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Abstract

General relativity, one of the pillars of our understanding of the universe, has been a remark-
ably successful theory. It has stood the test of time for more than 100 years and has passed
all experimental tests so far. Most recently, the LIGO collaboration made the first-ever direct
detection of gravitational waves, confirming a long-standing prediction of general relativity.
Despite this, several fundamental mathematical questions remain unanswered, many of which
relate to the global existence and the stability of solutions to Einstein’s equations. This thesis
presents our efforts to use numerical relativity to investigate some of these questions.

We present a complete picture of the end points of black ring instabilities in five dimensions.
Fat rings collapse to Myers-Perry black holes. For intermediate rings, we discover a previ-
ously unknown instability that stretches the ring without changing its thickness and causes it
to collapse to a Myers-Perry black hole. Most importantly, however, we find that for very
thin rings, the Gregory-Laflamme instability dominates and causes the ring to break. This
provides the first concrete evidence that in higher dimensions, the weak cosmic censorship
conjecture may be violated even in asymptotically flat spacetimes.

For Myers-Perry black holes, we investigate instabilities in five and six dimensions. In six
dimensions, we demonstrate that both axisymmetric and non-axisymmetric instabilities can
cause the black hole to pinch off, and we study the approach to the naked singularity in detail.

Another question that has attracted intense interest recently is the instability of anti-de Sitter
space. In this thesis, we explore how breaking spherical symmetry in gravitational collapse
in anti-de Sitter space affects black hole formation.

These findings were made possible by our new open source general relativity code, GR-
CHOMBO, whose adaptive mesh capabilities allow accurate simulations of phenomena in
which new length scales are produced dynamically. In this thesis, we describe GRCHOMBO

in detail, and analyse its performance on the latest supercomputers. Furthermore, we outline
numerical advances that were necessary for simulating higher dimensional black holes stably
and efficiently.
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xii Research overview

Fig. 1 Volume rendering of the gravitational waves from a binary black hole merger simulated
with GRCHOMBO.

Furthermore, I have collaborated with Intel on a visualisation of the gravitational waves from
a binary black hole merger, the first-ever direct volume rendering of adaptive mesh data. The
video was accepted and presented at ISC High Performance 2016. Fig. 1 shows a snapshot
from the simulation.1

1The full video is available at https://youtu.be/XItUV3n5IzQ.

https://youtu.be/XItUV3n5IzQ
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Chapter 1

Introduction

It is undeniable that Einstein’s equation,

Gab +Λgab = 8πTab, (1.1)

is one of the most elegant equations ever written down by mankind. It is truly remarkable
that all gravitational interactions in the universe, from an apple falling off a tree to the violent
merger of two supermassive black holes, from the behaviour of planets in our solar system to
the expansion of the whole universe, can be described by one geometric equation relating
the curvature of spacetime to the matter content. General relativity has been tested with
remarkable accuracy [6] and has prevailed to this day. These tests entered a completely new
era recently, when the LIGO collaboration made the first-ever direct detection of gravitational
waves [7, 8], confirming a long-standing prediction of general relativity. The gravitational
waves originated from the merger of two black holes 1.3 billion light years away. Since then,
LIGO has made several more detections [9–13], not only of coalescing black holes, but also
of a neutron star binary. Due to improvements in sensitivity, we can expect a flurry of further
detections in the years to come, allowing us to put ever-stronger constraints on our theory of
gravity.

It is intuitive that it is hard to analyse the mathematical properties of a non-linear equation
that is capable of giving rise to such a rich structure of solutions with such complex behaviour.
Indeed, even though general relativity is now more than 100 years old, many mathematical
questions remain unanswered. For example, we do not know whether singularities must
always be hidden inside black holes or whether they can be “naked” and visible to far-away
observers. This question is the subject of the Weak Cosmic Censorship Conjecture. Loosely,
it postulates that there cannot be naked singularities (the precise form will be discussed later
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in this chapter). The Weak Cosmic Censorship Conjecture has important implications for the
predictive power of general relativity: if it is true, then for an observer outside of the black
hole general relativity can always predict the future.

Another important question is that of the linear and non-linear stability of solutions to
Einstein’s equations. For example, we still have no mathematical proof that the exterior of the
Kerr solution [14] that describes the black holes in our universe, including the ones involved
in the mergers observed by LIGO, is non-linearly stable. There are several mathematical
studies that suggest that this is the case [15–18] although there are also indications that
there may be non-trivial behaviour very close to extremality [19–21]. In higher dimensions,
however, we know that black holes can be unstable [22–31, 3, 32], for example when they
become very thin, as is the case in the Gregory-Laflamme (GL) instability of black strings
[22], or they rotate sufficiently rapidly, as is the case in the ultraspinning instability [23]
and the bar-mode instability [26, 27] of Myers-Perry black holes. These instabilities have
implications far beyond the study of higher dimensional black holes: there are hints from
numerical simulations [33, 3, 2] that black hole instabilities may lead to violations of Weak
Cosmic Censorship.

Another spacetime whose (in-)stability has attracted a lot of attention recently is anti-de Sitter
(AdS) space. One reason for this is that as the maximally symmetric solution to Einstein’s
equations (1.1) with a negative cosmological constant, it is as fundamental mathematically
as Minkowski or de-Sitter space, whose stability has been established in Ref. [34] and
Refs. [35, 36] respectively. Another reason is that AdS space features in the AdS/CFT
correspondence [37–39], which allows us to elucidate the behaviour of certain strongly
coupled field theories by studying classical gravity in asymptotically AdS space in one
dimension higher.

While all these questions are ultimately mathematical and will hopefully be answered with a
precise theorem and a rigorous mathematical proof, they can all benefit from numerical work
to inform the mathematical efforts and to provide numerical evidence while a proof is still
outstanding. For example, the numerical simulations of scalar field collapse in 4D [40] and
simulations of unstable black strings in 5D [33] have important implications for the Weak
Cosmic Censorship Conjecture. Since the latter work is very important for this thesis, we
will review it in detail later in this chapter. In AdS space in D ≥ 4, numerical simulations
[41–43] demonstrated that scalar field configurations with arbitrarily small amplitude can
lead to the formation of a black hole after multiple reflections off the AdS boundary. This
behaviour had been conjectured by Refs. [44, 45], but could not be addressed rigorously
until very recently for Einstein-null dust in Refs. [46, 47].
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In this thesis, we report on numerical simulations that explore instabilities of asymptotically
flat black holes in 5D and 6D in the non-linear regime, and we examine the implications for
the Weak Cosmic Censorship Conjecture and the topology of higher dimensional black holes.
Furthermore, we study how breaking spherical symmetry affects the collapse of scalar field
configurations in AdS space in order to gain insight into the non-linear stability of AdS space
without symmetry assumptions. To enable these simulations, and several other numerical
studies in the fields of cosmology and astrophysics [5, 48–53], we developed a new open
source general relativity code GRCHOMBO [5]1. GRCHOMBO is a multi-purpose numerical
relativity code whose main distinctive feature is very flexible adaptive mesh refinement. This
allows us to resolve the new length scales that are generated during instabilities accurately.

This thesis is organised as follows: in the remainder of this chapter, we give a high-level
overview of the background material that is relevant for the thesis as a whole. In particular,
we summarise what is known about higher dimensional black holes, the Gregory-Laflamme
instability, and its implications for the Weak Cosmic Censorship Conjecture. Furthermore,
we explain the necessary numerical relativity background. More detailed and specific
introductions are provided at the beginning of all the other chapters of this thesis.

In chapter 2, we present the GRCHOMBO code [5, 54], explain its current design, and present
the latest accuracy and performance tests. Significant work has been put into optimising
GRCHOMBO to make it run faster on the latest architecture and this section will give a brief
overview of these efforts. In chapter 3, we present advances and adjustments we had to make
to current numerical relativity methods in order to simulate higher dimensional spacetimes
stably and efficiently. This includes dimensional reduction techniques, a new singularity
treatment, and adapted gauge conditions which we developed for Refs. [3, 2].

In chapter 4, we give a complete picture of instabilities of black rings [55], black holes of
toroidal topology. We investigate the whole parameter range, from very fat to very thin black
rings, and present evidence that very thin black rings pinch off. In chapter 5, we present
our work on axisymmetric instabilities of Myers-Perry black holes in 6D [2], which cause
the black hole to be torn apart by its rotation. Since this setting is much cheaper than black
rings, we can study the approach to pinch off of the horizon in more detail. Furthermore, we
present unpublished results on the non-linear stability of Myers-Perry black holes in 5D and
non-axisymmetric instabilities in 6D. In chapter 6, we examine the implications of our work
on black rings and Myers-Perry black holes for the Weak Cosmic Censorship Conjecture.

1GRCHOMBO is available under BSD-3 license at www.grchombo.org or directly from GitHub at
https://github.com/GRChombo/.

www.grchombo.org
https://github.com/GRChombo/


4 Introduction

In chapter 7, we present our results on non-axisymmetric scalar field collapse in AdS space
[1] and outline recent work to allow the simulation of AdS space with GRCHOMBO. Finally,
we summarise both our asymptotically flat and asymptotically AdS results in chapter 8.

1.1 Weak Cosmic Censorship Conjecture

Local well-posedness of Einstein’s equations was established in Ref. [56]. This result
was given a more global flavour in Refs. [57, 58], which proved the existence of a unique
maximal globally hyperbolic Cauchy development. However, it is obvious that Einstein’s
equations cannot be globally well-posed, at least not in the sense of the completeness of all
causal geodesics. For example, an observer falling into a Schwarzschild black hole will hit a
singularity in finite proper time. Thus, global existence of solutions cannot hold. However,
to date no generic example of a singularity outside of a black hole has been found. Since
no information can escape a black hole, it may, therefore, be possible to formulate a global
existence result for the spacetime outside of black holes. This is precisely what is captured
by the Weak Cosmic Censorship Conjecture [59–62]:

Conjecture 1 (Weak Cosmic Censorship Conjecture). The maximal Cauchy development
of generic, asymptotically flat, geodesically complete initial data possesses a complete future
null infinity.

This is a very elegant statement, as it reduces the question of whether singularities arise
outside black holes to a very concrete statement about the completeness of future null infinity.
The rationale behind this formulation is that, by definition, every point outside of a black hole
region is in the causal past of future null infinity. Thus, if there were a singularity outside of
a black hole region, future null infinity could not be complete.

The formation of a singularity is an indication that general relativity is no longer applicable
and that quantum gravity effects have become important. From a physical point of view, we
are most interested in whether starting from initial data that can be described completely by
classical general relativity, quantum gravity effects are guaranteed to be restricted to black
hole regions so that they remain hidden from far-away observers. While the Weak Cosmic
Censorship Conjecture is a necessary condition for this to be the case, it is not sufficient.
In particular, the curvature could grow without bound inside the causal past of future null
infinity, and only become singular on the event horizon so that future null infinity could
still be complete. While this may seem like a corner case, the work presented in this thesis
and in Refs. [33, 3, 2, 63, 64] suggests that it is very important as it can arise generically
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in higher dimensions and in AdS space. For example, in chapters 4 and 5 of this thesis,
we present strong numerical evidence that curvature scalars in the causal past of future
null infinity can become arbitrarily large in higher dimensions. However, since numerical
relativity simulations do not typically cover future null infinity or track the event horizon,2 it
is much less clear whether future null infinity is incomplete. This will be discussed in detail
in chapter 6, where, armed with the numerical results from the simulations of black rings
and Myers-Perry black holes, we will try to make the implications of Refs. [33, 3, 2] for the
Weak Cosmic Censorship Conjecture more precise.

In the last forty years, there have been several numerical and mathematical attempts to find
counterexamples to the Weak Cosmic Censorship Conjecture. Refs. [40, 67–69] studied
spherically symmetric scalar field distributions, which collapse to black holes when their
initial amplitude is sufficiently large. The results indicated that a naked singularity is formed
exactly at the threshold of black hole formation. The same system was studied very recently
without symmetry assumptions by Refs. [70, 48]. The problem with this setting is that
the initial conditions are not generic: to produce a singularity, the initial amplitude has
to be tuned precisely to its critical value. Christodoulou [71] showed mathematically that
naked singularities can be formed in the collapse of inhomogeneous dust clouds. However,
the assumption that the matter is dust, i.e. completely pressureless, makes this scenario
unphysical or non-generic.

In AdS spacetimes, Ref. [63] presented strong evidence that regions of arbitrarily large
curvature are not always hidden inside black holes, even in 4D. Recently, an analysis of
stationary vacuum solutions in Ref. [64] suggested that this may happen even in vacuum and
the authors are working to confirm this with fully non-linear numerical evolution. In AdS
spacetimes, the boundary conditions play an important role. Therefore, it is likely that the
AdS version of the Weak Cosmic Censorship Conjecture will have to be augmented with
precise assumptions on what constitutes “reasonable” boundary conditions.

For the purpose of this thesis, the most important set of potential counterexamples to Weak
Cosmic Censorship comes from the instability of black p-branes [72–74, 33, 75] and black
holes which capture the behaviour of black p-branes. We will review this in detail in the next
section.

Finally, we mention that there is a related but independent conjecture, the Strong Cosmic
Censorship Conjecture, which is related to the global uniqueness of solutions. The Strong
Cosmic Censorship Conjecture has been studied extensively in mathematical general relativity
(e.g. in Refs. [68, 76–84]) and with numerical methods in Ref. [85]. Since this often

2See Refs. [65, 66] for two exceptions.
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involves the study of black hole interiors, it lends itself much less well to numerical relativity
simulations than the Weak Cosmic Censorship Conjecture.

1.2 Higher dimensional black holes

A very intriguing feature of Einstein’s equations is that they generalise straightforwardly
to any number of dimensions. This has motivated extensive research into whether a higher
dimensional theory could unify general relativity and quantum field theory. These efforts
were started by Kaluza [86] and Klein [87], who attempted to unify general relativity and
electromagnetism, and continue today for example in the form of string theory and M-theory.
Furthermore, the study of black holes in 5D is also motivated by the gauge-gravity duality
[37–39], albeit in asymptotically AdS spacetimes. Progress in higher dimensions may also
aid our efforts to understand the behaviour of solutions to Einstein’s equations in 4D. For
example, since the Weak Cosmic Censorship Conjecture can be formulated in any number of
dimensions, studying it in D > 4 will likely also improve our understanding of the 4D case.

Einstein’s equations in higher dimensions lead to a much richer structure of solutions than
in 4D. We have already mentioned that black holes in higher dimensions can undergo
instabilities, while their 4D counterparts are widely believed to be stable [15–18]. However,
this is not the only way in which higher dimensional black holes exhibit richer behaviour:
for example, while the horizon cross-sections of stationary black holes in 4D always have
spherical topology [88], known results on higher dimensional black holes are much less
restrictive [89, 90] and there is even an explicit example of a black hole with toroidal topology:
the black ring [55]. Furthermore, while in 4D a stationary black hole solution is uniquely
defined by its mass and angular momentum, we will see in chapter 4 that this is not the case
in higher dimensions. Finally, in higher dimensions several black holes can be in equilibrium
and form a stationary multi-black hole solution [91–94].

In the remainder of this section, we will briefly introduce the most important black hole
solutions in higher dimensions. The simplest asymptotically flat black hole solution in
higher dimensions is the Schwarzschild-Tangherlini solution [95], the higher dimensional
generalisation of the Schwarzschild metric

ds2 =−
[

1−
(rH

r

)D−3
]

dt2 +
dr2

1−
( rH

r

)D−3 + r2dΩ
2
D−2. (1.2)
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This solution can be extended to include angular momentum in each of the ⌊(D− 1)/2⌋
possible rotation planes [96]. The result is called the Myers-Perry black hole after the authors
of Ref. [96] and is the higher dimensional analogue of the Kerr solution [14]. In addition
to this, a stationary black hole solution with toroidal topology is known, the black ring.
Remarkably, in 5D this solution was first found analytically [55]. Thereafter, black rings in
D = 6 and 7 were constructed numerically in Refs. [97, 98]. We will examine black rings
and Myers-Perry black holes in much more detail in chapters 4 and 5 respectively.

In spacetimes with compact extra dimensions, the simplest black holes are black p-branes,
whose behaviour is very important for this thesis so we review them in more detail here. A
black p-brane in D dimensions is the direct product of a (D− p)-dimensional Schwarzschild-
Tangherlini black hole with p-dimensional flat space. This leads to the metric [99]

ds2 = ds2
Schw.(D−p)+

p

∑
i=1

dxidxi. (1.3)

A black 1-brane is also called a black string. To make the entropy of the horizon finite, the flat
directions are typically periodically identified, xi ∼ xi+L. Black p-branes are very interesting
mathematically for two reasons: firstly, they provided the first explicit evidence that black
holes in higher dimensions can be unstable: when L ≳ rH , where rH is the horizon radius,
black p-branes become unstable to the Gregory-Laflamme (GL) instability [72]. Secondly,
the instability of black strings may lead to arbitrarily large curvature in the causal past of
future null infinity or even a violation of the Weak Cosmic Censorship Conjecture.

The discovery of the GL instability initiated an intense search for possible end points. Gregory
and Laflamme themselves conjectured in Ref. [72] that the instability would cause black
strings to pinch off into a sequence of localised black holes since the latter have higher
entropy than the original unstable uniform black string. This conjecture was cast into doubt
when Ref. [100] showed that for a black string the horizon cannot reach zero size in a
finite amount of affine parameter on the event horizon. Instead, the authors conjectured the
existence of a family of non-uniform black strings that would be the end state of the GL
instability. Such non-uniform black strings were indeed found [101, 102], but in D < 14
their entropy is lower than that of the uniform black string so that they could not possibly
be the end point of the GL instability. A possible solution to this dilemma was presented in
Refs. [74, 103], which argued that even if a pinch-off cannot be reached within finite affine
parameter on the horizon, it could still happen in finite asymptotic time.3

3Ref. [103] attributes this idea to R. M. Wald.
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Initially, fully non-linear numerical simulations of black strings [73, 74] were inconclusive
since they could not follow the instability for long enough to be able to draw any conclusions
about the end point. Finally, in 2010 Ref. [33] reported results of numerical simulations that
allowed the authors to observe a pattern that strongly favoured the pinch off scenario: they
showed that the GL instability gives rise to a sequence of spherical black holes connected
by black string segments that are much thinner than the original black string. These string
segments subsequently undergo the GL instability themselves and give rise to a new genera-
tion of localised black holes connected by even thinner black strings. Due to this self-similar
structure, the time to pinch-off as measured by an asymptotic observer is just the sum of a
geometric series and therefore finite. Ref. [33] also pointed out a similarity to the evolution
of the Rayleigh-Plateau instability of fluid columns, whose connection to the GL instability
had already been explored in Ref. [104]. In particular, they find that the thickness of the
black string segments roughly follows a scaling law rH ∝ tc − t, where tc is the pinch-off
time.

Thus, there is overwhelming numerical evidence that the horizon radius of black strings
reaches zero size in finite asymptotic time. However, in a strongly asymptotically predictable
spacetime, black hole regions cannot smoothly bifurcate [88]. Therefore, the simulations
in Ref. [33] strongly suggest that a singularity is formed in the process of the black string
pinching off. However, it may only be the event horizon that becomes singular; the spacetime
outside the event horizon could remain smooth throughout and future null infinity could
remain complete so that the precise statement of the Weak Cosmic Censorship Conjecture is
not violated. However, even if this is the case, regions of arbitrarily large curvature scalars
become visible at future null infinity suggesting that classical general relativity may no longer
be sufficient. We will discuss this in more detail in chapter 6.

Since black p-branes have p compact directions, they are not asymptotically flat so that the
black string spacetime could never be a counterexample to the Weak Cosmic Censorship
Conjecture in its strict setting. However, there are asymptotically flat black holes in higher
dimensions which, in certain regimes, mimic the behaviour of black p-branes. In this thesis,
we will investigate two such black holes, black rings in 5D and Myers-Perry black holes in
6D. This will allow us to study the role of asymptotic flatness in the Weak Cosmic Censorship
Conjecture and, more concretely, whether the suggested counterexample to the Weak Cosmic
Censorship Conjecture for black strings in Ref. [33] can be extended to asymptotically flat
spacetimes.



1.3 Numerical relativity background 9

1.3 Numerical relativity background

Even though a remarkably large number of analytic solutions to Einstein’s equations have
been found, the study of general relativity in its full generality, without symmetry assumptions
and with time dependence, requires approximations or numerical solutions. Attempts to solve
Einstein’s equations on computers go back more than fifty years [105]. Despite this, the holy
grail of numerical relativity, the simulation of an entire, non-axisymmetric binary black hole
merger, remained elusive until very recently: in 2005, Pretorius [106] achieved the first-ever
numerical evolution of a binary black hole spacetime with more than one orbit before merger.
This was made possible partly by the rapid increase in the available computational power
and partly by significant progress in the development of well-posed and stable evolution
formalisms.

One of the challenges of numerical relativity is the gauge freedom in Einstein’s equations;
they only fix the geometry of the spacetime uniquely, not the metric components, which
depend on the coordinate system. To have any hope of constructing numerical solutions,
we first have to choose a coordinate system in which the PDEs resulting from Einstein’s
equations can be expressed in a way that makes them locally well-posed. We know that
this is possible due to the proof of the local well-posedness of Einstein’s equations in Ref.
[56], which used harmonic coordinates, ∇α∇α xµ = 0. However, stable numerical evolution
requires considerably more complicated formalisms. In this chapter, we present the most
common ones: Generalised Harmonic Coordinates (GHCs) with constraint damping, the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism, and a close relative of BSSN
called Conformal Covariant Z4 (CCZ4) formalism. A useful necessary and sufficient
algebraic criterion for local well-posedness is strong hyperbolicity [107–109]. Loosely, it
requires that the principal part, the matrix of coefficients of the highest derivative terms, has
real eigenvalues and is diagonalisable.4,5

Despite the significant progress in numerical relativity methods in the last 20 years, there is
no silver bullet that can solve Einstein’s equations numerically in all settings. The optimal
choice of formalism depends heavily on the particular application and every new setting
requires a lengthy exploration of the gauge parameter space and sometimes even completely
new tricks. Therefore, in our treatment of BSSN/CCZ4 and GHCs, we try to include as much

4If only the first of these two requirements is satisfied, the system is called weakly hyperbolic and is not
well-posed, not even locally.

5Since the author gave a detailed and more rigorous review of hyperbolicity and ellipticity of PDEs,
including a proof of the strong hyperbolicity of the BSSN system, in an essay that he submitted for an MMath
degree at the University of Cambridge, this information is not included here. The interested reader is referred to
Refs. [110, 107].
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intuition about why the formalisms work and what advantages and disadvantages they have.
This will help us justify our choice of formalism in subsequent chapters and will motivate the
improvements we had to make in order to be able to simulate higher dimensional spacetimes
(chapter 3).

Finally, we mention that there is a related branch of numerical relativity, which we do not
cover in this thesis: the numerical construction of stationary solutions to Einstein’s equations.
In this setting, coordinate choices similar to GHCs are used to recast Einstein’s equations as
an elliptic system of PDEs. This was studied in great detail in Refs. [111–116].

1.3.1 ADM, BSSN, and CCZ4

BSSN and CCZ4 are two very similar evolution systems that are based on the ADM formal-
ism, which was proposed by Arnowitt, Deser, and Misner in 1959 [117]. To derive the ADM
equations, we have to assume that we can pick a global time coordinate, t. This makes it
possible to slice the spacetime into constant-t hypersurfaces Σt , which are all spacelike, and
to write the D-dimensional spacetime metric as

ds2 =−(α2 −β
i
βi)dt2 +2βi dxidt + γi j dxidx j, (1.4)

where γi j is the induced metric on Σt , α is called the lapse function, and β is called the shift.
This procedure of separating out the time coordinate is called the d +1 split, where d is the
number of spatial dimensions. As we will analyse in detail in the next section, lapse and shift
define the coordinate system in formalisms based on the d +1 split.

It is natural to choose the components of the spatial metric on the hypersurface, γi j, as
evolution variables, but since Einstein’s equations are a set of second order PDEs, we also
need information about their time derivative. A geometrically appealing way of specifying
this information is through the extrinsic curvature of Σt , which is related to the Lie-derivative
in the direction normal to the slice by

Ki j =−1
2
Lnγi j, (1.5)

where n is the unit normal to the slice, n = −αdt. In the ADM formalism, we evolve the
quantities γi j and Ki j. In practice, the gauge functions α and β i are also treated as evolution
variables, whose evolution equations we are free to specify arbitrarily (although finding
equations that lead to stable numerical evolution is not easy as we will discuss in the next
section).
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To reformulate Einstein’s equations in terms of the evolution variables γi j and Ki j, we take
all possible projections of Einstein’s equations onto the normal vector n and onto the slice
[110]. For the latter, we use the projection operator

⊥a
b= δ

a
b +nanb. (1.6)

To do this, let us first calculate all non-zero projections of the Riemann tensor. Projecting
onto the slice in all indices yields Gauss’ equation

⊥e
a⊥ f

b⊥g
c⊥h

d Re f gh = Rabcd +KacKbd +KadKbc, (1.7)

where Rabcd is the Riemann tensor of the spatial hypersurface Σt . Projecting three indices
onto the hypersurface and one onto the normal vector leads to the Codazzi equation

⊥e
a⊥ f

b⊥g
c nhRe f gh =−DaKbc +DbKac, (1.8)

where Da is the covariant derivative associated to the spatial metric γ , which can be shown
to be equal to the projection of the spacetime covariant derivative onto the slice. Finally,
projecting onto the normal vector twice and onto the slice twice yields

⊥e
a n f ⊥g

b nhRe f gh = LnKab +KacKc
b +

1
α

DaDbα. (1.9)

All other projections either vanish or are related to the equations above through symmetries
of the Riemann tensor.

Using the above projections of the Riemann tensor, we can calculate the possible projections
of Einstein’s equations. To do this, let us first introduce the following variables for the various
projections of the Energy-Momentum tensor

ρ = Tabnanb, ja =−⊥b
a Tbcnc, Sab =⊥c

a⊥d
b Tcd. (1.10)

Projecting onto the unit normal twice and using Gauss’ equation (1.7) yields

R−KabKab +K2 = 16πρ, (1.11)

where K is the trace of the extrinsic curvature. Furthermore, by projecting one index of
Einstein’s equations onto the slice and one onto the unit normal and using the Codazzi
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equation (1.8) we find

DcKc
a −DaK = 8π ja. (1.12)

Neither of the above equations contain any information about the time derivative of the
initial data and do not, therefore, form evolution equations for γi j and Ki j. Instead, they
are constraint equations that have to be satisfied by the data on every constant-time slice.
Equation (1.11) is called the Hamiltonian constraint, while (1.12) is called the Momentum
constraint. If the constraints are satisfied by the initial data, they remain satisfied throughout
the whole evolution, at least in the continuum limit. In practice, numerical errors always
lead to constraint violating modes. Monitoring and minimising these constraint violations in
order to check and improve the accuracy of simulations is one of the most important tasks in
numerical relativity.

Finally, projecting Einstein’s equations onto the slice on both indices and using (1.7) and
(1.8) gives an evolution equation for the extrinsic curvature

LnKab =− 1
α

DaDbα +Rab +KKab −2KacKc
b +8π

[
S−ρ

d −1
γab −Sab

]
. (1.13)

Together with the constraint equations, this is all the information we can obtain from Ein-
stein’s equations and, indeed, all the information we need since the evolution equation for γi j

follows directly from the definition of the extrinsic curvature (1.5). The only remaining step
is to rewrite LnKab and Lnγab in terms of the basis vectors ∂t and ∂i. Thus, we obtain the
ADM evolution equations

∂tγi j =−2αKi j +Lβ γi j,

∂tKi j = Lβ Ki j −DiD jα +α
(
Ri j +KKi j −2KimKm

j
)

+8πα

(
S−ρ

d −1
γi j −Si j

)
. (1.14)

By itself, the ADM formalism is of limited use for numerical relativity, since in the general
setting without symmetry assumptions it is not well-posed, not even locally. However, it
is possible to modify the evolution variables in such a way as to make the equations well-
posed. A particularly stable reformulation of ADM is called BSSN. It was suggested in Refs.
[118, 119] and implemented and tested systematically in Ref. [120]. BSSN introduces four
modifications to the ADM equations:
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1. Instead of evolving the spatial metric directly, we evolve a conformal factor, χ , and a
conformal metric γ̃i j, which has unit determinant,

χ = (detγ)−
1
d and γ̃i j = χγi j. (1.15)

This important modification allows us to absorb divergences in γ̃ : as γ̃ tends to infinity,
χ simply tends to zero.

2. Instead of the extrinsic curvature, we evolve its trace, K = Ki
i, and the conformally

rescaled trace-free part Ãi j = χKTF
i j .

3. We introduce new evolution variables corresponding to the contracted conformal
connection functions Γ̃i = γ̃ mnΓ̃i

mn. The motivation behind this change is that in their
original form, the ADM equations contain second spatial derivatives of the metric in
the form of derivatives ∂ jΓ̃

i, which spoil the strong hyperbolicity and thus the local
well-posedness of the ADM system. By promoting Γ̃i to evolution variables, we can
replace the offending second derivatives of the metric with first derivatives of the
evolved conformal connection functions.

4. Finally, we add multiples of the momentum constraint to eliminate derivatives of the
extrinsic curvature in the evolution equation of Γ̃i and multiples of the Hamiltonian
constraint to eliminate the Ricci scalar from the evolution equation of K.

It can be shown [110] that the BSSN formalism, i.e. the ADM formalism with the above
modifications, is strongly hyperbolic and thus locally well-posed. This is a minimum
requirement for stable simulations, but it is by no means sufficient. In practice, BSSN has
been found to be very stable in astrophysical settings such as binary black hole mergers and
is one of the most widely used formalisms in numerical relativity.

For most of the numerical results presented in this thesis, we have used a refinement of the
BSSN system that is called Conformal Covariant Z4 (CCZ4) system and was proposed in
Refs. [121–124]. The problem with BSSN is that violations of the Hamiltonian constraint do
not decay and do not propagate out of the computational domain. While this is a substantial
improvement over ADM, which often exhibits rapid growth of the Hamiltonian constraint,
it is not ideal as constraint violations can accumulate over time and may eventually spoil
the simulation. To solve this problem, Ref. [121, 122] added new propagating degrees of
freedom, Za, to the trace-reversed Einstein equations

Rab +2∇(aZb)−κ1
[
2n(aZb)− (1+κ2)gab ncZc

]
= 8π

(
Tab −

1
D−2

gab T
)
, (1.16)
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where κ1 and κ2 are arbitrary parameters. With this modification of Einstein’s equations, the
Hamiltonian and Momentum constraints become evolution equations for Z0 and Zi respec-
tively. If Za vanishes initially, then in the continuum limit it will remain zero throughout the
whole evolution so that Einstein’s equations are recovered in (1.16). However, if numerical
errors lead to constraint violations and, thus, non-zero Za, these constraint violations can
propagate and leave the numerical grid (assuming that this is allowed by the boundary condi-
tions). Furthermore, the terms proportional to κ1 and κ2 can be shown to damp constraint
violating modes as long as κ1 > 0 and κ2 >−1 [122].

The use of constraint damping terms is crucial in our work for several reasons: firstly, the
adaptive mesh refinement that is required to make our simulations feasible constantly intro-
duces constraint violations at the boundaries between refinement levels. Without constraint
damping, this can significantly impact the simulation. Secondly, since small constraint
violations are damped away before any significant physical evolution takes place, we can
excite various instabilities of the spacetime with small constraint violating perturbations
without the need for an initial data solver. Finally, for simulations in AdS space (chapter
7), where numerical errors cannot propagate out of the computational domain, constraint
damping terms are essential for long-term accuracy.

The derivation of the CCZ4 equations follows exactly the same procedure as the derivation
of the BSSN equations but starting from (1.16) instead of Einstein’s equations. That is, we
perform the d +1 split, derive the modified ADM equations, and conformally rescale the
variables similarly to the BSSN formalism. The crucial difference is that in CCZ4 we have
the additional degrees of freedom Za. These are not evolved directly; instead, we define new
evolution variables Θ and Γ̂i through

Θ =−naZa and Γ̂
i = 2γ

i jZ j + Γ̃
i. (1.17)

The former represents the propagating degree of freedom corresponding to the Hamiltonian
constraint; the latter replaces the evolved conformal connection functions of BSSN, and gives
them a new meaning as propagating degrees of freedom corresponding to the momentum
constraint. Thus, the somewhat ad-hoc step of promoting Γ̃i to an evolution variable in
BSSN happens naturally in CCZ4 through the introduction of the evolution variable Γ̂i. For
constraint-preserving initial data, Θ = 0 and Γ̂i = Γ̃i initially.

The result of the procedure - the CCZ4 formalism - is displayed in Box 1. It is important to
note that in the evolution equations we never need to evaluate the Ricci tensor on its own:
it always appears in the combination Ri j +2D(iZ j). In this combination, derivatives of the
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conformal connection function that would spoil the well-posedness cancel out. Instead, we
are left with first derivatives of the evolution variable Γ̂i.

The extra parameter κ3 in (1.23) was introduced in Ref. [123] due to stability problems when
simulating black hole spacetimes. However, Ref. [124] showed that if one replaces κ1 by
κ1/α one can make the covariant choice κ3 = 1 while still retaining stability. The rationale
behind this redefinition is that the constraint damping terms are multiplied by ακ1 and so the
replacement prevents the damping terms from being switched off inside the black hole where
the lapse is usually close to zero as we will see in the next section.

1.3.2 Gauge choice in BSSN and CCZ4

One of the biggest challenges in numerical relativity is the choice of coordinates. On the
one hand, the coordinate system can ruin numerical simulations if it develops singularities.
On the other hand, we can use the gauge freedom to our advantage when simulating black
holes: since the coordinate system specifies which locations on the manifold a point on the
numerical grid corresponds to, we can avoid simulating regions close to a physical singularity
by a clever choice of coordinates. One of the main advantages of the d+1 split, and therefore
the BSSN and CCZ4 formalisms, is that it allows very intuitive control over the coordinate
system through the choice of lapse and shift.

To study this, let us first define the language that we will use more precisely: we will talk
about the location and movement of grid points in the spacetime. By this we mean the
locations in the spacetime that correspond to the grid points of our numerical domain. More
precisely, if (t,xi) is a grid point and we have a chart φ that maps points on the manifold
to the numerical domain, then we refer to φ−1(t,xi) as the location of the grid point on the
manifold. Since φ has a unique inverse, this language is not ambiguous.

