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Summary

The rare disease pulmonary arterial hypertension (PAH) results in high blood pressure in the
lung caused by narrowing of lung arteries. Genes causative in PAH were discovered through
family studies and very often harbour rare variants. However, the genetic cause in heritable
(31%) and idiopathic (79%) PAH cases is not yet known but are speculated to be caused by
rare variants. Advances in high-throughput sequencing (HTS) technologies made it possible
to detect variants in 98% of the human genome. A drop in sequencing costs made it feasible
to sequence 10,000 individuals including 1,250 subjects diagnosed with PAH and relatives as
part of the NIHR Bioresource – Rare (BR-RD) disease study. This large cohort allows the
genome-wide identification of rare variants to discover novel causative genes associated with
PAH in a case-control study to advance our understanding of the underlying aetiology.

In the first part of my thesis, I establish a phenotype capture system that allows research
nurses to record clinical measurements and other patient related information of PAH patients
recruited to the NIHR BR-RD study. The implemented extensions provide a programmatic
data transfer and an automated data release pipeline for analysis ready data.

The second part is dedicated to the discovery of novel disease genes in PAH. I focus on
one well characterised PAH disease gene to establish variant filter strategies to enrich for rare
disease causing variants. I apply these filter strategies to all known PAH disease genes and
describe the phenotypic differences based on clinically relevant values. Genome-wide results
from different filter strategies are tested for association with PAH. I describe the findings of
the rare variant association tests and provide a detailed interrogation of two novel disease
genes.

The last part describes the data characteristics of variant information, available non SQL
(NoSQL) implementations and evaluates the suitability and scalability of distributed compute
frameworks to store and analyse population scale variation data. Based on the evaluation, I
implement a variant analysis platform that incrementally merges samples, annotates variants
and enables the analysis of 10,000 individuals in minutes. An incremental design for variant
merging and annotation has not been described before. Using the framework, I develop a
quality score to reduce technical variation and other biases. The result from the rare variant
association test is compared with traditional methods.
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Chapter 1

Introduction

1.1 Genome variation in health and disease

1.1.1 Human reference genome

The first human draft reference genome was published in January 2001 by the Human
Genome Project (HGP) after more than 10 years in making (International Human Genome
Sequencing Consortium, 2001). The success of the collaborative achievement marked
the beginning of human genomics. In 2004, the international collaboration provided the
finished human genome with high accuracy and approximately 99% coverage to the research
community as reference Build 35 (International Human Genome Sequencing Consortium,
2004). The published reference was assembled from multiple individuals and represent a
haploid consensus of diploid human genomes. Further assessment of the genome provided
an insight into single nucleotide variation (SNV) and described the complex architecture
of so far uncharacterised structural variation (SV) or copy number variation (CNV) (Bailey
et al., 2001). Classification of SNVs in gene coding regions separates non-synonymous
(alters amino acid in the protein) from synonymous (change does not cause amino acid
alteration) variants. The terminology for further variation types is described in Fig. 1.1.
Identified variants were collected in the single nucleotide polymorphism database (dbSNP),
which provides a public archive of SNVs and multi-base insertions or deletions (INDELs)
(www.ncbi.nlm.nih.gov/snp/). Disease causing variants or variants associated with inherited
diseases were collected in databases and include the online mendelian inheritance in man
(OMIM) (McKusick, 2007), ClinVar (Landrum et al., 2016) as well as the human gene
mutation database (HGMD) (Stenson et al., 2003) among others. The frequency of common
SNVs was determined in samples with African, Asian and European ancestry and explored
for common patterns across the genome. Such patterns included the identification of SNV
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Figure 1.1 Description of variant types with their respective term. Figure redrawn from Frazer
et al. (2009)

with a strong correlation with their neighbours as blocks of linkage disequilibrium, also called
haplotype blocks (see Fig. 1.2). A genome wide analysis described the diversity of these
haplotype blocks as part of the haplotype map (HapMap) project (International HapMap
Consortium, 2003, 2005, 2007). The genome reference consortium (GRC) (Church et al.,
2011) continued working on the human assembly to correct erroneous bases, update the tiling
path in variable regions and increase the coverage of the genome by closing sequencing gaps.
Initially, the concept of “a golden path” guided the collaboration to reduce the human genome
to one non-redundant haploid representation (Kent and Haussler, 2001) that allows the
characterisation of SNVs. Recent discoveries of the large diversity of SV (Feuk et al., 2006;
Mefford and Eichler, 2009) required a rethink to model the structural complexity. The latest
release of the human reference genome assembly GRCh38 was published in 2013 (Genome
Reference Consortium, 2013) and provides mechanisms to describe alternate representations
of a locus as well as unlocalised and unplaced sequences. Additional improvements included
extra sequence content, removal of redundant or falsely duplicated sequences and correction
of clinically relevant regions. After the availability of the reference genome, raw sequence
information were processed and annotated with the latest available reference annotations
by the integrated data platform Ensembl (Hubbard et al., 2002) to offer free access to a
complete data set. These annotations included gene model, comparative genomics, variant
and regulatory region information for genomic research (Cunningham et al., 2015). In
practice, the previous genome release GRCh37 (Flicek et al., 2010) is still in use. The
GRCh37 release was released in 2009 and coincided with the introduction of next generation
sequencing (NGS), which accelerated the generation of sequence data and identification of
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variation information. While the reference genome was a mosaic of different individuals,
the NGS technology put the personal genome in reach to be used in diagnosis and treatment
guidance of genetic diseases.

Figure 1.2 Haplotype blocks in a population. (a) Human chromosome are constructed of
different haplotype blocks. Such haplotype blocks are indicated as bars of different colours.
(b) Example chromosomes for two individuals are made up by two copies of each haplotype
block. By chance, one individual can have the two copies of the same haplotype block.
Figure redrawn from Pääbo (2003)

1.1.2 Personal human genome

In 2007, whole-genome shotgun in combination with conventional Sanger dideoxy sequenc-
ing produced the genome sequence of one individual (Levy et al., 2007). The personal
genome sequence of J. Craig Venter was assembled from scaffolds and resulted in 2.8 Gb
of continuous sequence with every given region being covered approximately 7.5-fold. The
genome provided single base resolution. The analysis of the genome identified 4.1 million
variants compared to the human reference assembly and 1.3 million of these variants were
novel (not in dbSNP). Levy et al. (2007) showed that SNVs accounted for 78% of changes,
non-SNVs variants (from small INDELs up to large CNVs) cover 74% of all changed variant
bases.

The Venter genome was followed by the personal genome of James D. Watson (Wheeler
et al., 2008), which shared 1.68 million of the SNVs and identified 7,648 different protein
coding changes compared to the Venter genome. Non-synonymous variants were compared
against HGMD and revealed 32 matching entries previously reported as disease causing.
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Further analysis identified the subject as a carrier of 10 highly penetrant genetic disease
loci (Wheeler et al., 2008), which is in line with the expected number of HGMD disease-
causing mutations in a healthy individuals (Gambin et al., 2015; Xue et al., 2012). Many
pathogenic variants in HGMD were also shown to be too frequent in a human population (Lek
et al., 2016) to be consistent with the prevalence and penetrance of the disease (Blekhman
et al., 2008).

The genome from an African (Bentley et al., 2008; McKernan et al., 2009) and an
Asian (Wang et al., 2008) individual each were sequenced and compared against the Venter
and Watson genome. The number of non-synonymous SNVs was found to be similar between
the Asian (7,062), Venter (6,889) and Watson (7,319), but showed an increase in the African
(9,902) genome. Personal genomes provided a first glimpse of the genomic diversity and
private variation on an individual level of different ancestry. The genomic diversity was
further explored by sequencing a 100 kilo-bases (Kb) region in 692 individuals of diverse
populations as part of the HapMap project (International HapMap 3 Consortium et al., 2010).
The unearthed common and rare genetic variation in the region contained 77% of novel
variants (not in dbSNP) of which 99% had a minor allele frequency (MAF) <5%. The scale of
new and low frequency variants highlighted the importance of a reference resource including
a large cohort of multiple populations to assess personal genomes for rare disease causing
variants.

1.1.3 Human population genomics for medical interpretation

The 1000 Genomes (1kG) project aimed to characterise and provide accurate haplotype
information for all types of human variation in different populations, which is a progression
of the International HapMap Project. Advances in high-throughput sequencing (HTS)
technologies enabled to access more than 95% of the human genome compared to the 100
Kb region analysed as part of the HapMap project. The analysis of the 1kG project was
conducted in 3 phases and covered allele frequencies of 1% or higher in present populations.
The first phase tested different sequencing approaches from genome wide low depth (2-6x),
high coverage (40x) in trios and high depth (>50x) exon targeted sequencing for a total of
1,092 samples. The number of samples were extended to around 1,700 in phase 2 to develop
new methods in order to handle and analyse the complexity of present variant information.
Phase 3 represented 2,504 samples from 26 populations in Africa, East Asia, Europe, South
Asia, and the Americas. The described variants were the first comprehensive assessment
of common (MAF >5%) and low-frequency (MAF 1-5%) genetic variants across diverse
populations (1000 Genomes Project Consortium et al., 2015).
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The project raised questions about the true clinical significance and consistency of
variants reported in the public archives ClinVar (Landrum et al., 2016) and HGMD (Stenson
et al., 2014). Variants in ClinVar showed an equal distribution per super population for
different frequency ranges while HGMD saw an enrichment of low-frequency variants in
Europeans that are more likely to have a pathogenic effect. Loss-of function (LoF) variants
(stop gained, splice acceptor, splice donor and frameshift) were found to be under expected
purifying selection and biased towards low-frequency variants. Low-frequency LoF variants
were private to individuals or sub-populations and singleton heterozygous variants were very
similarly represented across different populations.

Whole genome sequencing also enabled further insight into the extent of structural
variation (SV) (1000 Genomes Project Consortium et al., 2010). Structural variation (SV),
their importance and association with disease and phenotypic variation was first recognised
by Sebat et al. (2004) using microarrays. Previously regarded as rare events, the study
reported the extent and size of large scale (≥ 100Kb) gains and losses of copy number
variation (CNV) in 20 healthy individuals from a variety of geographic backgrounds. These
individuals revealed a total of 221 CNVs representing 76 unique CNVs with an average
length of 465 Kb and overlapped 70 different genes associated with disease or involved
in functional and regulatory processes. Whole genome sequencing enabled further insight
into the extent of eight different classes of SV described by the 1kG project in 26 human
populations (Sudmant et al., 2015) . The constructed integrated SV map included naturally
occurring homozygous gene knock-outs with detailed breakpoint information, variant class
specific size distribution and detailed description of populations.

In 2015, the UK10K project characterised 24 million novel sequence variants, assessed
the contribution of rare genetic variation (MAF <1%) to human traits, which are insufficiently
represented in genome-wide association studies (GWAS) (UK10K Consortium et al., 2015).
Samples from extensively phenotyped cohorts were whole exome (high read depth, 80x) or
whole genome (low read depth, 7x) sequenced. From a cohort of nearly 10,000 samples,
disease-causing variants were reported in 2.3% of the UK10K cases (42 out of 1,805 individ-
uals), which demonstrated the possibility of clinical application. Complex trait-associated
loci harboured novel rare variants that suggested a genetic association. The UK10K showed
the value of the large-scale sequencing data for complex traits and provides whole-genome
variation information as a reference resource to increase accuracy and coverage of rare and
low-frequency variants in addition to the 1kG panel.

In 2016, the exome aggregation consortium (ExAC) provided the allele frequencies of
60,706 humans to study protein-coding genetic variation following the UK10K as a reference
resource (Lek et al., 2016). One year later, the genome aggregation database (gnomAD) made



6 Introduction

a reference resource available, that consists of 15,496 whole-genome and 123,136 exome
sequences. The whole-genome part of the gnomAD release contained 241 million variants
and showed the scale of rare variation in a population. The availability of such extensive
variant catalogues allowed the reassessment of pathogenic genes in Mendelian diseases and
found the under- and overestimation of clinical importance of some genes (Walsh et al.,
2017). The ExAC MAF of the reported disease-causing variants was disproportionate high
compared to the reported penetrance and the paper showed that genes with a low disease
association were often initially discovered through candidate gene studies. In contrast to
disease causing variants, the discovery of protective genetic variants was aided by large
reference resources for severe Mendelian conditions and opened the prospect of therapeutic
strategies (Chen et al., 2016a).

The driving force behind these research results was the advance in HTS technology,
which enabled an increase in sequencing output and a reduction in price. The main used
methods were whole exome (WES) and whole genome (WGS) sequencing using Illumina
technology and are described later.

1.1.4 High-throughput sequencing workflow

The first human genome was sequenced using Sanger-based (dideoxy chain termination
sequencing) methods at an estimated cost of 2.7 billion dollars and took 13 years to com-
plete (Gyles, 2008). In 2007, the HTS technology 454-sequencing was used to sequence
the Watson genome at a price of 2 million dollars and in a matter of 2 months. Advances in
HTS technologies reduced the cost per human genome further to a price of 1,245 dollars in
October 2015 (Fig. 1.3) and the market is currently dominated by Illumina machines.

Illumina’s sequencing technology is based on the reversible terminator chemistry con-
cept (Bentley et al., 2008). For whole genome sequencing (WGS), the preparation of DNA
samples involves the fragmentation of the DNA (Kozarewa et al., 2009). These genomic DNA
fragments attach to a glass surface and clonal amplification creates ‘clusters’ of the same
fragment. DNA clusters are then sequenced by repeated cycles of single base extension using
a set of four reversible terminators. The terminators are labelled with different fluorophores
and laser-induced excitation allows the identification of the specific base for each cluster
by imaging technology. The number of cycles determines the number of called bases and a
quality value is provided for each base call. Lower quality scores assigned by the base-calling
algorithm can be down to a cluster of mixed fragments, a failed cycle (phasing) or multiple
bases being synthesized in one cycle (pre-phasing) (Ledergerber and Dessimoz, 2011). For
each cycle, base-calling information are stored in binary base call (BCL) format for the
image coordinate of the cluster.
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Figure 1.3 Sequencing cost per human genome interrupted by high-throughput sequencing
technology in 2007. Figure redrawn from Wetterstrand, KA (2015)
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A DNA fragment, also called read, is the reconstructed base-calling information for
one cluster from the glass surface across the images from all cycles. After the last base-
calling cycle, fragments are extracted from the BCL file and can be stored in a standard text
based sequence file format (FASTQ) (Picard, 2017). The extracted fragments represent the
information of the sequenced individual in millions of small pieces. Different computational
approaches have been developed to reconstruct the genomic information of the individual
from these small pieces. These approaches include the de novo assembly of the individual
genome from fragments (Gnerre et al., 2011; Iqbal et al., 2012; Li et al., 2010; Simpson
et al., 2009; Zerbino and Birney, 2008) and the alignment of the fragments (Langmead et al.,
2009b; Li and Durbin, 2009; Li et al., 2009b; Raczy et al., 2013) to the reference genome.
The de novo assembled genome can be stored in a graph structure and compared against a
reference genome graph to identify simple as well as structural variation (Iqbal et al., 2012).
In contrast, fragments aligned against the reference genome can be stored in the standardised
sequence alignment / map (SAM) or in binary SAM (BAM) format and the differences in
the alignment are utilised to identify single base variants or insertions / deletions of up to
tens of bases (DePristo et al., 2011; Li et al., 2009a; Raczy et al., 2013; Rimmer et al., 2014;
Wei et al., 2011). Larger copy number variations (CNV) or structural variation (SV) can
be detected by extracting read-depth coverage (Campbell et al., 2008; Chiang et al., 2009;
Roller et al., 2016), split-read (Chen et al., 2016b; Wang et al., 2011; Ye et al., 2009) or both
information (Abyzov and Gerstein, 2011; Rausch et al., 2012) from the BAM file. Resulting
simple CNVs and complex SVs can also be stored in variant call format (VCF) (Danecek
et al., 2011).

The extensive list of developed tools to process FASTQ, BAM or VCF files resulted in
method specific variants. A best practices workflow by the gene analysis toolkit (GATK)
provided guidance to retrieve high-quality variants starting with the FASTQ files and proto-
cols for variant filtering and annotation (Van der Auwera et al., 2013). Further development
of alignment, variant calling and variant filtering algorithms prompted a comparison of
different tools and pipelines. Variants of one subject from the 1kG project were experi-
mentally validated, which resulted in the comprehensive variant dataset provided by the
national institute of standards and technology led by the genome in a bottle (NIST-GiaB)
consortium (Zook et al., 2014). The results of a comparison of established pipelines against
the GiaB reference data set provided an insight into the performance differences (Cornish and
Guda, 2015). Difference in variant representation, specifically for INDELs, were highlighted
and standardised by a formal definition of a normalisation process (Tan et al., 2015).
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1.1.5 Sample variant aggregation

Since the first personal genome in 2007, samples are sequenced and processed on an individ-
ual level resulting in a single sample VCF or genome VCF (gVCF) file. Case-control and
trio based study designs focus on groups of individuals and analysis tools require merged or
aggregated variant information as a multi-sample VCF file for the analysis. First approaches
bridged the gap between a single and multi-sample VCF file by aggregating VCF files (Li
et al., 2009a), but missed reference or no-call information for positions in the merged file,
that were not present in the single sample VCF. In addition, the performance of aggregat-
ing individuals deteriorated with increasing number of individuals. The gVCF files were
introduced for a complete variant, reference and no-call representation for each position
of the whole genome, but were found to be very large in size. Illumina collapsed regions
of the same type to reduce the space and developed an aggregation tool (Illumina, Inc.,
2015) surrounding the collapsed gVCF format, which scales beyond 3,000 samples. A
different approach was followed by FreeBayes (Garrison and Marth, 2012), which provided
aggregated variant calling based on the alignment data. The scalability was limited due to
the quantity of information required for an aggregated variant call, but allowed the selection
of the most-confident genotype across a population. The genome analysis toolkit (GATK)
applied a similar strategy by creating single sample gVCF files with additional information
to perform an aggregated variant call (McKenna et al., 2010). Large sequencing projects
like ExAC (Lek et al., 2016) provided intermediate releases with increasing number of sam-
ples until the final public release (ftp://ftp.broadinstitute.org/pub/ExAC_release). The time
between releases ranged from months to years and highlights the challenge in aggregating,
preparing and releasing variants for a large number of samples. Current approaches from
GATK and FreeBayes require a recall of the whole cohort. The computational time can be
as high as 100,000 central processing unit (CPU) days for analysing a population of 28,075
whole genome samples (Eggertsson et al., 2017), of which variant calling is one part of.
Calling variants is a huge computational burden for rapidly growing cohorts.

1.1.6 Prioritisation of genome variation

The analysis of genome variation data involves sifting through millions of variants across the
whole genome with some falling within protein coding regions. Computational approaches
integrate genome annotation, functional genomic data, allele frequency and effect prediction
information to assess and annotate each variant. For Mendelian diseases, prioritisation tools
dissect these annotations to separate likely disease causing variants from benign and private
changes and identify the one or more responsible variants. Variant effect predictor (VEP)

ftp://ftp.broadinstitute.org/pub/ExAC_release
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provides a rich toolset to interrogate variants genome wide by providing a comprehensive
collection of deleteriousness, conservation and allele frequency annotations (McLaren et al.,
2010). In addition to a predefined set of annotations, the custom annotation module allows to
add additional public available or private information to a variant annotation set. A set of
annotation is created for each transcript or regulatory feature specific to present a comprehen-
sive view for cases where one variant overlaps more than one transcript or regulatory region.
Based on the transcript and regulatory information, the consequence type(s) of a variant
can be predicted and is (are) reported as a standardised sequence ontology (SO) term(s)
illustrated in Fig. 1.4. Other tools were developed to use different layers of information to

Figure 1.4 Variant consequence display terms relative to the transcript structure. Figure
redrawn from Ensembl (2015)

infer the functional importance of variants (Gnad et al., 2013; Thusberg et al., 2011). The
conservation of sequence is assessed at different levels to predict the importance. Genomic
conservation measurements are provided by the genomic evolutionary rate profiling (GERP),
PhastCons and PhyloP (Cooper et al., 2005; Davydov et al., 2010; Margulies et al., 2003).
Protein sequence conservation is used to judge the importance of an amino-acid position for
the functioning of a protein and to infer the deleteriousness of amino-acid substitution. The
sort intolerant from tolerant (Sift) (Ng and Henikoff, 2003) and MutationAssessor (Reva
et al., 2011) implement methods to calculate the protein conservation, but the resulting scores
are sensitive to the chosen input alignment (Hicks et al., 2011). The structure of the protein
is an additional layer integrated with other sequence features by PolyPhen-2 (Adzhubei et al.,
2013) to predict the functional consequence. The combined annotation dependent depletion
(CADD) score comprises 63 separate annotations for a genome wide assessment and includes
protein effect prediction, conservation, regulatory information as well as predictions from
other tools (Kircher et al., 2014). The accuracy of the predictions was assessed by selecting
variants with known consequences and found a high number of false positives in all assessed
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tools, which highlights the complexity of predicting the affect of a variant (Miosge et al.,
2015; Wang and Wei, 2016).

After the annotation process, the enriched dataset is available for filtering to identify
causal variants. Filter tools provide a computational approach to select predicted deleterious
variants and enables to filter on one value or combine information into a complex query (Cin-
golani et al., 2012). In addition to variant annotations, pedigree information can be included
into the analysis to identify autosomal dominant, autosomal recessive or de novo mutations
in a family (Paila et al., 2013). After applying filter strategies, the result requires cautious
examination in classifying a variant as deleteriousness due to the highlighted limitation of
computational approaches.

The american college of medical genetics and genomics (ACMG) developed guidelines
to standardise the terminology, assessment and classification of variants in genes that cause
mendelian disorders (Richards et al., 2015). The guidelines recommend to classify variants
into five categories using the terms “pathogenic”, “likely pathogenic”, “uncertain signifi-
cance”, “likely benign”, and “benign”. Evidence items for the classification process include
population data, computational data, functional data, segregation data and allelic data. Public
variant archives and knowledge bases like ClinVar (Landrum et al., 2016) or clinical genome
(ClinGen) (Rehm et al., 2015) adopted the terminology for Mendelian diseases. Further
automation and standardisation was provided by computational framework, which translated
the ACMG guidelines into a Bayesian classifier (Tavtigian et al., 2018). The standardised
approach aims to reduce the number of variants being reported as “causative” and to improve
the genomic variant interpretation.

1.1.7 Rare variant study design

Genome-wide association studies (GWASs) identified robust associations between thousands
of common variants and complex traits and diseases. Low-frequency (0.5% ≤ MAF <5%)
and rare (MAF <0.5%) variants are not well represented by genetic markers in a GWAS. The
missing heritability of disorders is attributed to these variants unrepresented in GWAS (Cirulli
and Goldstein, 2010; Maher, 2008; Manolio et al., 2009). Highly penetrant rare variants
are known to cause many mendelian disorders or rare forms of common diseases (Gibson,
2012). The availability of whole genome sequencing (WGS) allowed the identification of
rare variants of individual genotypes in large cohorts and evaluate the contribution of rare
genetic variation to disorders. The 1000 Genomes Project sequenced >2,500 individuals at
low depth and enabled to identify 95% of variants that have an allele frequency of 1% (1
in 100) or higher. Larger studies focused on sequencing the 2% of the genome that codes
for protein (Bamshad et al., 2011) at a higher depth for accuracy. The exome sequence
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project (ESP) comprised 6,515 individuals as part of the National Heart, Lung, and Blood
Institute (NHLBI) and sequenced the exome to identify rare genetic variations (Fu et al.,
2013). Recently, the exome aggregation consortium (ExAC) studied 60,706 samples and
enables to filter for very rare variants with a MAF <0.01% and identify single variants
with a frequency below 1 in 120,000 (Lek et al., 2016). The genome aggregation database
(gnomAD) analysed 15,496 whole genomes and 123,136 exomes, and provided the allele
frequencies across different populations.

The high resolution of genomes variation and reference allele frequencies empowered the
study of rare and undiagnosed diseases and interpretation of variants (Bahcall, 2016). For a
robust identification of associations, the design of a whole genome sequencing (WGS) study
involves multiple processing and analysis steps (see Fig. 1.5). Planing the rare variant analysis
starts with the selection of inclusion and exclusion criteria for patients as well as control
subjects. The selection criteria rely on an agreed clinical classification of the disease or
require the collection of phenotype information to group patients during the analysis (Grateau
et al., 2013; Pathak et al., 2017; Westbury et al., 2015). Following the study design, the study

Figure 1.5 Data and analysis workflow for rare variant association studies applying whole
genome sequencing. Figure redrawn from Lee et al. (2014)

is submitted for ethical approval to the ethics committee to judge the ethical acceptability for
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involving human participants (Fletcher, 2015). Quality control processes are required at every
step to ensure the accurate identification, handling and standardised processing of samples.
Data quality issues can occur at various analysis levels and the careful investigation of
possible issues is important. Sequencing artefacts and errors can be introduced by including
different sequencing platforms or changing sequencing protocols (Ross et al., 2013). To
discover and quantify biases, a number of measurements are available to assess sequence
alignment, individual and aggregated variants (Van der Auwera et al., 2013; Wang et al.,
2015). Variants are evaluated by bioinformatic methods to predict the likely impact or
consequence and to annotate variants with public available information including allele
frequencies from large sequencing projects (see chapter 1.1.6 on page 9). These variant
information can be used in the association analysis and help with the interpretation, discovery
and prioritization of genes. Replication of rare-variant associations is a challenge for rare
diseases and the strategy of follow-up studies depends on multiple factors, including disease
rarity, characteristics of the gene discovery and study budget. Follow-up studies could
include functionally analysing the discovered gene by studying model organisms or cell
lines (Edwards et al., 2013).
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1.2 Aims

The overarching objective of the research presented in this Thesis is to advance our under-
standing of the genetic architecture of PAH by the application of whole-genome sequencing
technology.

Specifically my aims were as follows:

1. To collect and curate multi-dimensional clinical phenotype data from a large cohort of
affected PAH patients and validate the measurements for correctness and completeness.

2. To undertake an analysis of whole-genome sequence variation in a case-control study
to identify an enrichment of deleterious variants in protein-coding genes in affected
PAH patients. Genes demonstrating enrichment will be assessed for clinical patterns
by integrating the phenotype data.

3. To facilitate this effort by developing a scalable analysis platform to incorporate
variation, variant annotation and phenotype information for enhanced genome-wide
integrative data analysis.
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Chapter 2

Phenotype capture

2.1 Introduction

The general introduction (see chapter 1.1.3 on page 4) provided an overview of the application
of whole genome sequencing (WGS) to characterise human variation in different ethnic as
well as disease populations. I have discussed the contribution of rare genetic variation to
human traits and the importance of deep phenotyped cohorts to discover trait-associated loci.
This chapter focuses on patients with the rare disease idiopathic and heritable pulmonary
arterial hypertension, the collection of phenotype data and management of biological samples.

2.1.1 Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is characterised by elevated blood pressure in the
lung. PAH is a rare disease, with an estimated prevalence in the range from 10 to 52
cases per million per year (Escribano-Subias et al., 2012; Frost et al., 2011; Humbert et al.,
2006; Peacock et al., 2007). Shortness of breath, fatigue or weakness, angina, syncope,
peripheral edema and abdominal distension are some of the non-specific symptoms a PAH
patient presents with a mean age of 38 (± 11) (Barst et al., 2004; Elliott et al., 2006).
Females have a higher prevalence compared to males at a ratio of 2.3:1 (Larkin et al., 2012).
PAH is part of the disease group pulmonary hypertension (PH) and the underlying disease
pathogenesis divides PAH into four subgroups. The subgroups include idiopathic PAH
(IPAH), heritable PAH (HPAH) caused by gene mutations, drug/toxin induced PAH and
PAH with associated diseases (Simonneau et al., 2013). Prognosis and management for
each subcategory is different, which highlights the importance of a correct diagnosis (Benza
et al., 2012; Escribano-Subias et al., 2012). The diagnosis is based on haemodynamic
measurements performed during right heart catheterisation (see Fig. 2.1). PH is defined
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by a mean pulmonary artery pressure ≥ 25 mm Hg at rest (Hoeper et al., 2013). PAH is
further characterised by the presence of pre-capillary PH, defined by a normal pulmonary
artery wedge pressure (PAWP) of ≤ 15 mm Hg at rest. The recommendation suggest the
catheterisation of the left heart to measure the left ventricular end-diastolic pressure (LVEDP),
in case the PAWP is unreliable (Barst et al., 2004; Galie et al., 2015). The normal range for
LVEDP in PAH is ≤ 12 mm Hg. Elevated LVEDP is an indication of left heart disease, while
an elevated PAWP characterises postcapillary PH (Galiè et al., 2004).

Figure 2.1 Pressure and pressure waveform description at different locations during pul-
monary artery catheterisation. Pulmonary artery pressure (PAP) and pulmonary artery wedge
pressure (PAWP) are the last two points of measure (left ventricular end-diastolic pressure
not provided). Reference values are shown for each locations and measurement. Figure
adapted from Wierda and Hoftijzer (2016)

For my project I focus on the idiopathic and heritable forms, which represent 38.9% and
4.2% respectively of PAH prevalent cases (Humbert et al., 2006). This amounts to around 1 in
170,000 and 1 in 1.6 million people for IPAH and HPAH respectively. The median survival for
adults with IPAH and without treatment is 2.8 years from the point of diagnosis (D’Alonzo
et al., 1991). Therapies are available, but Charalampopoulos et al. (2014) have shown
differences in response to treatment based on risk factors, which emphasises the need to
further elucidate the underlying mechanisms. For patients on treatment, Humbert et al. (2010)
observed a three year survival of 54.9% for idiopathic, heritable or anorexigen-induced PAH
cases.

PAH is caused by remodelled pulmonary arteries leading to a raised pulmonary vascu-
lar resistance. The remodelling is characterised by increased proliferation and apoptosis
resistance of pulmonary artery cells (Budhiraja et al., 2004). Arteries are blood vessels
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carrying blood away from the heart. An artery (see Fig. 2.2) consists of endothelial cells
(ECs) and smooth muscle cells (SMCs), which build up functional parts of the vessel wall.
The endothelial cells (ECs) form a mono-cellular layer, the endothelium, that lines the blood
vessel wall separating the tissue (abluminal side) from the circulating blood (luminal side).
This selective barrier traffics molecules, proteins and nutrients to surrounding cells. Intima
is the layer beneath the endothelium and largely consists of elastic fibers, collagens and
amorphous proteoglycans. Smooth muscle cells are part of the media layer and control the
blood pressure by changing the diameter of the vessel lumen. The interface between the
vessel and surrounding tissue is the externa, a layer of connective tissue and fibroblasts.
Pulmonary and umbilical arteries carry deoxygenated blood from the heart to the lung, while

Figure 2.2 Structure of an artery wall. Extracted from Wikiversity (2014)



18 Phenotype capture

the remaining arteries carry oxygenated blood. The ECs and SMCs part of the pulmonary
arteries are implicated in PAH and called pulmonary artery endothelial cells (PAEC) and
pulmonary artery smooth muscle cells (PASMCs).

