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Spectral and dynamical properties of disordered and noisy quantum
spin models

by Daniel Alexander Rowlands

Abstract
This thesis, divided into two parts, is concerned with the analysis of spectral and dynamical
characteristics of certain quantum spin systems in the presence of either I) quenched disorder,
or II) dynamical noise.

In the first part, the quantum random energy model (QREM), a mean-field spin glass model
with a many-body localisation transition, is studied. In Chapter 2, we attempt a diagrammatic
perturbative analysis of the QREM from the ergodic side, proceeding by analogy to the single-
particle theory of weak localisation. Whilst we are able to describe diffusion, the analogy breaks
down and a description of the onset of localisation in terms of quantum corrections quickly
becomes intractable. Some progress is possible by deriving a quantum kinetic equation, namely
the relaxation of the one-spin reduced densitymatrix is determined, but this affords little insight
and extension to two-spin quantities is difficult. We change our approach in Chapter 3, studying
instead a stroboscopic version of the model using the formalism of quantum graphs. Here, an
analytic evaluation of the form factor in the diagonal approximation is possible, which we find
to be consistent with the universal random matrix theory (RMT) result in the ergodic regime.
In Chapter 4, we replace the QREM’s transverse field with a random kinetic term and present
a diagrammatic calculation of the average density of states, exact in the large-N limit, and
interpret the result in terms of the addition of freely independent random variables.

In the second part, we turn our attention to noisy quantum spins. Chapter 5 is concerned
with noninteracting spins coupled to a common stochastic field; correlations arising from the
common noise relax only due to the spins’ differing precession frequencies. Our key result is
a mapping of the equation of motion of n-spin correlators onto the (integrable) non-Hermitian
Richardson-Gaudin model, enabling exact calculation of the relaxation rate of correlations. The
second problem, addressed in Chapter 6, is that of the dynamics of operator moments in a
noisy Heisenberg model; qualitatively different behaviour is found depending on whether or
not the noise conserves a component of spin. In the case of nonconserving noise, we report that
the evolution of the second moment maps onto the Fredrickson-Andersen model – a kinetically
constrained model originally introduced to describe the glass transition. This facilitates a
rigorous study of operator spreading in a continuous-time model, providing a complementary
viewpoint to recent investigations of random unitary circuits.
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Preface
The first chapter of this dissertation provides an introduction to the main concepts and

methods we shall encounter in later chapters, whilst concluding remarks are contained in the
final chapter. The intermediate chapters contain original material that is either published or in
preparation for submission to peer review as follows:

Chapters 2 & 4: Daniel A. Rowlands and Austen Lamacraft. Diagrammatic approaches to quantum
random energy models.
Chapter 3: Stroboscopic quantum random energy model. Whilst in preparation, the same result for
the form factor appeared in (a preprint of) Ref. [1].
Chapter 5: Daniel A. Rowlands and Austen Lamacraft. Noisy spins and the Richardson-Gaudin
model, Physical Review Letters 120 (9), 090401.
Chapter 6: Daniel A. Rowlands and Austen Lamacraft. Noisy coupled qubits: operator spreading
and the Fredrickson-Andersen model. To appear in Physical Review B.

This dissertation is the result of my ownwork and includes nothing which is the outcome of
work done in collaboration except as declared in the Preface and specified in the text. It is not
substantially the same as any that I have submitted, or, is being concurrently submitted for a
degree or diploma or other qualification at the University of Cambridge or any other University
or similar institution except as declared in the Preface and specified in the text. I further state
that no substantial part of my dissertation has already been submitted, or, is being concurrently
submitted for any such degree, diploma or other qualification at the University of Cambridge or
any other University or similar institution except as declared in the Preface and specified in the
text. This dissertation does not exceed 60,000 words, including summary/abstract, tables, foot-
notes and appendices, but excluding table of contents, photographs, diagrams, figure captions,
list of figures/diagrams, list of abbreviations/acronyms, bibliography and acknowledgements.

Daniel Alexander Rowlands
On the 6th of August, the Feast of the Transfiguration of the Lord, 2018
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Chapter 1

Introduction

“Esset etiam contra perfectionem universi... Esset [igitur] contra rationem providentiae,
et perfectionis rerum, si non essent aliqua casualia 1.”

— St Thomas Aquinas, Summa contra gentiles, Bk 3, Ch 74

The unifying feature of the separate strands of work in this thesis is an attempt to develop
analytical means of studying quantummany-body systems inwhichwe have taken into account
the unavoidable randomness present in real systems, either by the inclusion of ‘quenched disor-
der’ – reflecting our lack of knowledge of the heterogeneity in a system, caused for instance by
defects and impurities – or ‘dynamical noise’, which tries to capture the influence of the coupling
of the system to an external environment that is too large to be handled in a microscopically
precise way. Understanding the physics displayed by even deterministic systems featuring a
macroscopically large number of interacting particles impels us to consider highly simplified
models that isolate only the essential elements required to exhibit the collective phenomenon
of interest; ab initio simulations of course have a role to play too, but they are of more use in
detecting the presence of exotic physics or establishing a realistic parameter regime for a model
rather than identifying the relevant physical degrees of freedom. A quantum spin-1/2 model
is just about the simplest abstraction of a quantum many-body system that we can conceive:
a two-level system, the minimal nontrivial Hilbert space, on each site of a lattice and coupled
by some interaction. By playing with the range of the interactions, external fields, lattice ge-
ometries, and disorder, virtually the whole gamut of condensed matter phenomenology can
be elicited: from ferromagnetism and localisation, to fractionalised excitations and emergent
gauge fields.

The first part of this thesis, dealing with disorder, takes the quantum random energy
model (and some closely related derivatives) as a minimal model of a systemwith a many-body
localisation transition. Most results in this field to date have concerned the localised phase, since
the short localisation length there renders numerical studies of small systems quite informative,
whilst analytical results have relied heavily on either the existence of an extensive number of
local integrals ofmotion or else strong-disorder perturbation theory. Our principal aimwill thus

1“Moreover, it would be against the perfection of the universe . . . it would be contrary to the meaning of
providence, and to the perfection of things, if there were no chance events.”
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be to make progress by working from the delocalised (ergodic) side of the transition, drawing
upon analogies to the study of single-particle disordered systems and few-body quantum chaos.

When we turn to noisy systems in the second part, we consider two different problems.
The first involves an investigation of how correlations relax in noninteracting spins when they
experience a highly correlated noise: we find a decoherence-free subspace when the spin-1/2
degrees of freedom have identical energy splittings, but the presence of any quenched disorder
(giving rise to inhomogeneous splittings) allows spin correlations to relax – the dynamics of
the correlations are found to be described by an integrable model. In the final chapter, we
turn to models of locally interacting spins in a stochastic field and exploit an exact mapping of
the second operator moment to a classical stochastic model for strong-noise in order to study
operator spreading via an out-of-time-order correlation function.

In the remainder of this introduction, we shall set out important background for the topics of
localisation and operator spreading, as well as introducing some of the key concepts and meth-
ods we shall invoke: disorder-averaged diagrammatic perturbation theory, spectral statistics,
random matrix theory, and quantum graphs.

1.1 Disorder and localisation

An elementary but fundamental prediction of solid state theory is that electrons can pass
through a perfect crystal without resistance: the electronic wavefunctions take the form of
Bloch waves that extend over the whole system. Notwithstanding the success of the band
theory of solids, which is founded on single-particle Bloch wavefunctions, two features of
real physical systems that are left out of this simple description, namely interactions and
disorder, greatly enrich the range of collective phenomena that can be observed. The archetypal
example of an interaction-driven metal-insulator transition is that which was first postulated
by Mott in the 1940s, though it still remains to be fully understood [2]. As for the effect of
disorder on a noninteracting system, the phenomenon of Anderson localisation stands at the
heart of the field. In a seminal paper, Anderson argued that the elastic scattering of Bloch
waves by a random potential can not only lead to the emergence of a finite resistivity, but
can in fact dramatically modify the extended single-particle wavefunctions due to interference
effects, rendering them exponentially localised in space with a resultant strong suppression
of conductivity [3]. Disorder and interactions studied individually have led to a number of
difficult problems of intense current interest, and so it goes without saying that the problem
of studying their concerted effect is even more challenging. Current work on localisation in
the presence of interactions — which we shall loosely call many-body localisation (MBL) — has
yielded only a small number of analytical results, meaning that intuition is heavily guided
by conjecture and numerical simulations. Much analysis of the Anderson metal-insulator
transition has approached the transition from the insulating (strong disorder) side, however the
development of a mature theory of weak localisation [4], in which the limit of weak disorder was
studied, has also proved fruitful. Elegant qualitative insight into the connection between the
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weak- and strong-disorder regimes is provided by the scaling theory [5], which was followed
by the self-consistent theory of Vollhardt andWölfle [6]— this captured both the “gang of four”
[5] scaling and the correct limiting behaviour for strong and weak disorder.

The motivation for the work in Chapter 2 is to attempt to develop a corresponding theory of
weak MBL. Relying on analogies to the single-particle problem, we endeavour to find incipient
features of MBL, present when disorder is weak, and give them a firmer theoretical foundation.
Ultimately,wewill see that this programme is unsuccessful; however, it remains auseful exercise
to chart precisely where the analogies to weak localisation work and where they break down.
We shall also find that the diagrammatic language we develop, despite becoming unwieldy in
attacking the problem we set out to address, does at least provide a novel way of describing
diffusion in our model.

In order to see how our work fits in to the literature, we shall now formulate the concept
of MBL a little more carefully, firstly by relating it to the theory of single-particle Anderson
localisation, and then by qualitatively summarising some of the associated phenomenology
that has emerged in recent years. In section 1.1.2, we give a qualitative overview of weak
localisation, emphasising its physical interpretation in terms of diffusive trajectories. Owing
to the fact that drawing an analogy with the theory of weak localisation is the bedrock of
our approach in Chapter 2, we recapitulate the quantitative details in section 1.1.3, using the
language of disorder-averagedGreen’s functions and the associated diagrammatic perturbation
theory.

1.1.1 Many-body localisation: a brief history

The paradigmatic model encoding the physics of localisation of noninteracting particles is the
Anderson model

H � −t
∑
<i j>

(c†i c j + h.c.) +
∑

i

εi c†i ci , (1.1)

which is simply a tight-binding model with random single-particle energies drawn from a
uniform distribution in the interval −W/2 ≤ εi ≤ W/2, with W thus setting the disorder
strength. The key parameter controlling the phase behaviour is t/W ; let us first examine the
extreme cases. If t � 0, then the electrons occupy localised states of energy εi resulting in an
insulating phase. The other extreme of W � 0 of course describes free electrons occupying
Bloch states – a metal if the band is not fully filled. Classical intuition would suggest that strong
enough disorder will always localise a particle; that is, a particle exploring a random potential
landscape will always get trapped in a well that is locally very deep if disorder is much larger
than its kinetic energy. In the quantum mechanical case we can consider a perturbation theory
in the hopping

|i′〉 � |i〉 +
∑

j

ti j

εi − ε j
| j〉 . (1.2)

Since εi−ε j ∼W , it looks like the localised state |i〉 is onlyweakly perturbed in the off-resonance
scenario when disorder is strong (W � t). Whereas when the hopping is large enough, strong
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hybridisation may generate extended states. There are some caveats in handling the conver-
gence of such a perturbation theory (locator expansion), but the conclusion can nonetheless be
put on rigorous mathematical footing using alternative approaches: Anderson localisation is
inevitable for strong enough disorder in arbitrary dimension [7]. Amore interesting question is
to pin down the transition: for what value of t/W does localisation occur? The scaling theory of
localisation yields the surprising result that all states are localised in one and two dimensions
for nonzero disorder (i.e. the transition is at t/W → ∞), whilst in three dimensions there is a
metal-insulator transition at finite t/W [5]. The case of one dimension was established mathe-
matically (the one-dimensional Anderson model has a dense pure point spectrum) [8] prior to
the development of the scaling theory, whereas the results for d > 1 lackmathematical proof but
are widely accepted (on the grounds of the heuristic scaling arguments and extensive numerical
evidence). In three dimensions, physical reasoning has further formed our understanding of
the transition: Mott suggested that there is scope for coexistence of localised and delocalised
states [9]. His argument is that localised and delocalised states cannot coexist at the same energy
(since they would hybridise, leaving only delocalised states), but they can exist as distinct en-
ergy bands separated by amobility edge. One can think about the Anderson transition in terms
of fixing the disorder and tuning the carrier density to move the chemical potential through the
mobility edge, or alternatively, as fixing the chemical potential and tuning disorder strength
to shift the mobility edge. The wavefunction of localised states, ψi (r) ∼ exp(−|r − ri |/ξ), is
characterised by a localisation length ξ, which is expected to exhibit power law scaling typical
of critical phenomena, ξ ∼ |ε − εc |

−ν, approaching the metallic phase.
Having set the scene for the single-particle problem, we can begin to explore how this

picture is affected by the presence of interactions. A useful insight emerges if we consider
electron-phonon coupling. In the regime of localised states, when the hopping is off-resonance
with the energy mismatch of neighbouring states, the states may nonetheless be coupled by
phonons. Since electrons can hop between any two localised states by scattering inelastically off
phonons, we anticipate finite conductivity at nonzero temperature – this isMott’s variable-range
hopping mechanism [10]. By analogy, electron-hole pairs could provide a bath of excitations
and so the issue to resolve is whether the electron-electron interaction will impart a finite
hopping conductivity. Fleishman and Anderson proposed the answer that, if the temperature
is low enough and the interaction sufficiently short-ranged (the Coulomb interaction in 3d
being a marginal case), the electron-electron interaction does not destabilise the localised phase
[11]. Complementary to this result are the Altshuler-Aronov corrections (due to the electron-
electron interaction) to the conductivity [12]. Weak localisation will be introduced in the next
section, but for now it suffices to note that it is the precursor to localisation that is observable
as a reduction in conductivity in the metallic phase; Altshuler, Aronov, and Khmelnitskii
demonstrated that at high temperature, electron-electron scattering results in a dephasing2 that
reduces the magnitude of the weak localisation effect [13].

2Altshuler andAronov also noted that, in addition to the direct effect of the electron-electron interaction on inelas-
tic scattering, it is also responsible for renormalising elastic impurity scattering by virtual electron-hole excitations.
This is responsible for a negative correction to the conductivity at low temperature [12].
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A more complete analysis of the effect of the electron-electron interaction on localisation
was that of Basko, Aleiner, and Altshuler [14]. Their central claim (on the basis of perturbation
theory in the interaction) is that there is a finite-temperature metal-insulator transition – the
MBL transition – for which the DC conductivity vanishes below Tc (in the absence of coupling
to a thermal bath that would lead to the phonon-assisted hopping discussed above). The
interaction can be seen to generate a hopping in the many-body Fock space, giving rise to the
interpretation of MBL as Anderson localisation in Fock space.

We shall give here only the tersest of outlines of the phenomenology of MBL that has
emerged in recent years, but for a fuller account of the literature we refer to the recent review
articles Refs. [15–17] and the references therein.

Instead of asking whether interactions are able to generate a finite conductivity, we can
rephrase the question and ask whether interactions are able to act as a thermal bath bymeans of
which a closed system can come to thermal equilibrium under unitary time evolution [18]. This
leads us to characterise the MBL transition as an ergodicity-breaking transition demarcating an
ergodic phase from an MBL phase. The ergodic (thermal) phase has the property that, for any
small subsystem, the coupling to the remainder of the system replicates that of coupling to a
thermal reservoir such that the subsystem attains thermal equilibrium at long times. In such a
phase, all information about the initial state is locally inaccessible (encoded in the large-scale
entanglement structure) and the state is fully described by only a few parameters (the Lagrange
multipliers associated with extensive conserved quantities: temperature, chemical potential
etc.). In the MBL phase, thermalisation does not occur and information about the initial state
remains present in a small subsystem as t →∞, a clear indicator of the invalidity of the ergodic
hypothesis and equilibrium statistical mechanics. The origin of ergodicity-breaking has been
found in the existence of an extensive number of conserved quantities – local integrals ofmotion
(LIOMs) – developing in the MBL phase; this is a novel kind of emergent integrability that has
led to a rigorous proof of MBL in a one-dimensional spin chain, andmotivated the construction
of the phenomenological l-bit model of theMBL phase [19–21]. In section 1.4, we note howMBL
integrability manifests itself in dynamical properties, such as the dynamics of entanglement
growth. We end this section by noting that the MBL transition itself is not yet well understood,
but phenomenological strong-disorder renormalisation group approaches in one dimension
have shed some light [22–24].

1.1.2 Weak localisation: semiclassical picture

Localisation can be studied perturbatively in the disorder by approaching the localised state
from the extended eigenstates of the clean system. The presence of disorder can be seen to
induce an effective attractive interaction (a fact most clearly discerned by using the replica
method to treat disorder, but also apparent in the diagrammatics of the next section), which
leads to the onset of new collective phenomena of the electrons. Early signs of localisation
manifest themselves in the weakly disordered metallic phase, the classic example being a
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reduction in the conductivity. We shall now offer a qualitative interpretation of this correction,
before providing a more quantitative account in the next section.

The semiclassical understanding of electronic transport in a weakly disordered medium is
that of electrons scattering off impurities, with a characteristic scattering rate τ−1, giving rise
to a concept of electronic trajectories (i.e. electron motion can be described classically on time
scales larger than τ). Quantum mechanically, the probability P for an electron to propagate
between two points r1 and r2 is given by the square modulus of the sum of the probability
amplitudes Ap associated with the possible paths p connecting r1 and r2

P(r1 → r2) �
∑

p

|Ap |
2
+

∑
p,q

ApA∗q . (1.3)

In general, the second (interference) term vanishes due to the fact that the many possible
paths of different length give rise to a strongly fluctuating phase of the amplitudes Ap . That
said, there exist special trajectories where interference is crucial. If we consider a path with
a self-intersection, then the amplitudes for the two trajectories traversing the loop in opposite
directions (denoted + an −) have the same phase provided time-reversal symmetry is not
broken. As a result, the probability of returning to the same point (backscattering) is enhanced
by constructive interference: P(r1 → r1) � |A++A− |2 � 4|A+ |

2. We show in section 1.1.3 that the
corresponding reduction in conductivity has a strong dependence on spatial dimension. Using
this observation, we can make a rough estimate of the effect on conductivity by noticing that
the relative magnitude of the correction is set by the probability of a self-intersection [25]. On
long time scales (t � τ), electronmotion is diffusive and so the volume accessible to an electron
is ∼ (Dt)3/2. Due to the quantum nature of the electron, we do not imagine a point-particle
trajectory but instead a tube of width ∼ λ (de Broglie wavelength), whose volume increases in
an interval dt by ∼ λ2vF dt (where vF is the Fermi velocity). In three dimensions we find

∆σ3d/σDrude ∼

∫ τφ

τ
dt

λ2vF

(Dt)3/2
∼ −

(
λ
l

)2

+
λ2

lLφ
, (1.4)

where the scattering time τ fixes the short-time cutoff below which electron motion is ballistic,
and the upper cutoff is determined by the phase coherence time τφ (or the escape time defined
by the sample size, if it is less than τφ) above which interference effects are not possible due
to phase relaxation by inelastic scattering mechanisms. In light of the definitions D �

1
3 v2

Fτ,
l � vFτ, Lφ � vFτφ, and λ ∼ k−1

F (we adopt ~ � 1 throughout), the relative magnitude of the
correction estimated in (1.4) matches the result of the full calculation reported in (1.34) for the
three-dimensional case.

The weak localisation correction was first explained in terms of the interference of time-
reversed trajectories by Larkin and Khmelnitskii [26], and later developed more rigorously
in terms of a semiclassical path-integral approach by Chakravarty and Schmid [27]. We can
establish the relationship between the trajectory approach and the upcoming diagrammatics by
formulating the interference term using real-space propagators [28]. The amplitude associated
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with propagation around a closed loop L (and its time reversal L̄) can be expressed as a product
of the transition amplitudes between impurity-scattering events (occurring at space coordinates
ri). If we take a contribution for scattering from n impurities, we have

AL �

∫
dr2 . . . drn−1 G(R) (r1 , r2) . . .G(R) (rn−1 , rn) (1.5)

AL̄ �

∫
dr2 . . . drn−1 G(R) (rn , rn−1) . . .G(R) (r2 , r1) (1.6)

where G(R) (r1 , r2; iωn) is the retardedGreen’s function, r1 � rn (closed loop), and the frequency
variable has been dropped for clarity. Recalling that the complex conjugate of the retarded
Green’s function is the advanced counterpart ([GR (r1 , r2)]∗ � GA(r2 , r1)), then the interference
term (dropping the spatial integrals for brevity) is of the form

ALA∗L̄ �

n−1∏
i

G(R) (ri , ri+1)G(A) (ri , ri+1). (1.7)

Diagrammatically, this can be described by the cooperon ladder diagram that appears, albeit in
momentum space, in section 1.1.3 (see Figure 1.4).

1.1.3 Weak localisation: diagrammatics

Disorder-averaged Green’s function

The conductivity of a free-electron gas is infinite. In order to make contact with the finite
conductivity predicted by the semiclassical picture of electron transport we must develop a
microscopic theory that accounts for the acquisition of a finite scattering time for the electron
quasiparticles due to impurity scattering; this can be done by perturbing the noninteracting
Hamiltonian, H0 �

∑
k εkψ

†

kψk , with a random impurity potential V . We begin by computing
the basic element of the diagrammatic expansion, the disorder-averaged Matsubara Green’s
function. We refer to the literature formore thorough treatments of the diagrammatic impurity-
averaging technique [29–32].

Beginning in a very general fashion, one canwrite down the fullMatsubaraGreen’s function3
in the presence of an impurity potential V (r) �

∑Nimp
i�1

v(r − ri), which is the potential induced
by Nimp impurities each generating a potential v(r),

G(k , k′; iωn) � G0(k , iωn)δk ,k′ + G0(k , iωn)V (k − k′)G0(k′, iωn)+∫
dk1 G0(k , iωn)V (k − k1)G0(k1 , iωn)V (k1 − k′)G0(k′, iωn) + . . .

(1.8)

3We point out that this is both a ‘Green’s function’ in the language of many-body theory (a time-ordered average
of field operators [33, 34]) as well as a bona fide Green’s function of the single-particle Schrödinger equation, which
in turn is equal to a matrix element of the resolvent operator for the Hamiltonian. In Chapter 2, the presence
of interactions in the Hamiltonian mean that the Green’s functions of many-body theory no longer coincide with
resolvents; we are thus careful to exclusively use the latter terminology in that section.
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Figure 1.1 illustrates how this perturbation series can be depicted using Feynman diagrams.

+= + + ...k k' k k k'

V(k-k')

k k'k''

V(k-k'') V(k''-k')

k

Figure 1.1: Full Green’s function for a particle scattered by an impurity potential
V (r).

It is clear that the Fourier components of the potential depend on the positions of all the im-
purities, information which is inaccessible in practice, and thus we instead take a quenched dis-
order averageover thepositionof all the impurities. Without further approximations, thiswould
require the calculation of disorder averages of products of the potential, 〈V (k1) . . .V (kn)〉, to
arbitrary order. This would enable us to account for all possible multiple scattering processes
that appear at a given order in the impurity potential [31] . However, we shall instead adopt
a minimal model for the sake of performing the disorder averages more efficiently. The dis-
order potential V (r) shall be considered to be a random function with Gaussian distribution
P[V] � exp (− 1

2γ

∫
dr V (r)2): a disorder average now corresponds to a functional average with

measure P[V]DV . The distribution is completely described by its first two moments

E[V (r)] � 0 and E[V (r)V (r′)] � γδ(r − r′), (1.9)

where γ is the parameter encoding the disorder strength. We shall rewrite γ in terms of the
density of states at the Fermi energy, g(0), and another parameter, τ, which shall turn out to be
the scattering time (i.e. momentum relaxation time due to impurity scattering),

γ �
1

2πg(0)τ
, (1.10)

in order to simplify future results. This is the Gaussian white noise model of disorder [35,
36]: we have obviated the need to specify higher-order moments of the potential (by assuming
the potential fluctuations are purely Gaussian), and furthermore, we have assumed that the
impurity potential fluctuations are delta-function correlated, implying that the potential of a
single impurity has a flat Fourier spectrum (white noise).

Born approximation

Upon disorder averaging (1.8) (note that this restores translation invariance), the series can be
resummed in terms of a self-energy to give the Dyson equation

E[G(k , iωn)] � G0(k , iωn) + G0(k , iωn)Σ(k , iωn) E[G(k , iωn)], (1.11)

where the self-energy Σ(k , iωn) is the sum of one-particle irreducible diagrams; the corre-
sponding diagrammatic representation is given in Figure 1.2. Evaluating the lowest-order
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(nonvanishing) diagram, corresponding to the first Born approximation [31]

ΣBA(iωn) � γ
∑

k

G0(k , iωn) � γ
∑

k

1

iωn − ξk
(1.12)

� γg(0)
∫
∞

−∞

dε
iωn − ε

, (1.13)

where in the second line we have replaced the momentum summation by a sum over energy
weighted by the density of states, which we have approximated by its value at the Fermi energy,
g(0). Moreover, we have made the approximation of taking the limits of the integral to infinity,
allowing us to innocuously shift the integration variable by the chemical potential (ξk � εk − µ

being the single-particle energy relative to the chemical potential). The (formally divergent)
real part of the integral constitutes a renormalisation of the chemical potential and is therefore
not of interest, whereas the imaginary part of the integrand is a nascent delta function (in the
limit of small ωn , according to the Sokhotski-Plemelj formula), hence

Im[ΣBA(iωn)] � −
1

2τ
sgn(ωn). (1.14)

For the rest of this section we shall drop the Im[. . .] notation and use Σ(iωn) as a shorthand
for i Im[Σ(iωn)]. We can upgrade the calculation by repeating it within the self-consistent Born
approximation (SCBA) [28, 31]. The bare propagator in the wigwam diagram for the first Born
approximation can be replaced with the full propagator in (1.8), thus accounting for all the
rainbow diagrams

ΣSCBA(iωn) � γg(0)
∫

dε
iωn − ε − ΣSCBA(iωn)

. (1.15)

Provided that the disorder is weak enough (such that the imaginary part of the self-energy is
small), one can check by substitution that self-consistency can be achieved by asserting that
ΣSCBA is unchanged from the self-energy computed in (1.14). Solving the Dyson equation (1.11)
for the full SCBA Green’s function we find

E[G(k , iωn)] �
1

iωn − ξk +
i

2τ sgn(ωn)
. (1.16)

The SCBA is sometimes alternatively known as the noncrossing approximation (diagrammati-
cally, no impurity lines cross in the rainbow diagrams). It is important to be able to justify why
the crossed diagrams can be neglected (at a given order) in the self-energy. For instance, at
second order in γ we find that the ratio of uncrossed to the crossed diagram (see Figure 1.2) is
kF l, where kF is the Fermiwavevector and l � vFτ themean free path. This can be ascertained by
considering the volume of momentum space for which the Green’s functions energy arguments
are approximately at the Fermi surface; the uncrossed diagram has two momentum integrals
that independently range over the Fermi surfacewhereas the crossing imposes a constraint (due
to momentum conservation) that restricts the domain on which the integrand is large.
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=Σ(k,iωₙ) + +
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Figure 1.2: Self-energy for the disorder-averaged Green’s function. The first term
is thewigwamdiagram that yields the (first) Born approximation. The second and
third diagrams illustrate the uncrossed (rainbow) and crossed diagrams, which
are respectively included and excluded in the self-consistent Born approximation.

Note that the Green’s function lines in this figure are ‘bare’.

Drude conductivity

The Kubo formula expresses the electrical conductivity in terms of a retarded current-current
correlation function [37]

σab (q , ω) �
i
ω
ΠR

ab (q , ω) −
ne2

imω
δab , (1.17)

defining n as the electron number density. To facilitate diagrammatic analysis we study the
imaginary-time4 correlatorΠab (q , τ− τ′) � − 1

V
〈
Tτ[ ja (q , τ) jb (−q , τ′)]

〉
, which can be written in

terms of electron operators as

Πab (q , τ − τ′) � −
1

V

( e
2m

)2 ∑
kσ,k′σ′

(2ka + qa)(2k′b − qb)

×

〈
Tτ[ψ

†

σ (k , τ)ψσ (k + q , τ)ψ†σ′ (k′, τ′)ψσ′ (k′ − q , τ′)]
〉
.

(1.18)

We can express this exactly in terms of the full Matsubara Green’s function (1.8) using Wick’s
theorem, owing to the absence of an interaction term in the Hamiltonian. Performing the
summation over spin indices σ, σ′ and transforming to bosonic Matsubara frequency (Ωn)
space gives

Πab (q , iΩn) �
e2

2m2βV

∑
k ,k′,ωn

(2ka + qa)(2k′b + qb)G(k + q , k′ + q; iωn + iΩn)G(k′, k; iωn). (1.19)

Carrying out the Gaussian white noise disorder average generates the diagrammatic expansion
in the disorder strength. We shall work with skeleton diagrams built from the dressed SCBA
Green’s function (instead of the free Green’s function), thus accounting for the leading-order
effect of disorder on electron propagation. At the lowest order of approximation, we compute
the bare conductivity bubblewithout vertex corrections (first diagram in Figure 1.3). To proceed
we first perform the Matsubara summation over ωn in the conventional way by expressing it as
a contour integral

Πab (q , iΩn) �
1

2πiV

∫
C

dz
∑

k

e (2ka + qa)
2m

e (2kb + qb)
2m

E[G(k , z)]E[G(k+q , z+iΩn)] tanh

(
βz
2

)
,

(1.20)

4Context will distinguish between the elastic scattering time, τ, and the imaginary-time variable also denoted τ.



