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Abstract 

Identifying targets in cluttered scenes is critical for our interactions in complex 

environments. Our visual system is challenged to both detect elusive targets that 

we may want to avoid or chase and discriminate between targets that are highly 

similar. These tasks require our visual system to become an expert at detecting 

distinctive features that help us differentiate between indistinguishable targets.  

As the human brain is trained on this type of visual tasks, we observe changes in 

its function that correspond to improved performance. We use functional brain 

imaging, to measure learning-dependent modulations of brain activation and 

investigate the processes that mediate functional brain plasticity. I propose that 

dissociable brain mechanisms are engaged when detecting targets in clutter vs. 

discriminating between highly similar targets: for the former, background clutter 

needs to be suppressed for the target to be recognised, whereas for the latter, 

neurons are tuned to respond to fine differences.  Although GABAergic 

inhibition is known to suppress redundant neuronal populations and tune 

neuronal representations, its role in visual learning remains largely unexplored.  

Here, I propose that GABAergic inhibition plays an important role in visual 

plasticity through training on these tasks. 

The purpose of my PhD is to investigate the inhibitory mechanisms that mediate 

visual perceptual learning; in particular, learning to detect patterns in visual 

clutter and discriminate between highly similar patterns. I show that BOLD 

signals as measured by functional Magnetic Resonance Imaging (fMRI) do not 

differentiate between the two proposed mechanisms. In contrast, Magnetic 

Resonance Spectroscopy (MRS) provides strong evidence for the distinct 

involvement of GABAergic inhibition in visual plasticity. Further, my findings 

show GABA changes during the time-course of learning providing evidence for 

a distinct role of GABA in learning-dependent plasticity across different brain 

regions involved in visual learning. Finally, I test the causal link between 

inhibitory contributions and visual plasticity using a brain stimulation 

intervention that perturbs the excitation-inhibition balance in the visual cortex 

and facilitates learning. 
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Chapter I 

  

Theoretical background 

In this chapter, I introduce the theoretical framework on which the thesis and its 

respective experimental studies were conceived. In my thesis I investigate the 

inhibitory mechanisms involved in visual perceptual learning. Here I discuss 

experience-dependent plasticity in the visual cortex, how it is linked to 

inhibitory processing, as well as the role of GABA, the main inhibitory 

neurotransmitter in the human brain.  

 

1. The challenge 

Understanding the structure of the world around us entails extracting and 

discriminating meaningful patterns from cluttered environments. For instance, 

putting together a jigsaw puzzle requires two separate skills: first, one needs to 

look in the pile of pieces for the clean-cut corner and frame pieces, detecting 

target-pieces by suppressing clutter. Then, one needs to discriminate between 

sometimes hundreds of pieces that look highly similar, processing fine features 

and creating tuned representations of piece shape categories by suppressing 

irrelevant features. 

To succeed in interpreting cluttered scenes and discriminating the fine features 

that guide our actions, the brain is challenged to suppress noisy and ambiguous 

sensory signals. Experience and learning are known to facilitate this ability and 

improve perceptual judgements. Yet, the inhibitory mechanisms that the human 

brain employs to suppress such task-irrelevant signals and optimise its 

perceptual decisions through training remain largely unknown.  
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2. Visual perceptual learning  

Perceptual learning refers to experience-based plasticity that enhances the 

brain’s ability to process the environment and make perceptual judgements 

about ambiguous sensory inputs. Its effects are long-lasting (Fahle and Poggio, 

2002; Gilbert and Li, 2012; Karni and Sagi, 1991) and differ from adaptation or 

habituation, while it results in improved sensory processing without involving 

rules, associations or strategies, as for example in higher-order learning tasks 

(Gold and Watanabe, 2010).  

The visual system is an excellent candidate system for studying sensory 

plasticity. Its high degree of functional specialisation makes it possible to design 

experiments and visual tasks that target specific functional areas. Visual stimuli 

are processed at different stages of the visual stream based on their complexity. 

For example, basic features such as orientation are processed in the primary 

visual cortex (V1), shapes or objects are processed further down the ventral 

visual stream, in the lateral occipital cortex (LOC) and moving targets are 

processed in the dorsal visual stream, in visual area MT.  

Visual perceptual learning (VPL) has been shown to improve performance in 

tasks involving perceptual judgments in a range of tasks that involve extracting 

features from cluttered backgrounds, discriminating fine feature differences and 

identifying objects (Fine and Jacobs, 2002; Gilbert et al., 2001; Goldstone, 

1998; Goldstone et al., 2001).  The effects of VPL are known to be specific to 

stimulus orientation, spatial-frequency, location (Sagi, 2011), suggesting 

changes in low-level sensory information in the primary visual cortex (Gilbert 

and Sigman, 2007; Ito et al., 1998; R. W. Li et al., 2004; Schoups et al., 2001; 

Sigman et al., 2006). However, the neural locus of perceptual learning and its 

specificity (Mollon and Danilova, 1996) have been long debated: does VPL 

cause plastic changes in the functionally specific areas of the visual cortex or 

does it involve changes in brain-wide networks that support feedback and 

feedforward processes from and to the visual cortex? 
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Learning-dependent changes in neural tuning have been reported as more 

evident in higher than early visual areas (Ghose et al., 2002; Mehta et al., 2000).  

Electrophysiology recordings on monkeys who were trained on an orientation 

discrimination task showed larger changes in area V4 rather than V1 for 

increased orientation selectivity (Raiguel et al., 2006; Yang and Maunsell, 

2004a). Further, altered neural sensitivity following VPL has been reported in 

decision related areas (i.e. lateral intraparietal cortex) rather than visual cortex 

(Law and Gold, 2010). These findings suggest that VPL involves top-down 

mechanisms consistent with Ahissar and Hochstein’s proposal of reverse 

hierarchy, implicating high-level areas in easy perceptual judgements, while 

early visual areas with higher spatial resolution in more difficult perceptual 

decisions (Ahissar and Hochstein, 2004a). Recent evidence suggests that VPL 

may alter both information encoding in early visual areas, as well as readout 

from higher-level areas (Yan et al., 2014), while top-down influences may 

mediate VPL (Bressler et al., 2008; Gilbert and Li, 2013; W. Li et al., 2004; 

Piëch et al., 2013). Thus, VPL has been suggested to involve a network of brain 

regions – including visual areas and decision-related regions in the parietal and 

frontal cortex– that are thought to re-weight the visual input based on past 

experience (Dosher and Lu, 1998; Sagi, 2011).  

In the past 20 years, functional MRI studies have allowed us to study visual 

perceptual learning in the human brain. Mechanisms that were once postulated 

based on psychophysics and physiology are now possible to investigate in 

humans by measuring changes in brain activation and connections between 

different cortical areas. Several brain imaging studies have shown learning-

dependent activation changes in the visual cortex following VPL (Kourtzi et al., 

2005; Mukai et al., 2007; Sigman et al., 2006; Yotsumoto et al., 2008). 

Specifically, fMRI changes have been shown for detecting targets in clutter: 

learning to detect low-salience target resulted in increased BOLD after training 

in early (V1, V2, VP, V4) and late (LOC, pFs) visual areas, while learning to 

detect high-salience targets resulted in enhanced BOLD in higher areas (LOC, 
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pFs) (Kourtzi et al, 2005). Learning to detect basic shapes (letters) in the 

presence of distractors resulted in increased BOLD in the early visual cortex and 

decreased BOLD in the LOC and parietal cortex (Sigman et al, 2005). fMRI 

studies also showed BOLD changes for fine feature discrimination: higher 

BOLD activation and enhanced stimulus selectivity has been shown in LOC 

following training on highly similar visual patterns (Zhang et al, 2010). Further, 

Kuai et al (Kuai et al., 2013) showed that shape category templates in the LOC 

are tuned during training, as revealed by classification image approach on 

behavioural and fMRI data. Increased BOLD activation was found in area MT 

after training on motion discrimination (Vaina et al., 1998), while decreased 

BOLD activation was found in the primary visual cortex following training on 

contrast discrimination (Mukai et al., 2007). Finally, a study showed increased 

(initial phase of training) and later decreased (performance was maintained) 

BOLD activations in the primary visual cortex during training on a texture 

discrimination task (Yotsumoto et al., 2008).  

 

3.  Brain mechanisms for learning-dependent plasticity  

Different mechanisms have been suggested to support VPL plasticity. Cortical 

recruitment, that is the increased number of available neurons that can process a 

stimulus, has been shown to enhance signal-to-noise ratio and facilitate 

behavioural improvement (Recanzone et al., 1993, 1992; Reed et al., 2011). In 

contrast, increasing neuronal sensitivity to stimulus changes and sharper tuning 

have been shown to enhance stimulus selectivity and facilitate performance in 

discrimination tasks (Mukai et al., 2007; Schoups et al., 2001). These synaptic 

changes may be mediated by excitatory and inhibitory mechanisms shaping 

cortical activity.  

Plasticity in the visual cortex has been linked to inhibitory processing in the 

animal brain. Studies have shown that a decreased inhibition is required for the 
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induction of LTP-like plasticity in the rat M1 and have causally linked 

GABAergic inhibition with LTP induction using pharmacological interventions. 

Castro-Alamancos et al (Castro-Alamancos et al., 1995) used bicuculline 

methiodide, a GABA antagonist, to reduce GABAergic inhibition locally and 

induce LTP, while Trepel and Racine (Trepel and Racine, 2000) used  

diazepam, a GABA agonist, to block LTP induction in the rat motor cortex. The 

evidence suggests GABA, the main inhibitory neurotransmitter in the brain, 

plays a critical role in plasticity induction.  

Yet, investigating inhibitory processing non-invasively in the human brain has 

only recently been possible thanks to the development of MR Spectroscopy 

(MRS) (see also Chapter II). Despite the success of fMRI as a non-invasive tool 

for studying learning-dependent changes in the human brain, it does not allow 

us to discriminate excitatory from inhibitory contributions to visual plasticity; 

that is, BOLD is an aggregate signal reflecting both excitatory and inhibitory 

processing (Logothetis, 2008). Here, I take advantage of recent developments in 

MRS to measure GABAergic inhibition non-invasively in the human brain and 

investigate the inhibitory mechanisms that mediate visual perceptual learning.   

4. Thesis outline 

In my thesis, I investigate the role of GABAergic inhibition in visual 

learning.  In Chapter II, I describe the visual learning behavioural paradigm 

employed in my studies and the methods I employed to measure and perturb 

inhibition. In Chapter III, I combine fMRI and MRS to investigate dissociable 

GABAergic contributions to visual learning. In Chapter IV, I employ high-field 

brain imaging to investigate the time course of GABA changes during visual 

learning. In Chapter V, I employ transcranial direct current stimulation to 

perturb cortical excitability and causally link GABAergic inhibition to visual 

learning. Finally, in Chapter VI, I discuss the contribution of my findings to our 

understanding of visual learning mechanisms and potential future research 

directions and translational applications.  
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Chapter II 

  

Methodological background 

1. Behavioural paradigm 

In this thesis, I present three visual perceptual learning studies where I employ 

the same perceptual learning paradigm that focuses on two tasks: learning to 

detect shapes (i.e. Glass patterns) embedded in background noise vs. learning to 

discriminate highly similar shapes. Here I present in detail these behavioural 

tasks. 

 

a. Stimuli 

Glass patterns were introduced by Leon Glass in 1969 (Glass, 1969). In his 

seminal paper, he describes how superimposing a rotated random dot pattern on 

itself creates a concentric pattern, proposing a mechanism by which the human 

visual system uses local autocorrelations to extract global structure. Glass 

patterns are the perceived shapes resulting from superimposing onto itself a 

random dot pattern that has been linearly or non-linearly transformed. Glass and 

Perez in 1973 showed that if a random dot pattern is uniformly expanded and 

then superimposed on the original, a radial pattern is generated (Glass and 

Pérez, 1973). This way, we can think of every dot in the initial pattern as having 

a “pair” dot in the transformed pattern, forming dot-dipoles. For each dot dipole, 

the spiral angle can be defined as the angle between the dot dipole orientation 

and the radius from the centre of the dipole to the centre of the stimulus 

aperture. In the case of concentric patterns, the dipoles that result from the 

pattern’s rotation are placed perpendicular to radii from the centre of the 

stimulus to the centre of the dipoles (spiral angle = 90
o
). In the case of radial 
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patterns, the dipoles that result from the pattern’s uniform expansion are parallel 

to radii from the centre of the stimulus to the centre of the dipoles (spiral angle = 

0
o
) (Glass and Smith, 2011). 

Glass patterns allow us to maintain local correlations (processed by the early 

visual cortex), while parametrically manipulating the global structure (processed 

later in the visual stream). We expect that training to discriminate these patterns 

will engage shape-processing areas, and in particular the lateral occipital cortex 

(LOC), rather than local orientation or position detectors in V1. Indeed, fMRI 

studies have shown that areas in the ventral occipital cortex are selectively 

activated by Glass patterns vs random patterns (Ostwald et al., 2008). 

In my studies, I presented participants with Glass patterns generated using 

previously described methods (Li et al., 2012; Mayhew et al., 2010) ensuring 

that coherent form patterns are reliably perceived for the stimulus generation 

parameters I used (Wilson and Wilkinson, 1998). In particular, stimuli were 

defined by white dot pairs (dipoles) displayed within a square aperture on a 

black background. The dot density was 3%, and the Glass shift (i.e., the distance 

between two dots in a dipole) was 16.2
o
 arc min. The size of each dot was 2.3° x 

2.3° arc min
2 

(Figure 2.1).  

 

b. Tasks 

Glass patterns allow us to study detection of targets from clutter (Signal-in-noise 

task) vs discrimination of highly similar targets (Feature differences task) by 

using the same stimulus and manipulating the global structure while maintaining 

the local statistics. For the Signal-in-Noise task, I “embed” Glass patterns in 

noise: while a proportion of the dot dipoles is placed at a determined spiral 

angle, the remaining dipoles are randomly oriented, serving the purpose of 

background clutter. For the Feature differences task, I generate pattern 

categories that are difficult to discriminate: by placing the dipoles at spiral 



Chapter II: Methodological background 

 
9 

 

angles that are close to the boundary between radial and concentric patterns (45
 o 

spiral angle), classifying the patterns becomes challenging. 

I generated radial (0
o 

spiral angle) and concentric (90
o 

spiral angle) Glass 

patterns by placing dipoles orthogonally (radial stimuli) or tangentially 

(concentric stimuli) to the circumference of a circle centred on the fixation dot. 

Further, I generated intermediate patterns between these two Glass pattern types 

by parametrically varying the spiral angle of the pattern from 0° (radial pattern) 

to 90° (concentric pattern). I randomized the presentation of clockwise (0° to 

90° spiral angle) and counterclockwise patterns (0° to -90° spiral angle) across 

participants. A new pattern was generated for each stimulus presented in a trial, 

resulting in stimuli that were locally jittered in their position. Each stimulus 

comprised dot dipoles that were aligned according to the specified spiral angle 

(signal dipoles) for a given stimulus and noise dipoles for which the spiral angle 

was randomly selected. The proportion of signal dipoles defined the stimulus 

signal level.  

 

Figure 2.1: Task stimuli examples 

Radial and concentric Glass patterns in their prototype version (100% signal, spiral angle 0 for 

radial and 90 for concentric), in the Signal in noise task version (25% signal, spiral angle 0 for 

radial and 90 for concentric) and in the Feature-differences task version (100% signal, spiral angle 

38 for radial and 52 for concentric). Stimuli are shown inverted for presentation purposes. 
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For the Signal-in-Noise task, radial and concentric stimuli (spiral angle : 0° and 

+- 90° ) were presented at 24% ± 1% signal level; that is, 76% of the dipoles 

were presented at a random position and orientation (Figure 2.1). For the 

Feature-differences task, stimuli were presented at 100% signal and spiral angle 

of ±38
o
 (radial) or ±52

o
 (concentric) (Figure 2.1). To control for potential local 

adaptation due to stimulus repetition, I jittered (± 1-3°) the spiral angle across 

stimuli.  

 

c. Learning to see in noise vs discriminate fine features: a role for inhibition? 

In my thesis, I investigate visual perceptual learning by employing two tasks: 

detecting targets from visual clutter (Signal-in-Noise task) vs discriminating 

highly similar targets (Feature differences task). I propose that dissociable brain 

mechanisms mediate learning in these two tasks and investigate the role of 

inhibition in shaping learning-dependent plasticity in the visual cortex.  

 

Signal-in-Noise task 

Training on the Signal-in-Noise task has been shown to improve sensitivity to 

visual noise, while increased fMRI activity in LOC has been shown for trained 

vs untrained stimuli with low salience (Kourtzi et al., 2005). It is possible that 

increased sensitivity to visual noise involves changes in neuronal gain that are 

reflected in BOLD changes. At the level of neural populations, information 

processing can be considered as a function, converting input activity to spike 

output. A change in neuronal gain describes a change in the function’s slope that 

alters the sensitivity of neurons to the excitatory input. 

Modelling of the effects of shunting inhibition on the input-output relationship 

of granule cells showed that tonic shunting inhibition reduces gain during rate-
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coded physiological excitation, while synaptic inhibition is more effective at 

reducing neuronal gain  (Mitchell and Silver, 2003).  Further, pharmacological 

blockade of GABAA receptors resulted in increased gain in granule cells of rat 

cerebellar slices (Hamann et al., 2002). Finally, injecting GABA vs GABA 

antagonists on the inferior colliculus (IC) of anesthetised guinea pigs that is 

sensitive to interaural time differences had opposite multiplicative effects on IC 

spike rates, showing that GABAergic inhibition in the IC regulates neural gain 

(Ingham and McAlpine, 2005). Here, I ask whether GABAergic inhibition is 

involved in a gain control mechanism that supports learning to detect Glass 

patterns in visual clutter. 

 

Feature differences task 

Training on the Feature differences task has been shown to improve pattern 

discriminability, while tuning pattern representations in the area of LOC  (Zhang 

et al., 2010). It is possible that increased pattern selectivity involves changes in 

neuronal tuning that are reflected in BOLD changes. A change in neuronal 

tuning describes a change in its function that alters the selectivity of the neuron 

to excitatory inputs.  

Single-cell recordings in rats have shown that balanced inhibition, precisely 

following excitatory input, underlies auditory cortex tuning (Wehr and Zador, 

2003), while pharmacological blockade of inhibition in the auditory cortex of 

bats (Chen and Jen, 2000) and rodents (Wang et al., 2002) by means of a 

GABAA antagonist resulted in broader tuning curves. In the occipital cortex, 

higher GABA baseline levels have been related to increased sensitivity for 

orientation discrimination in humans (Edden et al., 2009), while a 

pharmacological challenge in cats showed improved orientation selectivity for a 

GABA injection vs diminished selectivity for a GABA agonist injection (Li et 
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al., 2008). Here, I ask whether GABAergic inhibition relates to neuronal tuning 

that supports learning to discriminate highly similar Glass patterns. 

  

2. Measuring inhibition in the human brain 

a. GABA: the main inhibitory neurotransmitter in the brain 

γ-aminobutyric acid or GABA is an amino acid and the main inhibitory 

neurotransmitter in the human brain. GABA is found in the cortex in three 

distinct pools, where it undertakes a three-fold role: in the cytoplasm it is 

involved in neuronal metabolism; in the pre-synaptic terminals it is involved in 

neurotransmission; in the extra-cellular space it can have a neuromodulatory 

effect on distant neurons. In this section, I discuss the physiology and function 

of GABA, while in the next sections I present methods to measure and perturb 

its concentration in the brain. 

GABA synthesis takes place in GABAergic interneurons. As part of the 

glutamate/GABA-glutamine metabolic cycle, glutamine is transformed to 

glutamate by phosphate-activated glutaminase in both glutamatergic and 

GABAergic interneurons (Bak et al., 2006). Further, glutamate is a product of 

the metabolic tricarboxylic acid (TCA) cycle in the cell. In glutamatergic 

interneurons glutamate is then released into the synaptic cleft, while in 

GABAergic interneurons glutamate is converted by glutamic acid decarboxylase 

(GAD) to GABA. There are two GAD isoforms with distinct roles in the brain: 

tonically active GAD67 produces cytoplasmic GABA that accounts for at least 

half of the GABA concentration in the cortex (Asada et al., 1997; Martin and 

Rimvall, 1993), while phasically active GAD65 produces vesicular GABA, 

found in the presynaptic boutons. GABA synthesis is believed to be the rate-

limiting factor in GABA metabolism (Soghomonian and Martin, 1998). 

Expression of GAD67 has been shown to be decreased when network activity is 

low, resulting in reduced GABA levels (Lau and Murthy, 2012).  
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GABA receptors can either be ionotropic or metabotropic. GABAA receptors are 

ionotropic and can be found intra- and extrasynaptically. They are thought to 

mediate fast synaptic neurotransmission and slow tonic extrasynaptic inhibition. 

Extra-synaptic GABAA receptors are activated by GABA spillover from the 

synaptic cleft. When activated, they hyperpolarise the membrane by selectively 

conducting chloride anions. GABAB receptors are metabotropic and can be 

found pre- and post-synaptically. GABAB inhibition is considered slow and acts 

by hyperpolarising the cell membrane via activation of potassium channels. 

GABA is catabolised by GABA-transaminase (GABA-T) to succinic 

semialdehyde, which in turn is converted to glutamate via the neuron’s TCA 

cycle and finally aminated to glutamine by glutamine synthetase (Bak et al., 

2006). The concentration of GABA inside the cell is believed to be linked to 

extracellular GABA (Petroff and Rothman, 1998) which is taken up by either 

neurons or astrocytes to be catabolised. 

 

b. How can we measure human cortical inhibition? 

i.Using Transcranial Magnetic Stimulation  

Transcranial magnetic stimulation (TMS) can elicit motor responses or motor 

evoked potentials (MEPs), by stimulation of the motor cortex at an intensity 

above the resting motor threshold. Paired pulse protocols have been used 

extensively to investigate GABAergic inhibition in the motor cortex (for a 

review see (Stagg, 2014)), but also in the early visual cortex (Lou et al., 2011) 

where their applications elicits phosphine perception. In paired-pulse TMS 

protocols (ppTMS) two consecutive TMS pulses are applied in the same region. 

The first conditioning pulse is subthreshold and meant to stimulate cortical 

interneurons, but not pyramidal neurons. The second pulse is suprathreshold and 

elicits an MEP. Its activation of pyramidal neurons is moderated by the 

inhibitory interneurons previously stimulated by the conditioning pulse. If the 
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interstimulus interval (ISI) between the two pulses is 2-4ms, the measured 

inhibition is believed to reflect fast GABAA activity (Kujirai et al., 1993; Reis et 

al., 2008), while an ISI of 50-200ms is thought to reflect slow GABAB 

inhibition (Valls-Solé et al., 1992). Finally, an ISI of 1ms has an interestingly 

distinct mechanism and is thought to reflect extra-synaptic GABAergic tone 

(Stagg et al., 2011b).  

 

ii. Using MR spectroscopy  

Magnetic resonance spectroscopy allows us to quantify the concentration of 

chemical compounds in the brain by detecting their different resonance 

frequencies. When a tissue that is found in a magnetic field B0 is excited, the 

resulting acquired signal corresponds to a frequency spectrum that consists of 

the spectral peaks of the different metabolites found in the tissue. 
1
H nuclei in 

the different metabolites do not resonate at the same frequency due to the 

chemical shift and J-coupling. When a nucleus from the excited tissue belongs 

to a chemical compound, the surrounding electron structure generates a 

secondary magnetic field Beff that shifts its characteristic frequency (chemical 

shift). Thus, nuclei of different chemical compounds will resonate at shifted 

resonance frequencies. Further, the Beff experienced by the nucleus is affected 

by adjacent spins within the compound producing multiple spectral sub-peaks 

(J-coupling). Peak splitting results in lower peak intensity and broader peaks. 

The strength of the magnetic field affects the chemical shift and the degree of 

separation between the spectral peaks: the stronger the magnetic field, the better 

the peaks are resolved (Stagg and Rothman, 2013) .  

In order to quantify the concentrations of the different metabolites in an MRS 

spectrum, spectrum fitting is used. By modelling a priori each metabolite’s 

spectrum as a basis spectrum using numerical methods, we have distinct spectral 

signatures for the different chemical compounds that can be linearly combined 
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to produce the final spectra. Then the relative concentrations can be found by 

the amplitude weightings of the respective subspectra in the combined spectrum 

(Stagg and Rothman, 2013). 

The low concentration of GABA in the brain, as well as the spectral overlap of 

its peaks, makes its detection and quantification challenging. GABA was first 

measured in the human brain with MRS in 1993 (Rothman et al., 1993)  and it 

has now been established as a tool in measuring the main inhibitory 

neurotransmitter in the brain. The most common method of measuring GABA is 

by defining a 3D volume in the area of interest, the MRS voxel, from where 

signal will be acquired. While multi-voxel MR spectroscopic imaging (MRSI) 

has recently emerged (Alger, 2011), the technique is still being developed for 

detecting and measuring GABA. GABA concentration is reported relative to the 

concentration of another metabolite, such as NAA or creatine. Using another 

metabolite acquired in the same spectrum as reference is advantageous to 

absolute quantification or water referencing, as it accounts for neuronal density 

and spectral data quality (Stagg and Rothman, 2013), especially in healthy 

populations where NAA and creatine are believed to be stable (Bogner et al., 

2010). 

