oyama, M. J. Yanovsky, F. G. Harmon, P. Más, and S. A. Kay, “Reciprocal 
Regulation Between TOC1 and LHY/CCA1 Within the Arabidopsis Circadian Clock,” 
Science, vol. 293, no. 5531, p. 880 LP-883, Aug. 2001. 

[269] L. Greengard and J. Strain, “THE FAST GAUSS TRANSFORM,” Stat. Comput., vol. 12, no. 
1, pp. 79–94, 1991. 

[270] C. R. Dietrich and G. N. Newsam, “Fast and exact simulation of stationary gaussian 
processes through circulant embedding of the covariance matrix,” SIAM J.SCI.COMPUT, 
vol. 18, no. 4, pp. 1088–1107, 1997. 

[271] I.Karatzas and S.Shreve, Brownian Motion and Stochastic Calculus. 1991. 
[272] Z. Yue, “Dynamic Network Reconstruction in Systems Biology: Methods and Algorithms,” 

University of Luxembourg, 2018. 
 
 
 


