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Abstract

This thesis provides a study of different aspects of the mechanical and vibrational
properties of disordered and amorphous solids. Resorting to the theoretical framework of
non-affine lattice dynamics the attention is focused on the analysis of disordered networks
and lattices which serve as tractable model systems for real materials.

Firstly, we discuss the static elastic response and the vibrational spectra of defective
fcc crystals. The connection to different types of microstructural disorder in the form of
bond-depletion and vacancies is described within the context of the inversion symmetry
breaking of the local particle configurations. We identify the fluctuations of the local
inversion symmetry breaking, which is directly linked to the non-affinity of the disordered
solid, as the source of different scalings behaviours of the position of the boson peak.
Furthermore, we describe the elastic heterogeneities occurring in a bond-depleted two-
dimensional lattice with long-range interactions. The dependence of the concomitant
correlations of the local elastic moduli are studied in detail in terms of the interaction
range and the degree of disorder. An analytical scaling relation is derived for the radial
part of the elastic correlations in the affine limit. Subsequently, we provide an argument
for the change of the angular symmetry of the elastic correlation function which was
observed in simulations and experiments on glasses and colloids, respectively.

Moving to the dynamical behaviour of disordered solids, a framework is developed
based on the kernel polynomial method for the approximate computation of the non-
affine correlator of displacement fields which is the key requirement to describe the linear
viscoelastic response of the system within the quasi-static non-affine formalism. This
approach is then extended to the case of multicomponent polymer melts and validated
against molecular dynamics simulations at low non-zero temperatures.

We also consider the dynamical behaviour of metallic glasses in terms of its shear
elasticity and viscosity. A theoretical scheme is suggested which links the repulsive
strength of the interatomic potential to the viscoelasticity and fragility in metallic glasses
in the quasi-affine limit.
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Chapter 1

Introduction

Understanding the physical mechanisms which govern the effect of disorder on the
mechanical and vibrational properties of disordered solids, as supercooled liquids, defective
lattices, and glasses remains a long-standing research effort. A comprehensive theoretical
description of the transition from the rigid to the mechanically unstable state based
on the microscopic dynamics is still lacking. The absence of long-range order and
periodicity in these amorphous systems makes a theoretical description a formidable
task. The situation for disordered lattice systems is slightly better. Theoretical tools like
effective-medium theories, which aim to map the problem of describing the mechanical
and vibrational properties of a disordered non-periodic lattice to a ordered, periodic
lattice with a complex-valued elastic response, have proved very successful throughout
the past decades. Even though there exists a large body of literature concerned with the
study of the vibrational and elastic properties of disordered lattices, they remain a source
of rich physical phenomena in terms of their vibrational dynamics, elastic response and
elastic-to-plastic transition.

A more direct approach, based on characterising the microscopic particle trajectories
in disordered solids under external stress was established about a decade ago [57]. This
framework exhibits a remarkable strength in explaining physical phenomena observed
in molecular-dynamics simulation and experiments of amorphous matter related to
local particle displacements and rearrangements from a microscopic point of view. The
starting point for describing the elastic response of a disordered particle system to
external stress is the idea to distinguish two fundamentally different types of microscopic
displacements. The first corresponds to homogeneous displacements as they would be
observed in a uniform solid as a response to external stress which are therefore called
affine displacements. The second form of displacements are deviations from these affine
trajectories due to microscopic non-uniformities in the solid, which are connected to



2 Introduction

collective rearrangements of particles eventually governing the pathways leading to
plasticity. We will describe the mechanism behind these non-affine motions later in this
chapter in more detail. A fundamental part in order to establish a theoretical framework
for describing the non-affinity in a quasi-static zero-temperature setting is the harmonic
approximation of the particle interactions in the disordered solid.

To the end of setting up the framework of non-affine particle trajectories and to work
out the consequences for linear viscoelastic response of the disordered solid, we will start
by reviewing the harmonic approximation of potentials with constitute the microscopic
interaction between particles.

1.1 The harmonic approximation

Consider a system of N interacting particles in d dimensions. For the time being we
make the assumption that the interactions between the individual particles are pair-wise
and central-force interactions. The configuration of the systems is given by the positions
R = {r1, . . . , rN} and momenta P = {p1, . . . , pN} of all particles. In order to write down
the equation of motion of this system and describe its dynamics we have to specify the
kinetic and potential energy of the system. This is done by writing down the Hamiltonian
of the N -particle system [4], i.e.

H(P , R) =
∑

i

p2
i

2mi

+ U(R). (1.1)

In the harmonic approximation we assume that the displacements of the particles
from their equilibrium positions are small so that an approximation of the interaction
energy up to second order in the particle displacements away from their equilibrium
positions provides a valid description of the system. We will denote the position of the
`th particles by r(`) = r0,` + δr`. Here, r0,` = r0(`) denotes the equilibrium position
of the `th particle and its displacement from equilibrium is δr(`) = δr`. The potential
energy of the system is given in terms of the pair-wise central-force interactions between
the particles

U(R) = 1
2
∑
〈i,j〉

V (rij) = 1
2
∑
〈i,j〉

V (|r0,i − r0,j + δri − δrj|) (1.2)

where 〈i, j〉 denotes the summation over interacting pairs of particles and rij = |ri − rj|.
In order to invoke the harmonic approximation we expand the interaction potential V

with respect to the displacement fields and neglect all terms higher than second order.
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The Taylor expansion of the interaction potential up to second order takes the form

V (r0 + δr) = v(r) + (δr · ∇) V (r0) + 1
2 (δr · ∇)2 V (r0) + . . . (1.3)

which we use to obtain the harmonic approximation of the potential energy U as [4, 57]

U(R) = U(r0) + 1
2
∑
〈i,j〉

V ′(r0,ij)n̂0,ij · δrij + 1
4
∑
〈i,j〉

δrijMijδrij + O(δr3) (1.4)

where the d × d block matrix Mij is given by

Mij =
[
V ′′(r0,ij) − V ′(r0,ij)

r0,ij

]
n̂T

ijn̂ij + V ′(r0,ij)
r0,ij

1

=
[
cij − tij

r0,ij

]
n̂T

ijn̂ij + tij

r0,ij

1. (1.5)

where we have introduced the bond tension tij the bond stiffness cij defined as

tij =∂V (rij)
∂rij

∣∣∣∣
rij=r0,ij

= V ′(r0,ij)

cij =∂2V (rij)
∂r2

ij

∣∣∣∣
rij=r0,ij

= V ′′(r0,ij). (1.6)

In the last step the unit bond vector n̂ij = r0,ij/r0,ij was introduced. Since the matrix
Mij is symmetric we can simplify the above expression and obtain

U(r) = U(r0) −
∑

i

fi · δri + 1
2
∑
〈i,j〉

δriHijδrj (1.7)

where H represents the dN × dN -dimensional Hessian or dynamical matrix given in
terms of M as [57]

Hij = δij

∑
k 6=i

Mik − Mij (1.8)

and the force fi acting on particle i is

fi =
∑
j 6=i

V ′(r0,ij)n̂ij (1.9)

which are zero in mechanical equilibrium. Effectively, the Hessian describes the local
curvatures of the potential energy landscape of the system.
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1.2 Normal modes and vibrational density of states

Having specified the Hamiltonian of the interacting particle system we can now write
down the resulting Newtonian equation of motion for the displacement in the harmonic
approximation

mi
∂2δrα

i

∂t2 = −
∑
j,β

Hαβ
ij δrβ

j (1.10)

With the expectation in mind that the displacements of the particles are oscillatory
motions with a given frequency ω, we transform the equation of motion to mass-dependent
displacement fields [12]

δrα
i = uα

i√
mi

eiωt, (1.11)

thereby introducing the dynamical matrix

Dαβ
ij =

Hαβ
ij√

mimj

. (1.12)

In the transformed coordinate system the equation of motion Eq. (1.10) reduces to the
eigenvalue problem [20]

ω2
puα

p,i =
∑
j,β

Dαβ
ij uβ

p,j (1.13)

where the eigenvalues λp = ω2
p denote the eigenvalue of the dynamical matrix. Con-

sequently, the normal modes up = (up,1, . . . , up,N) represent the vibrational modes a
system can sustain at a given eigenfrequency ωp. In crystalline systems without disorder,
these normal modes correspond to plane-wave vibrational excitations called phonons.

The distribution of eigenfrequencies of the dynamical matrix D, the vibrational
density of states (vDOS) is defined as

ρ(ω) = 1
dN

dN∑
p=1

δ(ω − ωp) (1.14)

In a crystalline system, the periodicity of the underlying lattice can be used to simplify
the dynamical matrix from its full dN × dN -dimensional form to its d × d periodic
representation, from which for some lattice geometries the vDOS ρ(ω) can be calculated
analytically [27]. However, in the presence of random disorder, for example a disordered



1.3 Equations of motion of non-affine lattice dynamics 5

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0 (a)

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5
(b)

Fig. 1.1 (a) The vibrational density of states of a 3D fcc crystal as the average coordination is
reduce as Z̄ = pZ0. (b) The reduced density of states ρ(ω)/ω2 for the same system showing
clearly the excess of vibrational modes with respect to the Debye sclaing ∼ ω2.

lattice, the periodicity of the lattice cannot be used. Therefore, in general, for a disordered
solid an analytical solution of the eigenvalue problem s not possible and we have to resort
to numerical methods to find the eigenfrequencies and eigenvectors of the disordered.

In Fig. 1.1 (a) we show the evolution of the vDOS of a three-dimensional fcc lattice
under the influence of random bond cutting. In the perfect lattice each particle interacts
with its Z0 = 12 nearest neighbours. As bonds are randomly removed from the lattice
with probability 1 − p, the average number of neighbours, or coordination number,
decreases to the value Z̄ = pZ0. One of the striking feature of the vibrational density
of states of a disordered system, termed the boson peak, is the excess of low-frequency
modes with respect to the Debye scaling ρD(ω) ∝ ω2, which is found to hold in the
perfect fcc lattice at p = 1. This phenomenon is best visualised by considering the
reduced density of states ρ(ω)/ω2 as plotted in Fig. 1.1 (b). Evidently, the intensity
of the peak of excess low-frequency modes strongly increases when decreasing p. The
peak position of the boson peak moves to lower values linearly in p as more and more
bonds are removed from the lattice. In addition, we can clearly see how the van Hove
singularities are smoothed out by the presence of disorder.

1.3 Equations of motion of non-affine lattice dynam-
ics

With a first look at the anomalous vibrational properties of disordered solids, we now
want to focus the attention to the theoretical framework which we will use to describe the
elastic properties of an amorphous or disordered system. We will see that the distribution
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�

Fig. 1.2 Pure shear deformation of a inversion-symmetric crystalline lattice with shear angle
γ.

of vibrational eigenfrequencies characterised by ρ(ω) plays a crucial role in understanding
the elasticity of disordered solids.

If a perfectly crystalline system at zero temperature is subjected to a small external
strain γ, such as shear or compression, the particles in the solid will undergo a homoge-
neous displacement following the external macroscopic strain. These displacements are
called affine displacements.

Starting from some reference configuration, denoted as r0 and applying pure shear of
angle γ, the coordinate transformation between the initial and final configuration can
be written as ri = F · r0,i. The matrix F represents the deformation gradient tensor for
pure shear and is defined as

F =


cos(γ/2) sin(γ/2) 0
sin(γ/2) cos(γ/2) 0

0 0 1

 . (1.15)

This situation in depicted in Fig. 1.2. Both the reference configuration r0 and the final
affine configuration r are in mechanical equilibrium. The forces on each particle before
and after the shear deformation are balanced out by virtue of the inversion symmetry
of the underlying centrosymmetric lattice. If the same transformation F is applied to
a disordered solid, where the particles do not align on an inversion-symmetric lattice,
we encounter a different situation. As depicted in Fig. 1.3, initially the particles occupy
random position are in mechanical equilibrium. This means that the forces acting on
the central particle sum to zero in the disordered equilibrium configuration. Applying
the pure shear transformation of the particle system displaces each particle to its affine
position. However, the system is not in equilibrium anymore. In this new configuration
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the forces on the central particle, for instance, do not cancel due to the lack of local particle
symmetry. In order to reach the mechanical equilibrium of the deformed configuration
these residual forces have to be relaxed. Consequently, the particles move away from
the affine position and the system relaxes to its final equilibrium configuration. These
equilibrium positions are the non-affine positions which in Fig. 1.3 are shown as dashed
circles. Clearly, due to the randomness of the disordered configuration, the relaxation of
the particles to the equilibrium positions cannot be described by the action of a linear
map like the deformation gradient tensor F, which is why they are called non-affine
displacements.

We can set up the non-affine quasi-static formalism by considering the action of F.
After the shear deformation of the reference configuration r0, the affine configuration is
given by ri = F(γ)r0,i. Since we want to incorporate the resulting non-affine correction,
we generalise this relation by making the reference configuration γ-dependent, i.e.

ri(γ) = F(γ)r̊i(γ) (1.16)

where the new variable r̊i tracks the non-affine displacements in the undeformed configu-
ration. This means that keeping r̊i(γ) fixed and changing F(γ) corresponds to the affine
part of the deformation, whereas keeping F(γ) constant and varying r̊i(γ) results in the
non-affine correction. The potential energy of the system is then a function of the shear
angle γ and the non-affine coordinates U(r(γ)) = U(r̊, γ). In order to set up an equation
of motion, we can implicitly define the trajectories of the non-affine displacements under
the condition of mechanical equilibrium by requiring that the force acting on the particle
fi is zero [57]. This means that we require for all particles that

fi = − ∂U

∂r̊

∣∣∣∣∣
γ

(r̊, γ) = 0 (1.17)

be fulfilled [61]. The derivative is taken at fixed γ. Differentiating this equation with
respect to the shear angle γ we arrive at the expression

∂2U

∂r̊i∂r̊j

· Dr̊j

Dγ
+ ∂2U

∂r̊i∂γ
= 0. (1.18)

where the summation over the index j is implied and the differential operator D denotes
differentiation under the condition of mechanical equilibrium reflecting the adiabatic
approximation. This equation is the formal representation of the secondary non-affine
relaxation mechanism explained above. The system is subjected to a infinitesimally
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small affine transformation dγ first, and then corrections Dr̊i are added to bring the
configuration to mechanical equilibrium where fi = 0 holds [62].

Since we want to obtain the linear response of the system to an infinitesimal strain
dγ, we evaluate the above relation in the limit γ → 0 [57]. We recognise that in this limit
the double derivative in the first term in Eq. (1.18) represents the Hessian matrix since

Hij = ∂2U

∂r̊i∂r̊j

∣∣∣∣∣
γ→0

= ∂2U

∂ri∂r j

∣∣∣∣∣
r→r0

(1.19)

since r̊(γ)|γ→0 = r0. The second term in Eq. (1.18) can be identified as the force which
the ith particle experiences as the consequence of an infinitesimal affine deformation
γ [57]. We thus introduce the affine force field Ξi by setting

Ξi = − ∂2U

∂r̊i∂γ

∣∣∣∣∣
γ→0

. (1.20)

With these definitions we can rewrite Eq. (1.18) as

H · Dr̊

Dγ

∣∣∣∣∣
γ→0

= Ξ (1.21)

which, after removing the zero-modes of the Hessian can be expressed as

Dr̊

Dγ

∣∣∣∣∣
γ→0

= H−1 · Ξ. (1.22)

The solutions of this equation define the tangents along which the non-affine displacements
will be directed [61]. This represents the non-affine linear response of the system to the
extra forces which appear by the infinitesimal affine transformation characterised by γ.
We can subsequently linearise the relation ri(γ) = F(γ) · r̊i(γ) in the linear response
regime, which yields [80]

ri(γ) =r̊i(0) + D
Dγ

(
F(γ)r̊i(γ)

)∣∣∣∣∣
γ→0

γ + O(γ2)

=r̊i(0) +
(

D
Dγ

F(γ)
)

r̊i(γ)
∣∣∣∣∣
γ→0

γ + F(γ)
(

D
Dγ

r̊i(γ)
)∣∣∣∣∣

γ→0
γ + O(γ2). (1.23)
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Fig. 1.3 Visualisation of the non-affine mechanism. Under a shear strain γ, the absence of
local inversion symmetry leads to the appearance of excess forces which lead to non-affine
displacements in addition to the affine deformation.

Using that F(0) = 1 and r̊i(0) = r0,i we have

ri(γ) =
1 + D

Dγ
F(γ)

∣∣∣∣∣
γ→0

γ

 r0,i +
(

D
Dγ

r̊i(γ)
)∣∣∣∣∣

γ→0
γ + O(γ2).

= rA + δrNA γ + O(γ2) (1.24)

where we identified the affine position after the application of the deformation gradient
tensor rA,i = F(γ)r0,i and the non-affine correction given by δrNA,i γ in the linear
response regime which displaces the particles to their equilibrium positions.

In order to evaluate the linear non-affine elastic response of the solid we have to
consider the derivative of the total potential energy with respect to the shear angle γ.
The thermodynamic tension is defined as the first derivative with respect to γ as [57]

t = 1
V

DU

Dγ

∣∣∣∣∣
γ→0

= 1
V

(
∂U

∂γ
+ ∂U

∂r̊
· Dr̊

Dγ

)∣∣∣∣∣
γ→0

(1.25)

= 1
V

∂U

∂γ

∣∣∣∣∣
γ→0

where the last equality holds since we are the differentiating under the constraint of
mechanical equilibrium ∂U

∂r̊
= 0. The elastic moduli are defined as the second derivative
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of the energy U with respect to the strain, where in particular the shear modulus is

G = 1
V

D2U

Dγ2

∣∣∣∣∣
γ→0

. (1.26)

Consequently, we evaluate the second derivative of U as [57]

D2U

Dγ2

∣∣∣∣∣
γ→0

= D
Dγ

∂U

∂γ

∣∣∣∣∣
γ→0

=
(

∂2U

∂γ2 + ∂2U

∂r̊∂γ
· Dr̊

Dγ

)∣∣∣∣∣
γ→0

. (1.27)

Using the definitions of the affine force field Ξ and the non-affnine displacement fields
given in Eqs. (1.20) and (1.22), we conclude that the shear modulus can be written as [57]

G = 1
V

 ∂2U

∂γ2

∣∣∣∣∣
γ→0

− Ξ · H−1 · Ξ

 . (1.28)

The first term in the above expression represents the variation of the thermodynamic
stress with γ when the particles in the system are constrained not to relax into the
non-affine equilibrium positions [62]. It therefore is the affine contribution to the shear
elasticity, abbreviated with GA, which corresponds to the result obtain by Born and
Huang [11]. The second contribution gives the non-affine correction GNA which arises due
to the additional relaxation processes arising due to the lack of local particle symmetry
in the system. Note that this contribution is always negative and therefore reduces the
elastic constants.

We will now specialise these non-affine expressions to he case of the pair potentials,
since the will appear frequently in the following chapters. To this end it is useful
to introduce the Green-Saint Venant strain tensor η which is defined in terms of the
deformation gradient tensor as [57]

η = 1
2
(
FT F − 1

)
. (1.29)

which for the present case of pure shear, with the corresponding deformation gradient
tensort F being defined in Eq. (1.15), takes the form

η = 1
2


0 sin(γ) 0

sin(γ) 0 0
0 0 0

 . (1.30)
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This representation of the strain tensor appears when describing change of the relative
position between particles when the transformation r = Fr̊ is applied since

r2 = r̊2 + 2 r̊T · η · r̊ (1.31)

where r2 = |r|2 and r̊2 = |r̊|2. Consequently, this definition of the strain tensor allows
us to write the interaction potential U(r, F) in terms of the reference coordinate and
η as U(r̊, η). This is useful since usually the elastic constants are computed in terms
of derivates of the potential energy with respect to the strain tensor η instead of
F [57]. If the interaction in the system are describe by a central-force pair potential
U(r) = 1

2
∑

〈i,j〉 V (rij) we can explicitly write the affine force field in the case of pure
shear as [57]

Ξi = −
∑

j

(cijrij − tij) nx
ijn

y
ijn̂ij (1.32)

with the bond stiffness cij and bond tension tij as defined in Eq. (1.6). Furthermore,
the unit bond vector is given by n̂ij = rij/rij, and nα

ij with α = x, y are the respective
cartesian components. Note that the summation in the above equation is restricted only
to particles j which are interacting with particle i through the pair-potential U(rij). The
affine shear modulus GA can be expressed along the same lines as

GA = 1
V

∑
i,j

rij (cijrij − tij)
(
nx

ijn
y
ij

)2
n̂ij (1.33)

which corresponds to the Born approximation of the elastic constants with central-force
pair interaction [11].

1.4 Contribution to elasticity from different length
scales

The result in Eq. (1.28) expresses to non-affine correction to the elastic moduli in terms
of the Hessian matrix. This form suggests to employ a normal mode analysis to in order
to achieve a characterisation of the non-affine displacements in terms of the eigenvalue
spectrum of the system [57]. This will allow us to track the contributions to the non-affine
elastic moduli coming from different frequency, or equivalently, length scales. Using the
Dirac notation, we denote the eigenvectors of the Hessian as |up〉 = |p〉 which obey the
eigenvalue problem H |p〉 = λp |p〉. Assuming that that all particles have the same mass,
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i.e. mi = m ∀ i, the eigenvalues are given by λp = mω2
p. We therefore expand the affine

force field with respect to the eigenbasis as

Ξ =
∑

p

|p〉〈p| Ξ〉 =
∑

p

Ξ̂p |p〉 (1.34)

with the expansion coefficients given by Ξ̂p = 〈p| Ξ〉. Employing the same expansion,
the non-affine displacement fields can be written as

δrNA = Dr̊

Dγ

∣∣∣∣∣
γ→0

= H−1|Ξ〉

=
∑

p

|p〉〈p| H−1|Ξ〉

=
∑

p

Ξ̂p

λp

|p〉 (1.35)

where in the last step we made use of H−1 |p〉 = λ−1
p |p〉 . Note that the sum over p is

subject to the condition that λp 6= 0. Subsequently, the non-affine contribution of the
elasticity GNA takes the form

GNA = 1
V

〈Ξ| H−1 |Ξ〉 = 1
V

∑
p

〈Ξ |p〉〈p| Ξ〉
λp

= 1
V

∑
p

Ξ̂pΞ̂p

λp

. (1.36)

With this equation at hand we can obtain insights into the contributions to GNA coming
from the different eigenvalues λp = mω2

p corresponding to the vibrational eigenmodes
of the Hessian H. An essential observation to make at this point is that clearly the
low-frequencies will provide the dominant contribution of the non-affine correction due
to the fact that the eigenfrequencies enter in the denominator of the sum.

ρ(ω) = 1
dN

dN∑
p=1

δ(ω − ωp) (1.37)

For the purpose of obtaining a continuum version of Eq. (1.36) in the thermodynamic
limit where the particle number N and the system size V tend to infinity keeping the
density N/V constant, it proves useful to rewrite GNA in terms of contributions coming
from small frequency neighbourhoods dω around the eigenfrequencies ωp. For this reason



1.5 Linear viscoelastic response 13

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.01

0.02

0.03

0.04

Fig. 1.4 The integrand of Eq. (1.39) for the bond-depleted fcc lattice, which represents the
contribution to the non-affine correction to elasticity from different frequencies, or equivalently
length scales.

we introduce the non-affine frequency correlator Γ(ω) defined as [57]

Γ(ω) =
〈〈

Ξ̂pΞ̂p

〉〉
ω

(1.38)

where the statistical average 〈〈. . .〉〉ω is taken within the frequency shells ωp ∈ [ω, ω + dω].
The affine force field Ξ itself directly depends on the randomness of the configuration of
particles. Consequently, in the thermodynamic limit we transform the summation over p

in Eq. 1.36 into an integral with respect to dω and write

G(ω) = GA −
∫ ∞

0

ρ(ω)Γ(ω)
mω2 dω. (1.39)

In conclusion, the contribution originating from different frequency shells dω to the
non-affine correction is described in term of the function ρ(ω)Γ(ω)/ω2. We show the
integrand of Eq. (1.39) for the three-dimensional bond-depleted crystal in Fig. 1.4. We
can clearly observe the growing influence of the low-frequency modes when the disorder
in the lattice is increased by removing bonds.

1.5 Linear viscoelastic response

So far we have considered the case of quasi-static deformations using Newtonian dynamics
to describe the linear response of the system to the deformation induced by F. By virtue
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of the quasi-static assumption, the particle could follow the deformation imposed by
the strain adiabatically, which means that the relaxation to the non-affine equilibrium
was assumed to be much faster than the externally applied strain rate. We now want
to consider the situation where the rate of the externally applied strain can vary and
be comparable to the timescale of the non-affine relaxation. In contrast to the previous
adiabatic case where the particle always remained at an energy minimum during the
deformation, this now is no longer the case. Consequently, in this non-adiabatic case the
externally applied force leads to an energy transfer, which means that we now have an
energy dissipation mechanism which dissipates the energy which is injected through the
external driving force [57]. We start the description of this physical situation from the
damped and driven Newtonian equation of motion for the time-dependent displacement
xi(t) = r̊i(t) − r̊i of the ith particle from its reference configuration which is given by [57]

m
d2xi

dt2 + ν
dxi

dt
+ Hijxj = Ξiη (1.40)

where the summation over the index j is implicit and where m and ν are the mass and the
friction coefficient, here assumed to be equal for each particle. This equation of motion
holds in the limit of infinitesimal strain, i.e. we assume ‖F − 1‖ � 1. In order to solve
the equation of motion we first decompose the displacements xi into the eigenvectors of
the Hessian H, which means that xi = ∑

p x̂pup,i, where the expansion coefficients are
x̂p = xT

i · ui,p.
Restricting the analysis to the case of an oscillatory shear strain of the form η(t) =

η̃ sin(ωt), we apply a Fourier transformation, x̃i(ω) =
√

2π
−1 ∫

xi(t) eiωt dt, to write the
damped equation of motion in frequency space as [57]

−mω2 ̂̃xp + iω ̂̃xp + mω2
p
̂̃xp = Ξ̂pη̃. (1.41)

After rearranging the terms, the solution in terms of the normal mode coefficients is

̂̃xp = − Ξ̂p η̃

mω2 − mω2
p − iων

(1.42)

For the purpose of deriving an expression for the viscoelastic response, we consider the
deviation the thermodynamic stress ∆tη in the configuration (r̊(t), η) from the reference
configuration (r̊, 0). Therefore, we continue with

∆tη = 1
V

(
∂U

∂η
(r̊(t), η) − ∂U

∂η
(r̊, 0).

)
(1.43)
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Since we treat the problem in the regime of small strain amplitudes, we expand the above
terms in r̊ and η which yields

∂U

∂η
(r̊(t), η) = ∂U

∂η
+ ∂2U

∂η∂η
η + ∂2U

∂η∂r̊
r̊(t) + O(η2) (1.44)

and

∂U

∂η
(r̊, 0) = ∂U

∂η
+ ∂2U

∂η∂r̊
r̊ + O(η2). (1.45)

Plugging these expressions back into Eq. (1.43) we obtain to first order in the strain η

∆tη = 1
V

(
∂2U

∂η∂η
η + ∂2U

∂η∂r̊
x(t)

)
+ O(η2). (1.46)

Fourier transforming ∆tη to frequency space we obtain and making use of the result
Eq. (1.43) we continue with

∆t̃η(ω) =GAη̃ + 1
V

∑
p

Ξ̂p
̂̃xp(ω)

=GAη̃ + 1
V

∑
p

Ξ̂p Ξ̂p

mω2 − mω2
p − iων

η̃

= G∗(ω)η(ω) (1.47)

with the complex modulus given by

G∗(ω) = GA + 1
V

∑
p

Ξ̂p Ξ̂p

mω2 − mω2
p − iων

. (1.48)

As for the static elastic response before, we can write the complex viscoelastic response
of the system in the thermodynamic limit N , V → ∞ as

G∗(ω) = GA +
∫ ∞

0

ρ(ωp)Γ(ωp)
mω2 − mω2

p − iων
dωp (1.49)

where ω is the driving frequency of the applied oscillatory shear strain η̃.





Chapter 2

Vibrational and mechanical
properties of defective fcc lattices

A fundamental physical understanding of the mechanical properties of disordered materials
at the level of their constituent building blocks has widespread applications, from
metallurgy to relatively new fields such as photonic materials [13, 106]. To achieve
this goal, it is important to identify suitable model systems where the atomic-scale or
particle-scale physics can be described by means of theoretical frameworks to provide
sufficiently general principles and insights. From this point of view, fcc crystals with point
defects represent an ideal model system: they are amenable to theoretical approaches
and at the same time are found in important technological applications. For example,
photonic crystals made of colloidal particles are intensely studied for the opportunity
they offer to control and manipulate light flow through a material, where the photonic
band gap can be tuned by the particle size and lattice spacing [45, 74]. Stable colloidal
crystal phases are most of the time fcc lattices with point defects, mostly vacancies, and
are promising materials also for optical computing.