In my thesis I have used two different MRS acquisition sequences. In the study 

described in chapter III, I employed 2D-JPRESS (Schulte et al., 2006) to 

measure GABA. This sequence involves spectral editing to achieve spectral 

peak separation that can reliably detect GABA peaks. J-resolved spectroscopy 

utilises J-coupling by separating the chemical shift and J-coupling effects: the J-

coupled nuclei do not get refocused by the 180
o
 pulse of the spin-echo sequence. 

2D MRS combines 1D spectra that have been acquired with different timing 

parameters from the same sample, into one 2D dataset. More specifically, the 

last 180
o
 refocusing pulse is shifted and multiple 1D spectra are acquired. 2D 

basis spectrum fitting is similar to fitting of 1D spectra and can resolve 

overlapping peaks that can’t be separated with 1D spectra (Stagg and Rothman, 
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2013). 2D-JPRESS has been shown to reliably measure GABA at 3T (Prescot 

and Renshaw, 2013; Schmitz et al., 2017). 

In the study described in chapter IV, I have measured GABA using high-field 

imaging, at 7 Tesla. The increased spectral resolution and SNR mean spectral 

editing is not necessary in order to detect GABA. Here I have used a semi- 

localization by adiabatic selective refocusing (semi-LASER) sequence 

(Scheenen et al., 2008). semi-LASER has been shown to have minimal chemical 

shift displacement error, which means artefacts resulting from the differences in 

spatial encoding for different metabolites are minimised (Scheenen et al., 2008). 

Further, it has been shown to reliably measure GABA at 7T (Barron et al., 2016; 

Kolasinski et al., 2017; C Lemke et al., 2015; Lunghi et al., 2015; van de Bank 

et al., 2015). 

 

c. Linking MRS GABA to behaviour 

An increasing number of studies links GABA levels at rest with behavioural 

performance at different tasks. MRS has been shown to have good intra- and 

intersubject reproducibility (Bogner et al., 2010), suggesting it can be used to 

detect interindividual variability in baseline concentration. So far, elevated 

GABA levels have been related to both better and worse performance. In the 

motor cortex, higher baseline GABA levels have been linked to slower reaction 

times (Stagg et al., 2011a) and better tactile acuity (Kolasinski et al., 2017). In 

the visual cortex, higher GABA levels relate to better orientation discrimination 

(Edden et al., 2009) and larger orientation illusion magnitude (Song et al., 

2017), while they’ve been shown to underlie the dynamics of bistable perception 

(van Loon et al., 2013). The above results suggest that GABA does not have a 

straightforward relationship with behaviour; while some sensory processes are 

benefited by higher inhibition levels, there are those that are facilitated by lower 
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concentrations of GABA, suggesting a complex role for GABAergic inhibition 

in the cortex. 

As mentioned in chapter I, changes in GABA have been linked to plasticity and 

with MRS we are given the opportunity to measure learning-related modulations 

in GABA concentration. Studies have shown a decrease in GABA in the motor 

cortex during training (Floyer-Lea et al., 2006; Sampaio-Baptista et al., 2015), 

while in the visual cortex decreased excitation/inhibition balance is found when 

overtraining and stabilisation of a visual skill has occurred (Shibata et al., 2017). 

These results suggest we are able to measure GABAergic contributions to 

plastic changes in the brain and investigate the role of GABA in learning. 

 

d. What are we measuring with MR spectroscopy? 

While MRS allows us to quantify the concentration of neurotransmitters non-

invasively, it is still unclear what exactly the measurement reflects. Earlier, I 

described the complex three-fold role of GABA in the brain, with the different 

GABAergic pools having distinct mechanisms of action. Using MRS, we 

measure the total concentration of GABA in a predefined volume of about 8-27 

ml, without being able to distinguish between these three different GABAergic 

pools. The aggregate signal measured includes contributions from all three 

pools, each being responsible for an unknown percentage of the quantified 

concentration. It is believed that MRS is sensitive to mobile GABA and less 

sensitive to immobilised GABA, as for example in the presynaptic vesicles 

(Floyer-Lea et al., 2006). In the animal literature it has been shown that MRS 

GABA reflects extra-synaptic GABA tone rather than synaptic GABA activity 

(Mason et al., 2001), while in the human a paired pulse transcranial magnetic 

stimulation (TMS) protocol thought to reflect extra-syaptic GABAergic tone 

was selectively related to MRS GABA measurements (Stagg et al., 2011b). 
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Converging evidence suggests that MRS measures the concentration of extra-

synaptic GABA; however it’s important to keep in mind that the different 

GABAergic pools are directly linked. MRS measured GABA changes do not 

reflect plastic changes independently in extra-synaptic GABA, but are more 

likely to reflect changes in GABAA activity (Stagg, 2014). A change in GABA 

concentration can be explained in three ways: a change in GABA metabolism, a 

change in GABA catabolism or a shift of GABA from or into an MRS-invisible 

pool (Stagg, 2014). While it is not possible to distinguish between these three 

possible mechanisms, there is evidence from the animal (Lau and Murthy, 2012) 

and human literature (Stagg et al., 2010) suggesting reduced GAD activity may 

account for reduced presynaptic GABA in LTP-like plasticity and its 

modulation may explain the changes measured with MRS (Stagg, 2014). Further 

research is required in order to understand the exact mechanisms behind MRS-

measured GABA changes, using pharmacological interventions that target 

specific GABAergic pools and stages of the GABA cycle. 

 

e. Linking MRS GABA to other brain signals 

While fMRI does not allow us to differentiate between excitatory and inhibitory 

changes in activation, when combined with MRS it provides new evidence that 

may explain the variations observed in brain activation due to task execution or 

plasticity. MRS has been widely used in conjunction with fMRI, with recent 

work combining the two acquisitions in a new technique, namely fMRI-MRS 

(Ip et al., 2017). In the majority of studies, however, baseline GABA levels are 

related to subsequent changes in fMRI BOLD. A negative relationship between 

GABA concentration and BOLD responses has been observed in human (Barron 

et al., 2016; Muthukumaraswamy et al., 2009; Northoff et al., 2007; Walter et 

al., 2016) and animal studies (Chen et al., 2005). In particular, attenuated BOLD 

responses have been suggested to result from GABAergic inhibition. Further, a 

positive relationship between baseline GABA measurements and BOLD 
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contrast has been reported (Harris et al., 2015; Lipp et al., 2015). Finally, lack of 

a relationship between baseline GABA and task related BOLD has been shown 

in both healthy and patient populations (Bhattacharyya et al., 2017). In a study 

measuring BOLD, cerebral blood flow (CBF)-weighted arterial spin labelling 

(ASL), cerebral blood volume (CBV)-weighted vascular-space-occupancy 

(VASO), and arterial CBV (aCBV)-weighted inflow VASO (iVASO) in the 

visual cortex, baseline GABA concentration was found to correlate negatively 

with BOLD reactivity and magnitude CBV-weighted VASO reactivity, while 

positively with baseline CBF-weighted ASL signal and ASL time-to-peak 

(Donahue et al., 2010). The contrasting results suggest that the link between 

GABA concentration and fMRI BOLD signal may be more complex than 

initially thought and may not reflect simply inhibitory effects of GABA, but 

may be also influenced by vascular factors, or task choice. 

Further, levels of GABAergic inhibition have also been linked to resting state 

functional connectivity in brain networks. Resting GABA in the primary motor 

cortex has been inversely related to the strength of the motor resting state 

network (Bachtiar et al., 2015; Stagg et al., 2014), as well as the functional 

connectivity between the left and right motor cortices (Stagg et al., 2014). In 

contrast, decreases in GABA have been related to increased strength of the 

motor network (Bachtiar et al., 2015; Sampaio-Baptista et al., 2015; Stagg et al., 

2014) and interhemispheric connectivity (Stagg et al., 2014). The converging 

evidence suggests that resting state network strength may be driven by 

GABAergic modulations of oscillatory activity in network nodes (Stagg et al., 

2014).  
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3. Perturbing inhibition  

While the links between GABAergic inhibition and physiological measures 

have been shown across species and using a variety of techniques, its causal role 

in cognition can only be established by using interventions. There are three 

ways in which we can non-invasively perturb the balance between inhibition 

and excitation in the cortex: with a pharmacological challenge, with transcranial 

magnetic stimulation and with transcranial direct current stimulation. Below I 

describe how these techniques can alter inhibition levels in the cortex and what 

the results have shown. 

 

a. Transcranial direct current stimulation  

Early studies using electrical stimulation of the animal cortex have shown that 

spontaneous neuronal activity is increased with anodal and depressed with 

cathodal cortical electrical stimulation. DC-currents applied on the motor cortex 

of rats (Bindman et al., 1964) and the motor and visual cortex of cats 

(Creutzfeldt et al., 1962; Purpura and McMurtry, 1965) showed polarity specific 

effects: more neurons were found to be activated by inward currents (surface-

positive, anodal) and inhibited by outward currents (surface negative, cathodal). 

Anodal stimulation was thus shown to increase cortical excitability by 

depolarising the cell membrane, while cathodal stimulation reduced activity by 

membrane hyperpolarisation. Electrical stimulation, therefore, modulates the 

likelihood of, rather than induces, neuronal discharge (Woods et al., 2016). 

Interestingly, the effect of the stimulation was found to be inversed in deep 

cortical layers (Purpura and McMurtry, 1965), suggesting its dependency on the 

orientation of the neurons relative to the electrical field (Stagg and Nitsche, 

2011).  

Recent evidence, however, has shown changes in local field potentials, rather 

than firing rate of single or multi-unit recordings in monkeys, following 
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transcranial DC stimulation (tDCs) (Krause et al., 2017). The results suggest 

tDCs may be modulating functional connectivity and the increase of neural 

excitability may be a result of modulating the timing of ongoing spiking 

activity, rather than controlling action potential generation. By selectively 

reducing coherence of suppressive low-frequency oscillations, the stimulated 

neurons may become more sensitive to surrounding high-frequency activity. 

Additional evidence from animal models suggests that earlier animal studies 

using invasive cortical stimulation are not capturing the same mechanism of 

action as non-invasive tDCs used in human studies, in the sense that the electric 

current reaching the cells is insufficient for depolarisation (Jackson et al., 2016).  

Polarity-specific effects have also been shown following stimulation of the 

human motor cortex. Measuring motor evoked potentials showed amplitude to 

be increased following anodal, while decreased following cathodal tDCs 

compared to a non-stimulated condition (Nitsche and Paulus, 2000). Consistent 

with the effect of tDCs on the motor cortex, measuring visual evoked potentials 

showed amplitude to be increased following anodal, while decreased following 

cathodal tDCs compared to a non-stimulated condition (Antal et al., 2004a). 

Further, measurements of neurotransmitter concentration with MRS following 

tDCs of the motor cortex showed a significant GABA decrease for both anodal 

and cathodal stimulation, while an additional significant decrease for Glx during 

cathodal stimulation (Stagg et al., 2009a).  In the case of anodal stimulation, 

increased excitability may be related to reduced GAD-67 activity (Floyer-Lea et 

al., 2006) that would explain the reduction in GABA synthesis. In the case of 

cathodal stimulation, a reduction in neuronal excitability results in reduced 

glutamate synthesis, as previously seen in the monkey striate cortex (Carder and 

Hendry, 1994). Reduced glutamate synthesis, in turn, downregulates GAD-67 

activity and GABA synthesis. These results suggest that the excitatory effect of 

anodal stimulation may reflect a downregulation of inhibition, via reduced 

GABA synthesis, while the inhibitory effect of cathodal stimulation may 

correspond to downregulation of excitation, via reduced glutamate synthesis 
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(Stagg et al., 2009a). Anodal stimulation of the occipito-temporal cortex also 

selectively reduced GABA (but not glutamate) during stimulation, as measured 

by MRS (Barron et al., 2016), suggesting the effect of stimulation on 

neurotransmitter concentrations is not confined to the motor cortex. 

Polarity-specific behavioural effects of tDCs have also been shown in the 

literature. In the visual cortex, cathodal stimulation of V5/MT+ has been shown 

to selectively improve motion detection (Antal et al., 2004b), possibly by 

suppressing redundant information and focusing cortical activity on the 

optimum motion encoding neuronal pattern. In the motor cortex, anodal 

stimulation has been found to facilitate motor learning (Stagg et al., 2011c; 

Vines et al., 2008), while cathodal stimulation has been shown to impede and 

slow down behavioural improvement (Stagg et al., 2011c; Vines et al., 2008). 

Online anodal (but not cathodal) stimulation during prism adaptation of chronic 

visual neglect patients has been shown to increase treatment resistance (O’Shea 

et al., 2017). Interestingly, if stimulation precedes training, the facilitatory effect 

is no longer present (O’Shea et al., 2017) or stops being polarity specific, with 

both types of stimulation detrimental to training (Stagg et al., 2011c). A later 

study has shown that anodal tDCs preceding training on a motor task gives rise 

to homeostatic mechanisms. These are reflected by increased synaptic GABAA 

activity post-stimulation, resulting in reversal of the facilitatory effect of 

stimulation (Amadi et al., 2015). On the contrary, improved orientation 

discriminability was found for offline rather than online anodal tDCs of the 

primary visual cortex (Pirulli et al., 2013). However, one may consider that 

orientation discriminability may actually benefit by the inhibitory effect of the 

homeostatic mechanism following anodal stimulation shown in (Amadi et al., 

2015). Thus, the behavioural effect does not support offline vs online anodal 

tDCs, but instead provides more evidence for the reversed after-effects of 

stimulation. Based on the above, I chose to use online tDCs to perturb cortical 

excitability during training on visual tasks. 
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b. Transcranial magnetic stimulation  

Rapid-rate transcranial magnetic stimulation has been shown to alter cortical 

excitability as measured by motor-evoked potential (MEP) amplitude (Pascual-

Leone et al., 1994). Specifically, theta burst stimulation (TBS) that consists of 

50-Hz trains of three TMS pulses at 5Hz has been proposed to differentially 

modulate inhibition: when applied intermittently vs continuously it was shown 

to increase vs decrease MEP amplitude (Huang et al., 2005), while continuous 

TBS been shown to increase MRS GABA in the motor cortex (Stagg et al., 

2009b).  

 

c. Pharmacology 

The use of neurotransmitter agonists and antagonists in human and animal 

research has been widely employed to investigate the role of key 

neurotransmitters in modulating behaviour. GABAergic (ant)agonists can be 

used to perturb the balance between inhibition and excitation in the cortex. 

GABA agonists are drugs that can boost inhibition by binding to GABAergic 

receptors, blocking GABA transportation or keeping neurons hyperpolarised for 

longer. In the animal literature, the use of GABA agonists has been shown to 

block long term potentiation (Trepel and Racine, 2000). In the human literature, 

enhancing GABAergic inhibition has been shown to reduce working memory 

capacity (Lozano-Soldevilla et al., 2014), the ability to detect masked targets 

(van Loon et al., 2012) and performance at a set of visual perceptual tasks 

(Pompeia et al., 2008). There are different types of GABA agonists that have 

been shown to target different pools of GABA. Benzodiazepines are positive 

allosteric modulators that act on the ion channels of GABAA receptors, 

increasing the efficiency of available GABA. They are believed to be targeting 

synaptic phasic GABA (Nutt et al., 2015). GABA reuptake inhibitors block 

GABA transporters (GAT-s) and prevent translocation of GABA from the 
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extracellular to the intracellular space. They are believed to act on synaptic 

GABA and increase extracellular GABA (Gonzalez-Burgos, 2010). 

GABA antagonists have been mainly used in the animal literature to investigate 

the effects of decreased inhibition in the cortex. Bicuculline methiodide has 

been shown to induce long term potentiation in the rat M1 (Castro-Alamancos et 

al., 1995), reverse cognitive deficits in mice (Varvel et al., 2005), but also 

induce cognitive, behavioural and dopaminergic abnormalities that resemble 

schizophrenia (Enomoto et al., 2011). 

 

 

  



 

 
25 

 

Chapter III 

  

Combined MRS-fMRI reveals differential GABAergic 

contributions to visual learning 

 

1. Introduction 

Understanding the structure of the world around us entails extracting and 

discriminating meaningful patterns from cluttered environments. Effortless as 

this may seem, it poses for the brain a challenging task that involves suppressing 

noisy and ambiguous sensory signals. As discussed in Chapter I, experience and 

training have been shown to facilitate perceptual judgments and optimise visual 

recognition processes in the brain (Fine and Jacobs, 2002; C. Gilbert et al., 

2001; Goldstone, 1998). For instance, an experienced bird watcher is not only 

able to break the camouflage and detect a bird in a leafy tree, but also determine 

whether it is a carrion crow or a hooded crow. Yet, the inhibitory mechanisms 

that the human brain employs to suppress task-irrelevant information and 

optimise perceptual decisions through training remain largely unknown.  

Theoretical models of perceptual learning (Dosher et al., 2013; Dosher and Lu, 

1998; R. W. Li et al., 2004) posit that experience and training facilitate our ability 

to a) detect targets in clutter by filtering external noise, b) discriminate highly 

similar objects by suppressing irrelevant features and retuning task-relevant 

feature templates. Although considerable behavioural evidence supports this 

framework, its neural implementation remains uncertain. Previous fMRI studies 

have demonstrated changes in the overall activation of higher visual areas in the 

occipito-temporal cortex due to training on perceptual decision tasks (for reviews 

(Kourtzi, 2010; Welchman and Kourtzi, 2013a)). However, fMRI data do not 

allow us to discern excitatory from suppressive mechanisms of experience-
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dependent plasticity, as BOLD reflects aggregate activity across large neural 

populations (Heeger and Ress, 2002; Logothetis, 2008).  

Here I ask whether GABA, the primary inhibitory neurotransmitter in the brain, 

mediates our ability to improve in making perceptual decisions through training 

on a visual task. As discussed in Chapter I, previous work in animals has 

demonstrated that GABAergic inhibition is associated with learning and 

synaptic plasticity (Castro-Alamancos et al., 1995; Trepel and Racine, 2000). 

Further, GABA, as measured by MR Spectroscopy in humans, has been shown 

to relate to individual performance in visual perceptual tasks (Edden et al., 2009; 

van Loon et al., 2013; Yoon et al., 2010), homeostatic plasticity in animals 

(Fagiolini, 2004) and humans (Lunghi et al., 2015) as well as individual ability 

for motor learning (Kolasinski et al., 2017). While decreased motor cortex 

GABA has been associated with improved performance in the context of motor 

learning (Blicher et al., 2015; Floyer-Lea et al., 2006; O’Shea et al., 2017; 

Sampaio-Baptista et al., 2015), the link between changes in GABA and visual 

perceptual learning remains largely unexplored. 

In the study presented in this chapter, I test the role of GABAergic inhibition in 

learning to make perceptual judgements under two types of uncertainty in the 

environment: interpreting cluttered scenes (i.e. identifying objects embedded in 

noise) and discriminating highly similar objects (i.e. identifying fine feature 

differences). I employed two tasks that rely on these processes differentially: (1) 

a signal-in-noise task that involves extracting shapes (radial vs. concentric Glass 

patterns) masked by noise versus (2) a feature-difference task that involves 

judging fine differences. Previous functional brain imaging studies have shown 

that training in these tasks results in learning-dependent changes in brain 

activations in the LOC (Kourtzi et al., 2005; Li et al., 2012; Mayhew et al., 

2010; Zhang et al., 2010), an area known to be involved in shape processing. 

Yet, the BOLD signal measured by fMRI does not allow us to discern the 

contribution of excitatory vs. inhibitory mechanisms to learning-dependent 

plasticity.  
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Here, I combine MRS-measurements of GABA in the lateral occipital cortex 

before vs. after training with fMRI measurements during training to test whether 

changes in GABA concentration relate to learning-dependent changes in fMRI 

activation in the lateral occipital cortex and behavioural improvement on these 

tasks. To test for task-specific inhibitory mechanisms of learning-dependent 

plasticity, we compare measurements in two tasks: Signal-in-noise vs. Feature 

differences task. I hypothesise that detecting targets in clutter relies on enhanced 

neural gain processes, while discriminating fine features relies on enhanced 

tuning to the behaviourally relevant features.  

My findings provide evidence for dissociable inhibitory mechanisms that shape 

processing in the visual cortex and mediate behavioural improvement in 

perceptual decision making through training. I demonstrate that decreased 

GABA after training relates to improved detection of targets in clutter, while 

increased GABA relates to enhanced sensitivity in discriminating fine feature 

differences. These GABAergic changes moderate the relationship between 

functional activation and behaviour, demonstrating the contribution of inhibitory 

processes to learning-dependent plasticity in visual cortex.  

 

2. Methods 

a. Participants  

Forty six participants (21 female; mean age 25.04 ± 3.69 years) participated in 

this study Sample size was determined based on power calculations following 

previous studies on motor learning showing an effect size of r=0.65 or r=0.60 at 

90% power for correlations of GABA with behaviour or BOLD, respectively 

(Stagg et al., 2011a). All participants were right-handed, had normal or 

corrected-to-normal vision and gave written informed consent. The study was 

approved by the University of Cambridge ethics committee. Three participants 

were excluded from the study due to incomplete data resulting from technical 
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failure. Of the remaining participants, twenty one participated in the Signal-in-

Noise (SN) experiment and twenty two in the Feature-differences (FD) 

experiment. Each group was trained only on one of the two tasks (SN, FD) to 

avoid transfer effects across tasks that have been previously reported when the 

same individuals were trained sequentially on both tasks (Chang et al., 2013; 

Dosher and Lu, 2007). In Table 3.1 we present the number of datasets collected 

per task and number of datasets left after rejecting poor quality data in the 

different pre-processing stages. 

b. Experiment Design 

Participants were presented with Glass patterns, as described in chapter II, 

section 1. Stimuli were presented in the centre of the screen, at a visual angle of 

7.9
o 

x 7.9
o
. Participants were asked to judge whether the presented stimulus on 

each trial was radial or concentric and received feedback on their average 

performance (i.e. percent correct) every 10-15 trials as indicated by a vertical 

colour-bar. Participants were familiarised with this task before training in the lab 

and were then trained during an fMRI session. The day after the fMRI scanning, 

we tested participants on the trained task for 216 trials (transfer test) without 

feedback (Figure 3.1).  

Figure 3.1: Experiment design.  

Participants were familiarised with the task during a screening session at the lab. On the day of the 

brain imaging session, MRS measurements (45min) were taken before and after training, while fMRI 

measurements were taken during training (45min). The day after the imaging session, participants 

were tested in the lab for 216 trials without feedback. 
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c. Brain imaging session 

All participants took part in a single brain imaging session during which they 

were trained on either the Signal-in-Noise or the Feature-differences task. We 

recorded fMRI data during training and MRS data from occipito-temporal 

cortex before and after training. Each session lasted approximately three hours: 

the MRS measurements before and after training were 45 minutes long, while 

the training-fMRI measurements lasted for one hour including structural and 

localiser scans. We avoided participant fatigue by having a short break outside 

the scanner before and after the training-fMRI part. 

The fMRI measurements comprised 7-8 experimental runs (data were missing 

from several participants (n=9) for the eighth training run). Each run lasted 

330s. We used an event related design and ensured that the order of trials was 

matched for history (two trials back) such that each trial was equally likely to be 

preceded by any of the conditions. The order of the trials differed across runs 

and participants. Two stimulus conditions (radial, concentric) and one fixation 

condition, with 36 trials per condition, were presented in each run. Each run 

comprised 110 trials (108 trials across conditions and 2 initial trials for 

balancing the history of the second trial) and two 9 s fixation periods at the 

beginning and end of the run. Participants were presented with a Glass pattern 

stimulus per trial and asked to judge whether the presented stimulus was radial 

or concentric. Participants received feedback on their average performance (i.e. 

percent correct) every 10-15 trials as indicated by a vertical colour bar.  

For fixation trials, a fixation dot was displayed in the centre of the screen for 3s. 

For experimental trials, a 200ms stimulus presentation was followed by a 

1300ms fixation. After this fixed delay, a response cue appeared as either a red 

“+” or “x”. If the response cue was a red “+”, participants indicated radial versus 

concentric by pressing the left versus the right key. If the response cue was a red 

“x”, the opposite keys were used (e.g., radial = right key). This allowed us to 

dissociate the motor response (button press) from the stimulus related fMRI 
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activations. The response cue remained on the screen for 1000ms, followed by a 

fixation dot 500ms before the next trial onset. Participants were familiarized 

with the task before scanning (Figure 3.2). 

 

 

d. Data acquisition 

Functional MRI data acquisition 

Experiments were conducted at the Cognition and Brain Sciences Unit, 

Cambridge (3T Magnetom Trio, A Tim System, Siemens). We collected T2*-

weighted functional and T1-weighted anatomical (1x1x1mm) data with a 12-

channel sensitivity encoding (SENSE) head coil. Echo planar imaging data 

(gradient echo-pulse sequences) data were acquired from 27 slices (whole-brain 

coverage; TR, 1500 ms; TE, 29 ms; flip-angle, 78°; resolution 2.5 x 2.5 x 4mm). 

Figure 3.2: Experimental trial structure. 

The stimulus was presented for 200ms. A 1300ms fixed delay was followed by a response cue 

that prompted participants to respond with the respective button-category combination. The 

response cue remained on the screen for 1000ms, followed by a fixation dot 500ms before the 

next trial onset. 
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MR Spectroscopy data acquisition 

We collected MRS data with a 32-channel sensitivity encoding (SENSE) head 

coil. We collected localizer images ([TR/TE] = 90/3.63 ms; [FOV] = 

350x350x263; 5 mm slice thickness) to confirm head positioning and three-

dimensional T1-weighted structural data (MP-RAGE; 

TR/TE/TI=2010/3.53/1100 ms; FOV=256x256x224 mm; isotropic 1 mm in-

plane resolution).  

