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ABSTRACT 

 

Name: Shaoda He 

Title:   Helical Reconstruction in RELION 

 

Helical assemblies of proteins are ubiquitous in nature and they perform vital functions in a wide range 

of organisms. The recent development of direct electron detectors and other imaging techniques in cryo-

electron microscopy (cryo-EM) has opened new possibilities in solving helical structures at atomic 

resolution. Existing software packages for helical processing often require experience in tuning many 

ad hoc parameters to achieve optimal reconstruction results. REgularised LIkelihood OptimisatioN 

(RELION), an open-source single-particle analysis package, reduces the need for user expertise by the 

formulation of an empirical Bayesian framework, and has yielded some of the highest resolution density 

maps in recent years. Prior information about the helical assemblies can be conveniently incorporated 

into the statistical framework of RELION and thereby improves the helical reconstructions. 

This PhD thesis describes the development of a helical processing computation workflow with reduced 

user intervention in RELION. Chapter 1 introduces the theoretical basis of cryo-EM data acquisition 

and single-particle data processing, the concepts of helical symmetry, and a previously described 

method for iterative real-space reconstruction of helical assemblies, to which the RELION 

implementation bears resemblance. Chapter 2 discusses multiple adaptations to RELION that are 

necessary for helical processing. Key elements include the imposition and local refinement of helical 

symmetry, masks on helical segments and references, expressions of angular and translational prior 

information, manual and automated segment picking as well as initial model generation for helices. 

Calculations have been performed on four test data sets showing that the developed methods in RELION 

yield results that are as good as or better than alternative approaches for the tests performed. Chapter 3 

describes the same methodology adapted to helical sub-tomogram averaging in RELION. Chapter 4 

introduces the local symmetry option developed for special types of filaments with pseudo-helical 

symmetry. The concept can be extended to general single-particle analysis as well. Chapter 5 describes 

four helical structures determined in collaboration with other research groups using helical RELION 

for data processing. Chapter 6 concludes the thesis with a brief summary and future prospects. 
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1 INTRODUCTION 

1.1 Structural biology and cryo-electron microscopy 

Structural biology seeks the atomic-level structures of biological macromolecules (mainly proteins and 

nucleic acids) and uses these structures to explain how they are related to their dynamics and functions. 

One of the most important aspects of structural biology is to visualise how the amino-acid sequences 

are folded into proteins with complicated conformations through model building (figure 1.1).  

 

Figure 1.1. Published cryo-EM density map (a) and model building results (b) of some side chains in human 

γ-secretase (adapted from Bai et al., 2015). 

Various techniques have been developed to determine the molecular structures, such as X-ray 

crystallography, nuclear magnetic resonance (NMR) and mass spectrometry. Particularly, X-ray 

crystallography has yielded many atomic resolution structures. Recent years have witnessed a growing 
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number of near-atomic resolution biomolecular structures solved by cryo-election microscopy (cryo-

EM) technique (figure 1.2, Patwardhan, 2017). An advantage of cryo-EM over traditional X-ray 

crystallography is that the former does not require the procedure of molecule crystallisation required by 

the latter. In addition, particles frozen in ice layers may adopt multiple conformations, which opens up 

possibilities in research of molecule dynamics. Cryo-EM is becoming increasingly popular and 

powerful for structural determination at atomic resolution with the rapid development of high-end 

microscopes, direct electron detectors, sample/grid preparation process, automated data collection, 

reconstruction algorithms and computing hardware. 

 

Figure 1.2. Resolution trends of released EMDB entries up to the year 2016. The stacked graph comprised of 

the number of released entries separated into different resolution bands (adapted from Patwardhan, 2017). 

1.2 Transmission electron microscope and image formation 

This section includes a brief description of the key elements in a typical transmission electron 

microscope (TEM) column (figure 1.3), starting from the electron source at the top all the way down to 

the detector at the bottom.  
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Figure 1.3. Schematic diagram of a transmission electron microscope (TEM) (adapted from Williams and 

Carter, 1996). 

Macromolecules are so small that visible light, with wavelength ~400-700 nanometres (nm, 10-9 m), are 

not powerful enough to resolve the structural details of molecules. Instead, TEM uses high energy 

electrons (~80-300 kV), with wavelengths at about 2-4 picometres (pm, 10-12 m). Modern electron 

microscopes generate electrons using field emission guns, which produce more coherent and mono-

chromatic electron beams compared to thermal emission sources. The condenser lens system, which is 

located below the electron source, is designed to focus the high-energy coherent electron beam onto the 

specimen for better illumination.  
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Figure 1.4. Schematic of plunge freezing and of a vitrified layer and an example cryo-EM micrograph 

(adapted from Orlova and Saibil, 2011). 

The thin specimen is placed in vacuumed column between the condenser system and objective lens. 

During specimen preparation, purified protein solutions are applied to grid support and plunge-frozen 

in liquid ethane (figure 1.4). The freezing process is performed extremely fast at <-130°C temperature 

to form thin vitreous (amorphous) ice layers instead of crystalline ice because the latter diffracts 

electrons strongly and degrades the image quality (Dubochet et al., 1988). The vitrified ice layer 

preserves many biomolecules which only exist under the action of forces which are acting in the liquid 

water, not in dry specimens (Dubochet et al., 1988). During imaging, electron doses are kept to a 

minimum (~20 e-/Å2) to limit charging and radiation damage. Since biological specimen are thin and 

mainly consist of light atoms (H, C, N and O), most of the high-energy electrons (~80%) simply pass 

through the thin specimen unchanged. Elastically scattered electrons (~5%) interact with the atomic 

Coulomb potentials of the specimen and contribute to phase contrast in image formation. Inelastically 

scattered electrons (~15%) deposit energy, damage the biological specimen and produce noise in the 

collected images (Williams and Carter, 1996). Image contrast in typical cryo-EM, which consists of 

amplitude and phase contrast, is related to the scattered electrons. The amplitude contrast results from 

the electrons illuminating the specimen but not eventually arrived at the image detector. The incoming 

electrons can be diffracted by the atoms of the specimen, and the total scattering of an element of 

biological matter increases proportionally to the mass increment (Dubochet et al., 1988). The objective 

aperture allows the passing of unscattered electrons and those scattered within only a small angle. 

Therefore the excluded high-angle scattered electrons (and those diverted by the energy filter) result in 

the amplitude contrast. Phase contrast is generated when the remaining electrons are scattered elastically 

at different angles, experienced with location dependant phase shifts and interfered with the unscattered 
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beam. Biological specimens are also weak electron scatters. In order to increase the contrast moderately 

and record the ‘invisible’ phase contrast as ‘visible’ amplitudes on the output images, cryo-EM imaging 

makes use of imperfections and special operating conditions of the objective lens, i.e. aberrations and 

defocus levels (Williams and Carter, 2009). 

The electromagnetic objective lens forms the images but it is far from perfect due to various types of 

aberrations, such as spherical, chromatic aberrations and astigmatism. Spherical aberration means that 

the focus strength varies from the optical axis to the periphery of the objective lens. Chromatic 

aberration arises when lower-energy electrons are focused more strongly. Astigmatism is present when 

the lens is stronger in one direction compared to the perpendicular. Moreover, the objective lens is set 

underfocused in typical cryo-EM in order to generate sufficient image contrast. The effects of 

aberrations and defocus on the images formed can be described by the point spread function (PSF) in 

real-space, or equivalently by the contrast transfer function (CTF) in Fourier-space (Erickson and Klug, 

1970). The CTFs describe the imaging properties of the objective lens systems. The spherical aberration 

gives rise to oscillating CTF signals at various spatial frequencies (figure 1.5) and must be estimated 

and corrected during data processing. 

 

Figure 1.5. Examples of contrast transfer functions (CTF). (A) Theoretical CTF at three defocus values: 1.5 

μm (_), 2.0 μm (-) and 2.5 μm (-.-). (B) With envelop functions effect (adapted from Penczek et al., 1997). 

According to Rohou and Grigorieff 2015, for a 2D image, the contrast transform function (CTF) can be 

modelled in Fourier space as a 2D function of the frequency-dependent phase shift χ: 

𝐶𝑇𝐹(𝜆, 𝑔⃗, 𝛥𝑓, 𝐶𝑠, 𝛥𝜑) = −√1 − 𝐴2  sin[𝜒(𝜆, 𝑔⃗, 𝛥𝑓, 𝐶𝑠, 𝛥𝜑)] − 𝐴 cos[𝜒(𝜆, 𝑔⃗, 𝛥𝑓, 𝐶𝑠, 𝛥𝜑)] 

A (0 < A < 1) is the fraction of amplitude contrast, arising for example from electrons scattered outside 

the objective aperture or removed by energy filtering. χ is a function of the electron wavelength, the 

length of the spatial frequency vector 𝑔⃗, the objective defocus Δf, the spherical aberration Cs, and the 

additional phase shift introduced by a phase plate Δφ (Δφ = 0 if absent): 
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𝜒(𝜆, 𝑔⃗, 𝛥𝑓, 𝐶𝑠, 𝛥𝜑) = 𝜋𝜆|𝑔⃗|2 (𝛥𝑓 −
1

2
𝜆2|𝑔⃗|2𝐶𝑠) + 𝛥𝜑 

The astigmatism of objective lens is incorporated in the defocus term Δf: 

𝛥𝑓 =
1

2
[𝛥𝑓1 + 𝛥𝑓2 + (𝛥𝑓1 − 𝛥𝑓2) cos(2[𝛼𝑔 − 𝛼𝑎𝑠𝑡])] 

Where Δf1 and Δf2 describe the defocus in perpendicular directions, αast is the angle between Δf1-Δf2 

axes and X-Y axes of the complex plane, and αg is the angle between 𝑔⃗ and the X axis (figure 1.6). The 

astigmatism is defined by Δf1, Δf2 and αast.  

 

Figure 1.6. Two defocus values, Δf1 and Δf2, and an angle, αast, define an astigmatic CTF. Δf is the effective 

defocus at an arbitrary point 𝑔⃗ (scattering vector) in reciprocal space (adapted from Rohou and Grigorieff 2015). 

The projector lens magnifies the image formed by the objective lens and projects the magnified results 

onto a detecting system, such as film, a CCD camera coupled to a phosphor screen or a direct electron 

detector (DED). The data collected for each field-of-view (FOV), a discretised grey-scale image of a 

magnified region, is called a micrograph. Until several years ago, photographic film was the most 

commonly used detector system for cryo-EM. The exposed film had to be taken out of the vacuum of 

the microscope and scanned for conversion to digital images. CCD detectors were also designed to 

create electron micrographs, which enabled software to acquire data automatically (Mastronarde, 2003). 

But the internal conversions (from electron to photon signals, and back again) of CCD-based electron 

detectors lower the detection quantum efficiency (DQE) (Dobbins et al., 1995), which is the ratio of 

output and input squared signal-to-noise ratios (SNRs) for all spatial frequencies. Recently, direct 

electron detectors (DEDs) have enhanced the image quality and contributed to the recent resolution 

revolution in cryo-EM. In the so-called integrating mode, electrons build up charges inside each pixel 

during the imaging process of each micrograph (Bichsel, 1988). However, electrons not only partially 

damage the specimen, but also cause the individual particles to move within their field-of-view (Brilot 

et al., 2012). Such beam-induced motions can be partially corrected during data processing if fractional 
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doses of electrons are recorded for every field-of-view during imaging (Scheres, 2014). In counting 

mode, latest electronics allow DEDs to detect individual electrons, leading to even higher DQEs and 

better images (McMullan et al., 2009; Bai et al., 2015).  

The formed micrographs collected from the microscope contain numerous 2D images of protein 

particles enclosed in the thin ice layer. The 2D experimental image of a particle can be conceptually 

considered as an integral of Coulomb scattering potential of the specimen along the direction of the 

incoming electron beam, or an approximated 2D projection of the 3D particle (Vulović, 2014). Since 

the signal-to-noise ratios are extremely low due to limited electron doses, a large number (>104 or 105) 

of 2D experimental images of the same molecules are usually collected for single-particle data analysis. 

1.3 Single-particle analysis and electron tomography 

Images of individual particles can be extracted from the micrographs. The central slice theorem provides 

a theoretical foundation for recovering a 3D object according to its 2D projections from different 

directions (Midgley and Weyland, 2003). It states that the Fourier transform (FT) of a 2D projection 

corresponds to a slice through the centre of the Fourier transform of the 3D object, and the direction of 

the projection is orthogonal to this central slice. In cryo-EM single-particle analysis, a large number of 

2D projections of individual 3D objects are imaged across different fields-of-view. The 2D projections 

can be inserted back into the 3D Fourier space correctly if their relative orientations are known. 

Subsequently, the 3D object can be recovered by the inverse Fourier transform (IFT), provided that 

sufficient orientations are sampled so that they leave no empty regions in the entire 3D Fourier space 

(figure 1.7). 
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Figure 1.7. Basic concepts of 3D reconstruction in cryo-EM. Central slice theorem is described in (A). 

Reconstruction algorithm projects the low-passed 3D reference at various orientations (B). Experimental particles 

are matched with the generated projections (C) and their missing orientations are recovered. According to central 

slice theorem, 2D experimental images are inserted into 3D Fourier space (D) followed by a Fourier inversion (E) 

(adapted from Nogales and Scheres, 2015). 

Cryo-electron tomography (cryo-ET) is another technique to reveal the structural details of a 3D object 

(Frank, 2013). Non-repetitive samples of unique 3D objects can be imaged and reconstructed using 

electron tomography whereas a large number of identical 3D structures must be collected and aligned 

for single-particle reconstructions. As is shown in figure 1.8, in tomography, a specimen with one 

protein particle in the centre is mounted onto a tilting stage and a series of images are collected at 

various tilt angles with respect to the electron beam direction. Tilt angles of the stage are limited to 

±~70° since the specimen becomes considerably thicker along the beam direction at high tilts and 

therefore blocks electrons for effective image formation. Similar to single-particle analysis, images 

collected from tilt series are 2D projections of the particle at different orientations so they can be 

inserted back into the 3D Fourier space according to the central slice theorem. The absence of high-tilt 

(>±70°) images unavoidably leaves missing wedges in Fourier-space reconstructed tomograms. 

Furthermore, if inside the tomogram there exist multiple copies of the same particles rather than one, 

they can be picked and extracted as smaller 3D boxes called sub-tomograms. Subsequently, 3D 

reconstructions of the particle could be performed through sub-tomogram averaging. 
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Figure 1.8. Data collection and tomogram reconstruction in cryo-ET. (a) Cryo-holder stage is tilted from           

-70° to +70° at equal intervals. (b) A series of tilted frames are recorded using a CCD camera. (c) Tomogram 

reconstruction using back-projection algorithm (adapted from Steven and Aebi, 2003). 

Cryo-ET is able to elucidate sub-cellular structures. It can provide images of structures in vivo within 

cells, which is a great advantage compared to single-particle cryo-EM and X-ray crystallography where 

samples have to be in vitro and in highly ordered crystalline states respectively. Although cryo-ET 

reconstructions often suffer from uncorrected fluid movements, high radiation damage, and extremely 

low image contrast in individual tilting frames, recent technical developments demonstrate that it is 

possible to reach near atomic resolution using cryo-ET and sub-tomogram averaging (Hagen et al., 

2017). 

1.4 The reconstruction algorithm in RELION 

Many packages for cryo-EM single-particle analysis exist, such as SPIDER (Frank et al., 1996), 

IMAGIC (van Heel et al., 1996), IMOD (Kremer et al., 1996), XMIPP (Sorzano et al., 2004), SPARX 

(Hohn et al., 2007), EMAN2 (Tang et al., 2007), Bsoft (Heymann and Belnap, 2007), FREALIGN 
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(Lyumkis et al., 2013), etc. This PhD project is performed within the framework of RELION (Scheres, 

2012). 

 

Figure 1.9. Usage trends for a selection of major EM software packages up to the year 2016. More than one 

package may have been used in the same experiment (adapted from Patwardhan, 2017). 

RELION (REgularised LIkelihood OptimisatioN) is a standalone C++ software package that provides 

a workflow for cryo-EM single-particle analysis and sub-tomogram averaging (Scheres, 2012). It 

employs an empirical Bayesian statistical framework that infers many model parameters from 

experimental data (figure 1.10). The framework therefore minimises user intervention in fine tuning ad 

hoc parameters and still delivers high-quality reconstructions with low risks of over-fitting. RELION 

has contributed to the resolution revolution of cryo-EM in recent years, yielding more high-resolution 

structures than any other existing package in the field (figure 1.9). 
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Figure 1.10. A schematic interpretation of RELION approach (adapted from Scheres, 2012). 

The image formation model in RELION is based on a weak-phase object approximation: an 

experimental 2D image is taken as the integral of the electron scattering potentials along the direction 

of projection. In Fourier-space, it assumes: 

𝑋𝑖 = 𝐶𝑇𝐹𝑖 ∙ 𝑃𝑖
Φ𝑉 + 𝑁𝑖 

The 3D reference (the underlying 3D signal) and the experimental 2D images have the same box size 

in real-space and they are transformed into V and Xis in Fourier-space respectively. Pi
Φ is the operator 

which extracts the ith 2D noise-free slice Pi
ΦV according to the relative orientations Φ in Fourier-space. 

CTFi is the 2D contrast transfer function of the ith experimental image Xi. Multiplication of CTF with 

the projection in Fourier space is equivalent to convolution with the imaging point spread function 

(PSF) in real-space. Ni is a 2D complex plane of Gaussian distributed noise (with each pixel filled with 

an independent random complex number drawn from a Gaussian distribution). The signal-to-noise 

levels are usually lower at higher spatial frequencies. 

The goal of 3D structure determination can be seen as the inverse process of image formation, to find 

the best V given a set of experimental images Xi. For this purpose, RELION optimises (maximises) a 

single target function – the posterior probability P(Θ|X, Y) of finding the model with parameter set Θ 

given observed data Xis and the prior information Y, according to Bayes’ Law: 

𝑃(Θ|𝑋, 𝑌) ∝ 𝑃(𝑋|Θ, 𝑌) ∙ 𝑃(Θ|𝑌) 

Where the likelihood P(X|Θ, Y) denotes the probability of the observed data given the model, prior 

P(Θ|Y) quantifies the likeliness of the model given the prior. P(X|Θ, Y) is called the maximum a 
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posteriori (MAP) estimate. The MAP estimator can be seen as the maximum likelihood (ML) estimator 

regularised by incorporated prior information Y. In RELION, Y expresses the expectation that the 3D 

signal is relatively smooth in real-space, i.e. the signal has limited power spectra in terms of intensities 

in Fourier-space. The prior is defined as: 

𝑃(𝛩|𝑌) = ∏
1

2𝜋𝜏𝑙
2 exp(

|𝑉𝑙|2

−2𝜏𝑙
2)

𝐿

𝑙=1

 

where Vl is the lth component of the 3D Fourier transform V of the underlying structure and τl
2 denotes 

the power spectra of signals of Vl. The electron scattering potentials of protein particles are continuous 

in real-space so the Fourier transform of such structures does not contain large coefficients at high 

spatial frequencies. Cryo-EM 3D reconstructions need such prior information because structures cannot 

be completely recovered from the noisy experimental images due to scarcity of information caused by 

extremely low signal-to-noise ratios at high spatial frequencies. Mathematically, this problem is 

considered ill-posed, where multiple models explain the experimental data equally well. Intuitively, the 

prior complements the scarce experimental data and thereby somewhat alleviates the ill-posed problem. 

The likelihood (evidence) of the ith experimental image Xi is calculated by comparison with computer-

generated projections of reference V given the image’s resolution-dependent noise spectra σi
2, CTF 

information and relative orientations Φ. 

𝑃(𝑋𝑖|𝜙, 𝛩, 𝑌) = ∏
1

2𝜋𝜎𝑖𝑗
2 exp(

|𝑋𝑖𝑗 − 𝐶𝑇𝐹𝑖𝑗 ∙ 𝑃𝑖𝑗
Φ𝑉|

2

−2𝜎𝑖𝑗
2 )

𝐽

𝑗=1

 

Where Xij is the jth component of the 2D Fourier transform of the image Xi. The relative orientations Φ 

for all experimental 2D projections are not observed during the imaging process. RELION marginalises 

over all possible values of Φ’ to calculate the marginal likelihood of observing the ith image Xi: 

𝑃(𝑋𝑖|Θ, 𝑌) = ∫ 𝑃(𝑋𝑖|𝜙′, Θ, 𝑌) ∙ 𝑃(𝜙′|Θ, 𝑌)𝑑𝜙′

𝑎𝑙𝑙 𝜙′
 

RELION incorporates MAP estimation into the expectation-maximisation (EM) algorithm (Dempster 

et al., 1977). This iterative algorithm performs two steps (E, M) alternately, recovering and making 

better estimations of missing orientations progressively given noisy images. In each iteration during the 

E-step, the algorithm calculates the posterior probability ΓiΦ of all orientations (Φ) given an 

experimental images Xi and the current model parameters Θ(n): 

𝛤𝑖𝛷
(𝑛)

=
𝑃(𝑋𝑖|𝜙, Θ(𝑛), 𝑌) ∙ 𝑃(𝜙|Θ(𝑛), 𝑌)

∫ 𝑃(𝑋𝑖|𝜙′, Θ(𝑛), 𝑌) ∙ 𝑃(𝜙′|Θ(𝑛), 𝑌)𝑑𝜙′
𝑎𝑙𝑙 𝜙′
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Where n is the iteration number. The experimental images are contaminated with high level of noise 

due to strictly limited electron dose applied to the specimen to reduce radiation damage. Compared to 

approaches based on simple cross-correlation, marginalisation improves 3D reconstructions by giving 

more freedom for the orientations to change, in particular during the early stages of optimisation at low 

resolution, instead of fixing the orientations at some bad estimations too early and consequently 

deteriorating the 3D reference. Generally, the posterior distributions of orientations become sharper as 

reconstructions progress. Moreover, other hidden variables, such as the class assignment K for each 

image in classification tasks, are also marginalised together with relative orientations Φ.  

During the maximisation (M) step, one maximises the lower-bound of the posterior distributions of all 

the experimental projections Xis with prior information to produce an updated model for the next 

iteration. The model Θ includes the 3D Fourier transform V of the underlying structure, and the power 

spectra of both signal (τ2) and noise (σ2) of V (thus τ and σ enable the estimation of signal-to-noise ratios 

at all Fourier components).  

𝑉𝑙
(𝑛+1)

=

∑ ∫ 𝛤𝑖𝛷
(𝑛)

∑ (𝑃𝑖𝑗
Φ)𝑇 𝐶𝑇𝐹𝑖𝑗 ∙ 𝑋𝑖𝑗

𝜎𝑖𝑗
2  (𝑛)

𝐽
𝑗=1 𝑑𝜙

𝑎𝑙𝑙 𝜙
𝑁
𝑖=1

∑ ∫ 𝛤𝑖𝛷
(𝑛) ∑ (𝑃𝑖𝑗

Φ)𝑇
𝐶𝑇𝐹𝑖𝑗

2

𝜎𝑖𝑗
2  (𝑛)

𝐽
𝑗=1 𝑑𝜙

𝑎𝑙𝑙 𝜙
𝑁
𝑖=1 +

1

𝜏𝑙
2  (𝑛)

 

𝜏𝑙
2  (𝑛+1)

=
1

2
|𝑉𝑙

(𝑛+1)
|
2

, 𝜎𝑖𝑗
2  (𝑛+1)

=
1

2
∫ 𝛤𝑖𝛷

(𝑛)
|𝑋𝑖𝑗 − 𝐶𝑇𝐹𝑖𝑗 ∙ 𝑃𝑖𝑗

Φ𝑉𝑙
(𝑛)

|
2

𝑑𝜙
𝑎𝑙𝑙 𝜙

 

The updating scheme for V also behaves like a Wiener-filter (MacKay, 2003, pages 549-551), which 

corrects for the CTF and produces a low-pass filter that yields the least noisy map. The iterations are 

repeated until a user-specified number of iterations is reached or changes in both V and the most likely 

orientations become sufficiently small. 

The expectation-maximisation (EM) algorithm has been implemented in multiple types of 

reconstructions. In 2D/3D classifications, the class tag K of each experimental particle is an additional 

hidden variable marginalised, together with the missing orientations Φ. Initially in reference-free 2D 

classifications, images are randomly distributed among a user-defined total number of classes K and 

initial 2D references for all classes are constructed through averaging from randomly oriented particles. 

MAP-EM is a local optimiser that can get stuck in local minima if the initial reference V(0) deviates too 

much from the true underlying structures. In 3D classification, a user-defined initial 3D reference is 

required for all classes since 3D reconstructions are more prone to convergence problems than 2D 

classifications. 3D initial models can be built from homologous structures, random conical tilt 

reconstructions (Radermacher et al., 1987), common line-based approaches (Van Heel, 1987), 

probabilistic projection matching (Penczek et al., 1994) and stochastic hill climbing (Elmlund et al., 
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2013). More recently, stochastic gradient descent has been developed to ameliorate convergence 

problems with MAP estimation in cryo-EM single particle analysis (Punjani et al., 2017). In 3D auto-

refinements, there is always only one class (K = 1) but the experimental data set is split randomly into 

two half-sets and reconstructed independently. Resolutions are estimated via the gold-standard FSC 

between the two halves (Scheres and Chen, 2012) and the two reconstructions are combined eventually 

to yield the final results. Moreover, optimal angular and translational sampling rates are estimated 

automatically across iterations of 3D auto-refinements according to the resolutions and the changes of 

hidden variables. The EM algorithm has also been adapted for 3D classifications/refinements of 3D 

sub-tomogram experimental data sets (Bharat et al., 2015). 

Apart from the main reconstruction algorithm implemented in RELION for 2D and 3D reconstructions, 

it also comprises of a number of surrounding data processing tools, such as wrappers to other programs 

for motion correction and CTF estimation, programs for particle extraction and sorting, movie data 

processing, post-processing and local resolution estimation, along with a graphic user interface (GUI, 

figure 1.11) designed for setting up pipelining jobs (Fernandez-Leiro and Scheres, 2017). It thereby 

provides a general package for data-processing in cryo-EM single-particle analysis and sub-tomogram 

averaging.  
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Figure 1.11. Graphic user interface (GUI) of RELION 2.1-beta. The upper half of the GUI consists of a job-

type list and parameter tabs. Pipelining settings are shown in the middle. The bottom panels are for standard and 

error output of a selected job. 

1.5 Helical assemblies 

Helical assemblies of proteins are widely present and they perform vital functions in all types of 

organisms. For example, cytoskeleton filaments in archaea and eukaryotes are assembled into helical 

lattices with globular proteins (figure 1.12A, Holmes, 2009). Examples of extra-cellular helical fibres 

include flagella and pili, which provide structural foundations for bacterial movements (Diaz et al., 

2010). Proteins such as RecA in bacteria (Hegner et al., 1999) or Rad51 in eukaryotes (Short et al., 
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2016), which are related to DNA repair using homologous recombination, form into helical 

arrangements around nucleotide strands (figure 1.12D, Egelman, 2015). In addition, helical assemblies 

may also be involved in pathologies. For instance, sickle-cell haemoglobin (May and Heuhns, 1976) or 

amyloid formation (Sunde et al., 1997) occur when proteins undergo aberrant helical polymerization. 

Many viruses and bacteriophages either have helical coat proteins or helical components, such as 

nucleocapsids (Egelman, 1989) or tails (De Rosier and Klug, 1968; DeRosier and Moore, 1970). Apart 

from the naturally occurring helices, some membrane proteins can be induced to form helical lattices 

(curled 2D crystals) in vitro under certain conditions (Pomfret et al., 2007; Yamaguchi et al., 2010), for 

example, the acetyl-choline receptors (AChR) tubes (figure 1.12B, Unwin, 2017). 

The ubiquity of helical assemblies might arise from a general packing rule. If any two molecules can 

form a specific packing interface which does not involve point group symmetry, a third molecule can 

be added so that interactions between the 1st and 2nd molecules are the same as the 2nd and 3rd. A helix 

can then be formed by repeated packing of new subunits along a single direction, i.e. the helical axis 

(Egelman, 2007). In addition, helices may also consist of multiple types of similarly shaped but different 

proteins (e.g. 13- and 4-microtubules, Nogales and Zhang, 2016; Deng et al., 2017) and other molecules 

might decorate the surfaces (both inner and outer) of helical lattices asymmetrically (e.g. figure 1.12C, 

doublet microtubules, Ichikawa, 2017). 
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Figure 1.12. Examples of helical assemblies. (A) Cryo-EM density map of F-actin (adapted from Dominguez 

and Holmes, 2011). (B) Cryo-EM density map of AChR tube (adapted from Unwin, 2017) and PDB model of the 

constituent AChR subunits (side and top views) (adapted from Akabas, 2011). (C) Cryo-EM density map of 

doublet microtubule (side and top views, adapted from Ichikawa, 2017). (D) BRCA2 (green) assists with the 

assembly of the Rad51 (blue) helical filament around damaged DNA (red) (adapted from PDB-101: RecA and 

Rad51, http://pdb101.rcsb.org/motm/172). 

http://pdb101.rcsb.org/motm/172
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The first biological molecular structure elucidated by 3D electron microscopy (3D-EM) was a helical 

object, the extended tail of T4 bacteriophage (figure 1.13, De Rosier and Klug, 1968; DeRosier and 

Moore, 1970; Zheng et al., 2017). Helical symmetry makes it an easy target compared to asymmetrical 

molecules since a single projection of a helical object contains multiple views of the structure with 

sufficient information for a complete 3D reconstruction. In principle, the total number of parameters 

required to be determined for a helical reconstruction is significantly reduced compared to analysis of 

single-particles with no or only simple symmetry. For example, the orientations needed to be recovered 

for single-particle images (projections) are all independent, whereas repeating asymmetrical subunits 

in a helical assembly have relative orientations fixed by helical symmetry. Thus, given the correct 

helical symmetry, the noise levels of input images can be brought down significantly by averaging a 

huge number of asymmetrical subunits during helical reconstructions. In addition, helical 

reconstructions rarely suffer from preferred orientation problem since the slowly twisting assemblies 

typically lie flat on the specimen support and hence represent a 360° range of views (except for the 

cases of pseudo-helices where helical twists = 0°). Currently, helical assemblies make up ~7% entries 

of all the determined structures in the Electron Microscopy Database (EMDB, Patwardhan, 2017).  

 

Figure 1.13. The cryo-EM structure of the extended tail of T4 bacteriophage. (A) 3D reconstruction of the 

extended tail of T4 bacteriophage at a resolution of ~35 Å by De Rosier and Klug, 1968. (From left to right) 

electron micrograph of bacteriophage T4 tail (negative stained with uranyl formate, 50,000×); optical diffraction 

pattern; side-view of 3D reconstructed model (tilted forward). (B) 3D reconstruction of the same target at 3.4 Å 

resolution by Zheng et al., 2017. (From left to right) a representative motion-corrected micrograph; averaged 
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diffraction pattern from 26,320 overlapping tube segments; side-views of the 3D reconstructed map; top-view of 

the atomic model. 

1.6 Helical symmetry 

There are many ways to describe the symmetry of helical assemblies. A schematic plot of the simplest 

1-start (strand) helix is given in figure 1.14B. Helical twist and rise are the most widely used terms. 

Helical twist (Δϕ) is the azimuthal angle between neighbouring subunits. By convention, values are in 

degrees and plus and minus signs denotes right- and left-handedness respectively. Helical rise (Δz) is 

the translation along helical axis between two neighbouring subunits. The values of rise are in 

Angstroms and always positive. 

 

Figure 1.14. Helical parameters for a simple 1-start right-handed helix. (A) shows a continuous helical curve 

defined by radius (r) and pitch (P). (B) shows a 1-start helical assembly with twist Δϕ = +45° and rise Δz. Repeat 

distance of (B) is the same as its pitch since there are exactly 360° / 45° = 8 subunits in a pitch. Generally, repeat 

(R) is N × pitch for a 1-start helix, where N is the smallest positive integer that makes N × 360° / twist an integer 

(adapted from Diaz et al., 2010). 

The formation of helices can be considered in at least two ways. Simple 1-start helices are formed by 

rotations and translations of one subunit onto all positions determined by helical twist and rise. 

Moreover, helices can be seen as curled up 2D lattices according to pairs of base vectors. Figure 1.15 

shows such schematic plots of more complicated, n-start helices. 



Chapter 1: Introduction 

~ 20 ~ 

 

 

Figure 1.15. The formation of helices from a 2D surface lattice. Two pairs (red and green) of base vectors 

(solid and dashed) are shown in (A). Helices with different symmetries are formed in (B) although they come 

from the same surface lattice (A). Start number can be arbitrary for a complicated helical lattice like this. For 

example, right-handed 1- (blue) and 10-start (yellow) are prominent in helix on the left in (B). While left-handed 

4-start (blue) and right-handed 8-start (yellow) seem prominent in helix on the right in (B) (adapted from Diaz et 

al., 2010). 

Helical twist and rise are the same across all strands in an n-start helix. The simple 1-start helix shown 

in figure 1.14B consists of one strand without ambiguity. However, more complicated helical lattices 

in figure 1.15 may have strands (start numbers) defined arbitrarily and each start number leads to a set 

of different helical twist and rise. To avoid confusion, an approach is adopted to convert any n-start C1 

helix into an equivalent 1-start symmetry representation in section 2.2.1. 

Two other terms, repeat and pitch, are also useful in explaining helical symmetry. Helical repeat (R in 

figure 1.14B) is the smallest distance from one subunit to the next which is exactly in register with the 

first one along the helical axis. According to this definition, an arbitrarily long helix can be seen as 

helical repeats piling up along the helical axis. For complicated helical lattices, helical repeat may span 

thousands of Angstroms. Helical pitch (P in figure 1.14A) is the smallest distance from one point to the 

next in register along the helical axis on its own helical strand. Pitch is defined on a continuous helical 

curve thus it is irrelevant to the actual positions of constituent protein subunits. Given the helical twist 

and rise on this strand, the pitch must be rise × 360° / twist. Consequently, helical repeat distance must 

be an integer multiple of the helical pitch. 

1.7 Fourier-Bessel method for 3D helical reconstruction 

The field of 3D reconstructions of helical assemblies has long been dominated by the Fourier-Bessel 

method, where the analysis of helical symmetry and calculation of helical density maps are both 

performed in Fourier-space. The initial mathematical analysis of the Fourier transform of helical objects 

was conducted by Cochran et al., 1952. Klug et al., 1958 further researched into the theory of diffraction 
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patterns of helical structures. The formation of helical diffraction patterns (figure 1.16f) can be generally 

explained as a convolution of two discrete functions (figure 1.16de) in Fourier-space.  

 

Figure 1.16. The schematic diagram of the formation of helical diffraction patterns. In real-space, a helical 

object consisting of protein subunits (c) can be conceptually considered as continuous helical densities (a) 

multiplied by an equally sampled function (b). Therefore, helical diffraction pattern (f) arises from a convolution 

of (d) and (e) which are the Fourier transforms of (a) and (b) respectively (adapted from Stewart, 1988). 

The Fourier-Bessel method starts from the inspections of 2D Fourier-space diffraction patterns of 

helical filaments. Long filaments are often rotated, straightened and averaged together during data pre-

processing in order to generate more discernible diffraction signals. As the formation of a helix can be 

conceptually understood as a curled up 2D surface lattice (figure 1.15), the effect of curling results in a 

convolution of a 2D surface lattice with the Bessel functions, a series of cylindrical harmonics, in 

Fourier space (the lower half of figure 1.16). Fourier transform of a 3D helical object shows radially 

oscillating amplitudes on some of the Z-axial planes. Thereby, according to the central slice theorem, 

these ring-like Fourier coefficients in 3D lead to symmetrical maxima across the meridian of every layer 

line in the Fourier transformations of 2D projections. First-order maxima on all discernible layer lines 

(except for the equator) are marked and separated into two symmetrical sets of points, corresponding to 
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the near and far side of the curled helical lattice in real-space (figure 1.17). Fourier-Bessel indexing 

assigns integers to first-order maxima according to their distance to the meridian, the layer lines they 

belong to and the actual width of the helical object in real-space (figure 1.18). Helical symmetry can be 

subsequently deduced, and a full 3D reconstruction of the object can be calculated by Fourier synthesis 

given the correct indexing scheme. The general procedure of Fourier-Bessel indexing and deductions 

of helical symmetry will be discussed in details in section 2.4.3. 

