
 

 

Assembly and functioning of microbial 

communities along terrestrial resource 

gradients in boreal lake sediments 
 

 

 

Chloé Shoshana Jessica Orland 

Clare Hall 

University of Cambridge 

September 2018 

 

This dissertation is submitted for the degree of Doctor of Philosophy. 

 





Assembly and functioning of microbial communities along 

terrestrial resource gradients in boreal lake sediments 

Chloé Shoshana Jessica Orland 

 

Summary 

Terrestrial inputs of organic matter contribute greatly to the functioning of aquatic 

ecosystems, subsidizing between 30-70% of secondary production. This contribution of 

terrestrial resources is especially important in boreal lakes that are largely nutrient-poor 

and thus more responsive to these additions. Yet the mechanisms underlying initial 

processing of terrestrial resources by microbial communities at the base of lake food 

webs remain poorly understood. With this in mind, this thesis aims to advance our 

understanding of lake sediment microbial community assembly and functioning along 

abiotic gradients, primarily reflecting variation in terrestrial organic matter inputs that 

are predicted to increase with future environmental change. 

Chapter 1 reviews current knowledge on the terrestrial support of lake food 

webs and highlights gaps in understanding the factors influencing the microbial 

processing of terrestrial resources. It also provides an overview of metagenomics 

methods for microbial community analysis and their development over the course of the 

thesis. Chapter 2 tests how much of ecosystem functioning is explained by microbial 

community structure relative to other ecosystem properties such as the present-day and 

past environment. Theory predicts that ecosystem functioning, here measured as CO2 

production, should increase with diversity, but the individual and interactive effects of 

other ecosystem properties on ecosystem functioning remain unresolved. Chapter 3 

further questions the importance of microbial diversity for ecosystem functioning by 

asking whether more diverse microbial communities stabilize ubiquitous functions like 



CO2 production and microbial abundances through time. It also aims to identify the 

biotic and abiotic mechanisms underlying positive diversity-stability relationships. 

Chapter 4 then explores how microbial communities assemble and colonize sediments 

with varying types and amounts of terrestrial organic matter in three different lakes over 

a two-month period. Understanding how microbial communities change in relation to 

sediment and lake conditions can help predict downstream ecosystem functions. Finally, 

Chapter 5 discusses the main findings of the thesis and ends with proposed avenues for 

future research. 
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“A lake is the landscape’s most beautiful and expressive feature. It is Earth’s eye; 

looking into which the beholder measures the depth of his own nature.” 

~ Henry David Thoreau 

 

 

 

 

“Perhaps the truth depends on a walk around the lake.” 

~ Wallace Stevens 
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Summary 

Terrestrial inputs of organic matter contribute greatly to the functioning of aquatic 

ecosystems, subsidizing between 30-70% of secondary production. This contribution of 

terrestrial resources is especially important in boreal lakes that are largely nutrient-poor 

and thus more responsive to these additions. Yet the mechanisms underlying initial 

processing of terrestrial resources by microbial communities at the base of lake food 

webs remain poorly understood. With this in mind, this thesis aims to advance our 

understanding of lake sediment microbial community assembly and functioning along 

abiotic gradients, primarily reflecting variation in terrestrial organic matter inputs that 

are predicted to increase with future environmental change. 

Chapter 1 reviews current knowledge on the terrestrial support of lake food 

webs and highlights gaps in understanding the factors influencing the microbial 

processing of terrestrial resources. It also provides an overview of metagenomics 

methods for microbial community analysis and their development over the course of the 

thesis. Chapter 2 tests how much of ecosystem functioning is explained by microbial 

community structure relative to other ecosystem properties such as the present-day and 

past environment. Theory predicts that ecosystem functioning, here measured as CO2 

production, should increase with diversity, but the individual and interactive effects of 

other ecosystem properties on ecosystem functioning remain unresolved. Chapter 3 

further questions the importance of microbial diversity for ecosystem functioning by 

asking whether more diverse microbial communities stabilize ubiquitous functions like 

CO2 production and microbial abundances through time. It also aims to identify the 

biotic and abiotic mechanisms underlying positive diversity-stability relationships. 

Chapter 4 then explores how microbial communities assemble and colonize sediments 
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with varying types and amounts of terrestrial organic matter in three different lakes over 

a two-month period. Understanding how microbial communities change in relation to 

sediment and lake conditions can help predict downstream ecosystem functions. Finally, 

Chapter 5 discusses the main findings of the thesis and ends with proposed avenues for 

future research. 
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Chapter 1 

General introduction 

 

1.1  Allochthony at the center of freshwater ecosystem dynamics 

1.1.1 Terrestrial resources fuel freshwater ecosystems 

Organic matter derived from terrestrial vegetation and soil, such as wood debris and 

animal detritus, subsidizes much of the secondary production in aquatic food webs. Two 

lines of evidence support this observation. First, in half of all cases, an average of 42% 

of the biomass of lake zooplankton can be traced to allochthonous resources exported 

from terrestrial ecosystems as opposed to the autochthonous resources produced within 

the boundaries of freshwater ecosystems (Tanentzap et al. 2017). Multiple isotopic 

analyses also revealed that fish biomass was derived from terrestrial resources at the 

stream-lake interface (e.g. 57% of fish biomass for Karlsson et al. 2012, 34-66 % for 

Tanentzap et al. 2014). Second, many studies provide evidence that respiration can 

exceed primary production in freshwater systems, particularly in lakes with low primary 

productivity (Cole et al. 1994, del Giorgio et al. 1997, Jansson et al. 2000, Duarte and 

Prairie 2005, Tranvik et al. 2009). As more carbon was released than could be predicted 

from the biomass of photosynthetic organisms within the lake, respiration must have 

resulted from decomposition of terrestrial organic matter (t-OM) inputs that constitute 

an organic carbon (C) source.  

The reliance on allochthonous resources is especially strong in northern 

temperate regions like the boreal (latitude 50° to 70°N), where lakes tend to be less 

productive (Jonsson et al. 2001, Einola et al. 2011) and receive large amounts of t-OM 
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relative to the area they occupy (Wurtsbaugh et al. 2002). In boreal lake food webs, 

allochthonous subsidies from riparian litterfall account for up to half of the resources 

available to aquatic organisms (Karlsson et al. 2012). Understanding these terrestrial-

aquatic linkages is therefore essential for predicting how future environmental changes 

to terrestrial catchments will affect boreal lakes, which are ecologically and 

economically important as they store more than 60% of the planet’s freshwater 

(Schindler and Lee 2010). 

 

1.1.2 The movement of allochthonous resources through freshwater food webs 

Allochthonous inputs tend to be exported into lakes from drainage streams rather than 

surface runoff (Dillon and Molot 1997). As streams feed into lakes, reductions in flow 

rates result in large amounts of these allochthonous inputs settling near shore, creating 

delta landforms (Szkokan-Emilson et al. 2011). The littoral (or nearshore) zone of lakes 

thus disproportionately accumulates allochthonous inputs, and littoral sediment 

constitutes the site where most terrestrially-derived material will be transferred into the 

food web (Wetzel 2001). Importantly, up to half of the particulate organic carbon (POC) 

in lakes originates from terrestrial sources (Pace et al. 2004). POC will be broken down 

into smaller forms differently according to its structure (e.g. particle size, material), 

mixing and residence time (Amon and Benner 1996), and these characteristics strongly 

depend on whether it is from aquatic or terrestrial origin (Wetzel 1995). The microbial 

species present in the sediment will also influence the degradation of POC (Williams et 

al. 2010).  

Additionally, inland waters receive inputs of terrestrially dissolved organic 

carbon (DOC), which increase with vegetation cover, conductivity, soil C:N ratio, soil 

carbon, and soil wetness (Sobek et al. 2007, Tanentzap et al. 2017). Degradation of 

within-lake POC also contributes to the DOC pool (Pace et al. 2004). DOC is a 
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component of dissolved organic matter (DOM). DOM is comprised of low molecular 

weight compounds, such as amino acids and carbohydrates, and high molecular weight 

compounds, such as lignin and aromatic hydrocarbons (Evans et al. 2005). The structure 

of DOM varies greatly with the origin of the DOM and determines the amount of DOC 

available and how it will be processed by microbes (Kellerman et al. 2015), 

subsequently affecting the rest of the food web.  

POC and DOC can enter aquatic food web in two main ways (Fig. 1.1). First, by 

degrading organic C, microbes produce new biomass that mobilizes terrestrial resources 

into the aquatic food web (Hessen 1998, Jansson et al. 2007). In the process, microbes 

release inorganic nutrients that are made accessible to algae, for example by respiring 

inorganic forms of C, such as CO2 (Cole et al. 1994, Roehm et al. 2009). Dissolved 

inorganic carbon (DIC) can indeed fuel the fixation of new sources of organic carbon by 

algal photosynthesis (Hanson et al. 2006). Second, organic C can be directly ingested by 

macroinvertebrates and zooplanktonic primary consumers (Cole et al. 2006). Although 

the incorporation of t-OM into aquatic food webs is well understood, the mechanisms of 

this energy transfer, e.g. whether it depends on abiotic or biotic conditions, remains 

poorly studied.  
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Fig. 1.1 | Aquatic food web with allochthonous inputs (t-DOC and t-POC) and energy 

moving upwards through the food web. Solid arrows represent the pathway of entry of carbon 

to higher trophic levels and dashed arrows represent bacterial activity that “loops” the energy 

from detritus back into the food web. Allochthonous sources are directly mobilized into aquatic 

food webs by microbes and invertebrates, thereby tying land to water. 

 

1.1.3 Consequences and limitations of allochthony in lake food webs 

Evidence that t-OM subsidizes higher trophic levels in the freshwater food web suggests 

that allochthonous resources must be entering lakes at the base of the food web 

(Richardson 1991, Carpenter et al. 2005). For example, Tanentzap et al. (2014) found 

that the sizes of juvenile fish increased as more t-OM was exported into the nearshore 

waters beneath eight boreal catchments, with energy flowing upwards through bacteria 

and zooplankton communities. These results supported the trophic upsurge hypothesis 

(Baranov 1961), whereby differences in the productivity of biological communities are 

due to differing amounts of energy transferred upwards through the food web rather 

than to top-down changes exerted by predators. Microbial communities, situated at the 
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bottom of the food web, should therefore play a key role in influencing entire food webs 

and ecosystems more broadly.  

There may also be limits to whether OM quantity benefits aquatic food webs. 

Terrestrial inputs that are too large can shade phytoplankton and limit aquatic 

production (Karlsson et al. 2009, Jones et al. 2012). In contrast to the Tanentzap et al. 

(2014) study, Finstad et al. (2014) found that once forest cover reached a certain 

threshold density, it limited fish biomass rather than enhanced it due to light limitation 

of primary production at increasing depth. Additionally, reduced water clarity may shift 

planktonic species to less nutritious ones with lower fatty acid concentrations, which are 

essential to support higher trophic levels (Brett and Muller-Navarra 1997). Zooplankton 

preferentially feed on phytoplankton, meaning that allochthonous inputs, which are of 

much lower nutritional quality, may be less selected  if phytoplankton are available 

(Brett et al. 2009, Brett et al. 2012). Abiotic factors that are influenced by t-OM like 

temperature and UV levels may also affect primary production within the system and 

subsequently higher trophic levels (Lefébure et al. 2013). Whether this allochthonous 

organic carbon is adding to autotrophic fixation by algae, replacing it, or perhaps even 

limiting it (Finstad et al. 2014), remains uncertain, and may depend on the role of 

microbial communities. Most studies have focused on the positive relationship between 

terrestrial OM inputs and secondary consumer abundance, however the role that 

microbial organisms play in enabling this transfer of energy and the link between OM 

and microbes needs to be better understood.  

 

1.2  Lake sediments as sinks and sources of carbon 

1.2.1 The contribution of allochthonous resources to carbon cycling  

In addition to supporting lake food webs, microbial decomposition of POM and DOM 

in sediments contributes to whole-lake nutrient and carbon cycling. The surface area of 
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lakes makes up 0.6% of the oceans’ surface area (Einsele et al. 2001). Yet lakes store 

disproportionally high quantities of carbon due to the rapid accumulation of sediments 

and high preservation times (about 10,000 years), burying the equivalent of a fourth of 

the annual atmospheric carbon stored in oceans (Dean and Gorham 1998, Einsele et al. 

2001). Of these carbon inputs, lakes have been estimated to receive 5.1 Pg.C.year-1 from 

terrestrial sources, with approximately 0.6 of which is buried in the sediment (Battin et 

al. 2009, Tranvik et al. 2009, Drake et al. 2017). In boreal lakes, 40-70% of the carbon 

buried in the sediments will be respired, a figure which decreases with within-lake 

productivity (Pace and Prairie 2005). 

Lakes play two contrasting roles in carbon cycling: they fix carbon through 

photosynthesis, but also mineralize organic carbon, releasing DIC (e.g. CO2, CH4) 

through respiration. The balance between fixation and mineralization establishes 

whether there is a net uptake or net loss of CO2. Yet accurately estimating this balance 

is challenging, as many components (e.g. allochthonous sources, losses from flow, 

sediment burial) are difficult to measure. Hanson et al. (2015) identified 10 questions 

that need to be addressed to calculate lake carbon budgets more accurately. Amongst 

these, quantifying the partitioning of allochthonous inputs to lakes and understanding 

the observed variation in gas exchange through mineralization at different sites are key 

questions to answer. These processes are heavily reliant on the gas fluxes from sediment 

microbial communities, and any changes in decomposition rates will consequently 

impact biogeochemical cycles.   

 

1.2.2 The role of microbial communities in mineralization   

Microbial communities drive decomposition in sediment, and different taxa contribute 

differently to this process. Heterotrophic bacterial groups, which consume a large 

portion of the DOM in the sediment (Solomon et al. 2015), have been recognized as 
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active decomposers of low molecular weight compounds (Berggren et al. 2010a) based 

on nutrient requirements (Peura et al. 2012) and on their metabolic activity (Hooper et 

al. 2002). For example, Betaproteobacteria and Bacteroidetes are found in aquatic 

sediments rich in organic carbon and the Nitroso-genera is known to oxidise ammonia 

(Kirchman 2002, Fazi et al. 2005, Fierer et al. 2007). Microcosm and field experiments 

in streams have also shown that fungi convert 14-48% of organic carbon from leaves 

into CO2 (Suberkropp 1991, Gulis and Suberkropp 2003). Additionally, aquatic fungal 

species actively uptake nitrogen (Tank and Dodds 2003), and this nitrogen mobilization 

is itself related to higher levels of respiration (Stelzer et al. 2003) and leaf litter 

decomposition (Huryn et al. 2002), contributing to OM decomposition as part of the 

microbial loop (Pomeroy 1974, Azam et al. 1983, Baldy et al. 2002, Wurzbacher et al. 

2010). Finally, archaeal taxa, particularly methanogens that metabolize carbon into 

methane, are responsible for 10-50% of the overall carbon mineralization in lakes 

(Bastviken et al. 2008).  

The range of different functions (i.e. functional diversity) performed within 

microbial communities will likely influence mechanisms of decomposition. For 

example, sulfate-reducing bacteria, which can decompose OM anaerobically, are highly 

important in freshwater sediments, which are usually rich in sulfate. These bacteria have 

been shown to compete with methanogens for hydrogen, which may have consequences 

for oxidation processes (Lovley and Klug 1983). The importance of methane-oxidizing 

bacteria has also been highlighted in lakes, with methanogenic carbon shown to support 

a substantial part of production in higher trophic levels (17% and 12%, Ravinet et al. 

2010 and Lau et al. 2014, respectively, and up to 46% in the summer in chalk rivers as 

shown by Shelley et al. 2014). Overall, the variety of functions performed by microbial 

communities in freshwater sediments suggests that specific microbial species may be 

specialized, or more frequently associated, with certain tasks. If these different tasks are 
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decomposition-related, decomposition may be greater in species-rich communities 

because of the complementarity of functions conferred by different species. 

 

1.3  Lake microbiomes in a changing environment 

1.3.1 Lake sediments in a changing world 

Boreal ecosystems are undergoing rapid changes (Kirtman et al 2013), with longer 

growing seasons and shifts in tree species composition from coniferous to deciduous 

(Heathcote et al. 2015). Consequently, the type and amount of allochthonous resources 

delivered to inland waters and its impact on terrestrial-aquatic linkages is expected to 

change (Boisvert-Marsh et al. 2014, Creed et al. 2018). Other abiotic processes – 

mainly due to anthropogenic activities – are expected to impact boreal lake ecosystems. 

For example, warming and increased reactive nitrogen deposition are accelerating 

carbon burial in sediments (Heathcote et al. 2015). Additionally, increased exports of 

DOC due to, among other factors, precipitation-driven runoff and reductions in 

atmospheric acid deposition, are responsible for increased “browning” of lakes (Clark et 

al. 2010, Finstad et al. 2016, Creed et al. 2018). All these environmental changes are 

likely to change the biodiversity, functioning, and stability of lake sediments. 

 

1.3.2 Biodiversity and ecosystem functioning along environmental gradients  

Decomposition rates depend on the presence of specific microbial groups (Hooper et al. 

2002, Krause et al. 2014), but whether these rates increase systematically with the 

diversity and abundance of microbial taxa and genes (hereafter “community structure” 

as defined by Bier et al. 2015) is poorly understood. Diverse microbial communities 

may elevate decomposition rates if they capture a greater range of species capable of 

breaking down carbon substrates. Such a positive association between biodiversity and 

ecosystem functioning (B-EF) may arise through several mechanisms. For example, 
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with more species present, the community may be dominated by species with traits that 

enhance productivity (Loreau and Hector 2001, Cardinale et al. 2002). Species can also 

coexist without competing, by using resources in a complementary way, through 

ecological niche partitioning and facilitation (Loreau and Hector 2001). On the other 

hand, direct competition for resources and overlapping niche space with increased 

diversity can lead to functional redundancy and competitive exclusion and result in a 

negative B-EF relationship (Naeem 2002).  

Importantly, B-EF relationships can shift along environmental gradients 

(Hooper and Dukes 2004, Graham et al. 2016; Fig. 1.2). In such cases, species richness 

may not be the best predictor of ecosystem function and species composition or species 

traits may be better (Purvis and Hector 2000, Stachowicz et al. 2007, Solan et al. 2013). 

Species richness can also change along resource gradients. For example, the stress-

gradient hypothesis (SGH) predicts that biodiversity should be higher in resource-

limited environments due to facilitation and lower in less-stressful environments where 

competitive interactions are frequent (Bertness and Callaway 1994). Any such change 

to biodiversity along environmental gradients may subsequently influence ecosystem 

functioning (Callaway 2007, Maestre et al. 2009, Jucker and Coomes 2012).  

 

1.3.3 The stabilizing effect of diversity on ecosystem functioning  

A key finding from research into B-EF is that, besides promoting ecosystem 

functioning, the presence of more species stabilizes ecosystem function through time 

(Tilman 1999, Isbell et al. 2009, Hautier et al. 2014). Most of the evidence for the 

stabilizing effect of diversity on ecosystem function comes from grassland studies, 

where species-rich communities fluctuate less in their primary productivity over time 

than species-poor ones (Hautier et al. 2014, Jucker et al. 2014). However, much less is 

known about the diversity-stability (D-S) relationship in microbes (Downing et al. 
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2014, Wagg et al. 2018). With environmental changes expected to drastically alter 

species diversity in the future (Cardinale et al. 2012), understanding the D-S 

relationship and its mechanisms will improve predictions of ecosystem processes 

carried out by microbial communities (McGrady-Steed et al. 1997, McCann 2000).  

More diverse microbial communities can stabilize ecosystem functions like 

decomposition through at least three mechanisms that have been identified from other 

systems (Downing et al. 2014). First, ecosystem function may be stabilized by diversity 

if the presence of more species increases mean ecosystem function over time (Hector et 

al. 2010). Similar to the B-EF relationship, this stabilizing effect may arise if species 

partition resources such that they minimize inter-specific competition and have greater 

than expected functioning (Loreau and Hector 2001). Second, increased diversity may 

reduce the variability of ecosystem function by enhancing facilitative interactions 

among species and thus promoting species coexistence (Mulder et al. 2001, del Río et 

al. 2014). Finally, more diverse communities can maintain ecosystem function because 

there are more species that can increase in abundance and compensate for declines in 

the abundance of other species that contribute to functioning (Houlahan et al. 2007, 

Hector et al. 2010).  

Environmental change may also influence the mechanisms underlying the 

stabilizing effect of diversity (McGrady-Steed et al. 1997, McCann 2000; Fig. 1.2). One 

reason why these diversity-stability (D-S) relationships might vary in boreal freshwaters 

is because larger inputs of aromatic t-OM are forecast (Creed et al. 2018). As t-OM has 

been shown to be bioavailable for microbial growth and respiration (Guillemette and del 

Giorgio 2011, Lapierre et al. 2013), such environmental changes may strengthen the 

stabilizing effect of diversity by providing more resources that will enhance mean 

ecosystem function (Micheli et al. 1999, Downing et al. 2008). D-S relationships can 

also be strengthened by environmental changes that promote species coexistence. Such 
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circumstances might arise if a species mitigates the negative effects of an environmental 

change on the abundance of other species, subsequently reducing temporal variability in 

ecosystem function (Vogt et al. 2006, Romanuk et al. 2010, Downing et al. 2014). 

Finally, environmental changes that differentially modify species abundances and 

subsequently enhance species fluctuations can also influence the strength of D-S 

relationships (Ives et al. 1999, Thébault and Loreau 2005, Loreau and de Mazancourt 

2008). Despite the importance of predicting ecosystem functioning in the context of a 

changing world, few studies have simultaneously tested for these mechanisms and their 

environmental dependency outside of primary producers (Grman et al. 2010, Downing 

et al. 2014).  

 

1.3.4 Environmental influences on temporal changes in community composition  

How communities change with time will subsequently shape the traits and functions 

that they perform (Fukami and Morin 2003, Fukami et al. 2010, Popp et al. 2017), 

influencing both community structure and ecosystem function. The temporal processes 

that influence how these communities change, like turnover and succession rates, are 

expected to be high in microbial communities (Schmidt et al. 2007). Additionally, 

small- and large-scale abiotic conditions that filter species assemblages will influence 

these temporal changes in community composition (Langenheder and Székely 2011, 

Kraft et al. 2015). For example, large-scale filters, such as connectivity among 

catchments and lake conditions (Nelson et al. 2009, Nino-Garcia et al. 2016), and 

smaller-scale filters, such as resource quantity and quality (Ruiz-Gonzalez et al. 2015a, 

Tanentzap et al. 2014) and pH (Fierer and Jackson 2006), structure microbial 

communities. Yet little is know about how these different environmental scales 

influence the rate at which communities develop with time.  
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Communities can also change temporally when the presence of one species 

affects the presence of others (Newman 2003, Gotelli and McCabe 2002). Priority 

effects, whereby the presence of one species in a habitat reduces the probability that 

another species will colonize that habitat, explain how taxa that first colonize a habitat 

and start occupying niche space may be more likely to dominate (Shulman et al. 1983). 

These priority effects mean that the early stages of development are particularly 

important for later community composition (Fierer et al. 2010, Fukami 2015). 

Additionally, positive interactions among species may intensify through time, as 

functional complementarity among coexisting species strengthens and redundancy 

diminishes (Gross et al. 2014, Zuppinger-Dingley et al. 2014). These interactions can 

generate co-occurrence relationships that will in turn impact aspects of the community 

such as taxonomic and functional composition (Chesson 2000, Williams et al. 2014) 

and, importantly, alter the stability of the community over long timescales 

(HilleRisLambers et al. 2012). Environmental filters will also influence these inter-

specific interactions by indirectly enhancing or limiting resource availability and thus 

modifying which species will persist in the community (Tilman 1982, HilleRisLambers 

et al. 2012). Consequently, understanding how microbial communities change in their 

early development along environmental gradients will improve predictions of both 

community structure and ecosystem functioning (Fig. 1.2). These predictions will be 

particularly valuable where small- and large-scale changes are forecast, such as in 

boreal ecosystems where warmer climates and increased t-OM export will impact 

freshwaters (Creed et al. 2018). 
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Fig. 1.2 | Pathways by which the environment and temporal dimensions affect community 

structure and ecosystem function. Solid arrows represent pathways tested in this thesis (with 

corresponding chapter numbers) and dashed arrows represent interactive effects. Green boxes 

and text indicate processes informing community structure, and the blue box and red box 

indicate components of community structure and ecosystem function, respectively.  