The gene bone morphogenetic protein receptor type 2 (BMPR2) binds members of the
transforming growth factor beta (TGF-β ) family of signaling molecules. Variants in BMPR2
have been found to be the main cause of HPAH (69%) and also explains 21% of cases in
IPAH (Aldred et al., 2006). The majority of IPAH cases are still unexplained, but other genes
mainly part of the TGF-β pathway are implicated in the disease and discussed later.

2.2 Methods

2.2.1 Study design

Subjects were recruited for two separate studies, the national cohort study of idiopathic and
heritable PAH and the national institute for health research (NIHR) BioResource - Rare
Diseases (BR-RD) study PAH cohort. The purpose of the national cohort study was to set up
a national cohort and biorepository of heritable PAH cases and their relatives, and idiopathic
PAH. Participants were followed to initiate longitudinal clinical evaluation and sampling of
HPAH family members and to elucidate the underlying genetic architecture of idiopathic
and heritable PAH. The main objective for the NIHR BR-RD was the establishment of a
comprehensive BioResource of participants with rare diseases to identify the cause of disease
in those individuals using Next Generation Sequencing Techniques (NGST). The study aimed
to improve the diagnostic rate through NGST for future use as diagnostic test and perform
subsequent studies to validate possible novel treatments. The outcome of the studies should
be used for the health services research to develop funding schemes for use in the NHS.

2.2.2 Ethical approval

The national cohort study of idiopathic and heritable PAH recruited cases and their relatives
from the UK National Pulmonary Hypertension Centres, Universite Sud Paris (France), the
VU University Medical Center Amsterdam (The Netherlands), the Universities of Gießen
and Marburg (Germany), San Matteo Hospital, Pavia (Italy), and Medical University of Graz
(Austria). All participants or their parents provided written informed consent (UK Research
Ethics Committee: 13/EE/0203). During their routine 6 months visit, PAH patients had
additional blood and urine samples taken for research purposes. Relatives were followed up
at annual intervals.
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Cases were recruited for the national institute for health research (NIHR) BioResource –
Rare Diseases (BR-RD) study from the same centres as the national cohort study of idiopathic
and heritable PAH. All cases had a clinical diagnosis of idiopathic PAH, heritable PAH, drug-
and toxin-associated PAH, or PVOD/PCH established by their expert centre. The non-PAH
cohort for the case-control comparison were unrelated subjects recruited to the NIHR BR-RD
study. All PAH and non- PAH patients or their parents provided written informed consent
(UK Research Ethics Committee: 13/EE/0325), or local forms consenting to genetic testing
in deceased patients and non-UK cases.

Blood and saliva samples were collected under written informed consent of the partici-
pants or their parents for use in gene identification studies (UK Research Ethics Committee:
08/H0802/32). Patient’s notes were only viewed by the direct care team and named re-
searchers. Subjects were given a unique study number and all data were linked anonymised
(also known as pseudonymised) at study entry. Each centre had a master list which matched
study number with the participant, only local study members had access to this. Authorized
researchers had only access to pseudonymised (non-identifiable) data and biological samples.
Linking anonymised data was necessary to provide the clinical care team with pertinent
information that they could feed back to the participant. The local study team could request
participant’s contact information to enable participants to be contacted for future ethically
approved studies. Contact information were held securely at the participant’s local recruiting
centre.

2.2.3 Informatics infrastructure and data security

Phenotype information were electronically collected for two separate studies, the national
cohort study and the NIHR BR-RD study PAH cohort. Both studies collected the same
information at the time of diagnosis and recruited mainly the same patients at separate
occasions. Due to the overlap of information, the same infrastructure was used by both PAH
projects to securely collect and retrieve phenotypes.

The Clinical School Computing Service (CSCS) was chosen to provide the support and
computational resources to host a virtual server in a secure environment. Primary software
installed on the server was Ubuntu, Apache HTTP, Apache Tomcat and PostgreSQL with
default security settings only allowing HTTPS and secure shell (SSH) access. The server
provided 4 CPUs, 8 GB of memory and 50 GB of expandable disk space. Direct public access
to the virtual server was not possible and only enabled through the internal network using
SSH. The CSCS firewall filtered and accepted web requests before internally forwarding the
web traffic to the virtual server. All web traffic was protected by the encrypted hypertext
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transfer protocol secure (HTTPS) protocol implementing the transport layer security (TLS)
1.2 standard.

The phenotype information were captured by the web-based OpenClinica (OC) system.
The open source package was deployed on a Apache Tomcat webserver with a PostgreSQL
relational database management system (RDBMS) on the secure virtual machine. Information
entered through web services were stored in the PostgreSQL database on the server, which
required authentication. Researchers required approval from the data access committee
before user accounts were issued and access was granted to the required data.

Approved research nurses, study coordinators and researchers were assigned OpenClinica
accounts for user authentication. Data access and permissions of users were limited based on
the assigned role and study site in OpenClinica.

2.2.4 Electronic phenotype collection

The established infrastructure collected phenotype data and catalogued biological sample
from individuals, which participated in the PAH cohort, NIHR BR-RD or both studies. The
open source software OpenClinica (OC) was chosen after evaluating the NHS computer
restrictions and different electronic phenotype data capture systems. The OC web interface
captured data based on electronic case report form (eCRF) definition specified in an Excel
spreadsheet. The eCRF definition file controls the web form appearance, description, unit
of the requested value and the validation of the patient data. Each row in the Excel eCRF
describes one value field, also called item, in OC. Amongst other values, the descriptive
text, type of value and range checks can be specified per item. Definitions are specific for
each project and for PAH we developed 24 different eCRFs. Each eCRF captures a different
category of data and were based on specifications defined by the PAH consortium.

2.2.5 Software release information

The data were collected and analyses were performed using the software products and
versions listed in Tab. 2.1 unless stated otherwise.

2.2.6 Phenotype definition

The PAH consortium specified the clinical measurements in a Microsoft Word document
and provided ranges for selected numerical values. The clinical values were grouped into
20 categories listed in Tab. 2.2. The definitions of each category were translated into an OC
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Name Version Info

Apache HTTP 2.2.22
Apache Tomcat 6.0.32
JAVA 8u66 Java Development Kit (JDK)
KVM 1.0 QEMU emulator version
MySQL 5.1.73
OpenClinica 3.3 OpenClinica community edition
PostgreSQL 8.4
Python 3.4.1
R 3.2.4
Ubuntu 12.04.2 LTS

Table 2.1 Software release versions used

eCRF Microsoft Excel definition file. Numerical range checks were defined as rules and the
conditional displaying of items was used to show only required fields.

Categories Description

Demographics Basic characteristics
Body system General measurements
Family history Description of possible PAH cases in the family
Risk Factors Drugs and toxin ingestion
Drug Treatment History (PAH) Record of PAH related drug treatment
Drug Treatment History (other) Record of drug treatments not related to PAH
Associated diseases Record of diseases associated with PAH
Clinical feature by history Clinical symptoms before diagnosis
Clinical feature by examination Clinical symptoms at diagnosis
Functional class New York Heart Association (NYHA) classification
Haemodynamics Blood movement related measurements
Clinical blood tests Measurements of the blood
Arterial blood gases Arterial blood measurements
Exercise performance Fitness measurement
Lung function Assessment of the lung function
Echocardiography Heart measurements from ultrasound
Electrocardiogram Electrical activity of the heart
Imaging investigation Cardiac magnetic resonance (CMR) data
Imaging Report Report of the CMR imaging
Survival Record of study participation

Table 2.2 Clinical categories specified by the PAH consortium.
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2.2.7 OpenClinica SOAP API access

The programming language JAVA was used for the interaction with OC. The wsimport tool
part of the JAVA development kit (JDK) was applied to generate JAVA API for XML web
services (JAX-WS) portable artifacts. These artifacts were generated from the web service
description language (WSDL) schema definition files provided by the OC simple object
access protocol (SOAP) application programming interface (API). Separate artifacts were
generated for the production and test OC instance.

2.2.8 Sample submission

Samples were sent to the NIHR Cambridge BioRepository for storage and required a sample
manifest listing the expected sample and tube identifiers for verification. The JAVA appli-
cation BioAPP was developed to extract the OC ID and visit number from the ‘tracking
log’. The OC SOAP API was used to download the sample log. The identifiers contained in
the ‘sample log’ were validated before producing the ‘sample manifest’.

2.2.9 Automated data import

The automated import JAVA application was developed to process clinical information stored
in a predefined Excel file. The extracted values were submitted to OC using the SOAP API
and a report was produced to identify failed entries.

2.2.10 Data export, version mapping, normalisation and validation

An automated file exports was scheduled using the OC DataSet export feature. All data
items were selected for export and data were exported separately per event. The automated
pipeline transferred the files to a release folder on an internal server and executed the load
process. The load process was written in Python and loaded each file separately into the
MySQL database. After loading the data, the version mapping was performed as a python
script using the mapping instructions. The statistical computing language R extracted data
from MySQL, converted units based on mapping instructions and stored the resulting values
as R object. The standard deviation (SD) was calculated for numerical values and entries
outside 2.5 SD were recorded to be manually validated (see 2.3.8 on page 32). For validation,
the specific recording (patient, event, field, value) was sent to the respective centre to be
confirmed based on the patient records or corrected. The values in the normalised R data
object were validated based on an Excel file definition with the specific records. This Excel
file contained previously detected outliers and either removed the entry for pending requests,
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replaced the entry with the corrected value or included confirmed values. There were 755
outliers entries for 415 subjects recorded in the Excel file affecting 104 different items, 133
of these entries have been checked by the centre and changed if required. Sample identifiers
were validated for consistency and the cleaned data was stored as an R object ready for
analysis.

2.3 Results

The national cohort study of idiopathic and heritable pulmonary arterial hypertension (PAH)
also called PAH Cohort Study recruited affected PAH patient, relatives and unrelated controls
across 10 participating NHS and and 4 international collaborating PAH specialist centres.
Detailed clinical information were captured from patients at the time of diagnosis, during
recruitment and additional measurements and samples were collected during each follow-up
visit. Participating PAH centres also recruited affected PAH patient and relatives for the PAH
cohort of the national institute for health research (NIHR) BioResource – Rare Diseases
(BR-RD) study. Clinical information were collected from patient at the date of diagnosis as
part of the NIHR BR-RD study, the same as for the PAH Cohort Study.

The NHS computer restrictions were evaluated for the integration with different electronic
phenotype data capture systems. After the evaluation, I established the open source software
OpenClinica (OC) to capture clinical data of PAH patients for both studies and developed
an automated data release pipeline for analysis. The OC web interface captures data based
on an electronic case report form (eCRF) definition specified in an Excel spreadsheet.
Each eCRF was designed based on specifications defined by the PAH consortium and one
eCRF was created for each data category. Clinical information were entered by research
nurses using the web-browser based forms after authentication. In addition, OC provides an
encrypted application programming interface (API) with authentication to enter and extract
data electronically.

The initial test phase started in October 2013 and the production system went live in
February 2014 to collect data. Until December 2016, I lead the development of 109 different
versions of 24 eCRFs that contain 3,845 items and changed the capture behaviour to reduce
the workload on the nurses. These changes reflect the dynamic nature of the project and OC
provided the required flexibility to capture these information. The overview in Fig. 2.3 shows
the different data entry workflows, which followed our standard operating procedures (SOP)
described later.
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Figure 2.3 Patient information capture and automated validation workflow. OpenClinica
supports manual as well as electronic data import. Data are automatically exported, validated
and prepared for analysis.
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2.3.1 Phenotype definition

We aimed to capture the baseline phenotype of PAH patients in OpenClinica as comprehen-
sively as possible. The PAH consortium provided an itemised description of the baseline
phenotype items including ranges and comments. Fig. 2.4 shows an extract of the speci-
fication document, which was captured in OC using eCRFs. I contributed to the manual
translation of the descriptors to eCRF, which were organised based on 20 categories listed
in methods. Study identifiers and sample tracking information were captured as additional
eCRFs. An eCRF is specified in an Excel document and enables to group items into pages,
sections and subsections with specific. The definitions are interpreted by OC and dynamically
creates web forms for data entry. Entered values are validated during the submission process
and unexpected records can be blocked, produce warnings or trigger predefined actions to
document discrepancies. The same validation rules apply to electronically transferred data.

Figure 2.4 Screenshot of agreed phenotype definition document partly showing two categories
with data items, value ranges / options and additional comments.

2.3.2 Event definition

Clinical measurements were defined as eCRFs and different types of information are collected
in separate CRFs. Event provide the possibility to group CRFs, that collected during the same
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visit or for different groups of patients. The event definition defines the default CRF version
included in the event. The same CRFs are used to capture patient, relative and unrelated
control information in different events and allows the transition from a relative to become a
patient (see Fig. 2.5). Each CRF in an event is marked as completed after entering the data.
The exception is the Continuous data event that collects continuously updated values. Such
updated values include prescribed drugs with their amount, start and end date, if it applies.
Tab. 2.3 provides a complete list of CRFs and their use in different events.

Figure 2.5 Subject specific workflows. A subject can participate as a ‘Relative’, ‘Patient’ or
‘Control’. Data from a ‘Relative’ are entered into the Relative event for every visit until
the subject exits the study through Suspension or through the transition to a ‘Patient’ due
to a diagnosis of PAH. For a ‘Patient’, Diagnosis information are captured at the date of
diagnosis. After the Diagnosis entry, a NIHR BR-RD study ‘Patient’ completes the data
entry. Data from a ‘Patient’ recruited to the PAH cohort study continue to be entered in
the Follow up event by 6-monthly visits until the exit from the study through Suspension.
‘Control’ subjects date are entered for the Control event only.

2.3.3 Subject and sample identification

Both the PAH cohort study and NIHR BR-RD PAH cohort used OC to record phenotype
information and identifiers. In order to upload information, each subject in the study received
an OC subject study ID (OC ID). The OC ID was study independent and bridged between
different studies and visits. In addition, subject were provided with study specific identifiers.
These identifiers were registered in OC in order to track subjects. A subject taking part in
both studies had an OC ID, PAH cohort ID and an NIHR BR-RD ID assigned. All these
identifiers are printed as barcode labels and attached to the physical patient record at the
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relevant NHS trust. For the PAH cohort study, the research nurse collected samples from
subjects at each cohort visit. These samples were processed and stored in barcoded tubes.
The tube types were sample specific. All barcodes were scanned and recorded in a sample
log with the OC ID and PAH cohort ID. The completed document was uploaded to the eCRF
in OpenClinica. I contributed to the tracking of subject identifiers, tubes and capture of
phenotype information. Study and tube identifiers were printed as barcodes or had pre-printed
quick response (QR) codes, which should be scanned with the provided barcode scanners.
The generated barcodes had a character appended at the end to check the consistency of
the identifier. This consistency check was independent of other resources and my sample
submission application described below validated the generated identifiers for consistency
during submission. Identifiers failing the consistency checks were reported. Incorrect
identifiers in sample log files required correction by the relevant centres and resubmission to
OpenClinica.

2.3.4 Sample submission

All participating centres followed a standard operating procedure, which we developed for
the sample submission to the NIHR Cambridge BioRepository. I developed an application
(BioAPP) that automates the validation and transformation to the agreed exchange format.
Research nurses completed a tracking log for a delivery, which contains the OC ID and visit
number of a subject. The BioAPP read in the ‘tracking log’, extracted the corresponding
‘sample log’ and tube id for each visit from OpenClinica. The extracted identifiers were
validated and produced the ‘sample manifest’. The ‘sample manifest’ contained the PAH
cohort id, tube id, sample type, volume, volume unit, collection date, centre, visit and if
the subject was a patient, relative or unrelated control. This ‘sample manifest’ was sent
to the NIHR Cambridge BioRepository, imported into their computer system and used for
validation on arrival of the samples.

2.3.5 Automated data import

Imperial College and Hammersmith Hospital provided the largest collection of historical
PAH samples for the NIHR BR-RD study. The hospital has electronic health records for the
enrolled individuals. The records closest to the date of diagnosis was exported. Although
OpenClinica provided SOAP API for automated data submission, the submitted file required
mapping to OC specific item identifiers, also called unique OID.

We agreed on an Excel file based data exchange format to allow for human intervention
and correction. I wrote the software tool and defined the structure of the Excel file. The file



2.3 Results 29

structure allowed the inclusion of multiple eCRFs in one Excel file and further described in
Tab. 2.4. The Excel template was generated from the eCRF information stored in OC.

Section name
Number Openclinica ID Bridge Id Cohort Id Description
OC oc_study_subject_id Variable
1 OC001A
2 OC002B

Table 2.4 Excel based OC data exchange format. Each sheet in the excel file represents
one eCRF identified by the sheet name. In each sheet, individuals are stored in rows
and each column represents a captured measurement. The first two rows are ignored and
used for description. The third row starts with ‘OC’ to comply with the exchange format
followed item OIDs for each column to identify the measurement. In addition, the key word
‘oc_study_subject_id’ is used to specify the column with the OC ID. From the fourth row
onwards, the clinical measurements are recorded.

To ensure consistent data validation, the import tool used the web-service interface
provided by OpenClinica. The same checks were applied for data submitted through the
web-page or the web-service. The only difference was that no history is stored about changes
to item values during the automated import. For this reason, the Excel file was the main
source of information and an import overwrites existing values in OpenClinica.

I generated Excel templates for the required eCRFs and these were used to manually
integrate and curate data. The developed tool imported the majority of available baseline
data for Imperial College and Hammersmith Hospital. The developed tool was also vital for
restructuring eCRFs and moving eCRFs to different events. In these cases, phenotype data
from the MySQL DB described below were exported into Excel on the latest eCRF version
and reimported into a different event.

2.3.6 Data export

OpenClinica is focused on capturing phenotype information and does not provide an open
source mechanism to analyse the captured information. The export facility provided by
OC created a file in extensible markup language (XML) format compliant with the Clinical
Data Interchange Standards Consortium (CDISC) Operational Data Model (ODM) standard
Version 1.3 (see http://www.cdisc.org/odm). In addition, OC extended their schema to include
annotations about discrepancy notes. Each XML file provides a complete description of the
field definitions and the entered data from the specified time frame.

I developed the MySQL database schema shown in Fig. 2.6 and a command line tool
to automate the import of the XML structure in a secure environment. Access to the data

http://www.cdisc.org/odm
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stored in the secure environment required a successful application granted by the data
access committee. In the database schema, a study or centre (study) has a study subject
(study_subject) which can attend several subject events (subject_event). The captured
measurements for a subject event are stored as items in subject_event_item and the status of
each eCRF is stored in subject_event_form. A list of possible events is defined in cv_event_def.
The form definition (cv_form_def ) represent the eCRFs and has a list of items cv_item_def
and form versions (cv_form_v_def ) defined. The link table lnk_event_form_def describes
the relationship between eCRFs and events since one eCRF can be used in different events.
In addition the schema stores generated identifiers (cv_reference) for each study site as well
as time stamps of the last schema update (update_log).

The tool created the table schema and loaded the following meta-information from the
XML file:

• Study definitions
• Case Report Form definitions
• Item definition
• Event definition
• Study Subject (identifiers and labels)
• Subject Event (an ‘Event’ created for a ‘Subject’)
• Subject Event Form (a ‘Form’ filled or started to be filled in for a ‘Subject Event’)

After loading the meta-information, the values for the items were loaded.

2.3.7 Version mapping

As described in Phenotype definition, specified descriptors were translated into eCRFs for
OC. After the test and first production release, we reviewed the feedback from OC users.
The collected feedback was incorporated during several iterations of eCRF changes and
event restructuring. We focused to improve the usability, reduce the number of mouse clicks,
remove ambiguity and add conditional displaying of fields. The process of corrections
involved the removal as well as addition of units, fields and reduction of data range checks.

During the implementation process we realised that capturing phenotype data was a
dynamic process. The continuous evolution of eCRFs required a robust way to map captured
data forward to the latest version. The consistency of items in one eCRF across versions is
demonstrated in Fig. 2.7. It also highlights that columns used in older versions can be missing
in the latest version of the same eCRF for various reasons. The version processor module
was added to the automated processing pipeline. The process mapped otherwise obsolete
columns to columns renamed in the latest version. The module processes a tab delimited file
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Figure 2.7 Example of item consistency and changes across versions in OC. Item A and C is
consistent across all and across the last two versions respectively, while item B is renamed in
v3 to item B’.

of instructions and acts on the operations listed in Fig. 2.8(a). The file consists of a header
line followed by one item for each line. The tool allows for the following columns:

• Operation: The operation to perform
• Name: The item name to perform the operation on
• Target: The item name to map a field to (if different from target)
• Table: The table name for the target (for list items) described later

The permitted operations are:

• copy (c): No version change
• map (m): Update the item name to the latest item version name.
• new (n): No compatible version available and store as different name.
• delete (d): Removed in the latest version

A special case was required for the last two items shown in Fig. 2.8(a) and were called
list items. These items are used to store a collection of values of the same type e.g. list of
prescribed drugs in OC. The list item names are constructed as <prefix>_<suffix> using the
same prefix with different suffixes (Fig. 2.8(a)). This naming convention allowed to extract
list values into a separate table as shown in Fig. 2.8(b). Before the version mapping 1,014
columns (column without values are not created) were represented in the exported data set.
After the version mapping it was reduced to 393 columns and 11 list tables with all items
from the last eCRF versions represented. These tables represent a comprehensive collection
of the data in OpenClinica.

2.3.8 Data normalisation, correction and cleaning

Research nurses in participating centres collected and entered phenotype information into
OpenClinica, which were then exported and mapped to the same version as described above.
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Figure 2.8 Version mapping process. The (a) version mapping format consists of a header
line followed by one item per line. The table lists the copy (c), map (m), new (n) and delete
(d) operations in the Operation column. The ‘Name’ column contains the item name with
‘Target’ and ‘Table’ column filled depending on the operation. The mapping is applied to the
table (b) subject_event item and two new tables merged_items and list-table E are created
with the mapped values.
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The recorded data per item were then available, but the values for one item are in different
units and contain outliers, invalid and inconsistent values. These issues were addressed with
the normalisation, correction, cleaning and validation before a cohort wide comparison can
be done.

The normalisation process converted the measurements of each item into one unit per
item. The developed R script identified and converted values with different units to the
same unit. An item mapping file specified the converted functions between units. After
normalisation, the script calculated the distribution of each numeric item and recorded entries
with 2 and 2.5 standard deviation (SD) from the mean value to assess potential outliers. We
assessed such outliers and recorded likely incorrect values in a centrally stored verification
Excel file. Outliers were assessed by a clinician for their feasibility and for their consistence
with other values of the overall disease status. Incorrect entered values included a diastolic
pulmonary artery pressure (dPAP) of 82 mmHg above a mean pulmonary arterial pressure
(mPAP) measure of 67 mmHg or a physiological near impossible mean right atrial pressure
(mRAP) of 54 mmHg. The 2.5 SD ranges were 5.7 - 62.6 and -12.1 - 31.2 mmHg for dPAP
and mRAP respectively. After checking with the local centres, research nurses corrected
the 35 and 10 mmHg for dPAP and mRAP respectively. These entries were sent to the
recruitment centre and the value either was confirmed or corrected by the research nurse.
Until the confirmation or correction, the verification file allowed to correct or remove the
identified values during a verification step. The verification also removes individuals with
invalid, duplicate or inconsistent identifier (NIHR BR-RD, PAH cohort or OC ID). The
resulting phenotype information were a high confident data set for further in-depth analysis.

Specific OpenClinica eCRF data were extracted from the MySQL database, normalised,
validated and stored as an R object. All these steps from OpenClinica to the validated R
object were automated and produced on a weekly bases. Email alerts were distributed to
coordinators to flag entries for validation. On 1st of January 2017, the data release contained
351 fields for 1,023 individuals that passed the validation. In addition, phenotype information
for 128 subjects were available from collaborators as Excel documents, but not yet transferred
into OpenClinica. These additional measurements were combined with the data release to
increase the total number of available samples. The combined release resulted in 1,151
individuals and 351 items.

2.3.9 Assessment of clinical data

Capturing phenotype data is a continuous process and the incompleteness of data has to be
monitored. For the ability to assess missing data, we developed a visualisation method to
inspect and detect pattern of completion. Fig. 2.9 and 2.10 show the status of entered and
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missing values from the diagnoses event for all patients in an unbiased way. Based on the
visualised matrix, we were able to identify items consistently filled or empty for subjects
across all centres. For example, the Imperial and Hammersmith Hospital completed data for
all patients per eCRF, which is indicated by large gray or blue areas for whole eCRFs across
subjects. The matrix was an efficient way to give feedback to centres regarding the data entry
progress.

The validated phenotype information contained 1,151 subjects and 351 items, which
included clinical measurement used to diagnose PAH patients. In the opinion of the clinicians
at each specialist centre the main clinical diagnoses was pulmonary arterial hypertension.
By definition, diagnosed PAH patients have a mean pulmonary artery pressure (mPAP) of
≥ 25 mmHG at rest, pulmonary artery wedge pressure (PAWP) of ≤ 15 mmHG and left
ventricular end-diastolic pressure (LVEDP) of ≤ 12 mmHG (see chapter 2.1). These values
were captured in the Haemodynamics eCRF and we used them to confirm the diagnoses of
the subjects (see Fig. 2.11, 2.12 and 2.13). For 1,151, the completeness was 99.5% (n=1145),
92.6% (n=1066), 73.1% (n=842) and 19.7% (n=227) for gender, mPAP, PAWP and LVEDP
respectively. Subjects outside the defined diagnostic threshold were 0.9% (n=11), 3.5%
(n=40) and 11.2% (n=129) for mPAP, PAWP and LVEDP respectively. It is possible for
the PAWP and LVEDP to be elevated in severe PAH with fluid overload from right heart
failure and compression of the left ventricular (LV) by an overloaded right ventricular (RV).
Subsequent right heart catheter after diuresis may have shown normal PAWP and LVEDP
despite the elevated measurement at the time of diagnosis. All elevated PAWPs and LVEDPs
were queried with the centres to confirm the diagnosis and rule out incorrect values. Later
data releases included updated values (corrected where needed) from the currently displayed
elevated entries. The PAWP values ≥ 40 mmHg from Sheffield were outliers and were
corrected by the centres. In cases of severe PAH, LVEDP values are possible to vary. The
observed gender ratio was 2.1 (779 female : 366 male), which is in line with the published
literature.

A visual comparison of the mPAP measurements identified centre specific trends, most
noticeable “Great Ormond Street” and “Lincoln” with the lowest median mPAP values
compared to other centres 2.11. All recruited cases in both of these centres were below the
age of 16 at diagnosis with a mean age of 6 compared to 50 for the remaining centres. In
order to elucidate inter-centre differences, I applied a linear regression approach to model the
relationship between (A) mPAP and centre, (B) mPAP and age at diagnosis as well as (C)
mPAP and centre with age at diagnosis. Analysis of variance (ANOVA) separately compared
the models A, B and C. The calculated p-values comparing the similarity of the groups A
with C, B with C and A with B were 2.2E-16, 4.9E-12 and 0.9988 respectively. The result
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suggests, that adding age as a variable to centre is a more significant change than adding the
variable centre to age. There was no significant difference between the regression models
using age or centre as a variable, which can be explained by centres specialised in pediatric
cases. After excluding pediatric cases (age at diagnosis <16), I rerun the analyses. The
recalculated p-values were 2.2E-16 and 0.003 comparing A with C and B with C respectively.
No p-value was retrievable comparing A with B. Adding age in addition to centre as a
variable to the model was still similarly significant for adults, while adding the centre in
addition to age was not as significant compared to the previous analysis including children.
An exploration of the relationship between (A) mPAP and centre with age in adult cases
found a difference (p-value of 0.014) for the centre “University of Giessen”. The mean age at
diagnosis in “University of Giessen” was 52 and elevated compared to 49 in the other centres
for adult cases only.

Differences in mPAP value distribution were found between centres and explained by the
age at diagnosis due the recruitment of only pediatric cases by two centres. The remaining
difference for “University of Giessen” in the adult only dataset could not be fully explained,
but age remains an important variable due to the elevated age at diagnosis compared to other
centres.

2.4 Discussion

We captured clinical and related phenotypic information from subjects participating in the
PAH national cohort study, NIHR BR-RD study or both. The longitudinal PAH national
cohort study recruited patients and relatives for 6 month follow-up visits, while the NIHR
BR-RD PAH project focused on capturing information at the time of diagnosis for affected
PAH patients. Research nurses record phenotype data from participating subjects in the web-
based OpenClinica phenotype capture system and an automated pipeline produces weekly
data releases. While the defined number of fields is very extensive, captured information is
sparse and a challenge for further analyses.

2.4.1 Data completeness

The hundreds of defined fields includes a core set of measurement for cohort characterisation,
classification and diagnosis of PAH (see 3.3.3 on page 87). Completeness for this core
set of information was mainly below 90% and in case of LVEDP was 19.7% (see 2.3.9 on
page 34). Some values can be explained by historical samples, which did not record or collect
these information at the time or patients unable to undergo the procedure. Visualising the
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Figure 2.11 Distribution of mPAP values per centre. PAH patients should be above the
horizontal line, which indicates 25 mm Hg. Differences in distribution for “Great Ormond
Street” and “Lincoln” were explained by the age at diagnosis due to the large proportion of
pediatric (<16) cases. Elevated age at diagnosis were found for “University of Giessen”, but
does not fully explain the differences of mPAP distribution compared to other centres.
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Figure 2.12 Distribution of PAWP measurements per centre. PAH patients should be below
the horizontal line of 15 mm Hg, but elevated values in severe PAH are possible. PAH values
≥ 40 mmHg from Sheffield were found to be outliers and were corrected by the centre for
later data releases.
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Figure 2.13 Distribution of LVEDP measurements per centre. PAH patients should be below
the horizontal line of 12 mm Hg, but variable values in severe PAH are possible. Elevated
values were queried with the individual centres for validation of the diagnosis and to rule out
incorrect values.
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completed values (see Fig. 2.9 on page 36) revealed distinctive patterns, where some values
are collected by all or only by a few centres. Even the list of measured values captured during
a blood test differ between centres. A standardised full blood count would benefit the analysis
of the cohort, where the samples are tested centrally, capturing the same measurements and
the data are transferred electronically. Central sample processing would ensure consistent
and complete measurements from the same machine for all samples encoded in the same unit.
Computational data transfer of these measurements would free-up time of local research
nurses and reduce the risk of typos or entering the results of the wrong subject. However, the
current dataset is the largest phenotype collection of PAH patients so far, which needs further
work to utilise the data to its full potential.