1.1. Disorder and localisation 21

where the disorder averaged Green’s function (1.16) has been analytically continued to the
complex z-plane, and the contour C enclosing the poles of the auxiliary function at z � iωn is
inflated to infinity, excluding the branch cuts at Im[z] � 0 and Im[z + iΩn] � 0 on which the two
Green’s functions are respectively singular. Parameterising the integral around the branch cuts
by a real parameter, analytically continuing to real frequency (iΩn → ω + iη with η → 0+) to
obtain the retarded correlator, and then taking the q → 0 limit

ΠR
ab (q � 0, ω) �

e2

2πim2V

∑
k

ka kb

∫
∞

−∞

dE
(
ḠR (k , E)ḠR (k , E + ω) − ḠA(k , E)ḠR (k , E + ω)+

ḠA(k , E − ω)ḠR (k , E) − ḠA(k , E − ω)ḠA(k , E)
)

tanh

(
βE
2

)
,

(1.21)

where the shorthand ḠR (k , E) and ḠA(k , E) denote the retarded and advanced averagedGreen’s
functions arising from the respective analytic continuations z → ω + iη and z → ω − iη of
E[G(k , z)]. After integrating by parts, the E-integral can be readily evaluated by making the
approximation that sech2( β2 (E − µ)) → 4

β δ(E − µ) at low temperature — that is, only energies
close to the Fermi energy contribute to the integral. The remaining k-summation can be
replaced by an integral over energy together with an angular average over k, the latter giving
1

4π

∫
sin(θ)dθdφ ka kb �

1
3 k2δab . Evaluating the remaining energy integral by Taylor expanding

the logarithmic integrand to leading order in ω (we are interested in limω→0 limq→0 σab (q , ω)),
we obtain, upon substitution into the Kubo formula (1.17), the conductivity

σ(q � 0, ω � τ−1) �
ne2τ

m
1

1 − iω
. (1.22)

In the zero-frequency limit this immediately yields the semiclassical Drude formula

σ(ω → 0) �
ne2τ

m
. (1.23)

The obvious follow-up question is to ask about the effect of vertex corrections to the conductivity
bubble. The simplest correction is to dress the current vertex with the ladder diagrams (first
line of Figure 1.3): it turns out that this correction vanishes in the q → 0 limit for the Gaussian
white noise model of disorder [35]. For the case of a more microscopically realistic impurity
potential, the simplest effect of the ladder diagrams is to renormalise the scattering time τ to a
new transport time τtr.

Diffusion

Semiclassical electronic transport theory presupposes the idea of diffusive electron motion,
however no evidence of this has appeared in either the single-particle Green’s function or
the transverse conductivity. However, we shall find that diffusive modes emerge when con-
sidering the charge susceptibility, the density-density correlator controlling the longitudinal
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Figure 1.3: Diagrammatic expansion of a two-particle correlation function (con-
ductivity or charge susceptibility in this chapter). Empty and filled circles repre-
sent bare and dressed vertices respectively. The first diagram on the right-hand
side is the bare pair-bubble, the whole first line constitutes the ladder diagrams,

and the second line is the series of maximally-crossed diagrams.

conductivity, and it is this to which we now turn. We proceed as before by working with the
imaginary-time correlator

χ(q , τ) � −
e2

V

∑
kσ,k′σ′

〈
Tτ[ψ

†

σ (k , τ)ψσ (k + q , τ)ψ†σ′ (k′, 0)ψσ′ (k′ − q , 0)]
〉
, (1.24)

the only difference being that the bare charge vertex lacks the momentum-dependent factor
of the bare current vertex in (1.18). This difference is crucial, for now the charge vertex is
nontrivially renormalised by the series of ladder diagrams in Figure 1.3, the so-called diffuson,

D(q; iωn , iΩn) � *
,
1 −

1

2πg(0)τV

∑
k

E[G(k + q , iωn + iΩn)]E[G(k , iωn)]+
-

−1

. (1.25)

Computation of the pair-bubble

Π(q; iω, iωn + iΩn) �
1

2πg(0)τ

∫
dSk

4π

∫
dξ g(ξ)

× *
,

1

i(ωn +Ωn) − ξk+q +
i

2τ sgn(ωn +Ωn)
+
-

*
,

1

iωn − ξk +
i

2τ sgn(ωn)
+
-
,

(1.26)

can be done by once again taking a constant density of states g(ξ) ≈ g(0), and then linearising
the dispersion in q according to ξk+q ≈ ξk+vF ·q. The ξ-integral can be evaluated by the residue
theorem, before the final average over solid angle (Sk) can be completed by expanding the inte-
grand to leading order in Ωn and q (Ωnτ � 1, qvFτ � 1). Observing that the aforementioned
contour integral trivially vanishes for sgn(ωn +Ωn) � sgn(ωn), we find for the diffuson

D++ � D−− � 1 D−+ �
1

(Dq2 +Ωn)τ
D+− �

1

(Dq2 −Ωn)τ
, (1.27)
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where the subscript is the ordered pair (sgn(ωn), sgn(ωn +Ωn)), and the diffusion constant has
been defined as D �

1
3 v2

Fτ. The charge susceptibility

χ(q , iΩn) �
2e2

βV

∑
k ,ωn

E[G(k + q , iωn + iΩn)]E[G(k , iωn)]D(q; iωn ,Ωn), (1.28)

can now be dealt with in the same way as (1.20), thus establishing the diffusive form of the
retarded charge susceptibility

χR (q , w) �
2e2 g(εF)Dq2

Dq2 − iω
. (1.29)

Weak-localisation correction

k1 k2 k3

k1+q k2+q k3+q

a)

b)
k1 k2 k3

-k1+Q -k2+Q -k3+Q

k1 + q k2 + q k3 + q

 k1' k2' k3'

k1' = Q - k3

k2' = Q - k2

k3'  = Q - k1

Q = k+k' 

q → 0

Figure 1.4: a)An example of a ‘particle-hole’ ladder diagramofwhich the diffuson
is comprised. b) On the left is amaximally crossed diagramofwhich the cooperon
is comprised, and on the right the diagram has been ‘unfolded’ (by reversing the
direction of the advanced Green’s function lines) to transform it into a ‘particle-
particle’ ladder diagram. The propagator lines denote SCBA Green’s functions
(for aesthetic reasons they have not been emboldened to differentiate them from

bare Green’s functions, as done in Figure 1.1).

We now have all the elements we need to reproduce the classic result that, in one and
two spatial dimensions, the first quantum correction to the Drude conductivity is negative
– the so-called weak localisation phenomenon. Although we argued that diagrams with a
pair of crossed impurity lines are suppressed by a factor of (kF l)−1 relative to their uncrossed
counterpart at the same order, we shall find that an infinite subset of crossed diagrams are
responsible for a correction to the conductivity that can become large at low temperature.
Crossed diagrams were first analysed in the context of electron transport in the 1960s by Langer
and Neal [38], but it was not until the work of Gor’kov, Larkin, and Khmelnitskii that the series
of maximally crossed diagrams was related to weak localisation [4] and interpreted in terms
of the interference of time-reversed diffusive trajectories [26], as discussed in section 1.1.2. The
maximally crossed vertex correction (we shall continue to neglect crossed diagrams in the self-
energy) to the conductivity bubble is known as the cooperon and is shown on the second line
of Figure 1.3; by reversing the direction of one of the Green’s function lines (see Figure 1.4) we
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can sum the geometric series analogously to the diffuson,

C(q; iωn , iΩn) �
γ2 ∑

k E[G(q − k , iωn + iΩn)]E[G(k , iωn)]
1 − γ

∑
k E[G(q − k , iωn + iΩn)]E[G(k , iωn)]

. (1.30)

Owing to the relations ξk � ξ−k and ξk+q ≈ ξk + v · q, the pair-bubble is identical to that of
(1.26) to leading order in Ωn and q. Hence, the cooperon is

C(q; iωn , iΩn) �
1

2πg(0)τV

(
θ[−ωn (ωn +Ωn)]

(Dq2 + |Ωn |)τ

)
. (1.31)

Dressing the current vertex with the cooperon, we can write down the correction to the current-
current correlator in the q → 0 limit (note that the momentum flow through the cooperon is
q′ � k + k′ + q)

∆Πab (q � 0, iΩn) �
2e2

βm2V2

∑
k ,k′,ωm

ka k′b E[G(k , iωn) E[G(k , iωn + iΩn)

× C(k + k′, iΩn) E[G(k′, iωn)]E[G(k′, iωn + iΩn)].

(1.32)

Setting k′ � −k + K and rewriting the momentum sums in terms of k and K, we can see that
the K � 0 sector dominates (where the cooperon has an infrared divergence). Since we are
only interested in the most singular part of the quantum correction, we can neglect the K
dependence of the Green’s functions, thus enabling the k-integral to be evaluated as a contour
integral in the complex energy plane as before. In addition, the frequency dependence of the
Green’s functions can be safely ignored, thereby trivialising the Matsubara summation. The
conductivity correction that emerges is, in arbitrary dimension,

∆σab (q � 0, ω → 0) � −
2e2

πV

∑
K

δab

K2
. (1.33)

In the case of one, two, and three dimensions, we have

∆σ1d
ab � −

e2

π2
δab (L − l) ∆σ2d

ab � −
e2

π2
δab ln

(L
l

)
∆σ3d

ab � −
e2

π3
δab

(
1

l

)
. (1.34)

In 3d, the momentum-space integral has an ultraviolet divergence, which can be controlled
by applying a cutoff at Kmax � l−1, with l � vFτ the mean free path. Recall that (1.27) was
obtained in the diffusive limit ql � 1. As a result, the weak localisation correction is small
in 3d: σDrude/∆σ3d

≈ (kF l)2. Now, in 1d and 2d the integral has both ultraviolet and infrared
divergences, the latter being regulated by a low-momentum cutoff set by the inverse of the
length scale of the system L (or the phase coherence length Lφ, in the case Lφ < L). At low
temperatures (Lφ is large) and large system sizes, weak localisation gives rise to a large and
negative correction to the conductivity. This is a signature of the result that in low dimensions
(d < 3) and at low temperature, metals become insulating for arbitrarily weak disorder.
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1.2 Random matrix theory

The analysis of statistical properties of the spectrum has been a staple technique for decades in
the study of integrable-chaotic crossovers in single-particle disordered systems, and in recent
years has become similarly widespread in the context of MBL. We shall now introduce these
methods – the main idea being that the spectral properties of the ergodic phase fall into the
universality class of certain ensembles of random matrices – as they will be of use to us in our
study of the quantum random energy model and its variants.

Confronted with the complicated, nonintegrable Hamiltonians of heavy nuclei in the 1950s,
physicists – led byWigner and Dyson –were forced to adopt a statistical approach in an attempt
to understand the resonance spectra they observed. Assuming particular details of the system
to be irrelevant, Wigner made the step of replacing the Hamiltonian by a random (Hermitian)
n × n matrix ensemble in which the matrix elements were independent random variables
drawn from some distribution [39]: this marked the first application of random matrix theory
(RMT) in physics. The corresponding density of states and nearest-neighbour level spacing
distribution that he derived from this assumption in the large-N limit, the celebrated Wigner
semicircle and Wigner surmise respectively [40], were extremely successful in capturing the
universal properties of nuclear Hamiltonians and have since been found to have widespread
applications. Dyson later added mathematical precision by establishing how the symmetry
properties of the Hamiltonian, most importantly time-reversal symmetry, had to be encoded in
the ensembles, leading to the Wigner-Dyson Gaussian orthogonal (GOE), unitary (GUE), and
symplectic (GSE) ensembles [41–43].

Althoughwell motivated, and its success spoke for itself, it was a few decades before a more
satisfying explanation emerged forwhyRMTworked. This came in a landmark paper in the field
of few-body quantum chaos in which Bohigas, Giannoni, and Schmidt (BGS) conjectured, albeit
with only numerical support, that the RMT limit is attained in the spectral statistics of quantum
systems whose underlying classical dynamics is chaotic [44]. The BGS conjecture was a natural
complement to the earlier conjecture of Berry and Tabor that the eigenvalues of systems whose
corresponding classical dynamics are integrable (i.e. nonchaotic) are uncorrelated, that is, they
obey Poisson statistics. [45]. Although both conjectures remain without general, rigorous
proofs, a great weight of numerical evidence has been amassed together with some analytic
results for certain limits. Indeed, spectral statistics quickly became a standard tool in the
context of disordered metals to study the insulating (integrable) and metallic (chaotic) phases
on either side of the Anderson transition [46, 47] as well as the region of scale-invariant, critical
statistics close to the transition [48]. In recent years, analogous diagnostic techniques have been
applied to systems exhibiting many-body localisation [49–51]. There is a slight subtlety in the
latter case owing to the possibility for a localisation-delocalisation transition to coexist (without
coinciding) with a nonergodic-ergodic transition 5, resulting in distinct nonergodic and ergodic
metal phases on the delocalised side of the transition [55, 56]. Although signs of the nonergodic

5Whilst such a transition has been shown to occur in random regular graphs [52, 53] and random matrix models
[54], it has yet to be definitively demonstrated in a system that undergoes bona fide MBL.
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metal may be seen in the spectrum, in particular, a deviation from the RMT limit, the more
pronounced signature is in fact in the eigenvector statistics, where multifractality is found. We
shall say nothing further of the nonergodic metal, which shall not appear in this present work.

Let us nowprovide a short précis of results concerning spectral statistics thatwe shall refer to
in later chapters; the results can be found in Refs. [57, 58] together with derivations and further
exposition. The models we shall consider are time-reversal invariant and thus the relevant
Wigner-Dyson ensemble is the GOE: the ensemble of real, symmetric matrices whose entries
are independent identically distributed Gaussians (Hii ∼ N (0, 2) and Hi j ∼ N (0, 1), with the
symmetry constraint Hi j � H ji). The use of the term ‘orthogonal’ pertains to the fact that the
GOE can also be defined as the unique ensemble of independent-entry n × n real symmetric
(i.e. ‘Wigner’) matrices whose distribution is invariant under orthogonal conjugation – these
conditions uniquely specify (up to normalisation) the Gaussian density e−

1
2 tr H2 with respect to

the Lebesgue measure dH �
∏

i< j dHi j on the space of n × n real symmetric matrices.
The nearest-neighbour level-spacing distribution, denoted P(s) where s is the level spacing

scaled by the mean level spacing δ̄, has the following behaviour for the GOE and for a totally
uncorrelated (Poissonian) spectrum

P(s) �



e−s Poisson
π
2 se−

πs2
4 GOE.

(1.35)

P(s) is a measure of short-range (with respect to δ̄) correlations in the spectrum, and its
vanishing as s → 0 is an indicator of the property known as level repulsion. This terminology
is vividly illustrated by noticing that the joint probability density of the eigenvalues can be
written as the partition function of a two-dimensional Coulomb gas in an external potential;
the so-called Dyson or log-gas [41, 59].

In order to probe longer-range correlations, one can look at the two-level correlation function
(or more accurately, the two-point level-density correlator) R(s) � δ̄2 E

[
ρ(ε + s δ̄)ρ(ε)

]
− 1

(where the expectation is over the randommatrixdistribution; averagingover an energywindow
around ε is left implicit) and its Fourier transform, the form factor K(τ). The form factor has
the universal forms

K(τ) �




1 Poisson

2τ − τ ln(1 + 2τ) GOE (τ < 1)

2 − τ ln
(

2τ+1
2τ−1

)
GOE (τ ≥ 1),

(1.36)

when the scaled time τ � t/tH is introduced. The time t is the Fourier dual to s, and the
Heisenberg time tH � 2π/δ̄. The linear growth of the GOE form factor at short times (corre-
sponding to level spacings of many times δ̄) describes what is referred to as spectral rigidity. A
second measure of the same property is the number variance Σ2(n), which is the variance in
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the number of energy levels within an energy window n δ̄ and has the behaviour

Σ2(n) �



n Poisson
2
π2

(
ln n + ln 2π + γ + 1 − π2

8

)
GOE,

(1.37)

where γ ≈ 0.577 is the Euler-Mascheroni constant. The suppression of fluctuations in the
number of energy levels as the energy window grows (in the GOE) makes it easier to see why
the spectrum is described as more rigid than the Poissonian spectrum.

As well as the Gaussian ensembles, Dyson also defined ensembles of random unitary
matrices: the circular ensembles. The group U (n) of n × n unitary matrices forms a compact
Lie group and thus by Haar’s theorem possesses a unique translation-invariant measure (Haar
measure): U (n) with the Haar measure defines the circular unitary ensemble (CUE). The other
two circular ensembles are the orthogonal and symplectic subspaces of U (n) with the measure
induced by the Haar measure on U (n); for instance, the COE is generated by the mapping
U 7→ UTU on Haar unitaries. In Chapter 3, it will be helpful to note that in the large-n limit,
the spectral statistics for the GOE that we have quoted above coincide with that of the COE.

Spectral statistics can be used as more than a simple indicator of what phase (localised
or ergodic) we are looking at; they can also be sensitive to the onset of weak localisation.
Diagrammatic perturbation theory first uncovered the existence of a correction to the correlator
R(s) [47], but it took the application of the nonperturbative supersymmetric nonlinear sigma
model approach to compute the full oscillatory form of the correction [60, 61]

R(s) �

GOE︷          ︸︸          ︷
1 −

sin2(πs)
(πs)2

+
4ad

s2
T

sin2(πs), (1.38)

where ad is a constant depending on dimensionality d and boundary conditions, and sT is the
Thouless energy 6 scaled by δ̄. To find such a correction in a many-body localised system –
evidence of ‘weak MBL’ – was a motivating factor for developing the diagrammatic approach
to the quantum random energy model in Chapter 2. Although we don’t succeed, in Chapter
3 we at least manage to analytically establish the emergence of the RMT limit in the ergodic
phase for a stroboscopic variant of the same model. To arrive at this result, we resorted to the
methods developed in the study of semiclassical quantum chaos and quantum graphs, a topic
which we briefly review in the next section of the introduction.

Lastly, we introduce extreme value statistics, that we touch on directly in Chapter 5 and
indirectly in Chapter 5. Given the expansive nature of the subject, we only point out the results
we shall make us of and defer to the literature for details [62, 63]. By extreme values, we mean
that rather than looking at properties of the bulk of the spectrum, we shall zoom in and focus
on the microscopic structure (i.e. on the scale of δ̄) of the edges of the spectrum. If we denote

6TheThouless energy is the inverse of the time for electrons todiffuse across a system; fromaquantum-mechanical
point-of-view, more relevant here, it is also the energy scale below which spectral statistics approach the RMT limit.
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the maximal eigenvalue (of an n × n random matrix) λmax, then we can define a shifted and
rescaled maximal eigenvalue

s � lim
n→∞

λmax −
√

2n
2−1/2n−1/6

, (1.39)

whose cumulative distribution function in the case of the GUE is the Tracy-Widom distribution
[64, 65] given by the Fredholm determinant F2(s) � det(1−As ) (similar determinantal formulae
for the GOE and GSE also exist [66, 67]), where the Airy kernel on the space L2(s ,∞) expressed
in terms of the Airy function and its first derivative is

As �
Ai(x) Ai′(y) −Ai′(x) Ai(y)

x − y
. (1.40)

Tracy and Widom also showed that this distribution, together with those of the GOE and GSE
[66], can be written as an integral over Painlevé transcendents.

On the other hand, the cumulative distribution function of the largest eigenvalue for a
Poissonian spectrum is the generalised extreme value distribution [62]

G(λmax) � e−
(
1+ξ

λmax−µ
σ

)−1/ξ
, (1.41)

with parameters ξ, µ, and σ.

1.3 Quantum graphs

Aswementioned in the previous section, the BGS conjecturewhich is the theoretical motivation
for much of the use of spectral statistics remains without proof. A considerable step towards
placing it on a firm theoretical foundation has been the use of periodic orbit theory, that began
with the work of Berry [68], to show that in the semiclassical limit the form factor of quantum
chaotic Hamiltonians exactly matches that of RMT [69]. Being a semiclassical approximation
however, its application is only justified in the short-time (τ � 1) regime. If we allow ourselves
to move to less realistic toymodels, then there do exist a class of system for which periodic-orbit
expansion for the density of states is exact, thus enabling rigorous proof of the BGS conjecture
[70, 71]: quantum graphs 7 (see Refs. [72, 73] for a more thorough introduction than contained
here).

The study of quantum graphs is concerned with quantised one-dimensional Schrödinger
operators defined on metric graphs. Quantisation, and thus the computation of the spectrum,
is most conveniently carried out by way of scattering theory as is done for dynamical billiards
for instance [74]; let us now demonstrate this procedure (we follow [72, 75]). Consider a metric
graph G � (V, B) consisting of a set of bonds (edges) B, vertices V , and bond lengths Lb for
all b ∈ B; an order is defined on V such that the coordinate xb can be assigned to the bond,
with xb � 0 defined to be at the vertex i in a bond b � (i , j) where i < j. The solution of

7We return to discuss which classes of quantum graph are quantum chaotic in the sense that they show (or are
expected to show) RMT statistics in Chapter 3.
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the time-independent Schrödinger equation on a given bond can be written as forward and
backward propagating plane waves

ψb (xb , k) � ab ,+1e i(kxb+Ab xb )
+ ab ,−1e−i(kxb−Ab xb ) , (1.42)

for amplitudes ab ,ν where ν � ±1 is a direction index, and Ab are magnetic fluxes. Various
boundary conditions are employed in the literature, but after making a suitable choice, we
obtain an equation

~a � U~a , (1.43)

where ~a is a 2|B |-component vector and UB (k) a square matrix decomposed as

UB (k) � T (k)S, (1.44)

for diagonal bond propagation matrix T (k)bν,b′ν′ � δbb′δνν′e i(k+νAb )Lb and scattering matrix S,
with nonzero matrix elements Sbν,b′ν′ whenever the head of the directed bond (b′, ν′) coincides
with the tail of (b , ν), with a value set by the boundary conditions. The evolution operator for
m scattering events on the quantum graph is evidently UB (k)m ; as we shall see in Chapter 3, the
Floquet operator for a periodically driven system will play an analogous role to UB (k).

We are thus able to write down the spectrum of G in terms of the secular equation

spec(G) � { kn > 0 | det(1 − UB (k)) � 0 } . (1.45)

Importantly, we can also consider the spectrum of UB (k) (at fixed k), or rather its eigenphase
spectrum { θi }, as it is a unitary operator. In the |B | → ∞ limit and for the case of incommen-
surate bond lengths that we shall discuss presently, it transpires that correlation functions of kn

and θi are equivalent.
When we compute correlators, what is the analogue of disorder-averaging? One option is

the incommensurability condition on bond lengths: { Lb | pb ∈ Z,
∑

b pbLb � 0 ⇐⇒ pb � 0 ∀b }.
In this case, the bond propagationmatrix is ergodic in the sense that the torusT|B | is dense in the
image of the map k 7→ { e ikLb }. Hence, it is unsurprising that an ergodic theorem exists: ‘time’
(i.e. k) averaging and ‘phase’ averaging (i.e. the phases kLb appearing in T (k)) are equivalent.
This fact, together with the correspondence between eigenphase and kn statistics, implies that
the spectra of large-|B | quantum graphs can be considered equivalent to randommatrix theory
of certain unitary ensembles.

We conclude this subsection on quantum graphs with a brief account of periodic-orbit
theory. The density of eigenphases can be written in terms of the periodic Dirac delta function
as ρ(θ) � δ2π (θ − θj), which upon inserting the Fourier series for the periodic delta function
(equivalently thought of as applying the Poisson summation formula) gives

ρ(θ) �
1

2π

∑
j

∞∑
m�−∞

e im(θ−θj ) . (1.46)
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Recognising the exponential of the eigenphases as just the eigenvalues of UB, we can replace
the sum over them by a trace

ρ(θ) �
1

2π

∞∑
m�−∞

tr
(
U

m
B

)
e imθ

�
2|B |
2π

+
1

π
Re

∞∑
m�1

tr
(
U

m
B

)
e imθ . (1.47)

The traces of UB (k) can be written as periodic-orbit summations

tr(UB (k)m) �
∑

p∈Pm

npA
r
p e ir(kLp+Φp ) (1.48)

where p � { β1 , . . . , βnp } is a primitive periodic orbit (a periodic orbit is a closed trajectory of
directed bonds on the graph modulo cyclic permutations; primitive periodic orbits are those
which cannot be written as a repetition of a shorter orbit) of length np � |p | dividing m; the
orbit lengths are Lp �

∑
b∈p Lb , Φp �

∑
b∈p νbAb is the total magnetic flux through the orbit p,

the number of repetitions (of a primitive orbit) is r � m/np , and the amplitudes are given by
Ap �

∏m
i�1 Sβiβi+1 such that p � { βi }. After inserting (1.48) into the expression for the density of

states (1.47), we obtain a trace formula (à la Gutzwiller’s semiclassical trace formula in quantum
chaos [76]) for quantum graphs.

1.4 Operator spreading

Aswell as the spectral signatures described above that distinguishmany-body quantum chaotic
from integrable systems, there has been growing interest in recent years in characterising
many-body systems in terms of the quantum information dynamics that they may display. In
general, localised quantum information spreads out under unitary dynamics: if one follows the
evolution of an initially local operator in the Heisenberg picture, its support in a suitable local
operator basis occupies a growing spatial region in time. This process of operator spreading is
captured by the behaviour of the out-of-time-order correlation function (OTOC) [77–79]

C(x , t) ≡
1

2
〈[O0(t),Ox (0)]† [O0(t),Ox (0)]〉, (1.49)

where Ox is a local operator at position x, and O0(t) is initially localised at the origin. Initially,
one can see that the commutators will vanish, but as O0 spreads in space over time it over-
laps with Ox (0) giving a nonzero value to the commutators. Since the quantum information
encoded in the initial condition is eventually distributed over a large region, inaccessible to
local measurements, this process describes so-called scrambling of information; no scrambling
is possible in an Anderson localised phase whilst an MBL phase scrambles slowly: the op-
erator radius grows logarithmically (‘logarithmic light cone’) in time rather than ballistically
(i.e. linearly) for the ergodic phase [80–83]. Unsurprisingly, these scrambling results for MBL
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and chaotic systems are close cousins of the numerically justified lore that entanglement en-
tropy grows logarithmically in time [84] in an MBL phase, rather than ballistically as in generic
nonintegrable systems [85].

As well as the interest in OTOCs from the perspective of lattice models, they have also
been used as a diagnostic of many-body quantum chaos in the context of certain quantum field
theorieswhereOTOCs have been found to exhibit exponential growth [86–88], in the same spirit
as the exponential divergence of trajectories set by the Lyapunov exponent (λL) in classically
chaotic systems [89]. Black holes are expected to be maximally fast scramblers in that they
scramble in a time logarithmic in the system size and saturate a conjectured bound (attained
in large-N conformal field theories holograpically dual to Einstein gravity) on the coefficient of
the logarithm, t∗ � λ−1

L log N2, with λL �
2π
β [86, 90].

The behaviour of OTOCs that is emerging in lattice models with local interactions is that
of a ballistic front, propagating at what has been dubbed the butterfly velocity, that broadens
diffusively – much of the evidence for this has come from the analysis of discrete-time random
unitary circuitmodels [91–94]. A continuous-time random circuitmodel, the Brownian coupled
cluster model, has been found to interpolate between a Lyapunov regime of exponential growth
of theOTOC in the large-N (i.e. large cluster size) limit as seen in large-N quantumfield theories,
and a diffusively broadening front for finite N [95]. In Chapter 6, we take up this problem
and establish operator growth phenomenology in line with that of random circuit models by
studying the continuous time evolution of quantum spin models with local interactions in the
presence of a classical stochastic field.
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Part I

Disordered spins
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Chapter 2

Quantum random energy model: a
diagrammatic approach

The motivation for this chapter was elaborated in section 1.1: to make analytic progress in
the study of MBL by developing a perturbation theory starting from the ergodic side of the
transition, in analogy to the theory of weak localisation for a single particle. However, it
remains to illustrate why we considered our choice of model, the quantum random energy
model (QREM), to be a promising starting point for such an enterprise. The QREM is a mean-
fieldmodel of a quantum spin glass whose thermodynamic phase diagram, consisting of a first-
order transition between a classical random energymodel regime and a quantum paramagnetic
regime, has beenknownsince the 1990s [96]. In recent years, followinga surgeof interest inMBL,
exact diagonalisation and strong-disorder perturbative approaches have provided convincing
evidence of distinct ergodic and localised phases separated by a mobility edge, making the
QREMausefulmean-field toymodel of theMBL transition [97, 98]. Furthermore, aswe shall see
shortly, the QREM can be interpreted as an Anderson model on a hypercube: this observation
motivates our analogy to the single-particle problem and is therefore our principal reason for
selecting the model. In the same way that MBL can be viewed as Anderson localisation in Fock
space [14, 55], we sought to identify something akin to weak-localisation on the hypercube –
the configuration space of N spin-1/2 objects.

2.1 Model

2.1.1 Hamiltonian and Hilbert space

We will study the quantum random energy model (QREM), a model of N interacting spin-1/2
degrees of freedom with Hamiltonian

H � h
N∑

i�1

σx
i +

∑
z∈ZN

2

V (z), (2.1)
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where ZN
2 � {−1, 1}N , such that z � {z1 , . . . , zN } with zi ∈ { 1,−1 } and1

V (z) � V (z) |z〉 〈z | , (2.2)

where V (z) are i.i.d. Gaussian random variables with zero mean and covariance γz

E [V (z)] � 0, Cov [V (z1)V (z2)] � γzδz1 ,z2 . (2.3)

This is a Gaussian white noise disorder model, as is used in the theory of a single particle in
a random potential. The notation z reflects the natural bĳection between elements of ZN

2 and
the eigenstates |z〉 of σz

1 . . . σ
z
N , which form a basis for the Hilbert space. If we consider points

in ZN
2 to be the vertices of a graph, and let arbitrary vertices zA and zB be connected by an

edge if they are separated by unit Hamming distance (i.e. zA
i , zB

i for exactly one value of
i), then the graph is isomorphic to the N-dimensional hypercube. This is the graph structure
induced by the Hamiltonian: the transverse-field terms generate nearest-neighbour hopping
on the hypercube, meaning that the problem can thus be thought of as the Anderson model on
a hypercube. Models of this type have been studied in the context of many-body localisation
(MBL) in the recent papers Refs. [97, 98] and also of adiabatic quantum optimisation in Ref. [99].
The analytical MBL results for this model are obtained starting from the localised state, using
the forward scattering approximation to develop a perturbation expansion to leading order in
the transverse field h; our work is complementary in that we start from the extended state.