 

1.4  Advances in studying microbial communities 

Sediment microbes are essential to understanding terrestrial-aquatic linkages as they are 

the primary organisms that interact with t-OM. Traditionally, it has been difficult to 

gather information on microbial communities. Identifying them taxonomically was 

complicated by their microscopic size and relative morphological similarity, and 

identifying them functionally was limited by the difficulties associated with microbial 

culturing. Over the last three decades, advances in DNA sequencing technologies and 
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bioinformatics have however transformed the field of microbial ecology. The 

composition and dynamics of complex communities from a range of environments are 

being studied in greater detail than ever before (Solieri et al. 2013, Knight et al. 2018). 

In particular, the commercialization of the first high-throughput sequencer in 2005 (i.e. 

454 Roche) progressively replaced more traditional molecular methods like terminal 

restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel 

electrophoresis (DGGE), and, in doing so, revolutionized our understanding of 

microbes. Reductions in cost and easy-to-use library preparation kits meant sequencing 

hundreds of samples to depths of tens of thousands of reads rapidly became feasible 

both financially and technically. 

The shift from fingerprinting methods (e.g. T-RFLP and DGGE), which allowed 

diversity patterns in communities to be determined but not the identity of the taxa 

present, to sequencing methods that recovered taxonomic and functional information 

had a major impact on thinking in ecology. These new sequencing methods immediately 

advanced our understanding of microbial communities as a whole, providing 

information on their structure, diversity, and on their rarer components at a much 

greater depth than previously possible (Pedrós-Alió 2007, del Giorgio 2010). Perhaps 

one of the first – and certainly one of the most cited – papers to reveal the potential of 

metagenomics dates back to 2004, when Venter et al. sequenced seawater samples from 

the Sargasso Sea. They discovered over 1.2 million previously unknown genes and 

demonstrated that this method provided relatively unbiased taxonomic information, 

thereby highlighting the importance of metagenomics for our understanding of species 

and gene diversity in the environment (Venter et al. 2004). Another seminal paper 

provided the first evidence for global patterns of bacterial diversity in seawater and 

identified the environmental drivers associated with these patterns (Zinger et al. 2011). 

In the field of freshwater ecology, some of the first, key pieces of research done with 
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metagenomics revealed: 1) support for the partitioning of bacterial taxa along carbon 

substrate resource gradients (Jones et al. 2009), 2) the prevalence of bacterial dormancy 

in nutrient-poor lakes and the disproportionate activity of rare taxa relative to common 

bacteria (Jones et al. 2010), and 3) bacterial resistance to whole-ecosystem disturbance 

(Shade et al. 2012). 

More recent developments have led to further improvements. While it was only 

possible to recover community-wide taxonomic information from sequencing 

technologies as recently as 2013, it is now possible to obtain high-resolution functional 

data on microbial communities (Tessler et al. 2017; Fig. 1.3). This shift from 

“amplicon” to “shotgun” sequencing emerged from innovations in library preparation 

and sequencing platforms. Amplicon sequencing involves targeting a conserved but 

highly variable region of a single gene – for example, 16S rRNA and ITS genes are 

typically used for bacteria and fungi, respectively. By contrast, shotgun sequencing 

indiscriminately sequences across entire genomes. There are multiple advantages to 

this. First, shotgun library preparations do not require a PCR amplification step, which 

can introduce multiple biases (e.g. amplification bias due to primer affinity for certain 

sequences, amplicon size, and number of PCR cycles, as well as bias induced by 

differential gene copy numbers among taxa; Clooney et al. 2016, Knight et al. 2018). 

Second, considering no single gene is targeted, information on thousands of genes can 

be obtained and thus simultaneously provide both functional and taxonomic 

information. The downsides to shotgun sequencing (i.e. relatively higher costs and 

challenges in storing and processing the much larger datasets) mean that amplicon 

sequencing is still widely used. Yet there appears to be increasing support towards using 

shotgun sequencing approach (Clooney et al. 2016, Ranjan et al. 2016, Knight et al. 

2018). This approach is particularly valuable for research on ecosystem functioning as it 
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provides information on the microbial genes present that can be linked to processes like 

decomposition.  

 

 

Fig. 1.3 | Innovations in microbial community sequencing are revolutionizing our 

understanding of their structure and dynamics. While a) amplicon sequencing is a fast, cost-

effective, and well-developed method of obtaining taxonomic information, b) shotgun 

sequencing reduces biases associated with amplification and allows functional information to be 

simultaneously recovered.  

 

The field of bioinformatics – i.e. the computational processing of sequencing 

data – has also evolved hugely in recent years. With all its advantages, high-throughput 

sequencing also brought about a major challenge: recovering taxa and functions from 

the millions of bases sequenced. Numerous tools and pipelines were developed to make 

these steps more accessible and computationally efficient. One such novelty worth 

highlighting is DADA2 (Callahan et al. 2016a), which has already gained in popularity 
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in the field of microbial ecology (Hugerth and Andersson 2017, Knight et al. 2018, 

Pollock et al. 2018). Rather than arbitrarily determining taxa with the usual 97% 

threshold sequence similarity, this method defines unique sequence variants thanks to a 

method that controls for amplification and sequencing errors (Callahan et al. 2016a). 

The sequences produced are thus more biologically meaningful as they represent unique 

microbial taxa, and yield more accurate and reproducible amplicon data across studies 

than previous methods allowed (Callahan et al. 2017). Obtaining higher resolution 

taxonomic information will improve estimates of microbial richness and thus our 

understanding of microbial community structure.  

Microbial ecology stands out as a field currently undergoing particularly fast-

paced and innovative changes, with more promising technologies on the horizon (e.g. 

improved methodologies for transcriptomics, low-cost third generation sequencing). 

These innovations will allow microbes to be sampled at increasingly high-resolution, 

and to link microbial community structure and dynamics to key ecosystem processes, 

such as decomposition.   

 

1.5  Thesis aims 

The aim of this thesis is to address how microbial communities assemble and function 

along terrestrial resource gradients in boreal lake sediments. Applying advances in 

microbial genomics to field data from observational and experimental studies, I address 

three main questions: 
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1) How do temporal processes influence aquatic microbial community assembly 

and structure (Chapters 2 and 4)? 

2) How do spatial environmental gradients related to terrestrial inputs influence 

community structure (Chapters 2-4)?  

3) How do the environment and community structure individually and interactively 

influence ecosystem function (Chapters 2 and 3)? 

 

More specifically, in Chapter 2 I test how much of ecosystem functioning is 

explained by microbial community structure relative to other ecosystem properties such 

as the present-day and past environment. Theory predicts that ecosystem functioning, 

here measured as CO2 production, should increase with diversity, but the individual and 

interactive effects of other ecosystem properties on ecosystem functioning remain 

unresolved. In Chapter 3 I further question the importance of microbial diversity for 

ecosystem functioning by asking whether more diverse microbial communities stabilize 

important ecosystem functions over time and how this stabilizing effect might vary 

along environmental gradients. I also aim to identify the biotic and abiotic mechanisms 

underlying positive diversity-stability relationships. Chapter 4 then explores how 

microbial communities colonize sediments with replicated gradients of terrestrial 

organic matter in three lakes with differing water quality. Understanding how microbial 

communities change over time in relation to small-scale (i.e. sediment conditions) and 

large-scale (i.e. lake conditions) environmental filters can help predict downstream 

ecosystem functions. Finally, I discuss the main findings of the thesis and end with 

proposed avenues for future research in Chapter 5. 
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Chapter 2 

Microbiome functioning depends on 

individual and interactive effects of the 

environment and community structure 

 

2.1 Abstract 

How ecosystem functioning changes with microbial communities remains an open 

question in natural ecosystems. Both present-day environmental conditions and 

historical events, such as past differences in dispersal, can have a greater influence over 

ecosystem function than the diversity or abundance of both taxa and genes. Here, we 

estimated how individual and interactive effects of microbial community structure 

defined by diversity and abundance, present-day environmental conditions, and an 

indicator of historical legacies influenced ecosystem functioning in lake sediments. We 

studied sediments because they have strong gradients in all three of these ecosystem 

properties and deliver important functions worldwide. By characterizing bacterial 

community composition and functional traits at 8 sites fed by discrete and contrasting 

catchments, we found that taxonomic diversity and the normalized abundance of 

oxidase-encoding genes explained as much variation in CO2 production as present-day 

gradients of pH and organic matter quantity and quality. Functional gene diversity was 

not linked to CO2 production rates. Surprisingly, the effects of taxonomic diversity and 

normalized oxidase abundance in the model predicting CO2 production were attributable 
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to site-level differences in bacterial communities unrelated to the present-day 

environment, suggesting that colonization history rather than habitat-based filtering 

indirectly influenced ecosystem functioning. Our findings add to limited evidence that 

biodiversity and gene abundance explain patterns of microbiome functioning in nature. 

Yet we highlight among the first time how these relationships depend directly on 

present-day environmental conditions and indirectly on historical legacies, and so need 

to be contextualized with these other ecosystem properties. 

 

2.2 Introduction 

Biodiversity-ecosystem functioning (B-EF) relationships are generally expected to be 

positive because more unique functions are captured as species numbers increase. While 

this prediction often holds true for macroorganisms (Tilman et al. 2014), it is still 

contested for microorganisms. Some have found support for positive B-EF relationships 

in microbial communities (Bell et al. 2005, Venail and Vives 2013, Delgado-Baquerizo 

et al. 2016, Laforest-Lapointe et al. 2017), as expected if microbes perform a diversity 

of functions (e.g. litter decomposition, temperature regulation, nutrient cycling), which 

increase with numbers of taxa. However, others have found negative and no B-EF 

relationships (Jiang 2007, Becker et al. 2012). One explanation for this conflicting 

evidence is that taxonomic diversity may have relatively little influence on functioning 

in microbial ecosystems that are saturated by thousands of species that overlap in their 

traits (Nielsen et al. 2011). Empirical evidence to support B-EF theory in microbes has 

also come from communities where species richness rarely exceeds 100 taxa (Krause et 

al. 2014), which is much less than the thousands of taxa found in natural communities, 

e.g. up to 9,000 prokaryotic taxa in 1 cm3 of soil (Bardgett and van der Putten 2014), 

but see Delgado-Baquerizo et al. (2016) and Laforest-Lapointe et al. (2017).  
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Functional information may help resolve the lack of widespread evidence for a 

positive B-EF relationship in microbial communities by overcoming the limitations of 

using solely taxonomic information. In particular, taxonomic information may have 

little value where it does not map onto function, and this may be relatively common in 

microorganisms because taxa are delineated from classifying closely-related genetic 

sequences rather than morphological or physiological traits (Martiny et al. 2013). 

Horizontal gene transfer can also complicate the use of taxonomic information in 

microbes because traits might not be vertically transmitted as expected based on 

phylogeny (Doolittle 1999). Given these concerns, Graham et al. (2016) recently found 

that combining both taxonomic and functional measures of diversity strengthened 

predictions of ecosystem functioning across 82 microbial systems compared to models 

including only microbial biomass. While 56% of the variation in functioning was 

explained by environmental variables, such as pH and temperature, incorporating 

information about microbial taxonomic diversity explained, on average, 8% of 

additional variance (Graham et al. 2016). Total functional gene abundance equally 

improved predictions of microbial respiration (Graham et al. 2016). These findings 

underscore the importance of considering abundance and diversity metrics of both 

function and taxonomy when predicting B-EF relationships.  

Past events can also leave a legacy on present-day microbial communities and 

influence species composition and subsequent ecosystem function as much as the 

contemporary environment (Vass and Langenheder 2017, Martiny et al. 2017). These 

events can include past differences in dispersal and environmental conditions that have 

differentially sorted species composition. Thus, microbial communities can have less 

gene flow and greater genetic divergence as they become increasingly distant in space 

irrespective of environmental similarity (Martiny et al. 2006). For example, recent 

evidence has shown that historical legacies can result in different microbial 
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communities in similar environmental conditions, partly because microbes are not 

ubiquitously distributed (Friedline et al. 2012). Consequently, B-EF relationships have 

been found to depend on the temporal order of community assembly (Fukami and 

Morin 2003, Fukami et al. 2010) and to vary over small spatial distances (i.e. 20 m; 

Lear et al. 2014). Despite their potential importance for ecosystem functioning, the 

effect of historical legacies relative to other ecosystem properties remains unclear.  

Here we estimated how three ecosystem properties – microbial diversity and 

abundance (hereafter “community structure” as defined by Bier et al. 2015), present-day 

environmental conditions, and historical legacies – influenced ecosystem functioning in 

lake sediments. Our approach advanced the search for bivariate B-EF relationships by 

assessing the importance of diversity in the context of other ecosystem properties. Lake 

sediments are well suited to test the importance of different ecosystem properties 

because they: (i) share a common microbial species pool from which communities can 

be differentially assembled according to past events (Niño-García et al. 2016), (ii) span 

large environmental gradients across relatively small distances (i.e. meters), and (iii) 

carry out functions with widespread importance, such as for carbon (C) cycling 

(Tranvik et al. 2009). Using next-generation sequencing, we first tested for evidence 

that historical legacies and environmental conditions influenced microbial community 

composition in lake sediments. We then tested how much in-situ organic matter 

mineralization rates – measured as CO2 production under ideal conditions – varied with 

two diversity and two abundance metrics relative to the influence of historical legacies 

and the present-day environment. CO2 production is a direct measure of ecosystem 

function because it is indicative of both food web production and whole-lake C cycling 

(Tranvik et al. 2009). We predicted that higher levels of diversity, particularly a greater 

diversity of functional genes, as well as a greater abundance of genes involved in 

organic matter (OM) decomposition, would increase ecosystem functioning. We also 
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predicted that microbial community structure would be primarily influenced by 

variation in environmental conditions rather than colonization history, as expected if 

dispersal was unlimited (‘everything is everywhere, but the environment selects’ 

hypothesis; Baas-Becking 1934). Overall, our results add to limited evidence that the 

diversity and abundance of both taxa and functional genes explain microbiome 

functioning in nature, and highlight for among the first time how these effects directly 

depend on local environmental conditions and indirectly on historical legacies.  

 

2.3 Materials and methods 

2.3.1 Study site 

We sampled 8 littoral sites each located immediately beneath a discrete catchment 

drained by a single stream in Daisy Lake, Ontario, Canada (46°270 N, 80°520 W; lake 

area: 36 ha; maximum depth: 14 m, Fig. A.1). The sites spanned large gradients in the 

quantity and quality of terrestrial OM inputs from the surrounding vegetation 

(Tanentzap et al. 2014). These gradients arose from variation in recovery from historical 

acid and metal contamination, which increased with proximity to a nickel smelter that 

was closed in 1972 and located 3.5 km northeast of the lake. Following closure of the 

smelter, lake water chemistry returned to levels characteristic of the broader region: 

mean ± standard error pH across sites of 6.86 ± 0.02 (Szkokan-Emilson et al. 2011). 

However, the surrounding vegetation, primarily comprised of paper birch (Betula 

papyrifera) and trembling aspen (Populus tremuloides), has been much slower to 

recover, resulting in a large gradient across sites in terrestrial OM inputs. 

Past environmental histories in each site can also result in unique species 

composition (Martiny et al. 2006). Thus, we considered that the identity of each site 

would reflect the legacy of historical events with its own unique soils, geomorphology, 

and dispersal events and these effects would differ from those of the present-day 
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environment that we could characterize in each site from directly measurable biotic and 

abiotic variables (described below). 

 

2.3.2 Ecosystem functioning and environmental characterization 

We measured ecosystem functioning in 10-15 sediment samples that were collected 

from each site in waters that ranged from 0.5-1.0 m deep (total n = 97). For each 

sample, we extruded approximately 35 mL of sediment to a depth of 7.5 cm into 50 mL 

poly-propylene centrifuge tubes (2.6 cm diameter) using a modified piston corer. 

Samples were covered with approximately 10 mL lake water from the associated site 

and transported to the lab on ice. 

Ecosystem functioning was measured as total CO2 production per m2 after 20 

hours. We incubated sediment samples in the dark at 20.5°C and collected headspace 

gas at the start and end of the incubation by extracting a 2 mL gas sample with an 

airtight syringe. Gas samples were analyzed on an infrared CO2 analyzer (Q-S151, 

Qubit Systems, Kingston, ON, Canada) with a N2 carrier and converted to mass 

produced per m2 using the ideal gas law and a tube surface area of 5.31 cm2. During 

sediment sampling, ambient air samples were collected in airtight syringes from each 

site for subtraction of pre-incubation CO2 from headspace mass. Sediments were then 

freeze-dried and stored at -20˚C to stabilize the microbial communities and ensure they 

were representative of CO2 measurements (Miller et al. 1999).  

We initially characterized sediments with 20 environmental variables. To 

minimize collinearity, we reduced these to 4 statistically independent predictors that 

best characterized environmental differences: pH, OM quantity, % terrestrial C, and 

C:N ratio (see Appendix A.1 and Table A.3 for details). Although this reduction in 

variables somewhat biased our representation of the local environment, we were 

primarily interested in estimating the importance of the strongest environmental 
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gradients relative to other ecosystem properties. First, we measured pH in porewater of 

each sediment sample at the time of collection with a handheld pH meter 

(HI9126/HI1230, Hanna Instruments, Woonsocket, RI, USA). Second, 0.5 g of each 

sediment core was analyzed after incubation for percent OM content as weight loss on 

ignition (LOI) for 12 hours in a 400°C muffle furnace, confirming the absence of any 

visible char (Ball 1964). We then used two complementary measurements of OM 

quality that were averaged at the site-level from a different, unpublished study 

(Appendix A.1). The first was the percent of terrestrial C in sediment, which 

characterized the origin of OM. Percent terrestrial C was estimated with a three isotope 

(δ13C, δ15N, δ34S) mixing model (full details in Appendix A.1). The second 

measurement was the C:N ratio of sediment, which characterized OM composition. 

Lower C:N ratios were considered a higher quality to microbial decomposers because 

they provide more N per mass of sample and are typically associated with more labile 

material (Taylor et al. 1989). 

 

2.3.3 Microbial communities 

We constructed amplicon sequencing libraries for each sediment sample to characterize 

microbial community composition. Following careful homogenization, DNA was 

extracted from 0.25 g of each of the samples that had CO2 measurements using a 

PowerSoil PowerLyser DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA, 

USA) according to the manufacturer’s instructions. Insufficient fungal sequences were 

recovered, so we focused on bacteria as representatives of the microbial community. 

We targeted the V3-V4 region of the 16S rRNA gene using the bacteria-specific 341F-

805R primer pair with a two-stage PCR designed for paired-end sequencing. Amplicons 

were sequenced on an Illumina MiSeq platform (Illumina, San Diego, CA, USA), 

quality-filtered to remove low-quality bases and putative chimeras, and clustered into 
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operational taxonomic units (OTUs) at 97% sequence similarity using mothur version 

1.39.5 (Schloss et al. 2009). Any read sequenced fewer than six times was removed 

from subsequent analyses to minimize the influence of spurious reads (Curd et al. 

2018). Counts of individual OTUs were then scaled by the total number of reads in each 

sample to account for sequencing biases using the R package DESeq2 (Love et al. 

2014). This measure of “normalized abundance” allows samples with varying read 

counts to be compared (Knight et al. 2018). Such normalization is widely applied for 

high-throughput count data (Dillies et al. 2012, McMurdie and Holmes 2014), and all 

downstream analyses were performed on the DESeq-transformed data to control for 

these differences in read numbers (Weiss et al. 2017, Knight et al. 2018).  

We also constructed shotgun sequencing libraries for 22 of the 97 samples in 

order to characterize functional genes present in each site (n=2-3 samples per site). 

Sequencing libraries were prepared with 1 ng of genomic DNA per sample using the 

Nextera XT DNA Sample Preparation Kit (Illumina) following the manufacturer’s 

instructions and sequenced on an Illumina NextSeq platform. Raw sequences were 

processed following the EMBL-EBI pipeline version 3.0 (Mitchell et al. 2015) and 

summarized using Gene Ontology (GO) terms. Sequences were deposited in EBI under 

project number ERP016063 (full details in Appendix A.1).  

Using the microbial sequencing data, we calculated two diversity and two 

abundance metrics. First, we calculated normalized bacterial abundance by summing 

the total number of OTUs per sample. The number of OTUs were DESeq-transformed 

counts rather than relative abundances, so their sum was not equal to 1 and represented 

differences in normalized abundances between samples (Weiss et al. 2017, Knight et al. 

2018). Second, we calculated taxonomic diversity as Shannon’s H’ for each sample at 

both the OTU- and the family-level. As both measures were strongly correlated (ρ = 

0.92, p < 0.0001), we used the family-level Shannon’s H’ in our analyses to limit the 
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number of unclassified taxa whilst retaining as much information as possible about 

taxonomic diversity (42% of reads were classified to this rank). Shannon’s H’ is 

considered a robust estimator of diversity for microbial communities as it accounts for 

both abundance and evenness (Haegeman et al. 2013), and has been widely used, 

thereby allowing for comparison with other studies (Ruiz-Gonzalez et al. 2015b, 

Delgado-Baquerizo et al. 2016). Similarly, we calculated functional diversity on the 

data obtained from shotgun sequencing using Shannon’s H’. Finally, we defined four 

subsets of functional genes that were involved in different aspects of terrestrial OM 

decomposition and consequently CO2 production (after Kirk and Farrell 1987, 

Sinsabaugh et al. 1994, Golchin et al. 1994, Zhang et al. 2007). We summed the 

DESeq-transformed abundance of these genes, which were broadly associated with: 1) 

hydrolase enzymes that break down cellulose, hemicellulose and xylan, 2) oxidases that 

break down a range of compounds and/or are involved in assimilatory and dissimilatory 

P and N transformations, 3) intracellular-level carbohydrate metabolism, and 4) 

aromatic compound catabolism (see Table A.4 for full list of GO categories). We 

acknowledge that performing GO ontology enrichment tests may have indicated which 

genes were linked to our function of interest. However, we were primarily interested in 

testing the hypothesis that the genes most commonly involved in pathways of OM 

breakdown would be strongly associated with this function. We therefore gave 

precedent to a hypothesis-based approach rather than one in which we searched for any 

gene functions potentially involved in OM breakdown. 

 

2.3.4 Is there evidence of legacy and environmental effects on community composition? 

We assessed similarity between microbial communities as geographic and 

environmental distances increased to test if they were associated with historical legacies 

and present-day conditions. We calculated the Morisita-Horn similarity index for all 
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pair-wise combinations of normalized microbial abundance, Euclidean distances for 

geographic distance, and Mahalanobis distances for environmental similarity (i.e. 

standardized Euclidean distances accommodating for different measurement units and 

covariance structure among pH, OM quantity, % terrestrial C, C:N ratio). These indexes 

were calculated using the 97 samples rather than the 22 sample functional gene subset, 

and significance of the associations between distance matrices was assessed using 

partial Mantel tests with Pearson’s correlation coefficient and 999 permutations 

constrained within sites. Partial Mantel tests are commonly used to disentangle the 

effects of present-day environmental conditions on community composition from those 

of historical legacies, especially when continuous habitat variables and geographic 

distances are available (Martiny et al. 2006). Here they allowed us to assess the 

relationship between microbial community and geographic distance while controlling 

for environmental similarity and vice versa. 