In fact, in a recent publication Zargar et al.studied disordered colloidal crystals
in terms of their anomalous vibrational properties [104], observing excess vibrational
modes in the form of a boson peak at low frequencies. Using confocal microscopy it is
possible to track the colloidal particles and subsequently extract the vibrational density
of states from the correlation matrix of the displacements of the individual particles. In
this work, polycrystalline samples of colloidal packings of varying degrees of disorder
were created, which made it possible to study the properties of the crystal in a well-
defined dependence on the disorder concentration. Interestingly, the Voronoi tessellations
obtained in this work for the crystalline samples of different degrees of disorder resemble
regular lattices with vacancy defects. An example of such a structure is depicted below in
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Fig. 2.7 for low and high defect concentration. As was recently discussed in Ref. [67], by
relating the vibrational properties to the linear elastic response of crystals with randomly
removed bonds simple relations between the elastic properties and the average number
of neighbours in the lattice can be obtained. These results will be discussed in more
detail below. Bearing in mind the structure of the different polycrystalline samples of
the colloidal crystals in Ref. [104], it is therefore our goal to extend the prediction of
elastic properties by means of the non-affine framework to crystals with vacancy defects.

In this chapter we apply the quasi-static athermal framework of non-affine lattice
dynamics to connect the mechanical and vibrational properties with the microstructure
and its symmetries resorting to the key concept of local inversion symmetry. Our focus
will be on two types of disordered harmonic bead-spring networks:

1. fcc lattices with randomly removed springs – which we call bond-depleted, and

2. fcc lattices with randomly removed particles, i.e. with vacancies.

The first case of the fcc crystal with randomly removed bonds was discussed recently in
Ref. [67]. In this work numerical computations were employed to compare the non-affine
lattice dynamics of the bond-depleted fcc crystal and a random network glass, both in the
harmonic approximation. The two model systems have a very different bond-orientational
order due to the fact that one is a crystal with cut bonds and the other a structurally
disordered glass. Nevertheless, both exhibit the same scaling of the boson peak frequency
and shear modulus with the average coordination number of the underlying network.
This similarity has been found to be reflected in a strong correlation with the degree of
local inversion symmetry, which directly enters the non-affine shear modulus discussed
in Chapter 1 through the square of the affine force field, i.e. GNA ∝ |Ξ|2. This also
suggests that in analogy to the non-affinity, in these systems the scaling of the boson peak
frequency ωBP with the average coordination number is dictated by the local inversion
symmetry breaking (ISB) [67].

Here we demonstrate that both the harmonic fcc crystal with randomly cut bonds and
randomly removed beads feature the same scaling of the shear modulus with respect to
the inversion-symmetry breaking parameter, which shows that local inversion-symmetry
breaking around defects is the universal root source of the non-affine softening of the
shear modulus. This result allows us to derive analytical relations for the non-affine
(zero-frequency) shear modulus as a function of vacancy concentration in excellent
agreement with numerical simulations. Nevertheless, due to the different microstructural
disorder, the spatial fluctuations of the local ISB parameter are different in the vacancy
and bond-depleted case. The vacancy fcc exhibits comparatively a more heterogenous
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microstructural disorder (due to the broader distribution of coordination number Z),
which is reflected in a different scaling relation between boson peak frequency in the DOS
and the average Z̄. These differences are less important at low vacancy concentrations,
where the vibrational density of states of the vacancy fcc can be well described theoretically
by the coherent-potential approximation, presented here for the bond-depleted fcc lattice
in three dimensions.

Disordered crystals with vacancies are directly relevant to applications, as discussed
above, but at the same time less amenable to theoretical analysis. For this reason we
would like to determine under which conditions and in what range of parameters the two
systems can be described by similar theoretical approaches. In the present discussion
of the problem we assume that particles on the lattice are interacting by means of a
nearest-neighbour harmonic pair potential

U(r) = 1
2
∑
〈i,j〉

V (rij) = 1
2
∑
〈i,j〉

[
(rij − r0,ij) · n̂ij

]2
(2.1)

where 〈i, j〉 denotes the restriction of the sum to nearest-neighbour pairs and r0,ij = |r0,ij|
is the rest length of the harmonic bond. Furthermore, since the non-affine formalism is
based on the assumption of zero temperature, we neglect thermal fluctuations and focus
on the limit of athermal solids which allows us to more clearly disentangle the relationship
between local lattice symmetry and emerging elastic and vibrational properties. Further-
more, the low-temperature limit, where the control parameter is the particle packing
fraction (or its lattice analogue: the coordination number), instead of temperature, is
directly relevant to the case of colloidal crystals.

In the following, we start by recalling the core concepts of the non-affine lattice
dynamics framework. We then apply it to compare the two types of disordered fcc
lattices with regard to their shear elasticity as a function of defect concentration. Then
we consider the vibrational density of states for the two systems, both by numerically
diagonalising the underlying Hessian of the configurations and by means of an effective
medium approach based on the coherent potential approximation.

2.1 Non-affine lattice dynamics of defective fcc crys-
tals

The starting point of non-affine lattice dynamics is the realisation that in a disordered
solid the standard affine approximation of the Born-Huang lattice dynamics [11] breaks



20 Vibrational and mechanical properties of defective fcc lattices

down. In other words, applying a shear strain γ to a disordered solid leads, in addition
to the affine displacement of the particles, which is directly proportional to the applied
strain, to a non-affine contribution to the displacement fields.

In a perfectly centrosymmetric lattice, the particle en route towards this affine position
receives forces from its nearest-neighbors which cancel each other out by symmetry, leaving
the particle at equilibrium in the affine position. In a disordered lattice, however, due to
the local breaking of inversion symmetry on the given particle, these forces do not cancel,
and their vector sum yields a net force that brings the particle to a final (non-affine)
position which differs from rA,i.

These forces, which bring the particle away from the affine position into the final non-
affine position, can be written out within the harmonic approximation of the interaction
potential V , as Ξi = ∂fi

∂γ
|γ→0. In the absence of internal stresses, which means all bonds

are relaxed in the harmonic energy minimum, hence tij = 0, the affine force field defined
in Eq. (1.32) can be expressed as

Ξi = −κr0
∑

j

nx
ijn

y
ijn̂ij, (2.2)

since the stiffness cij = 1 in the harmonic approximation. The affine part of the above
shear modulus is the standard Born-Huang formula, i.e.

GA = 1
V

∂2U

∂γ2

∣∣∣∣∣
γ→0

= κr2
0

2V

∑
ij

(
nx

ijn
y
ij

)2
. (2.3)

Since the non-affine contribution to the shear modulus is proportional to the vector
Ξi, it vanishes for a perfect centrosymmetric crystal: the sum of triplets ∑j n̂ijn

x
ijn

y
ij is

identically zero if the nearest-neighbours are arranged symmetrically around the atom i,
as one can easily verify. In other words, this is reflects the fact that the affine force field
Ξi is non-zero if and only if the local inversion symmetry is broken.

2.1.1 Static shear modulus of the ideal and bond-depleted fcc
crystals

It will be instructive to use the above formalism and derive the shear modulus for a
perfect three-dimensional fcc crystal. Realizing that under the application of a pure x-y
shear strain γ only the four bonds lying in the x-y-plane contribute to the shear modulus
GA, we simply have to use Eq. (2.3) and evaluate the sum appearing there. The four
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unit bond vectors in the x-y-plane which contribute to this sum are given by

n̂1 = 1√
2


1
1
0

 , n̂2 = 1√
2


−1
1
0

 , n̂3 = 1√
2


1

−1
0

 , n̂4 = 1√
2


−1
−1
0

 . (2.4)

Consequently, by virtue of Eq. (2.3) the shear modulus of the perfect fcc crystal is given
by

Gfcc = 1
2ρr2

0κ = κ

a
(2.5)

using ρr2
0 = 2/a, where a is the lattice constant of the fcc crystal, ρ = N/V and r0 the

equilibrium bond length. We can extend this result to the case of a depleted fcc crystal,
where bonds are randomly cut by evaluating the number of bonds that contribute on
average to the x-y-plane as

Gdepl
A (Z̄) =

4∑
i=0

i
κ

4a

(
4
i

)(
8

Z̄−i

)
(

12
Z̄

) = κ

a

Z̄

12 , (2.6)

where Z̄ ≡ 〈Z〉 = 1
N

∑N
i=1 ZiP (Zi) is the disorder-averaged connectivity. P (Zi) denotes

the distribution of the local coordination numbers Zi. In the above equation, the
expression

(
4
i

)(
8

Z̄−i

)
/
(

12
Z̄

)
represents the probability of having i bonds in the x-y-plane

which depends on the total number of nearest-neighbour bonds Z̄.
The shear modulus of a depleted fcc crystal vanishes at Z̄ = 6, the isostatic point

of marginal stability, which can easily can be verified by Maxwell counting [23]. Using
this fact, we have that G(Z̄ = 6) = GA(Z̄ = 6) − GNA(Z̄ = 6) = 0. The non-affine
contribution exactly cancels the affine modulus at Z̄ = 6, which is a common feature of
random central-force lattices [101]. In addition to that, GNA should vanish for Z̄ = 12,
i.e. for the case of an ideal fcc crystal the non-affine softening is absent. Assuming the
linear behaviour of the non-affine contribution [67], which is justified a posteriori through
numerics, GNA can be written as the linear interpolation between the above two cases at
Z̄ = 6 and Z̄ = 12, i.e.

Gdepl
NA (Z̄) = κ

a

12 − Z̄

12 . (2.7)



22 Vibrational and mechanical properties of defective fcc lattices

Subtracting the non-affine contribution from the affine shear modulus we arrive at a
simple expression for the shear modulus of the bond-depleted fcc crystal

Gdepl(Z̄) = Gdepl
A (Z̄) − Gdepl

NA (Z̄) (2.8)

= κ

a

Z̄ − 6
6 . (2.9)

These results for the shear modulus have been obtained in Ref. [67] and are plotted in
Fig. 2.1.

2.2 From the bond-depleted to the vacancy fcc

When considering bond-depleted systems it is natural to use the bond-occupation prob-
ability p as a control parameter. Therefore we set p = Z̄/Z0, where Z0 = 12 is the
number of nearest-neighbour bonds in the perfect fcc crystal. We now want to establish
a connection between the physical properties of the bond-depleted case and a fcc crystal
with vacancies where a certain fraction of particles is removed via the same random
mechanism, thereby introducing defects. By randomly removing N ′ particles from the
N lattice sites, we are left with N − N ′ particles. In this sense, we want to describe
the elastic and vibrational properties of a fcc crystal with vacancies as a function of the
vacancy concentration c = N ′/N with a new particle density ρ′ = (N − N ′)/V .

As we will see, it is possible to obtain the average connectivity Z̄ present in a defected
3D fcc crystal of a given vacancy concentration c by means of a combinatorial argument.
This is done by computing the average connectivity of one lattice site in the vacancy fcc
via

Z̄ =
12∑

i=0
i

(
12
i

)(
N−12

N−N ′−i

)
(

N
N−N ′

) = 12
(

1 − N ′

N

)
= 12(1 − c). (2.10)

In terms of the bond occupancy probability p = Z̄/12 this results in the simple
relation p = 1 − c. Using an analogous combinatorial argument we can explicitly write
down the fluctuation of the Z-distribution for the vacancy fcc as

σ2
Z = 〈Z2〉 − 〈Z〉2 = 12

(
1 − 12

N

) (
1 − N ′

N

)
N ′

N

1 − 1
N

N→∞−−−→ 12c(1 − c) (2.11)
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Fig. 2.1 Comparing the shear modulus of the 3D fcc crystal in the case of vacancy defects and
bond depletion. The dashed lines are the shear moduli according to Eq. 2.8 in the left panel
and Eq. 2.14 in the right panel. The left panel represents the findings from Ref. [67].

where in the last step N ′/N = c is kept constant. Consequently, this leads us to ask
whether this simple analogy between the depleted and defective fcc carries over to the
elasticity and the vibrational properties.

Substituting the relation p = 1 − c = Z̄/12 and the resulting new number density
ρ′ = N−N ′

V
= N

V
(1 − c) = ρ(1 − c) into to the expression for the bond-depleted fcc shear

modulus Gdepl
A , we obtain the affine part of the shear modulus with vacancies

Gvac
A = κ

2ρ′r2
0

Z̄

12 = κ

a
(1 − c)2. (2.12)

In the same way, we can transform the non-affine contribution of the bond-depleted fcc
shear modulus Gdepl

NA and obtain

Gvac
NA = κ

a
c(1 − c), (2.13)

such that the full vacancy shear modulus becomes

Gvac =Gvac
A − Gvac

NA = κ

a
(1 − c)(1 − 2c). (2.14)

In terms of the average coordination number Z̄ this result reads

Gvac = κ

a

Z̄

12
Z̄ − 6

6 = Z̄

12Gdepl. (2.15)

In order to check the validity of formula (2.14) derived for the vacancy fcc shear
modulus above, we now compare this prediction to the result of a numerical solution of the
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non-affine lattice dynamics equations of the vacancy fcc crystal. The numerical solution
of lattice dynamical equation for the shear modulus is based on initiating a perfect fcc
crystal of a given density ρ = N/V consisting of 4000 particles and interacting via a
harmonic potential subject to periodic boundary conditions. Then bonds or particles
are removed at random from the system to reach the desired bond-occupation p or,
alternatively, vacancy concentration c, respectively. This is done by generating a perfect
fcc lattice and consecutively connecting all nearest neighbours with springs. In the case
of the depleted fcc lattice, bonds are then deleted uniformly at random from the list
of all nearest neighbour bonds thereby invoking a disorder in the local coordination
number [67]. In the case of the vacancy fcc particles are selected uniformly at random
and are then removed together with all connected nearest neighbour springs. The
resulting configuration is then used to solve the equations of motion of non-affine lattice
dynamics [57] from which the shear modulus can be extracted.

In contrast to the case of a bond-depleted fcc crystal, where we can generate con-
figurations with different distributions peaked around the average connectivity Z̄, we
have no such control over the Z-distribution in the defective crystal with vacancies. In
particular, we generated a bond-depleted fcc crystal with a very narrow Z-distribution.
In this narrow case the variance of the distribution of the average connectivity P (Z) is
0.07, 0.23, 0.24, 0.24, 0.16 for Z̄ =6, 7.2, 8.4, 9.6, 10.8, respectively.

The vacancy fcc crystal has a much broader Z-distribution. Its variance, which is
analytically given by Eq. (2.11), is 2.95, 2.98, 2.54, 1.91, 1.07 for Z̄ =6, 7.2, 8.4, 9.6, 10.8,
see also Fig. 2.3. The trend of the distribution P (Z) for the vacancy fcc towards smaller
variances at smaller vacancy concentrations is due to the saturation of the distribution at
Z = 12, i.e. particles cannot have more than 12 nearest neighbours. This also means that
P (Z) is not symmetric around Z̄ for low vacancy concentrations. The numerical solution
for the affine and non-affine shear modulus of the vacancy fcc shows very good agreement
with numerical simulations over a broad range of the average coordination number Z̄, as
depicted in Fig. 2.1, where we plotted the affine and non-affine contributions separately.

2.3 Vibrational properties in the presence of vacan-
cies

In this section we turn to the vibrational properties of the vacancy fcc crystal in order
to compare it to the well-studied case of the bond-depleted fcc. We will see that the
low-frequency properties of the vibrational density of states (vDOS) are closely related
cases when the vacancy concentration is low. Both the vDOS of the vacancy and the
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Fig. 2.2 Comparison of the DOS of the depleted fcc with narrow Z-distribution and the
vacancy fcc to the DOS obtained from the solution of the EMT equations in the coherent
potential approximation.

bond-depleted fcc were obtained from a direct numerical diagonalisation of the underlying
Hessian matrix H.

In addition to that we computed the DOS of the bond-depleted fcc in the coherent
potential approximation (CPA) [32, 40, 22], which serves as a self-consistent effective-
medium theory (EMT) description for the fcc with randomly cut bonds, characterised by
the bond-occupation probability p = Z̄/12.

The CPA is based on the idea to describe the inhomogeneous, disordered lattice with
an effective lattice which is homogenous but with springs that may have complex-valued
and frequency-dependent springs constants, which account for scattering and damping of
vibrational excitations on the impurites of the lattice. The defining property of the CPA
is, in order to self-consistently compute the properties of the effective medium, to require
that the scattering matrix locally averages to zero [12]. More details on this and a formal
derivation can be found in the Appendix A. There is very good agreement between the
vacancy fcc, depleted fcc and the EMT solution across the whole frequency range for a
low vacancy concentration. This is illustrated in Fig. 2.2 for the high bond-occupation
probability p = 0.95, or alternatively the low vacancy concentration c = 0.05. Increasing
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Fig. 2.3 The fluctuations of the Z-distribution for depleted and vacancy fcc vs Z̄. This is in
accordance with the prediction Eq. (2.11) shown as the dashed line.

c, or decreasing p, the agreement becomes less reliable. In fact, the DOS obtained by
means of the coherent potential approximation does not precisely capture the form of the
DOS of the bond-depleted fcc, despite the fact that the bond-depletion was carried out
such that the Z-distribution is very narrow to resemble the effective-medium solution,
which does not account for fluctuations in the connectivity. Partly this happens due
to the fact that CPA does not properly account for scattering from pairs of defects,
which means that effects due to correlations between scattering centres are not taken
into account. The effective-medium description only is accurate when the separation
between defects is large enough such that the amplitude of a scattered wave is negligible
at the neighbouring defect [18], an assumption which gradually fails with increasing the
overall number of defects in the lattice. In order to understand the precise physical
nature of the deviations in different regions of the spectrum additional analysis would be
required. However, since the non-affine correction to the elastic moduli is determined by
the low-frequency part of the spectrum, where agreement between direct diagonalisation
and CPA is good, this is left for future work.

2.3.1 Scaling of the boson peak frequency

A universal feature of the vibrational density of states D(ω) of disordered solids and
glasses is the excess of low-frequency modes with respect to the Debye scaling D(ω) ∼ ω2,
which manifests itself as a peak in the vibrational density of states, widely referred to as
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Fig. 2.4 Scaling of the boson peak frequency ωBP with Z̄ for the three model fcc crystals with
different disorder.The value of ωBP for the largest coordination number Z̄ = 10.8

is not included in the plot since the boson peak is not identifiable in the DOS.

the boson peak [8]. Since the appearance of the boson peak is a feature inherently rooted
in the disorder in a physical system, the position of the boson peak in the vibrational
spectrum (the boson peak frequency ωBP) in disordered fcc crystals depends on the
average coordination number Z̄, which sets the magnitude of disorder. In particular, in
the case of the bond-depleted fcc (and the random spring network) it is known to have
the scaling ωBP = (Z̄−6)

6 [67].
This numerically computed scaling of ωBP for the bond-depleted fcc is plotted in

Fig. 2.4. Interestingly, the same scaling does not hold true for the fcc crystal with
vacancies. In fact, the boson peak frequency ωBP of the vacancy fcc features a parabolic
scaling with the average connectivity Z̄, which is fitted well by ωBP = Z̄−6

6
Z̄
12 . It appears

that for both the bond-depleted and vacancy fcc, the boson peak frequency exhibits
the same scaling with Z̄ as the respective shear modulus G with Z̄, see Tab. 2.1. This,
however, is not generally the case. To see this we generated a depleted fcc with a
Z-distribution which is not δ-like, but reflects the distribution P (Z) in the vacancy
fcc, i.e. a higher degree of connectivity fluctuations is introduced. Specifically, as in
the vacancy case the distribution of the local coordination number is prescribed to be
Binomial, i.e.

P (Zi) =
(

12
Zi

)
pZi (1 − p)12−Zi (2.16)
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which leads to an average coordination number

Z̄ =
12∑

i=1
i

(
12
i

)
pi(1 − p)12−i = 12p. (2.17)

The shear modulus scaling in this wide-depleted case is still the same as in the δ-like
depleted case, i.e. Gwide,depl ∼ Z̄−6

6 . However, the scaling of the boson peak frequency
ωBP now is different, as can be seen in Fig. 2.4. This rules out the possibility that G and
ωBP generally scale in the same way in our defective fcc systems.

Taking all this into account, the transition between the scalings of ωdepl
BP and ωvac

BP

is not given by the density transformation ρ′ = Z̄
12ρ. In fact, we assert that the boson

peak is not primarily controlled by the average coordination number Z̄, as is the case
for the shear modulus. Fluctuations of the coordination number distribution will be of
importance here, i.e. the degree of heterogeneity of the underlying microstructure will
influence the scaling of the boson peak with Z̄. Directly comparing the two different
depleted fcc models, we see that increasing the connectivity fluctuations pushes the boson
peak frequency to lower values. We will shed further light on this in the next section.

2.4 Parametrising the asymmetry of local particle
configurations

We observed that for both the bond-depleted and vacancy fcc crystal the scalings of the
shear modulus with the average connectivity Z̄ coincide, whereas the same cannot be
concluded for the scaling of ωBP for the two types of systems. This effect must in some
way be connected to the microstructural differences which arise through the different
implementations of disorder in the bond-depletion and vacancy situation. With the aim
of bringing a physical justification to the two different scalings of the shear modulus
and the boson peak frequency we need to quantitatively describe the degree of local
microstructural disorder.

The starting point is defining a parameter which serves as a measure for the degree of
local inversion symmetry, by which we mean the condition that each nearest neighbor of a
reference particle has a mirror particle diametrically opposed. The squared amplitude of
the affine force vector |Ξi|2 precisely serves this purpose, measuring the local deviations
from the case of perfect inversion symmetry. It is identically zero in a centrosymmetric
crystal, where in the affine configuration, the local structure of nearest neighbors around
a particle is such that the positions of two opposing neighbors are symmetric with respect
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to a reflection at the central particle. In this case the square of the affine force vector
|Ξ|2 is exactly zero, as mentioned above. For the other limiting case where the system
completely lacks local inversion symmetry, we chose a reference configuration to normalise
the ISB parameter with the corresponding squared affine force field. For this reference
configuration we require that there be no correlations between the orientations of the
bonds [67]. In this way we obtain a measure for the local inversion symmetry which
varies between zero and one.

The ISB parameter derived from |Ξ|2 should be independent of the direction of the
applied shear stress, which means it has to be summed over all possible coordinate pairs
as

|Ξ|2 :=
∑

α,β∈[x,y,z]
|Ξαβ|2. (2.18)

Following the exposition in Ref. [67], we define the parameter for measuring the local
inversion symmetry breaking as

FIS =1 −
∑

α,β |Ξαβ|2∑
α,β |Ξαβ|2ISB

= − 1
NZ̄

N∑
i=1

∑
j,k n. n. i

cos3 αjk (2.19)

where Z̄ is the coordination number, α and β ∈ [x, y, z], and αjk denotes the angle
between the i-j and i-k bonds with the corresponding summation going over nearest
neighbours only. The quantity |Ξαβ|2ISB represents the limiting case of a system with
maximally asymmetric and uncorrelated bond orientations which was shown to be equal
to κR2

0
∑

ij(nij,αnij,β)2 [67]. A more detailed derivation of the above expression can be
found in Appendix B. We now proceed to evaluate the degree of local inversion symmetry
breaking in the two fcc crystals with bond-depletion and vacancy induced disorder.

2.4.1 Inversion symmetry breaking in the depleted fcc

As it was demonstrated in earlier work [67], it is possible to derive a analytical expression
for the ISB parameter in the case of the bond-depleted fcc, with the result

F depl
IS = 1 −

∑
α,β |Ξαβ|

R2
0κ2NZ̄

= 1 − 12 − Z̄

11 = Z̄ − 1
11 . (2.20)
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Fig. 2.5 Comparison between the average ISB parameter for the vacancy and depleted fcc

This perfectly aligns with the numerical evaluation of F depl
IS , as can be seen from Fig. 2.5.

From there we can also observe that the numerical computation of the inversion symmetry
breaking parameter F vac

IS for the vacancy fcc yields virtually the same linear behaviour as
in the depleted case. From a physical point of view, we can say that the average ISB
parameter does not distinguish between vacancy and depleted fcc. This is because the
ISB is defined in terms of the angles between nearest-neighbour particles in a unit cell.
Hence, the average ISB being equal in the vacancy and depleted case means that the
distribution of angles between next neighbours is the same on average. This is reasonable
because particles or bonds are removed uniformly at random in both cases.

Naturally, this leads us to conjecture that the functional form in both cases is the
same, i.e. F depl

IS = F vac
IS = 1

11(Z̄ − 1). We have, however, not yet been able to verify this
result analytically for the vacancy case. The physical picture behind this observation is
as follows. The two different approaches of inducing disorder into the fcc crystal, i.e. by
removing bonds or particles, produce a disordered microstructure in the crystal which
on average exhibits the same degree of local inversion symmetry breaking. In fact, we
can use this argument to justify why the shear moduli of the depleted and vacancy case
differ only by the density correction due to the missing particles in the defected case.

When computing the elastic constants, only the average degree of disorder of the
microstructure or, put differently, only the averaged degree of inversion symmetry breaking
controls the shear modulus. Just as the ISB parameter, the non-affine contribution to



2.4 Parametrising the asymmetry of local particle configurations 31

the shear modulus is proportional to the averaged squared amplitude of the affine force
field Ξ, i.e. GNA ∝ 〈|Ξi|2〉 [57, 67].

More specifically, for the computation of the zero-frequency shear modulus in the
thermodynamic limit one needs to solve the integral [57]

G(ω = 0) = GA − 3N

V

∫ ∞

0
dω′ ρ(ω′)Γ(ω′)

mω′2 (2.21)

where ρ(ω′) is the density of states and Γ(ω′) the correlator of the affine force fields
between frequency shells. This correlator is defined as

Γ(ω) = 〈〈Ξ · u2
p〉〉ω (2.22)

where up is the eigenvector of the Hessian H, which belongs to the eigenfrequency ωp.
Since the density of states appears together with the non-affine correlator under the
integral, similar features in the density of states are not sufficient to guarantee the
same behaviour in terms of the elastic moduli. In this sense, the shear modulus is a
coarse-grained, macroscopic physical quantity.

The physical mechanism responsible for the loss of mechanical stability, which funda-
mentally is based on the concept of local inversion symmetry is the same for both the
depleted and vacancy fcc. We have seen above that the density enters as a prefactor
into the formula of the shear modulus. By the above argument, the quantities inside the
parentheses of Eq. (1.28), the full expression of the non-affine shear modulus as derived
in Chapter 1, are the same for the bond-depleted and vacancy case, which leaves the
corrected density as the only source of the different scaling of the shear modulus of the
vacancy fcc.

2.4.2 Correlation of the boson peak with ISB fluctuations

As we have seen, the positions of the boson peak of the depleted and vacancy fcc
generally show different correlations with the average connectivity Z̄. But unlike in the
case of the shear modulus scaling, the boson peak position cannot only depend on the
density correction due to vacancies. This also indicates that the behaviour of ωBP is
not exclusively dictated by the average degree of inversion symmetry breaking. The
shear modulus in contrast, being a macroscopic averaged quantity, is not sensitive to the
fluctuations of the distributions P (Z) and P (FIS) for the disordered fcc crystals.

To better understand the origin of the boson peak scaling we need to take these
fluctuations into account. We numerically computed the distributions of the connectivity
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and ISB parameter. The resulting widths of these distributions are plotted in Fig. 2.3
and Fig. 2.6. Naturally, the fluctuations of Z, i.e. the structural heterogeneity of the
disordered fcc crystal, is directly linked to the fluctuations of FIS. The δ-like distribution
of the coordination number in the depleted fcc is linked to a microstructure which is less
heterogenous when compared to the vacancy fcc.

Reducing the average connectivity towards the mechanical instability at Zc, the
fluctuations of the ISB monotonically increase. But for any given value of Z̄, the
fluctuations of the ISB are larger in the vacancy fcc. This behaviour is reflected in the
fact that P (FIS) is a broader distribution in the vacancy case. This relative broadness
goes hand in hand with a more asymmetric distribution: the vacancy P (FIS) has an
excess at low values of the ISB parameter with respect to the depleted crystal case.
Physically speaking, this means the vacancy fcc has an excess of sites with low inversion
symmetry compared to the δ-like depleted fcc. So the higher fluctuations of FIS in the
vacancy fcc go along with a higher degree of asymmetry of P (FIS). As a consequence, the
vacancy fcc develops highly undercoordinated sites much earlier than the bond-depleted
fcc, when decreasing Z̄. We can conclude that for the defective fcc crystals studied here
that in the above sense structural heterogeneity modifies the boson peak via increased
ISB fluctuations, such that ωBP is pushed to lower frequencies. We have collected the
scalings of the shear modulus and the ISB with Z̄ in Tab. 1 for both the depleted and
vacancy fcc.

In recent work [39, 38] a similar connection has been observed in a system where non-
affine displacements are induced via thermal fluctuations instead of structural disorder,
which complements our findings. The analytical and numerical results [37] show that if
the non-affine displacements are enhanced via an external field there is an accumulation
of low-frequency modes in the density of states, also linking non-affine fluctuations to
the boson peak.

2.5 Application to colloidal crystals

Using the experimental input from Zargar et al. [104] we can obtain a numerical estimation
for the absolute value of the shear modulus of a defective colloidal fcc crystals with
vacancies. Two examples of configurations with a low (c = 0.0167) and high (c = 0.169)
vacancy concentration are shown in Fig. 2.7. In these systems the defect concentration
of a sample is determined using confocal microscopy.