2.4.2 Personal trends

The PAH cohort study is an observational study, which collects phenotype data during
routine visits at 6 monthly intervals. Collected clinical measurements collected during the
visit are dependent on the condition of a patient on that day and are not able to take short-
term fluctuations into account. The clinical environment and the travel to the clinic could
further skew results. Introducing mobile technology, including smart devices, would allow to
continuously monitor patients in their own environment. The increased frequency of these
measurements would enable to create an accurate personalised profile to follow the disease
progression. Current methods focus on cohort wide analysis at specific time points, but
modern technology could provide further insight and establish further subgroups or disease
stages of PAH for precision medicine.
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Chapter 3

Discovery of novel disease genes in PAH

3.1 Introduction

The general introduction (see chapter 1.1.3 on page 4) provided an overview of the application
of whole genome sequencing (WGS) and discussed the contribution of rare genetic variation
to human traits. The rare diseases pulmonary arterial hypertension (PAH) was described
in chapter 2 on page 15 and defined the characteristics of the cardiovascular system. In
this chapter, I discuss the currently known genetic causes of the PAH subgroups idiopathic
PAH (IPAH) and heritable PAH (HPAH) before focusing on the genetic comparison of PAH
patients to non-PAH controls using next generation sequencing (NGS) technology.

3.1.1 Genetics of Pulmonary Arterial Hypertension

The rare disease PAH is a form of high blood pressure in the lung and with an estimated
prevalence of 10 to 52 cases per million per year (Escribano-Subias et al., 2012; Frost et al.,
2011; Humbert et al., 2006; Peacock et al., 2007). PAH is part of the pulmonary hyper-
tension (PH) disease group and can be further divided into the four subgroups idiopathic
PAH (IPAH), heritable PAH (HPAH), drug/toxin induced PAH and PAH with associated
diseases (Simonneau et al., 2013). HPAH was previously known as familial PAH (FPAH) and
defines patients with a known family history of PAH. Collaborative effort on HPAH, the rarer
form of PAH, identified chromosome 2q31-q32 as important locus through linkage analysis
of genotype data across the autosomes (Morse et al., 1997; Nichols et al., 1997). Further
investigation of the locus by targeted sequencing of exons revealed mutations predicted
to cause premature termination of BMPR2 (Deng et al., 2000; International PPH Consor-
tium et al., 2000). Although BMPR2 is inherited as an autosomal dominant trait, family
studies found unaffected parents with a variant in BMPR2, which suggested incomplete
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penetrance (Thomson et al., 2000). Following the revelation of BMPR2 in the heritable form,
other forms of pulmonary hypertension (PH) were investigated. Targeted sequencing of the
BMPR2 gene identified variants in IPAH cases that were predicted to alter the protein function
or cause premature termination (Cogan et al., 2006; Koehler et al., 2004; Sztrymf et al.,
2008). Disease causing BMPR2 variants were also described in patients with pulmonary
veno-occlusive disease (PVOD), a rare form of PH (Montani et al., 2008; Runo et al., 2003).
Identified cases of BMPR2 variants explained 69% of HPAH and 21% of IPAH cases and the
latest report collated 384 distinct variants across the gene (Aldred et al., 2006; Machado et al.,
2015). In contrast, HPAH and IPAH represent 4.2% HPAH and 38.9% of PAH prevalent
cases (Humbert et al., 2006). This highlights that IPAH is more frequent with less cases
explained by BMPR2 compared to HPAH.

Figure 3.1 Genes and pathways implicated in PAH pathogenesis. Implicated genes involved
in TGF-β /bone morphogenetic protein (BMP) signalling pathway are BMPR2, ALK1, END,
SMAD1, SMAD4, SMAD8 and TBX4. Other genes and pathways contributing to PAH:
EIF2AK4 part of angiogenesis-regulating gene in response to cellular stress; CAV1 as part of
the NO signalling and oxidative stress pathway; KCNK3 and KCNA5 are potassium channel-
related genes; (*) indicate implicated genes. SMAD8 and ALK1 are now known as SMAD9
and ACVRL1 respectively. Figure adapted from Machado et al. (2015)

Here, I discuss four different potential pathways to causation (TGF-β /bone morpho-
genetic protein (BMP), cellular stress response, nitric oxide (NO) and potassium channel)
for 11 different genes, the analysis strategy and their supporting evidence. The seven TGF-
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β /BMP genes implicated in PAH are BMPR2, activin-receptor–like kinase 1 (ACVRL1 or
ALK1), endoglin (ENG), the mothers against decapentaplegic 1 (SMAD1), SMAD4, SMAD9
and T-box 4 (TBX4) (Attisano et al., 1993). The disease causing gene BMPR2 was first
discovered through linkage analysis followed by targeted sequencing (Deng et al., 2000;
International PPH Consortium et al., 2000; Morse et al., 1997; Nichols et al., 1997). The
same strategy identified ACVRL1 and ENG mutations in patients with HPAH and hereditary
haemorrhagic telangiectasia (HHT), a PAH associated disease (Chaouat et al., 2004; Johnson
et al., 1996; Trembath et al., 2001). Follow-up studies identified in total 66 mutations, 57 in
ACVRL1 and 9 in ENG (Abdalla et al., 2004; Best et al., 2011; Chaouat et al., 2004; Chen
et al., 2013; Chida et al., 2012; Eyries et al., 2012; Fujiwara et al., 2008; Girerd et al., 2010;
Harrison et al., 2003; Ishiwata et al., 2014; Jones et al., 2014; Machado et al., 2009, 2015;
Mache et al., 2008; Pfarr et al., 2013; Smoot et al., 2009; Trembath et al., 2001). ACVRL1
and ENG encode receptors of the TGF-β family and molecular defects are known to cause
the vascular disorder HHT characterized by the presence of mucocutaneous telangiectasia
and visceral arteriovenous malformations (Johnson et al., 1996; Massagué, 1998; McAllister
et al., 1994; Scharpfenecker et al., 2007). Early-onset PAH patients present without HHT, but
could develop the condition later in live (Fujiwara et al., 2008; Harrison et al., 2003). The
genes BMPR2, ACVRL1 and ENG were implicated in PAH pathogenesis and highlighted the
role of the TGF-β /BMP pathway in the disease. Candidate gene analyses were undertaken
to screen further members of the BMP pathway for potential deleterious variants, more
specifically the SMAD family (Nasim et al., 2011; Shintani et al., 2009). Three separate
studies run targeted sequencing screens and identified SMAD1 (n=1), SMAD4 (n=2) and
SMAD9 (n=3) variants in 348 PAH cases (Drake et al., 2011; Nasim et al., 2011; Shintani
et al., 2009). Functional analyses demonstrated a significant reduction of a downstream
BMP target gene Id2, but found an unclear impact on the canonical pathway for SMAD1
and SMAD4 (Drake et al., 2011; Nasim et al., 2011; Shintani et al., 2009). Finally, the PAH
association of TBX4 was suggested by a study of childhood-onset PAH cases (Kerstjens-
Frederikse et al., 2013). Patients were found to have overlapping deletions and a candidate
gene analysis of genes contained in the overlapping region resulted in the discovery of
TBX4 (Kerstjens-Frederikse et al., 2013). The study identified 6 TBX4 variants (mutations,
n = 3; deletions, n = 3) in 6 out of 20 children and one mutation in one out of 49 adult
patients with PAH (Kerstjens-Frederikse et al., 2013). Mutations in TBX4 are known to cause
small patella syndrome (SPS) and previously unrecognised features of SPS were identified
in all PAH patients with TBX4 mutations (Bongers et al., 2004; Kerstjens-Frederikse et al.,
2013). TBX4 is a required regulator of the embryonic development, part of the T-box gene
family (Naiche and Papaioannou, 2003; Sakiyama et al., 2003) and T-box gene mutations
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have been associated with several developmental disorders (Bamshad et al., 1997; Basson
et al., 1997; Kirk et al., 2007; Packham and Brook, 2003; Yagi et al., 2003). Mutations in
T-box transcription factor-encoding genes have also been found to lead to congenital heart
defects (Hoogaars et al., 2007; Stennard and Harvey, 2005).

Genes not directly related to the TGF-β signalling pathway were associated with PAH and
exploring potential novel disease causing pathways. Cellular stress response was implicated
in PAH by the discovery of variants in eukaryotic translation initiation factor 2 alpha kinase 4
(EIF2AK4). Whole exome sequencing (WES) identified biallelic recessive EIF2AK4 variants
as disease-causing changes by two separate groups in the PAH related diseases pulmonary
veno-occlusive disease or pulmonary capillary haemangiomatosis (PVOD/PCH) (Best et al.,
2014; Eyries et al., 2014). In total, the studies analysed 14 families followed by 31 unrelated
cases and identified 22 subjects with biallelic EIF2AK4 variants (Best et al., 2014; Eyries et al.,
2014). The identified gene EIF2AK4 is found to regulate cellular stress related angiogenesis,
including oxidative stress that is important in pulmonary hypertension development (Anthony
et al., 2004; Chaveroux et al., 2011; Donnelly et al., 2013; Fessel et al., 2013).

Nitric oxide (NO) signalling pathway was implicated by the revelation of the novel PAH
associated gene caveolin-1 (CAV1) (Austin et al., 2012). The study applied WES to analyse
a 3-generation family with multiple cases of PAH and an unrelated child (Austin et al.,
2012). Two frameshift variants were identified in the study, one in the family and one in the
child. Both variants were in highly conserved regions in CAV1, in close proximity of each
other and adjacent to a cysteine palmitoylation site (Austin et al., 2012). Caveolin-1 is a
main component of the caveolae plasma membrane, required for the anchoring process and
important for the receptor signalling cascades relevant to PAH, including the nitric oxide
pathway (Cohen et al., 2004; Engelman et al., 1997, 1998; Mathew et al., 2004; Patel et al.,
2007). Mutations in CAV1 have been described before adjacent to another palmitoylation
site and could explain the reduced caveolin-1 staining in PAH patients (Austin et al., 2012;
Hayashi et al., 2001).

The last pathway includes two separate genes from the potassium channel gene family,
which were associated with PAH (Ma et al., 2013; Wang et al., 2014). A larger WES PAH
study identified variants in the potassium channel, subfamily K, member 3 (KCNK3) also
called twik-related acid sensitive K+ (TASK-1) as disease-causing (Ma et al., 2013). In this
study, 13 patients with six separate KCNK3 heterozygous missense variants were identified
in three multi-member family with HPAH, 92 unrelated HPAH and and 230 unrelated
IPAH patients (Ma et al., 2013). One family member with an identified KCNK3 variant
developed the disease after recruitment and two unaffected family members in separate
families were also carriers of a variant, suggesting incomplete penetrance or of late-onset
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disease (Ma et al., 2013). The gene KCNK3 encodes a pH sensitive potassium channel,
which controls the resting membrane potential in PASMCs (Czirják and Enyedi, 2002;
Hartness et al., 2001; Olschewski et al., 2006). The second potassium channel gene is
the voltage gated shaker-related subfamily A, member 5 (KCNA5) identified by targeted
sequencing of known PAH causing genes as well as further genes of the potassium channel
gene family (Wang et al., 2014). The study identified a so-called “second hit” in KCNA5 in
addition to missense mutations in BMPR2 in one early onset patient with severe PAH (Wang
et al., 2014). Replication of a rare digenic genotype has not been observed and the significance
of the KCNA5 report requires caution in the absent of a comprehensive functional analysis.

Genes associated with PAH were predominantly discovered in small cohorts by family
based studies, but the interpretation of such results requires caution. Following novel
discoveries, additional functional work was performed for the majority of the discovered
genes and replication in independent cohorts provided sufficient evidence to confirm causality
except KCNA5. Earlier studies focused on candidate genes and genes in specific region,
but the availability of WGS allowed recent studies to screen for variants in all genes. The
majority of disease causing variants are novel, identified in unrelated cases and highlights
the role of rare variant in PAH.

3.2 Methods

The national institute for health research (NIHR) BioResource - Rare Diseases(BR-RD)
study recruited 9,224 subjects for 16 participating projects (see Tab. 3.1) and used whole
genome sequencing (WGS) to analyse their genomes. Individual WGS data were quality
controlled, resulting variants aggregated from 9,110 individuals and released for analysis to
all participating projects. The PAH project from the NIHR BR-RD study aimed to elucidate
the complete genetic basis of the rare disease PAH.

3.2.1 Study design

Subjects were recruited for the NIHR BR-RD study with the objective to identify the cause
of rare diseases using next generation sequencing techniques (see chapter 2.2.1 on page 18).
The PAH project was part of the NIHR BR-RD study and recruited mainly patients with a
diagnosis of PAH (see chapter 2.2.2 on page 18) for diagnosis and the discovery of novel
disease-gene associations. Whole genome sequencing (WGS) strategy was deployed at high
depth (≥ 15x coverage of at least 95% of the genome with an average depth of 30x) for
increased genotype accuracy (Bentley et al., 2008). The PAH disease cohort was compared
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against the remaining 15 non-PAH participating projects. Subjects for the PAH disease
and non-PAH control cohorts were selected based on calculated relatedness information as
well as collected phenotype data from the PAH project (see Fig. 3.2). The variant filtering
strategy was developed by characterising the known disease gene BMPR2 and aimed to
enrich for disease causing variants. All previously reported PAH disease genes were then
assessed for variants explaining PAH by applying the developed filter strategy. Following the
assessment, a case-control study design compared the unexplained PAH index cases with
unrelated non-PAH controls to determine a disease association with genes previously not
described in PAH. Significant associated genes were then assessed in more detail.

Figure 3.2 Overview of the analysis steps

3.2.2 Ethical approval

Cases were recruited by 16 projects listed in Tab. 3.1 for the NIHR BR-RD study. The PAH
project recruited patients from the same centres as the national cohort study of idiopathic
and heritable PAH (see 2.2.2 on page 18). For the PAH project, all cases had a clinical
diagnosis of idiopathic PAH, heritable PAH, drug- and toxin-associated PAH, or PVOD/PCH
established by their expert centre. Patients with known underlying cause of PAH (chronic
thromboembolic disease, congenital heart disease, connective tissue disease, HIV, liver
cirrhosis, left heart disease, chronic lung disease) were excluded. All PAH and non-PAH
patients or their parents provided written informed consent (UK Research Ethics Committee:
13/EE/0325), or local forms consenting to genetic testing in deceased patients and non-
UK cases. Blood and saliva samples were collected under written informed consent of
the participants or their parents for use in gene identification studies (UK Research Ethics
Committee: 08/H0802/32).
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Cardiovascular

Acronym Project

BPD Bleeding, Thrombotic and Platelet Diseases
PAH Pulmonary Arterial Hypertension
HCM Myofilament-gene negative Hypertrophic Cardiomyopathy
SMD Stem Cell and Myeloid Disorders
EDS Ehlers Danlos Syndrome

Infection & immunity

PID Primary Immune Disorders
SRNS Steroid Resistant Nephrotic Syndrome
PMG Primary Membranoproliferative Glomerulonephritis

Neuroscience

SPEED Retinal Dystrophies / Paediatric Neurology / Metabolic Disease
CSVD Cerebral Small Vessel Disease
NPD Neuropathic Pain Disorders

Other rare diseases (including rare cancers)

MPMT Multiple Primary Malignant Tumours
ICP Intrahepatic Cholestasis of Pregnancy

LHON Leber Hereditary Optic Neuropathy

Other

GEL Genomic England
CNTRL Control samples

Table 3.1 Recruiting projects and sample sizes
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3.2.3 Sample collection and whole genome sequencing

Blood samples were collected from rare disease patients recruited to NIHR BR-RD study by
participating NHS trusts and collaborating hospitals. The samples were sent to the Cambridge
translational genomics (CATGO) laboratory for DNA extraction and quality control before
being plated and submitted to Illumina for whole-genome sequencing (WGS).

Sequencing technology and protocols

DNA extracted from venous blood underwent whole-genome sequencing using the Illumina
TruSeq DNA PCR-Free Sample Preparation kit. The first 377 and 3,138 samples were
sequenced by Illumina on the HiSeq 2000 generating reads of 100 and 125 base pair (bp)
length respectively. The remaining samples were processed using the HiSeq X sequencer,
generating reads of 150 bp length. The agreed measurements for the sequence data were as
follows: ≤ 5% of insert sizes below two times the read length, at least 95% of non-N bases
on the autosome covered at ≥ 15x and at least 95% of bases along exons covered at ≥ 15x.

Software and data release information

The analyses were based on the reference data sets and software versions listed in Tab. 3.2
and 3.3 respectively unless stated otherwise.

Data security

The storage and computational infrastructure was provided by the High Performance Com-
puting service (HPCS) of the University of Cambridge. Access to the HPCS infrastructure is
provided through the cryptographic network protocol secure shell (ssh) and open only to a
specified list of internet protocol (IP) addresses. Data for the NIHR BR-RD were accessible
on a dedicated storage location. Access to the data required approval by the data access
committee. Researches were granted access after a successful applications and with the
necessary computational ability to analyse genomic data.

Sequence read alignment and variant calling

Illumina processed the sequence reads using the Isaac aligner and variant caller using
the version specified in Tab. 3.3 (Raczy et al., 2013). The genome reference consortium
human genome (GRCh) version 37 was used as the reference to align short reads and to call
variants. The reference sequence contained chromosomes 1 to 22, X, Y and mitochondrial
sequence. Manta and Canvas were deployed to call copy number variation (CNV) and
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Name Version Description

CADD v1.3 CADD score whole genome SNV and INDELs
CAGE peaks phase1and2 CAGE combined peak BED file

downloaded from the FANTOM 5 archive
Ensembl 37way GERP 75 Conserved regions in humans

based on eutherian mammals
Ensembl gene annotations GRCh37.75 Gene annotations in gene transfer format (GTF)
Ensembl Regulatory build 87 Gene regulatory build 20161117

gene feature format (GFF) downloaded from FTP
including HUVEC specific dataset

Ensembl VEP 84 Variant effect prediction for GRCh37
ExAC r0.3 Whole Exome frequencies
GERP hg19 Downloaded BigWig file from UCSC FTP
Human GRCh37 reference 75 Human autosomes, X and Y

downloaded from Ensembl FTP
Human GRCh38 reference GCA_000001405.15 Human primary assembly, EBV and

decay contigs downloaded from NCBR FTP
NIHR BR-RD 20170104-A Variant release of the

NIHR BioResource – Rare Diseases
Phenotype data 2017-03-05 PAH phenotype data release
PhyloP hg19 Downloaded 100way PhyloP BigWig file

from UCSC FTP
PhastCons hg19 Downloaded 100way PhastCons BigWig file

from UCSC FTP
UK10K 20130411 Exome and whole genome frequencies

Table 3.2 Reference data release versions used throughout the project.
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Name Version Info

agg v0.3.3.dev-31-gaa44755
BCFtools 1.3.1 including git commit bdb01d8
BEAGLE 4.1 executable beagle.22Feb16.8ef.jar downloaded
Canvas 1.1.0.5
ensemblVEP 1.10.3 R package
GENISIS 2.2.7
ggplot2 2.1.0
Isaac iSAAC-SAAC00776.15.01.27
Manta 0.23.1
MUMmer 3.23
perl 5.20.0
PLINK v1.90b21
Primus 1.8.0
Python 3.4.1
PyVCF 0.6.8 Python package
R 3.2.4
Samtools 1.3.1

Table 3.3 Software release versions used throughout the project

structural variation (SV) respectively (Chen et al., 2016b; Roller et al., 2016). Canvas
uses read coverage information, while Manta uses paired-end and partial read mapping
information to determine the breakpoints for SV and CNV and optimised for medium-sized
insertions or deletions (INDELs) up to 10 Kb. The resulting files were securely transferred
from Illumina to the dedicated storage on the HPCS. The WGS and genotype data were
transferred in binary sequence alignment/map (BAM) file format and variant call format
(VCF) respectively (Danecek et al., 2011; Li et al., 2009a). The single nucleotide variants
(SNV), multi nucleotide variant (MNV) and INDELs were delivered as VCF and genome
VCF (gVCF) files. A separate VCF files was provided for CNVs and SVs. Alignment and
variant summary statistics were provided in tab-delimited format and as portable document
format (PDF) files.

Quality control analysis

The coverage information from the BAM file was used to infer the gender and was compare
against the recorded gender. Summary statistics provided by Illumina were collected per
sample and analysed for outliers. The BAM summary included the number of reads (total,
aligned, duplicated paired, percent of bases with a base phred quality score greater or equal
to 30), mean coverage and fragment length (median, min, max, standard deviation). Variant
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measurements contained the counts of total, pass, ratio of heterozygous / non-reference
homozygous (Het/Hom) ratio, transition/transversion (Ts/Tv) ratio, in the database of single
nucleotide polymorphisms (dbSNP), in genes / exons / coding regions, stop lost, synonymous,
non-synonymous for SNV, insertions and deletions.

Sequence data backup and availability

The risk of loss of data was reduced by mirroring the alignment and variant files to an off-site
data centre. Alignment files were also submitted to the European Genome-phenome Archive
(EGA) at the EMBL – European Bioinformatics Institute (EBI) for public availability through
controlled access and as an additional backup.

File based variant normalisation and aggregation

The gVCF aggregation tool (agg) was used to normalise and aggregate SNV, INDELs, MNV,
no-call regions and reference call regions (Illumina, Inc., 2015). The normalization by agg
was based on the BCFtools norm implementation and included left-alignment / trimming
of INDELs and the decomposition of MNVs into SNVs part of the ingest1 command for
consistent representation (Danecek et al., 2011). The ingest1 step stored the normalised VCF
in binary variant call format (BCF) per sample, which were used by the ingest2 command to
pre-merge the BCF files in chunks of 200 samples. Selected pre-merged chunks were then
merged into a multi-sample VCF using the genotype command.

Detection of sample duplication

The detection of duplicated samples was based on a representative set of SNVs and the
deployment of the PLINK package to perform an identity-by-descent (IBD) analysis (Purcell
et al., 2007). The 20,000 SNVs were selected at the beginning of the project and were present
in 3,000 NIHR BR-RD samples and 2,504 samples of the 1,000 Genomes (1kG) project.
Selected SNVs had a minor allele frequency (MAF) > 0.05 in NIHR BR-RD, were retained
with PASS filter in all samples and existed in the 1kG project. Following the SNV selection,
the representative SNVs were extracted from the single sample VCFs, merged into a multi-
sample VCF file using BCFtools merge and LD pruning was performed using PLINK with
a window size of 50 bp, window shift of 5 and a variance inflation factor threshold of 0.2.
The remaining 14,721 autosomal, linkage disequilibrium (LD) pruned SNVs were used to
perform the IBD calculation. Pairs of samples with a relatedness measure (pi-hat) value >
0.9 were flagged as possible duplicated samples. Flagged pairs of samples were checked
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with the submitting centres and either one sample was removed as a confirmed duplication,
both samples were removed as mislabeled or were both passed as a confirmed case of twins.

Estimation of population and family structure

Ethnicities and relatedness were estimated based on a representative set of SNVs and the de-
ployment of the GENISIS package to perform PC-Air and PC-Relate respectively (Conomos
et al., 2015, 2016). The selected 35,114 autosomal SNVs were present on Illumina genotyp-
ing arrays (HumanCoreExome-12v1.1, HumanCoreExome-24v1.0, HumanOmni2.5-8v1.1),
did not overlap regions excluded following quality control or multiallelic sites in the 1kG
Phase 3 dataset (Sudmant et al., 2015). In addition, these SNVs did not have any missing
genotypes in NIHR BR-RD, had a MAF of 0.3 or above and LD pruning was performed
using PLINK with a window size of 50 bp, window shift of 5bp and a variance inflation
factor threshold of 2. The 2,110 samples from the 1kG project including the European
(EUR), African (AFR), South Asian (SAS) and East Asians (EAS) populations (excluding
the admixed American population) were merged with the NIHR BR-RD samples, filtered
on the selected SNVs and used to perform a principal component analysis (PCA) using
PC-Air considering the 1kG samples as an independent set. The scores of the leading five
principal components (PC) were modelled as data generated by a population specific multi-
variate Gaussian distribution and the corresponding mean and covariance parameters were
estimated. The likelihood was computed for the genotypes of every NIHR BR-RD sample
that it belonged to each subpopulation under a mixture of multivariate Gaussians model after
projecting the loadings for the leading five PC from the 1kG PCA. The population with the
highest likelihood was assigned to each sample, unless the highest likelihood was similar
to values from other populations, as expected for unrepresented populations or admixed
ancestry, and labeled as ‘other’. PC-Relate was used to identify related individuals in NIHR
BR-RD. We used the first 20 PCs from PC-Air to adjust for relatedness and extracted the
pairwise IBS and kinship values. The pairwise information was used by Primus to infer
family networks and calculate the maximum set of unrelated samples (Staples et al., 2014).

Data freeze for analysis

The latest available NIHR BR-RD variant data (see section 3.3.1 on page 64 for details) and
PAH phenotype data release (see chapter 2 on page 15 for a detailed description) were used
for the following analyses (see Tab. 3.2 for release dates).
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3.2.4 Definition of PAH and control cohort

Diagnosis and phenotype information were extracted for PAH project subjects included in
the NIHR BR-RD release. From these PAH subjects, patients were included in the affected
PAH adults (PAHAFF) cohort with an age ≥ 16 at date of diagnosis and a clinical diagnosis
of IPAH, HPAH or PVOD/PCH. Unrelated affected PAH adults or subjects with the higher
sequence identifier of related pairs were also included in the PAH index cohort (PAHIDX).
The maximum unrelated set of subjects was retrieved from the provided NIHR BR-RD release
and defined as the unrelated WGS cohort (UWGS10K) (see section 3.2.3 on page 54). The
unrelated non-PAH control group (UPAHC) was defined as the UWGS10K cohort excluding
all subjects part of the PAH project. In addition, the female, European and female European
subjects were identified as sub cohorts for each of UPAHC, PAHAFF and PAHIDX using
the genetically identified gender and population information. Files with the identifiers of the
defined three cohorts and nine sub cohorts were created and used for downstream analyses.

Variant file annotation

The aggregated variants were annotated using Ensembl’s Variant Effect Predictor (VEP)
version 84 (McLaren et al., 2010). The VEP annotation included consequence type prediction,
gene annotation, SIFT (Ng and Henikoff, 2003), PolyPhen-2 (Adzhubei et al., 2013) and
allele frequencies in 1kG (1000 Genomes Project Consortium et al., 2015). VEP defined the
annotated fields in the VCF header and stored the annotations as structured text as one ‘ANN’
entry in the info field. The structured text encoded a list of feature annotations separated by ‘,’
and each feature contained a list of annotation values for the defined fields separated by ‘|’.
Custom annotation was added for UK10K (UK10K Consortium et al., 2015), ExAC (Song
et al., 2016), GERP (Cooper et al., 2005), 100 way PhyloP (Pollard et al., 2010), 100 way
PhastCons (Siepel et al., 2005) and CADD (Kircher et al., 2014). The allele count (AC),
allele number (AN), hemizygous (AC_Hemi), homozygous (AC_Hom), heterozygous states
(AC_Het), allele frequency (AF) and minor allele frequency (MAF) were calculated for
the three defined cohorts (UPAHC, PAHAFF, PAHIDX) and nine sub cohorts using the
fill-tags plugin. I extended the fill-tags plugin for improved efficiency 1, which is part of
BCFtools (see Tab. 3.3).

Merging of copy number variants

Copy number variation (CNV) and structural variation (SV) were called in each samples
by applying Isaac copy number variant caller (Canvas, Illumina) and Isaac structural

1https://github.com/samtools/bcftools/pull/503

https://github.com/samtools/bcftools/pull/503
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variant caller (Manta, Illumina), which use different algorithms (Chen et al., 2016b; Roller
et al., 2016). The identified CNV and SV calls were first grouped into the seven reported
events (Canvas: deletion, duplication; Manta: deletion, tandem duplication, translocation,
insertion, inversion) for each sample using the library pyVCF. An R script was used to separate
autosomes from allosomes and stored them as BED files (R Core Team, 2016). Deletions
called by Canvas and Manta for a sample were combined with a reciprocal overlap of ≥ 20%.
The combined deletions required at least one PASS call and the support from both Canvas and
Manta to be selected. These selected deletions were compared against the Zarrei database
containing previously published deletions (Zarrei et al., 2015). Deletions overlapping ≥ 50%
with database entries were removed using bedtools and R scripts (Quinlan and Hall, 2010).
The remaining deletions were assessed for reciprocal overlap of ≥ 50% across samples
and the number of samples with overlapping deletions recorded. Gene annotations from
protein-coding canonical transcripts were added to deletions, which overlapped within a
10bp window of an exon. The annotation was extracted from Ensembl gene annotations (see
Tab. 3.2).

3.2.5 Rare variant selection

The merged VCF file was filtered for PASS in the FILTER column to retrieve variants with
an OPR greater or equal to 0.8 using the filter command of BCFtools. Autosomal
variants with a MAF greater or equal to 1 in 10,000 in UPAHC, UK10K, ExAC and 1kG
were excluded by applying the filter command of BCFtools and stored as a rare variant
set. The X chromosome was filtered separately to reflect that females contain two alle-
les compared to one allele in males. The frequency was adjusted to 1 in 8,000 in order
to take into account the haploidy in males and to retain variants with an AC of 1 in UP-
AHC. The rare variants were further filtered using a regular expression query as part of
BCFtools filter to select variants with consequence types annotated as protein truncat-
ing variant (PTV) (splice_acceptor_variant, splice_donor_variant, stop_gained, stop_lost,
frameshift_variant, start_lost, transcript_amplification, transcript_ablation) or missense vari-
ants (missense_variant, inframe_insertion, inframe_deletion, protein_altering_variant).

Protein coding variation filtering in BMPR2

Filtered and annotated variants from the BMPR2 loci were extracted using the filter command
of BCFtools and further processed using python, PyVCF package and custom code to parse
VEP annotation. The following fields were extracted for the assessment: canonical (yes/no),
consequence type, gene name, UPAHC MAF, combined annotation dependent depletion
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(CADD) PHRED score, SIFT score, PolyPhen score, UK10K WES AF, UK10K WGS AF,
EXAC AF, 1kG MAF and subject IDs with genotypes.

Non-coding region analysis upstream of BMPR2

In order to highlight interesting locations of the 5KB upstream regions of BMPR2, the
regulatory features including promoter position information were extracted from the GRCh37
Ensembl regulatory build. The human CAGE peaks BED file was used to define transcription
start site (TSS) locations and conserved regions were extracted from the file provided by
Ensembl (see Tab. 3.2). Extracted region information was translated into BED format and
BCFtools view was used to extract the corresponding variation and genotype information
for the analyses. The region and variant information were visualised using the integrative
genomics viewer (IGV) (Robinson et al., 2011a).

Copy number variation analysis of BMPR2

The merged Manta and Canvas deletions were extracted for the BMPR2 locus. Deletions
were removed, if the entry had more than, or equal to, 1 in 1,000 overlapping entries
recorded in WGS10K subjects, or no confident support was provided by Manta or Canvas.
The filtering was performed in R. Coverage plots were created by extracting regions with
SAMtools, calculating the coverage using BEDtools and the mean was calculated over small
regions using Python.