To relate this Hamiltonian to a microscopic model, we note in passing that Derrida has
established that the p-spin Sherrington-Kirkpatrick model

HSK �

∑
I�{ i1 ,...,ip }

JI σ
z
I1 . . . σ

z
Ip
, (2.4)

tends to a random energy model (REM) in the thermodynamic limit when p → ∞ [100, 101].
The REM, which is the second term in (2.1), is a model defined by 2N energy levels described by
a Gaussian white noise process (i.e. independent and identically distributed Gaussian random
variables). The QREM can thus be seen to arise from a generalised Sherington-Kirkpatrick
model, containing all possible p-spin interactions (for some large p), in the presence of a
transverse field.

We are going to consider the limit where the second term in (2.1), the random potential,
is small (in a sense that shall be made more precise) compared to the first, the hopping term.
Thus, our starting point for perturbation theory is the eigenbasis of the hopping term. Wewrite
these basis states as

|x〉 �
N⊗

i�1

|σx
� xi〉 i (2.5)

1Wewill sometimes use ZN
2 to denote the (N-fold direct product) of the Abelian group of { 0, 1 } under modulo 2

addition, and sometimes to denote the isomorphic group { −1, 1 } under multiplication (in fact, the only nontrivial
irreducible representation of Z2).
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where x � {x1 , . . . xN }, xi � ±1, gives the assignment of the eigenvalues of σx
i . We denote

states in the Hilbert space of the ith spin by |. . .〉 i , and |σa � ±1〉 denotes the eigenstates of σa

(a � x , y , z). We can think of |x〉 as analogous to the plane wave state |k〉 in single-particle
quantum mechanics. To make this clearer, note that in the z-basis

|σx
� ±1〉 �

1
√

2
[|σz

� 1〉 ± |σz
� −1〉] , (2.6)

which is analogous to a plane wave in 1D where the wavevector can take only the values {0, π}.
Expressing states in the basis |x〉 amounts to doing Fourier analysis on the hypercube (see
appendix A and Ref. [102] for a more formal development of this idea). A recent work has
developed a field-theoretic approach to MBL in random-field XXZ spin chains by similarly
approaching the problem as an analogue of Anderson localisation in a high-dimensional con-
figuration space and taking inspiration from the single-particle problem [103]. Their approach,
which provides an effective description of the ergodic and MBL phases, differs considerably
from ours in that they work in the z-basis and adopt the supersymmetric method of disorder
averaging. Although it is already quite clear on the basis of numerics that the localisation
behaviour shown by the QREM is distinct from true MBL, their field-theoretic analysis is help-
ful in explicitly demonstrating that the transition in the QREM appears to lie in the Anderson
universality class whilst the MBL transition does not.

2.1.2 Formal structure of the perturbation theory

Our approach is to develop a perturbation theory for the resolvent,

R(z) �
1

z − H
for z ∈ C \ σ(H), (2.7)

where σ(H) is the spectrum of the Hamiltonian H. Since the Hamiltonian is Hermitian,
σ(H) ⊂ R and so we are motivated to introduce related objects that are everywhere defined on
a real (‘energy’) domain, the retarded resolvent (’resolvent’ will henceforth refer to the retarded
resolvent)

R(ε) :� R(z → ε +

δ→0+︷︸︸︷
iδ ) �

1

ε − H + iδ
, (2.8)

as well as the advanced resolvent R†(ε). We will later find it helpful to make use of the
fact that the retarded resolvent is the Fourier transform of the time-evolution operator, the
imaginary infinitesimal assuring the convergence of the inverse transform. On account of the
disorder, the resolvent is a random quantity; we will need to average products of resolvents
over disorder accordingly in order to extract disorder-averaged quantities, just as in the single-
particle problem.
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Splitting the Hamiltonian

H �

T︷   ︸︸   ︷
h

N∑
i�1

σx
i +

V︷      ︸︸      ︷∑
Z∈ZN

2

V (z), (2.9)

expansion with respect to the ‘potential’ V yields the usual Born series

R(ε) � R(0)
+ R(0)VR(0)

+ . . . , (2.10)

where
R(0) (ε) �

1

ε + iδ − T
(2.11)

is the ‘bare’ resolvent. R(0) (ε) has the spectral representation

R(0) (ε) �
∑

x∈{−1,1}N

R(0) (x ,ε)︷             ︸︸             ︷
1

ε + iδ − hξ(x)
|x〉 〈x | , (2.12)

where ξ(x) ≡
∑N

i�1 xi . As in the single-particle problem, we intend to routinely switch from
‘momentum’ summations over X to ‘energy’ summations over ξ, weighted by the appropriate
density of states (which turns out to be just a binomial coefficient – see (2.19) below).

2.2 Disorder-averaged perturbation theory

2.2.1 Model of disorder

Since our perturbation theory is formulated in the x-basis, the crucial matrix elements that
appear in the diagrammatic expansion are Ṽ (x1 , x2) � 〈x1 |V |x2〉, and are given by

Ṽ (x1 , x2) � 〈x1 |V |x2〉 �

∑
z

V (z) 〈x1 |z〉 〈z |x2〉 �
1

2N/2

∑
z

V (z) 〈z |x1x2〉 :� Ṽ (x1x2). (2.13)

These will then need to be disordered averaged using the result

E [V (x)] � 0, Cov [V (x1)V (x2)] �
γz

2N δx1 ,x2 � γδx1 ,x2 , (2.14)

which follows directly from the z-basis definition given in (2.3); note that we have now dropped
the tilde used to identify quantities in the Fourier basis. For consistency with the REM (and
also QREM) literature [98, 100], we fix the variance γz to be N/2 and thus

γ � 2−N
(N

2

)
Γ2 , (2.15)

with the consequence that the relative disorder strength is now set solely by the transverse field
strength h (n.b. Γ is a bookkeeping parameter with dimensions of energy; its magnitude can
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later be set to unity).
Our next task will be to compute expectation values of products of the resolvent, starting

with the average of the resolvent itself.

2.2.2 Born approximation

The disorder-averaged resolvent can be expressed in terms of a self-energy operator Σ(ε)

E [R(ε)] �
1

ε − T − Σ(ε)
. (2.16)

The lowest-order contribution to Σ(ε) (‘first Born approximation’) is once again represented by
the first diagram in Figure 1.2 (n.b. in this chapter the diagrams that appear are the same as
those in section 1.1.3, with the exception that x replaces k) and given by

Σ(2) (ε) � γ tr
[
R(0) (ε)

]
. (2.17)

Expressing the trace in (2.17) in the |x〉 basis gives

Σ(2) (ε) �
∑

x∈{−1,1}N

1

ε − hξ(x) + iδ

�

∑
−N≤ξ≤N
ξ≡N mod 2

g (ξ)
ε − hξ + iδ

, (2.18)

where in the second line we have introduced the binomial density of states

g (ξ) �
(

N
1
2 (N − ξ)

)
N→∞
−−−−→ g(0)e−

ξ2

2N . (2.19)

Since g(ξ) is strongly peaked around ξ(x) � 0 for large N , we make the approximation of
setting the density of states to be a constant equal to its maximum value g(0) 2, which can be
evaluated by Stirling’s approximation to give the asymptotic form

g(0) �
(

N
bN/2c

)
∼

2N+
1
2

√
πN

. (2.20)

Approximating the sum in (2.18) by an integral and invoking the Sokhotski-Plemelj formula,
we obtain

Im
{
Σ(2) (ε))

}
�
−πγg(0)

2h
, (2.21)

recalling that the real part can be absorbed by a renormalisation of the energy levels, as for a
single particle in a random potential.

2Elsewhere, we use g(N/2) for the same quantity – this is when we use xi ∈ { 0, 1 } rather than the xi ∈ { −1, 1 }
notation that we have used thus far.
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Expanding the self-energy to the next order (fourth order in V , or second order in γ), we
now additionally have the second and third diagrams in Figure 1.2. We shall now argue, as in
the single-particle problem, that the second (uncrossed) diagram exceeds the third (crossed) by
a factor that can taken to be large (kF l � 1 in the single-particle case).

Both diagrams have three bare resolvents. In the uncrossed diagram, there is a free sum-
mation over the momentum of the middle resolvent (say, x2) together with one further free
summation over the remaining two momenta, which are constrained to be equal (x1 � x3) by
momentum conservation. In the third (crossed) diagram, there is a summation over x1 , x2 , x3

subject to the constraint x1x2x3 � x0 (for incoming momentum x0).
Explicitly, the crossed diagram is

γ2
∑

x1 ,x2 ,x3
x1x2x3�x0

R(0) (x1)R(0) (x2)R(0) (x3). (2.22)

What kind of constraint does x1x2x3 � x0 give rise to? Since R(0) (xα) in (2.22) depends only on
ξ(xα), it is helpful to compute the moment-generating function for ξ(xα) over all states subject
to the constraint. By rewriting the constraint as x0x1x2x3 � 1, we can see that for each site
(indexed by i � 1, . . . ,N), an even number of x i

α must be equal to -1 for the constraint to be
satisfied. This enables us to directly write down the moment-generating function as

Mξ(xα ) (λα) � N
∑

x1 ,x2 ,x3
x0x1x2x3�1

3∏
α�0

eλαξ(xα ) (2.23)

� *
,

3∏
α�0

[
e−λα + eλα

2

]
+

3∏
α�0

[
e−λα − eλα

2

]
+
-

N

, (2.24)

where N is the normalisation to ensure Mξ(xα ) (0) � 1. Taking the logarithm affords the
cumulant-generating function,

ln Mξ(Xα ) (λα) � N ln *
,

3∏
α�0

[
e−λα + eλα

2

]
+

3∏
α�0

[
e−λα − eλα

2

]
+
-

(2.25)

�

∑
α

λακα +
∑
α,β

1

2!
λαλβκαβ + . . . ,

where in the second linewehave simplywrittendown thegeneral formof a cumulant expansion,
with the nth cumulant denoted κα1 ...αn . If we consider the affine transformation

ξ̃(xα) �
ξ(xα) − E[ξ(xα)]

Var[ξ(xα)]
, (2.26)
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then the nth cumulants of xα transform according to

κ̃α1 ...αn �

n∏
i�1

1√
Var[ξ(xαi )]

κα1 ...αn . (2.27)

Now, (2.25) indicates that all the cumulants of ξ(xα) are of order N , and therefore κ̃α1 ...αn are of
order N1− n

2 . We conclude that in the large-N limit the distribution ξ̃(xα) is well-approximated
by its first two cumulants (i.e. ξ̃(xα) tends to a multivariate Gaussian), and consequently, so is
ξ(xα), being related to ξ̃(xα) by an affine transformation.

Expanding the cumulant-generating function in (2.25) to second order in λα

N−1 ln Mξ(Xα ) (λα) � ln *
,

∏
α

cosh λα+
-
+ ln *

,
1 +

∏
α

tanh λα+
-

(2.28)

�

∑
α

1

2!
λ2
α + O(λ4), (2.29)

reveals that E[ξ(xα)] � 0 and Cov[ξ(xα), ξ(xβ)] � Nδαβ, and so we have established the key
result that the distributions of the four energies ξ(xα) (α � 0, 1, 2, 3) are independent Gaussians
in the limit of large N . We note that the proof we have presented of this result is of the same
spirit as the proofs of central limit theorems using the method of moment-generating functions
(or more generally, the method of characteristic functions, to handle the scenario when some
moments are not well defined), and its various special cases, such as the de Moivre–Laplace
theorem [104].

Using this result, we can compute the ratio of the imaginary parts of the crossed to the
uncrossed self-energy diagram at second order

r �
ΣC

ΣUC
�

2−N Im
[
γ2 ∑

x1 ,x2 ,x3
R(0) (x1)R(0) (x2)R(0) (x3)

]

Im
[
γ2

∑
x1 ,x2

(
R(0) (x1)

)2 R(0) (x2)
] . (2.30)

A normalisation factor of 2−N has been inserted into the numerator because the number of terms
in the sum is still 22N , due to the constraint, even though the distributions for ξ(x1), ξ(x2) and
ξ(x3) are independent for large N . The momentum summations can be converted to energy
integrals and then evaluated by approximating the binomial density of states as a Gaussian; the
basic results we require are firstly the Stieltjes transform of the Gaussian

∑
x

R(0) (x) � g(0)
∫
∞

−∞

dξ
2h

e−
ξ2

2Nh2

ε − ξ + iδ
�

1

2τγ

(
2
√
π

F(y) − ie−y2

)
, (2.31)
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where y :� ε
h
√

2N
and F(y) is the Dawson function, and also

∑
x

(
R(0) (x)

)2
� g(0)

∫
∞

−∞

dξ
2h

e−
ξ2

2Nh2

(ε − ξ + iδ)2
(2.32)

�
1

2τγ
1

h
√

2N

(
−

2
√
π

+ y[−ie−y2
+

2
√
π

F(y)]
)
. (2.33)

The parameter τ �
h

πg(0)γ is discussed in the next section and we have used the Gaussian
approximation to the binomial distribution given in (2.19). These results can now be used to
calculate the ratio in (2.30)

r(y) �
√
π

2h2N
*..
,

6
√
π

F(y)2
−

√
π

2 e−2y2

2yF(y) − 1

+//
-
. (2.34)

Since r(y) ∼ O(N−1), we can neglect the crossed diagrams in the self-energy in the large-N
limit.

2.2.3 Self-consistent Born approximation

Having justified the noncrossing approximation for the self-energy, we are able to evaluate it in
the self-consistent Born approximation as in the single-particle case: the uncrossed self-energy
diagrams (‘rainbow diagrams’) can be summed to infinite order by replacing the bare resolvent
in the leftmost diagram of Figure 1.2 with a dressed resolvent and then solving self-consistently
for the self-energy,

ΣSCBA(ε) � γ
∑
ξ

g (ξ)
ε − hξ − ΣSCBA(ε)

. (2.35)

It is clear that if wemake the ansatz of replacingΣSCBA(ε) on the right-hand side byΣ(2) (ε) com-
puted in (2.18), then self-consistency is achieved provided that the magnitude of Im

{
Σ(2) (ε))

}

is small (relative to the bandwidth h
√

N). This motivates us to parameterise the self-energy
such that this is more transparent

ImΣSCBA(ε) �
−πγg(0)

2h
� −

1

2τ
, (2.36)

which is the familiar formof the self-energy in the single-particle theory. Inserting the definition
of γ, the parameter τ is therefore given by

τ �
h
√

2

Γ2
√
πN

(2.37)
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Demanding that the Born self-energy is small (such that it also solves the self-consistent equa-
tion) identifies an appropriate weak disorder limit,

1

τ
� h
√

N �⇒ h2Γ−2

√
2

π
� 1. (2.38)

2.2.4 Diffusion ladder

We now move on to consider diffusion, which demands the consideration of two-particle
quantities. The probability for the system to propagate between vertices zi , zf ∈ ZN

2 is given by

P(zf , zi; t) � | 〈zf |U (t) |zi〉 |2 , (2.39)

where U (t) � exp (−iHt) is the time-evolution operator. As previously mentioned, this can be
expressed as the Fourier transform of the resolvent

U (t) �
∫

dε
2πi

R(ε)e−iεt , (2.40)

which one can also interpret as a consequence of the generalisation of Cauchy’s integral formula
to holomorphic functional calculus. Inserting this definition into (2.39) and averaging gives

E [P(zf , zi; t)] �
∫

dε1

2π
dε2

2π
E

[
〈zf |R(ε1) |zi〉 〈zi |R†(ε2) |zf〉

]
e−i(ε1−ε2)t . (2.41)

The long-time (low-frequency) behaviour will be determined by the contribution with close
energy arguments, as can be seen by taking the Fourier transform with respect to time

E [P(zf , zi;ω)] �
∫

dε
2π
E

[
〈zf |R(ε + ω) |zi〉 〈zi |R†(ε) |zf〉

]
. (2.42)

As in the single-particle case, translational invariance is restored by the average, making it
convenient to work in the Fourier (i.e. |x〉) basis.

As we did in section 1.1.3, we can proceed to calculate the diffuson

D(xq , ω) �
γ

1 − γ
∑

x R(x , ε + ω)R†(xxq , ε)
, (2.43)

where xq � xi′x f � x f ′xi is the fixed ‘momentum’ flow through the diffusion ladder (product
of the momenta of the resolvents between adjacent rungs of the ladder). Note that R(x , ε) here
denotes the SCBA resolvent, E[R(x , ε)], and not the full resolvent that appears in (2.42); it shall
henceforth be clear which we mean from the context. We must first compute the pair-bubble in
the denominator

π(xq , ε, ω) � γ
∑

x

*
,

1

ε + ω − hξ(x) + i
2τ

+
-

*
,

1

ε − hξ(xxq) − i
2τ

+
-
. (2.44)
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Let N± be the numbers of up (+1) and down (-1) spins in x, and let F+ (F−) be the number
of down spins in xq for which the corresponding spin in x is up (down). Then (2.44) may be
written

π(xq , ε, ω) � γ
∑

N++N−�N
F++F−�F

F!

F+!F−!

(N − F)!
(N+ − F+)!(N− − F−)!

× *
,

1

ε + ω − h(N+ − N−) + i
2τ

+
-

*
,

1

ε − h(N+ − N− + 2[F− − F+]) − i
2τ

+
-
.

(2.45)

Here ξ(xq) � N − 2F, and we shall be interested in F small (1 � F � N).
In the large-N limit we are justified in making the Gaussian approximation to the binomial

distribution,

(N − F)!
(N+ − F+)!(N− − F−)!

≈
2(N−F)

√
π(N − F)/2

exp

(
−

(N+
− N− − F+ + F−)2

2(N − F)

)
. (2.46)

For large N we can shift the region of integration over n � N+
− N− by f � F+

− F− without
altering the limits of the integral, giving

π(xq , ε, ω) �
γ2(N−F+ 1

2 )

√
π(N − F)

∫ F

−F

d f
2

∫
∞

−∞

dn
2

F!

F+!F−!
exp

(
−

n2

2(N − F)

)
× *

,
1

ε + ω − h(n + f ) + i
2τ

+
-

*
,

1

ε − h(n − f ) − i
2τ

+
-
.

(2.47)

Taking the Gaussian density of states as constant, in the large-N limit when it is very broad
(σ ≈

√
N − F) on the scale of the decay of the resolvents, the n integral in (2.47) can be evaluated

using the residue theorem

π(xq , ε, ω) � 2−F−2

∫ F

−F
d f

F!

F+!F−!

(
1

ωτ − 2h f τ + i

)
, (2.48)

where we have used the definition of τ in (2.37) and also noted that 2N+
1
2

√
π(N−F)

≈ g(0). Replacing
the binomial coefficient with its large-F Gaussian approximation (the integral approximation
to the f summation demands F � 1), and also expanding the residue to second order in h f τ
(we have imposed the small-F condition h

√
Fτ � 1), we find

π(Xq , ε, ω) � 1 + iωτ − 4h2τ2F, (2.49)

which upon insertion into (2.43) gives us the form of the diffuson

D(F, ω) �
γ

(DF − iω) τ
, (2.50)



2.2. Disorder-averaged perturbation theory 45

where the diffusion constant has been defined as D � 4h2τ. It is worth clarifying the hierarchy
of approximations that restricts the value of F to show that a diffusive regime may exist and
that our small- and large-F approximations are compatible:

1

∑
f→

∫
f

� F
diffusive
�

(
1

hτ

)2 weak
disorder
� N. (2.51)

The form of the diffuson in (2.50) is consistent with what wewould expect for classical diffusion
on a hypercube; in the next section (2.2.5), we illustrate this by considering a random walk
on ZN

2 . Firstly, we show that the Fourier transform (x-basis representation) of the Laplacian is
proportional to F (recalling that ξ(x) � N −2F), and secondly that the evolution from the initial
to the stationary distribution takes the form of a sharp transition – this is known as the cutoff
phenomenon and we shall give a precise description of it below [105, 106]. We can interpret the
latter observation in terms of a thermalisation time: if the initial state has its weight localised at
a single vertex, it remains concentrated there until a transition time at which the system’s state
vector suddenly becomes distributed over the whole hypercube. ‘Diffusion’ on the hypercube
is therefore associated with this rather pathological behaviour, as opposed to the more gradual
spreading out we come to associate with diffusive processes.

2.2.5 Classical diffusion on the hypercube

The Laplacian of a simple graph can be defined as

∆ � 1 − d−1A, (2.52)

where d andA are the degree and adjacencymatrices respectively. The particular normalisation,
known as random walk normalisation, is chosen such that the Laplacian coincides with the
transition rate matrix of a random walk (other choices are possible, but the cutoff phenomenon
that we find is universal). Specialising to the hypercube graph we have

∆ � 1 − N−1
∑

i

σx
i . (2.53)

We can also introduce the diffusion operator d(t) � e−t∆, together with its spectral representa-
tion

d(t) �
∑

x

e−Ex t
|x〉 〈x | , (2.54)
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with Ex � 1 − N−1ξ(x). We endeavour to analyse diffusion probabilities between vertices of
the hypercube, and so compute the matrix elements of the diffusion kernel

d(z′, z′′; t) �
∑

x

e−Ex t
〈z′ |x〉 〈x |z′′〉 �

1

2N/2

∑
x

e−Ex t
〈x |z′z′′〉 (2.55)

d(z � z′z′′; t) �
1

2N/2

∑
x

e−2F (x)t
〈x |z〉 , (2.56)

where F (x) is the normalised Hamming distance (F(x)/N) between x and x′ � 1. Inserting the
form of the matrix element 〈x |z〉

d(z � z′z′′; t) �
1

2N

∑
x

∏
i

(
1 −

1

2
(1 − xi)(1 − zi)

)
e−2F (x) , (2.57)

we note that the x-summation factorises into a product over xi sums

d(z � z′z′′; t) � e−t
∏

i |zi�1

∑
xi�±1

e
xi t
N

∏
i |zi�−1

∑
xi�±1

xi e
xi t
N , (2.58)

thus giving

d(z � z′z′′; t) � e−t cosh
( t

N

)N
tanh

( t
N

)F(z)
. (2.59)

Where the F-dependence at long times is set by

tanh
( t

N

)F(z)
≈ e−2F(z)e−

2t
N . (2.60)

By setting F � 0, we also obtain the exact form of the diagonal part of the diffusion kernel

d(z , z; t) � e−t cosh
( t

N

)N
. (2.61)

Now, the cutoff phenomenon we mentioned earlier refers to the following behaviour of the
total variation distance D(t) � supS⊂ZN

2
| |P(S; t) − π(S) | | between the probability distribution

P(z , t) of a Markov chain and its stationary distribution π(z)

lim
c→∞

lim
N→∞

D(t (N)
mix − cwN ) → 1 (2.62)

lim
c→∞

lim
N→∞

D(t (N)
mix + cwN ) → 0, (2.63)

where wN is some N-dependent window function. In words, the cutoff phenomenon is de-
scribing a situation in which the convergence of a Markov chain to its stationary distribution
takes place entirely within a window of width ∼ wN around the mixing time tmix.
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Let us begin with a rough calculation of the mixing time. The total variation distance can
be written as an L1 norm and upper bounded according to

D(t) �
1

2

∑
z

|d(z0 , z; t) − 2−N
| <

1

2
× 2N

|d(z , z; t) − 2−N
|, (2.64)

where we have inserted the uniform distribution corresponding to the stationary distribution
of the process. The term inside the modulus can be evaluated using (2.61)

d(z , z; t) − 2−N
� 2−N

[(
1 + e−

2t
N
)N
− 1

]
≈ 2−N Ne−

2t
N , (2.65)

and substituted into the right-hand side of (2.64) to give

D(t) ≈
1

2
Ne−

2t
N , (2.66)

thus implying a mixing time scaling as

tmix ∼
1

2
N ln N, (2.67)

which is the correct N-dependence but is larger than the exact result by a factor of 2. However,
we have all we need for a precise calculation, which for completeness we shall present here (fol-
lowing the analysis of Diaconis et al. [105]). We can explicitly express the required supremum
in the definition of the total variation distance as

D(t) �
∑

z |d(z0;z)>2−N

(
d(z0 , z; t) − 2−N

)
(2.68)

�

∑
F<F∗

(
N
F

) (
e−t cosh

( t
N

)N−F
sinh

( t
2

)F
− 2−N

)
(2.69)

�

∑
F<F∗

2−N
(
N
F

) [(
1 + e−2t/N

)N−F (
1 − e−2t/N

)F
− 1

]
, (2.70)

where d(z0 , z; t) > 2−N implies ξ(zz0) � F < F∗, and we have used the result (2.59) in the
second line. The last line can be written in terms of cumulative probabilities

D(t) � P (X ≤ bF∗c) − P (Y ≤ bF∗c) , (2.71)

where X ∼ Bin(N, (1 − e−2t/N )/2) and Y ∼ Bin(N, 1
2 ). In the large-N limit, we can use the

Gaussian approximation to the binomial. To find F∗, we can straightforwardly solve d(z0 , z; t) �
2−N to obtain

F∗ � N ln(1 + e−2t/N )
[
ln

(
1 + e−2t/N

1 − e−2t/N

)]−1

∼
N
2

(
1 −

1

2
e−2t/N

)
. (2.72)

If we now parameterise time in terms of a window around themixing time as t � αN ln N +βN ,
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the final result can be expressed in terms of the cumulative distribution function of the standard
normal distribution Φ(z) � (2π)−1/2

∫ z
−∞

e−
x2

2 dx � (1/2)
(
1 + erf

(
z/
√

2
) )

D(α, β) ∼ Φ(
1

2
N

1
2−2αe−2β) −Φ(−

1

2
N

1
2−2αe−2β) � 2Φ(

1

2
N

1
2−2αe−2β) − 1. (2.73)

It is now clear that we have a cutoff phenomenon (within a window of size N) occuring around
the mixing time tmix ∼

1
4 N ln N (i.e. α � 1/4) and with a functional form given by the error

function
D(β) � erf

(
e−2β

2
√

2

)
+ O(1). (2.74)

2.3 Transverse spin-spin correlations

If we were to continue in analogy to the single-particle calculations, the naive next step would
be to compute the cooperon ladder, in search of a weak-localisation correction. However, there
are two obstacles to contend with: firstly, we need to check whether the two-particle crossed
diagrams are parametrically smaller than the uncrossed diagrams of the same order, and
secondly, we need to consider whether Hikami boxes are required. We begin by considering the
latter, more subtle point. In the single-particle calculation, the cooperon can be simply inserted
with impunity into the conductivity bubble to compute the weak-localisation correction – this
is due to the fact that for isotropic scattering (as is the case for the white noise disorder model),
the ladder diagrams vanish (for q → 0; the uniform part of the conductivity). When the ladder
diagrams do not vanish, it is necessary to connect diffuson modes to the cooperon through
Hikami boxes [4, 107]; a complication we shall attempt to avoid. We are therefore motivated to
introduce the analogous observable, one in which a ‘momentum’ factor appears in the vertices
of the bubble, in the hope that the ladder diagrams will vanish in this case too.

The aforementioned observable is the infinite-temperature transverse spin-spin correlator
(for total transverse spin σtot �

∑
i σ

x
i )

Cx (t) � 2−N
〈σx

tot(t)σx
tot(0)〉 � 2−N

∑
i , j

tr(σx
i (t)σx

j (0)) (2.75)

� 2−N
∑
i , j

∫
dε1

2π
dε2

2π
tr

(
R†(ε1)σx

i R(ε2)σx
j

)
e−i(ε1−ε2)t . (2.76)

After taking the temporal Fourier transform and disorder averaging we obtain

E[Cx (ω)] � 2−N
∑
i , j

∫
dε
2π

∑
x

E
[
〈x |R†(ε)σx

i R(ε + ω)σx
j |x〉

]
, (2.77)

which is a quantity whose diagrammatic structure is analogous to conductivity, in particular
the counterpart of the factors of momentum in the current vertex in (1.20) are factors of xi

(eigenvalues of σx
i ).
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2.3.1 Drude peak

The bare bubble corresponds to the clean limit when the Hamiltonian reduces to solely a
transverse field; this can be dealt with explicitly in the Heisenberg picture because all operators
are diagonal in the x-basis

Cx (ω; γ → 0) � 2−N
∫

dt e iωt
∑
i , j

∑
x

〈x |e iHtσx
i e−iHtσx

j |x〉

� 2−Nδ(ω)
∑
i , j

∑
x

xi x j � 2−Nδ(ω)
∑

i

∑
x

x2
i

� Nδ(ω). (2.78)

This describes a ‘Drude peak’; all the spectral weight (given by (2.78)) is concentrated at zero
frequency. Switching on the disorder broadens the delta-function as the disorder term (off-
diagonal in the x-basis) will induce relaxation of the transverse spin components.