We performed a canonical correspondence analysis (CCA) to explore further 

how bacterial community composition varied in relation to historical legacies and 

present-day environmental conditions, and in particular, to identify the environmental 

variables that most explained differences among sites. The CCA was constrained by 

site, pH, OM quantity, % terrestrial C, and C:N ratio. To test whether community 

composition varied more with present-day environmental conditions or historical 

legacies, which we interpreted as being associated with the variation among sites that 

was unexplained by pH, OM quantity, % terrestrial C, and C:N ratio, we ran a 

permutational multivariate analysis of variance (PERMANOVA) using the ‘adonis2’ 

function in the ‘vegan’ R package. Significance of marginal effects was assessed with 

999 permutations of the community data constrained within sites, with the 

environmental variables and site identity as predictors. To achieve normality, C:N ratio 
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was log-transformed while OM quantity (% LOI) and % terrestrial C were logit-

transformed.  

 

2.3.5 What is the relative importance of different properties for ecosystem functioning?  

We developed a conceptual model to test our hypotheses about the relative importance 

of community structure, present-day environmental conditions, and historical legacies 

for ecosystem functioning. This model considered four different pathways by which the 

different properties could influence ecosystem functioning. Firstly, the model let 

ecosystem functioning vary with the direct effects of the four environment variables and 

four measures of community structure (Fig. 2.1). By considering genomic data that 

could be linked to specific functions, the model also incorporated a trait-based approach 

that offered more insight into ecosystem functioning than solely based on community-

level diversity measures (Krause et al. 2014, Martiny et al. 2015). With the trait-based 

approach in mind, the normalized abundances of the functional gene sets and measures 

of OM quality could also interact (dashed arrows in Fig. 2.1), as expected because the 

efficacy of traits involved in decomposition generally depend on OM quality rather than 

quantity (Sinsabaugh et al. 2010, Ruiz-Gonzalez et al. 2015a). Thirdly, the model also 

accounted for the indirect effects that historical legacies, associated with each of the 8 

sites, and present-day environmental conditions could have on ecosystem functioning 

by influencing the four measures of community structure. Finally, we estimated the 

effects of these four measures on one another to test how the relationship between 

taxonomy and function indirectly affected ecosystem functioning (small arrows in Fig. 

2.1). 

We used path analysis to estimate the strength and direction of presumed direct 

and indirect causal linkages that described our conceptual model (Fig. 2.1). In this 

analysis, we only used the 22 samples for which we had both taxonomic and functional 
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information. The model formula for log-transformed CO2 production as a response in R 

pseudo-code was:  

Ecosystem functioning ~ Environment + Community structure + Functional gene 

abundance:OM quality + (1|Historical legacies),  

where environment included pH, OM quantity, % terrestrial C, and C:N ratio; 

community structure was each of normalized bacterial abundance, taxonomic diversity, 

functional diversity, and normalized functional gene abundance; the interaction was 

between normalized functional gene abundance and each measure of OM quality (% 

terrestrial C and C:N ratio); and historical legacies were represented by a site-level 

random effect. We acknowledge that this random effect can also incorporate other 

present-day environmental variables that systematically varied across sites, but these are 

unlikely to be more important or uncorrelated with the 20 variables that we actually 

measured (Table A.1). In total, we fitted the model separately with each of the four 

normalized functional gene abundance subsets. As gene counts were DESeq-

transformed, there was no dependency of one gene on another across samples, and 

genes could therefore be summed into independent subsets. All of the models also 

estimated residual (i.e. random) error for each of the focal responses.  

We also fitted four separate models to estimate each measure of community 

structure as a response of the environment, historical legacies, and the other measures of 

community structure (small arrows in Fig. 2.1). For functional gene abundance, we only 

modeled the subset(s) of genes identified as significant in the model with CO2 

production as a response. Allowing the measures of community structure to be both 

dependent variables and independent predictors of ecosystem functioning is consistent 

with treating them as endogenous variables in a path analysis that teases apart direct and 

indirect correlations (Grace et al. 2012, Shipley 2016).  
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Each model described above was fitted with linear mixed models using Bayesian 

inference by calling the ‘blme’ function in the R package ‘blmer’ (Chung et al. 2013). 

All measured variables were standardized to a common scale with a mean of 0 and an 

SD of 1, so that we could compare the relative importance of different linkages. To infer 

effects, we calculated posterior means and 95% confidence intervals (CI) for each 

parameter by bootstrapping model parameter estimates 800 times with the ‘boot’ 

package in R. Effects were considered significant when 95% CI around estimated effect 

sizes excluded zero. To assess the overall goodness-of-fit of models, marginal R2 values 

were calculated.  

As all our four models with different functional gene subsets were within 2 

small sample Akaike Information Criterion (AICc) units of each other (Burnham & 

Anderson, 2002; Table A.5), we averaged parameter estimates across the model set. The 

posterior means of each model were multiplied by their respective AICc weight and 

summed to determine the average parameter estimates and 95% CI. For functional gene 

abundance and its interaction with OM quality, no averaging was performed across the 

model set. We instead reported the effects associated with each of the four unique 

subsets of functional genes. 
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Fig. 2.1 | Trait-based conceptual model of pathways by which different ecosystem 

properties (community structure, present-day environment, and historical legacies) affect 

ecosystem functioning. Measured variables associated with different ecosystem properties are 

in solid white boxes, with the normalized functional gene abundance subsets in dashed white 

boxes. Solid arrows represent potential pathways between ecosystem properties and dashed 

arrows represent potential interactions between ecosystem properties. 

 

2.4 Results 

2.4.1 Bacterial community composition 

Overall, we found considerable bacterial biodiversity. We obtained about 25,000 OTUs 

that corresponded with about 540 families in each of the 97 and 22 sample datasets 

(Table A.6). The most common OTUs were in the Koribacteraceae, Hyphomicrobiaceae 

and Solibacteraceae, each accounting for 0.5% of all normalized abundances per 

sample. The 22 samples with functional data that we considered in our path analyses 

subsequently also showed relatively high taxonomic and functional diversity, with H’ 
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values exceeding 5 (Table A.7). The highest number of genes involved in CO2 

production (i.e. normalized functional gene abundance) came from oxidase genes, 

followed by hydrolases, carbohydrate catabolism, and aromatic compound catabolism 

(Table A.7). 

 

2.4.2 Biogeographical patterning of the study sites 

The 8 sites each showed evidence of having unique bacterial communities that reflected 

both past events and present-day environmental conditions. We specifically found that 

communities became less similar as they were increasingly distant in space when 

controlling for the effects of the environment (partial Mantel test: r = -0.15, p = 0.003, 

Fig. 2.2a), suggesting that isolation by distance may maintain differences in biotic 

assemblages that arose from past events such as differential establishment and 

persistence of species through time. These differences could not be attributed to 

dispersal-limitation as most taxa were ‘everywhere’. 369 of the 551 bacterial families 

occurred at all eight sites, with another 66 present at seven sites (Fig. A.2), evidence 

that abundances rather than presence varied across space. We also found that 

community similarity increased with environmental similarity when controlling for 

geographical distances (partial Mantel tests: r = 0.43, p = 0.005, Fig. 2.2b), suggesting 

that different present-day environments also influenced microbial communities within 

our study.  
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Fig. 2.2 | Bacterial communities differ across geographic and environmental space. 

Community similarity (Horn-Morisita index) at the family level between all pair-wise 

combinations of 97 sediment samples (a) decreased with geographic distance and (b) increased 

with environmental similarity (Mahalanobis distance) according to partial Mantel tests. 

 

We found further evidence of past and present-day influences over bacterial 

communities when clustering compositional differences among sites (Table A.8a). 

Distinct communities were observed across sites (F = 3.92, p = 0.01), even after 

constraining composition by present-day environmental variables (Fig. 2.3). Both 

measures of OM quality significantly differentiated communities (F = 5.64, p = 0.001 

for % terrestrial C and F = 4.61, p = 0.001 for C:N ratio), with no effect of either pH or 

OM quantity (Table A.8b). We reached a similar conclusion when using a partial 

redundancy analysis to compare the effects of site identity and environmental variables 

on community composition (Table A.8c). 
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Fig. 2.3 | Bacterial communities differ across sites and environments. The CCA plot shows 

associations between bacterial community composition at the family level when constrained by 

site and environmental variables (n = 97). Each color is a distinct site with ellipses representing 

the standard error around the centroid. Arrows show vector fitting of the constrained 

environmental variables. * associated with a variable at p <0.05 in the PERMANOVA. 

 

2.4.3 Linking biogeography and community composition to ecosystem functioning 

We found that the community structure explained as much variation in ecosystem 

functioning [median (95% CI): 26% (16-33%)] as the present-day environment [20% 

(13-29%)], revealing that other properties in addition to those of microbial communities 

make relatively large contributions to ecosystem functioning (Fig. 2.4). Half of the 

variation in community structure was attributable to taxonomic diversity (Fig. 2.4). 
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mean H’ of 4.4 was sufficient to increase CO2 production by 77 (95% CI: 36-127) mg 

m-2 from an average of 118 (102-135) to 195 (134-285) mg m-2 (Fig. 2.5a). The other 

half of the variation in ecosystem functioning explained by community structure came 

from functional genes encoding for oxidases, which were the only gene subset with a 

statistically significant effect (Tables A.5 and A.9). For example, a 1 SD increase in 

normalized oxidase abundance above its DESeq-normalized mean of 56.1 increased 

CO2 production by 93 (2-317) mg m-2 from an average of 139 (99-190) to 232 (101-

507) mg m-2 (Fig. 2.5b).   

An additional 12% (median, 95% CI: 2-18%) of variation in ecosystem 

functioning was explained by the interaction between community structure and the 

environment (Fig. 2.4). We specifically found that oxidases further increased CO2 

production when terrestrial C was relatively abundant in sediment, highlighting the 

dependency of some functional genes on specific environmental conditions for 

influencing ecosystem functioning. For example, a 1 SD increase in terrestrial C at the 

mean oxidase abundance increased CO2 production from the average of 139 mg m-2 by 

88 (95% CI: 46-154) mg m-2 (Fig. 2.5b). 
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Fig. 2.4 | Individual and interactive effects of the environment and microbial communities 

largely explain ecosystem functioning. Predictors were averaged across the model set except 

for normalized functional gene abundance, where oxidases were the best supported subset 

(Table A.5). Boxes are shown only for variables with a direct or indirect effect on ecosystem 

function with 95% CI that exclude zero. Numbers accompanying each arrow are median (95% 

CI) percentage of variance in the associated response explained by a focal effect, with arrow 

width proportional to these values. Dashed lines represent interactions. 

 

Finally, the averaged model predicting CO2 production showed that both OM 

quantity and pH were the strongest environmental correlates of ecosystem functioning 

in our lake sediments (Fig. 2.4, Table A.9). For example, if OM quantity doubled above 

its mean value of 13% across our sediment cores, CO2 production increased on average 

(95% CI) by 83 (35-167) mg m-2 from its mean of 118 (Fig. 2.5c). By contrast, a 1 SD 

increase in pH above its mean of 5.9 decreased CO2 production by 23 (9-31) mg m-2 

(Fig. 2.5d).  
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Fig. 2.5 | Environment and community structure influence ecosystem functioning of 

littoral lake sediments. CO2 production increases with (a) taxonomic diversity, (b) normalized 

functional gene abundance (oxidases) as % terrestrial C also increases, and (c) percent OM 

quantity measured as loss on ignition (% LOI). (d) CO2 production decreases with pH. Lines are 

mean model fit at mean values of the other variables. Polygons are 95% confidence intervals.  

In (b), we show the statistical interaction between normalized functional gene abundance and % 

terrestrial C by plotting lines at the mean of the latter ± 1 standard deviation (σ).  

 

2.4.4 Indirect effects of historical legacies and present-day environment on ecosystem 

functioning 

The path analysis suggested that the effect of taxonomic diversity in predicting CO2 
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indicative of historical legacies, rather than filtering by the measured environmental 

variables. A median of 12% (95% CI: 6-28%) of the variation in taxonomic diversity 

was directly explained by site, with an additional 34% (95% CI: 15-48%), on average, 

explained by normalized bacterial abundance, which itself was 20% (95% CI: 7-42%) 

dependent on site (Fig. 2.4). Taxonomic diversity also had an indirect effect on CO2 

production by explaining a median of 24% of the variation in the normalized abundance 

of oxidase genes (95% CI: 11-32%). This relationship was negative, suggesting that less 

taxonomically diverse communities were more likely to be dominated by taxa that 

relied on oxidizing OM as opposed to higher diversity communities where more 

functions were present (Table A.10). Overall, however, the indirect effects of historical 

legacies on ecosystem functioning mediated by the community structure were relatively 

small. Historical legacies explained <20% of the variation in each of the measures of 

community structure, none of which individually or interactively explained more than 

13% of variation in CO2 production (Fig. 2.4). Thus, even if our site-level random effect 

included unmeasured present-day environmental variables, these effects were minimal. 

By contrast, no environmental variables influenced community structure, consequently 

having no indirect effect on ecosystem functioning (Table A.10). While functional 

diversity depended on taxonomic diversity, it did not directly influence CO2 production 

(Table A.10). We also verified that there were no missing linkages in our model, 

namely from CO2 production to community structure, which could feedback onto the 

latter (Table A.11).  

 

2.5 Discussion 

Our study is the first, to our knowledge, that estimates the relative importance of 

individual and interactive effects of three fundamental properties – community 

structure, present-day environmental conditions, and historical legacies – on ecosystem 
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functioning. We found that the present-day environment and community structure 

explained roughly the same amount of variation in ecosystem function, adding to 

limited evidence of a positive B-EF relationship in natural microbial communities 

(Delgado-Baquerizo et al. 2016, Laforest-Lapointe et al. 2017). Importantly, we found 

that ecosystem processes were predicted better by also considering other characteristics 

of community structure, like functional gene abundances, and particularly their 

interactive effects with the environment. These findings, along with the evidence that 

microbial diversity and abundance varied more with site identity than with the four 

present-day environmental variables that most differed among sites, highlight the large 

influence that ecosystem properties other than biodiversity have upon ecosystem 

functioning. 

Our results suggested that, despite their relatively small effects, historical 

legacies were more important than present-day environmental filtering in explaining the 

diversity and abundance of microbial communities and thus indirectly influencing 

ecosystem function. This finding is consistent with others that have shown historical 

legacies to be important for microbial-mediated ecosystem functions (Hendershot et al. 

2017, Martiny et al. 2017). In our study, legacies were likely the result of random 

differences in colonization history, such as arrival order and timing (Fukami and Morin 

2003, Fukami et al. 2010), rather than past geographic events or dispersal limitation, as 

sites were all located within the same lake and most OTUs occurred at all sites. While 

measures of OM quality influenced microbial community composition, consistent with 

others (Schallenberg and Kalff 1993, Ruiz-Gonzalez et al. 2015a), there was no direct 

effect of these present-day environmental conditions on diversity and abundance, and 

subsequently ecosystem function. Thus, the biogeographical patterning across sites that 

we interpreted as being associated with past events adds to growing evidence that, while 

‘everything’ may be ‘everywhere’ (Baas-Becking 1934), not everything flourishes 
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everywhere.  One caveat is that there were still many OTUs unidentifiable at the family 

level.  

Contrary to our prediction, we found that environmental conditions directly 

explained variation in CO2 production rather than doing so indirectly by changing 

microbial communities. For example, more acidic samples released more CO2 due to 

less inorganic carbon speciation (Morel and Hering 1993). We also found that higher 

OM quantities increased CO2 production, potentially because of non-microbial 

processes, such as extracellular oxidative metabolism and inorganic chemical reactions 

(Wang et al. 2017).  Photo-oxidation or thermal degradation of our samples was 

unlikely as they were incubated in the dark at controlled temperatures. Alternatively, the 

increase in CO2 production could be due to an increase in microbial biomass or in total 

abundance, but we only estimated normalized microbial abundance in our study. These 

findings are also consistent with a recent meta-analysis of 58 studies that found 

microbial biodiversity was not consistently associated with soil environmental 

variables, but rather more influenced by climate, ecological legacies and evolutionary 

history (Hendershot et al. 2017).  Microbial communities may in part be controlled by 

processes occurring at finer spatiotemporal scales than routinely measured, e.g. 

millimeters and minutes (Grundmann and Debouzie 2000).  

We found that increasing taxonomic diversity promoted ecosystem functioning 

more than functional gene diversity, which had no effect on CO2 production. These 

results suggest that multiple taxa may perform the same tasks associated with as broad a 

function as C utilization (Delgado-Baquerizo et al. 2016). Given this convergence of 

function, increasing numbers of taxa may be sufficient to increase ecosystem 

functioning irrespective of their specific traits, resulting in high levels of 

complementarity (Venail and Vives 2013, Laforest-Lapointe et al. 2017). Our results 

therefore support the need to focus on the identity of traits associated with a response of 
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interest rather than solely on functional diversity (Krause et al. 2014, Roger et al. 2016, 

Trivedi et al. 2016). Other metrics, such as phylogenetic diversity, may also enhance 

predictions of ecosystem functioning by capturing additional axes of trait variation to 

those directly measured by functional data (Flynn et al. 2011).  However, phylogenetic 

diversity may only be a useful proxy where the associated functions are evolutionarily 

conserved and not widely dispersed across lineages, as may be the case for a universal 

function like C utilization.      

Oxidase-encoding genes were the only functional gene subset that we found to 

be associated with ecosystem functioning. Oxidases break down complex and 

recalcitrant organic polymers that come from terrestrial OM, such as lignin and humic 

acids (Sinsabaugh 2010), and which would have varied considerably across sites given 

the surrounding forest gradient (Tanentzap et al. 2014). The increasing association 

between oxidases and CO2 production as terrestrial C inputs to sediments increased was 

also unsurprising as aquatic microbial communities are adapted to utilize complex 

organic polymers derived from litterfall (Judd et al. 2007, Emilson et al. 2017). We also 

found more oxidase genes in less taxonomically diverse assemblages, which may have 

arisen if a few taxa containing a higher proportion of oxidase genes became 

disproportionally active with increasing inputs of terrestrial C (Muscarella et al. 2016). 

The other subsets of genes may have not explained much variation in CO2 production 

because they affected simpler molecules that were less associated with our specific 

terrestrial C gradient (Rocca et al. 2015). Additionally, shotgun metagenomics can only 

ascertain the presence of genes, not their expression, so some gene sets may have had 

nonsignificant effects because they were inactive.  

Our results also suggest that future increases of OM inputs may promote benthic 

respiration and reduce the large C sink capacity of many northern lakes (Gudasz et al. 

2017). Northern lakes are burying increasingly more terrestrial OM into their sediments, 
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primarily due to human activities (Heathcote et al. 2015). Across our sites, a difference 

in sediment OM of 2 vs 55%, associated with a doubling of surrounding forest cover 

from 36% to 64% (Szkokan-Emilson et al. 2011), was sufficient to increase CO2 

production by an average (95% CI) of 5-times (3-7 times). Thus, our results also show 

how models that integrate biodiversity and trait-based approaches can better predict the 

outcomes of future changes to lake C cycles. More broadly, predictions of how 

ecosystem functioning varies with biodiversity will be improved if placed in the context 

of other ecosystem properties, such as past and present-day environments. Future 

studies should consider generalizing the importance of these other properties relative to 

the taxonomic and functional aspects of biodiversity in different spatial and temporal 

contexts. Another next step from our study would be to disentangle past and present-day 

influences more directly, such as by manipulating colonization dynamics in different 

environmental contexts and measuring how ecosystem function responds (e.g. Reed and 

Martiny 2013). 
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Chapter 3 

Biotic and abiotic mechanisms independently 

stabilize different measures of ecosystem 

functioning 

 

3.1 Abstract 

Species diversity can stabilize ecosystem functioning, such as by directly increasing the 

mean or reducing the variance of a function or indirectly from compensatory 

fluctuations in species abundances. Yet few studies outside of primary producers have 

simultaneously tested for how the strength and direction of diversity-stability (D-S) 

relationships and their underlying mechanisms are influenced by environmental changes 

that modify niche and resource availability. Here we tested support for the D-S 

relationship and its underlying mechanisms in lake sediment microbial communities, 

which carry out functions of widespread importance and span large environmental 

gradients. We simulated future environmental changes by creating nearshore sediments 

with different terrestrial organic matter (t-OM) quantity and quality, and measured 

ecosystem function over one year as CO2 production and microbial abundance, 

indicative of microbial activity and growth. While diversity stabilized CO2 production 

by reducing its temporal variation, this effect did not vary along the environmental 

gradients. However, higher t-OM inputs stabilized microbial abundances regardless of 

diversity levels by promoting community-level species asynchrony that reduced 
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temporal variation in ecosystem functioning. These results contrast other systems where 

increases in the temporal mean of functions are more important. More broadly, our 

study reveals that whether environmental changes influence the stabilizing effect of 

diversity on ecosystem functioning will depend on the function in question. 

 

3.2 Introduction 

Diversity stabilizes ecosystem functioning in many ways (Tilman 1999), but little is 

known about when different mechanisms operate. Stability is routinely measured as the 

ratio between the mean μ and variance σ in ecosystem functioning over time (Tilman 

1999). Much of our understanding of positive diversity-stability (D-S) relationships 

comes from experiments measuring the productivity of primary producers (Shurin et al. 

2007, Boyer et al. 2009, Downing et al. 2014, Hautier et al. 2014, Jucker et al. 2014, 

Ramus and Long 2016, del Río et al. 2017). Yet few have tested whether positive D-S 

relationships hold outside of the laboratory at other trophic levels, such as microbial 

decomposers, and even fewer have tested its potential causes in these communities 

(Downing et al. 2014, Wagg et al. 2018). As global change is altering species diversity 

(Cardinale et al. 2012), understanding when the stabilizing effect of diversity on 

ecosystem functioning will vary can help improve the delivery and predictability of 

ecosystem processes (McGrady-Steed et al. 1997, McCann 2000).  

Environmental change can ultimately influence the strength and direction of D-S 

relationships through at least three different proximal mechanisms. First, as new niches 

become available, species can partition resources and minimize inter-specific 

competition, promoting diversity and causing communities to have higher mean μ 

function (Hector et al. 2010). This mechanism, called overyielding, can consequently 

stabilize functioning if environmental changes increase niche availability (Micheli et al. 

1999, Downing et al. 2008). Second, ecosystem functioning can be stabilized as 
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diversity increases in the absence of new niches if its variability σ is reduced. We term 

this mechanism undervarying. Undervarying can arise from the partitioning of existing 

niches, such as by shifts towards facilitative rather than competitive interactions, which 

subsequently enhance temporal coexistence (del Río et al. 2014, Hunting et al. 2015). 

Again, any environmental change that influences species coexistence may change σ and 

thus D-S relationships via an undervarying mechanism. Finally, more diverse 

communities can maintain ecosystem function because there are more species that can 

increase in abundance and compensate for declines in the abundance of other species 

that contribute to functioning (Houlahan et al. 2007, Hector et al. 2010). This 

mechanism of species fluctuating asynchronously will again be influenced by changes 

in resource availability and the different responses of species to environmental stress 

(Ives et al. 1999, Thébault and Loreau 2005, Loreau and de Mazancourt 2008). Yet few 

studies have simultaneously tested for these stabilizing mechanisms and their 

environmental dependency outside of primary producers (Grman et al. 2010, Downing 

et al. 2014).  

Here we tested whether support for the D-S relationship and its underlying 

mechanisms varied along two environmental gradients. We carried out our study in lake 

sediment microbial communities because they carry out functions of widespread 

importance, such as carbon (C) cycling, and span large environmental gradients across 

small distances, i.e. meters (Orland et al. 2018), which can influence their functioning. 

Additionally, inputs of terrestrial organic matter (t-OM), especially aromatic and 

recalcitrant compounds, are expected to increase in northern waters (Creed et al. 2018), 

and are likely to change the support for D-S by modifying the local environment. We 

therefore simulated these future environmental changes by creating nearshore sediments 

with different t-OM quantity and quality, and measured ecosystem function over one 

year as CO2 production and microbial abundance, indicative of microbial activity and 
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growth (Nielsen et al. 2011). We then tested whether microbial diversity and t-OM 

inputs – individually and interactively – increased the stability of either function 

through: 1) overyielding: increasing the function μ; 2) undervarying: reducing the 

function σ; and 3) asynchrony: temporal complementarity in species abundances that 

increases μ and/or reduces σ.  