Furthermore, we introduce the concept of a normal observer, an observer who moves normal
to the slice with velocity n. Normal observers describe how constant-time slices evolve,
but do not follow the motion of grid points parallel to the slice. While we care most about
grid points, the motion of normal observers is usually easier to analyse and often gives us
enough information: if the slice itself does not intersect a black hole singularity, no grid point
can have reached it. The rate of change of coordinate time along the worldline of a normal
observer is dt/dτ = α−1. This gives us a useful interpretation of the lapse: it determines how
much the spatial slice moves in the manifold as t is increased, as measured by the proper time
of normal observers. If the lapse tends to zero, the slice does not evolve as t is increased.
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Box 1: CCZ4 formalism

∂t χ =
2χ

d

(
αK −∂kβ

k
)
+β

k
∂kχ , (1.18)

∂t γ̃i j =−2αÃi j +2γ̃k(i∂ j)β
k − 2

d
γ̃i j ∂kβ

k +β
k
∂kγ̃i j , (1.19)

∂t Ãi j = χ
[
−DiD jα +α

(
Ri j +2D(iZ j)−8παSi j

)]TF
+αÃi j(K −2Θ)

−2αÃilÃl
j +2Ãk(i∂ j)β

k − 2
d

Ãi j∂kβ
k +β

k
∂kÃi j, (1.20)

∂tΘ = 1
2α

(
R+2DiZi − Ãi jÃi j +

d −1
d

K2 −2ΘK
)
−Zi

∂iα

+β
k
∂kΘ− 1

2ακ1 (D+(d −1)κ2)Θ−8παρ , (1.21)

∂tK = 2(∂tΘ−β
k
∂kΘ)+α

(
Ãi jÃi j +

1
d

K2
)
−D iDiα +κ1α(1−κ2)Θ

+2Zi
∂iα +β

k
∂kK +4πα(S+ρ), (1.22)

∂t Γ̂
i =−2Ãi j

∂ jα +2α

(
Γ̃

i
jkÃ jk − d −1

d
γ̃

i j
∂ jK − d

2
Ãi j ∂ jχ

χ

)
+β

k
∂kΓ̂

i + γ̃
jk

∂ j∂kβ
i +

d −2
d

γ̃
i j

∂ j∂kβ
k

+
2
d

Γ̃
i
∂kβ

k − Γ̃
k
∂kβ

i +2κ3

(
2
d

γ̃
i jZ j∂kβ

k − γ̃
jkZ j∂kβ

i
)

+2γ̃
i j
(

α∂ jΘ−Θ∂ jα − 2
d

αKZ j

)
−2ακ1γ̃

i jZ j −16παγ̃
i j j j, (1.23)

The combination Ri j +2D(iZ j) is calculated using

Ri j +2D(iZ j) =−1
2

γ̃
mn

∂m∂nγ̃i j + γ̃
mn
[
2Γ̃

k
m(iΓ̃ j)kn + Γ̃

k
imΓ̃k jn

]
+ γ̃m(i∂ j)Γ̂

m + Γ̃
m

Γ̃(i j)m +
D−3

2χ

(
D̃iD̃ jχ − 1

2χ
∂iχ ∂ jχ

)
+

1
2χ

γ̃i j

[
γ̃

mnD̃mD̃nχ − D−1
2χ

γ̃
mn

∂mχ ∂nχ

]
(1.24)

In the BSSN/CCZ4 notation the Hamiltonian and Momentum constraints are

H = R+
d −1

d
K2 − Ãi jÃi j −16πρ = 0, (1.25)

Mi = γ̃
jl

∂ jÃli + Γ̃
kÃki −

d −1
d

∂iK − d
2

∂ jχ

χ
Ã j

i −8π ji = 0. (1.26)
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The worldline of grid points has tangent vector ∂t , which can be written in terms of lapse and
shift using (1.4)

∂

∂ t
= α n+β

i ∂

∂xi . (1.27)

Thus, the shift controls the speed at which grid points move parallel to the slice. It is
important to stress that grid points do not have to follow physically allowed paths; they may
even move faster than the speed of light.6 Indeed, this is necessary for black hole simulations
in order to prevent grid points from falling further into the black hole.

From (1.27) we can immediately deduce that the simplest possible slicing condition, α = 1,
is not a good choice for numerical evolution. If α = 1, then a quick calculation [110] shows
that na∇anb = 0, so that normal observers move on geodesics. Since in general relativity
geodesics often focus, this makes the slicing condition prone to the formation of coordinate
singularities. For black hole spacetimes, it causes spatial slices to intersect the singularity
in finite coordinate time. While in theory it might be possible to find a shift condition that
constantly moves grid points to parts of the slice that have not reached the singularity yet,
in practice this would be very hard to achieve in a stable manner. To find a more promising
condition, let us consider the change of the volume element along the wordline of grid points

∂t
√

γ√
γ

=−αK +Diβ
i. (1.28)

If we can keep the right hand side of this equation close to zero, we can ensure that volume
elements do not shrink to zero size, suggesting the the slice does not reach the singularity.
This explains why maximal slicing [125], defined by K = 0, is a very stable slicing condition
as long as the shift condition ensures that the second term in (1.28) does not become very
negative. Maximal slicing is achieved by choosing initial data that satisfy K = 0 and solving
the equation ∂tK = 0 for the lapse in every time step. However, this involves solving an
elliptic equation at every step, which is very expensive. Instead, we use a hyperbolic slicing
condition called 1+ log slicing [126, 127]

∂tα =−2αK. (1.29)

With this condition, when K is large and volume elements decrease rapidly, the lapse collapses
to zero. This in turn stops the slice from evolving in that region of the spacetime so that it

6This is the reason for why in this thesis we refrain from using the term coordinate observers, which is
sometimes used in literature. The term “observer” is misleading as it implies that the motion is physical.
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Fig. 1.1 Sketch of the evolution of constant-time slices with puncture gauge, starting from
isotropic coordinates, based on numerical data presented in Ref. [128]. The slice itself
always stays connected to the other asymptotically flat end, but the grid points are pushed
along the slice towards future infinity by the Gamma-driver shift condition. Thus, after a
while the other asymptotically flat end is no longer covered by the numerical grid.

does not reach the singularity. For CCZ4, K is typically replaced by K −2Θ in (1.29). This
does not change the equations in the continuum limit but is used for consistency with BSSN.
In the latter, we subtract multiples of the Hamiltonian constraint in the evolution equation for
K, which in CCZ4 corresponds to subtracting 2Θ.

The existence of singularity avoiding gauges for BSSN and CCZ4 is a considerable advantage.
It means that if we start with initial data that do not contain a physical singularity, such as the
Schwarzschild black hole written in isotropic coordinates, we can evolve in time without ever
having to worry about the black hole singularity. Fig. 1.1 shows the evolution of constant-t
hypersurfaces with 1+ log slicing and the Gamma-driver shift condition (which will be
discussed below) in a Penrose diagram. The gauge allows us to simulate the whole future of
the event horizon without the slices ever reaching the singularity.

Since the lapse has to tend to zero inside a black hole to prevent the slice form reaching
the singularity, it is important that this region of small lapse moves with the black hole. In
simulations of binary black hole spacetimes, we therefore add an advection term β i∂iα to
(1.29). If the shift is non-zero, this term allows regions of small α to propagate across the
grid. For most simulations in this thesis, we will use the CCZ4 version of 1+ log slicing
with an advection term

∂tα =−2α (K −2Θ)+β
i
∂iα. (1.30)
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The 1+ log slicing condition ensures that spatial slices never reach the black hole singularity,
but this is not sufficient for a successful simulation. The reason for this is simple: as we
evolve forward in time, more and more grid points move along the slice into the black hole
where the evolution is frozen due to the singularity avoiding slicing condition. Thus, the
horizon expands in the numerical domain until all grid points are inside the black hole.
Furthermore, the distance between grid points increases as they fall into the black hole,
causing rapid growth of the radial metric components. This effect is called slice stretching.

Both these problems can be solved by using a superluminal outward-pointing shift that
prevents grid points from falling towards the black hole. Currently, the most popular way of
achieving this is by the so called Gamma-driver shift condition

∂tβ
i = FBi, ∂tBi = ∂t Γ̂

i −ηBi, (1.31)

where Bi is a new auxiliary evolution variable and F and η are parameters that we can specify
freely. The action of the Gamma-driver is clearly visibly in Fig. 1.1: even though constant-t
slices remain attached to both spatial infinities throughout the evolution, grid points on the
left are pushed towards i+ so that after a while the numerical grid no longer covers the other
asymptotically flat end.

To obtain a rough estimate of suitable values for the gauge parameters, we note that the
choice of F affects the speed of propagation of gauge modes [129]. It is helpful for numerical
stability to require the longitudinal part of gauge modes to travel at the speed of light in the
asymptotically flat region. This fixes [130]

F =
D−1

2(D−2)
. (1.32)

The parameter η determines the timescale over which unwanted oscillations of the shift
should be damped. This is usually estimated by dimensional analysis so that η ≈ M−1/(D−3).
These choices for F and η are only rules of thumb and have to be adapted slightly in non-
standard settings. However, it is usually not possible to change η and F by more than an
order of magnitude without preventing the Gamma-driver from performing its task effectively.
Thus, finding a suitable value for η becomes challenging for simulations of black holes with
multiple length scales such as very thin rings. We will discuss a solution to this problem in
chapter 3.

The success of the Gamma-driver relies on the shift vector becoming superluminal inside
the black hole horizon. This is not a problem per se since it is only a gauge effect, but it
can cause numerical instabilities. These instabilities can be avoided by using stencils that
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are lopsided in the direction that the shift points in [110]. The need for one-sided stencils is
a very inconvenient side-effect of singularity avoiding gauges as calculating the additional
derivatives takes a noticeable amount of the run time and the necessary code is hard to
optimise. We will discuss how this problem is addressed in GRCHOMBO in section 2.5.

The choice of 1+ log slicing, together with the Gamma-driver shift condition, was essential
for the successful simulation of binary black hole mergers with BSSN [131, 132] and
has become the most widely used gauge condition for BSSN and CCZ4. Since it allows
the evolution inside black holes to be frozen and to move these frozen regions across the
numerical grid, it is often called the moving puncture gauge.

1.3.3 Initial data for the puncture gauge

To be able to use the puncture gauge in black hole simulations, the initial data must not
contain any physical singularities. For the Schwarzschild-Tangherlini black hole, this can be
achieved by using isotropic coordinates, in which the metric reads

ds2 =−
(

4ρD−3 − rD−3
0

4ρD−3 + rD−3
0

)2

dt2 +

(
1+

rD−3
0

4ρD−3

) 4
D−3 (

dρ
2 +ρ

2dΩ
2
D−2
)
, (1.33)

where r0 is the Schwarzschild radius of the black hole. These coordinates cover two copies
of the exterior of the black hole and do not contain a physical singularity, only a coordinate
singularity at ρ = 0. In BSSN variables and Cartesian coordinates, (1.33) becomes

χ =

(
4ρD−3

4ρD−3 + rD−3
0

) 4
D−3

, γ̃i j = δi j, Γ̃
i = 0, Ãi j = 0, K = 0. (1.34)

This demonstrates the power of the conformal split in BSSN: even though the metric has
a coordinate singularity at ρ = 0, the BSSN variables are all completely well-behaved and
the conformal factor χ smoothly tends to zero. For the few divisions by χ in the evolution
variables in Box 1, we can introduce a small cut-off on χ . Since this only needs to be done
for at most one grid point deep inside the horizon, it does not affect the evolution elsewhere.

The metric (1.34) leads to the analytic initial gauge

α =
4ρD−3 − rD−3

0

4ρD−3 + rD−3
0

, β
i = 0. (1.35)
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The analytic lapse becomes zero at the bifurcation (D−2)-sphere and subsequently changes
sign in the other asymptotically flat end. This is clearly unsuitable for numerical evolution: it
is undesirable to freeze the evolution on the horizon - the region we are most interested in -
and it is impossible to evolve backwards in time in the other asymptotically flat end. However,
since the lapse is only a gauge variable, we can prescribe any function of our choice. Since
1+ log slicing causes the lapse to tend to zero at the puncture to prevent the slice from falling
into the black hole singularity, we can minimise gauge adjustment by choosing an initial
lapse that is already zero there. A popular choice is the pre-collapsed lapse [132, 129]

α = χ
D−3

2 , (1.36)

where we have chosen the exponent so that the pre-collapsed lapse has the same leading
order behaviour as the analytic lapse

χ
D−3

2 = 1− rD−3
H

2ρD−3 +O

(
r2D−6

H
ρ2D−6

)
= αanalytic . (1.37)

Somewhat surprisingly, the puncture method is so robust that it also leads to stable evolution
if we choose initial data that contain a physical singularity, as long as we smooth out the
singularity using the turduckening method [133, 134]. In the turduckening method of order
p, a singular function is capped off such that it is Cp at the edge of the turduckened region.
For example, to turducken the function 1/r inside the region r < rt we replace r by

max(rt ,r) 0th order,

max
(

1
2

rt +
1
2

r2

rt
,r
)

1st order, (1.38)

and similarly for higher orders.

1.3.4 Generalised harmonic coordinates

Any numerical relativity algorithm is based on two fundamental choices: the evolution
variables, and the coordinate system, i.e. the functions xµ(p) that map points p on the
manifold to the computational domain. Assuming that we can pick a global time coordinate,
x0 = t, the most intuitive choice of evolution variables would be the metric components,
gµν , and their time derivatives, ∂tgµν . Written in terms of metric components, Einstein’s
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equations in trace-reversed form are

Rµν =−1
2gαβ

∂β ∂αgµν −∂β gα(µ ∂ν)g
αβ −Γ

α

β µ
Γ

β

αν +gλ (µ∇ν)Γ
λ

= 8π

(
Tµν −

T
D−2

gµν

)
. (1.39)

The only term that prevents these equations from being manifestly strongly hyperbolic is the
term involving derivatives of the contracted Christoffel symbols. To eliminate this term, we
use generalised harmonic coordinates (GHCs)

∇
α

∇α xµ =−gαβ
Γ

µ

αβ
=−Γ

µ ≡ Hµ , (1.40)

where Hµ(xν) is an arbitrary function. With GHCs, we can replace the offending derivatives
by ∇(µHν) so that Einstein’s equations become

−1
2gαβ

∂β ∂αgµν −∂β gα(µ ∂ν)g
αβ −∂(µHν)+HαΓ

α
µν −Γ

α

β µ
Γ

β

αν

= 8π

(
Tµν +

T
D−2

gµν

)
. (1.41)

This is a non-linear wave equation and therefore manifestly strongly hyperbolic7. Harmonic
coordinates (Hµ = 0) were already used by Ref. [56] in the first proof of well-posedness of
Einstein’s equations. However, in numerical relativity non-zero Hµ are necessary to allow
some control over the gauge.

GHCs introduce a new coordinate constraint given by

Cµ = Hµ +Γ
µ = 0. (1.42)

If this constraint is satisfied initially, the Bianchi identity implies that it will be satisfied for
all time in the continuum limit. However, in early attempts with GHCs, numerical errors led
to large violations of the coordinate constraints that spoiled the simulations. This problem
can be solved with exactly the same constraint damping mechanism that is used for CCZ4:
instead of solving Einstein’s equations, we solve the modified Einstein’s equations (1.16)
with additional degrees of freedom Zµ =−Cµ representing the constraints [122]. This leads
to the widely used GHC formalism with constraint damping in Box 2.

7It even satisfies the stronger criterion of symmetric hyperbolicity, which also requires that the principal
symbol is hermitian or becomes hermitian when multiplied by a suitable positive definite hermitian matrix
[107–109].
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Box 2: GHC formalism with constraint damping:

−1
2gαβ

∂β ∂αgµν −∂β gα(µ ∂ν)g
αβ −∂(µHν)+HαΓ

α
µν −Γ

α

β µ
Γ

β

αν

−κ1
(
2n(µCν)− (1+κ2)gµνnαCα

)
= 8π

(
Tµν +

T
D−2

gµν

)
, (1.43)

with constraint equations Cµ = Hµ +Γµ = 0.

With GHCs, the coordinates can only be controlled through the choice of gauge source
functions Hµ and the stability of the method depends heavily on this choice. For example, a
time evolution code based on (1.43) must assume that x0 = t remains the timelike coordinate
throughout the whole evolution and gauge source functions must ensure that this is indeed the
case. Furthermore, they must prevent the formation of coordinate singularities in the domain.
The choice of source functions has been studied much less than the choice of gauge in the
d +1 split. Despite this, stable evolution with GHCs has been achieved in many settings.
Most importantly, the first-ever simulation of a binary black hole merger by Pretorius [106]
was carried out with GHCs. More recently, GHCs have also been used in higher dimensions
for studying black strings [33] and in AdS [135, 136].

Even though one can transfer some of the experience with gauge choices in BSSN and CCZ4
by expressing the gauge source functions in terms of ADM variables, it has so far not been
possible to find source functions that prevent grid points from falling into the black hole
singularity. As a result, black hole simulations with GHCs require excision. The principle of
excision is simple: since in the continuum limit no information can escape the black hole,
one can excise a small region around the singularity from the computational domain. If the
resolution is high enough, the errors that are incurred at the excision boundary do not affect
the region outside the black hole.

An implementation of excision requires three steps: first, we have to find the apparent horizon
to know how large the excision region can be and what shape it should have. Thereafter,
we excise a suitable region and ensure that all points close to the excision boundary use
appropriate one-sided stencils. Finally, as the black hole moves across the numerical grid,
we have to move the excision region too, repopulating grid points that are no longer excised
by extrapolating from nearby points. On top of this, we have to find a choice of gauge source
functions, dissipation, and damping parameters that keeps the numerical evolution close to
the excision surface stable.
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1.3.5 Comparison of formalisms

We finish the discussion of GHCs with a comparison to BSSN/CCZ4. Both formalisms are
very commonly used in numerical relativity; which one is preferable depends heavily on the
application, the accuracy and performance requirements, and what numerical infrastructure
is in place already.

Considering only the evolution equations, the GHC formalism is much simpler than BSSN
and CCZ4. As a result, it is easier to write, maintain, and debug GHC code. This is also an
advantage from a performance point of view: not only do the evolution equations require
fewer operations per right hand side evaluation, they are also easier for the compiler to
optimise. BSSN and CCZ4 require very lengthy calculations and the need for lopsided
stencils in the calculation of advection derivatives harms the performance further. The
simplicity of the GHC formalism also makes it much easier to adapt the code to new settings.
This is one of the reasons for why evolution in AdS has been possible with GHCs [135, 136],
but has not yet been achieved with BSSN or CCZ4.

The GHC formalism also has a much simpler mathematical structure than BSSN and CCZ4:
the principal terms in the evolution system (1.43) are just a wave operator. This makes it
much easier to use implicit integration schemes or spectral methods so that GHCs are ideal
when very high accuracy is required. An example of this is the Spectral Einstein Code (SpEC)
[137], which was used to produce the majority of numerical relativity waveforms for LIGO
[138].

The main disadvantage of GHCs is that they allow a less intuitive control over the gauge
than BSSN and CCZ4. This makes it harder to prevent coordinate singularities and is the
reason for why no singularity-avoiding gauge condition has been found for GHCs to date.
As a result, simulations of black hole spacetimes require excision. For most applications,
excision is very hard to implement and means that one cannot use publicly available PDE
solvers out of the box. Excision is especially difficult for higher dimensional black holes
such as black rings and Myers-Perry black holes, which can take on very complicated shapes
when they become unstable. This makes it hard to implement an apparent horizon finder
that converges reliably and means that we would have to use a very complicated excision
region. Excision is also bad for performance. The main reason for this is that in order to be
able to excise correctly, we have to find the apparent horizon often. This can be very costly,
especially when the apparent horizon finder needs many steps to converge.



Chapter 2

GRCHOMBO

This chapter presents the GRCHOMBO code, analyses its accuracy and performance, and
explains its current design.

Sections 2.2 and 2.3 are based on the co-authored publication Ref. [5]. The performance
tests in section 2.4 were carried out by myself with useful comments and advice from A.
Duran, K. Kornet, and J. Jäykkä. I devised the current design of GRCHOMBO (section 2.5)
in collaboration with S. Tunyasuvunakool and implemented large parts of the current code.
GRCHOMBO is a truly collaborative effort and I am very thankful to the whole collaboration
and especially K. Clough for many valuable discussions and their contributions to the code.

2.1 Introduction

In this chapter, we present GRCHOMBO, a new open-source, multi-purpose general relativity
code. GRCHOMBO was first released in the code paper Ref. [5] and was made public earlier
this year1. When it was first released, GRCHOMBO was developed by six researchers at three
institutions and had just over 4000 lines of code, almost all of which were contained in two
files. By now, it is developed and used by around fifteen researchers at six institutions and
comprises just under 20,000 lines of code in approximately 150 files. Since its first release,
GRCHOMBO has led to eight publications, three of which are presented in this thesis.

GRCHOMBO is by far not the only numerical relativity code. The most famous alternatives
include SPeC [137] and the Einstein toolkit [139]. SPeC uses the GHC formalism and spectral
methods and is the ideal choice for producing highly accurate gravitational wave templates

1GRCHOMBO is available at www.grchombo.org or directly on GitHub at www.github.com/GRChombo.

www.grchombo.org
www.github.com/GRChombo
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for LIGO. The Einstein toolkit is the most commonly used code for BSSN evolution and
includes moving box refinement and some adaptive mesh support. In addition to this, a
plethora of other open- and closed-source numerical relativity codes exist [140].

With GRCHOMBO, we do not try to compete with SPeC, the ideal tool for gravitational wave
templates, or the Einstein toolkit. Instead, we aim to open up new avenues of research in
numerical relativity by enabling a wide range of problems in cosmology, higher dimensional
black holes, and AdS/CFT to be tackled easily and with feasible computational requirements.
As a result, the defining features of GRCHOMBO are a very flexible design which allows the
simulation of a large variety of problems with BSSN, CCZ4, and GHCs, good performance
and scalability on the latest architectures, and fully adaptive mesh refinement, which we
explain below.

Almost all problems in general relativity require codes to be able to resolve wildly varying
length-scales accurately. In astrophysical simulations for example, the black hole has to
be resolved accurately, while the size of the computational domain has to be at least 100
times larger to allow accurate gravitational wave extraction and to ensure that the boundary
conditions do not spoil the results. Covering the whole domain with one very fine grid would
be completely unfeasible. As a result, numerical relativity codes must be able to selectively
increase the resolution in regions of interest. This is called mesh refinement. The simplest
mesh refinement strategy is moving box refinement, where the resolution is increased in a
few disjoint rectangular regions, whose size often has to be specified in advance. Another
common strategy is adaptive mesh refinement, in which the user specifies a criterion to
determine regions in which the resolution should be increased. In practice, all adaptive mesh
refinement algorithms have to refine additional cells, partly for efficiency reasons and partly
because of built-in restrictions on the shape and topology of refined regions. In this thesis, we
call an implementation that can refine regions of arbitrary shape and topology fully adaptive
mesh refinement.

The best choice of mesh refinement algorithm depends on the particular application. For
binary black hole mergers, moving box refinement is sufficient since typically no new length
scales are created dynamically and the shape of the refinement regions does not have to
be changed frequently. Problems beyond astrophysics, such as the study of instabilities
in general relativity, require fully adaptive mesh refinement due to the emergence of new
length scales in regions of complicated shape and topology. These are precisely the kinds of
problems we want to be able to tackle with GRCHOMBO. For this reason, GRCHOMBO is
built on top of the CHOMBO libraries [141], which allow fully adaptive mesh refinement.
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To ensure that GRCHOMBO runs efficiently on the latest architectures and that it is flexible
enough for the future, we have completely redesigned and rewritten the code since the
publication of the code paper Ref. [5]. While we have ensured that the physical results
remain the same, the performance and scaling have improved significantly. In this chapter,
we present the new overhauled design and explain why the changes we have made should
make GRCHOMBO more future-proof and easier to use.

The remainder of this chapter is structured as follows: in section 2.2, we present the details
of the numerical implementation in GRCHOMBO. In section 2.3, we present the tests that we
carried out to demonstrate that GRCHOMBO produces accurate results and we explain how
we ensure that we do not introduce bugs as we amend and improve the code. In section 2.4, we
present the most thorough performance tests of GRCHOMBO to date on both Intel Xeon and
Intel Xeon Phi processors. This information is crucial for future compute grant applications
and helps users maximise the performance of GRCHOMBO on their supercomputer. Finally,
in section 2.5 we give a brief overview of the design of GRCHOMBO to show how the
latest performance tweaks were achieved in the code and what steps we have taken to make
GRCHOMBO easy to use.

2.1.1 High performance computing architecture and techniques

Since the publication of the GRCHOMBO code paper [5], supercomputing hardware has
undergone significant changes that made it necessary to redesign large parts of GRCHOMBO.
Table 2.1 shows the specifications of the processor we used for scaling tests in Ref. [5] three
years ago in comparison to two recent processors which we will use for our latest scaling
tests in section 2.4. The data are indicative of the wider trend: there has been no significant
increase, or in some cases even a decrease, in the core frequency in the last ten years [142].
The reason for this is that architectures with higher frequency are less energy efficient. As
a result, an entirely serial program runs no faster or in some cases slower on more modern
architectures.

Instead, processors have seen a substantial increase in core count. Intel’s Knights Landing
processor even uses up to 70 cores, but with significantly reduced frequency. There has
also been a significant increase in the Single Instruction, Multiple Data (SIMD) width, the
amount of data a single instruction can be applied to at the same time. In short: modern
processors do not execute instructions faster than the processors from five or even ten years
ago, they only execute more instructions in parallel and can apply the same instructions to
more numbers at a time. To harness the improvements in hardware, the program needs to use
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Code name Nehalem EX Sandy Bridge Knights Landing Skylake
Number X7542 E5-2670 7250 8160
Year 2010 2012 2016 2017
Cores 6 8 68 24
SIMD width [64 bit] 2 4 8 8
Base freq. [GHz] 2.7 2.6 1.4 2.1
Turbo freq. [GHz] 2.8 3.3 1.6 3.7
TDP [W] 130 115 215 150
Launch price [$] 2000 1500 2400 4700

Table 2.1 Technical specifications of the Nehalem and Sandy Bridge processors we used for
the scaling tests in Ref. [5] and the Knights Landing and Skylake processors used for the
tests in this thesis. Details were taken from Ref. [143].

all these available layers of parallelism at all times. This is not easy, however, and old code
often has to be improved significantly before any of the benefits of modern architecture are
noticeable. This is particularly true for Knights Landing, which due to its significantly lower
core frequency is much less forgiving of badly parallelised code.

Given the major differences in design between different processors, one cannot directly
compare their performance. For example, it is not fair to compare the runtime of a simulation
on one 68-core Knights-Landing processor to that on one 24-core Skylake processor. One of
the best ways of achieving a fair comparison is to consider the performance at fixed electricity
usage, i.e. the performance per watt. Calculating or measuring the exact electricity usage is
complicated, but as a very crude estimate, one can assume that the amount of electricity a
processor uses is roughly proportional to its thermal design power (TDP), which specifies
the maximum amount of heat it may generate. We will use the TDP in section 2.4 to compare
the performance of GRCHOMBO on Knights Landing and Skylake.

In modern supercomputers, thousands or even tens of thousands of processors are connected
with a fast network so that they can run tasks in parallel and communicate information. Each
compute node of this network contains one or several sockets for processors, which share
the resources in the node. Most commonly, the communication between nodes is managed
using the Message Passing Interface (MPI). When using MPI, many processes, instances
of a program, are launched across the supercomputer and MPI is used to communicate
information between them.

Due to the large number of cores on modern processors, there is a lot of parallelism available
within a node. One way of exploiting this parallelism is to assign more than one MPI process
to a node or even one MPI process per core. However, this approach is often not ideal as MPI
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is designed for situations where a process keeps all its data locally and communicates with
other processors to exchange data. Within a node, this is not necessary since the memory in
a node is usually shared. As a result, cores can access all data directly and there is no need
for communication. Instead, the main challenge is to ensure that cores never manipulate
the same data at the same time since this can lead to incorrect results. There are several
programming models that allow this intra-node parallelism to be organised. We use Open
Multi-Processing (OpenMP). To make matters more complicated, on modern processors it
is often beneficial to use more than one OpenMP thread, units of parallelism in OpenMP,
per core. This allows the core to use its resources more effectively: for example, while one
thread is waiting for data from memory, another thread can perform calculations.

The choice of how many MPI processes should be assigned to each node and how many
OpenMP threads one should assign to each core can have a significant impact on the runtime
of the program. Unfortunately, there are very few general rules on what the optimal choice is,
as this heavily depends on the program and the architecture it is running on. One of the aims
of the performance tests in section 2.4 is to give GRCHOMBO users guidance on what the
most ideal setup is for GRCHOMBO.

2.2 Numerical details

Both CCZ4 and GHCs can be reduced to a set of coupled PDEs that are first order in time and
up to second order in space. GRCHOMBO integrates these PDEs in time by taking discrete
time steps using the explicit 4th order Runge-Kutta scheme. The spatial directions are
discretised on a cell-centred grid. This choice is uncommon for vacuum numerical relativity
codes, which usually use node-centred grids as they make the exchange of information
between refinement levels easier. However, GRCHOMBO is built on top of CHOMBO, which
was designed with fluid dynamics applications in mind, where cell-centred grids together with
flux conservation across cell boundaries are more common. Currently, GRCHOMBO uses
fourth order finite difference stencils by default, but it is designed to make it easy to replace
the stencils.

The choice of an explicit numerical integration scheme introduces an upper bound on the
ratio of the size of the time step to the grid spacing, the so-called Courant factor. This upper
bound is given by the Courant–Friedrichs–Lewy (CFL) condition [144], which for the PDEs
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in numerical relativity is

∆t
∆x

≤Cmax, (2.1)

where Cmax is the maximum stable Courant factor, which depends on the characteristic speed
of the equations and the integration method. The Courant condition requires us to reduce the
size of the time step proportionally to the spatial resolution. In practice, the maximum stable
Courant factor is not derived theoretically in numerical relativity, but by experimentation.
This is possible since once the Courant factor is small enough to allow stable evolution, any
further reduction typically does not change the results.

In any finite difference scheme, errors can arise from the appearance of spurious high
frequency modes, with wavelength of the order of magnitude of the grid spacing. This is
especially true for adaptive mesh refinement codes, for which errors are introduced by the
interpolation at level boundaries and during the regridding process. To damp these high
frequency modes, we use Kreiss-Oliger dissipation [145, 110] for all evolution variables. For
Nth-order Kreiss-Oliger dissipation, the time derivative of an evolution variable φ is modified
to

∂tφ(t,xi)→ ∂tφ(t,xi)+
(−1)Nσ

22N∆x ∑
i

∆
2N
i φ(t,xi) (2.2)

where ∆x is the grid spacing, σ is a parameter controlling the strength of the dissipation, and
∆2N

i is the centred difference operator of order 2N in the direction xi. For example,

∆
6
i φ = φ−3∆xi −6φ−2∆xi +15φ−∆xi −20φ +15φ∆xi −6φ2∆xi +φ3∆xi, (2.3)

where φn∆xi is φ(t,x j) offset by n∆x in direction i, i.e. φn∆xi = φ(t,x j + nδ
j

i ∆x). It can be
shown [145], that the modification of ∂tφ in (2.2) vanishes with O(∆x2N−1) as the continuum
limit is approached. Since GRCHOMBO uses fourth order stencils by default, we therefore
use N = 3 Kreiss-Oliger dissipation to preserve the order of our method.

2.2.1 Adaptive mesh refinement

GRCHOMBO uses CHOMBO’s adaptive mesh refinement implementation, which is based on
the Berger-Rigoutsos mesh refinement algorithm [146]. The Berger-Rigoutsos algorithm is
block-structured, meaning that the code refines the mesh by overlaying regions which require
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higher resolution with boxes of grid cells with smaller grid spacing. The allowed boxes are
constrained by the following two conditions:

1. Proper nesting: a box on the lth refinement level must not touch level (l −2) directly;
there must be at least one level (l −1) grid cell between them.

2. Proper refinement: a box on level l must not refine parts of a level (l −1) grid cell; it
must refine it completely or not at all.

Furthermore, the user can specify a minimum and maximum box size. This is very important
for performance and will be discussed in more detail in section 2.4. The two conditions
above do not restrict the shape and topology of the refinement areas substantially. This is
one of the advantages of GRCHOMBO and the reason for why the code works so well for
simulations of black rings: the finest levels can have toroidal topology. Fig. 2.1 shows an
example of the mesh setup for a very thin black ring during the highly dynamic stages of the
evolution.

To be able to take derivatives at the edge of a box, we add additional cells, so-called ghost
cells, on all sides of the box. These ghost cells are not evolved in time. Instead, they get
filled with values from valid cells, cells that are not ghost cells, as follows: if a ghost cell
overlaps with valid cells of a box on the same level, it is filled with the data from this valid
cell. If it does not overlap with a grid cell on the same level, it is filled using fourth order
interpolation from cells on the next coarser level, which must cover the same region because
of the proper nesting condition. Ghost cells outside the computational domain are filled using
the boundary conditions (see section 2.2.3).

Due to the Courant condition, the time step on each level has to be scaled with the resolution.
To achieve this, we use a procedure called subcycling, which is sketched in Fig. 2.2. We start
with a time step on the coarsest level. Thereafter, whenever level l has advanced by one step,
level l +1 takes time steps with its smaller Courant factor until it reaches the same time as
level l. Once level l +1 has reached the same time as level l, their data are synchronised by
averaging fine data to the coarser level. After this averaging has happened, the step on level l
is declared finished, meaning that its data can be averaged to level l −1 if appropriate.

Whenever a level takes its second subcycling step, there is no coarser level data available for
the same time so that it is not possible to fill ghost cells using interpolation in space only.
CHOMBO solves this problem using the method proposed in Ref. [147]: as the coarser level
takes a time step, it constructs a time interpolation polynomial from its Runge-Kutta substeps.
These polynomials can later be used to fill ghost cells on the finer level using appropriate
interpolation in space and time.
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Fig. 2.1 Grid setup for a very thin black ring in the highly dynamic stages of the evolution.
The bottom picture is a zoom of the picture on the top. The apparent horizon is located
roughly at the χ = 0.2 contour, i.e. it covers the black region in the plot. GRCHOMBO is
able to adapt the grid to the toroidal topology of the black hole.
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Fig. 2.2 Illustration of the subcycling procedure in GRCHOMBO. The numbers indicate the
order in which the operations are performed.

An important requirement in high performance computing is that programs must save
checkpoint files at regular intervals which can be used to restart the execution. Checkpoint
files ensure that the simulation does not have to be repeated in its entirety if it is terminated
because of some problem with the supercomputer. Furthermore, most supercomputers do not
allow programs to run for more than a few days. Since the simulations in this thesis took
weeks or even months to run, they had to be stopped and restarted from a checkpoint file
many times.

CHOMBO allows writing a checkpoint file whenever all levels are synchronised in time, for
example before step 1 or after step 10 in Fig. 2.2. This checkpoint file stores all data and
the box layout so that the simulation can be restarted without any information being lost.
However, writing checkpoint files whenever all levels are synchronised is not enough for our
purposes: simulating instabilities in general relativity requires very deep mesh hierarchies
due to the small length scales that get produced during the instability. For example, for the
simulations of the ultraspinning instability of Myers-Perry black holes in chapter 5 we used
up to 22 levels. With a refinement ratio of 2, this implies that for each step on the coarsest
level the finest level must take 221 ≈ 2 million steps. As a result, as the simulation is running,
the levels might only be synchronised in time once a month so that CHOMBO’s checkpoints
are written too rarely.

To solve this problem, we augmented CHOMBO’s checkpointing capabilities to allow writing
checkpoint files even when levels are not synchronised in time, i.e. after all of the ten steps
in Fig. 2.2. This is done as follows: as level l writes its data to the checkpoint file, it also
checks whether level l +1 has already evolved to the same point in time. If it has not, level l
also stores the coefficients of the time interpolating polynomial that is used to fill ghost cells
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on the finer level to the checkpoint file. To restart from a checkpoint file, we first read in all
the data and interpolating polynomials. Thereafter, we scan through all levels starting from
the finest. Whenever a level has not evolved to the same point in time as the next coarser
level, we take time steps until it has caught up, performing any necessary subcycling steps.
In this process, we ensure that the coarse averaging procedure is done precisely once and in
exactly the order that is specified in Fig. 2.2.

2.2.2 Tagging criteria

In order for CHOMBO to set up the mesh hierarchy, we must provide it with a set of “tagged”
cells whose resolution we deem to be too low. There are many different ways of specifying
tagging criteria, and we often use a combination of them. While it would be most intuitive to
base the refinement on some measure of the numerical error, we found that this often leads to
very irregular refinement regions, which cause larger numerical errors. Instead, we base the
refinement on combinations of evolution variables that capture the geometry of the solution
well. In our simulations, we found a tagging criterion based on the gradient of χ−1 to be
most reliable. More concretely, we tag a cell if

∆x

√
δ i j∂iχ∂ jχ

χ2 > σχ , (2.4)

where σχ is a custom refinement threshold, and ∆x is the grid spacing. The refinement in Fig.
2.1 was done using the above criterion. For rapidly rotating black holes, we usually combine
(2.4) with a refinement criterion based on

∆x
√

δi jΓ̃iΓ̃ j > σ
Γ̃
. (2.5)

As we will discuss in more detail in chapter 3, Γ̃ is large in the initial data for rotating black
holes but later decays due to our gauge conditions. In these cases, (2.5) captures the regions
that need higher resolution better than (2.4) before gauge adjustment. Finally, whenever we
want to extract gravitational waves, we add a tagging criterion that tags cells if the distance
to the black hole is smaller than the wave extraction radius and the resolution is lower than
the desired resolution at the extraction point.