To see this, one can compute the averaged two-particle bubble in the presence of disorder,
which is just a minor modification of the case above

E[Cx (ω)] � 2−N
∑
i , j

∫
dε
2π

∑
x

*
,

xi

ε − hξ(x) − i
2τ

+
-

*
,

x j

ε + ω − hξ(x) + i
2τ

+
-
, (2.79)

the only difference is that a finite (as opposed to infinitesimal) imaginary part appears in the
resolvent denominators, since they now account for disorder averaging (through the SCBA).
We can evaluate the integral over ε as a contour integral: if we choose a semicircular contour
in the complex-ε plane, closed in either the upper or lower half-plane, the integral over the
semicircular arc vanishes by the estimation lemma, thence the result follows from the residue
theorem

E[Cx (ω)] � *
,

iω + τ−1

ω2 +
1
τ2

+
-

2−N
∑
i , j

∑
x

xi x j . (2.80)

�
N

−iω + τ−1
(2.81)

We can see from this that in the low-frequency limit the only consequence is to replace the Dirac
delta by a Lorentzian whose full-width at half-maximum is controlled by the scattering rate
τ−1.

2.3.2 Schwinger time

We now need to compute the ladder diagrams, to ascertain whether or not they vanish. Un-
fortunately, the integrals can no longer be evaluated by contour methods: if the integration
over ε is performed first, the ξ-integrals diverge; if we try to integrate over ξ first, we find
that we cannot invoke the residue theorem because the integrand decays too slowly with |ξ |.
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One way to circumvent this difficulty is to move into the time domain: or in the high-energy
theorists’ language, the Schwinger proper-time representation. This technique is not conve-
nient for resumming infinite subsets of diagrams, but it will enable us to check whether a given
ladder diagram vanishes, and also to compare the magnitude of the crossed and uncrossed
two-particle diagrams at a given order.

x1
t1

x2
x3

x3
x2

x1

t2
t3

t'1
t'2

t'3

x1

x2
x3

x1 x3

x4

t1
t2

t3

t'3
t'2

t'1

Figure 2.1: (Left) Ladder diagram of order γ2 and (right) the crossed diagram of
the same order; the crossed diagramalso has the additionalmomentum constraint
x1x2x3x4 � 1, but we can neglect it at large N due to the argument in section 2.2.2.

Beginning with the two-line (order γ2) ladder (left figure in Fig. 2.1), we find

E[Cx
Ladder, 2(ω � 0)] �

γ2

2N

∫
∞

−∞

dε
2π

∫
∞

0

3∏
i�1

dti dt′i
∑
{xk }

∑
i , j

x i
1x j

3 e iε(t1+t2+t3−t′1−t′2−t′2)

× R(x1 , t1)R†(x1 , t′1)R(x2 , t2)R†(x2 , t′2)R(x3 , t3)R†(x3 , t′3),

(2.82)

where ti > 0 and
R(x , t) � −ie−(ihξ(X)+ 1

2τ )t , (2.83)

such that after integrating over ε we have

E[Cx
Ladder, 2(ω � 0)] �

γ2

2N

∫
∞

0

3∏
i�1

dti dt′i δ(t1 + t2 + t3 − t′3 − t′2 − t′1)

×

∑
{ xk }

∑
i , j

x i
1x j

3 e ih(ξ(x1)(t′1−t1)+ξ(x2)(t′2−t2)+ξ(x3)(t′3−t3))e−
1
2τ (t1+t2+t3+t′3+t′2+t′1) .

(2.84)

We now note that the momentum-dependent part of the integrand is related to the moment-
generating function (for the distribution of ξ(xi) subject to the constraint

∏
i xi � 1) that we

introduced in (2.23); in particular, if we replace the time argument coupled to ξ(xi) by dummy
variables λi , the momentum vertices can be generated by differentiation as follows

E[Cx
Ladder, 2(ω � 0)] � −

γ2

2N

∫
∞

0

3∏
i�1

dti dt′i δ(t1 + t2 + t3 − t′3 − t′2 − t′1)
∂2φ(~λ)
∂λ1∂λ3

���~λ→~t e−
1
2τ

∑3
i�1 ti+t′i ,

(2.85)
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where we have defined the characteristic function φ(~λ) � Mξ(xα ) (i~λ) by analytic continuation
of the moment-generating function, and

λ1 � h(t′1 − t1), λ2 � h(t′2 − t2), and λ3 � h(t′3 − t3). (2.86)

Inserting the large-N form for the characteristic function (cf. (2.28)), that is, a product of inde-
pendent Gaussians

φ(~λ) � 23N e−N
∑

i
1
2λ

2
i , (2.87)

where the normalisation φ(~λ � 0) � 23N arises from the fact that there are 23N terms in the
sum over xi , and recalling that γ � 2−N (N/2) we arrive at

E[Cx
Ladder, 2(ω)] � −

1

4
h2N4

∫
∞

−∞

dε
2π

∫
∞

0

3∏
i�1

dti dt′i e
iε

∑3
j�1

(
t j−t′j

)
e

i ω2
∑3

j�1

(
t j+t′j

)

× (t1 − t′1)(t3 − t′3)e
Nh2

2

∑3
j�1

(
t j−t′j

)2

e
−

1
2τ

∑3
j�1

(
t j+t′j

)
,

(2.88)

which after changing variables to the sum and difference variables T j � t j + t′j and t̄ j � t j − t′j
can be written

−
1

4
h2N4

J

∫
∞

−∞

dε
2π

∫
∞

−∞

3∏
i�1

dt̄i

∫
∞

| t̄i |

3∏
i�1

dTi t̄1 t̄3 e−
Nh2

2

∑3
j�1 t̄ 2

j −
1
2τ

∑3
j�1 T j+iε

∑3
j�1 t̄ j+i ω2

∑3
j�1 T j , (2.89)

where the Jacobian is given by J � 2−3. Since the integrals factorise, we are able to consider
them separately (they are identical for each i, with the exception that an extra ti from the vertex
is present for i � 1, 3). Beginning with i � 1, and after performing the T1 integral immediately,
we are left with(

2

τ−1 − iω

) ∫
∞

−∞

dt̄1 t̄1 e−
Nh2

2 t̄ 2
1 e−

| t̄1 |
2 (τ−1−iω) e iε t̄1 �

(
2

τ−1 − iω

) ( √
π

4h4N
3
2

)
× (2.90)

[
e

(
√

2w+4ihε)2

32h4N (w + 2
√

2ihε) erfc

(
w + 2

√
2ihε

4h2
√

N

)
− e

(
√

2w−4ihε)2

32h4N (w − 2
√

2ihε) erfc

(
w − 2

√
2ihε

4h2
√

N

) ]
,

where for convenience we have defined

w � Γ2
√

Nπ − i
√

2hω. (2.91)

The i � 2 integrals are analogous, with the exception of the missing vertex factor, and yield(
2

τ−1 − iω

) ∫
∞

−∞

dt̄2 e−
Nh2

2 t̄ 2
2 e−

| t̄2 |
2 (τ−1−iω) e iε t̄2 �

(
2

τ−1 − iω

) (
π

h
√

2N

)
× (2.92)

[
e

w+2
√

2ihε)2

16h4N

(
1 − erf

(
w + 2

√
2ihε

4h2
√

N

))
+ e

(w−2
√

2ihε)2

16h4N

(
1 − erf

(
w − 2

√
2ihε

4h2
√

N

))]
(2.93)
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The scaling of the first-order (in γ) ladder diagram can be determined from (2.90) and is found
to be

E[Cx
Ladder, 1] ∼ h2N2

× N ×
(

h
√

N

)2 (
1

h4N3/2

)2

× h2
× (h2N)3/2 (2.94)

∼ h
√

N . (2.95)

The first factor (h2N2) comes from the derivative of the generating function; the next (N) is
from γ; each factor of hN−

1
2 is from 1

τ−1−iω , which arose from the Ti integration; h−4N−
3
2 is the

prefactor that emerged from the t̄i integration; finally, h2(h2N)
3
2 is the scaling of the ε-integral

(that is, the integral over ε of the square of the right-hand side of (2.90)). This scaling can
be extracted by ignoring the complementary error function (i.e. approximating it by an O(1)
constant in a region of width h

√
N around ε � 0) and considering the dominant terms in the

remaining integrand, ∫
∞

−∞

(hεe−
ε2

h2N )2 dε ∼ h2(h2N)3/2 , (2.96)

a result which is borne out by numerical evaluation of the full integral.
In fact, all ladder diagrams exhibit the same h

√
N scaling. We can see this from (2.92), which

is the only additional contribution of an additional line (as the ε-integral is unchanged), which
scales as

γ︷︸︸︷
N ×

1
τ−1−iω︷︸︸︷

h
√

N
×

∫
dt̄︷︸︸︷
1

h
√

N
∼ 1. (2.97)

Despite our attempt to construct an observable analogous to the conductivity in the single-
particle calculation, we have found that the ladder diagrams do not vanish in this case and we
will thus need to account for the renormalisation of the spin vertices that they induce.

Exact integration in the Schwinger proper-time representation is also a convenient way for
us to check the scaling of crossed diagrams. Taking the example of the O(γ2) crossed diagram
(right figure in Fig. 2.1): the i � 1, 3 integrals are identical to the ladder case, whilst the t2 and
t′2 can now be evaluated to give∫

∞

0

∫
∞

0

dt2dt′2 e−
Nh2

2 (t2
2+t′2

2) e−
t
2
+t′

2
2τ e iε(t2−t′2)e i ω2 (t2+t′2)

� (2.98)

π

2h2N
e−

4ε2+ (ωτ+i)2

τ2

4h2N

(
erfi

(
2ετ − ωτ − i
√

8h
√

Nτ

)
+ i

) (
erfi

(
2ετ + ωτ + i
√

8h
√

Nτ

)
− i

)
, (2.99)

meaning that the diagram thus scales as

E[Cx
Crossed, 2] �

∫ ∏
i�1,3 dti dt′i︷ ︸︸ ︷

h
√

N ×

γ︷︸︸︷
N ×

∫
dt2dt′2︷︸︸︷
1

h2N
, (2.100)

where we have also used the fact that the ε-integral is unchanged by the additional Gaussian
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factor. Unlike at the level of the resolvent, where the crosseddiagramswere a factor of N smaller,
here the suppression is only by a factor of h−2. It is also clear (from the second and third terms
above, which together contribute a factor of h−2) that the maximally crossed diagram of order
O(γm) will scale as

√
N/h2m−3. Since we are working in the weak-disorder regime where h � 1

(cf. (2.38)), this motivates us to consider the leading correction coming from the maximally
crossed diagrams as in the weak-localisation calculation.

2.3.3 Cooperon ladder in the diffusive regime

The maximally crossed diagrams can be untwisted as in the single-particle case (cf. Figure 1.4);
however, on the hypercube no minus sign appears, which can be traced back to a momentum
conservation condition governed by the ZN

2 as opposed to the (R,+) group structure of the
single-particle problem. Consequently, the cooperon can be immediately evaluated from the
results in section 2.2.4 without invocation of time-reversal symmetry

C(xq , ω) �
γ2 ∑

x1
R(x1)R†(x1xq)

1 − γ
∑

x2
R(x2)R(x2xq)

(2.101)

�
γ

(DF − iω)τ
, (2.102)

recalling that ξ(xq) � N − 2F.
We now can compute the corresponding correction to the two-point transverse spin corre-

lator

∆E[Cx (ω)] �
1

2N

∫
dε
2π

∑
x ,x′
i , j

x j *
,

1

ε − hξ(x) − i
2τ

+
-

*
,

1

ε + ω − hξ(x) + i
2τ

+
-

γ

(DF − iω)τ
(2.103)

x′i *
,

1

ε − hξ(x′) − i
2τ

+
-

*
,

1

ε + ω − hξ(x′) + i
2τ

+
-
, (2.104)

where xq � xx′. Working in the low-frequency limit and noting that the xq ≈ 1 sector domi-
nates, we follow the approach of section 1.1.3 and neglect the xq-dependence of the summand
everywhere except for the most singular part (i.e. the cooperon).This leaves us with

∆E[Cx (ω → 0)] �
1

2N

∫
dε
2π

∑
x

ξ(x)2
(
R(x , ε + ω)2R†(x , ε)2

) ∑
xq

γ

DF(xq)τ

�
N
2N

∫
dε
2π

g(0)
∫

dξ
2
ξ2 *

,
1

ε + ω − hξ +
i

2τ

+
-

2

*
,

1

ε − hξ − i
2τ

+
-

2 ∑
xq

γ

DFτ
.

(2.105)
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Focussing on the behaviour of the sum over xq , we can express it as an integral over F

γ

Dτ

∑
xq

1

F
�

γ

Dτ

∫
dξ

g(ξ)
N − ξ

� −
γ

Dτ

∫ Fmax

Fmin

dF
(
N
F

)
1

F
, (2.106)

in which the cutoffs for the F-integral are determined by the conditions F � 1, h
√

Fτ �
1 defining the diffusive regime, together with the weak disorder condition (hτ)−1

�
√

N .
Since these limits are in the tail of the density of states (whose maximum is at F � N/2), we
cannot approximate the density of states by a constant and must instead extract its leading F
dependence. With recourse to Stirling’s approximation, we obtain the large deviations form

ln

(
N
F

)
� N (−F lnF − (1 − F ) ln(1 − F )) , (2.107)

where we have defined F � F/N . Keeping only the first term, which is larger over the domain
of integration, we obtain

−
γ

Dτ

∫
Fmax

Fmin

dF
e−NF lnF

F
� −

γ

Dτ

∫ lnFmax

lnFmin

du e−Nueu
. (2.108)

The fact that the integrand is increasing in the interval [Fmin , Fmax] suggests that the contribution
from the cooperonmay be dominant outside the diffusive regimewe have restricted to. Despite
this break down of the analogy to the single-particle calculation, a similar issue has appeared in
the context of weak localisation in the presence of smooth (i.e. long-range) disorder and clean,
quantum chaotic systems: ballistic weak localisation. In that case, progress can be made by
working with kinetic equations for products of Green’s functions in the Wigner representation;
in this treatment averaging is only performed at the end, meaning that we can take into account
correlations of classical trajectories [108]. Unfortunately, we have been unable to formulate an
equivalent approach here, due to the absence of a corresponding classical dynamics. Part of the
problem is the absence of a continuous phase space structure and associated Wigner functions;
although Wigner functions can be defined in the case of discrete Hilbert spaces [109], they
are awkward to work with and it remains to be seen whether they can be profitably deployed
in the present scenario. Be that as it may, in Chapter 3 we are able to pursue a somewhat
related approach by working with a stroboscopic QREM and studying its time evolution with
inspiration from periodic-orbit theory; this allows us to detect the emergence of the RMT limit.

2.4 Dynamics of the average density matrix

Even without a means of studying nonaveraged quantum corrections to kinetic equations, we
are at least able to describe the dynamics of the average density matrix in its own right; this we
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shall do before looking at modified versions of the QREM in later chapters. In this section, we
derive a quantummaster equation for the disorder-averaged density matrix and explore how it
can be analysed numerically and analytically.

2.4.1 Derivation of the quantum master equation

The time evolution of the density matrix is described by the von Neumann equation

∂tρ(t) � −i[H, ρ(t)]. (2.109)

If we split up the Hamiltonian into its kinetic and potential part as before, H � T + V , we can
reexpress (2.109) in the interaction representation in which V is treated as a perturbation,

∂tρI (t) � −i[VI (t), ρI (t)], (2.110)

where the interaction picture density matrix and potential are related to their Schrödinger
picture counterparts by ρI (t) � e iTtρ(t)e−iTt and VI (t) � e iTtVe−iTt respectively. Formal
solution of (2.110) is a Volterra integral equation of the second kind given by

ρI (t) � ρI (0) − i
∫ t

0

dt1 [VI (t1), ρI (t1)]. (2.111)

Iterating once, averaging over V , and differentiating with respect to t gives us the (exact)
equation of motion for E[ρI (t)]

∂t E[ρI (t)] � −
∫ t

0

dt1 E
[
[VI (t), [VI (t1), ρI (t1)]]

]
. (2.112)

Transforming back to the Schrödinger picture gives us a term describing unitary evolution (or
the streaming term, in the classical language of kinetic equations) equal to the Liouvillian of T,
plus a decoherence term (or collision integral) described by the double commutator. Expanding
the double commutator reveals the division of the collision integral into so-called “out-” and
“in-scattering” terms

∂t ρ̄ � − i[T, ρ̄] (2.113)

−

∫ t

0

dt′ E
[

"Out"︷                                                                           ︸︸                                                                           ︷
VU0(t − t′)Vρ(t′)U†0 (t − t′) + U0(t − t′)ρ(t′)VU†0 (t − t′)V

]
(2.114)

+

∫ t

0

dt′ E
[

"In"︷                                                                           ︸︸                                                                           ︷
VU0(t − t′)ρ(t′)VU†0 (t − t′) + U0(t − t′)Vρ(t′)U0(t − t′)V

]
, (2.115)
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where U0(t) � e−iTt . We must now consider how to handle the integration over t′ of terms of
the form ∑

x ,x′

∫ t

0

dt′ |x〉 〈x |Vρ(t) |x′〉 〈x′ | e−ih(ξ(x)−ξ(x′))(t−t′) , (2.116)

where we have inserted the spectral representation of the free evolution operators U0(t). If we
make the approximation that ρ(t) is slowly varying compared to the rapidly oscillating complex
exponentials (i.e. we can replace ρ(t) by its average ρ̄), we need only integrate over the latter
“fast” terms. In the long-time limit, this just amounts to the Fourier transform of the Heaviside
step function∫ t

0

dt′ e−ih(ξ(x)−ξ(x′))t′ t→∞
−−−−→

1

h

(
P

[ i
ξ(x′) − ξ(x)

]
+ πδ(ξ(x′) − ξ(x))

)
. (2.117)

If we drop the imaginary part (analogous to dropping the real part of the self-energy for a
particle in a random potential) and consider one of the “out” terms

−
π
h

∑
x1 ,x2 ,x3 ,x4

E [|x1〉 〈x1 |V |x2〉 〈x2 |V |x3〉 〈x3 |ρ̄ |x4〉 〈x4 | δ(ξ(x2) − ξ(x4))] , (2.118)

disorder averaging (making use of (2.14)) gives

γπ

h

∑
x1 ,x2 ,x3

|x1〉 〈x1 |ρ̄ |x3〉 〈x3 | δ(ξ(x2) − ξ(x3)). (2.119)

Recognising the sum
∑

x2
δ(ξ(x2)−ξ(x3)) as the density of states g(ξ(x3)), we can approximate

it by a constant equal to its value in the middle of the band, g(N/2), reducing the remaining
summations to resolutions of the identity. Accounting for the other “out” term in the same
fashion, we find the contribution of these terms is

∂t ρ̄ |Out � −
1

τ
ρ̄, (2.120)

where we have introduced a scattering rate τ−1 � 2πγg(N/2)/h. Turning to one of the “in”
terms, it can be similarly averaged to yield

γπ

h

∑
x1 ,x2 ,x3

|x1 ⊕ x3〉 〈x1 |ρ̄ |x2〉 〈x2 ⊕ x3 | δ(ξ(x1) − ξ(x2 ⊕ x3)). (2.121)

If we make the approximation of neglecting the delta function and transform to the z-basis, we
find that the “in” term becomes

∂t ρ̄ |In �
2N

g(N/2)τ

∑
z

|z〉 〈z |ρ̄ |z〉 〈z | , (2.122)

which simply describes dephasing in the z-basis. This approximation has introduced an error:
the “out” and “in” scattering rates are not equal, giving an unphysical master equation that
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does not preserve the trace of the density matrix. We remedy this with the ad hoc replacement
of the “in” scattering rate by τ−1 (a reduction by a factor of order

√
N , which we can attribute to

the constraint in the sum in (2.121) that we did not account for).
The quantum master equation for ρ̄ (we shall henceforth omit the bar on ρ) is thence

∂tρ � −i[T, ρ] +
1

τ
*
,

∑
z

|z〉 〈z | ρ |z〉 〈z | − ρ+
-
� L[ρ]. (2.123)

The densitymatrix can be regarded as an element ofH⊗H � C4N via the Choi isomorphism. In
this representation, the Liouvillian in (2.123) can be recast as an effective Hamiltonian for a two-
flavour system of 2N spins: σa

i , τ
a
i for i � 1, . . . ,N and a � x , y , z. The effective Hamiltonian

takes the form

Heff � −ih
N∑

i�1

(σx
i − τ

x
i ) −

1

τ
1 +

1

τ

N∏
j�1

1

2
(σz

j τ
z
j + 1). (2.124)

2.4.2 Spectrum

We can make some sense of the spectrum of (2.124) (see Fig. 2.2) by perturbation theory in
h. For h � 0, there are 2N zero modes and the remaining 4N

− 2N eigenvalues are equal to
−τ−1. Second-order degenerate perturbation theory implies that the zero modes are split as
soon as h becomes nonzero, with a spectral gap (i.e. eigenvalue with the most positive, nonzero
real part) of −4h2τ. The spectrum, specifically the spectral gap or most slowly relaxing mode,
controls the asymptotic behaviour – butweneed to consider time evolution ifwewant to identify
dynamical phenomena, such as the cutoff phenomenon. Numerical analysts have studied cutoff
phenomena in Markov chains [110] by considering the norms of powers of the “decay matrix”
(P − P∞, for transition matrix P; P∞ is thus the projector onto the stationary eigenspace). This
approach is made numerically feasible (i.e. systems large enough for the behaviour to be seen
can be analysed) thanks to dimensional reductions possible in a number of problems, such as
the reduction of the randomwalk on the hypercube to the Ehrenfest urn problem – a reduction
of the state space from 2N to N + 1. We now proceed to perform a dimensional reduction for
the problem under consideration.

2.4.3 Permutation symmetry and dimensional reduction

The transverse field termof (2.124) is invariant under independent permutations of the σi and τi ,
which suggests that the natural basis for this term, i.e., the one respecting this symmetry, is |h1〉⊗

|h2〉, where |h〉 is the symmetric combination of |z〉 states with Hamming distance h from the
fully polarised |1 . . . 1〉 state. However, due to the collision integral, Heff is only invariant under
simultaneous permutations of σi , τi . Since the Hamiltonian has this permutation symmetry
(described by the symmetric group, SN ), we are motivated to decompose the Hilbert space
H ⊗ H into subspaces transforming as irreducible representations of SN . We can readily
identify the subspace transforming as the totally symmetric representation (i.e. each state is
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Figure 2.2: Spectrum of the effective Hamiltonian (2.124) obtained by exact diag-
onalisation (N � 5) for the cases h � 0.1 (top) and h � 0.9 (bottom), illustrating

the splitting of the degenerate multiplet of zero modes.

invariant under all permutations of N spins) as containing states where the Hamming distance
h12 between |h1〉 and |h2〉 is also fixed. We can write these as

|h〉 � |h1 , h2 , h12〉 �
1

Nh1 ,h2 ,h12

∑
ξ(z1),ξ(z2)�h1 ,h2
ξ(z1⊕z2)�h12

|z1〉 ⊗ |z2〉 , (2.125)

where N (N)
h1 ,h2 ,h12

�
( N

h12

) ( h12
h1−h2+h12

2

) ( N−h12
h1+h2−h12

2

)
. In passing, we note that the normalisation coeffi-

cients Nh are related to the intersection parameters ph
i j of a Hamming scheme, but we relegate

their explicit computation to appendix B.
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Figure 2.3: Time evolution of the master equation (2.126) in the permutation-
invariant subspace for a) strong disorder (h � 0.5), in which strong dephasing
results in a rapid collapse of probability density onto the diagonal, followed by
drift towards the stationary state (N/2,N/2, 0) and b) weak (h � 2) disorder in
which there is a nontrivial drift and spreading of probability density, before it

eventually concentrates on the stationary state.

A dimensional reduction is thus possible by projecting the master equation onto the |h〉
basis, since it is an invariant subspace of Heff. Performing this projection gives

∂tρh1 ,h2 ,h12 � −
1

τ

(
1 − δh1 ,h2δh12 ,0

)
ρh1 ,h2 ,h12 (2.126)

− i(αh1−1,h2 ,h12−1
+0+ ρh1−1,h2 ,h12−1 + α−0+ρh1+1,h2 ,h12−1 + α+0−ρh1−1,h2 ,h12+1 + α−0−ρh1+1,h2 ,h12+1)

+ i(αh1 ,h2−1,h12−1
0++ ρh1 ,h2−1,h12−1 + α0−+ρh1 ,h2+1,h12−1 + α0+−ρh1 ,h2−1,h12+1 + α0−−ρh1 ,h2+1,h12+1)
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where the α-coefficents are given by

αh1−1,h2 ,h12−1
+0+ � h

(
N −

h1 + h2 + h12 − 2

2

)
αh1−1,h2 ,h12+1
+0− �

h
2

(h2 − h1 + h12 + 2)

αh1+1,h2 ,h12−1
−0+ �

h
2

(h1 + h2 − h12 + 2)

αh1+1,h2 ,h12+1
−0− �

h
2

(h1 − h2 + h12 + 2) ,

and satisfy αh1 ,h2 ,h12

0i j � αh2 ,h1 ,h12

i0 j . The density matrix components in this basis are defined by

|ρ(t)〉 �
∑
h

ρh1 ,h2 ,h12 (t) |h〉 , (2.127)

where the normalisation is such that 〈h |ρ(t)〉 � N−1
h
ρh, which ensures the preservation of

the trace of the density matrix: tr(ρ) �
∑N

h�0 ρh ,h ,0 � 1. Numerical integration of (2.126) is
straightforward and the resultant time evolution of (2.126) is displayed in Fig. 2.3.

2.4.4 Reduced density matrix

The (N − k)-spin reduced density matrix ρ(N−k) � trk (ρN ) satisfies the same kinetic equation as
the full density matrix. Consider first the unitary part of the dynamics, and trace out a subset
S of the spins

∂t trS (ρ) � ∂tρS̄ � −ih
N∑

j�1

trS ([σx
j , ρ]). (2.128)

If j < S, then trS ([σx
j , ρ]) � [σx

j , trS (ρ)]. If j ∈ S, then trS (σx
j ρ) � trS (ρσx

j ) and so the commutator
vanishes. The corresponding evolution of ρS̄ is thus the natural restriction of the unitary
dynamics to S̄.

Now we turn to the collision integral, Ŵρ �
1
τ

(∑
z |z〉 〈z |ρ |z〉 〈z | − ρ

)
, which similarly

preserves its form upon tracing out a subset of the spins

trS (Ŵρ) �
1

τ

*..
,

∑
z∈Z|S̄ |2

|z〉 〈z |ρS̄ |z〉 〈z | − ρS̄
+//
-
. (2.129)

The kinetic equation for the reduced density matrix is thus the same as that of the full density
matrix, but restricted to the relevant subset of the spins.

We can hence explicitly solve the kinetic equation for the one-spin reduced density matrix,
whichwe parameterise by the Bloch vector ~n as ρ1(t) � 1

2

(
1 + ~n(t) · ~σ

)
. The equation ofmotion
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for ~n(t) is

∂t~n �

*...
,

−1/τ 0 0

0 −1/τ −2h
0 2h 0

+///
-

*...
,

nx

ny

nz

+///
-

, (2.130)

with solution

~n(t) �
*....
,

nx (0)e−t/τ

1
2λ e−t(1+λ)/2τ

(
−4nz (0)hτ(−1 + e−λt/τ) + ny (0)(1 + λ + eλt/τ (−1 + λ)

)
e−t/2τ

(
nz (0) cosh(λt/2τ) + nz (0)−4ny (0)hτ

λ sinh(λt/2τ)
) +////

-

, (2.131)

where λ �
√

1 − 16h2τ2. In Figure 2.4, the evolution of the one-spin reduced density matrix is
shown on the Bloch sphere: a spiral trajectory follows from the combination of precession due
to the kinetic term and decay towards the maximally mixed state due to the collision integral.

Figure 2.4: Time evolution of the one-spin reduced density matrix on the Bloch
sphere.

2.5 Conclusions

In this chapter, our main objective was to study the QREM by means of an analogy to the
disorder-averageddiagrammatic perturbation theory approach to the problemof single-particle
weak localisation. Although the analogy held as far as the validity of the self-consistent Born
approximation and subsequent computation of the diffuson was concerned, we found that the
contribution of the cooperon (or diffuson) to two-particle correlation functions was dominant
outside the diffusive regime inwhich they had been calculated. In contrast to the single-particle
theory of a disorderedmetal, the diffusive regimewaswithout physicalmotivation here, instead
being defined on the basis of a mathematical analogy. We were unable to evaluate correlation
functions in the relevant nondiffusive regime; analogies to the treatment of ballistic diffusons
and cooperons were of no avail, so further work is called for if there is to be a conclusive
answer to the question of whether weak-localisation-like corrections to the RMT limit appear in



62 Chapter 2. Quantum random energy model: a diagrammatic approach

the QREM. Although not providing any insight into this question, we did manage to develop
a master equation description for the dynamics of the disorder-average density matrix, from
which we could find an analytic form for the single-spin reduced density matrix. It would be
useful to also understand the two- and higher-spin reduced density matrix dynamics, which
would provide information about multi-spin correlators, but more work will be required to
obtain an intelligible form for these quantities. An avenue that might be worth exploring is to
turn to the quantum de Finetti theorem [111]: permutation invariance of the average density
matrix can be further exploited to show that the k-spin reduced densitymatrix can be expressed
as the expectation (with respect to some distribution to be determined) of the kth tensor power
of a single-spin density matrix; the problem would then be to find a kinetic equation for the
governing distribution.
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Chapter 3

Stroboscopic quantum random energy
model as a quantum graph

Here we interpret the quantum random energy model under stroboscopic evolution as a quan-
tum graph, and so are able to make use of the semiclassical tool of periodic-orbit theory to
study spectral correlations. As we discussed in Chapter 1, periodic-orbit theory enables the
exact calculation of the form factor for quantum graphs. For certain classes of graph, the RMT
result is precisely reproduced thereby providing a rigorous verification of the BGS conjecture
for these special cases. Similarly, we explicitly compute the first-order term in the short-time
expansion (diagonal approximation) of the form factor for the stroboscopic QREM and find
agreement with GOE statistics (at large enough times) as expected. Based on our quantum
graph interpretation that enables us to draw upon exact results as well as our numerics and
analytic approximation, we are able to claim that the spectral statistics of the ergodic phase of
the model will be precisely those of the GOE.