 

Figure 1.17. The helical diffraction pattern can be separated into two lattices, which corresponds to near 

and far sides of the helix in real-space. (a) shows a 2D projection of helical filament. (b) is the projection of 

only the near side. (c) and (d) are the Fourier transform amplitudes of (a) and (b) respectively. (c) can be 

decomposed into near and far side lattices - (d) and reflected (d) across the meridian. Points of first-order 

maximum on each layer line are marked with yellow arrows in the upper half of (c) (adapted from Stewart, 1988). 
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Figure 1.18. Bessel functions and Fourier transform of helical assemblies. (b) shows part of the Fourier 

transform phase information of a 3D helix on layer planes n = 0, 1, 2, where radially oscillating phases arising 

from Bessel functions are shown in rainbow colours. Diffraction pattern (a) can be seen as a 2D central slice from 

(b). (c) shows some of the amplitudes of Bessel functions of different orders (0-4), where the X positions of first-

order maxima stretch out with increasing orders (adapted from Diaz et al., 2010). 

The MRC image processing package developed at LMB contains several routines for Fourier-Bessel 

analysis (Crowther et al., 1996). The routines have also been adapted by other packages such as 

Brandeis Helical Package (Owen et al., 1996), Phoelix (Whittaker et al., 1995) and Ruby-Helix 

(Metlagel et al., 2007).  

Fourier-Bessel analysis requires user expertise and experience, as the procedure of indexing is prone to 

errors, especially when the filaments are distorted by bending, tilting, skewing, flattening and other 

effects of short-range disorders. A mixture of slightly changing symmetry parameters along the 

filaments may further blur the diffraction patterns. Wrong indexing schemes lead to incorrect 3D 

reconstructions which might be hard to distinguish from the true structures at low resolutions. In 

addition, some helices do not show any separable layer lines in diffraction patterns, perhaps due to 

image quality, intrinsic properties of the surface lattice or extremely long repeat distances, making the 

Fourier-Bessel method infeasible to reveal their structures. Consequently, the Fourier-Bessel method 

yields the best results when the examined filaments have close-to-perfect helical symmetry. Despite of 

the drawbacks, Fourier-Bessel analysis is still considered as an important method for the initial 

estimation of helical symmetry prior to single-particle helical reconstruction. 

1.8 Iterative helical real-space reconstruction algorithm 

Beroukhim and Unwin, 1997 firstly introduced the idea of cutting helical filaments into short segments 

for alignments against a 3D reference during Fourier-Bessel reconstructions of AChR filaments. An 

alternative to Fourier-Bessel analysis, iterative helical real-space reconstruction (IHRSR) algorithm 

(Egelman, 2000), also adopts this idea of segmentation. In this robust approach, overlapping square 
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boxes are extracted at equal intervals along all helical filaments on the micrographs so that the same 

iterative algorithms in single-particle analysis can also be adapted to 3D helical reconstructions. 

As is shown in figure 1.19, each iteration starts with projection matching, where side-view projections 

of an initial 3D reference are compared with overlapping 2D segments extracted along helical filaments 

from experimental micrographs by cross-correlations. After the optimal in-plane rotations, azimuthal 

angles and x, y shifts are found according to the highest cross-correlation, the aligned segments are 

back-projected into an asymmetric 3D volume. This algorithm is closely related to the EM 

reconstruction algorithm described in section 1.4, but without any statistical noise model or 

marginalisation of missing variables. The helical twist and rise are estimated locally by least-square 

fitting given their initial values, the 3D volume densities, user-defined search ranges and steps. The 

refined helical symmetry is subsequently imposed in real-space in order to generate a helically 

symmetric map as the reference for the next cycle. For favourable cases, correct structures can be 

reconstructed iteratively starting from featureless cylinders as initial references using this algorithm. 

This approach avoids some of the aforementioned difficulties in Fourier-Bessel analysis, reduces human 

intervention and allows the reconstructions of more flexible and bending helices by reducing the effects 

introduced by long-range disorders. This approach was first incorporated into the SPIDER package 

(Frank et al., 1996). 

 

Figure 1.19. An iteration of the original IHRSR algorithm (adapted from Egelman, 2007). 

More recent implementations of single-particle based approaches to helical processing also include 

FREALIGN (Lyumkis et al., 2013), SPARX (Behrmann et al., 2012), FREALIX (Rohou and Grigorieff, 

2014) and SPRING (Desfosses et al., 2014). Single-particle based approaches have recently yielded 

multiple filament structures at near-atomic resolution (Lu et al., 2014; von der Echen et al., 2015; Ge et 

al., 2015; Zhang et al., 2015). 
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2 IMPLEMENTED 

ALGORITHMS IN SINGLE-

PARTICLE HELICAL 

RECONSTRUCTIONS 

2.1 Workflow of helical processing 

The general workflow of helical processing in RELION (figure 2.1) is adapted from that of the ordinary 

single-particle analysis. All the implemented methods are discussed in more details in the following 

sections of this chapter. 
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Figure 2.1. General helical processing workflow in RELION. Processing steps denoted with dashed boxes 

might not be necessary under certain circumstances. Arrows denote some possible sequences of steps for various 

types of data sets. 

Usually, the first step of helical processing is to figure out the helical symmetry using whatever prior 

information, knowledge or measures possible. The workflow can still proceed starting with a featureless 

cylinder if the guess of symmetry cannot be made at all at the beginning (the method of which will be 

described in section 2.2.9). But the user is recommended to repeat part of the workflow once the 

symmetry and related settings are settled. 

Much like in single-particle analysis, movie frames recorded on microscopes equipped with the latest 

detectors (DEDs) need to be corrected for beam-induced motions, realigned and averaged to produce 

still micrographs using RELION wrappers to UNBLUR (Grant and Grigorieff, 2015) or 

MOTIONCOR/2 (Li et al., 2013; Zheng et al., 2017). Averaged or directly collected still micrographs 

are then subject to CTF estimations with GCTF (Zhang, 2016) or CTFFIND3/4 (Rohou and Grigorieff, 

2015). Based on the conventional CTF correction, Russo and Henderson (2018) has recently improved 

a single-sideband CTF correction algorithm to deal with the approximately Friedel-related diffraction 

patterns in underfocuesed images (also refer to section 6 and figure 6.1). 

Then, coordinates are picked along helical filaments. In RELION, segment picking can be done either 

manually by specifying start and end points of filaments or semi-automatically using pre-made 2D class 

averages as templates. It is also possible to import filament/segment coordinates from other packages, 

such as e2HelixBoxer (Tang et al., 2007) and XIMDISP (Smith, 1999). Angular priors are determined 

from the orientations of the filaments specified on the micrographs and stored in the STAR format files 

(Hall, 1991) that also contain the picked coordinates. 

Subsequently, normalised helical segments are extracted at all picked coordinates using a user-defined 

box size and inter-box distance. The latter is a user-defined multiple (i.e. the number of asymmetrical 

units, H, a positive integer) of the estimated helical rise. 

2D classifications are often performed to separate false positives, e.g. bending segments or other 

abnormalities, from the high-quality segments in the picking results. It might also separate segments 

with different widths or diffraction patterns. Multiple rounds of 2D classifications are recommended if 

the picked data set is highly heterogeneous. 

An initial 3D refinement should be set up with the cleaned data set. For some cases, high resolution 

structures can already be reconstructed at the first attempts. For others, the user might find out additional 

point group symmetry or the presence of hollow centres in the structures. New knowledge learnt can 

benefit further analysis with 3D classifications, which have the potential to separate and reconstruct 

helices of different properties. 
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If the input data are movies, movie refinement (Bai et al., 2013) and particle polishing (Scheres, 2014) 

enable tracking of the movement of individual helical segments on a series of movie frames. The above 

steps also estimate the radiation damage during the imaging of the movie stacks and write out B-factor 

sharpened segments as motion-corrected, weighted averages. These polished segments can be used as 

input for further 3D classification or refinement jobs. 

Given the final results of refinement and a soft-edged binary mask as input, post-processing performs 

B-factor sharpening (Rosenthal and Henderson, 2003) and estimates the true overall resolution of the 

structure where noisy solvent parts are taken into account by Fourier-shell correlations between phase 

randomised and masked half-maps (Chen et al., 2013). 

In the following sections, the most important implemented methods are described in details. 

2.2 Implemented methods 

2.2.1 Definition of helical symmetry 

The helical axis is always the z axis of 3D density maps in RELION. To provide unique and 

unambiguous definitions for helices in general, the implementation in RELION makes use of two 

parameters, helical twist (Δϕ) and rise (Δz). Therefore, for every position (r, ϕ, z) in 3D real-space under 

cylindrical coordinate system, with the 3D volume V, radial distance r, azimuth angle ϕ, height z: 

𝑉(𝑟, 𝜙, 𝑧) = 𝑉(𝑟, 𝜙 + 𝑘Δ𝜙, 𝑧 + 𝑘Δ𝑧), −180° < Δ𝜙 < +180°, Δ𝑧 > 0, 𝑘 ∈ ℕ 

The above relationship holds when the object is perfectly helical and continuous (i.e. interpolation errors 

introduced by voxel samplings are ignored). 

In addition to helical symmetry, point group symmetry may also exist in some helices. Cn-symmetry (n 

≥ 2) means the helix is n-fold rotationally symmetrical around the helical axis. Cn helices consist of n 

parallel strands, the subunits of which always appear at the same height z along the helical axis. Dn-

symmetry (n ≥ 1) is present when all the constituent subunits in a helix have dyad axes, which means 

the subunits are centrosymmetric (for example, the AChR subunits shown in figure 1.12B). This gives 

rise to an additional 2-fold rotational axis perpendicular to the helical axis for the structure as a whole. 

Thus, Dn helices lack polarities.  

Due to distinct molecular shape and packing of subunits, some helices may be more conveniently 

interpreted as n-start structures even if Cn-symmetry is absent. In such cases, the n strands are both 

rotated and translated along the helical axis when assembled into helices. That is to say, for a given 

subunit, there exists no others located at the same height z along the z axis. RELION uses unique 1-

start representations of such structures for consistency (figure 2.2). The conversion from n-start to 1-
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start helical symmetry is possible since the differences in z-axial translations across all the n strands 

must be multiples of risen_start / n in order to keep the helical lattice complete and intact. 

Δ𝑧1 =
Δ𝑧𝑛

𝑛
 , Δ𝜑1 = {

Δ𝜑𝑛 + 360°

𝑛
, Δ𝜑𝑛 ≥ 0

Δ𝜑𝑛 − 360°

𝑛
, Δ𝜑𝑛 < 0

 

Subscripts 1 and n denote helical parameters for transformed 1-start and original n-start representations 

respectively. If the converted Δϕ1 is out of the range of valid twist values, i.e. (-180°, +180°), multiples 

of 360° should be added or reduced. This conversion is mathematically correct, compatible with helices 

of various types and makes the settings in 3D helical reconstructions much easier. However, the new 1-

start representation might change the handedness of the helical lattice. And the new representation does 

not necessarily have intuitive biological significance since neighbouring molecules on the strand might 

not have contacts to each other.  

For example, there are two identical strands in the paired helical filaments (PHF) of tau (figure 5.4). In 

every strand, C-shaped subunits closely interact and are assembled according to the helical twist and 

rise of Δϕ2 = -1.2° and Δz2 = 4.72 Å respectively. To transform such 2-start symmetry into 1-start 

representation, the new rise must be Δz1 = 4.72 Å / 2 = 2.36 Å, and the new twist is calculated as Δϕ1 = 

(-1.2° - 360°) / 2 = -180.6° since each of the single strands is left-handed (Δϕ2 < 0°). Apparently, a twist 

of -180.6° is equivalent to +179.4° (because -180.6° + 360° = +179.4°). The helical symmetry (+179.4°, 

2.36 Å) is used in the final 3D reconstruction of PHF tau (table 5.1 and section 5.4). 



Chapter 2: Implemented Algorithms in Single-Particle Helical Reconstructions 

~ 30 ~ 

 

 

Figure 2.2. Definition of helical symmetry for n-start helices. (A) Example of a 1-start helix with no point 

group symmetry (C1). The 3D helical structure on the left can be ‘unfolded’ into a 2D plot of the z-height against 

the azimuthal angle ϕ on the right. The dots represent the centres of the subunits on the 2D surface lattice. (B) 

Example of a 3-start helix (with no point group symmetry), where instead of using the original twist and rise of 

the individual three strands (in black), RELION expresses the helical symmetry using one third of the original rise 

(in red) (adapted from He and Scheres, 2017). 

2.2.2 Applying helical symmetry in Fourier-space 

As is described in section 1.4, RELION makes use of the estimated signal-to-noise ratios (SNRs) at all 

Fourier frequencies to update the reconstructed volume V in each iteration. In order to employ this 

empirical Bayesian approach, the algorithm requires the number of asymmetric units (H, a positive 
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integer) for the reconstructions. In ordinary single-particle analysis, each experimental 2D image (2D 

projection) contains the information of only one asymmetric unit if point group symmetry is absent 

from the structure. In helical reconstructions of RELION, the inter-box distance, the distance between 

centres of adjacent helical segments extracted, determines the number of asymmetrical units H in each 

new segment. Therefore, the typically used inter-box distances are H times the helical rise. The user 

needs to provide H in each segment for subsequent 3D reconstruction jobs. However, if there is no 

reliable estimation of helical rise at the start of a project, an educated guess, or simply ~10% of the box 

size, might be used as the inter-box distance for the segment extraction. In such cases, H is temporarily 

set to one. Once the helical twist and rise values become clear, re-extractions of all segments with a 

more reasonable inter-box distance and H are necessary for better reconstructions. 

For H = 1, helical reconstructions are the same as ordinary single-particle reconstructions without any 

point group symmetry. For H ≥ 2, the algorithm could insert every experimental 2D projection H times 

into Fourier space, each time rotated and translated by h × twist and h × rise respectively (h = 0, 1, …, 

H - 1). The translations in real-space are actually implemented as phase shifts to all coefficients in 

Fourier space. Other packages, such as FREALIGN (Lyumkis et al., 2013), have already adopted this 

concept of Fourier-space symmetrisation. However, the implementation in RELION firstly inserts each 

original 2D projection only once without any transformations (h = 0), and then it rotates and translates 

the asymmetric 3D volume F0 as a whole, making the solution computationally cheaper (figure 2.3B): 

𝐹𝑠𝑦𝑚 =
∑ 𝑇𝑖∙∆ ∙ 𝑅𝑖∙𝜑 ∙ 𝐹0

𝐻−1
𝑖=0

𝐻
, (𝐻 ≥ 2, 𝐻 ∈ ℕ+) 

Where F0 denotes the accumulated sum of all the aligned experimental 2D projections in Fourier space, 

Fsym the symmetrised map, and Rϕ, TΔ the rotational and translational operators. FREALIX also makes 

use of a similar implementation (Rohou and Grigorieff, 2014). 

In addition, translations of Fourier volumes make coefficients on top of the particle boxes wrapped 

around to the bottom and vice versa. These artefacts mess up densities at both ends of helices. Thereby, 

only the central z slices are kept intact after Fourier space symmetrisation (figure 2.3D). This effect 

imposes a strict upper limit on the inter-box distance at 50% the box size. 
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Figure 2.3. Imposition of helical symmetry in Fourier space. (A) A schematic representation of a helical 

filament with 18 asymmetrical units. (B) Extracted segments with H = 1 (top) or 2 (bottom) per box lead to similar 

reconstructed volumes after symmetrisation in Fourier-space. Fourier-space symmetrisation is not necessary if the 

inter-box distance is one helical rise (H = 1). Otherwise, the reconstructed volume from the helical segments is 

rotated and translated according to the helical symmetry, and summed up in Fourier space. (C) The reconstruction 

of MAVS from manually picked filaments using H = 6. Without Fourier-space symmetrisation, the 6 asymmetrical 

units in each segment box are not averaged. (D) The MAVS reconstruction after Fourier-space symmetrisation. 

The central z sections along the helical axis (within the red box) are averaged over all available asymmetrical 

units. At the top and the bottom of the helix, blurring is caused by artefacts (adapted from He and Scheres, 2017). 

For a given data set, larger values of H result in fewer extracted helical segments, which speeds up 

computation. However, a fixed set of micrographs holds invariant amount of information regardless of 

what inter-box distances are used. Theoretically, different values of H should give rise to identical signal 

and noise power spectra in 3D helical reconstructions after Fourier-space symmetrisation. 

Fourier-space symmetrisation is applied in every iteration of 3D classification and refinement jobs. The 

method is also implemented in a standalone program ‘relion_reconstruct’. The following command 

symmetrises a TMV reconstruction in Fourier-space using H = 30: 

relion_reconstruct –-i TMV.mrc –-nr_helical_asu 30 –-helical_rise 1.408 –-

helical_twist 22.03 –-angpix 1.126 –-o TMVsym.mrc 

2.2.3 Applying helical symmetry in real-space 

There exist other factors blurring the density maps of helical structures in addition to the artefacts 

introduced by Fourier-space symmetrisation. For example, although cut into segments, helices are still 

not perfectly straight even within short spanning ranges. Similar to springs, helices can be locally 

stretched and pressed, resulting in slightly varying twists and rises (and this is not considered as a 

mixture of completely different helical lattices). Other distortions include shears or flattening of the 

helical tubes, which are especially prominent with wide helical tubes. Inaccuracies of alignments also 

blur the whole reconstructions. Most of the factors mentioned above have more smearing effects to the 
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top and bottom densities of the 3D reconstructions compared to the central z slices. Thus, it improves 

the quality of reconstructions to calculate a real-space symmetrised map based on the densities only 

within a number of central z sections: 

𝑉𝑠𝑦𝑚(𝑟, 𝜑, 𝑧) = 𝑉0(𝑟, 𝜑 + 𝑖Δ𝜑, 𝑧 + 𝑖Δ𝑧) = ∑ 𝑉0(𝑟, 𝜑 + 𝑖Δ𝜑, 𝑧 + 𝑖Δ𝑧)

𝑖:−
𝑝𝐷
2

≤𝑧+𝑖∆𝑧≤
𝑝𝐷
2

𝑛(𝑖)⁄ , (𝑖 ∈ ℕ) 

Where V0 is the previous 3D volume symmetrised in Fourier-space according to the number of 

asymmetrical units (H), and Vsym is the real-space symmetrised result. A user-defined percentage value 

p(%) and the box dimension (D) together specify that the central –pD / 2 ~ +pD / 2 z slices are used for 

real-space symmetrisation. n(i) is the number of voxels within the central slices that are used to calculate 

the averaged (symmetrised) voxel value at 3D cylindrical coordinate (r, ϕ, z). The values of i, making 

z + iΔz located inside the central –pD / 2 ~ +pD / 2 z slices, may differ across voxels at various z heights 

in the 3D volume. The equation is equivalent to but computationally cheaper than the operations of 

symmetrising the central slices according to the helical parameters and then spanning the perfect central 

densities to the full length of box size. 

Real-space symmetrisation is applied at every iteration in 3D classification and refinement jobs with 

one exception. Since this symmetrisation has masking effects in real-space, it is not applied to the last 

iteration of 3D refinement jobs where the unfiltered half-maps are compared for gold-standard Fourier-

shell correlations (FSC). The method is also implemented in a standalone program 

‘relion_helix_toolbox’. The following command symmetrises a TMV reconstruction in real-space: 

relion_helix_toolbox --impose --i TMV.mrc --o TMVsym.mrc --

cyl_outer_diameter 200 --angpix 1.126 --rise 1.408 --twist 22.03 --

z_percentage 0.3 

2.2.4 Local searches of helical symmetry in real-space 

The initial helical twist and rise provided by the user, estimated using prior information or Fourier-

Bessel method, might not be accurate enough for high resolution reconstructions. The implementation 

in RELION optionally performs local searches of helical symmetry in real-space before imposition of 

the symmetry in real-space. 

The algorithm performs 2D grid searches and starts with user-defined initial search ranges of helical 

twist and rise along with their customised searching steps (optional). Lower and upper bounds of ranges 

can be set to the same value to enable 1D searches of either twist or rise when appropriate. This could 

be useful as many helices have twist values that are much more stable than rise, since a small change in 

twist might distort the helical lattice remarkably while a small change in rise has limited pulling and 

stretching effects along z axis only. If searching steps are not defined by the user (left as 0 or negative), 
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the algorithm will set <1° and <1% as the step sizes for helical twist and rise respectively. The step 

sizes should also satisfy the condition that ≥5 and ≤1000 samplings are to be searched for either 

parameter. This initial sampling scheme is designed for effective searches at limited computation costs 

for general cases.  

For each sampled symmetry, the algorithm treats the density map as if it conforms to the symmetry 

being tested and calculates the variance between averaged central z sections within a user-defined 

percentage of the box length (p%). Theoretically, the error should be 0 when the tested symmetry fits 

the map perfectly if interpolation errors are ignored. The sampled symmetry with the smallest variance 

is selected as the best candidate for this batch of samplings. 

Once the best symmetry is found given the initial samplings, the algorithm decreases both searching 

step sizes of twist and rise by half. Centred at the most possible symmetry estimated from the last 

attempt, the new searching ranges are set to ±2× the new steps, allowing ≥ 5 × 5 samplings in total. The 

searching ranges are shrunk shorter progressively in further iterations. The algorithm stops and returns 

a refined symmetry when both the step sizes of twist and rise are smaller than the floating-point number 

accuracy (i.e. ~10-5 of a floating-point number). 

The algorithm tries to find the best possible symmetry within the user-defined ranges. However, if in 

any iteration the best symmetry sits at the lower or upper limits given by the user, it is highly likely that 

the true symmetry might be completely different from the initial estimation. In such cases, the algorithm 

outputs a warning message. This out-of-range warning could also appear in early stages of 3D 

refinement jobs, where resolutions are still low and the user has specified tightly confined search ranges 

of helical symmetry. In such cases, it is expected that the warnings should disappear during the later 

stages of reconstructions. 

Helical symmetry is searched independently in each class in 3D classifications. The searches are also 

independent in either of the two half-maps in 3D refinement but the averaged symmetry is used as the 

new estimation for the next iteration. However, the searches are not conducted in the first iterations of 

3D classification and refinement jobs for stability. 

This algorithm is different from the original IHRSR algorithm (Egelman, 2000) in two aspects. Firstly, 

it performs 2D-grid searches if both ranges of twist and rise are provided by the user, while IHRSR 

always searches rise and twist in 1D alternately. Secondly, the implementation in RELION does not 

make any assumptions on the landscape where the local minimum of variance lies and samplings steps 

are adaptively decreased. This is in contrast to IHRSR, which keeps sampling steps fixed and estimates 

the minimum variance and best symmetry by fitting a quadratic function of calculated variances with 

respect to all the sampled symmetry. 
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The method to locally refine helical symmetry is also implemented in a standalone program 

‘relion_helix_toolbox’. The following command searches helical symmetry for TMV within ranges of 

+21° - +23° and 1.3 Å - 1.5 Å for twist and rise respectively and writes out the final results to the screen: 

relion_helix_toolbox --search --i TMV.mrc --cyl_outer_diameter 200 --angpix 

1.126 --rise_min 1.3 --rise_max 1.5 --twist_min 21 --twist_max 23 --

z_percentage 0.3 

2.2.5 2D image masks and 3D reference masks 

Prior to the introduction of helical masks, it is necessary to explain the definition of coordinate system 

in cryo-EM data processing using RELION (figure 2.4). RELION adopts the convention of right-

handed, Cartesian coordinates with right-handed rotations designated as positive (Heymann et al., 

2005). The rotation centre of a 2D or 3D input image is the geometric centre. For example, for a 2D 

image with dimensions of 𝑋𝑑𝑖𝑚 and 𝑌𝑑𝑖𝑚 pixels, the rotation centre is set to the position (⌊𝑋𝑑𝑖𝑚
2

⌋, ⌊𝑌𝑑𝑖𝑚
2

⌋) 

on the 2D grey-scale pixel grid, with (0, 0) representing the 1st pixel on the upper left. For most cases, 

all the 2 or 3 dimensions are equal and in even numbers. The translational offsets (estimated by the 

classification or refinement algorithms described in section 1.4) of individual input images are applied 

before the rotations. The definition of rotations, or the three Euler angles (φ, θ, ψ), is shown in figure 

2.4 (Heymann et al., 2005). Since the helical axis is always the z axis of the density maps of 3D 

references in RELION (section 2.2.1), for each input 2D or 3D image of a helical segment, the 1st angle 

φ (-180°< φ<+180°) denotes the rotation around the helical axis, the 2nd angle (θ − 90o) (0°< θ <180°) 

denotes the out-of-plane tilt (i.e. θ = 0°, 90°, 180° means the top view, the side view with no tilting and 

the bottom view of the helix respectively), and the 3rd Euler angle ψ (-180°< φ <+180°) denotes the in-

plane rotation (for all 3 rotations, the angles are with respect to the 3D reference). 
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Figure 2.4. The definition of orientations. (A) Euler angles. The position of any vector beginning at the origin 

can be described by the angles φ and θ (in this example, φ = θ = 45°). The angle φ is the angle measured in the 

anti-clockwise direction between a projection of the vector r onto the x–y plane and the positive x-axis. (φ is 

analogous to longitude.) The angle θ is the angle between the vector and the positive z-axis. (θ is analogous to 

latitude.) Rotation about the vector is described by the angle ψ (analogous to compass heading). (B) View vector 

and angle. The vector r is the same as the corresponding vector in panel A r is described by coordinates {x, y, z} 

(labeled in black) in each of the three Cartesian axes x, y, z. The view angle (α) is a rotation about r. (C) Rotation 

matrices for Euler angles. A model of a human left hand is used to demonstrate the three angles. As applied in 

rotation matrices, the convention involves three right-handed rotations about successive orthogonal axes: first, 

rotation about z by φ; second, rotation about y’ by θ; and third, rotation about z’’ by ψ. The standard axes {x, y, 

z} are shown in yellow in each frame. The prime, double-prime, and triple-prime axes are shown in green, red, 

and magenta, respectively. Note, when the axis of rotation is pointing at the viewer, the coordinate system is 

rotated anti-clockwise and the object clockwise (adapted from Heymann et al., 2005). 

Helical masks are implemented both for 3D reconstructions and 2D/3D experimental segments. 

Referential masks for 3D reconstructions largely remove background noise in the defined solvent 

regions (figure 2.5B). Structures and masks of helices both span along the entire z axis of 3D segment 

boxes. A cylindrical mask (Mref) is multiplied with the real-space reconstruction map after the 

maximisation step, resulting in a better 3D reference for the next iteration. The user-defined parameter 

Ro is the width of the cylindrical mask and an optional parameter Ri can also be specified if the helical 

structure contains a hollow centre. 

𝑀𝑟𝑒𝑓(𝑟, 𝜙, 𝑧) = {
1, 0 ≤ 𝑅𝑖 < 𝑟 < 𝑅𝑜,  𝑟2 + 𝑧2 < 𝑅2 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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R denotes the radius of the 3D spherical mask which is usually set to 40% - 45% of the segment box 

sizes for 3D helical reconstructions. Evidently, the condition R > Ro > Ri must be satisfied. In addition, 

3-5 pixels of cosine soft-edges with values ranging 0-1 are added around the binary cylindrical mask. 

The significance of masks for 2D/3D experimental segments is twofold. Firstly, they are used to 

determine the mean and standard deviation of background for segment normalisation. And they wipe 

out noise at solvent regions and reduce the effects from neighbouring segments on alignments during 

the expectation step in the EM algorithm. Unlike circular masks in single-particle analysis, masks 

around 2D/3D experimental helical segments are no longer rotationally invariant. These masks are 

rotated according to the spanning directions of helices (i.e. angular priors) estimated through manual or 

template-based auto-picking (figure 2.5A). For each 2D helical segment, the in-plane rotation angle (ψ) 

is arbitrary, and the tilt prior (θ) is always set to 90° (the assumption of perfect side views). 

For each pixel of a 2D segment, its x,y coordinates are rotated back to the same 2D Cartesian coordinate 

system according to angular priors of the segment and the distance from the central axis determine the 

value in the binary mask: 

𝐴2×2 = (
cos 𝜓 sin 𝜓

−sin 𝜓 cos 𝜓
) , 𝑀𝑒𝑥𝑝(𝑥, 𝑦) = {

1, 𝐴2×2
𝑇 (

𝑥

𝑦
) = (

𝑥′

𝑦′) , |𝑦′| < 𝑅𝑜 𝑎𝑛𝑑 𝑥′2
+  𝑦′2

< 𝑅2 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Cosine soft-edges are also applied around the binary masks of the experimental segments.  

Although helical segments always extend across experimental images, circular or spherical components 

of masks are still necessary in removing artefacts at box corners. If signals at the edges and corners of 

the particle boxes are not masked away, rotations or projections of images performed in Fourier-space 

may cause artefacts in real-space as is shown in figure 2.5C-F. In addition, the presence of circular 

components in the masks also enables fair comparisons between experimental images and reference 

projections of the same segment lengths and shapes. 
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Figure 2.5. Masks for 2D experimental images (A) and 3D referential maps (B) and the reduction of real-

space artefacts. Areas of a filament inside the mask are shown in grey, areas outside the mask in white. In panel 

(A), the helical axis runs at 45° with respect to the horizontal direction, which represents an arbitrary in-plane 

rotation angle ψ. The helical (z) axis runs parallel to the vertical direction in (B). Panels (C)-(F) illustrate the need 

for the circular (or spherical) component of these masks. Rotation of an unmasked segment (C) leads to artefacts 

(top and bottom in D), due to wrapping effects caused by rotations in the Fourier domain. The application of a 

circular mask to the original image (E) allows rotation without artefacts (F) (adapted from He and Scheres, 2017). 

2.2.6 Incorporating prior information 

As a statistical data processing framework, RELION has the ability to incorporate prior information 

from experimental data sets to improve the quality of 3D reconstructions. Helical segments come with 

abundant prior knowledge both in orientations and translations, which can be exploited to perform more 

accurate alignments with reduced computation costs. 

Unlike single-particle analysis, simple assumptions on particle orientations can be made for 2D helical 

segments. The initial estimation of such orientation priors are retrieved from manual- or auto-picking 

of helical segments (explained in the next section). Firstly, most helical filaments take approximately 

horizontal positions in thin ice layers. This information is expressed as Gaussian prior probability 

functions initially centred at 90° for tilt angles (θ), with a user-defined standard deviation to account for 

different degrees of tilting within a specific data set (figure 2.6B). A standard deviation of 5° (--

sigma_tilt 5) means that the program will search for ±15° (3σ) around the tilt prior of each segment in 

the first few iterations. The tilt priors are re-centered to the best angles found in the last iteration, unless 

‘--keep_tilt_prior_fixed’ is provided to keep tilt priors fixed always at 90° in the initial global angular 

searching steps. Secondly, directions of filaments on 2D micrographs retrieved from manual or auto-

picking can be expressed by bimodal Gaussian priors of in-plane rotations ψ (figure 2.6C). For helices 

without point group symmetry or with Cn symmetry only, these directional priors have to be bimodal 
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because the polarity of each filament relative to the 3D reference is unknown before alignment. The 

polarities are expected to be resolved during the 3D reconstructions. However, directional priors for Dn 

helices can be set as unimodal since these helices lack polarities. An initial standard deviation (--

sigma_psi X) is required from the user as well to account for the accuracies of in-plane angle (ψ) 

estimations from manual or auto-picking. As the same in single-particle analysis, the standard 

deviations of θ and ψ and their searching steps are both decreased automatically as alignments proceed 

to finer stages. 

In addition, there is additional prior knowledge for Cn helices that all segments coming from the same 

filament must conform to the same polarity. In the implementation, the two opposing components of 

bimodal Gaussian priors have the same weights (50% vs 50%) before the start of a 3D reconstruction. 

As global angular searches progress, segments coming from the same filament may accumulate higher 

probability for one of the two polarities. Assume that for a continuous filament with N segments, x(i) 

segments are found pointing 'upward' with respect to the reference in the ith iteration. Then the weights 

of 'upward' and 'downward' components of bimodal priors in (i+1)th iteration are: 

𝑤𝑢𝑝
(𝑖+1)

=
𝑥(𝑖) + 1

𝑁 + 2
, 𝑤𝑑𝑜𝑤𝑛

(𝑖+1)
=

𝑁 − 𝑥(𝑖) + 1

𝑁 + 2
, 𝑤𝑢𝑝

(𝑖+1)
+ 𝑤𝑑𝑜𝑤𝑛

(𝑖+1)
= 1, 𝑁 ∈ ℕ+; 𝑥(𝑖) ∈ ℕ, 0 ≤ 𝑥(𝑖) ≤ 𝑁. 

Additional smoothing factors '1's are appended to the numbers of segments x(i) and N - x(i) so that the 

priors are always bimodal, although highly biased, even if (almost) all segments along a filament are 

found to be pointing into the same direction (x(i) = 0 or x(i) = N). This approach is useful especially for 

short filaments so that the segments will not get stuck in wrong unimodal polarity assignments at initial 

stages of 3D reconstructions. Bimodal priors are only implemented during global angular searches. 

When 3D refinements proceed into local searching steps, such directional priors are locked to the 

component with higher weight (either wup = 1 or wdown = 1), therefore no longer bimodal. The above 

solution for polarity correction is enabled by the additional option ‘--helical_sigma_distance X’, which 

will be discussed at the end of this section. By default, the option is disabled and fixed 50%-50% 

unbiased bimodal priors are applied to all segments during global angular searches, and the polarities 

are fixed thereafter according to the best ψ angles found. 

Theoretically, the first Euler angles, rot (φ), should have fixed increments of H × twist for consecutive 

segments along a perfect filament. However in reality, rot angles (φ) are heavily influenced by 

translational offsets and flexibility of helical segments. Moreover, since RELION only extract segments 

at integer coordinates to avoid additional interpolation, the exact inter-box distances between 

neighbouring segments ma deviate slightly (< 1 pixel) from the user-defined value. Rot priors (φ) are 

therefore not implemented currently because expressing this information is too complicated and it is 

not expected to bring evident improvements to helical reconstructions.  
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For both single-particle and helical reconstructions, there are inevitable translational offsets between 

the centre of particles/segments and the actual centres of image boxes introduced by particle/segment 

picking. In single-particle analysis, RELION estimates standard deviations of isotropic Gaussian offset 

priors on image x, y axes from the experimental 2D data during iterative 3D reconstructions. In helical 

processing, translations on the helical direction are treated differently from translations perpendicular 

to the helical axis. In-plane rotation (ψ) prior defines the direction of the helical axis of each segment 

and the prior distribution of offset along that direction is a top-hat function with non-zero values within 

range [-rise / 2, +rise / 2] around the image centre (figure 2.6A). This strictly confined distribution 

prevents segments from being translated on top of the next asymmetric unit, which would result in 

duplicating the same signal in neighbouring overlapping segments. For the perpendicular direction (one 

for 2D segments), the standard deviations of their Gaussian offset priors are firstly given by the user 

and subsequently re-evaluated at every iteration in the same way as in single-particle analysis. The 

translational searching steps are usually the same or comparable along both helical and orthogonal 

directions. However, for helices with tiny rise values, the top-hat priors become very narrow. In these 

cases, at least 5 samplings are imposed along the helical axis in order to enable sufficient translations 

in that direction.  

The translation along the helical axis is coupled with the rot angle (φ), the rotation of a segment around 

its axis with respect to the 3D reference. A translational step of ΔX Angstroms is equivalent to twist × 

ΔX / rise degrees of change in rot angle (φ). For simplicity, the current implementation still treats rot 

angles (φ) as free parameters, and its local angular searching ranges (3σ) should be at least ±0.5 × twist 

× ΔX / rise around the centre of its prior estimated from last iteration to guarantee sufficient orientation 

searches. 

 

Figure 2.6. Priors on the orientation parameters. (A) A top-hat prior on the in-plane translations along the 

helical axis, and a Gaussian prior on the in-plane translations perpendicular to the helical axis. (B) A mono-modal 

Gaussian prior on the tilt angle (θ = 90°), which describes the out-of-plane rocking of filaments in the ice layer. 