2.2.3 Boundary conditions

In GRCHOMBO, boundary conditions can be specified in the following three ways:
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• by modifying the evolution equations for cells close to the boundary,

• by filling ghost cells outside the computational domain,

• by using different stencils close to the boundary.

Which of the above methods is most appropriate and most efficient depends on the type of
boundary condition that is used. Below, we discuss the most important boundary conditions
and how they are implemented in GRCHOMBO.

Periodic. The simplest and most efficient way of implementing periodic boundary conditions
is to fill ghost cells that are outside the domain with valid cells from the same refinement
level on the other side of the domain.

Sommerfeld. A very common condition in numerical relativity is the Sommerfeld boundary
condition [129], which ensures that outgoing waves to not get reflected back into the com-
putational domain. To this end, we modify the evolution equations close to the boundary
to

∂tφ =−xi

r
∂iφ − φ −φ0

r
, (2.6)

where φ represents any evolution variable and φ0 is the desired value on the boundary which
we typically take to be Minkowski space.

Parity. When using the modified Cartoon method for dimensional reduction (chapter 3), we
must enforce even or odd parity on the Cartoon axis. This is achieved most efficiently by
filling the ghost cells outside the boundary by even or odd extrapolation of the data inside the
domain. This means that the right hand side calculation remains completely unchanged and
the same differentiation stencils are used everywhere in the domain.

Dirichlet. For evolution in AdS, we have to prescribe Dirichlet boundary conditions given
by the metric on the boundary of AdS. However, since GRCHOMBO is cell-centred, there
is no grid point at the boundary. We therefore, modify differentiation stencils close to the
boundary to imitate a grid point with a fixed value on the boundary. We will discuss the
details of this in chapter 7.

Due to GRCHOMBO’s adaptive mesh refinement, it is sometimes computationally feasible to
make the coarsest level so large that the boundary is not in causal contact with the region
of interest throughout the entire simulation. In this case, the boundary conditions do not
affect the results in the region of interest and we often use periodic or Dirichlet boundary
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conditions as they are simple and computationally cheap. This approach is not uncommon
and was used for example in Ref. [33].

2.2.4 Parallelism

As outlined in the introduction, programs may run no faster or even slower on more modern
architecture unless they use all layers of parallelism: all available compute nodes, all cores,
more than one hardware thread if appropriate, and SIMD instructions wherever possible. In
this section we outline how these layers of parallelism are achieved in GRCHOMBO on an
abstract level. The implementation will be presented in section 2.5.

A block-structured adaptive mesh refinement algorithm, such as the one used in CHOMBO,
lends itself very well to parallelisation with MPI because boxes can be distributed among
MPI processes easily. Since the boxes are augmented with ghost cells, each process can
perform all calculations, including numerical derivatives, independently. After each time
step, the values of ghost cells needs to be updated with valid or interpolated data. In most
cases, these data reside on a different process and are, therefore, communicated with MPI. To
ensure that the workload of each process is approximately equal, even with strongly varying
box sizes, we use CHOMBO’s load balancing algorithm, which distributes boxes such that all
MPI processes are assigned roughly the same number of cells. CHOMBO also allows loading
and writing files in parallel using the HDF5 libraries [148].

The need to communicate ghost information puts a lower bound on the box size that can
feasibly be used. As the box size is decreased, the ratio of valid cells to ghost cells becomes
worse, so that we incur a larger communication cost per valid cell. In our experiments
with GRCHOMBO we found that the maximum feasible ratio of ghost cells to valid cells is
reached at a box size of approximately 83 cells. This puts an upper bound on the number
of boxes a typical simulation can have, and thus the number of MPI processes that can be
used efficiently: we can use at most as many processes as we have boxes, otherwise some
processes are not assigned any work.

Since almost all operations in GRCHOMBO are done on a cell-by-cell basis, we can create
an additional layer of parallelism by threading the loops over cells in a box using OpenMP.
For operations like the interpolation of ghost cells at mesh boundaries, where the same
operation is repeated for each evolution variable, we can also include the loop over evolution
variables in the threading. While the MPI parallelism was largely already present in CHOMBO,
significant work was still needed on the threading to ensure that there are no bottlenecks
that slow down the execution. The hybrid MPI/OpenMP parallelism enables us to use fewer
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processes per node while still using the resources in the node efficiently. This in turn allows
us to use more nodes before running out of boxes for all MPI processes. We will see an
example of this behaviour in section 2.4.

Finally, to make use of the wide SIMD unit on modern CPUs, we pack up several cells into a
vector and subsequently use SIMD instructions to operate on the whole vector at once. This
process is called vectorisation.

2.3 Testing correctness and accuracy

One of the most important aspects of numerical relativity is to ensure that the code is correct
and gives accurate results. These two requirements are very different. The former relates
to the code itself: all parts should perform their intended tasks as advertised. The latter
relates to physics and numerical analysis: if the code performs its task correctly, it should
give a good estimate of the physical results. Therefore, we carry out two categories of tests:
software tests, which ensure that the code is correct, and physical tests, which ensure that the
results the code produces are a good description of the physical behaviour.

2.3.1 Software tests

Since GRCHOMBO, like most numerical relativity codes, is tens of thousands of lines long,
the only way to avoid bugs is by having tests for as much of the codebase as possible.
Currently, GRCHOMBO includes three different types of tests:

• Unit and integration tests. These tests check very specific parts of GRCHOMBO or a
few parts in combination on fabricated input.

• Evolution equations. In this type of test we set up initial data consisting of fourth
order polynomials with random coefficients and evaluate the BSSN and CCZ4 right
hand sides with the current version of GRCHOMBO and an old version. This ensures
that as we modify and improve the code, we do not introduce bugs in the calculation
of the right hand side, including the derivative calculation and the loop over the cells
in a level.

• Full evolutions. Starting from the same random initial data as above but now with
several levels of refinement, we take two full time steps including subcycling and ghost
interpolation. After the first step, we save a checkpoint file and restart from the same
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file. We perform this procedure with the current version of the GRCHOMBO code and
an old version, which we trust to be correct, and compare the values in the checkpoint
files after the second step. This is a very powerful test as it can pick up bugs in almost
all components of the code, including checkpointing and restarting. The disadvantage
is that it is more expensive to run and that it is harder to pin down the source of the
problem if the test fails.

The first two types of tests can be executed automatically and are checked for every new
contribution to the public version of the code. Currently, tests of type 3 have to be executed
manually, but we plan to make them automatic in a future release of the code.

2.3.2 Physical tests

A bug-free code that works completely as intended may still give inaccurate or wrong results.
Even for setups that have been studied in a lot of detail before, there are a lot of seemingly
minor choices that can affect the accuracy of the results, such as how the grid is set up, how
information is communicated between levels, how the time interpolation at level boundaries
works, and how often algebraic constraints such as Ãi

i = 0 are enforced.

For this reason, before applying the code to new problems, we tested GRCHOMBO in a
number of standard settings, where there are published results on the performance and
accuracy we can expect from a numerical relativity code based on BSSN and CCZ4. These
tests are listed below. The first four of them are called Apples with Apples tests [149].2

• Robust stability. Minkowski space is slightly perturbed by adding small random noise
to the initial data and evolving it in time. GRCHOMBO passes this test: as required,
the constraint violations decrease when CCZ4 is used and remain constant with BSSN.

• Linear wave. A gravitational wave is evolved numerically. The amplitude (A = 10−8)
is chosen so small that the evolution is effectively linear and the results can be compared
to the analytic solution of the linearised Einstein equations. Since GRCHOMBO uses
a fourth order stencil, it performs very well in this test with deviations from the
analytically calculated metric components of order 10−12 after 1000 periods.

• Gauge wave. A gauge wave is evolved across a periodic domain repeatedly. Lapse
and shift have to be chosen so as to keep the shape of the gauge wave intact at an

2By now, the Apples with Apples tests are somewhat outdated and have been surpassed by tests of the
accuracy of black hole simulations. Despite this, they provide very simple and well-documented first tests and
include settings which are tough to simulate.
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analytical level. The commonly used 1+ log slicing would quickly eradicate these
gauge oscillations. Numerical relativity codes based on BSSN fare really badly in
this test and crash after a few dozen crossing times [149]. However, CCZ4 was
designed to pass this test as it suppresses Hamiltonian constraint violations [123].
GRCHOMBO displays exactly this behaviour.

• Gowdy Wave. This test compares numerical results against an analytic solution for a
gravitational wave propagating in a strongly curved expanding or collapsing universe.
This is a very tough setting: in the expanding case, errors are usually amplified causing
the code to crash, in the contracting case the code stops agreeing with the analytic
solution as the singularity is approached. While GRCHOMBO is no exception to this,
fourth order convergence is retained for approximately 1000 light crossing times with
CCZ4.

• Single black hole spacetimes. We evolve a Schwarzschild black hole for 10,000M,
a Kerr black hole with spin J/M = 0.2 for 200M and a boosted black hole for 200M.
We check that the constraint violations do not grow, and that the ADM mass and linear
and angular momentum remain constant.

The most important test for any numerical relativity code is to check the accuracy and
convergence of the gravitational wave signal from a black hole merger. To this end, we
simulate the head-on collision of two black holes of mass 0.5M, initially a distance of 10M
apart, at three different resolutions. All runs had 8 refinement levels in total, with a refinement
ratio of 2. The coarsest resolution run had a grid spacing of 4M on the coarsest and 0.03125M
on the finest level. For the two higher resolution runs, we increased the resolution by factors
of

√
2. The results for the real part of the l = 2, m = 0 of rψ4, where r is the extraction

radius, are shown in Fig. 2.3 in a plot versus tret = t − r. The initial burst of radiation is
unphysical and is a property of our initial data, which consist of two superimposed static
black holes. With the exception of the time range 20 ≲ tret/M ≲ 40, where there is little
physical wave signal, we consistently see convergence between third and fourth order. This
is expected, since we use fourth order spatial discretisation but the interpolation at mesh
boundaries reduces the order slightly.
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Fig. 2.3 Convergence test for head-on collisions of two black holes. Top: Real part of the
l = 2, m = 0 mode of rΨ4 extracted at a radius of 60M. Bottom: Difference in the results
for different resolutions. The dashed orange and red lines represent third and fourth order
convergence respectively.
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It is important to stress that the above tests only ensure that the core components of GR-
CHOMBO are reliable in the standard settings. They give no guarantee that the code is
accurate for new applications and with new methods. As a result, it is necessary to perform
new numerical tests for every application. We will present the appropriate tests for all the
results presented in this thesis in the appendices to chapters 4, 5, and 7. The upside of this
is that by now, the most convincing evidence for the accuracy of GRCHOMBO does not
come from the tests presented above, but from those in Refs. [3, 2, 5, 48–52], which applied
GRCHOMBO in considerably more challenging settings.

2.4 Scaling tests

Since the publication of our code paper [5], we have invested a significant amount of
time in the optimisation of GRCHOMBO and have achieved considerable improvements
in performance. In this section, we present the latest scaling tests of GRCHOMBO and
demonstrate that it can run efficiently on large supercomputing systems. Furthermore, we
analyse the impact of various parameters on the runtime in order to give guidelines on the
optimal choice of parameters in GRCHOMBO.

There are two related but different concepts that capture how a program benefits from the
use of more resources: strong scaling and weak scaling. Strong scaling refers to how much
faster the same setup runs when more resources are used. For example, for an ideal program,
the runtime should be halved as the number of cores is doubled. In practice, this can only
be achieved to some extent: as we keep increasing the number of cores, parallel sections of
the program run faster and faster while the runtime of serial sections remains unchanged so
that they eventually dominate the runtime. However, strong scaling can be spoilt before this
happens if the work in parallel regions cannot be divided enough to supply all cores with
work.

Weak scaling refers to the ability to simulate a more expensive problem in the same amount of
time by using more resources. For example, for an ideal program we should be able to double
the number of grid points in the computational domain but keep the runtime unchanged by
doubling the number of cores too. In general, weak scaling is easier to achieve than strong
scaling. The main reason for this is that the runtime of parallel sections in a program remain
unchanged in a weak scaling test. As a result, serial portions are not a problem as long as
they do not become more expensive as the size of the problem is increased. Furthermore, in
a weak scaling test we are unlikely to run out of work for all cores since the problem size is
increased at the same rate as the computational resources.
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Whether strong scaling or weak scaling is more important depends on the particular appli-
cation. In numerical relativity, it is hard to find situations which only require weak scaling.
While increasing the resolution seems like a weak scaling problem as it increases the problem
size, it also requires good strong scaling in numerical relativity. The reason for this is
that increasing the resolution also requires decreasing the size of the time step due to the
CFL condition (2.1). This means that more time steps are required to reach the end of the
simulation. Since time steps have to be done one after the other, doing more steps in the
same amount of time requires good strong scaling.

When performing scaling tests, it is important not to lose track of the main goal: making the
code run faster. Since it is often much easier to get code that runs slowly to scale well, we
must only test the scaling once we have ensured that we use the available resources efficiently.
For this reason, we investigate the impact of various parameters such as the maximum
box size, and we choose the optimal configuration for each core count. Furthermore, we
investigate the intra-node scaling by testing different numbers of MPI processes per node
and different numbers of threads per process. Using only one MPI process per node would
give the best strong scaling, but as we will see, the threading in GRCHOMBO is not good
enough yet for this to be the fastest configuration in most cases.

The scaling and performance tests in this section were performed on two of the largest and
newest supercomputers in the world: MareNostrum4 and Stampede2. MareNostrum4 at
the Barcelona Supercomputing Centre is comprised of 3456 nodes, each with two Xeon
Platinum 8160 “Skylake” processors (see Tab. 2.1), giving the system 165,888 cores in total.
The nodes we used all have 96GB of DRAM (dynamic random access memory) and are
connected using Intel’s Omni-Path fabric in a full fat-tree topology.

Stampede2 at the Texas Advanced Computing Centre hosts 4,200 Intel Xeon Phi 7250
“Knights Landing” processors (see Tab. 2.1) with a total core count of 285,600. Stampede2
also includes 1,736 Skylake nodes, but we did not use them in our tests. Each Knights
Landing node has 96GB of DRAM and 16GB of fast Multi-Channel DRAM, which can
be used as DRAM, L3 cache, or a hybrid between the two. In the tests presented in this
chapter, we use the processors in cache quadrant mode. The nodes are connected using
Intel’s Omni-Path network in fat-tree topology.

2.4.1 Results

As the main benchmark problem for our strong scaling test, we use a binary black hole
simulation. The black holes both have mass 0.5M, are separated by 6M in the x-direction
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initially, and have momenta ±0.1M in the y-direction. The size of the computational domain
is 192M. For the strong scaling test, we use six refinement levels with a refinement ratio
of 2. The coarsest level has 256 points in all directions, so that the coarsest resolution is
∆x = 0.75M and the finest is ∆x = 0.023M. As tagging criterion we use (2.4) with a threshold
of σχ = 0.03. We set the minimum box size to 8 and the maximum box size to 32. As
shown in the appendix, this is the best configuration. We take two complete time steps on the
coarsest level, including all subcycling steps on finer levels, and report the average time per
step. Averaging over more steps does not change the results noticeably so that two full steps
are sufficient.

The measurements include all necessary ghost communication and interpolation, and full
regridding and load balancing operations at every step of the coarsest three levels. However,
we have excluded the initial data calculation as it takes at most one minute and is only done
once in a simulation with a wall-clock time of several days. Furthermore, we have excluded
the writing of checkpoint files, as this is only done every few hours and does not take more
than a few minutes.

Fig. 2.4 shows the results on MareNostrum4 for three different numbers of MPI processes
per socket. The number of threads per process is fixed so that every core is always assigned
one thread. We found that this is the most efficient configuration with GRCHOMBO on
both Skylake and Knights Landing. The results demonstrate that GRCHOMBO has excellent
strong scaling until there are not enough boxes for all the MPI processes. For one process per
socket this happens at around 20,000 cores, so that we get useful speedup until about 10,000
cores. Using more processes per socket leads to worse strong scaling as it means that we run
out of boxes earlier. However, for low core counts where there are enough boxes to distribute
to all MPI processes, our MPI parallelism is more efficient than our threading within a box
so that is is best to use two to four processes per socket.

Aside from the number of MPI processes per node, an important parameter for the perfor-
mance of GRCHOMBO is the maximum box size. For low core counts, larger boxes are more
efficient since they have a better ratio of valid cells to ghosts cells and therefore incur less
communication cost and use less memory. At high core counts, enforcing a smaller box size
improves the scaling since there are more boxes to distribute among the MPI processes. This
is taken into account in Fig. 2.4: all runs were done with the optimal box size for the given
core count. Plots with strong scaling for different box sizes can be found in the appendix to
this chapter.

Since good strong scaling continues until we have more MPI processes than boxes, the
number of boxes GRCHOMBO can strong-scale to depends very much on the size of the
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Fig. 2.4 Strong scaling behaviour of GRCHOMBO for a binary black hole simulation on
Skylake processors at MareNostrum4 for three different numbers of MPI processes per socket.
The straight lines represent perfect strong scaling for each of the three configurations.

problem. We chose the binary black hole simulation outlined above as the main benchmark
problem since it is the standard test in the field. Furthermore, it has low enough memory
requirements to fit on a single Skylake processor so that we can study strong scaling starting
at one processor. However, many of the problems in this thesis, especially the simulations
of instabilities of very thin rings, can be much more expensive than the binary black hole
simulation we use for scaling tests. As a result, they can be strong-scaled to considerably
more cores. We show an example of this in the appendix to this chapter.

To test the weak scaling of GRCHOMBO, we use the same binary black hole configuration as
for the strong scaling test on 24 nodes as a starting point, but as we decrease and increase the
node count, we adjust the resolution to keep the number of cells per node fixed. We achieve
this by increasing the coarsest resolution and decreasing the refinement threshold σχ with
the cube root of the node count. This increases the resolution of the grid while keeping the
shape of refinement regions the same. For very small node counts, it is not possible to keep
the shape of refinement regions exactly the same due to the requirement to keep a buffer
between refinement boundaries. For this reason, we stop the weak scaling test at 3 nodes.
The results in Fig. 2.5 show near-perfect weak scaling in the whole regime we could test
(up to 19,200 cores): a 130-fold increase in the core count only leads to a 20% increase in
runtime. Furthermore, this small increase only starts to manifest itself above 10,000 cores.
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Fig. 2.5 Weak scaling behaviour of GRCHOMBO on Skylake processors at MareNostrum4
for two different numbers of MPI processes per socket.

2.4.2 Results on Knights Landing

Significant work was required to get GRCHOMBO to run efficiently on Intel Knights Landing.
As can be seen in Tab. 2.1, Knights Landing has a much lower clock frequency than the
other processors. In order to achieve a reasonable performance, we had to improve the
vectorisation and threading of GRCHOMBO considerably. However, this was not the only
difficulty. Many details of the code which made no difference whatsoever on other CPUs
such as Skylake had a significant impact on the performance of GRCHOMBO on Knights
Landing: branch mispredictions, divisions, memory allocations that are not aligned with
huge page boundaries, etc. Furthermore, disabling all internal checks in CHOMBO sped up
simulations by almost a factor of two.

Fig. 2.6 (left) shows the strong scaling results on Knights Landing processors at Stampede2
for three different numbers of MPI processes per node. The tests were done with the same
setup as in the previous section and each data point was obtained with the optimal box size for
the given number of cores. Fig. 2.6 (right) shows a performance comparison with Skylake in
a plot of runtime versus TDP (see section 2.1.1). The latter was obtained by multiplying the
TDP of a single processor with the number of processors that were used for the simulation.
This gives a crude way of comparing the performance per watt of GRCHOMBO on Knights
Landing and Skylake. The results shows that KNL achieves roughly the same performance
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Fig. 2.6 Left: Strong scaling behaviour of GRCHOMBO on Knights Landing processors at
Stampede2 for three different numbers of MPI processes per node. Right: Performance
comparison between GRCHOMBO on Knights Landing and Skylake. The wall-clock time
per step is plotted against the TDP (obtained by scaling the TDP of one processor by the
number of processors used). We use this as a crude way of comparing the performance per
watt.

per watt as Skylake up to approximately 32 KNL nodes (2,176 cores). For higher node
counts, it performs slightly worse than Skylake since it exhibits worse strong scaling.

2.4.3 Performance summary and outlook

In summary, we find that GRCHOMBO exhibits excellent strong scaling until there are not
enough boxes for all MPI processes. In the optimal configuration on Skylake, this happens
at a few thousand cores for a standard binary black hole merger (Fig. 2.4) and at around
20,000 cores for a simulation of a thin black ring (Fig. 2.8). Furthermore, GRCHOMBO has
excellent weak scaling up to at least 20,000 cores. Results on Knights Landing follow a
similar pattern with a similar performance per watt than on Skylake.

As the efficiency of a simulation depends mostly on the number of boxes per MPI process,
GRCHOMBO outputs the number of boxes per process at every time step, even on the lowest
verbosity setting. Users should ensure that this number always stays between 2 and 10 and
never becomes 0 for any MPI process. A number larger than 10 implies that GRCHOMBO is
still in a regime of very good strong scaling so that one can use more nodes to get to the results
faster without a significant loss of efficiency. Furthermore, the number of MPI processes
per socket should be increased for a more efficient use of the resources within a socket. A
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number smaller than 2 suggests that the simulation is inefficient and that, if possible, the
number of MPI processes per socket should be decreased. Failing that, the user can decrease
the number of nodes without a significant loss of speed. On Skylake and Knights Landing, a
minimum box size of 8 should be chosen. The maximum box size should be 16 if there are
fewer than 10 boxes per process, but it must be increased to 32 for more boxes to avoid a
significant performance degradation.

Let us now turn to recommendations for future optimisations in GRCHOMBO. Currently,
the runtime is completely dominated by CHOMBO library calls. This is not too surprising
given the amount of time we have invested in optimising the GRCHOMBO right hand side
calculation and the fact that the CHOMBO portions, such as the ghost cell interpolation,
are significantly harder to optimise. Thus, the only way to improve the performance of
GRCHOMBO is to optimise CHOMBO. We have already improved the threading of several
CHOMBO calls significantly to get to this stage and we are continuing with this work.

Currently, we thread either the z and y loops over cells (the x loop is used for vectorisation)
or the loop over evolution variables. The former leads to 64 chunks of work for a box size of
83, the latter to only 25. It is therefore not surprising that the scaling with OpenMP threads
tapers off completely at roughly 20 threads. This means that we have to use several MPI
processes per node, which in turn decreases the number of nodes we can strong-scale to
before running out of boxes. Thus, improving the threading of GRCHOMBO is one of the
main targets for optimisation. The obvious, albeit highly non-trivial, first step is to collapse
the loops over cells and evolution variables. In theory, this should be possible for all ghost
interpolation and for the derivative calculation in the right hand side.

2.5 Design of GRCHOMBO

In this section, we give a brief overview of the design of GRCHOMBO. This has changed
substantially between the publication of our code paper [5] and the public release of the code
in 2018. This redesign was driven partly by a need for better maintainability and easier reuse
of code between projects and partly by a desire for significant performance improvements.
In its current form, GRCHOMBO is implemented entirely in C++, making heavy use of
C++14 features. However, some parts of the CHOMBO library still use Fortran.

Fig. 2.7 shows a sketch of the most important classes in the core of GRCHOMBO. On top of
this, there are many classes relating to evolution and constraint equations, and data analysis,
which we will cover later. At the top of the hierarchy is GRAMR. It stores a list of pointers
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to all refinement levels and orchestrates a simulation with adaptive mesh refinement. In
particular, at the beginning of the simulation, GRAMR iterates through all levels and calls their
appropriate functions to initialise the grid and calculate the initial data. Thereafter, it calls
the advance functions of all levels in the appropriate order so that they evolve forwards in
time. At user-defined intervals, it asks levels to provide the set of tagged cells where the
resolution is not high enough and reshapes levels with higher resolution accordingly. This
process is called regridding. Furthermore, it creates checkpoint files at user-defined intervals
and requests all levels to write their data into these files. It is important to stress that GRAMR
only orchestrates the runs by calling appropriate functions on all levels. It has no information
about how these functions are implemented.

Apart from orchestrating the time-stepping, regridding, and checkpointing, GRAMR is involved
in all tasks that require information about the whole level hierarchy. Examples of this include
the horizon finder or the wave extraction, which have to be connected to GRAMR so that they
have access to the data on all levels.

The concept of a refinement level in GRCHOMBO is represented by the abstract class
GRAMRLevel, which defines all functions which are called by GRAMR during a run. Functions
that we expect all general relativity simulations to share, for example the regridding or check-
pointing, are implemented directly in GRAMRLevel but can be overridden when necessary.
Functions which differ from problem to problem, such as the initial data calculation, are pure
virtual and must be defined in a derived class. By default, GRAMRLevel takes time steps with
Runge-Kutta-4 using a pure virtual function as right hand side, whose implementation must
be provided by the user in a derived class. When writing a new application with GRCHOMBO,
the most important step is to create a new derived class from GRAMRLevel and implement
the necessary virtual functions. For example, in the binary black hole example that comes
with GRCHOMBO, this is done in the class BinaryBHLevel.

Within a level, the data is organised into many boxes, which are distributed among MPI
processes for parallelism. A box is represented by the CHOMBO class FArrayBox. The
class GRLevelData organises the layout of these boxes and provides a unified interface for
operations which should be carried out on all boxes. Finally, GRCHOMBO implements the
class template Cell which collects all the pointers that are necessary for being able to access
data at one grid cell in an FarrayBox.
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Fig. 2.7 Class structure of GRCHOMBO. A dashed frame indicates a pure virtual class.
GRAMR contains and organises a vector of GRAMRLevels. The latter store their data using the
class GRLevelData, which organises the data on a level into boxes that are represented by
the class FArrayBox. The Cell class can be used to access the data in a grid cell inside a
box.

2.5.1 Looping over cells

In numerical relativity, the most time-consuming operations all have to be repeated for all grid
cells: calculating the right hand side, enforcing Ãi j to be trace-free, calculating constraints,
etc. Since looping over all grid cells to perform a task is so common, it is important that this
loop is implemented efficiently. This is not easy if we want to use all available parallelism:
first we have to iterate over all boxes on the MPI rank, then we have to use OpenMP to thread
the loop over the z and y coordinates of the boxes. Finally, we have to break up the x-direction
into chunks of size given by the SIMD width on the architecture we plan to run the executable
on and loop over these chunks. Since this procedure is rather complex, we hide it from the
user in GRChombo by providing functions which loop through all cells of a level and perform
a user-specified task. This also allows us to tweak the way the loop is performed in the future,
without breaking any existing code and therefore makes GRCHOMBO significantly more
future-proof.

The task that a loop should carry out is specified using what we call a compute class, a
class that implements a function template compute<typename data_t>(Cell<data_t>
current_cell) or a function compute(Cell<double> current_cell).3 The reason
why this function can be templated is to allow vectorisation of the right hand side and will be

3The choice to name the function compute rather than simply operator() was taken for readability
reasons even if it means that we cannot pass lambda expressions as compute functions.



50 GRCHOMBO

discussed in detail in the next section. As an example, let us consider one of the simplest
tasks already implemented in GRCHOMBO: enforcing Ãi j to be trace-free. We first have to
implement a compute class that loads the current values from the numerical grid, removes
the trace from Ãi j, and stores the values back to the grid. To save memory, GRCHOMBO only
stores the upper diagonal part of symmetric tensors on the numerical grid. However, the
whole tensor is restored for convenience as we load the data from the current cell into the
compute class.

class TraceARemoval {
template <class data_t >
using Vars = ADMConformalVars :: VarsNoGauge <data_t >;

public:
template <typename data_t >
void compute(Cell <data_t > current_cell) const {

auto vars = current_cell.template load_vars <Vars >();

const auto h_UU = TensorAlgebra :: compute_inverse_sym(vars.h);
TensorAlgebra :: make_trace_free(vars.A, vars.h, h_UU);

current_cell.store_vars(vars);
}

}

As can be seen above, GRCHOMBO includes implementations of most of the standard tensor
manipulations. The above compute class can then be passed to one of GRCHOMBO’s loop
functions in the BoxLoops namespace to remove the trace of Ãi j for all cells on a level
(represented by a GRLevelData):

loop(TraceARemoval (), level_data , level_data , INCLUDE_GHOST_CELLS);

where the value INCLUDE_GHOST_CELLS signals to GRCHOMBO that the operation can also
be carried out for ghost cells as we do not need to calculate derivatives.

One potential problem with the above method is that it encourages the use of distinct loops
for several little tasks. From a computational point of view, it is much better to do all the
tasks at once in one loop. To address this problem, we provide functionality to pack up
compute classes and pass them to a loop at once. We then use template meta-programming
to iterate through all the compute classes and call their compute functions. For example, the
following line enforces Ãi j to be trace-free and ensures that the CCZ4 variables χ and α are
positive in the same loop.

loop(make_compute_pack(TraceARemoval (), PositiveChiAndAlpha ()),
a_soln , a_soln , INCLUDE_GHOST_CELLS);
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2.5.2 Vectorisation

Due to the increase in SIMD width in processors in recent years (c.f. Tab. 2.1), it has become
crucial to ensure that the code makes use of SIMD instructions wherever possible. This pro-
cess is called vectorisation as it involves converting scalar code to vector code which can then
utilise SIMD instructions to operate on the whole vector at once. Unfortunately, compilers
struggle to vectorise the calculation of the CCZ4 right hand side in GRCHOMBO automat-
ically due to its complexity and the large number of short nested loops. As a solution to
this, we vectorise the code manually by packing up several cells and then using so called
vector intrinsics to force the compiler to generate SIMD instructions. While this leads to
well-vectorised code, we must ensure that GRCHOMBO users do not have to worry about
vectorisation and vector intrinsics and that they can write and debug their code as usual.
To achieve this, we hide the SIMD implementation from the user inside a class template
simd<typename>. This section explains the usage and implementation of this class template.

As explained in the previous section, loops over cells in GRCHOMBO are done using a com-
pute class which specifies which task should be done for each cell by providing a function
called compute. The only step a user has to take in order to ensure that GRCHOMBO vec-
torises the loop over cells is to template this function so that it works for arbitrary data
types

template <class data_t >
void compute(Cell <data_t > current_cell) const {...}

As GRCHOMBO loops over cells, it will pack up cells in the x-direction wherever possible
and call the compute function with a data type called simd<double>. Inside a compute
class, the user can write code as usual as long as they ensure that they use the template type
everywhere. For example, they should write

data_t rhs_lapse = - 2 * lapse * (K - 2 * Theta);

instead of

double rhs_lapse = - 2 * lapse * (K - 2 * Theta);

GRCHOMBO implements all overloaded operators and functions which are necessary to
ensure that the user can write code as usual, including arithmetic operators and transcendental
functions, for various architectures. For example, on an architecture that supports AVX512
instructions, such as Knights Landing or Skylake, the multiplication of one simd<double>
variable by another is implemented as

simd& operator *=( const simd& a) {
m_value = _mm512_mul_pd(m_value , a.m_value);
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return *this;
}

Furthermore, to aid debugging, GRCHOMBO allows the user to output a variable of type
simd<typename> in the usual way. The only operations that become more involved are
comparisons and the conditional operator. For example, as explained in section 1.3.1, to
calculate the advection derivatives in CCZ4 one needs to take a stencil that is lopsided in the
direction in which the shift points. In GRCHOMBO, this is achieved by calculating both the
upwind and downwind derivative and using a mask to select which one should be used

auto shift_positive = simd_compare_gt(shift , 0.);
return simd_conditional(shift_positive , upwind , downwind);

The design outlined above makes it highly likely that every loop over grid cells will be
vectorised well. Should there be any instruction in a compute class that cannot be vectorised,
it leads to a compilation error. The disadvantage of this design is the introduction of a
template parameter to many of the functions in GRCHOMBO. While this may not seem like
a big problem, it has knock-on effects; for example, it makes it impossible to declare these
functions virtual.

2.5.3 Tensor algebra and expression templates

One property that all numerical relativity formalisms share is that they are written in terms
of tensors or tensor densities. In GRCHOMBO, these quantities are represented by the class
template Tensor<size_t Rank, typename T, size_t Size>, where T is the type of
tensor components. It would be very convenient to be able to use operations on tensors
directly rather than having to loop over components and perform the operations component-
wise. Unfortunately, in C++ this is not a trivial task at all. The reason is that with naive
operator overloading, combining several operations together results in many unnecessary
temporaries and repeated loops. For example, if A, ...,D are tensors, the code A = B + C +
D will most likely be equivalent to [150]

auto temp = B + C;
auto temp1 = temp + D;
A = temp1;

This implementation is very inefficient as it creates two unnecessary temporary tensors and
performs three consecutive loops over all components. Instead, we would like the code to
involve only one loop over all components in which the operation is performed component-
wise and no temporary tensor is created. This can be achieved by using expression templates
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[151, 150], a trick that allows us to delay evaluation until the full expression is known. The
full expression can then be evaluated component-wise without the need of temporary tensors.

In GRCHOMBO, we have a full implementation of expression templates for a tensor in
numerical relativity. However, there are several major disadvantages of this technique: it
requires heavily templated code that is hard to maintain, can lead to compilation errors that
are hard to interpret, and the performance relies heavily on how well the compiler optimises
the code. We are currently testing whether the simplifications it introduces outweigh the
disadvantages. In the meantime, the current version of GRCHOMBO forces users to write
expressions component-wise with explicit loops and provides macros to simplify the most
common loops over components.

2.6 Conclusion

In this chapter, we presented GRCHOMBO, a new open-source, multi-purpose general
relativity code. The GRCHOMBO code was first released in 2015 in Ref. [5] and was
made public in 2018. In the last three years, it was used in nine publications [3, 2, 5, 48–
53]. GRCHOMBO includes BSSN, CCZ4, and GHCs and is designed to be as flexible as
possible so that it can be used for new applications of numerical relativity. Most importantly,
GRCHOMBO provides fully adaptive mesh refinement which can increase the resolution
automatically in regions of arbitrary shape and topology. This has been absolutely essential
for simulations of black hole instabilities in higher dimensions, which often lead to the
formation of new length scales in a turbulent cascade in regions that are not known a-priori
and that have very exotic shapes and sometimes toroidal topology.

Despite its power, adaptive mesh refinement has to be treated with care. Interpolation at
mesh boundaries can introduce significant errors, especially when refinement regions have
very irregular shapes or the algorithm refines and unrefines very often. In these cases, it may
be necessary to increase the dissipation coefficient, the damping parameters, or the size of
refinement regions and the buffer between them.

We presented the latest performance characteristics and have demonstrated that even for a
relatively cheap binary black hole simulation, GRCHOMBO runs efficiently on the latest Intel
Xeon and Xeon Phi processors. It exhibits very good strongly scaling to several thousand
cores for a standard binary black hole merger and has near-perfect weak scaling up to at least
20,000 cores. This is also the reason for why more expensive simulations, such as those of
black rings, exhibit good strong scaling up to 20,000 cores. These results are substantially
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better than those presented in our first code paper Ref. [5] and are certainly going to be
superseded in the next few years as we improve the performance of GRCHOMBO further.