3.1 Introduction

The Hamiltonian of the stroboscopic QREM (of period T ) is given by

H(t) � V + T
∞∑

j�0

δ(t − jT ), (3.1)

whereV andT are the REM (of variance γz � N/2 as inChapter 2) and kinetic terms respectively
of the N-spin QREM defined in (2.1); this describes an REM that is periodically kicked by a
uniform transverse field. The corresponding Floquet operator F :� U (T ), the time-evolution
operator for a single period of the drive, factorises into a product of two unitary evolution
operators according to

F � T
[
e−i

∫
T

0
H(t) dt

]
� e−iVT e−iT . (3.2)

If we work in the z-basis, the first factor (the exponential of the REM term) is a log-normal
diagonal random matrix. We can immediately draw a parallel to the evolution map UB for
quantum graphs discussed in (1.44). In Chapter 2, we regularly made use of the bĳection
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between the 2N x- or z-basis states of the system and the vertices of the hypercube; it is thus
more convenient to stay closer to this picture and consider thewavefunction to be defined on the
vertices of a graph rather than the on edges as for quantum graphs. Since the S-matrix e−iT (T,
the kinetic term in (3.1), is not to be confusedwith the quantum graph bond propagationmatrix
in section 1.3) allows scattering between any two z-states (all matrix elements are nonzero), the
appropriate graph structure is really the complete graph on 2N vertices (though a hypercube
can be seen to emerge in the small-h limit). To preserve the analogy when we move to this dual
object, we note that the role of incommensurate bond lengths of the quantum graph can be seen
to be played by the random phases (V) which we assign to each vertex 1.

3.2 Spectral statistics

3.2.1 Numerics

If we only observe the system stroboscopically, that is, at integer multiples of τ, then we can
describe the evolution in terms of a time-independent effective (’Floquet’) Hamiltonian HF

U (mT ) � F
m
� e−iHFmT (m ∈ Z). (3.3)

We can identify transition between a localised and ergodic phase as the transverse field strength
h is increased by studying the spectral statistics of the Floquet Hamiltonian. Unlike for the
Hamiltonian QREM, we expect no mobility edge in the periodically driven version – the drive
couples localised states to distant extended states therebydelocalising them [114, 115]. The spec-
trum of the Floquet Hamiltonian (known as the quasienergy spectrum; a temporal analogue of
the quasimomenta in the Bloch wavefunctions of translation-invariant systems) is most conve-
niently obtained by diagonalising the Floquet operator and extracting its eigenphases; since F
is unitary its spectrum lies on the unit circle in the complex plane. In this chapter, unqualified
use of the term ‘spectrum’ (and derivative terms) shall always refer to these eigenphases.

The most direct way in which the transition can be visualised is by plotting the eigenphases
as a function of h for a single realisation, as shown in Fig. 3.1; for h < hc ≈ 0.2 one observes a
significant density of level crossings, whilst for h > hc increasing level repulsion is apparent.
Analogous behaviour can be seen in the Hamiltonian spectrum of the Anderson model [116],
whilst the quantum kicked top shows no sign of an Anderson transition in its Floquet spectrum,
with level repulsion apparent for all nonzero values of the kicking strength [117]. Since the
eigenphases are only defined modulo 2π, we choose θi ∈ [−π, π); a consequence of this is that
jumps appear in plots of the eigenphases whenever one of the θi reaches the boundary and
emerges on the opposite end of the spectrum. In Fig. 3.1, we have eliminated these jumps by
selecting a subset of eigenphases in the middle of the spectrum and performing circular shifts
of the spectrum wherever jumps occur.

1Although we find it helpful to make this analogy to quantum graphs, we point out that a periodic-orbit theory
for Floquet operators can be constructed without reference to quantum graphs, see for instance Refs. [112, 113].
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Figure 3.1: Parametric motion of a subset of the eigenphases (N � 10) as the
transverse field strength is increased for a fixeddisorder realisation. The localised-
ergodic transition at around hc ≈ 0.2 can be seen in the form of the increased level

repulsion visible at larger h.

As discussed in Chapter 1, the presence of level repulsion can be diagnosed more quantita-
tively by looking at the disorder-averageddistribution of the nearest-neighbour level spacing. In
order to study this quantity in generic many-body systems, the spectrum must first be rescaled
by the averaged local density of states such that it is everywhere equal to one; it is the so-called
unfolded spectrum that exhibits universality in its spectral statistics [118]. One can alternatively
account for a varying density of states by working with level spacing ratios, which have also
been shown to take universal values [49]. However, here we enjoy a considerable simplification
as the averaged density of states is uniform, obviating the need for an unfolding procedure,
which is rather intricate to implement in practice [57]. This can be seen by appealing to the
(proto) trace formula (1.47) for the eigenphase density (exact for quantum graphs) [72], from
which we can see that 1/δ̄ � E [ρ(θ)] � 2N/2π. In Fig. 3.2, we plot the averaged level-spacing
distribution E [P(s)] (where s � (θi+1−θi)/δ̄) for two values of h on either side of the transition
(but not close to it, where intermediate statistics can be observed).

As the level-spacing distribution is sensitive to short-range (compared to the mean level
spacing δ̄) spectral correlations, the linearly vanishing probability density as s → 0 in the
regime of random matrix statistics being the signature of short-ranged level repulsion, we are
able to complement this with a measure of long-range correlations: the number variance Σ2(n)
(see Fig. 3.3). TheΣ2(n) statistic is the variance in the number of levelswithin an energywindow
of length n (after rescaling the spectrum by δ̄) in the middle of the spectrum (in our case, it
actually doesn’t matter wherewe position thewindow as there is nomany-bodymobility edge).
Sublinear growth of the number variance describes the feature known as spectral rigidity. As
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Figure 3.2: The averaged level-spacing distribution E[P(s)] (N � 8 and 200 dis-
order realisations) plotted for (left) h � 0.5 and (right) h � 0.01, to illustrate
the two well-defined regimes: Dyson’s circular orthogonal ensemble and Poisson
statistics respectively (shown with red lines). It turns out that the level-spacing
distributions for the circular ensembles in the large-N limit are the same as that
of the Gaussian (Wigner-Dyson) ensembles of random Hermitian matrices, so it

is in fact that the latter that we plot.

seen in Ref. [51], at small n we observe an upward deviation from the logarithmic growth
expected in the regime of circular orthogonal ensemble (COE) statistics (see (1.37)) – a sign of a
many-body Thouless energy in the system. Pinning down this Thouless energy more precisely
is something that will be facilitated by turning our attention to the form factor, which has the
advantage that it is also amenable to analytic calculation.

3.3 Spectral form factor in the diagonal approximation

The Fourier transform of the two-level correlation function

R(φ; θ) � E
[
ρ(θ)ρ(θ + φ)

]
(3.4)

with respect to φ is known as the spectral form factor; if we use the density of states formula
(1.47) and average over θ it can be written as

Km � E
[��tr

(
Fm) ��2

]
, (3.5)

for discrete time m ∈ Z. In the quantum chaos literature, it is common to rescale the time by
the Heisenberg time to identify universal features of the form factor, which in our case gives
the quasicontinuous time τ � m/2N . Inserting the trace formula (1.48) for the traces of integer
powers of the Floquet operator

trFm
�

∑
p∈Pm

npA
r
p e iSp , (3.6)
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Figure 3.3: The number varianceΣ2(n) plotted for (left) h � 0.5 (2000 realisations)
and (right) h � 0.01 (1000 realisations). The dotted lines are (left) Σ2(n) �
2
π2 ln(n) + const. and (right) Σ2(n) � n, illustrating the COE limit in which the
logarithmic growth is a signature of spectral rigidity, and the Poissonian limit of
linear growth indicating an absence of long-range correlations. The departure of
the exact diagonalisation data from the fits with increasing n is a finite-size effect

resulting from the small N � 8 system size.

wherePm is the set of primitive periodic orbits of length m andwe have condensed the exponent
into an action Sp since its details are unimportant here, gives the expression for the form factor

Km �

∑
p ,p′∈Pm

E
[
ApA

∗

p′e
i(Sp−Sp′ )

]
. (3.7)

If we make the diagonal approximation of keeping only the terms where p � p′ and exploiting
the definition ofAp (given below (1.48)) as a product ofmatrix elements of the scatteringmatrix,
we are left with

Kdiag
m � 2m tr(Pm), (3.8)

where the factor of 2 in the numerator is a consequence of time-reversal symmetry, the factor of
m accounts for orbits related by cyclic permutation, andP � |F|2. In thediagonal approximation,
we can see that time evolution of the form factor is completely controlled by the Peron–Frobenius
operator (also known as the transfer or classical evolution operator)P, which describes aMarkov
process on the complete graph. To compute it, we note that in the z-basis T is a tensor product
over sites of matrices of the form

exp(−ihσx) � cos(h)1 − i sin(h)σx , (3.9)

so that in this basis we can write down the Perron-Frobenius operator as

P �

⊗
j

*
,

cos2 h sin2 h
sin2 h cos2 h

+
- j

. (3.10)
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The eigenvalues of P are given by λ j � (cos2(h) − sin2(h)) j for j � { 0, 1, · · · , 2N
}, resulting in a

spectral gap ∆ � 2 sin2(h). The form factor for complete (i.e. fully connected) quantum graphs
[71]with incommensurate bond lengths, and later all correlators [119], were first shown to attain
RMT universality. Later, this has been extended to simply connected quantum graphs with a
finite gap ∆ for |B | → ∞ [120]. Tanner has conjectured that the criterion for the attainment of
random matrix universality is for the gap to vanish slowly enough with the dimension of the
unitary map (equal to 2N here), in our case this means specifically that ∆ ∼ 2−αN for 0 ≤ α < 1,
which we can see is trivially satisfied. This represents a refinement of an earlier suggestion that
a sufficient condition is for the classical Markov process to be mixing (i.e. there is exactly one
eigenvalue of unit modulus) [70], but for which counterexamples were quickly found, such as
the Neumann star graph whose form factor fails to attain the RMT limit – a situation referred
to as the absence of quantum ergodicity [121, 122]. For the problem at hand, since ∆ is nonzero
and independent of N for h , 0, on the basis of Tanner’s conjecture [123] one may predict
(in fact, since we can invoke the proof for gapped simply connected graphs, we can be quite
confident of) a randommatrix limit for large N in which the spectral statistics follow that of the
circular orthogonal ensemble (COE). One point to note is that λ j has degeneracy

(N
j
)
, and so

the density of modes with the lowest gap ∆ scales with N . However, there is no reason to think
that this should change the prediction for the case of a constant gap (if anything, one might
speculate that a sufficiently rapid growth with N of the density of the slowest decay modes
could compensate for a gap closing with N ; the issue of competition between a growing density
of states and a slowing decay rate is discussed in the context of the Sachdev–Ye–Kitaev (SYK)
model in Ref. [124]).

Substituting the expression for P from (3.10) into (3.8) leaves us with 2

Kdiag
m � 2m(1 + cos(2h)m)N , (3.11)

which for large N indeed tends to the short-time randommatrix result for the COE, KCOE
m ≈ 2m,

at sufficiently large times (but much shorter than the Heisenberg time, where the diagonal
approximation breaks down). The (integer) time after which we expect the onset of the COE
limit is thus mc such that N cos(2h)m

∼ 1, or

mc � −

⌈
ln N

ln cos(2h)

⌉
. (3.12)

Just as we saw that the number variance deviated from the random matrix result for energy
intervals larger than some cutoff, we see here in Fourier space the deviations occurring for
times below the cutoff mc (see Fig. 3.4), which is therefore a measure of the Thouless time. The
single-particle Thouless time can be interpreted as the time for a particle to diffuse across the
full length of a system; this leads one to suppose that the many-body Thouless time seen in
the form factor might exhibit the same scaling as the cutoff time for diffusion on the hypercube

2As noted in the preface of this thesis, precisely this result appears in Ref. [1] via an interpretation of Kdiag(τ) in
terms of the partition function of a one-dimensional classical Ising model.
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discussed in Chapter 2, but the latter time scales as N ln N meaning that the connection between
these two time scales is not clear at present. A similar result for the Thouless energy, namely
logarithmic scaling with system size, has recently been obtained in a closely related model in
the one-dimensional case – a random unitary circuit for which an exact calculation of the form
factor is possible in the limit of q → ∞ (where q is the local Hilbert space dimension) via a
mapping to the Potts model [125]. The ln N time scale coincides with the scrambling time for
‘fast scramblers’, such as black holes or holographic models like the SYKmodel 3 that are highly
nonlocal (like the QREM) [90, 126], so it is of particular interest that it nonetheless appears
in the aforementioned unitary circuit model featuring local, indeed, solely nearest-neighbour
coupling.
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Figure 3.4: Thedisorder-averaged form factor is plotted as a function of the integer
time (m � 2Nτ) for h � 0.5,N � 8, and 400 disorder realisations. At times after
the Thouless time but before the Heisenberg time, there is an excellent fit to the
N →∞ limit of the COE form factor (black), whilst the form factor in the diagonal
approximation is able to capture the upturn seen at short times. The value of h
was chosen to ensure a finite Thouless time (there is a divergence at h � π/2)
whilst also remaining in the ergodic regime, in order to demonstrate both the
nonuniversal short-time behaviour as well as the convergence to the RMT limit at

longer times.

Since the form factor is the Fourier transformof the two-level correlation function, the easiest
way to access it numerically is to exploit the Wiener-Khinchin theorem: the Fourier transform
of the autocorrelation function of a process is equal to the power spectrum of that process. The
form factor is therefore given by the power spectrum of the density of states, which we can

3In Ref. [124], the form factor of the SYK model is studied in the same spirit as our approach in Chapter 2 –
identifying the analogue of the diffusion modes in disordered metals – but the Thouless time is found to scale as
√

N ln N . A clear explanation for the origin of this discrepancy has yet to emerge.
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Figure 3.5: An expanded view of the short time region of the form factor for
h � 0.45 (blue) and h � 0.65 (orange) shown in Fig. 3.4; we have used a larger
system size N � 11 (50 realisations) to make the change in position of the minima
with h more pronounced; the shift is well described by the form factor in the
diagonal approximation ((3.11)) at the corresponding values of h (dashed lines).

explicitly verify from the definition of the density of states ρ(θ) as follows,

ρ(θ) �
∑

j

δ2π (θ − θj) (3.13)

�
1

2π

∑
j

∞∑
m�−∞

e im(θ−θj ) (3.14)

�
1

2π

∞∑
m�−∞

ρ̃m e imθ (3.15)

where in the second line we have inserted the Fourier series representation of the 2π-periodic
Dirac delta δ2π (θ), and in the third we have recognised the appearance of the Fourier compo-
nents of the density of states ρ̃m �

∑
j e imθj evaluated at integer times m. After writing down

the two-level correlation function

E[ρ(θ)ρ(θ + φ)] �
(

1

2π

)2 ∑
m1 ,m2

E [ρ̃m1 ρ̃m2
] e im1θe im2(θ+φ) , (3.16)

it followsuponaveragingover θ that the form factor, givenby theFourier components (conjugate
to the level difference φ) of the above correlator, is given by power spectrum of the the density of
states ρ̃m ρ̃−m � |ρ̃m |

2 (up to normalisation). The form factor computed by exact diagonalisation
is shown in Figs. 3.4 and 3.6, for the ergodic and localised regimes respectively.
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Figure 3.6: The disorder-averaged form factor for h � 0.01,N � 8, and 400 disor-
der realisations, illustrating the localised phase with its flat form factor indicative

of Poisson statistics.

3.4 Conclusions

We have verified that the short-time expansion of the form factor for the ergodic phase of the
stroboscopic QREM is in agreement with that of RMT. Based on the analogy with quantum
graphs, we would expect that higher-order terms in the expansion to also match those of RMT,
since the form factor calculation for quantum graphs has been extended to all orders [120,
127]. The work of Kos et al. [1] is consistent with this, where the second-order term in τ was
also found, essentially a calculation of the Sieber-Richter orbit pairs [128], and found to be in
accordance with the RMT result. One caveat we have yet to mention is that although it is true
to say that quantum graphs are ‘semiclasically exact’ in that their exact density of states is given
by a trace formula, the periodic-orbit calculation (or rather, the approximation known as the
’loop expansion’ that identifies a well-defined set of periodic orbits [72]) still suffers from the
restriction that it breaks down at the Heisenberg time τ � 1; one practical way around this is
to make tH arbitrarily large by considering larger |B |, but a more elegant answer comes from
the application of the supersymmetric nonlinear sigma model, the same in spirit as the ballistic
sigma model mentioned in Chapter 1 that enabled the computation of the weak-localisation
correction to RMT spectral statistics [61], which is capable of reproducing the exact RMT form
factor for arbitrary τ [75, 120, 129]. Lastly, we might wonder whether we can push periodic-
orbit theory further and describe weak localisation in the same fashion – unfortunately, given
its failure to do so in the semiclassical approach to quantum chaotic Hamiltonians, the same
problems (in particular, how to account for Hikami boxes in this framework is unknown 4) can
be expected to arise [131].

4The first-order correction to the conductance can be obtained semiclassically owing to the fact that no Hikami
box is required [130].
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Chapter 4

Quantum random energy model with a
random kinetic term

In Chapter 2, diagrammatic calculations for simple observables in the QREM quickly became
intractable: unlike the conductivity calculation for a single particle in a random potential
discussed in Chapter 1, we found that we had to consider Hikami boxes, admittedly only
an inconvenience, and more seriously, that diffuson-cooperon diagrammatics break down in
the diffusive regime. Although weak localisation for a single-particle has been tackled in
nondiffusive regimes, there was no natural way to extend these approaches to the QREM.

One way to proceed was to seek a new method of attack; this was our approach in Chapter
3 where we adopted semiclassical techniques developed in the context of quantum chaos.
Here we reprise our original formalism of diagrammatic perturbation theory, but do so for a
simplified version of the QREM for which the physically relevant subset of diagrams can be
comfortably handled analytically for a kinetic term of arbitrary strength. The model is still a
QREM in the sense that it consists of an REM plus a term generating quantum dynamics on the
hypercube of 2N spin states, but with the difference that the kinetic term, a uniform transverse
field, is replaced by a random kinetic term, that is, an REM in a rotated basis. Averaging over
both terms in the Hamiltonian facilitates a greatly simplified diagrammatic analysis; integrals
over resolvents are eliminated and we are left with an essentially combinatorial problem – this
gives us good reason to anticipate that an exact calculation is possible, which we indeed find to
be the case.

4.1 Model

The model we shall study consists of N spin-1/2 degrees of freedom with Hamiltonian

H �

V︷              ︸︸              ︷∑
z∈ZN

2

V (z) |z〉 〈z | +

T︷              ︸︸              ︷∑
x∈ZN

2

T (x) |x〉 〈x |, (4.1)

where, adopting the notation of Chapter 2, |z〉 are the eigenstates of
⊗N

i�1 σ
z
i and similarly

for |x〉, and V (z), T (x) are uncorrelated zero-mean Gaussian random variables with respective
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variances γV , γT . This is the sum of two random energy models, where one has been rotated
into the Fourier basis by Walsh-Hadamard transform.

4.2 Spectral statistics

Unlike the stroboscopicmodel considered in the preceding chapter, the average density of states
is not a constant and so to explore level statistics, we must either unfold the spectrum or else
use ratios of level spacings. To quickly assess the behaviour of the model, it suffices for our
purposes to use the latter approach and calculate the ratios

rn
�

min(δn , δn+1)
max(δn , δn+1)

, (4.2)

where δn � En − En−1 are the nearest-neighbour level-spacings, which we then average over
both an energy window and multiple disorder realisations to give the quantity we denote [r̄].
This statistic has been shown to take the value [r̄] ≈ 0.39 in the localised phase, and [r̄] ≈ 0.53

in an ergodic phase with unbroken time-reversal symmetry. In Fig. 4.1 we evaluate [r̄] from
N � 10 exact diagonalisation data and for fixed γz identify ergodic and localised phases as γx

is varied, as well as quite a wide crossover region (expected for the small system size we use) of
intermediate statistics. If we look at a larger energy interval (rather than only close to the band
centre as in Fig. 4.1), we are just about able to see evidence of the many-body mobility edge (see
Fig. 4.2).
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Figure 4.1: The energy-resolved (ε is the energy density) averaged level-spacing
ratio for χ � 4 (red), 0.3 (green), and 0.01 (blue) calculated for N � 10 and 50
realisations, revealing GOE, intermediate, and Poisson statistics respectively. The
parameter χ controls the scales of the x and z variances according to: γz � 1
and γx � 2−Nχγz . Due to the symmetry between x and z in the Hamiltonian,
if χ was sufficiently increased, Poisson statistics would once again be observed

(localisation in the x-basis rather than the z-basis).
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Figure 4.2: The averaged level-spacing ratio is plotted for χ � 1 (notation as in
Fig. 4.1) for N � 12 and 100 realisations over a larger energy interval, revealing
an interpolation between GOE at the centre and Poisson statistics at the edge of

the band.

The model (4.1), which interpolates between Poisson and Wigner-Dyson statistics, bears
some resemblance to the Rosenzweig-Porter model [132, 133]

H � D +
λ
nα

G, (4.3)

consisting of a superposition of a random diagonal matrix D (i.e. an REM) and a random
matrix draw from the GOE or GUE, both matrices of size n × n. The exponent α controls
the behaviour of the model in the thermodynamic limit: the form factor is Poissonian for
α > 1, of Wigner-Dyson form for α < 1

2 , shows a crossover region of intermediate statistics for
1
2 < α < 1, and critical statistics at the transitions at α � 1/2 (localisation transition) and α � 1

(ergodic-nonergodic metal transition) [54].
The difference in the model we study is that the two matrices we are mixing would indi-

vidually show Poisson statistics (i.e. they are localised in either the z- or the x-basis), and we
expect a delocalised phase for some value of the mixing parameter. If we set γz � 1, numerical
analysis of the averaged level-spacing ratio indicates that the transition occurs at a value of γx

that scales to zero as N → ∞, and so we would need to scale γx by some function of N if we
wanted to identify a parameter that would tune through the transition in the thermodynamic
limit.
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4.3 Perturbation theory

Following Chapter 2, we develop a perturbative expansion in H for the resolvent

R(ε) �
1

ε − V − T + iδ
� R(0) (ε) + R(0) (T + V)R(0)

+ · · · , (4.4)

with the bare resolvent now taking the trivial form R(0) (ε) � (ε + iδ)−1. This can be expressed
diagrammatically in the usual way, with the difference that we need two types of vertex for
scattering by V or T. We note that the Rosenzweig-Porter model mentioned above has been
treated via a resolvent perturbation theory, though it differs significantly from our strategy in
Chapter 2 in that it is a locator expansion (i.e. a perturbation theory around the localised phase)
[134].

The disorder-averaged resolvent can be expressed in terms of a self-energy Σ(ε)

E[R(ε)] �
1

ε − Σ(ε)
. (4.5)

Diagrammatically, Σ(ε) contains all one-particle irreducible diagrams with disorder lines of
the same type tied together in pairs, where each pair is associated with a factor of γV or γT .
As for the case of a single particle in a random potential and the QREM, we now argue that
a noncrossing approximation holds for large N : diagrams in which V and T lines cross are
suppressed by a factor of 2−N .

4.3.1 Noncrossing approximation

It is easy to see that for diagrams consisting only of one type of line, the uncrossed and crossed
diagrams of a given order contribute equally: each diagram of order m (in γa ; a � T,V) is
proportional to the identity with weight γm

a /ε
2m−1. However, we shall now consider diagrams

containing both V and T lines (‘mixed diagrams’), such as those of order γVγT shown in Fig. 4.3.

Figure 4.3: Uncrossed (left) and crossed (right)mixed self-energydiagrams,where
V and T lines are coloured blue and red respectively.

Computing first the value of the uncrossed self-energy diagram in Fig. 4.3

ε3

γVγT
Σuc(ε) �

∑
z1 ,x2
x3 ,z4

|z1〉 〈z1 |x2〉 〈x2 |x3〉 〈x3 |z4〉 〈z4 | δz1 ,z4δx2 ,x3

�

∑
z1 ,x2

2−N
|z1〉 〈z1 | � 1, (4.6)
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whereas for the crossed diagram we find

ε3

γVγT
Σcr(ε) �

∑
z1 ,x2
x3 ,z4

|z1〉 〈z1 |x2〉 〈x2 |z3〉 〈z3 |x4〉 〈x4 | δz1 ,z3δx2 ,x4

�

∑
z1 ,x2

2−N
|z1〉 〈z1 |x2〉 〈x2 | �

1

2N 1, (4.7)

where in each case we have exploited the fact that | 〈z |x〉 |2 � 2−N . So, we find that the crossed
diagram is suppressed by a factor of 2−N relative to the uncrossed diagram, and are therefore
justified in neglecting self-energy diagrams containing crossings between V and T lines in the
large-N limit.

We are able to compute the resolvent self-energy in this noncrossing approximation – a
generalised self-consistent Born approximation (SCBA) – bymeans of the self-consistent scheme
shown below

1

ε − ΣV − ΣT
� ET

[
1

ε − ΣV − T

]

1

ε − ΣV − ΣT
� EV

[
1

ε − ΣT − V

]
, (4.8)

where the SCBA self-energy is given by ΣSCBA � ΣV + ΣT , and ΣV (ΣT) consists of all diagrams
starting and ending with a V (T) line and containing no crossings between the V and T lines.

If we temporarily neglect the T term, we have

1

ε − ΣV
� E

[
1

ε − V

]
, (4.9)

which can be computed exactly as the Stieltjes transform of the Gaussian

E
[

1

ε − V + iδ

]
�

1√
2πγV

∫
∞

−∞

e−v2/2γV

ε − v + iδ
dv �

√
2

γV
F *

,
ε√
2γV

+
-
− i

√
π

2γV
e−ε

2/2γV , (4.10)

where F(z) is the Dawson function. More generally (i.e. for z ∈ C), we have

E
[

1

z − V

]
�

1√
2πγV

∫
∞

−∞

e−v2/2γV

z − v
dv � −i

√
π

2γV
w *

,
z√
2γV

+
-
, (4.11)

where

w(z) �
i
π

∫
∞

−∞

e−t2

z − t
dt (4.12)

is the Faddeeva function. For concision we absorb numerical factors by defining a scaled
Fadeeva function

R(z) ≡ −i

√
π
2

w(z), (4.13)
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such that

E
[

1

z − V

]
�

1
√
γV
R *

,
z√
2γV

+
-
. (4.14)

4.4 Density of states

Weare able to solve the self-consistent equations (4.8) numerically and thus determine the SCBA
self-energy and resolvent. The natural physical quantity to extract is the (averaged) density of
states

ν(ε) � −
1

π
Im tr

(
E[R(ε)]

)
� −

2N

π
Σ′′

(ε − Σ′)2 + Σ′′2
, (4.15)

where Σ′ � Re[Σ(ε)] and Σ′′ � Im[Σ(ε)]. The SCBA density of states is found to closely
reproduce the exact diagonalisation result for N � 13 spins (see Fig. 4.4). The effect of the
random kinetic term on the density of states is a small departure from the Gaussian form of
the REM density of states as γT is increased from zero; we plot only the case of γV � γT , where
non-Gaussianity is maximal.

Figure 4.4: A comparison of the density of states for N � 13 spins and γV � γT
found by: a) exact diagonalisation (blue) and b) numerically exact solution of the
self-consistent equations (black). A Gaussian fit (red) is also shown to illustrate

the departure from the Gaussian density of states of the REM.

4.5 Binary disorder

Do the self-consistent equations (4.8) hold for non-Gaussian disorder? If the disorder is uncorre-
lated such that higher moments of the potential take the form E[Vz1 . . .Vzn ] ∝

∏n−1
i�1 δzi ,zi+1 (and

similarly for T) in diagrams describing n-tuple scattering, then diagrams with V − T crossings



4.5. Binary disorder 79

are suppressed. This suggests that the self-consistent equations will remain the same, with the
only change being the probability distribution with respect to which the expectation is taken.

The freedom to explore non-Gaussian disorder facilitates two things: firstly, we can look
for a distribution which will reveal a sharper distinction in the density of states between the
localised and delocalised regimes, and secondly, we can choose a simpler disorder distribution
that will enable analytic solution of the self-consistent equations. In fact, both these objectives
can be attained with a single choice: binary disorder, for which the simplest case to consider is
a symmetric two-point distribution, p(x) �

1
2

(
δ(x − γ) + δ(x + γ)

)
1. For simplicity, we begin

with the equal disorder width γ for the V and T distributions, for which we expect to see the
maximum departure in the density of states from that of the pair of delta functions of a single
binary REM. In this case, equations 4.8 reduce to the single equation

1

ε − Σ
�

1

2

∫
∞

−∞

δ(V + γ) + δ(V − γ)
ε − Σ2 − V

dV (4.16)

�
ε − Σ2

(ε − Σ2 )2 − γ2
. (4.17)

The solution, Σ(ε) � ε ±
√
ε2 − 4γ2, can be inserted into (4.15) to give a density of states

ν(ε) ∝
1√

4γ2 − ε2
, (4.18)

whose characteristic singularity is captured well by the exact diagonalisation result shown in
Fig. 4.5. Since the exact diagonalisation results are shown for a single realisation, one may
wonder why the plots appear to be perfectly symmetric – this reflects rapid convergence to
the large-N distribution; for the Gaussian disorder case, signs of asymmetry can just about be
seen for N � 8. Although our exact calculation is for the average density of states, convergence
in expectation in RMT can usually be extended to almost sure convergence by appealing to
concentration of measure results [136]. We shall see that this is the case for the problem at hand
in the next section, when we give a free probability interpretation of the calculation.