To fix a numerical value of the shear modulus Gvac(c) we also need the values of the
lattice constant a of the colloidal crystal and its spring constant. In the experimental setup
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Fig. 2.6 Plot of the Z̄-dependence of the variance of the distribution P (FIS).

of Zargar et al., a is given by 3.019 µm. The spring constant has to be estimated from the
confocal microscopy data by determining the potential of mean force from the measured
radial distribution function of the colloidal system in the liquid phase. The resulting main
minimum of the potential of mean force is subsequently fitted with a harmonic potential,
which in the present case fixes the spring constant to κ = 9.24 · 10−7N/m. Together with
Eq. (2.14), we thus can estimate the vacancy shear modulus to be Gvac(c = 0) = 0.306 Pa,
Gvac(c = 0.0167) = 0.291 Pa and Gvac(c = 0.169) = 0.168 Pa. Thus, Eq. (2.14) predicts
that the shear modulus of the crystal with vacancies should decrease by 50% when about
17% of the available lattice site are vacant. These estimates are qualitatively in agreement
with the range of values measured experimentally for the shear modulus of colloidal
suspensions at different volume fractions by Zargar et al. [103]. However, to the best of
our knowledge there does not exist experimental data which systematically illustrates the
relation between disorder concentration and resulting elastic properties for these colloidal
crystals, so a direct comparison with the theoretically predicted values is not possible
at this point in time. This is partly due to the fact that in oscillatory shear rheology
experiments it is difficult to accurately control the defect concentration in the samples
since the oscillatory perturbations can lead to the annealing of defects. This makes it
necessary to use less intrusive approaches like measuring the propagation of shear waves
in the sample or resorting to optical tweezers [personal correspondence with Prof. Joris
Sprakel].
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Fig. 2.7 Comparison of 2D slices of the vacancy fcc colloidal crystal prepared in Ref. [104]
for low (c = 0.0167) and high (c = 0.169) vacancy concentration both at a volume fraction
φ = 0.56.

2.6 Conclusion

Using the non-affine lattice dynamical expressions and combinatorial bond counting,
we found that the expressions for the shear moduli of bond-depleted and vacancy fcc
crystals share an equivalent formal structure. They are connected via the transformation
p = 1 − c and a density rescaling proportional to 1 − c, (where p is the fraction of
depleted bonds and c the concentration of vacancies). This behaviour can be attributed
to the fact that the average or global degree of inversion symmetry breaking controls the
shear modulus of the disordered fcc crystal, and this inversion-symmetry breaking (ISB)
parameter exhibits the exact same behaviour in the two systems under investigation (i.e.
bond-depleted and vacancy lattice, respectively).

When describing the elastic properties of disordered solids, the equations of non-affine
lattice dynamics reflect the fact that besides the standard Born-Huang affine contribution
there is an additional non-affine contribution which leads to an effective elastic softening.
This softening mechanism is closely related to the affine force field Ξi which represents
the additional forces acting on a particle i due to the disorder-induced imbalance of
forces, an effect rooted in the absence of local inversion symmetry in a disordered lattice.

In order to compute the non-affine correction to the shear modulus we have to average
the affine force fields with respect to the disordered configurations of the crystal. So the
shear modulus cannot depend on the local properties of the local degree of inversion
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Fig. 2.8 The inversion symmetry parameter FIS computed from the two 2D low and high
vacancy concentration configurations shown in Fig. 2.7

symmetry breaking, because they are washed out by self-averaging in the process of
taking the thermodynamic limit.

Furthermore, comparing the vibrational properties of the two disordered fcc crystals,
we saw that the density of states of both systems are closely related up to high degrees
of disorder. However, we also observed that the boson peak position ωBP is generally
shifted to lower frequencies in the case of the vacancy fcc. This is because the fluctuations
of the ISB parameter, more than its mean value, control the behaviour of the boson
peak. There are two closely linked quantities which account for the microstructure of

Table 2.1 Scaling of different physical quantities with Z̄ for the depleted and vacancy fcc.

Quantity Depleted Vacancies

FIS
Z̄ − 1

11
Z̄ − 1

11

GA
Z̄

12
Z̄2

122

GNA
12 − Z̄

12
Z̄

12
12 − Z̄

12

G
Z̄ − 6

6
Z̄

12
Z̄ − 6

6

ωBP
Z̄ − 6

6
Z̄

12
Z̄ − 6

6

the disordered fcc. The distribution of the connectivity Z can be intuitively understood.
A narrowly peaked distribution, which was used for the bond-depleted fcc in this work,
means that every particles in the system has approximately the same number of nearest
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neighbours with a high probability. On the other hand, a broad Z-distribution tells us
that the heterogeneity of the microstructure, and hence of the variation in the number of
nearest neighbors, is large.

The connection to the inversion symmetry breaking parameter is made easily. A
configuration with a large degree of Z spatial fluctuation directly leads to a heterogenous
distribution of the ISB parameter. Highly coordinated sites retain most of their bond
symmetry and lead to FIS values close to one. A larger spread of local coordination
numbers Z yields a broader distribution P (FIS). When the Z-fluctuations in the system
are large we can conclude that we have a relative excess of low-coordinated particles with
respect to a system with a narrower Z-distribution. Since these low-coordinated sites are
connected to a smaller number of bonds, it takes a smaller amount of energy to excite
vibrations at this site due to the fact that they effectively have a lower binding energy.

In turn, these low-energy excitations translate to an increased population of modes at
low frequencies. Therefore, the low-frequency part of the DOS, together with the boson
peak at ωBP, moves to lower frequencies.

Following this argument, the boson peak of the vacancy fcc is always shifted to lower
frequencies with respect to the depleted fcc due to larger fluctuations of the local degree
of inversion symmetry. This behaviour is clearly seen from the numerical solution of the
non-affine lattice dynamics of the depleted and vacancy fcc, which also holds true for the
depleted fcc with a wide Z-distribution.

In conclusion, our analysis of the vibrational properties and shear elasticity within the
framework of non-affine lattice dynamics, has made it possible to identify the microscopic
source and the nature of the disorder and heterogeneous fluctuations that have served
in previous theoretical studies based on fluctuating elasticity models [64, 77, 78] as the
input to explain the boson peak in disordered solids and its link with soft elasticity. In
addition to that, it will be interesting to see in future experimental studies what precise
implications fluctuations in the degree of microstructural disorder have in terms of the
vibrational properties and elastic response of colloidal suspensions and how they compare
to the theoretical considerations laid out in this chapter.



Chapter 3

Elastic Correlations in disordered
lattices with long-range interactions

3.1 Introduction

It is well known that introducing disorder into solids leads to the appearance of elastic
heterogeneities which are spatial fluctuations of the local elastic moduli of a disordered
solid. For instance, this phenomenon was characterised in term of the increasing local
elastic fluctuations across an amorphisation transition in an fcc crystal [68]. Studying
the fluctuation patterns of local elastic moduli naturally leads to the question if and how
these fluctuations are correlated throughout in space and time. For example, the spatial
elastic correlations in a 2D binary mixture of soft spheres and a 3D Lennard-Jones system
were investigated via molecular dynamics (MD) simulations in Ref. [17]. The authors have
shown that these systems exhibit long-range spatial stress correlations proportional to r−2

in the three-dimensional liquid state, where r represents radial distance. Similar findings
have been brought forward for metallic glass systems [92], where elastic heterogeneities
were observed experimentally. Going beyond the mere observation and description of
correlations between elastic heterogeneities, a recent simulation study points to a striking
physical consequence of them. In Ref. [42], simulations of a binary soft sphere glass were
carried out to obtain equilibrated glassy configurations. These were then used as an
input to study the propagation of vibrational excitations in the system by numerically
solving the classical equation of motion. The solutions are then used to obtain the
velocity autocorrelation function. Since the topology of underlying glassy configuration
is disordered, the vibrational excitations experience scattering and subsequent damping
characterised by the phonon damping coefficient Γ(q), which can be obtain by fitting
the oscillatory decaying velocity autocorrelation function. The main finding of this
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study this that the phonon damping coefficient shows the scaling Γ(q) ∝ −qd+1 log q

at low wave vectors q = |q|. This represents a striking deviation from the Γ(q) ∝ qd+1

scaling which is predicted for scattering of phonons at random impurities known as the
Rayleigh scattering. The authors conclude that the presence of the above-mentioned
inverse power-law elastic correlations leads to a modification of the mechanism which
scatters phonons at very low-frequencies manifesting itself in a logarithmic enhancement
of the wave-vector dependence of the Rayleigh scattering law.

Bearing in mind the interesting effects elastic correlations cause in terms of the
scattering physics of phonons, we set out to systematically study how long-range elastic
correlations develop in a simple model system in dependence on the degree of disorder and
the range of the microscopic interactions. The central idea is to use a two-dimensional
triangular central-force lattice subject to bond-depletion to introduce disorder. In the
numerical and experimental systems referred to above, the underlying interaction of the
investigated systems have a long-range character, either being a Lennard-Jones potential
in the case of the MD simulation or a more complicated metallic interaction potential.
For this reason we want to shed some light on the effect of the range of the interaction
has on the elastic heterogeneities and its correlation structure. In a lattice systems
like a triangular lattice it is quite simple to tune the range of the interaction just by
introducing bonds which not only connect the nearest neighbours of the each particle,
but also particles farther away, i.e. next-to-nearest neighbours and beyond. In this way
we naturally introduce interaction shells into the lattice, as can be seen in Fig. 3.1.

3.2 Triangular lattice with long-range bonds

3.2.1 Model

In the case where only nearest-neighbour interactions are considered we only have one
shell of interacting neighbours, which we will to refer as a S = 1 system. This shell
is shown in red in Fig. 3.1. In the same way we consider the triangular lattice with
longer-range interactions, where the particle interacting with the central particle are
located on shells. The corresponding harmonic central-force interaction potential is given
by

VS(|r|) = 1
2
∑
〈i,j〉

κij

[
(ui − uj) · n̂ij

]2
(3.1)
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Fig. 3.1 Sketch of the triangular lattice which serves as the model system. The left panel
shows a typical bonds of rest length r0 and spring constant κ. The right panel shows the first
three interaction shells in the lattice. Note that the radii of the shells are not equidistant.

where 〈i, j〉 denotes the summation over the bonds which are situated in the interaction
shell S at distance rS = |rS| and κij is the interaction strength depending on the distance
between the two lattice sites. This means that, we write the full interaction potential of
the lattice as a decomposition into the different interaction shells as

US(|r|) =
S∑

s=1
Vs(|r|) (3.2)

where S is the maximal interaction range in the lattice. In the right-hand panel of Fig. 3.1
we show the first three interaction shells on the triangular lattice. For the numerical
computations we use a 77 × 78 triangular lattice with N = 6006 particles with periodic
boundary conditions.

The harmonic bonds in each shell have their individual rest length, so that there
appear no internal stresses. Importantly, we now make the assumption that the interaction
strength κij depends on the radius of the interaction shells and decays as

κij(|r|) = κ(rij) = 1
|ri − rj|α

(3.3)

For reasons that will become evident later in terms of the correlation structure, all
numerical computations of physical quantities of the long-range triangular lattice were
carried out with the power-law exponent α = 3. A prerequisite for the analysis of elastic
heterogeneities and correlations in the lattice is the implementation of disorder. We will
achieve this by depleting the existing bonds in the lattice. A bond is chosen at random
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Fig. 3.2 The affine, non-affine and full shear moduli of the triangular for the four interaction
ranges S = 1, 2, 5, and 15 plotted against the bond-occupation probability p. The dashed lines
in the lower panel show the respective critical bond-occupation probabilities.

and subsequently cut with a probability 1 − p and left intact with probability p. Hence,
a bond between two arbitrary sites i and j appear as a Bernoulli random variable.

Initially, the perfect lattice has an average coordination number Z0,S, which depends
on the number of interaction shells present in the lattice. The nearest-neighbour lattice
S = 1 has Z0,1 = 6. In the case of S = 2 the coordination number consists of contributions
from the first and second shell adding to a total of Z0,2 = 12 bonds. The random depletion
of bonds means that a given site has the average local coordination number

〈ZS〉 =
Z0,S∑
n=0

n

(
Z0,S

n

)
pn(1 − p)Z0,S−n = Z0,Sp (3.4)

where
(

Z0,S

n

)
is the Binomial coefficient accounting for different ways of occupying n of the

Z0,S bonds. It is in principle possible to deplete different shells with different depletion
probabilities, which means that the rigidity transition where the shear modulus of the
system vanishes is approached via different paths in the parameter space spanned by
the shell-dependent depletion probabilities ps. For a square lattice with next-to-nearest
neighbour interactions this has been considered in Ref. [33].
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3.2.2 Rigidity transition and long-range bonds

As we have seen in Chapter 1, where we discussed the non-affine quasi-static framework,
the shear modulus can expressed in terms of the affine and non-affine contributions as
G = GA − GNA. The results of the numerical computations of all contributions are
plotted separately in Fig. 3.2. The most important characteristic to notice at this point
is the movement of the critical bond-occupation probability pc to lower values when the
maximal interaction range S is increased. The point where the zero-frequency elastic
moduli is also called the rigidity percolation threshold, or point of marginal stability [46].
It is the transition point where the lattice loses its mechanical stability and can no longer
sustain external loads. For two-dimensional central-force networks this critical point is
reached when the average connectivity 〈Z〉 = 4, a result which is due to the classical
Maxwell constraint counting argument. It says that the transition from a rigid to a
floppy state in a central-force network occurs when the number of degrees of freedom,
which in the central-force case is the space dimension d times the number of particles
N , equals the number of constraints in the lattice [23]. The constraint in the lattice
arise to the particles being linked by bonds, hence, the number of constraints in the
nearest-neighbour case is given by 〈Z〉N/2. Equating these two expression we obtain
the criterion for the critical point of the rigidity transition, which occurs at an average
coordination number of 〈Z〉 = 2d, which in the present case of the triangular lattice
gives 〈Z〉 = 4. The triangular lattice loses its mechanical stability when on average each
particle is connected to four neighbouring particles.

In the language of the bond-occupation probability, this means that in the case of the
nearest-neighbour triangular lattice, S = 1, the point of marginal stability is reached at
pc = 2/3, which is clearly seen in Fig. 3.2. Adding also next-to-nearest-neighbor bonds in
the lattice leads to a shift of the critical value pc to lower values. As discussed in [34] from
the point of view of an effective-medium approach, the theoretically predicted mean-field
value for the critical bond-occupation probability is pc = 1/3. This is in agreement
with our numerical calculation, shown in Fig. 3.2. Using the considerations which are
presented in Ref. [33], we can determine the surface across which the rigidity transition
takes place for central-force networks according to

S∑
i

zipc,i = 2d (3.5)

where d is the dimension of the lattice under consideration and the sum extends up to
the desired shell range. Since we choose to deplete all bonds irrespective of the bond
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length, we set pc,i = pc. For S = 2, 5, and 15 using this relation we obtain pc = 1/3, 1/9
and 2/63.

3.3 Local elastic moduli

The analysis of elastic heterogeneities and their correlation structure requires a well-
defined notion of the local elastic moduli. Since the underlying framework which we will
be using for this analysis is non-affine lattice dynamics, we now introduce the locally
defined affine and non-affine shear moduli. As introduced in Chapter 1, the affine
contribution of the shear modulus for central-force lattices may be written as a sum over
components of the unit bond vectors, i.e.

GA = 1
2V

∑
i

∑
j

κij

(
rijn

x
ijn

y
ij

)2
(3.6)

where the summation of the index j extends over all neighbours of the ith particle. The
local affine moduli at site i is then just the ith partial sum in the above expression.
Importantly, each contribution to the affine modulus corresponding to a particular bond
in the system is weighted with the rest length and interaction strength of that particular
bond.

For our description of the spatial elastic correlations in the lattice it is vital to also
express the local contribution to the non-affine modulus. That is, as already pointed out
above for the affine modulus, we want to split the non-affine modulus into contributions
from each lattice site. Since we consider a disordered triangular lattice there will be a
correction term to the elasticity which accounts for the deviations from the homogeneous
pure shear deformations seen in the perfect lattice. We describe this non-affein correction
in terms of the affine force field Ξ which arises due to the force imbalances in the disordered
lattice configurations. These force fields drive the non-affine displacements of particles
which are characteristic for the elastic response of disordered systems. Essentially, these
additional displacements, or relaxations, lead to a weakening of the overall linear elastic
response, which is summarised by the relation G = GA − GNA. In order to properly
define the local contributions to the non-affine elasticity we recall the definition of the
non-affine displacement fields provided in Eq. (1.24) as

δrNA = H−1Ξ. (3.7)
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This non-affine displacement vector has dN components and we straightforwardly obtain
the local displacement field of particle i by only considering the components associated
with the ith particle. Making use of the Dirac notation we express the local non-affine
displacement field of particle i by projecting |δrNA〉 onto the coordinate vector |i〉, i.e.

δrNA,i = 〈i| δrNA〉 = 〈i| H−1|Ξ〉. (3.8)

This is clearly nothing but defining a projection on the lattice sites by |i〉〈i|, where |i〉
denotes the dN -dimensional basis vector of the particle basis. In the particle or equiva-
lently lattice site basis we then write the decomposition of the non-affine displacement
field as

|δrNA〉 =
∑

i∈sites
|i〉〈i| H−1Ξ

〉
(3.9)

such that the scalar product in the particle basis 〈i| H−1Ξ
〉

is d-dimensional and
represents the response to the affine force field acting at site i. Following the exposition
in Chapter 1, the non-affine contribution to the modulus is then given by multiplying
with Ξ from the left, i.e.

GNA = 1
V

〈Ξ| δrNA〉 = 1
V

∑
i∈sites

〈Ξ |i〉〈i| H−1Ξ〉. (3.10)

Using the completeness of the eigenbasis of the Hessian, i.e. 1 = ∑
p |p〉〈p|, we can write

the ith contribution as

GNA,i = 1
V

∑
p

1
λp

〈Ξ| i〉 〈i| p〉 〈p| Ξ〉 (3.11)

where the scalar product 〈. . . | i
〉

denotes the projection of the dN -dimensional onto the
lattice site i. The summation is carried out over all eigenmodes of the Hessian such that
the eigenvalues fullfill λp 6= 0. Summing Eq. (3.11) over all lattice sites i returns the full
non-affine shear modulus, as we would expect. In summary, the full locally-defined shear
modulus is

Gi = GA,i − GNA,i (3.12)

At this point it is crucial to note that even though we set out to define a local contribution
to the non-affine shear modulus, it is not a truly local quantity like its affine counterpart.



44 Elastic Correlations in disordered lattices with long-range interactions

-1 0 1 2 3 -1 0 1 2 3

-1 0 1 2 3 -1 0 1 2 3

Fig. 3.3 Bond-depletion in the long-range triangular lattice leads to different distribution of
the local shear moduli Gi depending upon the maximal interaction range of the bonds, which
manifestly are elastic heterogeneities. The panels show the relative frequencies of local moduli
in the triangular different maximum interaction ranges S =1, 2, 5, and 15. Curves for different
values of p are shifted vertically for visual clarity.

In addition to the ith component of the affine force field, the local non-affine modulus is
multiplied with the projection of the full affine force field onto the eigenvector belonging
to a certain mode. Clearly, this factor contains contributions from all sites in the system,
and we therefore can say that GNA,i is a non-local quantity. From a physical point of
view this is certainly not unreasonable. The non-affine displacements represent the onset
of local rearrangements [62]. These particles can have large displacement vectors and as
a result other particles would also have to undergo displacments to move out of the way
to accommodate these rearrangements.

3.4 Appearance of elastic heterogeneities

Having studied the properties of the global averaged shear modulus of the lattice in
terms the long-range interactions, it is now time to extend the analysis and look at
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the distribution of the local elastic moduli to get insight into the nature of the elastic
heterogeneities in the case where κ(rs) = r−3

s .
As evident from Fig. 3.3, in the perfect lattice, that is in the case where p = 1, all

bonds are occupied, the distribution on local elastic moduli is represented by a single
δ-peak. In the absence of disorder each lattice site has the same number of neighbours and
the local moduli are given by GA,i = Gi, since due to the full local inversion symmetry the
non-affine moduli are zero everywhere. The value of GA,i, which represents the position
of the δ-peak in the local moduli distribution in Fig. 3.3, moves to higher value with
increasing the maximum allowed bond length.

As the bond-occupation probability p is reduced, the evolution of the local moduli
distribution starts to differ significantly for different shells values. In the nearest-neighbour
case, S = 1, the single δ-peak at GA,i =

√
3/4 remains for all p values. However, in

addition two new δ-peaks develop when p is lowered. The strong dominance of the three
discrete peaks reflects the fact that in the nearest-neighbour case only a small number of
bond-configurations is possible for a given bond-occupation. Looking at the situation
when long-range bonds are put into the lattice, the shape of the local moduli distribution
starts to depart from the δ-shape drastically. From inspection of Fig. 3.3, we see that
going to higher shell numbers, these discrete peaks are gradually washed out and a
smoother distributions are obtained. In addition to that, the distribution of local shear
moduli in Fig. 3.3 can be observed to spread into the negative domain in some cases. This
means that as a consequence of randomly cutting bonds, at some lattice sites the local
non-affine contribution becomes large enough to overwhelm its affine counterpart, leading
to negative values of Gi = GA,i − GNA,i. The resulting negative local moduli are linked
to local mechanical instabilities [98]. They represent a negative linear response to an
applied stress and consequently the system can spontaneously relax via a locally confined
non-affine displacement instead of resisting the applied stress as in the case of a positive
local modulus. This phenomenon has been attributed to local plastic events [92, 71]
potentially representing precursors to large-scale plastic rearrangements, which occur in
real disordered materials and glasses. In order to quantitatively grasp the change of the
local moduli distribution, it is instructive to describe the development of the distributions
in term of their fluctuations, quantified by the variances var(GA) = 〈G2

A〉 − 〈GA〉2 and
var(GNA) = 〈G2

NA〉 − 〈GNA〉2.
The variance of the affine local moduli distribution is characterised by a parabolic

shape, as can be see from Fig. 3.4 (a). The variance var(GA) is zero at p = 1 which
corresponds to the δ-peak in the distribution of the local moduli Gi. This is also the
case at p = 0 where all local affine moduli are zero in this situation. We can clearly
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Fig. 3.4 The scaling of the variances of the distribution of the affine and non-affine local
elastic moduli for the four interaction range under investigation. It is evident that var(GA)
is enhanced when increasing the maximal interaction range, whereas var(GNA) experiences
attenuation above pc.

observe that the increase of the maximal interaction range in the lattice from S = 1 to
S = 15 leads to an increase in the variance of the local moduli. The broadening of the
distribution of GA,i with increasing S at fixed p results from the fact the average number
of bonds per particle quickly increases with S. Consequently, the system has significantly
more bond configurations to choose from.

Focusing on Fig. 3.4 (b), which is a logarithmic plot, it is directly evident that the
fluctuations of the non-affine moduli behave quite differently. Firstly, we notice that
var(GNA) exhibits a divergence at the values of p which correspond to the respective
isostatic points for the four different lattices with S = 1, S = 2, S = 5, and S = 15.
Another main characteristic is that for fixed p > pc the fluctuations of the non-affine
moduli experience an attenuation as S is increased. These opposing trends of var(GA)
and var(GNA) which appear with varying the interaction range will become important
later on and will have a direct impact on the spatial correlation structure.

3.5 Analytical scaling of the affine elastic autocorre-
lation

Having established the heterogeneities of the affine and non-affine local moduli in terms
of their fluctuations, we now want to go further and study the spatial correlations of these
fluctuations on the lattice. The affine local moduli are given in terms of the bond vectors
and for this reason can be thought to represent the structural topology of the disordered
lattice. This is in contrast to the non-affine modulus which involves the eigenvectors of
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the full Hessian matrix. For this reason there is hope to obtain an analytical scaling
relation for the radial part of the affine autocorrelation structure.

Since we need tools to characterise the correlation of the elastic heterogeneities in the
long-range triangular lattice, we continue by reviewing the standard definitions of the
correlation functions and the correlation coefficient. In particular, we are interested in
the radial elastic autocorrelation function of the form

C(r) =

〈〈
G(0)G(r)

〉〉
−
〈〈

G(0)
〉〉〈〈

G(r)
〉〉

〈〈
G(0)2

〉〉
−
〈〈

G(0)
〉〉2 (3.13)

where r = |r| denotes the norm of the distance vector between lattice site and with 〈〈. . .〉〉
we mean the lattice site and configurational disorder average defined on the triangular
lattice with long-range interactions. This means we have to write the above expression
as a sum over lattice sites.

Therefore, we consider the spatial autocorrelation function of a physical quantity f

which is defined at each lattice site. Hence, with f(i) = fi we mean the value of the
function f at lattice site i. The radial dependence of the spatial autocorrelation of f is
then described by

Cf (r) =

1
N

∑N
i,j=1

(
〈fifj〉 − 〈fi〉 〈fj〉

)∣∣∣∣
r=rij

〈f 2〉 − 〈f〉2 . (3.14)

In the above equation 〈. . . 〉 denotes the disorder average over different realisations. The
summation over j is done under the requirement that r = rij be fulfilled and subsequently
the average over all lattice sites is carried out by summing over i. The mean 〈f〉 is
obtained by the average taken over all lattices sites and configurations.

As we will see, it is possible to obtain an analytical scaling relation between the affine
elastic correlations and the decay rate of the harmonic interaction strength with shell
distance rS. Specifically, we will derive that if the r-dependent stiffness κ(r) decays as a
power law of the radius of the shells of the long-range interaction leads to a power-law
decay of the angular average of the affine elastic autocorrelation function Choosing a
spring constant or interaction strength with a power-law decay, i.e. κ ∼ r−α, the spatial
correlation function of the affine shear modulus subsequently scales as Cr ∼ r4−2α.

The central idea for achieving this result is to exploit the fact that on the lattice
we can naturally split the contributions to GA into the parts coming form the distinct
shells. As discussed above, the six nearest-neighbour bonds are arranged on a circle of
radius 1, the next-to-nearest-neighbour bonds can be found on a circle of radius

√
3 and
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so on. Since the affine modulus is defined as a sum over the corresponding unit bond
vectors n̂ij , we can decompose GAi

into distinct contribution from shells with given radii.
For the remainder of this section we will drop the subscript in the notation of the affine
modulus for visual clarity, and therefore identify GA ≡ G. We recall that the local affine
elastic modulus is given by the expression

Gi = 1
2V

N∑
j=1

κij

(
rijn

x
ijn

y
ij

)2
(3.15)

where κij = κ(rij) is the distance-dependent spring constant specifying the strength of
the harmonic interaction between particle i and j. Since the above sum runs over all
neighbours connected to particle i, we decompose the summation into contribution from
different interaction shells. Therefore we write

Gi =
S∑
s

Gi,s (3.16)

such that Gi,s is the contribution to the affine modulus at i coming from bonds which
connect particle i with the particles in shell s at distance rs. The first term we want to
treat is 〈G(0)G(r)〉, where r is restricted to the interaction shell with index t at range rt,
i.e.

〈G(0)G(rt)〉 = 1
N

N∑
i=1

〈
1

Nt

Nt∑
j=1

GiGj

〉 ∣∣∣∣
rij=rt

= 1
N

N∑
i=1

1
Nt

Nt∑
j=1

S∑
s,s′

〈Gi,sGj,s′〉
∣∣∣
rij=rt

(3.17)

noting that the summation over index j is restricted to rij = rt. At this point we
implicitly assume that Nt represents the average number of particles present in shell t,
i.e. 〈Nt〉 = Nt.

The crucial step in order to continue is now to split the sum over the two shell indices,
s and s′, into diagonal and off-diagonal parts. This means

∑
s,s′

Gi,sGj,s′ =
∑

s

Gi,sGj,s +
∑
s,s′
s 6=s′

Gi,sGj,s′

=Gi,tGj,t +
∑

s
s 6=t

Gi,sGj,s +
∑
s,s′
s6=s′

Gi,sGj,s′ . (3.18)
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(a) (b) (c)

Fig. 3.5 Illustration of the three contribution when splitting the covariance 〈GiGj〉.