We predicted that diversity would ultimately stabilize ecosystem function but 

through different proximal mechanisms. First, as CO2 production is a ubiquitous 

function (Carlson et al. 2007, Wertz et al. 2007), we expected greater diversity would 

consistently be associated with greater mean CO2 production and thus ecosystem 

stability, i.e. via overyielding. Second, greater diversity should increase the chance that 

some species can incorporate t-OM into their biomass and lead to differences in 

abundances that enhance species asynchrony. We therefore expected that, as t-OM 

increased, diversity would be more strongly associated with asynchrony, which would 

stabilize the abundance of the overall community because of compensatory dynamics 

among species. More t-OM should also increase community stability independently of 

diversity because t-OM is primarily allocated to biomass (Guillemette et al. 2016), 

especially in dark lakes as ours (Fitch et al. 2018), and so should be directly associated 

with changes in abundances.   

 

3.3 Materials and methods 

3.3.1 Study design 

We submerged experimental mesocosms on the bottom of Lake Laurentian, Canada 

(46°27’30” N, 80°56’0” W) beneath 0.30-0.75 m of water during July 2015. Lake 

Laurentian is a small lake (1.57 km2 area) surrounded by early-successional boreal 

forest and with minimal human disturbance. The lake is generally mixotrophic as per 

Williamson et al. (1999) because it has relatively dark waters (colored dissolved organic 
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carbon concentrations measured as absorbance at 320 nm of 26 m-1) and high average (± 

standard error) total phosphorus concentrations of 35.2 (± 2.5) µg L-1 based on summer 

mid-lake surface grabs. 

 Mesocosms were filled with ca. 15 L of sediment consisting of different types of 

t-OM and housed in HDPE containers (surface area: 0.19 m2, depth: 0.13 m) after 

Tanentzap et al. (2017). Briefly, we added 5, 25, and 50% t-OM on a dry-weight basis 

to locally sourced inorganic material with particle sizes and vertical structuring of all 

material mimicking natural lake sediments (Tanentzap et al. 2017). For each t-OM 

quantity, material was comprised of 33%, 50%, or 66% deciduous litterfall (primarily 

Acer rubrum, Betula papyrifera, Populus tremuloides, Quercus spp.) by dry-weight 

collected from nearby forests. Coniferous litterfall (Pinus spp.) comprised the remaining 

material. Each treatment was then replicated three times, resulting in 3 t-OM quantities 

× 3 t-OM qualities × 3 replicates. We also included a control treatment filled with 

inorganic material only (total n = 30). Mesocosms were arranged in a block design 

between two sampling bays, submerged in rows, and covered with a 1 mm × 1 mm 

nylon mesh screen to standardize the percentage of sunlight reaching the sediment 

surface. After one month, we made an 8 cm slit in the center of each screen to collect 

sediment. To collect porewater, we secured a 3 mL polypropylene syringe horizontally 

immediately beneath the sediment surface. The wall of the syringe that faced the 

sediment was removed and covered in ca. 250 μm nylon mesh. Importantly, sediment 

porewater samples taken from our mesocosms reflect the biogeochemistry of the 

surrounding natural lake sediment (Tanentzap et al. 2017), allowing us to extrapolate 

our findings to field conditions.  
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3.3.2 Stability and diversity measures 

We calculated the stability of two ecosystem functions – CO2 production and microbial 

community abundance – by dividing the temporal mean of each function µ by its 

standard deviation σ (after Tilman 1999). Data collection began one month after 

mesocosms were in- 

stalled to ensure that the treatments had settled.  

CO2 stability was calculated from approximately fortnightly measurements of 

porewater during ice-free conditions between August 2015 to September 2015 and May 

2016 to August 2016 (n = 18 dates per mesocosm). On each sampling occasion, we 

extracted 43 mL of porewater into a 60 mL syringe that was pre-acidified with 2 mL of 

0.5M HCl. 15 mL of atmospheric air was pulled into the syringe, which was shaken for 

2 minutes and left to equilibrate for 30 seconds. 10 mL of the headspace was then 

analyzed for CO2 on a SRI 8610C-0040 gas chromatograph (Torrance, CA, USA) 

within 24 hours of collection. Porewater concentrations were calculated by subtracting 

ambient air additions and applying the Bunsen solubility coefficient and ideal gas law 

(Aberg and Wallin 2014), accounting for porewater pH and temperature simultaneously 

measured in the field with a handheld meter (HI 9126, Hanna Instruments, Woonsocket, 

RI, USA). To achieve normality, CO2 measurements were log-transformed prior to 

calculating stability. 

Microbial community stability was estimated from the total abundance of 

bacterial operational taxonomic units (OTUs) in each mesocosm between two sampling 

occasions in September 2015 and August 2016. OTUs were identified from surface 

sediment (ca. top 5-cm) grabs that were sequenced on an Illumina NextSeq (300 cycles, 

paired-end) after all environmental DNA was extracted (Appendix B.1). Raw sequences 

were processed at a depth of approximately 3.3 million reads per sample following a 

modified version of the European Molecular Biology Laboratory-EBI pipeline version 
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3.0 (Mitchell et al. 2016) and were taxonomically-annotated with representative 16S 

sequences using QIIME v.1.9.1 (Appendix B.1). The sequences were deposited in EBI 

under the project accession number ERP019980. From all samples, we removed 

singletons and 14 OTUs (out of the remaining 7,697) that were present in a negative 

water-only control with a relative abundance of >1%. Differences in the number of 

reads per sample due to sequencing biases was accounted for using a variance 

stabilizing transformation with the R package DESeq2 (Love et al. 2014). As the 

number of OTUs were DESeq-transformed counts rather than relative abundances, they 

did not sum to 1 and their sum approximated the total abundance of each sample (Weiss 

et al. 2017).  

We also calculated two other measures of microbial community structure.  First, 

we calculated microbial diversity by averaging the total number of unique OTUs (i.e. 

richness) between the two sampling periods in each mesocosm. Second, we calculated 

community-wide asynchrony A, which estimates how individual species, or OTUs, 

differentially fluctuate in their abundances over time. Although individual OTUs may 

be transient, communities may be stabilized if the increase in a taxon is compensated by 

the decrease in another. Here, we calculated A for each mesocosm by comparing the 

temporal variance in the summed OTU abundances in each sample 𝑀𝐴!!  with the 

summed variances of each OTU i in each mesocosm with n OTUs (Loreau and de 

Mazancourt 2008, Hautier et al. 2014): 

𝐴 = 1−
𝑀𝐴!!

(Σ!!!!  𝑀𝐴!")!
 

A varies between 0 (no asynchrony) and 1 (perfect asynchrony).  
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3.3.3 Does diversity stabilize ecosystem function as the environment changes? 

We tested whether microbial diversity stabilized each of our two measures of ecosystem 

function under changing environmental conditions using linear models.  The two 

measures were weakly inter-correlated, as expected if they captured distinct functions 

(Spearman’s correlation comparing temporal means and stability between each 

function: ρ = 0.13 and 0.08, respectively). Our models subsequently included the 

following predictors: diversity, two measures defining our environmental gradient in 

terms of t-OM quantity and t-OM quality, and asynchrony, and we added interaction 

terms between diversity and each environmental variable. Diversity and the 

environment can ultimately influence stability through three proximate mechanisms: 

overyielding, undervarying, and asynchrony. However, we included asynchrony in the 

models as it influences stability directly rather than its components µ and σ like the 

former two mechanisms. Sampling bay was also included to account for the blocking 

design of our experiment. Diversity and stability measures were log-transformed, and 

all measured continuous variables were standardized to a common scale with a mean of 

0 and a standard deviation of 1 to compare their effects. If we found a statistically 

significant effect of asynchrony, we fitted an additional linear model to test whether this 

arose because asynchrony itself was ultimately influenced by individual or interactive 

effects of diversity and the environment. 

 

3.3.4 Which proximal mechanisms stabilize ecosystem function? 

We tested other proximal mechanisms for the estimated D-S relationships in addition to 

asynchrony. If either diversity or the environment stabilized ecosystem functioning in 

our previous model, we tested whether these effects arose because of increasing μ (i.e. 

overyielding) and/or decreasing σ (i.e. undervarying) by fitting separate linear models to 

each variable with the same predictors as for stability (excluding asynchrony). We also 
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tested whether increased stability in more asynchronous communities resulted from a 

higher mean and lower variation in total microbial abundance by modeling each of these 

variables as a response of asynchrony and sampling bay.  

 

3.4 Results 

3.4.1 Diversity stabilizes ecosystem function regardless of the environment 

We found a stabilizing effect of diversity on CO2 production (t22 = 2.18, P = 0.041; Fig. 

3.1). This effect did not vary with the environment and neither t-OM quantity nor 

quality were directly associated with stability on their own (Table B.1).  

While diversity stabilized CO2 production, we found no direct effect of diversity 

or the environment on community stability (Table B.1). Sampling bay had no effect on 

either measure of ecosystem stability (Table B.1).  

 

 

Fig. 3.1 | Mean OTU richness stabilizes CO2 production. Line is mean model fit at mean 

values of the other predictor variables. Polygon is 95% confidence interval.  
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3.4.2 Undervarying and asynchrony stabilize ecosystem function 

The stabilizing effect of diversity on CO2 production was the result of reduced temporal 

variation consistent with an undervarying mechanism (t23 = -2.60, P = 0.016). By 

plotting the slope estimates of diversity separately regressed against the μ and σ in CO2 

production, we found that the effect of OTU richness on the latter metric was more 

negative than the reduction in mean CO2 production with increased diversity (i.e. effect 

diverged from the 1:1 line, Fig. 3.2). We found no evidence for overyielding in our 

study lake (Table B.1). 

 

 

Fig. 3.2 | Undervarying can explain the stabilizing effect of diversity on CO2 production. 

Point is mean ± SE for slope of the temporal mean CO2 production μ vs diversity compared to 

the slope of the temporal SD in CO2 production σ vs diversity. Grey area of the plot (below the 

45˚ line) indicates a stabilizing effect arising from overyielding (points to the right of the 

vertical dashed line) and/or undervarying (points below the horizontal dashed line). 
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0.001; Fig. 3.3a), consistent with our prediction that, by fluctuating differentially 

through time, species would compensate for each other and maintain abundances. The 

effect of asynchrony arose by reducing the σ of total microbial abundance through time 

in each mesocosm (t27 = -4.39, P < 0.001; Fig. 3.3b). For example, a 1 SD increase in 

asynchrony above its mean of 0.68 increased stability from an average of 1.80 to 3.38 

(95% confidence interval for increase: 2.44-4.68). There was no stabilizing effect of 

asynchrony on the μ of total microbial abundance (Table B.1).  

 

 

Fig. 3.3 | Asynchrony stabilizes microbial abundance by undervarying. Asynchrony (a) 

increases community stability by (b) decreasing the standard deviation (SD) of the total 

microbial abundance in each mesocosm across time. Line is mean model fit at mean values of 

the other variables. Polygon is 95% confidence interval.  
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undervarying mechanism (Fig. 3.4). Yet, we also found that increasing t-OM inputs did 

stabilize microbial abundances by promoting asynchrony and without necessarily 

influencing diversity (Fig. 3.4).  

 

 

Fig. 3.4 | Diversity directly stabilizes CO2 production while t-OM quantity indirectly 

stabilizes microbial community abundance. Ultimate mechanisms, proximal mechanisms, 

and stability measures are shown in purple, blue, and red, respectively. Significant (p<0.05) 

effects between variables are shown with black lines, potential pathways (non-significant) 

shown by grey lines. Dashed lines describe proximal mechanisms, i.e. whether functions are 

stabilized by increased μ or decreased σ (only significant results are shown). Numbers adjacent 

to each arrow are standardized parameter effects (with standard errors). R2 shown for all 

modeled responses. 
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depending on the ecosystem function. As we anticipated, the D-S relationship did not 

vary along environmental gradients for a ubiquitous function like CO2 production, 

suggesting that more diverse communities can maintain ecosystem functioning across a 

range of sediment conditions. However, higher t-OM inputs stabilized microbial 

abundances regardless of diversity levels. Depending on the function of interest, 

environmental changes may therefore override any stabilizing effect of diversity. The 

stabilizing effect of the environment was still related to community composition though, 

as it occurred via an increase in species asynchrony.  

Diversity stabilized CO2 production by reducing its temporal variation rather 

than increasing its mean, consistent with an undervarying mechanism. Undervarying is 

more likely to arise from facilitative interactions and greater niche partitioning rather 

than declines in competition (Mulder et al. 2001, Isbell et al. 2009, del Río et al. 2014), 

which tend to be associated with an overyielding mechanism (Hector et al. 2010). For 

example, one species’ decomposition products may provide a source of nutrients for 

another species (Tardy et al. 2014), thus increasing the community’s overall metabolic 

activity. These positive interactions do not imply, however, that the community should 

grow in size. Functional changes do not always map onto abundances and vice versa 

(Orland et al. 2018). Moreover, the lack of an effect of t-OM inputs on the D-S 

relationship was consistent with our prediction that CO2 production is a widely 

performed microbial function that will operate across a broad range of environments 

(Carlson et al. 2007, Wertz et al. 2007). Although we had hypothesized there would be a 

similarly positive effect of diversity on microbial community stability, measures that we 

did not consider here could be more important than species diversity, such as 

differential species establishment, colonization history, and phylogenetic diversity 

(Sankaran and McNaughton 1999, Cadotte et al. 2012).   
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Sediment conditions – specifically high levels of t-OM – stabilized microbial 

abundances by increasing community-level species asynchrony regardless of diversity. 

At lower t-OM quantities, taxa may be resource-limited and all more likely to decrease 

consistently in abundance, thus decreasing community-wide asynchrony.  By contrast, 

there may be a greater fluctuation of taxa at higher t-OM concentrations (Tilman 1999), 

because some taxa will be able to use t-OM more effectively than others (Findlay 2003, 

Berggren et al. 2010b). Greater t-OM may also promote competition and increase 

variation in the abundance of individual species and their asynchrony (Tilman et al. 

1998, Loreau and de Mazancourt 2008). Unsurprisingly, considering asynchrony has 

been shown to saturate quickly with increasing species richness (Jucker et al. 2014), we 

found no association between diversity and asynchrony in our relatively species-rich 

communities. 

Our results are consistent with theory that asynchrony is a strong predictor of 

stability (Loreau and de Mazancourt 2013) and that its effects are largely driven by 

environmental changes (Ives et al. 1999, Thébault and Loreau 2005, Downing et al. 

2008). While there is evidence for a relationship between asynchrony and stability in 

plant and phytoplankton communities, we provide among the first evidence that 

asynchrony can stabilize bacterial communities in nature (Wagg et al. 2018). 

Compensatory dynamics are expected to be more important in communities with rapid 

species turnover like microbial communities, as microbes have short generation times 

and can thus readily fluctuate in numbers. Asynchrony will also be enhanced in highly 

diverse communities, where the addition of new species will provide a form of 

ecological insurance that functioning will be maintained (Yachi and Loreau 1999, Tardy 

et al. 2014). This idea is consistent with our observed negative association between 

asynchrony and temporal variation in community abundance. However, as functionally 

similar species are expected to respond similarly to environmental changes, 
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communities that contain more functionally similar species are expected to be less 

asynchronous (Hector et al. 2010, Roscher et al. 2011). This may explain why we did 

not observe an effect of asynchrony on the stability of CO2 production, a function 

shared widely among microbes. 

We found no evidence for overyielding as a mechanism stabilizing CO2 stability 

or community abundance. More diverse communities did not have greater mean 

microbial abundance, indicating that inter-specific competition may reduce the 

abundances of individual species despite more species being present. Different 

processes were therefore at play depending on the function in question: competition for 

microbial abundances, and facilitation for CO2 stability, as described above. More 

species-rich communities also did not produce more CO2, suggesting that taxonomic 

diversity is not necessarily associated with greater ecosystem functioning. These results 

are unsurprising as high functional redundancy and incomplete taxonomic resolution 

can obscure positive biodiversity-ecosystem functioning relationships in microbial 

communities (Nielsen et al. 2011, Martiny et al. 2015). These relationships may also 

depend on specific environmental conditions or historical events that structure these 

communities (Orland et al. 2018). Finally, overyielding may be more important in 

single trophic level systems like grasslands than in complex microbial communities 

(Downing et al. 2014). For example, an increased diversity of predator species can 

increase mean community respiration but this effect can be offset by a corresponding 

reduction in prey species.   

North temperate lakes are undergoing rapid environmental changes, 

characterised by increased loadings of terrestrial organic material (Creed et al. 2018), 

and our results suggest that these changes will increase microbial community stability 

by promoting asynchronous fluctuations in species abundances. These results are 

supported by previous work showing that terrestrial organic carbon stabilizes bacterial 
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communities in experimental ponds (Muscarella et al. 2016). Our study now advances 

this work by showing the mechanisms that underlie these responses. While our findings 

also suggest that future environmental changes will not alter the stability of CO2 

production, stabilized microbial abundances may maintain other functions besides CO2 

production (Wagg et al. 2018), like nutrient cycling (Finlay et al. 1997). Changes to the 

environment unrelated to t-OM inputs and unmeasured in our study may also affect CO2 

stability if they reduce species diversity, such as nutrient loading and contaminant 

deposition (Paerl et al. 2002, Zeglin 2015). Overall, predicting dynamics of microbial 

communities is difficult both because of the complexity of biotic interactions and the 

adaptive capacity of species that allows them to evolve with their environment 

(Magurran et al. 2010, Thomas et al. 2018). Our study nonetheless identifies why the 

important functions undertaken by freshwater microbes can be maintained through time, 

thereby helping to predict future responses to a changing environment. 
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Chapter 4 

Think global, act local:  

small-scale environmental filters primarily 

influence microbial community development 

 

4.1 Abstract 

The early stages of community development are important for determining the species 

and traits that establish within communities. Both small- and large-scale abiotic 

conditions can filter species assemblages at different stages of community assembly, but 

little is known about the scale-dependency of environmental filtering in microbes. Here 

we tested how different environmental scales influenced the rate at which microbial 

community composition changed over time in lake sediments, and whether these 

changes occurred synchronously across different environments given the same initial 

communities. We manipulated the small-scale environment by creating sediments with 

different terrestrial organic matter (t-OM) quantity and quality and placing these in 

three lakes differing in trophic status and representative of the large-scale environment. 

We then characterized microbial communities over a two-month period and found that 

communities became more dissimilar with time despite being derived from the same 

initial leaf material. Our results revealed that small- as opposed to large-scale 

environmental conditions were most important for filtering microbial community 

composition in contrast to findings from macro-organisms. Sediment t-OM quantity 
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was the primary small-scale filter that explained dissimilarities between mesocosms and 

the only predictor of connectivity among taxa. Additionally, microbial kingdoms varied 

by up to 10-times in how quickly they changed, providing among the first evidence that 

they respond differently over time to their surrounding environment and/or biotic 

interactions. Our analysis highlights that future changes to both sediments and lake 

waters can modify how lake sediment microbial communities develop with far-reaching 

consequences for important ecosystem functions like carbon cycling. 

 

4.2 Introduction  

Understanding how communities develop with time is important because it influences 

ecosystem functioning. Microbial communities offer a good system to study 

compositional changes in real time as they assemble and turnover across relatively short 

timescales, i.e. days (Hewson et al. 2006, Redford and Fierer 2009). Most of what is 

known about how microbial communities assemble in nature comes from soils, glaciers, 

and biofilms (e.g. Jackson et al. 2001, Martiny et al. 2003, Nemergut et al. 2007, 

Schütte et al. 2010, Fierer et al. 2010, Dini-Andreote et al. 2015, Smith et al. 2015), 

with much less known in lake sediments that perform many important ecosystem 

functions (Tranvik et al. 2009). Lake sediments differ from systems like soils because 

they are much more connected to the surrounding landscape through flow pathways, so 

should respond differently to small- and large-scale abiotic conditions that determine 

which species establish and persist in a site, i.e. environmental filtering (Langenheder 

and Székely 2011, Kraft et al. 2015). Changes in these communities may also occur at 

different rates across these environmental scales (Kent et al. 2007).  

 Little is known about how the rate at which communities develop with time 

changes with small- and large-scale filters, especially for lake sediment microbes that 

perform important ecosystem functions. In plant communities, these filters appear 
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sequentially with time. Composition is initially selected by the adaptation of species to 

large-scale environmental conditions such as climate (Wiens and Donoghue 2004, de 

Bello et al. 2013). Small-scale filters such as soil characteristics then act on abundances 

and co-occurrence patterns (Woodward and Diament 1991, Diaz et al. 1998, Chesson 

2000). In microbes, community assembly and biogeography have been extensively 

studied (Martiny et al. 2006, Tedersoo et al. 2014, Delgado-Baquerizo et al. 2018a), but 

not how rates of community change might vary with environmental filters that arise at 

different spatial scales. Environmental filters have simply been identified at both a 

large-scale, such as connectivity among catchments and lake conditions (Nelson et al. 

2009, Nino-Garcia et al. 2016), and smaller scale, such as resource quantity and quality 

(Ruiz-Gonzalez et al. 2015a, Tanentzap et al. 2014) and pH gradients (Fierer and 

Jackson 2006). In parallel, microbial community composition, primarily in bacterial 

biofilms, has been found to change predictably over time (Jackson et al. 2001, Martiny 

et al. 2003, Lyautey et al. 2005, Redford and Fierer 2009). However, there has been no 

attempt, to our knowledge, to test how different environmental filters influence 

temporal changes in lake sediment microbial communities.  

How species co-occur will also influence how lake sediment microbial 

communities change with time (Gotelli and McCabe 2002). Co-occurrence patterns can 

arise because of shared environmental preferences or biotic interactions (Leibold and 

McPeek 2006, Fuhrman and Steele 2008). These co-occurrence relationships are 

especially important as they may alter the stability of a community over long timescales 

(HilleRisLambers et al. 2012). A species with reduced fitness in an environment may 

indeed persist if its presence is facilitated another species, e.g. decomposition products 

from one microbial taxa can provide a source of nutrients for another (Tardy et al. 

2014). These relationships also impact other aspects of the community, including life 

history strategies (Barberán et al. 2012) and ecological traits (Williams et al. 2014), and 
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subsequently have downstream effects on ecosystem functioning and its stability 

(Tilman 1982, HilleRisLambers et al. 2012). While timescales on the order of days are 

sufficient to observe compositional changes in bacterioplankton assemblages (Hewson 

et al. 2006, Redford and Fierer 2009), there is little information on how co-occurrence 

patterns associated with compositional changes arise and vary along environmental 

gradients.  

Another unresolved question is whether different lineages change over time at 

different rates (Fierer et al. 2010). Few studies have differentiated among bacterial, 

archaeal, and fungal community changes despite them differing in their metabolic 

abilities (Morriën et al. 2017). For example, whether fungi or bacteria are the first to 

establish in a site may have strong consequences for subsequent species composition. 

Aquatic saprophytic fungi can decompose some of the most recalcitrant organic 

compounds from humic substances, subsequently allowing bacteria to colonize humic 

environments and break down these compounds further if they arrive after the fungi 

(Grossart and Rojas-Jimenez 2016). Further support for the idea that the arrival of one 

lineage may influence the rates of change of other lineages is that taxa from different 

lineages interact metabolically. For example, bacterial growth can be promoted by 

fungal exudates (Pion et al. 2013, Ponomarova and Patil 2015). While much less is 

known about archaea, they may vary less than other lineages through time because they 

respond less to environmental gradients like temperature or organic matter availability 

(Pala et al. 2018). These examples suggest that how environmental filters influence the 

initial establishment of different kingdoms will have subsequent consequences for 

microbial abundances and co-occurrence patterns.    