(C) A bimodal Gaussian directional prior on the ψ angle, which describes the in-plane rotation of the filament 

(adapted from He and Scheres, 2017). 
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A major difference between ordinary single-particle and helical reconstruction is that overlapping 

helical segments along the same filament are not completely independent. Their images share 

overlapping regions, possess the same polarity and neighbouring segments should only have gradually 

changing orientation and translations due to continuity of the helical filaments. The first two properties 

have already been dealt with using the concept of asymmetrical units (H) and bimodal in-plane rotation 

(ψ) priors. As for the last one, some unexpected factors, such as strong contamination signals or 

otherwise irregular pixel values, may cause a few segments to be wrongly assigned with very different 

orientations and translations from their neighbours during alignment. Therefore, local averaging of 

segments has been implemented as an additional option in 3D reconstructions. For both tilt (θ) and in-

plane (ψ) angles, the implementation centres priors of the outliers on the best possible orientations 

averaged according to the orientations of their neighbouring segments within a short distance given by 

the user through option ‘--helical_sigma_distance X’. X means that all the neighbouring segments along 

the same helical filament within a distance of X times the segments box size are taken into account for 

calculating the averaged θ and ψ orientation priors. A Gaussian function is applied to lower weights of 

segments lying closer to the edges of averaging window. If the orientation alignment of a segment 

deviates more than 3σ (--sigma_tilt or --sigma_psi) of either its θ or ψ, this segment is considered as an 

outlier and its orientation priors will be replaced by the locally averaged θ and ψ. Local averaging of 

segments effectively corrects outliers of wrong alignments. 

2.2.7 Segment picking and extraction 

The routines for manual and semi-automated picking have also been modified for 2D projection images 

of helical segments. 

Manual picking of 2D helical segments requires the user to specify start and end points of helical 

filaments through subsequent left-clicks of mouse on every 2D micrograph displayed in RELION (see 

section 2.4.1 and figure 2.10AB). It assumes that the picked filaments are straight. The picking results 

are saved into STAR files (Hall, 1991) containing columns of x, y coordinates. During the extraction 

step, coordinates and priors on the orientations of the picked segments are written into the final particle 

STAR file along with all the cropped 2D image boxes. Additional settings of helical rise and the number 

of asymmetrical units (H ≥ 1) need to be provided by the user to calculate the inter-box distance ΔL = 

H × rise / pixel_size. 

For example, if a filament starts at x, y positions (xs, ys) and ends at (xe, ye), the inter-box distance, ith 

segment coordinates (xi, yi) and their tilt (θ) and in-plane rotation (ψ) priors are calculated as: 

𝐹𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖, ∆𝑙 =
𝐻 × 𝑟𝑖𝑠𝑒

𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒
, 𝜃 = 90°, 𝜓 = tan−1

𝑦𝑒 − 𝑦𝑠

𝑥𝑒 − 𝑥𝑠
, 
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𝑥𝑖 = 𝑥𝑠 + 𝑖∆𝑙 × cos 𝜃

𝑦𝑖 = 𝑦𝑠 + 𝑖∆𝑙 × sin 𝜃
, 𝑥𝑒 ≠ 𝑥𝑠. 

Each 2D segment is marked with an identification number (ID) for the filament it belongs to, and its 

position on that filament track. All the information mentioned above is used to generate rotational and 

translational priors described in the previous section. Alternatively, the implementation also supports 

other formats of input filament coordinates, such as box files from EMAN2 helix_boxer (Tang et al., 

2007) and plain text files containing even number of entries of x, y coordinates in the first two columns. 

Manual picking of filaments is a formidable task for projects with thousands of 2D micrographs. In 

order to speed up the process, the original template-based auto-picking algorithm in RELION (Scheres, 

2015) has been adapted for helices on 2D micrographs (figure 2.7). Auto-picking yields better 

detections of segments for non-straight filaments. Auto-picking requires high-quality 2D references of 

target helices as input. They can be imported from elsewhere or generated through 2D classifications 

of a small number of manually-picked filaments. Figure-of-merit calculation, during which the 

similarities are compared between the arbitrarily rotated references and all local regions of micrographs, 

remains the same as in the original algorithm for single-particle analysis. New features of the adaptation 

cover filament detections and cross-over removal. In addition to the inter-box distance, the user must 

also provide a binary threshold, helical width and the maximum curvature of filaments (0-1, defined as 

the fraction of curvature of a 2D circular mask). Firstly, the algorithm filters figure-of-merit peaks with 

intensities higher than the threshold. Then it starts from the highest peak to fit helical tracks on the 

figure-of-merit map, taking into account the adjacent peaks within half of the template box size and the 

maximum curvature allowed. The algorithm iteratively searches for possible tracks of filaments along 

both directions until no new peaks can be detected on either ends. Afterwards, the algorithm repeats the 

above procedure of filament detections starting from the next highest peak which is not covered by any 

of the previously fitted filament tracks within helical widths. Segment coordinates are then calculated 

based on the user-defined inter-box distance. In particular, coordinates are discarded if they lie at cross-

overs of overlapping filament widths, or at the edges and corners of micrographs. Prior information, 

such as angular priors (θ = 90°, ψ) and relative positions on filament tracks, is also estimated and written 

into the output STAR file along with the segmented coordinates. 
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Figure 2.7. Auto-picking filaments on a 2D micrograph. (A) A representative micrograph low-pass filtered to 

20 Å and the five 2D class templates. (B) Figure-of-merit map generated after comparing 2D templates with the 

micrograph (A). (C) Filtered figure-of-merit map with filament tracks fitted to remaining peaks. (D) Final picked 

coordinates (each denoted by a green circle) at an inter-box distance of 50 Å. 

2.2.8 Randomisation of image subsets 

In 3D auto-refinement jobs, input particles are randomly separated into two half data sets. 

Reconstructions are then performed independently to prevent over-fitting to prevent the build-up of 

high-frequency noise. For single-particle analysis, each particle is assigned to one of the half-sets using 

a uniform random number generator. However, this approach is problematic for helical segments, which 

always have >50% of overlap with their directly adjacent neighbours. Overlapping regions distributed 
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into different halves may introduce redundant correlations between the two half-sets, which could lead 

to over-fitting and spurious resolution estimates. Therefore, filament-wise randomised subsets can be a 

simple solution for this problem. Every helical segment is tagged with an ID denoting the filament it 

belongs to on a certain micrograph during extraction. The modified method traverses through the list of 

all segments, count the total number of filaments (N) found on all micrographs and the number of 

segments each filament contains (Si, 1 ≤ i ≤ N). Then it randomises the sequence of N filaments using 

Knuth’s shuffle (or Fisher-Yates shuffle, Knuth, 1997) so that any of the N! permutations can occur 

with equal probability. The shuffled filaments are subsequently collected sequentially into two half-

sets, with balance maintained for the numbers of segments across the two half-sets. 

For I <- 1 to N, 

 Sequence[i] <- i 

For I <- 1 to N,                      ### Knuth’s shuffle 

 J <- uniform_random_integers(i~N); 

 If I != J 

  Swap(Sequence[i], Sequence[j]); 

half1_size <- 0, half2_size <- 0  

For I <- 1 to N,                      ### Two halves collect filaments 

 If half1_size < half2_size 

  Half1.addFilament(Sequence[i]); 

  half1_size += Sequence[i].s; 

 Else 

  Half2.addFilament(Sequence[i]); 

  half2_size += Sequence[i].s; 

Code 2.1. Pseudo-code for randomisations of subsets in helical 3D refinements. 

2.2.9 Initial model generation 

The MAP-EM estimator in RELION is a local optimiser. Therefore, the initial reference must lie within 

the convergence radius of the algorithm in order to find the correct reconstruction. Various options, that 

are generally useful to construct initial models, have been implemented, which are described in more 

details below. Apart from the following methods, the user may also choose previously refined density 

maps or sub-tomogram averaging results as 3D references if appropriate. 

2.2.9.1 Featureless cylinders  
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Featureless cylinders are unbiased initial models that are also non-polar, and they are often a good 

choice for simple helices. A cylindrical reference can be generated using the following command:  

relion_helix_toolbox --cylinder --o out.mrc --boxdim 300 --

cyl_inner_diameter 50 --cyl_outer_diameter 200 --angpix 1.34 --

sphere_percentage 0.9 --width 5 

In this example, the program writes out a cylinder (out.mrc) with voxel values set to one within the 

inner and outer diameter (80 Å and 200 Å). Cosine soft-edges (5 pixels) are applied around its side 

surfaces as well as a spherical mask (90% of the box size) at the periphery. The outer diameter should 

be set to approximately the actual width of filaments estimated from micrographs or 2D class averages. 

2.2.9.2 Simulated lattices 

Simulated helical lattices are better initial models for complicated symmetries compared to featureless 

cylinders as they provide helical lattice information for the alignment. Such references may be built if 

the helical symmetry can be reliably estimated based on prior knowledge or clues from the Fourier-

Bessel method. Each subunit, with its voxel values all set to one, is drawn as a small cosine soft-edged 

sphere centred at the positions specified by the helical and rotational (Cn) symmetry. The references 

also conform to Dn symmetry since all constituent subunits (spheres) are rotationally invariant. Ideally, 

the diameters of spheres should be large enough to simulate the surface contacts of neighbouring 

subunits. 

relion_helix_toolbox --simulate_helix --o out.mrc --subunit_diameter 30 --

cyl_outer_diameter 200 --angpix 1.126 --rise 1.408 --twist 22.03 --boxdim 

300 --sym_Cn 1 --sphere_percentage 0.9 --width 5 

2.2.9.3 Converted density maps from PDB models 

Initial references can also be constructed from crystal structures of the subunits (or their homologues) 

in the helical assemblies. These structures might be readily available in PDB formats, fitted into density 

maps which have been reconstructed previously. For example, if a TMV subunit in PDB format has the 

same orientation as any of the subunits on a TMV helix, the following command can make 100 copies 

of the input PDB model and assemble them into a helix according to the correct helical symmetry of 

TMV: 

relion_helix_toolbox --pdb_helix --i in.pdb --o out.pdb --rise 1.408 --twist 

22.03 --nr_subunits 100 

The helix spans along the z axis of the PDB coordinate system with subunits positioned on xy planes at 

a radius calculated internally given the input PDB model. If the user wants a modified radius (filament 

width) at which the subunits are positioned, ‘--center_pdb’ should be provided along with the helical 

tube diameter ‘--cyl_outer_diameter X’ in Angstroms. 
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The output PDB assembly needs to be converted to MRC densities, and the density map must be further 

applied with a spherical mask at 80%-90% of the box size to avoid artefacts in Fourier-space due to the 

presence of densities at box edges (section 2.2.5). For example, the following two commands write out 

a 3D reference low-pass filtered to 10 Å in a 300-pixel box: 

e2pdb2mrc.py out.pdb out.mrc –apix 1.34 –box 300 –res 10 

relion_helix_toolbox --spherical_mask --i out.mrc --o masked.mrc --

sphere_percentage 0.9 

The three types of models explained above do not reflect the true structural densities of the data sets so 

they are not on the absolute grey-scales. In addition, none of them is affected by CTFs. 

2.2.10 Graphic user interface for helical reconstruction jobs 

The graphical user interface (GUI) in RELION provides a user-friendly way of setting up jobs, 

superseding the usage of command lines and scripts. Specific tabs on the GUI with helical settings have 

been implemented for the auto-picking, particle extraction, 2D/3D classification, 3D refinement (figure 

2.8), particle polishing and mask-creation jobs types. The implementation in RELION requires fewer 

parameters provided by the user than other existing helical packages since the statistical framework of 

RELION learns many parameters automatically from the experimental data sets (section 1.4). 

 

Figure 2.8. ‘Helix’ tab in 3D classification/refinement job types. 

2.2.11 Simulations of 2D experimental segments 

Simulated image data is useful to detect bugs, evaluate performance and elucidate concepts of the 

implemented algorithms.  
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To start with, a 3D density map of a perfect helix must be provided as the reference with known helical 

symmetry. It can be either a high-resolution reconstruction result or a density map converted from a 

PDB helix (section 2.2.9.3). In order to simulate helical segments with box sizes of D pixels, the helix 

must span along the 3D reference with a box size of at least 1.5 × D. Otherwise some of the simulated 

segments might not span the full length of the particle boxes (for example, the segments along the 

diagonal directions). The following commands enlarge the box size (300 pixels) of the original TMV 

reference ‘TMVref300.mrc’ and impose the helical symmetry of TMV to produce a longer reference 

‘TMVref450.mrc’ (450 pixels): 

relion_image_handler –-i TMVref300.mrc –-new_box 450 –-o tmp.mrc 

relion_helix_toolbox --impose –-i tmp.mrc --o TMVref450.mrc --

cyl_outer_diameter 200 --angpix 1.126 --rise 1.408 --twist 22.03 --

z_percentage 0.3 --sphere_percentage 0.9 

A 3D spherical mask of ≤90% the box size should also be applied to the 3D reference to avoid artefacts 

introduced by the image transformations afterwards (section 2.2.5). 

Then the following command writes out several STAR files with angular and translational priors 

(‘segments_info.star’ and ‘segments_helical_priors.star’) and an executable shell script (‘./simulate-2d-

segments.sh’). 

relion_helix_toolbox --simulate_segments --i TMVref450.mrc --o segments.star 

--boxdim 300 --nr_subunits 6000 --nr_asu 30 --nr_tubes 5 --twist 22.03 --

rise 1.41 --cyl_outer_diameter 200 --angpix 1.126 --bimodal --sigma_tilt 3 

--sigma_psi 3 --sigma_offset 3 --white_noise 5 --random_seed 1400014000 

It means that the user wants to simulate 6,000 TMV subunits on 5 helical filaments with a number of 

asymmetrical units (H) set to 30 using box sizes of 300 pixels. The final simulated data will consist of 

6,000 / 30 = 200 2D segments with 200 / 5 = 40 segments on each filament. Sigmas of tilts (θ, centred 

at 90°), in-plane rotations (ψ) and offsets lead to a certain degree of randomness imposed on the angular 

and translational priors. The random seed needs to be modified if different results in multiple runs are 

required. The value of white noise decides how much Gaussian random noise is to be added to the 

simulated segments in real-space and it needs to be tuned for each 3D reference. Running the shell script 

‘./simulate-2d-segments.sh’ generated by the above command writes out all the simulated 2D segment 

images. 

The shell script projects the 3D reference according to the angular and translational priors in the 

previously written in ‘segments_info.star’ file. For each simulated filament, the constituent segments 

have their in-plane rotations (ψ) at the same random value and rot angles (φ) increased at a fixed 

increment of H × twist degrees. Tilts (θ) are all initially centred at 90°. All angular and translational 
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priors are subsequently perturbed by small random numbers coming from uniform distributions around 

0 with user-defined widths (σ), although the simulated segments are all perfectly straight. However, the 

simulated segments are perfectly straight with fixed helical symmetry without any heterogeneities, 

which does not exactly reflect the properties of true helical filaments collected from experimental 

micrographs or tomograms. The output file ‘segments_helical_priors.star’ can be used as input for 3D 

helical reconstructions in RELION, as it removes rot angles (φ) and sets all translational priors to zeros 

since such information cannot be estimated during the picking of true experimental data sets. 

 

Figure 2.9. Comparison between true and simulated 2D experimental images. (A) 3 TMV segments extracted 

from EMPIAR-10020 (Fromm et al., 2015). (B) 3 simulated TMV segments generated from 3D reference EMDB-

2833 (Fromm et al., 2015) with a white noise level set to 20. 

2.3 Introduction to the test data sets 

Four cryo-EM data sets are used repeatedly in this section in order to demonstrate the significance and 

benefits of all the implemented methods explained above. Original collected movies/micrographs are 

available from EMPIAR (https://www.ebi.ac.uk/pdbe/emdb/empiar/, Iudin et al., 2016) for three data 

sets: tobacco mosaic virus TMV (Fromm et al., 2015; EMPIAR-10020), contractile sheath (formed by 

VipA/VipB proteins) of the bacterial type-VI secretion system (Kudryashev et al., 2015; EMPIAR-

10019), prion-like aggregates of mitochondrial antiviral signalling proteins mediated by N-terminal 

caspase activation and recruitment domain MAVS/CARD (Xu et al., 2015; EMPIAR-10031). The 

https://www.ebi.ac.uk/pdbe/emdb/empiar/
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fourth data set, bacterial actin homolog MamK (Löwe et al., 2016), was collected in-house by Jan 

Lowe’s group at LMB. 

As can be seen in Table 2.1, these four data sets of helices are different in many aspects. They were 

collected from various microscopes and direct-electron detectors. The helices conform to various 

combinations of helical and point group symmetry parameters. Moreover, the filaments are different in 

widths and flexibilities as well. TMV has been a widely popular test case for helical processing packages 

(Desfosses et al., 2014; Rohou and Grigorieff, 2014). TMV filaments are highly straight and regular, 

with some end-to-end joints (red arrows in figure 2.10A) connecting individual filaments into longer 

ones. With higher degree of symmetry, VipA/VipB are straight and regular as well but they tend to 

form shorter ones compared to TMV. MAVS/CARD and MamK helices are more bending with thinner 

filament widths. Their flexibilities could be partly explained by simpler helical and point group 

symmetries, which result in fewer contacts and therefore less cohesions among neighbouring subunits 

on their lattices. In addition, the MamK test data set here is refined to a lower resolution (3.9 Å) 

compared to the published results (3.6 Å, Löwe et al., 2016) because it consists of only a fraction of 

movies available (260 out of 2,086). Löwe et al. refined the 3.6 Å structure using the implemented 

workflow of RELION-2 helical processing described in this thesis. 

 TMV VipA/VipB MAVS/CARD MamK 

Microscope FEI Titan Krios FEI Titan Krios FEI Titan Krios FEI Polara 300 

Detector Gatan K2 Gatan K2 FEI Falcon-II FEI Falcon-III 

Pixel size (Å) 1.126 1.00 1.05 1.34 

Movies collected? Yes No Yes Yes* 

Nr. Movies/micrographs 14 77 512 260 (2086)1 

Nr. frames per movie 22 - 16 (46)1 

Accumulated dose (e-/Å2) ~43 ~30 ~35 ~40 

Defocus range (-,μm) 1.5~2.3 0.5~1.5 2.5~4.0 1.1~3.0 

EMPIAR entry 10020 10019 10031 - 

EMDB entry 2833 2699 6428 4062 

EMDB software SPRING IHRSR/SPIDER 
RELION-1.2 

(custom) 
RELION-2α 

EMDB resolution (Å) 4.0 3.5 4.2 3.6 
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PDB entry 4UDV 3J9G 3J6J 5LJW, 5LJV 

 RELION-2 processing of test data sets 

Manual/auto-picked? Manual Manual / Auto2 Auto Auto 

Auto-picking threshold - 0.10 0.50 0.15 

Auto-picking maximum 

curvature 
- 0.05 0.30 0.30 

Box size (pixels) 300 450 300 280 

Inter-box distance (Å) 42.2 43.6 30.4 52.2 

Nr. asym. units/box, H 30 2 6 1 

Nr. segments (picked) 1,761 11,114 227,176 118,911 

Nr. segments (refined) 1,761 9,480 133,237 110,055 

Filament widths (Å) 180 100~2803 105 195 

Point group symmetry C1 C6 C1 C2 

Helical rise, refined (Å) 1.41 21.79 5.07 52.11 

Helical twist, refined (°) +22.03 +29.41 -101.2 +23.75 

B-factor (Å2) -83 -91 -135 -119 

Final resolution (Å) 3.9 3.3 4.0 3.9 

1 The full data set of MamK consists of 1,655 movies with 46 frames each. The test data set of MamK 

consists of only 260 motion-corrected micrographs. 

2 Both manual- and auto-picking are performed on VipA/VipB data set (section 2.4.1). 

3 Inner and outer diameters of the hollow tubes. 

Table 2.1: Key characteristics of four test data sets used in section 2.4. 

2.4 Results and Discussion 

2.4.1 Segment picking 

Straight filaments, TMV and VipA/VipB, can be manual-picked effectively (figure 2.10AB). 

Especially, TMV must only be picked manually since template-based auto-picking cannot identify end-
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to-end joints (red arrows in figure 2.10A) which connect the termini of two individual filaments. Figure 

2.10CD shows the representative auto-picking results of bending filaments, MAVS/CARD and MamK. 

 

Figure 2.10. Representative micrographs, particle picking and 2D classification results for the four test 

cases. (A) Manually-picked coordinates (yellow) at the starts and ends of the TMV filaments. Non-helical end-

to-end joints are indicated with red arrows. (B) Manually-picked coordinates (yellow) for a VipA/VipB 

micrograph. (C) Auto-picked coordinates (green circles) for a MAVS/CARD micrograph. (D) Auto-picked 

coordinates (green circles) for a MamK micrograph. For each test case, four 2D class averages are shown as insets. 

Good class averages are indicated with a tick and suboptimal ones with a cross (adapted from He & Scheres, 

2017). 

Auto-picking of helical segments is similar to that of the ordinary single-particles, but with more user-

defined parameters required. The first step is the choice of 2D class averages as templates. In general, 

the selected templates should be clear in details and among the classes of best-quality. The box size of 

such templates is recommended to be 1-1.5× of the box size of segments used in the actual 3D 
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reconstructions. Smaller box sizes with insufficient signals might lead to sub-optimal calculations of 

figure-of-merit values between the micrographs and the templates, while very large box sizes increase 

computation costs and exclude more segments to be picked near the edges of the micrographs. 

Normally, 3-5 classes are sufficient for auto-picking of helices. However, more representative templates 

may need to be collected if there are heterogeneities present in the 2D classification results (e.g. varying 

helical diameters, evident different structural details and mixtures of helical symmetries). 

Once the 2D templates are chosen, 5-10 representative micrographs need to be selected in order to 

figure out the best settings of auto-picking parameters. They should cover the full range of defocus 

values and include micrographs with both densely and scarcely populated filaments, large 

contamination signals and good/bad imaging conditions. The tuned parameters (introduced in the 

following paragraphs) should have overall satisfactory performance on the representative set. The 

overall recall rate of helical segments matters more than accuracies since the non-helical segments are 

expected to be separated out after 2D classifications performed on the whole picked data set. 

Some of the auto-picking parameters can be determined without much tuning. Low-pass filters are 

usually set to 20Å and high-pass filters are not usually needed. Angular samplings are set to ≤3° because 

helical segments are long in shapes and span across the full lengths of the boxes. The option, maximum 

standard deviations of noise, is usually set to -1 (disabled) since the process of fitting helical tracks 

ignores many of the small contamination signals (e.g. round-shaped ice and carbon particles). Shrink 

factors <0.5 are not recommended since heavily binned micrographs could blur helical tracks. Helical 

widths can be measured from the 2D classes and the product of number of asymmetrical units and the 

helical rise is the actual inter-box distance used in picking. If the helical symmetry is not yet clear, the 

product can be set to ~10% of the segment box size used in subsequent 3D reconstructions. Maximum 

curvatures differ according to the flexibilities of filaments, with 0.05-0.10 suitable for straight filaments 

(such as VipA/VipB) and 0.20-0.40 for more bending ones (MamK and MAVS/CARD). Minimum 

lengths of tracks are used to exclude very short filaments in case that the algorithm picks too many 

false-positives, non-helical artefacts.  

Given a set of 2D templates with fixed box sizes, the mask diameter may have profound influences on 

the auto-picking results. The mask diameter must be strictly smaller than the template box sizes. 

Theoretically, larger values lead to higher figure-of-merit values when the templates match the helical 

filaments on the micrographs. However, a very large diameter might include more short-range disorders 

of the filaments on the micrographs and the signals at the periphery of the diameter might give worse 

correlations with the templates. Especially for flexible helices, inappropriately large masked regions on 

the micrographs cover more bending parts of the filaments which become less comparable with the 

straight 2D class averages. Thus, the template box size and the structural flexibilities together impose 

an upper limit to the mask diameter. On the other hand, the mask diameter should be large enough for 
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the calculated figure-of-merit values to distinguish filamentous regions from the background noise 

effectively. The template box size, the 2D selected templates and the mask diameter must be determined 

before comparisons of different picking thresholds can be performed. 

The picking threshold is the most important user-defined parameter in helical auto-picking algorithm. 

As is explained in section 2.2.7, figure-of-merit maps (*CCF.spi, figure 2.6B; *PLOT.spi, figure 2.6C) 

corresponding to the 5-10 representative micrographs should be written out initially and their pixel 

values along the helical filaments can be examined using ‘relion_display’ in order to find a range of 

reasonable picking threshold values for testing. The user need to find the best threshold within the range 

by comparing the total numbers of segments picked. The optimal choice is the largest threshold which 

gives high recall rate of helical segments with most of the long filaments picked continuously. Given a 

fixed inter-box distance and the manually picked coordinates along straight filaments on the 

representative micrographs, the recall rate is calculated as the number of auto-picked segments along 

these filaments divided by the number of manually picked ones. Eventually, the optimal settings are 

used to auto-pick the full data set. 

For VipA/VipB and MAVS/CARD filaments, comparisons have been done to show the influence of 

different picking methods on the final resolutions of reconstructions (table 2.2). VipA/VipB were 

manual-picked by the author and the start-end coordinates of MAVS/CARD filaments are readily 

available online in EMAN2 helix_boxer format (Tang et al., 2007) through accession number EMPIAR-

10031 (Xu et al., 2015). Auto-picking of both data sets was performed starting from 2D class averages 

of a small subset of manually picked segments (for the parameters used, please refer to entries ‘auto-

picking thresholds’ and ‘auto-picking maximum curvatures’ in table 2.1). The results of 2D 

classification and 3D reconstruction will be discussed in details in the following sections. 

 Segments picked Segments kept Final resolution 

VipA/VipB (manual) 10,830 10,211 3.3 Å 

VipA/VipB (auto) 11,114 9,480 3.3 Å 

MAVS/CARD (manual) 34,397 34,397 4.3 Å 

MAVS/CARD (auto) 227,176 133,237 4.1 Å 

 

Table 2.2. Comparison of picking methods performed on VipA/VipB and MAVS/CARD filaments. Total 

number of segments after picking and after segment selections based on high-quality 2D class averages are shown, 

along with final map resolutions after 3D refinement and post-processing (adapted from He & Scheres, 2017). 

As is shown in table 2.2, template-based auto-picking demonstrates performance at least as satisfactory 

as careful manual-picking. Particularly, template-based picking captured a great numbers of segments 
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at bending parts of MAVS/CARD filaments, which result in better resolution of its final map. Therefore, 

auto-picking is more beneficial to long and bending filaments. Moreover, auto-picking may greatly 

accelerate initial steps of helical processing. According to the performance with test data sets (table 

2.3), it is expected that auto-picking jobs running on GPU cards can be finished within a couple of hours 

given thousands of micrographs as input. The general GPU acceleration of RELION, implemented by 

Kimanius et al., 2016, is applicable to auto-picking, 2D classification, 3D classification and refinement 

job types for both single-particle and helical processing. 

 

Size of 

micrographs 

(pixels) 

# of 

micrographs 

Size of 

templates 

(pixels) 

# of 

templates 

# of 

GPU 

cards 

Time 

(approx.) 

VipA/VipB 3838 × 3710 77 600 × 600 8 1 1 h 30 m 

MAVS/CARD 4096 × 4096 512 300 × 300 5 1 2 h 35 m 

MamK 4096 × 4096 260 238 × 238 5 1 55 m 

 

Table 2.3. Processing time of auto-picking jobs performed on Nvidia GTX 1080 Ti GPU cards. Angular 

samplings are set to 3° for all test cases. 

The 2D helical segments can be picked once the coordinates are determined through manual or auto-

picking. Empirically, common values of box sizes are at least 1.5~2x the filament widths or 200 pixels, 

whichever is larger. On one hand, a very large box size is usually unnecessary and makes the subsequent 

classification or reconstruction jobs computationally expensive, and it risks including more bending or 

distorted parts of the helices across a long distance in the segment boxes and therefore worsens the 

reconstructions. In addition, it is not guaranteed that the helical symmetry is perfectly uniform and the 

deviations may add up across a long distance, especially for the bending filaments. On the other hand, 

a too small box size may truncate the signals at the periphery of the filaments which are not clearly 

visible on the raw micrographs (with 80%~90% soft-edged segment masks applied in the 

reconstructions, refer to section 2.2.5). Furthermore, the images are not sufficiently sampled in Fourier 

space in this case and, along with the lack of signals, lead to inaccurate results in orientation and 

translational searches. Another important factor that sets the lower bound of the appropriate box size is 

the effect of CTF delocalisation. Twin images can be observed in bright-field defocused phase-contrast 

images in cryo-EM, as the pseudo-Friedel-related Fourier components scattered from a specimen 

particle are physically separated along trajectories that follow their respective Bragg scattering angles 

and are rendered separate on the micrograph (Russo and Henderson, 2018. Refer to section 6 and figure 

6.1). In the other way, it can be seen as the information contained at a certain location in the diffraction 

pattern in Fourier-space can be delocalised to the neighbouring twin images close to the centred one in 
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the real space. The centres of the two components are separated by a distance of 2ΔFλ/d, with ΔF 

denoting the defocus, λ the electron wavelength, and d the resolution in units of distance. For example, 

the distance is ~100 Å for the information at 4 Å resolution if the defocus is ~1μm using a 300 keV 

microscope (λ = 0.02 Å). Therefore, the box size should be at least the filament width plus 100 Å in 

order to preserve the structural information available at 4 Å, which is a common final resolution for 

many helical structures resolved in the recent years. 

2.4.2 2D classifications 

Reference-free 2D classifications serve at least three major purposes in helical processing: generating 

2D templates for auto-picking using a small number of manually picked segments as input, generating 

segment averages with better signals for Fourier-Bessel analysis (section 1.7 and 2.4.3) and separating 

poor-quality segments from the good ones suitable for 3D reconstructions. Examples of optimal and 

poor 2D class averages are shown in figure 2.10A-D (insets). Sub-optimal segments and class averages 

might result from contaminations, extremely distorted filaments, coordinates picked at filament ends or 

false-positives of picking. 

Classifications of 2D helical segments make use of in-plane angular (ψ) priors. The algorithm only 

searches around the priors within a small range specified by the user (±6° by default), which speeds up 

computation greatly. Optimal angular search ranges depend on the accuracies of segment picking and 

the degrees of bending of the filaments. The in-plane angular (ψ) priors are bimodal for Cn and unimodal 

for Dn helices (section 2.2.6). 2D classifications of helical segments generally require finer angular 

samplings compared to those of single particles because the signal of helices span across the full 

diameter of the 2D circular masks. When angular samplings are not sufficiently small, blurring effect 

can be seen at the periphery of the circular masks. The user may find out the upper limit of samplings 

in the output file. It is calculated using current resolution estimates (X, in Angstroms) and the diameter 

of the circular/spherical masks (D, in Angstroms). 

𝛥𝜃𝑚𝑎𝑥 = arc tan
2 × 𝑋

𝐷
 

0.5° or 1° are typical values used for helical 2D classifications. The translational search range is ±5 

pixels by default and should be increased when the segment box size is large (≥500 pixels) or the picked 

coordinates are not accurate. 

2D classifications are more likely to over-fit if the user uses tiny inter-box distances (<5% the box size). 

Signs of over-fitting in this step include streaky densities in solvent areas, concentrated classes with 

similar appearances (sometimes with non-protein shapes), lots of empty classes unexpectedly, ever 

increasing estimated resolutions which are unreasonable for the scale of the data set, etc. One 

explanation might be that tiny inter-box distances combined with translational searches duplicate some 
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projections among different classes and create redundant correlations as each segment is free to be 

considered for any arbitrary class in 2D/3D classifications (over-fitting prevention using randomised 

subsets are only enabled in 3D auto-refinements, explained in section 2.4.10). Apparently, one solution 

is holding on to the convention of using 5%-30% as the inter-box distance (which will be explained in 

details in section 2.4.6). Alternatively as a general way of over-fitting prevention, limiting the 

expectation (E) step to a moderate resolution (5 Å - 10 Å) could also alleviate the problem (i.e. providing 

‘--strict_highres_exp X’ as an additional option). 

2D classifications may be the most time-consuming steps in the whole workflow of helical processing 

if hundreds of thousands of helical segments have been extracted for analysis. In order to get rid of 

apparently abnormal segments and false-positives, it is suggested to divide any large data set into a few 

~100,000-segment subsets and perform 2D classifications on these subsets with class numbers (K) of 

~100 independently. For example, the following command divides the input particle STAR file ‘in.star’ 

into 4 parts. 

relion_helix_toolbox --divide --i in.star --nr_outfiles 4 

The subsets can be imported into the workflow again. After 2D classifications and particle selections 

for all subsets, the full data set can be merged using ‘combine STAR file’ job-type in the GUI. Not only 

will this measure save a lot of computation resources, but also enable finer 2D classifications of the 

helical segments. 

The key settings and processing time of 2D classification jobs are listed in table 2.4 for the four test 

cases. 

 

Size of 

segments 

(pixels) 

# of 

segments 

# of 

2D 

classes 

Angular 

range & 

sampling 

Trans 

range & 

sampling 

CPU cores 

(# of MPI 

X threads) 

Time 

(approx.) 

TMV 300 × 300 1,761 20 ±6° / 1° ±5 / 1 pix 15×8=120 10 m 

VipA/VipB 450 × 450 11,114 50 ±6° / 0.5° ±5 / 1 pix 48×4=192 3 h 10 m 

MAVS/CARD 300 × 300 227,176 100 ±6° / 1° ±5 / 1 pix 90×8=720 10 h 

MamK 280 × 280 118,911 100 ±6° / 1° ±5 / 1 pix 60×4=240 12 h 50 m 

 

Table 2.4. Processing time of 2D classification jobs performed on Intel Xeon E5-2643 (3.4~3.5 GHz) and 

E5-2667 (2.9 GHz) CPU clusters. Angular searches were bimodal for all test cases. None of the data sets was 

divided into subsets. 
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2.4.3 Initial helical symmetry estimation and initial model generation 

There is not a one-size-fit-all method of initial model generation which suits every case of helical 

reconstructions. Apart from cylindrical, simulated and PDB models mentioned in section 2.2.9, other 

options include Fourier-Bessel reconstruction, sub-tomogram averaging or previous single-particle 

reconstruction results from similar structures. 

Featureless cylindrical references are feasible for both the MAVS/CARD and the MamK data sets. In 

the first round, 3D refinement started from a cylinder in each case using additional option ‘--

ignore_helical_symmetry’ to make use of angular prior information retrieved from segment auto-

picking while no helical symmetry was imposed (the inter-box distances are set to 10% the box sizes 

for both cases). The reconstructions yielded density maps with apparent helical contours (figure XAB, 

middle). The user is expected to give some rough estimations of the size of subunits and possible ranges 

of helical twist and rise by looking at the densities. Then, helical symmetry can be searched through ‘-

-search’ option in ‘relion_helix_toolbox’. The searching results were -101.1°, 5.150 Å for 

MAVS/CARD and +18.29°, 55.24 Å for MamK. The maps from the first round were symmetrised 

according to the searched symmetry and used as initial references for the next 3D helical refinement 

with symmetry imposed and locally searched at every iteration. The final symmetry parameters were -

101.2°, 5.071 Å for MAVS/CARD and +23.57°, 52.11 Å for MamK. These final results revealed the 

correct structures (figure 2.10AB, right). 

 

Figure 2.11. Initial model generation for MAVS/CARD (A) and MamK (B). In each panel, the featureless 

cylinder (the width of which is estimated from the 2D class averages) that was used as an initial model is shown 

on the left. The result from a 3D refinement without imposing any symmetry is shown in the middle. The result 

(unfiltered reconstructed maps) from a subsequent 3D refinement with local searches of helical symmetry is 

shown on the right. 