We centred the voxel for both MRS measurements (25 × 25 × 25 mm
3
) in the 

right occipito-temporal cortex (Figure 3.3), as this region has been previously 

shown to be involved in template representation (Chang et al., 2014) and 

judgements of object properties (Ellison and Cowey, 2006). We positioned the 

MRS voxel manually using anatomical landmarks (Superior Temporal Gyrus, 

Middle Occipital Gyrus) on the acquired T1 scan to ensure that the voxel 

placement matched between the pre- and post- training measurements and 

across participants. We used a 2D 1H J-PRESS sequence (Prescot and Renshaw, 

2013; Schulte et al., 2006) (TR/TE = 2000/31-229 ms; ΔTE = 2 ms (100 TE 

steps); 4 signal averages per TE step with online averaging; 2D spectral width = 

2000x500 Hz, and 2D matrix size = 1024x100). Measurements with this 

sequence at 3T have been previously shown to be reliable and reproducible 

(Prescot and Renshaw, 2013; Schmitz et al., 2017). We conducted B0 shimming 

within the MRS voxel combining an automated phase map with interactive 

manual shimming until the full-width at half-maximum measured for the real 

component of the unsuppressed water signal was below 20 Hz. We placed six 

saturation bands at least 1cm away from the cubic MRS voxel faces to suppress 

outer volume (OVS), using hyperbolic secant adiabatic full passage RF pulses. 

OVS was interleaved with water suppression via a WET scheme (Prescot and 

Renshaw, 2013). Water unsuppressed 2D 1H MRS data were also collected and 

used for eddy current correction.  
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Figure 3.3: MRS voxel placement 

MRS measurements were acquired from a 2.5 x 2.5 x 2.5 cm
3 

volume centred on the lateral 

occipital cortex, using anatomical landmarks. Top: voxel position probability map, showing the 

voxel placement common across 50% to 100% of participants. This mask was used to constrain 

GLM analyses. Bottom: voxel probability map on the grey matter surface reconstruction. Red 

corresponds to brain voxels included in all participants’ MRS voxels. 
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e. Data analysis 

Behavioural data 

We employed a single interval forced choice task, where participants were asked 

to choose between two stimulus classes (radial or concentric) in each trial. To 

quantify discriminability (Figure 3.4) between the two Glass patterns classes 

(radial vs. concentric), we computed d’ (Stanislaw and Todorov, 1999) across 

trials per run, as the difference between the z-transform of each stimulus class’ 

hit and false alarm rates. In particular, if the stimulus was radial (tR) and the 

participant responded “radial” (rR), this was counted as a hit for the radial class 

(tRrR) or a correct rejection for the concentric class. If the stimulus was radial 

(tR) and the participant responded "concentric” (rC), this was counted as a miss 

for the radial class (tRrC) or a false alarm for the concentric class. When 

calculating response rates, we computed hit rate for radial and concentric as 

follows: 

Radial Hit Rate: tRrR /tR, Radial False Alarm Rate: tCrR/tC 

Concentric Hit Rate: tCrC/tC, Concentric False Alarm Rate: tRrC/tR 

Also:  

Radial Hit Rate + Concentric False Alarm Rate = tRrR/tR + tRrC/tR = tR/tR = 1 

and 

Concentric Hit Rate + Radial False Alarm Rate = tCrC/tC + tCrR/tC = tC/tC = 1 

d’ can be computed using the Radial or Concentric Hit and False Alarm Rates as 

shown below: 

d' = z (Radial Hit Rate) - z (Radial False Alarm Rate) 

 = z (1-Concentric False Alarm Rate) - z (1-Concentric Hit Rate) 

 = -z (Concentric False Alarm Rate) + z (Concentric Hit Rate), 

where z is the inverse cumulative distribution function for a normal distribution 

(0,1). 
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To quantify behavioural improvement, we calculated: a) learning rate that 

indicates the rate of change in perceptual sensitivity as measured by d’ per 

training run, b) Δd’ that indicates difference in perceptual sensitivity early (first 

run) vs. late (last run) in training. To compute learning rate, we fitted individual 

participant training data with a logarithmic function: y = 𝑘 ∗ ln 𝑥 + c, where x is 

the training run, y is the run d’, c is the starting d’ and k corresponds to the 

learning rate using MATLAB 2013a (The MathWorks, Natick, MA, USA). 

Positive learning rate indicates that performance improved with training, 

whereas negative or close to zero learning rate indicates no behavioural 

improvement.  

  

  

Figure 3.4: Stimulus class 

discriminability 

a. Before training there is large 

overlap between the response 

distributions of participants, as 

they cannot differentiate 

between the two categories near 

the category boundary. 

b. After training, participants’ 

responses are more selective and 

there is small overlap between 

the two response distributions, 

as they are now able to 

discriminate between the two 

stimulus classes near the 

category boundary. 

a. 

b. 
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MRS data pre-processing 

We pre-processed MRS data according to (Prescot and Renshaw, 2013), using 

MATLAB and the prior-knowledge fitting software ProFit (Schulte and 

Boesiger, 2006). ProFit provides successful two-dimensional fitting by 

combining maximum prior knowledge integration with LC Model (Provencher, 

1993) and a succession of non-linear and linear parametrised fitting with 

variable projection (van der Veen et al., 1988).  

We assessed the quality of the fit by means of visual inspection and calculation 

of the Cramer-Rao Lower Bounds (CRLB) of variance. Visual inspection is an 

essential step when assessing MRS data quality. While pre-processing tools and 

fitting toolboxes are equipped to account for multiple sources of noise, it’s 

possible that erroneous fits with misleading fit errors may suggest a 

contaminated dataset is of good quality. This is often the case when the 

spectrum suffers from lipid contamination. Spectral peaks in the range of 1.5 to 

1.75ppm correspond to macromolecules and if present, the 1.8ppm GABA peak 

is contaminated and erroneously fitted. Such contamination is often (but not 

always) coupled with high CRLB for the fit. 

Only participants without fat contamination and GABA CRLB values <20% 

(Stagg and Rothman, 2013) for both pre and post training fitted data were 

included in further steps of MRS related analyses (three participants from the 

Feature-differences task were excluded due to this contamination, Figure 3.5, 

Table 3.1). Residual water was removed from each row of water suppressed 2D 

matrices using a Hankel singular value decomposition (HSVD) MATLAB 

routine (Cabanes et al., 2001; Prescot and Renshaw, 2013). 

We normalised metabolite concentrations to the concentration of total Creatine 

(tCre). tCre has been widely used as a reference metabolite in MRS studies 

(Donahue et al., 2010; Sampaio-Baptista et al., 2015) and this method for 

normalisation has been shown to have better reproducibility compared to other 

methods (Bogner et al., 2010). We then subtracted pre- from post-training 
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concentrations to estimate GABA/tCre changes before compared to after 

training.  

To control for potential variability of the MRS voxel placement within and 

between participants, we extracted the Talairach coordinates of each 

participant’s pre- and post-training MRS acquisition voxels (Figure 3.3). The 

mean difference in voxel placement within participants was minimal (x=-

0.60mm; y=-0.40mm; z=-0.52mm). Only for one participant (Signal-in-noise 

task) was the difference in the MRS voxel position before and after training 

larger than two standard deviations above the mean; data for this participant 

were excluded from further analyses (Table 3.1). The voxel position before vs. 

after training did not differ significantly between the two tasks (t(34)=0.085, 

p=0.93). 

To account for the variability in tissue composition within the MRS voxel across 

participants, we calculated the percentage of grey matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF) in each of the MRS measurement voxels. 

We conducted whole brain tissue-type segmentation of the T1-weighted 

anatomical scan using FAST (Zhang et al., 2001), in the FMRIB Software 

Library (Smith et al., 2004). We then divided GABA concentration by 

GM/(GM+WM+CSF) and Creatine concentration by 

(GM+WM)/(GM+WM+CSF) (Kolasinski et al., 2017).  

We used bootstrapped Pearson’s correlations to measure the linear association 

between variables (GABA, behavioural improvement, BOLD change) as 

implemented in the Robust Correlation toolbox (Pernet et al., 2013). Skipped-

correlations detect bivariate outliers and account for their removal when testing 

for correlation significance. Bivariate outliers were detected using the box-plot 

rule on z-scored values: the algorithm calculates orthogonal distances of all data 

points from the centre of the bivariate distribution and marks as outliers data 

points with distances that exceed the interquartile range. Where bivariate 

outliers were detected we reported Skipped Pearson’s r and bootstrapped 
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confidence intervals. We used Fisher's test to compare correlation metrics 

between tasks and Steiger's test within task. 

  

Figure 3.5: Examples of lipid contamination in MRS spectra. 

In healthy tissue, fat contamination is caused by extracranial lipids when the MRS voxel is placed 

near the skull, compromising metabolite quantification. When preprocessing the MRS data, we 

estimated fat contamination after visual inspection of the two-dimensional spectra (c,d), their fits 

(e,f) and residual plots (g,h). We used two empirical criteria for data exclusion, following previous 

studies (Schmitz et al, 2017).  

First, we collapsed the first frequency dimension, producing a 1D representation that resembles a 

typical MRS spectrum. The difference between a spectrum without (a) and with (b) fat 

contamination is observed between 0.9-2.8ppm, where lipids resonate. High peaks in these 

frequencies indicate fat contamination (b) and affect the spectrum baseline. Second, we confirmed 

this fat contamination by visually inspecting the two-dimensional spectral fits (e,f) and residuals 

(g,h). The colour-scale represents the range of chemical compound concentrations and is the same 

for all participants. Larger peaks, as for example NAA at 2ppm, are depicted with distinct red 

circles, as their concentration is a lot higher than their neighbouring metabolites (c,e). Fat 

contamination results in a noisy spectrum (d) with large residuals (h), indicating a poor fit. As the 

spectrum is affected by the presence of large peaks in resonances between 0.9-2.8ppm, we observe a 

reduced range of metabolite concentrations; that is, relatively large peaks (e.g NAA at 2ppm) are no 

longer well defined (d,f) or coloured in red (higher values). We removed data from further analyses 

when both criteria were met. This was the case for data from three participants in the Feature 

Differences task. 
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fMRI data pre-processing 

We used BrainVoyager QX 2.8 (Brain Innovation, Maastricht, The Netherlands) 

for fMRI data analysis (Goebel et al., 2006). We used an automated alignment 

routine (rigid body transformation) together with manual adjustments to ensure 

precise co-registration of the functional and anatomical data.  T1-weighted 

anatomical data were used for coregistration, and three-dimensional head 

motion correction, temporal high-pass filtering (Fast Fourier Transform with a 

cut-off of 3 cycles) and removal of linear trends. Trials with motion larger than 

3mm were excluded from further analyses. Three participants with excessive 

motion across experimental runs were excluded from fMRI related analyses 

(one for the Feature-differences task and two for the Signal-in-Noise task, Table 

3.1). Spatial smoothing (Gaussian filter, full-width-at-half-maximum 5mm) was 

used for group GLM analysis. The functional images were aligned to anatomical 

data under careful visual inspection, and the complete data were transformed 

into Talairach space (nearest-neighbor interpolation). The functional runs were 

co-aligned to the first functional volume of the first run of the session.  

 

fMRI data analysis 

To investigate fMRI learning-dependent changes during training, we grouped 

the fMRI runs into three training blocks: first two (‘early training’), middle three 

and last two (‘late training’) runs. We analysed the data using a General Linear 

Model (GLM) with two task related regressors (stimulus vs. fixation trials) and 

six head movement regressors based on the motion correction parameters. We 

conducted whole-brain voxel-wise covariance analyses to identify voxel clusters 

that show significant correlations between BOLD activation change (early vs. 

late training blocks) and behavioural improvement. To assess the relationship 

between learning-dependent changes in fMRI and GABA measurements, we 

conducted a covariance analysis that tested for voxels that showed significant 

correlation between fMRI activity change (last vs. early training block) and 
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GABA change (post- minus pre-training GABA measurement). We used Brain 

Voyager’s cluster-extent thresholding tool (ClusterThresh plugin) and run 

Monte Carlo simulations to estimate the cluster-extent threshold and confirm a 

family wise error threshold of p=0.05.  

Table 3.1: Datasets collected and used after removing poor quality data in each modality 

 Signal-in-Noise  Feature differences  

Datasets collected 21 22 

Excessive motion in fMRI 2 1 

Fat contamination in MRS 0 3 

Offset in MRS voxel  1 0 

Total datasets used 18 18 

 

 

 

3. Results 

Learning-dependent changes in behaviour and fMRI  

We tested two different groups of participants on either (1) a signal-in-noise 

(SN) task that involves extracting shapes (radial vs. concentric Glass patterns) 

from background noise or (2) a feature-difference (FD) task that involves 

judging fine differences induced by morphing between the two stimulus classes. 

For each task, participants improved during a single training session that took 

place during scanning (Figure 3.6), consistent with previous reports showing 

fast behavioural improvement early in the training (for a review see Sagi, 2011). 

A repeated measures ANOVA (Task (SN vs. FD) x Training (training runs) 

showed significantly improved performance –as measured by d’– after training 
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(main effect of Training: F(6,192)= 3.79, p=0.001) but no significant effect of 

Task (F(1,32)=0.01, p=0.91) nor Training x Task interaction (F(6,192)= 0.61, 

p=0.722), suggesting similar improvement in both tasks. Testing participants the 

following day after training (transfer test) showed that performance was 

significantly different from the first training run for both tasks (main effect of 

Session: (F(1,32)= 10.59, p=0.003; Task x Session interaction: (F(1,32)=0.89, 

p=0.35) but not significantly different from the last training run (main effect of 

Session: F(1,32)=0.95, p=0.34; Task x Session interaction: F(1,32)=0.18, 

p=0.68), suggesting lasting performance improvement due to training. In 

contrast, no significant changes in performance were observed for a no-training 

control group who did not receive training in between test sessions (main effect 

of Session: F(1,6)= 1.13, p=0.33; Task x Session interaction: F(1,6)=0.0003, 

p=0.99).  

 

  

Figure 3.6: Behavioural improvement during training 

The task accuracy per run is normalised to the first run of the task and the improvement index 

is fitted with a logarithmic function to obtain learning rate. Behavioural improvement during 

training: mean d’ per training run normalised to d’ in the first run. Data were fitted with a 

logarithmic function; error bars indicate standard error of the mean across participants. The 

trend of higher performance in the SN than the FD task was not statistically significant; that is, 

there was no significant difference between tasks early in the training (i.e. first training block; 

t(34)=0.23, p=0.82), nor a significant main effect of Task (F(1,32)=0.01, p=0.91) nor a 

significant Task x run interaction (F(6,192)=0.61, p=0.72), suggesting similar performance 

before training and behavioural improvement after training between tasks.   
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To further quantify behavioural improvement, we computed two complementary 

measures: a) delta d prime (Δd’: last training run minus first training run) that 

indicates difference in perceptual sensitivity early vs. late in training, b) learning 

rate that indicates the rate with which perceptual sensitivity (d’ calculated per 

training run) changes during training. These measures have been previously 

used in perceptual learning studies to quantify the effect of training on 

performance (Ball and Sekuler, 1987; Chang et al., 2013; Dosher et al., 2013). 

Behavioural improvement was similar between tasks, as indicated by no 

significant differences between tasks in learning rate (t(34)=0.03, p=0.974) nor 

Δd’ (t(34)=0.806, p=0.426).  

We next tested whether behavioural improvement relates to functional brain 

changes with learning. First, we tested for learning-dependent changes in 

functional brain activations during training. GLM analysis of the fMRI data 

across training runs showed significant changes in occipito-temporal BOLD for 

both tasks (Figure 3.7a), suggesting that BOLD changes at this early stage of 

learning (i.e. single training session that resulted in maximum 74% mean 

performance) do not differ between tasks. This is consistent with previous fMRI 

studies showing learning-dependent changes within a single training session 

(Mukai et al, 2007). It is possible that the two tasks may show discriminable 

BOLD activations after more extensive training resulting in saturated 

performance, as shown by our previous studies using similar learning paradigms 

with multiple training sessions (Kourtzi et al., 2005; Li et al., 2012; Mayhew et 

al., 2010). Second, we conducted whole-brain voxel-wise covariance analyses 

using either learning rate or Δd’ as covariates. For these analyses, we pooled the 

data across tasks, as changes in both behavioural performance and BOLD with 

training were similar between tasks. Our results showed significant correlations 

between BOLD change (late vs. early training runs) in the posterior occipito-

temporal cortex and behavioural improvement (learning rate, Δd’) across tasks 

(Figure 3.7b). These results provide evidence for learning-dependent changes in 

occipito-temporal cortex that relate to behavioural improvement, consistent with 
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our previous studies and the role of this region in visual learning and global 

shape processing (Kourtzi et al., 2005; Kuai et al., 2013; Zhang et al., 2010). 

Therefore, we next focused on the posterior occipito-temporal cortex and tested 

whether learning-dependent BOLD changes relate to changes in GABA 

concentration in this region. 

a. BOLD changes during training 

b. BOLD-behaviour covariate analysis 

Figure 3.7: Learning-dependent changes in BOLD 

a. GLM analysis of the fMRI data across all training runs showed that significant BOLD 

changes in occipito-temporal cortex during training for both tasks (main effect of Task: 

F(1,34)= 0.20, p=0.66; Task x Block interaction: F(1.9,64.6), p=0.71). Bar-plots show BOLD 

signal (percent signal change) in occipito-temporal cortex across runs; mean data is plotted 

during training: early (first two training runs), middle (middle three training runs), late (last 

two training runs) for the two tasks; error bars indicate standard error of the mean across 

participants.  

b. Whole-brain covariance analyses (cluster threshold corrected, p<0.05) with either learning 

rate (purple) or Δd’ (blue) on fMRI data (first two runs vs. last two runs) that were pooled 

across the two tasks showed positive significant clusters in the posterior occipito-temporal 

cortex. Activations are shown on the cortical surface of the right hemisphere (sulci are shown 

in dark grey, gyri in light grey). The colour bar indicates Pearson’s r correlation values.  
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Relating GABA to behavioural improvement  

Previous MRS studies have shown that GABA concentrations in the visual 

cortex relate to performance in perceptual tasks (Edden et al., 2009) and 

homeostatic plasticity (Lunghi et al., 2015). Here, we test whether GABA-ergic 

suppression relates to behavioural improvement and learning-dependent 

functional changes in the visual cortex, by comparing MRS-measurements of 

GABA in the posterior occipito-temporal cortex before vs. after training.  

First, we tested whether behavioural improvement –as measured by learning rate 

and Δd’– relates to changes in visual cortex GABA with training. We recorded 

GABA concentrations before and after training within a voxel centred on the 

posterior-occipito-temporal cortex (Figure 3.3), consistent with the fMRI 

analysis showing learning-dependent BOLD changes with training in this 

region. Correlating learning rate and Δd’ with GABA changes showed 

dissociable effects for the two tasks (Figure 3.8, Figure 3.S1). In particular, for 

the Signal-in-noise task we observed a negative correlation of GABA change 

with learning rate (r=-0.43, CI=[-0.74, -0.07]), but no significant correlation 

with Δd’ (r= -0.14, CI=[-0.49, 0.29]). In contrast, for the Feature-differences, 

task we observed a positive correlation of GABA change with Δd’ (r=0.54, 

CI=[0.05, 0.85]), but no significant correlation with learning rate (r= 0.13, CI=[-

0.38, 0.62]). Further, the significant correlations of GABA change with 

behavioural improvement (learning rate for SN; Δd’ for FD) were significantly 

different between tasks (Fisher’s z=2.91, p=0.004). These dissociable effects 

could not be simply explained by differences between tasks, as the two tasks 

resulted in similar behavioural improvement.  

To ensure that our results were specific to GABA changes in the posterior 

occipito-temporal cortex due to training, we performed the following controls. 

First, correlation of GABA change and behavioural improvement remained 

significant when we corrected for a) tissue (grey matter, white matter, 

cerebrospinal fluid) composition (SN, correlation with learning rate: r=-0.41, 
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CI=[-0.70, -0.07]; FD, correlation with Δd’: r=0.56, CI=[0.03, 0.83]) and b) 

differences in data quality (as measured by Cramer-Rao Lower Bounds – see 

Materials and Methods) between the two GABA measurements (SN, correlation 

with learning rate: r=-0.44, CI=[-0.71, -0.12]; FD, correlation with Δd’: r=0.46, 

CI=[0.03, 0.76]). Second, correlating percentage GABA change (GABA change 

/ pre-training GABA) with behavioural improvement to control for pre-training 

GABA showed significant correlations for both tasks (SN, correlation with 

learning rate: r= -0.45, CI=[-0.78, -0.002]; FD, correlation with Δd’:  r=0.58, 

CI=[0.18, 0.81]). These correlations were significantly different between tasks 

(Fisher’s z=2.87, p=0.004) and remained so when we normalised GABA to 

NAA rather than creatine concentration (Fisher’s z=2.73, p=0.01). Third, 

changes in Glutamate, the other major cortical neurotransmitter, did not 

correlate significantly with behavioural improvement (SN, correlation of 

Glutamate change with learning rate: r=0.33, CI=[-0.22, 0.67]; FD, correlation 

of Glutamate change with Δd’: r=-0.30, CI=[-0.58, 0.06]). These correlations of 

Glutamate change with measures of behavioural improvement were significantly 

different from correlations of GABA change with behavioural improvement 

(SN, correlations with learning rate: Steiger’s z=2.99, p=0.003; FD, correlations 

with Δd’: Steiger’s z=33.4, p=0.001). Finally, correlations of GABA change and 

behavioural improvement remained significant after accounting for Glutamate 

change (SN, correlation of GABA change with learning rate: r=-0.41, CI=[-0.69, 

-0.08]; FD, correlation of GABA change with Δd’: r=0.54, CI=[0.04, 0.85]), 

suggesting that our results were specific to GABA and do not generalize to 

glutamate.  

Our analyses so far showed significant correlations of changes in GABA and 

behaviour due to training. Yet, we did not observe significant differences in 

mean GABA concentration in occipito-temporal cortex before vs. after training 

(main effect of MRS block: F(1,34)= 0.06, p=0.81; Task x MRS block 

interaction: F(1,34)= 0.21, p=0.65) (Figure 3.S2). Previous studies have reported 

mean changes in GABA concentration in the motor cortex (Floyer-Lea et al., 
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2006; Sampaio-Baptista et al., 2015) due to training and visual cortex due to  

changes in homeostatic plasticity (Lunghi et al., 2015). The main difference 

between our study and these previous reports is that participant performance 

increased but did not saturate during the single training session employed in our 

study (i.e. participant reached mean performance 74%), in contrast to previous 

studies that showed saturated performance after training. Thus, it is likely that 

mean changes in GABA concentration are more pronounced when participant 

performance has plateaued after training. Further, it is likely that 7T imaging 

(rather than 3T imaging used in our study) affords increased signal-to-noise 

ratio and time resolution that may benefit measurements of change in GABA 

concentration (Barron et al., 2016; Lunghi et al., 2015). 

Figure 3.8: Distinct GABAergic contributions for the two tasks  

Here, we show skipped Pearson’s correlations indicating a significant negative correlation of 

GABA change in occipito-temporal cortex with learning rate for the Signal-in-noise task (r=-

0.43, CI=[-0.74, -0.07]) and a significant positive correlation with Δd’ for the Feature-

differences task (r=0.54, CI=[0.05,0.85]). Correlations of GABA change with Δd’ for the 

Signal-in-noise task or learning rate for the Feature-differences task were not significant (Figure 

3.S1). The plots indicate that for a small number of participants the data deviated from the 

overall pattern of the correlation; e.g. for some participants in the SD task, GABA/tCr values 

were higher rather than lower compared to baseline. Our treatment of the data (i.e. behavioural 

improvement is expressed as percent over early performance and control analysis where GABA 

data is expressed as percent over baseline) accounts for potential differences across participants 

in performance early in training or baseline GABA before training. It is possible that this 

individual variability was due to the single training session employed in our study during which 

participant performance did not saturate (i.e. participant best reached 72% mean performance 

across participants). Bivariate outliers are not shown. 
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 Relating GABA to learning-dependent BOLD change  

Next, we tested whether learning-dependent changes in visual GABA (before 

vs. after training) relate to changes in BOLD within the posterior occipito-

temporal cortex. We conducted a GLM covariance analysis to test whether 

BOLD changes (late vs. early training runs) relate to GABA changes in this 

region. This analysis showed opposite correlations between GABA and BOLD 

change for the two tasks: negative correlation for the Signal-in-Noise, while 

positive correlation for the Feature-differences task (Figure 3.9a). We 

corroborated this result by extracting BOLD signal from the voxel clusters in the 

posterior occipito-temporal that resulted from the covariance analysis of fMRI 

with behavioural improvement (Figure 3.7b). Correlations of change in GABA 

and BOLD –extracted from this independently defined region of interest (Figure 

3.7b)- were opposite and significantly different between the two tasks (SN: r=-

0.58 CI=[-0.82, -0.22], FD: r=0.70 CI=[0.37, 0.90], Fisher’s z=4.19, p<0.0001) 

(Figure 3.9b). These results suggest that learning-dependent GABA changes 

measured with MRS relate to local BOLD changes, consistent with previous 

reports both in the LOC (Barron et al., 2016).  