 Here we tested how different environmental scales influenced the rate at which 

microbial community composition changed over time. We also tested whether these 

changes occurred synchronously across different environments given the same initial 
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communities. We carried out our study in lake sediment as it allowed us to test the 

effects of both small- and large-scale environmental conditions. Specifically, we 

manipulated the small-scale environment by creating sediments with different terrestrial 

organic matter (t-OM) and placing these in three lakes differing in trophic status (i.e. 

large-scale environment). We then characterized microbial communities over a two-

month period and tested how the rates at which they diverged from the original t-OM 

were influenced by environmental conditions. We predicted that communities would 

diverge fastest from the community present in the original t-OM under nutrient-rich 

conditions, because these provide more opportunities for growth and for colonization by 

novel species. We then asked whether microbial communities became dissimilar from 

one another with time and, if so, whether this was primarily due to differences within- 

or across lakes (i.e. sediment versus overlying waters). As species will first be filtered 

from the species pool by large-scale environmental conditions (Wiens and Donoghue 

2004, de Bello et al. 2013), we predicted that divergence rates would be primarily 

driven by differences in overlying waters. We also expected different microbial 

kingdoms to change at different rates because they respond differently to their abiotic 

and biotic surroundings. Finally, we tested which environmental scale was most 

associated with temporal changes in species co-occurrence. We predicted that sediment 

conditions would be the strongest predictor of connectivity because small-scale 

environmental conditions should act on abundances once communities pass through 

larger scale filters (de Bello et al. 2013).  

 

4.3 Materials and methods  

4.3.1 Study design 

We submerged experimental mesocosms in the nearshore region of three small lakes 

outside of Sudbury, Canada (46°29’24”N, 81°00’36”W) that differed in their overlying 
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water quality. Two of the lakes were Lake Laurentian (46°27’30”N, 80°56’0”W; area = 

1.57 km2) and Swan Lake (46°21’59”N, 81°3’49”W; 0.06 km2). Following Williamson 

et al. (1999), we classified and hereafter refer to these lakes as “mixotrophic” and 

“oligotrophic”, respectively. Lake Laurentian is mixotrophic as it has mean ± SE total 

phosphorus (TP) concentrations from summer mid-lake surface grabs of 35.2 ± 2.5 µg 

L-1 and colored dissolved organic carbon (CDOC; i.e. absorption coefficient at 320 nm) 

concentrations of 26 m-1. By contrast, Swan Lake is oligotrophic because it has much 

lower TP and CDOC of 9.3 ± 0.4 µg L-1 and 1.5 m-1, respectively. Despite these 

differences, the two lakes are surrounded by similar early-successional forest and 

experience minimal human disturbance. This description contrasts with our third study 

site, Ramsey Lake (46°28’42”N 80°56’30”W; 7.96 km2), which has an extensively 

urbanized shoreline. We refer to Ramsey as a “mesotrophic” lake after Vollenweider 

and Kerekes (1982) as its TP and CDOC values were halfway between the oligotrophic 

and eutrophic statuses described by Williamson et al. (1999), with values of 8.2 ± 0.5 

µg L-1 and 9.2 m-1, respectively.  

 Mesocosms with different types of t-OM were placed on the nearshore bottom 

of each lake beneath 0.30-0.75 m of water during July 2015. The mesocosms were 

constructed out of HDPE containers that measured 50.8 cm × 38.1 cm × 12.7 cm and 

were filled with ca. 15 L of sediment after Tanentzap et al. (2017). Briefly, we added 5, 

25, and 50% t-OM on a dry-weight basis to 7 kg of locally sourced inorganic material 

with particle sizes and vertical structuring of all material mimicking natural lake 

sediments (Tanentzap et al. 2017). For each t-OM quantity, material was comprised of 

either primarily deciduous, coniferous, or mixed litterfall collected from nearby forests. 

The deciduous treatment contained 66% litterfall by dry-weight mainly from Acer 

rubrum, Betula papyrifera, Populus tremuloides, and Quercus spp. Coniferous litterfall 

dominated by Pinus resinosa comprised the remaining material. In the coniferous 
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treatment, the ratios were reversed, with Pinus representing 66% of dry-mass and 

deciduous litter the remainder. The mixed treatment had equal dry-masses of both 

deciduous and coniferous material. Each treatment was then replicated three times, 

resulting in a total of 3 t-OM quantities × 3 t-OM qualities × 3 replicates (total n = 27 

per lake). Mesocosms were arranged in a block design between two sampling bays, 

submerged in rows, and covered with a 1 mm × 1 mm nylon mesh screen to standardize 

the percentage of sunlight reaching the sediment surface. After one month, we made an 

8 cm slit in the center of each screen to collect sediment. Importantly, sediment samples 

taken from our mesocosms reflect the biogeochemistry of the surrounding natural lake 

sediment (Tanentzap et al. 2017), allowing us to extrapolate our findings to field 

conditions.  

 

4.3.2 Microbial community characterization 

Microbial communities were characterized from surface sediment grabs (ca. top 5-cm) 

collected from all mesocosms during three sampling periods in 2015: 10 to 12 August, 7 

to 9 September, and 5 to 7 October (total n = 81 mesocosms × 3 dates = 243). 16S and 

ITS primers targeting archaea, bacteria, and fungi were used to construct sequencing 

libraries after all environmental DNA was extracted (see Appendix C.1 for further 

details). Libraries were then sequenced on an Illumina MiSeq (600 cycles, paired-end) 

at an average (±SE) read depth of 15,781 (± 514) and 26,573 (± 1,879) reads for the 16S 

and ITS sequencing runs. DNA was also extracted in triplicate from the original 

deciduous and coniferous t-OM and sequenced alongside the other samples (Appendix 

C.1).  

We inferred amplicon sequence variants (ASVs) present in each sample from the 

raw sequences and taxonomically-annotated them using DADA2 (Callahan et al. 2016a; 

Appendix C.1). Unlike operational taxonomic units (OTUs), which are arbitrarily 
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determined by a 97% threshold sequence similarity, each ASV is defined as a unique 

sequence thanks to a method that controls for amplification and sequencing errors 

(Callahan et al. 2016a). ASVs therefore represent unique microbial taxa, and yield more 

accurate and reproducible amplicon data across studies than OTUs (Callahan et al. 

2017). From all samples, we removed 46 ASVs out of 42,668 that were present in three 

negative water-only controls with a relative abundance of >1%. As we were interested 

in tracking how the bulk of the communities changed with time, we chose to focus our 

analysis on the 1% most abundant taxa, which together comprised 996 taxa and on 

average (±SE) 72% (± 1%) of the total reads in each sample. We controlled for the 

differences in the number of reads per sample due to sequencing biases with a widely-

applied variance stabilizing transformation (Dillies et al. 2013, McMurdie and Holmes 

2014, Weiss et al. 2017) using the R package DESeq2 (Love et al. 2014). All 

downstream analyses were performed on the DESeq-transformed data. The raw 

sequences were deposited in EBI under the project accession number ERP110084. 

 

4.3.3 Do microbial communities diverge faster from starting leaf material because of 

differences in sediment or lake conditions? 

 We first assessed how quickly microbial communities diverged from the original 

mesocosm t-OM, i.e. leaf material. We visualized all the mesocosms with a non-metric 

multidimensional scaling (NMDS) ordination with Bray-Curtis distances, and then 

measured the Euclidian distance between the NMDS scores of each mesocosm and the 

mean centroid of the original leaf material. To test whether the rate at which 

communities diverged from the original leaf material varied among lakes, we fitted a 

linear model to the distances and included sampling day, lake, and an interaction term 

between sampling day and lake as predictors. We fitted a separate model for each 

kingdom. 
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We also tested whether compositional differences were associated with sediment 

porewater conditions within each lake. We extracted 45 mL of porewater on each 

sampling occasion and immediately measured pH with a handheld meter (HI 9126, 

Hanna instruments, Woonsocket, RI, USA). We then filtered 25 mL of each sample 

through a 0.5 µm glass fibre filter (Macherey-Nagel MN 85/90) and into a 20-mL glass 

scintillation vial, which was pre-acidified for a pH of approximately 2-3 to avoid the 

effects of metal quenching of DOM fluorescence (Spencer et al. 2007). In the lab, we 

measured two widely used DOM metrics using a Cary 60 UV Vis spectrophotometer 

and a Cary Eclipse fluorescent spectrophotometer (Agilent Technologies, Santa Clara, 

CA, USA). The first DOM metric was the specific UV254 absorbance (SUVA), which 

is an index of the average aromatic fraction of DOM per unit DOC, itself measured on a 

Shimadzu TOC-5000A (Shimadzu Co, Columbia, MD, USA). Higher SUVA values 

indicate higher molecular weight DOM that tends to be more difficult for microbes to 

break down (Sinsabaugh et al. 1997, Lavonen et al. 2015). We also corrected SUVA 

values for iron, which absorbs UV at a similar wavelength to SUVA and can artificially 

inflate SUVA measurements (Weishaar et al. 2003, O’Donnell et al. 2012). Total iron 

concentrations were measured using the FerroVer method (Hach Company 2014) on a 

Hach DR3900 spectrophotometer (HACH, Loveland, CO, USA). The second DOM 

metric was the humification index (HIX), for which higher values indicate less 

structurally complex DOM and increased humic substance content (Fellman et al. 

2010). To achieve normality, SUVA, DOC, and HIX measurements were log-

transformed. We used the “envfit” function in the “vegan” R package (Oksanen et al. 

2013) to correlate pH, SUVA, DOC, and HIX with the NMDS scores and determined 

significance using 999 permutations.  
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4.3.4 Do microbial communities become dissimilar faster because of differences in 

sediment or lake conditions? 

We then tested whether the rate at which microbial communities became dissimilar with 

time differed with sediment conditions and among lakes. We calculated the dissimilarity 

between mesocosms that received identical t-OM treatments and were in the same 

position in our experimental block design but located in different lakes. For a single 

mesocosm in the block design, we could therefore have three possible comparisons. We 

used the Bray-Curtis dissimilarity index for our calculations, for which a value of 0 

indicated communities were entirely similar while a value of 1 indicated communities 

were entirely different, i.e. no overlapping taxa (Bloom 1981). Due to the highly 

variable size of the ITS fragment among fungi, using phylogenetically-informed 

distances like Unifrac was not recommended (Adams et al. 2014) and so we did not 

generate phylogenetic distances between ASVs as we would not have been able to 

recover them for all kingdoms.  

We used a linear model to model how dissimilarity changed over time with 

different quantities and qualities of t-OM and in different lake comparisons. We added 

interaction terms between the sampling day and each of t-OM quantity, quality, and lake 

comparison along with all of their main effects. Sampling bay was also included to 

account for the blocking design of our experiment. To assess the significance of t-OM 

quantity, t-OM quality, and the identity of the lake comparison, we separately removed 

each of the main effects and their interactions and compared the reduced and full 

models with an ANOVA. Considering the variance of the treatments was not constant, 

we corrected the standard errors as in Cleasby and Nakagawa (2011) with the “coeftest” 

function in the “lmtest” R package (Zeileis and Hothorn 2002). Finally, we fitted 

separate models for each kingdom (i.e. archaea, bacteria, and fungi) to test whether 

different microbes changed differently over time. 
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4.3.5 Do microbial taxa form different co-occurrence networks with time because of 

sediment or lake conditions? 

We asked whether individual taxa occurred more with other taxa because of sediment or 

overlying lake conditions. First, we created separate co-occurrence networks at the start 

(August) and end (October) of the experiment for each t-OM quantity, t-OM quality, 

and lake using the “igraph” R package (Csárdi and Nepusz 2006). A total of 18 

networks were therefore generated, from which we estimated the number of degrees 

(i.e. co-occurrence among each taxa, or connectivity; Tylianakis et al. 2010) for each 

mesocosm. Most taxa (90%) were connected to all the other taxa (i.e. >900 degrees per 

individual taxa). Therefore, we only constructed networks for the 10% most abundant 

taxa (n = 100) because there was much more variation in connectivity (i.e. the 

coefficient of variation for 100 taxa was about 20% higher than for 996 taxa). We then 

measured the difference in the number of degrees for each taxa between the end and 

start of the experiment for each t-OM quantity, t-OM quality, and lake. We assessed 

how the number of degrees per mesocosm changed over time using a linear model that 

included each level of either t-OM quantity, t-OM quality, or lake as a predictor, and 

allowed these effects to vary among kingdoms.  

 Where changes in connectivity were statistically significant, we also measured 

how the number of mesocosms in which each pairwise combination of taxa co-occurred 

changed with time. We subset our data to the 10 most abundant taxa across all samples 

for visualization purposes. We plotted the connections between these taxa at the start 

and at the end of the experiment using the “circlize” R package (Gu et al. 2014) and 

assessed how connectedness changed in the 10 taxa with pairwise t-tests. 
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4.4 Results 

4.4.1 Drivers of divergence from original community 

We found that microbial communities in the mixotrophic and oligotrophic lakes 

diverged the fastest from the original leaf community (t237 = 3.58, P < 0.001 and t237 = 

3.41, P < 0.001, respectively; Fig. 4.1; Table C.1). In each lake, sediment communities 

were driven away from the original leaf community as pH and HIX correspondingly 

increased (R2 = 0.05, P = 0.001 and R2 = 0.04, P = 0.009, respectively). This 

observation was especially strong in the mixotrophic lake where pH and HIX were 

higher (Fig. 4.1a, Fig. C.1). SUVA and DOC were not associated with changes in 

community composition (Table C.2). 

Kingdoms differed in their responses. Archaea, which only comprised 4% of all 

DESeq-transformed reads, diverged a magnitude faster from the original leaf 

community than bacteria and fungi, which represented 52% and 44% of all reads, 

respectively. While archaeal and bacterial communities displayed a similar pattern 

among lakes – and that mirrored the microbial communities’ overall response – fungal 

communities consistently changed in an opposite direction to bacteria (Fig. 4.1b). 

Surprisingly, in mesotrophic conditions, the bacterial community did not diverge from 

the original community as expected if the communities became progressively colonized 

with local microbes. Rather, the community became more like the original leaf material 

(t237 = -5.69, P < 0.001; Fig. 4.1b), suggesting that abiotic conditions and/or biotic 

interactions in the mesotrophic lake may have favored bacteria present on the original 

leaf material.  
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Fig. 4.1 | Microbial communities diverged, on average across kingdoms, from the original 

leaf community. a) Divergence from the overall microbial community (i.e. across all 

kingdoms) followed gradients of increasing pH and HIX, especially in the mixotrophic lake. 

Biplot vectors for pH and HIX were overlapping and appear indistinguishable from each other. 

b) Divergence rates from the original leaf community were fastest in the oligotrophic and 

mixotrophic lakes but differed across kingdoms. Black points and lines represent the overall 

microbial community. Relative abundances were measured as the number of DESeq-

transformed reads for each kingdom out of the all DESeq-transformed reads across lakes. 

Slopes significantly different from 0 denoted by * P = <0.05, ** P = <0.01, *** P = <0.001.  
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4.4.2 Community similarity across sediment conditions and lakes 

We found that microbial communities became more dissimilar with time both because 

of the sediment and lake conditions (Table C.3). Removing t-OM quantity from the full 

model subsequently reduced the R2 from 0.42 to 0.24 as compared with a reduction to 

0.35 and 0.39 from removing the effects of lake identity and t-OM quality, respectively 

(Table C.3).  

Communities diverged across all t-OM treatments and did so at a steeper rate 

with increasing levels of t-OM quantity. Communities in 50% t-OM quantity diverged 

about twice as fast than those in the 5% t-OM treatment (Fig. 4.2a). For example, 

communities in the 5% t-OM treatments were 0.46% (95% CI: 0.43-0.49%) more 

dissimilar at the end of the experiment whereas those in 50% were 1.49% (95% CI: 

1.46-1.52%) more dissimilar. Although absolute effects may seem small, they were 

calculated over two months and involved 996 taxa. Increasing t-OM concentrations 

from 5% to 25% and from 25% to 50% did not further influence the rate of divergence 

(Fig. 4.2a; Table C.4).  

We also found that communities in coniferous-dominated mesocosms diverged 

about 1.6 times faster than those in deciduous-dominated t-OM (t228 = -2.25, P = 0.025; 

Fig. 4.2b). Specifically, while dissimilarity was comparable between coniferous and 

deciduous treatments in August, by October dissimilarity had increased by 1.53% (CI: 

1.47-1.60%) in the coniferous treatments compared to a 0.75% (CI: 0.69-0.82%) 

increase in the deciduous treatments.  

Finally, microbial communities in the oligotrophic and mesotrophic lakes 

diverged over time from those in the mixotrophic lake and did so at similar rates (Fig. 

4.3; Table C.4). There was no difference in the divergence rate between microbes in 

oligotrophic and mesotrophic conditions (Fig. 4.3; Table C.4). 

 



Chapter 4 | Small-scale conditions filter microbial communities 
	

	 75	

 

Fig. 4.2 | Communities became increasingly dissimilar with time. Bray-Curtis dissimilarity 

index increased faster a) at higher t-OM quantity and b) in coniferous-dominated t-OM 

qualities. Lines are mean model fit at mean values of the other variables. Polygons are 95% 

confidence intervals.  

 

Microbes belonging to different kingdoms diverged differentially with time (Fig. 

4.2). Consistent with our previous findings (Fig. 4.1b), archaeal communities diverged 

with time across all pairwise lake comparisons at an order of magnitude faster than 

either bacteria or fungi. Changes in archaeal community composition were accompanied 

by higher archaeal abundances with time (t8503 = 24.77, P<0.001, Table C.5). Similarly, 

fungal abundances increased with time (t8503 = 9.95, P<0.001, Table C.5), but bacterial 

ones decreased (t8503 = -3.37, P<0.01, Table C.5). While the slowest divergence rates for 

archaea occurred between mesotrophic and mixotrophic lakes, fungi diverged fastest in 

this pairwise comparison (Fig. 4.3). Fungi in the oligotrophic lake did not change 

differently from fungi in other trophic statuses (Fig. 4.3). Bacteria, the most prevalent 

kingdom, changed more slowly than archaea and fungi, significantly diverging only 

when comparing mixotrophic and oligotrophic communities (Fig. 4.3).  
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Fig. 4.3 | Comparisons with the mixotrophic lake diverged faster, across kingdoms, than 

comparisons with other trophic conditions. Points are mean slope ± SE of the monthly 

pairwise change in similarity between two lakes. Black indicates all microbes (i.e. across all 

kingdoms). Relative abundances were measured as the number of DESeq-transformed reads for 

each kingdom out of the all DESeq-transformed reads across lakes. Black points and lines 

represent the overall microbial community. Slopes significantly different from 0 denoted by ** 

P = <0.01 and *** P = <0.001.  
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Additionally, we found that the 10 most abundant taxa co-occurred in more mesocosms 

by the end of the experiment at all treatments of t-OM quantity (pairwise t-test: P 

always < 0.001; Fig. 4.4b; see Table C.7 for taxa names).  

 

Fig. 4.4 | Microbial taxa co-occurred more over time at higher t-OM quantity.  We 

calculated a) degrees as the number of co-occurrences between each taxa and all others for the 

100 most abundant taxa and b) the number of mesocosms in which each pairwise combination 

of the 10 most abundant taxa co-occurred (see Table C.7 for taxa identity). *** indicates P 

value < 0.001.  
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Our results reveal that both small- and large-scale environmental filters, as measured by 

sediment characteristics and lake trophic status, respectively, influence the rate at which 
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microbial communities develop. To our knowledge, nothing is known about how 

temporal changes in lake sediment microbial communities vary at different 

environmental scales. Here we found that communities became more dissimilar with 

time despite being derived from the same initial leaf material. We also found that 

dissimilarities between mesocosms were primarily driven by the quantity of sediment t-

OM, which was also the only predictor of the connectivity among taxa during our 

experiment. These findings implicate small- as opposed to large-scale environmental 

conditions as more important for filtering microbial community composition, in contrast 

to findings from plants (Wiens and Donoghue 2004, de Bello et al. 2013, Kraft et al. 

2015). Considering microbes typically range from 1-5 µm in size, it is not entirely 

surprising that they were filtered by much finer environmental conditions than larger 

organisms. Finally, we provide among the first evidence that microbial kingdoms 

changed differently with time and across environmental gradients, with archaea 

changing an order of magnitude faster than bacteria or fungi, which themselves often 

displayed contrasting responses.  

Communities diverged faster within lakes because they possessed higher t-OM 

concentrations rather than because they were in different lakes residing on the same 

sediment conditions. Despite its high humic and lignin content, t-OM is bioavailable to 

microbes (Guillemette and del Giorgio 2011, Lapierre et al. 2013) and is primarily 

allocated to biomass (Guillemette et al. 2016, Fitch et al. 2018). Consequently, the 

increase in abundances associated with higher t-OM can result in compositional changes 

and faster divergence rates, especially in the early stages of community development 

(Fierer et al. 2010). Consistent with this interpretation, t-OM has been shown to 

enhance fluctuations in individual species’ abundances (Chapter 3) and to filter aquatic 

bacterial community composition (Muscarella et al. 2016). Increasing the quantity of t-

OM also increased connectivity. Thus, in addition to accelerating divergence rates 
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between communities, environmental filtering simultaneously strengthened networks 

within these communities, thereby reinforcing the differences between communities. 

Our results are important considering that metabolic dependencies that form between 

taxa (Zelezniak et al. 2015) may sustain these differences and lead to long-lasting co-

occurrence patterns with consequences for community stability (HilleRisLambers et al. 

2012).  

Additionally, we found that communities in coniferous-dominated sediments 

diverged the fastest, further implicating small-scale environmental conditions as the 

primary filter over microbial community composition. Coniferous litter generally 

contains fewer phenolic compounds than deciduous litter (Kuiters and Sarink 1986, 

Emilson et al. 2018). As phenolics inhibit extracellular enzymes involved in 

decomposition (Wetzel 1992), they can restrict species establishment and thus turnover. 

Their lower abundance in the coniferous sediments may have consequently promoted 

more abundant and diverse microbial assemblages (Yakimovich et al. 2018). Our 

findings therefore suggest that rates of microbial community change may become 

reduced with expected northward shifts in deciduous tree species that will modify the 

composition of the t-OM delivered to inland waters (Boisvert-Marsh et al. 2014, 

McKenney et al. 2014). 

Communities changed faster in mixotrophic conditions, which may have more 

favorable conditions for microbial growth than nutrient-limited conditions where 

microbes instead metabolically cycle carbon (Hessen 1992, Reche et al. 1998, Zwart et 

al. 2015).  Microbes can similarly allocate larger supplies of carbon towards biomass in 

darker (i.e. mixotrophic) lakes as compared to lakes with more light (Fitch et al. 2018), 

wherein high photo-oxidation modifies t-OM structure and makes it less bioavailable 

(Kirchman 2013, Ward and Cory 2016). These ideas may equally explain why temporal 

changes in community composition more closely followed the HIX gradient in the 
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mixotrophic lake, which was larger than elsewhere (Fig. C.1b) and is usually associated 

with variation in nutrients and photo-oxidation (Lindstrom 2000, Schallenberg et al. 

2017). Additionally, we found that the overall microbial community diverged from the 

initial leaf litter in the mixotrophic and oligotrophic lakes and did so faster with higher 

pH and more humic material across all lakes. These results align with previous studies 

demonstrating the limited ability of terrestrial taxa to grow and establish in aquatic 

ecosystems (Ruiz-Gonzalez et al. 2015b) and show that both sediment pH and 

humification are major drivers of community assembly and composition (Ruiz-

Gonzalez et al. 2015a, Amaral et al. 2016, Fitch et al. 2018, Tripathi et al. 2018). 

Importantly, these findings suggest that, in addition to changes in forest cover that will 

modify lake sediment composition, rates of microbial community change will also be 

influenced by the browning of northern lake waters due to climate warming and 

increased runoff (Solomon et al. 2015, Finstad et al. 2016).  

Kingdoms varied by up to 10-times in how quickly they changed, and as they 

are dominated by different traits, such variation could have far-reaching consequences 

for ecosystem functioning. On average, communities of archaea – the only organisms 

able to produce the potent greenhouse gas methane (Garcia et al. 2000) – changed ten 

times faster than fungi and bacteria regardless of the environmental conditions. 