Identification of distantly related cases

The NIHR BR-RD study prepared aggregated variant releases during various points of the
study and used the date of the data freeze as release identifier. The analysis of shared
segments of the genome was only performed for one release identified as 20160212-A. The
NIHR BR-RD 20160212-A release consisted of 8,066 subjects and included 5,707 unrelated
non-PAH controls, 864 affected PAH adults and 856 affected PAH adult index cases. For the
analysis, SNVs were selected with an AF greater than 0.05 in 1kG, an AF greater than 0 in
NIHR BR-RD and with a filter flag of PASS by using the filter command from BCFtools.
BEAGLE was used to phase the genotypes of subjects and to identify shared segments
between pairs of subjects (Browning and Browning, 2009). Only pairs of subjects were
considered, where both subjects were part of the PAH cohort. Shared segments overlapping
the start of the BMPR2 gene (position 2:203241659) were selected for the BMPR2 loci
analysis. Filtering was performed using R.
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3.2.6 Filter and analyse variants

The variant filtering strategy was developed based on the BMPR2 gene to enrich for delete-
rious variants (see section 3.3.3 on page 71). The same filter strategy was then applied to
identify deleterious variants in previously reported PAH disease genes (see 3.3.4 on page 89).
Finally, all variants were filtered using the same strategy. For the developed filter strategy,
variants were removed from the annotated, rare variant set if the variant was not present
in the cases or control cohort (AC > 0 required for PAHIDX or UPAHC). PTV, missense
and combined filtering strategies were applied for the remaining variants and regarded only
annotations from the canonical transcript of protein coding genes (see Fig. 3.3). First, variants
were selected for the PTV filter with a consequence type of frameshift, splice donor / acceptor,
start lost, stop lost / gained or transcript ablation / amplification. Second, the missense filter
included consequence types of missense, inframe insertion / deletion or protein altering vari-
ant. Variants were excluded with a CADD score of less than 15, or both SIFT and PolyPhen-2
prediction of tolerated and benign respectively. Third, the combined filter included variants
passing either the PTV or missense filter. The variant sets retrieved by the PTV, missense or
combined filter were each analysed separately and was performed using the ensemblVEP
package (McLaren et al., 2016). For each protein coding gene, we calculated the number of
subjects carrying filtered variants in cases and in controls. If a subject carried more than one
variant for the same gene, the subject was counted only once. The total number of carriers in
each cohort was then used to test for over-representation of variants in cases for that gene. A
one-tailed (greater) Fisher’s exact test was applied with Bonferroni post hoc correction for
multiple testing to determine the p-values for genome-wide significance. Subjects with likely
deleterious variants identified in previously reported genes were removed from the PAHIDX
cohort to increase the power in detecting signals possibly masked by these individuals in
novel genes. The remaining PAHIDX cases were extracted from the recorded subjects per
gene and the same association tests were applied as described above.

Rare loss of copy number variation analysis

Copy number variation (CNV) and structural variation (SV) were called from the WGS data
(see chapter 3.2.3 on page 50). With each data release a CNV file was provided, that included
merged Canvas and Manta calls described in chapter 3.2.4 on page 55. These CNV events
were analysed to identify an over-representation of deletions in the PAH cohort compared
to controls (see chapter 3.3.5 on page 100). Canvas uses read coverage information, while
Manta uses paired-end and partial read mapping information to determine the breakpoints for
SV and CNV and optimised for medium-sized INDELs up to 10 Kb. Each deletion call had a
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Figure 3.3 Data flow diagram showing different filtering strategies evaluated by a common
burden test.

quality score provided and a filter flag to highlight low as well as high confident (‘PASS’) calls.
In addition, deletions shorter than 10Kb were flagged as ‘CLT10kb’ in Canvas, deletions
longer than 10Kb were flagged as ‘MGE10kb’ by Manta. We used R to select deletions with
less than 1 in 1,000 overlapping entries recorded in 9,110 WGS10K subjects and present in
either PAHIDX or UPAHC. The assessment of deletions required independent support from
both Manta and Canvas with at least one confident (‘PASS’ filter flag) call. Calls supported
by both algorithms without a ‘PASS’ flag or by only one method were removed. False positive
deletion calls were reduced by requiring support from two algorithms assessing different
type of evidence. The stringent setting also removed valid deletion calls (see section 3.3.3 on
page 79), which reduced the chance of finding novel gene associations. The Ensembl api and
the Ensembl gene annotation (see Tab. 3.2) were used to define exonic regions for canonical
transcripts, which are protein coding. The defined exonic regions were extended by 10bp for
each start and end position to account for splice region deletions and imprecise breakpoint
positions. The GenomicRanges package was used to select deletions overlapping these
extended exonic positions. The selected variants were tested for association as described
above.

Confirmation of CNVs using read depth and homozygosity

The gene GDF2 harboured three individuals with deletion called by Canvas, while Manta
provided inversion calls for the same region. These calls (deletion and inversion) were
labelled as high confidence (‘PASS’) by both callers. A visual inspection was not conclusive



60 Novel disease gene discovery

due to the size of the deletion. Alternative methods were developed to assess the correctness
of the deletion calls due to the discordance of calls from Canvas and Manta. These included
the comparison of the exonic coverage between genes and the heterozygous / homozygous
(het/hom) ratio. For the coverage analysis, the exonic start and end positions for the canonical
transcripts of GDF2 and BMPR2 were selected from the Ensembl gene annotation file. The
read depth for each exonic position was extracted using SAMtools depth and the average
depth calculated for each gene per sample. Deletions were validated in GDF2 with a drop of
coverage <50% relative to BMPR2. For visual inspection, outliers were highlighted with the
standard cut-off of the first quartile (Q1) - 1.5x interquartile range (IQR) for BMPR2 and
GDF2. The het/hom ration was calculated by selecting the variant calls from each sample
for the genomic region 10:48400000-48600000, which overlaps GDF2. The variants were
extracted from the single sample VCF file with a minimum allele count of 1 and a ‘PASS’
filter flag. The number of heterozygous (HET) and homozygous (HOM) alternate variant
calls was counted for the selected region and the ratio (HET divided by HOM) was calculated
using R. The statistical significance for the coverage and het/hom ratio were determined using
a one-sided (less), unequal-variance Student’s t-test, comparing samples with a Canvas call
with the remaining PAH samples.

Reference genome assembly comparison

The Manta algorithm called an inversion overlapping the GDF2 region in 90% (n=6704) of
subjects using paired-end and split-read information. Such high number of inversion calls
indicated a possible alternative, incomplete or misrepresentation of the GRCh37 reference.
To assess these possibilities, the reference genome GRCh37 and GRCh38 of the wider
GDF2 loci were compared for structural rearrangements. The fasta sequence for the region
10:45000000-50000000 was extracted for both reference assemblies using SAMtools faidx.
The NUCmer tool from the MUMmer package was used to perform an all versus all comparison
of the extracted reference region. A sequence alignment was performed with nucmer to
detect minimum clusters of 1,000 bp with a maximum gap of 500bp gap between adjacent
matches in the cluster. The alignment was run on both strands and filtered the longest and
consistent alignments found for the reference query sequence. The graphics were generated
from the filtered information by mummerplot.



3.3 Results 61

3.3 Results

3.3.1 Whole genome sequencing

The latest data release (20170104-A) of the NIHR BR-RD study comprises 9,110 samples
from 15 different rare disease cohorts and included multiple quality control steps described
later (see Fig. 3.4). Each data release provides sample metadata, where whole blood samples
were collected, sequenced, assessed and selected over a four year time period. The recruiting
projects and their sample sizes are listed in Tab. 3.4 grouped by research interest. The largest
five projects (GEL, SPEED, PID, BPD and PAH) account for 76% (n=6,953) of the samples.
The whole genome sequencing (WGS) and accompanying sample data produced by Illumina
comprised on average 70 gigabyte (GB) per sample. The sample data amounted to 630
terabytes (TB), which was transferred to the high performance computing service (HPCS) for
automated validation and quality assessment. Sequence data arrived on average in batches of
131 samples and the quality measurements of the sequence data stored in binary sequence
alignment/map (BAM) files were collected for each batch. Fig. 3.5 visualises the effect of
protocol changes during the course of the project. There was a shift in (a) fragment size
between 100 and 125 bp and subtle quality differences between 100 and 125 bp protocols
in respect of duplication (b) and read length (c,d). A significant increase was observed
in duplication rate (c) and a drop in the second read quality (d) for the 150bp protocol.
The changes between the fragment sizes were within the defined quality specifications
(see chapter 3.2.3). Protocol differences were further assessed after variant calling (see
chapter 3.3.1).

Figure 3.4 NIHR BR-RD analysis and quality control steps
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Cardiovascular

# Samples Acronym Project

1,167 BPD Bleeding, Thrombotic and Platelet Diseases
1,131 PAH Pulmonary Arterial Hypertension

241 HCM Myofilament-gene negative Hypertrophic Cardiomyopathy
221 SMD Stem Cell and Myeloid Disorders
15 EDS Ehlers Danlos Syndrome

Infection & immunity

# Samples Acronym Project

1,308 PID Primary Immune Disorders
249 SRNS Steroid Resistant Nephrotic Syndrome
151 PMG Primary Membranoproliferative Glomerulonephritis

Neuroscience

# Samples Acronym Project

1,384 SPEED Retinal Dystrophies / Paediatric Neurology / Metabolic Disease
244 CSVD Cerebral Small Vessel Disease
168 NPD Neuropathic Pain Disorders

Other rare diseases (including rare cancers)

# Samples Acronym Project

521 MPMT Multiple Primary Malignant Tumours
261 ICP Intrahepatic Cholestasis of Pregnancy
71 LHON Leber Hereditary Optic Neuropathy

Other

# Samples Acronym Project

1,963 GEL Genomic England
15 CNTRL Control samples

Table 3.4 Samples included per project
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Sequence based gender calling

The gender was detected of delivered samples using the difference in read coverage informa-
tion between the autosomes and the allosomes. The sequence-based gender was compared to
the self reported gender and checked for discrepancies. For 99.8% (n=9,095) of the samples
a reported gender was available, comprising 3,907 (43%) males and 5,188 (57%) females.

Whole genome variation

Variant quality and summary statistics were collected and assessed across batches to detect
outliers and to estimate the impact of protocol changes to the analysis. The batch effect of
read length changes is highlighted in Fig. 3.6 for (b) transition/ transversion (Ts/Tv), (c)
number of SNVs and (d) number of INDELs while there was no differences in (a) the number
of synonymous / non-synonymous variants. The increase of read length reduced the Ts/Tv
and one sample was found to have an unexpected low value of 2.05. The number of (c) SNVs
and (d) INDELs show a significant increase of variants in 150 bp read length compared to
the rest. Outliers mainly present with increased number of variants. The increase is not read
length specific and suggests to reflect genetic diversity within the NIHR BR-RD cohort.

Sample duplication detection

We screened incoming samples for duplicated submissions, so that one of the samples from
the same subject could be removed from the analysis. Duplications occurred due to the
same individual being recruited twice in different hospitals to the same project, or the same
individual being recruited by different projects, or the same sample being sent twice for
sequencing. The relatedness of pairs of individuals was calculated using the identity-by-
descent (IBD) method providing the pi-hat score to identify duplicated samples. Identified
duplicates were manually checked to avoid removing genuine twins. Fig. 3.7 shows the clear
separation of the duplicated pair of samples or twins with a pi-hat score close to 1 compared
to the rest. From the 9,224 sequenced samples, there were 1.2% (n=104) samples removed
due to duplication.

Sample selection

The variation information from 9,224 samples were available and the quality control as-
sessments excluded 114 samples. The exclusions are due to missing contract specifications
(n=1), mislabelling (n=9) and duplication (n=104). The remaining 9,110 subjects assemble
the 20170104-A release. After the variant quality assessment and sample selection, we
normalised, aggregated and annotated the single sample data sets as described below.
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Figure 3.7 Detection of duplicated samples. The pi-hat score is a measure of relatedness
between pairs of samples. Pairs of samples with a pi-hat score greater than 0.9 were regarded
as duplicated or twins. One samples of each duplicated pair was removed.
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Variant normalisation and aggregation

The genome variant call format (gVCF) files for the 9,110 subjects were used for the
aggregation process. As a first step, we normalised the variants from the gVCF files for a
consistent representation of SNVs and INDELs. On average each individual presents with 4.3
million variants. The normalised variants from the single sample gVCF files were aggregated
into one multi-sample VCF file containing 291 million variants (84% SNVs, 15% INDELs,
1% others) for 9,110 subjects.

Variant noise reduction

The normalised samples were aggregated into one multi-sample VCF file as described above,
where each variant has a genotype and associated values for each sample. The collated
information allows the identification of common and rare variants, but does not distinguish
between biological and technical events. The AGG tool provides aggregated annotation
regarding the call rate (CR) and pass frequency (PF), that describes the proportion of non-
missing genotypes and proportion of PASS calls of alternate genotypes respectively. To
distinguish between biological and technical variants, I made use of the CR, which measures
the ability to call alleles for a genomic position, and pass frequency (PF), which is indicating
the consistency of confident calls for a given position. The combined overall pass rate (OPR
= CR x PF) accounts for challenging regions that are difficult to call. The OPR distribution of
variants was compared with the minor allele frequency (MAF) in NIHR BR-RD (see Fig. 3.8).
For a random sample of 1% of variants, The comparison shows an enrichment of rare variants
(MAF <0.5%) on both OPR extremes (0 and 1), while low-frequency (0.5%≤ MAF <5%)
and common variants (MAF ≥5%) are located closer to OPR 1. This suggests that variants
called in more samples contain less technical noise and were called with more confidence.
To determine the OPR cutoff, I selected low-frequency and common (MAF ≥0.5%) SNVs,
calculated the first quartile (Q1) - 1.5*IQR and the resulting value of 0.807684 was rounded
to one decimal place (0.8 OPR). The inclusive OPR of 0.8 was then used to reduce technical
artefacts and enrich for true biologically events. The filtering retained 56% of variants with
an OPR ≥0.8 (see Tab. 3.5).

SNV INDELs others Out of total

All variants 84% 246M 15% (42M) 1% (3M) 100% (291M)
≥ 0.8 OPR 89% (145M) 10% (17M) 1% (2M) 56% (164M)

Table 3.5 Count of variants per type. The table shows the breakdown of different variant
types for all variants and filtered for high confident (≥ 0.8 OPR) variants only.



68 Novel disease gene discovery

Figure 3.8 Variant exclusion based on OPR distribution. The calculated OPR is compared to
the MAF of variants. The darker areas indicate an enrichment of variants close to OPR 0 for
rare and close to 1 for rare and common variants. The red line indicates the selected cut-off
of 0.8. Variants with an OPR greater or equals to 0.8 were labelled as PASS.
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Population and family structure

We assessed the family structure and geographical ancestry of individuals using 1kG and
performing principal component analysis (PCA). The NIHR BR-RD subjects with their
assigned 1kG population are highlighted in Fig. 3.9. We identified 80.2% European (n=7,307),
9.2% Other (n=844), 7.2% South-Asian (n=649), 2.3% African (n=213), 0.08% East-Asian
(n=78) and 0.02% Finnish-European (n=19) in NIHR BR-RD. There were 36.1% related
individuals (n=3,293) part of 1,178 families (with two or more individuals) in NIHR BR-RD.
The maximum set of unrelated individuals comprises 7,493 (82.2%). In addition, the total
number of variants varies between population and African subjects have on average an
increase of 20% compared to the rest shown in Fig. 3.10. The ‘Other’ population were
uncategorised samples and shows the largest distribution of values.

Figure 3.9 Principal component analysis (PCA) of subjects with the assigned ancestry based
on the 1kG data. The NIHR BR-RD samples are indicated as points and the colour represents
the assigned population.

Variant annotation

The identified population and relatedness information were used to calculate the MAF for
unrelated (UBRG) and unrelated European subjects (UBRG_EUR) in NIHR BR-RD. The
301M normalised variants were annotated with the calculated MAF, MAF from 1kG, ExAC
and UK10K and with the OPR, consequence type, deleteriousness and conservation scores
as defined in methods.
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Figure 3.10 Difference in number of variants based on ethnicity. The number of (a) SNVs
and (b) INDELs is counted in samples and shown per ethnicity. The African population show
an increased number of variants compared to the rest. Unassigned samples in the ‘Other’
population are more diverse.
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Copy number variant aggregation and annotation

The deletions called by Canvas (n=4.7M) and Manta (n=61.7M) were collected for 9,110
NIHR BR-RD samples. We merged 2.8M deletions with sufficient overlap between Canvas
and Manta, of which 2.6M were supported by at least one PASS call. These deletions were
filtered for a frequency of less than 1 in 1,000 in NIHR BR-RD, which retained 66K and 15K
for the whole genome and overlapping protein coding exons respectively.

3.3.2 Definition of PAH and control cohort

The NIHR BR-RD consists of 15 rare disease projects (see Tab. 3.4 on page 62) of which
one is PAH. The PAH cohort recruited mainly unrelated idiopathic or heritable PAH patients,
while some of the other disease cohorts focussed on the recruitment of related subjects. For
the genetic analysis, 1,131 individuals from the PAH cohort were matched with phenotypic
information from OpenClinica (OC) to exclude unaffected subjects (n=22), subjects with
an age of diagnosis <16 (n=22) due to likely different genetic etiology in children (Ma and
Chung, 2017) and subjects with diagnosis other than idiopathic/heritable PAH or PVOD/PCH
(n=39). This resulted in 1,048 affected PAH adults (PAHAFF) including 10 affected related
individuals, 1,038 unrelated PAH index cases (PAHIDX) and 6,385 unrelated non-PAH
controls (shown in Fig. 3.11) to be included in the following analyses.

The suitability of the control cohort was assessed in terms of ethnicity by comparing the
proportion of samples belonging to each ancestry in cases and controls. The cohorts were
further separated by gender (shown in Fig. 3.12) to allow for the increased female ratio in
PAH. We found a comparable representation of ancestries in the gender specific cohorts. The
largest ethnic group was Europeans and comprising 84.5% (n=878) and 79% (n=5,089) of
the PAHIDX and UPAHC groups, respectively. Ancestral diversity represents a challenge
to the identification of causal variants due to population specific variation and a matched
control cohort helps to control for possible ancestral differences in rare variant frequencies.

3.3.3 Variant characterisation in BMPR2

Previous studies have reported disease causing variants in BMPR2 and determined the
frequency in familial and idiopathic cases based on the aggregation of small studies (Evans
et al., 2016). We used the well characterised gene BMPR2 to develop filter strategies, assess
prediction tools, describe the mixture of protein truncating variants (PTV) (i.e. frameshift,
start lost, stop gained, stop lost, splice donor and acceptor site) and missense (including
inframe insertions and deletions) variants and to establish the frequency of rare coding
variants in this large cohort. The first filter strategy was to remove common variants in
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Figure 3.11 Diagram summarising the analyses. The number of subjects part of the NIHR
BR-RD release is listed on the top and each white box below represents a separate analysis.
Cases and control cohorts included in these analyses are listed in the orange and green boxes
respectively. The developed filter strategy (red border) is applied by multiple analyses and
highlighted by the red arrows. Identified PAH variant carries (orange border) are removed
from the unrelated PAH index cases (PAHIDX) to create a cohort without identified variant
carriers (PAHIDXwo). The applied burden test identifies novel disease-gene associations
with a Pad j <0.05 highlighted in bold.
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Figure 3.12 Gender specific ethnicity ratio of subjects for PAHIDX and UPAHC. Ethnicities
represented in cases were equally represented in the control cohort. The biggest ethnic group
in both cohorts were Europeans.
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the PAH cohort by filtering on a minor allele frequency of less than 1 in 10,000 in the
above defined unrelated non-PAH controls, 1000 Genomes Project (1000 Genomes Project
Consortium et al., 2015), UK10K (UK10K Consortium et al., 2015) and ExAC (Lek et al.,
2016). This retained variants with an AC of 1 in UPAHC, and was adjusted to 1 in 8,000
for the X chromosome. The adjustment was based on a male ratio of 44% and an expected
X chromosome AN of 9,938 for UPAHC. The effect of this filtering strategy on unrelated
non-PAH control and affected PAH cases is shown in Fig. 3.13a and 3.13b, and reduced the
number of missense variants down to 75% (n=58) listed in Tab. 3.6. One missense variant
was found to be shared between cases and controls, but the number of PTVs remained the
same. This analysis supported the hypothesis that PTVs are highly disruptive and rare in
disease causing genes compared to missense variants. Missense variants alter or reduce the
function based on their protein position and often require additional functional and structural
prediction to assess their impact. Premature termination codons created by PTVs causes the
degradation of mRNAs by nonsense-mediated decay (NMD), but some truncated proteins
can still be partially or fully functional depending on the position of the variant (Holbrook
et al., 2004). The lack of variants at the end of BMPR2 in PAHAFF (see Fig. 3.13) is an
indication, that missense variants and PTVs in this region might not effect the function of the
protein.

Our second filtering strategy was to remove likely benign variants based on deleteri-
ous predictions, which included the combined annotation dependent depletion (CADD)
deleteriousness score (Kircher et al., 2014), SIFT (Ng and Henikoff, 2003) and PolyPhen-
2 (Adzhubei et al., 2013). The CADD score combines 63 annotations including DNA
conservation and protein function and a score between 10 and 20 is generally accepted as
deleterious. In order to determine a CADD cut-off, I selected the values from missense
variants from the PAHAFF cohort, calculated the Q11.5x IQR and the resulting value of
15.22719 was rounded to the integer 15. The selected cut-off value of 15 was then used to
remove the most unlikely causative variants (shown in Fig. 3.14) and reduced the missense
variants further down to 70% (n=54). The previously found variant shared between cases and
controls remained. Further analysis of the remaining variants revealed SIFT and PolyPhen-2
predictions of tolerated and benign, respectively, which we regarded as ambiguous. Exclud-
ing these ambiguous variants reduced missense variants to 62% (n=48), which removed
variants shared between cases and controls and had no effect on the frequency of PTVs.
The combined exclusion of variants based on allele frequency and functional predictions
retrieved the most likely disease causing candidates. Filtering on a single value did not
achieve the same results even though the CADD score includes protein prediction scores.
The measurement was based on the ability to remove variants shared between cases and
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Figure 3.13 Visualisation of the effect of the filter strategy comparing cases and non-PAH
controls using lollipop plots. Variants (a) unfiltered and (b) filtered for 1 in 10,000 in
UPAHC are displayed for affected PAH cases and unrelated non-PAH controls. Variant
types are separated by colour. Missense variants are further separated based on SIFT and
PolyPhen-2 predictions of deleterious and damaging (deleterious), tolerated and benign
(benign) respectively or labeled as prediction uncertain for the remaining. The increase in
lollipop diameter relates to an increase in number of samples with the same variant.
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controls. The stringently filtered missense or PTVs in BMPR2 explained 12.7% (n=134)

MAF CADD SIFT and Variants Cases Control Fisher’s
<1 in 10,000 ≥ 15 PolyPhen-2 (non-/missense) exact p-value

no no no 155 (78 / 77) 141 (13.5%) 52 (0.8%) 9.9E-80
yes no no 136 (78 /58) 138 (13.2%) 26 (0.4%) 4.2E-93
yes yes no 132 (78 /54) 136 (12.9%) 25 (0.4%) 3.4E-92
yes yes yes 126 (78 / 48) 134 (12.7%) 20 (0.3%) 2.0E-94

Table 3.6 Summary of filtering strategy. The rows of the table represent different filter
settings and the resulting variant counts and number of subjects part of the affected PAH
cases (PAHAFF) or unrelated non-PAH control (UPAHC) cohort (no double counting).
The MAF filter used to the unrelated PAH control cohort, ExAC, UK10K and 1kG. The
recalculated CADD scores provided by scoring service were used for variants with no CADD
score annotation part of variant effect predictor.

of affected PAH cases, of which 29% (n=39) were stop gained, 29% (n=39) frameshift,
27.7% (n=37) missense, 9.7% (n=13) splice donor, 3.7% (n=5) splice acceptor and 1% (n=2)
inframe insertion / deletion. A closer inspection of the consequence types revealed two splice
region variants within 3 cases (one variant found in two subjects) with a CADD score ≥ 15.
Splice region variants are regarded to have a lower impact and were not part of the analysis.

The developed filtering strategy aimed at removing variants shared between affected PAH
and non-PAH control cases to enrich for likely disease causing variants. Remaining variation
in BMPR2 included subjects from both cohorts, affected PAH and non-PAH control. The
position of the variant in the genome was not taking into account, but showed a depletion
of variants at the end of BMPR2 in affected PAH cases. The lack of variation suggests that
variants near the 3‘ end do not effect the function of BMPR2 and non-PAH controls could
wrongly be assigned a diagnosis of PAH. At the same time, the filtering strategy is also likely
to remove variants from PAH patients, which cause the disease due to the stringent filtering
criteria and the incomplete penetrance. The filtering strategy does show an enrichment of
affected PAH cases compared to non-PAH controls, but would need to be reconsidered for
diagnostic purposes.

Non-coding region upstream of BMPR2

The foregoing analysis showed the effectiveness of the chosen filter strategy to enrich for
likely deleterious variants in index cases. Therefore, the same MAF and CADD score
filters were used to explore non-coding regions upstream of BMPR2. The considered region
extended 5 Kb upstream from the BMPR2 translation start site and overlapped with the
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Figure 3.14 Density plot comparing the CADD Phred score distribution for BMPR2 missense
variants in affected PAH (PAHAFF) and unrelated non-PAH subjects (UPAHC). The line
indicates the chosen filter value of 15, aimed to reject likely benign variants and lies between
the community accepted values of 10 and 20.
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annotation of cap analysis of gene expression (CAGE) for transcription start sites (TSS),
genomic evolutionary rate profiling (GERP) elements for conserved regions and ENSEMBL
regulatory build for regions involved in gene regulation (see Fig. 3.15).

The ENSEMBL regulatory build (see Tab. 3.2 on page 51) included many different cell
types. For a more focused analysis, the human umbilical vein endothelial cells (HUVEC)
specific dataset was downloaded to represent a PAH relevant cell type and to retrieve a cell
type specific feature status. The feature status describes the activity levels of a region with
epigenetic signature for ACTIVE (active epigenetic signature), POISED (potential to be
activated), REPRESSED (repressed), INACTIVE (no epigenetic modifications) and NA (no
available data). Open chromatin and promoter feature (see Fig. 3.15) were annotated as
INACTIVE and ACTIVE respectively in HUVEC. On closer inspection of the features, the
identifiers in the release did not match with the displayed features from the ENSEMBL
website. The source for the HUVEC experiments were listed on the ENSEMBL website
and were provided by the encyclopedia of DNA elements (ENCODE) project (Consortium,
2012). The DNase-seq HUVEC experiment in ENCODE specifically supported the open
chromatin feature in ENSEMBL while the broader histone modification marker H3K27ac
covered both features (see Fig. 3.15). A narrower region compared to H3K27ac would
be beneficial to locate smaller functional regions in order to locate likely disease causing
variants. Additional supporting experiments from ENCODE for the region is not shown.
Chromatin state segmentation analysis for HUVEC based on ENCODE aggregated all
experiments and annotated the same regions as ‘strong enhancer’ and ‘active promoter’
respectively (Ernst et al., 2011). The HUVEC specific activity status for the open chromatin
feature was discordant between ENSEMBL and ENCODE. Further work is required to
establish an unambiguous dataset of a HUVEC or other relevant cell types that includes the
latest available data for an in-depth analysis.

The Fig. 3.15 also shows rare (filtered using MAF) and CADD (filtered by MAF and
CADD score) variants in cases and controls. These variants were close to regions with
TSS and conserved regions. The number of variants for PAH affected cases and unrelated
PAH controls are listed in Tab. 3.7 and does not identify an over-representation of variants.
All variants filtered by CADD overlap conserved regions and highlights the composition
of the CADD score, which includes GERP scores amongst other conservation scores. For
comprehensive CADD annotation, the 211 rare variants (45 variants had no annotated CADD
score) were submitted to the CADD scoring service for reannotation. The updated CADD
scores identified one additional variant with a score ≥ 15 for a control subject. In total, the 5
Kb upstream region contained 211 rare variants of which 27 variants had a CADD score ≥
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15 and comprised 5 PAHAFF cases and 21 UPAHC (one subjects found with two variants)
controls.

Figure 3.15 Rare deleterious variants in region upstream of BMPR2 for cases and controls.
Variants were filtered by 1 in 10,000 in unrelated PAH controls (rare) and retained variants
with a CADD score ≥ 15 (CADD). The CAGE annotation identifies confident (red) and
less confident (blue) TSS regions. Ensembl regulation annotation shows a open chromatin
region followed by a promoter region overlapping with the 5’ UTR region of the BMPR2
gene model. HUVEC specific ENCODE data for DNase-seq (open chromatin), activation
(H3K27ac) and chromatin state segmentation provide support for the Ensembl regulatory
features.

Region #PAH affected #unrelated Controls Fisher’s exact p-value

Promoter 4 20 0.7665
Regulatory features 4 20 0.7665

Conservation 5 20 0.3853
TSS 1 6 1

3 Kb upstream 5 20 0.3853
5 Kb upstream 5 20 0.3853

Table 3.7 Number of identified cases and controls of rare variants filtered by CADD score.
The rows provide the count for the number of unique subjects containing a variant in different
regions. No significant enrichment was found.

BMPR2 copy number variation

Structural variation at the BMPR2 locus has been described in previous studies (Machado
et al., 2015). The copy number variation (CNV) analysis assessed deletions of exons encoding
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the BMPR2 gene in the NIHR BR-RD cohort. The complementary tools Canvas and Manta
were applied that use the read coverage and read alignment information, respectively, to
call deletions. Confident deletion calls were identified with a ‘PASS’ flag in the VCF
file, while low quality calls receive other tool and context specific flags. Our conservative
approach considered deletions called by both tools, filtered for deletions with a NIHR BR-RD
frequency of less than 1 in 1000 (n=9.11), and removed previous published deletions. Using
this approach, I identified deletions in 23 PAH cases and no controls that at least partially
overlap one or more BMPR2 exons. Every exon of BMPR2 was deleted in at least one subject
and we identified 5 subjects carrying deletions that covered the entire BMPR2 gene region
shown in Fig. 3.16. For the BMPR2 locus, the same deletion called by Canvas and Manta
overlapped on average 93% and 95% respectively with each other and all breakpoints were
located in the intronic space, except for one Canvas start position.

Figure 3.16 Deletions overlapping BMPR2 protein coding exons. (a) Identified 23 subjects
with deletions overlapping BMPR2 exon. The size of the deletions ranged from deleting a
single BMPR2 exon (4.1 Kb deletion) to deleting 37 protein coding genes (3.7 MB deletion).
(b) BMPR2 focused view shows deletions affecting one or more exons. (c) IGV screenshot
highlighting the change in read coverage for selected samples with deletions.