Our findings suggest that task-dependent suppression mechanisms relate to 

functional changes in visual cortex and behavioural improvement. To further 

test this hypothesis, we performed moderation analyses (Hayes, 2012) (Figure 

3.10) that allowed us to test whether the influence that an independent variable 

(i.e. BOLD) has on the outcome (i.e. behaviour) is moderated by one or more 

moderator variables (i.e. GABA, task). Our results showed that this model is 

significant (F(7,28)=3.77, p=0.01) and the relationship between BOLD change 

and behavioural improvement depends multiplicatively on GABA change and 

task, as indicated by a significant three-way interaction between task, GABA 

change, and BOLD change (F(1,28)= 7.17, p=0.01; R-square change=0.13). 

Taken together, these moderation analyses suggest that task-dependent GABA-

ergic suppression moderates the relationship between functional brain plasticity 

and behavioural improvement in the visual cortex. 
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Figure 3.9: Differential GABA-BOLD correlations for the two tasks 

a. GLM covariance analysis of GABA change with BOLD change within a masked region 

defined by the MRS voxel probability map (i.e. grey matter voxels that fall within each 

participant’s MRS voxels with minimum 50% probability, as outlined in black). We used fMRI 

data (i.e. first two vs. last two fMRI runs) that were collected closer to the time when GABA was 

collected (before vs. after training). Activations are shown in radiological co-ordinates. GABA 

change correlated negatively with BOLD change for the Signal-in-Noise task (green to blue 

colour bar), while positively for the Feature-differences task (orange to yellow colour bar). The 

colour bars indicate Pearson’s r.  

b. Correlation of change in GABA and BOLD extracted from an independently defined region of 

interest; i.e. BOLD was extracted from the voxel clusters in posterior occipito-temporal cortex 

that resulted from the covariance analysis of fMRI with behavioral improvement (Figure 3.7b). 

This analysis showed opposite and significantly different correlations (SN: r=-0.58 CI=[-0.82, -

0.22], FD: r=0.70 CI=[0.37, 0.90], Fisher’s z=4.19, p<0.0001) and corroborated the results shown 

in Figure 3.9a. 
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Control analyses 

To ensure that the dissociable correlations we observed between tasks for 

behaviour, GABA and BOLD were not due to differences between the two 

groups of participants that were each trained on a different task (SN vs FD 

group), we compared behavioural and imaging data between groups before 

training. First, our analyses did not show any significant differences in GABA 

concentration before training (t(34)=0.11, p=0.91) nor in behavioural 

performance early in training (i.e. first training run) (t(34)=0.23, p=0.82) 

between the two groups. Second, we compared signal-to-noise ratio (SNR) 

between tasks for the first MRS measurement (i.e. pre-training) and the first two 

fMRI runs (i.e. early in the training, as there were no fMRI measurements 

before training). We did not find any significant differences in MRS SNR 

(t(34)=0.77, p=0.45), nor fMRI temporal SNR (tSNR) between the two tasks 

(t(34)=0.73, p=0.47). These results suggest that the dissociable results we 

observed between tasks could not be simply due to differences across 

individuals that trained in different tasks. 

Further, to ensure the learning-dependent changes we observed were not 

confounded by changes in the scanner environment during training, we 

conducted the following control analyses. First, we calculated the variation of 

the scanner centre frequency across training runs for each participant. We found 

that the mean scanner centre frequency variation across participants was very 

small (0.0000125 ± 0.0000019 MHz), and there was no significant interaction 

between Training (first two vs. last two fMRI runs) and Task (F(1,34)=0.68, 

p=0.42). Second, a similar analysis on tSNR across fMRI runs did not show a 

significant interaction between Training (first two vs. last two fMRI runs) and 

Task (F(1,34)= 1.62, p=0.21). Further, to control for measurement differences in 

the MRS before vs. after training we conducted the following analyses. First, to 

assess measurement quality we calculated spectral SNR for each MRS 

measurement. This analysis showed no significant interaction between MRS 

block and task (F(1,34) = 2.37, p=0.13) nor a main effect of block (F(1,34)= 
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1.60, p= 0.22). Second, to assess spectral resolution before vs. after training, we 

calculated peak linewidth for each MRS measurement. This analysis showed no 

significant interaction between MRS block and task (F(1,34)=0.90, p=0.35) nor 

a significant main effect of MRS block (F(1,34)= 2.97, p=0.09). These results 

suggest that the MRS data quality was similar before and after training for both 

tasks. Taken together these analyses suggest that the dissociable correlations 

between BOLD and GABA we observed between tasks could not be due to 

differences in the quality of the BOLD or GABA measurements during training. 

Finally, to ensure that our results were specific to learning-dependent changes, 

we excluded data from participants who did not show positive improvement 

during the single training session employed in our study, as indicated by 

learning rate (n=3) or Δd’ (n=8). Despite the smaller data sample, the following 

results remained significant: a) correlations of GABA change with behavioural 

improvement (SN: r=-0.52, CI=[-0.80, -0.09]; FD: r=0.72, CI=[0.29, 0.94]), b) 

correlations of BOLD change (early vs. late training runs) with behavioural 

improvement (learning rate: r=0.58, CI=[0.30, 0.77]; Δd’: r=0.42, CI=[0.05, 

0.67]). Further, the correlations between GABA change and BOLD change 

(extracted from the voxel clusters revealed by the independent covariance 

analysis with behavioural improvement) remained significantly different 

between tasks (z= 2.84, p= 0.01).  
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Figure 3.10: Task-dependent GABAergic plasticity moderates the relationship of functional brain 

plasticity and behavioural improvement. 

We conducted moderation analyses to test whether task-dependent training moderates a) the influence of 

GABA change on behavioural improvement and b) the relationship between GABA and BOLD change. 

Model (a) was significant (F(3,27)=3.06, p=0.04), with a significant interaction between Task and GABA 

(F(1,27)=8.56, p=0.01; R-square change=0.24), indicating that task-dependent training moderates the 

influence of GABA change on behavioural improvement. Model (b) was significant when the outcome 

variable was either GABA (F(3,29)= 6.28, p=0.002; Task x BOLD interaction: F(1,29)=16.27, p=0.0004; 

R-square change=0.34) or BOLD  (F(3,29)=8.55, p=0.0003; Task x GABA interaction: F(1,29)=24.58, 

p=0.00003; R-square change=0.45), indicating that task-dependent plasticity moderates the relationship 

between change in GABA and BOLD. 
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4. Discussion 

In this study, we trained two groups of participants to detect shapes in clutter 

and to discriminate between highly similar targets. We used GABA-MRS before 

and after training to measure the concentration of the inhibitory neurotransmitter 

GABA in the occipito-temporal cortex. We used fMRI to measure whole brain 

activation during training and test the relationship between GABA and BOLD 

changes and how they relate to learning. 

The lateral occipital cortex is known to be involved in shape processing (Kourtzi 

and Kanwisher, 2001), visual categorisation (Li et al., 2009, 2007) and 

integration of global forms (Ostwald et al., 2008), whereas its role in visual 

processing has been shown to change during training (Chang et al., 2014). Our 

results showed similar learning dependent changes in behavioural performance 

and BOLD in these tasks at early stages of learning (i.e. training for a single 

session). This is consistent with previous fMRI studies of perceptual learning 

that have shown learning-dependent changes in the overall fMRI responses in 

visual cortex (e.g. (Kourtzi et al., 2005; Mukai et al., 2007; Sigman et al., 2006)) 

or enhanced discriminability of fMRI patterns with training (Byers and 

Serences, 2014; Jehee et al., 2012; Kuai et al., 2013; Zhang et al., 2010). 

Interrogating fMRI signals alone does not allow us to discern between the brain 

mechanisms that underlie these skills, as BOLD reflects the aggregate activity of 

excitatory and inhibitory signals at the scale of large neural populations (Heeger 

and Ress, 2002; Logothetis, 2008). However, combining MRS measurements of 

GABA with fMRI uncovers distinct suppression mechanisms that moderate the 

relationship between behavioural improvement and experience-dependent 

plasticity in visual cortex. Previous studies have investigated the relationship of 

baseline GABA measurements with performance in the context of visual (Edden 

et al., 2009) and sensory-motor tasks (Heba et al., 2016; Kolasinski et al., 2017; 

Stagg et al., 2011a) as well as reward-based learning (Scholl et al., 2017). Here, 

we test whether learning-dependent changes in GABA (i.e. GABA changes 
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before vs. after training) relate to changes in performance (i.e. behavioural 

improvement) and functional activation. Our findings provide evidence that 

changes in GABA-ergic suppression in the visual cortex relate to learning-

dependent changes in behaviour and functional brain plasticity. In particular, for 

learning to see in clutter, decreased occipito-temporal GABA relates to 

increased BOLD and improved performance, as indicated by faster learning rate. 

This is consistent with previous animal work linking synaptic inhibition to 

reduced neuronal gain (Mitchell and Silver, 2003). In contrast, we demonstrate 

that for learning to discriminate fine feature differences, increased occipito-

temporal GABA relates to increased BOLD and improved performance, as 

indicated by enhanced sensitivity in visual discrimination after training. This is 

consistent with studies showing that in the human occipital cortex, higher 

GABA baseline levels relate to increased sensitivity for orientation 

discrimination (Edden et al., 2009), while in the cat improved orientation 

selectivity is found after a GABA agonist injection (Li et al., 2008). 

Finally, we investigated the coupling between co-localised GABA and BOLD 

changes. The negative relationship between GABA and BOLD changes 

observed for the Signal-in-Noise task has been proposed before in the human 

(Barron et al., 2016; Walter et al., 2016) and animal literature (Chen et al., 2005) 

and has been suggested to reflect attenuated BOLD responses as a result of 

GABAergic inhibition. While a positive relationship between baseline GABA 

measurements and BOLD changes has been previously reported (Harris et al., 

2015; Lipp et al., 2015), this is the first report of a positive correlation between 

learning related GABA and BOLD changes. This result for the Feature-

differences task suggests enhanced neuronal responses as a result of sharper 

tuning due to increased inhibition (Zhang et al., 2010).  

Here, we focused on the link between learning-dependent GABA changes to 

BOLD changes in LOC. However, we found additional clusters of activation 

that correlate with LOC GABA changes and extend over occipito-temporal, 

occipito-parietal, salience and executive networks (Tables 3.S3, 3.S4). This 
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finding is not surprising as we expect changes in the inhibitory levels in LOC to 

relate to changes in activation in distant brain areas, as part of the wider brain 

networks involved in visual processing and learning (Grill-Spector et al., 2000; 

Kourtzi et al., 2005; Op de Beeck et al., 2006). Further, functional connectivity 

studies combined with measurements of inhibitory GABA in different brain 

areas during training are needed to investigate the link between GABA and 

BOLD changes. 

 

Conclusion 

Here I show for the first time the relationship between behavioural improvement 

on two distinct visual tasks and the inhibitory contributions as measured by 

GABA-MRS before and after training. Further, I provide evidence for the 

relationship between changes in GABA and BOLD responses measured from 

the same area during learning. Our results show that fMRI BOLD alone cannot 

reveal the dissociable neural mechanisms involved in learning, while differential 

GABAergic mechanisms moderate the link between changes in BOLD 

activation and behavioural improvement. 

 

Open questions  

Is the GABA-behaviour relationship specific to LOC?  

Here I show dissociable GABAergic contributions to visual learning for two 

distinct visual tasks. I chose to measure GABA in LOC, having considered its 

key role in shape processing and differential function in detecting patterns in 

noise vs discriminating similar patterns, as suggested by fMRI studies. 

However, we also know from the literature that a wider network of brain areas is 

involved in perceptual judgements of visual stimuli (Grill-Spector et al., 2000; 

Kourtzi et al., 2005; Op de Beeck et al., 2006). Here I show that behavioural 
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improvement in the two tasks correlates with BOLD activity in LOC, as well as 

other brain areas that extend over fronto-parietal and motivational networks 

(Table 3.S1, 3.S2). It would be interesting to investigate how connectivity in 

these networks relates to inhibitory processing, in order to understand better the 

circuit mechanisms that mediate learning. In chapter IV, I measured resting 

functional connectivity between key nodes in these networks in the occipito-

temporal and parietal cortex and relate it to resting inhibition and behavioural 

improvement in different visual tasks.  

The functional role of LOC in visual learning of shapes, the confirmation of 

learning dependent BOLD changes in LOC, as well as the dissociable LOC 

GABA-behaviour correlations suggest our results are specific to LOC. 

However, the lack of GABA measurements from a control region (e.g. motor 

cortex) does not allow us to isolate LOC as the sole locus of learning-related 

inhibitory mechanisms that contribute to our visual tasks. In Chapter IV, I 

measured GABA from both the occipito-temporal and the posterior-parietal 

cortex to confirm the specificity of the findings. 

What is the time-scale of the GABA change during training? 

Here I measure GABA approximately 20 minutes before and after training. 

Currently, we do not have enough information regarding the expected 

timecourse of learning-related GABA changes in the visual cortex. Previous 

studies have reported changes in GABA due to stimulation within the range and 

time scales observed in our study (10-15% change observed within 20-30 min) 

(Barron et al., 2016; O’Shea et al., 2017; Stagg et al., 2009a). Evidence from the 

motor cortex suggest GABA changes of about 10-15% can be measured 10-20 

minutes after training has ceased, while a trend is observed during 30 minutes of 

training (Floyer-Lea et al., 2006). However, we do not know how this translates 

in the visual cortex, especially in the context of a fast learning visual task. It is 

possible that fast GABA changes early on in training are required, which would 

need to be measured with shorter and more frequent acquisitions during training 
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rather than only after. In chapter IV, I used high-field MRS to measure GABA 

changes before and during training to test the time course of the learning-

dependent GABA changes. 

Is there a causal link between GABA changes and behavioural improvement?  

Here I show GABAergic inhibition is linked to behavioural improvement for 

two visual learning tasks. However, our results support a correlational 

relationship between changes in GABA and improved performance. Our 

evidence so far cannot sustain causality and interventional methods are required 

to confirm GABA changes are causally linked with visual learning. In chapter 

V, I describe a study using transcranial direct current stimulation to investigate 

causal links between GABA changes in LOC and behavioural improvement in 

the two visual tasks. 
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Supplementary material 

Table 3.S1: Whole brain BOLD with learning rate covariate 

Table 3.S2: Whole brain BOLD with Δd’ covariate 

 

  

Cluster Size Hemisphere Peak voxel Area r p 

1 1627 Right 32, -59, -3 
Fusiform 

Lingual 
0.54 0.0006 

2 3027 Right 11, -86, 27 Cuneus 0.53 0.0009 

3 1647 Bilateral 8, 25, 24 
Anterior 

Cingulate 
0.53 0.0009 

4 1365 Bilateral -7, 13, 36 Cingulate 0.49 0.0022 

5 2774 Left -10, -32, 45 Paracentral 0.60 0.0001 

Cluster Size Hemisphere Peak voxel Area r p 

1 2750 Right 14, -89, 9 

Cuneus 

Middle 

occipital 

0.54 0.000659 

2 4922 Left -25, -92, 9 

Cuneus 

Middle 

occipital 

0.60 0.000093 

3 15484 Bilateral -13, -35, 60 Postcentral 0.70 0.000002 

4 3356 Left -13, 20, -12 
Anterior 

Cingulate 
0.68 0.000006 

5 1392 Left -10, 7, 39 Cingulate 0.53 0.000868 

6 1279 Left -16, 55, 12 Medial Frontal -0.60 0.000120 

7 2083 Left -40, 49, 12 Middle Frontal -0.63 0.000034 

8 1161 Left -61, 1, 9 Precentral 0.50 0.001816 
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Table 3.S3: Signal-in-Noise: whole brain BOLD with GABA covariate  

  

Table 3.S4: Feature-differences: whole brain BOLD with GABA covariate 

 

  

Cluster Size Hemisphere Peak voxel Area r p 

1 972 Right 17, 43, 3 Ant.  Cingulate 0.65 0.0037 

2 891 Right 11, -2, 60 SFG -0.66 0.0027 

3 810 Right 17, -77, -6 

Lingual gyrus/ 

Fusiform gyrus/ 

LOC 

-0.67 0.0026 

4 1026 Left -37, -2, 45 MFG -0.66 0.0026 

5 1161 Left -43, -65, 3 MTG / LOC -0.70 0.0013 

6 1080 Left -46, -8, 24 Precentral gyrus -0.69 0.0015 

7 1026 Left -49, -2, -9 STG 0.71 0.0009 

Cluster Size Hemisphere Peak voxel Area r p 

1 1026 Right 57, 33, 1 IFG -0.79 0.000107 

2 36450 Right 31, -75, 5 
Post. Cingulate 

LOC 
0.87 0.000003 

3 1728 Right 25, -49, 53 
Postcentral 

gyrus / IPS 
0.69 0.001642 

4 1377 Right 10, -49, -13 
Cerebellar 

Lingual 
0.74 0.000450 

5 945 Left -8, -48, -11 
Cerebellar 

Lingual 
0.69 0.001639 

6 3402 Left -21, -6, 63 SFG 0.69 0.001488 

7 810 Left -8, -63, 40 Precuneus 0.70 0.001286 

8 3618 Left -38, -72, 2 MOG/LOC 0.77 0.000211 

9 1890 Left -32, 32, 21 MFG 0.70 0.001125 

10 1026 Left -32, 5, 28 Precentral gyrus 0.68 0.001749 

11 1674 Left -45, -22, 25 Insula 0.70 0.001255 
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Figure 3.S1: Correlations of GABA change and behavioral improvement  

For the Signal in Noise task, the correlation of GABA change with Δd’ was not significant (r=-

0.14, CI=[-0.49, 0.29]) and was not significantly different from the correlation of GABA change 

with learning rate (Steiger’s z=1.25, p=0.21). For the Feature differences task, the correlation of 

GABA change with learning rate was not significant (r= 0.13, CI=[-0.38, 0.62]) but was 

significantly different from the correlation of GABA change with Δd’ (Steiger’s z=2.27, p=0.02). 

Figure 3.S2: GABA concentration before vs. after training  

No significant differences were observed in GABA concentration in occipito-temporal cortex 

across participants before vs. after training (main effect of MRS block: F(1,34)= 0.06, p=0.81; 

Task x MRS block interaction: F(1,34)= 0.21, p=0.65). Boxplots denote median and interquartile 

ranges; indicating variability in GABA concentration across participants. 
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Chapter IV 

  

Investigating the time-course of GABA changes during visual 

learning 

 

1. Introduction 

In Chapter III, I showed that GABAergic inhibition in the occipito-temporal 

(OCT) cortex moderates visual learning in dissociable ways for learning to 

detect patterns from clutter vs discriminating between fine features. Our results 

showed that during training, decreased OCT GABA, as measured by MR 

spectroscopy, related to improved detectability in the Signal-in-Noise task, 

where participants were asked to detect patterns in visual clutter, while 

increased OCT GABA related to improved discriminability in the Feature 

differences task, where participants had to discriminate highly similar patterns.  

Our findings propose that differential GABAergic mechanisms are involved to 

meet different task demands and explain the link between changes in fMRI 

BOLD activation and behavioural improvement. However, the timescale of the 

GABA concentration changes during training is currently unknown. Here, we 

extend beyond standard correlational approaches that relate single 

measurements of GABA at baseline (i.e. when participants are at rest) to 

behaviour to test whether training changes GABA, as measured by MRS in the 

human brain. In particular, we test whether changes in GABAergic inhibition 

during task-specific training relate to improvement in perceptual decisions by 

measuring longitudinal changes in GABA during training (i.e. while the 

participants were trained on a task) rather than only GABA levels at baseline. 

To achieve this, we took advantage of the high spectral resolution afforded by 

ultra-high field (7T) MR Spectroscopy (MRS) to reliably resolve GABA (Puts 
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and Edden, 2012; Tkác et al., 2009) and take fast and reliable repeated 

measurements of functional GABA during training.  

Further, we know that brain-wide networks are involved in perceptual 

judgments (Grill-Spector et al., 2000; Kourtzi et al., 2005; Op de Beeck et al., 

2006), showing differential patterns of activation during training (Li et al., 2012; 

Mayhew et al., 2010) and playing an important role at different stages of 

training (Chang et al., 2014). Previous human fMRI studies have demonstrated 

learning-dependent changes in functional activation (i.e. increased or decreased 

activation) in both decision-related (i.e. posterior parietal) and sensory (i.e. 

visual) areas due to training on perceptual tasks (for reviews (Kourtzi, 2010; 

Welchman and Kourtzi, 2013b)). To test the role of inhibitory processing in 

learning for both visual and posterior parietal cortex, we implemented an 

imaging protocol that measured GABA in two voxels (one in occipito-temporal, 

one in posterior parietal cortex) in alternating order and allowed us to track 

longitudinal changes in GABA in both areas during training. Interestingly, 

previous studies have proposed that perceptual learning is implemented by top-

down influences from decision-related areas that re-weight processing in 

sensory areas (Law & Gold 2010; Ahissar & Hochstein 2004). To test whether 

learning involves local processing within visual cortex vs. suppressive 

interactions between decision-related and sensory areas, we combined GABA 

measurements in occipito-temporal and posterior parietal cortex with functional 

brain connectivity– as measured by resting state fMRI. In particular, we tested 

the hypothesis that learning is implemented by local inhibitory processing in 

visual cortex that is gated by functional interactions between sensory and 

decision-related areas. Specifically, we tested whether learning-dependent 

changes in visual cortex GABA relate to functional connectivity between visual 

and posterior parietal cortex. 

Our results provide evidence for distinct GABAergic inhibition mechanisms in a 

cortical network that is known to be involved in perceptual decisions. In 

particular, increased parietal GABA with training suggests suppression of task-
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irrelevant information. In contrast, changes in occipito-temporal GABA with 

training relate to enhanced target detection and discriminability, suggesting 

learning-dependent changes in the processing of task-relevant features. Further, 

analysis of functional brain connectivity at rest reveals interactions within this 

network that relate to GABA changes and behavioural improvement during 

training. Learning to detect targets from clutter is implemented by local 

connectivity and disinhibition of the visual cortex. In contrast, learning feature 

differences is implemented by interactions between parietal and visual areas that 

relate to increased GABAergic inhibition in visual cortex. Our results provide 

evidence that learning improves perceptual decisions through suppressive 

interactions within decision-related circuits in the human brain. 

 

2. Methods 

a. Participants  

Forty seven participants (31 female; mean age 25.6 ± 3.3 years) participated in 

this study. Sample size (minimum 40 participants) was determined based on 

power calculations following previous studies on motor learning showing an 

effect size of r=0.65 at 90% power for correlations of GABA with behaviour 

(Stagg et al., 2011a). We collected up to 25 participants in each task to account 

for data rejection due to motion artefacts. All participants were right-handed, 

had normal or corrected-to-normal vision and gave written informed consent. 

The study was approved by the University of Oxford ethics committee.  

 

b. Experiment Design 

All participants took part in a single brain imaging session during which they 

were randomly assigned and trained on either the Signal-in-Noise or the Feature 

Differences task. We recorded whole brain resting-state functional MRI (rs-

fMRI) data before training while participants fixated on a cross at the centre for 

the screen. Following the rs-fMRI scan, we recorded MRS GABA before and 
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during training (Figure 4.1). We collected MRS GABA from one baseline block 

before training and three blocks during task training. Each block comprised two 

MRS acquisitions: one from occipito-temporal (OCT) and one from posterior 

parietal (PPC) cortex. The order of the voxels within each block was 

counterbalanced across participants. During each block participants were 

presented with Glass patterns, as described in Chapter II, for 400 trials (200 

trials per MRS voxel acquisition). During the baseline block (400 trials) 

participants engaged in a task with similar stimuli as those presented during the 

training; that is, participants viewed random dot patterns (0% signal dipoles) and 

were asked to respond (button press) as soon as a pattern appeared. This ensured 

that differences in GABA between blocks could not be simply attributed to 

differences in overall alertness. During the MRS training blocks (3 blocks, 400 

trials each), participants were presented with Glass patterns and were asked to 

judge and indicate by button press whether the presented stimulus in each trial 

was radial or concentric. Two stimulus conditions (radial vs. concentric Glass 

patterns; 200 trials per condition), were presented for each training block. For 

each trial, a stimulus was presented for 300ms and was followed by fixation (i.e. 

blank screen with a central fixation dot) while waiting for the participant’s 

response (self-paced training paradigm). Trial -by-trial feedback was provided 

by means of a visual cue (green tick for correct, red ‘x’ for incorrect) followed 

by a fixation dot for 500ms before the onset of the next trial (Figure 4.2). Each 

MRS acquisition lasted for 5 minutes and 56 seconds, and each training block 

(400 trials) for 11 minutes and 11 seconds ± 63 seconds. Thus, in most cases 

training was completed within the duration of the training block (i.e. 2 MRS 

acquisitions x 5min 56 s). In the event that the training took longer than the 

MRS block, the next MRS acquisition was delayed until completion of the 

previous training block. Each session lasted approximately two hours. 
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Figure 4.1: Experiment design.  

Each participant took part in a single session during which we acquired rs-fMRI and 

MRS data. We collected MRS GABA during one block before (Baseline) and three 

blocks during training (T1, T2, T3). Each block comprised two MRS acquisitions: one 

from occipito-temporal (OCT voxel – black squares) and one from posterior-parietal 

(PPC voxel – grey squares) cortex. The order of the voxels within each block was 

counterbalanced across participants. During each block participants were presented with 

stimuli for 400 trials (200 trials per MRS voxel acquisition). 