Featureless cylinders do not work for TMV and VipA/VipB filaments. The reconstruction results were 

extremely noisy without any structural features (figure 2.12). The claimed resolutions were 33.8 Å and 

26.5 Å for TMV and VipA/VipB respectively after 3D refinements and such resolutions were even 

worse than the low-pass filters applied to the featureless cylindrical references (20 Å). For wide and 

complicated helical lattices like TMV and VipA/VipB, the initial references must provide information 
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of the positions of protein subunits on the helical lattices and the correct helical symmetry should be 

applied during 3D reconstructions to keep the refined structure within the radius of convergence of the 

algorithm. Therefore, their diffraction patterns should be analysed to estimate their helical twist and rise 

values using Fourier-Bessel method (section 1.7). Fourier transforms can be performed on the best-

quality 2D class averages of helical segments (figure 2.13A, 2.14A and 2.15A) or some cropped 

filaments on raw micrographs. The 2D class averages contain less noise and they generate clear 

diffraction patterns with more discernible layer lines. The 2D classes may as well give a clue of the 

presence of various helical symmetries and widths in the data set. The Fourier-Bessel analysis of 2D 

class averages is more applicable for bending, short, thin or long-repeat filaments. However, 2D 

classification might average segments with different helical symmetries into the same classes if there 

exists a high degree of heterogeneity in the data set. It is expected that the diversity of helical symmetry 

can be observed more often in thick and hollow filaments with complicated induced helical lattices. In 

such cases, it is recommended to perform Fourier-Bessel analysis on a careful selection of cropped and 

straightened filaments instead of 2D averages.  

 

Figure 2.12. The 3D refinement results (side views of the unfiltered maps) of TMV (A) and VipA/VipB (B) 

without any helical symmetry applied using featureless cylinders low-pass filtered to 20 Å as the initial 

models.  

As the first step in the Fourier-Bessel method, helical repeat distance (ρ, in Angstroms) can be estimated 

after identifying the equator and the first layer line (blue dashed lines on figure 2.13B, 2.14B and 2.15B) 

on the diffraction pattern: 

𝜌 =
𝑝𝑖𝑥𝑒𝑙_𝑠𝑖𝑧𝑒 × 𝐵

∆𝐿
 

Where ΔL is the number of reciprocal pixels counted between the equator and the first layer line. B 

denotes the box size of the diffraction pattern in pixels. Then, the number of subunits in each repeat 

needs to be discovered. All the discernible first maxima (small red and green boxes in figure 2.13B, 

2.14B and 2.15B) should be marked on every layer line and fitted into a 2D lattice (red dashed lines in 
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figure 2.13B, 2.14B and 2.15B) which traverses through half of the maxima, while the reflected lattice 

(green dashed lines in figure 2.13B, 2.14B and 2.15B) across the meridian links the other half 

symmetrically. These two lattices in reciprocal space represent the near and far sides of the helical tube 

in real-space. It is sufficient to assign integer Bessel orders to the first maxima using only one of the 

lattices, which is spanned by two unit vectors (red arrows in figure 2.13B, 2.14B and 2.15B). The 

positions and the Bessel orders of all the first maxima must be the linear combinations of those of the 

unit vectors. To calculate the Bessel orders for maxima on the ends of unit vectors, coefficient C should 

be firstly figured out using the reciprocal distance from the meridian to the first maxima (ΔD, in 

reciprocal pixels) along the layer lines and the real-space filament diameters (d, in Angstroms) observed 

in 2D class averages. 

𝐶 =
𝜋 × 𝑑 × ∆𝐷

𝑝𝑖𝑥𝑒𝑙_𝑠𝑖𝑧𝑒 × 𝐵
 

The Bessel orders of the first maxima can be estimated from table 2.5 according to C. The values of C 

for the maxima located to the left of meridian are negative. 

n 0 1 2 3 4 5 6 7 8 9 10 

|C| 0 1.84 3.05 4.20 5.32 6.42 7.50 8.58 9.65 10.71 11.77 

n 11 12 13 14 15 16 17 18 19 20 … 

|C| 12.83 13.88 14.93 15.98 17.02 18.06 19.10 20.14 21.18 22.22 … 

 

Table 2.5. A table of first maxima (n) of the Bessel functions Jn(x) for n = 0 to n = 20 (Andrews, 1981). 

In reality, the diffraction patterns might be affected by tilts and real-space distortions, leading to 

multiple choices of n which seem equally likely. Empirically, high Bessel orders (≥10, maxima further 

away from the meridian) are widely considered as less reliable than the lower ones. A small error 

introduced by the estimated filament diameter (d) may lead to large errors especially for high Bessel 

orders. However, only one unique solution is correct and the user is encouraged to make more attempts 

to find it out, taking all information on the diffraction patterns into consideration. The lattice geometry 

along with the Bessel orders calculated unravels the real-space lattice pattern, from which helical twist 

and rise can be read out (figure 2.13CD, 2.14CD and 2.15CD). 

For example, TMV filaments are approximately 180 Å wide (on micrographs with ~1.126 Å pixel size). 

In the diffraction of TMV (figure 2.13B), first maxima ΔD1 = 11 (on layer line 1) and ΔD3 = -1 (on 

layer line 3) are marked as ends of unit vectors with Bessel orders n = 16 (C = 18.3) and n = -1 (C = -

1.67) assigned respectively. Thereby, the vector pair can be marked with coordinates (-1, 3) and (+16, 

1) in Fourier-space (figure 2.13C). This vector pair are converted into real-space vectors (figure 2.13D) 
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by a 90° rotation and a mirror operation. Equivalently, flipping the x, y components of the coordinates 

in Fourier-space gives the real-space coordinates (3, -1) and (1, 16). The new vector pair spans a 

complete real-space lattice in figure 2.13D. The only strand in this real-space lattice intersects with the 

azimuthal axis and the z-axis at point (49, 0) and (0, 49) respectively. This lattice determination leads 

to a full repeat of 3 turns (16 + 1/3 × 3 = 49 subunits), an equivalent of 1.45 Å helical rise. The helical 

twist can be calculated as 22.04° (360° divided by 16 + 1/3 subunits in a turn, or a pitch). The helical 

twist (30°) and rise (22.4 Å) of VipA/VipB filaments can be derived in a similar way (figure 2.14). 

 

Figure 2.13. Helical lattice determination and initial model generation of TMV. (A) A selected 2D class 

average. (B) The amplitudes of Fourier-space diffraction pattern of (A). The layer lines (l) are numbered and the 

vector pair that constructs the helical lattice is indicated with red arrows. The Bessel orders of this vector pair is -

1 and +16. A helical lattice and its mirror counterpart are shown with red and green dashed lines respectively. (C) 

The schematic plot of Fourier-space lattice. (D) The schematic plot of real-space lattice. The base vectors in (C) 

are converted into a pair of real-space vectors in (D) by a 90° rotation and a mirror operation. The real-space 

vectors span the whole real-space lattice D. The reciprocal repeat distance (green arrow in C) is the distance in 

real-space where the lattice folds back on itself on the z-axis (green arrow in D). The helical rise is then calculated 

by dividing the repeat distance by the number of lattice points in a full repeat (49 for TMV). The helical twist is 

calculated by dividing 360° by the number of lattice points in a single turn. (E) The corresponding initial spheres-

only model (adapted from He & Scheres, 2017). 
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Figure 2.14. Helical lattice determination and initial model generation of VipA/VipB. Refer to figure 2.12 

for the explanations of each panel. As is shown in panel (D), VipA/VipB conforms to C6 point group symmetry 

and there are 2 subunits (lattice points) in a full repeat on every strand (green arrow in D) (adapted from He & 

Scheres, 2017). 

Simulated lattices are then constructed using ‘relion_helix_toolbox --simulate_helix’ as described in 

section 2.2.9.2. The diameter of artificial spheres should be large enough (80 Å for both TMV and 

VipA/VipB) so that their peripheral soft-edges touch with their direct neighbours on the simulated 

lattice. Reconstructions are subsequently performed using the references with helical symmetry 

imposed and locally refined at every iteration. The final, refined symmetry parameters are +22.03°, 

1.410 Å for TMV, and +29.41°, 21.79 Å for VipA/VipB and the refinements converges to correct near-

atomic resolution structures. In addition, TMV simulated lattices might occasionally show 

unsatisfactory convergence behaviour. A possible explanation could be that the long-shaped TMV 

subunits are less similar to the shapes of simulated spheres.  

Empirically, very simple helices, such as MamK filaments, often do not generate suitable diffraction 

patterns for Bessel order assignments and subsequent symmetry estimations (figure 2.16). But the user 

might escape the trouble of Fourier-Bessel by refining these structures from cylinders, without any prior 

knowledge of helical symmetry (figure 2.11). On the contrary, complicated helical lattices, such as 
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TMV and VipA/VipB filaments, contain richer information in their diffractions which makes symmetry 

determination from Fourier-Bessel analysis rather straightforward. And these helices, prominent as 

curled 2D surface lattices, hardly yield anything reasonable if reconstructed using cylinders as initial 

references. Therefore, it seems that in many situations there could be a way to start a helical 

reconstruction, as long as the suitable method is chosen. MAVS/CARD refinement can be initialised in 

both ways as its symmetry has moderate complexity (figure 2.11A and 2.15). 

 

Figure 2.15. Helical lattice determination of MAVS/CARD. Refer to figure 2.12 for the explanations of each 

panel. As is shown in panel (D), MAVS/CARD has no point group symmetry and there are 32 subunits (lattice 

points) in a full repeat if the helix is considered as 1-start (green arrow in D). 

 

Figure 2.16. A representative 2D class average (A) and the amplitudes of Fourier-space diffraction pattern 

(B) of MamK. Layer lines and positions of first maxima are not discernible on B. 
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Alternatively, references from PDB models require prior knowledge of the subunit (or homolog) 

structure and reliable estimates of helical symmetry. For the published work of MamK filament, Löwe 

et al., 2016 placed actin-like crystal structures onto the helical lattice using the method described in 

section 2.2.9.3. 

Low-pass filters should still be applied to all helical references, but usually not as stringent as the ones 

in single-particle analysis. Although filtered to prevent model bias, the references must provide basic 

information of the helical lattices (i.e. positions of constituent subunits). Empirically, this information 

still exists if the references are low-pass filtered to 20 Å – 30 Å, but it is hardly preserved using the 

values of 50Å – 60Å which are common for single-particle reconstructions. Less stringent values are 

suggested for complicated helical lattices with smaller protein subunits. 

Starting from simulated cylinders or lattices as the initial references, the final distributions of the tilt 

angles (θ) of all the experimental images in some 3D-refinements have been found bimodal (e.g. at  

both ~70° and ~110°), not mono-modal around 90° as normally expected. Such results should be 

considered sub-optimal unless there are specific reasons why the data sets should conform to bimodal 

tilt (θ) priors. However, the users might not notice since the refined maps are interpretable and the final 

claimed resolutions are still at sub-nanometre levels. The split distribution of tilts could be explained 

by the accumulated alignment errors introduced by the simulated initial references. During the first few 

iterations, the tilt angles (θ) deviate from 90° as the experimental images are compared with the 

projections of the references which are slightly different from the target structures. The centres of tilt 

priors are always reset to the tilts estimated in the previous iteration. Therefore, tilt angles might move 

away from 90° step by step and get stuck in incorrect values when the search ranges are too small to 

include the true values of tilts. The additional option ‘--keep_tilt_prior_fixed’ may alleviate this 

problem by fixing the tilt prior centres at 90° in global angular searching steps. The tilt priors are re-

centred only when the reconstructions proceed into local searching steps. 

For some other cases, it is necessary to run additional rounds of refinement to reach the highest 

resolution possible since the initial references might be slightly deviated from the radius of 

convergence, due to the differences in shapes between real proteins and the simulated spheres/cylinders. 

Even if the first-round reconstruction converges to the correct symmetry and reveals contours of 

proteins, the subsequent runs may reach higher resolutions, yield better FSC curves and more details of 

the structures. 

2.4.4 Pitfalls of imposing incorrect initial helical symmetry 

Initial models and symmetry should be carefully considered so that they sit within range of convergence 

radius of RELION optimisation algorithm, which is a local optimiser (section 1.4). This statement is 

also true for other helical processing workflows that are based on IHRSR-like projection matching 
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(section 1.8). Incorrect structures, albeit with rather high claimed resolutions, have been reconstructed 

starting from references with poorly estimated helical twist and rise (reviewed by Desfosses et al., 2014; 

Egelman, 2010, 2014). Therefore, appropriate measures of determining helical symmetry and building 

initial models are perhaps the most crucial steps in successful helical processing. 

To demonstrate the danger of applying incorrect initial helical symmetry, a wrong symmetry (+64.9°, 

3.63 Å, C1) was deliberately imposed on VipA/VipB, instead of the correct symmetry (+29.41°, 21.79 

Å, C6 point group). The wrong symmetry was calculated if the correct helical symmetry on any of the 

6 rotationally symmetric strands was converted to a 1-start C1 representation for the actual 6-start C6 

structure (Δϕwrong = (360° + 29.41°) / 6 = +64.9°, Δzwrong = 21.79 Å / 6 = 3.63 Å, section 2.2.1). The 

initial references were constructed using simulated lattices with corresponding symmetries. 

Surprisingly, the 3D refinement with such initial settings still converged within 25 iterations (figure 

2.16B). The refined helical parameters were +65.07° and 3.76 Å, lying around their initial values and 

well included in the specified searching ranges (+60.0° – +70.0°, 3.20 Å – 4.00 Å). Post-processing 

yielded solvent-corrected resolution of 4.5 Å (figure 2.17C, black). If one pretends that the correct 

symmetry is unknown, the above indicators suggest that the result could still be a reasonable near-

atomic structure. However, on the density map figure 2.17B, one cannot find any clues of protein-like 

features, such as α-helices or β-sheets which should be clearly observed under the claimed resolution. 

Its side-view 2D projections (figure 2.17F, lower half) have very much different appearances with 

streaky densities in solvent areas compared to those of the correct map (figure 2.17F, upper half) and 

the 2D class averages of segments (figure 2.17E). In addition, its FSC curve (figure 2.17C, black) is not 

smooth anywhere, which rarely happens in perfect reconstructions. 
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Figure 2.17. Effects of imposing the correct and wrong helical symmetries for the VipA/VipB data set. (A) 

Reconstruction with the correct helical twist and rise imposed (+29.41°, 21.79 Å, C6). (B) Reconstruction with 

the wrong helical symmetry imposed (+64.9°, 3.63 Å, C1). The maps in (A) and (B) are coloured according to 

local-resolution estimates (from 3.0 Å in blue to 5.8 Å in maroon). (C) FSC curves between two independently 

refined half-sets for the refinement with the correct helical symmetry (red) and the wrong helical symmetry 

(black). (D) Central z slices through the unsharpened map from the refinement with the correct and wrong helical 

symmetry. (E) Two typical 2D class averages of VipA/VipB segments. (F) The comparison of 2D projections of 

correct and wrong density maps at Euler angles (ϕ, θ, ψ) = (0°, +90°, +90°) and (+10°, +85°, +90°). The 2D 

projections were generated using the standalone executable ‘--relion_project’ (adapted from He & Scheres, 2017). 

In reality, such mistakes may happen unnoticed. The authors of the original MAVS/CARD paper (Xu 

et al., 2014) firstly made errors in estimations of helical symmetry (pointed out by Egelman, 2014). 

They had tried hard to interpret a wrong density map which was not at all similar to the corrected results 

(Xu et al., 2015). In addition, a near-atomic nominal resolution in 3D refinements is not a guarantee for 

success either, since FSC only measures consistency between the data half-sets. Incorrectness is 

consistent in both half-maps imposed with similarly wrong symmetry. Incorrect reconstructions are 

unavoidable in RELION with initially wrong symmetry since both MAP-EM and searches of helical 

parameters are local optimisers. Other widely used data processing packages, such as IHRSR (Egelman, 

2000) in SPIDER (Frank et al., 1996), SPARX (Behrmann et al., 2012) and FREALIX (Rohou and 

Grigorieff, 2014), all suffer from the same problem. Exhaustive searches of all possible helical 

symmetries (e.g. SPRING, Desfosses et al., 2014) might cover the true twist and rise but extra costs 
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include much more expensive computations and more free parameters to tune in 3D reconstructions. 

Eventually, it is still required to manually find the correct symmetry (if it has been considered) through 

inspections of a series of independent 3D reconstruction results. Tilt-pair analysis (Henderson et al., 

2011) serves as a robust validation method for both single-particle and helical reconstructions. Should 

it have been performed for the structures mentioned at the beginning of the paragraph, the incorrectly 

reconstructed results could have been avoided from being published. 

The most convenient way (if possible) to validate a helical reconstruction is to examine protein-like 

features in the final density map. For maps with high claimed resolutions, this can be easily done by 

identifying clearly separated α-helices, β-strands and amino-acid side chains. The density map must 

lead to a fitted, stereo-chemically sound atomic model. Such criteria are widely accepted since the whole 

cryo-EM community are aiming at more near-atomic resolution structures in the recent years. 

Summarised below are some useful tips which might rule out most possibilities of imposing wrong 

symmetry, which can also be used as evidence (but not sound proof) of the correctness of medium to 

low resolution reconstructions.  

Firstly, one should attempt to build initial models with both cylinders and Fourier-Bessel methods if 

there are still doubts about the estimated helical symmetry. If the helical lattice is relatively simple, 

cylinders can lead to unbiased reconstructions from which the true helical parameters can be determined 

by eye inspections along with searching (e.g. MAVS/CARD and MamK, figure 2.11). On the other 

hand, Fourier-Bessel indexing is more feasible for complicated lattices and require users’ expertise. The 

indexing process generally leads to better understanding of the helices and thus helps to avoid mistakes. 

Secondly, helical symmetry must be terribly wrong or at least badly optimised (for a specific class) if 

the twist and rise converge to the edges of searching ranges during 3D reconstructions. This happened 

when the wrong symmetry of MAVS/CARD, (+53.6°, 16.8 Å, C3) published by Xu et al., 2014, was 

applied in helical reconstructions of RELION. Thirdly, the side-view 2D projections of the refined map 

should match with the 2D class averages of raw segments. This provides evidence of consistency 

between the reconstructed volume and the input images. In addition, doubts of wrong symmetry should 

also be raised if either angular distributions (alignments) of segments (recorded in .bild files) or the 

post-processing FSC curves appear abnormally spiky. 

The handedness of the helix in the final density map can be incorrect as the information of chirality is 

not recovered from the single-particle reconstructions of 2D input images. The handedness of the final 

map might be fixed by that of the initial reference. In this case, there is no need to perform the 

reconstruction from start. The final 3D map can be simply flipped across the helical axis (z) in order to 

obtain the true conformation. There are several ways to discover the handedness with cryo-EM/ET 

imaging and data processing if no prior knowledge is available. Firstly, the chirality information is 

preserved in cryo-ET sub-tomogram averaging, which sometimes used in preliminary experiments 
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before cryo-EM analyses of helices are performed. Secondly, the handedness can be figured out by 

cryo-EM imaging of a tilted stage. Collected from a stage tilted at specific small angles, the 2D images 

of helices may show characteristic left-right, serrated smooth asymmetry across the outer surfaces of 

helices. The handedness can be determined based on the tilt directions and angles, along with the sense 

of asymmetry observed from the images. Alternatively, simulated projections of both left and right-

handed helical lattices are generated at a series of tilt angles and compared with the experimentally 

tilted images in order to determine the handedness (Finch, 1972). In addition, if the resolution of the 

final map is high enough to resolve the densities of α-helices, the handedness can be confirmed as 

correct if these secondary structures appear as right-handed spirals. 

2.4.5 Applying helical symmetry in Fourier-space 

Simulated data sets of TMV were used to illustrate the significance of applying Fourier-space helical 

symmetry in 3D reconstructions. Using the method introduced in section 2.2.9.3, the 3D reference of 

TMV was constructed in a 300-pixel particle box using PDB entry 4UDV (Fromm et al., 2015). Then 

two simulated data sets of 15,000 TMV subunits on 10 filaments were generated using 5 and 30 as the 

numbers of asymmetrical units (H) respectively, resulting in two particle stacks containing 3,000 and 

500 segments. For simplicity, all tilt angles (θ) of these segments were set to 90°. In-plane rotations (ψ) 

were randomised for the 10 filaments and the Gaussian white noise level was set to 20.  

Three experiments of 3D reconstructions were performed using combinations of different H and the 

simulated segment stacks (figure 2.18). As the first steps of the reconstructions, the experimental 

segments were inserted back into 3D according to the central-slice theorem (figure 1.7). This could be 

done using the above data sets because the alignment information was known during segment 

simulations. Thus, the simulated 3D reconstructions are reference-free and non-iterative. Afterwards, 

helical symmetrisation was applied to the reconstructions in Fourier-space according to H. The 

following command generated the reconstruction ‘reconA.mrc’ in figure 2.18B using 

‘3000segments_H5.star’ as the STAR file of simulated segments. Reconstructions in figures 2.18CD 

were generated similarly. 

relion_reconstruct --i 3000segments_H5.star --o reconA.mrc --nr_helical_asu 

5 --helical_rise 1.408 --helical_twist 22.03 --angpix 1.062 
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Figure 2.18. Applying Fourier-space helical symmetry using different numbers of asymmetrical units (H) 

in the simulated TMV data set consisting of 15,000 subunits. The central z slices of the original and averaged 

half-maps are shown for all test cases of simulated 3D reconstructions. (A) The original density map converted 

from PDB entry 4UDV for data simulations. (B) Data set simulated with H = 5 (3,000 segments) and correctly 

refined with H = 5 (5 × 3,000 = 15,000 subunits averaged). (C) Data set simulated with H = 30 (500 segments) 

and correctly refined with H = 30 (30 × 500 = 15,000 subunits averaged). (D) Data set simulated with H = 30 (500 

segments) and incorrectly refined with H = 5 (5 × 500 = 2,500 subunits averaged). 

The reconstructed maps were symmetrised in Fourier-space H times according to the helical twist and 

rise values when H ≥ 2 (section 2.2.2). As is seen in figure 2.18B&C, the signal-to-noise levels are 

correctly estimated when the H used in segment simulations (extractions) matches with the H used in 

simulated 3D reconstructions. However, noise levels are not properly averaged down if the H in 

simulated 3D reconstructions is considerably lower than the H used in segment simulations (figure 

2.18D). Therefore, Fourier-space symmetrisation is crucial for the correct estimations of signal-to-noise 

ratios (SNRs) at all spatial frequencies. 

2.4.6 Inter-box distances and mask diameters 

Cutting overlapping segments gives rise to an additional free parameter, the inter-box distance (or 

equivalently the number of asymmetrical units H in each new segment, given a known helical rise). 

Since helices span across segment boxes, the determination of mask diameters is not straightforward 

compared to the reconstructions in single-particle analysis, where the sizes of circular (spherical) masks 

are set to allow some extra spaces around the particle densities. To investigate the effects of these two 

user-defined parameters, tests were performed on both TMV and MAVS/CARD data sets. On one hand, 

3D refinements had fixed circular mask diameters with varying inter-box distance according to different 

number of asymmetrical units provided in segment extractions (figure 2.19AB). On the other hand, 

more refinements were performed with fixed inter-box distance but varying mask diameters (figure 

2.19CD).  
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Figure 2.19. Refinements with varying inter-box distances. (A) FSC curves for TMV refinements with inter-

box distances corresponding to 5 (black), 15 (red) and 30 (blue) and 75 (green) new asymmetrical units per 

segment, corresponding to 2.1 %, 6.3%, 12.5% and 31.3% of the box size, respectively. The rise of TMV is 1.41 

Å and the box size is 338 Å. The mask diameter in these refinements was fixed at 90% of the box size. (B) FSC 

curves for MAVS/CARD refinements with inter-box distances corresponding to 2 (black), 8 (red), 14 (blue), and 

20 (green) new asymmetrical units per segment, corresponding to 3.2%, 12.9%, 22.5% and 32.2% of the box size, 

respectively. The rise of MAVS/CARD is 5.07 Å and the box size is 315 Å. The mask diameter in these 

refinements was fixed at 90% of the box size. (C) FSC curves for TMV refinements with mask diameters 

corresponding to 90% (black), 85% (red) and 80% (green) of the box size. The inter-box distance in these 

refinements was fixed to yield 30 new asymmetrical units per segment. (D) FSC curves for MACS/CARD 

refinements with mask diameters corresponding to 90% (black), 80% (red), 70% (green) and 60% (blue) of the 

box size. The inter-box distance in these refinements was fixed to yield 8 new asymmetrical units per segment 

(adapted from He & Scheres, 2017). 

A smaller inter-box distance yields more helical segments but the total amount information contained 

in the extracted segments remains invariant. More segments per unit-length on filaments allow more 

orientation and translational parameters to be assigned to the segments during alignment. This higher 

degree of freedom might benefit flexible or bending filaments. Moreover, smaller diameters of circular 

(and spherical) masks in 2D (and 3D) reduce correlations of alignments among neighbouring 

overlapping segments. When the filaments are highly bent, a smaller diameter masks out more signals 
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near box edges, cutting the segments into shorter and straighter ones, which might improve alignments. 

Thus, for TMV filaments which are almost perfectly straight, qualities of refinements remained largely 

the same no matter how these two parameters change (2%–30% inter-box distances, 80%–90% circular 

masks). For bending MAVS/CARD filaments, it is expected that shorter inter-box distance and smaller 

masks could describe their flexibilities more accurately. However, experiments showed that large inter-

box distances (up to 30% the box size) were still equally satisfactory even for bending filaments of 

MAVS/CARD. It can be explained that the majority of highly curved MAVS/CARD segments are 

firstly excluded by auto-picking algorithm (section 2.2.7) and subsequently discarded after selections 

of good-quality segments according to 2D class averages. The effects of various mask diameters agreed 

with predictions on MAVS/CARD segments. A mask of 80% box size was marginally better compared 

to 70% or 90%. But it does not necessarily mean that smaller values are always more advantageous. 

The resolution of MAVS/CARD reconstruction was evidently decreased with a 60% circular mask since 

the signals remained were insufficient for accurate alignments. 

The results above imply the following empirical requirements on the initial settings of segment box 

size, inter-box distance and circular mask diameter for high-quality reconstructions. The box size must 

be large enough to accommodate helical segments and their circular masks so it is usually set to at least 

1.5× the filament widths. A bigger box size leads to an advantage in finer samplings of resolution shells 

in Fourier-space but the maximum limit of box size depends on total amount of memory available on 

the CPU or GPU cluster. Its minimum should still ensure accurate alignments of segments (together 

with a suitable mask diameter). Circular mask diameter must be greater than actual filament widths and 

less than ~90% the box size to effectively prevent real-space artefacts explained in section 2.2.5. 

Smaller masks (or box sizes) might be more appropriate for flexible helices. As for the inter-box 

distance, it hardly affects the final resolutions of reconstructions of straight filaments with perfectly 

stable symmetries therefore higher values are recommended to reduce the number of segments extracted 

to gain linear speed-up of computations. Practically, its maximum should be around 30% the box size, 

as a number of central z sections (in this case, 1 - 30% × 2 = 40%) are required for local searches and 

impositions of helical symmetry in real-space (section 2.2.3 and 2.2.4). Inter-box distances of 5%-10% 

lead to more segments and their alignment parameters for flexible or straight filaments with varying (or 

mixed) symmetries. Scaling the mask diameter may tune the dependencies of alignment parameters 

among neighbouring segments. Since all segments are extracted at (rounded) integer coordinates on 

micrographs in RELION, tiny inter-box distances (e.g. ≤2%) are not recommended since it might make 

interpolation errors more evident. 
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2.4.7 Applying helical symmetry in real-space 

The importance of helical symmetrisation in real-space is demonstrated by 3D refinements of MamK 

helix in figure 2.20. These helical segments were picked at an inter-box distance of 1 helical rise (~52.2 

Å, H = 1) therefore the Fourier space symmetrisation was not applicable. Two pairs of reconstructions 

were performed using the cylindrical and proper MamK helical references respectively. All the 

references were low-pass filtered to 30 Å. For 3D reconstructions starting from either type of initial 

references, real-space helical symmetry improved the refinement results in terms of both claimed 

resolutions and resolved details on the density maps. In particular, the real-space helical symmetry 

contributed to the reconstruction from the featureless cylinder considerably (red and black curves in 

figure 2.20A). In addition, the application of real-space symmetry compensated for the lack of 

information in cylindrical starting model and delivered similar results (black curve in figure 2.20A) 

compared to the refinement from the helical reference of MamK (blue curve in figure 2.20A). The 

application of helical symmetry in real-space improves the quality of density maps and yields better 

convergence. 

 

Figure 2.20. The importance of real-space helical symmetry in 3D refinements of MamK. The post-processed 

FSC curves (A) show the refinements from the featureless cylinders (180 Å wide) ended up at 5.7 Å (red) and 3.9 

Å (black) without or with real-space helical symmetry applied. The respective side views of these two density 

maps are shown in panels (B, 3.9 Å) and (C, 5.7 Å). The refinements from MamK helical references ended up at 

4.1 Å (green) and 3.9 Å (blue) without or with real-space helical symmetry applied. 

2.4.8 Local searches of helical symmetry 

As discussed in sections 2.4.3, initial helical symmetry and 3D references must lie within radius of 

convergence of the optimisation algorithm in order to yield correct helical reconstructions. Helical twist 

and rise can be locally optimised in real-space at the end of every iteration in 3D reconstructions. 

Refinements with different initial twist and rise values (table 2.6) were performed on MamK to 

demonstrate the robustness of such local optimisations. All the jobs started from the same 180 Å wide 
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featureless cylinder low-pass filtered to 30 Å. Convergence criteria here, which remain the same as in 

the single-particle reconstructions in RELION, consider current resolution estimates, accuracies and 

accumulated changes of orientations and translations. Fortunately, these criteria also guarantee 

convergence of helical symmetries for all the tested refinements, no matter whether the optimised 

symmetries were correct or not (figure 2.21A&B). Out of all combinations of twist and rise tested for 

MamK, initial values within ranges of +19° – +25° and 42 Å – 62 Å were observed leading to correctly 

converged reconstructions. Incorrectly refined symmetries could be identified by weird densities, low 

resolution estimates and twist/rise values lying at the edges of searching ranges. Moreover, the side-

view projections of incorrect structures are strikingly different from any 2D class averages of helical 

segments. Interestingly, some initial symmetries, far from the perfect values (+23.77°, 52.12 Å), could 

still be optimised correctly but the resolution estimates of such cases (e.g. +17°, 37 Å; +17°, 42 Å and 

+21°, 67 Å) were slightly worse than the optimal results. It could be explained that in 3D refinements, 

exhaustive orientation searches had been stopped too early when the helical symmetries were still 

experiencing large changes to reach the correct values. One solution is to keep angular searches global 

for finer angular steps (≤ 0.9°) in 3D auto-refinements. Single-class 3D classifications, with exhaustive 

searches always to be performed for an arbitrary number of iterations, could be another approach to 

approximate the correct symmetry parameters. Or generally, if the initial helical twist and rise values 

seem considerably different from correct ones, additional rounds of 3D refinement should be performed 

starting from the symmetry and the structure refined from the previous round.  

 

Twist → 

Rise ↓ 

17° 

[14-26°] 

19° 

[16-26°] 

21° 

[18-26°] 

23.746° 

[21-26°] 

25° 

[21-29°] 

27° 

[21-31°] 

29° 

[21-33°] 

37 Å 

[32-57 Å] 

23.63° 

52.24 Å 

6.47 Å * 

23.73° 

52.13 Å 

5.44 Å 

23.72° 

52.14 Å 

5.44 Å 

23.58° 

52.28 Å 

6.70 Å * 

24.23° 

52.14 Å 

6.05 Å * 

23.60° 

52.16 Å 

5.44 Å 

28.54° * 

37.03 Å * 

8.93 Å * 

42 Å 

[37-57 Å] 

23.18° 

52.26 Å 

6.36 Å * 

23.73° 

52.11 Å 

4.69 Å 

23.64° 

52.09 Å 

4.75 Å 

23.74° 

52.12 Å 

5.36 Å 

20.97° * 

46.09 Å * 

6.70 Å * 

23.69° 

52.13 Å 

4.81 Å 

31.96° * 

51.02 Å * 

8.53 Å * 

47 Å 

[42-57 Å] 

23.71° 

52.10 Å 

4.75 Å 

23.73° 

52.10 Å 

4.81 Å 

23.72° 

52.10 Å 

4.63 Å 

23.73° 

52.12 Å 

4.63 Å 

23.73° 

52.10 Å 

4.63 Å 

23.73° 

52.11 Å 

4.75 Å 

32.31° * 

52.26 Å * 

7.36 Å * 
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52.15 Å 

[47-57 Å] 

23.65° 

52.19 Å 

6.25 Å * 

23.73° 

52.11 Å 

4.81 Å 

23.76° 

52.12 Å 

4.63 Å 

23.77° 

52.12 Å 

4.69 Å 

23.74° 

52.12 Å 

4.63 Å 

23.73° 

52.12 Å 

4.63 Å 

23.71° 

52.13 Å 

4.63 Å 

57 Å 

[47-62 Å] 

23.69° 

52.13 Å 

4.75 Å 

23.72° 

52.11 Å 

4.69 Å 

23.73° 

52.16 Å 

4.75 Å 

23.75° 

52.12 Å 

4.63 Å 

23.74° 

52.12 Å 

4.69 Å 

23.71° 

52.12 Å 

4.63 Å 

23.73° 

52.12 Å 

4.63 Å 

62 Å 

[47-67 Å] 

16.00° * 

53.14 Å 

7.36 Å * 

23.73° 

52.18 Å 

4.87 Å 

23.69° 

52.61 Å 

6.15 Å 

23.73° 

52.13 Å 

4.63 Å 

23.73° 

52.12 Å 

4.81 Å 

23.76° 

52.14 Å 

4.75 Å 

23.74° 

52.18 Å 

5.36 Å 

67 Å 

[47-72 Å] 

13.59° * 

60.39 Å * 

7.98 Å * 

18.29° * 

59.40 Å * 

8.34 Å * 

22.82° 

53.91 Å 

7.66Å * 

23.14° 

53.34 Å 

6.82 Å * 

22.98° 

55.35 Å * 

7.66 Å * 

24.78° * 

63.00 Å * 

8.34 Å * 

31.24° * 

62.99 Å * 

7.98 Å * 

 

Table 2.6. Local optimisation of helical parameters for MamK. Starting from different initial estimates for the 

helical twist (top row, with search ranges between square brackets) and rise (first column, with search ranges 

between square brackets), the final refined values for the helical twist (top), rise (middle) and resolution (bottom) 

are shown. Asterisks and red colours are used to indicate values that deviate more than 1° or 1 Å from the correct 

ones, which are shown in bold and green in the middle (adapted from He & Scheres, 2017). 
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Figure 2.21. Convergence of helical parameters within 3D auto-refinement runs. Plots of the refined helical 

twist (A) and rise (B) for each iteration of three different 3D auto-refinement runs: starting from initial twist and 

rise settings of: +17° and 37 Å (black); +29° and 62 Å (red); and +17° and 67 Å (green). The first two refinements 

converged onto the correct values, whereas the last did not. (C) shows the side views of the unfiltered 

reconstructed maps starting from the aforementioned combinations of twist and rise values. Note that the 2nd side 

view from the left is flipped upside-down with respect to the 1st (adapted from He & Scheres, 2017). 

2.4.9 Angular and translational priors 

In the original IHRSR algorithm (Egelman, 2000) incorporated into SPIDER (Frank et al., 1996), the 

orientations and translational priors are expressed as user-defined searching ranges. These ranges are 

equivalent to top-hat shaped priors in the statistical learning framework of RELION. That means, 

orientations and translations within the ranges have weights all set to 1 while those outside the specified 

ranges have weights of 0. Theoretically, reconstructions can be improved if the prior shapes match 

better with the actual distributions of the underlying parameters. The improvements can be more 

prominent when the input images have higher noise levels. RELION makes use of priors with shapes 
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of Gaussian distributions which are expected to yield better results compared to top-hat priors. In 

addition, the statistical framework has the potential to update the optimal search ranges according to 

the data set. The update scheme in RELION decreases the angular searching ranges and re-estimates 

the widths of translational priors at every iteration in 3D auto-refinement. 

Comparisons between Gaussian and top-hat priors were performed on MamK and VipA/VipB 

filaments. The widths of top-hat priors were set to ±3σ of the corresponding Gaussian priors at all times. 

Figure 2.22 shows the FSC curves of these 3D refinements after post-processing. For the VipA/VipB 

data, Gaussian priors made notable improvements over top-hat ones. However, both priors led to similar 

results for MamK filaments. The flexibilities of MamK bending filaments seem to be the main obstacle 

to getting a higher-quality map. 

 

Figure 2.22. Comparison of different priors. FSC curves of post-processed maps for MamK (A) and 

VipA/VipB (B), using either Gaussian priors (black) or top-hat priors (red) in the refinement (adapted from 

He & Scheres, 2017). 