After this conservative analysis, further investigation revealed low quality and tool
specific deletions for Canvas (cases=7, control=2) and Manta (cases=41, control=189) with
an average size of 12 Kb and 125 MB respectively. I decided to focus first on the Canvas
only calls due to the average length. Seven additional PAH subjects presented deletions called
by Canvas only that overlapped with protein coding regions. One control subject covered
part of the 5’ UTR and another control subject overlapped the end of the 3’ UTR shown in
Fig. 3.17. The last BMPR2 exon was covered by three deletions which had more than 97%
overlap between each other and near identical start and end positions. These individuals had
no declared relatedness and were genetically not closely related (3rd degree or more distant)
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to each other. However, I identified an affected PAH sibling for one of these subjects and both
siblings had deletions of the last BMPR2 exon with 94% overlap. Only the deletion of one
sibling was part of the strict deletion set, while the deletion of the other sibling was filtered
out. The inspection of the coverage and alignment information in Fig. 3.18 suggested the
correctness of both deletions and a co-inheritance. The four individuals with a deletion of the
last exon (1 strict, 3 Canvas) were sequenced at different times on different chemistries, but
recruited by the same centre. This suggests the possibility of distant relationships between
these cases, rather than technical artifacts related to read length.

Figure 3.17 Low quality deletions called by Canvas overlapping the BMPR2 loci. Three
PAH cases had similar start and end positions covering the last exon of the gene. Control
subjects did not overlap with protein coding regions of BMPR2.

The discovery of 7 additional cases using Canvas prompted a further analysis of the
Manta data set. Manta also called 4 of the 7 additional Canvas cases with low confidence.
The ‘MGE10kb’ filter flag of these calls indicates low quality due to a length greater
than 10 Kb, because the Manta algorithm is optimised for SV and INDELs of up to 10
Kb. The precision decreases beyond 10 Kb length and explains the filter flag (Chen et al.,
2016b). However, the 3 additional Canvas cases were of similar size and below the 10 Kb
limitation. While Canvas uses read depth information to detect deletions and duplications
(see Fig. 3.19(a)), Manta relies on changes in paired-end distance and split reads (partially
mapping the same read on both ends of a deletion), illustrated in Fig. 3.19(b). The read
alignment showed a drop in coverage for both subjects while the split reads on both ends of
the deletion were specific to 3.19(b) in the same region. The subject without a Manta call
was sequenced using 125bp chemistry rather than the 150bp chemistry, but only the 150bp
chemistry resulted in confident Manta calls.

This analysis of inconsistencies between two variant callers highlights the deficiencies
of the algorithms, the dependency on the alignment tool and ultimately the read length and
mappability of reads surrounding the breakpoints of a deletion. The lack of confident variant
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Figure 3.18 Whole genome read alignment with a read coverage plot of siblings covering the
last three exons of BMPR2. Subject (b) was called by Manta and Canvas while subject (a)
was only called by Canvas with low confidence. Both coverage and alignment showed the
same pattern and suggested a deletion in both subjects. Split read information are missing in
both cases to determine the exact breakpoints of the deletion.
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Figure 3.19 Chemistry dependent deletion calls of the last BMPR2 exon in two subjects.
The deletion in (a) is only called by Canvas while (b) is called by Canvas and Manta.
Coverage information was used by Canvas highlighted at (a) while split read and paired end
information were used by Manta to detect deletions highlighted in (b), which is more reliant
on accurate read alignment information. The read length used for (a) was 125bp compared to
(b) 150bp and could explain the absence of the Manta call for (a).
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calls by the two algorithms raises further questions about the possibility of missed diagnoses
and the ability to distinguish false positive from true positive calls for low quality calls. The
conservative approach reduced the number of false CNV deletions and was used for the
genome-wide analysis.

Identify distant relationships using shared regions of the BMPR2 locus

The above discovery of near identical deletions of the BMPR2 locus raises questions about
possible unknown and distant relatedness in PAH families. The identification of relationships
was currently based on the analysis of SNPs across the whole genome and limited to 3rd
degree relationships shown in Fig. 3.20(a). To identify subjects with 4th degree relatedness
and beyond, I analysed the shared segments of the genome in pairs of subjects using identity-
by-descent (IBD). The analysis was performed on 6,224 subjects part of the NIHR BR-RD
variant release identified as 20160212-A and selected 2.4M SNVs with a ‘PASS’ flag and an
AF greater than 0.05 in 1kG. We applied BEAGLE to phase the genotypes of the subjects and
identify shared segments. The release contained two of the four subjects with a near identical
deletion and these subjects were not known to be related. The length of the shared segments
were reported between all pairs of individuals shown in Fig. 3.20(b) focusing on the BMPR2
locus. The accumulation of long shared segments indicated possible relatedness. Fig. 3.20(b)
shows the lengths of shared haplotypes around the BMPR2 locus and subjects with first
and second degree relatedness were labelled as reference points. The pair with the largest
shared segment had no known relationship and were identified in the foregoing analysis with
identical deletions of the last exon of BMPR2. Family history records mentioned a possible
case of PAH in a grandmother for one, and an aunt for the other subject. On request, the local
research nurse recorded an extended family tree and confirmed the 5th degree relationship. In
summary, the same deletion was observed in a pair of siblings, a 5th degree relationship to
the one of the siblings and one additional subject with no known relatedness. A relationship
could not be ruled out for the additional subject due to a lack of recorded family history and
no calculated haplotype information available at the time. The length of the segments across
the whole genome of the 5th degree relationship is shown in Fig. 3.20(c). The BMPR2 loci
had the longest shared segment followed by a large region on chromosome 8 overlapping
with SOX17.

BMPR2 intronic deletion

The CNV analysis described above focussed on the deletion of protein coding regions of
BMPR2. Next, I extended this analysis by focusing on CNV of the BMPR2 intronic space
and applied the same conservative filter strategy (deletions called by Manta and Canvas).
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Figure 3.20 Detection of distant relationship using shared segments going beyond standard
methods. (a) degree of relationships with 3rd degree relationship detected by standard
methods highlighted. (b) Length of shared segments between pairs of subjects overlapping
the BMPR2 loci labelled with the degree of relationship. (c) Largest shared segment between
pair with confirmed 5th degree relationship overlapped with BMPR2 followed by SOX17
loci.

This analysis identified one PAH case compared to four unrelated controls with deletions in
introns 1,3 and 10 of BMPR2. The longest intron (first intron) contains 60% of the deletions
and the deletions were located closer to the start of the first intron. Fig. 3.21 shows regions
with deletions in affected cases and control (including one related pair) and focused on the
deletion in a PAH sample that overlapped with a regulatory region annotation. The deletion
in controls was of a similar size in close proximity to the PAH subject deletion, but does not
overlap the regulatory region. This regulatory region was annotated as open chromatin and
was specific to human umbilical vein endothelial cells (HUVEC). The rare deletion in the
BMPR2 intronic space possibly explained one case of the PAH disease cohort, but requires
functional validation.

BMPR2 mutation burden

The above described analysis identified different variant types in the protein coding and
non-coding regions of BMPR2 that were likely pathogenic. Focusing on rare variants of
the BMPR2 locus, I identified 163 subjects with putative disease causing variants of which
48.4% were PTVs (n=79), 34.3% missense (n=56) and 18.4% deletions of exons (n=30). One
intronic deletion was identified but not taken into account due to the unknown impact. There
were 2 subjects with two BMPR2 variants of different consequence types (missense with
PTV and missense with exonic deletion). The current analysis of the non-coding upstream
region of BMPR2 identified a further 5 subjects with variants passing the filter strategy, but
these remain of uncertain functional significance.
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Figure 3.21 PAH specific deletion of open chromatin region. The deletions of (a) affected
PAH and control subjects (incl. related controls) are shown for BMPR2. Regulatory regions
are displayed below the deleted regions as a separate track and (b) focuses on the deletion of
one regulatory region. The deleted regulatory region in (b) is specific to PAH except of two
larger overlapping deletions from a related pair. The deleted regulatory region was annotated
as open chromatin and specific to HUVEC.
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Phenotype of BMPR2 variant carriers

We collected phenotype information at the time of diagnosis for NIHR BR-RD subjects in
OpenClinica and had information for 99.3% (n=1041) affected PAH adult subjects avail-
able in the OpenClinica release (see 2.3.9 on page 34). These information included 99.4%
(n=162) of the subjects with likely disease causing BMPR2 variants identified above. Due
to missing information in the data set, I focused on measurements used for cohort charac-
terisation, classification and diagnosis of PAH. The values included the recorded family
history, gender ratio, age at diagnosis, cardiac output, mean pulmonary arterial pressure
(mPAP), mean pulmonary arterial wedge pressure (mPAWP), left ventricular end-diastolic
pressure (LVEDP), transfer coefficient for carbon monoxide and vasoreactivity. A summary
of categorical data is listed in Tab. 3.8 while the distribution of numerical measurements is
shown in Fig. 3.22 using standardised z-scores. BMPR2 variant carriers compared to other
affected subjects had a significantly younger age at diagnosis (p=1.5e-12), lower cardiac
output (p=2.493e-12) and significantly increased mPAP (p=1.1e-08) and transfer coefficient
(p=3.043e-14). The described PAH cohort matched previous reports with a female to male
ratio of 2.2 to 1 and a family history of 70.4% for BMPR2 carriers. The identified subjects

Measurement BMPR2 other % complete

Gender ratio (f/m) 2.1:1 2.2:1 99.3% (1041)

Family history 70.4% 29.5% 95.0% (995)

Functional class 1.3%; 21.7%; 2.2%; 20.6%; 87.4% (916)
(I; II; III; IV) 59.8%; 17.1% 66.2%; 10.8%

Table 3.8 Classification of identified BMPR2 variant carriers compared to other affected
PAH subjects. Gender ratio, family history and functional classes are categorical data to
classify PAH cases and are listed for identified BMPR2 variant carriers and other affected
PAH subjects. The higher female ratio is not specific to BMPR2 variant carriers. A larger
proportion of BMPR2 cases are reported as functional class IV compared to other cases.

with BMPR2 variants were significantly younger, had more severe phenotypes (lower cardiac
output, higher mean pulmonary arterial pressure) and had a significantly higher transfer
coefficient (KCO) compared to other subjects diagnosed with PAH. The 5 subjects with
non-coding upstream variants had a different phenotype pattern compared to BMPR2 variant
carriers, but the analysis was limited due to the low number of available data.
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Figure 3.22 Normalised z-score distribution of selected measurements for identified BMPR2
variant carriers and other affected PAH samples.
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3.3.4 Variation in previously reported PAH genes

The chapter 3.3.3 focussed on protein truncating variants (PTV), missense variants and
loss of copy number variation (CNV) in the autosomal dominantly inherited PAH disease
gene BMPR2. My filtering strategy selected extremely rare (<1 in 10,000 or absent in popu-
lation databases and control cohort) PTV and missense variants predicted to be deleterious
(CADD ≥ 15 and without ambiguous SIFT and PolyPhen-2 predictions). Subjects with
remaining variants in BMPR2 were counted for each cohorts, affected PAH (1,048 subjects)
and unrelated PAH control (6,385 subjects). The affected PAH cohort showed an enrichment
of subjects (p-value 2.0E-94) containing the selected rare variants compared to the control
cohort (see Tab. 3.6). Rare loss of CNVs (<1 in 1,000 in NIHR BR-RD and absent in
population databases) were identified only in PAH cases (23 subjects). No subject in the
unrelated PAH control cohort were found to have a loss of CNV overlapping a protein-coding
region of BMPR2.

The filter strategy (see chapter 3.3.3) was extended beyond BMPR2 to select likely
deleterious variants in previously reported genes in PAH (BMPR2, ACVRL1, ENG, CAV1,
SMAD1, SMAD4, SMAD9, KCNK3, EIF2AK4, TBX4) plus candidates (TOPBP1, BMPR1B,
KLF2). Screened variants included PTV, missense variants and CNV. The number of subjects
with one of these filtered variant types were counted per gene and cohort. In the detected
variant set, I found PTVs, missense variants and CNV deletions in previously reported
and candidate genes. Of the previously reported genes, BMPR2 contained a significant
overrepresentation of deleterious variants in PAH cases compared to unrelated PAH controls
(see Fig. 3.23a). Significant higher subject frequency (p-value <0.05) was found in the
six previously reported genes BMPR2, EIF2AK4, TBX4, ACVRL1, ENG and SMAD9 (see
Fig. 3.23b). No significant enrichment of affected PAH cases was found in KCNK3 and
SMAD1, with no pathogenic coding variation identified in the affected PAH cohort in SMAD4
or CAV1 (see Tab. 3.9). Eight previously reported genes contained likely disease causing
variants for 229 subjects of which 6 subjects had variants in two previously reported genes. In
four cases, BMPR2 appeared once in combination with ENG, SMAD1, SMAD9 or EIF2AK4
and one case each of EIF2AK4 with SMAD9 and ENG with TBX4.

For 229 patients, rare and likely deleterious variation was found in at least one of the
previously reported disease causing genes. Different levels of evidence were considered
according to the guidelines of the American College of Medical Genetics and Genomics
(ACMG) (Richards et al., 2015). Population, computation, functional and segregation
data are considered as evidence to classify a variant as “pathogenic”, “likely pathogenic”,
“uncertain significance”, “likely benign” or “benign”. Based on these categories, I assessed
the reported PAH genes with the most and least p-value containing affected PAH samples,
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(a) (b)

Figure 3.23 Enrichment of affected PAH cases with filtered variants in reported PAH genes.
(a) The frequency of subjects for reported PAH genes are displayed for affected PAH cases
and unrelated non-PAH control cohort. Each gene is represented by one point and labels
are only shown for the two genes with the highest frequency in the affected PAH cohort
due to space. (b) The number of subjects with filtered variants in each gene was tested for
enrichment in affected PAH cases using Fisher’s exact test. Ordered by significance, the
negative decadic logarithm of unadjusted p-values is plotted for each gene. The p-value of
0.05 is indicated by the red line.
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BMPR2 and SMAD1 respectively. All PTVs in BMPR2 were classified as “pathogenic”
and supported by the variant type, the prevalence in affected individuals and absent of the
variant in control cohorts. The LoF intolerance (pLI) and haploinsufficiency (%HI) are
indicators that a single functional copy of a gene is likely insufficient to maintain normal
function. The pLI ranges from 0-1 and a gene with a pLI >0.9 is extremely intolerant
of loosing a copy, while %HI ranges from 0-100 and a gene with a %HI <10 is likely to
exhibit haploinsufficiency. For BMPR2, the pLI (1.00) and %HI (1.47) strongly indicated the
loss of normal function. Missense variants in BMPR2 were also classified as “pathogenic”
or “likely pathogenic” depending on whether the variant has been identified previously (case
reports) in the same disease context, supported by the prevalence in affected individuals, well-
established functional studies (Nishihara et al., 2002), absent of the variant in control cohorts
and multiple lines of computational evidence (PVS1, PS3, PS4, PM2, PM4, PM6, PP2, PP3,
PP4). In the gene SMAD1 I identified a PTV and a missense variant. The subject carrying
the PTV also had a PTV reported in BMPR2 and was therefore not further considered. For
SMAD1, the pLI (0.87) and %HI (13.31) were close to the suggested cut-offs and showed an
indication for a loss of normal function. The missense variant was absent in control cohorts
and supported by multiple lines of computational evidence. The patient’s diagnosis matches
the initial case reports (Nasim et al., 2011; Shintani et al., 2009) of rare sequence variation
in BMP signalling intermediaries, which provide additional evidence for a central role of
dysregulated BMP signalling in PAH pathogenesis. In consideration of these evidence items,
the resulting ACMG classification for the missense variant in SMAD1 was “likely pathogenic”
(PM2, PM6, PP2, PP3, PP4). The PTVs in SMAD1 was classified as “uncertain significance”
due to contradicting evidence, while the PTV in BMPR2 in the same subject would still be
regarded as “pathogenic”.

From the previously reported genes, PTVs and missense variants in the most significantly
enriched gene were classified as “pathogenic” while the least significantly enriched gene
classified missense variants as “likely pathogenic” and PTVs as “uncertain significance”.
Future re-evaluation with new evidence could change the classification of SMAD1 variants.
For subjects with variants in previously reported genes, the strongest variant classification
was either “pathogenic” or “likely pathogenic”, which provides a greater certainty that the
disease in 229 patients is caused by rare deleterious variants in previously reported genes.

Classification of variants based on the ACMG standards and guidance provided greater
certainty about the disease causing affect of the filtered variants in previously reported PAH
disease genes. To describe the phenotypic differences, I extracted information for patients
with variants in previously reported as well as putative genes, grouping patients by gene.
The low number of subjects identified with variants per gene limited possible analyses in
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combination with the completeness of phenotype information (see chapter 2.3.9 on page 34).
Despite these limitations, I focused on the phenotypes of age at diagnosis and transfer
coefficient for carbon monoxide shown in Fig. 3.24. The youngest group had a median age
of 26.4 and these subjects had variants in KCNK3, followed by EIF2AK4 (median=37.6)
and BMPR2 (median=39.3). The oldest group was SMAD1 (median=60.8). In contrast, the
transfer coefficient was reduced in EIF2AK4 (median=0.69) variant carriers compared to
BMPR2 (median=1.39). The single measurements for KCNK3 and SMAD1 also highlighted
the issue of data completeness. The current method used the genotype information to identify
distinct phenotypes, which either confirmed the diagnosis or could be used in future to
distinguish between different subtypes of PAH or related diseases.

Figure 3.24 Distribution of age at diagnosis (a) and transfer coefficient for carbon monoxide
(b).

3.3.5 Identification of novel disease-gene associations

The analysis selects rare protein truncating and missense variants from the aggregated VCF
file. Consequence type-dependent filtering strategies group variants in a gene for cases
and control subjects and test the gene for association with the disease. I performed the
analysis on 1,038 PAHIDX cases and 6,385 UPAHC controls. In addition, 220 PAH cases
were identified with variants in previously reported genes and removed from the additional
analysis performed on 818 unrelated PAH index cases and 6,385 UPAHC controls. The same
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consequence type-dependent filtering strategy, developed and validated during the analysis of
BMPR2 variants, was applied to enrich for rare causal variants in protein coding genes. The
present analysis selected subjects from the PAHIDX and UPAHC cohorts for a case-control
comparison to identify novel PAH disease genes.

Protein truncating variation

In the first analysis I focused on likely high impact variation represented by PTVs, which,
if present, are likely to be rare and deleterious events. A genome-wide analysis applied the
defined MAF filter of 1 in 10,000 and selected PTVs in protein coding genes of canonical
transcripts. The number of subjects with variants in PAHIDX and UPAHC were identified
in each gene and tested for over-representation in PAH cases. This analysis identified an
over-representation in BMPR2, TBX4 and EIF2AK4 with genome wide significance (Pad j

<0.05) and an over-representation of PTVs in ATP13A3, EVI5, SRM, KDR and PRR22,
compared to zero or one PTV identified in these genes in control subjects (see Fig. 3.25 and
Tab. 3.10). The result confirmed the large genetic contribution of protein coding variants in
BMPR2 to PAH. The analysis also highlighted that beyond BMPR2, that additional genes
with high impact rare variants are confined to small numbers of unrelated PAH cases.
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Figure 3.25 Manhattan plots of the PTV analysis, having excluded cases carrying rare variants
in previously established PAH genes. Filtered variants were grouped per gene and tested for
an excess of variants in PAH cases. The (a) Fisher’s exact p-values and (b) adjusted p-values
are plotted against the chromosomal location of each gene. The blue horizontal line indicates
a p-value of 0.05. Chromosome X and Y are encoded as 23 and 24 respectively.
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During this analysis we identified some individuals in the UPAHC group that carried
rare PTVs in BMPR2, EIF2AK4 and EVI5. One BMPR2 frameshift variant was found in the
control cohort, but this was located within the last exon of the gene. No PTVs were identified
within the last exon for PAH cases and is thus likely to have low impact. Of the 12 cases with
PTVs in EIF2AK4, 4 were identified with homozygous variants and 3 with biallelic variants,
while UPAHC subjects only presented single heterozygous variants. The ethnicity of the PAH
individuals carrying the 7 homozygous or two heterozygous variant cases were South-Asian
(n=3), European (n=2) and other (n=2). The 6 control subjects were all Europeans. The
control subject listed for EVI5 included a stop gained variant at the carboxy terminus of the
protein, while all PTVs reported in cases occurred before this position.

In an additional analysis, I excluded 220 (21.2%) cases identified earlier with likely
causal variants in previously reported genes (BMPR2, ACVRL1, ENG, SMAD1, SMAD9,
KCNK3, EIF2AK4 and TBX4) and assessed the effect on the novel disease gene discovery (see
Tab. 3.10). Following exclusion of these cases, ATP13A3 reached genome wide significance
(Pad j <0.05), whereas SRM and PRR22 lost 1 and 2 cases respectively. The number of
cases remained the same for ATP13A3, EVI5 and KDR. Despite the low numbers of cases,
for SRM and PRR22 no control subjects were found with PTVs. We found individuals
with combinations of PTVs in SRM with BMPR2, PRR22 with ENG or TBX4 each in one
individual.

Missense variation

For the next analysis, I focused on moderate impact variation represented by missense
variants, where the impact of variation on the encoded protein is less certain to be deleterious.
The genome-wide analysis filtered out variants based on MAF and on ambiguous consequence
predictions, as discussed before. A comparison between PAHIDX and UPAHC revealed
a statistically significant (Pad j <0.05) higher frequency of cases with variants in BMPR2,
GDF2 and TXNRD3. Compared to the PTV analysis, the number of cases and controls
carrying missense variants were both much higher and shows the challenge of developing an
effective filtering strategy to select disease causing missense variants. Genes with a Fisher
p-value <0.0001 are listed in Tab. 3.11 and also includes FLNA, which is located on the X
chromosome (see Fig. 3.26).

Variants in AQP1, C3orf20 and the X chromosome gene FLNA were overrepresented in
PAH index cases (see Tab. 3.11). Exclusion of cases with mutations in previously reported
genes reduced the number of variant carriers in all genes except GDF2. The adjusted p-
value after the exclusion was not genome wide significant for TXNRD3. The coexistence
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GDF2

(b)

Figure 3.26 Manhattan plots of the missense variant analysis, having excluded cases carrying
rare variants in previously established PAH genes. Filtered variants were grouped per gene
and tested for an excess of variants in PAH cases. The (a) Fisher’s exact p-values and (b)
adjusted p-values are plotted against the chromosomal location of each gene. The blue
horizontal line indicates a p-value of 0.05. Chromosome X and Y are encoded as 23 and 24
respectively.

of missense variant in putative genes with variants in previously reported genes was more
prominent compared to PTVs.

Combined analysis

The combined analysis included all identified missense and PTV variants. A comparison be-
tween PAHIDX and UPAHC revealed a statistically significant (Pad j <0.05) higher frequency
of cases with variants in BMPR2, GDF2 and TBX4 (see Fig. 3.27 and Tab. 3.12). The Fisher’s
exact p-value ranking suggests a separation between genes, which were mainly affected by
PTVs (KDR, PRR22, EVI5), or missense (GDF2, FLNA, TXNRD3) or both variant types
(BMPR2, TBX4, EIF2AK4). The gene symbol AQP1 is listed twice caused by the assignment
to two different Ensembl gene models in GRCh37. The Ensembl gene identifiers were
ENSG00000240583 and ENSG00000250424 for the higher and lower ranked AQP1 entry
respectively. Exons shared between both models contained rare variants included in the
analysis. The AQP1 (ENSG00000240583) variant 7:30962212_C/T was present in 5 PAH
subjects before and 3 PAH subjects after removing samples carrying variants in previously
reported genes.
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GDF2

(b)

Figure 3.27 Manhattan plots of the combined variant analysis, having excluded cases carrying
rare variants in previously established PAH genes. Filtered variants were grouped per gene
and tested for an excess of variants in PAH cases. The (a) Fisher’s exact p-values and (b)
adjusted p-values are plotted against the chromosomal location of each gene. The blue
horizontal line indicates a p-value of 0.05. Chromosome X and Y are encoded as 23 and 24
respectively.

After the exclusion of cases carrying deleterious variants in previous reported genes, the
results are shown in Tab. 3.13. In addition, the analysis lists putative genes, which were not
detected in the previous analyses (IFT74, ALPPL2, OR8U1, SOX17, ATP13A5 and DOCK8).

Loss of copy number variation

After exploring the accumulation of small variation (SNV, INDELs), I focused on CNV
events, and specifically on the deletion of large regions of the genome, ranging from 50
bp up to megabases (Mb). The aggregated deletion file from the data release contained
deletions that were supported by Manta and Canvas, where one or both supported calls were
labelled as ‘PASS’. The aggregated deletions were selected for a frequency of less than 1
in 1,000 in the NIHR BR-RD release (9,110 samples) and were required to demonstrate
partial or full overlap with one or more protein coding exons. This genome wide analysis
extracted the number of PAHIDX and UPAHC subjects with deletions to identify genes with
an over-representation of deletions in cases. BMPR2 was statistically significantly (Pad j

<0.05) overrepresented and is listed in Tab. 3.14 with other putative genes. However, these
other putative genes are located in close proximity to BMPR2 and presented with exactly the
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same number of cases. After removing the 220 cases with variants in previously reported
genes, no statistically significant gene deletion was identified. Closer examination of the
analysis revealed 5 deletions between 0.5 Mb and 3.7 Mb, which covered the wider BMPR2
loci including surrounding genes.

3.3.6 Assessment of novel PAH gene associations

The disease-gene association tests identified ATP13A3 and GDF2 with genome wide signifi-
cance as part of the PTV and missense analysis respectively. We considered filtered PTV
and missense variants as possible contributing factors for both novel disease genes. The
assessment of the functional impact was based on the protein location, functional domains
annotation and likely changes in the protein structure. We performed the analyses on 1,048
affected PAH cases and 6,385 unrelated PAH controls and used the same PTV and missense
filtering strategy as for the novel gene discovery.

ATP13A3

The PTV analysis identified the novel gene ATP13A3, which is part of the P5 subfamily of
P-type transport ATPases and poorly characterised (Schultheis et al., 2004). Computationally
inferred protein domain and sub-cellular location information were available and are visu-
alised in Fig. 3.28. The filtered variant set contained 3 frameshift, 2 stop gained and 1 splice
donor PTV (Fig. 3.28(a)), which were heterozygous and predicted to lead to a loss of the
protein activity. In addition, 5 heterozygous missense variants (Fig. 3.28(b)) were identified
in cases. One variant was shared with controls (Fig. 3.28(d)) at the start of the protein, while
the remaining variants fall within or close to the same cytoplasmic region. Samples with
identified variants in ATP13A3 were sequenced with different pipelines and no pipeline bias
was found (Fisher’s exact test).

ATP13A3 copy number loss

The CNV analysis of deletions (see Loss of copy number variation in 3.3.5) revealed no
deletion in ATP13A3. I analysed Canvas calls separately and identified 2 possible affected
PAH subjects with heterozygous deletions of one or more exons in ATP13A3. The affected
regions, coverage and read alignment are shown for deletions of length 1.6 Kb (Fig. 3.29(a))
and 9.2 Kb (Fig. 3.29(b)). Both deletions failed the Illumina quality metrics. The larger
deleted region (Fig. 3.29(b)) was identified only once in NIHR BR-RD while the shorter
region (Fig. 3.29(a)) was found deleted in 7 unrelated cases and discarded as technical artifact.
In addition, visual inspection rejected the existence of the 1.6 Kb deletion but found sufficient
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(a)

(b
)

(c)

(d
)

(e)

Figure
3.28

Protein
truncating

and
m

issense
variantshighlighted

on
protein

dom
ainsofATP

13A
3.Lollipopsindicate

the
variantposition

for(a,c)PT
V

and
(b,d)m

issense
variants

for(a,b)PA
H

affected
patients

and
(c,d)unrelated

non-PA
H

controls.(e)Transm
em

brane
regions

are
highlighted

in
blue.The

colourrepresentation
ofthe

lollipops
are

listed
atthe

bottom
.M

issense
(deleterious)are

m
issense

variants
predicted

to
be

deleterious
and

dam
aging

in
SIFT

and
PolyPhen-2

respectively
w

ith
the

rem
aining

classified
as

uncertain
prediction.

T
he

red
box

atthe
startof

the
protein

show
s

one
m

issense
variant,w

hich
w

as
observed

in
cases

and
controls.

T
he

red
box

in
the

centerhighlights
a

cytoplasm
ic

region
adjacentto

transm
em

brane
regions,w

hich
contain

m
ostofthe

observed
PT

V
s

and
m

issense
variants

in
cases.O

ne
splice

donorvariantis
notdisplayed

foran
affected

PA
H

patient,because
the

variantis
located

outside
the

exon.



3.3 Results 105

support for the 9.2 Kb deletion. The additional analysis discovered 1 additional affected PAH
subject with an exonic deletion in ATP13A3.

Figure 3.29 Loss of copy number in PAH cases of the ATP13A3 loci. (a) The deleted
region is highlighted as red and blue box followed by the read coverage and read alignment
information. The visual inspection did not support the existence of a deletion. (b) The deleted
region was supported by a drop of read coverage, but only some partially mapped reads
surround the breakpoints.

ATP13A3 diagnostic descriptors

The previous analysis identified 11 subjects with PTV (n=6), missense (n=4) variants and
deletions (n=1). I extracted the diagnostic descriptors for PAH from the OpenClinica
phenotype release and compared ATP13A3 with BMPR2 variant carriers against the remaining
PAH affected cohort. ATP13A3 variant carriers were older compared to BMPR2 variant
carriers. Cardiac output, mPAP and KCO measurements were more extreme compared
to BMPR2, but not significantly different (Fig. 3.30). The LVEDP distribution appeared
elevated, but was based on two values only. No vasoreactivity information were available
and no difference was found for PAWP in identified ATP13A3 cases.

GDF2

The gene GDF2 was identified as part of the missense analysis with significant genome
wide over-representation. The gene is also known as bone morphogenetic protein 9 (BMP9),
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Figure 3.30 Diagnostic descriptors for subjects identified with variants in ATP13A3 and
BMPR2. For ATP13A3 variant carriers, the age at diagnosis was in range to the remaining
PAH cohort, but older than BMPR2 variant carriers. Cardiac output, mPAP and KCO of
ATP13A3 deviated more than BMPR2 from the remaining PAH cohort, but could be explained
by fewer observations. No differences were found in PAWP, no vasoreactivity information
were recorded and only two values were available for LVEDP in ATP13A3 carriers. No
significant difference was observed between ATP13A3 and BMPR2 variant carriers.
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encodes the growth and differentiation factor 2 and was identified as a circulating ligand for
the BMPR2/ACVRL1 receptor complex (David et al., 2007). Heterozygous variants were
present in 13 affected PAH subjects and included 1 frameshift, 1 splice site and 10 missense
(11 subjects) variants. Two missense variants (3 subjects) found in PAH affected cases were
shared with unrelated PAH controls. No deletion was identified in the CNV analysis (see Loss
of copy number variation in 3.3.5). Identified variants are shown in Fig. 3.31 and variants
shared with control subjects are highlighted. All missense variants in cases were predicted
to be deleterious compared to controls and were located on or close to the transforming
growth factor beta (TGF-β ) propeptide and TGF-β domain. Samples with identified variants
in GDF2 were sequenced with different pipelines and no pipeline bias was found (Fisher’s
exact test).