Considering that archaea only represented 4% of all the taxa in our analyses, we were 

surprised to find that two archaeal methanogens were the 5th and 10th most abundant 

taxa in our sediments. Lakes release 6-16% of global methane emissions (Borrel et al. 

2011) so understanding why these communities changed so rapidly is important for 

predictions of whole-lake C cycling. One reason for these particularly rapid changes 

may be that archaea were in much lower abundances on the starting material, resulting 

in less intra-specific competition. Individual archaeal species could therefore grow 

rapidly, as reflected by their increased abundance with time, and subsequently drive 
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microbial community changes through time (Fierer et al. 2010). Additionally, bacteria 

and fungi tended to change in opposing ways, consistent with findings across a range of 

habitats (Bahram et al. 2018, Yakimovich et al. 2018). Such inter-kingdom antagonism 

has been attributed to fungi’s high competitive ability and antibiotic production 

(Bahram et al. 2018). Fungi can use the complex carbon substrates that plant cell walls 

are made of better than bacteria, especially in high nutrient conditions (Koranda et al. 

2014). Fungi’s competitive advantage over bacteria may therefore explain why they 

grew and diverged faster in the mesotrophic and mixotrophic conditions, where nutrient 

levels were higher. Finally, arrival order may also help explain these differences. Lake 

fungal communities are partly comprised of terrestrial fungi from imported leaves 

(Barlocher and Boddy 2016) and these taxa usually dominate the initial stages of plant 

litter decomposition (Kuehn 2016). It is therefore likely that fungi that were better 

adapted than bacteria to breaking down these t-OM were already present on the original 

leaf material, allowing them to colonize the sediment first and use its carbon resources, 

thereby preempting later arrivals from establishing. Such “priority” effects have been 

found in fungal (Dickie et al. 2012) and bacterial communities (Rummens et al. 2018) 

but not yet between kingdoms. 

Our results are important as understanding how communities change with time 

and identifying the drivers of these temporal differences will enhance the predictability 

of community dynamics and ecosystem functioning (Grenfell et al. 1998, Kent et al. 

2007). In summary, we found that, given the same starting material, microbial 

communities did not change synchronously with time. Community composition and 

species co-occurrence instead differed along small-scale environmental filters. Our 

study did not account for stochastic processes that randomly modify the species pool 

and can thereby influence community change (Vellend 2010). However, deterministic 

processes related to environmental filtering are thought to be more important for 



Chapter 4 | Small-scale conditions filter microbial communities 
	

	82	

microbes, suggesting that the effects of any stochastic process were likely minor 

(Hanson et al. 2012, Lindström and Langenheder 2012, Nermegut et al. 2013, Bahram 

et al. 2018). Predicting how communities change with time and their scale dependence 

is particularly valuable in regions where small- and large-scale changes are anticipated, 

such as in boreal ecosystems where warmer climates and increased t-OM export will 

impact lakes and rivers (Creed et al. 2018). Here we have shown that the outcomes of 

these changes in microbial communities will vary depending on the amount and type of 

t-OM delivered to inland waters but also with lake-specific characteristics. Any future 

changes to lake waters or sediments are therefore likely to have far-reaching 

consequences for key ecosystem processes like carbon cycling by modifying lake 

sediment microbial communities.  
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Chapter 5  

General discussion 

 

Lake sediment microbes are at the heart of ecosystem functioning in freshwater 

systems: by processing terrestrial organic matter (t-OM), they fuel both food web 

production and carbon cycling. The aim of this thesis was to advance our current 

understanding of microbial community assembly and functioning along terrestrial 

resource gradients in boreal lake sediments. I have shown that positive biodiversity-

ecosystem functioning relationships occur in complex microbial communities and, 

importantly, that these relationships depend directly on present-day environmental 

conditions and indirectly on historical legacies (Chapter 2). In addition to enhancing 

CO2 production, I have also shown that more diverse microbial communities can 

stabilize this ecosystem function through time by reducing its temporal variation, and 

this happens regardless of the environmental gradients (Chapter 3). Nevertheless, my 

results show that microbial abundances are stabilized by higher t-OM inputs rather than 

by diversity levels, and this stabilizing effect is the result of increased community-level 

species asynchrony (Chapter 3). Lastly, my work reveals the importance of small-scale 

environmental filters such as sediment conditions for determining the rates of change of 

microbial communities and the strength of their co-occurrence networks in their early 

development, which will subsequently impact lake sediment ecosystem functioning 

(Chapter 4).  
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In Chapter 1, I laid out three questions that this thesis aimed to answer:  

1) How do temporal processes influence aquatic microbial community assembly 

and structure (Chapters 2 and 4)? 

2) How do spatial environmental gradients related to terrestrial inputs influence 

community structure (Chapters 2-4)?  

3) How do the environment and community structure individually and interactively 

influence ecosystem function (Chapters 2 and 3)? 

 

In this final chapter, I discuss how the analyses presented in this thesis have 

addressed these questions. I also critically evaluate the limitations of my work and 

identify possible avenues for future research that have emerged in the light of my 

results.    

 

5.1 Past historical events directly influence community structure and 

small-scale conditions drive community changes through time  

There is now ample evidence for the role of past and present-day events in shaping 

microbial communities (Martiny et al. 2006, Andam et al. 2016, Fierer 2017, Martiny et 

al. 2017, Delgado-Baquerizo et al. 2018b). Yet, how much of community structure is 

explained by either of these ecosystem properties in natural systems is still largely 

unexplored. In this thesis, I found that the similarity of bacterial composition between 

pair-wise samples decreased with their geographic distance, consistent with studies that 

highlight the effect of past history and biogeography on community structure (Zinger et 

al. 2014, Powell et al. 2015, Andam et al. 2016). I also showed that site-level 

differences in bacterial communities influenced multiple aspects of community structure 

(i.e. normalized bacterial abundance, taxonomic diversity, and normalized oxidase gene 

abundance) while the present-day environment did not. These site-level differences 
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directly explained up to 20% of community structure but they also indirectly explained 

additional variation because the measures of community structure influenced one 

another. For example, bacterial abundances explained up to 34% of the variation in 

taxonomic diversity. These findings are particularly important as they suggest that past 

historical events rather than present-day habitat-based filtering indirectly influenced 

ecosystem functioning by modifying community structure (Hendershot et al. 2017, 

Martiny et al. 2017). Examples of such past events that shape microbial biogeography 

include colonization, diversification, extinction, and dispersal limitation (Martiny et al. 

2006). In my study however, these site-level differences could not be attributed to 

dispersal-limitation as most taxa were found across all sites, evidence that abundances 

rather than presence varied across space. 

Following on from these results, the next logical step was to understand how 

past historical events, such as colonization dynamics, could have influenced community 

structure in lake sediment microbes. To do so, I looked at how environmental filters at 

different spatial scales influenced changes in microbial communities during the early 

stages of their development. Research on microbial succession has been limited to soils, 

biofilms, and glaciers (Jackson et al. 2001, Martiny et al. 2003, Nemergut et al. 2007, 

Schütte et al. 2010, Dini-Andreote et al. 2015, Smith et al. 2015) and has rarely focused 

on the early stages of succession despite these stages being essential for subsequent 

assembly and functioning (Fierer et al. 2010). I found that small-scale abiotic conditions 

primarily drove changes in community composition through time. Although this result 

is not entirely aligned with what is know from vegetation studies, where large-scale 

filters usually filter species composition (Wiens and Donoghue 2004, de Bello et al. 

2013), it is not surprising considering the much finer spatial scale of microbes compared 

to plants. My results however concur with the fact that small- rather than large-scale 

environmental filters influence the formation of species co-occurrence patterns (Diaz et 
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al. 1998, Chesson 2000, de Bello et al. 2013). This small-scale filtering of connectivity 

among taxa was due to variation in the amount of t-OM in the sediment, but other 

small-scale filters like t-OM quality and larger-scale lake conditions also mattered. 

Together, these results suggest that while microbes may be found across wide 

environmental ranges or originate from the same material, they may not flourish 

everywhere. These differences in composition and abundances likely occur because 

microbes respond strongly to both the sediment and the overlying water conditions 

(Ruiz-Gonzalez et al. 2015a, Nino-Garcia et al. 2016). 

Ultimately, allochthonous inputs largely influenced the processes of assembly 

described above, possibly affecting the current composition of lake sediment 

microbiomes. Compositional legacies have been shown to persist for up to 3 years in 

fungal communities (Martiny et al. 2017). So while present-day environmental filters 

like OM quantity did not directly influence patterns of bacterial abundance or diversity 

in Chapter 2, it is likely that past processes of colonization were influenced by t-OM 

quantity as in Chapter 4. This past filtering would have structured the community at 

the time of colonization and resulted in the distinct assemblages that persisted through 

time differently from neighboring communities.  

 

5.2 t-OM quantity and quality are the primary spatial influences over 

microbial community structure 
Variations in the amount and type of OM also drove spatial patterns of microbial 

community structure. In Chapter 2, community similarity increased with 

environmental similarity across eight sites, suggesting that present-day environments 

influenced microbial community composition. More precisely, community composition 

was driven both by the amount of terrestrial carbon and by the C:N ratio that are 

characteristic of OM origin and composition, respectively. In Chapter 3, more t-OM 
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increased community-wide asynchrony: t-OM thus influenced how individual taxa 

differentially fluctuated in their abundances over time. Finally, in Chapter 4, both t-

OM quantity and quality influenced how communities changed during their early 

development, but t-OM quantity explained more of this variation than t-OM quality. 

Revealing the importance of allochthonous inputs – particularly t-OM quantity – 

in structuring lake sediment microbiome improves our understanding of terrestrial 

resource use in aquatic systems. The bioavailability of t-OM for microbes has long been 

debated, with some arguing that it is too recalcitrant to be incorporated into biomass 

(Sollins et al. 1996, Williamson and Morris 1999, Zwart et al. 2016) and others arguing 

that it is an important carbon resource for microbes (Judd et al. 2006, Lapierre et al. 

2013, Jones and Lennon 2015, Guillemette et al. 2016, Fitch et al. 2018). In this thesis, I 

found that t-OM quantity was a key predictor of microbial community structure, 

suggesting that allochthonous inputs may be used towards microbial growth and 

subsequently promote community change. Overall, these results are consistent with 

others finding that t-OM quantity rather than quality is the primary spatial influence 

over microbial community structure (Judd et al. 2006, Crump et al. 2012, Besemer et al. 

2013, Ruiz-Gonzalez et al. 2015a). Recent work by Ruiz-Gonzalez et al. (2018) showed 

that terrestrial inputs enhanced the growth and activity of certain aquatic taxa, but that 

different forest soils did not cause predictable changes in lake microbial communities. 

They suggested that the different growth patterns between different soil treatments may 

be linked to priority effects or to changes in the overlying waters that favor certain taxa 

over others, in line with findings from Chapter 3. 
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5.3 The environment and community structure influence ecosystem   

functioning interactively but stabilize it independently 
While a large number of studies have shown that plant diversity enhances and stabilizes 

ecosystem functioning (Hooper et al. 2012, Tilman et al. 2012, Hautier et al. 2014, 

Jucker et al. 2014), evidence for these patterns is equivocal for microbes. In Chapter 2, 

I found a positive B-EF relationship in bacteria, with taxonomic diversity driving 13% 

of the observed variation in CO2 production in lake sediments. However, functional 

diversity did not explain ecosystem functioning. The lack of an effect of functional 

diversity is not entirely surprising considering that multiple taxa are likely to perform 

the same tasks associated with a ubiquitous function like C utilization (Carlson et al. 

2007, Wertz et al. 2007, Delgado-Baquerizo et al. 2016). Nevertheless, another aspect 

of community structure – normalized oxidase gene abundance – drove another 13% of 

CO2 production. This result highlights that focusing on the identity of traits associated 

with a response of interest provides more valuable information for predicting ecosystem 

function than simply looking at functional diversity, consistent with the trait-based 

approach advocated by many groups (Krause et al. 2014, Wieder et al. 2014, Roger et 

al. 2016, Trivedi et al. 2016). Trait-based approaches are becoming increasingly popular 

for microbial community studies but there is still a missing gap in identifying which 

traits – or genes – most regulate which microbial functions, especially for ubiquitous 

ones like CO2 production. In this thesis, I found that oxidase associated genes, rather 

than hydrolase ones, were most important for CO2 production in lake sediments. 

Interestingly, this association was even stronger when there was more terrestrial carbon. 

At high % terrestrial carbon, oxidase genes were even more active in respiring, 

suggesting that functional genes interacted with terrestrial carbon to promote CO2 

production. 
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In addition to promoting CO2 production, I found that species-rich assemblages 

stabilized sediment functioning over time. These results closely match those commonly 

found in plant communities and also those of a recent study done on soil microbial 

communities (Wagg et al. 2018). Unlike my previous results in Chapter 2 showing that 

community structure and the environment interacted to promote CO2 production, there 

was no interactive effect between the environment and diversity in stabilizing 

ecosystem function in Chapter 3. Bacterial richness instead stabilized CO2 production 

regardless of the environment suggesting that CO2 production is a function performed so 

widely that it will be observed across a broad range of environments (Carlson et al. 

2007, Wertz et al. 2007). In parallel, the environment stabilized microbial abundances 

regardless of diversity. Specifically, increasing t-OM quantity led to greater fluctuation 

of taxa, likely because some taxa can use this resource better than others (Findlay 2003, 

Berggren et al. 2010b). This increase in community-wide species asynchrony 

subsequently stabilized the community.  

 

5.4 Limitations and avenues for future work 

5.4.1 Improving experimental design and sequencing 

A key challenge for microbiome studies is to maintain robust scientific practice while 

integrating new approaches unique to the field (Knight et al. 2018). This challenge has 

been exacerbated by the elevated cost of sequencing that sometimes appears to 

compromise classic experimental considerations, such as sample size, number of 

replicates, and appropriate controls (e.g. extraction and reagent blanks). Indeed, each 

extra sample sequenced incurs considerable additional costs (i.e. sum of costs of DNA 

extraction, library preparation, sequencing, bioinformatics processing) that seem to 

deter researchers from following stringent ecological procedures, as they usually would 
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in other systems. Yet, meticulous experimental design is essential for the validity of any 

microbiome study as well as for cross-study comparisons.  

The confounding issues associated with microbiome studies are increasingly 

highlighted in the literature, with more standardized procedures being proposed (Bálint 

et al. 2017, Hugerth et al 2017, Knight et al. 2018, Pollock et al. 2018). These more 

recent papers helped me improve experimental design throughout the course of my 

thesis. For example, I moved from having no technical replicates in Chapter 2 to 

having two per biological sample in Chapters 3 and 4. Additionally, although I 

included negative blanks in my first library preparation, I did not sequence these blanks 

as they appeared to contain no DNA. However, they may still have contained a few rare 

contaminant sequences that should ideally have been removed. In later runs, I included 

these blanks during the sequencing and removed any sequence found in high abundance 

(>1%) from the rest of the community (as per Flores et al. (2012) and Salter et al. 

(2014)).  

Another source of bias comes from the choice of primers for amplicon 

sequencing, as different primers preferentially select certain taxa. Zumsteg et al. (2012) 

for instance suggested that they found more Euryarchaeota in younger soils than 

previous studies had because they used different primers. Primer bias also arises during 

PCR because the number of cycles may influence how many and which sequences are 

recovered (Clooney et al. 2016, Knight et al. 2018). These considerations may have 

been particularly important in my analysis on community changes through time 

(Chapter 4), in which I used two primer pairs: one for prokaryotes and one for 

eukaryotes. The issues associated with primer bias may be solved if we move away 

from amplicon sequencing to the newer shotgun sequencing approach (as in Chapters 2 

and 3), which also has the benefit of providing functional information (Clooney et al. 

2016, Ranjan et al. 2016, Knight et al. 2018). However, despite becoming increasingly 
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popular, shotgun sequencing of microbial communities is not as developed as amplicon 

sequencing and may not recover taxonomic information as effectively (Tessler et al. 

2017). The potential for this approach will increase as its methodology improves and 

becomes more standardized in the coming years. 

 

5.4.2 Increasing reproducibility with bioinformatics pipelines 

Identifying the reads obtained by high-throughput sequencing – taxonomically and 

functionally – is challenging. There are multiple reference databases used for taxonomic 

alignment (e.g. SILVA, Greengenes, RDP), and picking one over the other may 

influence which taxa are recovered (Pollock et al. 2018). Another step that can 

introduce error is the clustering of sequences. Traditionally, sequences are clustered into 

OTUs at a 97% similarity threshold into single sequences. This threshold can have 

strong influences on the number of unique taxa recovered: the clustering is done relative 

to the particular sequences present in the sequencing run and the resulting clusters of 

OTUs will therefore not be fully comparable across studies. Such clustering may mean 

that subtle but real biological variations are missed (Callahan et al. 2016a, Knight et al. 

2018). This is why more recent methods that use error profiles to resolve sequence data 

into exact amplicon sequence variants (ASVs), such as DADA2 (which I used in 

Chapter 4; Callahan et al. 2016a) and Deblur (Amir et al. 2017), are better for 

assigning taxonomy to sequences than classic methods (Callahan et al. 2017).  

These improved methods of taxonomic assignment may also allow better 

recovery of the rare biosphere (Patin et al. 2013, Callahan et al. 2016a), which has been 

shown to play a non-negligible role in microbial functioning (Campbell et al. 2011, 

Shade et al. 2014, Lynch and Neufeld 2015, Jousset et al. 2017). In this thesis, I partly 

ignored rare taxa by removing singletons (Chapter 3), sequences not represented more 

than 5 times across a sequencing run (Chapter 2), and by focusing on the 1% most 
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abundant taxa (Chapter 4). These steps were done to avoid the inclusion of spurious 

reads from contamination (Brown et al. 2015) and to focus on the most abundant taxa in 

the latter chapter. This filtering may have limited the scope of my analyses and it would 

be interesting to include data on the rare biosphere in the future using the most recent 

advances in the field (Jousset et al. 2017).  

Ultimately, the results obtained through sequencing are meaningful so long as 

the analysis is carried out in a consistent manner across samples (Knight et al. 2018, 

Pollock et al. 2018). This requirement, however, means that cross-study comparisons 

are difficult to achieve for microbial communities. Projects like the Earth Microbiome 

Project (EMP) have tried to address this issue by encouraging researchers to follow a 

standardized experimental protocol and bioinformatics pipeline (Thompson et al. 2017). 

The latest version of this pipeline in fact recommends using ASVs rather than OTUs 

(Thompson et al. 2017). It is likely that as ASVs become more widely used, 

comparability among studies will be improved. While initiatives like the EMP are 

admirable, their usage is still confined to a limited number of studies and may be 

difficult to achieve in the long-run. One reason for limited uptake is that as sequencing 

protocols and technologies improve at a fast-pace, labs may wish to align themselves to 

the most recent developments rather than to the slightly older methods used in 

standardized protocols. Sequencing costs may also limit certain groups’ ability to 

choose specific reagents and kits. Until using standardized protocols becomes the norm 

– if it ever does – researchers should precisely report how they run their analyses and 

deposit their raw data and metadata in public repositories like EMBL or MG-RAST 

(Knight et al. 2018).  
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5.4.3 Advancing research on microbiome functioning 

In the past decade, thanks to the development of sequencing technologies, the field of 

microbial ecology made tremendous leaps in understanding how microbial communities 

function (Antwis et al. 2017). This progress is recent though, meaning that some 

ecological questions that have been thoroughly studied for decades in other systems are 

still unresolved or debated in microbes. For example, there is conflicting evidence for 

the B-EF theory in microbes, with some finding positive relationships (Delgado-

Baquerizo et al. 2016, Laforest-Lapointe et al. 2017) and others not (Jiang 2007, Becker 

et al. 2012). In my thesis, I found support for positive B-EF relationships in natural lake 

sediment communities (Chapter 2) but not in artificial sediment communities (Chapter 

3). It is worth noting that the latter was calculated with OTU richness averaged over a 

year rather than with a single time-point measure of Shannon’s diversity index, which 

accounts for evenness and abundances of OTUs. Importantly though, the results from 

my thesis (Chapters 2-4) highlight that these B-EF relationships may depend on 

specific environmental conditions or historical events that structure communities in 

their early development and through time. A final point is that our understanding of 

microbial evolutionary processes is still limited and may influence how we measure 

microbial biodiversity (Antwis et al. 2017). High levels of horizontal gene transfer 

(Doolittle 1999), large numbers of unidentified microbes, and difficulties associated 

with delineating microbial “species” (Freudenstein et al. 2016) may skew taxonomic 

assignments, changing the strength and direction of B-EF relationships across studies.  

In addition to improving our knowledge of microbial diversity, it is necessary to 

further our understanding of ecosystem functioning, particularly of microbial-regulated 

processes. More functions, like methane production, microbial biomass, and nutrient 

cycling, should be considered in future B-EF and D-S studies. My results support the 

expectation that ecosystem function and its stability are influenced by both past- and 
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present-day environmental conditions (Reed and Martiny 2007, Chase 2010, Peralta et 

al. 2016) and by various aspects of community structure, including taxonomic diversity 

(Delgado-Baquerizo et al. 2016, Laforest-Lapointe et al. 2017) and the abundance of 

specific functional genes (Krause et al. 2014). Disentangling and quantifying these 

influences further will help improve predictions of biogeochemical cycles that are 

largely regulated by microbes. Another next step from my thesis that would strengthen 

our understanding of lake sediment microbiomes would be to link their co-occurrence 

patterns to functioning and stability (Kara et al. 2013), and to examine these processes 

over longer periods of time. Finally, my findings reveal that each microbial kingdom is 

likely to influence functioning differentially, by changing differently through time both 

in terms of direction and rate (up to an order of magnitude faster for archaea; Chapter 

4). These findings are particularly relevant as recent work by De Vries et al. (2018) 

showed that fungal networks were more stable in the face of drought than bacterial 

ones. Investigating how each microbial kingdom’s response to environmental change 

will affect ecosystem functioning and its stability will be critical in the future.  

 

5.5 Concluding remarks 

A missing gap in microbial ecology is how temporal and spatial variation in microbial 

community structure relates to key environmental processes and geochemical cycles 

(Antwis et al. 2017). Understanding these links are especially relevant in functionally 

important systems that are expected to change in the near-future, such as boreal lakes 

where warmer climates and increased loadings of t-OM will impact sediments that fuel 

freshwater food webs and carbon cycling (Creed et al. 2018). In this thesis, I have 

shown that these t-OM inputs drive microbial community change, and also directly and 

indirectly influence ecosystem functioning and its stability in lake sediments. In the 

context of a changing planet, my results show that models integrating biodiversity and 
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trait-based approaches will better predict the outcomes of future environmental changes 

(Krause et al. 2014, Martiny et al. 2015, Roger et al. 2016, Trivedi et al. 2016). These 

predictions will also be improved by considering the legacies of microbial communities 

(Martiny et al. 2017) and by understanding why the important functions undertaken by 

freshwater microbes can be maintained through time (Downing et al. 2014). 

Importantly, any future changes to lake waters or sediments that modify microbial 

communities are likely to have far-reaching consequences for key ecosystem processes 

like carbon cycling.  
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Appendix A 

Biodiversity-ecosystem functioning 

relationships in lake sediment microbiomes 

 

A.1 Supplementary methods  

A.1.1 Site details 

 

Fig. A.1 | Map of the study sites, showing vegetation density. Normalized difference 

vegetation index (NDVI, 30m x 30m pixels) within boundaries of study catchments (black line) 

and riparian zones 100m from stream-lake interface (grey curves) (adapted from Tanentzap et 

al. 2014).   
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A.1.2 Measurement of sediment OM quality 

In a separate study, we collected 6 surface sediment cores (maximum ~10 cm deep, 5 

cm diameter) at each site using either a Wildco hand corer or, where sediments were 

impenetrable by hand corer, PVC tubes were driven into the sediments with percussion. 

We collected the cores at approximately 2, 4 and 6 m from shore on each of two 

longitudinal transects, moving the transect where necessary to avoid boulders. We 

extruded the cores in the lab into 1 cm increments, and two surficial increments per core 

(upper 1 and 3 cm) were retained where possible for isotopic analysis (n = 11-12 

samples per site, total n = 94). 