In terms of the physical picture, the first term in the above equation represents the special
case where particle j is the t-shell of particle i and vice versa. Crucially, this means that
in this case inevitably there is a direct bond between particle i and j. When taking
the configurational disorder average of this term, and the shared bond between the two
particles happens to be removed, this has the consequence that Gi,t varies together with
Gj,t. Or in other words, the two quantities are correlated. This situation is illustrated
schematically in Fig. 3.5 (a). The second summand in Eq. (3.18), which is the rest of the
diagonal contribution, contains the terms which account for the i and j moduli coming
from equal interaction ranges. The two possibilities are that the index is too small for
site i and j to share a bond with a third site k, since j is restricted by rij = rt, as
depicted in Fig. 3.5 (b). Alternatively, it can happen that i and j are both connected to
a common site k. This for example happens when j is on the t = 2 shell of particle i, and
we consider the s = 1 of the diagonal sum. This case is shown in Fig. 3.5 (c) However,
again taking the disorder average, cutting the i − k has no effect on the k − j bond.
Thus, these terms will not contribute to the correlation between site i and j. The same
explanation carries over to the third summand in Eq. (3.18), with the difference that in
this situation the bonds between i and k and k and j do not have the same length. The
implication is that the statistical average of terms do not correlate, by which we mean
that 〈Gi,sGi,s′〉 = 〈Gi,s〉〈Gi,s′〉. Note that this is a consequence of the fact that we only
consider bond-depletion as a mechanism to induce disorder in the lattice. In the case of
positional disorder, for instance, the above line of reasoning would not be correct.
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Taking this into account we conclude that Eq. (3.18) may be written as

〈G(0)G(rt)〉 = 1
N

N∑
i=1

1
Nt

Nt∑
j=1

〈Gi,tGj,t〉 +
S∑

s,s′
s 6=s′ 6=t

〈Gi,s〉〈Gj,s′〉

 . (3.19)

To continue, we have to discuss the product of the averages given by 〈G(0)〉 and 〈G(rt)〉,
which subtracts 〈G(0)G(rt)〉 in the full expression of the elastic autocorrelation function.
Employing the same shell-wise decomposition as before we have

〈G(0)〉〈G(rt)〉 = 1
N

N∑
i=1

〈Gi〉〈
1

Nt

Nt∑
j=1

Gj〉
∣∣∣
rij=rt

= 1
N

N∑
i=1

∑
s

〈Gi,s〉
1

Nt

Nt∑
j=1

∑
s′

〈Gj,s′〉
∣∣∣
rij=rt

= 1
N

N∑
i=1

1
Nt

Nt∑
j=1

〈Gi,t〉〈Gj,t〉 +
S∑

s,s′
s 6=s′ 6=t

〈Gi,s〉〈Gj,s′〉

 . (3.20)

At this point we recognise that the off-diagonal sums in brackets in both Eq. (3.19) and
Eq. (3.20) are equivalent. Therefore, considering the difference of both expressions we
obtain the intermediate result stating that

〈G(0)G(rt)〉 − 〈G(0)〉〈G(rt)〉 = 1
N

N∑
i=1

1
Nt

Nt∑
j=1

[
〈Gi,tGj,t〉 − 〈Gi,t〉〈Gj,t〉

]

= 1
N

N∑
i=1

1
Nt

Nt∑
j=1

〈Gi,tGj,t〉 − 〈Gt〉2 (3.21)

since 1
N

∑N
i=1〈Gi,t〉 = 1

Nt

∑Nt
j=1〈Gj,t〉 = 〈Gt〉 holds in the thermodynamics limit where

N → ∞. The quantity 〈Gt〉 is the average contribution coming from shell t at distance
rt.

It now remains to evaluate the correlation term of the t-shell contributions between
particle i and j. For this we again look at the situation that in the above summation the
jth particle lies on the t-shell of particle i. This means that the sum ∑Nt

j=1 Gj,t contains all
bonds which are included in the term Gi,t, because these bonds are shared between the
two sites. In addition, ∑Nt

j=1 Gj,t contains bonds which are non connected to the lattice
site i, and thus cannot contribute to the overall correlation encoded in the summands
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〈Gi,tGj,t〉. Formalising this idea, we write

Nt∑
j=1

Gj,t = Gi,t +
Nt∑

j=1
Rj (3.22)

where Rj represent the residual bonds connecting to the j sites which are not shared by
the central site i. Considering the configurational average of the residual terms Rj we
realise that on average the bond structure as seen from each j-site looks the same. This
means averaging over all the bonds emanating from j-sites which are not shared with
the central site i gives

〈
Nt∑

j=1
Rj

〉
= (Nt − 1)〈Gt〉. (3.23)

We substitute this result into Eq. (3.21) and continue with

1
N

N∑
i=1

1
Nt

Nt∑
j=1

〈Gi,tGj,t〉 − 〈Gt〉2 = 1
N

N∑
i=1

1
Nt

Nt∑
j=1

〈
Gi,t (Gi,t + Rj)

〉
− 〈Gt〉2

= 1
N

N∑
i=1

1
Nt

Nt∑
j=1

[
〈Gi,tGi,t〉 + 〈Gi,t〉〈Rj〉

]
− 〈Gt〉2

= 1
NNt

N∑
i=1

〈Gi,tGi,t〉 + 1
NNt

N∑
i=1

〈Gi,t〉(Nt − 1)〈Gt〉 − 〈Gt〉2

= 1
Nt

[
〈G2

t 〉 − 〈Gt〉2
]
. (3.24)

This result allows us to express the numerator of the spatial elastic autocorrelation
function in terms of the elastic contribution stemming from bonds with the t-shell. The
normalisation factor in the denominator of the autocorrelation function C(rt) can be
evaluated in an analogous way, i.e.

〈G2〉 − 〈G〉2 =
〈(

S∑
s=1

Gs

)〉2

−
〈

S∑
s=1

Gs

〉2

=
〈

S∑
s=1

G2
s +

∑
s,s′
s¬s′

GsGs′

〉
−

 S∑
s=1

〈Gs〉2 +
∑
s,s′
s 6=s′

〈Gs〉〈Gs′〉


=

S∑
s=1

[
〈G2

s〉 − 〈Gs〉2
]
. (3.25)
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Combining these two results we can express the spatial elastic autocorrelation in terms
of the interaction shells as

C(rt) = 1
Nt

〈G2
t 〉 − 〈Gt〉2∑S

s=1

[
〈G2

s〉 − 〈Gs〉2
] . (3.26)

At this point, Eq. (3.26) still explicitly contains the angular structure of the spatial
correlation by virtue of the angle dependence of the unit bond vector n̂ij , which constitute
the affine moduli. Since at this point we are only interested in the radial part of the
autocorrelation function, we explicitly average over the angular distribution. This can be
done by assuming an isotropic distribution of bonds which is formally correct only in
the limit of large rt. The full expression of the average contribution from the shell at
distance rt with bonds of stiffness κt is

〈Gt〉 =
〈

Nt∑
i=1

κt

2
(
rtn̂

x
t,in̂

y
t,i

)2
〉

= Nt
κtr

2
t

2

〈(
n̂x

t,in̂
y
t,i

)2
〉

(3.27)

assuming that on average each of the Nt members on the t-shell has the same contribution.
The bond length rt and the stiffness κt = κ(rt) in the isotropic lattice do not depend
on the angular distribution and hence are not affected by the angular average. Working
with the isotropic assumption we uniformly distribute the bonds of the Nt neighbours in
the t-shell over the full angle by specifying them in terms of the angular bond density
ρ(ϕ) = Ntf(ϕ) = Nt/(2π). Writing the unit bond vector in two-dimensional polar
coordinates (nx

t , ny
t ) = (cos ϕ, sin ϕ) we express 〈Gt〉 as

〈Gt〉 =Nt
κtr

2
t

2

∫ 2π

0

1
2π

(
nx

t ny
t )2 dϕ

=Nt
κtr

2
t

2

∫ 2π

0

1
2π

(
sin(ϕ) cos(ϕ)

)2
dϕ

=Nt
κtr

2
t

2

∫ 2π

0

1
8π

sin(2ϕ)2 dϕ

=Nt
κtr

2
t

16 . (3.28)

In addition to the average 〈Gt〉 of the affine elastic contribution from the t-shell we also
need the second moment 〈G2

t 〉 in order to express the angular average of the elastic
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autocorrelation. The mean square 〈G2
t 〉 is explicitly given by

〈G2
t 〉 =

〈(
Nt∑
i=1

κt

2
(
rt,in̂

x
t n̂y

t,i

)2
)2〉

= κ2
t r

4
t

4

〈(
Nt∑
i=1

(
n̂x

t,in̂
y
t,i

)2
)2〉

(3.29)

which we can further evaluate by arranging the square of the sum into diagonal and
off-diagonal contributions as

Nt∑
i=1

(
n̂x

t,in̂
y
t,i

)2 Nt∑
j=1

(
n̂x

t,jn̂
y
t,j

)2
=

Nt∑
i=1

(
n̂x

t,in̂
y
t,i

)4
+

Nt∑
i,j=1
i 6=j

(
n̂x

t,in̂
y
t,in̂

x
t,jn̂

y
t,j

)2
. (3.30)

We now plug this expression into Eq. (3.29) and explicitly carry out the angular average
and find that

〈G2
t 〉 =κ2

t r
4
t

4

〈
Nt∑
i=1

(
n̂x

t,in̂
y
t,i

)4
+

Nt∑
i,j=1
i 6=j

(
n̂x

t,in̂
y
t,in̂

x
t,jn̂

y
t,j

)2
.

〉

=Nt
κ2

t r
4
t

4

[〈
(n̂x

t n̂y
t )4
〉

+ (Nt − 1)
〈
(n̂x

t n̂y
t )2
〉2
]

(3.31)

where the unit bond vectors n̂t are distributed according to f(ϕ) = 1/(2π). We have
again resorted to the result that on average contributions from distinct bonds decorrelate
in order to simplify the second term on the right-hand side. In order to compute the
average of the first term we note that using polar coordinates it can be expressed as
(n̂x

t n̂y
t )4 = (sin ϕ cos ϕ)4 = 1

16 sin4(2ϕ). Bearing this in mind we continue by expressing
the corresponding angular average in the continuum approximation as

〈
(n̂x

t n̂y
t )4
〉

=
∫ 2π

0

1
2π

1
16 sin4(2ϕ) dϕ = 3

128 . (3.32)

The result of the angular average appearing in the second term on the right-hand side
of Eq. (3.31) is already known from the previous analysis to yield (〈n̂x

t n̂y
t )2〉 = 1/8.

Combining these findings we can express the second moment 〈G2
t 〉 as

〈G2
t 〉 = Nt

κ2
t r

4
t

4

[ 3
128 + (Nt − 1) 1

64

]
= Nt

κ2
t r

4
t

4
2Nt + 1

128 . (3.33)
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This now allows to to write the final result for numerator the angular average of the
spatial elastic autocorrelation function C(rt) as

〈G2
t 〉 − 〈Gt〉2 =Nt

κ2
t r

4
t

4
2Nt + 1

128 −
(

Nt
κtr

2
t

16

)2

=Nt
κ2

t r
4
t

4

[2Nt

128 + 1
128 − Nt

64

]
=Nt

κ2
t r

4
t

512 . (3.34)

We recall that the denominator of C(rt) involves the summation of Eq. (3.34) over all
interaction shells in the system up to the cutoff S. This means that the denominator
yields a prefactor to the full expression of C(rt) which does not depend on the argument
rt. Put in other words, this means that the radial scaling of C(rt) is solely dictated
by the numerator as given in the final expression of Eq. (3.34) and we can express the
scaling as

C(rt) ∼ 1
Nt

[
〈G2

t 〉 − 〈Gt〉2
]

= κ2
t r

4
t

512 . (3.35)

Having this result at hand, we can now implement an assumption of the decay of the
r-dependent stiffness κt. In particular, if we introduce an inverse power-law decay of the
stiffness, i.e. κt ∼ rα

t , we draw the conclusion that the radial decay of the affine elastic
autocorrelation function has to obey the scaling

C(r) ∼ r4−2α. (3.36)

where we dropped the explicit shell label. We conclude from this results that choosing
the exponent of the power-law decay of the interaction strength κr ∼ rα as α = 3 we
obtain a radial elastic correlation as C(r) ∼ r−2.

3.6 Numerical results of the elastic autocorrelation
function

As pointed out in the introduction of this chapter, in many disorder condensed matter
systems like Lennard-Jones glasses and lattices with thermally induced non-affinity have
been observed to exhibit power-law correlation in the elastic autocorrelation charac-
teristics. In the perfect lattice, where every bond is occupied and thus p = 1, we do
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Fig. 3.6 Angular average of the elastic autocorrelation function. The first row shows the affine
autocorrelation CA both at the respective critical points for each interaction shell in the left
panel, and at the high bond-occupation probabilities in the right panel. The second row shows
the angular average of the full elastic autocorrelation CG. The continuous line describes the
r−2 scaling.

not expect the appearance of power-law correlations by virtue of the simple fact that
the value of each GA,i is equal for all sites and the non-affine contribution is exactly
zero. In order to account for the realistic scaling of the elastic autocorrelation function
observed in MD simulations, which in two dimensions is C(r) ∼ r−2 [17], we choose the
decay of the stiffness κ(r) in our model as r−3, as we have hinted before. Considering
the scaling result in Eq. (3.36), this choice results in the desired scaling of the affine
elastic autocorrelation function and provide the link to the results obtained for various
disordered solids and glasses in the literature, as discussed in the introduction of this
chapter.

Having the analytical scaling relation affine elastic autocorrelation at hand it is now
time to compare the analytical against numerical results. For this purpose, we have
numerically computed the angular average of the affine and full elastic autocorrelations
function as shown in Fig. 3.6. We have chosen to depict the high p and critical pc

regimes for the four interaction ranges in question. As can be seen clearly in this double-
logarithmic plot, both at the respective critical bond-occupation probabilities and at
high values of p, the numerical data for the four different interaction ranges follows the
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analytical scaling relation. As we can expect, the range of the power-law correlations
depends on the interaction range. The numerical data for the S = 1 autocorrelation
rapidly drops after r = 1, which signifies the radius of the nearest-neighbour interaction
shell. With increasing S, this drop of the correlation function moves to higher values, as
can be seen in Fig. 3.6. For example, we clearly can observe how CA(r) drops to very low
values at a radial distance that corresponds to the radius of the S = 15 interaction shell,
r15 = 6. Considering the radial scaling of the full elastic autocorrelation function CG(r)
in the bottom row of Fig. 3.6, it becomes evident that at high p the r−2 still is maintained
to a good agreement. The deviations come from the additional non-affine contribution.
And as we see in the left panel of the bottom row, the power-law correlations disappear
when the isostatic point is reached, and the non-affine fluctuations in the local moduli
take over.

In conclusion, in the regime of high p, the angular average of the full elastic auto-
correlation function CG(r) inherits the r−2 scaling of the its affine counterpart and the
non-affinity induced deviations appear to be relatively small.

3.7 Effect of the non-affine contribution

Having described the scaling behaviour of the affine elastic autocorrelation, we established
that the affine scaling approximately carries over to the scaling of the full shear modulus
G = GA−GNA if the bond disorder in the lattice is not too large. This raises the interesting
question how the correlations of the full shear modulus with its two contributions GA and
GNA develops when the bond-occupation in the system decreases further. The addition
of disorder into the lattice locally breaks the inversion symmetry and leads to an increase
non-affine correction to the shear elasticity, which leads us to expect that the non-affine
contribution to the correlation should increase.

In order to obtain insights into the interplay between the affine and non-affine
contribution we evaluated the Pearson correlation coefficients between the full shear
modulus G and its affine and non-affine parts. The correlation coefficient between two
random variable f and g is defined as defined as [84]

ρX,Y = cov(XY )√
var(X)var(Y )

(3.37)

where cov(X, Y ) = 〈XY 〉 − 〈X〉〈Y 〉 and var(X) = 〈X2〉 − 〈X〉2 denote the covariance
and variance of the random variables X and Y , respectively. Therefore, the correlation
coefficient ρXY represents the covariance between the two random variables normalised
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Fig. 3.7 The correlation coefficients for G and GA, and G and GNA for four different interaction
ranges and κ ∝ r−3. Starting at S = 5, a crossover between the affine and non-affine regime
can be clearly observed. Since the sign of the non-affine contribution is negative, the absolute
value of the correlation coefficient between G and GNA.

with the square root of the variance of each variable f and g. The squared coefficient ρ2
XY

takes values in the interval [0, 1], indicating the degree to which the two random variables
are statistically correlated. A positive value of ρXY signifies positive correlation between
X and Y , a negative sign means anti-correlation. The Pearson correlation coefficient
is in principle the same object as the correlation function introduced earlier with the
difference that the averages in numerator are evaluated over the full system and not
restricted to a specific shell.

In Fig. 3.7 we present the results for the computation of the correlation coefficients be-
tween both the affine and non-affine contribution and the full shear modulus, respectively,
for which we use the notation ρA = ρGGA and ρNA = ρGGNA . Note that the non-affine
correlation coefficient is plotted with a negative sign, since naturally G is expected to
anticorrelate with GNA.

We first want to explain the situation in the nearest-neighbour case S = 1. We
observe that at a high bond-occupation probability, i.e. p close to 1, the value of the
affine correlation coefficient ρA has its maximum. This corresponds to the situation of a
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Fig. 3.8 The variance of the affine and non-affine local moduli for different interaction ranges S.
Moving from S = 1 to S = 15, a crossover occurs as var(GNA) is partly pushed below var(GA).

lattice where most of the bonds are present, and consequentially the degree of non-affinity
is relatively low. This makes the high value of ρNA seem out of place. However, we have
to bear in mind that in the S = 1 lattice the distribution the local moduli is strongly
discretised. At the full coordination number Z1 = 6, the distribution of the local moduli
is determined by the one δ-peak in the distribution of GA,i. Reducing p to 0.95, the
shape of the Gi distribution maintains this δ-like peak as the dominant contribution,
accompanied by one smaller δ-like peak at lower value, which are exclusively due to the
discretised GA,i-distribution. In addition, the full distribution of the local moduli Gi

develops a continuous component, as can be seen in Fig. 3.3. The shape of the continuous
part is controlled by the distribution of the local non-affine moduli GNA,i. Therefore, in
the S = 1 case at p close to 1, both the affine and non-affine correlation coefficient, ρA

and ρNA exhibit high values which trace back to the fact that the affine and non-affine
distributions separately control the discrete and continuous part of the full distribution.

At the isostatic point of the nearest-neighbour triangular lattice, which is located at
pc = 2/3, where the lattice loses its mechanical stability, the correlation between the
affine and full modulus breaks down. The vanishing of the correlation coefficient ρA is
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due to the divergence of the fluctuations of the non-affine shear modulus at the critical
point [14]. This behaviour of the fluctuations of the affine modulus becomes evident from
the right panel in Fig. 3.4. Since the variance of the non-affine modulus appears in the
denominator of the correlation coefficient in Eq. (3.37), the affine correlation coefficient
is being suppressed at pc. Naturally, this does not occur in the case of the non-affine
correlation coefficient because there the fluctuations in the denominator and numerator
are of the same order.

When the maximal interaction range of the lattice is increased, we can see that the
position where the affine correlation coefficient ρA drops to zero moves to lower values in
p, in accordance with the decreasing of the critical bond-occupation probability pc when
increasing S. Again this scaling behaviour is mirrored by the movement of the position
where var(GNA) diverges as we see in the right panel of Fig. 3.4.

The most prominent feature of the correlation coefficients depicted in Fig. 3.7 is the
appearance of a crossover between the affine and non-affine correlation coefficient, ρA and
ρNA, when S is increased. Introducing long-range bonds therefore leads to the emergence
of two regimes where either the affine or non-affine correlations dominate. This crossover
can be seen to appear in the S = 5 lattice at p ≈ 0.6, and in the S = 15 lattice at
p ≈ 0.3.

We will now explain the appearance of the affine/non-affine crossover in terms of the
fluctuation characteristics of the affine and non-affine local moduli. The general effect
of increasing S is to increase the fluctuations of the local affine moduli over the entire
range of the bond probability p, as evident from in Fig. 3.4 (a). The reason for this
amplification clearly is the fact that at a given p, in number of bonds present in the
lattice rapidly grows when long-range bonds are included. Having more possible values
for the local coordination numbers means in turn that also GA,i, which directly reflects
the local coordination geometry, can take many more possible values.

The effect of the enhanced fluctuations of the affine local moduli distributions trans-
lates directly to the correlation coefficients. As S grows, the critical pc gets pushed to
lower values and the affine correlation function on the interval [0, 1] is amplified. At
the same time, due to the inclusion of the long-range bonds, the fluctuations of the
non-affine local moduli experience an attenuation. These two counteracting effects can
be clearly observed in Fig. 3.8. Where for S = 1 and S = 1 the non-affine elastic
fluctuations, characterised by var(GNA), are larger than the affine fluctuations on the
full interval p ∈ [0, 1], this ceases to be the case for the longer-range lattices S = 5 and
S = 15. As the divergence of var(GNA) is shifted to lower values of p, the larger number
of connected neighbours constrains and reduces var(GNA) below var(GA) in the high p
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regime. Therefore, we can infer that the affine/non-affine crossover manifested in the
correlation coefficient is rooted in the counteracting trends of the affine and non-affine
fluctuations that arises through the implementation of long-range interactions.

3.8 Spatial correlation structure

Having worked out a good understanding the radial dependence of the elastic autocor-
relation function and the affine/non-affine crossover, we now set out to describe the
spatial correlation characteristics in more detail. In particular, we will investigate how
the crossover of the correlation coefficient between the affine and the non-affine regimes
is reflected in the spatial structure of the autocorrelation functions CG, GA and CNA.

To grasp the correlation structure across the regime crossover, as well as at the
isostatic point, we will map out the functions CG, GA and CNA at three representative
values of the bond-occupation probability p. For S = 1, 2, 5 and 15 we specify a high
and intermediate p regime, such that the different systems are well in the affine and
non-affine-dominated parts, if the crossover exists, in view of the correlation coefficient
in Fig. 3.7.

In addition, as a third value of the bond-occupation probability p, we will map out
the correlation structure for each interaction range at the respective isostatic points. To
achieve a good visual representation of the spatial autocorrelation functions, we mapped
out separately the affine, non-affine and full shear modulus autocorrelations by projecting
the contribution from each individual site onto a central site, thereby creating the density
plots presented in this section. As the plot legends show, in all correlation maps in this
chapter, blue signifies no correlation, and the tendency to red and black shows positive
and negative correlation in respectively.

Before starting the detailed discussion of the spatial correlation structure and how it
evolves with the interaction range in the lattice, we point out the three principal patterns
that we will encounter in the following analysis. Firstly, the affine autocorrelation function
generally exhibits the typical positive correlation along the diagonals of the lattice. As
we can anticipate from the preceding analysis, the length of these positive correlation
lobes increases with the range of the interaction as given by the maximal shell size S. In
addition to that, we conclude from the numerical analysis that the geometrical structure
of the affine autocorrelation function CA is practically not affected by the bond-depletion
parameter p. This aligns with the analytical prediction for the scaling of CA, which we
found not to explicitly depend on p. An example of this behaviour of the affine elastic
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CA

S = 15 p = 0.850 (a)

CNA

S = 2 p = 0.700 (b)

CG

S = 1 p = 0.667 (c)

Fig. 3.9 The three main patterns of the elastic autocorrelation functions as explained in the
text. From left to right depicted: pattern of CA with positive correlation along the diagonals,
pattern of CNA with negative correlation along the diagonals and positive correlation along x
and y axes, highly fluctuating pattern of CG at the isostatic point.

autocorrelation is depicted in Fig. 3.9 (a) for the system S = 15 with p = 0.850. Note
that the plots do not show the full system butt merely a 30 × 30 sector.

The second recurring pattern is that typical of the non-affine autocorrelation function
CNA. The lobes of CNA tend to be aligned with with both the x and y-axes of the lattice.
Along the diagonal, CNA exhibits anti-correlation as shown in Fig. 3.9 (b). In contrast to
the affine autocorrelation function, the range of these lobes decreases with increasing the
interaction range S. The third distinct correlation pattern we observe, appears in the
case when neither the affine nor the non-affine lobe patters appear clearly. This occurs
to a varying degree when the lattice reaches the isostatic point at the bond-occupation
probability p = pc, where moduli correlations are seen to fluctuate strongly over a large
region of the lattice, compared to the non-critical correlations. The degree to which
these fluctuations of the elastic autocorrelation permeate the system depends on the
interaction range. The instance of the nearest-neighbour lattice S = 1 at the isostatic
point p = 2/3 is depicted in Fig. 3.9 (c).

We will start the analysis of the spatial correlation structure with the case of the
high-p regimes for all four interaction ranges. As we have already observed in Fig. 3.7,
we expect the crossover between the affine and non-affine regime to takes place here.

3.8.1 Correlation structure at high p

The behaviour of the three autocorrelation functions CA, CNA and CG in the high-p
regime is summarised in Fig. 3.10.

The first row shows the change the affine autocorrelation undergoes when increasing
the maximal interaction range S. Starting with the nearest-neighbour case, as expected,
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S = 1

CA

S = 2 S = 5 S = 15

CNA

CG

Fig. 3.10 The spatial autocorrelation structure for the high bond-occupation probabilities
p = 0.990 for S = 1, 2 and p = 0.850 for S = 5, 15. The affine, non-affine and full elastic
autocorrelations are shown separately for all interaction ranges under investigation.

CA exhibits significant positive correlation only with the four neighbours which contribute
to the mechanical stability under the x-y shear in the first shell. The same pattern
continues to the S = 2 case, where the affine autocorrelation has a positive contribution
at four additional lattice sites, which are the four mechanically stable bonds added into
the second shell. Further increasing the maximal interaction range to S = 5 and S = 15
we observe that the range of the affine correlation function increases proportional to the
shell range in correspondence to the behaviour described above in terms of the angular
average of CA.

In the second row of Fig. 3.10 we find evidence for the emergence of the two main
characteristic of the non-affine autocorrelation function. Firstly, as mentioned above, the
non-affine autocorrelation function exhibits positive correlation lobes along the x and
y-axes in physical space. The trend of the range of the positive non-affine correlation
lobes clearly is seen to increase with the interaction range cutoff S.
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S = 1

CA

S = 2 S = 5 S = 15

CNA

C

Fig. 3.11 The spatial autocorrelation structure for the intermediate bond-occupation probabil-
ities p = 0.850 for S = 1, p = 0.700 for S = 2, p = 0.400 for S = 5, and p = 0.200 for S = 15.
The affine, non-affine and full elastic autocorrelations are shown separately for all interaction
ranges under investigation.

The spatial autocorrelation structure of the full shear modulus CG. Recalling the
results on the behaviour the affine and non-affine correlation coefficients, it is possible to
observe interplay between the relative strengths of ρA and ρNA in the spatial correlation
patterns. For the S = 1 case with a fraction of p = 0.990 bonds present, both correlation
coefficients are close to one. And in fact, we can verify that the corresponding CG is a
mixture of both CA and CNA. This pattern of the autocorrelation function CG is even
clearer in the S = 2 lattice with p = 0.990. The situation is very different in the longer-
range lattices with interaction cutoff S = 5 and S = 15 both at p = 0.850. Even though
the non-affine autocorrelation appears longer ranged both in the positive and negative
correlation lobes, we can in this instance observe the crossover to the affine regime
predicted earlier. The S = 15 elastic autocorrelation function CG clearly predominantly
inherits the affine diagonal lobes of CA. This trend decreases going to lower S, as we
would expect. The S = 5 and S = 15 full elastic autocorrelations exhibit predominantly
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affine characteristics, where the S = 1 and S = 2 cases have clear contributions from the
non-affine positive and negative correlation lobes.

3.8.2 Correlation structure at intermediate p

Consider the autocorrelation function maps at the intermediate choices for the bond
probability p the situation is different. The choices for the intermediate bond-occupation
probabilities are such that all four lattices are in the in the regime where the non-affine
correlation coefficient dominates. This readily translates to the CG correlation maps of
plotted in the third row of Fig. 3.11. We can clearly see that all four predominantly
controlled by the non-affine autocorrelations.

It is noteworthy, that in contrast to the high p situation, the non-affine autocorrelation
function CNA exhibits stronger anticorrelations for all interaction ranges than in the
high-p regime. In particular, we can observe in Fig. 3.11 that the range of these anti-
correlations increases when going from S = 15 to S = 1. The particular choice of the
bond-occupation probabilities for the S has the consequence that the relative strength of
the affine correlation coefficient ρA with respect to the non-affine correlation coefficient
ρNA for S = 1 and S = 2 is significantly higher than for S = 5 and S = 15, as seen in
Fig. 3.7. This is reflected in the spatial correlation patterns C where for S = 1, 2 the
short-range positive correlation is present at the distance of the first and second shell,
respectively. This positive correlation ring is followed by the anticorrelations along the
diagonals which is characteristic for CNA. This behaviour cannot be observed for S = 5,
15 where at p = 0.850 the relative strength of ρA is too low, despite the fact that the
correlation length of CA is increasingly larger than for S = 1, 2.

3.8.3 Correlation structure at the critical point pc

Firstly, as expected from the aforementioned analytical result for CA, we can observe
in Fig. 3.12 that also at the respective critical bond-occupation probabilities the affine
autocorrelations practically exhibits the exact same form as for high and intermediate
p. In addition to that we also anticipate from the fact that the non-affine fluctuations
var(GNA show a divergence at the critical pc that the full elastic autocorrelation function
should be dominated by contributions from the non-affine part CNA. In fact this is the
behaviour we see in the spatial plots of C, CA and CNA shown in Fig. 3.12. The full
elastic autocorrelation feature the long-range, highly fluctuating patterns mentioned above.
The nearest-neighbour lattice has the longest-range and strongest elastic autocorrelation
pattern of the four interaction ranges. We notice that the correlation pattern is oscillatory
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S = 1
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S = 2 S = 5 S = 15

CNA

C

Fig. 3.12 The spatial autocorrelation structure for the critical bond-occupation probabilities
p = 0.667 for S = 1, p = 0.333 for S = 2, p = 0.111 for S = 5, and p = 0.032 for S = 15. The
affine, non-affine and full elastic autocorrelations are shown separately for all interaction ranges
under investigation.

changing between positive and negative correlation. These kind of oscillations have been
observed for example in Ref. [38]. The range of the critical elastic correlations reduces
as the interaction range increases. We can observe an anomalous change in the shape
at S = 2, since S = 1 and S = 5 bear more resemblance in their correlation with each
other than with S = 2. The cause for this is not know at this point. The attenuation
of the critical fluctuations as seen in Fig. 3.12 can be explained again by the fact that
the non-affine fluctuations var(GNA) get damped in amplitude by the inclusion of more
bonds.