GDF2 copy number loss

The CNV analysis (see Loss of copy number variation in 3.3.5) did not detect deletions for
the GDF2 loci. Additional analysis considered all deletions called by Canvas and identified
3 affected PAH subjects passing the quality metrics. Two larger deletions were 4.2 Mb and
started and ended within 900 bp and 4 Kb of each other respectively. The shorter deletion
was 1.1 Mb and started between the two larger deletions. In contrast, Manta called inversions
for these 3 subjects covering the GDF2 loci of 3.8 Mb size with start and end positions
within 71 bp of each other. In addition, Manta also called at least 1 inversion for 91%
(n=964) and 89% (n=5740) of cases and controls respectively. The difference was significant
(p-value=0.01845), but did not take the read length into account. No relationship was known
between these 3 individuals and were sequenced using different read lengths.

To confirm or reject possible deletions, I implemented alternative methods to validate
deletions and investigated the possible cause for the disagreement between Manta and
Canvas. The first alternative method focused on the read coverage of the protein coding
exons of GDF2 in comparison to BMPR2 (see Fig. 3.32(a)). The analysis found a reduction of
more than 50% for subjects with Canvas deletions overlapping GDF2. I found a significantly
lower (Student’s t-test p-value = 0.005) distribution of the coverage for samples with called
GDF2 deletions compared to other PAH samples. After the confirmation of a drop in coverage,
the second alternative analysis focused on the number of heterozygous and homozygous
variant calls for a 200 Kb region overlapping the GDF2 loci. Fig. 3.32(b) shows the number
of heterozygous and homozygous variant calls per sample in the PAH affected cohort.
Subjects with Canvas deletions are highlighted in blue and found to have a significantly
lower (Student’s t-test p-value = 2.2E-16) distribution of ratio compared to other PAH
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Figure 3.31 Protein position of identified variants in cases and controls. Lollipops indicate
the position of (a,c) protein truncating and (b,d) missense variants in (a,b) affected PAH cases
and (c,d) non-PAH controls. The colour representation of the lollipops are listed at the bottom.
Missense (deleterious) are missense variants predicted to be deleterious and damaging in
SIFT and PolyPhen-2 respectively with the remaining classified as uncertain prediction.
Missense lollipops in (b) cases are all deleterious compared to (d) controls. Variants in cases
cluster in the TGF-β propeptide and TGF-β domain. The red boxes surrounding missense
variants at the protein position 104 and 351 were shared between cases and controls and were
not regarded as deleterious. One splice acceptor variant is not displayed for PAH affected
cases due to their genomic location.
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samples. The lack of heterozygous variant calls for these 3 subjects with Canvas deletions in
the GDF2 region supported the absence of one allele.

Canvas deletions overlapped GDF2 for 3 affected PAH patients and I confirmed the loss
of one allele by analysing the relative coverage to BMPR2 and the heterozygous/homozygous
ratio in variant calls for an extended GDF2 region. The analysis did not address the cause
for the high number of Manta inversion calls, but found an increase in cases compared to
controls.

Imperfect reference genome assembly affects GDF2 deletion detection

Additional analysis identified and confirmed the existence of 3 PAH subjects with deletions
of the GDF2 loci, but also found large numbers of inversions called by Manta. The Manta
calls are based on paired-end and partial read information compared to coverage information
used by Canvas. Inversion calls would require the alignment of paired-end reads or partial
alignment at both ends of the inverted region or both. Supporting read information were
assessed in relation to the used reference genome representation. The call of an inversion
in 90% (n=6704) of subjects indicated an alternative, incomplete or misrepresentation of
the GRCh37 reference. To evaluate a possible misrepresentation, I extracted a 5 Mb region
from the GRCh37 and GRCh38 reference genomes surrounding GDF2 for analysis. A
sequence similarity comparison (Fig. 3.33) identified an inversion of the GDF2 region and
a translocation of a larger region in GRCh38 compared to GRCh37. The large number of
inversions were explained by an insufficient representation of GRCh37, which was corrected
in GRCh38. The differences included rearrangement and inversion of large genomic regions.

GDF2 diagnostic descriptors

The previous analysis identified 12 subjects with PTV (n=2), missense variants (n=7) and
deletions (n=3) in GDF2. The PAH diagnostic descriptors were extracted from the Open-
Clinica phenotype release and compared GDF2 variant carriers, BMPR2 variant carriers
with the remaining PAH affected cohort. The average age (mean=44.71) was reduced to
PAH affected (mean=51.18), but increased compared to BMPR2 (mean=42.14). Cardiac
output was higher (mean=4.4) and mPAP lower (mean=48.64) in GDF2 carriers compared to
remaining PAH affected cohort. Compared to BMPR2 carriers, cardiac output and mPAP
showed the opposite deviation and were significantly different (p=0.0099 and p=0.0032).
PAWP (mean=8.22) and LVEDP (mean=8.66) were also reduced in GDF2 carriers compared
to the remaining affected PAH cohort.
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Figure 3.33 Comparison of GRCh37 and GRCh38 for a 5 Mb region surrounding the GDF2
loci. The red and blue lines indicate matching regions on the same and opposite strand
respectively. The start and end position of the GDF2 gene is indicated for each release
with an orange line and the GDF2 region was found to be inverted in GRCh38 compared to
GRCh37. In addition, a larger region moved from the start to the end of the inverted GDF2
region.
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Figure 3.34 Diagnostic descriptors for identified GDF2 and BMPR2 variants carriers com-
pared to the remaining PAH affected subjects. Cardiac output and mPAP deviate in opposite
directions compared to BMPR2 and, compared to BMPR2, were found to be statistically
significant (p=0.0099 and p=0.0032). PAWP and LVEDP were reduced, KCO increased in
GDF2 carriers and vasoreactivity information was only recorded for one subject.
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3.4 Discussion

We recruited the to date largest cohort of mainly unrelated cases with idiopathic and heritable
forms of PAH to participate in the WGS NIHR BR-RD study. The sequenced samples
were checked for quality, gender mismatch, relatedness and ethnicity before aggregation,
annotation and filtering. These high quality variants were used to assess rare genetic variation
in previously reported PAH disease genes. The assessment extended to the identification of
distantly related subjects harbouring the same genetic variation. After characterisation of
previously reported genes, the case / control study design aimed to discover novel disease
causing genes in affected PAH index cases. The discovery effort included over-representation
analyses of PTV, missense variants and large deletions in an extensively filtered variant set,
enriched for disease causing variants. We confirmed BMPR2 as the main disease causing
gene in each analysis. The exclusion of cases with variants in previously reported genes
revealed significant over-representation of PTVs in ATP13A3 and missense variants in GDF2.
Several other putative genes did not reach genome-wide significance, but were found to be
highly enriched and in some cases specific to the PAH cohort. These genes were identified
by a burden test counting individuals with heterozygous or homozygous variants. Further
analysis of the novel disease genes revealed additional subjects with deletions. In particular
the analysis of GDF2 highlighted the need to upgrade to the latest human reference genome
and indicated the limitations of the used software tools.

3.4.1 Whole genome sequencing

The NIHR BR-RD study used WGS instead of WES for variant detection in the cohort
of rare disease. Previous studies have shown that WGS provides a better exome coverage
than WES (Carss et al., 2017; Lelieveld et al., 2015; Turner et al., 2016). The choice of
WGS enabled the use of PCR-free sequencing protocols and allowed the capture of genomic
regions with extreme GC content without the loss of coverage. In addition, the detection of
CNV events is superior in WGS compared to WES, in particular single exon deletions (Carss
et al., 2017). WGS allows the precise characterisation of breakpoints falling within intronic
and intergenic regions compared to WES.

The read alignment and variant calling of 10K WGS data sets is not a trivial and a compu-
tational intensive task using community accepted tools. For the NIHR BR-RD study, Illumina
provided aligned read and variant calls based on their proprietary software products, which
we used instead of a custom pipeline. Software versions of Illumina’s tools changed during
the course of the project, which was corrected by re-analysing the affected samples with
the latest version. In addition, the underlying biochemistry changed during the project and
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transitioned from 100bp, 125bp to 150bp read length. Despite the software and biochemistry
changes, the alignment and variant quality measurements were in the expected range and
suggested that there would be no major gain in reprocessing samples on the same reference
genome with a community accepted pipeline compared to the cost implications. Aggregated
variant quality measurements indicated a large proportion of technical artefacts, which we
addressed by the development of OPR based filtering using VCF files. The introduction of the
Hadoop technology enabled further exploration of the variant quality within each read length
cohort and the establishment of the minOPR. After detailed evaluation of different minOPR
filtering values, we are confident that variants passing the minOPR 0.99 filter represent
biological events. However, not all of the failed variants are technical noise, but the quantity
of 54% rejected variants highlights the limitations with the current software and filtering
strategy.

Population and family structure

The ethnic composition of recruited subjects is diverse and the aggregated variant set could
contain variants specific to under-represented populations. However, we found a proportion-
ate equal representation of all populations in affected PAH cases and non-PAH controls. The
burden test does not stratify by population, but instead relies on the prior filtering strategy to
remove population specific variants and enrich for rare disease causing variants. Novel genes
were supported by population independent variants and confirms the sufficient representation
of populations in the control cohort. In addition, inflated allele frequencies due to relatedness
could lead to over-filtering of otherwise rare variants in non-PAH controls. Such over-filtering
could skew the results in favour of PAH cases and increase the chance of false positive results.
To improve the specificity, we established the family networks of related individuals up to
3rd degree. These networks allowed us to select the maximum number of unrelated subjects
for an unbiased allele frequency in non-PAH controls.

3.4.2 Variant filter strategy

The variant filter strategy was developed to select rare, likely deleterious variants and used
BMPR2 as a training set. Allele frequency based filtering showed no effect on PTV and
highlighted the evolutionary constraint BMPR2 is under. In comparison, the number of
subjects with missense variants changed significantly by introducing allele frequency based
filtering, but some remained shared between cases and controls. Effect prediction based
filtering was required to reject likely benign variants. The filter strategy was trained on an
autosomal dominant gene, which might prioritise genes with a similar profile over recessive



3.4 Discussion 115

genes for the novel gene discovery. Variants affecting recessive genes require homozygous
or bi-allelic heterozygous variants and might not be sufficiently enriched. However, the
recessive gene EIF2AK4 associated with pulmonary veno-occlusive disease (PVOD) was
significantly overrepresented in the PTV analysis and suggests a balanced filtering approach.

We analysed copy number variation (CNV) after the removal of known benign and
frequently observed deletions in external and internal database entries respectively. The
genome-wide strategy is conservative and requires a deletion to be called by both variant
callers including at least one ‘PASS’ call. For previously reported genes, the method was
extended to include deletions called by the coverage based method Canvas only. Duplication,
inversion and more complex SV were not considered due to the low specificity of the used
tools. The analysis would benefit by the introduction of a community accepted method for a
baseline measure, but would need to be run on all samples. The reanalysis would be more
beneficial on GRCh38 because of the identified misrepresentation of the reference genome in
the GDF2 loci. This is a computational intensive tasks and will be performed at a later stage.

3.4.3 Variation in previously reported PAH genes

Genes previously associated with PAH were assessed based on the developed filtering strategy
to identify possible biases. The genes SMAD4 and CAV1 did not bear any rare deleterious
variants. For the recessive gene EIF2AK4, homozygous, bi-allelic as well as heterozygous
variants were identified in PAH patients. These patients were excluded from the identification
of novel PAH disease genes even though heterozygous variants were unlikely to cause the
disease. The list of subjects with variants in previously reported genes should not be used
to report clinical findings. A clinically assessment of these subjects would be required for
a correct representation of patients. For the purpose of the burden test, these subjects are
highly enriched for likely deleterious variants in previously reported genes and the removal
of these subjects increases the chance to discover novel disease genes.

The american college of medical genetics and genomics (ACMG) standards and guide-
lines provided a framework to assess the pathogenicity of variants in known genes. The
framework included the evaluation of multiple sources including computational, functional as
well as population data. We found enrichment in 4 previously reported PAH genes (BMPR2,
EIF2AK4, TBX4, ACVRL1) and no patient with variants in two genes(CAV1, SMAD4). The
absence of variants in patients could be due to the rarity of PAH cases caused by the gene or
the removal of causative variants by the filtering strategy. Identified associations for the PTV
and missense variant analysis also highlighted differences in the gene function and how PTV,
missense variants or the position of a variant affect the gene. However, some known PAH
disease genes are not significant and have variants identified in patients as well as non-PAH
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control subjects, which question the causality of the gene. These genes would benefit from
additional studies to evaluate the precise affect of identified variants in these patients to prove
or reject the pathogenicity.

3.4.4 Identification of novel PAH disease genes

The burden test implemented for the novel gene discovery separately assesses PTV and
missense variants before combining them into one dataset. Depending on the variant set,
different genes showed a high over-representation in cases, except BMPR2, which was ranked
highest for each variant set. The burden test of PTV identifies TBX4 with genome-wide
significance, was low ranked for missense variants and the results in the combined analysis
suggests to be driven by PTVs. In contrast, the significance of GDF2 was mainly supported
by missense variants with only 1 rare PTV discovered in a PAH index case. These findings
suggest that it is beneficial to test the variant burden on genes for PTVs, missense and
combined variants separately in rare diseases. A gene only affected by one group of variants
is informative in respect of their biological function (see GDF2 in 3.3.6 on page 105) and
interaction.

Novel disease genes

The novel PAH disease gene ATP13A3 was identified with genome-wide significance in the
PTV analysis. No variants were found to be shared with subjects for variants in previously
reported genes. We compared the number of loss-of-function (LoF) variants reported in the
exome aggregation consortium (ExAC) and found 8 LoF variants in 60,706 subjects. The
listed LoF intolerance (pLI) probability score in ExAC was 1.00 for ATP13A3 and genes
with pLI >= 0.9 are considered to be extremely LoF intolerant genes. The gene encodes a
poorly characterised P-type ATPase of the P5 subfamily and was found to be expressed in
all mouse tissues, but highest expression in liver (Schultheis et al., 2004). The involvement
in polyamine transport was demonstrated, but specifics are unknown (Madan et al., 2016).
The gene expression is confirmed in pulmonary artery endothelial cell (PAEC) / pulmonary
artery smooth muscle cells (PASMC), lung tissue and human umbilical vein endothelial cell
(HUVEC) by the encyclopaedia of DNA elements (ENCODE), Genotype-Tissue Expression
(GTEx) and BLUEPRINT project (Adams et al., 2012; Consortium, 2012; GTEx Consortium,
2013).

The missense analysis revealed the contribution of GDF2 towards PAH in adult-onset
cases and the exclusion of subjects with variants in previously reported genes did not reduce



3.4 Discussion 117

the number identified cases. The gene encodes the major circulating ligand for the endothelial
BMPR2/ACVRL1 receptor complex and is expressed in the liver

Candidate disease genes

The burden test provided a selection of genes ranked by the unadjusted p-value with no
genome-wide significance and included AQP1, SOX17 and FLNA. Compared to GDF2 and
ATP13A3, the gene AQP1 contains one heterozygous variant that is shared by 5 unrelated
PAH index cases and not found in controls. These 5 subjects were recruited in participating
centres across Europe (Amsterdam, Giessen, Papworth, Paris), unrelated (4th degree or more
distant), sequenced at different times and are of european ancestry. We found co-occurrence
of AQP1 in two subjects, with a heterozytous variant in EIF2AK4 for one subject and
with a heterozygous ENG variant for the other subject. Assessment of these two variants
categorised them as likely benign even though they passed the variant filtering. Aquaporin
1 is a membrane protein to facilitate water transport in response to osmotic gradients and
is highly expressed in lung (GTEx) tissue, blood outgrowth endothelial cells (BOEC) and
HUVEC (Adams et al., 2012). Nitric oxide (NO) was shown to be transported by AQP1 and
may play a role in controlling blood pressure (Herrera et al., 2006), while an other study
implicates AQP1 in the CO2 transport in blood (Hsu et al., 2017).

SOX17 harbours missense and nonsense variants and encodes SRY-box containing
transcription factor 17. It has a key role in the vascular development and angiogene-
sis (Matsui et al., 2006), and conditional deletion leads to impaired formation of lung
micro-vessels (Lange et al., 2014). Similar to AQP1, SOX17 is highly expressed in relevant
cells, which includes PAEC, HUVEC and BOEC (Adams et al., 2012). The implication of the
vascular endothelium provides further evidence that this cell type has a major contribution in
initiating the disease.

The X-linked gene FLNA was highly ranked after using the gender adjusted allele
frequency cut-off (see Rare variant selection in 3.2.5 on page 56). Heterozygous and
hemizygous variants were found for female and male PAH index cases respectively. FLNA
encodes the widely expressed Filamin A protein and is central in providing a scaffold to
anchor cytoplasmic signalling proteins (Stossel et al., 2001; van der Flier and Sonnenberg,
2001) and is implicated in different syndromic diseases (Gómez-Garre et al., 2006; Mariño-
Enríquez et al., 2007). Compared to variants published for other diseases, variants of PAH
patients cluster in a specific region, which was found to overlap with a SMAD binding domain.
Heterozygous mutations in FLNA were also found in a case report and were suggested as
the likely cause of the familial case of PAH in two females (Hirashiki et al., 2017). The
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identification of an X-linked gene could partially explain the over-representation of females
in PAH.

Rare variant association tests

In addition to the burden test, we applied the established rare variant kernel-based SKAT-O
method on the combined variant set. Excluding subjects with previously reported genes, the
analysis identified AQP1 (Pad j = 4.28x10-6), MFRP (Pad j = 1.30x10-5) and SOX17 (Pad j

= 6.69x10-5) as the top associated genes. In comparison, the unadjusted p-values from the
burden test were 0.00011 (AQP1), 0.00252 (MFRP) and 0.00025 (SOX17). The identification
of the same variant in 5 unrelated PAH index patients could explain the difference in ranking
of AQP1 between the burden test and SKAT-O. The gene MFRP contains one variant, again
shared by 4 unrelated PAH index patients, but is questionable based on the association with
retinal degeneration and a lack of gene expression in endothelial cells. In comparison, the
genome-wide significance of SOX17 using SKAT-O was based on singleton variants (not
shared by unrelated individuals) and highlighted differences in the methodology of the burden
test.

Rare disease gene discovery is a challenge with current tools and methods to reach
genome-wide significance due to the small cohorts size. The discovery of AQP1 and SOX17
was based on an established statistical method and confirms the existence of novel disease
genes, which do not reach genome-wide significance using a burden test. In contrast, the
burden test identified GDF2 and ATP13A3 in different variant types and provides a granular
ranking for potential candidate genes. The gender adjusted filter of the X chromosome was
essential to identify possible X-linked genes. Further more, highly ranked candidate and
novel PAH genes show co-occurrence with variants in subjects with previously reported genes.
This observation could suggest di- or oligogenic inheritance and could explain incomplete
penetrance in PAH.

Replication and validation

The discovery of novel disease-gene associations was based on the PAH patient cohort
recruited as part of the NIHR BR-RD study. Recruiting centres included all specialised NHS
PH centres in the UK and collaborating centres across Europe. The national audit of PH from
20172 reported 1,514 identified patient between 2009 and 2017 with idiopathic, heritable,
or anorexigen-induced PAH. Considering that 50% of patients do not survive 4 years and
excluding anorexigen-induced PAH, the NIHR BR-RD PAH project likely recruited all PAH

2National Audit of PH: https://files.digital.nhs.uk/pdf/h/8/national_audit_of_pulmonary_
hypertension_8th_annual_report.pdf

https://files.digital.nhs.uk/pdf/h/8/national_audit_of_pulmonary_hypertension_8th_annual_report.pdf
https://files.digital.nhs.uk/pdf/h/8/national_audit_of_pulmonary_hypertension_8th_annual_report.pdf
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patients that would like to participate in the UK. Replication of the disease-gene association
test on a similar sized cohort is not possible in Europe in addition to financial implications.
However, similar sized PH cohorts with basic phenotype information are available in the
united states (US), which was partly exome sequenced. The sequence data were not available
for analysis, but we are in discussion for a possible collaboration to replicate the analysis.
The remaining samples could be screened for variants in selected genes to reduce costs and
time, but the careful sample selection for a matching cohort will be essential.

Second, the novel disease-gene associations will be functional characterised using animal
models. We applied to the genome editing mice for medicine (GEMM) program from the
medical research council (MRC) for two genetically altered mice. The genes ATP13A3 and
SOX17 should be altered in one mouse each. Variants from PAH patients were translated
from the human genome coordinates to the mouse genome, computationally assessed for
their impact and reviewed by experts for their suitability. Applications were submitted and
approved for both genes and we are waiting for the edited mice to arrive.

Third, we study the function of cells using patient samples, samples from healthy donors
and variants introduced into samples from healthy donors. The focus is on identified GDF2,
ATP13A3 or SOX17 variants from patients in relevant cell types. Human pulmonary artery
smooth muscle cells (PASMCs) were retrieved from explants dissected from lung resection
specimens, human pulmonary artery endothelial cells (PAECs) were purchased from Lonza
and blood outgrowth endothelial cells (BOECs) were derived from peripheral venous blood
isolated from healthy subjects. The study was approved by the Cambridgeshire 3 Research
Ethics Committee (Ref 11/EE/0297), and all subjects provided informed and written con-
sent. Some results were included in a recent publication and further functional work is
ongoing (Gräf et al., 2018).

3.4.5 Distant relatedness

We identified nearly identical deletions in 4 subjects of the last BMPR2 exon. The relatedness
of two subjects was established based on the family networks. Additional analysis identified
a third subjects as a distantly related case, which was confirmed as a 5th degree relationship
by a family tree. The status of the 4th sample requires re-analysis of the latest dataset, which
was not performed at the time. Both distant related subjects reported a possible case of PAH
in the family, which was identified as the same diseased person through an extended family
tree. This possible person was 2nd and 3rd degree related to the different index cases. Based
on the family structure and inheritance pattern, the parents must have been carriers of the
BMPR2 deletion and we are not aware of any PAH symptoms. A closer examination of the
shared segments between the distantly related subjects revealed that the longest and second



120 Novel disease gene discovery

longest shared segment overlapped with BMPR2 and SOX17 respectively. No rare variants
were found in SOX17 for both subjects. Further work needs to be done to elucidate specific
haplotypes of these shared regions and would require the phasing of the variants for all three
related subjects for a co-segregation analysis. This would allow to analyse the wider locus of
SOX17 in more detail.

3.4.6 International collaboration

The NIHR BR-RD PAH project initially recruited PAH patients from NHS specialist centres
in the United Kingdom. Prevalence and survival of IPAH patients limit the pool of IPAH
patients available in the UK and was further reduced by patient participation and patients
visiting satellite instead of recruiting centres. We established international collaborations to
increase the cohort size to 1250 WGS samples. The growth in number of samples increases
the power to discover novel disease causing genes based on rare variants, but these results can
be biased by the ethnic origin of the patient. Stratified analyses will become more important
to account for the ethnic diversity.

3.4.7 Beyond protein-coding regions

The novel disease gene discovery focused on protein coding gene regions, which covers only
a small proportion of the human genome. The remaining 98% of the genome is ignored
by the current strategy and would require cell type focused analyses to depict the hundred
millions of variants. Comparing cell type specific functional data from patients would allow
to detect differences in open chromatin regions or histone modification. Matching genomic
and gene expression data would facilitate targeted analysis to identify variants effecting the
transcription of a gene. Transcript specific differences would help elucidate the effect of
suspected splice variants. For this purpose, novel machine learning approaches needs to
be explored to further combine functional, expression and phenotype data with genomic
information.

3.4.8 Phenotype integration

The rare variant analysis focused on the protein coding regions of the genome, which
represents 2% of the human genome. ATP13A3, GDF2, AQP1 and SOX17 were discovered
or confirmed as novel PAH genes by a burden or SKAT-O test respectively. Subjects with
variants in these genes and previously reported genes account for 260 (25%) subjects of 1048
unrelated PAH index patients. The proportion of de-novo and inherited variants is not known
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and would require parental samples. The remaining 75% of patients are not explained yet
and available phenotype information is too incomplete to support novel gene discovery. In
contrast, the phenotype information is currently informed by the genotype to identify patterns
for improved diagnosis. Going forward, the introduction of smart devices and automated
sample processing would improve data completeness and allow continuous monitoring of
patients. Patient specific trend lines would be more accurate to classify patients compared to
a one-off measurement at the time of diagnosis and more beneficial to the genotype analysis.

The novel PAH genes were expressed or present in the relevant cell types. To elucidate
the cause of PAH for the remaining cases, future analysis should be guided by cell type
specific information. This would allow to identify active genomic regions in the non-coding
space and changes in gene expression variants. The further integration of the omics and
phenotype data with the genome is essential and ongoing.
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Chapter 4

BigData infrastructure for human
genome variation

4.1 Introduction

The general introduction (see chapter 1.1.3 on page 4) provided an overview of the challenges
of applying whole genome sequencing (WGS) for large populations and discussed the
computational burden of aggregating the variants for analysis. The rare disease pulmonary
arterial hypertension (PAH) was described in chapter 2 on page 15 and known genetic
causes with novel disease-gene associations were described in chapter 3.1 on page 43 using
variants from WGS data. In this chapter, I discuss current data exchange standards, available
technologies and methods for aggregating, annotating and analysing whole genome variation
data for large populations.

4.1.1 Data sharing for global genomic research

Next generation sequencing revolutionised the field of genomics as well as clinical diagnos-
tic and enabled the genome-wide analysis on scale (Koboldt et al., 2013). An increase in
sequencing capacity and a drop in price allowed to produce more sequence data in shorter
period of time (Pabinger et al., 2013). The cost of analysing the human genome with NGS
technology decreased rapidly and made the application for clinical use feasible (Caulfield
et al., 2013). At the same time, the availability of cloud based services provided the required
secure storage and compute infrastructure to be able to handle and analyse genomic informa-
tion on scale. Although secure environments provide several benefits such as lower costs and
scalability, legal and ethical points needed to be considered (Dove et al., 2015). Besides the
mentioned data security, these legal and ethical points also include data control and account-
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ability in geographically dispersed data centres. Other users sharing the same compute and
storing infrastructure should not be able to access data, while sensitive clinical and genomic
information should be shared with collaborating researchers. An international code of con-
duct was proposed to foster the secure and responsible sharing of clinical data (Knoppers
et al., 2014, 2011; Mello et al., 2013). For this purpose, the global alliance for genomics
and health (GA4GH) was established in 2013, bringing together hundreds of individuals
and organizations. While data and compute are distributed around the world, application
programming interfaces (APIs) can provide authorized access to virtually connected datasets
for seamless analyses. The establishment of a federated model allowed globally collaborating
researchers to apply a systematic approach to rare disease gene discovery (Philippakis et al.,
2015). In addition, the NIH issued the genomic data sharing (GDS) policy in 2014 to share
genomic data with the community in addition to other funding bodies (Health, 2014; Kaye
et al., 2009).

The framework document developed by GA4GH regulatory and ethics working group
(REWG) provides basic principles for responsible data sharing with the focus on the right of
an individual to benefit from scientific and medical advances (Knoppers, 2014). Connecting
healthcare providers and research centres allows to improve disease predictions as well as
better informed medical decisions by clinicians. For this purpose, the data working group
(DWG) developed APIs to globally communicate and exchange information. One developed
technical specifications is the beacon project (https://beacon-project.io/) that defines checking
the presence or absence of a specific allele. A simple boolean answer is provided protecting
the privacy of single individuals. Aggregated access is available through the federated
search engine (http://beacon-network.org/) and allows to interrogate a whole network of
accessible beacons. A different specification focuses on the retrieval of a comprehensive set
of information. The large scale genomics (LCG) work stream defined standardized methods
to access distributed genomic data through an API and additional protocols. After successful
authorization, encrypted data are shared and include read (BAM/CRAM/SAM), variation
(VCF/BCF) and annotation information, in standard file formats where possible.

Matchmaker exchange (MME) is a collaborative effort supported by members from the
rare diseases community (Philippakis et al., 2015). The project adopted a federated model to
study patients with a clear missing etiology after the initial analysis. Connecting databases
through the use of common APIs in a federated network allows the systematic discovery of
rare disease genes. Matchmaker Services implementing the MME API store genome variation
information and phenotypic abnormalities in standardised human phenotype ontology (HPO)
terms (Robinson et al., 2008). Patients similarity are determined by matching identical or

https://beacon-project.io/
http://beacon-network.org/
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ontologically similar terms as well as genotypes. Notifications are automatically sent to
clinicians or researchers about matching cases for further analysis.

The open-source for computational biology (OpenCB) initiative (https://github.com/
opencb) is a collection of software for high-throughput genomic data and provides imple-
mentations of the developed GA4GH standards and data models (https://github.com/opencb/
ga4gh). OpenCB comprises data models, APIs and platforms to provide biological data and
analyse as well as retrieve genomic information. Biological information are collated by Cell-
Base (https://github.com/opencb/cellbase), which is available through an API and includes a
service to annotate variants (Bleda et al., 2012). Annotated variants are returned in standard
data models in JavaScript object notation (JSON) format. The open computational genomics
analysis (OpenCGA) project (https://github.com/opencb/opencga) provides an authenticated
service for genomics data. Patients, samples, variation data and clinical information can be
managed and analysed through the API. OpenCGA supplied the platform for the human
genome variation archive (HGVA) and serves variant information from large scale projects
with variant annotations from CellBase (Lopez et al., 2017). Client-side tools facilitate the
API interaction and the interactive variant analysis (IVA) web-interface allows the visual
exploration of the data (https://github.com/opencb/iva). HGVA is registered with the beacon
network and provides access to aggregated variant information.

Cloud computing platforms have emerged for genomic researchers to store and process
large scale data, which takes advantage of scalable services (Afgan et al., 2011; Heath
et al., 2014; Reid et al., 2014). Access is provided using cloud specific APIs or the web
browser. As a member of the GA4GH consortium, Google developed the genomics API
(https://cloud.google.com/genomics) based on the GA4GH framework as an extension to the
Google Cloud service. The genomics API supports authentication and allows the storing,
processing, exploring, and sharing of genomic data. Client-side tools are available in different
languages like Java, Python, Ruby to facilitate the interaction with the API. Imported files
can be accessed by region and retrieved in JSON format.

4.1.2 Storage infrastructure

Traditional methods stored files on a central file system with hundreds of gigabytes in size
ready for analysis and accessed these files by processing tools on different compute nodes.
This centralised storage model required the transfer of terabytes (TB) of data across the net-
work, which is a bottleneck. Distributed storage is the fundamental infrastructure to provide
fast access to the data and was adopted by Google for a scalable system (Ghemawat et al.,
2003). The MapReduce programming model was proposed to analyse large data sets (Dean
and Ghemawat, 2004) and adapted by the open-source projects called Hadoop (White, 2009).

https://github.com/opencb
https://github.com/opencb
https://github.com/opencb/ga4gh
https://github.com/opencb/ga4gh
https://github.com/opencb/cellbase
https://github.com/opencb/opencga
https://github.com/opencb/iva
https://cloud.google.com/genomics
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The decentralised storage followed the storage and fast access of structured data by BigTable
and HBase (Chang et al., 2006; George, 2011). These developments provided the scale,
speed and flexibility required by Google for a storage and analysis platform, while being
resilient against hardware failure and data loss.