As discussed in section 2.2.6, in-plane angular (ψ) priors are bimodal for all helical segments if the 

target structure has no or only Cn point group symmetry. In such cases, the helical segments coming 

from the same filament should adopt the same polarity. If the additional option ‘--

helical_sigma_distance X’ is enabled in 3D reconstructions, the weights of the two components of the 

bimodal ψ priors are assigned to each segment according to the number of segments conforming to 

either of the polarities on the given filament. Here, a 3D refinement of MamK was performed to estimate 

how many segments adopted the majority polarity using the bimodal ψ priors. Total numbers of 

segments with the majority polarity are listed in table 2.7 and 2.8 for each iteration of global angular 

searching in MamK and TMV refinements. About 2/3 of all MamK segments were assigned with the 

majority polarity of their corresponding filaments after the first iteration. The percentage increased to 

93.5% before the refinement proceeded into local angular searching steps. The outliers, i.e. the rest 

6.5% segments, were subsequently flipped to the majority polarity. An experiment was also performed 

to compare the MamK refinements with and without such polarity correction. Figure 2.23A shows that 
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the flipping slightly improved the final post-processed resolution of MamK by a few Fourier-shells in 

FSC curves. 

 

# of iterations 

# segments with 

majority polarity 

# segments with 

opposite polarity 
% of outliers 

1 88,541 44,696 33.5% 

2 98,545 34,692 26.0% 

3 115,333 17,904 22.4% 

4 123,850 9,387 7.0% 

5 123,832 9,405 7.1% 

6 123,814 9,423 7.1% 

7 124,533 8,704 (flipped) 6.5% (flipped) 

8+ (Local searches) 133,237 (total) - - 

 

Table 2.7. The total numbers of MamK segments with majority and the opposite polarities in each iteration 

of global angular searching in 3D refinements.  

The polarity statistics was also analysed for TMV refinements (Table 4.8). Compared to MamK, the 

polarities of TMV segments were much less ambiguous and only ~0.2% of all segments were 

considered as outliers when the refinement went into local angular searches. Thus, flipping the polarities 

of the outliers hardly improved the final reconstructions of TMV (figure 2.23B). The results could be 

explained by the richer information contained in the TMV helical lattice and the less flexibilities of 

TMV filaments. 
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# of iterations 

# segments with 

majority polarity 

# segments with 

opposite polarity 
% of outliers 

1 1,684 77 4.4% 

2 1,756 5 0.3% 

3 1,753 8 0.4% 

4 1,759 2 0.1% 

5 1,758 3 0.2% 

6 1,758 3 (flipped) 0.2% (flipped) 

7+ (Local searches) 1,761 (total) - - 

 

Table 2.8. The total numbers of TMV segments with majority and the opposite polarities in each iteration 

of global angular searching in 3D refinements.  

 

Figure 2.23. The comparisons of MamK (A) and TMV (B) refinements with and without polarity 

corrections. For both panels, red curves show the 3D refinements with bimodal ψ prior corrections switched on 

by the additional option ‘--helical_sigma_distance 2’ (explained in section 2.2.6) and with polarities of the outliers 

flipped in the last iteration of global angular searches (table 2.7 and 2.8). Black curves show the 3D refinements 

with fixed 50%-50% unbiased bimodal ψ priors during all iterations of global angular searches.  

Therefore, the additional option ‘--helical_sigma_distance X’ (section 2.2.6) is recommended for 

bending and less rigid filaments for possible polarity corrections. In addition, polarity statistics (table 

2.7 and 2.8) can provide a clue whether the data set conforms to Dn symmetry (without polarity). In 

such cases, distributions of opposite polarities are expected to be around 50%-50% with no 

accumulations in either side during all iterations of global alignment. 
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In fact, the ground truth of the polarity of an experimental segment is never known. If only several 

segments have been extracted from a filament, there is a possibility that the algorithm assigns wrong 

polarities to the majority, flips the outliers with correctly assigned polarities and makes the 

reconstruction even worse, especially when the filaments are flexible and short, recorded on images 

with higher noise levels. In order to make polarity correction works, it is advised to pick as many longer 

filaments as possible, which lowers the joint probability of making such mistakes. Otherwise, the naive, 

50%-50% fixed bimodal ψ priors should be adopted. 

2.4.10 Prevention of over-fitting in 3D auto-refinements 

In general, over-fitting in cryo-EM means that some occurrences of pure noise are treated as signals of 

molecular features during data processing. When over-fitting happens, signal-to-noise ratios (SNRs) 

are incorrectly estimated to higher values at some spatial frequencies and the claimed final resolution 

of the density maps might be exaggerated. In 3D reconstructions, the orientation (φ, θ, ψ) and 

translational (Δx, Δy) parameters of the experimental 2D particles are iteratively refined through 

comparisons with the gradually improved 3D reference model (V(n), section 1.4). The raw 2D images 

contain more random noise than feature signals especially at higher spatial frequencies. For this reason, 

the parameters of 2D images may slightly biased to fit noise in the reference as features. The iterative 

process accumulates such false features in the updated models, leading to over-fitting in the final 

reconstruction (Chen et al., 2013). 

Several existing measures have been taken to limit over-fitting in single particle cryo-EM 

reconstructions. Stringent low-pass filters (e.g. 50 Å – 60 Å for ordinary single particles) are applied to 

get rid of high frequency data in the initial references and alleviate model bias (where the parameters 

are biased to fit existing features in the initial reference but not generating true features contained in the 

experimental data set, Henderson, 2013). In 3D auto-refinements, the 2D images are divided into two 

random halves, and the reconstructions are performed independently. Fourier-shell correlations (FSC) 

and current resolution estimates are calculated between the two half-maps at the end of each iteration. 

In addition, if an atomic model is built according to the reconstructed density map, a Fourier-shell 

correlation (FSC) between the model and the map could further validate the signal-to-noise ratios 

(SNRs) and the overall resolution estimates. 

In helical reconstruction, overlapping segment boxes are cut off along helical filaments from 2D 

micrographs. Two specific measures are taken in order to prevent overfitting from overlapping signals 

in 3D auto-refinements: randomly dividing the data set into halves filament-wise (section 2.2.8), and 

limiting the translational priors within a single rise along the helical axis of every segment (without 

accumulating the translations during the iterative reconstruction process, section 2.2.6 and 2.4.9). The 

latter is also adopted for all 3D reconstructions (including both 3D classifications and auto-refinements).  
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Four tests of 3D refinements were performed on TMV data set to evaluate these two measures (figure 

2.24). The refinement with both measures adopted (black line) led to a final resolution of 4.1 Å after 

post-processing, which agreed with the visible features of the density map, and the FSC curve dropped 

close to zero beyond 3.8 Å. This resolution was lower than the one reported in figure 2.28 and table 2.1 

since non-polished segments were used in all the four tests in this section. The refinement with neither 

safeguard measures (green) caused severe over-fitting indicated by a heavily inflated FSC curve. Here, 

division of half-sets was performed segment-wise and the translational priors were isotropic in 2D, both 

of which were the same as in ordinary single-particle analysis. In this case, neighbouring segments 

along the same filament are be separated into different half-sets, which introduces redundant 

correlations between the same parts of experimental images. Furthermore, the translations along the 

helical axis accumulate during the isotropic 2D translational searches in the iterative refinement, 

therefore some segments may be translated so much that they can superimpose onto the neighbouring 

segments in the other half-set. These two factors severely inflate the (green) FSC curve all the way to 

Nyquist frequency. The third refinement (blue line), with filament-wise randomisation and isotropic 

priors, demonstrated no signs of over-fitting. However, it had a lower claimed resolution compared to 

the first test (black line), probably due to worse translational priors. The last experiment (red line) 

adopted segment-wise division with helical translational priors, where slight over-fitting effects could 

be observed. The inter-box distance used in all the four cases was 42.2 Å (37.5 pixels, H = 30). It is 

expected that the effects of over-fitting could be more evident if smaller inter-box distances were used 

in the segment extraction. 

 

Figure 2.24. Prevention of overfitting in 3D auto-refinement by random half-sets. The FSC curve for TMV 

refinements with: filament-based half-sets with a top-hat prior on the translation along the helical axis (black); 

filament-based half-sets without a translational prior (blue); segment-based half-sets with a translational prior 

(red); and segment-based half-sets without a translational prior (green) (adapted from He & Scheres, 2017). 
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Thus, filament-wise randomisation alone can prevent iterative over-fitting effects. The two measures 

combined deliver the best results as expected theoretically. Therefore, the helical 3D refinement 

switches on both options by default. However, ‘--ignore_helical_symmetry’ option prevents the use of 

anisotropic translational priors. This option is provided by the user when the helical symmetry (rise in 

particular) is unknown or not at all reliable, therefore it is impossible to construct such priors. This 

could only happen at the initial stages of a helical processing project. 

A special case, ParM actin-like filament, is present here to show that the intrinsic structural factors of 

helices might as well lead to over-fitting. As is explained in section 1.7, helical diffraction patterns 

contain discrete Fourier amplitudes due to the periodicity of helical structures along z axis in real-space. 

Together with structural factors of the helices, the FSC curves calculated between half-maps in 3D 

refinements may contain sharp peaks at certain resolutions. The ParM actin-like filament consists of 

two anti-parallel strands and the whole structure has a twist of +165.0° and a rise of 24.7 Å. The full 

data set of ParM+AMPPNP containing 4,552 still micrographs was collected on an FEI Krios 

microscope with a K2 direct electron detector by Bharat et al., 2015. To illustrate the concept, the final 

PDB model of the ParM helix (5AEY) was firstly converted to a density map. The map was then 

duplicated and added with two sets of white Gaussian noise at the same level of 5 in real-space. 90% 

spherical masks were also applied before calculating the FSC curves between this pair of simulated 

maps of ParM helices: 

e2pdb2mrc.py 20merParM.pdb 20merParM.mrc --apix 1.07 --res 3 --box 350 

relion_project --3d_rot --i 20merParM.mrc --o sub1-n5.mrc --add_noise --

white_noise 5 --random_seed 1444400000 

relion_helix_toolbox --spherical_mask --i sub1-n5.mrc --o sub1-n5m.mrc --

spherical_percentage 0.9 

relion_project --3d_rot --i 20merParM.mrc --o sub2-n5.mrc --add_noise --

white_noise 5 --random_seed 1444499999 

relion_helix_toolbox --spherical_mask --i sub2-n5.mrc --o sub2-n5m.mrc --

spherical_percentage 0.9 

relion_image_handler --i sub1-n5m.mrc --fsc sub2-n5m.mrc --angpix 1.07 > 

fsc.txt 

The FSC curve is shown in blue in figure 2.25A. A sharp peak can be seen clearly at 4.9 Å. Small peaks 

can also be identified at around the multiples of ~5 Å (i.e. 10.1 Å, 15.0 Å). Interestingly, lots of α-

helices can be seen in real-space with the grooves coincidentally positioned along the direction of z axis 

at a spacing of ~5 Å (figure 2.26B). This special feature of the ParM helix leads to higher amplitudes 

on the corresponding layer lines in the diffraction pattern. The multiples of ~5 Å spacings along z 
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direction in real-space can be seen as anchor points and, to a large extent, fix the results of orientation 

and translational searches of the 2D experimental images at an early stage of 3D refinement. Therefore, 

the artefacts due to over-fitting build up in the course of the iterative reconstruction, which might be 

the main reason why the FSC curve has bumps (especially at 4.9 Å) as the input 2D images contain 

rather high levels of noise. 3D refinements of ParM were performed with 826,969 segments extracted 

using H = 2 and box sizes of 350 pixels (375 Å). Normal settings in the helical processing workflow 

were adopted initially. The reconstruction ended up at 4.5 Å (figure 2.26A&C) with a huge peak at 4.9 

Å in FSC curve (red curves in figure 2.25A&B). As is seen in figure 2.26A&C, there are spiky sectional 

artefacts at about 4.6 pixels (pixel size = 1.07 Å) apart in layers all the way along z axis. It is an evidence 

that the refinement over-estimated the signal-to-noise ratio (SNR) at the spatial frequency of 4.9Å due 

to the intrinsic structure of the ParM helix. To overcome the problem, the highest resolution was limited 

to 5.1 Å for the expectation step (‘--strict_highres_exp 5.1’) in the 3D refinement in order to reduce 

over-fitting at the cost of slightly less accurate alignments. As a result, the spuriously high FSC values 

at 4.9 Å was dampened (black curves in figure 2.25A&B) and the post-processed density map (figure 

2.26B&D) did not contain real-space artefacts. 

 

Figure 2.25. Prevention of over-fitting in 3D-refinements of ParM. (A) Blue: the FSC curve between two 

density maps converted from the same PDB helix model of ParM and added with white Gaussian noise at the 

same level of 5 in real-space. A sharp peak can be seen at the spatial frequency of 4.9 Å (0.20 Å-1). Red: FSC 

curve between half-maps after 3D refinements of ParM data set without such over-fitting prevention measure. 

Black: FSC curve between half-maps after 3D refinements of ParM data set with resolutions limited to 5.1 Å for 

alignments in the expectation steps. (B) Red: FSC curve of (A) red after post-processing with a claimed resolution 

of 4.46 Å. Black: FSC curve of (A) black after post-processing with a claimed resolution of 4.51 Å. The sharp 

peaks at 4.9 Å (0.20 Å-1) are abnormally strengthened in both red curves but appropriately reduced in both black 

curves. 
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Figure 2.26. Side views of the ParM density maps after post-processing. Filtered and displayed at a contour 

level of 0.05 in UCSF Chimera (Pettersen et al., 2004), (A) and (B) show the results reconstructed without and 

with the over-fitting prevention measure respectively. (C) and (D) are the same pair of results but filtered at a 

contour level of 0.13. Artefacts at 4.9 Å spacing along vertical axis (Z) can be clearly seen in (A) and (C) but not 

in (B) and (D). 

2.4.11 High-resolution structures 

The workflow introduced in section 2.1 was used to process the four test data sets listed in table 2.1. 

For TMV and MAVS/CARD data sets, a first-round 3D refinement was conducted using motion-

corrected micrographs. Movie refinements were done subsequently to track the movements of 

individual segments in every movie stack (Bai et al., 2013). Particle polishing estimated the B-factor 

weighting for each individual movie frame (figure 2.27) and wrote out polished segments (Scheres, 

2014). The polished segments were then subject to the final round of 3D refinement using the 

reconstructed map calculated previously as the initial reference. The processing time of the final round 

of 3D refinements is listed in table 2.9. VipA/VipB filaments were recorded on still micrographs so no 

movie processing was performed. A subset of motion-corrected micrographs (260) of MamK filaments 

was processed as a test case because the large scale of full data set (2,086 micrographs with 600,000+ 

segments) made it inconvenient for testing purpose. Löwe et al. 2016 have already run the particle 

polishing of the complete MamK data with this helical processing workflow in RELION-2.0. In the 

hope of even better-quality subsets of segments, 3D classifications of polished segments were attempted 

without further alignment changes permitted. However, no subsets of segments in any of the four cases 

led to improved reconstructions. Post-processing steps sharpened the density maps coming from 3D 

refinements by automatically estimated B-factors (Rosenthal and Henderson, 2003) and calculated 

corrected FSC curves between half-maps according to the masked, protein densities through phase-
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randomisation (Chen et al., 2013). FSC = 0.143 criterion was adopted to estimate the final overall 

resolutions (Scheres and Chen, 2012). Heat-maps of local resolutions were also generated with a built-

in function in RELION, using a small sphere as a sliding mask to estimate resolution at every region of 

the map locally by phase-randomisation as well (Fernandez-Leiro and Scheres, 2017). Figure 2.28 

shows the final density maps (with local resolution estimates), solvent-corrected FSC curves, 

representative central z slices, and fitted atomic models of all the four test cases. For TMV, VipA/VipB 

and MAVS/CARD filaments, representative side chain densities were compared between results from 

RELION and from other packages (available on EMDB) in the last columns of figure 2.28. The results 

from implemented helical workflow of RELION are better than or at least the same as the results from 

other packages in terms of the final resolutions and the quality of protein densities. Key parameters used 

are summarised in table 2.1 and 2.9. 

 

Size of 

segments 

(pixels) 

# of 

segment

s 

Tilt (θ) 

& psi (ϕ) 

ranges 

Angular 

sampling 

Trans 

range & 

sampling 

CPU cores 

(# of MPI 

X threads) 

Time 

(approx.

) 

TMV 300 × 300 1,761 ±15°,±5° 1.8°/ 0.9° ±10/1 pix 5×24=120 2h 30m 

VipA/VipB 450 × 450 9,480 ±15°,±5° 1.8°/ 0.9° ±10/1 pix 6×24=144 13h 30m  

MAVS/CARD 300 × 300 133,237 ±15°,±15° 3.7°/ 1.8° ±5 / 1 pix 15×24=360 17h 30m 

MamK 280 × 280 110,055 ±15°,±15° 3.7°/ 1.8° ±5 / 1 pix 10×24=240 15h 

 

Table 2.9. Processing time of the final 3D auto-refinement jobs performed on Intel Xeon E5-2643 (3.4-3.5 

GHz) and E5-2667 (2.9 GHz) CPU clusters. Initial in-plane (ψ) angular searches were bimodal for all test cases. 

For the ‘angular sampling’ column, the entry ‘1.8° / 0.9°’ means the refinement started with an angular sampling 

of 1.8° for global searches and proceeded into local searches of all three Euler angles (ϕ, θ, ψ) when the angular 

sampling was automatically decreased to 0.9° or smaller. Larger initial angular samplings might not be sufficient 

for the optimal reconstruction results. Similarly, translational ranges and samplings shown in this table are for the 

initial, global alignment steps only. Additional referential masks, covering the full-length helical densities, were 

also adopted to calculate solvent-corrected FSC curves at the end of each iteration. 
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Figure 2.27. Particle polishing B-factor and scale-factor plots of movie data sets (A, TMV, 16 frames each; 

B, MAVS-CARD, 22 frames each). 
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Figure 2.28. Reconstructions for the four test cases: TMV (A), VipA/VipB (B), MAVS/CARD (C) and 

MamK (D). A view of the reconstructed helix coloured according to local resolution estimates (from 3.5 Å in 

blue to 5 Å in maroon) is shown on the left. The FSC curve between the two independently refined half-sets is 

shown in the middle. A detail of the structure with the corresponding atomic model is shown on the right. For 

TMV, VipA/VipB and MAVS/CARD, the same details from the EMDB maps are also shown (adapted from He 

& Scheres, 2017). 
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3 IMPLEMENTED 

ALGORITHMS IN HELICAL 

SUB-TOMOGRAM 

AVERAGING 

3.1 Implemented methods 

Adaptations of single-particle helical reconstructions have been implemented for helical sub-

tomograms. The main difference is that sub-tomogram averaging has input particles in 3D and each 

particle corresponds to a distinct 3D CTF model. All the implemented methods discussed in section 2.2 

are re-used in helical sub-tomogram averaging, with the following adaptations for 3D images. 

3.1.1 Manual-picking of sub-tomograms 

Manual picking of 3D helical sub-tomograms currently needs to be performed through other packages 

since currently RELION does not have a built-in displayer for 3D tomograms. Additional support has 

been developed for IMOD (Kremer et al., 1996) where the user scrolls through continuous z slices of a 

3D tomogram and clicks along every 3D filament. Here, the assumption that manually picked filaments 

are straight does not hold any more. By clicking, the user can specify the spanning direction of each 3D 

filament which might take arbitrary shapes and lengths. IMOD writes out a .MOD binary file for each 

picked filament and ‘relion_helix_toolbox --interpo’ can then generate 3D segment coordinates based 

on the inter-box distance (i.e, a user-defined helical rise, ‘--rise’ and the number of asymmetrical units 

H, ‘--nr_asu‘): 

relion_helix_toolbox --interpo --i_root Btub_tomo1 --o_root _interpo --

nr_asu 1 --rise 52.77 --angpix 2.18 --boxdim 200 --bin 1 
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‘--i_root’ and ‘--o_root’ denote the root-names of input MOD and output STAR files respectively. And 

‘--bin’ denotes the binning factor (a positive integer) used when reconstructing the 3D tomogram (1 = 

no binning). Internally, the program interpolates smooth 3D curves for all filaments using user-specified 

3D segment coordinates as anchor points. The curves are subsequently segmented into individual 

coordinates for 3D segment extractions. Angular priors of helical sub-tomograms are calculated 

differently compared to manually picked 2D segments. Tilt priors (θ) are not necessarily 90° since the 

3D sub-tomogram segments may adopt arbitrary views in the reconstructed tomograms. Filaments are 

segmented along smooth curves of interpolated high-order polynomials instead of simple straight lines 

so segments on a filament can have varying tilt (θ) and in-plane rotation (ψ) priors. The algorithm moves 

a point slowly in 3D from the start of a curve and records its ith position (xi, yi, zi) when it has moved 

by the ith multiple of inter-box distance. The slightly perturbed position (xi+ΔX, yi+ΔY, zi+ΔZ) along 

the smooth curve (C) is also estimated in order to calculate θ, ψ priors for the ith segment: 

𝜃𝑖 = cos−1
∆𝑧𝑖

√(∆𝑥𝑖)2 + (∆𝑦𝑖)2 + (∆𝑧𝑖)2
, 𝜓𝑖 = tan−1

∆𝑦𝑖

∆𝑥𝑖
 ,  

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) ∈ 𝐶, (𝑥𝑖 + ∆𝑥𝑖, 𝑦𝑖 + ∆𝑦𝑖, 𝑧𝑖 + ∆𝑧𝑖) ∈ 𝐶, ∆𝑥𝑖 → 0+ 

Auto-picking of 3D sub-tomograms has not been implemented since the 2D auto-picking algorithm 

described in section 2.2.7 will be computationally expensive if performed on large 3D tomograms. 

Moreover, manual-picking of 3D sub-tomograms is typically affordable due to limited numbers of 

tomograms collected (<100). 

After the extraction of sub-tomograms, distinct 3D CTF models must be calculated for every 3D 

segment box before 3D reconstructions. For each tomogram, 2D CTFs are estimated for the 2D images 

in the tilt series. Based on the central slice theorem (section 1.3), the 2D CTFs are subsequently placed 

back into 3D Fourier space according to their tilt angles. The 3D CTF models for the sub-tomograms 

are constructed given their positions in the tomogram (Bharat et al., 2015). Note that changing the inter-

box distance in manual-picking will cost a lot more computation in helical sub-tomogram averaging 

since the 3D CTF models need to be re-calculated for every different set of picked 3D coordinates. 

3.1.2 3D image masks 

Masks are 3D for references and experimental segments in helical sub-tomogram averaging. The 

cylindrical masks (Mref) for references remain the same as they are in single-particle reconstructions 

(section 2.2.5) since the reconstructed helices still span along the z axis. The 3D segment masks are 

rotated according to the spanning directions of helices estimated through manual-picking. As is 

explained above, the ψ and θ angles of every helical sub-tomogram are calculated through 
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interpolations. For each pixel of a given 3D sub-tomogram, its x, y, z coordinates are rotated back to 

the same 3D Cartesian coordinate system according to the angular priors ψ, θ. The distance of the point 

from the helical axis determines its value in the binary mask Mexp: 

𝐴3×3 = (
cos 𝜓 cos 𝜃 sin 𝜓 −cos 𝜓 sin 𝜃

−sin 𝜓 cos 𝜃 cos 𝜓 sin 𝜓 sin 𝜃
sin 𝜃 0 cos 𝜃

) 

𝑀𝑒𝑥𝑝(𝑥, 𝑦, 𝑧) = {
1, 𝐴3×3

𝑇 (
𝑥
𝑦
𝑧

) = (
𝑥′

𝑦′

𝑧′

) , 𝑥′2
+  𝑦′2

< 𝑅𝑜
2 𝑎𝑛𝑑 𝑥′2

+  𝑦′2
+ 𝑧′2

< 𝑅2  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

A3X3 is the 3D rotational matrix with the first Euler angle (ϕ) always set to 0°. Cosine soft-edges are also 

applied around the 3D binary masks of the experimental segments. This Mexp is a 3D extension of 2D 

Mexp explained in section 2.2.5. 

 

Figure 3.1. Mask for an experimental 3D helical sub-tomogram, given the angular priors ψ, θ, the spherical 

and outer tube diameters (2R and 2Ro). This figure is a 3D extension of the 2D segment mask in figure 2.4A. 

3.1.3 Incorporating angular prior information 

The angular priors of 3D helical sub-tomograms remain the same as those of 2D segments, except that 

the tilt priors (θ) are not always centred at 90° but specifically estimated through manual-picking. 

However, the translational priors has two components in the directions perpendicular to the helical axis 

to accommodate 3D data sets (figure 3.2). For each sub-tomogram, the prior distribution of offset, along 

the direction defined by the in-plane rotation (ψ) prior, is still a top-hat function with non-zero values 
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within range [-rise / 2, +rise / 2] around the image centre to limit over-fitting (section 2.2.6 and 2.4.10). 

The standard deviation of the 2D Gaussian offset priors is defined on the 2D plane perpendicular to the 

spanning direction of the helical sub-tomogram. 

 

Figure 3.2. Priors on the 3D translational parameters for helical sub-tomogram averaging. A top-hat prior 

on the translation along the helical axis and a 2D Gaussian prior on the two translations perpendicular to the helical 

axis, given the angular priors ψ, θ and the helical rise. This figure is a 3D extension of the 2D translational 

parameters in figure 2.5A. 

3.1.4 Simulations of 3D experimental sub-tomograms 

3.1.4 Simulation of 3D experimental data 

To simulate 3D sub-tomograms, 3D rotations of the perfect 3D helical reference should be performed 

rather than the 2D projections described in section 2.2.11. The additional option ‘--3d_tomo’ must be 

provided in the command starting with ‘relion_helix_toolbox --simulate_segments’, whereas all the 

other settings remain unchanged. For simulated sub-tomograms, θ and ψ are randomised at any possible 

values within 0°-180° and -180° - +180° respectively. The shell script ‘./simulate-3d-subtomograms.sh’ 

generated by the above command writes out all the sub-tomograms. 

3.2 Introduction to the test data set 

A small cryo-ET data set of BtubAB is used in order to test helical sub-tomogram averaging. The data 

set was collected by Deng et al., 2017 on an FEI Titan Krios microscope with a K2 detector with and a 

magnification of 57,000× (2.38 Å per pixel). It consists of 6 tilted series at 1° or 3° interval within 

ranges of -60° to +60°. A total number of 4,333 segments are extracted using an inter-box distance of 
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80 Å. The filament has αβ subunits in special configuration (the schematic plot is shown in figure 4.2A). 

However, the two subunit types cannot be distinguished under the low resolutions of sub-tomogram 

averaging. All subunits treated as the same type, the structure can be seen as a perfect helix without 

point group symmetry and the helical twist and rise are -90.6° and 9.96 Å respectively (see section 4.1 

for detailed explanation). The segment boxes have 3D dimensions of 100 pixels (4.76 Å per pixel) using 

a binning factor of 2 in order to reduce computation costs. The results of this data set were initially used 

to determine the number of proto-filaments in the structure (Deng et al., 2017) and have not been 

published. 

3.3 Results and discussion 

 

Figure 3.3 Results of helical sub-tomogram reconstructions of BtubAB filaments. (A) Post-processed density 

map after helical sub-tomogram averaging with local resolutions estimated within the range of 10 Å – 16 Å. (B) 

Post-processed density map after the ordinary single-particle sub-tomogram averaging. Both A and B maps are 

sharpened with a B-factor of -1000 Å2 during post-processing. (C) Comparisons of FSC curves of the helical sub-

tomogram reconstruction (red line, ~12.5 Å at 0.143 resolution cut-off) and the single-particle sub-tomogram 

averaging (black line, ~18.9 Å at 0.143 resolution cut-off) using the same cryo-ET BtubAB data set described in 

section 3.2. 

The results of helical sub-tomogram reconstruction of BtubAB filaments are shown in figure 3.3. 

Andres Gonzalez, a Part II student in Biochemistry department of University of Cambridge, 

collaborated with me on testing the methods implemented in section 3.1 in the spring of 2017. The 

initial reference was a simple average of all the extracted sub-tomograms according to their angular 

priors. The 3D refinements were run on a local machine with four NVIDIA Titan X GPU cards and 

lasted less than 2 hours. The subunits can be clearly seen on the four-stranded structures although it is 

not expected to distinguish the two types of subunits at this resolution (worse than 10 Å). The helical 

sub-tomogram reconstruction made use of the helical symmetry (-90.6° and 9.96 Å), the prior 

information available in the extracted data set and outperformed single-particle sub-tomogram 

averaging in terms of final resolutions and structural details. 



Chapter 3: Implemented Algorithms in Helical Sub-Tomogram Averaging 

~ 91 ~ 

 

 

 



Chapter 4: Local Symmetry 

~ 92 ~ 

 

4 LOCAL SYMMETRY 

 

4.1 Microtubules with seams - Breaking from normal helical 

symmetry 

As is mentioned in the general introduction to helical structures (section 1.4), microtubules are 

filamentous complexes found in eukaryotic cells. They provide the structural basis for intracellular 

transport (Vale, 1987), nucleic and cell division (Nigg, 2001), movements of cilia and flagella (Silflow 

and Lefebvre, 2001), etc. Their building blocks are tubulin heterodimers, the αβ subunits of which are 

alternately assembled into linear proto-filaments (figure 4.1). Multiple proto-filaments are translated 

and rotated, forming tubular microtubule walls (12-, 13-, 14- proto-filaments are among the most 

common cases). 
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Figure 4.1 α, β-tubulins can be assembled into microtubules. All eukaryotic cells produce tubulin proteins. α, 

β-tubulins spontaneously bind one another to form heterodimers. When intracellular conditions favour assembly, 

tubulin heterodimers assemble into linear proto-filaments and then into microtubules (adapted from 

http://www.ruf.rice.edu/~bioslabs/studies/invertebrates/microtubules.html). 

Breaking from normal helical symmetry can be observed when αβ-tubulins make specific lateral 

contacts and are assembled into unique patterns of helical lattices. In general, structural details of αβ-

tubulins in the heterodimers are only slightly different (mainly at peripheral densities) and stability of 

the lattice as a whole is still largely preserved even if there is a change of tubulin configurations. When 

curled up to form 3D microtubule walls, lattices with only lateral contacts being αα and ββ form normal 

helices (figure 4.1, bottom), the symmetry of which as a whole can be perfectly defined by considering 

each pair of adjacent αβ tubulins along proto-filaments as a bigger subunit. On the contrary, in addition 

to αα and ββ lateral contacts, αβ and βα lateral contacts might as well be present in a neighbouring pair 

of proto-filaments (proto-filaments #1 and #4 in figure 4.2A, #1 and #13 in figure 4.2B). By convention, 

the surface between this pair of proto-filaments is called the seam (black vertical lines in figure 4.2). 

The seam breaks the overall helical symmetry, giving rise to strikingly different chemical environments 

along the seam compared to other parts of homogeneous surfaces of the microtubule walls.  

http://www.ruf.rice.edu/~bioslabs/studies/invertebrates/microtubules.html
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Figure 4.2. Schematic plots showing 4- and 13- microtubules with seams. Here, both the 4- and 13-

microtubules have αβ and βα lateral contacts between the pair of proto-filaments closest to the seam, in addition 

to the common αα and ββ lateral contacts in the 13-microtubule without the seam shown at the bottom of figure 

4.1. In reality, the proto-filaments and the seams are not necessarily positioned strictly parallel to the helical axes 

(adapted from Deng et al., 2017). 

The first step to examine the symmetry of such microtubules with seams is to ignore the differences 

between the subunit types and figure out the symmetry as if they are normal helices consisting of all-

the-same tubulins. There are true structures analogous to the schematic plots shown in figure 4.2. For 

example, the BtubABC microtubule (section 5.1) corresponding to the 4-microtubule in figure 4.2A, 

can be seen as a 1-start left-handed helix with a twist of -90.7° and a rise of 9.91 Å under such 

assumption. The 13-microtubule (section 4.4) corresponding to figure 4.2B, can be seen as a 3-start (i.e. 

3-strand) left-handed helix with a twist of -27.7° and a rise of 9.46 Å on each strand. Such 3-start 
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symmetry can be converted to 1-start symmetry of (-27.7° - 360°) / 3 = -129.2° and 9.46 / 3 = 3.15 Å 

according to the definitions in section 2.2.1. 

To consider the actual break of symmetry, αβ subunit pairs should be seen as the smallest, indivisible 

building blocks of the whole structures instead of the individual tubulins. One possible way could be 

considering one adjacent pair of subunits α and β on a single proto-filament as the smallest asymmetrical 

unit (for example, 1α&5β (left) or 2α&2’β (right), the red rectangles in figure 4.2). Thus, the new overall 

helical symmetry can only be applied along the directions of the proto-filaments. For figure 4.2A, such 

new helical twist and rise are -90.7° × 8 + 720° = -5.60° and 9.91 Å × 8 = 79.3 Å. The above calculations 

are based on the symmetry given in the last paragraph, since 4 × 2 = 8 subunits (the product of the 

numbers of proto-filaments and tubulin types) are traversed when one α (1α) is moved to the next α (9α) 

along the proto-filament #1 (figure 4.2A). Equivalently, this new helical symmetry alone treats 8 

consecutive subunits 1α-8β, 9α-16β, … as the building blocks of the whole 4-proto-filament. Such 

helical symmetry was used in BtubABC reconstructions by Deng et al., 2017 (also in section 5.1). 

Similarly, the new helical twist and rise are (-27.7° × 26 + 360°) / 3 = 0° and 9.46 Å × 26 / 3 = 82.0 Å 

for figure 4.2B. Here, 13 × 2 = 26 subunits are traversed when 1α is moved to 27α along the proto-

filament #1 and the strand #1 (figure 4.2B). Both the new twist and rise are divided by 3 since the 

previous symmetry is given on one strand of the 3-start structure. The new symmetry defines the 

relationship between adjacent asymmetrical units on every proto-filament in figure 4.2B, for example, 

(2α, 2’β) and (2°α, 15β) on proto-filament #2. 

The above helical symmetry considers the alternating αβ-tubulin pairs along each proto-filament, but 

the tubulins across multiple proto-filament are not yet averaged. Positioned uniformly around the z 

(helical) axis and with relative z translations, all the proto-filaments consist of the same information of 

alternating αβ pairs. Neither point group symmetry nor overall helical symmetry is able to represent 

such structural self-similarities. Therefore, local symmetry operators need to be introduced to define 

the relative positions of the proto-filaments in the density map, and a mask should also be provided to 

cover any one of the proto-filaments in order to identify its region in the density map of the whole 

microtubule. For example, a mask around the whole proto-filament #1 can be defined for the 4-

microtubule in figure 4.2A, and 3 operators should transform (1α, 5β, 9α, …) tubulins into the positions 

of (2α, 6β, 10α, …); (3α, 7β, 11α, …); (4α, 8β, 12α, …) tubulin groups along proto-filament #2, #3, #4 

respectively. Thereby, the 3 operators need to represent rotations of N × -90.7° around the z axis and 

translations of N × 9.91 Å (N = 1, 2, 3) along the z axis. For figure 4.2B, one mask and 12 operators are 

required in a similar way. The 12 operators can be rotations of N × -27.7° around the z axis and 

translations of N × 9.46 Å (N = 1, 2, …, 12) along the z axis, if the mask is provided for the proto-

filament #1. The helical symmetry along each proto-filament together with the local symmetry operators 
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defining the relations between proto-filaments describe the full symmetry of the microtubules with 

seams and average the smallest asymmetrical units (building blocks, αβ-tubulin pairs) properly. 

Image processing procedures, such as Ruby-helix (Metlagel et al., 2007) and SPIDER scripts written 

by Fourniol et al., 2010, have been designed to tackle the problem of seams specifically. The concept 

of local symmetry introduced above is not only applicable to microtubules, but also ordinary protein 

structures containing identical regions in single-particle reconstructions as well. For example, a 

molecule may contain a tetramer binding to another protein resulting in an asymmetrical complex, the 

symmetry of which cannot be described by overall point groups. Such structures call for arbitrary, local 

symmetry operators to express the relative positions of identical regions in order to average the densities 

locally for higher quality maps. Inspired by non-crystal symmetry methodology in X-ray 

crystallography (Kleywegt, 1996), built-in functions in RELION have been developed to search for and 

apply local symmetry for cryo-EM density maps. 