Figure 4.2: Experimental trial structure.  

Stimuli were on for 300ms, followed by fixation while the participants made their 

judgements. Delayed (100ms) feedback in the form of a green tick for correct and red 

cross for incorrect was given for 200ms and a 500ms fixation followed before the next 

trial. 
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c. Data acquisition 

Experiments were conducted at the Wellcome Centre for Integrative 

Neuroimaging, using a Siemens 7T Magnetom (Siemens, Erlangen) with a 32-

channel head coil.  

We acquired structural data (MPRAGE; TR 2200 ms; TE 2.82 ms; slice 

thickness 1.0 mm; in-plane resolution 1.0 x 1.0 mm
2
; GRAPPA factor = 4) and 

echo planar imaging data (gradient echo-pulse sequences) from 40 slices (TR 

2250 ms; TE 28 ms; slice thickness 3.0mm; in-plane resolution 3.0 x 3.0 mm
2
; 

GRAPPA factor = 2, 140 volumes).  

We acquired MRS data using a semi-localization by adiabatic selective 

refocusing (semi-LASER) sequence (Scheenen et al., 2008) (64 averages, TR 

5010ms, TE 36ms). We chose to utilize a short-echo, a full signal intensity 

semi-LASER sequence to achieve lower apparent T2 relaxation, minimal J-

coupling evolution and smaller chemical shift displacement errors relative to the 

PRESS and STEAM sequences (Öz and Tkáč, 2011). In addition, the adiabatic 

refocusing pulses in the semi-LASER provided minimal signal loss, high B1+ 

insensitivity and localization against the varying destructive interferences 

throughout the brain at ultra-high field. Alternatively, the long-echo GABA 

editing sequence may result in potential T2* weighting of BOLD signal on the 

spectra.  To minimize this, we used the full signal intensity of the semi-LASER 

sequence to achieve lower apparent T2 relaxation. This MRS sequence has been 

extensively tested and resulted in high quality spectra across high and ultra-high 

field magnetic fields at different MRI centres (C Lemke et al., 2015; Lunghi et 

al., 2015; Öz and Tkáč, 2011; Terpstra et al., 2016; van de Bank et al., 2015). 

We used VAPOR (Tkáč et al., 1999) water suppression and outer volume 

suppression (van de Bank et al., 2015). We measured two MRS voxels (2 x 2 x 

2 cm
3 

isotropic), one in the left occipito-temporal cortex (OCT voxel) and one in 

the left posterior parietal cortex (PPC voxel) (Figure 4.3), avoiding contact with 

the dura to minimize macromolecule contamination. We focused on the left 

hemisphere as previous fMRI (Mevorach et al., 2009a) and TMS (Chang et al., 
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2014; Mevorach et al., 2006) studies have shown that the left posterior parietal 

cortex is involved in suppressing distracting signals. To cover both areas with 

the same dielectric pad, we placed both MRS voxels on the left hemisphere. We 

positioned the MRS voxels manually using anatomical landmarks (Superior 

Temporal Gyrus and Middle Occipital Gyrus for OCT and the Intraparietal 

Sulcus for PPC) on the acquired T1 scan to ensure that voxel placement was 

consistent across participants. This was further confirmed by post-processing 

analysis of the position for each MRS voxel. In particular, we extracted the MNI 

coordinates of the centre of gravity for each MRS voxel per participant. We 

computed pairwise Euclidean distances between the coordinates of each 

participant and the mean coordinates of the group (OCT: x=-38.8±4.2mm, y=-

67.8±4.7mm, z=2.3±4.2mm; PPC: x=-31.5±4.5mm, y=-50.4±6.4mm, 

z=41.0±5.2mm). The average distance from the mean coordinates across 

participants was 6.8±3.2mm for OCT and 8.3±4.4mm for PPC and did not differ 

between tasks (Voxel x Task interaction: F(1,45)= 0.37, p=0.55; main effect of 

Task: F(1,45)=1.43, p=0.24).  

A dielectric pad (BaTiO3, 14.5 x 12.5 cm
2
) was placed over the left occipito-

parietal cortex to increase B1 efficiency in the regions where the MRS voxels 

were placed (Clark Lemke et al., 2015). First and second order shims were 

adjusted for each voxel separately using FASTMAP (fast, automatic shimming 

technique by mapping along projections) with echo-planar imaging readout 

(Gruetter and Tkáč, 2000). Acquisition parameters were optimised for each 

voxel by determining the appropriate transmit voltage (flip angle calibration) 

and flip angle (VAPOR calibration), to maximize readout and water suppression 

respectively (Clark Lemke et al., 2015). For each MRS acquisition we collected 

unsuppressed-water spectra for eddy-current correction, reconstruction of the 

phased array spectra and metabolite quantification. 
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d. Data analysis 

Behavioural data 

We quantified behavioural improvement during training as the difference in 

mean performance (i.e. mean accuracy per 200 trials) between the first training 

block and each subsequent training block, divided by performance in the first 

training block (equation 1). For each training block t: 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑡=2,3,4,5,6 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑡=2,3,4,5,6−𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑡=1

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑡=1
   (1) 

To take into account individual variability in performance, we estimated 

behavioural improvement as the difference in mean performance between the 

first training block and the block with best performance per participant (85% of 

the participants achieved best performance in the two last training blocks per 

MRS voxel), divided by performance in the first training block.  

 

MRS data pre-processing 

Eddy-current correction and reconstruction of the phased array spectra was 

applied using in-house scripts. Water residual signal was removed using a 

Hankel singular value decomposition (HLSVD) MATLAB routine (Cabanes et 

al., 2001). LC-Model (Provencher, 2001) was used to quantify metabolite 

concentrations in the range of 0.5 to 4.2 ppm using optimal initialization 

parameters. We referenced metabolite concentrations to the sum of the 

concentrations of Creatine (Cr) and Phosphocreatine (PCr), that is total Creatine 

(tCr). In particular, for each MRS voxel, we normalised GABA/tCr in each 

training block to GABA/tCr in the baseline block (Figure 4.5a). We computed 

GABA/tCr change for each participant as the difference between GABA/tCr in 

the training block with best performance and GABA/tCr in the baseline block. 

tCr has been widely used as a reference metabolite in MRS studies (Donahue et 

al., 2010; Sampaio-Baptista et al., 2015) and this normalization method has been 

shown to have better reproducibility compared to other methods (Bogner et al., 

2010).  
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Only data without lipid contamination, GABA CRLB values smaller than one 

standard deviation above the mean and GABA values per block within two 

standard deviations from the mean across participants were included in further 

steps of MRS related analyses. That is, OCT data for 6 participants (2 for SN, 4 

for FD) and PPC data for 6 participants (4 for SN, 2 for FD) were excluded due 

to high CRLB values. Thus, data from 18 participants were included for further 

analysis for the SN and 22 participants for the FD task. To account for 

variability in tissue composition within the MRS voxel across participants, we 

conducted whole brain tissue-type segmentation of the T1-weighted anatomical 

scan using SPM12.2 (SPM segment) and calculated percentage of grey matter 

(GM) voxels in each of the MRS voxels. The mean GM tissue fraction was 

44±8% for OCT and 46±7% for PPC and GM tissue content did not differ 

significantly between the two MRS Voxels (t(81)=1.17, p=0.24). We accounted 

for the percentage of GM voxels in the MRS Voxel in a linear regression model 

that described the dissociable links between changes in OCT GABA and 

behavioural improvement, confirming that our results were not driven by 

variability in tissue composition across participants. 

rs-fMRI data pre-processing 

We pre-processed the resting-state fMRI (rs-fMRI) data using SPM12.2 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) following the optimised 

pipeline described in recent work (Vergara et al., 2017). Data were excluded 

from one participant with incomplete data acquisition. We first processed the 

T1-weighted anatomical images by applying brain extraction and segmentation 

(SPM segment). From the segmented T1 we created a white matter (WM) mask 

and a cerebrospinal fluid (CSF) mask. For each participant, we corrected the EPI 

data for slice scan timing (i.e. to remove time shifts in slice acquisition, SPM 

slice timing), motion (least squares correction) and susceptibility distortions 

(applying fieldmap correction, SPM realign & unwarp). We then co-registered 

the EPI data to the T1 image (rigid body) per participant and calculated the 

mean CSF and WM signal per volume (SPM coregister & reslice). We 
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subsequently aligned the T1 image to the MNI space (affine) and applied the 

same transformation to the EPI data and the MRS voxels (OCT, PPC) (SPM 

normalise). We resliced the aligned EPI data to native resolution (3 x 3 x 3 

mm
3
) and applied spatial smoothing with a 5mm isotropic FWHM Gaussian 

kernel (SPM smooth). Finally, we despiked any secondary motion artefacts 

using the Brain Wavelet Toolbox v1.1 (Patel et al., 2014).  

We modelled the pre-processed data in a first-level analysis model (SPM first-

level analysis) using an autoregressive AR(1) model to treat for serial 

correlations and regressing out the signal from CSF, WM, the motion 

parameters (translation, rotation and their squares and derivatives) and the signal 

from noise components (i.e. components overlapping with ventricles or 

brainstem) (Griffanti et al., 2014).  

 

Functional connectivity analysis  

We computed functional connectivity measures (connectivity between MRS 

voxels, temporal coherence within each MRS voxel) based on the following 

method. We computed the overlap across participant MRS voxels for OCT and 

PPC separately and created a group MRS mask that included grey matter voxels 

present in at least 50% of the participants’ MRS voxels.  For each participant, 

we extracted the average time course of the grey matter voxels within each MRS 

mask. We then applied a 5th order Butterworth band-pass filter, between 0.01 

and 0.08 Hz, to remove effects of scanner noise and physiological signals 

(respiration, heart beat) (Murphy et al., 2013). 

We computed the functional connectivity between the OCT and the PPC MRS 

voxels as the Pearson correlation between the average time course from each of 

the MRS masks. We then applied Fisher z-transform to the correlation 

coefficient and derived an OCT-PPC connectivity value per participant. To 

confirm the specificity of the OCT-PPC connectivity, we computed the 

functional connectivity between OCT and two control areas (V1, M1). We 

defined masks of equal size to the MRS masks based on anatomical co-
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ordinates: primary visual cortex (V1, MNI coordinates [3, -85, 5]) and left M1 

(MNI coordinates [-39, -22, 53]).  

We assessed the temporal coherence within each MRS mask (OCT, PPC) by 

correlating the time course of each voxel within the mask with the MRS mask’s 

average time course. This method was first described by Van Dijk et al (Van 

Dijk et al., 2010) and has been widely used in recent studies (Bachtiar et al., 

2015; Campbell et al., 2016; Sherman et al., 2014; Stagg et al., 2014). We then 

applied Fisher z-transform to the correlation matrix and averaged the z-values 

across voxels, resulting in one connectivity value per participant and MRS 

voxel. 

  

Figure 4.3: MRS voxel placement. 

We positioned the MRS voxels using anatomical landmarks (Superior Temporal Gyrus and Middle 

Occipital Gyrus for OCT and the Intraparietal Sulcus for PPC) on the acquired T1 scan to ensure 

that voxel placement was consistent across participants. The average distance of individual MRS 

voxels from the mean coordinates (x=-38.8±4.2mm, y=-67.8±4.7mm, z=2.3±4.2mm for OCT; x=-

31.5±4.5mm, y=-50.4±6.4mm, z=41.0±5.2mm for PPC) across participants was 6.8±3.2mm for  

OCT and 8.3±4.4mm for PPC and did not differ between the two tasks (Voxel x Task interaction: 

F(1,45)=0.37, p=0.55; main effect of Task: F(1,45)=1.43, p=0.24). We computed the overlap across 

participant MRS voxels for OCT (yellow) and PPC (green) separately. We illustrate a group MRS 

mask (sagittal, coronal, axial view) that includes grey matter voxels present in at least 50% of the 

participants’ MRS voxels. 
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To compare changes in behavioural performance and neurotransmitter 

concentrations across blocks, tasks and MRS voxels we used a linear mixed 

effects approach. LME models are appropriate for modelling longitudinal data 

and can account for missing values. This way we were able to make 

comparisons including data from all participants. In each of the models we 

tested both for random (Participants) and fixed (MRS Block, Voxel and Task) 

effects. To relate behavioural improvement to GABA changes and rs-fMRI 

connectivity, we computed Pearson skipped correlations using the Robust 

Correlation Toolbox (Pernet et al., 2013). This method accounts for potential 

bivariate outliers and determines statistical significance using bootstrapped 

confidence intervals (CI) for 1000 permutations. To directly compare the 

relationship of GABA change and rs-fMRI connectivity with behavioural 

improvement between the two tasks we used linear regression models with 

interaction terms. Data distribution assumptions of normality and 

heteroscedasticity of variance were verified using Shapiro-Wilk and Levene’s 

tests respectively. 

 

Table 4.1: Datasets collected and datasets used after removing poor quality data for each 

modality. 

 Signal-in-Noise Feature differences 

Participants 22 25 

MRS data for OCT 17 19 

MRS data for PPC 18 22 

rs-fMRI 21 25 
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3. Results 

Training improves behavioural performance 

We tested two groups of participants on a) a Signal-in-Noise (SN) task that 

involves extracting shapes (radial vs. concentric Glass patterns) masked by 

noise or b) a Feature Differences (FD) task that involves judging fine 

differences induced by morphing between two stimulus classes. Participants 

were asked to judge the identity of the stimulus presented per trial (i.e. radial vs. 

concentric). Our results showed that participants improved in their judgments 

within a single training session during scanning (Figure 4.4), consistent with 

previous reports showing fast behavioural improvement early in the training (for 

a review see Sagi, 2011). A linear mixed effects (LME) model with Task and 

MRS Block (6 blocks, 200 trials per block) as fixed effects showed significantly 

improved performance during training for both tasks (main effect of Block: 

F(1,249)= 9.35, p=0.002). No significant interaction between Task x block 

(F(1,249)=0.10, p=0.75) was observed, suggesting similar improvement for both 

tasks (Figure 4.4).  

To quantify behavioural improvement due to training in individual participants 

(i.e. when participants achieved highest accuracy), we compared performance at 

the beginning of training (i.e. first training block) to the best performance 

achieved by each participant during training (Figure 4.4). We chose this 

measure to capture individual variability across participants that may be more 

pronounced in our data, as participants were trained only for a single training 

session in contrast to our previous studies that have shown that participant 

performance saturates after multiple training sessions on similar perceptual tasks 

(Kourtzi et al., 2005; Li et al., 2012; Mayhew et al., 2010). A repeated measures 

2-way ANOVA (Task x block) showed significantly improved performance 

during training for both tasks (main effect of block: F(1,45)=59.88, p<0.0001) 

but no significant interaction between Task x block (F(1,45)=1.07, p=0.31). 
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Learning-dependent changes in occipito-temporal and posterior parietal 

GABA  

To test whether GABAergic inhibition in the visual or posterior parietal cortex 

changes with training, we measured GABA before (baseline block) and during 

training. We tested two MRS voxels – one centred on the occipito-temporal 

cortex (OCT voxel) and the other on the posterior parietal cortex (PPC voxel) 

(Figure 4.3)– following previous studies showing that these areas are involved 

in learning using the same tasks and stimuli as in our study (Li et al., 2009; 

Mayhew et al., 2010). Each block comprised one MRS acquisition per voxel and 

the order of the voxels within each block was counterbalanced across 

participants.  

 

Figure 4.4: Behavioural improvement during training. 

We calculated behavioural improvement during training as the difference in mean performance 

(i.e. mean accuracy) during each block (200 trials) from the first training block (200 trials), 

divided by performance in the first training block. Further, we compared individual participant 

accuracy early in training (first 200 trials) to the best accuracy achieved per participant during 

training (200 trials). Note that most participants (85 %) showed best performance in the last two 

MRS blocks. Error bars indicate standard error of the mean across participants. 
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Figure 4.5a shows that OCT GABA changed in the two tasks during training in 

opposite directions. In contrast, PPC GABA changed in the same direction (i.e. 

increased during training) for both tasks. These effects were supported by an 

LME analysis (Task, Voxel and MRS Blocks as fixed effects) that modelled 

GABA before (baseline block) and during (three training blocks) training in 

both OCT and PPC. This analysis showed that learning-dependent changes in 

GABA levels differed between tasks and regions (Task x Voxel x Block: 

F(1,264)=6.24, p=0.01). In particular, GABA levels in the occipito-temporal 

cortex (OCT GABA) was higher in the FD than the SN task during training 

(LME model for OCT GABA with Task and MRS Block as fixed effects; Task 

x Block: F(1,119)=10.77, p=0.001) (Figure 4.5a). In contrast, GABA in the 

posterior parietal cortex (PPC GABA) increased with training (LME model for 

PPC GABA with Task and MRS Block as fixed effects; main effect of Block: 

F(1,145)=6.44, p=0.01) but did not differ significantly between tasks (Task x 

Block: F(1,145)=0.18, p=0.68) (Figure 4.5a).  

Further, for the FD task GABA significantly increased in OCT and PPC (LME 

model for FD task GABA with Voxel and MRS Block as fixed effects; main 

effect of Block: F(1,143)=5.26, p=0.02).  In contrast, for the SN task GABA 

changes during training differed in the two regions (LME model for SN task 

with Voxel and MRS Block as fixed effects; Task x Block: F(1,121)=13.06, 

p=0.0004). That is, we found a significant decrease for OCT GABA (LME 

model for SN task with MRS Block as fixed effect; main effect of Block: 

F(1,58)=16.65, p=0.0001), but a non-significant increasing trend for PPC 

GABA (LME model for SN task with MRS Block as fixed effect; main effect of 

Block: F(1,63)=3.26, p=0.08).  

We conducted the following control analyses that corroborated our results. First, 

we demonstrated that the learning-dependent changes we observed in GABA 

levels could not be simply due to the order with which the MRS voxels were 

acquired during training. For OCT GABA, the Task x Block interaction 
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remained significant (Task x Block: F(1,115)=13.51, p=0.0004) when we 

included the order of voxel acquisition in the LME model . Further, there was no 

significant effect of MRS acquisition order (LME model for OCT GABA with 

Acquisition Order, Task and MRS Block as fixed effects; main effect of Order: 

F(1,115)=0.08, p=0.78; Order x Task x Block: F(1,115)=1.58, p=0.21). 

Figure 4.5: OCT and PPC GABA timecourse during training on Signal-in-Noise vs Feature 

differences  

a. MRS-measured GABA over time is shown from two voxels (occipito-temporal, posterior parietal 

cortex) per task (Signal in noise, Feature differences). For each MRS-voxel, we normalised GABA/tCr 

per training block (T1, T2, T3) to GABA/tCr recorded during the baseline block; that is, we computed 

GABA/tCr change subtracting GABA/tCr measurements in each of the three training blocks from the 

baseline block. b. MRS-measured Glutamate over time is shown from two voxels (occipito-temporal, 

posterior parietal cortex) per task (Signal-in-noise, Feature differences). For each MRS-voxel, we 

normalised Glutamate/tCr per training block (T1, T2, T3) to Glutamate /tCr recorded during the baseline 

block; that is, we computed Glutamate/tCr change subtracting Glutamate/tCr measurements in each of the 

three training blocks from the baseline block.  
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Similarly, for PPC GABA, the main effect of block remained significant 

(F(1,141)=7.72, p=0.01) and there was no significant effect of MRS acquisition 

order (LME model for OCT GABA with Acquisition Order, Task and MRS 

Block as fixed effects; main effect of Order: F(1,141)=1.51, p=0.22; Order x 

Task x Block: F(1,141)=1.50, p=0.22 ).  

Second, we tested whether the learning-dependent changes we observed in 

GABA, were simply due to differences in data quality across multiple MRS 

measurements. In particular, we tested whether the learning-dependent changes 

we observed in GABA, were due to differences in signal-to-noise ratio (SNR) 

across multiple MRS measurements potentially due to artefacts (e.g. head 

movement, gradient heating). For OCT GABA, there was no significant 

differences in SNR across blocks, nor a significant interaction between Task x 

block (LME model for OCT SNR with Task and MRS Block as fixed effects; 

main effect of Block: F(1,118)=0.12, p=0.73; Task x Block: F(1,118)=0.45, 

p=0.50). Similarly for PPC GABA, there was no significant effect of block, nor 

a significant interaction of Task x block (LME model for PPC SNR with Task 

and MRS Block as fixed effects; main effect of Block: F(1,145)=0.52, p=0.47; 

Task x Block: F(1,145)=0.90, p=0.34), suggesting that our results could not be 

explained simply by differences in MRS SNR over time.  Further, we tested 

whether the learning-dependent changes we observed in GABA, were simply 

due to BOLD effects. BOLD effects on MRS spectra are presented as narrowing 

of the linewidth (Bednařík et al., 2015). To control for potential effects from 

BOLD on the GABA measurements, we compared spectral full width at half 

maximum (FWHM) across MRS blocks for the two regions. For OCT GABA, 

there was no significant differences in FWHM across blocks, nor a significant 

interaction between Task x block (LME model for OCT FWHM with Task and 

MRS Block as fixed effects; main effect of Block: F(1,118)=1.28, p=0.26; Task 

x Block: F(1,118)=2.31, p=0.13). Similarly for PPC GABA, there was no 

significant effect of block, nor a significant interaction of Task x block (LME 

model for PPC FWHM with Task and MRS Block as fixed effects; main effect 

of Block: F(1,145)=2.77, p=0.10; Task x Block: F(1,145)=0.89, p=0.35), 
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suggesting that our results could not be explained simply by differences in peak 

linewidth over time.  

Third, a no-training control experiment on an independent group of participants 

(n=8) ensured that there were no significant differences (t(7)=1.56, p=0.16) 

between two measurements of OCT GABA over time (45 apart, that is 

comparable to the our main study) when participants were simply exposed to 

similar Glass patterns stimuli but performed a fixation task rather than the SN or 

FD tasks. 

Fourth, we tested whether the learning-dependent changes we observed in 

GABA/tCr were driven by changes in tCr concentration during training. For 

OCT GABA, there were no significant differences in tCr across blocks, nor a 

significant interaction between Task x block (LME model for OCT tCr with 

Task and MRS Block as fixed effects; main effect of Block: F(1,119)=0.11, 

p=0.74; Task x Block: F(1,119)=0.02, p=0.90). Similarly for PPC GABA, there 

was no significant effect of block, nor a significant interaction of Task x block 

(LME model for PPC tCr with Task and MRS Block as fixed effects; main 

effect of Block: F(1,137)=0.59, p=0.45; Task x Block: F(1,137)=0.42, p=0.52), 

suggesting that our results could not be explained simply by changes in tCr 

concentration over time.  

Fifth, our results remained significant when we referenced GABA to water 

rather than tCr concentration (Figure 4.6), suggesting that our results replicate 

across referencing methods. That is, we observed a significant Task x block 

interaction for OCT (LME model for OCT GABA with Task and MRS Block as 

fixed effects; Task x Block: F(1,119)=10.68, p=0.001) and a significant main 

effect of block for PPC (LME model for PPC GABA with Task and MRS Block 

as fixed effects main effect of Block: F(1,137)=7.08, p=0.01).  

Sixth, to ensure our results were not simply driven by GABA measurements at 

baseline, we tested a linear mixed effects model on the training blocks only (i.e. 

excluding the baseline block; LME model for OCT GABA with Task and 

training MRS Block as fixed effects). This analysis showed a significant 
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interaction between Task and MRS blocks (Task x Block: F(1,83)=4.97, 

p=0.03) and a significant main effect of MRS block (F(1,83)=4.06, p=0.05). 

Further, post-hoc pairwise comparisons for OCT GABA showed a significant 

difference between the 1st and 3rd training block for the SN task (p=0.047) and 

between the 2nd and 3rd training block for the FD task (p=0.03). These analyses 

suggest that the learning-dependent GABA changes we observed were due to 

training rather than simply differences in GABA between the training blocks 

and the baseline. 

  

Figure 4.6: Measurements of GABA/Water and Glutamate/Water during training 

a. For each MRS-voxel, we normalised GABA/Water per training block (T1, T2, T3) to GABA/Water 

recorded during the baseline block; that is, we computed GABA/Water change subtracting 

GABA/Water measurements in each of the three training blocks from the baseline block. b. For each 

MRS-voxel, we normalised Glutamate/Water per training block (T1, T2, T3) to Glutamate/Water 

recorded during the baseline block; that is, we computed Glutamate/Water change subtracting 

Glutamate/Water measurements in each of the three training blocks from the baseline block. 
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Finally, to investigate the neurochemical specificity of our results, we tested for 

changes in Glutamate, the other major cortical neurotransmitter, during training 

(Figure 4.5b). We found no significant differences in Glutamate changes 

between tasks (LME model for OCT Glutamate with Task and MRS Block as 

fixed effects Task x Block: F(1,119)=0.53, p=0.47; for PPC Glutamate: main 

effect of Block: F(1,137)=2.65, p=0.11), suggesting that our results were 

specific to GABA and do not generalize to Glutamate.  