The advantages of a distributed analysis platform are provided as a service by multiple
cloud providers, including Amazon Web Services (AWS), Google Cloud, Nimbus, Eucalyp-
tus, Microsoft Azure, GoGrid and Rackspace (Barr, 2006; Google, 2008; Martin, 2014). The
main advantage of these cloud services is the dynamic scaling and readjusting depending
on the demand. Security and the physical location of the data were major concerns to store
and process genomic information in the cloud (Dove et al., 2015). Focusing on the AWS and
Google Cloud, these concerns were partly addressed by the introduction of dedicated storage
locations and default server side encryption (Amazon, 2013; Google, 2015). Specialised
cloud computing companies have emerged to store and process large scale genomic data
based on the infrastructure provided by Amazon or other cloud provides (Reid et al., 2014).

4.1.3 Distributed variant analysis

The genome analysis toolkit (GATK) was designed based on the MapReduce programming
model to handle and analyse high throughput sequence (HTS) related data and utilize the
distributed architecture (McKenna et al., 2010). The computational approach was adapted to
store HTS data in Hadoop and to create analysis workflows (Massie et al., 2013; Schumacher
et al., 2014). Applications range from quality control of HTS reads (Robinson et al., 2011b),
short read alignment (Pandey and Schlötterer, 2013; Pireddu et al., 2011) and variant call-
ing (Langmead et al., 2009a) using the Hadoop framework. Other implementations focus
entirely on the variant analysis and loading variant information from VCF files. O’Connor
et al. (2010) demonstrated that query times using the distributed platform outperform tradi-
tional database systems with increasing number of variants. The variant analysis frameworks
SEQSpark and Hail included rare variant association tests for cohort analyses, but requires
multi-sample variant files to be loaded (Hail, 2018; Zhang et al., 2017). In contrast to other
methods, the software package ADAM combines read alignment and variant calling (Massie
et al., 2013). Specialised file formats were developed for efficient distributed processing
of data with the availability of deep-learning libraries. Recent additions to ADAM were
copy number as well as single sample and population variant callers (Avocado, 2018; DECA,
2018). Most of the analyses have moved to a distributed environment utilising the parallel
computation, but an incremental approach does not exist to merge a single sample or a
group of samples with a larger cohort and specifically annotate novel variants to reduce the
computational burden.
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4.1.4 Scalable variant annotation

The field of genomics applies next generation sequencing (NGS) technology to analyse
the genetic diversity in large populations and highlights the importance of rare variation
in disease (Lek et al., 2016; Song et al., 2016). In addition to the allele frequency, the
identification of disease causing variants requires the consequence type as well as biological
relevant information (see Prioritisation of genome variation on page 9). CellBase (Bleda
et al., 2012) is a comprehensive repository of gene model, regulatory, functional, genomic
and system biology information. The data are stored in a not only SQL (NoSQL) database,
which can distribute data and computation across multiple servers for fast response times. A
well defined RESTful web interface enables consistent access to required information and
provides a variant annotation service that allows the submission of large number of requests.
CellBase returns information in JavaScript object notation (JSON) format and includes the
predicted consequence as well as a comprehensive set of biological relevant information.
Annotation in VCF format is not currently supported by CellBase. The distributed analysis
framework SEQSpark (Zhang et al., 2017) combines annotation and analysis that allows to
mitigate scalability issues by sharing the computation across an entire compute cluster. In
contrast to CellBase, the supported annotation is limited to the prediction of the consequence
based on the gene model. The distributed analysis frameworks Hail and ADAM require the
annotation of variants outside of their framework and load the prepared annotation files into
their infrastructure to be included in the analysis (Hail, 2018; Massie et al., 2013).

4.2 Methods

The NIHR BR-RD recruited subjects and submitted samples for sequencing over a four year
period. Single sample sequence and variant data were continuously delivered by Illumina in
batches of various sizes. The same analyses were required to run after each batch to identify
rare, disease causing variants as well as discover novel disease-gene associations. I assessed
the characteristics of variant information and the suitability of distributed platforms to store
and analyse variant. Based on these findings, the variant infrastructure for loading, merging,
annotating and analysing human genomes (VILMAA) was developed to provide population
wide analyses on scale. The results for disease-gene association for protein-truncating
variants were compared with traditional methods (see Identification of novel disease-gene
associations on page 93) using the latest available NIHR BR-RD samples (see Software and
data release information on page 128).
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4.2.1 Ethical approval

Samples included in the analysis were recruited for the national institute for health research
(NIHR) BioResource - Rare Diseases(BR-RD) study and part of the same ethical approval as
discussed in chapter 2.2.2 on page 18 and chapter 3.2.2 on page 48.

4.2.2 Software and data release information

The analyses were based on the reference data sets and software versions listed in Tab. 4.1
and 4.2 respectively unless stated otherwise.

Name Version Description

CADD v1.3 CADD score whole genome SNV and INDELs
Ensembl 37way GERP 75 Conserved regions in humans

based on eutherian mammals
ExAC r0.3 Whole Exome frequencies
GERP hg19 Downloaded BigWig file from UCSC FTP
Human GRCh37 reference 75 Human autosomes, X and Y

downloaded from Ensembl FTP
NIHR BR-RD 20170104-A Variant release of the

NIHR BioResource – Rare Diseases
PhyloP hg19 Downloaded 100way PhyloP BigWig file

from UCSC FTP
PhastCons hg19 Downloaded 100way PhastCons BigWig file

from UCSC FTP
UK10K 20130411 Exome and whole genome frequencies

Table 4.1 Reference data release versions used throughout the project.

Name Version Info

Apache Hadoop 2.7.3 part of HORTONWORKS
Apache HBase 1.1.2 part of HORTONWORKS
Apache Phoenix 4.7.0 part of HORTONWORKS
BCFtools 1.3.1 including git commit bdb01d8
HORTONWORKS HDP 2.5.0 Distributed data platform release
JAVA 8u66 Java Development Kit (JDK)
Python 3.4.1
R 3.2.4

Table 4.2 Software release versions used throughout the project
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4.2.3 Data structure and data characteristic analysis

The evaluation was based on the merged VCF file from the NIHR BR-RD. The coordinates
of exonic regions of protein coding genes were extracted from the Ensembl gene annotation
file (see Tab. 4.1). The merged VCF file was filtered using these exonic regions only
including ‘PASS’ variants. The defined exonic regions from protein coding regions were
shuffled to get a random selection of genomic regions that is representative of the whole
human genome. Variants from the exonic regions were extracted from the before prepared
VCF file. The first 100K entries based on the unsorted regions were taken into account. The
extracted fields were compressed using gzip and the resulting file size was measured. The
fields included chromosome, position, reference and alternate for the coordinates, and the
info field for the annotation. Genotypes were counted by recording each appearance for
all samples in selected variants and heterozygous genotype counts for ‘0/1’ and ‘1/0’ were
combined. The minor allele frequency (MAF) was calculated for the unrelated PAH control
(UPAHC) and unrelated WGS10K (UWGS10K) cohort (see section 3.2.4 on page 55) using
BCFtools and selected for the rare and common analysis respectively. Allele frequency
based filtering was performed with BCFtools and annotation based filtering was performed
with the ensemblVEP R package.

4.2.4 Hadoop cluster configuration

The Hadoop infrastructure was part of the high performance computing service (HPCS)
of the University of Cambridge. Researchers with approved access to the NIHR BR-RD
genomic data (see chapter 3.2.3 on page 3.2.3) were granted access to the dedicated Hadoop
cluster. The Hadoop cluster consisted of 2 head and 32 worker nodes and the primary
software install was ‘Scientific Linux’ version 7.2. Head nodes were equipped with 24
cores, 32 GB of memory and 2 disks of 2TB each per node. Worker nodes provided 48
cores, 64 GB of memory and 16 disks of 2TB each that amounts to 32 TB per node. The
Hortonworks distributed data platform release was installed on the cluster and primary
installed packages included the hadoop file system (HDFS), YARN, MapReduce2 and HBase.
Total encrypted HDFS storage provided was 342 TB after a replication factor of 3. The HBase
configuration was adjusted to optimise the JAVA garbage collection by adding -XX:+UseG1GC
-XX:MaxGCPauseMillis=100 -XX:+ParallelRefProcEnabled to the SERVER_GC_OPTS
environment. The YARN configuration was modified to allocate 32 GB of memory and 19
cores to be occupied by containers. Approved researchers were granted permission to log
into the Hadoop infrastructure using the authentication service Kerberos and provided access
to a dedicated storage directory on the Hadoop file system (HDFS).



130 Scalable variant analysis platform

4.2.5 Normalisation, transformation and loading of gVCFs

The variants were normalised using a two step process to normalise INDELs using BCFtools
followed by the normalisation and transformation into the data model using OpenCGA. The
BCFtools norm tool was applied to left align and normalise INDELs in genome VCF
(gVCF) files using the -cw and -cs options to warn and set/fix incorrect/missing reference
alleles respectively. The reference sequence was provided to allow the relocation of an variant
to left most position of a repetitive region. Resulting variants were transformed from gVCF
format into proto format using OpenCGA. During the transformation, OpenCGA performed
the normalisation of INDELs by removing the anchoring reference bases. The generated
proto files were loaded into a specified HBase table by performing ‘PUT’ operations using
the HBase application programming interface (API). The Apache Phoenix library was used
for the efficient encoding of the row key, which provided character and number conversion
functionality.

4.2.6 Incremental variant merge in HBase

Single sample variant information were loaded into a HBase table grouped by regions of
the genome. A region in HBase contained a group of variant information per sample stored
in separate columns. The MapReduce job to merge variants processed the HBase table row
per row and retrieved the columns containing the required sample data. The columns were
selected using the ‘Scan’ object to only extract the required columns. Variants from each
sample were checked for conflicts and resolved, if required. The resulting variants from the
selected samples were decomposed and the information encoded as Apache Phoenix arrays.
Row, column and array information were added to an ‘Append’ object that was submitted to
HBase using an asynchronous thread.

4.2.7 Variant annotation

Prior to the analysis, variants in HBase required to be annotated with consequence predictions
and biological relevant information, which reached hundreds of millions of variants. Due
to the speed and RESTful web service, CellBase (Bleda et al., 2012) was used to anno-
tate the variants hosted by the high-performance computing service (HPCS) and included
allele frequencies, deleteriousness and conservation scores. The processes were executed
as MapReduce jobs and configured to run 10 parallel executors with 2,560 MB memory,
scanner timeout of 1,200,000, caching of 10,000 entries, provide java options to use a
maximum memory of 2048 MB and to use the G1GC garbage collector Rows with variant
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annotations were ignored, unless re-annotation was forced. The row key was decoded as a
variant object without genotype information. Batches of 200 variants were submitted for
annotation to Cellbase using the REST API. The JavaScript object notation (JSON) formatted
response is defined as part of the CellBase API and was stored as JSON text in the annotation
column. The population allele frequencies were provided for the 1000G project (Sudmant
et al., 2015), UK10K project (UK10K Consortium et al., 2015) and the exome aggregation
consortium (ExAC) / genome aggregation database (gnomAD) (Song et al., 2016). Deleteri-
ousness predictions were provided for the combined annotation dependent depletion (CADD)
score (Kircher et al., 2014), SIFT (Ng and Henikoff, 2003) and PolyPhen-2 (Adzhubei
et al., 2013). The conservation annotations included the genomic evolutionary rate profiling
(GERP) (Cooper et al., 2005), PhastCons (Siepel et al., 2005) and PhyloP (Pollard et al.,
2010). The variant type (SNV, MNV, insertion, deletion, complex) was inferred and stored in
a separate column by the developed variant infrastructure for loading, merging, annotating
and analysing human genomes (VILMAA).

4.2.8 Calculation of cohort summary statistic

Calculated summary statistics from different NIHR BR-RD cohorts were used for variant
filtering, selection and quality control. Frequently used values were pre-calculated and stored
for a list of NIHR BR-RD cohorts in HBase (see Tab. 4.3). The different cohorts were defined
based on read length, gender, maximum unrelated set, ethnicity and project information
provided by the NIHR BR-RD release. A file was created for each cohort with the selected
sample identifiers and loaded into OpenCGA using the command line API. VILMAA replicated
the updated OpenCGA configuration to the Analysis table in HBase. A MapReduce job was
submitted to process each row in the Analysis table. The number of sample identifiers for
each allele, no-call or failed call was used to calculate the reference allele count, alternate
allele count, genotype count, MAF, minor genotype frequency (MGF), Hardy-Weinberg
equilibrium (HWE), call rate (CR), pass rate (PR) and overall pass rate (OPR). The HWE
p-values were calculated using the HardyWeinbergCalculation class part of the HTSJDK
package.

The object model from OpenCB BioData was extended by VILMAA to include PR, CR
and OPR values. The VariantStats class contained the variant statistics, transformed into
the proto model and stored in HBase. The additional PR, CR and OPR values were stored as
separate columns in HBase.
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Cohort name Samples Description

W10K 9,110 NIHR BR-RD samples
UW10K 7,493 Unrelated NIHR BR-RD samples
UW10K_EUR 6,041 Unrelated European NIHR BR-RD samples
BRG 7,147 NIHR BR-RD without GEL samples
UBRG 6,214 Unrelated NIHR BR-RD samples without GEL
UBRG_EUR 4,922 Unrelated European NIHR BR-RD samples without GEL
UPAHC 6,385 Unrelated PAH controls
TEC_100 386 NIHR BR-RD samples with 100 bp read length
TEC_125 3,093 NIHR BR-RD samples with 125 bp read length
TEC_150 5,631 NIHR BR-RD samples with 150 bp read length
TEC_100_F 213 Female NIHR BR-RD samples with 100 bp read length
TEC_125_F 1,652 Female NIHR BR-RD samples with 125 bp read length
TEC_150_F 3,324 Female NIHR BR-RD samples with 150 bp read length
TEC_100_M 158 Male NIHR BR-RD samples with 100 bp read length
TEC_125_M 1,441 Male NIHR BR-RD samples with 125 bp read length
TEC_150_M 2,307 Male NIHR BR-RD samples with 150 bp read length

Table 4.3 List of NIHR BR-RD cohorts defined in HBase. Frequently used summary statistics
were pre-calculated and stored separately for each cohort.

4.2.9 Novel disease causing gene discovery using HBase

The identification of novel disease-gene associations was described in chapter 3.3.5 on
page ?? using VCF files and traditional command-line tools. A comparable analysis on
protein-truncating variants was performed on the same NIHR BR-RD release with VILMAA.
The same MAF filter of 1 in 10,000 was selected for unrelated non-PAH control, 1000
Genomes Project (1000 Genomes Project Consortium et al., 2015), UK10K (UK10K Consor-
tium et al., 2015) and ExAC (Lek et al., 2016) as described in chapter 3.3.3 on page 71. In
addition, the gnomAD (Lek et al., 2016) MAF was also included as a filter of 1 in 10,000.
The ‘Scan’ object was configured to select variants with an unrelated PAH control MAF
>0.0001 and executed as a MapReduce job. The ‘Mapper’ step of the MapReduce job filtered
variant objects by population frequency, biotype and consequence type. All populations were
filtered by a MAF of 0.0001 in control data sets including ExAC (ALL), UK10K (ALL),
1000 Genomes (ALL), gnomAD (ALL). The biotype was restricted to protein coding and the
protein-truncating consequence type included frameshift, start lost, stop gained / lost, splice
donor / acceptor and transcript ablation / amplification variants. Sample ids with alternate
alleles were extracted, grouped by cases and controls and submitted for each transcript.
The ‘Reducer’ of the MapReduce job collated the cases and control samples per transcript
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and stored the result on the hadoop file system (HDFS). The number of samples were counted
for each group, the canonical transcripts were selected and a one-tailed (greater) Fisher’s
exact test was performed in R.

4.2.10 Performance comparison

The speed and quality performance of VILMAA was compared to the VCF based method
described in chapter 3.3 on page 61. Analysis in both methods were executed in a two
step process and included the calculation of cohort summary statistics followed by a bur-
den test of filtered variants. Cohort statistics, filtering, aggregation and burden test were
consistent between both methods and further details can be found in the relevant chapters
(see chapters 3.2.6, 4.2.8 and 4.2.9). The VCF based method stored variants in one file per
chromosome, processed in parallel and the wall time reported for processing the chromo-
some. Total runtime was the sum of chromosome specific wall times. Chromosome 2 was
the longest running process for each step. Time limiting factor was found to be the reading
and writing of VCF file compared to the CPU performance. For these reasons, the BCFtool
was limited to 2 or 3 cores for the cohort summary statistics and variant filtering respectively.
Aggregation of samples per gene and the association test was performed in R using one core.
For VILMAA, the wall time of the MapReduce job was extracted from the log file. The
chapter 4.2.8 and 4.2.8 provide further details about the processing step.

Information to assess the variant quality were based on the NIHR BR-RD VCF and
VILMAA release and comprised chromosome, variant type, reference allele, alternate allele,
OPR/minOPR, WGS10K MAF, WGS10K unrelated EUR MAF, WGS10K unrelated EUR
HWE For VCF files, BCFtools was used to extract the relevant measurements in tab delimited
format for all variants and loaded into R for filtering, aggregation and visualisation. A
MapReduce job was launched to extract information from VILMAA and stored as tab
delimited format on the HDFS. Apache Spark loaded the tab delimited format, filtered and
aggregated the information into minOPR bins before exporting the results in tab delimited
format to the Linux file system. The results from VILMAA were visualised using R.

4.3 Results

The NIHR BR-RD release included the whole genomes from 9,110 individuals and contained
291M variants. The analyses are currently performed with file based methods, which
are slow, time consuming and can not keep pace with the growth of the data. A fast
and scalable solution does not exist to store data, merge samples, annotate variants and
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efficiently filter millions of variants. In order to overcome the file based bottleneck, I assessed
the characteristics of variant information and the performance of not only SQL (NoSQL)
technologies. Based on the assessment, I developed a variant infrastructure for loading,
merging, annotating and analysing human genomes (VILMAA). The technology of VILMAA
is based on the distributed processing framework Hadoop with the integrated HBase database
as an analysis platform and variant store respectively. For responsible data sharing and the
integration into the global genomic research infrastructure, I collaborated with the open source
software for computational biology (OpenCB) initiative (see 4.1.1 on page 123) and extended
the OpenCGA platform with VILMAA as a module (see Fig. 4.1). OpenCGA supports a

Figure 4.1 VILMAA integrates with various software modules. The user can interact with the
system (a) through graphical user interfaces like the web-based integrative variant analysis
(IVA) browser, (b) programmatically using the API or (c) by executing an analysis on the
Hadoop framework. VILMAA sends requests to (d) CellBase for variant annotation purposes.

standardised API, that allows the seamless authentication, loading, analysis and retrieval of
genomic and clinical data. Users can interact with the API using OpenCGA command line
tools or visually explore the data through the web-based integrative variant analysis (IVA)
browser (https://github.com/opencb/iva). Variants stored in VILMAA were sent to CellBase
for annotation and the API returned the results in data models compatible with OpenCGA as
JSON. I analysed the annotated variants in VILMAA for novel disease-gene associations and
compared the performance to the file based method (see ?? on page 93).

4.3.1 Data structure and characteristics

In order to design a scalable genome variant store, I analysed the data characteristics of
variant entries in a VCF file and access patterns for genome wide analyses. The results were
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based on the January 2017 release of the NIHR BR-RD containing 9,110 samples. The VCF
file structure is separated into a header and body section shown in Fig. 4.2. The header defines
the available data and data types, while the values of the fields are stored in the body. For the
analysis, the body was further separated into coordinates, sample information and annotation.
Coordinates included positional information (chromosome, position), reference and alternate
bases of the allele change and were relative to the selected reference genome. Sample
information provided in the release file included genotypes, genotype quality, depth and
allele depth per sample. I regarded the variant quality score (QUAL) and filter flags (FILTER)
as sample information, since it was based on aggregated sample values. The coordinate and
sample information were determined from WGS data while variant annotations relied on
publicly available resources and additional software products. The INFO field stored these
variant annotations and included diverse data types ranging from single numeric values to
free text. The most extensive annotation was provided as text annotation by Ensembl VEP
and represented a nested object structure with a mixture of numerical, categorical and textual
information (see 3.2.4 on page 55).

Figure 4.2 Data type separation in VCF. The VCF file format contains coordinate, annotation
and sample information, which are stored in separate columns. The columns for each data
type are highlighted as blue blocks in separate tracks. Modified from Samtools organisation
(2017).

Coordinates, annotation and sample data were stored together per row in the body of
a VCF file. The annotated and compressed (gzip) VCF file for the NIHR BR-RD release
was 3.9 TB, containing 291M entries and included 9,110 samples. On average, the size of
each compressed variant entry was 13 KB. The removal of sample information reduced the
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file size to 0.97% (36.7 GB) and an average entry size of 0.126 KB. A detailed analysis
of 100K random exonic variants without sample information found that 98.6% (26 MB) of
compressed space was occupied by annotations compared to 0.35 MB (1.3%) for coordinates.
The same 100K variants contained 911M genotype calls, which were homozygous reference
(98.3%), heterozygous (1%), homozygous variant (0.6%) and no-call (0.02%).

Data access patterns of the VCF file were analysed for rare variants as part of a novel
disease gene discovery, common variants as part of a genome wide association study and
the merging of additional samples with existing variant data. First, the novel disease gene
discovery (see Identification of novel disease-gene associations on page 93) extracted exonic
regions of the genome from the VCF file based on coordinate ranges to reduce the number of
165M ‘PASS’ variants down to 2.6% (n=4.4M) exonic variants. The variant annotations were
accessed to filter on sample summary statistics and functional predictions. These annotations
further reduced the considered variants down to 0.2% (n=368K) rare, predicted deleterious
variants. On average, the alternate allele was present in 1.6 samples (0.02%) per variant.
Second, annotation based filtering was applied to obtain common variants (UWGS10K MAF
>0.05) for the whole genome and retrieved 4.4% (n=7.2M) of the variants. On average,
the alternate allele was present in 49% (n=4,479) of samples for a variant. Last, the access
pattern for merging variants was estimated based on the required data types. These data types
included the coordinates and sample information for the identification of the variant and the
corresponding sample genotype data respectively. During the merge process, every data type
of a variant entry was accessed and re-written as an entry in a new VCF file with additional
sample information and updated sample summary annotation.

In summary, coordinate and annotation information occupied the smallest disk space of a
VCF file and were found to be the most used filter option to reduce the number of variants
for further analyses. Pre-calculated sample summary statistics were applied as a filter for the
common and rare analysis as part of the annotation. Sample information were not directly
used for filtering, but account for 99.3% of space with 98.3% occupied by reference calls.
Merging of additional samples required reading and re-writing of all information.

4.3.2 Assessment of distributed NoSQL storage infrastructure

Different NoSQL storage implementations were evaluated due to their suitability for storing
and processing variant information. The above identified VCF data type characteristics were
used in the evaluation process. Traditional relational database management system (RDBMS)
were designed to work on one single server and the data were stored in a specific schema
designed for one purpose. Vertical scaling allowed to increase the capacity of RDBMS on
one server by increasing the central processing unit (CPU) speed, number of cores, amount
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Category Implementation Definition

Key-Value Redis Stores and retrieves documents based on a
key.

Wide Column Stores HBase, Cassandra Similar to Key-Value store with the
addition of separating information by
dynamic columns.

Document storage MongoDB Stores structured (JSON) documents and
indexes specific fields for fast access.

Graph database Neo4J Stores highly connected data

Table 4.4 High ranking NoSQL systems grouped by category. A NoSQL systems is selected
for each category based on the ranked (solid IT gmbh, 2013).

of random-access memory (RAM) and improve the speed of the local disk space. In contrast,
NoSQL systems were designed for horizontal scaling, which described the distribution of
data across a group of servers. The requirement of data type or schema definition depended
on the NoSQL category and specific implementation. The currently highest ranked NoSQL
categories (solid IT gmbh, 2013) and their representatives are listed in Tab. 4.4. The Neo4J
implementation is a graph database and optimised to store highly connected data. Variants are
independently defined events and would not benefit using the graph structure. Redis stores
key-value entries and was developed to cache specific web queries. The data storage and
query facilities were optimised to retrieve binary data based on one specific key. This specific
access pattern was not compatible with the access requirements of variant data. MongoDB
is a structured document storage system which allows to create indices on specific fields to
query the data. These indexes are similar to VCF position indices and can be applied on any
predefined field. These fields would be searchable genome-wide and return the results in
seconds, which would providing the required search functionality. HBase and Cassandra
are wide column stores which provide a two dimensional key storage for binary data, where
the row key and dynamic column keys are used to access information. Cassandra requires
the exact row key to access data and does not provide a facility to access regions of rows,
but allows to scan columns for regions. Rows in HBase are sorted and provide range queries
for regional searches. The documentation1 states that HBase scales to billions of rows and
millions of columns and provides fast regional access as well as providing the computational
back-end to scan the whole dataset for specific annotations. HBase is a module of the
distributed processing Hadoop framework and provides the computational infrastructure to
process the stored data locally.

1http://hbase.apache.org/book.html#arch.overview.when

http://hbase.apache.org/book.html#arch.overview.when
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MongoDB and HBase were further subjected to a more detailed evaluation because of their
capabilities and likely choice as a variant store. The evaluation was based on the Yahoo!
Cloud Serving Benchmark (YCSB) framework (Cooper et al., 2010). The YCSB is an
open source implementation to evaluate data-serving and data-storing systems. In 2013,
the company Altoros assessed the performance of HBase and MondoDB amongst others in
different scenarios using the YCSB framework (Altoros Systems, 2013). The framework
generated 100M entries of 1KB size entries and simulated different read / update / write
workloads. I selected the simulated workloads A (50% read, 50% update) and B (5% read
with 95% update) to estimate the usage during merging and annotating variants respectively
shown in Fig. 4.3. The latency of the update operations in both workflows did not increase for
HBase, while MongoDB showed rising latency by increasing the number of operations. The
difference for read operations were not significant in workflow A, but showed a performance
degrade of the MongoDB throughput in workflow B.

Figure 4.3 MongoDB and HBase performance comparison. The latency of update and read
performance is displayed for two different workload models. Update operations are measured
in (a) and (b), read operations are measured in (c) and (d) for workload models A and B
respectively. Adapted from Altoros Systems (2013).
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The evaluation of NoSQL storage implementations showed significant differences be-
tween NoSQL category representatives and even within a category. MongoDB and HBase were
further tested due to their suitability to store and query variant information. HBase showed
consistent lower latency during simulated update and read operations and was selected as the
NoSQL variant storage backend.

4.3.3 Normalise, transform and load single sample gVCF into HBase

Figure 4.4 VILMAA variant workflow. Workflow shows required steps to move from a
locally stored gVCF to an analysis ready HBase table. Analyses can be performed in minutes
on the merged and annotated Analysis table.

The distributed database HBase was selected to store and provide fast access to genome
variation information and their annotations. First, I developed an HBase schema to store a
complete representation of 10K single sample genome variation data and found an efficient
way to load the normalised gVCF files into the schema. The storage architecture provided
by HBase can be described as a spreadsheet with rows, columns and values stored in cells.
In contrast to spreadsheets, the names of columns and rows are user defined and contain
information. Each cell can be accessed by the combination of row and column names and
the access time to these cells are in the order of milliseconds. Based on this information,
I designed the Archive table to provide positional and sample specific variant information
described in Tab. 4.5. The column name identifies the gVCF file of the sample, the row
stores the position of a 1 Kb region (slice) and the actual variants of the slices are stored
as binary data in the cell. The VCF header definition is stored with other meta information
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Description Row Column Type

Variant information per file for region <chr>:<slice position> <study_id>_<file_id> proto object
VCF header information per file _METADATA <study_id>_<file_id> JSON
List of loaded file ids separated by ‘;’ _METADATA _METADATA string

Table 4.5 Archive table schema. Variant information of an individual file are grouped in
slices. The row key stores the position of the slice region and the column name identifies the
specific file in a study. The value of a cell contains the actual variant information of a slice
and is stored as protocol buffer. VCF header and other meta information are stored in JSON
format in the additional metadata row. A metadata row keeps track of all loaded files.

per sample in a separate row. I determined the 1 Kb slice size by comparing the number of
variant entries bridging across slices while keeping sufficient number of rows for efficient
parallel processing of slices (Tab. 4.6). Variants bridging across multiple slices were stored
in all slices to avoid additional database requests.

The data structure of the slice information was designed using a data structure seri-
alisation method called protocol buffers, also known as proto (https://developers.google.
com/protocol-buffers/). The serialisation method allows to generate JAVA classes from the
designed schema, which are filled with data. The filled information are then serialized to
be stored in a file as binary format using the provided read and write functionality. Proto is
optimised for speed and compact representation of data. The developed VcfSlice schema (see
Listing A.1 on page 189) required the loss-less representation and fast access to the object
model.

100 bp 1 Kb 10 Kb

Number of slices 30 M 3 M 309 K
Average variants per slice 1 13 125
Batch size of 500 samples 625 6,250 62,500

Slices with bridging variants (1 sample) 30% 86% 91%

Table 4.6 Slice size assessment. The average number of variants are calculated for different
slice sizes. Variants with a start and end position in different slices are regarded as bridging
variants and are stored in all affected slices.

After designing the database schema, I focused on the normalisation, transformation and
efficient loading of gVCF files into HBase. The normalisation (Fig. 4.4(a)) of variants was
performed in two steps. First, the left alignment and removal of redundant bases of variants
was performed for single sample gVCF files using BCFtools. The normalisation took on
average 35 minutes, was performed in parallel and the results were stored as gVCF files.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
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Second, INDELs were normalised, the anchoring reference bases were removed, transformed
(Fig. 4.4(b)) and stored as proto files using the OpenCGA package. The normalisation,
transformation, grouping into slices and serialisation to proto took on average 15 minutes per
file. Proto files were optimised for data loading and grouped into 1 Kb slices ready to be
loaded into the Archive table in HBase. The loading process (Fig. 4.4(c)) took on average
106 seconds per sample and 4 files were loaded in parallel without performance reduction.

The normalisation, transformation and loading of one file took 52 minutes and occupied
1 CPU. Processing 16 files in parallel reduced the overall run-time significantly down to 10.2
minutes per file with further parallelisation possible. Such reduced run-times make it feasible
to process 10K samples.

4.3.4 Variant conflict resolution

Single sample gVCF data were loaded into HBase with the assumption that every base of
the genome is represented, but only represented once. I implemented a consistency check
to highlight conflicting variant calls and missing regions. These conflicting calls involved
overlapping or duplicated INDEL calls of lower quality. Fig. 4.5 shows two variant calls in
the same individual, where an insertion is called twice, but differently. I implemented a rule
engine to resolve these conflicts. The pseudocode for the rule engine is shown in Listing 4.1
that selects the most likely calls first and rejects following conflicting calls. Regions with
missing calls were filled with no-calls.

Figure 4.5 Example of an insertion conflict. Two insertions (1/2 and 0/1) are called at the
same position. The conflict is highlighted by the star symbol. The variant calls provide
different genotypes and alternates for the insertion (ATT versus ATG).

