
The Dialectica models

of type theory

Sean Keith Moss

Trinity College

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

September 2017





This dissertation is the result of my own work and includes nothing which is

the outcome of work done in collaboration except as declared in the Preface

and specified in the text. It is not substantially the same as any that I have

submitted, or, is being concurrently submitted for a degree or diploma or other

qualification at the University of Cambridge or any other University or similar

institution except as declared in the Preface and specified in the text. I further

state that no substantial part of my dissertation has already been submitted, or,

is being concurrently submitted for any such degree, diploma or other qualifica-

tion at the University of Cambridge or any other University or similar institution

except as declared in the Preface and specified in the text.

Sean Moss

September 2017

iii



iv



Acknowledgements

I would like to thank my supervisor, Martin Hyland, for his guidance, insight,

and encouragement, as well as for patiently reading and critiquing many drafts

of this work. Thanks go to Tamara von Glehn for having written her own

thesis (without which this one could not have been written), for many helpful

conversations, and for giving many useful comments on several drafts. I am

grateful to the examiners, Marcelo Fiore and Nicola Gambino, for their careful

reading and thoughtful suggestions. It has been a privilege to be part of the

category theory group in Cambridge, and I am grateful to the many official

and honorary members of our group for their support. My thanks to everyone

else who has kept me going, including friends in Cambridge and elsewhere, and

especially my parents, Ian and Jacqui, and my sister, Katharine.

I am grateful to the Engineering and Physical Sciences Research Council and

the Department of Pure Mathematics and Mathematical Statistics for funding

my studies.

v



vi



Contents

Introduction 1

1 Preliminaries 7

1.1 Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The semantics of type theory . . . . . . . . . . . . . . . . . . . . 15

1.3 Finite product types . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Fullness and Ehrhard comprehension . . . . . . . . . . . . . . . . 21

1.5 Dependent products . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Dependent sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Finite sum types . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 Identity types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Adding the η-rule 43

2.1 Weak adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Modelling weak dependent products . . . . . . . . . . . . . . . . 46

2.3 The category of retracts . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 The split comprehension category of retracts . . . . . . . . . . . 49

2.5 Dependent products . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Fullness and Ehrhard comprehension . . . . . . . . . . . . . . . . 57

2.7 Dependent sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.8 Identity types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Biproducts of algebras 65

3.1 Biproducts in a category with a zero object . . . . . . . . . . . . 65

3.2 Naturality of the product-coproduct isomorphism . . . . . . . . . 67

3.3 Biproducts in Kleisli categories . . . . . . . . . . . . . . . . . . . 70

3.4 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Commutative monoids . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Biproducts in Eilenberg-Moore categories . . . . . . . . . . . . . 84

vii



4 The Diller-Nahm category 87

4.1 Three settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 The Diller-Nahm fibration . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Finite Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Simple products . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 The Diller-Nahm category . . . . . . . . . . . . . . . . . . . . . . 117

5 Fibred models of type theory 119

5.1 The Fibred fundamental fibration . . . . . . . . . . . . . . . . . . 119

5.2 Fibred comprehension categories . . . . . . . . . . . . . . . . . . 121

5.3 Full fibred comprehension categories . . . . . . . . . . . . . . . . 122

5.4 Fibred unit types . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 Fibred Ehrhard comprehension . . . . . . . . . . . . . . . . . . . 124

5.6 Dependent sum as comprehension . . . . . . . . . . . . . . . . . . 124

6 Gluing models of type theory 129

6.1 Comprehension categories from fibred comprehension categories . 129

6.2 Type constructors in the gluing model . . . . . . . . . . . . . . . 135

6.3 Dependent sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Identity types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 Dependent products . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Universes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Dialectica models of type theory 155

7.1 The polynomial model . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2 The Dialectica model . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3 The Diller-Nahm model . . . . . . . . . . . . . . . . . . . . . . . 162

7.4 Diller-Nahm with predicates . . . . . . . . . . . . . . . . . . . . . 166

7.5 The error Dialectica model . . . . . . . . . . . . . . . . . . . . . 168

Further work 179

viii



Introduction

This thesis is an attempt to understand how a family of models of type theory

can be indexed by a base model of type theory. By ‘type theory’ we mean

intensional Martin-Löf type theory, usually with dependent sums and dependent

products. The notion of ‘family of objects indexed by an object of the same

kind’ is widespread in mathematics, for us the most notable example of this

phenomenon is the notion of indexed category, which can be modelled by that

of Grothendieck fibration, introduced in [17]. We are more specifically interested

in the derivation of a total model of type theory from the indexed or fibred one,

and we will use this construction to build examples of Dialectica models of type

theory. In building the Dialectica models we are continuing a programme that

begins in de Paiva’s thesis [11]. The idea is to find semantic manifestations

of the ideas in various functional interpretations, starting with Gödel’s original

‘Dialectica’ interpretation [16].

The original Dialectica interpretation was introduced by Gödel to prove the

consistency of Heyting arithmetic relative to System T, a finite-type extension

of primitive recursive arithmetic. Every formula of arithmetic is given an in-

terpretation as a quantifier-free formula of System T together with two sets of

fresh variables. A formula A is mapped to

AD = 〈~x.~y.AD(~x; ~y)〉

which is understood to mean

∃~x.∀~y.AD(~x; ~y)

in a sense made precise by the following theorem (see, for instance, [28] or [7]).

Theorem. Any proof of the formula A in Heyting arithmetic gives rises to a

sequence of closed terms ~t and a proof of AD(~t; ~y) in System T.