2.7 Appendix

2.7.1 Strong scaling for black rings

In the main text, we presented GRCHOMBO’s scaling for a standard benchmark problem, a
binary black hole merger. To investigate the strong scaling for a typical simulation in this
thesis, let us look at a black ring with thickness parameter ν = 0.15 and radius R = 1. In a
production setting, this simulation requires 11 levels to resolve the ring sufficiently. This
makes it unfeasible to take a full step on the coarsest level in a scaling test. However, since
the coarsest levels do not contribute to the overall run time (they are evolved much less
often due to the CFL condition), we simply measure the time of two full steps of level 5.
This level has a grid spacing of ∆x = 0.125R so that the finest level has a grid spacing of
approximately ∆x = 0.002R. We use the tagging criterion (2.4) with threshold σχ = 0.3. As
above, we include all ghost communication and regridding in the timings. While thin rings
require higher resolution than fat rings, we carry out the test immediately after the initial
data calculation where the instability has not created new scales that need to be resolved
yet. Thus, this ring setup should give a fairly representative estimate of how expensive the
simulations in chapter 4 are.

Fig. 2.8 shows the results. For this more expensive setup, useful strong scaling continues up
to 20,000 cores and this core count is still so low that using four MPI processes per socket is
best.

2.7.2 Strong scaling with different box sizes

In this section, we present scaling tests for two values of the maximum box size. The
minimum box size has little to no impact on the runtime as long as it is selected between 4
and 16. The results in Fig. 2.9 show that the maximum box size has a significant impact:
for low core counts, a large value such as 32 is most efficient. For high core counts, a small
value such as 16 improves the strong scaling of GRCHOMBO since there are more boxes to
be distributed among the MPI processes.
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Fig. 2.8 Strong scaling behaviour of a black ring simulation with GRCHOMBO on Skylake
processors at MareNostrum4.
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Fig. 2.9 Strong scaling behaviour on MareNostrum4 for several different maximum box
sizes. With maximum box size 16, a single dual-socket Skylake node does not have enough
memory to run the test.





Chapter 3

Numerical methods for higher
dimensions

This chapter presents advances and adjustments we had to make to current numerical relativity
methods in order to simulate higher dimensional spacetimes stably and efficiently. It includes
gauge conditions that are optimised for higher dimensional black holes, a new singularity
treatment, and a thorough analysis of how the modified Cartoon method, which was originally
proposed in Ref. [152] for GHCs in axisymmetry, is best applied to CCZ4 with general
SO(N) symmetry.

Sections 3.2 and 3.3 are based on the co-authored publications [2, 3] and their supplemental
material. These two sections are my own work. P. Figueras and S. Tunyasuvunakool provided
helpful comments and G. Wells pointed out the literature on shock capturing in fluid dynamics,
which motivated the diffusion term. Section 3.4 is based on the co-authored publication Ref.
[153]. The analysis of SO(2) is my own work; for SO(N > 2), I performed an independent
verification of the calculations for BSSN and obtained the necessary additional terms for
CCZ4. I also performed an independent calculation of the regularisation terms (Appendix B).
The latter are not unique and my results differ from those in Ref. [153].

3.1 Introduction

Most of the currently available numerical relativity techniques were originally devised for
astrophysical settings. Simulations beyond astrophysics pose completely new challenges.
They are often plagued by numerical instabilities and problems with the gauge conditions
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[154, 155, 26, 153], which render the traditional methods at least partially unsuitable. Simu-
lations in higher dimensions are particularly challenging. One reason is that they are very
computationally expensive, even on the latest supercomputers. Currently, the only way to
make them feasible is to use dimensional reduction techniques.

In this chapter, we summarise the three most important steps we had to take to make the
simulations presented in chapters 4 and 5 possible. In section 3.2, we present adapted gauge
conditions, which make it possible to simulate rapidly rotating black holes in higher dimen-
sions. In section 3.3, we present a new singularity treatment for BSSN/CCZ4, which was
necessary to stabilise the numerical evolution of higher dimensional black holes with punc-
ture gauge. Finally, we present a detailed analysis of our dimensional reduction techniques,
which are based on Ref. [152].

3.2 Gauge conditions

In this section, we describe modifications to the standard gauge evolution equations that were
necessary for simulating rapidly rotating black holes in higher dimensions. The problem is
that in general the initial data for rapidly rotating black holes is far from conformally flat,
even in quasi-isotropic coordinates. As a result, the initial values of the conformal connection
functions Γ̂i are very large inside the horizon. In its standard form, the Gamma-Driver (1.31)
freezes these initial values: it causes the gauge to adapt such that the conformal connection
functions remain at their large initial values, even when the black hole has moved elsewhere.
For example, for black rings we found that contours of the conformal connection functions
kept their initial ring shape, even when the black hole collapses to a black hole of spherical
topology. In theory, this is only a gauge effect and does not affect the physical results.
In practice, forcing a region that is no longer covered by the horizon to retain very large
conformal connection functions requires very extreme values in the other evolution variables.
This in turn reduces the numerical accuracy and leads to significant constraint violations.

The freezing behaviour of the Gamma-Driver (1.31) can be understood by considering it in
its integrated form, making sure to include all integration constants

∂tβ
i −
(
∂tβ

i)
t=0 = F(Γ̂i − Γ̂

i
t=0)−η(β i −β

i
t=0). (3.1)

The gauge parameters η and F are fixed by the requirement that the Gamma-Driver counters
slice stretching effectively. With the required choice of parameters, the time scale over which
the shift settles down to an approximately steady state is much faster than the time scale of
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the evolution. If Γ̂i
t=0 is very large compared to

(
∂tβ

i)
t=0 and β i

t=0 inside the black hole,
this steady state requires that Γ̂i remains close to its initial value. One solution would be to
cancel the offending integration constant Γ̂i

t=0 using the initial value for β i or ∂tβ
i. However,

this causes unacceptably fast gauge adjustment at early times.

Instead, we evolve the shift using

∂tβ
i = F(Γ̂i − f (t,xi)Γ̂i

t=0)−η(β i −β
i
t=0)+β

k
∂kβ

i, (3.2)

where f (t,xi) is an arbitrary function that is equal to one initially and then decays to zero.
This gently unfreezes the conformal connection functions and allows them to tend to a value
close to zero when the Gamma-Driver reaches its steady state. We typically choose f (t,xi)

to be

f (t,xi) = exp
(
−φ(xi) t2) , (3.3)

with a space-dependent function φ that controls the speed of gauge adjustment. For example,
for a black hole of spherical topology, a good choice would be

φ(xi) = δ1
r2

H
r2 +δ2, (3.4)

where r is the coordinate radius, rH is the location of the horizon, and δ1 and δ2 are positive
parameters. With this choice of φ(xi), the gauge adjustment outside the horizon is slower
than inside, where the initial values of the conformal connection functions are larger and
constraint violations resulting from rapid gauge adjustment cannot affect the exterior of the
black hole. The modified Gamma-Driver (3.2) steers the gauge towards a quasi-stationary
state in which Γ̂i = 0. In our simulations, we have found this to be a very stable condition.

Unlike the standard Gamma-Driver, the CCZ4 version of the standard 1+ log slicing condi-
tion (1.30) also works well for higher dimensions and rapidly rotating black holes. We found
the most stable results with a slightly reduced coefficient and with advection term

∂tα =−ηα (K −2Θ)+β
i
∂iα, (3.5)

where ηα is a parameter which we typically choose between 1.3 and 2.0.

Since we write the initial data in isotropic-type coordinates for most of our simulations, we
choose a pre-collapsed lapse (1.36). For rapidly rotating black holes, we also found it helpful
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to modify the initial shift so that it has a similar profile by starting the simulation with

α0 = χ
D−3

2 and β
i
0 = χβ

i
an., (3.6)

where β i
an. is the analytic shift. An unintended but unavoidable side effect of not using

analytic gauge initially is that the coordinates no longer co-rotate with the black hole as
would usually be the case when using analytic initial conditions for stationary black holes.
As a result, non-axisymetric evolution variables such as off-diagonal metric components
rotate on the numerical grid. The choice (3.6) keeps this rotation to a minimum so that it
does not cause any problems as long as the Courant factor is small enough.

3.3 Singularity diffusion

Numerical relativity techniques turn out to be considerably less stable in non-standard settings
such as higher dimensions, at high spins, or at ultra-relativistic speeds. For example, to
improve the numerical stability of simulations of high-energy collisions in 4D, Ref. [156]
had to lower the Courant factor substantially. In higher dimensions, gauge parameters had to
be finely tuned and a very low Courant factor had to be chosen in Refs. [154, 155, 153], and
excision had to be used in conjunction with the standard puncture method in Ref. [26]. There
are several reasons for this: firstly, rapidly spinning and highly boosted black holes in higher
dimensions often exhibit very steep gradients inside the horizon, which arise because the
metric is far from conformally flat so that the BSSN/CCZ4 variables are not as well behaved
as they are for astrophysical black holes with moderate boost and spin parameters.

Secondly, some higher dimensional black holes, such as black strings and black rings, have
an extended coordinate singularity when written in isotropic-type coordinates, in contrast
to spherical black holes for which this singularity is point-like. This makes it impossible to
absorb the coordinate singularity in the conformal factor χ and makes numerical instabilities
much more likely. A similar problem can be present even for black holes which, written in
isotropic-type coordinates, only exhibit a point-like coordinate singularity, such as Myers-
Perry black holes: if the horizon is highly flattened by the rotation, the region of high
constraint violation inside the black hole is stretched out significantly in the rotational plane,
making it harder to treat it in a stable fashion.

Thirdly, in higher dimensions or with high boost velocities or high spins, black holes can be
defined by several very different length scales. An example of this are black rings, whose
thickness can be much smaller than the radius. This makes it harder to find gauge parameters
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that stabilise the interior of the black hole while keeping the overall shape of the horizon
intact.

What all the problems above have in common is that they lead to the formation of numerical
instabilities inside the black hole horizon: high frequency modes which grow so rapidly that
they quickly cause floating point calculations to overflow. While physically no information
can escape the horizon, floating point overflows quickly spread over the entire domain due to
the finite difference stencils. A solution to this problem does not have to eliminate errors
inside the horizon, it only has to stabilise the evolution sufficiently to prevent floating point
overflow and to keep the causal structure intact.

An obvious solution would be to excise the regions inside the black hole which are expected
to cause trouble. However, excision is not easy, especially when the black hole horizon takes
on a very complicated shape. Furthermore, it requires finding the apparent horizon very
frequently, which can be expensive and unreliable in cases where the apparent horizon finder
has convergence problems. In this section, we outline a simple new method for dealing with
the stability problems arising in non-astrophysical applications of numerical relativity. The
idea is to add diffusion terms to Einstein’s equations that are triggered automatically deep
inside the horizon and only affect high frequency features.

We found that the only problematic quantity is the conformal metric γ̃i j as it appears with
second derivatives in the equations of motion. While steep gradients arise in the extrinsic
curvature and evolved conformal connection functions, they never caused problems in our
simulations. Therefore, inspired by artificial viscosity terms [157–159]1 in computational
fluid dynamics, we add a term of the form

∆x2g(χ, |∂ γ̃i j|)(∇2
γ̃i j)

TF (3.7)

to the evolution equation of γ̃i j (1.19), where ∆x is the grid spacing and g(χ, |∂ γ̃i j|) is a
sensing function which ensures that the diffusion term is only added sufficiently inside the
horizon and only when the gradients in γ̃i j become large. This can easily be checked a
posteriori with the apparent horizon data. We enforce the diffusion term to be trace-free to
ensure that the constraint det γ̃ = 1 remains satisfied.

1We are very grateful to Garth Wells for suggesting this to us.
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The diffusion term (3.7) causes highly localised features to spread out and to decay in
amplitude. For a Fourier mode of wavelength λ , the decay time is given approximately by

τ ≈ 1
8π g(χ, |∂ γ̃i j|)

(
λ

∆x

)2

. (3.8)

This explains why the inclusion of a diffusion term of the form (3.7) mostly affects small
wavelength features whilst keeping the physical results unchanged: due to the dependence of
the decay time on (λ/∆x)2, it mostly affects small length-scale features. Furthermore, due to
the inclusion of ∆x2 in (3.7), the decay time automatically adapts when the grid resolution is
changed. With a correctly calibrated sensing function g, it is therefore possible to only diffuse
modes that could not be resolved by the grid. This is particularly nice with adaptive mesh
refinement: the resolution is increased wherever it is physically necessary, thus preventing the
diffusion term from being triggered. However, it is unfeasible to keep adding new refinement
levels only to stabilise the evolution inside the black hole. Once the maximum number of
refinement levels has been reached and the resolution is no longer increased, the diffusion
term becomes important, but only affects modes that could not have been resolved accurately
anyway.

One cause for concern is that the diffusion equation requires a stricter Courant condition than
(2.1). For explicit time stepping schemes, a diffusion equation of the form ∂tQ = cD∂ 2

x Q
leads to the CFL condition

∆t < µCFL
∆x2

cD
, (3.9)

where µCFL is a Courant factor that depends on the integration scheme. However, for our
diffusion term (3.7) cD ∝ ∆x2, so that the Courant condition does not have worse scaling with
∆x than (2.1).

While the inclusion of the diffusion term was inspired by shock capturing techniques in fluid
dynamics, this analogy should not be taken too far. In particular, in fluid dynamics the aim of
the diffusion term is to smear out shocks so that their properties can be accurately captured.
In numerical relativity, we only want to smear out features, but have no hope of capturing
any aspect of the singularity inside the black hole accurately.

The choice of the trigger function g(χ, |∂ γ̃i j|) has to strike a fine balance between ensuring
that the equations do not get modified outside the horizon and that the diffusion term is not
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triggered too late to save the simulation. In our simulations, we use

g(χ, |∂ γ̃i j|) = cL H(χc −χ)

√
2

D(D−1) ∑
i, j,k

(∂kγ̃i j)2, (3.10)

where H is the Heaviside step function, cL is an arbitrary coefficient which we typically
chose between 0.01 and 0.2, and χc is a critical value for the conformal factor above which
diffusion is switched off completely. The term under the square root makes sure that the
diffusion term is only large in regions with large gradients. Since χ is approximately constant
on the horizon, the Heaviside step function in (3.10) can be used to ensure that the diffusion
term is switched off outside the horizon. We typically choose χc to be 10 to 100 times smaller
than the approximate value of χ on the horizon. This cut-off is not strictly necessary for
accurate simulations since the diffusion term only affects high frequency modes in regions of
strong gradients. However, it makes it easier to guarantee that the results are not affected
by ensuring that the diffusion term is only triggered deep down inside the horizon. We will
present specific tests for this for black rings in chapter 4.

If the initial data already contain very steep gradients or very large values, the diffusion
term might not be enough to stabilise the evolution. Therefore, a natural starting point for
evolution with diffusion terms is turduckened initial data (1.38). For our purposes, 0th order
turduckening in a very small region around the coordinate singularity is enough to lead to
stable evolution with diffusion.

3.4 Modified Cartoon Method

3.4.1 Introduction

One of the key challenges of numerical relativity is that simulations are very expensive. This
is not going to change in the foreseeable future since the complexity of our simulations
increases at least as fast the computational power at our disposal. One of the ways in which
simulations can be made feasible is by using symmetries to reduce the dimensionality of the
problem. There are several reasons why simulations are more expensive for a higher number
of dimensions:

Number of grid points. For an explicit time stepping scheme and a simple grid setup
with N points in every direction, the number of grid points scales as ND−1 = Nd and the
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computational cost of a simulation as ND.2 For adaptive mesh codes, it is more complicated
to estimate how the computational cost changes as D is increased. A good estimate can be
obtained by only considering the finest level since this level requires the most time steps.
Typically, the finest level has N ≈ 100, so that increasing the number of dimensions by 1
increases the computational cost roughly by a factor of 100.

Tensor components. As the number of dimensions is increased, tensors have more compo-
nents. This increases the number of variables that have to be evolved: in D = 4, CCZ4 with
a second order Gamma-Driver shift condition requires 25 evolution variables; in D = 8, it
requires 100. Furthermore, the calculation of the CCZ4 right hand side involves numerous
loops over all tensor components. As the length of these loops is increased, the calculation
of the right hand side becomes more and more costly.

Strong scaling. A rather subtle way in which a higher number of dimensions can affect
the performance is due to worse strong scaling. GRCHOMBO, like most finite difference
numerical relativity codes, achieves most of its parallelism by splitting up the domain into
boxes and distributing them among MPI processes. The optimal run time one can achieve
with this method is the time it takes one MPI process to operate on one box. Given a minimum
box size nmin this time is proportional to nd

min. To make matters worse, nmin increases as the
number of dimensions is increased, since the ratio of ghost cells to valid cells gets worse.3

Thus, the minimum runtime one can achieve with box parallelism increases faster than
exponentially with D. This problem can be alleviated by using multiple layers of parallelism,
but it cannot be completely eliminated and explains why simulating higher dimensional
spacetimes is not just a matter of using a bigger supercomputer.

Due to the substantial saving in computational cost that comes with a decrease of the
dimensionality of the problem, dimensional reduction techniques are crucial in numerical
relativity. In D = 4, they allow more accurate simulations of phenomena that require very
high resolution and they make it possible to perform parameter exploration and code tests
much faster than would otherwise be possible. For example, to prepare a binary black
hole inspiral simulation, one might first run tests of head-on collisions in axisymmetry at
significantly reduced cost. In D > 4, dimensional reduction techniques are indispensable, as
these simulations are currently unfeasible in full generality.

There are several ways in which symmetries can be used to reduce the dimensionality of
the simulations. Most straight-forwardly, one can choose a coordinate system that makes

2The reason for the extra factor of N in the computational cost is that due to the Courant condition the size
of the time step scales with the resolution, so that O(N) steps are required to reach the end of the simulation.

3For example, for a fourth-order accurate code, which requires three layers of ghost cells, a box size of
n = 8 leads to a ratio of ghost cells to valid cells of 2.1 in d = 2 and 4.4 in d = 3.
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the symmetries manifest and leads to a simplified line element. For example, for spherical
symmetry, the line element in spherical polar coordinates can be reduced to two functions of
r and t

ds2 =−α(r, t)dt2 +a(r, t)2dr2 + r2dΩ
2. (3.11)

Einstein’s equations yield evolution equations for α(r, t) and a(r, t). This approach works
well for reduction to a 1+1 evolution system and has been widely used, for example in Ref.
[40] to study critical collapse of a scalar field. The disadvantage is that the coordinates which
make the symmetries manifest often exhibit a coordinate singularity, which makes numerical
evolution more challenging. Furthermore, it becomes impractical beyond 1+1 simulations,
since every direction has to be treated differently and stable evolution is usually not possible
with a gauge that is fixed a-priori.

Another class of symmetry reduction methods is based on the Geroch decomposition [160]
which uses the symmetries to reduce the D dimensional vacuum Einstein equations to
Einstein’s equations in a lower dimensional space with auxiliary matter fields. This approach
has been widely used and studied in various symmetry settings [161]. It is comparatively
straight-forward to implement since existing numerical relativity codes can easily be adapted
to include the auxiliary matter terms.

The cartoon method [162] is the only approach that requires no modification of the equations
of motion. Instead, the computational domain is extended by ghost cells, which are filled
using the symmetry condition. Let us illustrate this process for the case of axisymmetry in
the x− y plane in D = 4. Due to the symmetry, it is sufficient to solve the equations in the
x− z plane. To calculate y-derivatives, we add a thin layer of ghost cells in the y-direction,
just enough to be able to calculate derivatives at y = 0. At every step, these ghost cells are
filled by rotating values from the y = 0 plane, using the appropriate rotation matrices for
tensorial quantities. This requires an interpolation step since grid points in the x− z plane
do not have the same cylindrical radius as the ghost points. The advantage of this method is
that it allows symmetry reduction in Cartesian coordinates without any modifications to the
evolution equations. The disadvantage is that the interpolation step can cause problems with
the stability and accuracy of the code.

In our work, we use the modified cartoon method [152, 130, 4]. It is similar to the Cartoon
method, but instead of adding ghost cells for calculating derivatives in the reduced directions,
these derivatives are calculated analytically from the condition that the Lie derivative in the
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symmetry directions vanishes

Lξâ
T = 0, (3.12)

where ξâ are the Killing vectors that generate the symmetry group and T is any tensor obeying
the symmetry. This has the significant advantage that no interpolation and no additional
ghost cells are required.

3.4.2 Modified cartoon method for SO(2) symmetry

There is a subtle difference between SO(2) symmetry and SO(N) symmetry with N > 2,
which completely changes the way the modified Cartoon method should be implemented.
The symmetry condition (3.12) implies that vector fields, V , must commute with all Killing
vectors

[ξ â,V ] = 0 ∀â ∈ {1, . . . ,N(N −1)/2} . (3.13)

For N = 2, there is only one independent Killing vector field: the one associated with the
angular direction, ∂φ . In this case, the symmetry condition (3.13) can be satisfied by a vector
with non-zero φ -component. For N > 2, the situation is very different: as we will see in
section 3.4.3, it is impossible to find vector fields V which commute with all Killing vectors
and have non-trivial components in the symmetry directions. Fig. 3.1 shows a pictorial
argument for why introducing another symmetry direction changes the setup so dramatically.
Due to the substantial difference in how SO(2) symmetry and SO(N > 2) symmetry should
be implemented, we consider them separately in the next two sections, starting with SO(2).

Let us choose Cartesian coordinates (t,xî,z,w) such that the SO(2) symmetry acts in the
z−w plane. In this section, indices I,J, · · · ∈ {1, . . . ,D−2} run over all the simulated spatial
dimensions, indices î, ĵ, · · · ∈ {1, . . . ,D−3} run over all simulated spatial dimensions except
z, and indices i, j, · · · ∈ {1, . . . ,D−1} run over all spatial dimensions as usual. Furthermore,
let φ be the polar angle in the z−w plane.

The SO(2) symmetry is generated by only one Killing vector

∂φ = z∂w −w∂z . (3.14)
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Fig. 3.1 Pictorial comparison between SO(2) (left) and SO(3) (right) symmetry. The former
allows a vector field that is parallel to ∂φ (red arrows). For the latter, we get incompatible
requirements: the vector field must remain unchanged around both lines of constant latitude
(blue arrows) and constant longitude (orange arrows).

Thus, for a scalar Q, the condition (3.12) implies

∂wQ =
w
z

∂zQ. (3.15)

From which we can deduce the necessary w-derivatives in the w = 0 hyperplane

∂wQ = 0 and ∂i∂wQ = δ
w
i

∂zQ
z

. (3.16)

For vectors, V , the condition (3.12) reduces to [∂φ ,V ] = 0. In Cartesian coordinates this
implies

z∂wV i = w∂zV i +V z
δ

i
w −V w

δ
i
z. (3.17)

This allows us to calculate the first derivatives with respect to w in the w = 0 hyperplane,

∂wV i =
1
z

(
V z

δ
i
w −V w

δ
i
z
)
, (3.18)

and the second derivatives

∂ j∂wV i =
1
z

(
δ

w
j ∂zV i −δ

z
j ∂wV i +δ

i
w∂ jV z −δ

i
z∂ jV w

)
. (3.19)

For rank-2 tensors, (3.12) implies

∂wTi j =
1
z

(
w∂zTi j +Tiwδ

z
j −Tizδ

w
j +Tw jδ

z
i −Tz jδ

w
i

)
. (3.20)
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Thus, first and second derivatives involving w in the w = 0 hyperplane become

∂wTi j =
1
z

(
Tiwδ

z
j −Tizδ

w
j +Tw jδ

z
i −Tz jδ

w
i

)
(3.21)

and

∂k∂wTi j =
1
z

(
δ

w
k ∂zTi j −δ

z
k ∂wTi j +∂kTiwδ

z
j −∂kTizδ

w
j +∂kTw jδ

z
i −∂kTz jδ

w
i

)
. (3.22)

While it is of course possible to eliminate the ∂w derivatives in (3.19) and (3.22) using (3.18)
and (3.21), this is not necessary and only makes the code more complicated: one can simply
calculate ∂wV i and ∂wTi j first and then use these values in (3.19) and (3.22).

The modified cartoon method with SO(2) symmetry allows us to model a D-dimensional
spacetime on a D−2 dimensional spatial grid corresponding to the w = 0 hyperplane. On
this grid, we store all variables including all tensor components involving w indices such
as V w. As we will see in the next section, this is where the special case of SO(2) differs
substantially from SO(N) with N > 2. In order to evolve the system by one timestep, we
need to compute derivatives with respect to all coordinates. Derivatives with respect to xI can
be calculated on the grid using standard methods, e.g. finite difference stencils. Derivatives
with respect to w, on the other hand, can be calculated using the expressions derived from
(3.12). For example, for a vector in D = 5 with SO(2) symmetry in the w− z plane, the
procedure for finding first derivatives is

V i
, j =


0

calculate on 0
the grid −V w/z

V z/z

 . (3.23)

Once all derivatives have been calculated, we can use the standard D-dimensional CCZ4
equations without the need for any extra terms. Thus, an SO(2) symmetry reduction can
be applied very easily to an existing numerical relativity code. It can even be combined
with other symmetry reduction methods. For example, in chapter 5 we consider rapidly
rotating black holes in 6D. To make the simulations feasible, we enforce an SO(3) symmetry
in the transverse direction and combine it with an SO(2) symmetry in the rotational plane.
This reduces the equations to a system of PDEs in 2+1 dimensions, leading to a significant
reduction in computational cost and allowing us to study the instabilities of the black hole in
great detail.
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3.4.3 Modified cartoon method for SO(N > 2) symmetry

Let us choose Cartesian coordinates (t,xî,z,w1, . . . ,wN−1) similar to the ones used in the
previous section with the only difference that now the SO(N) symmetry acts in a space with
several coordinates (z,w1, . . . ,wN−1). Indices I,J, · · · ∈ {1, . . . ,D−N} run over all the simu-
lated spatial dimensions, indices î, ĵ, · · · ∈ {1, . . . ,D−N −1} run over all simulated spatial
dimensions except z, and indices i, j, · · · ∈ {1, . . . ,D−1} run over all spatial dimensions
as usual. Furthermore, let us define indices A,B, · · · ∈ D−N, . . . ,D−1, which run over all
the coordinates w1, . . . ,wN−1. The SO(N) symmetry allows us to restrict our simulation to
the semi-infinite subspace defined by z > 0 and wA = 0 for all A: given information in this
subspace, we can reconstruct the whole space using appropriate rotations.

As mentioned above, SO(N > 2) symmetry requires some tensor components to vanish.
Algebraically, we can deduce these restrictions from the symmetry condition Lξâ

T = 0 as
follows: we pick two arbitrary directions A and B with coordinates wA and wB. The SO(N)

symmetry implies that there is a rotational symmetry in the (wA,wB) plane with Killing
vector ξAB = wA∂B −wB∂A. For vectors this requires that

LξAB
V A = wA

∂BV A −wB
∂AV A +V B = 0. (3.24)

We restrict our simulation to the subspace defined by wA = 0 for all A, where the above
condition simply becomes

V A = 0 ∀A. (3.25)

Proceeding similarly for components of rank-2 tensors T , we find that in the wA = 0 subspace

LξAB
TIA = TIB = 0, (3.26)

LξAB
TAB = TBB −TAA = 0, (3.27)

LξAB
TBB = TAB = 0. (3.28)

Thus, for vectors, none of the V A components have to be simulated, while for tensors only
one quantity is required, which we call Tww. For the CCZ4 evolution system, only two
additional evolution variables are necessary, γ̃ww and Ãww. For large N, this allows substantial
savings in computational cost and memory. Unfortunately, trying to capitalise on these
savings comes at a price: it means that we cannot just reuse non-dimensionally reduced code
by filling in missing derivatives as we did for the SO(2) case. Instead, we have to evalute the
extra symmetry terms by hand and add them to the CCZ4 right hand side. For example, the
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term T i jTi j has to be rewritten in terms of evolution variables as T IJTIJ +(N −1)T 2
ww/γ2

ww,
where we have used that γww = 1/γww since (3.26) and (3.28) imply that γi j is diagonal in
the cartoon components.

In the remainder of this section, we will present the cartoon terms for the CCZ4 system. To
do this, we first have to express derivatives with respect to wA. The method is similar to the
previous section but we now have to take into account that there are several cartoon directions.
We present the calculation of the most complicated cartoon expressions, derivatives of TiC,
as an example below and list all other necessary cartoon derivatives in the appendix to this
chapter.

Symmetry in the (z,wA) plane implies

LξzA
TIC = z∂ATIC −wA

∂zTIC −TIzδAC +TACδzI = 0, (3.29)

LξzA
TCD = z∂ATCD −wA

∂zTCD +TzDδAC −TCzδAD = 0. (3.30)

As an immediate consequence we can deduce that in the subspace wA = 0 ∀A

∂ATIC =
1
z
(TIzδAC −TACδzI) = δAC

1
z
(TIz −TwwδIz) , (3.31)

∂ATCD =
1
z
(TzDδAC −TCzδAD) = 0, (3.32)

where we have used equations (3.26) and (3.28) for the last equalities. Taking a partial
derivative of (3.29) and (3.30) with respect to wB and substituting in the above expression
for ∂ATIC and ∂ATCD, we find that in the subspace wA = 0 ∀A

∂A∂BTIC = 0, (3.33)

∂A∂BTCD = (δACδBD +δADδBC)
Tzz −Tww

z2 +δABδCD
∂zTww

z
. (3.34)

We proceed similarly for all other cartoon derivatives. The results are summarised in
Appendix A to this chapter. With a significant amount of algebra, we can use these Cartoon
expressions for derivatives to derive the CCZ4 equations with SO(N > 2) symmetry reduction.
They are given in Box 3. To simplify the expressions, we have defined n = N − 1 and
d = D−1. As explained in section 1.3.1, the terms DiZ j are never evaluated independently,
but are used in the Ricci tensor to cancel derivatives of Γ̃ in favour of Γ̂i.
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Box 3: CCZ4 with SO(N) symmetry reduction for N > 2.

∂t χ =
2χ

d

(
αK −∂Iβ

I −n
β z

z

)
+β

I
∂Iχ , (3.35)

∂t γ̃IJ =−2αÃIJ +2γ̃L(I∂J)β
L − 2

d
γ̃IJ

(
∂Lβ

L +n
β z

z

)
+β

L
∂Lγ̃IJ , (3.36)

∂t γ̃ww =−2αÃww − 2
d

γ̃ww

(
∂Lβ

L − (d −n)
β z

z

)
+β

L
∂Lγ̃ww , (3.37)

∂t ÃIJ = χ
[
−DIDJα +α

(
RIJ +2D(IZJ)−8παSIJ

)]TF
+αÃIJ(K −2Θ)

−2αÃILÃL
J +2ÃK(I∂J)β

K − 2
d

ÃIJ

(
∂Kβ

K +n
β z

z

)
+β

L
∂LÃIJ, (3.38)

∂t Ãww = χ [−DwDwα +α ([R+2DZ]ww −8παSww)]
TF +αÃww(K −2Θ)

−2αÃ2
wwγ̃

ww − 2
d

ÃIJ

(
∂Kβ

K − (d −n)
β z

z

)
+β

L
∂LÃIJ, (3.39)

∂tΘ = 1
2α

(
Tr
[
Ri j +2DiZ j

]
− ÃIJÃIJ −nÃ2

wwγ̃
ww2 +

d −1
d

K2 −2ΘK
)
−ZI

∂Iα

+β
L
∂LΘ− 1

2ακ1 (D+(d −1)κ2)Θ−8παρ , (3.40)

∂tK = 2(∂tΘ−β
L
∂LΘ)+α

(
ÃIJÃIJ +nÃ2

wwγ̃
ww2 +

1
d

K2
)
−D IDIα

−nγ̃
wwDwDwα +κ1α(1−κ2)Θ+2ZI

∂Iα +β
L
∂LK +4πα(S+ρ), (3.41)

∂t Γ̂
I =−2ÃIJ

∂Jα +2α

(
Γ̃

I
JLÃJL +n Γ̃

I
ww Ãwwγ̃

ww2 − d −1
d

γ̃
IJ

∂JK − d
2

ÃIJ ∂Jχ

χ

)
+

d −2
d

(
γ̃

IJ
∂J∂Lβ

L +nγ̃
IL ∂Lβ z

z
−nγ̃

Iz β z

z2

)
+

2
d

Γ̃
I
(

∂Lβ
L +n

β z

z

)
− Γ̃

L
∂Lβ

I +2κ3

(
2
d

γ̃
IJZJ

[
∂Lβ

L +n
β z

z

]
− γ̃

JLZJ∂Lβ
I
)

+ γ̃
JL

∂J∂Lβ
I +nγ̃

ww
(

∂zβ
I

z
−δ

I
z

β z

z2

)
+β

L
∂LΓ̂

I

+2γ̃
IJ
(

α∂JΘ−Θ∂Jα − 2
d

αKZJ

)
−2ακ1γ̃

IJZJ −16παγ̃
IJ jJ. (3.42)

The Hamiltonian and momentum constraints are

H = 0 = RL
L +nχγ̃

wwRww +
d −1

d
K2 − ÃIJÃIJ −nÃ2

wwγ̃
ww2 −16πρ, (3.43)

MI = 0 = γ̃
JL

∂JÃLI +nγ̃
ww ÃIz −δizÃww

z
− Γ̃

LÃLI −nγ̃
ww

Γ̃
L
wwÃLI − γ̃

JL
Γ̃

M
IJÃML

− 1
2

γ̃
wwÃww∂I γ̃ww − d −1

d
∂IK − d

2
∂Jχ

χ
ÃJ

I −8π jI. (3.44)
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Box 3: continued ...
The Ricci tensor is calculated as Ri j = R

χ

i j + R̃i j with

R
χ

IJ =
1

2χ
γ̃IJ

[
γ̃

MND̃MD̃N χ +n
(

1
2

γ̃
ww

γ̃
MN

∂N γ̃ww +
γ̃ Mz

z

)
∂Mχ

−D−1
2χ

γ̃
MN

∂Mχ ∂N χ

]
+

D−3
2χ

(
D̃ID̃Jχ − 1

2χ
∂Iχ ∂Jχ

)
(3.45)

Rχ
ww =

γ̃ww

2χ

[
γ̃

MND̃MD̃N χ +(D+n−3)
(

1
2

γ̃
ww

γ̃
MN

∂N γ̃ww +
γ̃ Mz

z

)
∂Mχ

−D−1
2χ

γ̃
MN

∂Mχ ∂N χ

]
, (3.46)

R̃IJ = nγ̃
ww
[
−1

2
∂zγ̃IJ

z
+

δz(I γ̃J)z −δIzδJzγ̃ww

z2 +
γ̃ wwγ̃z(J −δz(J

z
∂I)γ̃ww

−1
4

γ̃
ww

∂I γ̃ww ∂J γ̃ww

]
− 1

2
γ̃

MN
∂M∂N γ̃IJ + γ̃M(I∂J)Γ̂

M

+ Γ̃
M

Γ̃(IJ)M + γ̃
MN
[
2Γ̃

K
M(IΓ̃J)KN + Γ̃

K
IMΓ̃KJN

]
, (3.47)

R̃ww =−1
2

γ̃
MN

∂M∂N γ̃ww +
1
2

γ̃
ww

γ̃
MN

∂M γ̃ww ∂N γ̃ww − n
2

γ̃
ww ∂zγ̃ww

z
+ γ̃ww

Γ̃z

z

+
1
2

Γ̃
M

∂M γ̃ww +
γ̃ zzγ̃ww −1

z2 . (3.48)

Furthermore, we need the auxiliary quantity

DwDwα =

(
1
2

γ̃
MN

∂N γ̃ww +
γ̃ zM

z
γ̃ww

)
∂Mα − 1

2χ
γ̃wwγ̃

MN
∂Mχ ∂Nα . (3.49)

3.4.4 Boundary conditions and regularisation

Since in the modified cartoon method the simulation is restricted to the semi-infinite subspace
z > 0 and wA = 0, we have to find the correct boundary conditions at z = 0. Furthermore, due
to the ubiquitous divisions by z in the cartoon terms, we cannot evaluate the equations at z = 0
without regularising them explicitly. Regularisation is only necessary for node-centred codes,
which have grid points at z = 0. For cell-centred codes, the smallest value of z that will be
encountered is ∆z/2, where ∆z is the grid spacing in the z-direction, so that no regularisation
is required.
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The key observation we need to make in order to be able to regularise the cartoon terms is
that in restricting the simulation to the semi-infinite subspace defined by z > 0 and wA, we
have given z the role of the radial coordinate in the subspace in which the SO(N) symmetry
acts. As a result, regularity at the origin requires that tensor components that contain an
even number of z indices are even in z, whereas tensor components with an odd number of z
indices are odd. For example, the series expansions of components of the shift are

β
î = bî

0 +bî
2 z2 +O

(
z4) and β

z = bz
1 z+bz

3 z3 +O
(

z5
)
. (3.50)

Among others, this implies that we can write the following cartoon term arising in (3.42) in a
manifestly regular form

lim
z→0

(
∂zβ

I

z
−δ

I
z

β z

z2

)
=

{
∂z∂zβ

î if I = î
0 if I = z

. (3.51)

The regularisation of the remaining cartoon terms can be done in a similar fashion and
is shown in the appendix to this chapter. The results are not unique since several terms
allow multiple regularisations. In Ref. [4], we presented the regularisation terms whose
stability had been tested most thoroughly in our code. In Appendix B to this chapter, we
show a different approach for some terms, which simplifies the algebra and the resulting
regularisation terms slightly.