 

Learning-dependent changes in GABA relate to behavioural improvement 

In chapter III, I reported that changes in occipito-temporal GABA levels after 

training on visual learning tasks relate differentially to behavioural improvement 

in the Signal-in-Noise vs Feature differences tasks. I showed that decreased vs 

increased occipito-temporal GABA after training relates to increased sensitivity 

to noise vs increased discriminability of fine features, respectively. Here, we test 

the link between behavioural improvement and learning-dependent changes in 

GABA for both OCT and PPC. For each region (i.e. MRS voxel) we calculated 

GABA change by subtracting GABA concentration in the best performance 

block from the baseline block for each participant and related GABA change to 

behavioural improvement. 

Correlating change in OCT GABA to behavioural improvement showed 

differences between tasks. Specifically, we observed a significant negative 

correlation of OCT GABA change with behavioural improvement (r=-0.43, 

CI=[-0.75, -0.02]) for the SN task, while a significant positive correlation 

(r=0.55, CI=[0.10, 0.78]) for the FD task (Figure 4.7). A linear regression 

analysis confirmed this dissociation (OCT GABA change x Task Interaction: 

F(1,29)=9.03, p=0.005), suggesting that lower vs. higher occipito-temporal 

GABA after training relates to improved performance when learning to detect 

targets vs. discriminate feature differences, respectively. This dissociable result 

between tasks cannot be simply explained by differences in task difficulty, as 
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participants showed similar behavioural improvement across tasks. Further, to 

account for variability in tissue composition across participants and MRS 

voxels, we calculated the percentage of grey matter (GM) in each of the MRS 

voxels. The interaction between OCT GABA change and Task in the linear 

regression model remained significant when we accounted for the percentage of 

GM voxels in the MRS Voxel (F(1,29)=5.33, p=0.03) suggesting that our results 

could not be due to variability in tissue composition across participants. Finally, 

the same interaction remained significant (F(1,29)=7.41, p=0.01), when we used 

percentage GABA change (GABA change / baseline GABA), suggesting that 

our results could not be due to differences in baseline GABA. 

In contrast to these correlations of OCT GABA change with behavioural 

improvement, we did not observe any significant correlations between PPC 

GABA change and behavioural improvement for either task (SN: r=-0.23, CI=[-

0.61, 0.19]; FD: r=0.05, CI=[-0.37, 0.43]) nor a significant PPC GABA change 

x Task interaction (F(1,34)=0.57, p=0.45). Following previous work on the role 

of the posterior parietal cortex early rather than later in training (Chang et al., 

2014), we next tested the link between PPC GABA and performance early in 

training for the two tasks. A linear regression model with baseline PPC GABA 

and Task as predictors of behavioural performance (first training block) showed 

a significant effect of PPC GABA (F(1,37)=4.69, p=0.04), but no interaction 

between PPC GABA and Task (F(1,37)=0.03, p=0.85). This result was 

confirmed by a significant positive correlation between baseline PPC GABA 

and performance in the first training block (r=0.34, CI=[0.06, 0.59]), suggesting 

GABAergic inhibition in the parietal cortex before training relates to 

suppression of task-irrelevant information early in the training for both tasks. 

We did not find a significant effect of OCT GABA (F(1,33)=2.14, p=0.15) nor 

an interaction between OCT GABA and Task (F(1,33)=2.33, p=0.14), 

suggesting that this result linking GABA to performance early in training was 

specific to parietal cortex.  
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Figure 4.7: Correlating OCT GABA change with behavioural improvement. 

Skipped Pearson’s correlations showing a significant negative correlation of GABA/tCr normalised to 

baseline in occipito-temporal cortex with behavioural improvement for the Signal-in-noise task (n=16, 

r=-0.43, CI=[-0.75, -0.002]), while a significant positive correlation for the Feature Differences task 

(n=19, r=0.55, CI=[0.10, 0.78]). The plots indicate that for a small number of participants the data 

deviated from the overall pattern of the correlation; e.g. for some participants in the SD task, GABA/tCr 

values were higher rather than lower compared to baseline. Our treatment of the data (i.e. behavioural 

improvement is expressed as percent over early performance and control analysis where GABA data is 

expressed as percent over baseline) accounts for potential differences across participants in performance 

early in training or baseline GABA before training. It is possible that this individual variability was due 

to the single training session employed in our study during which participant performance did not 

saturate (i.e. participant best reached 72% mean performance across participants). 

Taken together, these results suggest distinct suppression mechanisms for visual 

learning in occipito-temporal vs. posterior parietal cortex. In particular, PPC 

GABA increased with training for both tasks, suggesting suppressive processing 

of irrelevant information (i.e. background clutter for the SN task; task-irrelevant 

features for the FD task). Interestingly, higher PPC GABA related to better 

performance early in training, suggesting that suppressive processing in the 

posterior parietal cortex contributes to early rather than later stages of learning. 

In contrast, GABAergic inhibition in occipito-temporal cortex differed between 

tasks: decreased vs. increased OCT GABA for the SN vs. FD task respectively 

related to enhanced behavioural improvement. These results suggest distinct 

suppressive mechanisms in visual cortex that may: a) increase excitation of 

large neuronal populations and enhance target detectability from clutter through 

decreased GABAergic inhibition (SN task), b) facilitate retuning of feature 

templates and perceptual discriminability for fine discriminations through 

increased GABAergic inhibition (FD task).  
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Functional connectivity at rest relates to learning-dependent changes in 

behaviour and GABA  

Previous studies have shown that functional connectivity in motor (Sampaio-

Baptista et al., 2015) and visual (Baldassarre et al., 2012) networks relates to 

behavioural improvement and learning-dependent plasticity. Further, functional 

connectivity as measured by resting-state fMRI has been shown to relate to 

MRS-assessed GABA (Bachtiar et al., 2015; Kapogiannis et al., 2013; Stagg et 

al., 2014), suggesting that GABAergic inhibition relates to local neural 

dynamics. Here we test whether functional connectivity between the occipito-

temporal and posterior parietal cortex relates to behavioural improvement and 

GABA changes during training to detect targets in clutter vs. discriminate fine 

features.  

First, we tested whether functional connectivity between these regions relates to 

behavioural improvement in each of the two learning tasks. We extracted the rs-

fMRI time course from the grey matter voxels within the occipito-temporal 

MRS voxel and the posterior parietal MRS voxel. We measured functional 

connectivity by correlating the rs-fMRI time courses at rest between these two 

regions (OCT-PPC connectivity). We observed a significant positive correlation 

between OCT-PPC connectivity and behavioural improvement for the FD task 

(r=0.37, CI=[0.03, 0.69]), while a significant negative correlation for the SN 

task (r=-0.72, CI=[-0.90, -0.29]) (Figure 4.8). This dissociation in the 

relationship of OCT-PPC connectivity and behavioural improvement between 

tasks was confirmed by a linear regression showing a significant interaction 

between OCT-PPC connectivity and Task (F(1,39)=10.72, p=0.002), suggesting 

that higher connectivity between parietal and visual cortex facilitates learning of 

fine feature differences. To test whether this link between functional 

connectivity and behavioural improvement is specific to interactions between 

parietal and visual areas, we extracted rs-fMRI for two additional control 

regions: early visual cortex and motor cortex. We did not observe any 

significant results for correlations of behavioural improvement and rs-fMRI 
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connectivity between the occipito-temporal cortex and a) early visual cortex 

(SN: r=0.37, CI=[-0.17, 0.70]; FD: r=-0.22, CI=[-0.56, 0.15]) or b) motor cortex 

(SN: r=-0.26, CI=[-0.61, 0.1 2]; FD: r=-0.06, CI=[-0.39, 0.42]).  

Second, we tested whether OCT-PPC functional connectivity relates to changes 

in visual cortex GABA during training. Our results showed a significant positive 

correlation between functional connectivity and OCT GABA change for the FD 

task (r=0.55, CI=[0.13, 0.87]), but not the SN task (r=0.27, CI=[-0.08, 0.60]) 

(Figure 4.9a). These correlations were specific to GABA changes in occipito-

temporal cortex. That is, there were no significant correlations between OCT-

PPC connectivity and PPC GABA change for the FD task (r=0.29, CI=[-0.37, 

0.69]) nor the SN task (r=0.20, CI=[-0.31, 0.60]). A multivariate linear 

regression showed that OCT-PPC connectivity had a significant effect on 

GABA change in OCT (F(1,14)=20.74, p=0.0005), but not PPC (F(1,14)=0.46, 

p=0.51) for the FD task. The correlation between functional connectivity and 

OCT GABA change for the FD task remained significant (r=0.49, CI=[0.10, 

0.82]), when we tested for percentage GABA change (GABA change / baseline 

GABA), suggesting that our results could not be due to differences in baseline 

Figure 4.8: Correlating OCT-PCC functional connectivity with behavioural improvement 

Skipped Pearson’s correlations showing a significant negative correlation of OCT-PCC 

connectivity with behavioural improvement for the Signal-in-noise task (n=21, r=-0.72, CI=[-0.90, 

-0.29]), while a significant positive correlation for the Feature Differences task (n=25, r=0.37, 

CI=[0.03, 0.69]).  
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GABA. These results demonstrate that higher parietal-visual cortex connectivity 

impacts on GABAergic inhibition in visual cortex, suggesting top-down 

influences to suppressive processing in visual cortex for learning fine feature 

differences. 

Interestingly, for the Signal-in-Noise task we observed a significantly negative 

correlation between connectivity within the occipito-temporal cortex (i.e. 

connectivity measured as rs-fMRI correlations across voxels within the OCT 

MRS voxel) and OCT GABA change (r=-0.55, CI=[-0.86, -0.01]) (Figure 4.9b). 

That is, higher connectivity within visual cortex related to decreased OCT 

GABA with training, suggesting that learning to detect targets in clutter is 

supported by local connectivity and decreased suppression within visual cortex. 

Correlations of functional connectivity and GABA change in the occipito-

temporal cortex were not significant for the FD task (r=0.12, CI=[-0.29, 0.51]) 

and were significantly different from correlations for the SN task (Z=2.33, 

p=0.02). The correlation between connectivity within the occipito-temporal 

cortex and OCT GABA change for the SN task remained significant (r=-0.55, 

CI=[-0.88, -0.003]), when we used percentage GABA change (GABA change / 

baseline GABA), suggesting that our results could not be due to differences in 

baseline GABA. Correlating rs-fMRI connectivity within the occipito-temporal 

cortex with PPC GABA change did not show any significant results (r=0.18, 

CI=[-0.39, 0.60]), suggesting that local connectivity relates specifically to 

GABA changes in visual cortex.  

Taken together, our results suggest that learning fine discriminations involves 

interactions between suppressive processes that may facilitate suppression of 

task-irrelevant signals in posterior parietal cortex while retuning of task-relevant 

features in visual cortex.  In contrast, learning to detect targets from clutter 

involves local interactions and disinhibition of visual cortex that facilitates 

target detection. To further test this proposal, we performed moderation analyses 

(Hayes, 2012) that allowed us to test whether the influence that an independent 

variable (i.e. GABA change) has on the outcome (i.e. behavioural improvement) 
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is moderated by a moderator variables (i.e. Connectivity). Our results showed 

that OCT-PPC connectivity moderates the relationship between OCT GABA 

and behaviour for the FD task (F(1,15)=6.19, p=0.03) but not the SN task 

(F(1,12)=0.74, p=0.41). In contrast, local connectivity within OCT moderates 

the relationship between GABA change and behaviour for the SN task 

(F(1,12)=7.65, p=0.02) but not the FD task (F(1,15)=2.80, p=0.11). These 

moderation analyses suggest that the relationship between learning-dependent 

changes in GABA and behaviour is moderated by functional connectivity; that 

is, interactions between visual and parietal circuits for the FD task, while local 

interactions within visual cortex for the SN task. 

 

 

 

 

 

  

Figure 4.9: Correlating functional connectivity with OCT GABA/tCr normalised to baseline 

a. Skipped Pearson’s correlations showing a significant positive correlation of OCT-PCC 

connectivity with OCT GABA/tCr normalised to baseline for the Feature Differences task (n=19, 

r=0.55, CI=[0.13, 0.87]), but not the Signal-in-noise task (n=16, r=0.27, CI=[-0.08, 0.60]). b. 

Skipped Pearson’s correlations showing a significant negative correlation of functional connectivity 

within the occipito-temporal cortex with OCT GABA/tCr normalised to baseline for the Signal-in-

noise task (n=16, r=-0.55, CI=[-0.86, -0.01]), but not the Feature Differences task (n=19, r=0.12, 

CI=[-0.29, 0.51]). Significant correlations are indicated by closed symbols; non-significant 

correlations by open symbols. 
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4. Discussion 

In this study, we investigated the time-course of inhibitory processes involved in 

visual learning. We trained two groups of participants to detect shapes in clutter 

and to discriminate between highly similar targets. We used GABA-MRS before 

and during training to measure the concentration of the inhibitory 

neurotransmitter GABA in the occipito-temporal (OCT) and parietal cortex 

(PPC). We used resting state fMRI to measure connectivity between OCT and 

PPC and test the relationship between OCT-PPC connectivity and resting 

GABA levels. We investigated the link between baseline GABA levels, GABA 

changes, resting connectivity and behavioural improvement during training. Our 

findings advance our understanding of the inhibitory mechanisms for visual 

plasticity in the following main respects. 

First, we demonstrate dissociable GABAergic inhibition mechanisms for 

learning in a posterior cortical network (i.e. occipito-temporal and posterior 

parietal cortex) known to be involved in perceptual decisions. In particular, 

increased GABAergic inhibition in the posterior parietal cortex with training 

suggests suppressive processing of task-irrelevant information. In contrast, 

changes in occipito-temporal GABA with training relate to enhanced target 

detection and discriminability, suggesting learning-dependent changes in the 

processing of behaviourally-relevant features. Second, we provide evidence that 

interactions within this network, as measured by functional brain connectivity at 

rest, gate suppressive processing of sensory signals. Learning to detect targets 

from clutter involves local interactions and disinhibition in visual cortex, while 

learning feature differences involves suppressive interactions between decision-

related (parietal) and visual areas. 

In chapter III, I showed that OCT plays a key role in learning to detect targets in 

clutter and discriminate between highly similar targets. Specifically, I showed 

decreased OCT GABA after training relates to improved sensitivity to noise in 

the Signal-in-Noise task, while increased OCT GABA after training relates to 
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improved discriminability in the Feature differences task. Here we replicate this 

finding and show that maximum behavioural improvement relates to decreased 

OCT GABA for the Signal-in-Noise task and increased OCT GABA for the 

Feature differences task. As discussed in chapter III, decreased GABA after 

training in the Signal-in-Noise task may suggest plastic gain changes in large 

neuronal populations that are engaged to improve detectability of noisy patterns. 

Increased OCT GABA after training in the Feature differences task may suggest 

tuned pattern representations in the occipito-temporal cortex. 

Our findings provide evidence for distinct suppression mechanisms in posterior 

parietal vs. occipito-temporal cortex for learning. In particular, we demonstrate 

a common mechanism across tasks in the posterior parietal cortex. That is, 

GABA increases during training may facilitate suppression of task-irrelevant 

information (i.e. background clutter when learning to detect targets, task-

irrelevant features when learning fine differences). It is unlikely that changes in 

GABA levels with training reflect reduced attention to the task, as the task 

remained sufficiently demanding (i.e. mean best performance was 72%) during 

the single training session employed in our study. Our findings are consistent 

with the known role of parietal cortex in perceptual decision-making and 

attentional selection. In particular, the posterior parietal cortex has been 

implicated in detecting low-saliency targets by suppressing distractors 

(Mevorach et al., 2009a), providing a salient representation of the environment 

and top-down attentional feedback (Gottlieb, 2007), accumulating sensory 

information (Mazurek et al., 2003) and directing attention to task-relevant 

features (Freedman and Ibos, 2018; Gottlieb, 2007). Interestingly, we show that 

parietal cortex GABA before training relates to performance early in training 

across tasks. This is in contrast with visual cortex changes in GABA that relate 

to improvement in behavioural performance during training. This finding 

suggests that suppression of task-irrelevant information in the posterior parietal 

cortex may precede suppression in the visual cortex related to the processing of 

task relevant features. This is consistent with previous studies showing that 
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TMS in the parietal cortex disrupts performance in visual discrimination tasks 

early in the training compared to TMS in the visual cortex that disrupts 

performance after training (Chang et al., 2014). 

Finally, investigating functional connectivity within this posterior cortical 

network revealed suppressive interactions that relate to our ability to improve 

perceptual judgments through training. Here, we demonstrate that higher 

connectivity between parietal and visual cortex at rest relates to increased 

GABA levels in visual cortex during training and behavioural improvement in 

fine feature discrimination. This finding suggests top-down influences from the 

parietal cortex on suppressive processing in the visual cortex for retuning 

feature templates. Previous theoretical investigations have proposed that sensory 

selectivity is enhanced by suppressive feedback mechanisms that change 

recurrent processing in visual cortex (Moldakarimov et al., 2014) and relate to 

attention-guided selection of behaviourally relevant information (Roelfsema and 

Ooyen, 2005). Our findings suggest that suppression of task irrelevant 

information in the parietal cortex enhances tuning of task-relevant features in 

visual cortex through top-down feedback, consistent with previous proposals 

that perceptual learning re-weights sensory processing (Ahissar and Hochstein, 

2004b; Law and Gold, 2008; Raiguel et al., 2006; Yang and Maunsell, 2004b).  

In contrast, we show that higher connectivity within the visual cortex (rather 

than connectivity between visual and parietal cortex) relates to decreased GABA 

in visual cortex and behavioural improvement in detecting targets from clutter. 

Lateral interactions within the early visual cortex are shown to support 

contextual processing and shape integration (Gilbert and Li, 2012; Stettler et al., 

2002). Further, recurrent processing has been implicated in robust 

representations of ambiguous stimuli in higher visual cortex (O’Reilly et al., 

2013), suggesting that local connectivity in occipito-temporal cortex facilitates 

visual processing under uncertainty.  

In sum, our findings provide evidence for distinct suppression mechanisms that 

support our ability to optimise perceptual decisions through training. We 
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propose that local suppressive processing within visual cortex enhances target 

detection, while top-down suppression from decision-related areas (i.e. posterior 

parietal cortex) enhances re-tuning of task-relevant features for fine 

discrimination in the visual cortex. Decision-making models have proposed 

suppressive mechanisms that resolve competition between neuronal ensembles 

that represent behavioural choices (Bogacz et al., 2006). Our findings provide 

novel insights in understanding how these suppressive mechanisms are 

implemented in decision-related and sensory areas in the human brain and 

optimise our ability for perceptual decisions through training.
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Chapter V 

  

Polarity-specific modulation of cortical excitability facilitates 

visual learning 

 

1. Introduction 

So far, I have presented evidence for the involvement of GABA in visual 

learning. In chapter III, I used MRS to measure GABA before and after training 

on two dissociable visual learning tasks: detecting visual patterns from clutter 

(Signal-in-Noise task) and discriminating between highly similar patterns 

(Feature Differences). I found that GABA changes in the occipito-temporal 

cortex, an area known to be involved in shape processing, relate to behavioural 

improvement in a differential manner: decreased occipito-temporal GABA after 

training correlates with faster learning rate for the Signal-in-Noise task, while 

increased occipito-temporal GABA after training correlates with improved 

discriminability between radial and concentric patterns for the Feature 

differences task. In chapter IV, I investigated the time course of GABA changes 

during training on the two tasks, from the occipito-temporal (OCT) and the 

posterior parietal cortex (PPC), an area known to be involved in enhancing 

target salience by suppressing irrelevant information (Mevorach et al., 2010, 

2009a, 2009b). This study replicated the results for occipito-temporal GABA, 

showing decreased occipito-temporal GABA during training on the Signal-in-

Noise task, while increased occipito-temporal GABA during training on the 

Feature differences task.  

The results so far provide evidence for dissociable inhibitory processes in the 

occipito-temporal cortex for detecting targets in clutter vs discriminating highly 

similar stimuli. To extend beyond correlative evidence, I sought to perturb 

cortical excitability using transcranial direct current stimulation (tDCs) that has 
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been previously shown to alter overall responsivity of the visual cortex (i.e. 

modulate visual evoked potentials) (Antal et al., 2004a). My findings on the 

relationship of GABA change and behavioural improvement lead to opposite 

predictions for the effect of tDCs on the two learning tasks. In particular, anodal 

tDCs is known to be excitatory (Nitsche and Paulus, 2000) and has been shown 

to result in local GABA reduction in visual (Barron et al., 2016) and motor 

cortex (Stagg et al., 2009a). Further, anodal tDCs has been shown to facilitate 

learning in motor (O’Shea et al., 2017; Stagg et al., 2011c) and perceptual tasks 

(Fertonani et al., 2011; Pirulli et al., 2013; Sczesny-Kaiser et al., 2016). My 

results for the Signal-in-Noise task showed that GABA change correlated 

negatively with behavioural improvement, suggesting that decreased GABA 

relates to higher behavioural improvement. Therefore, I hypothesised that 

excitatory anodal tDCs would enhance performance during training on this task. 

If occipito-temporal GABA decrease is not simply sufficient, but necessary for 

improving on this task, cathodal (inhibitory) tDCs should impede behavioural 

improvement, while sham tDCs should provide no benefit. In contrast, cathodal 

stimulation is thought to be inhibitory; that is, it has been shown to reduce 

cortical excitability (Nitsche and Paulus, 2000) by decreasing glutamatergic 

transmission (Stagg et al., 2009a). Further, cathodal tDCs on the occipital cortex 

has been shown to facilitate performance in perceptual judgments by 

suppressing incorrect sensory input (Antal et al., 2004b). My results for the 

Feature differences task showed that GABA change correlated positively with 

behavioural improvement, suggesting that increased GABA relates to higher 

behavioural improvement. Therefore, I hypothesised that the inhibitory cathodal 

–rather than the excitatory anodal– stimulation would enhance performance 

during training on this task. While cathodal tDCs does not increase GABA 

levels, its effect on glutamate and GABA results in an inhibitory balance (see 

chapter II). If occipito-temporal GABA increase is necessary for improving on 

this task, then anodal (excitatory) tDCs should impede behavioural 

improvement, while sham tDCs should provide no benefit. 
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I found enhanced improvement compared to sham for the anodal group in the 

Signal-in-Noise task and for the cathodal group in the Feature differences task. 

There was no significant performance decline for cathodal stimulation in the 

Signal-in-Noise or for anodal stimulation for the Feature differences task. This 

study concludes the thesis by establishing causal relationships between 

GABAergic mechanisms and visual learning that are task specific. 

2. Methods 

a. Participants  

Eighty four participants (45 female; mean age 23.8 ± 3.4 years) took part in this 

single-blinded study. All participants were right-handed, had normal or 

corrected-to-normal vision and gave written informed consent. The study was 

approved by the University of Cambridge ethics committee. We randomly 

assigned participants into six groups of 14 participants: training on the Signal-

in-Noise task during online anodal, cathodal or sham stimulation vs. training on 

the Feature-differences task during online anodal, cathodal or sham stimulation.  

 

  

Figure 5.1: Experiment design. 

Participants took part in three sessions. In the pre training session their baseline 

performance was measured in a 90-trial block without feedback. In the stimulation 

session, they were trained with error-feedback while receiving online tDCs (35 minutes). 

In the post training session, participants were tested in a 90-trial block without feedback. 
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Figure 5.2: Experimental trial structure. 

On each trial a 300ms stimulus presentation was followed by a fixation dot. After the participant’s 

response, delayed (100ms) error feedback was presented for 200ms, followed by a fixation dot 

500ms before the next trial onset. 

b. Experiment Design 

Participants were presented with Glass patterns, as described in chapter II. 

Stimuli (size=7.9
o 
x 7.9

o
), were presented on the non-stimulated hemifield (11.6

o
 

arc min from fixation). Participants were asked to judge whether the presented 

stimulus on each trial was radial or concentric. The study consisted of three 

experimental sessions (Figure 5.1). In the first session (pre-training) we 

measured participants’ task performance in one block of 90 trials without 

feedback, which corresponds to their baseline performance. In the second 

session (stimulation session), all participants were trained with error feedback 

for 5 experimental blocks (200 trials per block). On each trial a 300ms stimulus 

presentation was followed by a fixation dot. After the participant’s response, 

delayed (100ms) error feedback was presented for 200ms, followed by a fixation 

dot 500ms before the next trial onset. In the third session, we measured task 

performance in one block of 90 trials without feedback (Figure 5.2). 



Chapter V: Modulation of cortical excitability facilitates visual learning 

 
93 

 

c. Data acquisition 

We used a multi-channel transcranial electrical stimulator (neuroConn DC-

STIMULATOR MC, Ilmenau, Germany) to deliver anodal, cathodal or sham 

stimulation. We used a pair of rubber electrodes (3×3 cm
2
 stimulating electrode, 

5×5 cm
2
 reference electrode), placed in square sponges that had soaked in saline. 

Using small stimulating electrode vs large reference electrode results in 

increased current density and stimulation efficiency for the stimulating contact, 

while decreased current density and a smaller effect on the cortex under the 

reference. Using different-size electrodes has been proposed as a way of 

increasing the focality of tDCs (Nitsche et al., 2008). In the anodal and cathodal 

conditions, 1mA current was ramped up over 10s, was held at 1mA for 35min 

and was subsequently ramped down over 10s. In the sham condition, the current 

ramped up (10s) and down (10s) in the beginning of the session. We used online 

stimulation (i.e. stimulation during training), as this protocol has been 

previously shown to enhance the lasting effect of training (O’Shea et al., 2017). 

This facilitatory effect is not present or polarity specific when stimulation 

precedes training, and both types of stimulation (anodal vs. cathodal) impede 

learning (Stagg et al., 2011c).  