4.2 Implemented methods 

4.2.1 Definition of local symmetry 

For each set of rigid and identical regions related by local symmetry, one soft-edged binary mask (Mi) 

is needed, covering any one of the asymmetrical subunits of the local symmetry. All the other regions 

are assumed to be identical in densities and their positions and orientations relative to the masked region 

are defined by local symmetry operators. Therefore, a mask defines the shape of a set of rigid and 

identical asymmetrical subunits. It is also used to collect the real-space densities of all the asymmetrical 

subunits in the set for the subsequent real-space symmetrisation step once the correct local symmetry 

operators are determined. The symmetrised densities for a set of identical asymmetrical subunits are 

firstly calculated and written into the masked region, and then copied into other regions in this set 

according to the local symmetry operators. 

For example, two masks (Mtri, Mtetra) are required for a complex that consists of a trimer of one protein 

that is bound to a tetramer of another protein. One (Mtri) covers a monomer of the trimer (along with 

two operators) and the other (Mtetra) covers a monomer of the tetramer (along with three operators). The 

implementation in RELION supports the definitions of an arbitrary number of local symmetry sets and 

an arbitrary number of operators within each set. The masks and the original map, in MRC format, 

should all have the same cubic dimensions (D × D × D, in pixels) and the definition of origin at x, y, z 

coordinates (0, 0, 0) in their MRC headers (Cheng et al., 2015). 
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Figure 4.3. Definition of local symmetry. The box contains two identical regions A and B, the centre-of-mass 

coordinates of which are ComA and ComB (blue). The origin of the particle box is O, which is also the centre of 

any rotations. The rotational and translational operators, RΦ and T (red), transform the densities of A on top of B.  

𝑇⃗⃗ = 𝐶𝑜𝑚𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑅𝛷 ∗ 𝐶𝑜𝑚𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Given a soft-edged binary mask around A, the only local symmetry operator of this 

map is defined as Op = [RΦ, T]. In such way, the identical regions A and B are related by local symmetry. 

A transformation operator contains 6 parameters, three rotations φ, θ, ψ (following the definition of 

Euler angles in RELION) in degrees and three translations Δx, Δy, Δz in Angstroms. The masked region 

(region A in figure 4.3) must be located within the maximum sphere (dashed circles) inside the 3D 

particle box (D × D × D, in pixels). The pair of identical pieces of densities (A and B) corresponds to a 

unique operator Op = [φ, θ, ψ, Δx, Δy, Δz], which firstly rotates the masked region A to A’ around the 

centre O of the 3D particle box, and then translates the rotated densities A’ to fit onto the symmetry-

related region B. The following equations show how an operator associates two identical regions in a 

cryo-EM density map (ignoring interpolation artefacts). xm, ym, zm denote 3D coordinates in volume V. 

Note that an operator Op is divided into two parts, a rotational matrix (R3X3) and a translational vector 

(T3X1) in the following equations. 

𝑂𝑝 = (𝜑, 𝜃, 𝜓, Δ𝑥, Δ𝑦, Δ𝑧),       
−180° ≤ 𝜑 < 180°

0° ≤ 𝜃 < 180°
−180° ≤ 𝜓 < 180°

, −∞ < Δ𝑥, Δ𝑦, Δ𝑧 < +∞ 
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𝑅 = (

cos 𝜓 cos 𝜃 cos 𝜑 − sin 𝜓 sin 𝜑 cos 𝜓 cos 𝜃 sin 𝜑 + sin 𝜓 cos 𝜑 −cos 𝜓 sin 𝜃
−sin 𝜓 cos 𝜃 cos 𝜑 − cos 𝜓 sin 𝜑 −sin 𝜓 cos 𝜃 sin 𝜑 + cos 𝜓 cos 𝜑 sin 𝜓 sin 𝜃

sin 𝜃 cos 𝜑 sin 𝜃 sin 𝜑 cos 𝜃
).   

𝑇 = (
Δ𝑥
Δ𝑦
Δ𝑧

) 𝑝𝑖𝑥𝑒𝑙_𝑠𝑖𝑧𝑒⁄ . 

(

𝑥𝑚
′

𝑦𝑚
′

𝑧𝑚
′

) = 𝑅 ∗ (

𝑥𝑚

𝑦𝑚

𝑧𝑚

) + 𝑇. 

∀ 𝑥𝑚, 𝑦𝑚, 𝑧𝑚 ∈ {−
𝐷

2
, −

𝐷

2
+ 1, … ,

𝐷

2
− 1}  𝑠. 𝑡.  𝑀(𝑥𝑚, 𝑦𝑚, 𝑧𝑚) = 1. 

𝑉(𝑥𝑚
′ , 𝑦𝑚

′ , 𝑧𝑚
′ ) = 𝑉(𝑥𝑚, 𝑦𝑚, 𝑧𝑚), 𝑖𝑓 −

𝐷

2
≤ 𝑥𝑚

′ , 𝑦𝑚
′ , 𝑧𝑚

′ ≤
𝐷

2
− 1. 

4.2.2 Applying local symmetry 

Given accurate masks and local symmetry operators, the implemented algorithm symmetrises every set 

of similar regions in real-space. Suppose that there exist N sets of regions each with Ki (i = 1, 2, … N, 

Ki ≥ 2, Ki∈N+ ) similar regions need to be symmetrised separately (in the simplest example shown in 

figure 4.3, N = 1 and K1 = 2). Within each set, a mask (Mi, i = 1, 2, …, N) covering one region is 

provided along with a list of Ki-1 symmetry operators (Opij = [φij, θij, ψij, Δxij, Δyij, Δzij], i = 1, 2, … N, 

j = 1,2…Ki-1). Each operator Opij is decomposed into rotational (Rij
3X3) and translational (Tij

3X1) parts 

internally in the program. Volume operators Opij work in ‘no wrap’ mode so that they might move some 

voxels outside the dimensions of the original particle box (D × D × D, in pixels) and the information 

contained there is lost in the transformed map, rather than coming (wrapped) into the particle box from 

the opposite sides. The voxels in the transformed map are set to 0 if they are not mapped inversely to 

the inside of the original map by the operator. 

Firstly, the algorithm generates averaged maps for each set of regions. In the following equation, Vi 

holds averaged densities inside the mask from the ith set of identical regions (Rij
-1 and Tij

-1 denote inverse 

rotation and translations in opposite directions of Rij and Tij
 respectively, * denotes that a transform 

operation to its left is applied onto the 3D volume to its right, and ∘ denotes element-wise product of 

3D volumes with the same dimensions, D × D × D): 

𝑉𝑖 = 𝑀𝑖 ∘

𝑉𝑜𝑟𝑖 + ∑ (𝑅𝑖𝑗
−1 ∗ 𝑇𝑖𝑗

−1 ∗ 𝑉𝑜𝑟𝑖)
𝐾𝑖−1

𝑗=1

𝐾𝑖
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The averaged densities within the mask are copied into all the other Ki - 1 regions for every set. Volume 

S contains symmetrised regions at all positions defined by the list of masks and their corresponding 

operators: 

𝑆 = ∑ ( 𝑉𝑖 + ∑ 𝑇𝑖𝑗 ∗ 𝑅𝑖𝑗 ∗ 𝑉𝑖

𝐾𝑖−1

𝑗=1

 )

𝑁

𝑖=1

 

A weighted sum (W) of masks at all original and transformed positions is also calculated. The voxel 

values in W can be larger than 1 if the rotated and translated regions (Tij * Rij * Mi) partly overlap with 

the originals (Mi). 

𝑊 = ∑ ( 𝑀𝑖 + ∑ 𝑇𝑖𝑗 ∗ 𝑅𝑖𝑗 ∗ 𝑀𝑖

𝐾𝑖−1

𝑗=1

 )

𝑁

𝑖=1

 

In order to take care of the smoothness of symmetrised density map given soft-edged masks as input, 

binarised Wbin records the weight of symmetrised densities against the background (original) densities 

at each 3D coordinate. 

𝑊𝑏𝑖𝑛(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) = {
0, 𝑊(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) = 0

𝑚𝑎𝑥(1, 𝑊(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)), 𝑊(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) > 0
 

𝑓𝑜𝑟 ∀ 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 ∈ {−
𝐷

2
, −

𝐷

2
+ 1, … ,

𝐷

2
− 1} 

The perfectly symmetrised densities S/W are eventually combined with the original density map Vori: 

𝑉𝑠𝑦𝑚 =
𝑆

𝑊
∘ 𝑊𝑏𝑖𝑛 + 𝑉𝑜𝑟𝑖 ∘ (1𝐷×𝐷×𝐷 − 𝑊𝑏𝑖𝑛)  

where S / W means the element-wise division of S by W, 1D×D×D denotes a matrix filled with all 1s, the 

size of which, D × D × D in pixels, is equal to that of Vori). The weighted sum Vsym is calculated here to 

apply smooth density transitions where the peripheries of symmetrised regions meet the original map 

in order to minimise real-space artefacts.  

Practically, a STAR file (Hall, 1991) is used to communicate the local symmetry information to 3D 

reconstruction jobs in RELION. Every entry in this file has a 6-parameter operator Opij plus the mask 

filename of Mi. If there exist multiple sets of identical regions (i > 1), different mask filenames along 

with their corresponding operators need to be specified. Examples of local symmetry STAR files can 

be found in section 4.2.4 and 4.2.5. Soft-edged binary masks (Mi) must be in MRC format with all the 

voxel values within range [0, 1] inclusive. In the MRC header (Cheng et al., 2015), the coordinate of 

origin must be the geometric centre of the 3D volume. For example, given a 3D volume of size 200 × 

200 × 200 in pixels, the x, y, z coordinates can be any integers within range [-100, 99] inclusive and the 
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coordinate of origin in the MRC header must be set to (x, y, z) = (0, 0, 0) for a local symmetry mask. 

The positive densities (0, 1] of the mask are filled into relative positions in the 3D data arrays of the 

MRC files, corresponding to the regions of interest in the density map of the molecular complex. Note 

that masks produced by some other programs might always have (0, 1] positive values written around 

the geometric centres of the 3D data arrays, with the coordinates of origin set to specific values other 

than (0, 0, 0) in the MRC headers to record the relative positions of the masks with respect to the 

corresponding regions in the molecular density map. Such masks must be converted to masks with 

origins set to (0, 0, 0) in order to comply with the local symmetry definition in RELION. In a word, the 

binary [0, 1] densities of masks should be in the absolute positions in their MRC format maps. 

4.2.3 Local searches of local symmetry operators 

To improve the accuracies of estimated local symmetry operators, an option ‘--search’ was implemented 

in the standalone executable ‘relion_local_symmetry’. The brute-force search algorithm tests all 

possible combinations of local symmetry operators within the ranges specified by the user and returns 

the operator with the lowest root-mean-squared (RMS) error. RMS errors are calculated between the 

masked region and all possible destinations of transformations specified by the operators. 

Suppose that a mask M is provided around a specific region in map Vori. For all Opi = [φi, θi, ψi, Δxi, 

Δyi, Δzi], i = 1, 2, … N), or equivalently, all combinations of their rotational and translational parts Ri
3X3 

and Ti
3X1) to be tested, calculate: 

𝑅𝑀𝑆𝑚𝑖𝑛 =  argmin
𝑖

√
∑ ∑ ∑ 𝑀𝑧𝑦𝑥 ∘ (𝑉𝑜𝑟𝑖 − 𝑅𝑖

−1 ∗ 𝑇𝑖
−1 ∗ 𝑉𝑜𝑟𝑖)

∑ ∑ ∑ 𝑀𝑧𝑦𝑥
  

𝑓𝑜𝑟 ∀ 𝑥, 𝑦, 𝑧 ∈ {−
𝐷

2
, −

𝐷

2
+ 1, … ,

𝐷

2
− 1}  𝑠. 𝑡. 0 < 𝑀(𝑥, 𝑦, 𝑧) ≤ 1 

Opi, which minimises the above argument, is the refined operator. 

A local symmetry operator can be refined successfully given reasonable searching ranges and 

sufficiently fine steps of these 6 free parameters. Sometimes optimised operators appear unstable, 

moving around within small ranges (e.g. ±1 pixels) due to real-space interpolation errors and slight 

structural variations across regions on the unsymmetrised original map. The implementation is also 

parallelised using MPI to accelerate the searches. The usage of ‘relion_local_symmetry’ program will 

be explained in section 4.2.4 and 4.2.5. 
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4.2.4 Creating local symmetry masks and operators for a 13-microtubules 

with seam 

This section uses the 13-microtubule in figure 4.2B as an example, the symmetry of which has been 

explained in full details in section 4.1, and the helices always span along z axes of the particle boxes 

according to the definition in RELION helical processing (section 2.2.1). 

It is recommended to reconstruct the 13-microtubule firstly as if all the tubulins are identical, without 

considering the presence of seam. For example, the overall helical symmetry of -27.7° and 9.46 Å can 

be used to reconstruct a density map where the differences between αβ tubulins are ignored. Such initial 

density maps are useful for mask generation, which is a prerequisite step for applying local symmetry 

in RELION.  

As the next step, if the initial density map (from other sources) already reveals the seam, the PDB 

models of α and β tubulins can be docked into the proto-filament #7 which is opposite to the seam. 

Whereas starting from a map where all tubulins are the same, the PDB models of α and β tubulins can 

be docked into an arbitrary proto-filament and such proto-filament is defined as #7 for the calculation 

of local symmetry operators explained in the following paragraphs. It is worth mentioning that the 

subunits close to the top and bottom of the particle box (within a distance of 6 × 9.46 Å = 56.76 Å, the 

largest _rlnOriginZ absolute value in the STAR file ‘filament_round001.star’ below) should not be 

included in the PDB model in order to prevent real-space artefacts due to large translations along z 

when applying the local symmetry. The fitted PDB models are subsequently converted to an MRC 

format map, containing densities of the central parts of the proto-filament #7. It is also important to 

check whether the converted MRC densities can be superimposed with the original map in UCSF 

Chimera (Pettersen et al., 2004), and that both the original and converted maps have the same map 

origin defined as (0, 0, 0). If not, fit and resample the densities onto the original using the command 

line in UCSF Chimera and save the resampled copy map ‘#3’: 

vop resample #1 onGrid #2 

where map ‘#1’ and ‘#2’ denote volumes of converted and original densities respectively. 

Afterwards, a soft-edged binary mask (‘1fil-mask.mrc’) around the converted densities on proto-

filament #7 can be generated by ‘relion_mask_create’ executable with a proper binary threshold. 

relion_mask_create –-i converted_resampled.mrc -–ini_threshold 0.01 –-

extend_inimask 0 -–width_soft_edge 3 –-o 1fil-mask.mrc 

As explained in section 4.1, the relative rotations and translations between proto-filaments are multiples 

of (N×) -27.7° and 9.46 Å respectively. The mask is provided as if the masked densities are on the 

proto-filament #7, thereby the possible integer values of N are -1 to -6 and +1 to +6 (inclusive), so that 

the proto-filament #7 can be transformed and superimposed onto proto-filament #8 to #13 and #1 to #6 
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(inclusive) in real-space. In this case, N = 1 and K1 = 13. Thus, the 12 local symmetry operators are 

written into the following STAR file ‘filament_round001.star’. Only ψ (_rlnAnglePsi, in degrees) and 

ΔZ (_rlnOriginZ, in Angstroms) values need to be calculated whereas all the other values are left as 

zeros. 

data_ 

loop_  

_rlnMaskName #1  

_rlnAngleRot #2  

_rlnAngleTilt #3  

_rlnAnglePsi #4  

_rlnOriginX #5  

_rlnOriginY #6  

_rlnOriginZ #7  

1fil-mask.mrc     0.00     0.00    -27.69     0.00     0.00     -9.46  

1fil-mask.mrc     0.00     0.00    -55.38     0.00     0.00    -18.92  

1fil-mask.mrc     0.00     0.00    -83.08     0.00     0.00    -28.38  

1fil-mask.mrc     0.00     0.00   -110.77     0.00     0.00    -37.84  

1fil-mask.mrc     0.00     0.00   -138.46     0.00     0.00    -47.30  

1fil-mask.mrc     0.00     0.00   -166.15     0.00     0.00    -56.76  

1fil-mask.mrc     0.00     0.00     27.69     0.00     0.00      9.46  

1fil-mask.mrc     0.00     0.00     55.38     0.00     0.00     18.92  

1fil-mask.mrc     0.00     0.00     83.08     0.00     0.00     28.38  

1fil-mask.mrc     0.00     0.00    110.77     0.00     0.00     37.84  

1fil-mask.mrc     0.00     0.00    138.46     0.00     0.00     47.30  

1fil-mask.mrc     0.00     0.00    166.15     0.00     0.00     56.76  

If the helical twist and rise of the full 2D surface lattice are not accurate enough, ψ and ΔZ values can 

be locally optimised for all the manually calculated symmetry operators, by using the following 

command. Further details of local searches of operators will be given in the next section. 

mpirun -n 30 relion_localsym_mpi --search --i_map input.mrc --i_mask_info 

filament-round001.star --o_mask_info filament-round002.star --angpix 1.34 (-

-psi_range 1.0 --ang_step 0.1) –offset_z_range 2.0 --offset_step 0.1 



Chapter 4: Local Symmetry 

~ 103 ~ 

 

In the actual 3D reconstructions, the helical twist and rise along every proto-filament, 0° and 82.0 Å, 

can be used as the initial helical settings, together with the list of operators given above. The option to 

apply local symmetry (‘--local_symmetry’) in 3D reconstructions will be introduced in section 4.2.7. 

4.2.5 Creating local symmetry masks and operators for arbitrary cryo-EM 

density maps 

In ordinary single particle reconstructions, regions with similar densities can appear anywhere in the 

3D particle box. Local symmetry operators have to be searched without that much prior information 

available in microtubules. 

The following implemented algorithm calculates the centre-of-mass (COM) coordinates for all input 

masks in the first round of searches when initial estimations of local symmetry parameters do not exist. 

For example, for the AB dimer in figure 4.3, centre-of-mass coordinates of subunits A and B are 

calculated as 𝐶𝑜𝑚𝐴
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝐶𝑜𝑚𝐵

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Regional boxes, slightly larger than the masks of A and B (i.e. all 

regions of interest), are cropped around their centre-of-mass coordinates in order to save time for 

subsequent parameter searches. All the masked densities are repositioned at the centres of cropped 

boxes, which enables the separation of orientation from translational searches. Three Euler angles ϕ, θ, 

ψ of all orientations are sampled and searched according to the user-defined angular ranges and step 

size. Given a rotational operator R3X3 = (ϕ, θ, ψ), the translational vector T3X1 can be calculated as   

𝑇⃗⃗ = 𝐶𝑜𝑚𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑅 ∗ 𝐶𝑜𝑚𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

The translational vector T3X1 is subject to further local refinements. Afterwards, the local symmetry 

operator estimated in this pass is Op = (R, T). Subsequent rounds of local searches are basically done 

in the same way, given the operators found previously and smaller ranges and sampling rates defined 

by the user. In principle, what the local searches do are to further refine the orientation angles and 

centre-of-mass coordinates of each region. 

In the following, a protocol is described that serves as a general approach of finding local symmetry 

operators for single-particle reconstructions. 

To start with, the user needs a density map and masks for all regions of interest. As an example, 3 plus 

4 masks are needed for a complex with a trimer and a tetramer (N = 2, K1 = 3, K2 = 4). The density map 

can either come from a high-resolution reconstruction or from PDB atomic models that are fitted into 

such a map and then converted to densities (‘partall_sums.mrc’). Fitted PDB structures provide more 

accountable information across various regions of interest and often lead to more accurate and stable 

local symmetry operators than the reconstructed cryo-EM density map itself, especially when some 

regions of the map are more blurred compared to their symmetry-related counterparts. The same PDB 

model should be fitted to each set of identical regions. A total of K1 + K2 = 7 properly centred, soft-
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edged binary masks (‘Trimer_mask1/2/3.mrc’ and ‘Tetramer_mask1/2/3/4.mrc’) are then generated for 

all regions of interest as a start using ‘relion_mask_create’. 

relion_mask_create –-i Trimer_pdb1.mrc -–ini_threshold 0.01 –-extend_inimask 

0 -–width_soft_edge 3 –-o Trimer_mask1.mrc 

... 

A STAR file ‘init_masklist.star’ with all mask filenames should be generated as the only input text file, 

with related regions (K1 + K2 = 7) marked using positive integer IDs. 

data_ 

loop_  

_rlnMaskName #1  

_rlnAreaId #2 

Trimer_mask1.mrc  1 

Trimer_mask2.mrc  1 

Trimer_mask3.mrc  1 

Tetramer_mask1.mrc  2 

Tetramer_mask2.mrc  2 

Tetramer_mask3.mrc  2 

Tetramer_mask4.mrc  2 

The above STAR file specifies ‘Trimer_mask1/2/3.mrc’ as the masks for all monomers of the trimer 

(ID = 1), and ‘Tetramer_mask1/2/3/4.mrc’ as the masks for all monomers of the tetramer (ID = 2). The 

next step is to perform initial global searches of the corresponding local symmetry operators.  

mpirun -n 40 relion_localsym_mpi --search --i_map partall_sums.mrc --

i_op_mask_info init_masklist.star --o_mask_info maskinfo_iter000.star --

angpix 1.34 --ang_step 5 

The above command performs global orientation searches on three Euler angles ϕ, θ, ψ at an angular 

sampling rate of 5° using the reconstructed (or PDB converted) density map ‘partall_sums.mrc’ (with 

a pixel size of 1.34 Å) and masks specified by ‘init_masklist.star’. MPI parallelisation distributes the 

workload equally onto 40 CPU cores for acceleration. A non-parallel version is also implemented in 

‘relion_localsym’. For global searches, an angular step coarser than 5° might result in worse results 

with poorer convergence behaviour in the following local searching steps, and a much finer sampling 

may take too much computation time. Binning the cropped boxes by a factor of 2 (additional option ‘-

-bin 2’) will also lead to better efficiency. The results are written into the local symmetry STAR file 
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‘maskinfo_iter000.star’. All the Euler angles (_rlnAngle*) are in degrees and translations (_rlnOrigin?) 

in Angstroms. 

data_ 

loop_  

_rlnMaskName #1  

_rlnAngleRot #2  

_rlnAngleTilt #3  

_rlnAnglePsi #4  

_rlnOriginX #5  

_rlnOriginY #6  

_rlnOriginZ #7  

Trimer_mask1.mrc     -70.00   45.00    70.00    29.71    -7.65   -84.00 

Trimer_mask1.mrc     155.00    30.00   175.00   -48.97   -32.08   121.36  

Tetramer_mask1.mrc   130.00    70.00   -50.00   177.25    43.81  -131.91  

Tetramer_mask1.mrc   -70.00    55.00    55.00    17.07    -9.14   -89.64  

Tetramer_mask1.mrc   110.00    30.00  -110.00   -33.46   -61.76   139.06  

This is the exact format of a local symmetry description file for the purpose of 3D reconstructions in 

RELION. Note that only one mask is used for each set of regions (‘Trimer_mask1.mrc’ for the trimer 

and ‘Tetramer_mask1.mrc’ for the tetramer) in this output file and the number of operators for trimer 

and tetramer are K1 – 1 = 2 and K2 – 1 = 3. The centre-of-mass positions of other masks 

(*_mask2/3/4.mrc) can be deducted by the 2 + 3 = 5 operators, and thereby not kept in this STAR file. 

The above 5 operators need to be improved step by step with finer samplings in local searches: 

mpirun -n 40 `which relion_localsym_mpi` --search --i_map partall_sums.mrc 

--i_mask_info maskinfo_iter000.star --o_mask_info maskinfo_iter001.star --

angpix 1.34 --ang_range 2 --ang_step 0.5 --offset_range 2 --offset_step 0.5 

The same density map ‘partall_sums.mrc’ must be used throughout the whole process of finding the 

operators and the filenames and densities of masks must also remain unchanged as well. Both the input 

density map and the translational operators in the local symmetry STAR file should also agree with the 

same pixel size given by ‘--angpix X’. The above command generates a list of refined operators 

‘maskinfo_iter001.star’ from input ‘maskinfo_iter000.star’, using angular and translations searches of 

every 0.5° within ±2° and every 0.5 Å within ±2 Å respectively. The translational searches (of the 

center-of-mass coordinates) are not expected to require large searching ranges (‘--offset_range X’, X is 
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in Angstroms and usually an equivalence of ≤ 3× pixel size) as long as the input masks and densities 

are similar in every set of identical regions. The input STAR files can always be split into subsets of 

operators if any set of regions need different searching strategies from others, and combined before the 

actual 3D reconstructions. 

It is recommended to perform multiple rounds of searches with gradually decreased searching ranges 

and steps. A general searching scheme in table 4.1 is designed so that each round lasts for ~2 minutes 

with ~100,000 samplings for each operator using a cropped box size of <100 pixels on a 30-core CPU 

machine (Intel Xeon E5-2643, 3.4-3.5 GHz): 

Round 
Angular ranges 

± (°) 

Angular 

samplings (°) 

Translational 

ranges ± (pix) 

Translational 

samplings (pix) 

1 (360, all angles) 5 -- -- 

2 10 1 -- -- 

3 2 0.5 2 0.5 

4 2 0.1 -- -- 

5 0.5 0.1 0.5 0.1 

 

Table 4.1. An example of searching scheme for local symmetry operators in single particle analysis. 

There is no need to search with very fine samplings (<0.1° or <0.1 pixels) as real-space interpolation 

errors become the dominant factor influencing the RMS errors. The optimal searching schemes may 

vary for different structures. For some structures, it might be worthwhile using the same settings several 

times until the refined values are all stabilised. Proceed the searches for all operators until all of them 

converge to required precisions (usually ~0.1° and ~0.1 pixels). Note that operators with low tilts 

(<+10°) are often not stable since the ϕ (_rlnAngleRot) and ψ (_rlnAnglePsi) angles are inseparable at 

low θ (≤30°, _rlnAngleTilt) values. For such cases, the searching ranges of θ and either ϕ or ψ can be 

set to zero to limit the orientation refinements to only one Euler angle for stability. 

4.2.6 Verification of local symmetry operators 

One way to verify the optimised operators is to apply the local symmetry to a previously reconstructed 

density map (‘unsym.mrc’) and inspect the symmetrised densities (‘sym.mrc’). The symmetrised 

regions on the output map should be at least as clear as the unsymmetrised regions on the input map if 

the correct local symmetry operators and masks (‘mask_and_operators.star’, similar to 

‘maskinfo_iter000.star’ in the above section 4.2.5) are provided. 
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relion_localsym --apply --angpix 1.34 --i_map unsym.mrc --i_mask_info 

mask_and_operators.star --o_map sym.mrc 

Verification can also be performed by replicating the masks according to the symmetry operators. This 

method might be beneficial for flexible complexes where some regions appear more blurry than their 

counterparts and applying local symmetry to the original map makes all regions vague: 

relion_localsym --duplicate (‘--i_map unsym.mrc’) --angpix 1.34 --

i_mask_info mask_and_operators.star --o_map replicated.mrc 

Masks (or masked densities) in the input STAR file are copied, rotated and repositioned onto every 

centre-of-mass coordinates specified by the local symmetry operators accordingly. Original density map 

(‘unsym.mrc’) is optional for this command. If the original map is provided, masked densities, instead 

of the masks in the local symmetry description file (‘mask_and_operators.star’), are subject to the 

transformations described above. The output map (‘replicated.mrc’) can be displayed with the original 

density map (‘unsym.mrc’) simultaneously in UCSF Chimera (Pettersen et al., 2004). The contours of 

all masks (or masked densities) should enclose (or fit into) the original protein densities well if the 

operators are correct. 

4.2.7 Enabling local symmetry option in 3D reconstructions 

Once the correct local symmetry operators have been obtained, they can be used inside any 3D 

classification/refinement jobs using the option ‘--local_symmetry mask_and_operators.star’. 

Imposition of local symmetry has masking effects in real-space so it is always disabled in the final 

iterations of 3D auto-refinement jobs where unfiltered half-maps are compared for Fourier-shell 

correlations. The same sets of operators can also be applied to the post-processed maps. Unlike helical 

symmetry, local auto-refinement of local symmetry operators is not implemented during 3D 

reconstructions since there are 6 free parameters in every operator and the operators might diverge given 

a heavily low-pass filtered density map as the 3D initial reference. 

4.3 Introduction to the test data set of 13-microtubule with seam 

A small cryo-EM data set of 13-microtubules with seams is used in order to test local symmetry option 

implemented in RELION. The data set was collected by Sam Lacey in Andrew Carter’s group on FEI 

Polara 300 microscope with FEI Falcon-II detector with an actual pixel size of 1.38 Å. The data set, 

consisting of 1,263 movie stacks each with 30 frames, was previously motion-corrected by 

MOTIONCOR2 (Zheng et al., 2017). A total number of 187,737 segment coordinates were auto-picked 

and extracted using a picking threshold of 0.20, maximum curvature of 0.3 and an inter-box distance of 

82 Å (~15% of 552 Å or 400-pixel box size). 176,853 segments were kept after 2D classifications. 
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4.4 Results and discussion 

3D auto-refinements and subsequent post-processing were performed with and without local symmetry 

operators. For both reconstructions, initial helical twist = 0° and rise = 82.0 Å (equivalent to H = 1) 

were applied on every proto-filament. The inner and outer diameters were set to 100 Å and 400 Å 

respectively. The initial 3D model was a density map of 13-microtubule with all identical tubulins low-

pass filtered to 30 Å (figure 4.4A). In order to apply the local symmetry, a soft-edged binary mask ‘1fil-

mask.mrc’ was made around the central 4 tubulins (two pairs of αβ tubulins) along the proto-filament 

opposite to the seam (#7 proto-filament marked in figure 4.4C, right). The STAR file containing the 

local symmetry operators used here was the same as the file ‘filament_round001.star’ in section 4.2.4. 

After 3D auto-refinements, the twist and rise were refined to +0.1° and 83.1 Å. Multiple views of the 

post-processed density maps are listed in figure 4.4CDE. Although the post-processed FSC curves are 

similar with claimed resolution at 4.2 Å, the reconstruction with local symmetry has resolved clearer 

peripheral densities for tubulins close to the seam (figure 4.4CDE, right) while such densities are totally 

blurred out in the other reconstruction (figure 4.4CDE, left). However, the peripheral densities close to 

the seam are still slightly dampened even if with local symmetry applied since there are a mixture of 

various types of microtubules (e.g. 12-, 14-microtubules and those without seams) in the data set. This 

test demonstrates that local symmetry option in RELION is useful for reconstructions of microtubules 

with seams. This resolution (4.2 Å) achieved using RELION is better than similar microtubules resolved 

(5-9 Å) with alternative software packages (Sindelar and Downing, 2007; Atherton et al., 2014; Shang 

et al., 2014). 
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Figure 4.4. Results of applying local symmetry to a 13-microtubule in 3D auto-refinements. (A) Low-pass 

filtered to 30 Å, an initial 3D model of 13-microtubule with all identical tubulins (ignoring the seams) is used in 

both reconstructions. (B) Post-processed FSC curves of 13-microtubule auto-refinements with (red) and without 

(black) local symmetry operators. (C, D, E) bottom, side and tilted views of post-processed maps with local 

resolution estimates, panels on the left/right are the results without/with local symmetry operators. The positions 

of the seam (lateral αβ tubulin contacts) are marked with vertical red lines. The 13 proto-filaments are numbered 

in the same way as in figure 4.2B. 
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5 SOLVED STRUCTURES 

This chapter briefly describes cryo-EM helical structures from four research papers. These data sets 

have all been processed with the helical reconstruction workflow in RELION 2.0, either by myself or 

some of the co-authors independently. Through our collaborations, these projects have revealed exciting 

structural details and provided better understanding of some important biological processes. The related 

research papers are Deng et al., 2017; Salih et al., 2017; Fitzpatrick et al., 2017 and Alvarez et al., 2017. 

Key information of the data sets is summarised in Table 5.1.  

 TssB,C/T6SS BtubABC MxB Tau (PHF) Tau (SF) 

Microscope 
FEI Titan 

Krios 

FEI Polara 

300 

FEI Polara 

300 
FEI Titan Krios 

Detector FEI Falcon-II Gatan K2 FEI Falcon-II Gatan K2 

Pixel size (Å) 1.34 1.34 1.147 1.04 

Movies collected? Yes Yes Yes Yes 

Nr. Movies/micrographs 1,405 6,105 630 >2,000 

Nr. frames per movie 19 30 7 50 

Accumulated dose (e-/Å2) ~30 ~40 ~40 ~60 

Defocus range (-,μm) 1.0-2.5 1.5-3.0 1.5-3.5 1.0-3.0 

 RELION-2 processing of test data sets 

Manual/auto-picked? Auto Auto Auto Manual 

Auto-picking threshold 0.0 0.2 0.0 - 

Auto-picking maximum 

curvature 
0.05 0.20 0.10 - 

Box size (pixels) 350 280 450 270 270 

Inter-box distance (Å) 33.6 80.0 49.4 28.0 28.0 
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Nr. asym. units/box, H 10 12 6 12 6 

Nr. segments (picked) 107,157 345,777 51,553 214,757 84,701 

Nr. segments (refined) 71,264 257,656 44,955 23,086 24,689 

Filament widths (Å) 100-2854 150 55-2754 ~100 ~100 

Point group symmetry C1 C1 C1 C1 C1 

Helical rise, refined (Å) 3.359 79.312 8.237 2.36 4.74 

Helical twist, refined (°) +55.40 -5.542 +58.4 +179.4 -1.05 

B-factor (Å2) -76   -92 -163 -105 -114 

Final resolution (Å) 3.3 3.6 4.6 3.45 3.45 

EMDB entries 36001 3726 85771 3741 3743 

PDB entries 5N8N1 5O01, 5O093 5UOT1 5O3L 5O3T 

1 Structures which might not be publicly accessible at the time of thesis submission (October 2017). 

2 These parameters correspond to the helical symmetry on every proto-filament in the BtubAB(C) structure. 

3 The entries 5O01 and 5O09 correspond to the atomic models of BtubC and BtuBAB respectively. 

4 Inner and outer diameters of the hollow tubes. 

5 The resolution estimates of full-length tau PHF and SF structures. 

Table 5.1. Key characteristics of the four projects. 
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5.1 BtubABC mini microtubule 

 

Figure 5.1. Cryo-EM data analysis of BtubABC mini microtubule. (A) A representative cryo-EM micrograph 

of in vitro polymerized BtubABC and a 2D class average showing the binding of BtubC at every ~80 Å. (B) Top-

view along the filament axis showing the 4-protofilaments in purple and the protruding BtubC subunits in green. 

(C, left) The side-view highlighting the seam showing BtubA-BtubB lateral contacts. (C, right) Another side-

view (opposite to the seam) by a rotation of 180° showing BtubA-BtubA and BtubB-BtubB lateral contacts. (D) 

The FSC curve between cryo-EM density half-maps after post-processing and the model-vs-map FSC curve. (E) 

Cryo-EM densities and fitted atomic models of BtubA and BtubB. (F) The atomic models of BtubA, BtubB and 

BtubC subunits (all the panels in this figure are adapted from Deng et al., 2017). 