Independently of whether the code is cell-centred or not, we have to impose boundary
conditions at z = 0 in order to be able to take derivatives in the z direction at the lower edge
of the numerical grid. The regularity conditions above imply that we should fix the parity
of the evolution variables: those with an even number of z indices are enforced to be even,
those with an odd number of indices are enforced to be odd. This can be achieved either
by selecting derivative stencils which have the parity built in in the vicinity of z = 0, or by
filling the ghost cells outside the computational domain by an odd or even extrapolation
as appropriate. In GRChombo, we use the latter approach, as it is easier to implement and
avoids inefficient branching instructions in the evolution code.
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3.5 Appendix A: Tensor components for SO(N > 2)

For scalars and vectors with SO(N > 2) symmetry, we find

0 = ∂AQ = ∂I∂AQ , (3.52)

∂A∂BQ = δAB
∂zQ

z
, (3.53)

0 =V A = ∂IV A = ∂AV I = ∂A∂BVC , (3.54)

∂AV B = δ
B
A

V z

z
, (3.55)

∂I∂AV B = δ
B
A

(
∂IV z

z
−δIz

V z

z2

)
, (3.56)

∂A∂BV I = δAB

(
∂zV I

z
−δ

I
z

V z

z2

)
. (3.57)

For rank-2 tensors, SO(N > 2) symmetry implies

0 = TIA = ∂ATBC = ∂I∂ATBC = ∂A∂BTIC = ∂ATIJ = ∂I∂ATJL , (3.58)

TAB = δABTww , (3.59)

∂A∂BTCD = (δACδBD +δADδBC)
Tzz −Tww

z2 +δABδCD
∂zTww

z
, (3.60)

∂ATIB = δAB
TIz −δIzTww

z
, (3.61)

∂I∂ATJB = δAB

(
∂ITJz −δJz∂ITww

z
−δIz

TJz −δJzTww

z2

)
, (3.62)

∂A∂BTIJ = δAB

(
∂zTIJ

z
− δIzTJz +δJzTIz −2δIzδJzTww

z2

)
. (3.63)

3.6 Appendix B: Regularisation terms

In this appendix, we present the regularisation terms that are necessary for evaluating the
evolution equations in Box 3 at z = 0. We use the same indices as in the main text and the
same enumeration of the types of cartoon expressions as in Ref. [4]. Regularisation terms
are not unique and our treatment of the terms 2, 5, and 9 differs from Ref. [4], where we
presented the regularisation terms that we had used most in practice. While the terms below
have not been tested as thoroughly, there is no reason to suspect that they should be any less
stable.
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In equations (3.35) to (3.48) many of the cartoon terms look hard to regularise. However, this
is not because regularisation is inherently complicated; it is a result of us having simplified
the cartoon expressions to a point where regularisation is not obvious anymore. Indeed, the
regularisation of the cartoon derivatives in the previous section is straightforward. As a result,
by keeping track of where a simplified term originated from, we can avoid having to employ
more complicated regularisation techniques.

Type 1. Since terms involving an odd number of z indices are odd, we obtain

lim
z→0

β z

z
= ∂zβ

z and lim
z→0

∂zα

z
= ∂z∂zα. (3.64)

Terms ∂zχ/z, ∂zγ̃ww/z are treated in exactly the same way.

Type 2. For any rank-2 tensor T obeying the symmetry Tzz −Tww = O
(
z2). This is a direct

consequence of requiring ∂ 2
wTzz (3.63) to be regular at z = 0. Using γ̃zz − γ̃ww = O

(
z2) and

the fact that γ̃ ĵz is odd we get

lim
z→0

δ I
z − γ̃ zI γ̃ww

z
= lim

z→0
γ̃

IJ γ̃Jz −δ
z
J γ̃ww

z
= γ̃

I ĵ
∂zγ̃ ĵz. (3.65)

Type 3. We already described the regularisation procedure of this type of term in the main
text,

lim
z→0

(
∂zβ

I

z
−δ

I
z

β z

z2

)
=

{
∂z∂zβ

î if I = î
0 if I = z

. (3.66)

Type 4. Using the fact that β z is odd we find

lim
z→0

γ̃ IJ∂Jβ z

z
− γ̃

Iz β z

z
= lim

z→0
γ̃

IJ
(

∂Jβ z

z
−δ

z
J

β z

z2

)
= γ̃

I ĵ
∂ ĵ ∂zβ

z. (3.67)

Type 5. For the regularisation of this type of term it is helpful to keep in mind that it arose
from the cancellation of several cartoon expressions

lim
z→0

γ̃ zI

z
∂Iα = lim

z→0
γ̃

ww
(
−γ̃

IJ γ̃Jz −δ
z
J γ̃ww

z
∂Iα +

∂zα

z

)
= γ̃

ww
(
−γ̃

I ĵ
∂zγ̃ ĵz∂Iα +∂z∂zα

)
(3.68)
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Type 6. Since Aîz is odd and Azz −Aww = O(z2), we have

lim
z→0

ÃIz −δIzÃww

z
=

{
∂zÃîz if I = î
0 if I = z

. (3.69)

Type 7. Using γ̃zz − γ̃ww = O
(
z2) and the fact that ∂zγ̃IJ is odd, we find

lim
z→0

−1
2

∂zγ̃IJ

z
+

δz(I γ̃J)z −δIzδJzγ̃ww

z2 =


−1

2∂z∂zγ̃î ĵ if I = î, J = ĵ
−1

2∂z∂zγ̃ww if I = J = z
0 otherwise

. (3.70)

Type 8. Using γ̃ wwγ̃zz −1 = γ̃ ww(γ̃zz − γww) = γ̃ wwO
(
z2) and the fact that γ̃zî is odd, we find

γ̃ wwγ̃z(J −δz(J

z
∂I)γ̃ww =

{
γ̃ ww∂zγ̃z( ĵ∂î)γ̃ww if I = î, J = ĵ

0 otherwise
. (3.71)

Type 9. This term appears complicated to regularise at first sight, but after breaking it up
into its original constituents, it can be regularised easily using γ̃zz − γ̃ww = O

(
z2) and the fact

that ∂zγ̃IJ is odd

lim
z→0

1
z2 (γ̃
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γ̃ww −1) = lim
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1
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2
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1
2

∂
2
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)
. (3.72)



Chapter 4

End point of black ring instabilities

This chapter presents the results of fully non-linear numerical simulations of black ring
instabilities with the GRCHOMBO code. For a wide range of thin and fat rings, we follow the
evolution of various instabilities of black rings, identify which one dominates, and find its
end point. In this process, we discover a previously unknown instability of black rings which
stretches and deforms the ring. We analyse the geometry of the apparent horizon throughout
the evolution and present evidence that the GL instability causes very thin rings to pinch off.

This chapter is based on the co-authored publication Ref. [3]. Furthermore, it contains
unpublished results on fat rings, the approach to pinch-off in the instability of very thin black
rings, and the m = 1 mode of the GL instability of thin rings. Some of the results presented in
this chapter were also included in the PhD thesis [163] of my co-author S. Tunyasuvunakool.
I implemented the black ring code with symmetry reduction in GRCHOMBO. Furthermore, I
was responsible for finding the gauge conditions and the diffusion term that stabilised the
evolution of black rings and carried out roughly half the simulations presented in this chapter.
The analysis of the gravitational wave data and the numerical tests in Appendix B were
entirely my own work. The apparent horizon finder was implemented by S. Tunyasuvunakool
and therefore the discussion of it is kept to the necessary minimum in this thesis. The
interested reader is referred to Ref. [163] for details.

4.1 Introduction

As already outlined in the introduction to this thesis, one of the most interesting aspects of
general relativity in higher dimensions is that black holes may have non-spherical topology.
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The first explicit example of this was the 5D black ring spacetime [55, 164], which has
horizon topology S1×S2. Amazingly, this solution was found analytically and can be written
in a remarkably simple form [165]

ds2 =− F(η)

F(ξ )

(
dt − C(ν ,λ )R

1+η

F(η)
dψ

)2

+
R2

(ξ −η)2 F(ξ )

[
−G(η)

F(η)
dψ

2 − dη2

G(η)
+

dξ 2

G(ξ )
+

G(ξ )

F(ξ )
dφ

2
]
, (4.1)

where

F (x) = 1+λx, G(x) =
(
1− x2)(1+νx) , and C =

√
λ (λ −ν)

1+λ

1−λ
. (4.2)

As can be seen in the above metric, the ring rotates in the direction given by the angle ψ and
has a U(1) symmetry in both the rotational plane and the transverse direction given by the
angle φ . The ring coordinates ξ and η have ranges −1 ≤ ξ ≤ 1 and −∞ < η ≤−1, where
the horizon lies at η = − 1

ν
and spatial infinity is approached as both ξ and η tend to −1.

Requiring the absence of conical singularities in the spacetime fixes the parameter λ and the
periodicity of φ and ψ

λ =
2ν

1+ν2 and ∆φ = ∆ψ =
2π√

1+ν2
. (4.3)

This leaves only two free parameters: the radius parameter of the ring, R ∈ (0,∞), and the
thickness parameter, ν ∈ (0,1).

To get some intuition as to why the black ring solution exists, one can imagine connecting
the ends of a black string to form a ring and boosting it to counter the forces due to tension
[166]. Indeed, the relation (4.3) can be interpreted as the requirement that centrifugal force
and tension must be exactly balanced. However, while this intuition is correct in the limit of
infinitely thin rings, it fails to describe the behaviour of fatter rings as we will see presently.

Fig. 4.1 shows the phase diagram of all known stationary, asymptotically flat, single black
hole solutions rotating in a single plane in 5D. The mass is fixed, and used to rescale the
horizon area and angular momentum such that they become dimensionless as proposed in
Ref. [167]. The solid blue line shows the 5D Myers-Perry black hole [96], which will be
investigated in more detail in the next chapter. The black ring metric (4.1) forms two distinct
branches, which meet at a cusp with thickness parameter ν = 0.5: the “fat” branch, which
ranges from the cusp to a naked singularity with ν = 1, and the “thin” branch, which extends



4.1 Introduction 79

Fig. 4.1 Left: Phase diagram of all known stationary, asymptotically flat, singly-spinning,
single black hole solutions in 5D. The mass is fixed and used to rescale the angular momentum
and horizon area to make them dimensionless as proposed in [167]. Right: Zoom of the
phase diagram that highlights the region in which black holes are not uniquely identified by
their mass and angular momentum.

from the cusp to arbitrarily large angular momentum. The aforementioned intuition that
black rings can be thought of as boosted black strings with their ends connected only holds
in the limit of very thin black rings. Very fat black rings, on the other hand, behave more like
Myers-Perry black holes with a hole drilled through them.

In addition to the single black hole solutions in Fig. 4.1, there are multi-black hole solutions
such as the black Saturn [91], a combination of a black ring and a central Myers-Perry black
hole, di-rings [92, 93], and orthogonal di-rings [94]. Furthermore, 5D Myers-Perry black
holes can rotate it up to two planes [96], and black rings can be doubly-spinning [168].

The most striking feature of the phase diagram in Fig. 4.1 is that in the range 27
32 < j2 < 1

there are three different black hole solution for the same mass and angular momentum. Hence,
black ring spacetimes not only show that in higher dimensions restrictions on black hole
topology become less stringent, they also demonstrate that in in higher dimensions black
holes are not uniquely described by their mass and angular momentum.

Prior to our work, two instabilities of black rings were known: a radial instability for fat
rings, i.e. an instability which preserves the U(1) symmetry in the rotational plane, and
a GL-like instability for thin rings. Ref. [28] presented evidence for the existence of the
radial instability by considering off-shell perturbations, singular deformations of the black
ring spacetime that mimic the action of a small external force on the ring. They found that
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fat rings were unstable to this off-shell perturbation and thin rings were stable. Ref. [29]
confirmed the existence of this radial instability rigorously by constructing perturbations
of fat black rings which violate a local Penrose inequality. In essence, this means that the
authors constructed perturbed fat rings which cannot possibly settle down to a fat ring due to
the restriction that entropy can only increase, mass can only decrease due to the emission of
gravitational waves, and angular momentum cannot be radiated due to the U(1) symmetry.

For thin rings, Refs. [30, 31] found a GL-like instability that creates ripples along the ring,
which break the U(1) symmetry. The presence of this instability is intuitive for very thin
rings due to their similarity to boosted black strings. However, Ref. [30] found that the
instability covers the whole thin branch and might even extend slightly into the fat branch.
Put together, the two instabilities cover the whole parameter range of black rings. As a result,
if one restricts to asymptotically flat, stationary black hole solutions that are stable, the 4D
restrictions on black hole uniqueness and topology are recovered.

One important question that could not be addressed in previous work is what the end point
of these instabilities is. Based on their entropies (see Fig. 4.1), fat black rings could settle
down to a Myers-Perry black hole or a thin ring. The former would demonstrate that an
asymptotically flat black hole with a connected horizon can undergo a smooth change of
topology. Similar to the evolution of black strings [33], the GL instability of black rings
could lead to the black hole pinching off. This could have significant implications for the
Weak Cosmic Censorship Conjecture in asymptotically flat spacetimes.

The remainder of this chapter is organised as follows: in section 4.2, we present the numerical
methods including the initial data, our gauge conditions, and our singularity treatment. In
section 4.3, we present the methods we used to draw gauge-independent conclusions from our
data. The results are presented in 4.4. In section 4.5, we discuss the limitations of our results
and identify questions relating to black rings that are still unsolved. Finally, we present
preliminary results for the m = 1 mode of the GL instability of black rings in Appendix A
and detailed numerical tests in Appendix B.

4.2 Numerical methods

We perform fully non-linear numerical evolution of singly-spinning black rings in five
dimensions and follow the instabilities to their end point. Adaptive mesh refinement is
completely indispensable in order to be able to resolve all scales including any new features
that may form as the instabilities progress. Furthermore, the adaptive mesh-refinement must
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be able to refine regions of non-spherical topology. The GRCHOMBO code is ideal for this
task; indeed, it was written with black rings in mind. Even with adaptive mesh refinement,
simulations of black ring instabilities are very expensive. The production runs presented
in this chapter took between one and two months using 500 Sandy Bridge Xeon processor
cores.

We employ the CCZ4 formalism presented in section 1.3.1, with the redefinition κ1 → κ1/α ,
which allows us to make the covariant choice κ3 = 1. Furthermore, we choose κ1 = 0.1
and κ2 = 0. Experiments with other values led to no improvement in the accuracy of the
simulations and the physical results did not change.

We use adaptive mesh refinement with 8 to 13 levels with a resolution of between 0.3R̃ and
0.5R̃ in the wave extraction zone, where R̃ is the radius of the black ring in our coordinates.
The resolution on the finest level is chosen such that the interior of the horizon is always
covered by at least 50 grid points after gauge adjustment. We use fourth-order finite differ-
encing stencils and perform time steps using the fourth-order Runge-Kutta method. Similar
to other work on higher dimensional black holes [153, 25, 26, 155], we had to choose very
small Courant factors 0.1 ≤ dt/dx ≤ 0.3 and often had to reduce the Courant factor further
in the highly dynamic stages of the evolution. However, we found that the Courant factor
only affects the numerical stability of the simulations: once it is small enough for stability,
any further reduction does not change the physical results.

For the spatial directions, we choose a Cartesian coordinates system (x,y,z,w) such that the
ring rotates in the x− y plane and is centred at the origin. In order to make the simulations
feasible numerically, we have to exploit the U(1) symmetry in the transverse direction, i.e. in
the z-w plane corresponding to the angular direction φ in the metric (4.1). This is done using
the modified Cartoon method (chapter 3) to restrict the simulation to the w = 0 hyperplane.
We do not expect that breaking the U(1) symmetry in the transverse plane would affect
the conclusions of our work, as no known instability of black rings breaks this transverse
direction in the linear regime. Furthermore, transverse perturbations have been found to
be stable for boosted black strings [169]. However, we cannot exploit the symmetry in the
rotational plane present in (4.1), since this symmetry is broken by the GL instability. Thus,
we are left with a 3+1-dimensional evolution system.

As required by the modified Cartoon method, we actively enforce even or odd boundary
conditions for our evolution variables at the z = 0 boundary. At the other boundaries, we
impose periodic boundary conditions. While this is not correct analytically, we move these
boundaries so far away that they are never in causal contact with the black hole or the wave
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extraction zone during the evolution. Due to the adaptive mesh refinement and our deep
mesh hierarchy, this is possible without incurring a noticeable performance penalty.

Our choice of CCZ4 as evolution system enables us to use the puncture gauge so that we
avoid having to excise the interior of the black hole. For black rings, this is a considerable
advantage as excision would be very challenging due to the complicated excision regions that
would be required. Furthermore, excision requires finding the apparent horizon very often,
which is very tricky for the extreme horizon shapes we encountered during the evolution of
black rings.

4.2.1 Initial data

Ideally, we should start puncture gauge evolution with initial data that contain no physical
singularities. To this end, we write the metric (4.1) in the coordinates introduced in Ref. [29],
which are ideal for numerical evolution: they render the metric manifestly asymptotically
flat and cover two copies of the exterior of the horizon so that the computational domain
contains only a coordinate singularity, not a physical one.

Here, we will give a derivation of these coordinates that highlights their similarity to isotropic
coordinates for the 4D Schwarzschild black hole. Let us start from the coordinate

Y =− R̃
1+η

with R̃ = R

√
1−ν

1+ν2 . (4.4)

The use of R̃ instead of R will be convenient later, when we have to use R̃ to obtain a
manifestly asymptotically flat metric in Cartesian coordinates [164]. The coordinate Y is a
dimensionful quantity in the range (0,∞), where 0 corresponds to the ring singularity, the
apparent horizon is located at constant Y = YH , where

YH =
R̃ν

1−ν
, (4.5)

and ∞ corresponds to spatial infinity on the outside of the ring and the centre of the ring on
the inside. Close to the black ring, Y can be thought of as the radial coordinate of the 4D
black hole that results from taking a constant-ψ slice of the ring. Hence, we will treat Y
as the equivalent to the radial coordinate for the Schwarzschild black hole and perform the
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standard transformation to an isotropic coordinate Ỹ given by

Y = Ỹ
(

1+
1
4

ỸH

Ỹ

)2

. (4.6)

We have used the 4D version of the transformation, since that is the dimension of a constant-
ψ slice of the ring. The isotropic coordinate Ỹ ranges from 0 to ∞ and covers two copies
of the region outside the horizon, which is now located at ỸH = YH/4. It will feature very
heavily in this chapter due to its interpretation as isotropic coordinate radius of a constant-ψ
slice through the ring. We will use it whenever there is a need to restrict any action, such as a
modification in the gauge condition or the initial perturbation, to the region inside or close to
the horizon.

For our numerical simulations, we have to express the initial data in terms of Cartesian
coordinates. This is most easily done via the ring coordinate related to Ỹ through η̃ =

−1− R̃/Ỹ , i.e. the inverse transformation of (4.4). In terms of Cartesians [164], the resulting
coordinates are given by

η̃ =− R̃2 + r2

Σ
⇒ Ỹ =

R̃Σ

R̃2 + r2 −Σ
,

ξ =
R̃2 − r2

Σ
, and ψ = tan−1(y/x), (4.7)

with

Σ =

√(
R̃2 + r2

)2 −4R̃2(x2 + y2) and r =
√

x2 + y2 + z2 , (4.8)

where we have used the U(1) symmetry in the transverse direction to restrict to the w = 0
plane. After the series of coordinate transformations outlined above, the metric (4.1) takes
exactly the same form as in Ref. [29]. In particular, it covers two copies of the outside of the
horizon and is manifestly asymptotically flat.

In our initial data, we vary ν to investigate different thicknesses, but we fix R̃ = 1 so that
the initial coordinate radius of the ring is the same for all simulations. This means that the
mass of the ring changes as we vary ν , with fatter rings having substantially higher mass
than thinner ones in our simulations. We initialise the gauge evolution with a pre-collapsed
lapse α = χ and an initial shift of χ times the analytic shift. As argued in section 3.2 this
minimises initial gauge adjustment.

At the beginning of the evolution, we introduce a small perturbation which has two maxima
and two minima around the ring in the rotational plane and, therefore, corresponds to an
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m = 2 perturbation when expanded in terms of Fourier modes cos(mψ). This perturbation is
applied to the conformal factor as

χ = χ0

1+
A(

1+(Ỹ/ỸH)2
) 3

2

x2 − y2

Σ

 , (4.9)

where χ0 is the unperturbed conformal factor and A is the amplitude of the perturbation.
As explained above, Ỹ can be thought of as an isotropic radial coordinate of a constant-ψ
cross-section of the ring. Thus, the fraction involving Ỹ in (4.9) ensures that the perturbation
decays quickly away from the horizon and does not modify the mass or angular momentum
of the spacetime.

We choose the perturbation amplitude in the range 10−6 ≤ A ≤ 0.002. For studying the
end point of the instability alone, much larger values such as A ∼ 0.05 would have been
completely sufficient and much cheaper computationally. However, our small choice allowed
us to study the evolution in the linear regime in a lot of detail and to compare the frequency
and growth rate of the instability with the values in the literature.

The perturbation (4.9) introduces small violations in the Hamiltonian and the momentum
constraints. However, due to the constraint damping properties of CCZ4, these constraint
violations decay away very quickly, long before any other significant evolution takes place.
Indeed, in this short initial phase, CCZ4 acts like an initial data solver. As the perturbation
amplitude is decreased from 0.002 to 10−6, the results in the linear regime remain unchanged
up to rescaling by the amplitude. This strongly suggests that constraint violations in our
initial perturbation do not affect the results.

4.2.2 Gauge conditions and singularity treatment

As gauge evolution equations, we use 1+ log slicing (3.5) with an advection term and slightly
decreased coefficient ηα = 1.5. To avoid freezing in large initial values of Γ̂, we use our
adapted Gamma-driver shift condition (3.2) with an advection term, F = 2/3, η = R̃−1, and

f (t,xi) = exp

[
−
(

δ1

(
YH

Y

)2

+δ2

)
t2/M

]
. (4.10)

For the two dimensionless constants δ1 and δ2, we typically choose values 0.25 and 0.1
respectively. As described in section 3.2, our modified Gamma-driver causes the gauge
to adjust such that the large initial values of Γ̂ decay. The purpose of the first term in the
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Fig. 4.2 Region of non-zero diffusion (red/pink) shown on top of the apparent horizon for
ν = 0.3 (left) and ν = 0.15 (right). The diffusion region covers much less than 50% of the
horizon’s interior, even in the highly non-linear regime and at the thin necks.

exponential in (4.10) is to speed up this gauge adjustment inside the horizon where initial
values of Γ̂ are larger and constraint violations resulting from rapid gauge adjustment do
not matter. To tame high frequency modes arising in the simulation, we use Kreiss-Oliger
numerical dissipation with factor σ = 0.3.

Even with puncture gauge, dissipation, and initial data that contain no physical singularity,
the simulations develop large, high frequency features inside the horizon. These numerical
instabilities ultimately lead to floating point overflow inside the horizon, which propagates
outwards, spoiling the whole simulation. To solve this problem, we use the singularity
diffusion outlined in section 3.3 with 0.015 ≤ χc ≤ 0.03. As outlined in section 3.3, diffusion
is most naturally started with turduckened initial data, which we achieve by manually
enforcing Σ ≥ ε2 in (4.7). Typically, we choose 0.2 ≤ ε ≤ 0.5 depending on the thickness
of the ring. We ensure that the turduckened region and the region in which diffusion is
applied are always restricted to less than 50% of the apparent horizon (see Fig. 4.2 for an
example). The upper limit of 50% is only attained in the short time before gauge adjustment;
afterwards, the diffusion region occupies a much smaller fraction of the horizon. Since no
information can escape the horizon and we have plenty of points across the apparent horizon,
turduckening and diffusion do not affect the results. We present explicit evidence for this in
Appendix B in this chapter.
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4.3 Analysis methods

4.3.1 Wave analysis

To estimate frequencies and growth rates of the instabilities, we monitor the gravitational
waves far away from the black ring, as they provide a very clear and more gauge-independent
signal. Following Ref. [25], we extract the +-mode of gravitational waves using the quantity

h+ =
γ̃xx − γ̃yy

2

( z
R̃

) 3
2 (4.11)

on the z-axis, where γ̃i j is the conformally rescaled spatial metric.

Since numerical relativity is an inherently non-linear tool, finding good estimates for fre-
quency and growth rate from the gravitational wave signal is tricky, especially when there
are several competing modes. In particular, extracting a long linear signal requires selecting
a tiny amplitude for the initial perturbation. However, due to grid noise we could only obtain
meaningful results for large enough initial amplitudes, A ≳ 10−6 in (4.9). With these initial
amplitudes, the modes we aim to investigate become nonlinear after only a few periods. This
is enough for a Fourier analysis to pick up the dominant frequency with reasonable accuracy,
but not enough to detect any sub-dominant modes. We therefore use the procedure described
below, which allows us to determine the frequency and growth rate and their associated errors
accurately, even for a sub-dominant mode. The procedure performed well in our tests on
fabricated data that resemble our measured signal but consist of several known exponentially
growing modes superposed with Gaussian noise.

Our method is based upon a fit to the two-mode ansatz

A1 sin(ℜϖ1t +ϕ1)eℑϖ1t +A2 sin(ℜϖ2t +ϕ2)eℑϖ2t . (4.12)

Of course, the same procedure could be used for an ansatz with a different number of modes,
but our results suggest that exactly two distinct black ring instabilities exist in the m = 2
sector.

We first fit the entire wave signal in the linear regime to the ansatz (4.12) to obtain a rough
estimate for the parameters. This estimate is then used to rescale the wave signal and fitting
function (4.12) by exp(ℑϖmax t), where ℑϖmax is the larger of the two growth rates, so that
the amplitude of the signal stays roughly constant. The effect of this is that subsequent
least-squares fits will not minimise the absolute errors but the errors measured as fraction of
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the amplitude at the time. This greatly improves the accuracy of the extracted frequency and
growth rate.

Finally, we fit the rescaled data in a time window of size roughly 10
√

R̃ as the window
slides across the whole signal. We use the mean of the resulting fit parameters as our best
estimate for the frequency and growth rate, and the standard deviation as an estimate for the
accuracy. This estimate not only measures the uncertainty of the fit, but also the uncertainty
due to the fact that our results are obtained from a non-linear simulation, with contamination
from constraint violating modes towards the beginning and non-linearities towards the end.
Fig. 4.11 shows an example of results obtained by this procedure. The uncertainty in the
frequency is much lower than the uncertainty in the growth rate. The reason for this is that
while (4.12) fixes the frequency exactly, there is a slight degeneracy between the growth rates
and the initial amplitudes when performing the fit. The latter are unknown to us since we do
not know how the amplitude of the constraint-violating initial perturbation (4.9) translates
into initial amplitudes of the various modes.

4.3.2 Apparent horizons

In order to study the geometry of the black rings as they undergo the instability, we find the
apparent horizon at regular intervals during the simulation. For the black holes of spherical
topology arising in some of our simulations, this can be done using the standard methods
[110]: we use polar coordinates (r,θ ,φ) with respect to a point inside the black hole and find
the function R(θ ,φ) such that the surface defined by the zero contour of r−R(θ ,φ) has zero
expansion.

For the toroidal horizons of black rings, the same method can be used if one switches to ring
coordinates (4.7). The apparent horizon is then given by the function H(ξ ,ψ) for which the
zero contour

η̃ −H(ξ ,ψ)≡ 0 (4.13)

has zero expansion. In practice, η̃ is not very convenient due to its range. Instead, we usually
used tanh−1(−1/η), although the coordinate Ỹ defined in (4.6) would likely have been an
equally good alternative.

The parametrisation H(ξ ,ψ), with coordinate transformation (4.7), assumes that the circle
x2 + y2 = R̃2 on the z = 0 plane lies inside the apparent horizon. Unfortunately, this is not
the case in later stages of the evolution since the ring stretches significantly in the rotation
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Fig. 4.3 Left: The most extreme apparent horizon we could find for the evolution of a very
thin ring with ν = 0.15. Right: The χ = 0.2 (pink) and χ = 0.4 (light blue) contours for the
same snapshot. The χ = 0.2 contour approximates the apparent horizon well along the thin
necks, while the χ = 0.4 contour approximates the big bulges.

plane (see Fig. 4.7). We solved this problem by allowing R̃ in the coordinate transformation
(4.7) to vary with ψ . A suitable function R̃(ψ) can be obtained by taking a very small-valued
contour of the conformal factor χ , which tends to zero inside the black hole. This allowed us
to find apparent horizons for almost all shapes we encountered.

Allowing R̃ to vary is not enough for very extreme stages of the evolution for which the
position of the ring can no longer be defined as a single-valued function R̃(ψ). However,
with our gauge choice, our experience showed that contours of the conformal factor χ

share the symmetries of the apparent horizon: if the apparent horizon settles down to a
spherically symmetric shape, the conformal factor will be approximately constant on the
apparent horizon. If it takes on the shape of a black string with translational symmetry,
the conformal factor will be constant along the string. An example of this is shown in Fig.
4.3. This also implies that we can use contours of the conformal factor to get a qualitative
understanding of the behaviour of the apparent horizon: if the apparent horizon has some
approximate symmetry and we know which χ-contour the apparent horizon corresponds
to, then if χ subsequently develops features, it is highly likely that the apparent horizon
developed similar features too. We will use this method to gain some intuition for the short
periods where our apparent horizon finder fails.
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Fig. 4.4 Snapshots of the apparent horizon taken from the evolution of a fat ring with ν = 0.7.

4.4 Results

In this section, we present the results of our simulations, starting with fat rings and moving
to progressively thinner ones. Our simulations showed that there are three different regimes:
very fat rings with ν ≳ 0.6, intermediate rings with 0.2 ≲ ν ≲ 0.6, and very thin rings with
ν ≲ 0.2. It is unexpected that the intermediate regime covers both thin and fat rings and
that we find no significant difference in the dynamical behaviour of thin and fat rings in this
regime.

4.4.1 Very fat rings

Rings in the regime ν ≳ 0.6, like all fat rings, are known to be unstable to radial perturbations
[28, 29]. Since axisymmetric modes cannot cause angular momentum to be radiated and the
horizon area must increase, the phase diagram in Fig. 4.1 suggests that the instability should
end in either a Myers-Perry black hole or a thin ring.

Fig. 4.4 shows our results for ν = 0.7. They confirm the existence of a radial mode and show
that the radial mode leads to very quick collapse to a Myers-Perry black hole. Thus, the black
hole changes its topology from toroidal to spherical, with the spacetime remaining smooth
throughout. This is the first concrete example of an asymptotically flat black hole with a
connected horizon smoothly changing its horizon topology. Despite trying many different
initial conditions, including ones that make the horizon thinner, we could not find evidence
of the evolution ever approaching a thin ring as metastable state or endpoint. This conclusion
did not change even when we imposed axisymmetry, which suppresses all known instabilities
of thin rings.

We find that the apparent horizon does not transition continuously from toroidal to spherical
topology. The spherical apparent horizon seen in the third snapshot in 4.4 appears very
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suddenly: the two middle snapshots are only separated by one coarse time step with δ t =
0.004t/R̃. This is not unexpected, as the apparent horizon, the outermost trapped surface,
is not required to move continuously. The event horizon, on the other hand, must move
continuously and since it must always lie outside the apparent horizon, it must have changed
topology by merging in the centre at some point before the third snapshot in Fig. 4.4.

Even though the radial mode does not break axisymmetry, we did not impose this symmetry
in our simulations. Very unexpectedly, we found a noticeable breaking of axisymmetry
in our simulations, also visible in Fig. 4.4, even in the regime ν ≳ 0.6. These deviations
from axisymmetry are only small, and it was impossible for us to isolate their cause due
to the fast growth of the radial instability. However, we will see below that they are not a
numerical artefact or a non-linear effect, but rather the precursor of a previously undiscovered
axisymmetry-breaking instability.

4.4.2 Intermediate rings

For rings in the regime 0.2 ≲ ν ≲ 0.6, Ref. [30] showed the presence of the GL mode, which
should get progressively weaker as the thickness increases. For 0.5 ≤ ν ≲ 0.6, the fat rings
in this regime, the radial instability identified in Refs. [28, 29] is still present. Figs. 4.5, 4.6,
and 4.7 show three representative examples of the results of our numerical evolution in this
regime1. As expected, we find that the evolution is characterised by strong breaking of U(1)
symmetry. Interestingly, however, the thickness variations along the ring expected for the GL
mode are only prominent for the thinner rings in this regime. The evolution with ν = 0.5
(Fig. 4.5) shows no measurable signs of thickness variations. Instead, the rings get very
noticeably stretched. Most strikingly, though, all intermediate black rings always collapse to
a Myers-Perry black hole before the thickness variations can grow large enough to cause the
ring to pinch off like the black strings in Ref. [33].

Let us make these qualitative observations more rigorous and more gauge-independent by
examining geometric quantities on the apparent horizon. Fig. 4.8 shows the minimum and
maximum areal radius of the S2 of the apparent horizon. This is a good measure of the
thickness variations along the ring. The results for ν = 0.3 show that the minimum ring
thickness never decreases substantially. Furthermore, the strong increase in the maximum
thickness only happens very late and is only a non-linear effect due to the black ring collapsing
to a Myers-Perry black hole. For ν = 0.2, the thickness variations are more pronounced with

1Videos for most simulations presented in this chapter can be found at www.grchombo.org.

www.grchombo.org
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Fig. 4.5 Snapshots of the apparent horizon taken from the evolution of a black ring with
ν = 0.5.

Fig. 4.6 Snapshots of the apparent horizon taken from the evolution of a thin ring with
ν = 0.3.

a clear decrease in the minimum thickness. Still, by the time an apparent horizon of spherical
topology appears, the minimum thickness has only roughly halved.

Fig. 4.9 shows the minimum and maximum length of spacelike geodesics from the centre of
the ring to the inner edge of the apparent horizon on a constant-time slice. This is a measure
of the variation of the radius of the S1 of the ring. The results show a very clear and growing
divergence between the minimal and maximal S1 radius, confirming our observation that the
ring is physically stretching. There is a sharp decrease of the minimal S1 radius as the ring
collapses, but the spherical apparent horizon forms before the S1 radius has shrunk to zero
size, showing that the evolution of the apparent horizon is not continuous at this point.

The results above demonstrate the presence of the GL mode (the thickness variations) and
show that there is a strong stretching effect which ultimately causes the black ring to collapse.
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Fig. 4.7 Snapshots of the apparent horizon taken from the evolution of a thin ring with
ν = 0.2.