Based on the results of our previous studies presented in chapters III and IV, we 

chose the target area for the stimulation to be the (right) occipito-temporal 

cortex. In order to define the location of the stimulating electrode on the scalp, 

we applied the following procedure. We used functional anatomical scans to 

identify the functional area of posterior occipito-temporal cortex in the right 

hemisphere of a subset of participants as a volume of interest. Using 

neuronavigation (Brainsight 2, Montreal, Canada), we located the closest point 

to the centre of mass of the volume on the surface of the participant’s scalp. We 

then mapped the points on a 10-20 EEG system diagram using triangulation to 

identify EEG electrode positions that we could use as landmarks for positioning 

(Figure 5.3a). To achieve consistent electrode placement across participants, we 

placed the bottom right corner of the square stimulating electrode on T6, using a 
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Figure 5.3: Definition of stimulation target and simulation of resulting electric field 

a. We used functional anatomical scans to identify the functional area of posterior occipito-temporal 

cortex in the right hemisphere of a subset of participants as a volume of interest.  We then mapped the 

centres of mass on a 10-20 EEG system diagram using triangulation. b. We place the bottom right corner 

of the stimulating electrode on T6, maintaining the same orientation parallel to the line connecting T6 

and O2, while the reference electrode was centred on Cz. c. Electrical field density simulation (shown on 

the cortical surface and a representative axial slice) showed that the current density was largely 

unilaterally localized, the peak of the electric field density was observed under the anode electrode 

around the posterior occipito-temporal cortex) and the stimulation reached the occipito-temporal region 

where the MRS voxel was placed in Chapter III. Heatmap indicates electric field strength from 0 (blue) 

to maximum (red). The black outline indicates mean activation across participants (n=33) for an 

independent functional localizer scan (i.e. activation for intact vs. scrambled images of objects) that has 

been extensively used to identify regions in the posterior occipito-temporal cortex that are involved in 

shape processing (Kourtzi and Kanwisher, 2001). The figure illustrates substantial overlap between the 

tDCs electric field and regions in the posterior occipito-temporal cortex involved in shape processing. 

a 

b 

10-20 system EEG cap, maintaining the same orientation across participants, 

parallel to the line connecting T6 and O2 (Figure 5.3b). The reference electrode 

was placed on Cz. We used FreeSurfer (Dale et al., 1999)  to reconstruct head 

models from anatomical scans and SimNIBS 2.0.1 (Thielscher et al., 2015) to 

simulate electric field density resulting from stimulation over the grey matter 

surface (Figure 5.3c). This analysis showed that the current density was largely 

unilaterally localized, the peak of the electric field density was observed under 

the anode electrode around the posterior occipito-temporal cortex.  
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Electric field density simulations have been established as a visualisation 

method that can be used when planning a tDCs study. As explained in chapter 

II, the effect of electric stimulation on the brain heavily depends on the 

orientation of the neurons to the electric field. This means that cortical areas 

with small differences in cortical folding will not be affected in the same way by 

tDCs. Therefore, ideally, electric field simulations should be applied on the 

individual brains of the participants who are stimulated and placement could be 

adjusted to result in the same electric field density maps across participants. 

Since this was not feasible in our study, we can utilise the simulation to confirm: 

a) the focality of the field in the approximate area of the occipito-temporal 

cortex, b) the lateralised field that extends between the two electrode contacts, c) 

the weak electric field density elsewhere in the brain. We can further compare 

the electric field density map on the grey matter surface with the MRS voxel 

placement used in the imaging studies in chapters III (Figure 3.3) and IV (Figure 

4.3). We find good correspondence between the GABA-MRS voxels and 

stimulation target used in this study. 

d. Data analysis 

To quantify behavioural performance (discriminability between the two Glass 

patterns classes) during training we computed d’ as described in Chapter III.  

To compare behavioural performance between the different tDCs groups for the 

two tasks, we run a repeated-measures ANOVA, with training-block and 

stimulation as factors, using SPSS (IBM Corporation, Armonk, NY, USA). To 

directly compare the two tasks, we normalised behavioural performance (d’) in 

the active stimulation groups (anodal, cathodal) to the sham stimulation group. 

For each block, we computed the average d’ across participants in the sham 

group. We subtracted this mean d’ per block from each participant’s data in the 

anodal and cathodal groups. We then calculated the group mean d’ for each 

block normalised to sham and  conducted a repeated-measures ANOVA on the 

data from the active stimulation groups (anodal, cathodal) normalised to the 

sham group, with task, stimulation and training-block as factors. We used 
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Greenhouse-Geisser (for epsilon less than 0.75) and Huynh-Feldt (for epsilon 

greater than 0.75) corrections of significance.  

3. Results  

We trained participants to discriminate Glass patterns that were either embedded 

in background noise (Signal-in-Noise task) or were highly similar to each other 

(Feature-differences task) due to morphing between the two stimulus classes 

(concentric vs. radial patterns). We assigned participants in six different groups 

that received anodal, cathodal or sham stimulation during training on the Signal-

in-Noise or the Feature-differences task. Our results (Figure 5.4) showed 

significant improvement in behavioural performance, as measured by d’, for 

anodal compared to sham stimulation for the Signal-in-Noise (Training block x 

Stimulation: F(2,52.5)= 3.99, p=0.02) but not the Feature-differences task 

(Training block x Stimulation: F(2.2,57.9)=0.45, p=0.66). In contrast, we 

observed improved performance during cathodal compared to sham tDCs for the 

Feature-differences task (main effect of stimulation: F(1,26)= 6.13, p=0.02) but 

not the Signal-in-Noise task (main effect of stimulation: F(1,26)= 0.001, 

p=0.98). To compare behavioural improvement between tasks, we normalised 

performance during tDCs (anodal or cathodal) to performance during sham 

stimulation (Figure 5.4a). A repeated-measures ANOVA showed a significant 

Task, Stimulation x Training block interaction (F(2.5, 130)=3.19, p=0.03).  

Together, these results demonstrate dissociable effects of tDCs stimulation on 

behavioural improvement between tasks, suggesting that GABA-ergic 

suppression alters learning and experience-dependent plasticity in the posterior 

occipito-temporal cortex. In particular, we demonstrate that excitatory 

stimulation enhances performance during training to detect targets from noise, 

while inhibitory stimulation enhances fine feature discriminability. These results 

are consistent with the opposite correlations of change in occipito-temporal 

GABA and behavioural improvement that we observed in Chapters III and IV 

across tasks. Taken together, our findings suggest that GABA-ergic processing 
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in visual cortex optimises noise filtering for target detection, while retuning of 

feature templates for fine discrimination.  

We next conducted the following control analyses to ensure that our results 

relate to learning-dependent changes in behavioural performance rather than 

differences in task difficulty across stimulation groups. Comparing performance 

across participants before training (i.e. pre-training block with no feedback or 

stimulation) showed no significant effect of task (F(1,78)=0.05, p=0.82), nor a 

significant interaction between task and stimulation group (F(2,78)=0.92, 

p=0.40), suggesting that the tDCs-induced learning effects were not due to 

differences in difficulty across tasks (Figure 5.4). This was further supported by 

a significant effect of session (F(1,78)=86.99, p<0.0001) across stimulation 

groups suggesting that all participants (including the sham stimulation groups) 

were able to learn the task (Figure 5.4b). Further, the double dissociation we 

observed between task and stimulation site makes it unlikely that stimulation 

could produce a non-specific effect on general behavioural performance (e.g., 

through distraction caused by skin irritation). In contrast, comparing 

performance on consecutive days in a no-training control group (participants 

were tested twice but without training on the task) showed no significant effect 

of session (F(1,17)= 0.78, p=0.39) nor a significant interaction between task and 

session (F(1,17)=0.30, p=0.59), suggesting that the learning effects we observed 

were training-specific. Finally, to test whether behavioural improvement was 

maintained after training, we compared performance in the last training block 

(feedback, stimulation) vs. a post-training test that was conducted on the day 

following training (no feedback, no stimulation). A repeated-measures ANOVA 

showed no significant interaction between Session x Stimulation x Task 

(F(2,78)=1.09, p=0.34) suggesting that improved performance was maintained 

across all groups when participants were tested without tDCs stimulation. 
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Figure 5.4: tDCs intervention facilitates visual learning.  

a. Task performance (d’) for the active stimulation groups (anodal, cathodal tDCS on posterior 

occipito-temporal cortex normalised to the sham group for the pre- and post- training blocks (no 

feedback, no stimulation) and the two training blocks (Block 1, Block 2; 500 trials per block). 

Performance (d’) was significantly enhanced for anodal (but not cathodal) stimulation in the Signal-

in-Noise task, while for cathodal (but not anodal) stimulation in the Feature differences task.  

b. Behavioural improvement (d’ post- minus pre-training) was enhanced for the anodal stimulation 

group in the Signal-in-Noise task and the cathodal stimulation group for the Feature differences task. 

Error bars indicate standard error of the mean across participants. 
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4. Discussion 

In this study, we investigated the role of GABAergic inhibition in visual 

learning under a brain stimulation intervention protocol. Our previous work on 

training in these two tasks has shown dissociable GABAergic mechanisms for 

learning to detect patterns in clutter vs discriminate similar shapes (chapters III 

and IV). Specifically, we have shown decreased occipito-temporal GABA after 

training relates to improved sensitivity to noise in the Signal-in-Noise task, 

while increased occipito-temporal GABA after training relates to improved 

discriminability in the Feature differences task. Here we tested the role of 

GABA in these two tasks using tDCs to perturb cortical excitability in the 

occipito-temporal cortex. Our results demonstrate a double dissociation in 

learning-dependent mechanisms of visual plasticity. Excitatory anodal (rather 

than cathodal) stimulation enhanced learning to detect targets in clutter, 

consistent with the negative correlation between GABA and behaviour (i.e. 

decreased GABA relates to enhanced behavioural improvement). In contrast, 

inhibitory cathodal (rather than anodal) stimulation enhanced learning to 

discriminate fine features, consistent with the positive correlation between 

GABA and behaviour (i.e. increased GABA relates to enhanced sensitivity in 

fine discrimination). These findings demonstrate a direct link between GABA-

ergic processing in visual cortex and enhanced visual learning. 

Our findings suggest that for the Signal-in-Noise task a downregulation of 

inhibition, as a result of anodal stimulation on the occipito-temporal cortex, may 

facilitate behavioural improvement. Anodal stimulation has been previously 

shown to reduce MRS GABA in the motor cortex (Stagg et al., 2009a), as well 

as in the on the occipito-temporal cortex (Barron et al., 2016). Here we confirm 

the link between decreased GABAergic inhibition in the occipito-temporal 

cortex and improved sensitivity to noise by showing enhanced behavioural 

improvement when perturbing cortical excitability with anodal but not cathodal 

stimulation. For the Feature differences task, downregulation of excitation, as a 

result of cathodal stimulation on the occipito-temporal cortex, may support 
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neuronal tuning and increase discriminability. Cathodal stimulation has been 

shown to reduce cortical excitability in the motor cortex (Nitsche and Paulus, 

2000), while it decreases both MRS GABA and glutamate. Since our previous 

work has shown a link between increased GABA after training and learning on 

the Feature differences task, we do not expect the benefit of cathodal stimulation 

to be as strong as the anodal vs sham for the Signal-in-Noise task (Figure 5.4). 

However, we still see enhanced behavioural improvement for cathodal 

stimulation in the Feature differences task, suggesting an increase in the 

concentration of on the occipito-temporal GABA may not be necessary, while 

an inhibitory balance between GABA and glutamate can support tuning. 

If increasing vs decreasing cortical excitability facilitates learning for the 

Signal-in-Noise vs the Feature differences task, then we would expect a 

performance decline for decreased vs increased cortical excitability for the 

Signal-in-Noise vs the Feature differences task. In particular, we would expect 

cathodal stimulation to impede learning in the Signal-in-Noise task, while 

anodal stimulation to impair performance in the Feature differences task. Here 

we find that the two groups do not differ from sham stimulation. There are 

different reasons why this may be happening: for the Signal-in-Noise task we 

know cathodal stimulation decreases both MRS GABA and glutamate, however 

we do not know what the timescale of that change is; it is possible that the 

decrease in GABA resulting from cathodal stimulation is enough to support 

some improvement on the task early in training, while preventing a later decline 

in performance. It is possible participants in the cathodal group improve on the 

Signal-in-Noise task early on but once cortical excitability is decreased, 

participants stop improving thus resembling the performance of the sham group. 

For the Feature differences task, I showed in chapter IV that during training an 

increase in on the occipito-temporal GABA is coupled with an increase in PPC 

GABA. It is possible that cathodal stimulation of the occipito-temporal cortex 

may not suffice for increasing behavioural improvement to the same degree as 

anodal stimulation for the Signal-in-Noise task. Further, we should consider the 
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effect of the reference electrode placed on Cz during anodal stimulation. We 

know that the electric field induced by tDCs stimulation extends between the 

stimulating and reference electrodes. While we have chosen a large reference 

electrode to reduce its current density, we cannot ignore the effect it will have 

on cortical excitability around Cz. It is possible that during anodal stimulation in 

the Feature differences task, the inhibitory effect of the reference electrode 

extends to parietal cortex, an effect that may prevent performance decline during 

training. 

Finally, the exact mechanism by which tDCs alters cortical excitability on the 

human brain is still largely unknown (see discussion in chapter II). tDCs has 

been suggested to selectively modulate GABAA activity (Nitsche et al., 2005; 

Stagg and Nitsche, 2011) and specifically synaptic rather than extra-synaptic 

GABAA activity (Amadi et al., 2015). However, our previous studies measuring 

MRS GABA changes are more sensitive to extra-synaptic GABA. It is possible 

that, while synaptic and extra-synaptic GABA concentrations are directly linked 

(see chapter II), we are not targeting the exact same GABAergic pool with MRS 

and tDCs. 

 

Conclusion 

Here I show for the first time polarity specific events of tDCs on two visual 

tasks for which dissociable GABAergic mechanisms have been suggested. I 

propose causal links between changes in cortical excitability and behavioural 

improvement on learning to detect targets in visual clutter vs discriminating 

highly similar targets. Our findings support targeted training interventions for 

visual learning.  
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Chapter VI 

  

Discussion 

 

1. Summary of thesis findings  

In my thesis I investigated the role of inhibition in visual learning. I employed a 

learning paradigm that juxtaposes two processes: learning to detect patterns 

from clutter (Signal-in-Noise task) and learning to discriminate between highly 

similar patterns (Feature differences task). I propose that these tasks relate to 

differential brain mechanisms: detecting targets from noise relies on neuronal 

gain control, while discriminating between highly similar targets on neuronal 

tuning. Investigating the role of inhibition in these two kinds of visual learning, 

I am able to draw conclusions about the dissociable mechanisms involved.  

My studies sought to answer three main questions: (a) Does GABAergic 

inhibition, as measured by MRS GABA, change during visual learning and, if 

so, are these changes relevant to behavioural improvement? (b) What is the time 

course of GABA changes during visual learning and does it vary between 

different brain areas? (c) Does GABAergic inhibition contribute causally to 

visual learning and, if so, can we use interventions to facilitate learning? Here I 

discuss the interpretation of our findings and potential future directions. 
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GABAergic contributions during visual learning are task specific  

My findings in chapter III (that were replicated in chapter IV) showed 

dissociable GABAergic contributions in the occipito-temporal cortex for 

learning to detect patterns in clutter (Signal-in-Noise task) vs discriminate fine 

features (Feature differences task). This task-dependent relationship between 

occipito-temporal GABA change and behavioural improvement suggests that 

GABAergic inhibition in occipito-temporal is involved in visual learning in a 

task-dependent manner and may mediate changes in both neuronal gain and 

neuronal tuning.  

Modelling work has related synaptic inhibition to reduced neuronal gain 

(Mitchell and Silver, 2003), while pharmacological blockade of GABAA 

receptors has been shown to increase gain in the rat cerebellum (Hamann et al., 

2002). It is possible that learning to detect targets in clutter is implemented by 

decreased local suppression that facilitates recurrent processing for noise 

filtering and target detection (Gilbert and Li, 2012; Poort et al., 2016). Further, 

single-cell recordings in rats have shown that balanced inhibition, precisely 

following excitatory input, underlies auditory cortex tuning (Wehr and Zador, 

2003). Pharmacological interventions using GABA agonists resulted in 

enhanced orientation selectivity in the visual cortex (Leventhal et al., 2003; Li et 

al., 2008), while blocking GABA-ergic suppression results in broader neural 

tuning (Leventhal et al., 2003; Sillito, 1979). Further, human studies have linked 

GABA levels in the visual cortex with orientation discrimination (Edden et al., 

2009; Rokem et al., 2011). Thus, it’s possible that feature template retuning is 

facilitated by an increase in occipito-temporal GABA during training.  

In chapter III, my results showed an intriguing dissociation between tasks; that 

is, learning rate (but not Δd’) correlated significantly with GABA change for the 

Signal-in-Noise task, while Δd’ (but not learning rate) correlated significantly 

with GABA change for the Feature differences task. Recent studies 

characterizing the role of different populations of interneurons in visual learning 
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may shed light into this task-dependent GABA-ergic plasticity. In particular 

somatostatin-positive (SOM) interneurons have been implicated in spatial 

summation (Adesnik et al., 2012) and have been shown to gate plasticity during 

training by providing contextual information (van Versendaal and Levelt, 2016). 

In contrast, parvalbumin-positive (PV) interneurons have been implicated in 

selective inhibition (Rokem et al., 2011) that sharpens feature representations 

after training (Khan et al., 2018). It is therefore possible, that the dissociable 

correlations we observed between tasks for GABA change and behavioural 

improvement may reflect differential involvement of SOM vs. PV interneurons 

in the two tasks. Specifically, SOM interneurons involved in spatial integration 

may support learning to detect targets from clutter (SN task) through noise 

filtering. In contrast, PV interneurons involved in selective inhibition may 

support learning fine differences (FD task) through re-tuning of feature 

templates. Further, SOM vs. PV interneurons are shown to be involved at 

different stages during the time course of learning. In particular, SOM cells have 

been shown to gate learning-dependent plasticity during training (Chen et al., 

2015), while PV cells form stimulus-specific ensembles with pyramidal cells 

after training on a visual discrimination task (Khan et al., 2018). Thus, it is 

possible that different behavioural measures capture the function of SOM vs. PV 

interneurons, consistent with the dissociation we observed between tasks for the 

correlations of GABA change and behavioural improvement. In particular, 

learning rate (i.e. the rate with which perceptual sensitivity changes during 

training) may capture best the function of SOM interneurons that act during 

learning to support noise filtering throughout the course of training. In contrast, 

Δd’ (i.e. change in perceptual sensitivity after training) may capture best the 

function of PV interneurons that are shown to support tuning of stimulus-

specific representations after training.  
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Task-specific changes in GABAergic inhibition moderate the link between 

changes in BOLD activation and behavioural improvement  

In chapter III, I showed that behavioural improvement correlates positively with 

changes in occipito-temporal BOLD activations during training for both the 

Signal-in-Noise and the Feature differences tasks. I showed that changes in 

occipito-temporal GABA moderate the link between BOLD changes in the 

occipito-temporal cortex and behavioural improvement.  

In the past 20 years, functional MRI has been a valuable tool for understanding 

human brain function. Its high spatial specificity and its sensitivity in revealing 

functional specialisation of the cortex make it a unique method for non-

invasively measuring brain activation during tasks. However, fMRI BOLD 

cannot differentiate between excitatory and inhibitory contributions to brain 

activation. While fMRI BOLD is believed to increase with neural spiking, with 

or without net excitation, it is unclear what the effect of net inhibition is. 

Changes in excitation and inhibition are related to changes in metabolic activity 

and therefore modulation of cerebral blood flow that alters the BOLD signal. 

Specifically, regional inhibition can have three possible outcomes: reduced 

recurrent excitation (where a decrease in BOLD is expected), increased synaptic 

inhibition or shunting of the cortical output (where an increase in BOLD may 

reflect increased local metabolism), resulting in diverse associations between 

inhibition and BOLD signal (Logothetis, 2008).  

Interestingly, studies comparing visual stimulation to rest blocks have shown 

increases in V1 glutamate, but no changes in GABA with functional MRS 

(Schaller et al., 2013) and combined fMRI-MRS found strong links between 

BOLD-responses to visual stimulation and glutamate concentration (Ip et al., 

2017). These results suggest that BOLD responses may reflect changes in 

metabolism mainly captured by glutamate rather than GABA.  
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In order, therefore, to investigate inhibitory processes that are involved in visual 

plasticity, I measured the concentration of GABA before, during and after 

training on visual tasks, as an estimate of local cortical inhibition. In chapter III, 

I showed that, indeed, BOLD signal does not allow us to differentiate between 

inhibitory contributions to visual learning. Instead, GABA changes moderate the 

link between changes in BOLD and behavioural improvement. My findings 

suggest GABA MRS can reveal inhibitory contributions that we are unable to 

measure with fMRI. 

 

 

Resting state connectivity relates to cortical inhibition and behavioural 

improvement 

Recent studies have shown that functional connectivity in networks known to be 

involved in motor (Sampaio-Baptista et al., 2015) and visual (Baldassarre et al., 

2012) learning relates to behavioural improvement, linking functional 

connectivity to learning-dependent plasticity. It is possible that decreased OCT-

PPC connectivity at rest predicts behavioural improvement for the Signal-in-

Noise task by supporting independent modulation of GABA in the two areas. In 

contrast, increased task-free OCT-PPC connectivity predicts improved 

discriminability in the Feature differences task by supporting coupled 

modulation of GABA in the two areas. 

GABAergic inhibition has been suggested to shape network connectivity (Stagg 

et al., 2014). In particular, extra-synaptic GABA has been shown to relate to 

local oscillatory activity in the high gamma frequency range (Towers et al., 

2004) and to inter-regional functional connectivity (Shmuel and Leopold, 2008). 

In addition, GABAergic interneurons have been shown to support intra-cortical 

and long-range connections (Rutishauser et al., 2012) and function as neuronal 

hubs that orchestrate spontaneous network synchronization (Bonifazi et al., 
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2009). In the human brain, MRS-assessed GABA has been linked to functional 

connectivity as measured by resting-state fMRI (Bachtiar et al., 2015; 

Kapogiannis et al., 2013; Stagg et al., 2014), suggesting that GABAergic 

inhibition may relate to local neural dynamics (Cabral et al., 2011).  

Studies have shown that GABA levels at a node of brain network relate to 

network-level intrinsic connectivity, with lower GABA levels in the primary 

motor cortex correlating with higher motor network strength (Bachtiar et al., 

2015; Stagg et al., 2014). Further, lower GABA levels in the left M1 were 

shown to correlate with higher M1-M1 resting connectivity (Stagg et al., 2014). 

Finally, training (Sampaio-Baptista et al., 2015), as well as anodal tDCs on M1 

(Bachtiar et al., 2015) have been shown to increase motor network strength. 

While these studies relate local inhibition to network-level connectivity, here I 

find evidence of local GABAergic inhibition contributions to regional 

connectivity. I showed that learning dependent changes in occipito-temporal 

GABA levels relate to resting state connectivity between occipito-temporal and 

parietal cortex for fine feature discrimination, while connectivity within the 

occipito-temporal cortex for detecting targets from clutter. This is the first report 

of functional connectivity between two areas relating to changes in GABA 

levels during training. This result suggests that in order to maintain a strong 

connection between occipito-temporal and parietal cortex, it’s possible that 

connections to other brain areas need to be suppressed, driven by changes in 

cortical inhibition. On the contrary, decreased local inhibition may enhance 

lateral connections within the occipito-temporal cortex, similar to previous 

studies showing lower GABA levels correlating with higher network strength in 

the motor cortex (Bachtiar et al., 2015; Stagg et al., 2014).  
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GABAergic mechanisms relate causally to human visual plasticity 

In chapter V, I showed that the GABAergic contributions to learning suggested 

in chapters III and IV are causally linked with visual plasticity. I showed that 

anodal (excitatory) tDCs on the occipito-temporal cortex facilitates learning to 

see in clutter, while cathodal (inhibitory) tDCs facilitates learning to 

discriminate fine features. The effects shown here are polarity specific for both 

tasks and confirm a causal relationship between changes in the occipito-

temporal GABAergic inhibition and visual plasticity.  

Excitatory and inhibitory tDCs has been employed to facilitate motor learning 

and reveal causal link between perturbation of motor cortical excitability and 

motor plasticity (Amadi et al., 2015; Stagg et al., 2011c; Vines et al., 2008). 

However, this is the first evidence of a double dissociation between increases vs 

decreases in cortical excitability and behavioural improvement in two distinct 

visual tasks: learning to detect patterns in visual noise vs discriminate between 

highly similar patterns. 

Previous studies have linked GABAergic inhibition to homeostatic visual 

plasticity. Decreased GABA in the primary visual cortex has been shown to 

reactivate ocular dominance plasticity in rats (Harauzov et al., 2010), while 

GABA decrease following monocular deprivation has been related to the 

perceptual boost of the deprived eye, as measured by binocular rivalry in 

humans (Lunghi et al., 2015). Further, GABA has been shown to control critical 

periods for plasticity during development of the sensory cortical areas (Fagiolini 

and Hensch, 2000; Huang et al., 1999). Here I propose a causal role for GABA 

in visual plasticity in perceptual learning, rather than a homeostatic or 

developmental mechanism. I propose that excitatory anodal stimulation of the 

occipito-temporal cortex facilitates enhanced improvement in noise sensitivity, 

by supporting gain changes. In contrast, inhibitory cathodal stimulation of the 

occipito-temporal cortex facilitates increased feature selectivity, by supporting 

changes in tuning.  
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2. Methodological considerations 

While great care was taken when planning and executing the studies described 

in this thesis, there are limitations and possible concerns that should be taken 

into account when discussing the findings. 