3.8.4 The mechanisms controlling the elastic autocorrelation

We first want to explain the quadrupolar angular pattern we have observed for the affine
autocorrelation function CA. Going back to the definition of the local affine modulus in
Eq. (3.6), we see that the contribution to the angular dependence of the affine modulus
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from the bond between site i and j is proportional to
(
nx
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y
ij

)2
= sin2(ϕij) by writing the

unit bond vector in polar coordinates. The characteristic angular pattern of the affine
elastic correlation function threfore stems from the fact that a typical contribution of
has the form

CA ∼
(
nx

ijn
y
ij

)4
∼ sin4(2ϕij) (3.38)

where ϕij denotes the bond angle of the bond between particle i and j. The physical
picture of the diagonal alignment of the positive correlation lobes is provided by the
fact that the system is subject to a shear deformation. In the continuum picture of
elasticity, applying an external shear strain to the solid leads to regions of elongation
and compression (we can think of the simple analogy of a rubber band elongating and
compression in different directions when stretched) along the diagonals of the system.
The result of this is that the affine shear modulus becomes biased along the diagonal axes
and therefore positively correlated. This precisely reflects the action of the deformation
gradient tensor F for pure shear.

In contrast to the affine elastic autocorrelation function, CNA cannot be simply written
as a summation over the bonds in the lattice. Understanding the origin of the lobe
structure of the CNA and its evolution with changing parameters therefore is not as
straightforward as with CA.

We recall that the local non-affine modulus is defined in terms of the non-affine
displacement fields and the affine force field as

GNA,i = 1
V

Ξi · δrNA,i. (3.39)

where the local non-affine displacement fields where defined in Eq. (3.8) as δrNA,i =
〈i| H−1|Ξ〉 = ∑

p λ−1
p 〈i |p〉〈p| Ξ〉. For this reason, it should be possible to gain some

understanding about the origin of the spatial patterns of the non-affine autocorrelation
CNA by studying the autocorrelations of the local affine force field Ξi and the local
non-affine displacement fields δrNA,i. We first consider the affine force field correlations,
since as in the case of CA we expect from the definition of Ξi that the geometry of the
bond configuration is responsible for the correlation structure. The local affine force field
is defined as

Ξi =
∑

j

κijrijn
x
ijn

y
ijn̂ij (3.40)
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CΞ

S = 1 S = 2 S = 5 S = 15

Fig. 3.13 The spatial patterns of the affine forcefield autocorrelation function CΞ depicted for
the four interaction ranges S = 1, 2, 5, and 15 in their respective high p regimes.

where the summation over the index j is restricted to the sites connected to i with a
bond of stiffness κij and bond length rij. Consequently, we compute the associated
autocorrelation function by projecting the local affine force field at site i onto that at
site j. The resulting contribution to the autocorrelation function CΞ is given by

[
CΞ(r)

]
ij

= 〈Ξi · Ξj〉 − 〈Ξi〉〈Ξj〉
〈Ξ2〉 − 〈Ξ〉2 . (3.41)

Due to the fact that the affine force field is essentially an sum over bonds, its spatial
correlation structure behaves similarly to the affine modulus correlation function, with
the difference that instead of the diagonal positive correlation lobes we now find diagonal
anti-correlation. We can see this behaviour in Fig. 3.13. The S = 1 affine force field
correlations shows clear negative correlation with the four mechanically contributing
neighbours, indicated by the black colour coding of the sites. The trend towards anti-
correlations can be understood in the following way. Imagine that particle j is situated in
the S = 1 shell of particle i. In the case, where all six bonds are present, the affine force
field is zero locally. However, if the bond between site i and j is cut, Eq. (3.40) will yield
a non-vanishing contribution. To be specific, assuming the ij-bond, which is cut, lies
along the direction (1/2,

√
3/2), the resulting affine force field at site i will point along

the opposite direction, i.e. Ξi ∝ (−1/2, −
√

3/2), as can easily be checked. Viewed from
site j, of course, the cutting of the bond will yield an affine force field which point in
the opposite direction. So effectively, Ξi ∝ −Ξj, which is the reason for the tendency of
negative correlations of the affine force field along the directions (±1/2, ±

√
3/2). Moving

to the higher interaction range cutoffs, more and more sites along their associated unit
bond vector tend to anti-correlate with the affine force field at the central site, and as a
consequence the range of the anti-correlation lobes in CΞ grows, which is evident from
Fig. 3.13.
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Fig. 3.14 The spatial structure of the non-affine displacement correlation function at the
critical point for different interaction ranges.

Resorting to the representation of the unit bond vectors in polar coordinates we can
express 〈Ξi · Ξj〉, i.e. the term which appears as the covariance in the autocorrelation
between site i and j, in terms of the bond angle ϕij. Considering the configurational
average of Ξi · Ξj, only the bond between i and j directly contributes to the correlation.
For this reason, by only retaining this contribution we write

Ξi · Ξj ∝
∑

k

nx
ikny

ikn̂ik

∑
l

nx
jln

y
jln̂jl ∼ nx

ijn
y
ijn

x
jin

y
jin̂ij · n̂ji. (3.42)

Since n̂ij = −n̂ji and n̂ij = (cos ϕij, sin ϕij) in terms of the bond vector we obtain

Ξi · Ξj ∝ − (sin ϕij) cos ϕij))2 = − sin2 (ϕij) (3.43)

which describes the quadrupolar anticorrelation lobes seen in Fig. 3.13.
Alongside the affine force field Ξ, the second physical quantity controlling the non-

affine shear modulus GNA is the non-affine displacement field δrNA. The field δrNA

appears as the linear response of the lattice to the force field Ξ [57]. In order to
understand the influence of the addition of interaction shells into the lattice we probed
the autocorrelation function of the local displacement fields δrNA,i at the isostatic point.
To simplify the notation, we set δr = δrNA and Cδr(r) = CδrNA(r). Then the contribution
to the displacement field autocorrelation function between site i and j is defined as

[
Cδr(r)

]
ij

= 〈δri · δrj〉 − 〈δri〉 · 〈δrj〉
〈δr2〉 − 〈δr〉2 (3.44)

which serves as a measure of both the alignment of the displacement fields at the two
sites and their magnitude. In Fig. 3.14 we show the spatial pattern of Cδr(r) for the
four interaction ranges S = 1, 2, 5, and 15 the their respective critical bond-occupation
probabilities. The plots show the full lattices and are not zoomed in. The first striking
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S = 1

p = 0.667

S = 15

p = 0.032

Fig. 3.15 Comparison of the non-affine autocorrelation function CNA (left column), the
displacement field of one configuration (centre column), and the bond structure of both the
S = 1 and S = 15 at their respective isostatic points.

observation we make is that the non-affine displacement autocorrelation function for the
nearest-neighbour lattice S = 1 permeates the full lattice in the vertical direction. A
diamond-shaped boundary separates the region of position correlation from the region of
negative correlation, with a thin boundary layer, shown in light blue. At this point it is
important to note that this form of Cδr(r) arises by the superposition of several patterns
which depend on the actual random configuration from which the autocorrelation is
computed by statistical averaging. Typically, Cδr(r) completely reaches through the
full lattice either from left to right or top to bottom, respecting the periodic boundary
conditions. This means that the non-affine particle motion preferentially correlates along
the directions (1, 0) and (0, 1), reflecting the structure of the correlation lobes observed
in CNA. Interestingly, non-affine displacement correlation which reach through the entire
system were observed experimentally in quasi-statically sheared colloidal glasses [16].
When the interaction cutoff is increased, the range of the autocorrelation function Cδr

decreases, while simultaneously diminishing in magnitude.
At S = 15, the displacement-displacement correlation pattern is of circular shape.
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In order to further understand the development of Cδr from diamond-like to the
circular pattern we compare the two cases at S = 1 and S = 15. At the isostatic point,
both the S = 1 and the S = 15 lattice have the same average number of neighbours
〈Z1〉 = 〈Z2〉 = 4. However, since in the S = 15 case, there are 15 different interaction
shells from which bonds can be depleted, the resulting bond structure is strikingly
different than in the nearest-neighbour lattice. In the right-hand column of Fig. 3.15, we
compare the two situations. The bonds of length one, which by virtue of the r−3 scaling
of the interaction strength are both the shortest and strongest bond, are shown in black.
The bonds of longer range in the S = 15 lattice are shown as translucent, where the
opacity inversely scales with the bond length. As a consequence of the presence of the
many long-range bonds and the uniform depletion mechanism, only a very small fraction
of strong bonds remain in the case S = 15, as can be seen in Fig. 3.15. The distribution of
bond orientations is much more isotropic due to the broader distribution of bond angles.
In terms of the bond structure we can conclude that the S = 1 has a strong backbone
of r1 = 1 bonds, whereas in the S = 15 consists of a sea of weak bonds with a few
localised regions of strong nearest-neighbour bonds. The consequence of this disparate
bond topology is that in nearest-neighbour S = 1 lattice the influence of disorder-induced
non-affine displacements can easier travel trough the lattice. If at one site a particle
undergoes a non-affine displacement, it exerts forces on its neighbouring particle which
leads to another non-affine displacement, eventually leading to a cooperative effect.
As hinted earlier, we know that the non-affine shear modulus and the corresponding
non-affine displacements are a non-local quantity since the contain the full eigenvector of
the system. This explains why the correlation function Cδr spans a large portion of the
entire lattice. This strong force correlation along the nearest-neighbour bond evidently is
not possible in the S = 15 lattice. The forces locally arises from a non-affine displacement
are distributed much more isotropically and are suppressed by virtue of the r−3 scaling
of the interaction strength.

This behaviour is also clearly reflected in the actual displacement fields. The central
column of Fig. 3.15 shows the local displacement fields δri. The colour gradient used
in this plot shows large magnitude displacements in red and small displacements in
purple. Specifically, the part of the colour gradient is reached when the displacement
field exceeds twice the value of the mean displacement field in the system. We can see
that the spatial structure of the displacement vector field shows large regions where
many particles cooperatively move in the same direction with a relatively high amplitude.
These correspond to precursors of plastic rearrangements in the system which eventually
give rise to the yielding of the system under the external shear stress [86]. Also visible
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are vortex-like patterns which are characteristic of non-affine displacement fields [62].
In contrast, the displacement fields in the case of the longest interaction cutoff S = 15
does not show these patches of large and small displacements. We observe that the
displacement vector pattern is much more homogenous than in the S = 1 case. Here,
the non-affine displacements δr are of comparatively smaller amplitude and exhibit a
more isotropic distribution in terms the directions of the displacements. Clearly, these
aspects can be identified as the cause for the shorter range and more isotropic shape of
the displacement correlation function Cδr in the S = 15, also shown in Fig. 3.15.

3.9 Concluding remarks

In summary, using a triangular lattice as a model system we have analysed its elastic
heterogeneities and the concomitant spatial elastic correlations to systematically map out
the influence of long-range bond and degree of disorder in the lattice, characterised by the
shell number S and bond-occupation probability p, respectively. Separately computing
the spatial elastic autocorrelation functions of both the affine and non-affine shear moduli,
we found that the interplay of bond-depletion and increasing interaction range leads to
the appearance of two regimes where the full elastic response is predominantly correlated
with either its affine or non-affine contribution. This crossover behaviour can be traced
back to the different trends of the fluctuations of the distribution of the local affine
and non-affine elastic moduli. We established that a power-law decay of the harmonic
interaction with distance leads to power-law decay of the affine elastic autocorrelation
function, which at high enough bond-occupation probabilities carries over to the full
elastic autocorrelation function. Furthermore, we investigated the spatial structure of
the elastic correlation. The quadrupolar shape of affine elastic autocorrelations can be
fully explained by the bond-structure and the shear deformation protocol. In addition,
we explained the changes of the non-affine elastic autocorrelation patterns in terms of
the of the correlations of the affine force and the non-affine displacement fields which
constitute GNA.

In particular, we see that the diagonal anticorrelation part of the non-affine elastic
autocorrelation function CNA arises due to the affine force field correlations. The positive
correlation lobes along the x- and y-axes are caused by the non-affine displacement
field δrNA and its correlation structure. The long-ranged correlation lobes of the non-
affine elastic autocorrelation CNA stem from the long-range character of Cδr. In the
intermediate-p regime we saw that the non-affine elastic correlation lobes become stronger
when S is decreased, which is explainable by the stronger relative influence of the nearest-
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neighbour backbone in the lattice. Similar elastic correlation pattern have been described
in the literature in the framework of the continuum theory of Eshelby [97]. Interestingly,
experiments with slowly sheared colloidal glasses in Ref. [16] show elastic correlation
patterns resembling the patterns we found. In particular, the same change of symmetry
of the elastic autocorrelation was found. The quadrupolar pattern along the x- and
y-axes, which we found for example for S = 1, p = 0.850, was associated to a region of
the colloidal glass which behaves solid-like and shows little shear banding. The change
from this quadrupolar shape of CG(r) to the isotropic case, very similar to the shape
we saw for S = 15, p = 0.032, was attributed to regions in the colloidal glass of high
mobility, where the transition from a solid-like to a liquid-like response has occurred [16].
Despite the fact that our systems harmonic lattices, where of course there is no viscous,
liquid-like behaviour possible, these observations align phenomenologically with the
physical response expected from our system. At the critical point, the lattice is at the
threshold of losing its mechanical stability, where many non-affine displacements occur,
which are interpreted as precursors to irreversible plastic rearrangements leading to
macroscopic shear flow [62].

3.10 Consequences for the propagation of vibrational
excitations

The existence of defects has important consequences for the propagation dynamics of
vibrational excitations through the disordered system. In a perfectly crystalline system,
vibrational excitations travel as plane wave phonons. The introduction of defects, for
example in the form of bond-depletion, inevitably leads to deviations from the phonon-like
behaviour, since the waves associated to the vibrational excitations are scattering by
the disorder. Instead of remaining extended phononic modes, the vibrations becomes
localised in this case.

This can be clearly in Fig. 3.16, which shows the dispersion relation ω(q) obtained
from computing the dynamic structure factor S(q, ω) using the kernel polyomial method,
which we introduce in the next chapter. The peak positions of S(q, ω) define the
dispersion relation. The top left panel of Fig. 3.16 shows a clear dispersion, which means
that vibrational excitations of a given frequency have a well-defined wave vector. This
characterise phononic vibrational modes. Introducing disorder strongly changes the
dispersion relation. Vibrational modes no longer can be described as phonons because
the dispersion relation experiences significant broadening. This is shown of Fig. 3.16,
which depicts S(q, ω) for the S = 15 at increasing degrees of disorder.
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Fig. 3.16 The dispersion ω(q) of the triangular lattice with interaction range S = 15. The
panels show bond-occupation probabilities p = 1, p = 0.85, p = 0.2, and p = 0.032.

In order to characterise the localisation of vibrational modes in the triangular lattice
with long-range interactions qualitatively we have computed the participation ratio,
which is defined as [66]

P(ωp) = 1
N

(∑N
i=1 u2

p,i(ωp)
)2

∑N
i=1 u4

p,i(ωp)
(3.45)

where u2
p,i represent the eigenvector components of particles. For extended vibrational

excitations P(ω) is of order one, whereas for localised excitations the participation ratio
scales as 1/N where N is the particle number. The results for the model system of this
chapter can be seen in Fig. 3.17. It can be clearly seen that the introduction of long-range
bonds into the lattice has a significant effect on the localisation of vibration modes. At
larger interaction ranges, there is a larger portion of delocalised modes present which
hints at a stronger quasi-periodic bond backbone. It also appears that the point of the
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Fig. 3.17 The participation ratios P(ω) for the long-range triangular lattice for different
interaction ranges S = 1, S = 2, S = 5, and S = 15.

transition between the localised modes, signified by a very low value of the participation
ration and the delocalised modes moves to higher frequencies. This transition is associated
with the Ioffe-Regel limit [83, 6], which points to the threshold where the spatial extension
of quasi-localised modes becomes comparable to the spacing between defects in the system.
The Ioffe-Regel transition therefore consists of a crossover from weak to strong scattering
of vibrational modes. As discussed in the Introduction, it was recently established
that elastic correlation in glasses modify the scattering mechanism of vibrational modes
which shows in a deviation from the Rayleigh scattering regime [42]. This regime is
characterised by a |q|3 scaling of the width Γ(q) of the dynamic structure factor S(q, ω)
in two dimensions at low frequencies, which governs the attenuation of vibrational modes
via the scattering at disorder. In Ref. [42] it was reported that power-law correlations in
the material lead to a logarithmic correction factor to the Rayleigh scattering law. It
is, however, noteworthy that the mere presence of long-range bonds with a power-law
decay of the stiffness can lead to a logarithmic correction of the dispersion relation
for one-dimensional linear chains without disorder. This is explained in Appendix C.
For this reason it would be very interesting to map out the consequences of long-range
interactions for the Ioffe-Regel transition in order to clarify the effect of the long-range
bonds on the propagation dynamics of the vibrational excitations. This means that to
obtain further insights into the physics behind the altered scattering mechanism reported
in Ref. [42], the behaviour of Γ(q) has to be studied for our model system in dependence
on the interaction range and degree of bond-depletion.



Chapter 4

Approximate description of
vibrational and viscoelastic
properties

The analysis of the spectral density of dynamical matrices and their eigenvector character-
istics is the key component when describing mechanical and thermodynamical properties
of disordered solids within the framework of non-affine lattice dynamics. However, for a
very large number of particles needed to model a system realistically, direct diagonalisa-
tion ceases to be a viable method to obtain the eigenfrequencies and eigenmodes. This is
the case because the memory requirement for numerically computing the eigenvalues, and
in particular the eigenvectors, of the Hessian matrix become extremely high for systems
larger than N = 104. Therefore, if we want to conduct an analysis of the properties of
the eigenfrequency spectrum and the corresponding eigenvectors, we have to resort to an
approximation scheme.

One prominent candidate, which we introduce in this chapter is the so-called kernel
polynomial method (KPM) for the analysis of eigenvalues and eigenvectors of very large
sparse matrices based on the expansion of the eigenvalue spectral density into Chebyshev
polynomials [96]. The approximation then consists of a truncation of the series expansion
at finite order and a consecutive stochastic approximation of the series coefficients. The
KPM has been successfully applied to a variety of different physical problems, most
importantly the approximation of dynamical correlation functions in both classical and
quantum systems. For example, in Ref. [5] the dynamic structure factor and spatial
eigenvector correlation function of amorphous silicon were analysed based on a normal
mode analysis. Furthermore, the KPM was used to compute the Green’s function and
the dynamical optical conductivity of fermionic quantum systems [96]. The goal of the



76 Approximate description of vibrational and viscoelastic properties

present chapter is to apply the kernel polynomial method to the problem of computing the
viscoelastic response of a disordered system following the theoretical framework of non-
affine lattice dynamics described in Chapter 1. This approach is based on approximating
the non-affine correlator Γ(ω) using KPM which has not been described before. In
addition to that, introducing compositional disorder into the system, i.e. allowing for
variations of the particles masses has a non-trivial effect on the frequency-dependent
viscoelastic spectrum. This necessitates an extension of the non-affine expression for
the frequency-dependent shear modulus Eq. (1.48) based on the generalised eigenvalue
problem in order to facilitate an accurate description in the presence of compositional
disorder by explicitly taking into account the contributions from different masses. As an
example, the problem will be studied for the case of a heteropolymer model consisting of
three different masses.

4.1 Vibrational density of states from KPM

The focus in the first section will be to describe the general framework needed to set up
the KPM algorithm for the computation of the eigenfrequency spectrum of a generic
Hessian matrix. We consider a real-valued function f(x) on the interval [a, b]. The core
idea behind the kernel polynomial approximation is to expand the function f(x) into a
series of Chebyshev polynomials of the second kind Uk(x) [96], i.e.

f(x) =
∞∑

n=0
αkUk(x). (4.1)

Introducing the weighted scalar product on the interval [−1, 1],

〈f | g〉ξ =
∫ 1

−1
ξ(x)f(x)g(x) dx (4.2)

the Chebyshev polynomials of the second kind are orthogonal with respect to the weight
w(x) = π

√
1 − x2, i.e.

〈Uk| Ul〉w = π2

2 δk,l (4.3)

where δk,l represents the Kronecker delta. Hence, the expansion coefficients αk appearing
in Eq. (4.1) are given by

αk = 2
π

∫ 1

−1

√
1 − x2Uk(x)f(x) dx. (4.4)
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In addition, the Chebyshev polynomials Uk(x) can be computed using the recurrence
relations

U0(x) = 1
U1(x) = 2x

Uk(x) = 2xUk−1(x) − Uk(x) (4.5)

or, equivalently, can be defined through their trigonometric representation

Uk(x) =
sin

[
(k + 1) arccos x

]
√

1 − x2
. (4.6)

Having laid out the groundwork, we can now proceed to consider the problem of expanding
the vibrational density of states defined as

ρ(ω) = 1
N

∑
i

δ(ω − ωi). (4.7)

into Chebyshev polynomials. The function ρ(ω) is the distribution of eigenfrequencies
which result from the generic eigenvalue problem Hxi = λixi. Usually the matrix H repre-
sents the Hessian matrix of an interacting particle system, where the eigenvalue represent
the vibrational eigenfrequencies, i.e. λi = ω2

i . Since the set of eigenvalues {λi}i∈1,...,3N of
the underlying 3N × 3N Hessian matrix are just the squared eigenfrequencies, we can
use the variable transformation λ = ω2 and write the DOS as

ρ(ω) = 2ω

3N

∑
i

δ(ω2 − ω2
i ) = 2ω

3N

∑
i

δ(λ − λi). (4.8)

In order to allow for the KPM treatment, the support of the function ρ(ω) has to
be mapped onto the interval [−1, 1], to permit the expansion in terms of Chebyshev
polynomials. We thus have to express the DOS in terms of a rescaled variable λ̃, such
that the original support of eigenvalues [λmin, λmax] is mapped onto [−1, 1] 3 λ̃. This can
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be achieved by a linear transformation of the eigenvalue problem, which is given by [96]

H̃ = H − 1b

a

λ̃ = λ − b

a

a = λmax − λmin

2 − ε

b = λmax + λmin

2 .

where ε is a small parameter which serves the function to stabilise the convergence of
the kernel polynomial method against unwanted fluctuations at the edges of the support
of the eigenvalue spectrum, known as Gibbs oscillations. Using this transformation we
can express the DOS as

ρ(ω) = 2ω

3N

2 − ε

λmax − λmin

∑
j

δ(λ̃ − λ̃j). (4.9)

We now apply the abovementioned approach and expand the δ-function appearing in
Eq. (4.9) in terms of the Chebyshev polynomials Uk(λ̃). Making use of the relation∫

f(y)δ(x − y) dy = f(x), we can express the δ-function as [5]

δ(λ̃ − λ̃p) = 2
π

√
1 − λ̃2

∞∑
k=0

Uk(λ̃)Uk(λ̃p). (4.10)

Plugging in the trigonometric definitions of the Chebyshev polynomials, we can proceed
to write series expansion as [5]

ρ(ω) = 4ω

3Nπ

2 − ε

λmax − λmin

∞∑
k=0

µk sin
[
(k + 1) arccos λ̃

]
(4.11)

where we have introduced the Chebyshev moments defined by

µk = 1
3N

3N∑
j=1

Uk(λ̃j). (4.12)

The approximation then essentially consists of truncating the infinite series at a finite
order such that

δ(λ̃ − λ̃j) ≈ 2
π

√
1 − λ̃2

K∑
k=0

γkUk(λ̃j)Uk(λ̃). (4.13)
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At this point the damping factor γk has to be introduced to counteract so-called
Gibbs oscillations. The damping induced by γk effectively truncate the series expansion
gradually to avoid the oscillatory fluctuations which would appear if the sum were
truncated abruptly [5, 96]. By substituting this truncated series into the expression for
the DOS in Eq. (4.9) we obtain the approximate vDOS as

ρ(ω) = 4ω

3Nπ

2 − ε

λmax − λmin

K∑
k=0

γkµk sin
[
(k + 1) arccos λ̃

]
(4.14)

where K denotes the degree of the approximation which basically sets the resolution of
the algorithm for approximating the δ-peaks which constitute the vDOS.

The above summation can be carried out numerically. It now remains to treat the
moments µk. Considering Eq. (4.12), we observe that the moments µk can be written as

µk = 1
3N

3N∑
p=1

〈p| Uk(H̃) |p〉 (4.15)

where |p〉 represents the normalised eigenvector of the rescaled Hessian matrix H̃. The
central point of the KPM is that the above trace can be approximated stochastically very
accurately if the matrix H̃ becomes very large [96]. This means that instead of evaluating
the trace over the full set of all eigenvectors we initialise a number of normalised Gaussian
random vectors |u0〉 which we want to use for the evaluation of the above trace. To see
how this works, let us first expand one realisation of the Gaussian random vector in
terms of the eigenvectors of the matrix H̃, i.e.

|u0〉 =
∑

p

|p〉〈p| u0〉 =
∑

p

αp |p〉 . (4.16)

Hence, using this expansion we obtain for the matrix elements

〈u0| Uk(H̃) |u0〉 =
3N∑
p=1

|αp|2 Uk(λ̃p) (4.17)

which holds by virtue of the orthonormality of the eigenvectors. The components of
the random vector |u0〉 in an arbitrary basis, i.e. both the components u0,i and αp, are
independently and identically distributed. They have zero expectation value and unit
variance, i.e. 〈〈αp〉〉 = 0 and 〈〈α∗

pαq〉〉 = δp,q/(3N), where 〈〈. . .〉〉 denotes the expectation
value with respect to the Gaussian probability distribution. Therefore, taking the
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expectation value of Eq. (4.17), we obtain

〈〈
〈u0| Uk(H̃) |u0〉

〉〉
=

3N∑
p=1

〈〈|αp|2〉〉Uk(λ̃p)

= 1
3N

3N∑
p=1

Uk(λ̃p) = µk (4.18)

since the random vectors u0 are normalised to one, which entails that 〈〈|αp|2〉〉 = 1/(3N) [5].
This means in conclusion that we can stochastically approximate the Chebyshev moments
as µk ≈ 〈〈〈u0| Uk(H̃) |u0〉〉〉. Setting |uk〉 = Uk(H̃) |u0〉 and mk = 〈u0| uk〉 we see that
after averaging over many realisations of the random vector |u0〉, mk will converge to
µk, i.e. 〈〈mk〉〉 → µk [5]. The relative error of the stochastic approximation of the trace
is of the order O(

√
RN) [96], where R is the number of random vectors drawn from

the Gaussian ensemble. Therefore, starting from |u0〉 we can consecutively compute
the Chebyshev moments µk by applying the recurrence relation defining the Chebychev
polynomials. In the first iteration, |u1〉 is obtained by using Eq. (4.5)

|u1〉 = H̃ |u0〉 (4.19)

and by further applying the recurrence relation this continues to

|uk〉 = 2H̃ |uk−1〉 − |uk−2〉 . (4.20)

In the remaining part of this chapter we will now consider the application and extension
of the kernel polynomial approximation to study the vibration and mechanical properties
of disordered condensed matter systems.

4.2 Approximation of the non-affine correlator Γ(ω)
Having laid out the KPM for computing approximations to the vDOS ρ(ω), it remains
to adapt the approach for estimating the non-affine correlator Γ(ω) in order to allow for
a full analysis using non-affine lattice dynamics. Since the relevant quantity appearing
the expression for complex viscoelastic shear modulus is the product of the Γ-correlator
and the density states ρ(ω), we now set out to derive the expressions necessary for the
application of the KPM. Setting aside the averaging over frequency shells, Γ(ω) is defined
as the squared norm of the projection of the eigenvectors of the Hessian matrix onto
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the affine force field of the disordered particle system, i.e. |〈Ξ| p〉|2, where again |p〉
represents an eigenvector of the Hessian matrix.

Since the ansatz of the KPM starts with the decomposition of the δ-function, we will
directly access the distribution of the product of |〈Ξ| p〉|2 and ρ(ω) with the KPM. With
this expectation in mind, we start by considering the function which will approximate
the above product, i.e.

J (ω) = 2ω

3N

2 − ε

λmax − λmin

∑
p

〈Ξ| p〉〈p |Ξ〉 δ(λ̃ − λ̃p)

= 4ω

3Nπ

2 − ε

λmax − λmin

∞∑
k=0

γkµk sin
[
(k + 1) arccos λ̃

]
(4.21)

where now the expansion coefficients µk take the form

µk = 1
3N

∑
p

〈Ξ| p〉〈p |Ξ〉 Uk(λ̃p). (4.22)

In analogy to Eq. (4.15), we now want to pull in the Chebyshev polynomial Uk(λ̃p) into
the scalar product above in order to make use of the relation Uk(λ̃p) |p〉 = Uk(H̃) |p〉. We
continue by first rearranging Eq. (4.22) and then apply the above relation, which yields

µk = 1
3N

∑
p

〈p |Ξ〉 〈Ξ| p〉Uk(λ̃p)

= 1
3N

∑
p

〈p |Ξ〉 〈Ξ| Uk(H̃)|p〉 (4.23)

In this form we again have a trace at hand which we can tackle using the stochastic
approximation introduced earlier. We again expand the random vector |u0〉 with respect
to the eigenvector of the transformed Hessian H̃ and write the statistical average of the
trace as 〈〈

〈u0 |Ξ〉〈Ξ| Uk(H̃) |u0〉
〉〉

=
〈〈∑

p,q

α∗
pαq〈p |Ξ〉〈Ξ| Uk(H̃) |q〉

〉〉
. (4.24)

Since the components of the random vector fullfill 〈〈αpαq〉〉 = δp,q/(3N) the above equation
is reduced to 〈〈

〈u0 |Ξ〉〈Ξ| Uk(H̃) |u0〉
〉〉

= 1
3N

∑
p

〈p |Ξ〉〈Ξ| Uk(H̃) |p〉 = µk (4.25)
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Fig. 4.1 Comparison of the results obtained from the KPM with the results from direct
diagonalisation. The polynomial degree of the coarse and fine KPM curve is K = 50 and
K = 300, respectively.

which takes us back to Eq. (4.22) and therefore is the desired result. Using the same
notation as for the KPM discussion of the density of states, i.e. |uk〉 = Uk(H̃) |u0〉, we
conclude that the expression

mk = 〈u0 |Ξ〉〈Ξ| Uk(H̃) |u0〉 (4.26)

is the correct approximate Chebyshev moment which stochastically converges to µk, in
the sense that 〈〈mk〉〉 → µk.