We then collected leaf litter and surficial soils to characterise the main terrestrial 

sources contributing to sediment OM. Leaf litter (excluding anything <1 mm) was 

collected within 5 replicate 0.25m2 plots located at random bearings at a distance of 1, 

3, 5, 7 and 9 m from the mouth of the drainage streams. We also collected surficial soil 

samples (excluding anything >1 mm) at random bearings with a hand corer, but 

collected 6 replicates along two transects at distances of 1, 5 and 9 m from the mouth of 

the drainage streams.  

Finally, to characterise aquatic sources that would contribute to sediment OM in 

the benthic sites, we collected periphyton and phytoplankton. Periphyton is a mixture of 

bacteria, phytoplankton, and detritus, which integrates temporal variability in within-

lake production (Tanentzap et al. 2014). We collected periphyton by anchoring 6 clay 

discs (~12 cm diameter) 0.10 m above the sediment in each site, placed out of direct 

stream discharge areas to avoid accumulation of terrestrial detritus. The discs 

accumulated growth between 15 August and 5 September 2014, and all material was 

then carefully scraped into a sample container. We also collected phytoplankton by 

filtering 3 replicate 12 L water samples from above the sediments on 3 separate dates in 

early autumn 2014 through 0.2 μm filters and retaining the material on the filters. DOC 
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concentrations above the delta sites were relatively low (mean ± standard deviation = 

2.5 ± 0.29 mg L-1), so the filtrate, which weighed between 2.5-10 mg, would have been 

primarily derived from phytoplankton.  

All samples were analyzed for δ13C, δ15N and δ34S using an Isoprime stable 

isotope ratio mass spectrometer (IRMS) (GV Instruments, Manchester, UK) at the 

Natural Environment Research Council Life Sciences Mass Spectrometry Facility (East 

Kilbride and Lancaster, UK). To remove carbonates, sediment and soil samples were 

acidified with 10% HCl and rinsed in Milli-Q water prior to δ13C analysis. We also 

measured the %C, %N, and %S of each sample using the IRMS. 

 

A.1.3 Estimation of isotopic mixing model 

We estimated the relative contribution of terrestrial OM sources to sediment by 

parameterising using a Bayesian three-isotope mixing model (Solomon et al. 2011). The 

model estimated the proportional contribution of terrestrial soil (ɸSL) and leaf litter (ɸLF), 

and lake periphyton (ɸPR) and phytoplankton (ɸPY) organic matter in the surficial 

sediment of each sample i at each site j. We let the ratios of each of the l = 3 isotopes 

(δ13C, δ15N, and δ34S) be described by a linear mixture of the isotope ratios in each of 

the four sources: soil (SL), leaf litter (LF), periphyton (PR), and phytoplankton (PY). 

To estimate the relative contributions of each source to the sediments, isotopic ratios in 

sediment were sampled from a multivariate normal distribution with a mean vector μij 

and l × l matrix Σij: 

µ!" =  𝛷!"!"SL!" +  𝛷!"!"LF!" +  𝛷!"!"PR!" +  𝛷!"!"PY!"   

 𝛷!" +  𝛷!" +  𝛷!" +  𝛷!" = 1.    (eq. A.1) 

We propagated the uncertainty into Σij by summing the product of the sources 

and their observed variances, and added this to an estimated l length vector of residual 

errors ε, with each element sampled from a relatively uninformative uniform prior 
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between 0 and 30. We then multiplied this vector of standard deviations with an 

estimated l × l correlation matrix Ω to derive Σij. The prior for Ω was sampled from a 

LKJ distribution that placed almost uniform support over the estimated correlations 

(shape parameter η = 2), with the density slightly more concentrated around the identity 

matrix (Lewandowski et al. 2009). We accounted for fractionation of δ13C and reduction 

of δ34S by estimating a correction factor Δi from a uniform prior between 0 and 30 and -

50 and 0 for δ34S, respectively. We expected a positive correction factor (i.e. 

enrichment) for the δ13C ratio because the lighter 12C isotope is preferentially used for 

microbial respiration during decomposition (Nadelhoffer and Fry. 1988, Ågren et al. 

1996). By contrast, we expected a negative correction factor for the δ34S ratio (i.e. 

depletion), as this is commonly reported to arise from the activities of sulfate-reducing 

microbes (Thode 1991). Eq. A.1 was subsequently modified as: 

µ!" =  𝛷!"!"SL!" +  𝛷!"!"LF!" +  𝛷!"!"PR!" +  𝛷!"!"PY!"  +  Δ!  .  (eq. A.2) 

 

A.1.4 Selection of environmental variables 

We characterized sediments with 16 environmental variables in addition to the 4 

described in the main text to find those that exhibited the greatest among-site variation. 

14 of these variables were water chemistry parameters measured in 24 surface grab 

samples taken throughout the ice-free season and filtered at 0.45 μm. Total elemental 

concentrations (magnesium, potassium, sodium, calcium, chromium, cobalt, copper, 

iron, nickel, zinc, phosphorus), total Kjeldahl nitrogen concentration, sulphate 

concentration, and conductivity were analyzed by the Ontario Ministry of the 

Environment and Climate Change using standard methods (OMOE 1983). We also 

considered the % sulphur content of the sediment samples taken for the isotopic mixing 

model. Finally, we characterized the particle size distributions of organic material from 

these same sediment cores. The percentage of material on a dry-mass basis in four size 
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classes (<0.063, 0.063-1, 1-2, >2 mm) was determined after sieving material as 

described in Tanentzap et al. (2017). 

 We selected variables to use in our analyses that displayed statistically 

significant variation among sites according to a one-way analysis of variance. These 

variables were OM quantity, % sulfur, pH, and C:N ratio (Table A.1). Additionally, we 

used a chi-square goodness of fit to compare % terrestrial C among sites.  We could not 

use an ANOVA as the isotopic mixing model estimated a single mean value per site 

from a posterior distribution.  This test showed that % terrestrial C also varied 

significantly among sites (Χ2 = 248.3, Df = 7, p < 0.001).  

We checked for multicollinearity between our five remaining variables with 

Pearson’s correlation tests prior to performing the analyses described in the main text. 

We found that only % sulfur and OM quantity were highly correlated (ρ = 0.87; Table 

A.2). Considering that OM quantity varied more among sites (Table A.1), we retained it 

and discarded % sulfur from our analyses. 

 

A.1.5 DNA extraction, library preparation, and sequencing 

DNA concentrations of each extraction were measured prior to preparing amplicon 

sequencing libraries using the PicoGreen dsDNA quantitation kit (Molecular Probes, 

Invitrogen, Eugene, OR, USA). Amplicon sequencing libraries were constructed with 

primers targeting the hyper-variable V3-V4 regions of the 16S rRNA gene (341F (5’-

CCTACGGGNGGCWGCAG-3’) - 805R (5’-GACTACHVGGGTATCTAATCC -3’), 

Klindworth et al. 2013). During DNA extraction and PCR amplification, four negative 

controls (reagent blanks) were used on each 96-well plate. The negative controls 

revealed no amplification in the targeted region and were therefore discarded prior to 

sequencing. We then used a dual indexing strategy consisting of adding unique 8 base 

indices to the primers to allow multiplexing of pooled libraries, along with Illumina 
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adapter overhang nucleotide sequences to permit binding to the flow cell (Illumina, San 

Diego, CA, USA). Samples were first amplified with 1 µL of forward and reverse 

primers (10 nM each), 12.5 µL of 2x KAPA HiFi HotStart ReadyMix (KAPA 

Biosystems), and 11.5 µL of microbial DNA (5 ng µL-1) in a total volume of 25 µL with 

the following cycling conditions: initial denaturation of 3 min at 95˚C, 25 cycles at 

95˚C for 30 s, 55˚C for 30 s, 72˚C for 30 s, and final elongation of 5 min at 72˚C. 

Libraries were purified using 20 µL of Agencourt AMPure XP beads (Beckman Coulter 

Genomics, Indianapolis, IN). Samples were then amplified again in order to add the 

Nextera XT Index primers (Illumina). 5 µL of Nextera XT Index Primer 1 (N7XX) and 

5 µL of Nextera XT Index Primer 2 (S5XX), 25 µL of 2x KAPA HiFi HotStart 

ReadyMix, 5 µL of DNA and 10 µL of PCR-grade water in a total volume of 50 µL 

with the following cycling conditions: initial denaturation of 3 min at 95˚C, 8 cycles at 

95˚C for 30 s, 55˚C for 30 s, 72˚C for 30 s, and final elongation of 5 min at 72˚C. Final 

libraries were purified using 56 µL of Agencourt AMPure XP beads. Amplicons were 

quantified on Bioanalyzer DNA 1000 chips (Agilent, Santa Clara, CA, USA) and 

pooled in equimolar concentrations into a single sample. The final concentration of the 

library was determined using the PicoGreen dsDNA quantitation kit and was then 

sequenced on an Illumina MiSeq platform using the MiSeq Reagent Kit v3 (600 cycles, 

paired-end). 

Tagmented libraries for shotgun sequencing were amplified with 5 µL of each 

Nextera XT Index Primer 1 (N7XX) and Primer 2 (S5XX) and 15 µL of Nextera PCR 

Master Mix under the following cycling conditions: initial denaturation of 3 min at 

72˚C followed by 30 s at 95˚C, 12 cycles at 95˚C for 10 s, 55˚C for 30 s, 72˚C for 30 s, 

and final elongation of 5 min at 72˚C. Final libraries were purified using 30 µL of 

Agencourt AMPure XP beads. Libraries were quantified on a Qubit and on Bioanalyzer 

HS DNA chips (Agilent) and pooled in equimolar concentrations into a single sample. 
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Sequencing was carried out on an Illumina NextSeq platform using a NextSeq 500/550 

Mid Output Kit v2 (300 cycles, paired-end). 

 

A.1.6 Bioinformatics analysis 

We sorted the raw reads obtained from amplicon sequencing into groups according to 

their indices. Indices and primer sequences were then removed, and only sequences 

with an exact match to the adapter and index primers were kept. The resulting 

sequences were processed according to the following conditions using mothur version 

1.39.5 (Schloss et al. 2009): minimum average quality of 25, no ambiguous bases, 

length between 400 and 500 bp, and homopolymers no longer than 8 bp. mothur is 

commonly used for amplicon sequence processing and was made popular by its speed 

and excellent accompanying documentation (Wooley et al. 2010, Nilakanta et al. 2014, 

Pollock et al. 2018). Filtered sequences were aligned to the SILVA reference database 

(Quast et al. 2012) with the kmer searching algorithm and kmer size set to 8 (Schloss et 

al. 2009). The kmer algorithm is an alignment independent technique that has been 

shown to outperform other searching algorithms (e.g. blastn and suffix tree searching) 

both in its ability to find the best template sequence and in its speed (Schloss et al. 

2009). Sequences that did not match the reference alignment in the expected positions 

were discarded. A pre-clustering algorithm was further used to de-noise sequences 

within each sample and the resulting sequences were screened for chimeras using 

UCHIME (Edgar 2010). A Bayesian classifier was then used to classify each sequence 

against the Greengenes taxonomy database (DeSantis et al. 2006), with an 80% 

pseudobootstrap confidence score. Sequences that did not classify to the level of 

kingdom or that classified as Archaea, Eukaryota, chloroplasts, or mitochondria were 

removed. Finally, the reads were clustered into operational taxonomic units (OTUs) at 
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97% sequence identity using UCLUST (Edgar 2010). Any read sequenced fewer than 

six times was removed from subsequent analyses. 

Raw sequences from the shotgun sequencing were processed following a 

modified version of the European Molecular Biology Laboratory-EBI pipeline version 

3.0 (Mitchell et al. 2016). The advantage of processing data following the EMBL-EBI 

pipeline is that they can then be compared more accurately to other datasets processed 

similarly. The SeqPrep tool (https://github.com/jstjohn/SeqPrep, version 1.1) was used 

to merge paired-end overlapping reads, Trimmomatic (Bolger et al. 2014; version 0.35) 

was used to trim low quality ends and sequences with >10% undetermined nucleotides, 

and <100 nucleotides were removed using Biopython (Cock et al. 2009; version 1.65).  

Non-coding RNAs were identified and masked with HMMER (http://hmmer.org; 

version 3.1b1). Sequences were functionally annotated by predicting coding sequences 

(pCDS) above 60 nucleotides with FragGeneScan (Rho et al. 2010; version 1.20). Read 

matches were then generated against pCDS using a subset of databases from 

InterProScan (Jones et al. 2014; version 5.19-58.0) and summarized using the Gene 

Ontology terms.  
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Table A.1 | Among-site variation in 20 environmental variables. We fitted ANOVAs to each 

variable with site as the sole explanatory variable. Variables were ordered by decreasing F value. To 

achieve normality, sodium, zinc, and C:N ratio were log transformed; total Kjeldhal nitrogen, cobalt, 

and iron were fourth-root transformed; total phosphorus, copper and nickel were reciprocally 

transformed; and particle size percentages, % sulfur, % terrestrial C, and OM quantity (% loss on 

ignition) were logit transformed. For particle size, the ANOVA was nested within four size classes 

measured on each sample. Df = degrees of freedom.  

Response 

variable 

Explanatory 

variables 
Df 

Sums of 

squares 

Mean 

Squares 
F value Pr(>F) 

OM quantity 
Site 7 119.3 17.04 49.49 <0.001 *** 

Residuals 89 30.65 0.34     

% sulfur 
Site 7 121.8 17.40 45.97 <0.001 *** 

Residuals 86 32.55 0.38     

pH 
Site 7 6.35 0.91 10.96 <0.001 *** 

Residuals 89 7.36 0.08     

C:N ratio 
Site 7 2.33 0.33 3.38 0.003 ** 

Residuals 86 8.49 0.1     

Total Kjeldahl 

Nitrogen 

 Site 7 0.01 2 x 10-3 1.62 0.201 

Residuals 16 0.02 1 x 10-3     

 Calcium 
Site 7 0.21 0.03 1.61 0.203 

Residuals 16 0.30 0.02     

 
Site 6 11.36 1.89 1.24 0.308 

Particle size Residuals 38 57.98 1.53 

    Error 3 117.20 39.08     

Copper 
 Site 7 1.08 0.15 1.23 0.343 

Residuals 16 2.00 0.13     
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Nickel 
Site 7 0.52 0.08 1.21 0.355 

Residuals 16 0.99 0.06     

Magnesium 
 Site 7 0.04 0.01 1.14 0.390 

Residuals 16 0.07 4 x 10-3     

Iron 
 Site 7 0.25 0.04 0.97 0.485 

Residuals 16 0.58 0.04     

Cobalt 
 Site 7 0.03 4 x 10-3 0.97 0.487 

Residuals 16 0.06 4 x 10-3     

Zinc 
Site 7 0.16 0.02 0.97 0.488 

Residuals 16 0.37 0.02     

Total 

Phosphorus 

 Site 7 67184 9598 0.92 0.516 

Residuals 16 166666 10417     

Chromium 
 Site 7 9.29 x 10-8 1.33 x 10-8 0.64 0.719 

Residuals 16 3.33 x 10-7 2.08 x 10-8     

Sodium 
Site 7 0.02 2.00 x 10-3 0.40 0.886 

Residuals 16 0.09 0.01     

Conductivity 
 Site 7 6.62 0.95 0.30 0.943 

Residuals 16 50.3 3.14     

Sulphate 
 Site 7 0.33 0.05 0.26 0.960 

Residuals 16 2.86 0.18     

Potassium 
 Site 7 1.00 x 10-3 1.30 x 10-4 0.10 0.997 

Residuals 16 0.02 1 x 10-3     

Significance levels: * = <0.05, ** = <0.01, *** = <0.001
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Table A.2 | Pearson’s correlation matrix for variables displaying among-site variation. For 

each variable, we correlated site-level means to ensure data of matching length.  

  pH OM quantity % terrestrial C C:N ratio % sulfur 

pH 1 

    OM quantity 0.22 1 

   % terrestrial C -0.57 0.10 1 

  C:N ratio 0.26 0.44 -0.35 1 

 % sulfur -0.10 0.87 0.37 0.35 1 

 

Table A.3 | Environmental gradients across our study lake. We measured pH and OM 

quantity (% loss on ignition) for each sediment core used to measure ecosystem functioning 

(total n = 97) and % terrestrial carbon (C) and C:N ratio for each sediment sample taken for the 

isotopic mixing model (total n = 94).  

Variable Minimum Median Maximum 

pH 4.71 5.95 6.67 

OM quantity 0.61 13.19 73.83 

% terrestrial C 1.10 6.60 81.80 

C:N ratio 12.02 16.41 17.35 
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Table A.4 | Gene Ontology (GO) categories associated with each of our four subsets of 

functional genes.  Each subset is involved in different aspects of terrestrial OM decomposition.  

Functional gene subset GO categories 

Hydrolase 

"cellulase activity" 

"glucosidase activity" 

"xylan 1,4-beta-xylosidase activity" 

Oxidase 

"peptidase activity" 

"phosphatase activity" 

"peroxidase activity" 

"nitrate reductase activity" 

"catechol oxidase activity" 

"catechol 1,2-dioxygenase activity" 

Carbohydrate metabolism 

"glycolytic process" 

"polysaccharide catabolic process" 

Aromatic compound catabolism "aromatic compound catabolic process" 
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Table A.5 | Model selection statistics and parameter estimates for models of CO2 

production with each of four functional gene subsets. AICc weight (w) is the proportion of 

support for a given model out of the candidate set and marginal R2 is a measure of variance 

explained by model fixed effects only. Mean estimates and standard errors (SE) are given for 

the fixed effect predictors of each model. Variance is given for the site-level random effect. 

Bolded values have 95% CI that exclude 0 and are considered statistically significant. All 

abundance measures are normalized abundances.  

    Functional gene abundance 

Predictors    Hydrolases Oxidases 
Carbohydrate 

metabolism 

Aromatic 

compound 

catabolism 

. AICc 102.70 103.40 102.40 103.90 

 
w 0.29 0.21 0.34 0.16 

 
R2 0.58 0.68 0.62 0.60 

Intercept 
Mean 4.70 4.94 4.75 4.73 

SE 0.12 0.17 0.13 0.15 

pH 
Mean -0.16 -0.43 -0.15 -0.20 

SE 0.12 0.16 0.12 0.14 

OM quantity 
Mean 0.42 0.62 0.60 0.48 

SE 0.20 0.18 0.24 0.21 

% terrestrial C 
Mean -0.16 -0.04 -0.08 -0.10 

SE 0.18 0.21 0.25 0.26 

C:N ratio 
Mean -0.04 -0.06 -0.05 0.07 

SE 0.18 0.19 0.20 0.20 
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Bacterial 

abundance 

Mean -0.32 -0.11 -0.05 -0.12 

SE 0.28 0.22 0.21 0.27 

Taxonomic 

diversity 

Mean 0.47 0.68 0.45 0.44 

SE 0.23 0.24 0.20 0.20 

Functional 

diversity 

Mean 0.00 -0.27 -0.16 -0.25 

SE 0.24 0.18 0.18 0.18 

Functional gene 

abundance 

Mean -0.21 0.51 -0.34 0.20 

SE 0.25 0.24 0.24 0.19 

Functional gene 

abundance × C:N 

Mean 0.16 0.30 0.23 -0.17 

SE 0.17 0.17 0.18 0.20 

Functional gene 

abundance × % 

terrestrial C 

Mean  

SE 

 

0.05 

0.17 

 

0.59 

0.27 

 

0.02 

0.14 

 

0.02 

0.15 

 

Site Variance 0.03 0.09 0.04 0.05 
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A.2 Supplementary results 

Table A.6 | Sequencing and taxonomic output of both the shotgun (n = 22) and the 

amplicon (n = 97) sequencing datasets. Percentage abundance of different phyla is based on 

DESeq transformed abundances.  

 

Library 

  Shotgun Amplicon 

# of sequences 923,560 3,831,950 

# of OTUs 22,899 27,027 

# of families 531 551 

# of phyla 62 64 

Top 3 phyla (% abundance) 

  Proteobacteria 22 22 

Chloroflexi 11 11 

Acidobacteria 9 9 
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Table A.7 | Community structure across our study lake in the 22 samples used in the path 

analysis. We measured taxonomic and functional diversity as Shannon’s H’ and the remaining 

metrics as normalized abundances (DESeq transformed). SE = standard error.  

Diversity metric Minimum Mean (± SE) Maximum 

Bacterial abundance 1901.93 2046.91 (± 18.51) 2228.81 

Taxonomic diversity 3.83 4.42 (± 0.04) 4.76 

Functional diversity 5.03 5.05 (± 0.003) 5.08 

Hydrolases 25.58 26.13 (± 0.07) 26.78 

Oxidases 55.68 56.14 (± 0.05) 56.65 

Carbohydrate metabolism 22.17 22.57 (± 0.05) 23.10 

Aromatic compound catabolism 9.06 9.92 (± 0.07) 10.31 

 

 

 

 

Fig. A.2 | Frequency distribution of family-level presence across sites. Numbers above each 

bar indicate the number of unique taxa found between 1 to 8 sites. 
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Table A.8 | Partitioning the effect of the past and present environment on bacterial 

community composition at the family level. (a) Sum of the eigenvalues of the five canonical 

correspondence analysis (CCA) axes (pH, OM quantity, % terrestrial C, C:N ratio, and site; i.e. 

“Inertia”) and their contribution to the total variance (i.e. “Proportion”) in community 

composition. (b) Variation in bacterial community composition explained by PERMANOVA 

(999 permutations). Df = degrees of freedom. (c) Sum of the eigenvalues of the four redundancy 

analysis (RDA) axes (pH, OM quantity, % terrestrial C, and C:N ratio; i.e. “Inertia”) conditional 

on site and their contribution to the total variance (i.e. “Proportion”) in community composition. 

 

a) CCA – Partitioning of correlations 

Explained variance Inertia Proportion 

Total 0.06 1.00 

Constrained 0.02 0.40 

Unconstrained 0.03 0.60 

 

 

b) PERMANOVA output table 

 
Df Sums of 

Squares 

F R2 Pr(>F) 

pH 1 0.01 1.84 0.02 0.06 

OM quantity 1 0.01 2.14 0.02 0.06 

% terrestrial C 1 0.03 5.64 0.05 0.001 *** 

C:N ratio 1 0.03 4.61 0.04 0.001 *** 

Site 1 0.02 3.92 0.03 0.01 ** 
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Residuals 91 0.55 
 

0.77 
 

Total 96 0.71 
 

1.00 
 

Significance levels: * = <0.05 
   

 

c) Partial RDA – Partitioning of correlations 

Explained variance Inertia Proportion 

Total 493 1.00 

Conditional 37 0.07 

Constrained 74 0.15 

Unconstrained 382 0.78 
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Table A.9 | Model averaged parameter effects used to predict CO2 production. 95% 

confidence intervals (CI) were averaged across competing models for each predictor, while 

values for functional gene abundance, its interactions with the environment and the model 

intercept were specific to the oxidase functional gene subset, which was the only gene subset 

with a statistically significant effect (Table A.5). Bolded predictors were those with 95% CI that 

did not overlap 0 and were considered statistically significant. All abundance measures are 

normalized abundances.  

Fixed predictors 2.5% 97.5% 

Oxidase-derived intercept 4.60 5.25 

pH -0.36 -0.07 

OM quantity 0.30 0.80 

% terrestrial C -0.33 0.15 

C:N ratio -0.22 0.18 

Bacterial abundance -0.45 0.12 

Taxonomic diversity 0.28 0.74 

Functional diversity -0.37 0.06 

Oxidase gene abundance 0.02 0.98 

Oxidase gene abundance × C:N ratio -0.03 0.63 

Oxidase gene abundance × % terrestrial C 0.03 1.14 
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Table A.10 | Mean parameter estimates and 95% confidence interval (CI) for predictors in 

models with each of the four measures of community structure as a response. Bolded 

predictors were those with 95% CI that did not overlap 0 and were considered statistically 

significant. SE = standard error. All abundance measures are normalized abundances.  