As explained in section 4.1, hollow tubes of microtubules can be assembled by αβ-tubulin heterodimers, 

which were previously thought to be present only in eukaryotic cells. However, certain bacterial 

Prosthecobacter species contain BtubAB proteins that can also form hollow tubes. Deng et al., 2017 

produced unmodified P. dejongeii BtubAB proteins in E. coli and long, straight 4-protofilament tubes 

were observed by cryo-ET when GTP was added to BtubAB. I mainly provided suggestions on the 

analysis of helical symmetry for this project. The authors firstly performed cryo-ET sub-tomogram 

averaging of BtubAB filaments and manually derived pseudo-helical parameters (twist = -90°, rise = 

10 Å) through inspection of the map. These parameters averaged BtubA and BtubB together and ignored 

the presence of a seam. Helical reconstructions of cryo-EM BtubAB data set refined the pseudo-helical 

parameters to -90.7°, 10.4 Å and yielded a final map at 4.2 Å resolution. Since BtubA and BtubB are 

extremely similar in structural details (figure 5.1EF), a new feature was required to mark the ~80 Å 
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heterodimer repeat on each proto-filament in order to distinguish BtubA from BtubB during 3D 

reconstructions. The authors then expressed the third gene bklc in the btub gene cluster and found that 

P. dejongeii BtubC binds to BtubAB filaments in a stoichiometric fashion (figure 5.1ABC). For this 

BtubABC data set, the initial helical twist and rise were set to −5.6° (−0.7° × 4 × 2) and 80.0 Å (10 Å 

× 4 × 2) respectively to describe the symmetry on each individual proto-filament only. Thereby, BtubA 

and BtubB subunits could be separated, details of the seam were preserved but the four identical proto-

filaments (figure 5.1B, marked by 1, 2, 3 and 4) were not averaged (also see section 4.1). This solution 

was adopted as a work-around because local symmetry option in RELION had not been implemented 

at that time in 2016. Helical parameters of each BtubABC proto-filament were refined to −5.54° and 

79.31 Å. The overall resolution of the post-processed map was 3.6 Å (figure 5.1D). The densities of 

BtubC were not clearly resolved by cryo-EM data processing since BtubC proteins bound to the 

filaments at specific locations but with random orientations. The crystal structure of BtubC (PDB: 

5O01) was independently solved by X-ray crystallography. The project shows that, compared to 

eukaryotic microtubules, BtubABC mini microtubules are much smaller in diameter and the number of 

constituent proto-filaments. But they still share common features with ordinary microtubules such as 

alternating subunits, a seam that breaks the overall helical lattice, and dynamic instability (treadmilling). 

The study sheds light on the evolution of microtubule structures and provides tools for investigation of 

filament dynamics (Deng et al., 2017). 
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5.2 MxB (myxovirus resistance proteins) 

 

Figure 5.2. Cryo-EM data analysis of MxB (myxovirus resistance proteins). (A) A representative 2D class 

average. (B) The diffraction pattern of (A) and the Fourier-space helical lattice. (C) The indexing scheme of (B). 

(D) The real-space helical lattice deducted from (C). (E) The side view of the simulated initial 3D reference. (F) 

The local resolution heat-map of the post-processed density map. (G) The central z section of the post-processed 

density map. (H) The post-processing FSC curve. 

Mx (myxovirus resistance) proteins are important restriction factors in the interferon response against 

viruses. In mammals, the two isoforms are classified as Mx1 (MxA)-like and Mx2 (MxB)-like proteins. 

Human dynamin-like Mx2/MxB has shown strong inhibition of HIV-1 replication. The antiviral 
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activities of MxB depend on both the N-terminal region and oligomerisation, and their structural details 

were previously not clear due to difficulties in sample preparations. Frances et al., 2017 expressed and 

purified MBP-fused full-length wild-type MxB and the protein oligomers self-assemblied into helical 

lattices. I processed this cryo-EM data set using helical reconstruction workflow implemented in 

RELION. As is seen from the 2D class averages (figure 5.2A), the MxB helices have an outer diameter 

of ~275 Å with some faint unresolved densities extended to ~360 Å. Fourier-Bessel analysis has 

revealed that the helical structure is 1-start and contains ~6 subunits within each ~50 Å pitch (figure 

5.2BCD). The data processing followed the ordinary workflow explained in section 2.1. The 3D-

refinement started from the estimated symmetry (+60.0° and 8.19 Å) and a simulated lattice low-pass 

filtered to 30 Å (figure 5.2E). The final resolution was 4.6 Å after post-processing (figure 5.2H) and the 

helical twist and rise were refined to +58.4° and 8.237 Å respectively. This is the first near-atomic 

resolution structure of the mammalian dynamins. The authors has identified novel interfaces for MxB 

oligomerisation which are crucial to its assembly and anti-HIV-1 functions through inspection of the 

density map and additional mutational analyses (Frances et al., 2017). 
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5.3 Type VI Contractile Sheath TssB1C1 from Pseudomonas 

aeruginosa 

 

Figure 5.3. Cryo-EM data analysis of the Type VI Contractile Sheath TssB1C1 from P. aeruginosa. (A) A 

representative 2D class average. (B) The diffraction pattern of (A) and the Fourier-space helical lattice. (C) The 

indexing scheme of (B). (D) The real-space helical lattice deducted from (C). (E) The side view of simulated 

initial 3D reference. (F) The local resolution heat-map of the post-processed density map. (G) The central Z 

section of the post-processed density map. (H) The post-processing FSC curve. 

The type VI secretion system (T6SS) is widely present in Gram-negative bacteria and it is an injection 

machine that utilises the contraction of a sheath structure to deliver toxins or effectors into bacteria or 
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eukaryotic cells. The sheath in T6SS is a tubular structure made of two proteins TssB (VipA/IglA) and 

TssC (VipB/IglB). The paper by Salih et al., 2017 presents the group-3 TssB1C1 sheath encoded by the 

H1-T6SS gene cluster (TssB1C1) from P. aeruginosa. I was in charge of the whole cryo-EM data 

processing workflow of this project. The co-authors initially applied helical twist and rise which 

conform to 12-fold with C6 point group symmetry since all known contractile systems display such 

symmetry in native conditions (for example, the VipA/VipB structure used as a test data set in section 

2.4, Kudryashev et al., 2015). However, both the asymmetric 2D class averages (figure 5.3A) and the 

Fourier-space helical lattices (figure 5.3B) indicate that the symmetry is not likely to be 12-fold or 

rotationally symmetrical around the helical axis. The 2D class densities (figure 5.3A) are apparently 

asymmetrical across the meridian. Furthermore, no maxima are found along the meridian of the 

diffraction pattern (figure 5.3B), which suggests that the structure lacks any rotational Cn (n ≥ 2) 

symmetry. The Fourier-Bessel analysis shows that its helical twist and rise are ~+55.4° and ~3.3 Å 

respectively, leading to a 13-fold symmetry structure with exactly two pitches in every helical repeat 

(figure 5.3CD). This estimated symmetry also agrees with the evidence that some of the short helical 

filaments display 13-fold cogwheel-like top-views on the motion-corrected micrographs. Thus, Salih et 

al. assumed that the sample preparation must have induced the structures into a predominant 13-fold 

symmetry. Once the helical symmetry was correctly resolved, the data processing followed the ordinary 

workflow explained in section 2.1. The 3D-refinement started from the estimated symmetry (+55.4° 

and 3.3 Å) and a simulated lattice low-pass filtered to 20 Å (figure 5.3E). The final resolution was 3.3 

Å after post-processing (figure 5.3H) and the helical twist and rise were refined to +55.40° and 3.359 

Å respectively. The claimed overall resolution of TssB1C1 sheath is the highest among all the helical 

data sets that I have processed with RELION during my PhD. Based on the resolved cryo-EM structure, 

the authors has proposed an extended spring-type mechanism of the T6SS sheath contraction. It has 

also been discovered that this system is highly conserved in mechanism and functions compared to 

other contractile assemblies, such as T4 bacteriophages and R-type pyocins (Salih et al, 2017). 
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5.4 Tau filaments 

 

Figure 5.4. Cryo-EM structures of tau filaments from Alzheimer’s disease. (A) A representative cryo-EM 

micrograph and 2D class averages (blue insets for PHFs, green insets for SFs). (B) Power spectra of 2D class 

averages and the corresponding side view projections (θ = 90°) of the atomic models. (C) The side views of the 

reconstructed cryo-EM density maps of PHFs and SFs. (D) FSC curves between two independently refined half-

maps for the full-length (FL) PHFs (blue, solid) and SFs (green, solid). (E) Cross-sections of the PHF and SF 

cryo-EM structures (with fitted atomic models) (all the panels in this figure are adapted from Fitzpatrick et al., 

2017). 

As the most common neurodegenerative illness, Alzheimer’s disease is characterised by abnormal 

aggregations of neurofibrillary lesions and neuritic plaques in a patient’s cerebral cortex. The lesions 

consist of paired helical and straight tau filaments (PHFs and SFs). Helical reconstruction in RELION 

has revealed the first high-resolution structures of such filaments. Fitzpatrick et al., 2017 purified 

samples of cerebral cortex from a patient diagnosed with the disease and they processed the data sets 

on their own. Negative staining results showed that the PHFs are 70 Å – 150 Å wide with crossover 

distances of 650 Å – 800 Å and the SFs are ~100 Å wide uniformly with crossovers of 700 Å – 900 Å. 

The cores of both PHFs and SFs consist of two proto-filaments, each of which is a helical stack of C-

shaped subunits, whereas the N- and C-terminal regions of tau proteins extend outward to form 
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disordered fuzzy coats. The diffraction patterns of 2D class averages (figure 5.4A) show little 

information between the equator and the only layer line at ~4.7 Å (figure 5.4B). The absence of signals 

at medium-range resolutions posed challenges to resolve the structural details along the helical axis of 

such filaments. The authors set greater T values (≥8) to force RELION to make use of higher spatial 

frequencies during 3D alignment. The methods of incorporating helical prior information (section 2.2.6) 

were crucial for the determination of the PHF and SF structures. The authors also reported that the 

helical data processing benefits from additional settings such as the polarity correction, fixed tilt (θ) 

priors and the local averaging of alignment parameters of neighbouring segments. The high-resolution 

3D reconstructions demonstrate that the C-shaped subunits are successive rungs of β-strands related by 

a helical rise of ~4.7 Å and a twist of ~-1°. The two proto-filaments in PHFs has an approximate 21 

screw symmetry while such feature does not exist in SFs (figure 5.4E). The study is the first to elucidate 

the ordered core of proto-filament pairs of PHFs and SFs in a patient’s brain of Alzheimer's disease. 

The structural information of this core, necessary for the seeding and propagation of tau filaments, is 

useful for the study of molecular mechanism and inhibitor design of tau related pathologies (Fitzpatrick 

et al., 2017). Helical reconstruction in RELION provides a powerful tool for cryo-EM structural 

determination of amyloid protein structures related to neurodegenerative diseases. 

Apart from the four structures discussed above, helical reconstruction in RELION has also been used 

in the following research projects of structural determination of helices: Izoré et al., 2016; Short et al., 

2016; Daum et al., 2017; Unwin, 2017. 
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6 FUTURE PROSPECTS 

In conclusion, my PhD project has developed a general workflow of single-particle based helical 

processing in RELION 2.0. The thesis describes the key computational implementations and results in 

detail, as well as optimal settings of user-defined parameters and pitfalls in helical reconstructions. The 

methodology has opened up new possibilities of determining some exciting and unusual helical 

structures, including microtubules with pseudo-helical symmetry, actin-like filaments and amyloid 

fibres at near-atomic resolution, with reduced user intervention. This open-source computational project 

provides a powerful and free tool for cryo-EM structural determination of helices. In addition, it does 

not require much expertise for the new researchers of general structural biology to enter the field of 

helical processing. In the future, with more advanced EM facilities, I expect that new helical structures 

could be easily resolved to near-atomic resolutions with the help of the helical processing workflow in 

RELION. 

Structural determination of membrane proteins might benefit from cryo-EM helical processing in 

particular. Well-ordered 3D crystals of membrane proteins are generally hard to obtain for X-ray 

crystallography. NMR analysis requires a large amount of labelled, stable proteins in detergents, which 

might not be feasible as well for membrane proteins especially from eukaryotes (Vinothkumar, 2015). 

As for the single-particle cryo-EM study of membrane proteins, over-expression of such proteins in 

cells is more difficult compared to soluble proteins. Even if the proteins are well-expressed, there may 

still be obstacles in extracting them from membranes in stable and non-aggregated states into solutions 

(Rawson et al., 2016). However, some membrane proteins can be induced to form 2D crystals in the 

form of helical tubes. Such helical lattices generate information-rich diffraction patterns and their 

helical symmetry can be conveniently figured out through indexing. Moreover, their helical lattices are 

curled into tubes which provide a pseudo-membrane environment for the proteins. Thereby, the 

structures revealed by single-particle helical reconstruction might have more resemblance to their in 

vivo states (for example, the AChR tubes, Unwin, 2017). The induced helical lattices may consist of a 

mixture of slow changing helical twist and rise values or totally different symmetries. In such cases, 

careful 2D/3D classifications must be performed in order to achieve high-resolution reconstructions. 

The sizes of helical assemblies can be much larger than the ordinary single molecules. For example, a 

typical AChR tube (Unwin, 2017) has a diameter of ~800 Å and a length of several thousand Angstroms. 

The long and wide hollow tubes can be flattened in the middle and located at different depths in the ice 
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layer along its spanning directions. From an image processing point of view, the curvature of the Ewald 

sphere limits the highest resolution to which images can be easily interpreted, especially for images of 

thick specimen. In high resolution cryo-EM, the near-focus images superimpose the fringes from 

Fourier components created by interference between the unscattered beam and the two beams scattered 

from the specimen in opposing directions from the beam axis (Russo and Henderson, 2018). Once 

recorded as an in-focus image at the detector, these two approximately Friedel-related Fourier 

components created by the diffracted beams overlap and become indistinguishable in both real and 

reciprocal space. The Ewald sphere describes the geometry of this diffraction (figure 6.1). The 

conventional CTF correction (section 1.2) applies to the Fourier transform of the whole image, but it is 

only accurate for a flat Ewald sphere. Russo and Henderson (2018) proposes the single-sideband CTF 

correction which is computationally only slightly less efficient and allows separate determination of the 

amplitudes and phases of the two pseudo-Friedel-related Fourier components, provided the images are 

recorded with a sufficiently high defocus. According to their estimations, the method is expected to 

improve the structural determination for particles > 800 Å in diameter at resolutions beyond 4 Å using 

300 keV electrons, which will be particularly beneficial for wide helical tubes. It has the potential to 

extract higher resolution information from thicker specimen using lower energy electrons and figure 

out the absolute hand of the specimen without the need of performing tilt pair analysis. In addition, 

higher order lens aberrations need to be corrected physically with additional lenses in the microscope 

or computationally during data processing for cryo-EM structures resolved near or above 2 Å 

resolutions. 
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Figure 6.1. The Ewald sphere and Friedel-symmetry-related sidebands. (a) Diagram showing how 

underfocused images keep two approximately Friedel-related diffraction patterns completely separate so that they 

do not overlap in the image. Since they do not overlap physically in the image, their amplitude and phase can be 

recovered by an appropriate image processing procedure. At underfocus B, the two diffracted beams are fully 

resolved from the low-resolution shadow of the particle, whereas underfocus A is the minimum underfocus needed 

to avoid any overlap of the high-resolution information. (b) The result of applying the two CTFP and CTFQ 

procedures is shown in comparison with the result of applying conventional CTF correction. The conventional 

CTF correction, termed CTFR, is equivalent to the application of CTFP + CTFQ. (c) Diagram of the Ewald sphere 

construction, and how the deviation from the central section, Δz*, is calculated. The two diffracted beams are 

shown intersecting the Ewald sphere on the right and left sides of the diagram. The intersection to the left is also 

shown as its Friedel-related partner, dashed, on the right. The 2Δz* distance is the separation of the two Fourier 

components in reciprocal space (adapted from Russo and Henderson, 2018). 

In the next few years, helical sub-tomogram reconstruction may provide more insights into cellular sub-

structures combined with more advanced cryo-ET techniques (Koning et al., 2018). The achievable 

resolutions are being pushed higher for cryo-ET by ongoing developments of imaging and data 

collecting devices (Sharp et al., 2017), more accurate 3D-CTF models and improved tomographic 

reconstruction algorithms (Kunz and Frangakis, 2017; Turoňová et al., 2017). Cryo-ET has the potential 

to reveal any in situ cellular components in cells, and a variety of helical structures, such as filamentous 

and cytoskeletal assemblies, are attracting great interest in tomographic study. These assemblies are 
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often morphologically heterogeneous and such structural variations can be identified through helical 

sub-tomogram reconstructions across various tomograms (Milne et al., 2013). Their comparisons with 

cryo-EM helical reconstructions of in vitro filaments might also be beneficial to their structural and 

functional studies. 

From the computational point of view, there is still room for improvement for single-particle helical 

processing. Currently, there is still not a single method which is reliable and universally applicable for 

initial model generations of all helices. Recent introduction of stochastic gradient descent into the 

RELION MAP-EM algorithm enables initial model generations of single-particle molecules, where 

initial 3D references can be generated using stringently low-pass filtered spherical densities as input 

and immediately fed into reconstructions jobs (Punjani et al., 2017). Unlike ordinary single particles, 

helical segments always span all the way along the helical axes and they are not at all similar to low-

passed spheres. In addition, a strong low-pass filter risks wiping out almost all necessary information 

of the surface lattice, which makes correct convergence of such de novo initial model almost impossible. 

In addition, at the stage of initial model building, helical symmetry (and the number of asymmetrical 

units, H, within each segment) is not necessarily known or estimated, which makes the process even 

more difficult. The process may be further complicated by a mixture of slightly different helical 

symmetry parameters present in the data set. Section 2.4.3 in this thesis advises that there seems no one-

size-fits-all solution to building initial references for helices and encourages researchers to explore 

various measures (including the traditional Fourier-Bessel analysis) which suit the properties of helical 

lattices, and helical symmetry should always be properly validated (using validation methods described 

in section 2.4.4). In the future, I am looking forward to new universal methods for building initial 

references of helices which do not rely on prior (symmetrical) information of the structure and can 

completely replace the Fourier-Bessel analysis, perhaps with the help of 2D class averages of helical 

segments. 

RELION adopts Bayesian framework and many parameters of the statistical model are learned from the 

data, which leads to objective and high-quality results without the need for user expertise (Scheres, 

2012). However, one free parameter, the regularisation parameter T, is currently not learnt from the 

input experimental images and can be set arbitrarily by the users to suit their specific needs. The 

regularisation parameter T determines the relative weight between the experimental data and the prior. 

A larger T value assigns more weight to the prior at every iteration in the reconstruction. Over-fitting 

effects can be remarkable if the T value is inappropriately large. Based on previous experiences, 2D 

and 3D classifications require values of 1-2 and 2-4 respectively to obtain better results for the 

reconstructions. In order to improve the single-particle analysis in general, it is possible that proper 

values of regularisation parameters T are estimated from the signal-to-noise ratios of both the input data 

set and references (during the iterative reconstruction) and the level of internal symmetry of the structure 
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(point-group, helical or local symmetry elements), given the dimensionality (2D or 3D) and the number 

of input particles and classes of the reconstruction. For highly symmetrical structures as helices, it is 

expected that larger values of T could speed up the convergence and still safely lead to reliable 

reconstruction results. Future plans of the development RELION might also involve auto-selection of 

2D classes with the help of machine learning and/or pattern recognition techniques. For heterogeneous 

data sets of helices, it is desired to sort 2D class averages not only according to their image qualities, 

but also the helical symmetry (or diffraction patterns) and the filament widths. Currently as a common 

practice, researchers produce and inspect the class averages and diffraction patterns manually for 

cleaner subsets of data for 3D reconstructions. I expect reliable computation methods to speed up and 

automate the process. It could be beneficial to figure out different types of helices prior to 3D 

reconstructions, not only after rounds of careful 3D classifications.  

Local resolution estimations of final post-processed maps always reveal that the best quality densities 

are located in the radially middle parts of the maps, while the outer and inner (if the curled helical 

lattices form hollow centres) parts are slightly blurred and yield lower local resolutions. The reason 

might be that the periphery of helices have direct contact with the solvent while the protein structures 

in the middle are surrounded by the surfaces therefore more stabilised. Particularly, the periphery (both 

inner and outer) of the helical wall provides positions for other proteins to bind to. So there are special 

interest in peripheral chain densities themselves and molecules which bind to them. Unfortunately, 

helical symmetry is assumed to be invariant for all voxels between the inner and outer diameters in the 

3D volumes and any wobbling parts are smeared out due to the imposition of symmetry. Theoretically, 

signal subtraction might reveal some interesting details at the periphery, but hundreds of sub-masks 

around peripheral densities for every subunit are impractical to be generated, and there is no promise 

that this approach is going to work since the flexible parts might all take random orientations. Multi-

body refinement (Nakane et al., 2018), which deals with the conformational changes and heterogeneities 

of the molecular structures, combined with the signal subtraction method may be feasible to explore the 

outer surfaces of helical structures. 

Local symmetry was originally intended to tackle microtubules with seams in helical reconstructions, 

but it can also be applied to any structures with arbitrary numbers of identical regions. The performance 

of local symmetry still needs to be evaluated in single-particle reconstructions. In addition, the local 

symmetry operators can only be generated using regional masks on a density map at present. As an 

alternative, it might be necessary to enable calculations of operators based on fitted PDB models of the 

identical regions. 
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1. Introduction

The first biological structure to be determined by three-
dimensional electron microscopy (3D-EM), the extended tail of
the T4 bacteriophage, had helical symmetry (De Rosier and Klug,
1968; DeRosier and Moore, 1970). An important advantage for
structure determination of helical objects over asymmetrical parti-
cles lies in the observation that a single projection image of a heli-
cal specimen will typically contain all necessary information to
perform a 3D reconstruction. Moreover, for helical reconstructions
the number of parameters to be determined is, in principle,
strongly reduced compared to single-particle analysis. That is
because in single-particle analysis one needs to determine the rel-
ative orientations for every individual particle projection image,
while for helical structures many copies of the repeating, asym-
metrical unit have fixed relative orientations. Therefore, once the
parameters describing helical symmetry and the orientation of
the image of an entire filament with respect to that symmetry have
been determined, one can reduce the experimental noise effi-
ciently by averaging over a large number of asymmetrical units.

The determination of helical symmetry and the subsequent cal-
culation of a 3D reconstruction were initially performed in Fourier
space. The mathematical description of the Fourier transform of an
object with helical symmetry was first proposed by Crick, Cochran
and Vand (Cochran et al., 1952), and Klug generalised the theory
afterwards (Klug et al., 1958). The initial step is to inspect 2D Four-
ier diffraction patterns of, sometimes averaged, and preferably long
and straight, helical filaments. The helical lattice can be considered
as a 2D surface lattice that is curled into a cylinder (also see Fig. 1).
The curling effect causes a convolution of the Fourier transform of
the 2D surface lattice with a cylindrical harmonic called the Bessel
function. In the 3D Fourier transform of a helical object, discrete
horizontal lines, called layer lines, arise from the periodicity along
the helical axis. Through the central slice theorem, the radially
oscillating ring-like amplitudes on each plane perpendicular to
the z-axis in 3D Fourier space give rise to symmetrical maxima
across the meridian on each layer line in the Fourier transforms
of 2D projections. The position of the maxima along these lines,
combined with the real-space width of the helical object, can be
used to infer the 2D lattice parameters in a process called
Fourier-Bessel indexing. After the Fourier transform of a helix has
been indexed, a 3D reconstruction can be obtained through Fourier
inversion (DeRosier and Moore, 1970). For more detailed reviews
on Fourier-Bessel analysis, the reader is referred to (Diaz et al.,
2010; Stewart, 1988).

Computer programs for Fourier-Bessel analysis were first devel-
oped in the MRC image processing package (Crowther et al., 1996),
and have since been adapted in many other packages, such as the
Brandeis Helical Package (Owen et al., 1996), Phoelix (Whittaker
et al., 1995) and for objects with a break in helical symmetry

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsb.2017.02.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.jsb.2017.02.003
http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Definition of helical symmetry for n-start helices. A. Example of a 1-start helix with no point group symmetry (C1). The 3D helical structure on the left can be ’unfolded’
into a 2D plot of the z-height against the azimuthal angle u on the right. The dots represent the centres of the subunits in the 2D surface lattice. B) Example of a 3-start helix
(with C1 point group symmetry), where instead of using the original twist and rise of the individual three strands (in black), RELION expresses the helical symmetry using a
third of the original rise (in red).
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known as a seam in Ruby-helix (Metlagel et al., 2007). Fourier-
Bessel analysis of helices is often considered laborious and difficult,
as small inaccuracies in the indexing may lead to incorrect recon-
structions. Indexing is particularly prone to errors when the fila-
ments are not lying flat, the lattice is somehow distorted by
bending or flattening of the filaments, or by short-range disorder
in the helical symmetry. Therefore, the Fourier-Bessel approach
only performs well when the specimen adopts a close to perfect
helical structure. In practice, many helical assemblies are far from
perfect due to molecular flexibility and distortions induced by the
sample preparation process. To reduce the effects of long-range
distortions on the Fourier-Bessel reconstruction of AChR filaments,
Beroukhim and Unwin introduced the idea of dividing helical fila-
ments into short segments, which are independently aligned
against a reference structure (Beroukhim and Unwin, 1997).

Analogous to single-particle analysis, one can also align sepa-
rate helical segments in real-space against projections of a 3D ref-
erence model. Early applications of real-space helical
reconstruction were performed on haemoglobin fibrils (Bluemke
et al., 1988) and on microtubules (Sosa et al., 1997). The introduc-
tion of the iterative helical real-space reconstruction (IHRSR) algo-
rithm by Egelman opened up new horizons for application of this



S. He, S.H.W. Scheres / Journal of Structural Biology 198 (2017) 163–176 165
approach to a wide range of specimens (Egelman, 2000). The IHRSR
algorithm is based on iterative projection matching, where
computer-generated projections of a 3D reference in many differ-
ent orientations are compared with small segments that are cut
out from the micrographs in overlapping square boxes along the
helical filaments. After the optimal orientations of all segments
have been determined in this way, the aligned segments are
back-projected into an (asymmetric) 3D reconstruction. The helical
twist and rise are then determined by least-square fit within a
user-defined search range, and the best symmetry is imposed to
generate a symmetric 3D reference for the next iteration. For
favourable cases, this method was shown to converge to the cor-
rect solution when starting from a solid cylinder (Egelman,
2007), thereby reducing human intervention and enabling helical
reconstruction without expertise in Fourier-Bessel analysis. The
original IHRSR approach was implemented in the SPIDER package
(Frank et al., 1996). More recent variations on the single-particle
like approach to helical reconstruction were made in FREALIGN
(Alushin et al., 2010; Sachse et al., 2007), SPARX (Behrmann
et al., 2012), FREALIX (Rohou and Grigorieff, 2014) and SPRING
(Desfosses et al., 2014).

In this paper, we describe an implementation of single-particle-
like analysis for helical assemblies in the RELION program (Scheres,
2012a). RELION is based on an empirical Bayesian approach in
Fourier-space, where a marginalised likelihood function is aug-
mented with a Gaussian prior on the reconstruction (Scheres,
2012b). Optimisation of the corresponding regularised likelihood
target is performed using the expectation maximisation algorithm
(Dempster et al., 1977). Because parameters of a statistical model
for both the signal and the noise are estimated from the data them-
selves, optimal filters for both the reconstruction and the align-
ment are determined automatically. Thereby the need for user
expertise in devising ad hoc filters is strongly reduced. Although
helical reconstructions using RELION have been described previ-
ously (Clemens et al., 2015; Short et al., 2016; Xu et al., 2015),
these approaches relied on external software to impose helical
symmetry, so that RELION could not incorporate the additional
averaging into its calculation of optimal filters. Moreover, previous
versions of RELION were unaware of the signal extending to the
edges of the boxed images, and did not exploit statistical priors
on the orientations of individual segments to describe deviations
from perfect helical symmetry.

Below, in the Methods section, we first describe the modifica-
tions to RELION that were made to implement helical reconstruc-
tion. Then, in the Results section, we describe how this
implementation behaves for four different helical test specimens.
We start the Results section with a description of the structure
determination procedures for these four test cases, and we
describe more detailed analyses of various features of the RELION
implementation in the second half of the Results section. Finally,
in the Discussion section we analyse the benefits and the remain-
ing pitfalls of our implementation. The approach described in this
paper has been implemented in RELION version 2.0, and was accel-
erated for execution on graphics cards along with the code for
standard single-particle analysis of asymmetric particles
(Kimanius et al., 2016). RELION is distributed as open-source and
can be downloaded for free by both academic and non-academic
users from http://www2.mrc-lmb.cam.ac.uk/relion.
2. Methods

2.1. Definition of helical symmetry

Helical symmetry in RELION is described by two parameters
(Fig. 1A): helical twist (between -180 and +180 degrees, with
positive values corresponding to right-handed helices along the
z-axis) and helical rise (>0 Å, along the z-axis). Therefore, for any
point in real space, the voxel values of a perfectly helical object
have the following relationship under cylindrical coordinates with
radial distance r, angular coordinate u, and height z (also see
Fig. 1A):

qðr; /; zÞ¼qðr; /þh� twist; zþh� riseÞ for any integer valueh:

Apart from helical symmetry, additional point group symmetry
may also be present. That is, the sample may have an additional n-
fold rotational symmetry axis along the helical axis (Cn-symmetry
with n � 2), and/or it may have a 2-fold rotational axis perpendic-
ular to the symmetry axis (Dn-symmetry with n � 1, where D1
stands for a single 2-fold axis perpendicular to the helical axis
but no rotational symmetry along the helical axis). Helices with
Dn symmetry lack polarity, whereas helices with Cn symmetry
typically consist of n separate strands of molecules that are packed
against each other and that all start at the same level along the z-
axis.

In some helical structures the subunit shape and packing may
make a particular n-start helical family especially prominent, even
though the structure does not have Cn point group symmetry. In
such a case the n separate helical strands do not all start at the
same level along the z-axis. To maintain an intact helical lattice,
the difference in translation between the n strands have to be mul-
tiples of the rise/n. Thereby, it becomes possible to describe these
so-called n-start helical families by a 1-start helix with the follow-
ing twist and rise (Fig. 1B):

rise ¼ risen-start=n

twist ¼ ðtwistn-start þ 360�Þ=n for twistn-start > 0or

twist ¼ ðtwistn-start � 360�Þ=n for twistn-start < 0

As is done in alternative programs, RELION uses the 1-start
description of such structures. Although mathematically correct,
the 1-start helical lattice may not have an intuitive biological inter-
pretation. The handedness of the 1-start lattice is not necessarily
the same as for the n-start lattice, and neighbouring molecules
do not necessarily contact each other on the 1-start helical lattice.

2.2. Fourier-space symmetrisation and the inter-box distance

In order to estimate the signal-to-noise ratio in the experimen-
tal images, which is an intricate part of the empirical Bayesian
approach, RELION needs to know over howmany asymmetric units
a reconstruction is calculated. For asymmetrical particles, each
experimental projection contributes a single asymmetric unit to
the reconstruction. For helical segments, the amount of overlap
between adjacent boxes defines how many new asymmetric units
are contained in each new box. Therefore, upon the extraction of
helical segments from the micrographs, RELION will ask the user
for an inter-box distance that is an integer H times the helical rise
(also see below), so that each new box will contain H new asym-
metric units. At early stages of processing, when an exact rise
may not yet be known, a best guess may be used instead.

For values of H larger than one, during the alignment of each
segment in the expectation step one could in principle set the 2D
Fourier slice H times back into the 3D Fourier transform, each time
applying a rotation of h * twist and phase shifts that would corre-
spond to a translation of h * rise along Z, with h = 0, . . ., H � 1
(Fig. 2). Such a Fourier-space symmetrisation scheme has been
implemented for example in FREALIGN (Alushin et al., 2010;
Sachse et al., 2007). RELION implements the computationally
cheaper, mathematically equivalent option to apply these rotations
and phase shifts to the accumulated sum of all slices in 3D Fourier

http://www2.mrc-lmb.cam.ac.uk/relion


166 S. He, S.H.W. Scheres / Journal of Structural Biology 198 (2017) 163–176
space at the end of every iteration, immediately prior to perform-
ing the reconstruction. A similar scheme was also implemented in
FREALIX (Rohou and Grigorieff, 2014).

Since the information content of a given set of micrographs is
invariant of the inter-box distance, different values of the latter
should in principle lead to identical signal-to-noise estimates and
3D reconstructions. Larger inter-box distances, or larger values of
H, will result in fewer segments and are thus computationally
cheaper. However, in RELION the useful inter-box distance is lim-
ited in practice by artefacts caused by our symmetrisation opera-
tions in Fourier-space. For values of H larger than 1, translations
through phase shifts in the 3D Fourier transform will cause densi-
ties at the top of the helix in real-space to ‘‘wrap around” to the
bottom and vice versa. Because the densities at the top and the bot-
tom will typically not coincide, this will lead to additional blurring
at the helix ends. Consequently, only the central z-slices in the
real-space reconstruction will be intact after the symmetrisation
in Fourier space, which places a strict maximum on the inter-box
distance of 50% of the box size.

2.3. Real-space symmetrisation and local optimisation of twist and rise

Apart from the artefacts caused by our symmetrisation in Four-
ier space, other factors will further blur the reconstructed density:
helical segments that are not perfectly straight, have varying twist,
rise, shrinkage or expansion along the helical axis and inaccuracies
in the alignment. Bent helices can be described better by using
smaller inter-box distances, which will lead to more segments,
and thus more orientational parameters to describe the deviations
from a straight helix. But because bent helices can only be approx-
imated with a straight helix in a sufficiently small central section,
the top and bottom parts of the reconstructed helix will be more
blurred than the central part. The same happens with alignment
errors, where the density that is further away from the centre of
rotation will be more blurred. As a result, the central part of the
reconstructed helix will be better defined than the top and bottom
ends. Therefore, it is beneficial to calculate a symmetric structure
using only the central z-sections in real-space, and to extend the
symmetric structure over the length of the entire box.

As was originally introduced for the IHRSR approach (Egelman,
2000), this real-space symmetrisation can also be accompanied
with a local optimisation of the helical twist and rise. This may
be necessary, as estimates from traditional Fourier-Bessel indexing
Fig. 2. A. A schematic representation of a helical filament with 18 asymmetrical units. B.
to similar reconstructed volumes after symmetrisation in Fourier-space. Fourier-space sy
the reconstructed volume from the helical segments is rotated and translated according
MAVS from manually picked filaments and an inter-box distance corresponding to 6 new
not average over all asymmetrical units. D. The MAVS reconstruction after Fourier-spac
averaged over all available asymmetrical units. At the top and the bottom of the helix,
or other methods are often not accurate enough for high-resolution
reconstruction. Therefore, RELION optionally performs a two-
dimensional grid search of the helical twist and rise to find the
smallest variance between the averaged sections of the map. Initial
search range and step size parameters are provided by the user,
and the 2D grid search is iterated with increasingly fine steps
around the best twist and rise from the previous iteration. Because
the refinement of twist and rise is a local optimisation process, and
the energy landscape may contain many local minima, the optimi-
sation of helical parameters should not be considered as a substi-
tute for Fourier-Bessel indexing, asymmetric refinements from
featureless cylinders, or experimental approaches like tomography.

2.4. 2D and 3D masks

Masks are used during refinement on both the 2D experimental
images and on the 3D reconstruction. Masking the 2D experimen-
tal images helps to reduce the influence of noise or the neighbour-
ing particles on the alignment in the expectation step, and the
same mask is also used to determine the mean and standard devi-
ation in the background area for the normalisation of boxed seg-
ments. Masking the 3D reconstruction reduces the noise in the
solvent region, and thus leads to a better reference for the next
iteration. For the analysis of helical structures, a circular 2D mask
from standard single-particle analysis is multiplied with an addi-
tional rectangular mask across the entire particle image with a
width according to the outer_tube_diameter parameter (Fig. 3A).
This mask is no longer rotationally invariant, but is rotated accord-
ing to the most likely in-plane rotation angle for each experimental
image. Prior to any refinement, this in-plane rotation is estimated
from the manual or template-based particle picking procedures
(also see below).

Likewise, a spherical solvent mask on the 3D reconstruction
from standard single-particle analysis is multiplied with a hollow
cylinder mask with the same outer_tube_diameter parameter
describing the width of the 2D mask. An optional inner_tube_diam-
eter parameter also allows to mask away densities inside hollow
helices (Fig. 3B).

One could argue that because helical segments extend all the
way across the image, one would not need the circular or spherical
components of these masks. However, as all reference projections
are taken as 2D slices from the 3D Fourier transform of the refer-
ence map, real-space artefacts may again arise from non-empty
Extracted segments with 1 (top) or 2 (bottom) new asymmetrical units per box lead
mmetrisation is not necessary if the inter-box distance is one helical rise. Otherwise,
to the helical symmetry, and summed up in Fourier space. C. The reconstruction of
asymmetrical units per segment. Without Fourier-space symmetrisation, one does

e symmetrisation. The central section along the helical axis (within the red box) is
blurring is caused by Fourier artefacts (also see main text).