 

Behavioural paradigm 

Here I use Glass patterns and train participants to detect shapes in visual noise 

or discriminate shapes that are highly similar. These tasks have been shown to 

engage the occipito-temporal cortex (Ostwald et al., 2008) and training changes 

BOLD responses in this area (Li et al., 2012; Mayhew et al., 2010; Zhang et al., 

2010). I discussed in chapter II the reasons why Glass patterns are an 

appropriate stimulus for studying distinct processing mechanisms, while 

controlling for local feature statistics. It is important to note, however, that 

literature on neuronal gain and tuning – the two basic mechanisms proposed 

here to mediate learning – largely refers to the primary visual cortex. 

Nonetheless, electrophysiology work has shown tuning properties (Yamane et 

al., 2008; Yang and Maunsell, 2004a), as well as gain-control mechanisms 

(Reynolds et al., 2000; Salinas and Abbott, 1997; Sundberg et al., 2009) in 

monkey higher visual areas. Further, changes in BOLD response gain and 

activation pattern selectivity have been shown in the human brain for detecting 

low-salience targets and discriminating highly similar high-salience targets 

(Kourtzi et al., 2005; Zhang et al., 2010). These studies suggest analogous 

inhibitory mechanisms are involved in occipito-temporal plasticity, however 

further studies are needed to confirm to what extent neuronal inhibition plays a 

role similar to the one in V1 or in animal visual systems. 

The behavioural paradigm used consisted of a single training session, targeting 

fast learning (Poggio et al., 1992; Sagi, 2011). Changes in brain activation have 

been shown in a single training session (Mukai et al., 2007), however it’s worth 

mentioning that previous imaging studies using Glass patterns involved multiple 
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training sessions and measured brain activation before and after training (Li et 

al., 2012; Mayhew et al., 2010; Zhang et al., 2010). Here I investigated the role 

of inhibition in early training, motivated by animal studies suggesting changes 

in inhibition are necessary for plasticity induction (Castro-Alamancos et al., 

1995; Trepel and Racine, 2000). For this reason I restricted training to one -

instead of multiple- training session and ensured that participants could still 

learn by reducing the number of stimulus conditions and running behavioural 

pilots to determine the level of difficulty used. Thus, the GABAergic 

contributions reported here may not reflect precisely the mechanisms described 

by other fMRI studies (Li et al., 2012; Mayhew et al., 2010; Zhang et al., 2010) 

with a different experimental design. 

Further, when making links between the changes in GABAergic inhibition 

measured here and studies showing changes in BOLD activation, one should 

take into account the following: a) In Chapter III, resting GABA measurements 

were taken before and after a single fast-training session. b) In Chapter IV, 

baseline-GABA was measured during viewing of noisy stimuli, doing a reaction 

time task, while task-GABA was measured during training on the task. c) Here, 

early training is targeted, that has been shown to be mediated by distinct 

inhibitory mechanisms, different to stabilisation (Shibata et al., 2017). 

 

Using MR spectroscopy to measure inhibition in the brain 

GABA-MRS is an experimental technique that is has received attention in the 

latest years, resulting in significant development of the acquisition and analysis 

pipelines. While it is being increasingly used in the field of Cognitive 

Neuroscience, there are concerns regarding the sensitivity of the measurements, 

as GABA has an elusive spectral signature and the data can often be 

contaminated with nuisance signals (see chapter II). However, the sequences 

used in this thesis have been shown to produce reliable and reproducible results. 

Specifically, GABA measurements with edited sequences like the 2D-J PRESS 
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at 3 Tesla have been shown to be reliable and reproducible (Prescot and 

Renshaw, 2013; Schmitz et al., 2017). Likewise, semi-LASER at 7 Tesla has 

been shown to measure GABA reliably in the cortex (Barron et al., 2016; 

Kolasinski et al., 2017; C Lemke et al., 2015; Lunghi et al., 2015; van de Bank 

et al., 2015). 

As discussed in chapter II, we interpret these links between MRS-assessed 

GABA, behaviour and possible neural mechanisms with caution, as the precise 

mechanisms that underlie changes in GABA as measured by MRS remain under 

investigation. In particular, it is unclear whether MRS-assessed GABA 

represents the entire pool of GABA available in a voxel. It is possible that the 

individual GABA pools are not equally visible using MRS (Floyer-Lea et al. 

2006; Stagg et al. 2009). Another possibility is that MRS-assessed GABA 

reflects the exchange between the intra-cellular and synaptic pools of GABA 

(Ashton and Ushkaryov, 2005; Waagepetersen et al., 2001). A number of 

studies using paired-pulse transcranial magnetic stimulation (Dyke et al., 2017; 

Stagg et al., 2011b; Tremblay et al., 2013) have shown that MRS-assessed 

GABA does not relate to GABAA or GABAB activity and therefore it is unlikely 

to reflect synaptic transmission of GABA. It is more likely that MRS-assessed 

GABA reflects ambient extracellular GABA that contributes to tonic 

GABAergic activity (for reviews: (Johnstone et al., 2017; Rae, 2014; Stagg, 

2014)). This is consistent with animal studies showing that GABA synthesis 

(Mason et al. 2001) is associated with GAD67 that is predominantly found 

throughout the cell, rather than GAD65 that is found in axon terminals (Kaufman 

et al., 1991). Finally, we did not observe changes in glutamate simultaneously 

with the change in GABA observed during training.  Thus, it is unlikely that the 

changes in GABA reflect overall changes in the metabolite cycling. GABA 

undergoes rapid turnover in the mammalian cortex, and GAD activity has been 

shown to be rapidly modulated in a variety of physiological processes 

(Garraghty et al., 1991) in both human (Shen et al., 1999) and animal (Manor et 

al., 1996) studies. Future studies combining  invasive investigations in animals 
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(e.g. two photon imaging of interneurons) with non-invasive MRS are necessary 

to shed more light on the basis MRS-assesed GABA.  

 

Using transcranial direct current stimulation to perturb cortical excitability 

Here I relate GABAergic inhibition, as measured with MR spectroscopy, with 

behavioural improvement and then perturb cortical excitability using tDCs. As 

discussed in chapter II, the mechanisms underlying the effects of tDCs on the 

human brain are still debated. While it is believed that tDCs targets GABAA 

activity (Nitsche et al., 2005; Stagg and Nitsche, 2011), it has been proposed 

that tDCs affects synaptic rather than extra-synaptic GABAA activity (Amadi et 

al., 2015). However, MRS is believed to be more sensitive to concentrations of 

extra-synaptic GABA (Mason et al., 2001). Therefore, discrepancies between 

the findings may result from differences in the GABAergic pool measured vs 

targeted with the two techniques. 

The stimulation duration used in chapter V is longer than the 15-20min used in a 

large number of tDCs studies (Nitsche et al., 2008). Studies have shown that 

when tDCs is applied for longer periods of time, its effects on cortical 

excitability may be reversed. Specifically, anodal tDCs applied for 26min has 

been shown to induce cortical inhibition for 2h following stimulation (Monte-

Silva et al., 2013). A neuronal mechanism that prevents cortical over-excitation 

has been proposed to mediate this reversal of the tDCs effect (Monte-Silva et 

al., 2013). Here tDCs duration was adapted to the duration of the training 

paradigm (35minutes). While it is not possible to know how the longer 

stimulation duration will alter cortical excitability in this study, it is important to 

mention that the protocol used in chapter V differs from the Monte-Silva et al, 

2013 study in two ways. First, stimulation here is applied while participants are 

performing a visual task. It’s been shown that the effect of anodal tDCs is 

different when stimulation is applied at rest vs during a task (Amadi et al., 

2015). Second, Monte-Silva et al show this reversal of the anodal excitatory 
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effect directly after stimulation stops, which in our case would be after training 

had already finished. It’s been shown that following anodal tDCs, homeostatic 

mechanisms result in increased synaptic GABAA activity (Amadi et al., 2015) 

that could account for the decreased excitability following stimulation in Monte-

Silva et al, 2013. Even if a reversal of the effect on cortical excitability happens 

for the stimulation protocol in chapter V, behavioural enhancement in the 

Signal-in-Noise vs Feature differences for anodal vs cathodal stimulation would 

suggest that changes in GABAergic inhibition are required early in training, but 

may not be necessary to maintain increased performance.  

 

Left or right? 

When planning an MRS study, one is inevitably faced with a key question: in 

which hemisphere should the MRS voxel be placed? In chapter III, I measured 

GABA from the right occipito-temporal cortex, in chapter IV, I measured 

GABA from the left posterior parietal and left occipito-temporal cortex and in 

chapter V, I stimulated the right occipito-temporal cortex. Brain imaging studies 

have shown consistent bilateral activations in occipito-temporal cortex for shape 

processing (Kourtzi and Kanwisher, 2001; Ostwald et al., 2008), while TMS has 

shown comparable disruptive effects on left and right occipito-temporal cortex 

(Chang et al., 2014). Here I show that decreased GABA in both right (chapter 

III) and left (chapter IV) occipito-temporal cortex relates to behavioural 

improvement. However, fMRI (Mevorach et al., 2009a) and TMS (Mevorach et 

al., 2006) studies have shown that left posterior parietal cortex is selectively 

involved in low-salience stimuli selection. Thus, in chapter IV, the voxels were 

placed in the left hemisphere and it would be of interest to see whether right 

posterior parietal cortex shows differential GABAergic contributions, consistent 

with the previous fMRI and TMS studies. 

 

 



Chapter VI: Discussion 

 
115 

 

GABA levels: state or trait? 

Whether GABA levels reflect a brain state or a trait of the cortex is currently 

under investigation. Human GABA-MRS studies have linked resting GABA 

levels to behavioural traits, such as motor reaction times (Stagg et al., 2011a), 

tactile acuity (Kolasinski et al, 2017), orientation discrimination ability (Edden 

et al, 2009), larger orientation illusion magnitude (Song et al., 2017) and 

bistable perception (van Loon et al., 2013). Studies have also shown GABA 

level differences between patients and controls in schizophrenia (Yoon et al., 

2010), as well as differences between GABAergic processes in autistic and 

healthy populations (Robertson et al., 2015). Near et al (Near et al., 2014) 

showed that GABA concentrations in the visual cortex remain stable over a 

period of about 7 months, suggesting GABA levels reflect an individual trait 

rather than a state.  

However, cortical excitability (De Gennaro et al., 2007; Kreuzer et al., 2011) 

and GABA levels have been shown to vary with wakefulness and sleep 

deprivation ((Plante et al., 2012; Winkelman et al., 2008), but also (Morgan et 

al., 2012) for a review see (Duncan et al., 2014)). Further, normal circadian 

rhythm effects have been shown to alter cortical excitability in the motor cortex 

(Koski et al., 2005; Tamm et al., 2009) by modulating GABAergic inhibition 

(Lang et al., 2011). Two-photon imaging studies have shown that PV 

interneurons are selectively involved in controlling cortical activity during REM 

sleep (Niethard et al., 2016). Therefore, GABA plays a key role in shaping 

cortical activity across a variety of different brain states (Lee and Dan, 2012). 

With MRS we measure the aggregate concentration of the neurotransmitter, 

neuromodulator and metabolic pools of GABA. It is, thus, plausible that MRS 

assessed GABA reflects state dependent functional fluctuations around the 

individual levels of inhibition. In this thesis, I investigated the learning 

dependent changes in GABAergic inhibition. I measured GABA before, during 

and after training on a fast-learning paradigm where measurements were 

between 5 and 45 minutes apart. I expressed GABA change as a difference and 
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as a percent change from baseline, ensuring that the results are not driven by 

variability in resting GABA concentration before training. Following this 

method, I was able to directly test whether functional fluctuations of 

GABAergic inhibition are linked to visual plasticity. 

 

From motor to visual cortex 

The majority of the studies we rely on as evidence for MRS-assessed 

GABAergic inhibition come from motor cortex literature. One may pose the 

question as to what extent these translate to the visual cortex: do GABA levels 

in the visual cortex have a behavioural relevance? Studies so far have measured 

GABA successfully in both cortices and have linked the basic functions of both 

motor and visual cortex to MRS-assessed GABA: lower GABA levels in the 

motor cortex relate to faster reaction times (Stagg et al., 2011a), while higher 

GABA levels in the sensorimotor cortex relate to better tactile acuity 

(Kolasinski et al, 2017). Higher GABA levels in the visual cortex relate to better 

orientation discrimination (Edden et al, 2009; Rokem et al, 2011). These results 

suggest that the relationship between MRS-assessed GABAergic inhibition and 

behaviour is not specific to the motor cortex and depends both on the cortical 

function in question and the local cytoarchitecture and circuitry (Stagg, 2014). 

MRS-assessed GABA changes have been measured in the motor cortex during 

training and have been found to decrease for motor plasticity (Floyer-Lea et al, 

2006).  During motor learning, cortical recruitment and remapping may benefit 

from decreased cortical inhibition. Similarly, I show here that cortical 

recruitment for noise filtering and target detection relates to decreased MRS-

GABA in the occipito-temporal cortex. On the contrary, I observed that 

enhanced retuning relates to increased MRS-GABA in the occipito-temporal 

cortex during training. An analogous mechanism has not been shown in the 

motor cortex. Following the positive relationship between GABA levels in 

somatosensory cortex and tactile acuity shown in (Kolasinski et al, 2017), it 
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remains to be investigated whether enhancement of tactile acuity during training 

would relate to increased or decreased MRS-GABA in the motor cortex. 

 A large proportion of the studies providing supporting evidence for the 

mechanism of action of tDCs are on the motor cortex. Do these findings 

extrapolate to the visual cortex and do we expect the same results when we 

stimulate different cortical areas? Anatomical differences between the motor 

and visual cortex may alter the effects of stimulation: large pyramidal cells, 

which are more easily polarised due to their lower neuronal threshold and larger 

membrane surface, comprise the motor cortex but are absent from the visual 

cortex. Further, the visual cortex has great morphological variability and cortical 

thinness (Fertonani et al., 2011). Therefore it’s possible that cortical excitability 

is more easily altered in the motor than in the visual cortex. However, studies 

measuring visual evoked potentials (VEPs) replicated in the visual cortex the 

effects of tDCs previously shown in the motor cortex: VEP amplitude was found 

to be increased following anodal and decreased following cathodal tDCs 

compared to a non-stimulated condition (Antal et al., 2004a), suggesting a 

similar mechanism of action for tDCs on the visual cortex. Anodal stimulation 

of the occipito-temporal cortex selectively reduced GABA (but not glutamate) 

during stimulation, as measured by MRS (Barron et al., 2016), similar to the 

findings of anodal tDCs on the motor cortex (Stagg et al, 2009a), suggesting the 

effect of stimulation on neurotransmitter concentrations is not confined to the 

motor cortex. In this thesis I used tDCs to perturb cortical excitability, following 

studies showing that tDCs in the occipito-temporal cortex alters the 

concentration of GABA (Barron et al, 2016) and tDCs in the primary visual 

cortex (Pirulli et al., 2013), as well as MT (Antal et al., 2004b), facilitates 

behavioural improvement in visual tasks. Further interventional studies and 

animal work is required to elucidate the mechanism of action of tDCs on the 

visual cortex. 



 

 
118 

 

3. Future work 

In this chapter, I have presented a series of questions that have been answered 

with my studies. The findings provide us with novel insights into the inhibitory 

processes involved in visual learning and ignite new questions to be investigated 

in the future. 

 

Does OCT-PPC connectivity change during training? 

Here I show that resting OCT-PPC connectivity predicts behavioural 

improvement in visual learning and relates to cortical inhibition in the occipito-

temporal cortex. However, visual perceptual learning has been shown to alter 

regional connectivity (Lewis et al., 2009). Further, rs-fMRI has been shown to 

predict individual variability in cognitive task BOLD activation maps (Cole et 

al., 2016; Tavor et al., 2016), while resting state connectivity between brain 

areas has been related to coupled task-related BOLD changes (Mennes et al., 

2010). A future study employing fMRI-MRS (Ip et al., 2017) may measure 

BOLD signal while measuring GABA during training and will answer two 

questions: how does OCT-PPC connectivity change during training and whether 

changes in connectivity relate to changes in GABA in the two areas. Based on 

the relationships shown here between resting functional connectivity and 

behavioural improvement in the two visual tasks, I predict that during training 

on the Signal-in-Noise task, OCT-PPC connectivity will decrease and 

connectivity within OCT will increase to facilitate cortical recruitment and 

integration of contextual information. On the contrary, during training on the 

Feature differences task, I predict that OCT-PPC connectivity will increase to 

support top-down interactions for template retuning in the visual and 

optimisation of decision making in the parietal cortex. Understanding the 

pathways involved in different types of visual plasticity will shed light on how 

feedforward and feedback processing are implemented during visual learning.  
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Is OCT-PPC functional connectivity a result of a structural connection? 

Here I show resting OCT-PPC connectivity differentially predicts behavioural 

improvement in two visual tasks. However, diffusion tensor imaging (DTI) has 

shown cortical projections from the vertical occipital fasciculus (VOF) -that 

connects dorsal and ventral regions of the occipital cortex- to PPC (Takemura et 

al., 2016). A future study may combine resting state fMRI and DTI before 

training, together with task fMRI and post-training DTI, to investigate: a) the 

structural and functional connection between OCT and PPC, b) whether they 

predict behavioural improvement in visual learning, c) if combined with pre and 

post training GABA measurements, how inhibition shapes functional and 

structural plasticity. 

 

Which GABAergic pool is involved in visual learning? 

Here I show distinct GABAergic contributions for learning to see in clutter vs 

discriminate fine features. However, using MRS we are unable to differentiate 

between the different GABAergic pools (cytoplasmic, synaptic, extra-synaptic). 

While MRS is believed to be more sensitive to extra-synaptic GABAA activity 

(Mason et al., 2001), plastic changes are not constrained to extra-synaptic 

GABA (Stagg, 2014). A future study may employ GABA agonists that target 

synaptic GABA, such as benzodiazepines (Nutt et al., 2015) vs GABA reuptake 

inhibitors, such as Tiagabine (Gonzalez-Burgos, 2010), to selectively increase 

synaptic vs extracellular GABA and dissociate the behavioural effects in the two 

tasks. In the same study, MRS measurements before vs. after the 

pharmacological interventions will show which GABAergic pool is mainly 

represented in the GABA-MRS signal. A study measuring GABA levels in the 

occipital cortex and basal ganglia found no differences following a Tiagabine 

intervention (Myers et al., 2014). However, this study would need to be repeated 

on a larger sample and including blood drug concentration measurements. 

Understanding which GABAergic pool is a) involved in visual learning and b) 

mainly represented in the MRS signal will allow us to investigate specific and 
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interpretable mechanisms of plasticity, as well as design targeted 

pharmacological interventions to facilitate learning. 

 

Are different GABAergic interneurons involved in different tasks? 

Our findings provide novel evidence for the role of GABA-ergic processing in 

learning, shedding light on the neural implementation of theoretical models of 

perceptual learning. Future animal studies may probe the micro-circuits that 

give rise to learning by noise filtering vs. feature template retuning. Recent work 

has begun to classify cortical interneurons into distinct classes based on 

morphology, connectivity, and physiology (Kepecs and Fishell, 2014) and link 

them to distinct cortical computations (see for example (El-Boustani and Sur, 

2014; Kerlin et al., 2010; Wilson et al., 2012). These distinct interneuron types 

may differentially contribute to learning by noise filtering vs. feature template 

retuning by changing the gain vs. feature selectivity of pyramidal cells. Thus, 

our findings propose testable hypotheses linking theoretical models of 

perceptual learning to the micro-circuits that mediate adaptive behaviour and 

underlie the macroscopic learning-dependent plasticity as measured by human 

brain imaging. 

 

What about consolidation? 

Here I show GABAergic contributions to fast visual learning, suggesting GABA 

is related to plasticity early in training. However, it has been shown that the 

balance between excitation and inhibition may change between early training 

and stabilisation of learning (Shibata et al., 2017). A future study may measure 

GABA before and after multiple training sessions, to reveal GABAergic 

contributions to learning when performance reaches a plateau. Understanding 

the long-term time-course of GABAergic inhibition during training will inform 

learning interventions: if different stages of learning (i.e. early training vs 
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consolidation) are supported by differential GABAergic mechanisms, we would 

need to design closed-loop interventions that monitor behavioural improvement 

and adjust the intervention steps accordingly. 

 

Inhibitory alpha oscillations and learning 

Here I show evidence for the involvement of inhibitory mechanisms in visual 

learning, as measured by GABA MRS. However, GABAergic interneurons are 

involved in generation of gamma and alpha oscillations in the cortex, while 

modulations of inhibitory alpha power have been shown to relate to levels of 

GABAergic inhibition (Lozano-Soldevilla et al., 2014). A future study may 

employ EEG/MEG to measure gamma and alpha oscillatory power during 

training, as well as GABA concentration before and after training and 

investigate links between GABAergic inhibition and brain oscillations. 

 

Is tDCs the optimal way to perturb cortical excitability for visual plasticity? 

Brain stimulation interventions other than tDCs have been suggested to enhance 

visual learning. Specifically, V1 transcranial random noise stimulation (tRNs) 

has been shown to facilitate improvement on an orientation discrimination task 

(Fertonani et al., 2011; Pirulli et al., 2013). However, the mechanism by which 

tRNs affects cortical excitability is not well understood. It is hypothesised that 

tRNs results in temporal neural summation of the stimulated neurons, 

selectively enhancing the activity of task-relevant neurons (Fertonani et al., 

2011). It’s been also suggested to enhance performance by introducing 

stochastic resonance in the stimulated area (Moss et al., 2004). A future study 

could investigate the use of tRNs during training on the Signal-in-Noise task, as 

stochastic resonance has been suggested to facilitate signal detection (Faisal et 

al., 2008; Stacey and Durand, 2000).  
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Alternatively, theta burst TMS (TBS) has been shown to increase vs decrease 

cortical excitability when applied intermittently (iTBS) vs continuously (cTBS) 

(Huang et al., 2005). Further, cTBS has been shown to increase MRS GABA in 

the motor cortex (Stagg et al., 2009b). A future study could employ iTBS vs 

cTBS to facilitate learning on the Signal-in-Noise vs Feature differences task. 

Interestingly, inhibitory cathodal tDCs results in a Glx decrease, with a highly 

correlated GABA decrease (Stagg et al., 2009a). It is likely that the Feature 

differences task will be further enhanced by cTBS than cathodal tDCs, due to 

the increase in GABA concentration, consistent with GABA-MRS evidence in 

chapters III and IV. 

 

Can we intervene to facilitate visual learning in patient populations? 

Studies have shown that patients suffering from certain neuropsychiatric 

disorders where the GABAergic system is compromised (e.g. schizophrenia, 

autism) also show visual deficits. In particular, patients with schizophrenia have 

been shown to have reduced GABA levels in the visual cortex compared to 

healthy controls (Yoon et al., 2010) and visual impairments in schizophrenics 

have been linked to GABAergic dysfunctions (Butler et al., 2008; Rokem et al., 

2011). Further, studies on children with autism presented with Glass patterns 

have found deficits in visual form processing (Spencer and O’Brien, 2006), 

while binocular rivalry deficits in autistic populations have been linked to 

reduced GABAergic signalling (Robertson et al., 2015). Using the findings of 

this thesis, we can design brain stimulation intervention protocols to alter 

cortical excitability in the visual cortex and facilitate visual learning in autistic 

and schizophrenic populations; similar interventions using tDCs on the 

sensorimotor cortex of patients with spatial neglect have shown long-lasting 

effects (O’Shea et al., 2017) that persisted well beyond training. A future 

application of my findings can employ cathodal tDCs on the visual cortex to 

support visual functions that are compromised in autism and schizophrenia. First 

steps in this direction would be a) establishing a behavioural effect (e.g. deficits 
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in global form perception and feature discrimination), b) conducting a double-

blind tDCs experiment with anodal, cathodal and sham groups and finally, c) 

confirming the cortical excitability changes on the pathological cortex using 

combined tDCs and MRS during training. 

 

 

4. Thesis contribution 

In my thesis I show for the first time evidence for dissociable inhibitory 

mechanisms that mediate visual plasticity for perceptual decisions. Further, I 

propose a causal link between cortical excitability and behavioural improvement 

in visual perceptual learning.  

The findings of my thesis on the causal relationship between GABAergic 

inhibition and behavioural improvement can be used to support targeted training 

interventions. For example, brain stimulation has recently received increased 

attention as a tool to facilitate cognitive training and rehabilitation following 

stroke. Establishing links between changes in cortical excitability and 

behavioural improvement on visual perceptual tasks can inform such therapeutic 

interventions. 

Further, the novel insights on the GABAergic mechanisms involved in visual 

learning may inform translational research in psychiatric disorders. Inhibitory 

mechanisms are known to be compromised in disorders such as autism and 

psychosis. Understanding the link between these mechanisms and behaviour 

will be beneficial for designing interventions (pharmacological and cognitive 

training programmes) that enhance the capacity for learning and flexible 

behaviour in disease. 
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