If we now introduce an x − z asymmetry such that γV , γT i.e. the symmetric two-point
distributions for V and T are of different width, a gap opens (for arbitrarily small asymmetry)
in the density of states at ε � 0 as shown in Fig. 4.6. Since the noncrossing calculation gives a
large-N result, this is a gap that is predicted to exist in the thermodynamic limit.

The SCBA equations continue to hold if we take an asymmetric two-point distribution i.e.
p(x) �

(
pRδ(x − a) + pLδ(x + a)

)
, where pR + pL � 1 (see Fig. 4.7). The self-energy is given by

Σ(ε) � 1
2

(
∆ + 2ε ± 2

√
ε2 +

∆2

4 − 4a2

)
where ∆ � 8a

(
pR −

1
2

)
, and thus the density of states is

ν(ε) ∝
√

4a2 − κ − ε2

κ + (4a2 − κ − ε2)
, (4.19)

1Extending the proof of Anderson localisation in one dimension to include binary disorder was in fact a more
challenging problem rather than a simplification [135].
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Figure 4.5: A comparison of the density of states when V (z) and T (x) are drawn
from a symmetric two-point distribution for N � 13 spins. As for the Gaussian
case we compare: a) exact diagonalisation (blue histogram) and b) exact solution

of the self-consistent equations (black line).

for κ � ∆2/4.

4.6 Free probability

In this section we will establish a connection between our results for the density of states in
the random kinetic QREM and free probability theory: in the large-N limit, the terms in the
Hamiltonian (4.1) become freely independent random variables, whence their joint distribution
may be computed using the R-transform of free probability. To elucidate these remarks, we
make a diversion in order to introduce the central idea of free probability: free independence
(below, we shall generally follow Refs. [137, 138] for definitions).

4.6.1 Free independence

Modern (measure-theoretic) probability theory begins with the definition of the probability
space (Ω, F , P), consisting of a sample spaceΩ, a σ-algebra of events F onΩ, and a probability
measure P on F . However, one can take an alternative view point by abstracting away the
algebra of events and considering instead the algebra of measurable functions on the Ω (i.e.
random variables) equipped with a linear functional induced by P (i.e. the expectation). It is in
this language that we can naturally formulate the notion of noncommutative probability theory
– by allowing the algebra of random variables to be noncommutative – which in turn enables
us to introduce free independence as the natural analogue of classical independence in the
noncommutative setting [136]. Free independence cannot occur (nontrivially) for commuting
variables, so this complication is essential.
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Figure 4.6: A comparison of the density of states when V (z) is drawn from a
symmetric two-point distribution of twice the width of the T (x) distribution;
exact diagonalisation for N � 13 spins (blue) is compared to exact solution of the

SCBA equations (black).

Figure 4.7: The density of states for binary disorder (γV � γT) with an asymmetric
two-point distribution with weights (left) pR � 0.8, pL � 0.2 and (right) pR �

0.6, pL � 0.4; N � 13 exact diagonalisation (blue) is compared to numerical
solution of the SCBA equations (black).

Definition. Let (A , τ) denote a noncommutative probability space, described by the unital algebra A
and linear functional τ : A → C (with τ(1) � 1). The unital subalgebras (Ai)i∈I ⊂ A are said to be
freely independent (or simply “free”) if τ(a1 . . . am) � 0 (m ∈ Z+) whenever

1. a j ∈ Ai( j) for i : Z+ → I

2. τ(a j) � 0 ∀j

3. i(1) , i(2), i(2) , i(3), . . . , i(m − 1) , i(m).

The random variables a j are said to be free if the unital subalgebras generated by { 1, a j } are free.

This can be compared to the more straightforward definition of classical independence
in the algebraic framework, which is simply the factorisation property of the expectation:
τ(a1 . . . am) �

∏
i τ(ai). In fact, this suggests a more helpful definition of free independence as
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a rule for how mixed moments can be expanded in terms of sums of products of the moments
of individual random variables. For instance, we can find the formula for τ(XmYn) by using
the definition above to write down

τ [(Xm
− τ(Xm)1)(Yn

− τ(Yn)1)] � 0, (4.20)

which upon expansion yields the factorisation law τ(XmYn) � τ(Xm)τ(Yn), just as for classical
independence. However, to see that free independence is indeed a different definition, one
needs to consider more general mixedmoments for which the noncommutativity of the algebra
is important, for instance τ(XYXY), which is found to satisfy

τ(XYXY) � τ(X2)τ(Y)2
+ τ(X)2τ(Y2) − τ(X)2τ(Y)2. (4.21)

An important consequence of classical independence is that that for independent random
variables X,Y, the distribution of Z � X + Y is given by the convolution of the probability
density functions of X and Y. The natural way to compute these convolutions is in terms of the
characteristic function φZ (t) � E[e itZ]:

E[e it(X+Y)] � E[e itX e itY] (4.22)

� φX (t)φY (t), (4.23)

where the second line follows by independence of X and Y. What is the analogous operation for
freely independent random variables, termed free convolution of the probability densities, and
the analogue of the characteristic function (i.e. the Fourier transform of the probability density
function, when the latter exists)? The analogue of the characteristic function turns out to be the
analytic part of the inverse Stieltjes transform, known as the R-transform, which satisfies the
additivity property

RX+Y (z) � RX (z) + RY (z), (4.24)

for X,Y freely independent. The R-transform is most conveniently defined in terms of the
Stieltjes transform SX (z) � τ((z − X)−1) through the implicit functional relation [139, 140]

RX [SX (z)] +
1

SX (z)
� z. (4.25)

We shall omit any discussion of how the R-transform can be actually evaluated (see for instance
Ref. [138]) in the case of interest, since we shall find that we have already done so under a
different name.

4.6.2 Connection to random matrix theory

After Voiculescu had first introduced the concept of freeness in the context of operator algebras
[139], he observed that the Wigner semicircle distribution played an important role (in fact, it is
the “free” analogue of the Gaussian in the free central limit theorem), which hinted that there
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might be a connection to random matrix theory, where the Wigner semicircle is the universal
limit distribution for the spectral density for a number of Hermitian N × N independent-entry
random matrix ensembles as N → ∞. In the large-N limit, many classes of independent
randommatrices become freely independent with respect to a unital linear functional given by
the normalised trace τ(. . .) :� 1

N tr(. . .) [141]. The particular theorem of interest to us is the
following [138, 142]

Theorem. Let {AN } , { BN } be sequences of N×N randommatrices with convergent empirical spectral
measures µA(B)

N
a.s.
−−−−→
N→∞

µA(B) , and {UN } a sequence of N × N Haar random unitary matrices, then

AN ,UN BNU†N
d

−−−−→
N→∞

A, B where A, B are freely independent random variables with distributions

µA , µB respectively.

Roughly speaking, provided the eigenspaces of a set of random matrices are in generic
positions with respect to another, thenwe expect them to be asymptotically free; this intuition is
clearest in the deterministic limit in which AN , BN are constantmatrices. At last, we have set out
all we need in order to make the connection to our density of states calculation for the random
kinetic QREM. Interpreted as a random matrix model, (4.1) is the sum of a random diagonal
matrix, and a second, independent random diagonal matrix (where we consider the case that
it is drawn from the same distribution, but with possibly different parameters) that has been
rotated into anewbasis byadeterministic unitary transformation (Walsh-Hadamard transform).
Importantly, the asymptotic freeness result above can be strengthened from convergence in
distribution, to almost sure convergence [141, 143]. The important consequence of this is that,
for large-N , we expect the result to hold at the level of a single realisation. So, we expect the
two terms in H in (4.1) to be asymptotically free for large-N , such that the spectral density of H,
for a single realisation, is given by the free convolution of the V and T disorder distributions.
We note that a similar approach has been adopted in Refs. [144, 145], where an Anderson
Hamiltonian is split into a sumof two terms, rotating one of the terms to give a free approximant
to the Hamiltonian, and then computing the free convolution to find an approximation to the
density of states, which could then be compared to exact diagonalisation results for the original
Hamiltonian.

For the case of binary disorder, we are able to analytically corroborate our earlier result for
the density of states using the free probability approach, for it is awell known result that the free
convolution of two Bernoulli distributions is the arcsine distribution we obtained in (4.18). Our
calculation of the self-energies ΣV and ΣT corresponds to the computation of the R-transforms,
writing down the SCBA resolvent then gives us the Stieltjes transform of the probability density
for the sum of two Bernoulli variables, from which we finally obtain the density of states by
the Stieltjes inversion formula (4.15). Of course, this is general and holds for arbitrary disorder
distribution, though in most cases the density of states will not have a simple analytic form as
it does here.

As well as this mathematical connection, one may wonder if we can further elucidate the
connection between the SCBA self-energy and the R-transform. A combinatorial formulation of
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free probability has established that the R-transform should be understood as a free-cumulant
generating function. For classical random variables Xi , we have the combinatorial formula for
the moments in terms of the cumulants κ 2

E[X1 . . .Xn] �
∑
σ∈Pn

∏
b∈σ

κ(X j | j ∈ b), (4.26)

where Pn is the set of all partitions of [n] � { 1, 2, . . . , n }. The analogous result for free random
variables is obtained by restricting the summation to only the noncrossing partitions [140]: if
one diagrammatically represents a partition σ of the ordered set [n] by connecting integers
belonging to the same subset b ∈ σ, the noncrossing partitions are those in which no lines cross.

4.7 Single-particle analogue

We originally approached the QREM in Chapter 2 bymaking an analogy to a single particle in a
random potential. Having considered a modified QREM in this chapter, we may ask about the
corresponding modification in the single-particle problem: an Anderson model with a random
kinetic energy.

Consider a single particle in one dimension, with position x (0 ≤ x ≤ L) and momentum k,
moving in a random potential V (x) with a randommomentum-space ‘potential’ T (k) replacing
the kinetic energy

H �

∑
x

V (x) |x〉 〈x | +
∑

k

T (k) |k〉 〈k | , (4.27)

where V (x), T (k) are again distributed according to uncorrelated zero-mean Gaussians with
respective variances γV , γT .

4.7.1 Density of states

If we compare the uncrossed and crossed self-energy, we find that the argument for the sup-
pression of crossed diagrams in (4.6) and (4.7) goes through in the sameway, with the exception
that the inner product 〈x |k〉 � L−1/2e ikx appears instead of 〈x |z〉 � 2−N/2 ∏

j[1−
1
2 (x j−1)(z j−1)],

whichmeans that the crossed self-energy diagrams is smaller by a factor of L instead of 2N . Oth-
erwise, the density of states calculation is the same and so our results for N spins could equally
be thought of as arising from the single-particle version of the model in a one-dimensional
system of length L � 2N . However, there is not a duality between the two models as can be
seen by the difference in structure that appears at the level of two-particle correlations (see the
second half of Appendix C).

2We note that Wick’s theorem follows from this result in the case of Gaussian random variables.
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4.8 Conclusions

Our fundamental achievement in this chapter has been the exact calculation of the density of
states for the Hamiltonian (4.1), a QREM in which the kinetic term has itself been replaced by
an REM in the Fourier basis. We proceeded by developing a diagrammatic perturbation theory
for the resolvent, finding that a generalisation of the self-consistent Born approximation that
appears in the single-particle theory of weakly disordered disordered metals becomes exact in
the thermodynamic limit. Upon noting that our result holds for arbitrary disorder distribution
and finding an arcsine form of the density of states in the case of Bernoulli distributions of equal
variance, we were led to the realisation that our Hamiltonian is a random matrix model whose
large-N limit describes the sum of freely independent random variables.

Having made the connection to free probability, one can ask to what extent we can use
the native techniques of this field to analyse (4.1). We have begun to pursue this programme
by reinterpreting the density of states diagrammatics as an R-transform computation. Since
the calculation of two-particle correlation functions in our diagrammatic framework quickly
becomes cumbersome, generating a two-particle vertex function that is difficult to analyse (see
Appendix C), one might wonder whether free probability can help here. Whilst the notion
of freeness was required to access the average spectral density, the appropriate concept that
facilitates the treatment of eigenvalue correlations is that of second-order (and higher-order)
freeness [138]. Exploring this connection is a worthwhile task for future work.
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Chapter 5

Noisy spins and the Richardson–Gaudin
model

At this point we shall change tack: in the present chapter and the next we shall be looking at
many-body systems with dynamical noise instead of quenched disorder. This chapter will be
concerned with a system of noninteracting spins (qubits) coupled to a common noisy environ-
ment, with each spin precessing at its own frequency – a situation reflecting inhomogeneity in
the splittings of a set of qubits. The correlated noise that the spins experience, which inciden-
tally is another feature that sets this chapter apart from the others which treat only uncorrelated
disorder and noise, is found to give rise to long-lived correlations that relax only due to the
differing frequencies. Our main achievement is to prove that the problem can be mapped onto
a non-Hermitian integrable Richardson–Gaudin model in the high-temperature limit, enabling
us to draw upon a Bethe ansatz solution to find the exact spectrum of the quantum master
equation and hence determine the relaxation rate of the spin correlations. Integrable quantum
master equations are relatively scarce and to be contrasted with the typical situation, exempli-
fied by the Liouvillian (2.123) we derived for the QREM, for which numerics and perturbation
theory are all we have at our disposal. By their very nature, integrable models are fine-tuned,
but an interesting feature that we encounter here is that a set of random variables, the qubit
splittings, enter as free parameters and not as integrability-breaking terms.

5.1 Background and model

The coherence of a quantum system is limited by the strength and nature of its coupling to
the environment. Often, an environment consisting of many degrees of freedom can be treated
as a source of noise that subjects the system to random disturbances [146]. A central theme
in quantum information science is high-fidelity preparation and manipulation of quantum
states in the presence of such noise. There are essentially two categories of strategy to achieve
this: actively encoding information in such a way that errors can be detected and corrected
(quantum error-correcting codes [147]), or passively protecting information from disturbance
in the first place. The latter includes, for instance, topological quantum computation in which
both the qubits – spatially separated non-Abelian anyons – and the operations upon them –
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braiding of these anyonic quasiparticles – are nonlocal and thus intrinsically insensitive to local
perturbations [148]. However, the present work is connected to another passive approach in
which subspaces of stateswhere decoherence is absent orminimal (decoherence-free subspaces)
arise due to noise correlations [149, 150].

The usual framework for the theoretical analysis of the open quantum systems described
above is the quantum master equation (QME) for the system’s density matrix ρ. Assuming
Markovian dynamics, this may be written in Lindblad form [146]

ρ̇ � −i [H, ρ] +
∑
α

[
LαρL†α −

1

2
L†αLαρ −

1

2
ρL†αLα

]
, (5.1)

where H is the system Hamiltonian, Lα are known as the Lindblad operators, and we set ~ � 1.
Solving the master equation exactly for a large system is in general impossible. However, as

with pure unitary dynamics described by the Schrödinger equation, we may ask whether there
are examples of exact solutions that are nontrivial, physically motivated, and valid for a system
of arbitrary size. There is a long history of master equations of classical stochastic processes
being solved by methods developed for exactly solvable quantum models [151]. Surprisingly,
very few examples of integrable QMEs – allowing for a complete determination of the spectrum
of decay modes – may be found in the literature [152–155].

We shall present an exact solution of a model of N spins described by [156]

H �

N∑
j�1

[
Ω + ω j

]
sz

j , Lz �
√

g0

∑
j

sz
j , and L± �

√
g±

∑
j

s±j . (5.2)

This model describes precession of the individual spins at frequencies Ω + ωi , representing
unequal level splittings in a system of qubits. The Lα describe correlated coupling to the
environment: Lz accounts for pure dephasing, while L± respectively describe excitation and
decay of the spins. The three couplings g0, g± dependon the spectral density of the environment
at frequencies 0, ±Ω. Detailed balance for an environment at temperature T implies g−/g+ �

e−Ω/kBT . We solve themodel (5.2) exactly in the high-temperature limit when g+ � g−. This limit
is relevant in a number of situations; as a representative sample, we cite superconducting qubits
[157], photosynthetic light-harvesting complexes [158–160], and ion traps [161]. In a Rabi driven
system, an infinite-temperature bath can arise as an effective description of a zero-temperature
bath describing only spontaneous emission [162].

When ω j � 0 the components of the densitymatrix describing isotropic spin correlations are
stationary, corresponding to degenerate zero eigenvalues of the Liouvillian. The exact solution
allows us to calculate the spectrum of n-spin correlations when ω j , 0 for arbitrary n, a result
which can only be obtained for moderate n by exact diagonalisation (see Fig. 5.1). When the ω j

are small, the decay rates have parametric form ω2
j /g+, showing that increasing noise reduces

the decay rate, a manifestation of the quantum Zeno effect [163]. Although it is natural to
interpret this in terms of second-order degenerate perturbation theory, it is not clear to us how
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Figure 5.1: Spectrum of the Liouvillian (5.12) for n � 6 spin correlations for
the case of Ω � 1, g+ � 800, g0 � 0 and ωi ∼ Uni(−0.2, 0.2) obtained by exact
diagonalisation. The inset is a magnified view of a split multiplet of 15 states
near zero. The spectrum is symmetric with respect to the real axis due to the

PT-symmetry of the Liouvillian.

to actually perform such a calculation. Indeed, the first step – to resolve the degeneracy at
ω j � 0 into an appropriate eigenbasis – is most effectively accomplished by the exact solution.

Solving (5.2) is possible because of the correlated coupling to the environment. Models of
this type may be traced back to Dicke’s paper [164, 165] on the spontaneous emission of atoms
confined to a region smaller than the wavelength of the emitted light, and have appeared in
many contexts since [156]. Dicke identified superradiant and subradiant states of the atomic
ensemble, corresponding to states of maximum and minimum total spin. For ω j � 0 the QME
may be written purely in terms of total spin, and the solution was found nearly fifty years ago
[166–169]. For ω j , 0, however, the total spin does not commute with the Hamiltonian. Our
solution proceeds via a mapping to a non-Hermitian version of the Richardson–Gaudin model
[170].

5.2 Density matrix and correlation functions

The density matrix for a single spin-1/2 may be written

ρ(1)
�

1

2
1 + c · s (|c| ≤ 1), (5.3)

where s denotes the vector of Pauli matrices, such that |c| � 1 corresponds to pure states. More
generally, a spin-s density matrix can be decomposed into a convex combination of spherical
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tensors T (k)
q according to [171]

ρ(1)
�

1

2s + 1

2s∑
k�0

k∑
q�−k

ck
qT (k)

q , (5.4)

where T (k)
q obey the following commutation relations with the the angularmomentum operator

J:
[Jz , T

(k)
q ] � qT (k)

q and [J± , T
(k)
q ] �

√
(k ∓ q)(k ± q + 1)T (k)

q±1. (5.5)

For N spins (s � 1/2) we may write the density matrix as

ρ(N)
�

1

2N

∑
{a j }

ca1···aN sa1

1 · · · s
aN
N , (5.6)

where a j � 0, x , y , z, with s0 � 1. The coefficients ca1···aN may be identified with the correlation
functions of the spins

ca1 ...aN � tr
[
ρ(N)sa1

1 · · · s
aN
N

]
. (5.7)

Note that c0...0 � 1 is required by normalisation of the density matrix. The reduced density
matrix for any subsystemof spins is obtainedby setting the indices for all spins in its complement
to zero.

5.3 Mapping to the Richardson–Gaudin model

The equation of motion of ca1···aN may be found by substituting (5.6) into the QME. First, we
note that for g+ � g− we may write the Lindblad operators as

Lx ,y �
√

g+

∑
j

sx ,y
j , Lz �

√
g0

∑
j

sz
j . (5.8)

Considering now the effect of one of the Lα and invoking the cyclic invariance of the trace we
observe ∑

j,k

tr
[
sαk ρsαj (· · · ) −

1

2
{sαk sαj , ρ}(· · · )

]
�

1

2

∑
j,k

tr
[
ρ

(
sαj (· · · )sαk + sαk (· · · )sαj −(· · · )sαj sαk − sαj sαk (· · · )

)]
.

(5.9)

We also note the following identity

sαj s
a j

j sak
k sαk + sαk s

a j

j sak
k sαj − s

a j

j sak
k sαj sαk − sαj sαk s

a j

j sak
k

� −[sαj , s
a j

j ][sαk , s
ak
k ]

�

∑
b ,c

εαa j b εαak c sb
j sc

k � (Tαs j)a j (Tαsk )ak ,

(5.10)
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where (Tα)bc � −εαbc are the generators of so(3) in the adjoint representation. Since su(2) �
so(3), they can alternatively be thought of as generators of su(2) in the adjoint representation.

Ifwe switch toHermitian Lie algebra generators, we can introduce spin-1 operators Sa
j � iTa

j .
After combining Eqs. (5.1),(5.9), and (5.10), we obtain the equation of motion for the correlator
C (with tensor components defined by (5.7))

∂tC � LC, (5.11)

where the Liouvillian superoperatorL takes the form of the non-Hermitian spin-1 Richardson-
Gaudin model

L � i
n∑

j�1

[
Ω + ω j

]
S

z
j − g+

n∑
j,k�1

(
S

x
j S

x
k + S

y
j S

y
k

)
− g0

n∑
j,k�1

S
z
jS

z
k . (5.12)

Here n is the number of nonzero indices of C, which describe the reduced density matrix of the
corresponding spins. The same model, involving a system of spins with S j � 1, . . . , 2s, would
arise for higher spin.

5.4 Equivalence to stochastic evolution

We can obtain the same result in a more robust and transparent fashion by regarding the
high-temperature limit (g+ � g−) as a problem of stochastic evolution due to classical noise
[172–178].

Consider N spins precessing in a common stochastic field, so that their evolution is governed
by the Hamiltonian Hη �

∑N
j�1 h j (t), where

h j (t) � ηx (t)sx
j + ηy (t)s y

j +

[
Ω + ω j + ηz (t)

]
sz

j , (5.13)

and η j (t) describe Gaussian white noises with covariances E[ηz (t)ηz (t′)] � g0δ(t − t′) and
E[ηx (t)ηx (t′)] � E[ηy (t)ηy (t′)] � g+δ(t−t′). The corresponding infinitesimal stochastic unitary
evolution U (t + dt , t) � e−idHt is generated by

dHt �
∑

j

(Ω + ω j)sz
j dt +

∑
j,α

√
gα sαj dηαt , (5.14)

where the white noise has been expressed as the differential of a Brownian motion dηα, from
which it follows by Itô’s lemma 1 that the densitymatrix %t satisfies the Itô stochastic differential
equation

d%t � − *
,

i[H, %t ] +
1

2

∑
α

[Lα , [Lα , %t ]]+
-

dt − i
∑
α

[Lα , %t ] dηαt . (5.15)

1Recall that if f (t , Bt ) is a function depending on a Brownian motion (Wiener process) Bt , then the differential
is given by: d f � ∂t f dt + ∂Bt f dBt +

1
2∂

2
Bt

f dB2
t + O(dt3/2). Ito’s lemma follows upon applying the property of

Brownian motion (in its ubiquitous shorthand form) that: dBt dBt � dt.
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Figure 5.2: Bethe root distribution corresponding to the S
z
tot � 0 eigenstate de-

scended from the maximal Stot state of the ωi � 0 model (n � 20). The curves
of different colour correspond to different values of 1/g+ (increasing from left to
right), and the ωi are shown as red circles along the imaginary axis. One can see
that Stot is maximum by noting that all µi go to infinity as 1/g+ vanishes, and so

from (5.19) the state is derived from |χ−〉 simply by raising Sz
tot to zero.

After averaging, ρ � Eη[%] can be seen to satisfy the QME described by (5.2). However, we
could alternatively consider the evolution of the correlation tensor C, which for nonstochastic η j

would be given by (5.11) with

iLns �

n∑
j�1

ηx (t)Sx
j + ηy (t)Sy

j +
[
Ω + ω j + ηz (t)

]
S

z
j . (5.16)

Whilst this could be seen by a direct algebraic argument, as done in the previous section,
it is simpler to decompose the spin-1/2 density matrix into the spherical tensor basis and
use the defining commutation relations (5.5): only the spin-1 (T (1)

q ) components survive (i.e.
have nontrivial dynamics) and evolve according to the Liouvillian above. If we now consider
stochastic η j – by writing down the stochastic differential equation for dC and averaging (just as
for the density matrix above) – we can see that the Itô terms (i.e. those proportional to dηα (t)2)
generate the spin-spin interaction in (5.12). We note that more detailed derivations of this kind
shall be presented in the next chapter when we study operator spreading in noisy spin models.
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5.5 Exact solution

As a prelude to the exact solution of (5.12), we first consider the much simpler case of ω j � 0

(and g0 � 0) 2, such that the model reduces to

L � iΩSz
tot − g

[
S

2
tot − (Sz

tot)
2

]
, (5.17)

from which the spectrum can be obtained immediately. It consists of degenerate multiplets for
given values of (Stot , Sz

tot), with the multiplets of fixed Stot lying on parabolas. In particular,
states with Stot � 0 have exactly zero eigenvalue. For these states the tensor ca1 ...aN is isotropic.
The simplest example is provided by N � 2, where the most general rotationally invariant
density matrix (two-qubit Werner state) is

ρ(2)
c �

1

4
1 + c• s1 · s2 , −1 ≤ c• ≤ 1/3, (5.18)

corresponding to c00 � 1, and ca1a2 � 4c•δa1 ,a2 for a1,2 � x , y , z. Note that c• � −1 corresponds
to a pure singlet state, but for larger N one cannot express the isotropic tensors only in terms
of singlet states. By virtue of the Choi isomorphism, the density matrix can be regarded as an
element of the tensor product spaceH ⊗H , whereH � (C2)⊗N is the Hilbert space of N spins.
Thus the isotropic tensors with up to N indices are the Stot � 0 states formed from 2N spin-1/2
spins which number 1

N+1

(2N
N

)
(the Catalan numbers, CN ). The number of isotropic tensors of

fixed rank n is the number of Stot � 0 states that can be formed from n spin-1 spins. These are
the Riordan numbers Rn �

∑n
m�0(−1)n−m ( n

m
)
Cm [180–182].

Turning to nonzero ωi , the multiplets can be seen to split as shown in Fig. 5.1. To find
the decay rate, one must identify the state whose eigenvalue has the least negative real part
(which we shall term the dominant eigenvalue). Therefore, for small ωi (|ωi | � |Ω|) at least,
the dominant eigenvalue will lie within the Stot � 0 (i.e. singlet) subspace. The splitting of the
singletmultiplet in the real direction can be thought of as a second-order perturbative correction
of the form ω2

i /g+. However, for this problemwe are in fact afforded a more facile route via the
exact solution, to which we now turn.

The exact eigenstates of (5.12) take the Bethe form [183]

|µ1 · · · µm〉 �

m∏
k�1

*.
,

n∑
j�1

S
+

j

µk −
1
2 iω j

+/
-
|χ−〉 , (5.19)

where Sz
tot � m − n, the pseudovacuum |χ−〉 is the lowest weight state |−1〉⊗n , and the Bethe

roots {µi } satisfy the Bethe ansatz equations

1

g+

+

n∑
k�1

1

µ j −
1
2 iωk

−

m∑
k, j

1

µ j − µk
� 0. (5.20)

2In fact, the case of g+ , g− and ω j � 0 is also exactly solvable: it corresponds to the Lipkin–Meshkov–Glick
model [179].
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Figure 5.3: Illustration of the string state formed by the Bethe roots (blue squares),
found by numerical solution of (5.20) for n � 20 and g+ → ∞; as in Fig. 5.2, the
ωi are represented by red circles. The effect of finite g+ is to push the Bethe roots

in the negative real direction.

The eigenvalue λ(~µ) of a Bethe state is given by

λ(~µ) � 2

m∑
j�1

µ j − i
n∑

j�1

ω j , (5.21)

where, since Sz
tot is conserved, we continue to set g0 � 0 without loss of generality.

The equations (5.20) can be interpreted in terms of two-dimensional classical electrostatics
[170]: if the ωi and µi correspond to the positions of fixed and free point charges respectively,
and 1/g+ represents a uniform electric field, then (5.20) describes the equilibrium condition.
The equilibrium configurations describe saddle points of the energy (Earnshaw’s theorem), and
so finding all solutions for large n is a difficult task.

Naive numerical root finding on the Bethe equations for random ω j configurations tends to
yield solutions in which the Bethe roots condense onto curves as shown in Fig. 5.2. These are
the descendants of the states of maximum Stot (when ωi � 0), which though of interest in the
context of superradiance do not directly concern us here. We note in passing that the analogue
of superradiance that appears here is that the eigenvalues of these states (for fixed g+) scale
quadratically with n, and so the correlations for states of Stot ∼ n decay at a rate that is O(n2)
(cf. the quadratic dependence on Stot also found when ωi � 0). This is to be contrasted with the
O(n) decay rate of the singlet correlations, which we shall discuss next.

We were able to find the Bethe roots for the dominant state in the case of uniformly spaced
ωi : they form the string state shown in Fig. 5.3. In the n → ∞ limit, it is possible to evaluate
the infinite summations in (5.20) exactly. If the spacing of the fixed charges is i∆y and the free
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Figure 5.4: Comparison of the decay rate (dominant Liouvillian eigenvalue) of
n-spin correlations for Ω � −(n + 3) and ω j � j∆y (where ∆y � 2) evaluated by
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charges on either side of the imaginary axis have real parts ∆+ and −∆−, we are left with

2π
∆y

tanh

(
2π∆+
∆y

)
�
π
∆y

coth

(
π(∆+ + ∆−)
∆y

)
−

1

g+

,

2π
∆y

tanh

(
2π∆−
∆y

)
�
π
∆y

coth

(
π(∆+ + ∆−)
∆y

)
+

1

g+

.

(5.22)

Solving these two equations numerically for ∆± enables us to find the Liouvillian eigenvalue of
the string state.