They cannot tell us whether the stretching is a non-linear effect of the GL instability or is
a result of a previously unknown additional instability in the m = 2 sector. To address this
question, we extract and analyse the gravitational wave signal calculated using (4.11) on
the z-axis, far away from the black hole. In the linear regime, the results (see Fig. 4.10
for an example) show the mixing of several modes very clearly. Subsequently, one mode
dominates and becomes non-linear. This causes the black ring to collapse and ring down to a
Myers-Perry black hole. To disentangle the competing modes in the linear regime, we fit
a two-mode ansatz (4.12) using the procedure outlined in section 4.3.1. Fig. 4.10 (bottom)
shows an example of the results together with the fit. A one-mode ansatz would clearly
be insufficient, but the quality of the two-mode fit indicates that no other m = 2 modes are
relevant. We therefore conclude that intermediate black rings have two linear instabilities: the
known GL instability and a previously undiscovered instability which stretches and deforms
the ring without changing its thickness. In analogy with blackfolds [170], we term it an
elastic mode. Even though the initial perturbation (4.9) was selected with the GL instability
in mind, the analysis with a two-mode fit shows that it excites both instabilities with roughly
equal amplitude.

Fig. 4.11 shows the frequency and growth rates obtained from our fitting procedure for a range
of thin rings. Our results for the GL mode agree very well with the values obtained in Ref.
[30]. For ν ≳ 0.2, however, the GL mode is dwarfed by the faster growing elastic instability,
so that it becomes impossible for us to isolate it in our generic, non-linear evolution. For
ν = 0.2, the growth rates of the two modes are roughly equal. This explains the complex
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Fig. 4.8 Left: maximum and minimum areal radius of the S2 of the ring. Right: Illustration of
how this areal radius is measured.

behaviour in the apparent horizon geometry we found earlier and the evolution shown in
Fig. 4.7. The GL instability leads to the formation of two large bulges connected by very
thin necks while the elastic mode significantly stretches the ring. However, even though the
GL mode is very significant for ν = 0.2, the ring still collapses to a black hole of spherical
topology.

In summary, we find that generically, thin rings in the regime 0.2 ≲ ν ≲ 0.6 collapse to a
Myers-Perry black hole due to the new elastic instability. It is instructive to display this range
of black holes on the phase diagram we showed at the beginning of the chapter. Fig. 4.12
highlights the relevant range and gives an example of a start and end point of the evolution.
Most black rings in this range have higher entropy than the corresponding Myers-Perry black
hole with equal angular momentum and for a large portion the angular momentum is even
above the upper bound for which Myers-Perry black holes exist. However, the very strong
breaking of U(1) symmetry resulting from the elastic mode allows the black ring to radiate
angular momentum very efficiently, so that it collapses to a solution with much lower angular
momentum and considerably higher entropy.

4.4.3 Very thin rings

Our results for the growth rates obtained from the wave data in the linear regime (Fig. 4.11)
show that for rings with ν ≲ 0.15 the GL mode grows fastest. Therefore, there is a large
chance that it will also dominate the non-linear regime. It turns out that in this regime the
m = 4 modes grows significantly faster than the m = 2 modes for both the GL and the elastic
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This range extends into the fat branch, but in such a small region of phase space that it is
impossible to see in the plot. The black rings in this range collapse to Myers-Perry black
holes due to the elastic instability. The arrow shows the start and end point of the evolution
of ν = 0.3 (displayed in Fig. 4.6).
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instability. This is not unexpected given what we know about black strings: Ref. [169] found
that for a black string of transverse radius rH , every mode has a maximum unstable value
of krH , where k is the wave number, above which the mode becomes stable. Let us denote
this with (krH)max. For a black string with a compact flat direction with period 2πR, the
periodicity constrains the wave number to discrete values k = n/R, where n is a positive
integer. Thus, modes are only unstable if

krH =
nrH

R
< (krH)max(n) ⇒ n <

R(krH)max(n)
rH

, (4.14)

demonstrating that for fixed R as the string gets thinner and thinner, more and more modes
switch on. Furthermore, according to the results of [169], for sufficiently thin strings, modes
with larger wave number will always grow faster. Since thin black rings behave similarly to
boosted black strings, this explains why the m = 4 starts to dominate over the m = 2 mode as
the ring thickness is decreased

The presence and rapid growth of higher m modes for very thin rings means that it is
impossible to restrict to the m = 2 mode in generic non-linear evolution. Instead, we either
have to look at an m = 4 mode, or a superposition of m = 2 and m = 4. Fig. 4.13 shows the
results for the m = 4 mode. Now, four bulges are created along the ring and the elastic mode
gives the ring a star shape. More importantly, however, in stark contrast to the intermediate
rings considered in the previous section, the GL mode now dominates completely, forming
four very large bulges connected by four very thin black strings. This can be seen very clearly
in the plots of the maximum and minimum areal radius of the S2 of the ring in Fig. 4.14 (left).
Towards the end of our simulation, the maximum and minimum radius differ by a factor of
80.

Due to this vast separation of scales, the black string sections evolve on a much faster
timescale than the rest of the black ring. As a result, we can be confident that the string
sections will undergo the GL instability exactly as Ref. [33] found: they will give rise
to further generations of bulges connected by ever thinner black strings and pinch off in
finite asymptotic time, long before the overall ring has had time to evolve significantly.
Furthermore, Fig. 4.14 (right) shows that our data are compatible with the scaling law that
was found in Ref. [33], rS2 ∝ (tc − t), where tc/R = 33.0± 0.5 is the estimated pinch-off
time. However, this statement has to be interpreted with great care since we could not follow
up the instability very far. We will be able to analyse the scaling law behaviour in much more
detail for Myers-Perry black holes in the next chapter.
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Fig. 4.13 Snapshots of the apparent horizon taken from the evolution of a very thin ring with
ν = 0.15 that was perturbed with a pure m = 4 mode.

Unfortunately, simulations of black rings are considerably more computationally expensive
than those of black strings since they require simulating one more dimension. Therefore, for
the pure m = 4 mode our computational resources were not sufficient for simulating the onset
of another generation of bulges accurately enough. The situation is different for a mixture
between the m = 2 and m = 4 mode (Fig. 4.15): the m = 2 mode stretches two of the string
sections, causing the GL instability to progress much faster. As a result, we were able to
find evidence for the onset of a second generation of bulges in a regime where we could still
afford high enough resolution to simulate the evolution accurately. This suggests that for very
thin rings the GL instability dominates and leads to a fractal structure of bulges connected by
ever thinner black strings as found in Ref. [33]. Due to this self-similar structure, the thinnest
neck should reach zero size in finite asymptotic time. Thus, we have concrete evidence that
instabilities can cause black holes to pinch off in higher dimensions, even in asymptotically
flat spacetimes.

4.5 Discussion and outlook

We have studied the non-linear dynamics of both thin and fat black rings under generic non-
axisymmetric perturbations and identified the end point of their instabilities. Very fat rings
(ν ≳ 0.6) rapidly collapse to Myers-Perry black holes due to the radial instability identified
in Refs. [28, 29], showing that an asymptotically flat black hole with a connected horizon
can smoothly undergo a change of horizon topology. Intermediate rings (0.2 ≲ ν ≲ 0.6) also
collapse to Myers-Perry black holes due to a new linear instability, an elastic instability which



98 End point of black ring instabilities

0 5 10 15 20 25 30
0.

0.2
0.4
0.6
0.8
1.

1.2
1.4
1.6
1.8

-3 -2 -1

-3

-2

-1

0
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where t̂c = 33.0±0.5 is the estimated pinch-off time.

causes the ring to stretch without changing its thickness significantly. This instability had not
been anticipated and was not seen in Refs. [30, 31], although its presence was later confirmed
by Ref. [32] using the large D limit of general relativity. For very thin rings (ν ≲ 0.15), the
GL instability dominates the evolution. It leads to the formation of a fractal structure of
bulges connected by ever thinner black string sections and ultimately causes the ring to pinch
off. Since black hole horizons cannot smoothly bifurcate, this indicates that a singularity is
formed on or outside the horizon. As we will discuss in chapter 6, this is the first concrete
evidence that generic initial data can give rise to arbitrarily large curvature scalars outside of
black hole regions in higher dimensions, even in asymptotically flat spacetimes.

A possible caveat to our conclusion is that while our initial data and evolution are completely
generic, we still have to impose a U(1) symmetry in the transverse direction in order to
make the simulations feasible. It is unlikely, however, that this influences the results, since
modes in the transverse direction are expected to be stable just as for black strings [169].
Furthermore, our black ring simulations have less restrictive symmetry assumptions than the
black string simulations in Ref. [33]: we impose a SO(2) rather than an SO(3) symmetry.
Despite this, we reach exactly the same conclusion for string portions of the black ring. As a
result, it is unlikely that relaxing the symmetry assumptions further would have any impact.

Even though we have only considered the asymptotically flat 5D case, our results should
extend to even higher dimensions. Furthermore, black rings also exist in asymptotically AdS
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Fig. 4.15 Snapshots taken from the evolution of a very thin ring with ν = 0.15 that was
perturbed with a mixed m = 2 and m = 4 mode. The first three snapshots show the apparent
horizon. For the snapshots in the bottom row, we could not find the apparent horizon since
R̃(ψ) is no longer a single-valued function (see section 4.3). Instead, we plot the χ = 0.2
contour, which is a good qualitative estimate for the location of the apparent horizon along
the thin necks.

spacetimes [171]. Since the GL instability is only local, it is highly likely that for black rings
that are sufficiently small compared to the AdS length, our results would still hold.

In this work, we have focused largely on the m = 2 and m = 4 mode of the elastic and
GL instabilities. However, other modes are unstable too. It would be very interesting to
do a detailed analysis of these modes, their growth rates, and their dynamics. We present
preliminary results for the m = 1 mode of the GL instability in Appendix A. This mode is of
particular interest, since it leads to one-sided gravitational wave emission, giving the black
ring a kick.

Finally, it would be very interesting to do a detailed analysis of the mass and angular
momentum that is lost as the black rings collapse to Myers-Perry black holes. Our results
indicate that the highly complicated dynamics of intermediate black rings lead to a very
significant fraction (up to 17%) of the mass being radiated as they collapse. However,
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Fig. 4.16 Snapshots of the apparent horizon taken from the evolution of a thin ring (ν = 0.3)
that was perturbed with an m = 1 mode.

quantifying this amount reliably would require a more detailed analysis of the gravitational
waves.

4.6 Appendix A: Behaviour of the m = 1 mode

In this section we present preliminary results for the m = 1 mode. Fig. 4.16 shows the
evolution of a thin black ring (ν = 0.3) that has been perturbed with an m = 1 mode. For the
GL instability, the m = 1 should exist in analogy to boosted black strings [169]. Indeed, the
horizon develops one large bulge connected by a thin neck. Using the horizon data alone, it is
not possible to ascertain whether other instabilities exist in the m = 1 sector. An analysis of
the gravitational waves should help answer this question soon. Since the m = 1 mode causes
one-sided gravitational wave emission, the black hole does not remain in its position and is
given a kick by the perturbation and instability. We are currently investigating the details of
this. The end point is a Myers-Perry black hole.

4.7 Appendix B: Numerical tests

In this section, we present several numerical test to demonstrate the correctness of our results.
First, we present convergence tests for representative samples of the wave and horizon data
presented in Figs. 4.10, 4.9, and 4.8. Fig. 4.17 (top) shows the wave data for ν = 0.2 and
ν = 0.3 for three different resolutions. Since the case ν = 0.2 is very computationally
expensive, the resolution is slightly lower than for ν = 0.3 and we restrict the convergence
test to the relevant regime before collapse to a spherical black hole. The results clearly
converge. Furthermore, the errors in frequency and growth rate due to the finite resolution
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Fig. 4.17 Top: Convergence tests for the wave data. The runs for ν = 0.2 are very expensive
computationally and were restricted to the regime before collapse to a spherical black hole.
Bottom: Convergence tests for the maximum and minimum radius of the S1 (left) and S2

(right) for ν = 0.3. For all data there is a factor of 1.3 between different resolutions. The
highest resolution as measured on the finest refinement level is ∆x = 0.003R̃ for ν = 0.3 and
∆x = 0.002R̃ for ν = 0.2.

are much smaller than the errors due to the fit. Fig. 4.17 (bottom) shows the minimum and
maximum S1 and S2 radius for ν = 0.3 for three different resolutions. Again, the results
clearly show convergence. All the runs presented in the paper have resolution at least as high
as the medium resolution runs in Fig. 4.17, both in terms of number of points covering the
horizon and resolution in the wave zone.

Let us now turn to tests of the singularity diffusion inside the horizon. The convergence tests
above are also strong indicators that the diffusion term does not affect the physical results.
The reasons for this are twofold: firstly, as the resolution is increased the number of points
between the apparent horizon and the region where diffusion is applied increases. Secondly,
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Growth:
χc 0.05 0.03 0.018 ∆(0.05,0.018) ∆(0.03,0.018)

ℜϖel 0.736 0.764 0.751 2.0% 1.7%
ℑϖel 0.162 0.172 0.169 4.2% 1.6%
ℜϖGL 1.21 1.26 1.24 2.6% 2.0%
ℑϖGL 0.083 0.093 0.092 9.2% 1.4%

Ring-down:
χc 0.05 0.03 0.018 ∆(0.05,0.018) ∆(0.03,0.018)

ℜϖ 1.19 1.22 1.21 1.6% 1.2%
ℑϖ -0.1657 -0.1681 -0.1679 1.3% 0.11%

Table 4.1 Results for frequency (ℜϖ) and growth rate (ℑϖ) for different χc for the initial
growth of the instability and the final ring-down to a Myers-Perry black hole for a ν = 0.3
ring. For the growth ϖ = ω/(2πT ), where T is the temperature of the unperturbed ring and
for the ring-down ϖ = ω

√
MMP, where MMP is the mass of the final Myers-Perry black hole.

The modulus of the difference between the results for two different values of χc is denoted
by ∆(χ1

c ,χ
2
c ).

the diffusion term (3.7) is scaled with ∆x2 and therefore vanishes in the continuum limit. As
a final test, we change the size of the diffusion region by varying the cutoff χc and monitor
changes in the wave signal. We expect the wave signal to converge as χc is reduced. Table 4.1
shows the results for frequency and growth rate of the initial stage of the instability and the
final ring-down after the ring has collapsed to a spherical black hole. The results clearly show
convergence and indicate that for the values of χc used for this paper (0.015 < χc < 0.03)
the effect of the diffusion term is negligible.

For simulations in which the ring collapses into a spherical black hole, we can compute
the area of the apparent horizon and the circumference on the rotation plane of the final
black hole. This allows us to estimate the mass and angular momentum of the resulting
Myers-Perry black hole. By extracting the quasinormal modes from the wave signal, we can
compare with existing results in the literature [27], and we find good agreement.



Chapter 5

End point of Myers-Perry instabilities

This chapter presents the results of fully non-linear numerical evolution of Myers-Perry black
holes in 5D and 6D. We perform a thorough analysis of the axisymmetric ultraspinning
instability, which causes the black hole to be torn apart by its rotation. Furthermore, we
present recent results on the non-linear stability of Myers-Perry black holes in 5D and
non-axisymmetric instabilities in 6D.

Chapter 5 contains material that was presented in the co-authored publication Ref. [2]
together with a significant amount of unpublished results on non-axisymmetric instabilities,
which were obtained in collaboration with H. Bantilan, P. Figueras, and R. Panosso Macedo.
I implemented all the time-evolution code, the initial data, and the symmetry reduction for
this chapter. Furthermore, I was responsible for finding gauge conditions, damping and
dissipation parameters, and a diffusion term that stabilised the simulations, and performed
roughly half of the simulations presented in this chapter. The horizon finder code was
developed by S. Tunyasuvunakool and therefore the discussion of it is kept to the necessary
minimum. The interested reader is referred to Ref. [163] for details. Apart from the scripts
for calculating Komar mass and angular momentum, all the tools for analysing the geometry
of the apparent horizon, the growth rate of the perturbations, the approach to pinch-off, the
cylindrical radial velocity of light rays on the apparent horizon, and the analysis of the wave
data for non-axisymmetric instabilities are my own work. Furthermore, I carried out the
numerical tests in the appendix to the chapter.
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5.1 Introduction

As was already mentioned in the introduction, the higher dimensional analogue of the Kerr
solution [14] is called the Myers-Perry black hole, after the two authors of Ref. [96]. The
metric for a singly spinning Myers-Perry black hole in D dimensions is

ds2 =−dt2 +
µ

rD−5 Σ
(dt −a sin2

θ dφ)2 +
Σ

∆
dr2 +Σdθ

2

+
(
r2 +a2) sin2

θ dφ
2 + r2 cos2

θ dΩ
2
(D−4) , (5.1)

where µ and a are the mass and rotation parameter respectively,

Σ = r2 +a2 cos2
θ , and ∆ = r2 +a2 − µ

rD−5 . (5.2)

As the number of dimensions is is increased beyond D = 5, the behaviour of Myers-Perry
black holes changes substantially. In particular, for D ≤ 5 there is an upper bound on the
angular momentum parameter of the black hole, while in D ≥ 6 singly spinning Myers-Perry
black holes can rotate arbitrarily fast. To see this, we consider the location of the event
horizon, which can be found by solving g−1

rr = 0. It lies at r = rH with

∆(rH) = r2
H +a2 − µ

rD−5
H

= 0. (5.3)

In D ≤ 5, this is a quadratic equation in rH , which only has real roots if a is sufficiently small.
This imposes an upper bound on the angular momentum a Myers-Perry black hole can have:
the Kerr bound a ≤ µ/2 in 4D, and a <

√
µ in 5D. In D ≥ 6, on the other hand, ∆(r)→ ∞ as

r → ∞ and ∆(r)→−∞ as r → 0 so that (5.3) always has a solution. Thus, for D ≥ 6 there is
no upper bound on the rotation parameter of singly spinning Myers-Perry black holes. This
change of behaviour as the number of dimensions is increased is not unexpected: for larger
D, the gravitational attraction drops faster, but the strength of the centrifugal barrier, which
only acts in one plane, remains unchanged.

In higher dimensions, rotations in more than one plane are allowed, and the metric (5.1) can
be generalised to ⌊(D−1)/2⌋ independent planes of rotation [96, 99]. If all spin parameters
are non-zero, Myers-Perry black holes can no longer rotate arbitrarily fast, even for D ≥ 6.
Fig. 5.1 shows the region of parameters space for which Myers-Perry black holes exist in
D = 5 (left) and D = 6 (right). It shows that in 6D arbitrarily large spin in one plane is
possible, but only if the spin in the other rotation plane is zero. However, for every value
of one of the spin parameters, there is an open set of spin parameters in the second rotation
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Fig. 5.1 Regions in phase space for which Myers-Perry black holes exist in 5D (left) and 6D
(right) [99]. In 6D, singly spinning black holes can rotate arbitrarily fast.

plane for which black holes exist. In this sense, Myers-Perry black holes with arbitrarily large
angular momentum in one rotation plane can be considered generic. However, as we will see
in the next section, there is a dynamic upper bound on the angular momentum parameter,
above which the black hole becomes unstable.

5.1.1 (In-)stability of Myers-Perry black holes

In 5D, there are conflicting results for the stability of Myers-Perry black holes. Ref. [25]
found an axisymmetry-breaking instability for spin parameters a ≥ 0.88

√
µ in their non-

linear numerical relativity simulations. However, four years later, Ref. [27] performed a
linear stability analysis that showed no evidence for an instability in 5D. This is particularly
puzzling because the authors of Ref. [25] also used exactly the same code and methodology
in D ≥ 6 [26], and in this setting the linear results in Ref. [27] were in good agreement.
Therefore, Ref. [27] suggested that the instability in 5D may only be a non-linear effect.

In D ≥ 6, Ref. [26] found an axisymmetry-breaking instability, the bar-mode instability,
for sufficiently rapidly rotating black holes. Their simulations showed that the bar-mode
instability causes the black hole to become more and more elongated in the rotation plane.
This causes it to radiate angular momentum until it rotates slowly enough to be stable. Thus,
in the regime that was simulated in Ref. [26], the end point is another Myers-Perry black hole
albeit with a much smaller angular momentum parameter. This instability can be interpreted
as a dynamical upper bound on the angular momentum parameter: no stable Myers-Perry
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black holes exist above the angular momentum parameter at which the bar mode instability
sets in. These findings were confirmed and studied in detail in the linear regime in Ref. [27].

In addition to the bar-mode instability, there is an axisymmetric instability in D ≥ 6, called
the ultraspinning instability [23, 172]. The existence of the ultraspinning instability was
already conjectured in Ref. [23] for the following reason: as argued above, Myers-Perry
black holes can rotate arbitrarily fast in D ≥ 6. As the rotation parameter is increased, they
become increasingly flattened. To see this, note that for large a and fixed mass the horizon
radius is given by

rH ≈
(

µ

a2

) 1
D−5 ≪ a. (5.4)

The thickness of the black hole can be measured using the areal radius of the transverse
sphere, r⊥D−4. Ref. [23] characterises the extent of the black hole in the rotation plane using
the areal radius of the horizon at a fixed point in the transverse sphere, r∥

(2). Using (5.4) and
the metric (5.1), we find

r⊥(D−4) = rH ≪ r∥
(2) =

√
r2

H +a2 ≈ a. (5.5)

Thus, at high rotation parameters the black hole becomes increasingly stretched in the
rotation plane but flattened in the transverse direction. Ref. [23] shows that close to the
axis of rotation, the geometry of this highly flattened black hole approaches that of a black
membrane. This led the authors to conjecture that ultraspinning Myers-Perry black holes
undergo the GL instability just like black membranes. This intuition was confirmed in Ref.
[172] using a numerical linear perturbation analysis. Due to its similarity to the GL instability
of black membranes, it is possible that the ultraspinning instability leads to the pinch-off of
the black hole.

In this chapter, we present fully non-linear numerical evolution of rapidly rotating Myers-
Perry black holes in 5D and 6D. In D = 5, we present our results for the dynamics up to
a = 0.89

√
µ , which is comfortably in the regime where Refs. [25, 27] reported potentially

conflicting results. While many of the black rings in 5D we considered in the previous chapter
collapsed to a Myers-Perry black hole, the angular momentum was never high enough to be
in the relevant regime.

In D = 6, we present a detailed study of the ultraspinning instability in the range 1.5 ≤
a/µ

1
3 ≤ 2.0. The first (ring-shaped) unstable mode sets in at a/µ

1
3 = 1.572 and the second

(Saturn-shaped) mode sets in at a/µ
1
3 = 1.849 [24]. Thus, our simulations comfortably cover

the regime in which both ring- and Saturn-shaped modes are present. Since the ultraspinning
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instability is axisymmetric, simulations of it can be reduced to a system of PDEs in 2+1
dimensions. This makes them much cheaper computationally than the simulations of black
rings in the previous chapter and allows us to study the horizon geometry and dynamics in
great detail. Finally, we report intriguing early results of ongoing work for non-axisymmetric
instabilities in 6D with angular momentum up to a = 1.5µ

1
3 . This is larger than the range of

angular momenta considered in Ref. [26] (a ≲ 1.1µ
1
3 ), and leads to a very surprising new

behaviour.

5.1.2 6D phase diagram and bumpy black holes

We have already considered the phase diagram of 5D black hole solutions in the previous
chapter in Fig. 4.1. Let us now do the same for D = 6. Fig. 5.2 displays a sketch of the phase
diagram of all known asymptotically flat, stationary single black hole solutions rotating in
a single rotational plane in 6D. As argued above, 6D Myers-Perry black holes can rotate
arbitrarily fast (red curve in Fig. 5.2) and therefore extend to infinite angular momentum in
the phase diagram, with ever decreasing horizon area. Just like in 5D, there are two branches
of black ring solutions in 6D [97], thin and fat rings. A few selected multi-black hole
solutions are added for reference (dotted lines). The solutions that were included are special
in that they are in thermodynamic equilibrium. This is the case if the horizon temperature
and angular velocity are the same for all parts of the horizon. Without this requirement,
multi-black hole solutions such as black Saturns cover the strip aH < aSchw

H , where aSchw.
H is

the dimensionless area parameter of the Schwarzschild-Tangherlini black hole.

The onset of the ultraspinning instability is related to the emergence of new branches
of stationary black hole solutions, called bumpy black holes. Bumpy black holes were
constructed numerically in Refs. [173, 174]. They come in several families of two branches,
(+)i and (−)i, where i determines how many zeros the deformation has in the radial direction
of the rotational plane. For example, (+)1 bumpy black holes (orange curve in Fig. 5.2)
have one central dent, (−)1 (black curve) one central bulge, (+)2 one central bulge and one
ring-shaped dent, (−)2 one central dent and a ring-shaped bulge, etc. The (−)i branches all
have lower entropy than the corresponding Myers-Perry black hole of the same mass and
angular momentum and end in a singular solution, presumably without connecting to any
other stationary black hole solution [173, 174]. The (+)i branches have very interesting
behaviour: their entropy is initially higher than that of the corresponding Myers-Perry black
hole but only in a very small region of the parameter space. Thereafter, the curve turns
around in a cusp and connects to the fat branch of black rings for i = 1, and corresponding
equilibrium multi-black hole solutions for higher modes. The fact that the (+)i families of
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Fig. 5.2 Left: Sketch of the phase diagram of singly-spinning 6D black hole solutions that are
in thermal equilibrium. This is only a sketch and heavily exaggerates some of the important
features, which would otherwise be hard to see in one plot. Plots with numerical data can be
found in Refs. [173, 174]. The sketch was taken partly from Fig. 6 in Ref. [167], but has
been updated with the most recent insights obtained in Refs. [173, 174]. Right: Zoom of
the region where the (+)1 (orange) and the (−)1 (black) bumpy black holes branch off the
Myers-Perry solution.

bumpy black holes have higher entropy when they branch off from the curve of Myers-Perry
solutions indicates that the latter must develop an instability at these points: the ultraspinning
instability.

5.2 Stability in 5D

As outlined in the introduction, there are conflicting results on the stability of Myers-Perry
black holes to axisymmetry-breaking perturbations in 5D. In this section, we present fully
non-linear numerical evolutions of Myers-Perry black holes in D = 5. We present these
results separately from those in 6D in the next section since we changed our numerical
methods in 5D to follow Ref. [25], which reported an instability for a ≥ 0.88

√
µ , more

closely. The only major difference is that we use CCZ4 whereas Ref. [25] used BSSN.
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5.2.1 Numerical methods

We solve the vacuum CCZ4 equations with damping parameters κ1 = 0.1, κ2 = 0, and the
redefinition κ1 → κ1/α , which enables use to choose κ3 = 1. To make the evolution feasible,
we impose a U(1) symmetry in the transverse plane using the modified Cartoon method. Ref.
[25] used precisely the same symmetry reduction. As gauge evolution equations, we choose
1+ log slicing (3.5) with coefficient ηα = 1.5 and the standard second-order Gamma-driver
shift condition (1.31) with parameters η = µ− 1

2 and F = 1/3 and no advection terms. We use
a Cartesian grid with fourth order finite difference stencils and a fourth order Runge-Kutta
integration scheme with Courant factor 0.4. The resolution in the wave extraction zone is
0.7

√
µ and we add 8 levels with refinement ratio 2 : 1 to ensure that the horizon is covered

by at least 60 points throughout the evolution. To suppress high frequency modes in the
simulation, we add Kreiss-Oliger dissipation with coefficient σ = 0.1.

As initial data, we use the metric (5.1) with a change to quasi-isotropic radial coordinates
defined by

r = ρ +
r2

H
4ρ

. (5.6)

We try to excite a non-axisymmetric instability by perturbing the conformal factor with an
m = 2 mode

χ = χ0

(
1+A

x2 − y2

µ
exp
[
− ρ2

ρ2
H

])
, (5.7)

where χ0 is the value of the unperturbed conformal factor and A is a parameter controlling
the amplitude of the perturbation. To observe the behaviour of the modes that are excited by
(5.7), we follow Ref. [25] and extract gravitational waves by monitoring the quantity

h+ =
γ̃xx − γ̃yy

2

(
z√
µ

) 3
2

(5.8)

on the z-axis, similarly to (4.11) for black rings in the previous chapter. As reported by Ref.
[25], the perturbation (5.7) should lead to an instability that is visible in the quantity h+ for
Myers-Perry black holes with spin parameter a ≥ 0.88

√
µ .



110 End point of Myers-Perry instabilities

−6

−4

−2

0

2

4

6

0 10 20 30 40 50 60 70 80

h
+
×

1
04

tret /
√

µ

Fig. 5.3 Results (red dots) for the gravitational wave signal h+ for a 5D Myers-Perry black
hole with a = 1.89

√
µ and a bar-mode perturbation. The black dotted line shows a fit with

parameters (5.9). Here tret = t − r, where r is the extraction radius.

5.2.2 Results

For the entire range of spin parameters we could investigate, a ≤ 0.89
√

µ , we find that
Myers-Perry black holes are stable. Fig. 5.3 shows the wave data for a = 0.89

√
µ with

perturbation amplitude A = 0.2. It exhibits a perfect exponential ring down with frequency
and growth rate

ℜ(ω)rH = 0.58±0.02 and ℑ(ω)rH =−0.0159±0.0011, (5.9)

which is in good agreement with the results of Ref. [27]. We find no evidence for a non-linear
instability in this regime.

Since the branch of 5D Myers-Perry black holes ends in a naked singularity for a =
√

µ

(see the phase diagram in Fig. 4.1), it is not unreasonable to speculate that there might be an
instability as this naked singularity is approached. However, Ref. [27] considered spins up to
a = 0.97

√
µ and found no evidence for a linear instability. Our results indicate that, contrary

to the results of Ref. [25], Myers-Perry black holes for a ≤ 0.89
√

µ remain stable even if
non-linear effects are taken into account. This still leaves the possibility of linear instabilities
for a > 0.97

√
µ or non-linear instabilities for a > 0.89

√
µ . However, very different methods

will be required to study this regime.
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5.3 Instabilities in 6D

In this section, we report on numerical simulations of 6D Myers-Perry black holes. We
present a comprehensive study of the ultraspinning instability, and preliminary results for
axisymmetry-breaking instabilities.

5.3.1 Numerical methods

We use the GRChombo code to study the instabilities of rapidly rotating Myers-Perry black
holes in 6D by performing fully non-linear numerical evolutions. Both the bar-mode and the
ultraspinning instability lead to the creation of new, smaller length scales in regions that are
hard to predict a-priori, but GRCHOMBO’s adaptive mesh refinement allows us to resolve
these features accurately.

We use Cartesian coordinates such that the singly-spinning black hole rotates in the x− y
plane. To make the simulations computationally feasible, we impose an SO(3) symmetry
in the transverse directions using the modified Cartoon method. Furthermore, for the study
of the ultraspinning instability, which is axisymmetric, we also impose a U(1) symmetry in
the rotation plane. The implications of these symmetry assumptions on the genericity of our
results are discussed in section 5.3.5. As required by the modified Cartoon method, we impose
even or odd boundary conditions at z = 0. In addition, for the study of the ultraspinning
instability with U(1) symmetry even or odd boundary conditions are also imposed at x = 0.
Our domain is periodic in all other directions, but so large that the boundary never comes
into causal contact with the black hole during the evolution.

We discretise the equations on a rectangular mesh, calculate spatial derivatives using fourth-
order finite difference stencils, and integrate in time using the explicit fourth order Runge-
Kutta scheme. The resolution on the coarsest level is 0.35µ

1
3 and we keep adding new

refinement levels so that the apparent horizon is covered by at least 57 points at all times. To
reach the final frame in Fig. 5.7, we needed 22 levels in total. Due to this very deep mesh
hierarchy, it is no longer enough to write checkpoint files at every coarse time step. We
therefore checkpoint at intermediate steps, storing time interpolation coefficients as described
in section 2.2.1. The convergence tests presented in the appendix to this chapter indicate
that our results converge with third order. This is not unexpected, since we use fourth order
discretisation but the interpolation at mesh boundaries reduces the convergence order of the
code slightly.
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We use the CCZ4 evolution equations with damping parameters κ1 = 0.5 and κ2 = 0. This
large choice of the damping parameters (compared to κ1 = 0.1 used for rings in the previous
chapter) was necessary to keep the black hole parameters constant throughout the evolution.
With less aggressive constraint damping, we found that constraint violating modes increased
the mass of the black hole by a few percent over the course of the evolution. This would
have made a quantitative analysis of the horizon geometry impossible and could even have
changed the qualitative behaviour in extreme cases.

We evolve the lapse using the 1+ log slicing condition (3.5) with advection terms and
coefficient ηα = 1.5. Due to the very large values of Γ̂i in our initial data, we use the
modified Gamma-driver shift condition (3.2) with advection terms, F = 0.6, η = µ

− 1
3 , and

f (t,xi) = exp

[
−
(

δ1
r2

H
r2 +δ2

)
t2

µ
2

D−3

]
, (5.10)

where rH is the location of the horizon, and δ1 and δ2 are two dimensionless parameters that
we chose to be 0.2 and 0.075 respectively. As discussed in section 3.2, this shift condition
drives the system to a gauge that is much more suitable for numerical evolution and for
adding the perturbation. The purpose of the first term in the exponential in (5.10) is to speed
up the gauge adjustment deep inside the apparent horizon, where the initial values of Γ̂i are
large and constraint violations resulting from violent gauge adjustment do not matter. Since
GRCHOMBO is cell-centered, (5.10) is never evaluated at r = 0, so that there are no problems
with division by zero. To select initial conditions for the gauge evolution, we follow the
discussion in section 3.2 and choose α = χ and β i = χ β i

MP, where β i
MP is the analytic shift

obtained from (5.1) and χ denotes the conformal factor.

Similar to the simulations of black rings in the previous chapter, puncture gauge is not
sufficient to keep the numerical evolution inside the horizon stable. We, therefore, add a
diffusion term to our equations as described in section 3.3 with 0.01 ≤ χc ≤ 0.02, and use
the turduckening method [133, 134] to regularise the coordinate singularity in our initial data
inside a region of coordinate radius of 5% of the horizon radius.

Initial data

To use the singly-spinning Myers-Perry metric in the form (5.1) as initial condition of
puncture evolution, we first have to transform to coordinates in which constant-time slices
contain no physical singularity. We achieve this by defining a new quasi-radial coordinate, ρ ,
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through

r = ρ

(
1+

1
4

[
rH

ρ

]D−3
) 2

D−3

, (5.11)

where rH is the horizon radius. The transformation (5.11) is the standard change to isotropic
coordinates for the Schwarzschild-Tangherlini black hole. For Myers-Perry, it no longer leads
to isotropic coordinates, but this does not cause any problems for numerical evolution. What
matters is that constant-time slices of the metric (5.1) written in the coordinate ρ contain
no physical singularities, only a coordinate singularity at ρ = 0. They are smooth on the
horizon, which is located at ρH = rH/41/(D−3).

Even with the coordinate transformation above, the metric (5.1) is not ideal as a starting
point for numerical evolution, as it uses a heavily skewed coordinate system. In particular,
the horizon lies at constant ρ = ρH even though Myers-Perry black holes are highly flattened
by their rotation. This is bad from a numerical point of view, as it leads to strong gradients
in some regions and smaller gradients in others, requiring complicated regions of higher
refinement. Furthermore, the discrepancy between the shape of the horizon on the numerical
grid and its physical shape makes it harder to implement a perturbation which excites the
ultraspinning instability. To solve this problem, we use our modified Gamma-Driver to
drive the system to a more suitable gauge first, and only perturb the black hole after gauge
adjustment. We outline the details of this procedure below.

We start the evolution from the metric (5.1) with quasi-radial coordinate (5.11) and evolve the
unperturbed black hole until the gauge has settled down completely. The timescale over which
this happens depends on the choice of δ1 and δ2 in (5.10), but was never larger than 10µ

1
3 .