As we observe in the numerical computations, the convergence rate for the function
J (ω) is dramatically slower than for ρ(ω). This means a significantly larger number R of
sample random vectors has to be drawn in order to achieve a good approximation. The
reason for this might be the fact that the components of the vector Ξ are distributed
across a rather wide range in comparison to the zero mean, unit variance distribution
of the elements of the random vector |u0〉. The variance for example for the polymer
system discussed later is of the order 104. This high degree of fluctuations is inherited by
the product 〈u0| Ξ〉 and thus slows down the convergence rate of the KPM algorithm.
In fact, the distribution of the components of Ξ is roughly Gaussian for each individual
coordinate. However, the crucial difference is that not only is the distribution of the
values centred at 0 but is actually exactly constrained to be zero, since the system is in a
global force equilibrium.

4.3 First comparison with direct diagonalisation

As a first application, to prove the methodology, we investigate the applicability of the
kernel polynomial method to the problem of computing the complex viscoelastic response
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Fig. 4.2 The complex viscoelastic modulus G∗(ω) = G′(ω) + iG′′(ω) obtained using the KPM
and direct diagonalisation for the depleted fcc crystal with bond-occupation probability p = 0.70
and friction ν = 1.

of a depleted fcc crystal. This requires that we compute the vibrational density of states
as well as the frequency correlator of the non-affine elastic correction, the Γ(ω)-function.

We have computed D(ω) and Γ(ω) with KPM using two different resolutions to
compare the convergence behaviour of the approximation functions. The coarse ap-
proximation uses polynomials up to a degree of 50, and the fine approximation uses
polynomials up to degree 300. For both the coarse and fine approximation we work
with 10000 samples of the basis vector u0 to achieve a good convergence of the random
trace average. The depleted fcc crystal at hand has a bond-occupation probability of
p = 0.7, consists of N = 4000, and 5 realisations at this point. From Fig. 4.1(a) we can
see that the high-frequency part of the vDOS computed by direct diagonalisation is well
represented by KPM for both the coarse and fine setups. However, at low frequencies
close to ω = 0 it becomes obvious that the coarse version of KPM cannot wrap the finer
details of the DOS. This feature of KPM will become crucial later in this chapter when
we consider the approximation of the vibrational properties of a polymer melt. The
Hessian matrix there inherently exhibits negative eigenvalues, i.e. the approximation
needs to have a fine enough resolution to capture the transition into the negative support
of the spectrum.

The situation looks similar when computing the frequency correlator Γ(ω) with the
KPM. However, here we observe that the KPM even when using the higher polynomial
degree does not converge very well to the result obtained by direct diagonalisation.
This can the traced back to the fact that in the KPM algorithm there appears a scalar
product between a Gaussian random vector and the affine force field, which is fixed for
a given configuration. This inevitably leads to an large increase in fluctuations. The
distribution of the elements is Gaussian-like but has a very large variance, compared to
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the N (0, 1)-distributed elements of the random vector appearing in the KPM. As we will
see later, a rather large number of iterations is needed to converge the kernel polynomial
approximation to a high degree in the case of the Γ(ω)-correlator.

With regard to accessing the viscoelastic response of the depleted fcc system this does
not appear to be a big problem. As we can see in Fig. 4.2, showing the complex-valued
viscoelastic modulus G∗(ω) = G′(ω) + iG′′(ω), the match between the result obtained
using the KPM with the finer resolution of K = 300 exhibits a very good match with
the viscoelastic response computed from the vDOS and Γ(ω) via direct diagonalisation.

4.4 Application to polymer systems

In this section we will combine the approximation technique of the KPM and the extension
of the non-affine formalism to multi-component systems in order to study the contributions
from different masses to the vDOS, the non-affine correlator Γ(ω), and eventually the
dynamic viscoelastic response to an external oscillatory shear strain. The goal of this
approach is to have a tool at hand which allows to extract the viscoelastic response of a
large multi-component system, possibly with temperature as a system parameter. This
approach could be very useful for studying the viscoelastic and vibrational properties
of the glass transition of a multi-component polymeric systems both in the setting of
coarse-grained and atomistic molecular dynamics simulations.

4.4.1 Multi-component polymer model system

We want to move forward from the picture of a zero-temperature disordered crystal to
more complex systems. In particular, we are interested in the applicability of non-affine
lattice dynamics to the description for the linear viscoelastic response of polymeric
systems at non-zero temperatures. In addition to that we will use the extension of
the non-affine framework to multi-component polymer chains. The complex modulus
G∗(ω) will be obtained both directly from a molecular dynamics simulation and from the
solution of the equations of motion of non-affine lattice dynamics. The two main goals
are to set up the framework for computing the vibrational and viscoelastic properties of
disordered multi-component systems and the adaptation of the kernel polynomial method
to this problem.

The model system of choice for this purpose is a that of a coarse-grained polymer sys-
tem consisting of linear chains of 100 monomers which are generated using LAMMPS [91].
In particular, the polymer chain under consideration consist of three different mass
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Lennard-Jones bond

FENE bond

Fig. 4.3 Sketch of two polymer chains as they appear in the model system. Some of the
Lennard-Jones bonds between the chains are depicted as dashed lines. The FENE bonds along
the polymer chain are represented as solid lines.

species, where the three masses are chose as m1 = 1, m2 = 3 and m3 = 10. The geometry
of the chain is such that the six heavy monomers of mass m3 are placed at the centre of
each chain. On the remaining sites along the polymer chain particles of masses m1 and
m2 are placed in alternating fashion, as illustrated in Fig. 4.3.

The polymer chains are embedded in a three-dimensional box subject to periodic
boundary conditions and the Kremer-Grest model is used to describe the interactions
within and between the polymers [55]. In the Kremer-Grest model each constituent
monomer is allowed to interact via a Lennard-Jones potential

ULJ(r) = 4ε

(σ

r

)12
−
(

σ

r

)6
−
((

σ

rc

)12
−
(

σ

rc

)6
) (4.27)

where the parameters are chosen as ε = 1, σ = 1. The cutoff radius of the potential is
set to rc = 2.5. In addition, the Kremer-Grest model contains attractive along-the-chain
bonds, as depicted in Fig. 4.3. This interaction is mediated by a finite extensible nonlinear
elastic (FENE) potential given by [55]

UFENE(r) = −Kr2
0

2 ln
[
1 −

(
r

r0

)2
]

. (4.28)

The interaction parameters of the FENE interaction are K = 30 and r0 = 1.5. A Langevin
thermostat was used for the molecular dynamics simulations where particles experience a
viscous damping force proportional to the velocity. The corresponding damping constant
ξ, which is related to the damping term appearing in the lattice dynamical equation of
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Fig. 4.4 The vibrational density of states of a system of polymer chains as described in the
main text with m1 = m2 = m3 at he different temperature. The value T = 0.4 corresponds to
the glass transition temperature of this system. For visual clarity the imaginary frequencies
have been shifted to the negative real axis by setting Im ω → −ω.

motion by ξ = mν. Using dimensionless LJ units in terms of the mass m, length d and
energy ε, we set σ = 1 and ε = 1, which results in a fundamental unit of time given by
τ =

√
mσ2/ε. The system is equilibrated in a melted state at T ∗ = 1, maintaining zero

external pressure using a Nose-Hoover barostat. Subsequently, the system is cooled by
decreasing T ∗ at a rate τc ∼ O(105)τ . The details of the simulations are the same as in
Ref. [91] and were carried out by Vladimir Palyulin.

4.4.2 Instantaneous normal modes and non-affine lattice dy-
namics

One of the essential points of non-affine lattice dynamics is the diagonalisation of the
dynamical or Hessian matrix H which allows for the expansion of the affine force field Ξ
and displacements δr with respect to the eigenbasis of H and the subsequent description
of the complex viscoelastic moduli G∗(ω). In the bond-depleted fcc crystal, whose
viscoelastic response we briefly characterised in the previous section, we have assumed in
addition to zero temperature that the interactions between the particles are harmonic.
The zero temperature assumption in a lattice without internal stresses means that the
configuration R = {r1, . . . rN} of the crystal permanently resides in a minimum of the
potential energy landscape U(R). Consequently, the vibrational dynamics of the crystal
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is fully described by the eigenmodes of the underlying Hessian matrix H. In the case
of a polymer system whose monomers interact via Lennard-Jones and FENE bonds at
a finite temperature the situation is vastly more complex and the configuration of all
monomers will practically never be in a minimum of the potential energy landscape [53].

The central idea is to generate configurations of the polymer system via MD simula-
tions and consider one sample of these configurations at an instant of time t0. From this
configuration the Hessian matrix is computed and can be used as the starting point for
an analysis using non-affine lattice dynamics. This concept of obtaining the dynamical
matrix from a snapshot configuration was pioneered by Rahman et al. [75]. Therefore,
each snapshot of the system at different times t0 corresponds a different configuration
with a different Hessian matrix, and consequently a different set of eigenvectors or normal
modes. For this reason they are called instantaneous normal normal modes (INM). Since
a given microscopic configuration will rapidly evolve, it is inherent in the approach of
using configurational snapshot that the resulting dynamics governed by the INM can
only be a good approximation on short time scales [85].

Regions of the potential energy landscape then exhibit saddles and barriers, which
allow for transition between different configurations. Applying the harmonic approx-
imation in this case means that the resulting Hessian matrix ceases to be a positive
semi-definite matrix. Consequently, the eigenvalue spectrum of the Hessian will have
some negative eigenvalues, which indicate a negative curvature of U(R). The positive
part of the eigenvalue spectrum corresponds to vibrational modes which oscillate around
the harmonic minima, while the negative part corresponds to saddles and barriers in
the potential energy landscape [51]. These parts with negative curvature are linked to
instabilities in the energy landscape where the system does not oscillate around a mini-
mum but finds a direction in which it can transition to a different configuration. Clearly,
these directions in the potential energy landscape are necessary for diffusive motion
and dissipative structural relaxation through barrier hopping [52], which is connected
to the loss of mechanical stability at the onset of the glass transition. In addition to
that, resorting to the analogy of a simple harmonic oscillating motion of the amplitude
proportional to e−iωt, imaginary frequencies are linked to the damping of the oscillation,
thereby dissipating energy. It has been established for a model Lennard-Jones supercooled
liquid that the fraction of unstable modes is directly related to the self-diffusion constant
of the system as a function of temperature [52]. Increasing the temperature and the
corresponding fluctuations increases the instantaneous deviations of the convex harmonic
energy minima, and hence also enhances the fraction of unstable modes.
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An example of the appearance of imaginary eigenfrequencies is provided in Fig. 4.4.
The plot shows the evolution of the eigenfrequency spectrum of the instantaneous Hessian
with increasing the temperature. The spectra belong to a system of polymer chain as
described above with the different that the masses of all particles are set to one. In
this case, the DOS is computed by ensemble averaging over 5 realisations for each given
temperature. We can clearly observe how at the lowest temperature T = 0.05 the DOS
ρ(ω) virtually contains no imaginary modes, here plotted on the negative part of the
axis. Increasing the temperature towards the glass transition temperature T = 0.4 the
fraction of the imaginary frequencies drastically increases and appear together with a
shift of the main Lennard-Jones peak to lower frequencies.

4.5 Generalised eigenvalue problem and weight func-
tions

In order to set up the non-affine formalism for the multi-component polymer system and
to write the corresponding expressions for the complex viscoelastic modulus G∗(ω), we
have to deal with a more generalised situation where not all particles in the system have
the same mass. In other words, instead of the simple eigenvalue problem introduced in
Chapter 1, we now need to solve the generalised eigenvalue problem

ω2
pMup = Hup. (4.29)

The mass matrix M is a N × N block matrix, where each 3 × 3 block assigns the mass
mi to the particle with label i. We transform this equation by multiplying with M−1/2

from the left, which gives

ω2
pM1/2up = M−1/2Hup (4.30)

and by inserting 1 = M−1/2M1/2 on the right hand side this becomes

ω2
pũp = H̃ũp (4.31)

where we have defined H̃ = M−1/2HM−1/2 and ũp = M1/2up. A natural question to
ask at this point is whether we can compute physical quantities of the multi-component
system in a way so that we can identify the contributions from the different mass species.
For this purpose it is very useful to introduce the eigenvector weight functions of different
mass types. We will use them to express and compute the partial density of states



4.5 Generalised eigenvalue problem and weight functions 89

(pDOS) and they will reappear later in this chapter when we compute the viscoelastic
response of the heteropolymer to an external oscillatory shear strain.

To better understand how the eigenvector weight functions arise it is a good idea
to consider the definition of the local density of states. Starting from the standard
definition of the eigenvalue distribution ρ(λ) = 1/(3N)∑p δ(λ − λp). Assuming that we
have some complete set of orthonormal eigenvectors {|p〉}, i.e. 〈p |q〉 = δp,q we can write
the eigenvalue distribution as

ρ(λ) = 1
3N

∑
p

〈p |p〉 δ(λ − λp)

= 1
3N

∑
p,i

〈p |i〉〈i| p〉δ(λ − λp) (4.32)

where in the last step we have projected the eigenvectors of the particle basis using the
projector 1 = |i〉〈i|. Thus, 〈p |i〉〈i| p〉 = |p2

i |, the projection of the eigenvector onto
the particle coordinate i provides the proportionality factor of the contribution of the
vibrational motion of the ith degree of freedom to the full vibrational density of states.
Collecting the particles which belong to a certain mass species would then provide us
with a weight function which informs us about the mass-resolved contributions to the
vDOS. However, in our current setting, we cannot straightforwardly apply this since
the generalised eigenvectors up are orthogonal with respect to the mass-weighted scalar
product, i.e. 〈up| M |uq〉 = δp,q. To define the generalised eigenvector weight function
correctly, let us first introduce an index set Mn for each mass type. This means the set
Mn denotes the set of labels of the particles with mass type n. Considering the norm of
generalised eigenvector up and expressing in terms of the eigenvectors ũp we get

〈up| up〉 =
∑

i

〈up |i〉〈i| up〉 =
∑

i

〈ũp|M−1/2 |i〉〈i| M−1/2|ũp〉

=
∑

i

1
mi

|〈ũp| i〉|2 (4.33)

where 〈ũp| i〉 = ũp,i represent the ith component of the eigenvector ũp. This means in
order to define the correct weight function in terms of the generalised eigenvectors we
need to normalise the contributions 〈up |i〉〈i| up〉 with 〈up| up〉. This is best seen by
using the projections 1 = ∑

n Pn, which project on the vector components which belong
to the different mass species given by the index set Mn. Consequently, Eq. (4.33) can
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be written as

∑
n

〈up|Pn|up〉 =
∑

n

1
mn

〈ũp|Pn|ũp〉. (4.34)

This means that the correct weight function of, for example, mass species 1 is defined by

χ1(ω) = 〈up|P1|up〉
〈up| up〉

=
1

m1
〈ũp|P1|ũp〉∑

n

1
mn

〈ũp|Pn|ũp〉
. (4.35)

These considerations are summarised by the constituting relation of the generalised
frequency-dependent weight functions of mass type n given by

1 =
∑

n

∑
i∈Mn

‖up,i(ωp)‖2

‖up(ωp)‖2 =
∑

n

χn(ω). (4.36)

It is now possible to insert this unity in front of the δ-function in the expression of
the DOS, and hence obtain a resolution of the DOS into different mass contributions. In
this sense, the partial density of states (pDOS) of mass type n takes the form

ρn(ω) = χn(ω)ρ(ω) = 1
3N

3N∑
p=1

χn(ω)δ(ω − ωp). (4.37)

4.6 Viscoelastic response in the multi-component sys-
tem

We have already seen in Chapter 1 how to compute the linear viscoelastic response of a
disordered system to an oscillatory shear strain from non-affine lattice dynamics. We
will now extend this framework to the case of multi-component systems. The starting
point again is the equation of motion

Mr̈(t) + Cṙ(t) + Hr(t) = f(t) (4.38)

where in this case r̈ represents the full configuration of the a system, i.e. it is a 3N

vector. It is possible to rewrite the generalised eigenvalue problem given in Eq. (4.29)
in matrix form by introducing the matrix Φ, which has the eigenvectors appearing in
Eq. (4.29) as columns. The generalised eigenvalue problem can then be expressed in
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terms of the relations

ΦT MΦ = 1

ΦT HΦ = Ω2 (4.39)

where we have defined the eigenfrequency matrix Ω = diag(ω1, . . . , ω3N). In order to
solve this equation we now resort to a coordinate transformation [90]. This means we set
r = Φq and multiply Eq. (4.38) from the left with ΦT to obtain

ΦT MΦq̈ + ΦT CΦq̇ + ΦT HΦq = g (4.40)

with g = ΦT f being the generalised driving force. We see that the first and third term
are taken care of by virtue of the orthogonality relations Eq. (4.29), which constitute the
generalised eigenvalue problem, yielding

q̈ + ΦT CΦq̇ + Ω2q = g. (4.41)

In this form the system of equations is not decoupled because the open question remains
how to proceed with the second term involving the matrix product ΦT CΦ. In general,
we cannot find a solution of the coupled system, so at this point of the analysis we
need to work with the assumption that ΦT CΦ is a diagonal matrix. In physical terms,
this assumption reflects the idea that the damping is not correlated across different
eigenmodes. A standard approach is to assume mass-proportional damping C ∝ M,
which automatically decouples the equations of motion [90]. As we will see later this
situation is relevant for the comparison of the viscoelastic response with molecular
dynamics simulations. Alternatively, it would also be an option to approximate the
full friction matrix C with a diagonal matrix and check under which conditions the
off-diagonal elements are small enough. For now, continuing with dk = (ΦT CΦ)kk we
can express Eq. (4.41) in its decoupled form as

q̈k + dkq̇k + ω2
kqk = gk. (4.42)

Using a Fourier transform to map the equation to frequency-space, we arrive at

q̃k = g̃k

−ω2 + iωdk + ω2
k

, (4.43)
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where r̃ = Φq̃. It has been established in Chapter 1 that the stress response of the
system to a strain η is related to the displacement fields r via

∆t̃η(ω) = GAη̃(ω) − 1
V

N∑
i=1

ΞT
i · r̃i (4.44)

where the summation extends over all particles and the vectors Ξ and r̃ are the 3N -
dimensional affine force and displacement field, respectively, as a function of the driving
frequency ω.

Making use of the same basis transformation as above we can substitute the expression
Eq. (4.43) into second term of Eq. (4.44), i.e.

1
V

N∑
i=1

Ξi · r̃i = 1
V

N∑
i=1

ΞT
i ·
(∑

p

Φipq̃p

)

= 1
V

∑
i

∑
p

ΞT
i Φip

g̃p

−ω2 + iωdp + ω2
p

. (4.45)

In frequency space the generalised force vector is given as g̃p = ∑
j ΦT

pjf̃j. Since the
driving force is defined as f(t) = Ξ η̃ sin ωt, we continue the above expression with

1
V

N∑
i=1

ΞT
i · r̃i = 1

V

∑
i,j

∑
p

ΞT
i ΦipΦT

pjΞj

−ω2 + iωdp + ω2
p

η̃(ω)

= 1
V

∑
i,j

∑
p

(
ΦT

piΞi

)T
·
(
ΦT

pjΞj

)
−ω2 + iωdp + ω2

p

η̃(ω). (4.46)

The matrix product defined via Ξ̂p = ∑
i ΦT

piΞi and its transposed counterpart represent
the basis transformation of the affine force field into the generalised eigenbasis. Eventually,
this allows us to write Eq. (4.44) as

∆t̃η(ω) = GAη̃(ω) − 1
V

∑
p

ΞT
p · Ξp

−ω2 + iωdp + ω2
p

η̃(ω). (4.47)

This is the final result and describes the complex viscoelastic shear modulus in the setting
of the generalised eigenvalue problem of a multi-component disordered system through
∆t̃η(ω) = G∗(ω)η̃(ω) in the linear regime.
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4.7 The KPM in the multi-component setting

The essential tool for extracting the contribution to the vibrational density of states and
the non-affine correlator originating from different mass contributions are the weight
function χn(ω). In order to treat χn(ω) with the kernel polynomial approximation we
have to slightly alter the scheme which we have used before for the single-mass density
of states.

Conceptually, in the current setting the starting point for the KPM always involves
summations over δ-peaks. In the case of the quantities χn(ω) and Γ(ω) the sum contains
an additional weighting factor depending on the eigenvector in order to expand and
approximate the desired function. This means that to the end of treating χn(ω) with the
KPM we start from the basic expression for the DOS, i.e.

ρ(ω) = 1
3N

3N∑
p=1

δ(ω − ωp), (4.48)

and subsequently insert the normalised weight specified in Eq. (4.35) in front of δ(ω −ωp).
The weight in question consists of the two parts 〈up|Pn|up〉 and 〈up| up〉 for the numerator
and the denominator of χn(ω), respectively. Starting with 〈up|Pn|up〉, the function
resulting from the KPM is an approximation to this factor multiplied by some distribution.
Since we want to compute the bare weight function χn(ω), we need to divide this by the
KPM approximation for 〈up|Pn|up〉, such that the correct normalisation is guaranteed
and that we obtain the bare weight function χn(ω).

To implement this idea we start with the numerator in Eq. (4.35) and define the
auxiliary function χ̃n(ω)

χ̃n(ω) = 1
3N

3N∑
p=1

∑
i∈Mn

〈up |i〉〈i| up〉δ(ω − ωp), (4.49)

which in this form is amenable to the expansion in terms of Chebyshev polynomials.
Carrying out the analogous steps as for the single-mass density of states above, we now
map the support of the eigenvalue spectrum of the generalised eigenvalue problem onto
the interval [0, 1] and continue with

χ̃n(ω) = 4ω

3πN

2 − ε

λmax − λmin

∞∑
k=0

µk sin
[
(k + 1) arccos λ̃

]
, (4.50)
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where the corresponding Chebyshev moments are now written as

µk = 1
3N

∑
p

∑
i∈Mn

〈up |i〉〈i| up〉Uk(λ̃p). (4.51)

To pull the polynomials Uk(λ̃p) inside of the scalar product we now have to be cautious
since we are dealing with generalised eigenvectors. By virtue of the fact that in the
above expression only the eigenvector components of the mass species n are projected
out it is possible to write the term 〈up |i〉〈i| up〉 appearing in the above summation
as 1

mn
〈ũp |i〉〈i| ũp〉 because the vectors i are eigenvectors of the mass matrix M with

eigenvalue mn. As a consequence we can make use of the relation Uk(λ̃p) |ũp〉 = Uk(H̃) |ũp〉
and continue with

µk = 1
3N

∑
p

∑
i∈Mn

〈up |i〉〈i| Uk(H̃)up〉 (4.52)

by reabsorbing the factor mn into the generalised eigenvector. Subsequently, making
use of the stochastic evaluation of this trace with the Gaussian random vectors x0, the
Chebyshev moment in Eq. (4.51) are approximated by averaging the quantity

mk =
∑

i∈Mn

〈x0 |i〉〈i| xk〉 = 〈x0| Pn |xk〉 , (4.53)

where Pn represents the projector of the particle species n. The approximate Chebyshev
moments converge to the actual Chebyshev moments µk, i.e. 〈〈mk〉〉 → µk. Due to the
fact that random vectors xk are supposed to represent the generalised eigenvector of the
multi-component system, it would be incorrect to use normalised Gaussian random vector
as before. To achieve the correct stochastic approximation of the Chebyshev moments µk

we multiply a normalised random vector ξ0 with inverse square root of the mass matrix
M. As a result the initial random seed of the KPM algorithm in this case is the random
vector x0 = M−1/2ξ0. The same reasoning is applicable to the denominator of Eq. (4.35).
The first step again is an auxiliary function given by

χnorm(ω) = 1
3N

3N∑
p=1

〈up|up〉δ(ω − ωp), (4.54)

where we use the subscript to signal that this is the KPM approximation function for
the normalisation factor of the weight function χn(ω). Going through the same steps as
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for χ̃n(ω), the final result in terms of the associated approximate Chebyshev moment is

mk = 〈x0|xk〉, (4.55)

which converges to the true Chebyshev moments appearing the in expansion of χnorm(ω)

µk = 1
3N

∑
p

〈up|Uk(H̃)up〉 (4.56)

in the statistical average as 〈〈mk〉〉 → µk. Having set up the KPM approximation for
these two ingredients we subsequently obtain the weight functions χn(ω) as the quotient
of the two converged auxiliary functions. i.e.

χn(ω) = χ̃n(ω)
χnorm(ω) (4.57)

which is defined on the support of the eigenvalue spectrum of the Hessian matrix with
the condition that χnorm(ω) 6= 0.

4.7.1 Results and comparison with KPM

The system under investigation in this section is probed at the temperature T = 0.05,
that is in a temperature regime well below the glass transition, which is at T = 0.40 for
our system. We have chosen this regime to avoid complications from high temperature
effects, so to say as a proving ground for the multi-component non-affine formalism in
combination with the simulation snapshot as an input configuration. In recent work,
however, it has been established for a single-mass polymer system that the combination
of an instantaneous normal mode analysis together with the non-affine formalism is
capable of producing a very good match with viscoelastic response data obtained from
simulation [91].

For the eigenanalysis via direct diagonalisation a system consisting of N = 5000
particles was generated using LAMMPS. The resulting configuration was then used to
construct the Hessian matrix for this specific snapshot. The analysis using the KPM
was done on a system with the same parameters but of significantly larger in size of
N = 50000 particles. We have checked that the results for the viscoelastic response of
the system obtained with the KPM from the small and large system give similar results
provided that the Chebyshev algorithm is sufficiently converged. Clearly, there will be
slight variations in the vDOS and Γ(ω) due to the fact that different snapshots of the
melt are considered. It is in any case beneficial to use the larger system size for the KPM,
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Fig. 4.5 Here we show the weight function of the three mass contributions for T = 0.05 as
defined in Eq. (4.36). The coloured points show the data obtained from direct diagonalisation
for the three weight functions χn(ω), n = 1, 2, 3. The dotted, dashed, and dash-dotted red lines
show the approximation to the weight function using the KPM.

since it ensures a better convergence rate. In addition, the fidelity of the approximation
will be provided down to lower frequencies due to the larger system size. We now proceed
to the discussion of the results with the eigenfrequency spectrum ρ(ω) and non-affine
correlator Γ(ω) obtained both from direct diagonalisation and KPM.

The weight functions χn(ω) plotted in Fig. 4.5 are the central result of this section.
For a given mass species they represent the contribution from that species to the full
eigenvector of the system at a given eigenfrequency. First, we notice that the KPM
is capable of producing a very accurate approximation for χn(ω). It should be noted
however that the polynomial degree necessary for a good match with the weight functions
computed with direct diagonalisation around ω = 0 is comparatively high. The reason
for this is that close to ω = 0 the eigenfrequency distribution rapidly drops to zero, which
means that there are only a few modes present in the vicinity of ω = 0. In the KPM,
the δ-peaks which constitute the spectrum ρ(ω) are approximated by a distribution of
finite-width [5]. The resolution capability of the approximation is set by the maximum
degree of the Chebyshev polynomials used in the truncated series expansion of ρ(ω).
Hence, in order to correctly account for the placement and relative frequency of the very
low-lying eigenfrequencies a high-degree polynomials are required.
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We specified earlier that a polynomial degree of K = 300 was sufficient to produce
a good approximation for the depleted fcc crystal. Now the a polynomial degree of
around 3000 is required to also capture the extremely low eigenmodes. Nevertheless, the
convergence is achieved with only a few averaging iterations using the sampling from
Gaussian random vectors.

We can observe in Fig. 4.5 that at zero frequency the contributions from mass m1

and m2, are equal, i.e. χ1(0) = χ2(0) = 0.47. This value reflects the fraction of particles
of different masses in the polymer chains. These values can physically be understood in
the sense that the zero-frequency mode reflects a global translation of the system. The
contribution to the corresponding zero-frequency eigenvector therefore has to be equal for
every single particle, since this global zero-frequency displacement is independent of the
mass of the particle. This leads to the zero-frequency eigenvector u(ωp = 0) reflecting
the relative frequencies of the members of the different mass species [87].