In Fig. 5.4, we show convergence of the finite n solution of the Bethe equations to this large n
result and also verify that for small n, the string solution coincideswith the dominant eigenvalue
found by exact diagonalisation. The observed linear dependence of the dominant eigenvalue on
1/g+ is consistent with the aforementioned ω2

i /g+ splitting predicted by perturbation theory.
A further interesting consequence of the integrability of our model is the absence of level

repulsion as the spectrum varies with varying ωi (see Fig. 5.5), leading to Poissonian level
statistics. We conjecture that choosing ωi to be independent and identically distributed will
therefore lead to the relaxation rate (magnitude of the real part of the dominant eigenvalue) λ0

(λ0 ≥ 0) having the Weibull distribution α
β

(
λ0

β

)α−1
e−(λ0/β)α for some α and β [62]. This is a

special case of the generalised extreme value distribution (1.41) introduced in Chapter 1 that
accounts for the fact that λ0 is nonnegative.
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Figure 5.5: Typical motion of the singlet eigenvalues as the ωi are smoothly
translated (parameterised by ∆ω), revealing the presence of level crossings.

5.6 Conclusions and outlook

We have computed the exact relaxation rate of correlations in a model of spins precessing at
different frequencies and coupled to a common noise source by exploiting a mapping to an
exactly solvable model in the high-temperature limit. Our solution can be used to evaluate the
effect of inhomogeneous splittings on a system of qubits coupled to a common bath.

The derivation of the spin-spin interaction in (5.12) may be generalised to the case of noise
with arbitrary correlations between different spins j and k, leading to a coupling gi j that could
define an arbitrary quadratic spin-spin interaction. In general, the dominant eigenvalue of such
an interaction will be nonzero and negative – a spin model will have a finite positive ground
state energy – whereas for the infinite-range coupling we have considered a nonzero dominant
eigenvalue arises because of the ωi . Nevertheless, it would be interesting to explore other
possibilities e.g. integrable 1D spin chains.

What happens at finite temperature when g+ , g− – a situation describing relaxation as
well as classical noise? The Lindblad operators vanish on any state |Ψ〉 satisfying

∑
j s j |Ψ〉 � 0,

and for ωi � 0 these form a decoherence-free subspace for N even of dimension CN/2, for any
g± [149, 150]. Density matrices formed from these states are a subset of the isotropic density
matrices considered earlier. As in that case, ω j , 0 will cause decoherence of this subspace.
Unfortunately, we have no reason to believe that the model remains integrable in the more
general case, so finding an analytical description of the relaxation of n-spin correlations at finite
temperature remains an open problem.
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Chapter 6

Noisy coupled qubits: operator
spreading and the

Fredrickson–Andersen model

In the last chapter, it turned out to be a useful perspective to interpret the high-temperature limit
of spins coupled to a common bath in terms of a coupling to a classical stochastic field. Here
we shall exploit this approach more extensively in order to study noise-averaged observables
for a system of exchange-coupled quantum spins (qubits), each subject to a stochastic drive.
Averaging over noise yields Lindbladian equations of motion; when these are subjected to
a strong-noise perturbative treatment, classical master equations are found to emerge. The
dynamics of noise averages of operators displays diffusive behaviour or exponential relaxation,
depending on whether the drive conserves one of the spin components or not. In the latter
case, the second moment of operators – from which the average subsystem purity and out-of-
time-order correlation functions can be extracted – is described by the Fredrickson–Andersen
model, originally introduced as a model of cooperative relaxation near the glass transition. It
is known that fluctuations of a ballistically propagating front in the model are asymptotically
Gaussian in one dimension. We extend this by conjecturing, with strong numerical evidence,
that in two dimensions the long-time fluctuations are in the Kardar–Parisi–Zhang universality
class, complementing a similar observation in random unitary circuits. The operator spreading
phenomenology that emerges, that of ballistic propagation with a diffusively broadening front
is to be contrastedwith the sharp front arising from exponential growth of the out-of-time-order
correlator, characterised by a Lyapunov exponent, that has been found in a number of large-N
quantum field theories. These latter models, typically featuring nonlocal interactions like the
QREM, are also marked by an information scrambling time scale logarithmic in the system size
(cf. the O(ln N) Thouless time we found for the stroboscopic QREM), instead of the linear in
system size time scale for the decay of purity, entirely consistent with the local Hamiltonian we
choose, that we find here.
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6.1 Motivation

The success of microscopic models of matter hinges upon the assumption that the resulting
macroscopic description is relatively insensitive to the precise disposition of the constituent
particles. When applied to dynamical phenomena – collective motion – this assumption seems
at odds with our usual understanding of generic dynamical systems: that they display chaos
and an exponential sensitivity to initial conditions.

That we can derive the (deterministic) laws of hydrodynamics from the motion of gas
particles and the assumption of molecular chaos shows that this contradiction is not as severe
as it may at first seem. By focussing on coarse-grained variables like the average local velocity,
the underlying chaotic motion fades into the background and serves only to give rise to the
pressure, viscosity and other parameters of the effective description.

Nevertheless, if one believes that the butterfly effect is more than a figure of speech, some-
thing must have been lost along the way. By focusing on average quantities, the growth of
fluctuations from the microscopic to the macroscopic is obscured. Long a part of statistical fluid
dynamics [184–186], these questions have only recently been taken up in quantum field theory
[79, 86, 90, 187–191] and many-body physics [92–94, 192–195].

Traditionally, these fields have been concerned with averages 〈O j (t)〉, and response func-
tions i〈[O j (t),Ok (0)]〉 of Heisenberg picture observables O j (t). However, the act of taking
expectations in these quantities obscures the possibility that in a given experiment we may
observe a very different response in observable O j (t) to a perturbation coupled to observable
O j (0). The variance of the response function defines the out-of-time-order correlation function
(OTOC)

Cjk (t) ≡
1

2
〈

[
O j (t),Ok (0)

]† [
O j (t),Ok (0)

]
〉, (6.1)

that has been suggested as a diagnostic ofmany-body quantum chaos [77, 79, 86, 191]. In light of
the above discussion, it is convenient to think of the OTOC in terms of a supersystem consisting
of two independent copies of the system under consideration, and extract it from the operator
O j (t) ⊗ O j (t). The duplicate system is sometimes known as the thermofield double [196].

In recent years, OTOCs have been calculated in a variety of models, including the SYK
model [78, 197, 198], the many-body localised phase of one-dimensional spin models [80–83,
199], weakly interacting fermions [88, 200], as well as chaotic single-particle systems [201].

The models we shall study consist of a system of coupled qubits (spin-1/2 objects) subject to
classical noise described by a stochastic process ηt [202]. Our focus will be the first two operator
moments:

O j ≡ Eη
[
O j

]
, O j ⊗ O j ≡ Eη

[
O j ⊗ O j

]
. (6.2)

where O j ∈ {X j ,Yj , Z j } is one of the Pauli matrices describing qubit j. The motivations for this
study are:

1. Conventional wisdom suggests that noise is antithetical to quantum coherence. On the
other hand, the evolution of a quantum system in the presence of classical noise is still
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unitary. We will see that the expected loss of coherence is only true on average: the first
and second moments have completely different behaviour.

2. The limit of strong noise provides a controlled approximation in which we can obtain a
tractable dynamics of the moments.

3. In the era of real noisy intermediate-scale quantum computers [203], there is need to
understand the dynamics of quantum information in the presence of strong noise.

The stochastic models we introduce may be regarded as continuous-time analogues of
the random unitary circuit model studied in many recent works [91–94, 125, 192, 204–209].
Though they share some phenomenology, our analysis of the stochastic models is completely
different, being based on Lindblad equations. Expectations over stochastic trajectories are taken
at the first step, and the analysis of the strong-noise limit is based on conventional many-body
perturbation theory. This allows any (deterministic) coupling between qubits to be taken into
account – thoughwe focus on a Heisenberg coupling for simplicity of presentation – and allows
models with conservation of one of the spin components to be handled on the same footing.

As is the case for the random unitary circuit models, the dynamics of moments in certain
cases can be identified with the probability distribution of a classical stochastic process [210–
213] (see Table 6.1). For the second moment (or OTOC) in a model without any conserved
quantities, this is the Fredrickson–Andersen (FA) model, originally introduced to describe
dynamics at the glass transition [214]. The FA model is an example of a kinetically constrained
model – see [215] for a recent review – and has a rich phenomenology that we apply to the
stochastic spin model1. Specifically, we will see that with appropriate initial conditions the
FA model describes ballistically growing fronts that are associated with the spreading of the
support of local operators in the Heisenberg picture (see Fig. 6.1). A characteristic speed for
operator spreading in many-body systems was first identified in [189], and it has since become
known as the ‘butterfly velocity’ vB.

6.2 Models and mapping

6.2.1 Models

We consider a system of N spin-1/2 objects (qubits), and the closely related cases of (1) Heisen-
berg picture evolution of observables O(t): ∂tO(t) � i[H(ηt ),O(t)] under a Hamiltonian H(ηt )
depending on a stochastic process ηt , and (2) the von Neumann equation for the density matrix
ρ(t): ∂tρ(t) � −i[H(ηt ), ρ(t)].

We will be concerned with the first two operator moments:

O ≡ Eη [O] , O ⊗ O ≡ Eη [O ⊗ O] . (6.3)

1We note that deterministic kinetically constrained models – including a discrete-time deterministic FA model –
recently appeared in the study of certain unitary circuits [193, 216].
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Figure 6.1: Growth of fronts in the one dimensional FAmodelwith a finite average
‘butterfly’ velocity vB.

The second (and higher) moments of an operator carry a great deal more information about the
dynamics than the average alone. In particular, the second moment gives us:

1. The average purity

γ ≡ tr
[
ρ2

A

]
, (6.4)

where ρA is the reduceddensitymatrix of a subsystemA. Labelling bases of the subsystem
A and its complement Ac by the (multi-)indices A and Ac , we have

γ �

∑
A1 ,A2 ,A

c
1 ,A

c
2

ρA1A
c
1 ,A2A

c
1
ρA2A

c
2 ,A1A

c
2
, (6.5)

which may be extracted from ρ ⊗ ρ.

2. The average OTOC

C( j − k , t) ≡
1

2
tr

[
ρ

[
O j (t),Ok (0)

]† [
O j (t),Ok (0)

] ]
, (6.6)

where Oi , j are operators on qubit j and k. C(x , t) may be extracted from O j (t) ⊗ O j (t) by
contracting indices with ρ and Ok (0).

The generalisation of our approach to highermoments is straightforward, andwewill return
to this point in the conclusion.



6.2. Models and mapping 103

We will consider two models, one with conserved total z-component of spin (C) and one
without (NC). In both cases, the Hamiltonian is the sum of deterministic and stochastic terms

HC � H +

N∑
j�1

η
j
t Z j (C)

HNC � H +

N∑
j�1

η
j
t · σ j , (NC)

where σ � (X,Y, Z) are the usual Pauli matrices and ηt is assumed to be delta-correlated noise,

Eη
[
η

j
tη

k
t′

]
� gδ(t − t′)δ j,k , (6.7)

while ηt � (ηx
t , η

y
t , η

z
t ) contains three independent components (assumed identical for ease of

notation). H is a time-independent Hamiltonian describing local coupling between the spins.
Our approach is not particularly sensitive to the precise form of H, but for simplicity we will
begin with the Heisenberg chain

H � J
N∑

j�1

σ j · σ j+1. (6.8)

The generalisation to other models, including those in higher dimension, will be evident.
If we formally express the white noise η j

t as the Itô differential of a Brownian motion B j
t ,∫ t′

η
j
t dt �

√
g
∫ t′

dB j
t , (6.9)

then one finds that the generator dHC
t of infinitesimal stochastic unitary evolution in model C

is given by [202]
dHC

t � Hdt +
√

g
∑

j

Z j dB j
t . (6.10)

A straightforward exercise in Itô calculus yields the equation of motion of the density matrix
[175]

dρt � e−idHC
t ρt e idHC

t − ρt � −i [H, ρ] dt

−
g
2

∑
j

[
Z j ,

[
Z j , ρ

] ]
dt − i

√
g
∑

j

[
Z j , ρ

]
dB j

t ,
(6.11)

the expectation of which is thus of Lindblad form [146]

∂t ρ̄ �

LH (ρ̄)︷    ︸︸    ︷
−i [H, ρ̄]−

D(ρ̄)︷                  ︸︸                  ︷
g
2

∑
j

[
Z j ,

[
Z j , ρ̄

] ]
. (6.12)
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The corresponding equation for model NC, obtained by an analogous procedure, is

∂t ρ̄ � −i[H, ρ̄] −
g
2

∑
j

3∑
a�1

[σa
j , [σ

a
j , ρ̄]]. (6.13)

The derivation for the first moment of an operator is obtained similarly, the only differences
being ρ → O and dHt → −dHt . We also note that this calculation can alternatively be done,
albeit less concisely, by interpreting the stochastic process ηt in the Stratonovich sense (see e.g.
Appendix A.4 of [217]).

6.2.2 Model C at strong noise: symmetric exclusion process for O

A key simplification occurs in the limit of strong noise (g large), where the dynamics of the
moments is restricted to certain slow subspaces. In the case ofO, this is the kernel of the dissipator
D((O)). For example, in Model C the dynamics of O is restricted to the 2N -dimensional
diagonal matrix elements in the basis of Z j eigenstates |z1 : zN〉 (here z1 : zN denotes the N-
tuple (z1 , · · · , zN )) with z j � ±1. That is, only the matrix elements 〈z1 : zN |O|z1 : zN〉 survive
the averaging as they are unaffected by the dephasing noise. We now show that the evolution
of the probability distribution of a spin configuration z1 : zN is described by the symmetric
exclusion process (SEP) [218] (see Table 6.1).

Model NC Model C
O Exponential decay Symmetric Exclusion Process

O ⊗ O Fredrickson–Andersen ‘Octahedral’ model

Table 6.1: The behaviour of the first and second operator moments in Models NC
and C in the strong-noise limit.

The dynamics on the slow subspace S can be analyzed perturbatively in g−1 (as is done in
[217] and [219]); the effectiveLiouvillian to leadingorder takes the formLeff � −PSLH D−1LHPS ,
where PS is the projector onto S and D−1 is the inverse of the restriction of D to its coimage.
Explicit evaluation leads to

Leffρ̄ � −
J2

16g

∑
j

[σ+j σ
−

j+1 + h.c., [σ+j σ
−

j+1 + h.c.,PS ρ̄]]. (6.14)

Let us regard ρ̄ ∈ S as an element ~ρ of a vector space over R (sometimes referred to as
‘superspace’) with basis {|1〉 〈1| , |0〉 〈0|}⊗N . Then Leff acts as a matrix L on ~ρ, giving the master
equation

∂t~ρ � L~ρ, (6.15)

with L �
J2

g
∑

i
(
~σi · ~σi+1 − 1

)
. The corresponding effective Hamiltonian −L (if we think of the

master equation as an imaginary-timeSchrödinger equation) coincideswith that of aHeisenberg
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ferromagnet. Up to a constant, L is thus seen to be the generator of the SEP [220]. In the one-
dimensional case,wehave analternative route to this result as themodel is found tobe integrable
by means of a mapping to an imaginary-U Hubbard model [154]. In the strong-noise limit, the
Bethe ansatz equations reduce to those of the spin-1/2 ferromagnetic Heisenberg model, from
which the quadratically dispersing Liouvillian spectrum and consequent diffusive relaxation
follow (as was established earlier in [221] by analytic evaluation of the single-particle Green’s
function).

6.2.3 Model NC at strong noise: Fredrickson–Andersen model for O ⊗ O

The dynamics of the first moment in model NC is trivial: the slow subspace is one-dimensional
(i.e. contains only the identity) and so we find fast local relaxation rather than any hydrody-
namics as in model C.

The second moment of Model NC does have interesting dynamics in the presence of strong
noise, however. Since the noise in this model randomises all components of the spins, O ⊗ O
lives in the tensor product of the space spanned by the rotationally invariant single-site factors

|0 j〉 ≡
1

2
1 j ⊗ 1 j

|1 j〉 ≡
1

6

[
X j ⊗ X j + Yj ⊗ Yj + Z j ⊗ Z j

]
. (6.16)

Any O ⊗ O of this form has the expansion

O ⊗ O �

∑
n1:nN∈{0,1}N

C
O

n1:nN
|n1 : nN〉 . (6.17)

Using the properties of the Pauli matrices it is easy to show

tr
[
O

2] � ∑
n1:nN∈{0,1}N

C
O

n1:nN
. (6.18)

Since the trace of any operator product tr [O1(t)O2(t)] is conserved underHeisenberg evolution,
we may think of COn1:nN

as a probability distribution (up to overall normalisation) and its
evolution equation

∂tC
O
� LC

O (6.19)

as a (classical) master equation. In Refs. [210–213], a related discrete-time Markov chain was
obtained for the dynamics of operator moments due to randomly chosen two-qubit unitary
transformations. This Markov chain was the basis of the calculations of OTOCs and purity in
the random unitary circuit model in Ref. [92].

What stochastic process is described by L? We will see that it is the Fredrickson–Andersen
(FA) model [214]. The FA model is defined on a lattice with sites that may either be in state 1 or
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0, with pairs of neighbouring sites j and k undergoing the transitions

1 j1k
Γ0
−−⇀↽−−
Γ1

1 j0k (6.20)

with rates Γ0,1. In the stationary state, sites are independent with probability p1 � Γ1/(Γ1 + Γ0)
to be 1. We find Γ0 � Γ1/3 � 4J2/3g for model NC, i.e., 1s are three times more common than
0s:

C
O

n1:nN
�� stationary �

1

4N

∏
j

3n j . (6.21)

Two further comments: (1) The dynamics of CA and Cρ are identical because the rates are
quadratic in J. (2) Individual trajectories of the FA model have no meaning, as only the
probability distribution CO appears in the moment O ⊗ O.

The derivation of the effective dynamics for O × O follows the same pattern as for the first
moment. Noise averaging the stochastic differential equation for the second moment of ρ in
model NC leads to the Lindblad equation for the replicated system

∂tρ ⊗ ρ � −i[H , ρ ⊗ ρ] −
g
2

∑
j,a

[Σa
j , [Σ

a
j , ρ ⊗ ρ]] (6.22)

where we have introduced the operatorsH � H ⊗ 1 + 1 ⊗ H and Σa
j � σ

a
j ⊗ 1 + 1 ⊗ σa

j .

Thekernel of thedissipatordetermines the slowsubspaceS � span
(
{|0〉 , |1〉}⊗N

)
, where the

{|0〉 , |1〉} states were defined in (6.16). The effective Liouvillian to leading order (see Appendix
D.1 for the derivation for model C; the model NC result is obtained similarly) acts on elements
of S according to

Leff(· · · ) � −
1

4g
PS[H , [H , · · · ]. (6.23)

A matrix representation for Leff can again be found (see Appendix D.2 for details) if we take
{|0〉 , |1〉}⊗N as a vector space basis. This matrix is given by L �

∑
j L j, j+1, where

L j, j+1 �
4J2

g

*.....
,

0 0 0 0

0 −1 0 1/3

0 0 −1 1/3

0 1 1 −2/3

+/////
-

, (6.24)

can be identified as the transition ratematrix of a continuous-timeMarkov process: the one-spin
facilitated FA model with rates given in (6.20).

A similar analysis for the second moment of model C does not appear to lead to a mapping
to a classical stochastic model, but we nevertheless make some observations about the effective
dynamics in Appendix D.1.
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6.3 Phenomenology of fronts

6.3.1 Fronts in the FA model

The FA model was originally introduced to describe dynamics at the glass transition, and is an
example of a kinetically constrained model [215]. The model has a spectral gap [222], indicating
that equilibrium fluctuations are generically exponentially decaying in time. Our main interest,
however, is in the nonequilibrium dynamics of the model, in particular in initial conditions
with only a few 1s, or regions devoid of 1s. In this case a nonzero density of 1s grows into the
empty region with a finite front velocity, see Fig. 6.1.

The dynamics of a front in the FAmodel in one dimension was recently analysed rigorously
in Ref. [223] for a variant of the model [224] in which the transition rate is independent of the
number of neighbours (see Ref.[225] for the related case of the East model). There it was shown
that if the rightmost 1 starts at site 0, its displacement Xt after time t is asymptotically given by
the normal distribution

Xt − vBt
√

t

d
−→
t→∞
N (0, s2), (6.25)

for some vB and s. This chimeswith the arguments given in Refs. [92–94] for the randomunitary
circuit model that the probability distribution of Xt is that of a biased random walk.

6.3.2 Fronts in two dimensions

Thederivation of the FAmodel in the strong-noise limit holds in anydimension. Ballisticmotion
of the front in kinetically constrained models in higher dimensions is discussed in Refs. [226–
228]. It is natural to ask how the front distribution in (6.25) generalises to higher dimensions.
For the random unitary circuit model, Ref. [92] proposed – and provided numerical evidence –
that the fluctuations of the front at long times are in the universality class of the Kardar–Parisi–
Zhang (KPZ) equation [229, 230]. In the 1 + 1-dimensional case, relevant for the growth of a
front in two dimensions, this equation has the form

∂t h � c0 + ν∂
2
x h +

λ
2

(∂x h)2
+ ζ(x , t). (6.26)

Here h(x , t) denotes the displacement of the front in the direction of growth, as a function of
transverse coordinate x. The first term in (6.26) is a contribution to the ballistic growth rate; the
second describes diffusive motion of the surface; the third captures a quadratic dependence of
the local growth rate on the tilt of the surface; the last is a spatially uncorrelated white noise.
The quadratic term is a relevant perturbation below two spatial dimensions that is responsible
for novel scaling behaviour. For the one-dimensional case considered here, fluctuations of the
surface have a dynamical critical exponent z – describing the relative scaling of spatial and
temporal fluctuations as t ∼ xz – of z � 3/2, and growth exponent β – describing the growth of
interface fluctuations as h ∼ tβ – of β � 1/3.
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Figure 6.2: (Top) Upward growth of a front in the 2D FAmodel into a region of 0s
(black), starting from a row of 1s. (Bottom) Growth of front variance with time.
Dashed line is the power law 0.13t2/3, consistent with the KPZ growth exponent

β � 1/3.

We performed a numerical simulation to determine the growth exponent for the FA model,
the details of which are described in section 6.4. For simplicity, we considered the growth from
a row of 1s, corresponding to flat initial conditions, rather than from a single 1, which leads to a
rounded cluster. This option was not available to the authors of Ref. [92], as the peculiarities of
the circuit model mean there is no roughening in a lattice direction. In a simulation of 105 time
steps, we observe nearly two decades of scaling with the KPZ exponent β ∼ 1/3 (see Fig. 6.2).

There is a wealth of exact results for the 1 + 1-dimensional KPZ universality class: see
Ref. [231] for a recent review. In particular, the long-time scaling form of the probability
distributions of the height of a growing interface has been determined starting from various
initial conditions. More precisely, we write

h(x , t)
d
−→
t→∞

ct + αt1/3χ, (6.27)

where χ is a random variable with known distribution, and c and α are constants. In the case
of flat initial conditions, χ is drawn from the Tracy-Widom distribution corresponding to the
Gaussian Orthogonal Ensemble (GOE) [66, 232, 233].

In Fig. 6.3 we show a comparison between the probability distribution of the front obtained
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Figure 6.3: Front probability distribution at t � 105 compared with best fit Tracy-
Widom density F′1(s) (dashed) and Gaussian (dash-dotted), where the width and

shift of the distributions are fitting parameters.

at the end of our numerical simulation, and the best fit GOE Tracy-Widom and Gaussian
distributions. The superiority of the Tracy-Widom fit is evident, in particular in capturing the
skew of the distribution and the differing behaviour of the left and right tails

log p(h) ∝



−|h |3 h → −∞

−h3/2 h → +∞.
(6.28)

6.4 Details of the numerical simulation

For convenience we study the version of the FA model in which the probability of a site to flip
its state depends only on having neighbours, not their number [224].

We usemultispin coding [234–236], whereby 64 configurations of themodel are represented
as an array of (unsigned) 64-bit integers, and updated by bitwise operations. This allows 64
trajectories to be simulated simultaneously on a single core. Our simulation consisted of a
single run on each of 16 virtual cores, corresponding to 1024 trajectories.

We initialised a L×H latticewith L 1s in the first row, enforcingperiodic boundary conditions
along the rows. The front is defined as the height of the highest 1 in each column. As the front
grows in the vertical direction, it must be periodically reset so that it remains roughly centered.
This is achieved by calculating themean height of the front across the 64 configurations every 10
updates and moving the configuration downward by 10 sites when the mean exceeds H/2 + 5.

For the largest simulations we took L � 104, H � 200, and T � 105 timesteps. A height
of H � 100 resulted in a breakdown of scaling behaviour at the longest times, presumably a
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Figure 6.4: The averaged OTOC C jk (t) is identified with the probability for sites
j and k to be in the same cluster. Here, we have illustrated the Gaussian case –
the functional form being that of an error function, the cumulative distribution

function of a Gaussian – appropriate to one dimension.

consequence of the fluctuations of the interface being bounded by the finite height window 2.

6.5 Applied Phenomenology

6.5.1 Out-of-time-order correlation functions

The mapping to the FA model yields a simple expression for the OTOC (6.6) in Model NC with
infinite temperature initial density matrix ρ

C jk (t) � 2−N
(
4

3

) ∑
n1:nN ∈{0,1}N

nk�1

C
O j
n1:nN (t), (6.29)

where the normalisation follows from tr
[
O j (t)2

]
� 2N . For an FAmodel starting with only site

j in state 1, the OTOC is then (4/3 times) the probability k has value 1 at time t.
Let us further make the reasonable assumption that, after the front arrives at site k, the

probability to be in state 1 quickly approaches the equilibrium value of 3/4. Then we identify

C jk (t) � Pr [k in cluster seeded by j] , (6.30)

or in other words, the cumulative distribution function of the front. The resulting behaviour of
the OTOC is illustrated in Fig. 6.4.

2The simulation code and data analysis are written in Julia and are available as a Jupyter notebook, together with
the simulation data, at https://github.com/AustenLamacraft/FA-front

https://github.com/AustenLamacraft/FA-front
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Figure 6.5: A ‘purity front’ velocity vPF < vB arises from the joint probability of
the propagating front deviating from the velocity vB and an initial condition with

X extra 0s.

6.5.2 Purity decay

Consider a partition of the qubits into sets A and Ac , of sizes |A| and |Ac
|. The average purity

of a region A is expressed as (cf. Refs. [93, 204])

γ � tr
[
ρ2

A

]
� 2|A

c
|

∑
n j�0,1 for j∈A

n j�0 for j∈Ac

C
ρ
n1:nN . (6.31)

The purity is (2|Ac
| times) the probability that Ac contain only 0s. Consider taking as an initial

condition a random pure product state, described by a density matrix

ρ �
1

2N

∏
j

[
1 j + % j · σ j

]
(6.32)

with unit vectors % j . Projected into the slow subspace of Model NC, this gives Cn1:nN (t � 0) �

2−N . Comparing with (6.31), we see γ(t � 0) � 1, as required. Note that the overall probability
of Ac being empty is 1/2|A

c
|, but this exponentially small factor is cancelled by the prefactor in

(6.31).
If Ac is empty (i.e. contains only 0s) at time t, we expect the fronts to be within A at earlier

times. To see how this picture leads to the decay of purity, consider the growth of a single
front in one dimension. The position of the front is described by (6.25). To find the most likely
trajectory, the probability of finding a front at a distance X inside A at time 0 must be combined
with the probability of the front propagating to the boundary between A and Ac at time t (see
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Figure 6.6: (Top) Schematic representation of the propagation of two fronts in
1+1 spacetime. White represents a region of 0s and black dots an active region
of 1s and 0s. (Bottom) − ln γ̄(t) for the case when γ̄(t) is computed for a finite
subsystem. The red lines at fixed spatial positions in the upper right figure
demarcate a finite subsystem of size |A|. Before saturation, − ln ¯γ(t) grows at a

rate (shown) controlled by the purity velocity.

Fig.6.5). The joint probability of these two events is then

P(Xt � 0,X0 � −X) ∼
1

2|A
c |+X

exp

(
−

[X − vBt]2

2s2t

)
. (6.33)

For large t, it suffices to find the optimum value X∗ of the initial front position, giving a
‘purity front’ velocity vPF < vB

vPF ≡
X∗
t

� vB − s2 ln 2. (6.34)

The fronts move slower than the butterfly velocity vB. Note that a similar argument appears in
Ref. [204], though with ad hoc assumptions about the statistics of front motion.

Substituting the optimal value X∗ in (6.33) gives the exponential decay of the purity

γ(t) ∼ exp

(
−vBt ln 2 +

s2t
2

ln2 2

)
, (6.35)

which enables us to define the ‘purity velocity’ vP � vB−
1
2 s2 ln 2, such that γ(t) ∼ γ(0)e−vPt ln 2.
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Applied to a region A of finite size, a simple generalisation of the above argument implies
that two fronts move towards each other at ±vPF. However, the two fronts never touch (see
Fig. 6.6), for when t > |A|/2vP, the most likely initial configuration is completely empty, and
the purity saturates. Thus we have

γ(t) ∼



e−2vPt ln 2 t < |A|/2vP

1
2|A|

t > |A|/2vP
(6.36)

These results are valid for large t and |A|, where the optimum dominates the probability. The
fact that purity decays on a time scale linear in the subsystem size is consistent with our local
Hamiltonian, and is to be contrasted with the fast scrambling (i.e. in a time logarithmic in the
size) possible in systems with highly nonlocal coupling, such as black holes [90, 188, 189].