    Response variable 

Predictor    
Bacterial 

abundance 

Taxonomic 

diversity 

Functional 

diversity 

Oxidase 

abundance 

 
Mean 7.62 4.43 5.05 56.14 

Intercept SE 0.01 0.04 <0.01 0.04 

  95% CI (7.60, 7.64) (4.35, 4.51) (5.05, 5.06) (56.05, 56.22) 

 
Mean 0.00 -0.02 0.00 0.06 

pH SE 0.01 0.03 <0.01 0.04 

  95% CI (-0.02, 0.01) (-0.09, 0.05) (<-0.01, 0.01) (-0.02, 0.14) 

 
Mean -0.02 0.02 0.00 -0.05 

OM quantity SE 0.01 0.05 <0.01 0.05 

  95% CI (-0.04, 0.00) (-0.08, 0.12) (<-0.01, 0.01) (-0.16, 0.07) 

 
Mean -0.02 -0.01 0.00 -0.03 

% terrestrial C SE 0.01 0.05 <0.01 0.06 

  95% CI (-0.04, 0.00) (-0.13, 0.10) (-0.01, <0.01) (-0.14, 0.08) 

 
Mean -0.01 0.00 0.00 -0.03 

C:N ratio SE 0.01 0.05 <0.01 0.06 

  95% CI (-0.04, 0.02) (-0.12, 0.10) (<-0.01, 0.01) (-0.14, 0.10) 

Bacterial 

abundance 

Mean 
 

0.17 0.01 0.12 

SE 
 

0.05 <0.01 0.07 

95% CI   (0.07, 0.26) (<-0.01, 0.01) (-0.03, 0.27) 
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Taxonomic 

diversity 

Mean 0.01 -0.19 

SE 
  

<0.01 0.06 

95% CI     (<0.01, 0.01) (-0.30, -0.07) 

Functional 

diversity 

Mean 
   

0.10 

SE 
   

0.06 

95% CI       (-0.01, 0.22) 

Standard 

deviation in 

site 

Mean 

95% CI 

0.03 0.08 <0.01 0.07 

(0.01, 0.04) (0.03-0.16) (<0.001-0.01) (0.03-0.18) 
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Table A.11 | No significant effect of CO2 production in predicting the four measures of 

community structure. We checked that there were no missing linkages in our model by 

including CO2 production as a predictor of the four measures of community structure. This 

missing linkage had no statistically significant effect in models predicting measures of 

community structure (see Table A.10), suggesting that there was no direct influence of 

ecosystem function on microbial diversity and abundance. All abundance measures are 

normalized abundances.  

    Response variable 

Predictor    
Bacterial 

abundance 

Taxonomic 

diversity 

Functional 

diversity 

Oxidase 

abundance 

 
Mean 7.62 4.43 5.05 56.14 

Intercept SE 0.01 0.04 <0.01 0.04 

  95% CI (7.60, 7.64) (4.35, 4.50) (5.05, 5.06) 
(56.06, 

56.22) 

 
Mean 0.00 0.04 0.00 0.03 

CO2 production SE 0.01 0.04 <0.01 0.05 

  95% CI (-0.01, 0.02) (-0.04, 0.11) (-0.01, <0.01) (-0.05, 0.12) 

 
Mean 0.00 -0.01 0.00 0.07 

pH SE 0.01 0.04 <0.01 0.04 

  95% CI (-0.02, 0.01) (-0.08, 0.06) (<-0.01, <0.01) (-0.02, 0.16) 

 
Mean -0.02 -0.01 0.00 -0.08 

OM quantity SE 0.01 0.04 <0.01 0.06 

  95% CI (-0.04, 0.00) (-0.12, 0.10) (<-0.01, 0.01) (-0.21, 0.04) 

 
Mean -0.02 -0.01 0.00 -0.01 

% terrestrial C SE 0.01 0.05 <0.01 0.06 

  95% CI (-0.04, 0.01) (-0.11, 0.10) (<-0.01, <0.01) (-0.13, 0.11) 
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Mean -0.01 0.00 0.00 -0.03 

C:N ratio SE 0.01 0.05 <0.01 0.06 

  95% CI (-0.03, 0.02) (-0.10, 0.11) (<-0.01, 0.01) (-0.14, 0.10) 

 

Mean 
 

0.16 0.00 0.12 

Bacterial 

abundance 
SE 

 
0.04 <0.01 0.07 

  95% CI   (0.07, 0.26) (<-0.01, 0.01) (-0.02, 0.28) 

Taxonomic 

diversity 

Mean 
  

0.01 -0.21 

SE 
  

<0.01 0.06 

95% CI     (<0.01, 0.01) (-0.32, -0.08) 

Functional 

diversity 

Mean 
   

0.11 

SE 
   

0.06 

95% CI       (-0.01, 0.23) 

Standard 

deviation in site 

Mean 

95% CI 

0.03 0.07 <0.01 0.07 

(0.01, 0.04) (0.03-0.15) (<0.01-0.01) (0.03-0.17) 
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Appendix B 

Diversity-stability relationships in lake 

sediment microbiomes 

 

B.1 Supplementary methods 

B.1.1 DNA extraction, library preparation, and sequencing 

Microbial communities were sampled from surface sediments (~ top 5 cm) and were 

immediately placed into individual sterile sample bags. Sediments were then freeze-

dried and stored at -20˚C to stabilize the microbial communities (Miller et al. 1999).  

To obtain taxonomic information, we carried out next-generation sequencing. 

DNA was extracted from each mesocosm in duplicate using a Power Soil DNA 

Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA, USA) according to the 

manufacturer’s instructions. Duplicates were pooled for downstream analysis. The DNA 

concentration of each sample was measured using the PicoGreen dsDNA quantitation 

kit (Molecular Probes, Invitrogen, Eugene, OR, USA). Sequencing libraries were 

prepared with 1 ng of genomic DNA per sample using the Nextera XT DNA Sample 

Preparation and dual-barcoding with Nextera XT Indexes (Illumina, San Diego, CA, 

USA) following the manufacturer’s instructions. Libraries were quantified on a Qubit 

3.0 Fluorometer (ThermoFisher Scientific, Waltham, MA, USA) and on a Bioanalyzer 

HS DNA chip (Agilent, Santa Clara, CA, USA) and pooled in equimolar concentrations 

into a single sample. Samples were sequenced on a NextSeq (Illumina) using a NextSeq 

500/550 Mid Output Kit v2 (300 cycles, paired-end). 
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B.1.2 Bioinformatics analysis 

Raw sequences were processed at a read depth of approximately 3.3 million reads per 

sample following a modified version of the European Molecular Biology Laboratory-

EBI pipeline version 3.0 (Mitchell et al. 2016). The SeqPrep tool version 1.1 

(https://github.com/jstjohn/SeqPrep) was used to merge paired-end overlapping reads 

and Trimmomatic version 0.35 (Bolger et al. 2014) was used to trim low quality ends. 

Sequences with >10% undetermined nucleotides and <100 nucleotides were removed 

using Biopython version 1.65 (Cock et al. 2009).  ncRNAs were identified and removed 

with HMMER version 3.1b1 (http://hmmer.org). Sequences were taxonomically 

annotated using QIIME version 1.9.1 (Caporaso et al. 2010). Representative 16S 

sequences were classified with the SILVA reference database (release 128) at 97% 

sequence identity following the open-reference OTU picking method with reverse 

strand matching enabled. We removed 14 OTUs out of 7,696 that were found in the 

negative control with a relative abundance >1%, 73% of which belonged to the 

Euryarchaeota (as per Flores et al. 2012).  
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B.2 Supplementary results 

Table B.1 | Model outputs of linear regressions testing ultimate and proximal drivers of 

CO2 and community stability. EF = ecosystem function; n.s. = non-significant (p>0.05); SE = 

standard error.  

Measure of 

EF 
Response Predictor Slope (SE) p-value R2 

CO2 Stability OTU richness 0.16 (0.07) 0.041 0.17 

production 
 

OM quantity -0.08 (0.09) n.s. 
 

  
OM quality 0.07 (0.08) n.s. 

 

  
OTU richness × OM quantity 0.09 (0.10) n.s. 

 

  
OTU richness × OM quality -0.08 (0.08) n.s. 

 

  
Asynchrony -0.03 (0.09) n.s. 

 

  
Bay 0.06 (0.13) n.s. 

 

 
σ OTU richness -0.15 (0.06) 0.016 0.30 

  
OM quantity 0.19 (0.05) 0.002 

 

  
OM quality 0.02 (0.06) n.s. 

 

  
OTU richness × OM quantity -0.18 (0.07) 0.024 

 

  
OTU richness × OM quality 0.07 (0.06) n.s. 

 

  
Bay 0.03 (0.10) n.s. 

 

 
μ OTU richness 0.02 (0.06) n.s. 0.28 

  
OM quantity 0.10 (0.06) n.s. 

 

  
OM quality 0.09 (0.07) n.s. 

 

  
OTU richness × OM quantity -0.08 (0.08) n.s. 

 

  
OTU richness × OM quality 0.00 (0.06) n.s. 

 

  
Bay 0.09 (0.10) n.s. 
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Microbial  Stability OTU richness 0.10 (0.14) n.s. 0.64 

abundance 
 

OM quantity 0.28 (0.16) n.s. 
 

 
 

OM quality -0.14 (0.15) n.s. 
 

  
OTU richness × OM quantity 0.24 (0.18) n.s. 

 

  
OTU richness × OM quality 0.00 (0.14) n.s. 

 

  
Asynchrony 0.63 (0.16) <0.001 

 

  
Bay 0.36 (0.24) n.s. 

 

 
σ Asynchrony -0.64 (0.15) <0.001 0.39 

  
Bay -0.17 (0.29) n.s. 

 

 
μ Asynchrony 0.09 (0.08) n.s. <0.01 

    Bay 0.10 (0.16) n.s.   

 

 

Table B.2 | Model outputs of linear regressions testing the effects of diversity and the 

environment on asynchrony. n.s. = non-significant (p>0.05) ); SE = standard error.  

Response Predictor Slope (SE) p-value R2 

Asynchrony OTU richness -0.04 (0.06) n.s. 0.37 

 
OM quantity 0.17 (0.05) 0.006 

 

 
OM quality 0.02 (0.06) n.s. 

 

 
OTU richness × OM quantity -0.00 (0.07) n.s. 

 

 
OTU richness × OM quality -0.07 (0.06) n.s. 

 
  Bay 0.02 (0.10) n.s.   
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Appendix C 

Changes in lake sediment microbiomes in 

their early development 

 

C.1 Supplementary methods 

C.1.1 DNA extraction, library preparation, and sequencing 

Surface sediment grabs were immediately placed into individual sterile sample bags and 

then freeze-dried at -20˚C to stabilize the communities (Miller et al. 1999).  

To obtain taxonomic information, we first extracted DNA in duplicate from each 

sample using the Power Soil DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, 

CA, USA) according to the manufacturer’s instructions. We also extracted DNA from 

the original t-OM material each in triplicate. Duplicate extractions from sediment grabs 

were pooled for downstream analysis whilst triplicate extractions from the original t-

OM material were processed individually. The DNA concentration of each sample was 

measured using the PicoGreen dsDNA quantitation kit (Molecular Probes, Invitrogen, 

Eugene, OR, USA) prior to downstream library preparation.  

Sequencing libraries were constructed using the resulting 249 DNA samples and 

three negative controls comprised of double-distilled water. Amplicon sequencing 

libraries were constructed using a two-step PCR process. Firstly, bacterial and archaeal 

DNA was amplified with primers targeting the hyper-variable V3-V4 regions of the 

universal 16S rRNA gene: 341F (5’- CCTAYGGGRBGCASCAG-3’) - 806R (5’- 

GGACTACNNGGGTATCTAAT-3’) (Yu et al. 2005), and the ITS1 region was used to 
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target fungi with the primers ITS1f (5’-CTTGGTCATTTAGAGGAAGTAA-3’, Gardes 

& Bruns 1993)  and ITS2 (5’-GCTGCGTTCTTCATCGATGC-3’,White et al. 1990), 

each also including an overhang sequence. A second PCR used primers with the 

overhang tails, a 6 nucleotide (nt) index sequence and Illumina capture sequences to 

permit binding to the flow cell as in Campbell et al. (2015), and were synthesized using 

the Trugrade process (IDT, Leuven, Belgium). This dual indexing strategy was used to 

allow multiplexing of pooled libraries. 

For the PCR, samples were first amplified with 2 µL of forward and 2 µL of 

reverse primers (1 µM each), 10 µL of Qiagen Multiplex PCR Master Mix (Qiagen, 

UK), 4 µL of sterile double-distilled water and 2 µL of microbial DNA (10 ng/µL) in a 

total volume of 20 µL with the following cycling conditions: initial denaturation of 15 

min at 95˚C, 35 cycles at 94˚C for 30 s, 55˚C for 45 s, 72˚C for 30 s, and final 

elongation of 10 min at 72˚C. Samples were amplified again to add the Trugrade index 

primers with 2 µL of Forward Index Primer 1 (i5, 1 µM) and 2 µL of Reverse Index 

Primer 2 (i7, 1 µM), 10 µL of Qiagen Multiplex PCR Master Mix and 8 µL of template 

DNA in a total volume of 22 µL with the following cycling conditions: initial 

denaturation of 15 min at 95˚C, 10 cycles at 98˚C for 10 s, 65˚C for 30 s, 72˚C for 30 s, 

and final elongation of 5 min at 72˚C. Samples were quantified on a FLUOstar 

OPTIMA plate reader at 545 nm (BMG Labtech, Aylesbury, UK) and pooled in groups 

of 8 in equimolar quantities (150 ng). Final libraries (50 µL) were purified using a first 

round of 25 µL of Agencourt AMPure XP beads (Beckman Coulter Genomics, 

Indianapolis, IN, USA), and a second round of 67.5 µL of beads. Amplicons were 

quantified on a Quantstudio 12k Flex Real-Time PCR system (Applied Biosystems, 

Warrington, UK) with 6 µL of KAPA SYBR FAST mix and primers (KAPA 

Biosystems, Wilmongton, MA, USA) and 2 µL of PCR-grade water with the following 

cycling conditions: 95˚C for 5 min, 35 cycles at 95˚C for 30s and 60˚C for 45 sec. The 
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size of the amplicons was checked on an Agilent 4200 TapeStation (Agilent, Santa 

Clara, CA, USA) and pooled in equimolar concentrations into a single sample. The final 

concentration of the library was determined using PicoGreen dsDNA quantitation and 

was then sequenced on an Illumina MiSeq sequencer (600 cycles, paired-end) using the 

MiSeq Reagent Kit v3 (Illumina). 

 

C.1.2 Bioinformatics analysis 

We used DADA2 to infer the amplicon sequence variants (ASVs) present in each 

sample (Callahan et al. 2016a). First, we removed the 16S and ITS primer adapters from 

our sequences using cutadapt (Martin 2011). We then followed a slightly modified 

version of the DADA2 Workflow for Big Data (Callahan et al. 2016b). As 16S and ITS 

samples were sequenced on separate runs, their quality scores and error rates were 

estimated separately to account for run-to-run variability. For samples targeting the 16S 

primer, we trimmed forward and reverse reads at 280 nt and 200 nt respectively, and 

filtered them such that there were no ambiguous bases and that each read had a 

maximum of 8 expected errors, as determined by checking their quality scores. We did 

not trim samples targeting the ITS primers due to its variable length (Nilsson et al. 

2008). Forward and reverse reads were filtered such that they had a maximum of 2 and 

4 expected errors, as determined by their respective quality scores, and that they had no 

ambiguous bases. Using the run-specific error rates, we thus inferred ASVs for the 

forward and reverse reads of both the 16S and ITS runs, after which we merged the read 

pairs and removed ASVs identified as chimeras. Finally, taxonomy was assigned to the 

assembled ASVs using the RDP naïve Bayesian classifier implemented in DADA2 

against the SILVA reference database version 128 for the 16S reads (Quast et al. 2013) 

and the UNITE reference database version 7.2 for the ITS reads (Kõljalg et al. 2013).  
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C.2 Supplementary results 

 

Fig. C.1 | Sediment pore water conditions differed between mesocosms in the three lakes. 

a) The oligotrophic lake had lower pH than the other two lakes, b) HIX increased in darker, 

nutrient-rich lakes, c) DOC was lower in the mixotrophic lake compared to the oligotrophic 

lake, and d) SUVA was higher in the mixotrophic lake. Non-overlapping notches indicate 

differences in the two medians based on 95% confidence intervals (Chambers et al. 1983). The 

upper and lower whiskers extended 1.5 times the interquartile range, with points outside of this 

range plotted. 
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Table C.1 | Model output of linear regression testing rates of compositional change from 

the original leaf material per day.  Mixotrophic status is in the intercept. Day refers to the 

sampling day of experiment.  

Predictor 

Mean effect  

(standard error) t-value P-value 

Intercept 5.99 x 10-2 (4.64 x 10-3) 12.91 <0.001 *** 

Sampling day 4.35 x 10-4 (1.21 x 10-4) 3.58 <0.001 *** 

Oligotrophic 1.63 x 10-4 (6.13 x 10-3) 0.03 0.979 

Mesotrophic 7.72 x 10-4 (6.73 x 10-3) 0.11 0.910 

Day:Oligotrophic 

Day:Mesotrophic 

-6.83 x 10-5 (1.62 x 10-4) 

-2.72 x 10-4 (1.82 x 10-4) 

-0.42 

-1.50 

0.674 

0. 136 

Significance levels: * = <0.05, ** = <0.01, *** = <0.001 

 

Table C.2 | Environmental fit (envfit) results of the associations between environmental 

conditions and compositional shifts in the NMDS ordination. Significance was determined 

with 999 permutations.  

Predictor Axis 1 Axis 2 R2 P-value 

HIX -0.98 -0.17 0.04 0.009 **  

SUVA -0.86 0.51 0.01 0.290 

pH -0.99 -0.17 0.05 0.001 *** 

DOC 0.80 -0.60 0.01 0.385 

Significance levels: ** = <0.01, *** = <0.001 
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Table C.3 | ANOVAs comparing full model to reduced models without the three main 

effects and their interactions with date. Each row represents the respective removal of the 

three environmental predictors (main effects and interaction terms) from the full model. 

 

Full model: 

Dissimilarity ~ Sampling Day x Lake Comparison + Sampling Day x t-OM quality + 

Sampling Day x t-OM quantity + Bay 

 

Df 

Sums of 

Squares F value P-value R2 

Full Model 228 

   

0.42 

- Lake Comparison 232 -3.79 x 10-3 8.07 <0.001 *** 0.35 

- t-OM Quality 232 -1.81 x 10-3 3.87 0.005 ** 0.39 

- t-OM Quantity 232 -1.17 x 10-2 24.83 <0.001 *** 0.18 

Significance levels: ** = <0.01, *** = <0.001 
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Table C.4 | Model output of linear regression predicting changes in community 

dissimilarity. The oligo-mixo lake comparison, 5% t-OM quantity treatment, and coniferous t-

OM quality treatment are in the intercept. Day refers to the sampling day of experiment.  

Predictor 

Mean effect  

(standard error) t-value P-value 

Intercept 5.52 x 10-2 (2.70 x 10-3) 20.49 <0.001 *** 

Sampling day 1.75 x 10-4 (6.74 x 10-5) 2.59 0.010 * 

Oligo-Meso 1.08 x 10-2 (2.29 x 10-3) 4.71 <0.001 *** 

Meso-Mixo -4.94 x 10-4 (2.47 x 10-3) -0.20 0.841 

Mixed 3.49 x 10-3 (2.51 x 10-3) 1.39 0.167 

Deciduous -1.04 x 10-3 (2.27 x 10-3) -0.46 0.646  

25% 7.46 x 10-3 (2.56 x 10-3) 2.92 0.004 ** 

50% 1.10 x 10-2 (2.62 x 10-3) 4.20 <0.001 *** 

Bay -5.79 x 10-4 (1.44 x 10-3) -0.40 0.688 

Day:Oligo-Meso -8.01 x 10-5 (6.52 x 10-5) -1.23 0.220 

Day:Meso-Mixo 6.63 x 10-5 (6.66 x 10-5) 1.00 0.321 

Day:Mixed -1.25 x 10-4 (6.71 x 10-5) -1.86 0.064 

Day:Deciduous -1.39 x 10-4 (6.18 x 10-5) -2.25 0.025 * 

Day:25% 1.26 x 10-4 (6.87 x 10-5) 1.84 0.067 

Day:50% 1.85 x 10-4 (6.93 x 10-5) 2.66 0.008 ** 

Significance levels: * = <0.05, ** = <0.01, *** = <0.001
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Table C.5 | Archaeal and fungal abundances increased with time while bacterial ones 

decreased. We fit linear models to assess how each kingdom's abundances (DESeq-transformed 

read counts) changed with time. 

Microbial  

kingdom Predictor 

Mean effect  

(standard error) t-value P-value 

Archaea 
Intercept 3.26 (0.03) 110.12 <0.001 *** 

Sampling day 0.02 (8.01 x 10-4) 24.77 <0.001 *** 

Fungi 
Intercept 3.42 (0.01) 577.29 <0.001 *** 

Sampling day 1.60 x 10-3 (1.60 x 10-4) 9.95 <0.001 *** 

Bacteria 
Intercept 3.60 (0.01) 640.51 <0.001 *** 

Sampling day -4.97 x 10-4 (1.52 x 10-4) -3.27 <0.01 ** 

Significance levels: ** = <0.01, *** = <0.001 
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Table C.6 | Model outputs of linear regressions testing the effects of t-OM quantity, t-OM 

quality, and lake, respectively, on changes in degrees with time. Separate models were run 

for each environmental predictor of changes in degrees with time.  

Environmental 

predictor 

Treatment 

predictor 

Mean effect  

(standard error) t-value P-value 

t-OM quantity Intercept -3.98 (5.51) -0.72 0.471 

 

25% 10.62 (2.16) 4.92 <0.001 *** 

 

50% 11.22 (2.15) 5.22 <0.001 *** 

 

Bacteria 0.60 (5.44) 0.11 0.850 

 

Fungi -5.18 (5.52) -0.94 0.119 

t-OM quality Intercept -3.88 (5.07) -0.76 0.455 

 

Mixed 5.24 (2.08) 2.52 0.012 * 

 

Deciduous 0.72 (2.07) 0.35 0.730 

 

Bacteria 5.44 (5.17) 1.05 0.293 

 

Fungi -0.26 (5.24) -0.05 0.960 

Lake Intercept -1.31 (6.03) -0.22 0.829 

 

Oligotrophic 3.80 (2.21) 1.72 0.086 

 

Mesotrophic 2.14 (2.41) 0.89 0.375 

 

Bacteria 4.57 (5.84) 0.78 0.434 

 

Fungi -1.96 (5.93) -0.33 0.741 

Significance levels: * = <0.05, *** = <0.001 

  



	

	

 

  

Table C.7 | Taxonomic identification of the 10 most abundant ASVs.  

 Code Kingdom Phylum Class Order Family Genus Species 

ASV 1 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobacterium - 

ASV 2 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobacterium - 

ASV 3 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium - 

ASV 4 Fungi Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma - 

ASV 5 Fungi Basidiomycota Tremellomycetes Tremellales Trimorphomycetaceae Saitozyma podzolica 

ASV 6 Fungi Mucoromycota Umbelopsidomycetes Umbelopsidales Umbelopsidaceae Umbelopsis isabellina 

ASV 7 Fungi Ascomycota Saccharomycetes Saccharomycetales Debaryomycetaceae Meyerozyma guilliermondii 

ASV 8 Fungi Mucoromycota Umbelopsidomycetes Umbelopsidales Umbelopsidaceae Umbelopsis isabellina 

ASV 9 Fungi Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma deliquescens 

ASV 10 Fungi Ascomycota Saccharomycetes Saccharomycetales Dipodascaceae Dipodascus geotrichum 
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