The weight function of particles of mass species 3, χ3(ω) has significant contribution
only at relatively low frequencies. This is an expected behaviour, because mass 3 particles,
being the heaviest and least frequent particles in the polymer chain, cannot participate
significantly in vibrational motions of high frequency due their relatively high inertia. At
low frequencies the weight functions of mass 1 and 2 yield about the same contribution,
and cross over at a frequency which roughly corresponds to the to the first large Lennard-
Jones peak of the vDOS. Going to higher frequencies the weight function of mass 1,
χ1(ω), increases and saturates, giving the majority of the vibrational weight function at
the largest frequency available in the system. In the high-frequency limit, we observe
that most of the contribution to the overall weight function comes from the lightest
particles of species 1.

From the knowledge of the weight functions χn(ω) we can straightforwardly compute
the partial densities of states for each mass species by using Eq. (4.37). The comparison
of the results for the pDOS obtained from direct diagonalisation and KPM for our system
at T = 0.05 are shown in Figs. 4.6 (b)-(d). The full vDOS depicted in panel (a) of the
same Figure perfectly matches with the results obtained from direct diagonalisation.
Note that the fluctuations in the double peak at high-frequency are markedly lower in
the case of the KPM result since they were computed from the much larger polymer
system consisting of N = 50000 particles. In addition to the large Lennard-Jones peak at
low-frequencies we notice that in comparison to the shape of the vDOS of the single-mass
polymer system in Fig. 4.4, the high-frequency FENE peak has split into two subpeaks.
In Fig. 4.7 we show how the three partial densities of states contribute in relation to
the full vDOS. It is interesting to observe that this double peak is comprised almost
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Fig. 4.6 This Figure shows the full vDOS of the T = 0.05 three-mass polymer glass together
with the three partial DOS contributions from the three masses m1 = 1, m2 = 3 and m3 = 10.
Note the scale difference of the pDOS for mass 3.

exclusively of modes from the lightest mass m1 = 1, likely representing fast oscillations of
the m1 with respect to the three times heavier m2, which due to their interaction remain
relatively immobile. To check this assertion an analysis of the vibrational modes along
the corresponding eigenvector direction would be necessary.

Achieving convergence for the non-affine correlator Γ(ω) with the kernel polynomial
method is much more problematic than for the DOS. The cause for this difficulty stems
from the fact that the random vector used in the approximation of the Chebyshev
moments µk is projected on the affine force field vector, which itself is an inherently
random quantity due to the structural disorder of the polymer configuration. As a
consequence, larger fluctuations occur which need more iterations to be smoothed out.
To achieve a good approximation using the KPM for the vDOS ρ(ω), usually between
10-100 averaging iterations are required. In case of the non-affine correlator Γ(ω),
between 103 to 104 iterations are needed to converge the algorithm to a reasonable
degree, depending also on the desired resolution. We show the results obtained for the
multi-component non-affine correlator in Fig. 4.8. Both the correlator Γ(ω) itself and the
product with the vDOS, Γ(ω)ρ(ω), which is the direct output of the KPM algorithm, are
shown. Again the agreement between the method of direct diagonlisation and KPM is
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Fig. 4.7 The full KPM vDOS in terms of the three pDOS contributions.

excellent. As noted above, the non-affine correlator is a comparatively noisy quantity.
We should therefore bear in mind that in this section only one realisation of the polymer
system is considered. Employing ensemble averaging over many realisation, however,
it is expected that Γ(ω) is self-averaging and converges to its thermodynamic limiting
distribution [57].

4.7.2 The viscoelastic response of the multi-component poly-
mer

The final goal of the current approach is to develop a theoretical framework to allow
for the numerical computation of the linear viscoelastic response for disordered systems
consisting of different mass species. In particular, we desired to modify the kernel
polynomial method such that it allows us to approximate the complex modulus G∗(ω) for
systems which are to large to be amenable for a treatment using direct diagonalisation.

Having discussed the weight function χn(ω), the partial densities of states and the
non-affine frequency correlator Γ(ω), we are now in the position to test the non-affine
formalism for the heteropolymer in terms of its ability to produce correct predictions
of the linear viscoelastic response when compare to the results obtained directly from
the molecular dynamics simulation. These simulation results serve as a benchmark for
complex shear modulus G∗(ω) = G′(ω) + G′′(ω) computed from the non-affine theory.
This is done by applying a small amplitude simple oscillatory shear strain to the simulation
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Fig. 4.8 Comparison of results from direct diagonalisation and KPM. The upper left panel
shows the product of the DOS ρ(ω) and the non-affine correlator Γ(ω). The lower left panel
shows the rescaled product Γ(ω)ρ(ω)/ω2. The upper right panel shows the non-affine correlator
Γ(ω) in a log-linear. The lower right panel shows Γ(ω)ρ(ω) in the log-linear scale with a
ω2-scaling as reference.

box and subsequently recording the stress vs. strain curves. The oscillatory strain is given
by η(ω) = η̃ sin(ωt) and the resulting stress is σ = σ0 sin(ωt + δ), where as introduce
above, ω represent the driving frequency of the oscillatory shear strain and δ is the phase
lag between stress and strain. The complex modulus is then given in terms of the phase
lag δ as [91]

G′ = η0

σ0
cos δ, G′′ = η0

σ0
sin δ. (4.58)

The computation of the complex modulus from the simulation were carried out by
Vladimir Palyulin. The results for the simulated mechanical spectroscopy and the results
obtained from direct diagonalisation and KPM are shown in Fig. 4.9.

Firstly, it can be observed that the match between direct diagonalisation and KPM
is very good for both the storage and loss modulus, G′(ω) and G′′(ω), respectively. The
only significant deviation occurs below ω = 0.10. This can be attributed to the fact that
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Fig. 4.9 The complex viscoelastic modulus G(ω) = G′(ω) + iG′′(ω). Comparison between
results obtained via the KPM, direct diagonalisation and molecular dynamics simulations at
T = 0.05.

the KPM results were obtained for a much larger system relative to direct diagonalisation
which minimises finite size effects and allows for a higher accuracy at lower frequencies.
In the frequency range below ω = 0.10 there is no data available from the MD simulations.
Comparing the theoretical results with the simulations, we can observe that the theory
reproduces the MD results for G′(ω) very accurately throughout the entire frequency
range, as shown in Fig. 4.9(a). However, considering the behaviour of the loss modulus
G′′(ω) in Fig. 4.9(b), it is evident that the theoretical description deviates from the
simulation results, most clearly around the main relaxation peak at ω ≈ 38 which is
possibly rooted in the approximations inherent to the theoretical approach. We have
seen that the combined approach using non-affine lattice dynamics and the KPM to
compute the linear viscoelastic response is based on the harmonic approximation of the
interaction potentials and the assumption of quasi-static shear strain. Clearly, these
assumptions will not be reflected by the simulation, to a varying degree depending on
the temperature of the system the frequency of the oscillatory shear under consideration.
Even though the data shown in Fig. 4.9 was obtained at a relatively low temperature,
there will be temperature-dependent, anharmonic contributions, which are not described
by the theoretical model due to its harmonic nature. In particular, this will become
evident at low frequencies and high temperatures. Increasing the temperature has the
consequence that the system is prone to large-scale plastic rearrangements corresponding
to the low-frequency part in the viscoelastic spectrum. These plastic events which
eventually result in viscous flow are capture by the simulation but not the theoretical
description. As a consequence, is can be expected that the accuracy of the theory
deteriorates with increasing temperature in particular in the low-frequency regime and
this will be particularly visible in the behaviour if the loss modulus G′′(ω) which reflects
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the dissipation mechanism. On the other hand, it can be expected that the high-frequency
limit of G∗(ω) is accurately described the present framework. The reason for this is that
even at higher temperatures closer to the melting transition, high-frequency oscillatory
excitations do not explore the anharmonic region of the interaction potential. More
investigations will be needed to figure out precisely the cause for the deviations, for
example, by systematically investigating the contribution to the full viscoelastic moduli
which come from non-affine displacement event with large amplitudes, in particular those
which are linked to eigenmodes in the negative part of the spectrum to explore the
energy dissipation mechanism. In view of this, it can be concluded that the KPM can be
valuable to amend finite system size effects and therefore to obtain results even at very
low frequencies.

Despite its limitations, this approach promises to be useful not only for resolving
the different contributions from different mass species to the overall linear viscoelastic
response, but should have further applications. Instead of working with projections of
the eigenvectors to obtain contributions from different mass species, we could analyse
the contribution of vibrational modes in terms of their directionality. For example, in
the polymer melt the obvious choice would be to separate the vibrational motion into
contribution which go along and perpendicular to the direction of the polymer chain.



Chapter 5

Linking the interatomic repulsion
strength to the viscoelasticity of
metallic glasses

5.1 Introduction

Understanding the mechanism which governs the emergence of mechanical stability at
the glass transition of supercooled metallic liquids [70] calls for deeper insights into
the connection between the fragility index, which quantifies how rapidly the viscosity
varies at the onset of the transition, and the interatomic interaction. As previous work
suggested [7, 43] mechanical stability in amorphous solids is crucially linked to the
repulsive part of the interatomic interaction potential. For example, it was possible to
find a concrete link between the interaction properties and the viscosity for repulsively
interacting colloidal suspensions [65]. By increasing the concentration of colloidal particles
in the suspension to a critical value, the system undergoes a glass transition at which
point the viscosity of the suspension increases by several orders of magnitudes. Using
colloids of varying softness, the experiments in Ref. [65] showed that the rise of viscosity
at the glass transition is more drastic the harder the colloids are, i.e. the more repulsive
the interaction between particles is. Put differently, decreasing the softness of the colloidal
particles, the suspension transitions from a strong to a fragile glass former.

However, no consensus has been reached on whether for different types of glass
formers, i.e. colloidal, molecular, and metallic, the interatomic repulsion softness generally
correlates with strong glasses [65] or with fragile glasses [81]. The question therefore is
whether for metallic glass-forming liquids it is possible to find a principle similar to the
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one established for colloidal suspensions connecting the repulsive interaction between the
microscopic constituents and the resulting behaviour of the viscosity. In this chapter,
we derive an analytical closed-form relation between the fragility index of metallic glass
formers and the short-ranged repulsive part of the interatomic interaction given by
pseudopotential theory. This fundamental relation is obtained from a one-parameter
theory fit to experimental rheological data of supercooled metallic melts. Resorting to
this combination of theory and experiments, it is established that interatomic repulsion
softness in metals goes along with strong glasses and low fragility. Surprisingly, given the
difference in energy scale of many orders of magnitude and the nature of the microscopic
interaction, this finding is in full agreement with the correlation observed experimentally
for soft colloidal glasses by Mattsson, Weitz and co-workers [65].

Finally, we establish a quantitative link between our analysis and the theory of shear
transformation zones to estimate the size of the cooperatively rearranging regions in
good agreement with the findings in Ref. [59].

5.2 Shear modulus of glasses

The starting point for linking the shear modulus and the atomic connectivity analytically
is the theoretical framework of non-affine elastic response [57, 102, 19]. The standard
affine approximation of the classical Born-Huang theory is not applicable to amorphous
as well as other non-centrosymmetric lattices [2]. This problem arises due to the lack of
local inversion symmetry in amorphous solids. As a consequence, the deformation forces
which are transmitted to an atom by its bonded neighbours do not balance each other
by mirror symmetry. The resulting forces, which act on every atom, are released through
additional non-affine motions on top of the standard affine displacements dictated by
the macroscopic strain. In other words, the continuum assumption that the macroscopic
deformation scales down to the microscopic lattice does not generally hold for amorphous
systems. Structural disorder and non-affine motions can be taken into account using
the theory of non-affine elastic response. For an amorphous solid under a shear strain
γ, we can express the free energy of deformation as F (γ) = FA(γ) − FNA(γ) [100]. The
two terms represent the standard affine contribution to the free energy, provided by the
framework of Born-Huang lattice dynamics [10, 101], and the non-affine contribution,
respectively. Resorting to an eigenfunction decomposition of the non-affine contribution,
it is possible to derive an analytic expression for the shear modulus of an amorphous



5.2 Shear modulus of glasses 105

lattice. As discussed in Chapter 1, the result for the shear modulus is given by

G = GA − GNA = GA −
∑
i,j

ΞT
i H−1

ij Ξj, (5.1)

where Hij = (∂U/∂ri∂rj)γ→0 represents the standard dynamical matrix of the solid [4],
U the internal energy of the system and Ξi the affine force field acting on the atoms due
to the shear deformation [57]. The expression for the affine shear modulus GA, in the
above equation can be obtained in the following way [10, 99]. An expansion of the free
energy, where the macroscopic strain is scaled down to the atomic displacements, yields
the famous Born-Huang formula for the shear modulus in the harmonic approximation as

GA = κR2
0

V

∑
〈i,j〉

nx
ijn

y
ijn

x
ijn

y
ij, (5.2)

where κ denotes the spring constant of an harmonic bond, and R0 the equilibrium
lattice constant. The bond-orientation unit vector n̂ij = (cos ϕ sin θ, sin ϕ sin θ, cos θ)
connects the nearest-neighbour atoms i and j. In a lattice of N atoms every bond
contributes a term proportional to the geometric factor 〈nx

ijn
y
ijn

x
ijn

y
ij〉 to the above lattice

sum. This average is to be evaluated for a prescribed angular distribution of the bond
orientations [99]. Introducing the average number of mechanical bonds per atom Z

(atomic connectivity), the mean-field estimate gives GA = (N/2V )κR2
0Z〈nx

ijn
y
ijn

x
ijn

y
ij〉.

Assuming an isotropically random distribution of bond orientations, the average over the
components of the bond orientation vectors yields the numerical factor 1/15. Thus, we
can establish an explicit expression for the affine shear modulus as

GA = 1
30V

NκR2
0Z. (5.3)

As shown in Ref. [102], assuming a central-force interaction and introducing the
atomic packing fraction φ = vN/V , with v a characteristic rigid-core volume, Eq. (5.1)
can be evaluated analytically as

G = GA − GNA = 1
5π

κ

R0
φ(Z − Zc). (5.4)

The non-affinity of the amorphous solid is encoded in the quantity −Zc, which denotes the
critical number of bonds at which the shear modulus vanishes by virtue of the non-affine
softening mechanism. This expression still does not include the direct contribution
of thermal effects to the elastic response. Thermal vibrations in fact soften the shear
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Fig. 5.1 Approximation of the repulsive part of the first peak of g(r) using two different values
for the steepness λ. An increase in λ is linked to a steeper slope of g(r).

modulus by an additional negative term −3(N/V )kT∂2(ln ~ω/kT )/∂γ2 [102, 36]. For
many materials, including metallic and polymer materials, this contribution is very
small compared to the other terms in Eq. (5.4). It determines a decreasing trend of G

with T which is negligible compared to the combined effect of non-affinity and thermal
expansion [60].

5.3 Modelling the temperature dependence of the
shear modulus

The crucial effect which controls the temperature dependence of the shear modulus is
the change in atomic connectivity Z due to Debye-Grüneisen thermal expansion [102].
Approaching the glass transition temperature Tg from below, this effect is responsible for
the loss of mechanical stability. We will show that the same effect is responsible for the
decrease of the high-frequency shear modulus with increasing T in the supercooled liquid
above Tg. The atomic packing fraction φ is reduced upon increasing the temperature T ,
an effect mediated by the thermal expansion coefficient defined as αT = 1

V
(∂V/∂T ) =

− 1
φ
(∂φ/∂T ). Integrating this, we see that the atomic packing fraction evolves with T

according to log(1/φ) = αT T + c. For an amorphous metal, a decrease in Z arises if
the separation between two particles is larger than the typical length scale of attraction
defined by the first minimum of the interatomic pseudopotential rmin. For example, if
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the separation of an atom from one of its caged nearest-neighbours exceeds r > rmin, the
neighbour effectively leaves the coordination shell or cage [102], and no longer contributes
to the cage elasticity.

When increasing T , the average spacing between atoms in the coordination shell
becomes larger, and the probability of nearest neighbours leaving the connectivity shell
increases. It is then possible to use the radial distribution function g(r) to relate the
change in packing fraction δφ, due to an externally imposed change in temperature δT ,
to the change in connectivity δZ. Following along the lines of Ref. [102], the change of
atomic connectivity δZ = Z − Zc, relative to the critical stability (isostatic) point Zc,
can be calculated when the density of the system increases by an increment δφ = φ − φc

according to

Z − Zc ∼
∫ 1+δφ

1
r2g(r) dr, (5.5)

where r represents a dimensionless distance defined with respect to the rigid-core diameter
σ. Since the radial distribution function g(r) is not known in analytical form for
real materials, we introduce an approximation scheme. The basic idea is to represent
the repulsive side of the first peak of g(r) by means of the power-law approximation
g(r) ∼ (r − σ)λ. In this way, the parameter λ characterises the steepness of the left-hand
side of the first-peak of the radial distribution function. The dashed lines shown in
Fig. 5.1 represent the power-law approximation to the actual radial distribution function.

We know that the potential of mean force [63] between two atoms is related to the
radial distribution function by Vm/kT = − ln g(r) ∼ − ln(r − σ)λ, where the ion-core
diameter σ indicates the mutual separation between two ions at which the interaction
energy is practically infinite. If the separation between two ions is small, Vm reduces to
the short-range part of the ion-ion repulsion. Hence, λ is proportional to the steepness
of the short-range effective repulsion and inversely proportional to the softness of the
pseudopotential, which scales as 1/λ.

Subsequently, with the power-law approximation for g(r) in Eq. (5.5), the change
in connectivity becomes a function of the repulsion steepness λ: δZ ∼ δφ1+λ. When
decreasing the temperature by δT < 0, the atomic packing fraction grows by δφ =
−φαT δT > 0. Consequently, the connectivity Z increases more strongly for steeper
pseudopotentials than for the softer counterpart. Analogously, an increase of temperature,
δT > 0, causes the atomic connectivity to decrease more abruptly with T for a steep
ion-ion repulsion, and more gradually for a softer interaction.
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5.4 High-frequency limit of the shear modulus

Experimental measurements of the viscosity and shear modulus of supercooled liquid
metals at the glass transition can be obtained using ultrasonic techniques, which probe
the material response at frequencies in the GHz range [49]. These high frequencies exceed
the typical relaxation frequency of a metallic glass by several orders of magnitude [94].
Under such conditions, the response to an applied oscillatory shear strain generally is
dominated by the instantaneous quasi-affine limit of the shear modulus. For frequencies
ω much larger than the inverse of the Maxwell relaxation time τ , that is for ωτ � 1, the
shear modulus cannot decay through a non-affine relaxation process. This situation is
sketched in Fig. 5.2 together with the low-frequency case, where the non-affine decay is
possible.

At high frequency, the atoms cannot leave their affine positions to reach the non-affine
equilibrium positions, as the deformation is too quickly reverted. Hence, the elastic
response at GHz frequencies is predominantly affine, as can be seen by taking the infinite-
frequency limit of Eq. (1.49). Considering Eq. (5.4), this means that the shear modulus
is reduced to its affine contribution in the sense that G

ω→∞−−−→ GA. Consequently, in
this regime the expression for G is proportional to Z [10], but no longer depends on
the critical connectivity Zc. Therefore, it holds true that δZ → Z and δφ → φ. Setting
Zc and φc to zero is the defining feature of the high-frequency quasi-affine limit [101].
Going back to Eq. (5.1), we recognise that in the regime ωτ � 1 this leaves us with
G = 1

5π
κ

R0
φZ. We recall that the packing fraction depends on T , φ(T ) ∼ e−αT T and,

thus, we obtain Z(T ) ∼ e−(1+λ)αT T . Upon replacing this result in the above equation for
G, we find that the T -dependence of the shear modulus is dictated by

G(T ) ∼ 1
5π

κ

R0
exp

[
− (2 + λ)αT T

]
. (5.6)

The high-frequency shear modulus now explicitly depends on the softness of the interaction
potential, and on the thermal expansion coefficient αT . Both these crucial effects are
reflections of the anharmonicity of the elastic response.

As already hinted above, we note that in general there is also a phonon contribution
to the shear modulus proportional to kT e−αT T . However, this contribution is typically
negligible with respect to the one in Eq. (5.6) [60], even more so, if one considers, as it
will be shown below, that typical values of λ are in the range 100 − 400.
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Fig. 5.2 In the high-frequency regime the affine shear modulus represents a good approximation
to the actual behaviour of the shear modulus G = GA − GNA.

5.5 Interatomic repulsion and fragility

The above expression for the high-frequency affine shear modulus can be rewritten as

G(T ) = CG exp
{[

αT Tg(2 + λ)
(

1 − T

Tg

)]}
, (5.7)

where CG = ε
5π

κ
R0

e−αT Tg(2+λ) is a prefactor independent of T . The constant ε stems from
the integration of αT and from the dimensional prefactor in the power-law ansatz for
g(r). All the parameters in this expression, which are given in Tab. 5.1, are fixed by the
experimental protocol, apart from the fitting parameter λ related to the ion-ion repulsion
steepness. The thermal expansion coefficient αT and the glass transition temperature Tg

are material specific parameters. In addition, the parameter CG represents at the glass
transition temperature measured in experiment.

With Eq. (5.7) at hand, we can generate a one-parameter fit to the experimental data
provided from Ref. [49], which accurately captures the data sets for the three metallic
glass alloys, as can be seen from Fig. 5.3. The different slope of the three depicted curves
reflects the fact that the repulsion steepness λ in Eq. (5.7) controls the behaviour of
G(T ). A decreasing λ, among the different alloys, correlates with a slower decrease of
the shear modulus upon increasing the temperature.
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Fig. 5.3 The experimental data points for various glass-forming alloys from [49] and the
respective fitting curves for the shear modulus. The solid lines are the one-parameter fitting
curves obtained using the expressions Eqs. (5.7). The values used for the fittings are reported
in Tab. 5.1.

Furthermore, we can use our model for the high-frequency shear modulus to evaluate
the activation energy E(T ) involved in restructuring the glassy cage and, hence, the
viscosity η of the melts. Within the framework of the shoving or elastic model of the glass
transition [88, 29, 26, 24], the activation energy for local cooperative rearrangements is
E(T ) = GAVc. The characteristic atomic volume Vc appearing here is accessible through
the theoretical fitting to the viscosity data, although its value is approximately specified
by the atomic composition of the alloy. Replacing the expression for the activation energy
in the Arrhenius relation given by the shoving model of the glass transition, and using
Eq. (5.7) for the high-frequency shear modulus GA inside E(T ), we obtain the following
analytical expression for the viscosity,

η(T )
η0

= exp
{

VcCG

k T
exp

{[
(2 + λ)αT Tg

(
1 − T

Tg

)]}}
, (5.8)

where η0 is a normalisation constant. It is important to note how the double-exponential
form of the viscosity versus T arises. The first exponential stems from the elastic activation
described in the framework of the shoving model, whereas the second exponential is due
to the Debye-Grüneisen thermal expansion rooted in lattice-dynamical considerations,
and ultimately related to anharmonicity.
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0

Fig. 5.4 The experimental data points for various glass-forming alloys from [49] and the
respective fitting curves for the viscosity. The solid lines are the fitting curves obtained using
the expressions Eqs. (5.8). The values used for the fittings are reported in Tab. 5.1.

We compare the theoretical predictions to the experimental data of Ref. [49] in Fig. 5.4.
In this case there is also an excellent agreement between theory and experiment with the
adjustable parameters being λ, the steepness of the short-ranged ion-ion repulsion, and
Vc, the characteristic atomic volume.
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With the model developed above, we are in the position to relate the atomic-scale
properties of the interaction between ions to the experimentally observable macroscopic
response of the material. We now consider the behaviour of the viscosity in Fig. 5.4
together with the corresponding behaviour of the interaction parameter λ for various
alloys in Tab. 5.1. Evidently, upon approaching the glass transition, the slope of the
viscosity η(T ) is controlled by the interatomic repulsion steepness λ, which depends on
the atomic composition of the alloy. A steeper pseudopotential repulsion between two
nearest-neighbour ions goes hand in hand with a steeper rise of viscosity, when T is
increased. This observation leads us straight to connecting the softness of the potential
to the fragility of metallic glasses. The fragility is given as the slope of the viscosity
evaluated at the glass transition temperature Tg, i.e. m =

(
∂ log10(η/η0)

∂(Tg/T )

)∣∣∣
T =Tg

[3]. Using
the analytical expression for η, Eq. (5.8), we obtain a simple relation between the fragility
m and the steepness of the interatomic repulsion λ given by

m(λ) = 1
ln 10

VcCG

kTg

[
1 + (2 + λ)αT Tg

]
. (5.9)

Metallic glasses with a steeper repulsive part of the interatomic interaction are thus
more fragile. The values of the fragility obtained for the various alloys of Ref. [49] are
listed in Tab. 5.1, together with the fitted values of the interatomic repulsion steepness λ.
Good agreement is also found with independent experimental measurements of m from
the literature. Intriguingly, this prediction is in full agreement with the experimental
findings of Ref. [65]. In that work the softness of the interparticle potential was varied in
a model colloidal glass, where the energy scale is orders of magnitude smaller than in
metals. The model also can capture the behaviour of m observed in simulation studies of
Lennard-Jones glasses, where the attractive anharmonicity controls the fragility via the
thermal expansion coefficient and, by construction, a high anharmonicity is accompanied
by a low repulsion steepness [9].

5.6 Extracting pseudopotentials from experimental
data

Given the schematic form of the repulsive short-range part of the interaction, − ln(r − σ)λ,
used in the fitting, it is desirable to map this semi-empirical repulsion onto a physically
realistic interatomic pseudopotential. This can be achieved by using an Ashcroft-type
pseudopotential for modelling the Thomas-Fermi screened interionic Coulomb repul-
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sion [35] and, in addition, a Born-Mayer interaction term which accounts for the effect
of electron-overlap and Pauli exclusion repulsion between valence-electron shells of two
interacting ions [69]. A short discussion of this matter can be found in Appendix D. This
combination of the two contributions to the interaction is the most meaningful choice for
the present situation, as discussed in [89].

The softness of the pseudopotential is predominantly controlled by the Born-Mayer
parameters, because electron-overlap repulsion between valence electrons is more ener-
getic over a broader length scale compared to the Ashcroft contribution, as illustrated
in Appendix D. Physically, a slower decay of the electron-overlap repulsion with dis-
tance reflects the softness of the effective interaction. The glass stability, however, is
optimised by the coexistence of both softness and substantial repulsion, as is the case for
technologically important alloys, like binary Zr-Cu alloys [76].

Microscopically, it is the strongly anisotropic density distribution of d-shell electrons,
due to the quadrupolar d-wave symmetry, which provides significant softness (upon
taking a spherical average), compared to the more isotropic electron density distribution
of elements whose outer shells are dominated by s-electrons. Hence, the form of the
pseudopotentials may explain the difference in stability and fragility based on the
composition of the alloy. In our model, this effect is expressed by the energy-scale of
the Born-Mayer repulsion B. In particular, we find that B correlates linearly with
the fragility index m, as shown in Fig. 5.5 (b). This correlation reflects the fact that
d-shell orbitals effectively soften the interatomic repulsion, whereas s-shell electrons are
associated with steeper repulsion and higher fragility.

The second effect which is captured by this approach is the ion-size mismatch. If
smaller metal atoms are added to larger atoms, fragility decreases and strong glasses
can be formed. This mechanism which affects multi-component alloys is analysed and
discussed in [28]. Again, this is the consequence of an effectively softer interatomic
repulsion. Smaller atoms of metalloids like P, B or Si can easily come closer to larger
ions like Pd, La, Zr or Cu by fitting into the voids of the quadrupolar d-shell structure.
In general, this topological effect also leads to a softer average pseudopotential. This
connection between macroscopic flow behaviour, encoded in m, and electronic structure
is an important step towards a unifying framework for understanding and controlling
mechanical properties of metallic glasses on the atomic scale.
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(a)

(b)

Fig. 5.5 (a) The Ashcroft-Born-Mayer pseudopotential is depicted for four different glass-
forming alloys. The fragility m increases with the pseudopotential steepness. (b) The value of
the Born-Mayer energy scale increases linearly with the fragility. Also, it is observed that the
average ionic diameter decreases linearly with the fragility.

5.7 Connection with cooperative shear events

As already pointed out, the energy necessary to trigger a shoving event is E(T ) =
GA(T )Vc. Importantly, the characteristic atomic volume Vc is not the volume change
which is connected to a shoving event. This quantity, also called the activation volume
∆V , is connected to Vc and the initial shoving volume V via the relation

Vc = 2
3

(∆V )2

V
, (5.10)
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which can be derived in the framework of the elasticity theory of an isotropic expanding
sphere [26].

It is widely believed that shear transformation zones (STZs) are the fundamental
plastic entities responsible for the yielding mechanism in metallic glasses. STZs are
clusters of atoms which can cooperatively rearrange under shear stress, and are directly
connected to the local accumulation of free volume [58]. It is in this sense that the
activation of STZs allows the involved atoms to rearrange more easily under shear stress.
Assuming that the initial shoving volume V corresponds to the volume of a STZ, we
find a direct relation between the characteristic volume Vc and the activation volume
∆V in the following way. According to Ref. [48], the total energy barrier W between two
basins in the potential energy landscape can be evaluated to give W ≈ (1/320) GAΩ,
see Appendix D. We assume that W in the cooperative shear model is approximately
equal to the shoving energy, that is W ≈ E. It directly follows that GAVc ≈ (1/320)GAΩ,
which leads us to conclude that the effective volume of a STZ is Ω ≈ 320Vc.