Our shift condition (3.2) drives the system towards coordinates for which Γ̂i = 0. In this
gauge, the shape of the horizon roughly matches its physical shape: the black hole becomes
highly flattened in the rotational plane. For every simulation, we verify that there was no
physical evolution during the short gauge adjustment phase by monitoring the properties of
the black hole, most importantly, its mass, horizon area, and thickness.

Once the gauge evolution has settled, we trigger the ultraspinning instability by perturbing
the conformal factor via

χ = χ0

{
1+AJ0

[
j0,k sin

(
π

2 σ
)]

exp
[
−
(

χ0
χH

− χH
χ0

)2
]}

, (5.12)

where A is the amplitude of the perturbation, χ0 is the unperturbed conformal factor, χH is
the value of the unperturbed conformal factor on the horizon, J0 is the Bessel function of
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the first kind, j0,k is the kth zero of J0, and σ = min
(√

x2 + y2/R̃ ,1
)

with a parameter R̃
that determines the extent of the deformation in the plane of rotation. Since χ is roughly
constant on the flat portion of the horizon, the exponential term in (5.12) ensures that the
perturbation is localised on the horizon. While (5.12) does not explicitly decay to zero at
infinity since χ only asymptotes to one, it very quickly decays to a value that is too small to
have any influence on the numerical evolution or the numerical results for the mass of the
spacetime. The term involving the Bessel function gives the perturbation the correct shape
close to the axis of rotation, where J0 captures the unstable mode reasonably accurately [23].
The index k (5.12) determines the shape of the perturbation: k = 1 gives the perturbation a
ring shape, k = 2 a Saturn shape, etc.

Our perturbation of χ introduces constraint violations, but they are small and depend linearly
on the perturbation amplitude. Furthermore, they decay rapidly due to the CCZ4 constraint
damping terms. Once the system has been brought back onto the constraint surface, we check
that the black hole parameters differ by less than 1% from those of the unperturbed black
hole.

5.3.2 Analysis methods

Apparent horizon

To study the geometry of the Myers-Perry black hole as it undergoes the ultraspinning
instability, we monitor the apparent horizon. Most traditional methods for finding apparent
horizons assume that it can be defined as the level set of a function (see Ref. [175]). For a
black hole of spherical topology, one would typically specify the apparent horizon location as
r = R(θ) (assuming axisymmetry). However, this method is unsuitable for the ultraspinning
instability since R(θ) fails to be a single-valued function (Fig. 5.7). An alternative approach
would be to specify the apparent horizon location in terms of the Cartesian coordinate z as a
function of the cylindrical radius, z = Z (rS1). However, since the radial extent of the black
hole in the rotation plane is not fixed, it is hard to specify appropriate boundary conditions at
the outer edge of the apparent horizon.

To solve this problem, we consider the apparent horizon as a general parametric surface
(rS1(u),z(u)), where u is the parameter and we are still assuming axisymmetry. To be able to
construct a well-posed system, we have to specify a gauge condition for the parameter u. We
found that generalised harmonic gauge with respect to the induced metric on the apparent
horizon works well. This gauge condition, together with the equation that is obtained by
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setting the expansion of the surface to zero, forms a system of elliptic PDEs, which we can
solve for z(u) and rS1(u). The technical details of this approach can be found in Ref. [163].
In theory, this method can be extended to allow non-axisymmetric shapes by introducing
another parameter. This would enable us to find the very complicated horizon shapes we will
encounter for axisymmetry-breaking instabilities towards the end of this chapter. However,
we have not yet been able to find a method that converges reliably in these settings. This is
work in progress.

Embedding diagrams

To visualise the shape of the apparent horizon as it undergoes the ultraspinning instability,
we follow Refs. [174, 28] and embed constant-φ slices of the apparent horizon into four-
dimensional Euclidean space with metric

ds2
E4 = dU2 +dZ2 +Z2dΩ

2
(2). (5.13)

By our symmetry assumptions, the metric on the φ = 0 slice of the apparent horizon is

ds2
φ=0 =

(
gxx +2gxz z′(x)+gzz z′(x)2)dx2 + z(x)2gww dΩ

2
(2), (5.14)

where z(x) defines the location of the apparent horizon. Embedding this φ = 0 slice of
the horizon into E4 requires finding a parametrised surface (U(x),Z(x)) in Euclidean space
which has metric (5.14). By comparing coefficients of dΩ2

(2), we immediately see that

Z =
√

gwwz2, (5.15)

which by comparing dx2 terms implies that(
dU
dx

)2

= gxx +2gxz z′+gzz z′2 − z′2 gww − zz′ g′ww − z2 g′2ww
gww

. (5.16)

In our simulations, we found that the right-hand-side of the above equation was always
positive so that we could take the square root and integrate it numerically to find U(x).
Fig. 5.4 shows the embedding diagram for an unperturbed Myers-Perry black hole with
a = 1.7µ

1
3 . This very clearly shows how flattened the horizon is due to the rotation.

It is important to bear in mind that the embedding above is done for a constant-φ slice and,
therefore, loses all information about the length in the φ direction. This means that U is
not a good measure for the physical radius of the S1 in the plane of rotation, which is given
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Fig. 5.4 Embedding of a constant-φ slice of the apparent horizon into E4 for a 6D Myers-Perry
black hole with a = 1.7µ
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Fig. 5.5 Plot of the areal radius of the transverse sphere versus the S1 radius for a 6D
Myers-Perry black hole with a = 1.7µ
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3 . Hatted quantities have been rescaled by µ
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by
√

x2gyy. Fig. 5.5 shows the same black hole as above but now as a plot of S2 radius,
Z =

√
z2gww, versus the S1 radius. The resulting picture looks much more extreme, but lacks

all information about the arc length along the apparent horizon. We will use the S1 radius to
check whether the black rings that arise during the ultraspinning instability are balanced. In
particular, for a given mass and S1 radius, there is a precise value for the angular momentum
for which the ring can be in equilibrium.

Physical quantities

To monitor the mass and angular momentum of the black hole throughout the evolution, we
measure the Komar mass and angular momentum. The former is defined for spacetimes with
a timelike Killing vector field, the latter for all spacetimes with a rotational symmetry. Since
we only work with vacuum spacetimes, we may calculate them as integrals on the horizon,
H ,

M =
1

12πG

∫
H

∗dξ and J =− 1
16πG

∫
H

∗dϖ , (5.17)

where ξ and ϖ are the one forms dual to the timelike and the rotational killing vector field
respectively. While we explicitly preserve the symmetry in the rotation plane, we never have
exact time-translation symmetry. In theory, this prevents us from using the Komar mass.
In practice, our evolution has quasi-stationary regimes during which the time-dependence
is very slow compared to the length scale associated to the horizon. We find that in these
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regimes the Komar mass settles down to an approximately stationary value, which we use as
an estimate for the mass of the black hole.

It is very useful that Komar mass and angular momentum can be calculated as integrals on
the horizon: it allows us to estimate the contributions of various parts of the black hole to the
overall mass or angular momentum. In particular, the ultraspinning instability leads to the
separation of the black hole into distinct quasi-stationary parts. An example of this can be
seen in Fig. 5.7, which shows the black hole breaking into several black rings. Since these
black rings are almost stationary, we can estimate not only their angular momentum but also
their mass using (5.17).

Any two quantities out of mass, angular momentum, S1 radius, and horizon area define a
Myers-Perry black hole uniquely. In the case of black rings, they either define a unique
solution or a unique pair of a thin and a fat ring. Thus, if all these quantities agree with the
values for the Myers-Perry metric or the black ring, we can be confident that the evolution
has indeed settled down to one of these solutions.

5.3.3 Results: Ultraspinning instability

Fig. 5.7 displays several snapshots1 from the evolution of the ultraspinning instability for
a = 1.7µ

1
3 . They show an embedding of a constant-φ slice of the apparent horizon into

E4. At this value of the spin parameter, only the “ring-shaped” mode is present. Indeed,
a very large ring forms quickly at the outermost edge of the horizon, connected by a thin
membrane section in the middle. Over the whole range of angular momentum parameters
we have investigated (1.5 ≤ a/µ

1
3 ≤ 2.0), we did not find any strong qualitative difference

in the evolution of the ultraspinning instability. In particular, even though the second mode,
which is “Saturn-shaped”, sets in at a = 1.849µ

1
3 , the ring mode grows fastest and completely

dominates the non-linear evolution. This is the case, even if we perturb with a “Saturn-shaped”
perturbation by setting k = 2 in (5.12).

Since the growth rates of the ultraspinning instability are not currently available in the
literature, we estimate them by fitting the thickness of the black hole at the centre with an
exponentially growing perturbation of the form

Z(x = 0, t) = Z0

(
1−Beℑϖ t

)
, (5.18)

1Videos can be found at http://www.grchombo.org.

http://www.grchombo.org
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Fig. 5.6 Growth of the “ring-shaped” perturbation of an ultraspinning Myers-Perry black
hole with a = 1.7µ

1
3 . Here t̂ = t/µ

1
3 . The dotted black line shows a fit with the parameters

Z0 = 0.33µ
1
3 , ℑϖ = 0.13µ

− 1
3 , and B = 0.0081.

a/µ
1
3 1.6 1.7 1.8 1.9 2.0

ℑϖ µ
1
3 0.020 0.130 0.213 0.262 0.299

Table 5.1 Growth rates of the first unstable mode. Error ranges are ±3% for a/µ
1
3 ≥ 1.7. For

a/µ
1
3 = 1.6, the growth rate is much smaller and therefore has a much larger fractional error

(around ±25%) associated with it.

where Z0, B, and ℑϖ are the quantities to be determined. We could have set Z0 = rH a priori,
but the constraint violating perturbation can change rH by up to 1% so that re-fitting Z0

increases the accuracy of the measured growth rate slightly. Fig. 5.6 shows an example of this
fit for a = 1.7µ

1
3 . Towards the beginning of the evolution, the logarithmic scale highlights

how the constraint violating perturbation affects the thickness at the centre and how the
CCZ4 constraint damping terms take the system back onto the constraint surface. Thereafter,
there is a long phase of exponential growth in the linear regime until non-linearities become
important towards the end of the evolution. The results for the growth rate obtained from this
fitting procedure are displayed in Tab. 5.1.

In our simulations, the outermost ring very quickly settles down to an almost stationary state.
However, in the final snapshot of Fig. 5.7 it is still rigidly expanding outwards in the plane of
rotation. Compared with the balanced black rings constructed numerically in Refs. [97, 173],
the radius and area of the outermost ring are still 7% below their target values, while the
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Fig. 5.7 Top: Embedding diagrams of the apparent horizon at different stages of the evolu-
tion of the ultraspinning instability of a Myers-Perry black hole with a/µ

1
3 = 1.7. Hatted

quantities have been rescaled by µ
1
3 . The structure of rings that form on the membrane in the

middle depends sensitively on the grid setting and is not convergent.

angular velocity is 15% above its target value. These results are consistent with conservation
of angular momentum: since for a thin ring the angular momentum scales as ΩR2, where Ω

and R are the angular velocity and the S1 radius of the ring respectively, Ω has to decrease by
roughly 15% to keep the angular momentum constant despite a 7% increase in R.

To estimate how much mass and angular momentum are contained within the outermost
ring, we calculate the corresponding Komar integrals (5.17) on the apparent horizon. As
discussed in section 5.3.2, the Komar mass is only meaningful once the system has settled
down to a steady state. However, towards the end of our simulation the calculated Komar
mass changes by less than 1%, indicating that the majority of the apparent horizon has settled
down sufficiently. For the entire range of spin parameters we have investigated, the outermost
ring accounts for 98–99% of the total mass and more than 99.99% of the angular momentum.
During the evolution of the ultraspinning instability, only a small amount of mass is radiated
(less than 2%). Angular momentum cannot be radiated due to our symmetry assumptions.

After the outermost large ring has formed, the region on the rotational plane inside the ring
remains connected by a black membrane that is 50 times thinner than the original black hole.
This black membrane is rotating and, therefore, locally boosted in the φ -direction. However,
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Fig. 5.8 Embedding diagrams of the apparent horizon at different stages of the evolution of
the ultraspinning instability of a Myers-Perry black hole with a/µ
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since the evolution of the ultraspinning instability takes place in the radial direction, this
orthogonal local boost does not affect the timescale of the instability. Furthermore, since the
transverse direction is flat, the evolution should be similar to the GL dynamics of a black
string in 5D. The portion of the apparent horizon that resembles a black membrane is long
and thin enough to be GL unstable and can accommodate many unstable modes. Similarly
to black strings, its subsequent evolution leads to a fractal structure of ever thinner rings
connected by ever thinner black membrane sections, which themselves undergo the GL
instability. In many cases, a black hole of spherical topology also forms in the centre.

While it is tempting to attribute the emergence of the central black hole to the presence of
the “Saturn” mode, we find no evidence that the two are related. In particular, initial data
with a < 1.849µ

1
3 can also give rise to a central bulge as can be seen in Fig. 5.8. Instead, the

structure of bulges that form on the membrane in the middle depends sensitively on the grid
setting and is not convergent. In particular, while we demonstrate convergence for properties
of the entire black hole, the first generation and the minimum membrane thickness in the
appendix to this chapter, the position of higher generation rings and the size of the central
bulge do not converge. Exactly the same behaviour was observed for black strings in Ref.
[33, 75]. The reason for this is that in the dispersion relation of the black string, two different
modes have the same growth rate, making the evolution very sensitive to small changes in the
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Fig. 5.9 Normalized spacetime Kretschmann invariant pulled back onto the apparent horizon.

initial data and the grid setting. We expect the membrane sections arising in our simulations
to behave similarly, especially since starting from the second generation, the membrane is
always thin enough to accommodate many unstable modes.

As evidence that the horizon has the geometry of concentric rings connected by membrane
sections, we evaluate the normalised spacetime Kretschmann invariant

K = RabcdRabcd Z4/12, (5.19)

on the apparent horizon, where Z is the areal radius of the transverse sphere. The normaliza-
tion is such that K = 1 for a black membrane and K = 6 for a 6D black string. The results
(Fig. 5.9) are in close agreement with K = 1 on the membrane sections and approach K = 6
on most of the fully formed rings, suggesting that they are well-approximated by stationary
black strings.

Higher generation rings differ from the outermost ring in that they are not balanced by
their rotation. Fig. 5.10 shows a plot of the angular velocity of zero angular momentum
geodesics on the apparent horizon versus the S1 radius. For all fully formed rings, including
the outermost one, the angular velocity is constant on the apparent horizon in agreement with
our claim that they are approximately stationary. For a thin ring to be balanced, it has to have
angular velocity [167]

Ω =
1√

D−3
1
R

+ O

((
ZAH

R

)2
)
, (5.20)

where R is the S1 radius of the ring and ZAH is the areal radius of the transverse sphere.
Comparing this condition to the data in Fig. 5.10, we see that higher generation rings do
not rotate fast enough to be balanced. In particular, rings that are closer to the axis of
rotation rotate more slowly than the outermost ring rather than faster as (5.20) would suggest.
Instead, higher generation rings are held in place by the tension of the surrounding membrane
sections.
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Fig. 5.10 Angular velocity of zero angular momentum geodesics on the apparent horizon.

The membrane that forms during the evolution of the ultraspinning instability lacks the
translational symmetry an unperturbed black string has. There are three reasons for this:
firstly, Myers-Perry black holes have compact horizons that do not wrap any topological
direction in spacetime. Thus, any self-similarity is broken near the edges of the black hole.
Secondly, in the early stages of the instability the radial extent of the black membrane sections
is of the same order of magnitude as their distance from the axis of rotation. As a result, the
inner and outer edge of the membrane sections have very different extent in the φ -direction,
breaking translation symmetry. Thirdly, Myers-Perry black holes are rotating. The resulting
centrifugal forces redistribute angular momentum outwards, so that the black membrane has
a non-uniform thickness from the outset (e.g. in the third snapshot in Fig. 5.7).

One of the pieces of evidence Ref. [33] used to show that black strings pinch off in finite
asymptotic time is that the time it takes to form a new generation decreases with a constant
factor. This analysis turns out to be much harder for Myers-Perry black holes. For one,
the aforementioned lack of translational symmetry causes different membrane sections to
evolve at different timescales, so that a specific generation occurs at different times along the
membrane. Furthermore, as argued above we cannot expect the structure and formation times
of higher generations to be a convergent feature of the simulations. This problem should
also be present for black strings, but as we will see below the ultraspinning instability gives
rise to membrane sections that are much thinner compared to their length so that they can fit
many more unstable modes. This makes the appearance of new generations more chaotic.

Having mentioned these two caveats, let us look at the formation times of new generations
close to the membrane section with minimal thickness. Tab. 5.2 lists the results for the
simulation displayed in Fig. 5.7 with spin parameter a= 1.7µ

1
3 . The data should be viewed as

a representative example of the evolution rather than the “correct” result since the formation
of new generations is chaotic. The table also includes the ratio between the radial extent of
the black membrane section, Li, and its thickness, Zi, after the formation of the ith generation.
The data indicate that the evolution of the ultraspinning instability is only qualitatively
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Gen. 1 2 3 4 5
ti/µ

1
3 31.8 36.45 36.78 36.916 36.952

Li/ZAH,i 540 530 370 510 > 370

Table 5.2 Properties of the generations. The ratio of length to thickness of the ith generation
membrane was measured just before the formation of the (i+1)th generation. The time it
takes to form the next generation decreases with factors 0.07, 0.41 and 0.26.

self-similar: while newly-formed membrane sections all undergo the GL instability, the time
between the formation of successive generations does not decrease with a universal factor,
even for later generations. Instead, for a/µ

1
3 = 1.7 we observe factors, Xi, which depend on

the generation and lie between 0.07 and 0.41. Since for all the resolutions we used the largest
factor we observed was Xmax ≪ 1, we can bound the pinch-off time by a geometric series

tc < t0 +(t1 − t0)∑
i

Xi < t0 +(t1 − t0)/(1−Xmax). (5.21)

While this upper bound is not sharp, it provides evidence that the black hole pinches off in
finite asymptotic time.

The data in Tab. 5.2 suggest that the ultraspinning instability approaches pinch-off much
faster than would be expected from the simulations of 5D black strings [33]. This is partly
due to the quick drop in formation times between generations at the beginning and partly
due to the membranes in higher generations being much thinner: the typical ratio Li/ZAH,i

between the length and the thickness of a membrane section varies between 300 and 600.
For the GL instability of black strings, this ratio is approximately 100 across all generations
[33]. Therefore, the membranes that form in the evolution of the ultraspinning instability are
more unstable, leading to a faster pinch-off time. Furthermore, they fit more unstable modes
so that the formation of new bulges is more chaotic.

Throughout the evolution of the ultraspinning instability, the small concentric rings that
form after the first generation move around significantly. This stretches some membrane
sections making them much thinner and more GL unstable. To quantify and explain this
movement, we calculate the cylindrical radial velocity dr/dt of null rays which co-rotate
with the black hole and track the movement of the apparent horizon in the z-direction. The
results (Fig. 5.11) paint a very consistent picture: the radial velocity on the horizon of the
outermost ring is constant, in agreement with our earlier observation that it is still rigidly
expanding. Near each ring, the radial velocity decreases or reverses completely, leading to a
build-up of mass. This explains the numerous sign changes around the thinnest point of the
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Fig. 5.11 Top: Cylindrical radial velocity ṙ ≡ dr/dt of a null ray moving with the apparent
horizon. Bottom: Zoom of the thinnest region. The arrows indicate the direction of the local
velocity of the rings and highlight that they are pulled towards the thicker membrane sections.

membrane, where many higher generation rings are present. Indeed, the radial velocity can
be used as an early indication of where the next ring is going to form: for example, in the
zoomed frame in Fig. 5.11 a new generation is forming near U = 0.24µ

1
3 .

At late times, Fig. 5.11 shows that the flow in the U < 1 region is unaffected by the pull
from the outermost ring. Instead, it is dominated by membrane tension and the gravitational
attraction to higher generation rings. As we discussed earlier, these higher generation
rings are not balanced by their rotation but held in place by the tension of the surrounding
membrane sections. For the 6D black membranes in our simulations, the tension in the
radial direction scales linearly with the thickness of the membrane at a fixed radius [167].
This means that higher generation rings always develop a radial velocity towards the thicker
membrane section, further stretching the thinner membrane. This effect is clearly visible in
Fig. 5.11 (bottom), and is large enough to change the width of a membrane section during
the development of a new generation by a significant fraction, causing it to undergo the GL
instability faster.

Since the radial extent of the black membrane sections becomes shorter and shorter compared
to their distance from the rotation axis as the instability progresses, it is tempting to expect
that approximate translational symmetry may be restored along this small membrane section.
This in turn could imply that the ultraspinning instability may approach a precisely self-
similar pattern as the instability progresses. However, our data indicate that this is not
the case: since the speed at which the GL instability takes place depends on the thickness
of the membrane, differences in thickness along the membrane are amplified not reduced.
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Furthermore, as we saw above, the small concentric rings that form after the first generation
are always pulled towards the thicker membrane section, stretching the thinner ones. Thus,
we do not expect the ultraspinning instability to approach a precisely self-similar pattern,
even at late times.

To obtain a precise value for the pinch-off time, we track the global minimum thickness
of the membrane, a robust convergent feature of our simulations (as we demonstrate in the
appendix to this chapter). Even though the dynamics of higher generation rings prevents the
formation of new generations from being self-similar, our results (Fig. 5.12) show that the
minimum thickness closely follows the scaling law

ZAH = κ(tc − t), (5.22)

similar to black strings [33, 75] and the Rayleigh-Plateau instability of fluid columns. By
performing a 2-parameter fit with (5.22) in Fig. 5.12, we can obtain values for the pinch-off
time tc and the dimensionless constant κ . The value for the latter, κ = (9.9±0.2)×10−3, is
universal in that it is the same for all of our runs and is independent of the rotation parameter
and initial data. While Fig. 5.12 shows the fit for the global minimum thickness, all local
minima exhibit the same scaling law behaviour, albeit with different pinch-off time.

The fact that the minimum thickness closely follows the scaling law (5.22) over almost three
orders of magnitude strongly supports our earlier conclusion that the black hole will pinch
off in finite asymptotic time, tc, giving rise to a naked singularity. Furthermore, we saw
earlier that K = 1 on membrane sections, with K defined as in (5.19). Thus, as the thickness
decreases, the Kretschmann scalar diverges as

RabcdRabcd
∝

1
(tc − t)4 (5.23)

so that the spacetime just outside the horizon develops arbitrarily large curvature within finite
asymptotic time.

Let us finally speculate about the end point of the evolution. There are two ways to motivate
this question: firstly, we can restrict to classical general relativity and ask which configuration
the system is evolving towards, even though it may not be possible to reach this end point
within classical general relativity. Secondly, we can allow quantum gravity effects and
assume that they provide a mechanism for the black hole to pinch off without affecting
the rest of the black hole substantially. This is not an unreasonable assumption since the
evolution enters the quantum gravity regime only in a very small region of spacetime that
contains very little mass. It would also be analogous to the Rayleigh-Plateau instability in
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Fig. 5.12 Evolution of the thickness of the apparent horizon at several representative locations
for a/µ

1
3 = 1.7.

fluid dynamics, for which molecular effects allow the pinch-off of the fluid column without
affecting the macroscopic behaviour.

The plot of radial velocities (Fig. 5.11) suggests that after pinch-off the outermost ring will
settle down to its balanced configuration, absorbing the nearby (U ≳ 1) membrane section.
As discussed earlier, the angular velocity in the central region of the membrane is too low
to allow rings to be balanced. Thus, rings and membrane sections closer to the centre will
collapse into a spherical black hole with negligible angular momentum. Therefore, in our
axisymmetric setting the end point will be a black Saturn in 6D. However, it will not be
the Saturn that maximizes the entropy for a given final mass and angular momentum: the
latter would consist of a central black hole carrying all the mass surrounded by a thin ring
that accounts for all the angular momentum [176]. We find that as a/µ

1
3 is increased, the

outermost ring contains a slightly lower fraction of the overall mass. This raises the possibility
that the maximum entropy configuration is approached for very high spins. However, over
the range of spin parameters we could investigate, the differences in the fraction of mass
contained in the outermost ring were too small to substantiate this claim.

5.3.4 Results: Non-axisymmetric instabilities

In this section, we present early results of an ongoing project to investigate axisymmetry-
breaking instabilities of Myers-Perry black holes in 6D. The range a ≲ 1.1µ

1
3 has already
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been investigated with fully non-linear simulations in Ref. [26], and a linearised analysis
in Ref. [27]. The numerical evolution indicated that the black holes become unstable to a
bar-mode instability at a = 0.74µ

1
3 , and that the end point of this instability is a Myers-Perry

black hole with much lower angular momentum. Our goal is to extend these simulations to
spin parameters above 1.6µ

1
3 where the ultraspinning instability becomes important.

We use exactly the same numerical methods as we used for the ultraspinning instability in
the previous section. However, we do not impose the U(1) symmetry in the rotation plane
and we add a small bar-mode perturbation to the conformal factor using

χ = χ0

(
1+A

x2 − y2

µ
2
3

exp
[
− ρ2

ρ2
H

])
, (5.24)

where χ0 is the unperturbed conformal factor, A is the perturbation amplitude, and ρ is the
isotropic radial coordinate defined in (5.11). To measure the growth rate of the m = 2 mode
of the instability, we extract the gravitational wave signal by monitoring the quantity h+
(5.8), rescaled by µ

1
3 rather than

√
µ .

Fig. 5.13 shows the evolution of the apparent horizon for a = 1.3µ
1
3 . The black hole becomes

extremely elongated and thin. This strong breaking of axisymmetry allows it to radiate
angular momentum efficiently, until it has reached a regime where Myers-Perry black holes
are stable so that it can settle down. The same behaviour can be seen in the gravitational wave
data (Fig. 5.14), which exhibits exponential growth initially and a very slow quasi-normal
ring-down towards the end. Fitting the gravitational wave data with exponentially growing
and exponentially decaying sinusoids, we obtain the following results for the frequency and
growth rate

Growth: ℜϖrH = 0.445±0.005, ℑϖrH = 0.120±0.015, (5.25)

Decay: ℜϖrH = 0.90±0.05, ℑϖrH =−0.04±0.01. (5.26)

The errors in the decay parameters are significantly larger, since we do not only have to
perform the fit, but also have to estimate the final value of rH from the horizon data. Since
a = 1.3µ

1
3 is beyond the range considered in Refs. [26, 27], we cannot compare the results

for the initial growth. However, the results for the decay are in good agreement with Ref.
[27].

The extreme horizon shapes that arise during the evolution of the bar-mode instability for
a= 1.3µ

1
3 suggest that the black hole could become so elongated that it becomes GL unstable.

This was was already postulated in Ref. [26], in which the authors estimate that for a≳ 1.6µ
1
3
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Fig. 5.13 Snapshots of the apparent horizon taken from the evolution of a 6D Myers-Perry
black hole with a = 1.3µ

1
3 . The black hole is undergoing the bar-mode instability.

0 10 20 30 40 50 60

-0.15
-0.10
-0.05

0.00
0.05
0.10
0.15

Fig. 5.14 Gravitational wave signal h+ for a Myers-Perry black hole with a = 1.3µ
1
3 undergo-

ing the bar-mode instability. The dashed black line shows an exponentially growing sinusoid
with fitted parameters (5.25); the dashed blue line shows a decay with fitted parameters
(5.26).
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Fig. 5.15 Snapshots of the χ = 0.2 contour taken from the evolution of a 6D Myers-Perry
black hole with a = 1.5µ

1
3 . The black hole undergoes an elastic instability with m = 4.

gravitational wave emission is not strong enough to stop the growth of the bar-mode before
it causes the black hole to pinch off. However, we find that before a reaches this regime,
higher m modes start to dominate. Fig. 5.15 shows the instability of a Myers-Perry black hole
with a = 1.5µ

1
3 . It only shows χ-contours since our apparent horizon finder is currently not

general enough to find the complicated shapes that arise during the instability. However, as
argued in the previous chapter, χ-contours capture the qualitative behaviour of the apparent
horizon very well.

Even though we perturb the black hole with an m = 2 mode (5.24) initially, the evolution
in Fig. 5.15 is clearly dominated by an m = 4 mode. This behaviour is very similar to what
we found for black rings in 5D, for which higher m modes start to dominate as the thickness
is decreased. The m = 4 mode gives the black hole the shape of a star whose tips are so far
away from the centre that the gravitational attraction to the centre can no longer balance the
centrifugal force. As a result, while the central portion settles down to a Myers-Perry black
hole with lower angular momentum, the tips keep expanding outwards, becoming more and
more elongated.

We have not yet been able to simulate the spacetime beyond the final frame of Fig. 5.15 with
sufficiently high resolution, but this frame contains enough information to be able to predict
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the subsequent behaviour. The black string portions that have formed on all four tips will
be stretched further and further outwards, until they become GL unstable and detach from
the central black hole in finite asymptotic time. We are currently working on simulations
that investigate this process in detail and an apparent horizon finder that can capture the very
complicated shapes that arise during the instability.

5.3.5 Discussion

We have studied the ultraspinning instability of rapidly rotating Myers-Perry black holes
in 6D with spin parameters in the range 1.5 ≤ a/µ

1
3 ≤ 2.0. We find that the ultraspinning

instability causes the black hole to tear apart into multiple concentric rings. Unlike the
evolution of black strings in Ref. [33], our results do not show a quantitative self-similarity:
while the membrane forms a repeated structure of rings connected by ever thinner membrane
sections, the times between generations do not decrease with a constant factor. However,
similarly to black strings, the minimum membrane thickness very closely follows a scaling
law (5.22), with a universal constant κ . Thus, we conclude that this scaling law fundamentally
underlies the approach to pinch-off in a GL-type instability.

The imposition of the U(1) symmetry made it possible for us to study the approach to
pinch-off in detail but it also made our findings less generic since Myers-Perry black holes
are unstable to non-axisymmetric modes in D ≥ 6 [26, 27]. For this reason, we have recently
extended our study to non-axisymetric settings. We find that for a ≲ 1.3µ

1
3 the m = 2 mode

dominates: the black hole becomes very elongated and radiates angular momentum until it
has reached a stable configuration. For a ≳ 1.5, higher m modes dominate and give the black
hole m spikes, which stretch outwards and eventually detach from the central black hole in a
GL-type instability.

We find that for a ≳ 1.5, all known instabilities of Myers-Perry black holes lead to the black
hole pinching off in finite asymptotic time in a GL-type process. However, exactly as for
black rings and black strings, there is a chance that the curvature singularity is formed on the
horizon and stays on the horizon so that future null infinity is still complete. This will be
discussed in more detail in the next chapter. However, our detailed study of the approach to
the pinch-off in the ultraspinning instability strongly suggests that the Kretschmann scalar
just outside the horizon becomes arbitrarily large. This is an indication that quantum gravity
effects may become important in the causal past of future null infinity.

Even though the non-axisymmetric instabilities of Myers-Perry black holes have larger
growth rate than the ultraspinning instability, at least in the regime which we could study
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in our work (a ≲ 2.0µ
1
3 ), the latter is not completely irrelevant. For sufficiently suppressed

axisymmetry breaking modes in the initial data, the ultraspinning instability should have
enough time to form the outermost ring. At this point, the membrane inside becomes thinner
by a factor of 50 so that the axisymmetric instability of the membrane should be an order of
magnitude faster than the axisymmetry-breaking instability of the outermost ring.

A potential caveat to the genericity of our conclusion is that Myers-Perry black holes can ro-
tate in more than one rotation plane and that for rotation in several planes the spin parameters
can no longer be arbitrarily large. However, for each angular momentum parameter j1 in one
rotation plane, there is an open set of values for the other spin parameters such that a black
hole exists (see Fig. 5.1). In this sense, the results presented in this chapter should be generic.

Our results indicate that the factor κ in the scaling law (5.22) is universal in that it does not
depend on the spin of the black hole or the initial perturbation. Furthermore, the results for
rings in Fig. 4.14 are consistent with exactly the same value for κ . While this is intriguing,
it has to be interpreted with care since κ is slicing-dependent. It would be very interesting
to formulate a slicing-independent statement so that our results can be compared to those
of Ref. [33], which uses GHCs. It might even be possible to make analytic predictions of
the value of κ: for the Rayleigh-Plateau instability of fluid columns, Ref. [177, 178] could
derive the scaling law (5.22) analytically. It would be very interesting to investigate whether
a similar calculation is possible for GL-type instabilities of black holes.

5.4 Appendix: Numerical tests

To test convergence, we produce the output presented in the main text at four different grid
resolutions. The highest resolution run had a coarsest grid spacing of 0.25µ

1
3 . During the

evolution, levels with refinement ratio 2 : 1 were added to ensure that the apparent horizon
was always covered by a minimum of 80 points. For the study of the ultraspinning instability
we needed to add up to 22 levels. For the lower resolutions, we increase the grid spacing
by factors of

√
2 and correspondingly decrease the minimum number of points across the

apparent horizon. Fig. 5.16 shows the area of the apparent horizon for each resolution.
Since the area is sensitive to the overall structure of the horizon, this gives an indication
of the accuracy with which we can determine the properties of the outermost ring. The
results clearly show convergence; even the lowest resolution run is in the convergent regime.
However, since the errors for the lowest two resolutions are still rather high, all results in this
chapter were obtained at the second highest resolution (solid curve in the plot).
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Fig. 5.16 Convergence test for the apparent horizon area. The highest resolution run had
a resolution of ∆1 = 0.25µ

1
3 on the coarsest level. For the other runs, the resolution was

lowered by factors of
√

2. For all simulations presented in this chapter, we use resolution ∆2
(solid black curve).
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Fig. 5.17 Convergence test for the global minimum membrane thickness. Dotted and dashed
lines correspond to third and fourth order convergence respectively. The resolutions ∆i are
the same as in Fig. 5.16.
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Fig. 5.18 Convergence test for the results presented in Fig. 5.12. The resolutions ∆i are the
same as in Fig. 5.16. The highest resolution run had to be terminated earlier than the others
as it became unfeasible. Note that the pinch-off time, tc, varies slightly with the resolution (it
converges with 3rd order). To be able to compare the approach to pinch-off, each run was
plotted with its specific value for tc.

Fig. 5.17 shows a convergence plot for the minimum thickness of the membrane. Before the
first minimum appears, we simply plot the thickness in the middle as the middle becomes the
first minimum. This is representative of the accuracy with which we can track the growth
rate of the instability and the subsequent evolution of the membrane. The results converge at
a rate between third and fourth order throughout the whole evolution. This is consistent with
the fact that we use a fourth order scheme but that the order is reduced due to the interpolation
at mesh boundaries.

One of our key findings is that the global minimum thickness very closely follows the scaling
law ZAH = κ(tc− t) (Fig. 5.12). Fig. 5.18 presents the same plot for four different resolutions.
Our results converge and follow the scaling law increasingly more precisely as the resolution
is increased.

It is important to stress that, despite the convergence results presented above, not all features
in the simulation are convergent. In particular, while we find convergence for properties of
the entire black hole, the first generation and the minimum membrane thickness, the position
of higher generation rings does not converge. Most prominently, as discussed in the main
text, the appearance of a central bulge is not a robust feature, but depends on the initial data,
the perturbation, and the grid setup.





Chapter 6

Implications for Weak Cosmic
Censorship

In the previous two chapters, we have presented numerical evidence that higher dimensional,
asymptotically flat black holes can pinch off. However, Ref. [88] showed that black holes
cannot smoothly bifurcate. Indeed, our results suggest that the spacetime becomes singular,
at least on the horizon. This does not necessarily imply that future null infinity is incomplete.
As Fig. 6.1 illustrates, it is possible to capture all known results on the GL instability of
black strings, black rings, and Myers-Perry black holes in a Penrose diagram that does not
violate Weak Cosmic Censorship. In particular, the spacetime depicted in Fig. 6.1 is strongly
asymptotically predictable, the singularity is not naked, and future null infinity is complete. It
is important to stress that this is only an illustration that this is possible; even for the simplest
setting, a pinching black string, the diagram would have to be more complicated since we
could not neglect the compact direction of the black string, whose translational symmetry
is broken by the GL instability. Unfortunately, our numerical study could not determine
whether future null infinity is complete since the latter was not part of the numerical domain
and since we could not evolve past the time when constant-t slices intersect the physical
singularity that forms on the horizon. Further work with very different numerical or analytic
methods will be required to answer this question.