Fig. 3. Masks for 2D images (A) and 3D maps (B). Areas of a filament inside the
mask are shown in grey, areas outside the mask in white. In panel A, the helical axis
runs at a 45� angle with the horizontal direction, which represents an arbitrary in-
plane rotation angle. The helical axis (i.e. the z-axis) runs parallel to the vertical
direction in B. Panels C-F illustrate the need for the circular (or spherical)
component of these masks. Rotation of an unmasked segment (C) leads to artefacts
(top and bottom in D), due to wrapping effects caused by rotations in the Fourier
domain. The application of a circular mask to the original image (E) allows rotation
without artefacts (F).
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corners of the reference upon rotation. To make comparisons
between the reference projections and the experimental images
consistent, the corners are removed from both the 3D map and
the 2D images (Fig. 3C-F).

2.5. Incorporating prior information about the orientations

The statistical framework provides an elegant way to express
prior information about the relative rotations and translations of
each experimental image. For example, in both single-particle
analysis and the processing of helical filaments, (manual or auto-
mated) particle picking will yield residual translational offsets
around the approximate centre of the images. RELION expresses
this information as a Gaussian prior probability function, and esti-
mates its standard deviation from the data during the iterative
refinement. For helical processing, this distribution is changed into
an anisotropic function (Fig. 4A). Along the helical axis, the prior
probability is a tophat distribution with non-zero values from
�rise/2 to +rise/2 around the centre of the image. This distribution
prevents segments from translating into the next asymmetric unit,
which would lead to averaging multiple times over the same signal
in overlapping segments. For helices with a very small rise, e.g.
TMV in the examples below, the prior becomes very narrow. To
still allow movements of individual segments along the helical
direction, we impose a minimum of five sampling points for the
translational searches along the Z-axis. In the orthogonal direction,
a Gaussian distribution is used, for which the standard deviation is
re-estimated at every iteration of the expectation maximisation
algorithm in the same way as in the single-particle approach
(Scheres, 2012a).

Unlike in single-particle analysis, there is also ample prior
knowledge about the relative rotations of helical segments. Firstly,
because the long filaments tend to lie approximately horizontal
inside the ice layer, we use a Gaussian distribution that is centred
at 90� on the tilt angle in RELION (Fig. 4B). Distributions with a
wider standard deviation can be used to account for increasing
degrees of rocking, but at present this parameter is fixed at a value
provided by the user. Alternatively, the user can choose to allow
the centre of the tilt prior for each particle to move to the most
likely angle from the previous iteration. In principle, if the helical
twist and rise are known, there are also strong relationships for
neighbouring segments between the rotations along the helical
axis, i.e. the ‘rot’ angle in RELION. However, as the rot angle is
strongly coupled with the translation along the helical axis,
expressing this information into a prior is more complicated, and
this is not done in the current implementation.

For the in-plane rotations, the ‘psi’ angle in RELION, we intro-
duce a bimodal prior for helical segments that expresses the prior
knowledge that the particle picking provides about the direction of
the helix, but with an ambiguity in its polarity (Fig. 4C). This prior
consists of two opposing Gaussian distributions that are clipped at
3 standard deviations. The ambiguity in polarity is absent for
helices with Dn point group symmetry. For helices with Cn symme-
try, this polarity is typically resolved during the refinement pro-
cess. One can also express the prior knowledge that all segments
from the same helix should have the same polarity. In our imple-
mentation, one starts the refinement with symmetrical priors on
the in-plane rotations, where the two opposing Gaussian distribu-
tions have equal weights. As the refinement progresses, and parti-
cles accumulate a stronger probability for one of the two polarities,
the difference in the weights on the two opposing Gaussians
becomes correspondingly larger. In 3D auto-refinement, and some-
times also in 2D or 3D classification, initial iterations of exhaustive
orientational searches are followed by iterations where only local
orientational searches are performed. At this point, the local
searches are only performed around the in-plane rotation with
the largest weight.

For both the in-plane rotation and the tilt-angle, we also imple-
mented an option to centre the prior on the optimal orientations
from the previous iteration for all neighbouring segments within
a user-defined distance. A Gaussian function (with a standard devi-
ation of one third of a user-defined distance along the filament) is
used to assign lower weights to segments that are further away.
This local averaging option is implemented in the relion_refine

program as --helical_sigma_distance X, where X is the user-
defined distance. Since local averaging is performed within three
standard deviations of the Gaussian function, X effectively defines
the distance from the middle to the edge of the local averaging
window. Local averaging reduces discontinuities in the orienta-
tional assignments along a single filament.

2.6. Particle picking and extraction

Apart from modifications to the refinement program that
underlies the 2D/3D classification and 3D auto-refinement options
of RELION, we also modified the programs for manual and
template-based particle picking and particle extraction. The pro-
gram for manual picking allows the user to identify the start and
end points of helices by subsequent left-mouse clicks in the micro-
graphs. For the template-based picking algorithm, the figure-of-
merit calculation, which expresses the fit between the template
and any local area in the micrograph, remains unchanged from
the single-particle approach (Scheres, 2015). The adaptation of
the algorithm lies in the detection of filaments and cross-overs
between filaments. The latter requires additional parameters for
the helix diameter, the inter-box distance (in multiples of the esti-
mated helical rise), and the maximum curvature of the filaments
(which is expressed as the fraction, between 0 and 1, of the curva-
ture of the circular mask in 2D). The algorithm to detect filaments
searches for peaks in the figure-of-merit map for the entire micro-
graph, and considers neighbouring peaks within a distance of half
the template box size. Peaks that have too few neighbours, or
neighbours that do not satisfy the maximum curvature require-
ment, are discarded. Then, the algorithm iteratively extends candi-
dates for helical tracks in both directions, starting from the peak



Fig. 4. Priors on the orientational parameters. A. A top-hat prior on the in-plane translations along the helical axis, and a Gaussian prior on the in-plane translations
perpendicular to the helical axis. B. A mono-modal Gaussian prior on the tilt angle, which describes the out-of-plane rocking of filaments in the ice layer. C. A bi-modal
Gaussian prior on the psi angle, which describes the in-plane rotation of the filament.
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with the highest figure-of-merit, until no new segments can be at
the ends. Once all helical tracks have been identified, the program
calculates output segment coordinates according to the specified
inter-box distance. At this stage, regions in the micrographs where
two different helical filaments overlap are excluded.

Upon extraction of the segments from the micrographs, apart
from the corresponding X-Y coordinates and the figure-of-merit,
the particle extraction program also outputs for each segment its
in-plane rotation along the helical track, a distinct number for
the helix it belongs to, and its position within that helix. The latter
information is then used to construct the relevant priors on the ori-
entations of each segment as described above. This process does
not require any additional user input when RELION is used for all
steps from particle picking to refinement. However, if users pro-
vide extracted segments from outside the RELION workflow, then
the additional metadata should be provided through an imported
STAR file in RELION format. In that case, it may be more convenient
to re-pick inside RELION. Alternatively, RELION can read coordinate
files in EMAN(2) BOX-format (Tang et al., 2007), or as plain ASCII
files with X and Y coordinates in the first two columns. Therefore,
one can also conveniently provide the start and end coordinates of
helices in such formats, and re-extract the individual segments
inside RELION.
3. Results

3.1. Test data sets

To test the different aspects of our implementation we used
four data sets (Table 1). Three of these data sets are available from
the EMPIAR data base (Iudin et al., 2016): EMPIAR-10020 on
tobacco mosaic virus (TMV) (Fromm et al., 2015); EMPIAR-10019
of the contractile sheath of the bacterial type-VI secretion system,
which is composed of the proteins VipA/VipB (Kudryashev et al.,
2015); and EMPIAR-10031 on prion-like aggregates of the mito-
chondrial antiviral signaling protein that are mediated by the N-
terminal caspase activation and recruitment domain (MAVS/CARD)
(Xu et al., 2015). The fourth data set was collected as part of an in-
house research project on the bacterial actin homolog, MamK
(Löwe et al., 2016). These test data sets were collected on different
direct-electron detectors, while the filaments have different helical
and point group symmetries and vary in their levels of order. TMV
has been used as a test specimen for other helical reconstruction
programs, e.g. (Desfosses et al., 2014; Rohou and Grigorieff,
2014), and consists of straight and regular helical assemblies,
although occasional end-to-end joints of helices do not obtain heli-
cal symmetry. VipA/VipB filaments are also relatively straight and
regular, while MAVS/CARD and MamK filaments are more flexible.

3.2. Particle picking and 2D classification

Fig. 5 shows a representative micrograph for each of the four
test samples. Because the end-to-end joints of TMV filaments are
hard to distinguish using the template-based picking approach,
we performed the picking of TMV filaments manually. The rela-
tively straight VipA/VipB filaments were also picked manually.
MAVS/CARD and MamK filaments are increasingly bent. Because
the manual picking approach assumes straight filaments,
template-based particle picking is more suitable for these cases.
The corresponding templates were generated from initial 2D clas-
sification runs on segments that were obtained by manually pick-
ing of the straighter filaments in a subset of the micrographs.

After manual or template-based particle picking of the entire
data sets, all extracted segments were subjected to a single round
of reference-free 2D classification, which was used to separate sub-
optimal segments from segments that contribute to high-
resolution class averages (Fig. 5A-D, insets).

For the VipA/VipB and the MAVS/CARD filaments, we also com-
pared how manual and template-based particle picking affected
the resolution of the final reconstruction after 3D auto-
refinement (Supplementary Table 1). For this comparison, we used
the manually picked coordinates of MAVS/CARD that were avail-
able in the EMPIAR-10031 entry. For both test cases, auto-picking
was again performed with 2D class averages from a small subset
of manually picked segments. Template-based particle picking per-
formed at least as well as manual particle picking. In particular for
the more bent MAVS/CARD filaments, template-based particle
picking selected many more particles, which gave rise to a higher
resolution map after 3D auto-refinement.

3.3. Initial model generation

Because the expectation maximisation algorithm in RELION is a
local optimiser, the initial 3D reference needs to be within the
radius of convergence of the optimisation algorithm in order to
yield a correct structure. This is also true for alternative IHRSR
implementations. In particular, providing incorrect helical twist
and rise has been associated with false minima that lead to grossly
incorrect structures, even at apparently relatively high resolutions
(reviewed by Desfosses et al., 2014; Egelman, 2014, 2010).



Table 1
Test data set characteristics.

TMV VipA/VipB MAVS/CARD MamK

Detector K2 K2 Falcon-II Falcon-III
Pixel size (Å) 1.126 1.0 1.05 1.34
EMPIAR entry 10,020 10,019 10,031 –
EMDB entry 2833 2699 6428 –
EMDB software SPRING IHRSR/SPIDER RELION-1.2 (custom) –
EMDB resolution (Å) 4.0 3.5 4.2 –

RELION processing
Box size (pix) 300 450 300 280
Inter-box distance (Å) 42.2 43.6 30.4 52.2
Nr. asym. units/box 30 2 6 1
Max. curvature 0.05 0.05 0.30 0.30
Nr. boxes (picked) 1761 11,114 227,176 118,911
Nr. boxes (final) 1761 9480 133,237 110,055
Point group symmetry C1 C6 C1 C2

Helical rise (Å) 1.41 21.79 5.07 52.11
Helical twist (�) 22.03 29.41 �101.2 23.75
B-factor (Å2) �83 �91 �135 �119
Final resolution(Å) 3.9 3.3 4.0 3.9

Fig. 5. Representative micrographs, particle picking and 2D classification results for the four test cases. A. Manually picked coordinates (yellow) for a TMV micrograph. Non-
helical end-to-end joints are indicated with a red arrow. B. Manually picked coordinates (yellow) for a VipA/VipB micrograph. C. Auto-picked coordinates (green) for a MAVS/
CARD micrograph. D. Auto-picked coordinates (green) for a MamK micrograph. For each test case, four 2D class averages are shown as insets. Good class averages are
indicated with a tick, suboptimal ones with a cross.
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Thereby, initial model generation and the corresponding estima-
tion of helical parameters probably represent the most critical
steps in successful helical reconstruction, and the user has multiple
options here. Additional experimental data, e.g. from tomograms,
sub-tomogram averages, or from homologous structures may be
an efficient way to obtain initial 3D models. For example, in the
original publication on the MamK structure (Löwe et al., 2016),
we placed the atomic coordinates of a crystal structure of the
MamK subunit in a helical lattice that was similar to actin, using
the --pdb_helix option in the relion_helix_toolbox pro-
gram. Nevertheless, for all four test data sets described here, we
chose to calculate initial models de novo (Fig. 6).

For both TMV and VipA/VipB 3D refinements from a featureless
cylinder did not work (also see MAVS/CARD andMamK below), and
we obtained initial estimates for the helical twist and rise from
indexing the diffraction pattern of a 2D class average image
(Fig. 6A,B). In brief, we first calculate the helical repeat distance,
which is the distance between two subunits which are (approxi-
mately) registered along the z-axis, from the reciprocal distance
from the equator to the first layer-line (see blue dashed lines in
Fig. 6A,B). Then, to determine howmany subunits there are in a sin-
gle turn, we mark the first maxima along each layer-line and find a
2D lattice that links half of thesemaxima, while themirrored lattice
across the meridian links the other half of the maxima. This mirror
symmetry can be thought of as representing two overlapping lat-
tices from the near and far sides of the cylindrical structure (shown
with red and green boxes in Fig. 6A,B). For the two unit vectors that
span this lattice, we then estimate the order of their Bessel func-
tions from their distances to the meridian and the real-space diam-
eter of the helix as observed in the 2D class averages. The Bessel
orders and the geometry of the lattice in reciprocal space, are then
used to calculate the helical pattern in real-space (Supplementary
Fig. 1), from which the helical twist and rise can be derived.

For TMV, the unit vectors of the lattice on layer lines 1 and 3,
have estimated Bessel orders +16 and �1, respectively. This leads
to 16⅓ subunits in a full turn in real-space, and hence an estimated
Fig. 6. Initial model generation for TMV (A), VipA/VipB (B), MAVS/CARD (C) and MamK
selected 2D class average image is shown, with the layer lines numbered and the vector
and its mirror counterpart are shown with red and green boxes, respectively. The correspo
cylinder (the width of which is estimated from the 2D class averages) that was used as
imposing any symmetry is shown on the right.
twist of 22.04�. The 16⅓ subunits per turn results in the same
structure being in register along the z-axis after 3 turns. Therefore,
the estimated repeat distance of 71 Å is divided by 3 � 16⅓ = 49 to
yield an estimated rise of 1.45 Å. For VipA/VipB, the unit vectors of
the lattice both lie on the first lattice line, and have estimated
orders of +12. So initial estimates for twist and rise were 30� and
21.4 Å. Initial 3D models were then generated for both test cases
by placing spheres in a helical pattern with the estimated twist
and rise. The latter functionality has been implemented through
the --simulate_helix option in the relion_helix_toolbox

program, where the user also provides the diameter of each sphere
(so that neighbouring spheres touch each other to form the helical
lattice) and the diameter of the helix (as obtained from 2D class
averages). Subsequent refinement of these multi-sphere models,
while imposing helical symmetry and performing local optimisa-
tions of the helical twist and rise, then led to correctly converged
structures at near-atomic resolution for both TMV and VipA/VipB.
The final, refined values of twist and rise were 22.03� and 1.410 Å
for TMV, and 29.41� and 21.79 Å for VipA/VipB.

For the MAVS/CARD and the MamK helices, we started 3D
refinements from a featureless cylinder. The relion_helix_-

toolbox program implements functionality to create such models
through the --cylinder option, where the user only needs to
provide its diameter. For both test cases, refining a cylindrical
model in C1, without imposing any helical symmetry (using the
--ignore_helical_symmetry option in the relion_refine

program), yielded a map in which helical symmetry was already
apparent. The --search option in the relion_helix_toolbox

program was then used to estimate the helical twist and rise from
these asymmetrical reconstructions. This yielded estimates of
�101.1� and 5.150 Å for MAVS/CARD and 18.29� and 55.24 Å for
MamK. Using a symmetrised version of the asymmetrical map,
while again imposing helical symmetry and performing local opti-
misations of the helical twist and rise, then also led to correct con-
vergence. The final, refined values of twist and rise were �101.2�
and 5.071 Å for MAVS/CARD, and 23.75� and 52.11 Å for MamK.
(D). In A and B, on the left the amplitudes of Fourier-space diffraction pattern of a
pair that constructs the helical lattice indicated with red arrows. The helical lattice
nding initial spheres-only models are shown on the right. In C and D, the featureless
an initial model is shown on the left, and the result from a 3D refinement without
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3.4. High-resolution structure determination

At this stage of the structure determination process, the work-
flow of high-resolution structure determination becomes more
similar to the standard approach to single-particle analysis, see
(Scheres, 2016) for a recent review. For each of the four test cases,
we performed an initial 3D auto-refinement with the selected seg-
ments. For the TMV and MAVS/CARD data sets, we then extracted
movie-frames for the selected particles and performed per-particle
beam-induced motion correction and resolution dependent
radiation-damage weighting for each movie frame, which is known
as particle polishing in the RELION work flow (Scheres, 2014).
Although movie frames were available for our MamK data set,
and particle polishing was performed when we initially published
this data set (Löwe et al., 2016), we chose not to re-process the
movie frames of this large data set for this paper. The VipA/VipB
EMPIAR entry does not contain movies, so no movie processing
was performed.

After 3D auto-refinement of the polished particles, we
attempted further selection of the best segments by 3D classifica-
tion. In these classifications, we did not allow further adjustments
of the orientations. However, for none of the four test cases 3D
classification managed to identify a subset that yielded a higher
resolution map than we had already calculated from all polished
particles. Using RELION’s post-processing job-type, we then
applied automated B-factor sharpening (Rosenthal and
Henderson, 2003) and corrected the FSC between the two indepen-
dently refined maps of the 3D auto-refinement for the convolution
effects of a solvent mask using phase randomisation (Chen et al.,
2013). The final overall resolution estimate was based on the
FSC = 0.143 threshold (Scheres and Chen, 2012). Variations in local
resolution were estimated using phase-randomisation in combina-
tion with sliding a soft spherical mask across the entire volume
(Fernandez-Leiro and Scheres, 2016a). After post-processing, we
used the relion_helix_toolbox program with the --impose

option to symmetrise the (asymmetric) postprocessed map accord-
ing to the refined helical twist and rise. Fig. 7 shows the final maps,
the solvent-corrected FSC curves and the local resolution esti-
mates. Parameters specific to the helical reconstruction, estimated
B-factors, overall resolution estimates and other refinement char-
acteristics are summarised in Table 1. 2D classification or 3D
auto-refinement for the smaller data sets of TMV and VipA/VipB
took a few hours on 64–128 CPU cores. Similar calculations with
the larger data sets of MAVS/CARD and MamK took up to an entire
day using similar computer resources. A modern GPU (like the Nvi-
dia GTX1080) processes the equivalent of approximately 100 CPU
cores in these calculations.

3.5. Local optimisation of twist and rise

Although the local optimisation of helical twist and rise did con-
verge to the correct solution in all four test cases, this is not neces-
sarily the case in general. To provide insights into the robustness of
the local optimisation of helical parameters, we performed multi-
ple refinements with the MamK data set, starting from different
initial estimates for the helical twist and rise (Supplementary
Table 2). All these refinements were started from a cylindrical ref-
erence model that was low-pass filtered at 30 Å resolution. The
auto-refinements converged within 15 � 25 iterations, according
to the internal convergence criteria based on resolution and
changes in orientations among the segments. Although the refined
values of twist and rise are not part of the convergence criteria, we
observed convergence onto a stable twist and rise in all refine-
ments (e.g. see Supplementary Fig. 2). For convergence to the cor-
rect symmetry, values for the initial estimate of the twist need to
lie within approximately 19–25�; values for the initial estimates
of the rise need to be within 42–62 Å. Interestingly, relatively large
errors in the initial estimates can still lead to correctly refined val-
ues, but in some cases the resolution of the corresponding refined
map is suboptimal. This behaviour is likely due to the switching
from exhaustive orientational searches in the initial stages of the
refinement to local searches later on. This means that, if in a given
refinement the parameters for twist and/or rise change consider-
ably, one should probably perform a second refinement starting
from the refined values of the first run. Indications for incorrectly
refined symmetries are a lower resolution of the final map, and
convergence of twist and/or rise to values at the edge of the
user-defined search range.

3.6. Pitfalls of imposing incorrect helical symmetry

To further illustrate the dangers of imposing an incorrect helical
symmetry, we also re-refined the VipA/VipB data set using a twist
of 64.9� and a rise of 3.63 Å. This symmetry corresponds to a 6-
start helix with C1 symmetry, instead of the correct helix with
C6 symmetry. After 3D auto-refinement and post-processing,
RELION produces a map with a reported resolution of 4.5 Å (with
refined values of twist = 65.07� and rise = 3.76 Å). Despite the rela-
tively high nominal resolution, the map is devoid of protein-like
features like alpha-helices or beta-strands that one would expect
at this resolution (Fig. 8A-B, left). In addition, the FSC curve shows
‘‘spiky” artefacts (Fig. 8C). When the correct symmetry is imposed,
the achieved resolution is 3.3 Å, the map does show the expected
features (Fig. 8A-B, right), and the FSC curve is smooth.

3.7. The inter-box distance and mask diameter

The description of deviations from perfectly straight helices
requires additional parameters in the form of more segments per
unit-length, which may be obtained through shorter inter-box dis-
tances. In addition, smaller diameters of the circular and spherical
masks in 2D and 3D reduce the dependencies between the align-
ments of the overlapping segments. To illustrate the effect of these
two parameters, on the reconstruction results, we performed
refinements with varying inter-box distances while keep the mask
diameter fixed, and refinements with varying mask diameters
while keeping the inter-box distance fixed for TMV and for
MAVS/CARD (Supplementary Fig. 3). For straight helical tubes like
TMV, using a relatively large inter-box distance is expected to save
computation time without affecting the final resolution. Also, by
using larger mask diameters, more mass inside the mask will con-
tribute to the signal for alignment. For more flexible helices like
MAVS/CARD, shorter inter-box distance and smaller mask diame-
ters might be needed to describe the bends in the filaments more
accurately. However, the results of our experiments suggest that
larger inter-box distance still perform well, even for the more flex-
ible MAVS/CARD filaments. In fact, in both cases inter-box dis-
tances in the range of 2–30% seem to yield structures of very
similar quality. We do note that segments corresponding to the
most highly curved MAVS/CARD filaments are rejected by our
auto-picking algorithm. An obvious advantage of using larger
inter-box distances is that the computational costs of the refine-
ment scale linearly with the total number of extracted segments.
With regards to the mask diameter, in most cases one should prob-
ably not use smaller values than the diameter of the helices, in
order not to discard part of the signal in alignment. For TMV,
reduces the mask diameter from 90% to 80% of the box size had
no noticeable effect. For MAVS/CARD, using a mask diameter of
80% of the box size was marginally better than using 70% or 90%.
However, the resolution of the reconstruction decreased markedly
when using only 60%, presumably because too little signal
remained within the mask to yield accurate alignments.



Fig. 7. Reconstructions for the four test cases: TMV (A), VipA/VipB (B), MAVS/CARD (C) and MamK (D). A view of the reconstructed helix coloured according to local-
resolution estimates (from 3.5 Å in blue to 5 Å in maroon) is shown on the left. The FSC curve between the two independently refined half-sets is shown in the middle. A detail
of the structure with the corresponding atomic model is shown on the right. For TMV, VipA/VipB and MAVS/CARD, the same detail from the EMDB map is also shown.
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3.8. The half-sets for independent refinements

In 3D auto-refinement the data is divided into two half-sets,
which are then refined independently in order to prevent an itera-
tive built-up of noise due to overfitting (Scheres and Chen, 2012).
For single-particle analysis, the half-sets are created randomly
from the extracted particles. For helical segments, random genera-
tion of the half-sets may be problematic, as the signal in one seg-
ment will partially overlap with the signal in its neighbouring
segment. This overlap could introduce dependencies between the
half-set refinements, and thus potentially lead to overfitting.
There are two aspects of our helical implementation that pre-
vent this type of overfitting. Firstly, the prior on the translations
(Fig. 4A) only extends for a single rise in the direction of the heli-
cal axis. This will prevent the signal of any segment from trans-
lating on top of the identical, overlapping signal in the
neighbouring segment. Secondly, to build in an additional safe-
guard against overfitting, our implementation of helical process-
ing divides the data set into half-sets based on a random division
of helical filaments. That is, at the particle extraction stage, all
segments from a single filament will be assigned to the same
half-set.



Fig. 8. Effects of imposing different helical symmetries for the VipA/VipB data set. A. Reconstruction with the correct helical twist and rise imposed. B. Reconstruction with
the wrong helical symmetry imposed. The maps in A and B are coloured according to local-resolution estimates (from 4 Å in blue to 6 Å in maroon). C. FSC curves between two
independently refined half-sets for the refinement with the correct helical symmetry (red) and the wrong helical symmetry (black). D. Central slices through the unsharpened
map from the refinement with the correct helical symmetry (left) and the wrong helical symmetry (right).

S. He, S.H.W. Scheres / Journal of Structural Biology 198 (2017) 163–176 173
To test both counter-overfitting measures, we performed 3D
auto-refinements on the TMV data set (Supplementary Fig. 4). In
the first refinement, we used our implementation as intended, by
both using the translational prior in the helical direction and the
division of the data set into halves on the filament level. The
post-processed FSC curve indicates a final resolution of 4.1 Å,
which is in agreement with the features visible in the map. (Note
that this resolution estimate is somewhat lower than the one
reported in Fig. 7, as non-polished particles were used in this test.)
Importantly, beyond 3.8 Å, the FSC drops to values close to zero for
the rest of the frequencies (note that the post-processed FSC in
RELION does not report negative FSC values). Secondly, we per-
formed a refinement where we switched off both safe guards, i.e.
we used an isotropic translational prior and random half-sets at
the segment-level. In this case, severe overfitting of the data occurs
as expected, as is evident from the FSC curve, which never drops to
zero. A third refinement, where the half-sets were made at the
filament-level but isotropic translational priors were used, shows
no signs of overfitting. This refinement yielded a lower resolution
map than the first refinement, probably as a result of a suboptimal
translations along the helical axis. Finally, in a fourth refinement
we made the half-sets at the segment-level and only used the ani-
sotropic translational prior. In this case, a small amount of overfit-
ting is present, indicating that the anisotropic translational prior
alone is not enough to rigorously prevent overfitting. Therefore,
random division on helical segments alone is enough to prevent
iterative overfitting, but because the translational priors will also
prevent loss of data due to translations into neighbouring seg-
ments, the default in RELION was set to use both measures.

3.9. Angular and translational priors

In IHRSR, the concept of priors on the rotations or translations is
expressed as local searches within a user-defined search range.
Within the statistical framework, this corresponds to imposing a
prior with a top-hat shape (i.e. with a constant, non-zero value
within the search range, and a zero value outside the search range).
In general, the better the shape of the prior reflects the actual dis-
tribution of the corresponding orientational parameters, the better
the program is expected to perform, and the difference in perfor-
mance is expected to become larger with increasing levels of noise
in the data. FREALIX (Rohou and Grigorieff, 2014) and FREALIGN
(Alushin et al., 2010) implement Gaussian-like priors similar to
the ones in RELION. Another advantage of the statistical frame-
work, is that the optimal search range can be estimated from the
data themselves, e.g. by optimising the variance in the translations
perpendicular to the helical axis.

To test the influence of the shape of the prior on the refinement
results, we compared standard refinements with Gaussian priors to
refinements with top-hat priors. In the latter refinements, all top-
hat priors had non-zero values from �3 to +3 standard deviations
of the corresponding Gaussian priors in the standard runs. Supple-
mentary Fig. 5 shows the resulting FSC curves after post-processing
for these refinements on the MamK and VipA/VipB data sets. The
difference between the Gaussian and the top-hat prior was not
notable for MamK, but for VipA/VipB the Gaussian prior did yield
a better structure.

4. Discussion

We introduce functionality for helical reconstruction in the
RELION program, and show for four different data sets that it can
calculate maps to near-atomic resolution. For the three test cases
from the EMPIAR data base, we show that helical processing in
RELION yields results that are comparable to those obtained in
alternative programs. Our implementation is integrated into the
standardised workflow engine of RELION version 2.0, which facili-
tates the design of image processing strategy for novice users, and
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provides convenient tools for electronic bookkeeping and file man-
agement (Fernandez-Leiro and Scheres, 2016a). Because of the
strong parallels with single particle analysis, users already familiar
with RELION should find the transition to helical processing
straightforward. The interaction with the user is similar to
single-particle analysis of asymmetric particles, and parameters
specific for helical reconstruction are mainly provided on dedi-
cated tabs in the main GUI. Advantages that are inherent to the
empirical Bayesian approach in RELION, such as the data-driven
calculation of optimal filters for 3D reconstructions and alignment,
are directly carried over from standard single-particle analysis to
helical processing. In addition, the existing options for classifica-
tion of images in 2D or in 3D, with or without masks, and with
or without subtraction of partial signal (Bai et al., 2015; Scheres,
2016), are all available to be explored for helical processing of
highly heterogeneous samples.

In the test cases presented in this paper, 2D classification
proved useful in discarding suboptimal segments from the data
set, but similar classification attempts in 3D were unsuccessful.
These results contrast with common observations in single-
particle analysis, where 3D classification is often key in selecting
subsets of the data that yield the highest resolution maps
(Fernandez-Leiro and Scheres, 2016b). On the one hand, these
results may be attributed to the relatively high quality of the test
data sets. On the other hand, there are intrinsic differences in
classification of helices and individual asymmetric particles. The
packing interactions inside the helical lattice, for example, may
impose limitations on the structural heterogeneity of the individ-
ual protein subunits. And if structural heterogeneity does exist
among the neighbouring subunits, for example because a floppy
domain sticks out into the solvent, then classification of that
heterogeneity may be difficult. The concept of a 3D helical class
is particularly inadequate when the structural heterogeneity hap-
pens independently among individual segments along each fila-
ment. Only when different types of helical structures exist, i.e.
when neighbouring segments in stretches of the filaments that
are at least as long as the mask diameter all adopt the same con-
formation, is 3D classification expected to perform well. For such
cases, we implemented the option to independently refine the
helical twist and rise of each class. Although this option did not
improve the maps for the test cases described in this paper, we
envision that it will be useful in cases where these types of struc-
tural heterogeneity do exist.

We explicitly stress that our implementation does not provide a
generally applicable solution to the problem of local minima in the
optimisation of helical parameters. Similar to alternative imple-
mentations of the IHRSR approach, RELION is based on an optimi-
sation algorithm that will converge to the nearest local minimum,
and the energy landscape of helical reconstruction, in particular
with respect to the twist and rise parameters, is known to be
highly complex (Desfosses et al., 2014; Egelman, 2010, 2014).
Thereby, the generation of a reliable initial 3D model with reason-
able estimates for the helical twist and rise is likely to be the most
difficult hurdle in helical reconstruction. For our test cases we
employed two different methods. For MAVS/CARD and MamK,
we successfully refined a featureless cylinder without imposing
any point group or helical symmetry, and then estimated the heli-
cal twist and rise from the asymmetric reconstruction. This
method is more likely to work for relatively simple helices, i.e.
helices with few asymmetric subunits per box and few interactions
between the subunits. An advantage of this method is that it has
minimal user input. A drawback is that the initial few iterations
of such refinements are relatively slow, as the probabilities for
many orientations are significant, and these orientations thus all
need to be considered in the reconstruction. For more complicated
helices, asymmetric refinement of a featureless cylinder often does
not work. For example, asymmetric refinement of a featureless
cylinder never yielded a structure with discernable subunits for
TMV or VipA/VipB. Fortunately, more complicated helices often
yield more information-rich Fourier transforms, especially when
these can be averaged together into high-resolution 2D class aver-
ages. Therefore, for complicated helices Fourier-Bessel indexing is
a viable way to determine the initial estimate for helical twist
and rise. For both TMV and VipA/VipB, placing spheres into the cor-
responding helical lattice then yielded an initial model within the
radius of convergence of the refinement algorithm. Although com-
putationally cheaper than refinement of a featureless cylinder, a
drawback of this method is its dependence on user expertise in
indexing diffraction patterns. Still, Fourier-Bessel indexing typi-
cally yields a better understanding of the structure, and may there-
fore help to avoid errors.

Our refinement of the VipA/VipB data set as a 6-start helix in C1
instead of the correct helical symmetry in C6 illustrates the pitfalls
of imposing incorrect helical symmetry. Despite the incorrect sym-
metry, 3D auto-refinement yielded two half-maps that correlated
with each other up to a resolution of 4.5 Å. Instead of directly mea-
suring resolution, the FSC merely measures the consistency
between two maps. By imposing the same, incorrect symmetry
in both half-set refinements, the resulting maps become incorrect
in a consistent manner, which results in a near-atomic resolution
estimation of a completely incorrect map. At closer inspection,
the reconstructed map did not reveal any protein-like features,
and also the FSC curve itself showed artefacts. However, the indi-
cations that something is wrong may not necessarily be so clear.
Actually, the MAVS/CARD test case was the subject of controversy
itself, as an initial structure by the same authors was proven to be
incorrect (Egelman, 2014; Xu et al., 2014, 2015). In our hands,
starting MAVS/CARD refinements without imposing any symmetry
from a featureless cylinder still led to the correct structure (Fig. 6).
Moreover, when starting from the incorrect helical parameters
described in the original MAVS/CARD paper, the helical twist and
rise consistently converged to the edge of the search ranges (not
shown), which is a strong indication of incorrect estimates. Never-
theless, in the general case, validation of helical symmetry will
remain difficult until one can reconstruct maps to near-atomic res-
olution, protein features like separated beta-strands and amino
acid side chains can be readily distinguished, and a stereo-
chemically sound atomic model can be refined inside the map.
For cases where such maps cannot be obtained, doubts about the
correct helical symmetry will remain relevant.

Apart from the initial model and the initial estimate for the heli-
cal twist and rise, important user-defined parameters are the inter-
box distance and the different options to impose priors on the ori-
entations. Smaller inter-box distances and small mask diameters
allow modelling more flexible filaments, but smaller inter-box dis-
tances result in more segments and thus come at considerable
computational cost, while smaller mask diameters may lead to
too little signal for accurate alignment. Our results with TMV and
MAVS/CARD indicate that relatively larger inter-box distances
(i.e. up to 30%) may indeed be used without noticeable loss in res-
olution. When in doubt, one could start processing with a relatively
large inter-box distance, and then re-run refinements near the end
with a smaller inter-box distance to make sure the best possible
resolution is obtained. Our results with VipA/VipB indicate that
Gaussian-shaped priors may add useful information to the refine-
ment when compared to top-hat priors, which are typically
employed in alternative programs. This difference however was
not noticeable in the case of MamK. Still, because these priors
come at virtually no extra computational cost and Gaussian distri-
butions are more likely to describe the orientational distributions
in experimental data, the Gaussian priors in RELION are switched
on by default.
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Within the field of single-particle analysis, considerable con-
cern has arisen about the accurate estimation of resolution in 3D
reconstructions (Henderson et al., 2012). One approach to prevent
the iterative build-up of high-resolution noise in the reconstruc-
tion is the independent refinement of two halves of the data
(Scheres and Chen, 2012). In standard single-particle analysis, the
two half sets are often generated randomly or based on odd/even
particle numbers. When extracting overlapping segments from
helical filaments, the overlap in signal between neighbouring seg-
ments could introduce spurious dependencies between the two
half-sets. Our results show that a random division of the data set
based on filaments rather than segments, combined with a tophat
prior on the translations along the helical axis, effectively yield
maps with reliable resolution estimates.

In conclusion, we present an implementation of the IHRSR
approach to helical processing in the RELION program. The
object-oriented character of RELION’s code facilitates the re-use
of many of its functions. This makes it relatively straightforward
to extend the helical processing approach presented here to 3D
data, such as sub-tomograms. This extension is something we will
pursue for a future version. Another possible extension is the intro-
duction of functionality to deal with breaks in the helical symme-
try, such as the seam in microtubules (Metlagel et al., 2007). The
code available in the current 2.0 version implements all features
described in this paper, and has already been useful in calculating
several new structures in our own lab. We hope this paper will
help to make it similarly useful to others.
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