It is physically meaningful that the effective STZ volume Ω is approximately equivalent
to the initial shoving volume V , henceforth calling it VSTZ. Using the identification
Ω ≈ VSTZ ≈ 320Vc, we can use the values for Vc to extract values for STZ volumes
from our theoretical analysis and compare them to experimental results for VSTZ from
Ref. [59]. We find that the calculated STZ volumes for the respective alloys are in very
good agreement with the experimental results for similar alloys, which is displayed in
Tab.2. Moreover, using VSTZ ≈ 320Vc together with Eq. (5.10), we obtain a relation
between the activation volume and the characteristic volume Vc given by ∆V ≈

√
480 Vc.

With the values for Vc from the viscosity fitting, we can calculate the activation volume
for the corresponding alloys to be in the range 151 − 324 Å3. For a Pd-based metallic
glass, an activation volume of 106Å3 was found experimentally [44], which is not too far
from our estimate for the alloys discussed here.

Elsewhere the activation volume for Zr41.2 Ti13.8 Cu12.5 Ni10 Be22.5 is determined to
be 75 Å3 [79]. For the same alloy, we calculate the value for the activation volume from
the corresponding Vc with the result ∆V = 186 Å3, which is about 2.5 times larger in
comparison. This difference may be explained by the different deformation protocols
(shear amplitude, applied stress rate, etc.), in the respective experiments. It is argued
in Refs. [31, 105] that a higher degree of applied stress leads to an increase of the size
of the individual flow units, which means that both the STZ volume and the activation
volume tend to increase.
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Fig. 5.6 (Left) The distance between the atoms decreases as the temperature is increased
leading to a smaller overlap of the effective interaction potentials. (Right) The growth of the
cage by ∆R when increasing the temperature by ∆T and the corresponding loss of stabilising
energy ∆E. The potentials are shifted for the sake of clarity.

Table 5.2 Experimental and theoretical STZ volumes

Alloy Vc (nm3) Ω (nm3)
Pd40 Ni40 P20 0.0069 2.21
Pd48 Ni32 P20 - 2.36[59]

Zr41.2 Ti13.8 Ni10 Cu12.5 Be22.5 0.0085 2.72
Zr46.75 Ti8.25 Ni10 Cu7.5 Be27.5 - 3.13[59]

La55 Al25 Ni20 0.0148 4.74
La55 Al25 Ni20 - 5.31[59]

5.8 Conclusion

The basic mechanism controlling the mechanical response in the high-frequency regime
and the fragility of liquid metals close to vitrification can be summarised in the following
way. Due to thermal expansion, an increase in the temperature leads to a decreasing
atomic packing fraction and, thus, to a decrease of atomic connectivity.

The latter effect softens the material, causing the shear modulus to decrease with
T . The rate of this process is controlled by the steepness of the repulsive short-range
interatomic interaction. This mechanism propagates to the viscosity, and it controls its
temperature dependence and leads to fragile behaviour with steep interatomic repulsion,
and to strong glasses when the repulsion is softer. In an amorphous solid we can
picture this situation by considering a reference atom which is surrounded by a number
of neighbouring atoms, forming a disordered cage. The repulsive interaction between
these particles provides stability to the cage. When the temperature is increased, a
corresponding change of packing fraction takes place, implying that the disordered cage
around the reference atom becomes larger and less stable, see Fig. 5.6.
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With this moving farther apart of the nearest neighbours from the reference atom, the
local stabilising energy felt by the atoms decreases due to a smaller overlap of the repulsive
interatomic interactions by ∆E. At the onset of the glass transition, the stabilising
effect of the atomic cage breaks down, which ultimately leads to the vanishing of the
zero-frequency shear modulus at Tg. It is the steepness of the repulsive pseudopotential
which controls how rapidly or abrupt the stabilising energy decreases as the temperature
is increased. For an alloy whose constituents exhibit a steeper interatomic repulsion,
this process of destabilisation will be more abrupt resulting in a faster variation of
the shear modulus and viscosity with T and, correspondingly, to a more fragile glass.
Taken together, this allows us to conclude that in the present framework the principle
connecting softness and fragility found experimentally for colloidal glass formers in
Ref. [65] is transferable to metallic glass-forming liquids.

We also show that the steepness of the interatomic repulsion for various metallic alloys
can be mapped one-to-one onto a pseudopotential with two contributions. The overall
softness of the pseudopotential is mainly controlled by Born-Mayer repulsion stemming
from the overlap of valence-shell electrons. A direct relation of linear proportionality
between the fragility index m and the Born-Mayer energy B is obtained from the fitting
to experimental data. Lower values of B may correlate with mixtures of elements having
outer electrons in d-shells, as is the case of Cu in Zr-Cu alloys, or with the concentration
of metalloid in metal-metalloid mixtures. Systematic studies in the future using ab-initio
simulations may shed light on the link with the detailed electronic structure.

Furthermore, we connect the characteristic atomic volume Vc with the size of STZs. In
this regard, STZs appear to be regions in the amorphous solid with a relatively low average
atomic connectivity Z. These regions are prone to elastic stress accumulation, leading to
an increase in individual shoving events, which eventually results in macroscopic plasticity.
While there exists a clear linear relation between the fragility and the repulsive steepness
λ, the correlation between the size of a STZ and the fragility exhibits no simple form and
remains to be understood in future investigations. Another matter of ongoing debate is
the temperature dependence of the parameter λ, which characterises the strength of the
repulsive part of the interaction. In a recent study the temperature independence of λ

was questioned on the basis of simulations and experiments involving various metallic
glass alloys and also led to different conclusions about the relation between the fragility
and λ [73]. This, however, is at variance with the simulation results in Ref. [56], where
the temperature independence of λ for a CuZr binary alloy was demonstrated.
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Appendix A

The coherent potential
approximation

A.1 Effective-medium theory for central-force spring
networks

We start with the N -particle Hamiltonian in d dimensions (e.g. of the triangular lattice)

H = H0 + V (A.1)

where

H0 = Hp + Hu (A.2)

where p and u are the Nd-dimensional momentum and displacement vector, respectively.
For ease of notation, we write the u as

|u〉 = (u1, . . . , uN) (A.3)

with the property

〈i|u〉 = ui. (A.4)
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In the harmonic approximation Hu is given by

Hu = 1
2
∑
〈i,j〉

kij

[
(ui − uj) · r̂ij

]2
(A.5)

where 〈i, j〉 means summing over next neighbors and r̂ij are the unit bond vectors.
Introducing the dN × dN dynamical matrix M we may write

Hu = 〈u| M |u〉 (A.6)

with

M = 1
2
∑
〈i,j〉

kij r̂ij r̂
T
ij (|i〉 − |j〉) (〈i| − 〈j|) (A.7)

=
∑
〈i,j〉

kij r̂ij r̂
T
ijPij (A.8)

and define for later use the bond projector Pij = 1
2 (|i〉 − |j〉) (〈i| − 〈j|) [54]. Accordingly

we define the Green’s function of the system as

G(ω) =
[
M − mω2

]−1
(A.9)

Following [21, 22], one way to introduce EMT and compute the disorder-averaged Green’s
functions is to introduce an effective spring constant keff and write kij = keff + (kij − keff)
and, correspondingly, decompose the dynamical matrix as M = M0 + δM such that

M0 =
∑
〈i,j〉

keffr̂ij r̂
T
ijPij (A.10)

and

δM =
∑
〈i,j〉

(kij − keff)r̂ij r̂
T
ijPij. (A.11)

We then can write the Green’s function as G = G0 + G0T G0, where G0 = [M0 − mω2]−1

is the Green’s function of the effective medium. The matrix T is the scattering matrix
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and given by T = δM [1 − G0δM]−1, or equivalently,

T = δM + δMG0δM + δMG0δMG0δM + . . . (A.12)

= δM
∞∑

n=1

[
G0δM

]n
. (A.13)

Inserting the expression for δM into the above series expansion, we can split the sums
over the NN-bonds into diagonal and off-diagonal parts. Since Pij is a projection operator
the contributions containing different powers of the projection can be collected and
resummed. The result of this is

T =
∑
〈i,j〉

Tij +
∑

〈i,j〉6=〈m,n〉
TijG0Tmn + . . . (A.14)

with

Tij =
(|i〉 − |j〉)

(
kij − keff

)
(〈i| − 〈j|)

1 − (kij − keff) r̂T
ij (〈i| − 〈j|) G0 (|i〉 − |j〉) r̂ij

r̂ij r̂
T
ij (A.15)

We now want to determine the effective spring constant keff such that it mimics the
average behavior of the disordered system [22], i.e. 〈G〉 = G0. This leads to the condition
〈T 〉 = 0, which in the EMT is achieved by setting 〈Tij〉 = 0. We evaluated the average
over the disorder according to

0 = p Tij

∣∣∣
kij=k

+ (1 − p) Tij

∣∣∣
kij=0

(A.16)

meaning that bond randomly removed with probability 1 − p. After some manipulations
we can rewrite the above as

r̂T
ij ·

(
(〈i| − 〈j|) G0 (|i〉 − |j〉)

)
· r̂ij = keff − pk

keff(k − keff) . (A.17)

The un-disordered, effective lattice is isotropic and homogeneous so that the above
equation is independent of the bond label i, j [54, 21]. Hence, 〈i| G0 |i〉 = 〈j| G0 |j〉 and
〈j| G0 |i〉 = 〈i| G0 |j〉. Using the relation G0(M0 − mω2) = 1 and computing its trace we
find

1 + mω2

d
TrG0 = keffz

d
r̂T

ij ·
(

(〈i| − 〈j|) G0 (|i〉 − |j〉)
)

· r̂ij (A.18)
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which corresponds to the final result obtained by Feng and Thorpe [32], except for the
sign convention of the Green’s function. Following [40] we set TrG0 = G11, giving the
magnitude of the site-diagonal Green’s function. We can then combine the last two
equations to obtain a simplified expression for G11 as

mω2G11 + 1 = keff

p∗

(
keff − pk

keff(k − keff)

)
(A.19)

where p∗ = 2d/z and which is now in a suitable form to be used for the numerical
evaluation of G11 [40]. For the present purposes, we note that the Green’s function G11

is given by

G11(ω2, keff) = 1
2mN

∑
k,i

1
ω2 − ω2

i (q) (A.20)

where the q-sum runs over the first Brillouin zone and i-sum over the branches of the
dispersion relation of the underlying crystal obtained from as the eigenfunctions of
the corresponding dynamical matrix. Finally the vibrational density DCPA of states is
obtained by the relation [40]

DCPA(ω2, keff) = − 1
π

ImG11(ω2, keff). (A.21)

A.2 CPA for the three-dimensional fcc crystal

In order to quantitatively study the effective medium theory in the case for the 3D FCC
we need to write down the dynamical matrix for the perfect FCC and determine the
eigenfunctions ω2

i (k). To keep the notation clean we set the spring constant, mass and
lattice spacing to 1, i.e. k = m = a = 1. The resulting 3 × 3 dynamical matrix D is given
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in terms of its components by

D11 = − 2
(

cos
(

qx

2

)(
cos

(
qy

2

)
+ cos

(
qz

2

))
− 2

)
D22 = − 2

(
cos

(
qy

2

)(
cos

(
qx

2

)
+ cos

(
qz

2

))
− 2

)
D33 =4 − 2 cos

(
qz

2

)(
cos

(
qx

2

)
+ cos

(
qy

2

))
D12 =D21 = 2 sin

(
qx

2

)
sin

(
qy

2

)
D13 =D31 = 2 sin

(
qx

2

)
sin

(
qz

2

)
D23 =D32 = 2 sin

(
qy

2

)
sin

(
qz

2

)
.

By diagonalizing D we can compute the three branches ω2
i (q, k) of the dispersion relation.

In order to solve the EMT equations (A.19) and (A.20) we replace the spring constant k

in the dispersion relation with the spring constant of the effective medium keff. Since we
need to solve (A.19) and (A.20) iteratively, we use keff = 1 + i as a starting value. Then
we compute the effective-medium Green’s functionG11(ω2, keff = 1 + i) by numerically
summing the three branches of the dispersion relation over 105 points in the first Brillioun
zone of the fcc crystal. The resulting Green’s function is then substituted in Eq. (A.19)
to obtain the new value for the effective spring constant keff. This process is repeated
until convergence of keff reached, which happens after about 10 iterations.





Appendix B

The inversion-symmetry breaking
parameter

Here we follow the exposition [67], which provides an argument for the normalisation of
the ISB parameter. We start from a system with an arbitrary distribution of angles θ

and φ (here they are the angles of the bonds with respect to some reference system - not
the angles between bonds in the system). The only thing we can say in the framework of
the affine force field is that for every bond vector n̂ij exists a vector n̂ji = −n̂ij appearing
with the same relative frequency. We now write the general expression of |Ξ|2 as

|Ξ|2 = κ2r2
0
∑

i

∑
α

∑
j nn i

n̂α
ijn̂

x
ijn̂

y
ij

2

(B.1)

where α = x, y, z are the Cartesian coordinates. We can carry out those sums and
regroup the terms to get

|Ξ|2 = κ2r2
0

∑
ij

(
n̂x

ijn̂
y
ij

)2

+
∑

i

∑
k,l nn i

(n̂ik · n̂il)(n̂ik · n̂il)x(n̂ik · n̂il)y

 (B.2)

Now we implement the difference between the most random configuration, which we call
isotropic in the case of the random network, and any other configuration that we want
to calculate the ISB parameter for.
With no further restrictions, the second term in (B.2) is zero. We can explain this by
the fact that, as said before, the probability to have any vector according to a given
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angle distribution is equal to the probability to have the negative of this vector. In the
framework of the scalar product this means that

P ((n̂ik · n̂il)(n̂ik · n̂il)x(n̂ik · n̂il)y)
=

P (−(n̂ik · n̂il)(n̂ik · n̂il)x(n̂ik · n̂il)y)
⇒ 〈(n̂ik · n̂il)(n̂ik · n̂il)x(n̂ik · n̂il)y〉 = 0 (B.3)

In a hard sphere system we would have the restriction that n̂ik · n̂il < 0.5 since two bonds
from an atom i cannot have an angle smaller that π/3. This shifts the average in (B.3) to
a negative value and lowers |Ξ|2. This also is the core mechanism of the ISB parameter.
So what remains of |Ξ|2 in the total random case is

|Ξ|2random = κ2r2
0
∑
ij

(
n̂x

ijn̂
y
ij

)2
. (B.4)

So the ISB parameter becomes

FIS = 1 − |Ξ|2

κ2r2
0
∑

ij

(
n̂x

ijn̂
y
ij

)2 (B.5)

which reproduces the right behaviour of the ISB parameter. When we combine (B.5)
and (B.2) we can get an even further simplified expression

FIS = −
∑

i

∑
k,l nn i(n̂ik · n̂il)(n̂ik · n̂il)x(n̂ik · n̂il)y∑

ij

(
n̂x

ijn̂
y
ij

)2

= −
∑

i

∑
k,l nn i cos αkl (n̂ik · n̂il)x(n̂ik · n̂il)y∑

ij

(
n̂x

ijn̂
y
ij

)2 ,

(B.6)

where we have linked the inversion symmetry breaking parameter to the angular distri-
bution of the angles αkl between bonds in each cell of the system.
But one problem remains: We have defined our ISB parameter in the framework of
xy shearing. So we weighted the symmetry in the xy plane higher than the symmetry
in the other directions. To get a general parameter we have to include the other di-
rections, represented by their corresponding affine force fields, as well. So we replace
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|Ξ|2 = ∑
a,b=x,y,z |Ξab|2. Therefore equation (B.4) and the numerator of (B.6) becomes

|Ξ|2random = κ2r2
0
∑
ij

∑
ab

(
n̂a

ijn̂
b
ij

)2

= κ2r2
0
∑
ij

((
n̂x

ij

)2
+
(
n̂y

ij

)2
+
(
n̂z

ij

)2
)2

= NZκ2r2
0
∑

i

∑
k,l nn i

∑
ab

(n̂ik · n̂il)(n̂ik · n̂il)a(n̂ik · n̂il)b

=
∑

i

∑
k,l nn i

(n̂ik · n̂il) ((n̂ik · n̂il)x + (n̂ik · n̂il)y + (n̂ik · n̂il)z)2

=
∑

i

∑
k,l nn i

(n̂ik · n̂il)3

The ISB parameter therefore becomes

FIS = − 1
NZ

∑
i

∑
k,l nn i

(n̂ik · n̂il)3 = − 1
NZ

∑
i

∑
k,l nn i

(cos αkl)3 (B.7)

It is important to notice that we count each angle twice. Due to the restriction cos αkl <

0.5, the value 〈(cos αkl)3〉 is smaller than 1. So the sign of (B.7) is correct to produce a
parameter FIS < 1.





Appendix C

Dispersion relation of the linear
chain with long-range interaction

We expect that there will be significant changes in the physics of a lattice dynamical
system when interaction is extended from a mere nearest-neighbor interaction to long-
range interactions. To obtain some insights, we will now compare the well-studied case
of a linear chain with long-range interactions to the construction of the shelled triangular
lattice.

Following the discussion in Ref. [4], we can define a linear chain with long-range
interaction given by the harmonic potential energy

HLR =
∑

i

∑
n

κn

[
u(ia) − u((i + n)a)

]2
(C.1)

where the summation over the index i extends over the sites on the linear chain and
the summation over n specifies the range of the long-range interaction and a is the
nearest-neighbour distance. We choose a power-law dependence for the scaling of the
distance-dependent spring constant, i.e. κn = n−α. We are interested in understanding
the behaviour of the dispersion relation ω = ω(q) when changing both the range and
scaling exponent α of the interaction in the linear chain.

Let us first look at the dependence of the dispersion relation on the scaling exponent
α. For this we plot ω(q) for a interaction distance of n = 104 for α = 2 and α = 3.

From Fig. C.1 we can observe that changing the exponent of the power-law of κn

from 2 to 3 globally pushes the dispersion curve to lower values in the whole Brillouin
zone, which is accompanied by a clear change of scaling in the low-momentum region of
ω(q).
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Fig. C.1 Shown are the dispersion relations ω(q) of the linear chain with long-range interaction
up to the distance 104a for two different exponents of the power-law decay of the interaction
strength.

Turning to the behaviour of the dispersion relation when changing the range of the
interaction κn, it becomes obvious that in the case of cubic decay the convergence to the
asymptotic case is happening much faster than in the case of the squared decay.

In the case where α = 2, it is possible to easily obtain a closed-form solution for the
dispersion relation. Solving the equation of motion of the long-range linear chain we
obtain the dispersion relation as [4]

ω(q) =
(∑

n>0

1
np

sin
(

qan

2

)2
)1/2

(C.2)

=
(∑

n>0

1
2np

(1 − cos (qan))
)1/2

. (C.3)

2 In the case where p = 2 we can use the identity

∑
n>0

1
n2 (1 − cos (qan)) = 1

4
(
π2 − (q − π)2

)
, (C.4)

(see Ref. [47] for a detailed proof) to express the dispersion relation as

ω(q) =
√

π2 − (q − π)2

2 (C.5)
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Fig. C.2 Comparison of the linear chain dispersion relation for fixed power-law exponent α = 2
but for variable interaction range.

The closed form expression for general exponents p can’t be obtained as easily. For this
reason we will stick to the analysis of the behaviour at low values of q. First, consider
the previous case of p = 2. In the low q-region, we transform the sum into an integral
and subsequently obtain

∫ ∞

1

1 − cos(qn)
n2 = 1 + π |q|

2 − qSi(q) − cos(q) (C.6)

where Si(k) denotes the Sine-integral. Expanding to linear order we get the asymptotic
scaling of the dispersion relation as

ω(q)
∣∣∣
p=2

∼
√

π |q|
2 . (C.7)

When we set p = 3 and transform the infinite sum to an integral we obtain
∫ ∞

1

1 − cos(qn)
n2 = 1

2(q(sin(q) − qCi(q)) − cos(q) + 1), (C.8)

where Ci(q) is the Cosine-integral. In this case it does not suffice to linear order since
the linear approximation of the above expression is identically zero. Hence, expanding
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Fig. C.3 Comparison of the linear chain dispersion relation for fixed power-law exponent α = 3
but for variable interaction range.

up to second order in q, we obtain the asymptotic scaling

ω(q)
∣∣∣
p=3

∼ q

√
3 − 2γ − 2 log q

2 , (C.9)

γ being the Euler-Mascheroni constant.



Appendix D

Viscoelasticity of metallic glasses

D.1 The High-Frequency Shear Modulus in the Con-
tinuum Limit

Recalling the derivation in Chapter 1, the evaluation of the complex linear viscoelastic
response to the shear modulus in Eq. (1.49) yields

G∗(ω) = GA + 1
V

∑
p

Ξ̂p Ξ̂p

mω2 − mω2
p − iων

, (D.1)

where Ξ̂p denotes the affine force field tensor and ωp the eigenfrequencies of the system.
In the continuum limit we can replace the sum over the p-states by an integration over
the eigenfrequencies ωp, that is

G∗(ω) = GA +
∫ ωD

0
dωp

ρ(ωp)Γ(ωp)
mω2 − mω2

p − iων
, (D.2)

where ρ(ωp) denotes the density of states and ωD the Debye frequency. The function Γ
represents the correlator on frequency shells given by Γ(ω) = 〈Ξ̂p Ξ̂p〉, where the average
is evaluated for all projections of Ξ on eigenvectors with eigenfrequency ωp ∈ [ω, ω + dω].
We can express the shell correlator in a simple fashion due to the result in [101] as Γ ∼ ω2

p.
Also we will assume that the density of states is quadratic as in the Debye model given
as ρ(ωp) ∼ ω2

p.
Therefore the expression for the complex shear modulus reduces to

G∗(ω) = GA +
∫ ωD

0
dωp

ω4
p

mω2 − mω2
p − iων

. (D.3)
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Since we are interested in the shear modulus it suffices to consider the real part of the
complex quantity G∗. The real part of the integrand above is easily seen to be

2mω4
p

(
ω2 − ω2

p

)
m2ω4

(
1 +

ω4
p

ω4 − 2
ω2

p

ω2

) . (D.4)

Thus, we observe, that in the high-frequency limit, where ω → ∞, the above expression
will converge to zero, leading to limω→∞ Re G∗(ω) = GA. By virtue of this argument
we can substitute the high-frequency shear modulus with the Born-Huang affine shear
modulus GA.

D.2 The Ashcroft-Born-Mayer potential

With the two contributions introduced in the main text, the Ashcroft-Born-Mayer
pseudopotential is given by

Vii(r) = A e−qTF(r−2a0)

r − 2a0
+ B e−C(r−σ̄), (D.5)

where a0 is the Bohr radius and σ̄ the average ionic core diameter of the alloy, which
corresponds to the average size of the ionized atoms constituting the alloy. The average
ionic core diameter is obtained by a averaging the respective ionic core diameter of the
constituents with their contributing weights given by their volume ratios in the alloy. The
values for the ionic core diameters of the atoms constituting the alloys are taken from
Ref. [82]. The quantities A and B set the energy scales for the repulsive interaction from
the Ashcroft and Born-Mayer term, respectively. The parameter qTF is the inverse of the
Thomas-Fermi screening length given by Thomas-Fermi theory, and its value is known
for different types of alloys [93]. We choose a representative value for qTF as 1.25 Å−1

according to the values reported in Ref. [93]. The ionic core diameter σ̄ is obtained
by a weighted average of the core diameters of the atoms constituting the alloys taken
from [82], where the weights correspond to the ratios of the respective atoms.

The characteristic range 1/C of the valence-shell overlap repulsion is not known a
priori. However, its typical values are less sensitive to the atomic composition than the
parameters σ̄, A and B. Different atoms have very similar values typically in the range
1 − 2.5 Å−1 [41].

Finally, A is the prefactor to the Ashcroft pseudopotential, which is the product of
the electrostatic nuclear repulsion Z2

ione2 and the Ashcroft factor cosh2(qTFRcore) [30],
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where Rcore is a typical value for the atom-specific core radius and Zion the effective
ionic charge number. The latter cannot be easily estimated from first-principles or from
literature. Similarly, the prefactor B of the Born-Mayer term, can be rigorously evaluated
only from the exchange integrals of the various overlapping electrons which belong to the
valence shells of the two interacting ions. This calculation, even in approximate form,
is not feasible except for simple crystals. Hence, we take both A and B as adjustable
parameters in the mapping between our schematic logarithmic potential and the Ashcroft-
Born-Mayer pseudopotential. We shall remark that the Born-Mayer prefactor B typically
has non-trivial large variations from element to element across the periodic table, as
shown in many ab initio simulations studies [41, 43]. Consistent with this known fact,
it turns out that B is the most sensitive parameter in our analysis, in the sense that
small variations in B can lead to large deviations in the fitting of the experimental data.
Conversely, the Ashcroft prefactor A is not a sensitive parameter, and its values are not
crucial for the match with experiments.

D.3 Pseudopotential Fitting

The values of the parameters which have been used to obtain fits to the logarithmic
pseudopotential are documented in Table 1 of this Appendix. In Fig. D.1 we plotted a
comparison between the Ashcroft-Born-Mayer pseudoptential and the potential of mean
force. We see that the repulsive form of the potential of mean force is well approximated
by the exponential functional form of the pseudopotential.

The values for both the Thomas-Fermi wave vector qTF and the Pauli exclusion
parameter are seen to vary very little for the different alloys. In contrast, the parameters
which define the energy scale of the two contributions to the Ashcroft-Born-Mayer
potential show a significant variation. Interestingly, this variation correlates with the
steepness parameter λ defined earlier. In particular, a increasing values for the steepness
λ coincide with an increase in the energy scale, which is defined by both the parameters
A and B.

Also, we can deduce from Fig. D.1 and Tab. D.1 that the Born-Mayer term in the
pseudopotential provides the dominant contribution to the repulsive effective potential
at longer length scales. The screened Coulomb interaction represented by the Ashcroft
term only comes into action at distances shorter than the screening length, where the
electrostatic repulsion of the ionic core provides a harsh repulsive barrier.
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D.4 Comparison of the Born-Mayer parameter with
typical values

Our modelling of λ indicates clearly that, of the two contributions, it is the Born-Mayer
electron-overlap repulsion the one which controls the qualitative behaviour, while the A
parameter does not have much effect on the slope. This implies that the parameters of
the Born-Mayer repulsion are those which control the interaction softness. Furthermore,
if we recast the Born-Mayer interaction in the canonical form which is found in the
molecular physics literature, Be−Cr, for our Zr-based alloy we obtain B ≈ 15000 eV

which is not far from the value B = 22000 eV obtained in simulations of the interaction
between two Zr atoms in the literature, e.g. Ref. [1]. This comparison confirms the
robustness of our model, not only at the qualitative level, but also in capturing the right
orders of magnitude of the microscopic forces. We believe that more detailed calculations
using ab-initio methods can be done along this line in future work by ab-initio molecular
dynamics specialists.

D.5 Cooperative shear events

The constitutive equation for the viscosity presented in the main text is based on the
shoving model of glasses [26, 25]. The key idea behind this is that the interatomic
repulsion is strong compared to the attractive forces. In a plastic flow event many atoms
need to rearrange, which at constant volume has the consequence that the atoms involved
are forced together [25]. Since this process is energetically unfavourable, it was suggested
that the atoms may shove aside their neighbours to create free volume and accommodate
the flow process.

It can be shown that the energy necessary to trigger a shoving event in a volume
V is linearly proportional to the high-frequency shear modulus, with the constant of
proportionality being the characteristic volume Vc, i.e. E(T ) = GA(T )Vc [25].

According to Ref. [48], the total energy barrier W between two basins in the potential
energy landscape is given by W = 8

π2 GA Ωγ2
Cξ, where Ω represents the effective STZ

volume and GA the shear modulus. The critical shear strain γC is found be 0.036 ± 0.002
for all known metallic glasses and the correction factor ξ due to the matrix confinement
of a STZ ranges between 2 and 4 [48]. After evaluating the expression for the potential
energy barrier we get W ≈ (1/320) GAΩ. We assume that the energy barrier W in the
cooperative shear model is approximately equal to the shoving energy, that is W ≈ E. It
directly follows that GAVc ≈ (1/320)GAΩ, which leads us to conclude that the effective
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Fig. D.1 Comparison of the Ashcroft-Born-Mayer pseudopotential with the logarithmic poten-
tial of mean force (including the two separate contributions to the pseudopotential). The plot
was generated for a repulsive steepness λ = 99.7.

Table D.1 Values used for the fitting of the Ashcroft-Born- Mayer pseudopotential to the
logarithmic potential of mean force

λ A (eV) qTF (Å−1) B (eV) C (Å−1) σ̄ (Å)
196.2 0.37 1.7 5.1 2.8 1.68
276.4 0.39 1.7 21.8 2.8 1.29
286.5 0.42 1.7 28.8 2.8 1.20
381.2 0.48 1.7 57.4 2.8 1.056

volume of a STZ is Ω ≈ 320Vc. It is physically meaningful that the effective STZ volume
Ω is approximately equivalent to the initial shoving volume V , henceforth calling it VSTZ.
Using the identification Ω ≈ VSTZ ≈ 320Vc together with Eq. (8) from the main text, we
obtain a relation between the activation volume and the characteristic volume Vc given
by ∆V ≈

√
480 Vc.

As explained in the main text, we use the characteristic volumes Vc from the viscosity
fitting in the relation above to compare the resulting theoretical values for the STZ
volume to experimental data.
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