Listing 4.1 Conflict resolution pseudo code

f u n c t i o n S o r t C a l l s :
P r e f e r v a r i a n t c a l l s ove r r e f e r e n c e c a l l s
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P r e f e r PASS ove r o t h e r f l a g s
P r e f e r o t h e r f l a g s ove r S i t e C o n f i c t
P r e f e r h i g h e r q u a l i t y s c o r e s
P r e f e r lower s t a r t
P r e f e r lower end
i f n o t d e c i d e d
Random d e c i s i o n

FOR EACH i n d i v i d u a l IN i n d i v i d u a l s
FOR EACH c o n f l i c t i n g C a l l S e t IN i n d i v i d u a l
S o r t C a l l s : c o n f l i c t i n g C a l l S e t
WHILE c a l l IN c o n f l i c t i n g C a l l S e t
IF n o C o n f l i c t : c a l l , f i n a l C a l l S e t
ADD c a l l TO f i n a l C a l l S e t
ELSE
## do n o t h i n g −> r e j e c t c a l l
f i l l M i s s i n g R e g i o n s W i t h N o C a l l : f i n a l C a l l S e t

4.3.5 Incremental variant merge using Hadoop infrastructure

Single sample variant information were loaded into the Archive table, which was designed to
provide fast regional access grouped into slices. One slice contains th information for a 1Kb
region. The columns of each slice identified individual samples with their respective variant
information. Variant information included no-call, reference and non-reference variant calls.
Merging one specific position required the overlapping variants from all individuals to be
available at the same time. Adding one additional sample with variants not observed before
requires the reloading of data from all individuals for these positions. On average, one
sample contains 13 calls (reference, no-call or variant call) for a 1Kb region. Genotype and
associated data were converted into the proto format per slice, which required 681 bytes of
disk space. For an average slice, the file size for 10K samples was 6 MB, contained 130K
calls and was efficient to load and process. Regions of 1Kb with high number of variation
increased the file size for one sample from 681 bytes to 25 KB containing 500 calls or more.
These regions required 240 MB of compressed disk space for 10K samples and encoded 5M
calls. Loading and reprocessing these information was not feasible for the growing amount
of data.
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An incremental merge approach was required to process variant information only once
per sample. For this purpose, I designed an incremental two step process, that utilises the
scalability and update functionality of HBase. Variants are decomposed into the separate
alleles and the observed alleles for each individual are counted based on the recorded
genotype. Tab. 4.7 illustrates the decomposition of variant calls at one position for different
samples and the process of grouping samples with the same number of present alleles. The
allele count representation allows the incremental adding of additional samples to each
group and contains sufficient information to recreate the original genotype for each sample.
Insertions and deletions are not fully represented in Tab. 4.7 and the differences for storing
variants other than SNVs is addressed in the below table schema definition.

Sample Variant GT A T C DEL INS

S1 1:123_A/T 0/1 1x 1x
S2 1:123_A/C 1/1 2x
S3 1:123_A/. 0/0 2x
S4 1:123_A/- 0/1 1x 1x
S5 1:123_A/AG 0/1 1x 1x
S6 1:123_A/. 0/0 2x

Count A:1x[S1,S4,S5]; A:2x[S3,S6]; IND:1x[S5]
T:1x[S1]; C:2x[S2]; DEL:1x[S4];

Table 4.7 Example variant decomposition and allele count for one position. Variants from 6
samples of the sample position are decomposed into their individual alleles. These decom-
posed information are aggregated and the final count listed in the last row.

Variants were decomposed to allow incremental adding of samples and this allele count
information exists for every base of the genome. Fig. 4.6 describes the Allele_count schema,
which I designed to store a sparse representation of the decomposed information. The
reference row (Fig. 4.6(c)) contains the count information. Homozygous reference calls are
inferred instead of stored, which were identified as the most common genotype (see Data
structure and characteristics in 4.3.1). The reference row contains the count for overlapping
deletions (including complex alleles) and anchoring position for insertions, but does not
specify the precise allele. The overlap of the anchoring position in insertions requires to store
the reference allele of INDELs separately to avoid over-counting the number of reference
alleles. The precise alterations are stored in separate rows, where the columns (Fig. 4.6(d))
contain the allele count, only for the specific variants. The quality of calls is captured in
the non-pass (any other flag than ‘PASS’) column in the reference row, while PASS calls
are inferred. After counting, sample ids are appended to the required columns without prior
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access to the table. This incremental update is achieved through the ‘Append’ command in
HBase, which creates required rows and columns, if needed.

Figure 4.6 Allele_count table schema description. The (a) structure of the table shows the row
and columns. All cells store a list of sample identifies using the array delimiter from Apache
Phoenix. Genomic position, reference and alternate are encoded in the row key, while the
sample genotypes are stored in the columns. Variant ‘PASS’ information are not saved, but
is inferred from the not-pass variant calls. (b) Reference and alternate bases are encoded in
the row key. Reference positions stores no reference bases and encode ‘.’ as the alternate.
(c) Reference row entries contain allele counts of all observed single bases (reference and
alternate), overlapping insertions and deletions encoded as ‘+’ and ‘*’ respectively. Samples
with homozygous reference calls are not recorded and are inferred from the variant context.
(d) Alternate row entries store samples with variant alleles only.

The complete process of allele counting of samples involved the conflict resolution,
decomposition and the incremental adding of sample ids to HBase. This process was run for
12,551 samples and Tab. 4.8 shows that a speed of 42 seconds per sample was achieved. A
table size of 3.6 billion rows is feasible in HBase without performance deterioration. Larger
collections of samples perform better due to a reduced waiting time during the submission
using the append command. The submission method was implemented as an asynchronous
process to maximise the uninterrupted processing of the data.

The count table contained reference and alternate allele counts with 3.02 billion rows
for incremental merging of samples. For analysis purposes, the alternate alleles were
extracted into the Analysis table described in Fig. 4.7, which is of similar structure to the
Allele_count table. The Analysis table enables the storage of (Fig. 4.7(b)) variant annotations
and (Fig. 4.7(c)) pre-calculated cohort statistics. Specific cohort frequencies are stored in
separate columns for improved query times. I implemented the transfer as a MapReduce job,
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Samples new Samples total Time (total) Time / sample Rows (total)

5,000 5,000 59 hours 42 seconds 2.27 billion
3,729 8,729 46 hours 44 seconds 2.65 billion

928 9,657 19.5 hours 75 seconds 2.83 billion
2,894 12,551 33 hours 41 seconds 3.02 billion

Table 4.8 Incremental allele count processing times. The wall times required to incrementally
add variants to the Allele_count table.

Figure 4.7 Analysis table schema description. The (a) structure of the table shows the row
key composition and the encoding of the column names. Allele count columns start with
‘R’ or ‘V’ for reference or variant respectively. Overlapping insertions and deletions are
represented as ‘+’ and ‘*’ respectively. The number at the end of the column name represents
the number of observed alleles while ‘R-1’ and ‘R-2’ represent a no-call and one reference
allele present in an insertion respectively. Variant and reference allele cells contain a list of
sample identifiers for the reference or alternate allele. (b) Variant annotation and population
frequencies are stored in the column ‘A_FULL’ as proto. (c) Study and cohort identifiers
are encoded with some statistical measurement into the column name. The complete allele
summary statistics are stored in ‘2_123_PB’ as proto.
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which processes each row from the Allele_count table separately. Rows are read in sorted
order that ensures the reference row appears just before a variant row entry. Reference and
variant information are extracted and the combined allele counts submitted to the Analysis
table. Tab. 4.9 shows the transfer times with resulting variant counts for two sample sets
and highlights that the HBase was capable of repopulating 347 million variants in less than 3
hours. Existing variant annotations were not overwritten during this process.

Samples Count rows Variant rows Time

8,729 2.65 B 290 M 2h 28m
12,551 3.02 B 347 M 2h 58m

Table 4.9 Variant transfer times. The required wall time to detect and transfer variant calls
from the Allele_count to the Analysis table.

4.3.6 Variant annotation and cohort statistics

Variants were merged across 12,551 samples and stored in the Analysis table. The resulting
347M variants required variant annotations and cohort summary statistic calculation for
further analysis. For this purpose, the online CellBase annotation service was utilised to
retrieve available population frequencies, gene model and variant predictions. I implemented
a MapReduce job to annotate all variants in the Analysis table with CellBase, which took
2 days and 18 hours. The annotation process extracts variant (position, reference and
alternate) information from the row key and submits variants in batches of 200 to CellBase
for annotation. Annotation data returned from CellBase are stored in the Analysis table.
Summary statistics were calculated based on samples included in the NIHR BR-RD release.
The required cohorts (see Tab. 4.3 on page 132) were first defined in OpenCGA before
the updated configuration was synchronised with HBase. I implemented a MapReduce job
to calculate the reference allele count, alternate allele count, genotype count, minor allele
frequency (MAF), minor genotype frequency (MGF), Hardy-Weinberg equilibrium (HWE),
call rate (CR), pass rate (PR) and overall pass rate (OPR). An allele count focused design
of the Analysis table allowed the efficient calculation of the allele frequencies. The HWE
calculation was performed by the open source HTSJDK implementation. The calculation of
the summary statistic took 2 hours and 46 minutes, and included 347 M variants, 16 cohorts
and 9 values per cohort.
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4.3.7 Variant noise reduction

The variants were normalised, merged and annotated in HBase as described above. To
distinguish between biological and technical variants, I calculated the overall pass rate (OPR
= CR x PR), which is composed of the call rate (CR) and pass rate (PR). The OPR calculated
in HBase differs to the OPR calculated using the AGG tool (see Variant noise reduction
in 3.3.1 on page 67), which uses the pass frequency (PF). The OPR was calculated for each
technical cohort (100, 125 and 150 bp read length) and separately for each gender (male and
female). Fig. 4.8(a) shows the sensitivity of the OPR to protocol changes. Due to technical
differences, I selected the minimum OPR (minOPR) of all technical cohorts for filtering.
Only female samples and only male samples were included for the minOPR calculation on
the X and Y chromosome respectively. The analysis in Fig. 4.8(b) shows the distribution of
common and rare variants for the minOPR. In general, rare variants accumulated closer to
the extreme minOPR (0 and 1) and the separation was more distinct for SNV compared to
INDELs (not shown). I observed 27.6% of SNVs with a minOPR <0.5 compared to 23% of
insertions and 14% of deletions.

Figure 4.8 Technical OPR bias and minOPR MAF distribution. (A) The calculated OPR for
the same variants are compared between different technical cohorts. The comparison shows
variants that reach a high OPR in one cohort, but a low OPR in another cohort, which creates
read length specific pattern. (B) The minOPR value is selected from the technical cohort
and compared to the MAF of SNVs observed in the NIHR BR-RD cohort. The darker areas
indicate an enrichment of variants close to 0 for rare and close to 1 of the minOPR for rare
and common variants.
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I determined the biological relevance of the observed separation of minOPR values
by using the Ts/Tv ratio and HWE to assess biological and population specific properties
for variants in different minOPR bins. The analysis in Fig. 4.9 confirms an enrichment
of non-random base changes in minOPR bins closer to 1 for both Ts/Tv (a) and HWE (b)
measurements. A focused analysis of the top three minOPR bins confirmed a conservative
minOPR cutoff of ≥ 0.99 for the internal data release. We also found that insertions were in
the expected HWE range until an accumulation of insertions. Deletions are excluded from the
HWE analysis because overlapping deletions skew the HWE calculation. The composition
of variant types are recorded in Tab. 4.10 and I found that 46% of variants were retained after
filtering with a minOPR ≥ 0.99.

SNV MNV INDELs Out of total

All variants 84% 1% 15% 100%
≥ 0.99 OPR 90.5% 0.5% 9% 46%

Table 4.10 Breakdown of different variant types with and without filtering for high confident
(≥ 0.99 minOPR) variants.

4.3.8 Novel disease-gene associations using HBase

The variants of 12,551 samples were loaded, merged, annotated and cohort specific statistics
calculated in HBase. The purpose of the infrastructure development was to facilitate genome
wide analysis and accelerate novel gene discovery in rare diseases. With the acceleration
in mind, I reimplemented the novel gene discovery for protein-truncating variants in the
PAH cohort as described in Identification of novel disease-gene associations on page 93
using the Hadoop infrastructure. The implementation included the selection of protein-
truncating variants, filter variants based on population and control cohort frequencies and
aggregate samples into unrelated PAH controls and unrelated PAH index cases. Samples
were aggregated per transcript and tested for over-representation in unrelated PAH index
cases. The analysis was executed as a MapReduce job on the Hadoop cluster, processed
347M variants in 12,551 samples and returned the aggregated results in 32 minutes. Tab. 4.11
shows the results for the HBase and VCF based analysis and highlights the differences in
the number variants found comparing cases with controls. In the first 10 most significant
results from HBase, there are only two genes with matching counts. I investigated these
differences and found that the minOPR was below 0.99 for 10 variants (12 subjects), the
VCF OPR was below 0.8 for 2 variants (2 subjects), UK10KWES annotations were missing
for 5 variants (5 subjects), gnomAD annotation not part of VCF 1 variant (1 subject) and
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Figure 4.9 (a) The Ts/Tv ratio was calculated on SNVs per chromosome for different minOPR
bins and shows a consistent pattern. (b) The fraction of Hardy-Weinberg equilibrium (HWE)
less than 0.05 was calculated for INDELs in minOPR bins. The horizontal line is the expected
value (0.05) and shows an improvement of the HWE fraction with increasing minOPR values.
(c) The fraction of HWE less than 0.05 was calculated for SNVs and analysed for the top
three minOPR bins across different MAF collections, with the number of available SNVs
shown underneath. The expected values were reached with a minOPR cut-off greater or equal
to 0.99. The analysis of insertions gives comparable results (data not shown). (d) HWE and
frequency of insertions are consistent across different lengths after filtering. The insertions
were collected in a frame size of 10bp.
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protein-truncating consequence types in the VCF file did not have annotations in HBase
for 2 variants (2 subjects). The majority of missing variants were due to different OPR
cutoffs and OPR calculations. The UK10KWES annotation was shared by collaborators
and not publicly available, which explained the missing frequencies in HBase. GnomAD
frequencies were not part of the VCF data release and not used for the VCF file based
analysis. Protein-truncating consequence types annotations should not be missing and was
down to the variant representation in CellBase. CellBase does not provide consequence types
for MNV but instead normalised the variants into SNVs and provides individual annotations
for each SNV.

VIMLAA confirmed the scalability of HBase to store and process variant information for
10K samples. The incremental merging process utilised the full potential of HBase stable
performance and diminishes several iterations of data processing.

VILMAA protein truncating analysis VCF based protein truncating analysis

HGNC Cases Controls Fisher’s Cases Controls Fisher’s
exact p-value exact p-value

BMPR2 89 2 1.18E-74 92 1 5.58E-79
EIF2AK4 13 7 2.22E-07 12 6 4.33E-07
ATP13A3 6 1 4.60E-05 6 0 7.38E-06
EVI5 5 1 0.00028 5 1 0.00028
SLC36A2 5 1 0.00028 3 2 0.02188
KDR 4 0 0.00038 4 0 0.00038
TBX4 4 0 0.00038 8 0 1.43E-07
KIF4B 4 0 0.00038 4 1 0.001690
SRM 3 0 0.00274 4 0 0.00038
PRR22 1 0 0.14011 4 0 0.00038

Table 4.11 Protein-truncating variant analysis comparison. Results with a p-value <0.0004
were included from the VILMAA and VCF based analysis.

4.3.9 Performance comparison

Variants from NIHR BR-RD subjects were analysed using the VCF file based (see chapter 3.3
on page 61) and the distributed compute infrastructure VILMAA (see chapter 4.3.8) method.
Both methods selected the same subjects for the case and control cohort, and performed an
association test in a two step process. Firstly the cohort frequencies were calculated and
secondly subjects with rare deleterious variants were selected and tested for a disease-gene
association. Using the available resources, I measured the performance of these two steps
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(see Tab. 4.12) for both methods. VILMAA compared to VCF was found to be 77 and 1000
times faster for calculating summary statistics and filtering variants including the burden test
respectively. For VCF, chromosome 2 was found to have the longest runtime by processing
chromosomes individually and indicative for a parallel computational approach with standard
tools. The runtime for VCF on chromosome 2 was listed separately as a reference value and
VILMAA performed 6 and 78 times faster for calculating summary statistics and filtering
variants including the burden test respectively. VILMAA showed a speed improvement for
each benchmark and was able to perform a burden test including variant filtering in minutes
compared to days.

VCF VILMAA

total chromosome 2 total

Summary statistics 8d 23h 16m 18h 4m 2h 46m
Filter variants & burden test 22d 5h 50m 1d 17h 51m 32m

Table 4.12 Runtime comparison of rare variant burden test. The wall time was measured
for calculating the summary statistics for defined cohorts for all variants. Variants were
filtered for rare deleterious variants by considering calculated allele frequencies as well as
variant annotations. Samples of the remaining variants were aggregated and included in the
burden test. Separate measurements were provided for chromosome 2, which had the longest
runtime and as a reference value for analysing chromosomes in parallel. The VCF method
used 2 cores for calculating the summary statistics and 3 cores for variant filtering followed
by the burden test. VILMAA showed a speed improvement for each listed benchmark.

After confirming the speed improvements, I compared the performance of the overall
pass rate (OPR) and minimum OPR (minOPR) quality measurement, which were differently
calculated (see chapter 3.3.1 and 4.3.6). The chapter 3.3.1 (Variant noise reduction) on
page 67 describes the VCF based calculation of the OPR value including the call rate (CR)
and pass rate (PR). VILMAA extended the OPR method by selecting the minimum OPR
(minOPR) from OPRs calculated for different technical cohorts to reduce pipeline biases
(see chapter 4.3.6 on page 146). The differences between the VCF based OPR and VILMAA
based minOPR were explored in two different ways. Firstly I calculated the transition (Ts)
and transversion(Tv) ratio from SNVs in different OPR or minOPR bins (see Fig. 4.10).
For substitution events, there are two possible transitions and four possible transversion. If
substitutions occur randomly, then the Ts/Tv ratio should be 0.5. Non-random events for the
whole human genome occurs at a ratio of around 2.0. The OPR bin of 0 was found to have a
Ts/Tv of 0.5 for both methods and an increase of the radio enriches OPR bins for biological
events. The minOPR (VILMAA) shows a slow increase in Ts/Tv ratio with increasing OPR
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Figure 4.10 Transition/Transversion (Ts/Tv) ratio was calculated in different OPR bins for
each method. OPR and minOPR values were used to create OPR bins for the VCF and
VILMAA based method respectively. (a) The method specific Ts/Tv ratio is displayed by
lines and an increase in OPR shows a method specific pattern. VILMAA shows a gradual
rise in Ts/Tv for increasing OPR values compared to VCF. (b) Each lines shows the number
of SNVs included in the Ts/Tv calculation for the OPR bin specific to the method.



4.4 Discussion 153

value compared to a the OPR (VCF). The Ts/Tv of 1 was reached at the OPR bin of 0.76 and
0.07 for VILMAA and VCF respectively. The gradual Ts/Tv increase in minOPR suggests
a better separation of technical and biological events compared to OPR. In both cases, the
Ts/Tv comes close to the expected 2.0 ratio in the maximum OPR bin. Secondly I utilise
the assumption of Hardy–Weinberg equilibrium (HWE), which states that the frequencies
of heterozygous and homozygous genotypes in a population will remain constant across
generations. The fraction of variants with a HWE of <0.05 in a large collection is expected
to be 0.05 for common variants (MAF ≥0.05). Figure 4.11 shows that variants with an
OPR between 0.99 and 1 reach the expected fraction of 0.05 in common variants. The
minOPR (VILMAA) is more consistent compared to OPR (VCF) across different MAF bins.
A reduction of the OPR shows less of an affect in minOPR compared to OPR. The quality
measurements of Ts/Tv and HWE suggests a better performance in selecting variants based
on the minOPR provided by VILMAA.

4.4 Discussion

The NIHR BR-RD received 13K variant data sets from Illumina over a 4 year period.
Available single sample genome VCF (gVCF) files were aggregated into a multi-sample
VCF file and the variants annotated with Ensembl variant effect predictor (VEP). The rising
number of samples increased the file size and the preparation time. Longer analyses times
using available software tools hindered the exploration of the genome and a new scalable
approach was required to keep pace with the soaring amount of data. I evaluated variant
information accessed by different analyses and characterised the stored data types in the
merged VCF file. The evaluation highlighted the contrast between the high and low frequency
use of the minority and majority of the data respectively.

4.4.1 NoSql technologies

My search for new technologies to store variant information was inspired by Google, Face-
book and Twitter. All these companies applied different NoSql technologies to provide
access to petabytes of information in seconds. I selected the most popular implementation
for each NoSql category and evaluated the suitability to store, aggregate and analyse vari-
ant information for 13K individuals. The evaluation was based on the previous identified
analysis and data characteristics of multi-sample VCF files, which found HBase as the best
candidate. One major component was the computational scalability provided by the Hadoop
framework, which HBase utilises. The large-scale data processing engine Apache Spark
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Figure 4.11 MAF affect on HWE in different OPR bins. OPR and minOPR value were used
to create OPR bins for the VCF and VILMAA based method respectively. (a) Each line
represents the fraction of HWE <0.05 for different OPR ranges and are calculated for MAF
bins (WGS10K unrelated EUR). The black dotted line highlights the expected value of 0.05.
VILMAA shows a more consistent pattern compared to the VCF based method and a lower
OPR value displays less of an affect on the fraction of HWE <0.05 for VILMAA. (b) The
number of SNVs used to calculate the fraction of HWE <0.05 is displayed for each OPR bin
and method.
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can also be deployed on the Hadoop framework and formed part of the technology used by
SEQSpark (Zhang et al., 2017). Spark is a processing framework and stores information in
structured files, which were not evaluated at the time.

4.4.2 Incremental variant aggregation

Variant information from samples arrived at different time intervals over the course of the
project. During the course of the study, several months could pass between the arrival of
sample data and the availability of these sample information as part of a release. The delay
was a combination of waiting for sufficient samples to arrive to justify a new release and the
release process itself. A new release re-merged samples and re-annotated variants, which
were already processed before, for the previous release. Taken advantage of the scalability
of HBase, I implemented an incremental aggregation and annotation approach that enabled
a new release of 1K additional samples in a day. An incremental approach is different to
current variant merging or aggregated variant call tools implemented by agg (Illumina) or
HaplotypeCaller (GATK) respectively (Illumina, Inc., 2015; McKenna et al., 2010) and
allows a fast release cycle. Integrated samples benefit from already annotated variants and
the allele frequencies were recalculated as part of the release for different disease and ethnic
cohorts. These information are essential to identify causal variants in a clinical setting and
would move WGS a step closer from the bench to the bedside of patients.
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Chapter 5

Concluding remarks

A disease is classified as rare, if it affects less than 5 in 10,000 people. An estimated 8,000
rare disorders exist in Europe1, with some as rare as 1 in 100,000. Rare-disease diagnosis and
research is being transformed by recent technical advances and availability of next generation
sequencing (NGS). Identification, recruitment and analysis of sufficient cases with the same
underlying cause remains a challenge.

5.0.1 Data sharing infrastructure

The NIHR BR-RD study sequenced the whole genome of 13,000 subjects harbouring billions
of shared and rare variants. To analyse and identify rare disease causing variants, I developed a
computational infrastructure to store, provide and analyse the billions of collated variants. The
developed software was integrated with the OpenCGA framework to provides authenticated
access through standardised application programming interfaces (APIs). These APIs enable
the responsible and global sharing of genomic and phenotype information by implementing
technical specifications developed by GA4GH working groups. The integration with GA4GH
frameworks will allow to collate geographically distributed individual patients in one virtual
place.

In addition to the genomic variants, we collected phenotype and clinical information
from PAH patients in OpenClinica. Measurements in OpenClinica included numerical values
in different units and are not easy to standardise and compare. The detailed collection would
benefit from a translation to human phenotype ontology (HPO), which is a standardised
ontology of phenotypic abnormalities. Such HPO terms are globally shared with genomic
variants to describe patients and find similarities. Responsible sharing of a detailed description

1https://ec.europa.eu/health/non_communicable_diseases/rare_diseases_en

https://ec.europa.eu/health/non_communicable_diseases/rare_diseases_en
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increases the chance in identifying possible other patients with the same disease and help
diagnose undiagnosed cases.

5.0.2 NGS in clinical practice

The NIHR BR-RD PAH project aimed at the identification of novel disease-gene associations
as well as the identification of patients with variants in known genes. My analysis found
enrichment in 4 previously reported PAH genes, which questions the causality of the remain-
ing known PAH gene. The american college of medical genetics and genomics (ACMG)
published standards and guidelines for the clinical application of sequencing technologies.
The assessment of variants following the ACMG guidelines provided strong evidence for
causality in BMPR2 but also concluded a “likely pathogenic” status for the known PAH gene
SMAD1 with no enrichment in the PAH cohort. This example highlights the need for cautious
examination of evidence for clinical diagnosis. Clinical services and ultimately their patients
will benefit from GA4GH frameworks to have access as well as contribute data globally. The
framework ensures the confidentiality of patient information while joining and contributing
to a rich pool of genotype and phenotype data. For time critical cases, the availability of
the latest information to a clinician can be life saving. Specially critically ill children can
benefit from rapid diagnosis and it is possible to go from a sample to a diagnosis within 4
days (Mestek-Boukhibar et al., 2018).

5.0.3 Personalised medicine

The wider integration of patients into the diagnosis process could be beneficial for patients and
accelerate the understanding of rare diseases. Self assessment and the continuous monitoring
of patients is possible by the use of smart and mobile devices. Remote monitoring of a
patient could save resources by changing regular check-up visits to on-demand follow-ups.
The continuous data flow would allow to establish personalised trends and could lead to
sub-classification of diseases.

Medical records should be available as electronical health records and linked with
genotype information. The electronic medical records and genomics (eMERGE) consortium
focuses on the development of guidelines and methods to utilise electronic medical records
(EMR) for large scale genomic research (Gottesman et al., 2013). At the same time, such
medical records from individuals could provide genomically guided advice. Diagnoses
or drugs could be suggested based on clinical data to assist point-of-care decisions and
match drugs to a patient’s genome based on actionable pharmacogenomic variants (Collins,
2009). To support such decisions, the pharmacogenomic field requires a comprehensive
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knowledge basel, which is one of the goals of the clinical pharmacogenetics implementation
consortium (CPIC) of the national institutes of health’s (NIH) pharmacogenomics research
network (PRN) (Relling and Klein, 2011). In my view, the challenge is translating the gain
of information into the benefit of patients.

5.0.4 Validation of candidate genes

Responsibly sharing of patient information is possible through frameworks developed by
the GA4GH consortium and enables to identify matching patients globally. However, the
validation of candidate genes is a challenge for rare diseases due to the limited number
of patients. Instead, functional confirmation of potentially disease-causing genes can be
performed in cell lines or model organisms. Specific gene mutations could be studied for
a molecular diagnosis of the disease. The rare diseases models and mechanisms network
(RDMM) provides a platform to match novel rare-disease gene discoveries in patients with
basic scientists for interrogation. Genes are matched to a list of registered model organism
scientists and a financial incentive is provided to accelerate the assessment. I propose to
open the network to the global research community to allow the suggestion of genes from
specialised centres in other countries as well as for the distribution of the initial assessment.
A coordinated approach would address the possible backlog of required gene assessments,
collate negative results for genes and could encourage collaborations between research
centres for the efficient use of resources.
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Appendix A

Schema definitions

Variant schemas in HBase

Listing A.1 Slice proto schema definition

s y n t a x = " p r o t o 3 " ;
package p r o t o b u f . opencb ;
o p t i o n j a v a _ p a c k a g e = " org . opencb . b i o d a t a . models . v a r i a n t . p r o t o b u f " ;
o p t i o n j a v a _ o u t e r _ c l a s s n a m e = " V c f S l i c e P r o t o s " ;
o p t i o n j a v a _ g e n e r a t e _ e q u a l s _ a n d _ h a s h = t r u e ;
i m p o r t " p r o t o b u f / opencb / v a r i a n t . p r o t o " ;

message VcfSample {
r e p e a t e d s t r i n g s a m p l e _ v a l u e s = 1 ;
/ / GT i s mandatory .
/ / Sav ing i t s e p a r a t e l y can c r e a t e a map of g e n o t y p e s i n F i e l d s
u i n t 3 2 g t _ i n d e x = 2 ;
}

message VcfRecord {
/ / 1 based
/ / May c o n t a i n n e g a t i v e v a l u e s b u t i t ’ s n o t l i k e l y
i n t 3 2 r e l a t i v e _ s t a r t = 1 ;
/ / May c o n t a i n n e g a t i v e v a l u e s b u t i t ’ s n o t l i k e l y
i n t 3 2 r e l a t i v e _ e n d = 2 ;
s t r i n g r e f e r e n c e = 3 ;
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s t r i n g a l t e r n a t e = 4 ;
f l o a t q u a l i t y = 5 ;
V a r i a n t T y p e t y p e = 1 2 ;
s t r i n g c a l l = 1 3 ;
u i n t 3 2 f i l t e r _ i n d e x = 6 ;
r e p e a t e d s t r i n g i d _ n o n _ d e f a u l t = 7 ;
r e p e a t e d u i n t 3 2 i n f o _ k e y _ i n d e x = 8 [ packed = t r u e ] ;
r e p e a t e d s t r i n g i n f o _ v a l u e = 9 ;
u i n t 3 2 f o r m a t I n d e x = 1 0 ;
r e p e a t e d VcfSample samples = 1 1 ;
r e p e a t e d A l t e r n a t e C o o r d i n a t e s e c o n d a r y A l t e r n a t e s = 1 4 ;
}

message F i e l d s {
r e p e a t e d s t r i n g i n f o _ k e y s = 1 ;
r e p e a t e d u i n t 3 2 d e f a u l t _ i n f o _ k e y s = 2 ;
/ / P o s s i b l e f i l t e r c o m p o s i t i o n s . D e l i m i t e d by ’ ; ’ .
/ / The f i r s t f i l t e r i s t h e d e f a u l t one
r e p e a t e d s t r i n g f i l t e r s = 3 ;
/ / P o s s i b l e f o r m a t s c o m p o s i t i o n s . D e l i m i t e d by ’ : ’ .
/ / The f i r s t f o r m a t i s t h e d e f a u l t one
r e p e a t e d s t r i n g f o r m a t s = 5 ;
/ / P o s s i b l e g e n o t y p e s seen on t h e s l i c e .
/ / The f i r s t GT i s t h e d e f a u l t one
r e p e a t e d s t r i n g g t s = 6 ;
}

message V c f S l i c e {
s t r i n g chromosome = 1 ;
u i n t 3 2 p o s i t i o n = 2 ;
r e p e a t e d VcfRecord r e c o r d s = 3 ; / / L i s t o f r e c o r d s ( l i n e s )
F i e l d s f i e l d s = 4 ;
}
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