If |Ac
| < |A|, the situation is slightly different. Once t > |Ac

|/2vP, the most probable way
for an empty Ac to arise is from the stationary distribution (6.21), assuming this distribution is
approached exponentially quickly from the initial state, giving

γ(t > |A|/2vP) �
1

2|A
c |
. (6.37)

The purity dynamics we have found (see Fig. 6.6) are consistent with the expectation, largely
based on exact diagonalisation studies [85] and toy models [192], that ballistic entanglement
growth is a universal feature of quantum chaotic many-body systems. By Jensen’s inequality,
the growth rate of − ln γ̄(t) that we have calculated is a lower bound on the growth of the
averaged second Rényi entanglement entropy. Moreover, our continuous-time results supple-
ment the analytic discrete-time calculations in random unitary circuits [92–94], which have
also confirmed this phenomenology (with a purity velocity satisfying vP < vB), via a mapping
of the average purity onto the partition function of a directed random walk. The approach,
which has been extended to obtain the higher Rényi entropies from a correspondence with
a hierarchy of classical statistical mechanics models [237], has motivated the suggestion of a
“minimal membrane” picture of entanglement spreading in generic nonintegrable quantum
systems [206].

6.6 Conclusions

We have provided a precise account of operator spreading for a system of interacting qubits
undergoing continuous time evolution, with each qubit independently coupled to a stochastic
drive. By averaging over noise, Lindblad equations for the first and second operator moments
were derived and studied perturbatively in the strong-noise limit; the central result being
the identification of a mapping to the Fredrickson–Andersen model for the second moment
dynamics in the case of noise that does not conserve a spin component. Considering the
phenomenology of front growth in this model then enabled us to determine the implications
for the behaviour of OTOCs and the decay of subsystem purity, which were found to be in line



114 Chapter 6. Noisy coupled qubits: operator spreading and the Fredrickson–Andersen model

with the results established in random unitary circuit models. Although the mapping holds in
arbitrary dimension, we restricted our attention to the one- and two-dimensional case: in one
spatial dimension, we exploited the known exact Gaussian asymptotics of the front, whilst in
two dimensions we conjectured, with numerical support, that front fluctuations exhibit (1+1)-
dimensional KPZ universality, thus giving us access to exact results for the front shape in terms
of Tracy-Widom distributions. After the completion of this work, a preprint appeared in which
entanglement growth and operator spreading were numerically studied in a noisy spin model
(in fact, model C) by a Krylov subspace method, and results consistent with the picture we have
presented here were found [238].

Our approach generalises naturally to higher operator moments [239]. We expect that the
identification of the slow subspaces and projection of the dynamics into those spaces will be
more involved but tractable, and will allow the study of higher entanglement entropies and the
full distribution of operator statistics; a convenient way to obtain these quantities may be to find
the equation of motion for the moment-generating function of the density matrix.

Acknowledgements We thank Oriane Blondel, Juanpe Garrahan, Robert Jack, and Katarzyna
Macieszczak for useful discussions.
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Chapter 7

Concluding remarks

To conclude, we summarise the research presented in the preceding chapters, with emphasis on
furtherwork that suggests itself. Webegan inChapter 2with an attempt to identify amany-body
counterpart of weak localisation by studying the ergodic phase of the quantum random energy
model in analogy to the corresponding single-particle diagrammatic perturbation theory. A
formal analogy can indeed be pursued by interpreting the QREM as an Anderson model on
the hypercube, enabling a self-consistent Born approximation to the resolvent and subsequent
ladder summation to describe diffusion modes. The analogy was found to break down upon
attempting to evaluate the cooperon, where we observed that the dominant contribution is
outside the diffusive regime. This kind of situation bears a resemblance to that of ballistic weak
localisation, butwewere not able to find ameans of transposing the approaches successful there
– kinetic equations in a Wigner representation – into the present context. The original question
of whether weak-localisation corrections exist in the QREM thus remains open, although our
efforts suggest diagrammatics are not likely to be fruitful and an alternative approach, perhaps
via a supersymmetric field integral formulation, should be explored. However, we do at least
find a compact master equation description of the relaxation of the disorder-averaged density
matrix, whose evolution we can numerically simulate in a dimensionally reduced space and
also study analytically after tracing out all but one of the spins.

Before attempting to obtain theweak-localisation corrections, it is a good start to analytically
derive the RMT limit in the ergodic phase. This is what we proceeded to do in the next chapter,
wherewe studied a stroboscopicQREMand applied a periodic-orbit perspective inspired by the
analogy between our Floquet operator and quantum graph evolution operators. The diagonal
approximation gave the first term in the short-time expansion of the form factor and was found
to match that of RMT; based on the direct relevance of quantum graph results which have
established agreement to all orders, we claim that the same conclusion can be drawn in this case
too. On the other hand, weak localisation remains an unsolved problem from the perspective
of periodic-orbit theory and further progress requires a conceptual breakthrough to correctly
handle Hikami boxes in general.

Turning to a modified QREM in which the transverse field was replaced with a REM in
a rotated basis, what we called a QREM with a random kinetic term, we were able to carry
out a diagrammatic calculation of the density of states straightforwardly. The analogue of the
self-consistent Born approximation in fact turned out to be a veiled R-transform calculation: the
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machinery required to compute the distribution of a sum of free random variables. The natural
extension of our work is to attempt to apply free probability, namely the idea of higher-order
freeness, in order to extract two-particle correlations, which we were unable to manipulate
into an intelligible form in our diagrammatic framework. Moreover, it is worth pointing out a
connection with the Floquet model that we studied in Chapter 3. If we define a stroboscopic
analogue of the QREM with a random kinetic term, then the Floquet operator would consist
of products rather than sums of free random variables: free probability again has a tool to use
here, the S-transform, which enables the computation of the free multiplicative convolution
describing the spectral density of the Floquet operator in terms of the constituent x- and z-basis
distributions. These means of potentially broadening the applicability of free probability to
random matrix models of interest in the context of localisation and quantum chaos represent
good opportunties for further work.

In the second part of the thesis, we turned our attention from disordered to noisy quantum
spin models and began with the problem of noninteracting spins coupled to a common noise
source; this situation of correlated noise is quite different from the disordered problems we
considered where disorder was always uncorrelated. Moreover, we showed that the model was
Bethe ansatz integrable by mapping it to a non-Hermitian Richardson–Gaudin model. This
situation is quite distinct from generic many-body systems: even when an MBL phase exists
– exhibiting Poisson statistics as in an integrable model – the emergent integrability in that
case is distinguished by a number of features, for instance, it does not rely on fine-tuning and
so is robust to perturbation. Avenues for future work include: the finite-temperature regime,
where integrability appears to be broken and a new approach needs to be found to understand
the effect of temperature on the relaxation of correlations; the consideration of more general
noise correlation models where these could be chosen to generate mappings to other integrable
models; and a quantitative study of the structure of quantum correlations and how they evolve
in time by making use of the Bethe wavefunctions.

Although we initially presented the model in Chapter 5 directly as a Lindblad master equa-
tion, we found it was more instructive to think of it as arising from averaging over a classical
stochastic field. In the final chapter, we considered a more general class of stochastically driven
interacting quantum spin models and analysed the dynamics of operator moments, distin-
guishing qualitatively different behaviour depending on whether or not the drive preserved
a U (1) symmetry (model C and model NC respectively). The second-moment dynamics for
model NC was found to map onto a Fredrickson-Andersen model in the strong-noise limit,
enabling us to use existing results in order to understand the phenomenology of the dynamics
of averaged subsystem purity and out-of-time-order correlation functions. The behaviour we
found of a front propagating ballistically and broadening diffusively is consistent with that
seen in random unitary circuits and conjectured to hold in generic many-body Hamiltonians,
but our results provide analytic confirmation of this in a continuous-time Hamiltonian model.
Although the second-moment dynamics for model C does not map onto a classical stochastic
model, it remains to be seen whether further analytic progress can be made in characterising
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the resultant ’octahedral’ model, which a recent exact diagonalisation study suggests is largely
the same as model NC. Extending our calculation to higher moments is also natural, and would
provide a means of bounding the higher entanglement entropies, relating the butterfly velocity
(set by the Hilbert-Schmidt norm) to the Lieb-Robinson bound (set by the operator norm), and
ultimately studying the full distribution (over noise trajectories) of the quantum statistics of
observables.
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Appendix A

Harmonic analysis on ZN
2

Consider the measure space (ZN
2 , P(ZN

2 ), P), where ZN
2 � {−1, 1}N , the σ-algebra P(ZN

2 ) is the
power set of ZN

2 , and P � ( 1
2δ−1 +

1
2δ1)⊗N is the uniform probability measure. We shall be

interested in the space L2(ZN
2 ) of functions f : ZN

2 → R that are square integrable with respect
to P (i.e.

∫
ZN

2
| f |2 dP is finite). Equipped with the inner product

〈 f , g〉 � E[ f g] �

∫
ZN

2

f g dP � 2−N
∑

z∈ZN
2

f (z)g(z), (A.1)

L2(ZN
2 ) forms a Hilbert space.

The fundamental objects for doing harmonic analysis on anAbelian group G (such asZN
2 ) are

elements of the Abelian group of multiplicative characters ch(G) – the multiplicative characters
are the homomorphisms from G to the multiplicative group of a field (usually real or complex
numbers). On ZN

2 , the characters χx can be expressed as

χx (z) :�
∏

i |xi�−1

zi . (A.2)

Note that 2N elements x ∈ ZN
2 are in one-to-one correspondence with subsets S ⊆ {1, . . . ,N }.

The set of characters ch(ZN
2 ) forms a complete, orthonormal basis of L2(ZN

2 ). We thus can define
the Fourier transform f̃ of f

f (z) �
∑

x∈ZN
2

f̃ (x)χx (z), (A.3)

where the Fourier components can be written as

f̃ (x) � E[ f χx] � 〈 f , χx〉. (A.4)

Recasting this in the language of eigenstates of spin operators that we employed in section 2.1.1
by using the result χx (z) � 2N/2

〈x |z〉, we can write

f̃ (x) �
1
√

2N

∑
z

f (z) 〈x |z〉 . (A.5)
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Appendix B

Hamming scheme combinatorics

We shall now compute the normalisation coefficients Nh1 ,h2 ,h12 for the permutation-invariant
basis states defined in (2.125). Let us begin by writing down a generating function

G(z1 , z2 , z12) � (1 + z1z2 + z12(z1 + z2))N , (B.1)

where Nh1 ,h2 ,h12 is equal to the coefficient of zh1

1 zh2

2 zh12

12 . If we now extract the terms in G of
order zh12

12 we have (
N
h12

)
zh12

12 (z1 + z2)h12 (1 + z1z2)N−h12 (B.2)

�

(
N
h12

)
zh12

12 zh12

2 (1 +
z1

z2
)h12 (1 + z1z2)N−h12 . (B.3)

From here, we can expand the two remaining binomial terms, writing down the general terms
in their expansion in terms of two free parameters h and H

Nh1 ,h2 ,h12 zh1

1 zh2

2 zh12

12 �

(
N
h12

)
zh12

12 zh12

2

(
h12

h

) ( z1

z2

)h
(
N − h12

H

)
(z1z2)H , (B.4)

where h and H can be chosen such that the powers of z1 , z2 , and z12 are equal to h1 , h2 , and
h12 respectively. Solving simultaneously for h and H we find that h � (h1 − h2 + h12)/2 and
H � (h1 + h2 − h12)/2, yielding

Nh1 ,h2 ,h12 �

(
N
h12

) (
h12

h1−h2+h12

2

) (
N − h12

h1+h2−h12

2

)
. (B.5)

Having obtained the result in a mechanical fashion via the generating function, we can
quickly arrive at the result through an explicit combinatorial argument. For a given state (i.e. a
z1 , z2 configuration with fixed { h1 , h2 , h12 }; see Fig.B.1), each site contributes either 0 (z i

1 � z i
2)

or 1 (z i
1 , z i

2) to h12. So, we must first choose h12 of the N sites to contribute 1 to h12; this
can be done in

( N
h12

)
ways. After choosing the h12-contributing sites, there is still the freedom

of arranging the sites with z i
1 � 1, z i

2 � 0 and z1 � 0, z i
2 � 1 amongst themselves, and then of

arranging the sites with z i
1 � 0, z i

2 � 0 and z i
1 � 1, z i

2 � 1, which do not contribute to h12; these
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correspond to the second and third factors in

Nh1 ,h2 ,h12 �

(
N
h12

)
×

(
h12

|S1 | − |S1 ∩ S2 |

)
×

(
N − h12

h1 − (|S1 | − |S1 ∩ S2 |)

)
. (B.6)

We can apply the inclusion-exclusion principle in order to evaluate the intersection that appears:
h12 � |S1 | + |S2 | − 2|S1 ∩ S2 |, whilst the remaining cardinalites that appear above are trivially
|S1 | � h1 and |S2 | � h2 by definition. We can now relate the normalisation coefficients to an

Figure B.1: For agiven |z1〉⊗|z2〉 state,we can construct aVenndiagramdescribing
the four possible values of z i

1 , z
i
2 ∈ { 0, 1 } on each of the N sites: S1 is the set of

sites with z i
1 � 1, and S2 the set of sites with z i

2 � 1.

object in coding theory known as the Hamming scheme [240].

Definition. An association scheme A � { S,R } is a finite set S equipped with a set R � { R0 , . . . , Rn }

of symmetric binary relations satisfying

1. R0 � { (s , s) | s ∈ S }.

2. R is a partition of S × S.

3. ∀ i , j, k ∈ [0, n], ∃ pk
i j ∈ Z \ Z

− such that ∀ (s1 , s2) ∈ Rk

pk
i j � | { s3 ∈ S | (s1 , s3) ∈ Ri and (s2 , s3) ∈ R j } |. (B.7)

The Hamming scheme is the association scheme when S is the hypercube (i.e. S � ZN
2 ) and

the binary relation Rd relates points on the hypercube separated by a Hamming distance d. The
intersection parameters pk

i j describe the number of triangles on the hypercube with a fixed base
of length k, and remaining sides of length i and j. In the case of the normalisation coefficients
calculated above, we are counting the number of Hamming triangles with given side lengths
and one vertex fixed; the two combinatorial quantities are thus related by

Nh1 ,h2 ,h12 � ph12

h1 ,h2

(
N
h12

)
, (B.8)

reflecting the freedom to choose the position of the base in the case ofNh1 ,h2 ,h12 .
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Appendix C

Two-point correlators in the random
kinetic quantum random energy model

Here we consider the averaged product of two resolvents for the random kinetic QREM and
so are concerned with diagrams that have the structure shown in Fig. C.1. We proceed by

A1 A2 A3 A4 A4A1
A2 A3

Figure C.1: Comparisonof the contributionof ladderdiagramsanddiagramswith
crossings to the two-particle vertex. Ai ∈ {x , z} denote blocks of V (z-diagonal)

or T (x-diagonal) lines.

analysing the various distinct configurations of Ai . Where V-lines occur (Ai � z), we can insert
a resolution of the identity in the z-basis,

∑
i |zi〉 〈zi |, and similarly for Ai � x. The magnitude

of the diagram will thus be controlled by the values of the inner products

| 〈a1 |a2〉 |
2
�




δa1 ,a2 A1 � A2

2−N A1 , A2.
(C.1)

For arbitrary {Ai }, the ladder diagram gives

|a1〉 〈a1 |a2〉 〈a2 |a3〉 〈a3 |a4〉 〈a4 | × (C.2)

|a1〉 〈a1 |a2〉 〈a2 |a3〉 〈a3 |a4〉 〈a4 | , (C.3)

and the crossed diagram

|a1〉 〈a1 |a2〉 〈a2 |a3〉 〈a3 |a4〉 〈a4 | × (C.4)

|a1〉 〈a1 |a3〉 〈a3 |a2〉 〈a2 |a4〉 〈a4 | . (C.5)

Let us now consider the particular distinct configurations of {Ai }.
A1 � A2 � A3 � A4
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Ladder :
∑

ai

δa1 ,a2δa2 ,a3δa3 ,a4 �

∑
a1

, (C.6)

crossed :
∑

ai

δa1 ,a2δa2 ,a3δa3 ,a4δa1 ,a3δa2 ,a4 �

∑
a1

, (C.7)

�⇒ crossed diagram not suppressed.
A1 � A2 � A4 , A3

Ladder :
∑

ai

δa1 ,a22−2N
� 2−2N

∑
a1 ,a3 ,a4

, (C.8)

crossed :
∑

ai

δa1 ,a2δa2 ,a42−2N
� 2−2N

∑
a1 ,a3

, (C.9)

�⇒ crossed diagram suppressed due to one fewer free summation.
A1 � A4 , A2 � A3

Ladder :
∑

ai

2−2Nδa2 ,a3 � 2−2N
∑

a1 ,a2 ,a4

, (C.10)

crossed :
∑

ai

〈a1 |a2〉 〈a1 |a3〉 〈a3 |a4〉 〈a2 |a4〉 δa2 ,a3 � 2−2N
∑

a1 ,a2 ,a4

, (C.11)

�⇒ crossed diagram not suppressed.
A1 � A3 , A2 � A4

Ladder :
∑

ai

2−3N , (C.12)

crossed :
∑

ai

2−Nδa1 ,a3δa2 ,a4 〈a1 |a2〉 〈a3 |a4〉 � 2−2N
∑
a1 ,a2

(C.13)

�⇒ crossed diagram ∼ 2N smaller than ladder.
The appropriate approximation for the two-particle vertex, as for the averaged resolvent, is

thus to neglect diagramswith crossings between V and T lines. We can build up such diagrams
using blocks consisting of only V or T lines, given respectively by the quantities

ΠV �E
[

1

ε1 − ΣT − V
1

ε2 − ΣT − V

]
�

1
√
γV (ε2 − ε1)


R *

,
ε1 − ΣT√

2γV

+
-
− R *

,
ε2 − ΣT√

2γV

+
-


(C.14)

ΠT �E
[

1

ε1 − ΣV − T

1

ε2 − ΣV − T

]
�

1
√
γT (ε2 − ε1)


R *

,
ε1 − ΣV√

2γT

+
-
− R *

,
ε2 − ΣV√

2γT

+
-


. (C.15)

Consider two-particle ladder diagrams built from blocks Ai as in Fig. C.1. First, if we have two
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ΠV ΠT ΠV

ΠT ΠV ΠT

ΠV ΠT + ...

+ ...

+ ...

ΠV

ΠT

= + ... 

= + ...

a)

b)

c)

d)

e)

Figure C.2: Diagrams corresponding to the terms in (C.19). As before V and T
lines are coloured blue and red respectively, whilst a bold blue (red) line corre-
sponds to dressing by ΣV (ΣT). Diagrams a) and b) correspond to the two terms
on the first line of (C.19), whilst c), d), and e) are the terms on lines 2, 3, and 4
respectively. The . . . in these terms represent the geometric series generated by
adding successive ΠVΠT blocks for c) and e), or ΠTΠV blocks in the case of d).

blocks of the same type, e.g. A1 � A2 � x:∑
x1 ,x2

|x1〉 〈x1 |x2〉 〈x2 | ⊗ |x1〉 〈x1 |x2〉 〈x2 | �

∑
x

|x〉 〈x | ⊗ |x〉 〈x | . (C.16)

If we have two blocks of different type, e.g. A1 � z and A2 � x∑
z ,x

|z〉 〈z |x〉 〈x | ⊗ |z〉 〈z |x〉 〈x | � 2−N
∑
z ,x

|z〉 〈x | ⊗ |z〉 〈x | . (C.17)

If we have three blocks, where Ai alternates e.g. A1 � A3 � z and A2 � x∑
z1 ,x2 ,z3

|z1〉 〈z1 |x2〉 〈x2 |z3〉 〈z3 | � 2−N
∑
z1 ,z3

|z1〉 〈z3 | ⊗ |z1〉 〈z3 | (C.18)
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The two-particle vertex Γ will thus contain terms of distinct matrix structure depending on
the starting and ending block (i.e. ΠV or ΠT), and so Γ takes the form

Γ � ΠV

∑
z

|z〉 〈z | ⊗ |z〉 〈z | +ΠT

∑
x

|x〉 〈x | ⊗ |x〉 〈x |

+
ΠVΠT

1 −ΠVΠT

∑
z ,x

2−N (|z〉 〈x | ⊗ |z〉 〈x | + h.c.)

+
ΠVΠTΠV

1 −ΠTΠV

∑
z1 ,z3

2−N
|z1〉 〈z3 | ⊗ |z1〉 〈z3 |

+
ΠTΠVΠT

1 −ΠVΠT

∑
x1 ,x3

2−N
|x1〉 〈x3 | ⊗ |x1〉 〈x3 | , (C.19)

which can be represented diagrammatically as in Fig. C.2. Further work is required to extract
useful information from this equation, though we can see from the frequency dependence of
(C.14) that at high frequencies the two terms on the first line of (C.19) dominate with frequency
dependence ω−1, whereas in the low-frequency limit only the second line can be neglected
whilst the other terms are responsible for ω−1 dependence in this regime too.

We can also consider the two-particle diagrams for the single-particle version of the model

〈a1 |a2〉 �




δa1 ,a2 A1 � A2

e ikx
√

N
A1 � x ,A2 � k

e−ikx
√

N
A1 � k ,A2 � x.

(C.20)

A1 � A2 � A3 � A4

Crossed diagram not suppressed (as above, for spins).
A1 � A2 � A4 , A3

Ladder :
1

N2

∑
ai

δa1 ,a2 e2ik3(x1−x4)
�

1

N

∑
x1

, (C.21)

crossed :
1

N2

∑
ai

δx1 ,x2δx2 ,x4 e ik3(x1−x4)
�

1

N

∑
x1 ,x2 ,x4

δx1 ,x2δx2 ,x4δx1 ,x4 �
1

N

∑
x1

, (C.22)

�⇒ crossed diagram not suppressed.
A1 � A4 , A2 � A3

Ladder :
1

N2

∑
ai

δk2 ,k3 e2ik2x1 e−2ik3x4 �
1

N

∑
x1

, (C.23)

crossed :
1

N2

∑
ai

δk2 ,k3
e ik2x1 e ik3x1 e−ik3x4 e−ik2x4 �

1

N

∑
x1

, (C.24)

�⇒ crossed diagram not suppressed.
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A1 � A3 , A2 � A4

Ladder :
1

N3

∑
ai

e2ik2x1 e−2ik2x3 e2ik4x3 �
1

N

∑
x1

δx1 ,0 �
1

N
, (C.25)

crossed :
1

N2

∑
ai

δx1 ,x3δk2 ,k4 e ik2x1 e−ik2x3 e ik2x3 e ik4x3 �
1

N

∑
x1

δx1 ,0 �
1

N
, (C.26)

�⇒ crossed diagram not suppressed.
So, we conclude that crossed two-particle diagrams are not suppressed in the single-particle

model.
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Appendix D

Effective Liouvillians for second-moment
dynamics

D.1 Second-moment dynamics of Model C in the strong-noise limit

Application of Itô’s lemma enables us to write down the stochastic differential equation for the
second moment of the density matrix in model C

d(ρ ⊗ ρ) � −i[H , ρ ⊗ ρ] dt − i
√

g
∑

j

[Σz
j , ρ ⊗ ρ] dB j

t

−
g
2

∑
j

[Σz
j , [Σ

z
j , ρ ⊗ ρ]] dt ,

(D.1)

which upon averaging leaves us with

∂tρ ⊗ ρ � −i[H , ρ ⊗ ρ] −
g
2

∑
j

[Σz
j , [Σ

z
j , ρ ⊗ ρ]] (D.2)

where we have adopted analogous notation to that of (6.22), i.e., Σz
j � Z j ⊗ 1 + 1 ⊗ Z j . In

the strong-noise limit, the dynamics is projected onto the 6N slow subspace S spanned by
{|z1〉 〈z1 | ⊗ |z2〉 〈z2 | , |z3〉 〈−z3 | ⊗ |−z3〉 〈z3 | : zi ∈ {−1, 1}}⊗N . The first nonvanishing term in
perturbation theory for the generator of the strong-noise dynamics of the second moment
of the density matrix, which we also refer to as an effective Liouvillian, is given by Leff �

−PSLH D−1LHPS . If we consider the action of DLH on a single site, we have

DLH (|z1〉 〈z1′ | ⊗ |z2〉 〈z2′ |) �
i g
2

(
[H, |z1〉 〈z1′ |] ⊗ |z2〉 〈z2′ |

× *
,
(z j

2 − z j
2′)

2
+ 4 *

,
1 −

(z j
1 − z j

1′)
2

4
+
-
− 4z j

1
*
,
1 −

(z j
1 − z j

1′)
2

4
+
-

(z j
2 − z j

2′)+
-

+ |z1〉 〈z1′ | ⊗ [H, |z2〉 〈z2′ |]

× *
,
(z j

1 − z j
1′)

2
+ 4 *

,
1 −

(z j
2 − z j

2′)
2

4
+
-
− 4z j

2
*
,
1 −

(z j
2 − z j

2′)
2

4
+
-

(z j
1 − z j

1′)+
-

)
,

(D.3)
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from which it follows that LHPS

(
ρ ⊗ ρ

)
is an eigenstate of D with eigenvalue 4. The effective

Liouvillian can thus be written
Leff � −

1

2g
PS ad2

H
, (D.4)

where we have used the adjoint action notation adH (· · · ) :� [H , · · · ].
In the strong-noise limit, the dynamics is projected onto the 6N -dimensional slow subspace

S spanned by {|z1〉 〈z1 | ⊗ |z2〉 〈z2 | , |z3〉 〈−z3 | ⊗ |−z3〉 〈z3 | : zi ∈ {−1, 1}}⊗N . It is helpful to
partition the single-site factors of S into three types of pairs of states

1. (11, 11) (−1 − 1,−1 − 1)

2. (11,−1 − 1) (−1 − 1, 11)

3. (1 − 1,−11) (−11, 1 − 1), (D.5)

where we have represented the state |z1〉 〈z2 | ⊗ |z3〉 〈z4 | by the tuple (z1z2 , z3z4). It is helpful
to visualise each pair of states as occupying antipodal vertices of an octahedron. If we consider
the effective Liouvillian, which differs from that of model C only by a multiplicative constant
and the fact that the projector is into a different slow subspace, we identify three classes of
matrix element (with the possible values given in parenthesis, and their representation on the
octahedron given in Fig. D.1):

1. Pair changing (±2): A pair of a given type, with each element of the pair occupying
adjacent sites, may be transformed into a pair of another type.

2. Exchange (±2): The states of adjacent sites may be exchanged, if the two states belong to
different pairs.

3. Diagonal (2 or 4): No change, but a constant factor equal to theHammingdistance between
the two states is acquired.

Thediffering signs canbe seen to ensure that the both the trace (onlypairs 1 and2 contribute) and
purity (only pairs 1 and 3 contribute) of the full density matrix are preserved under evolution.

D.2 Effective Liouvillian for the second moment of model NC

We begin by evaluating the double commutators that arise when Leff acts on the basis states of
S. If we write the Heisenberg Hamiltonian as

∑
j,k h jk for h jk � σa

j σ
a
k (n.b. we shall assume the

summation convention only for the upper (i.e. spin) indices), we have

[
h jk ,

[
h jk , σ

a
k

] ]
� 8

(
σa

k − σ
a
j

)
(D.6)

[
h jk ,

[
h jk , σ

a
j σ

b
k

] ]
� 8

(
σa

j σ
b
k − σ

b
j σ

a
k

)
. (D.7)

Since we are considering a Hamiltonian with only a two-body interaction, we only need to
consider four possible states: each local factor for the two sites that h jk couples is either |0〉 or
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Figure D.1: An example of exchange (left) and pair changing (right) terms, as
visualised on a square cross section of the ‘octahedron’ of single-site states that
span the slow subspace of model C. The filled and empty circles represent the

states on adjacent sites.

|1〉 (as defined in (6.16)). The |0 j0k〉 state is trivially seen to lie in the kernel of Leff, so that we
only need to compute

L jk

(
σa

j σ
b
k ⊗ σ

a
j σ

b
k

)
� PS

[
− 8

(
σa

j σ
b
k − σ

b
j σ

a
k

)
⊗ σa

j σ
b
k

− 8σa
j σ

b
k ⊗

(
σa

j σ
b
k − σ

b
j σ

a
k

)
+ 16

(
σαk − σ

α
j

)
⊗

(
σαk − σ

α
j

) ]
. (D.8)

and

L jk

(
1 jσ

a
k ⊗ 1 jσ

a
k

)
� PS

[
− 8

(
1 jσ

a
k − σ

a
j 1k

)
⊗ 1 jσ

a
k−

81 jσ
a
k ⊗

(
1 jσ

a
k − σ

a
j 1k

)
+ 8

(
σb

j σ
c
k ⊗ σ

b
j σ

c
k − σ

b
j σ

c
k ⊗ σ

c
j σ

b
k

) ]
, (D.9)

with the corresponding result for |1 j0k〉 following by interchanging j and k in the last equality.
It remains only to perform the projection back into the slow subspace: terms of the form
σa

j 1k ⊗ 1 jσa
k are projected out, but σb

j σ
a
k ⊗ σ

a
j σ

b
k terms have a nonzero component in S that we

must compute. This is most clearly seen by decomposing the dyadic Cartesian tensor operator
σa

j ⊗ σ
b
j into irreducible representations of SO(3) as

σa
j ⊗ σ

b
j �

1

3

(
σαj ⊗ σ

α
j

)
δab +

1

2

(
σa

j ⊗ σ
b
j − σ

b
j ⊗ σ

a
j

)
+

1

2

(
σa

j ⊗ σ
b
j + σ

b
j ⊗ σ

a
j −

2

3
σαj ⊗ σ

α
j δab

)
, (D.10)

from which it follows that

PS

[
σb

j σ
a
k ⊗ σ

a
j σ

b
k

]
�

1

3
σa

j σ
b
k ⊗ σ

a
j σ

b
k . (D.11)

Combining these results and exploiting orthogonality of the {|0〉 , |1〉} states with respect to the
Hilbert-Schmidt inner product yields the matrix given in (6.24).
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