The above argument shows that it is plausible that the GL instability does not cause future null
infinity to be incomplete. As a result, to the best of our knowledge, no confirmed candidates
for counterexamples to the Weak Cosmic Censorship Conjecture in its mathematical form
[59–61] have been found, not even in higher dimensions, with compact extra dimensions, or
in AdS spacetimes. Unfortunately, the literature on potential violations of the Weak Cosmic
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Fig. 6.1 Example of a spacetime that exhibits a behaviour compatible with the results for
the GL instability: a singularity forms on the horizon after infinite affine parameter on the
horizon [100], but at finite asymptotic time [74, 103, 33]. Future null infinity is complete so
that the Weak Cosmic Censorship Conjecture is not violated. The line t = tc represents the
last constant-time slice our numerical simulations would be able to reach for this spacetime.
This is only an illustration: for the black string, the compact direction cannot be neglected
since the translational symmetry is broken by the GL instability.

Censorship Conjecture [33, 75, 3, 2, 63, 64] is not very clear on the distinction between
counterexamples to the conjecture and situations where quantum gravity effects generically
arise outside of black holes.1 This is undesirable since imprecise statements that the Weak
Cosmic Censorship Conjecture may be violated cloud the truly remarkable fact that despite
intense efforts, no clear counterexample has been found to date.

Having said this, situations in which quantum gravity effects arise outside of black holes
should not be dismissed only because future null infinity may remain complete: if general
relativity no longer applies, its predictions on the completeness of future null infinity are
physically irrelevant. Our detailed study of the approach to pinch-off in the previous chapter
shows that the Kretschmann scalar just outside the horizon becomes arbitrarily large as black
rings or Myers-Perry black holes pinch off due to their instabilities. This is an indication that
in a generic setting quantum gravity effects can become important outside of black holes in
higher dimensions, even in asymptotically flat spacetimes. While there is evidence that the
same can happen in 4D AdS spacetimes [63, 64], to the best of our knowledge no situation
in 4D asymptotically flat spacetimes is known in which quantum gravity effects become
important outside of black holes without any need for fine-tuning.

1This includes the author’s own work.
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An interesting question that should be explored further is what the precise meaning of
the word “generic” in the Weak Cosmic Censorship Conjecture should be. All the results
presented in this thesis should hold in an open set of initial data, but they all consider
perturbations around an unstable black hole spacetime. It is currently unclear whether these
black holes can form from the gravitational collapse of initial data that contain no trapped
surfaces. If they cannot, it could be argued that they are not “generic”. We are currently
working on numerical simulations that address this issue. In AdS, it is likely that the Weak
Cosmic Censorship Conjecture will have to be augmented with restrictions that ensure that
the boundary conditions are “generic” and “reasonable”, although at this point it is unclear
what these restrictions should be.

In conclusion, given the evidence that is currently available to us, it is conceivable that
the Weak Cosmic Censorship Conjecture holds, even in higher dimensions, and that in 4D
asymptotically flat spacetimes (but not in D > 4 or AdS) it may be possible to formulate a
stronger conjecture which posits that quantum gravity effects cannot generically arise outside
of black holes. Both would be truly remarkable properties of our theory of gravity.

6.1 Bifurcation process

Even though describing the bifurcation process of a black hole would likely require a theory
of quantum gravity, we can make a few concrete speculations about it based on our results.
Currently, the only known mechanism by which black holes can bifurcate is the GL instability.
Even in settings where no GL-type instability is present in the unperturbed black hole, such
as 6D Myers-Perry black holes with a = 1.5µ

1
3 , the pinch-off happens due to a secondary

GL instability that is made possible by the extreme horizon shapes caused by the primary
instability. Independently of the initial conditions, we find that the pinch-off of the horizon is
approached with the same scaling law that was found for black strings [33, 75],

rAH = κ(tc − t), (6.1)

where rAH is the thickness of the apparent horizon, tc is the pinch-off time, and κ is a
constant, which unfortunately is not slicing-independent. Therefore, our results indicate that
the pinch-off is an attractor solution and always happens in exactly the same way.

Since the quantum gravity regime would only entered in a tiny region and with a completely
negligible energy, it is unlikely to affect the overall evolution of the spacetime. This behaviour
would be similar to the Rayleigh-Plateau instability of fluid columns [177, 178]: the process
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of a fluid column pinching off can only be described by molecular dynamics, but the details
of how this happens do not affect the large-scale behaviour. If this speculation is true, then
an observation of a pinching black hole may not provide much information about the details
of quantum gravity.



Chapter 7

Numerical simulations in AdS

This chapter presents our numerical results on non-axisymmetric scalar field collapse in AdS
space and outlines recent work to allow the simulation of asymptotically AdS spacetimes
with GRCHOMBO.

This chapter is based on the co-authored publication [1]. Furthermore, it reports on un-
published work to simulate asymptotically AdS spacetimes with GRCHOMBO. I worked
mainly on implementing and stabilising AdS evolution in GRCHOMBO, in collaboration with
P. Figueras. Due to the difficulties with GRCHOMBO being cell-centred, this took slightly
longer than expected and therefore the simulations we presented in Ref. [1] (section 7.4)
were all carried out by H. Bantilan using the code he developed in Refs. [135, 136]. I helped
with the data analysis, most importantly with the calculation of the energy density on the
boundary, and the comparison between collapse and thermalisation time.

7.1 Introduction

In the last decade, there has been a growing interest in the numerical evolution of Einstein’s
equations (1.1) with negative cosmological constant. In this setting, the maximally symmetric
solution is anti-de Sitter space (AdS) with metric

ds2 =−
(

1+
r2

L2

)
dt2 +

dr2

1+ r2

L2

+ r2dΩ
2
(D−2), (7.1)
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where the AdS length L is related to the cosmological constant by

L =

√
(D−1)(D−2)

2 |Λ| . (7.2)

There are two main motivations for simulations of asymptotically AdS spacetimes: firstly,
numerical simulations may help elucidate mathematical questions such as the stability of AdS
and other solutions with AdS asymptotics, or the weak cosmic censorship conjecture in AdS.
Secondly, the AdS/CFT correspondence relates the dynamics of certain strongly coupled
conformal field theories in D dimensions to the dynamics of classical gravity in (D+ 1)-
dimensional asymptotically AdS space [37–39]. Thus, the study of gravitational dynamics in
AdS may help us understand the behaviour of strongly coupled quantum field theories, at
least qualitatively. Currently, this is the only known way to access the far-from-equilibrium
regime of quantum field theories. It could also provide a promising route to understanding
phenomena such as superconductivity or fluid and superfluid turbulence [179, 180].

Evolving AdS space numerically is highly non-trivial due to its causal structure. AdS space
is very different from Minkowski and de Sitter space in that it has a timelike boundary, which
in the coordinates in (7.1) lies at r = ∞. This boundary is in causal contact with the bulk: a
null ray travelling radially inwards from r = ∞ reaches r = 0 after a time t = Lπ/2. Thus,
solving Einstein’s equations in asymptotically AdS space constitutes an initial boundary
value problem; it requires not only data on the initial time slice but also boundary conditions
at r = ∞. Imposing these boundary conditions in a numerically stable fashion is very
challenging.

In this chapter, we will present the technical implementation of AdS evolution with GR-
CHOMBO, which is complicated by the fact that GRCHOMBO uses cell-centred grids. Fur-
thermore, we present the results of numerical simulations of massless scalar fields, and
investigate how breaking spherical symmetry affects the collapse to a black hole. These
results were not obtained with GRCHOMBO, but with a code based on the one used for Refs.
[135, 136].

7.1.1 Stability of AdS

The stability of AdS space has attracted intense interest recently, partly because of the Ad-
S/CFT correspondence and partly because as the maximally symmetric solution of Einstein’s
equations (1.1) with a negative cosmological constant (Λ < 0), AdS is mathematically as
fundamental as Minkowksi (Λ = 0) or de Sitter space (Λ > 0). The latter two have been
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rigorously proven to be stable in Ref. [34] and Refs. [35, 36] respectively. Since the
boundary of AdS is in causal contact with the bulk, the stability of AdS also depends on
the boundary conditions. With the reflective conditions that are most commonly used in the
AdS/CFT literature, Refs. [44, 45] conjectured that AdS would be non-linearly unstable to
the formation of black holes.

Numerically, the stability of AdS has been investigated by studying Einstein’s equations
coupled to a scalar field. This makes it easy to restrict to spherical symmetry while still
obtaining non-trivial dynamics. For D ≥ 4, groundbreaking numerical results published in
Ref. [41] showed that in AdS, black hole formation can occur for arbitrarily small initial
amplitude of the scalar field. This is in stark contrast to the asymptotically flat setting,
where there is a minimum required amplitude below which the scalar field just disperses
[67, 68, 40]. In AdS, if the amplitude is not large enough for gravitational collapse to take
place within one light-crossing time, the scalar field gets reflected off the boundary repeatedly
and gets focused into an ever smaller region with every bounce. Eventually, after a time that
is inversely proportional to the square of the initial amplitude, the scalar field collapses to a
black hole.

A very remarkable pair of papers [46, 47] recently proved the instability of AdS with Einstein-
null dust and an inner mirror. In this proof, the author analysed how the energy in beams
of null dust increases as they get reflected off the boundary and the inner mirror repeatedly.
Eventually, the energy is high enough to lead to the formation of a black hole.

Even though all the evidence outlined above indicates that AdS generically exhibits a turbulent
instability that leads to the formation of black holes, there are open sets of initial perturbations
away from AdS, which do not lead to an instability [181–183]. It should also be mentioned
that there are several other asymptotically AdS solutions whose stability is currently under
investigation, for example Schwarzschild-AdS, and more generally Kerr-AdS.

Beyond spherical symmetry, little is known about the non-linear instability of AdS. The stud-
ies to date [184–188] have been perturbative, and therefore could not address the nonlinear
regime of the instability and in particular the formation of black holes. In this chapter, we
present the first fully non-linear study of gravitational collapse in AdS beyond spherical
symmetry. In particular, we use numerical relativity to investigate whether breaking spherical
symmetry facilitates or impedes gravitational collapse.
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7.2 Numerical methods in AdS

There are currently two competing methods for time evolution in asymptotically AdS space-
times, the characteristic formulation and GHCs (section 1.3.4). The first-ever evolutions
in AdS were achieved with the characteristic formulation [189, 190]. In this approach, a
metric ansatz is made which slices the spacetime into ingoing null hypersurfaces. Einstein’s
equations can then be reduced to evolution equations along ingoing null slices, which can be
integrated inwards starting from the AdS boundary and using the boundary data as initial
conditions. If done correctly, this step only involves the integration of several ordinary differ-
ential equations and is therefore rather cheap computationally. A very detailed explanation
of this procedure is is presented in Ref. [191].

The other method of evolving AdS that is currently available is based on the GHC formalism
with constraint damping (section 1.3.4). Stable evolution of asymptotically AdS spacetimes
with GHCs was first achieved in Ref. [135]. Since this is the method which we use for our
work, we present it in a little more detail here. Ref. [135] writes the metric of AdS space in
the form (7.1) but with a compactified AdS radial coordinate ρ defined through

r =
ρ

1−ρ/L
. (7.3)

This brings the boundary of AdS to finite radius ρ = L, so that it can be part of the numerical
domain. Ref. [135] proceeds by splitting the metric of an asymptotically AdS spacetime into
a pure AdS background and a deviation as

gµν = gAdS
µν +hµν , (7.4)

where the deviation hµν need not be small but must vanish at the boundary. The boundary
conditions on hµν can be obtained by requiring that the metric is asymptotically invariant
under the symmetry group of AdS, i.e. that Lξ gµν = O(hµν), where ξ are the generators of
the symmetry. Refs. [135, 192] show that this fixes the decay of hµν towards the boundary
to be

hµν = q pµν (1+O(q)) , (7.5)

where q = L−ρ and the exponents pµν are

pρρ = D−3, pρµ ̸=ρ = D−2, and pµ ̸=ρν ̸=ρ = D−3 . (7.6)
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In Ref. [135], the authors enforce these fall-offs by defining a rescaled metric h̄µν =

q−pµν+1hµν and enforcing the Dirichlet boundary conditions h̄µν = 0 at the AdS boundary.
This suppresses all terms whose order is lower than O(q) close to the boundary so that when
the rescaling is undone, hµν satisfies (7.5). An analogous approach can be used to ensure
regularity at the origin, ρ = 0, by factoring out appropriate powers of ρ .

To form a consistent evolution system, it is essential that the GHC source functions Hµ are
compatible with the fall-off of metric components. Substituting (7.5) into the definition of
the source functions (1.40), we find the necessary fall-offs for Hµ . Similarly to the boundary
conditions for metric components, these are enforced by imposing Dirichlet conditions for
the rescaled source functions.

So far, the majority of numerical work in AdS has used the characteristic evolution scheme
due to its simplicity and the natural way in which the AdS boundary conditions are incor-
porated in the evolution. However, it has several downsides compared to GHCs: firstly, the
characteristic formulation cannot handle pure, global AdS since it would lead to caustics at
the origin. More concretely, the characteristic evolution scheme proposed in Refs. [189, 190]
requires a horizon on the infrared side of the ingoing null hypersurfaces. With GHCs, there
are no such restrictions so that it is possible to simulate global AdS. As we will see in section
7.4, one can even avoid problems with the coordinate singularity at the origin by choosing
Cartesian coordinates.

Secondly, the experience from asymptotically flat spacetimes shows that characteristic slicing
is prone to the formation of caustics when simulating binary black hole spacetimes. In
the numerical work so far this has not been a major issue [191], but it may become more
problematic in more general settings, for example for simulations of black hole collisions
in AdS and when symmetry assumptions are relaxed. Finally, while the simplicity of the
equations makes it easy to use spectral methods, which can give higher accuracy than finite
difference stencils at lower computational cost, the integration along ingoing null slices is
hard to parallelise. As a result, it is much harder to run the characteristic formulation for AdS
on supercomputers at large scale.

To date, no stable evolution of asymptotically AdS spacetimes has been achieved with
algorithms based on BSSN. However, there is no a-priori reason for why it should not be
possible to achieve stable evolution with CCZ4 by replicating the steps that were necessary
for GHCs. Since singularity-avoiding gauges are known for CCZ4, this would greatly
simplify black hole simulations by eliminating the need for excision.
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Table 7.1 Fourth order first derivative stencils with Dirichlet boundary condition for a cell-
centred code. The leftmost column shows the evaluation location, the columns are labelled
by the distance to the boundary at which the weight is applied.

7.3 Asymptotically AdS spacetimes in GRCHOMBO

For studies of turbulent behaviour in asymptotically AdS spacetimes, the flexible adaptive
mesh refinement offered by GRCHOMBO would be very beneficial. For this reason, we
have started implementing AdS evolutions in GRCHOMBO. So far, we have implemented
the GHC-based method outlined in the previous section. This is not entirely trivial since
GRCHOMBO is cell-centred so that there is no grid point at the boundary. In this section, we
briefly sketch how the Dirichlet conditions required at the AdS boundary can be enforced
stably in a cell-centred code.

In a cell-centred code, no grid point lies at the AdS boundary. In this setting, an easy way
of enforcing a Dirichlet boundary condition is to use adapted stencils close to the boundary
which have an inhomogeneous step size and include the boundary value. Tab. 7.1 shows
an example for the derivative stencils which can be used to enforce a Dirichlet boundary
condition. GRCHOMBO is written in a way which makes the process of choosing different
stencils for specific regions of the domain simple and efficient.

In order to stabilise the evolution close to the boundary, it is essential to add sufficient
Kreiss-Oliger dissipation. This is not trivial: the standard choice of a second order sixth
derivative stencil fails to damp high frequency modes close to the boundary. Even worse,
it can be shown [193, 194] that the resulting dissipation operator is positive definite, and
therefore causes numerical errors to grow exponentially. To solve this problem, we follow
the calculation in Refs. [193–195] in order to construct positive definite boundary stencils.
Unfortunately, to achieve non-zero dissipation at the grid point closest to the boundary, the
order of the derivative approximation at this grid point has to be decreased. This is not
necessarily a problem as the error at this grid point will likely only dominate at a much higher
resolution than we need for accurate simulations.
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With the method of enforcing boundary conditions above and the correct dissipation stencils,
GRCHOMBO is able to reproduce the results for numerical evolution of a black brane in
asymptotically AdS4. We are currently working on extending it to more general settings. In
the future, we also hope to be able to adapt the CCZ4 formalism to AdS, so that no excision
is required for black hole simulations. This would greatly simplify the simulation of black
hole collisions in asymptotically AdS spacetimes, which are a good qualitative model for
heavy ion collisions according to the gauge/gravity duality.

7.4 Non-spherically symmetric collapse

In this section, we present our results on scalar field collapse in AdS without the imposition
of spherical symmetry, which be published in Ref. [1]. This allows us to elucidate how
moving away from spherical symmetry affects the time it takes for the turbulent instability of
AdS to form black holes.

7.4.1 Numerical Scheme

To evolve asymptotically AdS spacetimes in axisymmetry, we use the GHC evolution scheme
as proposed in Ref. [135, 196] and described in the introduction to this chapter. However,
instead of (7.3), we use

r =
2ρ

1−ρ2/L2 . (7.7)

In polar coordinates, the grid spacing decreases significantly close to the origin at ρ = 0.
Due to the CFL condition, this would require us to take unacceptably small time steps. To
avoid this problem, we perform all our simulations in Cartesian coordinates. This makes the
treatment of the AdS boundary more complicated since ρ = L does not necessarily lie on a
grid point. However, this problem can be solved by enforcing the boundary conditions on
the grid points closest to ρ = L and filling the grid points immediately to the interior of the
boundary points by interpolation. Since we only use second order discretisation, we can use
the standard second-order finite difference stencils for all other grid points.
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In 5D, with Cartesian coordinates x = ρ cos χ and y = ρ sin χ , and the redefinition (7.7), the
AdS metric (7.1) becomes

ds2 =
1

(1−ρ2)2

[
−
(
(1−ρ

2)2 +4ρ
2)dt2 +4

(
dx2 +dy2 + y2dΩ

2
(2)

)]
, (7.8)

where we have set L = 1. In our simulations, we break spherical symmetry, but preserve the
SO(3) symmetry that acts in the direction of the 2-sphere represented by dΩ2

(2). Our gauge
source functions are chosen so that they evolve towards target source functions which are
consistent with the decay of the metric components near the boundary (7.5) and decay to
zero in the bulk.

To construct initial data, we specify the initial scalar field profile and solve the Hamiltonian
constraint. The momentum constraint is satisfied automatically since our initial data are
time-symmetric. As initial scalar field profiles, we choose bubbles with a tunable symmetry
breaking term

ϕ(ρ,χ) = A(1−h(ρ))+4Bh(ρ)(1−h(ρ))cos χ, (7.9)

where

h(ρ) =


1 , ρ ≥ ρd

1−R3(6R2 −15R+10) , ρd ≥ ρ ≥ ρc

0 , otherwise
, (7.10)

with R(ρ) = (ρd −ρ)/(ρd −ρc) and arbitrary parameters ρc and ρd , which we typically
choose to be 0.4 and 0.8 respectively. This choice of h(ρ) ensures that the spatial gradients
of the scalar field are only non-vanishing in the annulus ρc < ρ < ρd . However, our results
are not sensitive to the specific choice of f (ρ) and g(ρ). The leftmost snapshot Fig. 7.1
(bottom) shows an example of an initial scalar field profile with ρc = 0.4, ρd = 0.8, A = 0,
and B = 0.0087.

We solve Einstein’s equations coupled to a massless real scalar field using the PAMR/AMRD
libraries [197]. The spatial directions are discretised using second order finite difference
stencils and we integrate in time using an iterative Newton-Gauss-Seidel relaxation procedure
with a typical Courant factor of 0.2. Even though PAMR has AMR capabilities, we use a
unigrid setup which covers the region x ∈ [−1,1] and y ∈ [0,1] with a typical number of
grid points of Nx = 1025 and Ny = 513 respectively. To avoid physical singularities in the
computational domain, we excise a small region inside the apparent horizon of black holes.
Close to the boundary of the excision region, we use one-sided stencils, so that no boundary
conditions are required at the excision boundary. While unigrid simulations do not suffer from
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constraint violations that would arise at the refinement boundaries, high-frequency constraint
violating modes still arise, especially close to the point where the AdS boundary intersects
the y = 0 axis. To suppress these unphysical modes, we use Kreiss-Oliger dissipation [145]
with a typical dissipation parameter of σ = 0.35.

7.4.2 Results

As expected from the results in spherical symmetry, the time evolution of the initial scalar
field distribution (7.9) always leads to gravitational collapse either directly if the amplitude
is large enough or after several reflections off the AdS boundary. The number of bounces
and reflections that are required depends on the values of both A and B. For the spherically
symmetric case (B = 0), the scalar field eventually collapses to a Schwarzschild black hole at
the origin ρ = 0, in agreement with the simulations in Ref. [41]. When spherical symmetry
is broken with an l = 1 mode, i.e. for B > 0, we observe the formation of two black holes
at antipodal points on the x-axis. An example of this behaviour is shown in Fig. 7.1. The
snapshots on the top show the normalised difference K/KAdS −1 between the Kretschmann
scalar K = Rαβρσ Rαβρσ and its pure AdS value. The bottom row shows the evolution of
the scalar field over time. In this example, the two black holes form at x =±0.12L. Aside
from the last snapshot, which corresponds to a time shortly before collapse at t = 9.04L, the
snapshots are taken after each bounce to emphasize the quasi-periodic nature of the evolution.
With every bounce, the spatial gradients become sharper and both the scalar field amplitude
and the curvature of spacetime increase.

Across the whole parameter range, we find that for a fixed total mass and radial compactness
of the initial scalar field distribution, configurations that are further away from spherical
symmetry require fewer bounces to collapse to black holes. We visualise this behaviour
in two ways: firstly, we plot how the collapse time varies as the initial data are moved
further away from spherical symmetry by increasing B (Fig. 7.2 left). In this process, A is
fixed by requiring the total mass of the spacetime to remain constant. We display points
for two different values for the total mass, M = 0.021 and M = 0.030. Other values of
the mass show the same qualitative behaviour. The left-most points in the plot correspond
to spherical symmetry, for which the scalar field collapses to a Schwarzschild black hole
as found in Ref. [41]. As B is increased, the collapse time gradually decreases as fewer
bounces are required for gravitational collapse. The fastest collapse time is reached for a
maximal spherical symmetry breaking, i.e. A = 0. Furthermore, for sufficiently large B, the
gravitational collapse leads to two distinct black holes first, whose distance increases as B is
increased.
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t = 0 t = 3.25 t = 6.50 t = 9.00

Fig. 7.1 Top: Snapshots of K/KAdS −1 from the evolution of a non-spherically symmetric
scalar field collapse with multiple bounces. The initial amplitudes were A= 0 and B= 0.0087,
and the total mass was M = 0.021 in units of L2. An apparent horizon forms at t = 9.04L.
Bottom: Snapshots of the scalar field profile for the same evolution.

Secondly, for a given deformation B away from spherical symmetry, we plot the maximum
total mass the spacetime can have while still taking a fixed number of bounces to collapse. If
the mass were increased beyond this maximum value, gravitational collapse would happen
with one fewer bounce. In practice, we determine this value by fixing A and increasing
B, and thus the total mass, until the collapse time decreases by πL. Our results show that
as B is increased, less mass is required for collapse to occur in a given time implying that
perturbations away from spherical symmetry facilitate gravitational collapse.

For asymptotically flat spacetimes with spherical symmetry, Ref. [68] derived a condition on
the strength of curvature deformation, which guarantees that the scalar field will collapse to a
black hole. This condition can be generalised to AdS [198], where it can be used to give an
indication for when black hole formation will occur without further bounces. The condition
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Fig. 7.2 Left: Collapse time versus deformation amplitude B away from spherical symmetry
at constant total mass M = 0.021 (blue squares) and M = 0.030 (red circles). Configurations
with stronger symmetry breaking undergo gravitational collapse faster. The collapse time
is a decreasing, discontinuous function of the deformation amplitude. Right: Maximum
mass for which a black hole is formed after one bounce (yellow squares) and two bounces
(black circles) versus the deformation amplitude B. Configurations that are further away
from spherical symmetry require less total mass to collapse in a given number of bounces.

is based on the curvature deformation away from AdS per unit volume

η

E
≡
∫
V d4x

√
detγ |K/KAdS −1|∫

V d4x
√

detγ
, (7.11)

where V is defined as the region where |K/KAdS −1|> δ , for an arbitrary cut-off value δ ,
on a given time slice with intrinsic metric γ . To test the condition in our setting, we plot the
behaviour of the dimensionless number η/E over time for various representative cases with
different collapse times. Fig. 7.3 shows the results. With every bounce of the scalar field,
η/E undergoes an oscillation, but once η/E exceeds roughly unity, gravitational collapse
happens within the next bounce. These results are robust under changes of δ , although the
critical value of η/E above which collapse will take place within one bounce changes.

Let us now consider what non-spherical symmetric collapse of a scalar field implies for the
dual CFT. Fig. 7.4 depicts the same evolution as in Fig. 7.1 but now in terms of the energy
density of the dual CFT on the boundary S3. This was extracted using the procedure proposed
in Ref. [199]. With every bounce, the energy density becomes more and more localised at
the poles of the S3, corresponding to the formation of black holes on the x-axis. On the CFT
side, the collapse of a scalar field to a black hole corresponds to the thermalisation of the
CFT. In our non-spherically symmetric setting, the thermalisation is finished once the two
black holes that form on the axis have merged into a single Schwarzschild-AdS black hole at
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Fig. 7.3 The dimensionless ratio η/E defined in (7.11) for various representative cases that
collapse after between zero and four bounces. The ratio η/E begins to exceed unity within
a bounce prior to the formation of a trapped surface. The collapse time for each case is
indicated by a vertical line.

the origin. However, the discrepancy between the thermalisation time and the collapse time
cannot be large enough to change our conclusion that breaking spherical symmetry speeds
up the collapse and the thermalisation. To show this, note that the time it takes for a particle
in AdS to drop from rest at any point in the bulk to the origin is given by Lπ/2. Since the
black holes that form from the collapse of the scalar field are well approximated by point
particles in AdS (their radius is much smaller than L), this gives a good upper bound on the
merger time. Any gravitational interaction between the two black holes can only speed up
the merger and thus the thermalisation. Once the black holes have coalesced, the ring down
to a Schwarzschild-AdS solution is exponentially fast and, therefore, negligible. Since the
upper bound of Lπ/2 is only half the time of one bounce, the discrepancy between collapse
time and thermalisation time is not large enough to affect the result in Fig. 7.1 significantly.

A potential caveat to the conclusion about the thermalisation of the CFT is that Schwarzschild-
AdS has been conjectured to be dynamically unstable for generic perturbations in Ref. [200]1.
As a result, it is possible that the Schwarzschild-AdS black hole that forms from gravitational
collapse is only a meta-stable state and that further evolution will take place, implying that
the dual CFT may not thermalise at all.

1However, Ref. [181] argued that Schwarzschild-AdS should remain stable for a long time for sufficiently
regular perturbations.



7.4 Non-spherically symmetric collapse 151

t = 0 t = 3.25 t = 6.50 t = 9.00

0

1

2

3

Fig. 7.4 Snapshots of the energy density on the boundary of global AdS at different global
times t for the simulation shown in Fig. 7.1. Initially, the energy density is peaked at the
poles. Subsequently, it oscillates back and forth between the poles and the equator in a
quasi-periodic fashion. Gravitational collapse corresponds to a localisation of the energy
density at the poles.

7.4.3 Discussion

We have presented the first study of gravitational collapse of a massless scalar field in AdS
with inhomogeneous deformations away from spherical symmetry. Our results exhibit a
similar behaviour as was observed for the first time in Ref. [41]: gravitational collapse takes
place for arbitrarily small initial amplitudes of the scalar field through repeated reflections
off the boundary, which gradually cause the scalar field to become more and more focused.
We find that breaking the spherical symmetry facilitates the gravitational collapse: for a
fixed total mass and radial compactness, breaking spherical symmetry reduces the number
of bounces that are required for gravitational collapse to occur and therefore decreases the
collapse time. Similarly, the more the spherical symmetry is broken, the less mass is required
to achieve gravitational collapse in a given time.

This behaviour is intuitive, since for a fixed radial compactness and mass, breaking the
spherical symmetry leads to stronger gradients. However, it was far from clear whether this
intuition would remain correct in the non-linear regime after several reflections off the AdS
boundary. Our results may also have consequences for the specific sets of asymptotically
AdS initial data which are non-linearly stable [181–183]. Since breaking spherical symmetry
facilitates gravitational collapse, it is likely that these “islands of stability” become smaller
as the deviation away from spherical symmetry is increased.

In this initial study, we have broken spherical symmetry with an l = 1 mode while preserving
an SO(3) symmetry in five dimensions. In this setting, we found that two black holes form
on the x-axis. If the restrictions on the symmetry and initial data were relaxed further, these
black holes would generically form away from the axis and the number of black holes that
form may change. We have begun to extend our results to higher harmonics and found
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that under perturbations with higher harmonics the collapse happens faster. Further work
in this direction is ongoing. A straightforward extension of our work would be to consider
spacetimes with non-zero total angular momentum. This would entail solving the Momentum
constraint alongside the Hamiltonian constraint to construct initial data, as the initial data
would no longer be time-symmetric. Currently, there are conflicting results on the effect
of angular momentum on the non-linear instability of AdS. Using perturbation theory, the
authors of Ref. [188] argue that angular momentum enhances the instability, while Ref. [201]
finds examples in which the inclusion of angular momentum delays the collapse of a scalar
field.

As we noted in the previous section, it is not clear whether Schwarzschild-AdS, or more
generally Kerr-AdS, are non-linearly stable. As a result, general perturbations away from
AdS may not settle down to a black hole and the dual CFT may not thermalise. Considerably
longer numerical evolutions, and ultimately a rigorous mathematical study will be required
to address this question.

7.4.4 Appendix: Convergence tests

To ascertain whether our numerical results indeed converge with second order, the order of
our finite difference stencils, we calculate the convergence factor

Q(t,x,y) =
1

ln(2)
ln
(

f4h(t,x,y)− f2h(t,x,y)
f2h(t,x,y)− fh(t,x,y)

)
, (7.12)

where fh represents an evolution variable obtained at mesh spacing h. Fig. 7.5 (top) shows
the L2 norm of Q calculated for ḡxx. The results converge at second order with a small
decrease in convergence rate in the most dynamical stages of the evolution.

To check whether our numerical simulation solves Einstein’s equations in the continuum
limit, we repeat the same process for the residual f E

h = Gµν +Λgµν −8πTµν calculated at
grid spacing h. Fig. 7.5 (bottom) shows the results for the convergence factor

QEFE(t,xi) =
1

ln(2)
ln
(

f E
2h(t,x

i)

f E
h (t,xi)

)
, (7.13)

which checks second order convergence for a quantity that should be zero in the continuum
limit.



7.4 Non-spherically symmetric collapse 153

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  1  2  3  4  5  6  7  8  9

Q

t

with 8h,4h,2h
with 4h,2h,h

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  1  2  3  4  5  6  7  8  9

QEFE

t

with 8h,4h
with 4h,2h
with 2h,h

Fig. 7.5 Top: Convergence factors for ḡxx for the simulation shown in Fig. 7.1. Bottom:
Convergence factors for the independent residual from the same simulation. In both cases,
the L2 norm of the convergence factors is taken over the entire grid.





Chapter 8

Summary

In this thesis, we used numerical relativity simulations to examine instabilities in general
relativity in a fully non-linear setting. In 5D asymptotically flat spacetimes, we have simulated
all known vacuum, singly-spinning, single black hole solutions. For very fat black rings [55],
the previously known radial instability [28, 29] dominates the evolution and causes the black
ring to collapse to a Myers-Perry black hole, changing its topology from toroidal to spherical,
with the spacetime remaining smooth throughout. For intermediate rings, we have discovered
a new axisymmetry-breaking instability, an elastic instability that stretches the ring and
causes it to collapse to a Myers-Perry black hole. For very thin rings, the GL instability
[72, 30] dominates and we have presented evidence that it causes the horizon of the black ring
to pinch off into black holes of spherical topology. For Myers-Perry black holes [96] in 5D,
our results show no signs of a non-linear instability in the parameter range we investigated
(a ≤ 0.89

√
µ), contrary to the findings of Ref. [25].

In six dimensions, we have conducted a fully non-linear numerical investigation of ax-
isymmetric instabilities of Myers-Perry black holes with a ≤ 2.0µ

1
3 and non-axisymmetric

instabilities in the range a ≤ 1.5µ
1
3 . In the axisymmetric sector, the “ring-shaped” mode of

the ultraspinning instability [23, 172] dominates in the entire parameter range we examined,
even though a “Saturn-shaped” mode is also known to become unstable in this regime [172].
Our numerical results suggest that the black hole pinches off and that the minimum thickness,
ZAH , closely follows a scaling law ZAH ∝ (t − tc), where tc is the pinch-off time. It would
be very interesting to find a slicing-independent statement of this scaling law and to study
it analytically using methods similar to those of Refs. [177, 178]. In the non-axisymmetric
sector, the m = 2 “bar-mode” instability [26, 27] dominates for a ≲ 1.3µ

1
3 . The black hole

becomes very elongated, and radiates mass and angular momentum until it can settle down
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again. For a ≳ 1.5µ
1
3 , higher m modes dominate and we have presented evidence that they

cause the outer parts of the horizon to separate from the central portion of the black hole.

The results of our investigation of both 5D black rings and 6D Myers-Perry black holes
suggest that in higher dimensions black holes can pinch off, even in a generic, asymptotically
flat setting. In this process, curvature scalars in the causal past of future null infinity become
arbitrarily large and quantum gravity effects may not be “censored” from far-away observers.
In our work, we always started with initial data in the vicinity of an unstable black hole. For
the genericity of our conclusions, it would be important to check whether at least some of
these black holes can be formed from the gravitational collapse of initial data with no trapped
surfaces. Work in this direction is underway. Since our numerical study could not determine
whether future null infinity remains complete, we could not draw any conclusions about
the Weak Cosmic Censorship Conjecture in its mathematical form [59–61]. Very different
numerical techniques or analytic methods will be required to study this.

In asymptotically AdS spacetimes, we have investigated how breaking spherical symmetry
affects the collapse of a scalar field. We found that scalar field profiles that are further away
from spherical symmetry require fewer reflections off the AdS boundary to collapse. These
results suggest that breaking spherical symmetry accelerates the instability of 5D AdS space.

To enable these simulations, and many others in related fields such as cosmology or astro-
physics, we have developed the new open-source general relativity code GRCHOMBO. The
very flexible adaptive mesh refinement of GRCHOMBO makes it ideal for simulations of
instabilities, where new length scales can be created dynamically in regions of arbitrary shape
and topology. In this thesis, we presented the design of GRCHOMBO in detail, demonstrated
its accuracy, and analysed its strong and weak scaling on Intel Xeon and Intel Xeon Phi
clusters.

Finally, we presented the changes we made to current numerical relativity methods to be
able to simulate higher-dimensional black holes stably and efficiently. This includes adapted
gauge conditions, a new singularity treatment, and the extension of the modified Cartoon
method to CCZ4 with SO(N) symmetry. One of the most important avenues for further
research on numerical methods would be to try to find a new singularity treatment for GHCs
that does not rely on excision. This would greatly reduce the complexity of numerical
relativity codes.
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