We will not give details of the interpretation here other than to note the

following. The question of the interpretation of function types in Dialectica can

1



be thought of as asking for a reduction of a formula of the form

(∃uU .∀xX .A(u;x))→ (∃vV .∀yY .B(v; y)) (1)

(where A and B are quantifier-free formulas and the superscript annotation

indicates the type of each variable) to one in ∃∀ form. For a suitable constructive

interpretation of the implication, we may consider (1) equivalent to

∃fU→V , FU×Y→X .∀uU , yY .A(u;F (u, y))→ B(f(u); y). (2)

The reasoning goes thus: a proof of (1) should, inter alia, be a map of potential

witnesses u of ∃u.∀x.A(u;x) to potential witnesses v = f(u) of ∃v.∀y.B(v; y)

with the property that, when u validates the former, f(u) validates the latter.

So, in particular, we get a function f : U → V . Allowing for the fact that f(u)

might not be a witness v of ∃v.∀y.B(v; y) on account of that formula being false,

a proof of (1) should also provide a means to map potential counterexamples

y to ∀y.B(f(u); y) to potential counterexamples x to ∀x.A(u;x), in such a way

that if y really is a counterexample then so is its associated x. Moreover, this

x is allowed to depend on both u and y, so we may write it as x = F (u, y), i.e.

we have a function F : U × Y → X.

The import of the Diller-Nahm variant of the Dialectica interpretation relates

to the extraction of a witness function F validating (2) from a proof of (1). It

might be easy to produce a finite set of possible values for F (u, y) from u and y

but awkward to effectively decide which of them is actually a counterexample as

required. This is the case when interpreting the contraction axiom A→ A∧A.

This problem is resolved by extending the type system of System T to include

a type constructor for the finite multisets in some type, written A• for a type

A, and extending the language to include quantification over a finite multiset.

Then the analogue of (2) is

∃fU→V , FU×Y→X
•
.∀uU , yY .[∀x ∈ F (u, y).A(u;x)]→ B(f(u); y). (3)

The Dialectica category [11] of a cartesian closed category C is a category

whose objects are Dialectica propositions and whose morphisms are of the form

(2). More precisely, an object is a triple (U,X, α) where U,X ∈ C and α : [α] �

U × X is a subobject of U × X. An arrow (U,X, α) → (V, Y, β) consists of a

morphism f : U → Y together with a morphism F : U × Y → X such that, in

the subobject lattice of U × Y ,

(πU , F )∗α ≤ (f × 1Y )∗β.

2



This category is symmetric monoidal closed. The Diller-Nahm category, which

we cover in detail in Chapter 4, is a variant where the maps are of the form (3),

and it turns out to be cartesian closed. Its construction requires the existence

of a monad on C which behaves like the finite multisets monad.

By finding type-theoretic versions of this construction, our work follows on

directly from [46], in which von Glehn constructed a model of type theory based

on a restricted version of Gödel’s Dialectica. The literature on Dialectica cat-

egories and semantic versions of Dialectica interpretations includes [21], [39],

[20], and the compilation [5] of whose constituent articles [4] is the most relev-

ant to the present work.

Outline

In Chapter 1 we cover the basic background in category theory and categorical

logic we need. This includes the fundamental concept of Grothendieck fibration

and two notions of model of type theory: display map categories and com-

prehension categories. We consider it self-evident that these two notions cap-

ture roughly the same intuitions about type theory, and that many arguments

about one can be applied to the other. Thus we usually only give arguments

in whichever setting is convenient and do not trouble ourselves to prove every

result or give every definition for both settings. We leave aside the problem of

formally stating an equivalence between the two approaches. This chapter is

nearly all review of literature and folklore, though we make a small contribution

to the understanding of finite sum types.

One of the fundamental type constructors we will consider is the dependent

product. There are many structures which model type theory but do not quite

model dependent products in the usual sense: they satisfy the β- but not the

η-rule. Hence in Chapter 2 we introduce the first of the main constructions of

this thesis: the idempotent splitting construction. This generalizes the well-

known construction from ordinary category theory of the Karoubi envelope [26]

or Cauchy completion [30]. We say what it means for a model of type theory to

have weak dependent products, then we set out the definition of the idempotent

splitting construction in the context of split comprehension categories. Finally

we consider when the resulting structure models Martin-Löf type theory. The

most difficult type constructor to derive is the identity type. To do so, we need

to make a modest assumption about the identity types in the starting model:

we require that they preserve idempotents.

We review the notion of additive monad in Chapter 3, which is what we

will need to construct the Diller-Nahm category and model of type theory. Our

approach is to consider conditions on a monad which imply the existence of

3



biproducts in the Kleisli category. We study properties of these biproducts

which we will need later, and take a detour to study the commutative monoid

structure induced by an algebra structure for an additive monad, the culmina-

tion of which is the result that an additive monad also admits biproducts in its

Eilenberg-Moore category.

Chapter 4 is our interpretation of the constructions of [21] and [4] viewed

from a fibrational point of view. We review the necessary input data to construct

the Diller-Nahm fibration, and we introduce the Kleisli fibrations to show that

the Diller-Nahm category is obtained by taking the total category after applying

some basic operations to a composable pair of fibrations. We give a notion of

quasifibred exponential which we use to simplify the calculation that the Diller-

Nahm category is cartesian closed.

In Chapter 5, we detail the setting for our second main construction: the

gluing construction. We introduce the notion of fibred model of type theory, in

the context of both comprehension categories and display map categories. The

advantage of the approach with comprehension categories is that it allows us

to formulate and prove the result that dependent sums, one of the fundamental

type constructors of Martin-Löf type theory, really are fundamental in that they

are equivalent to context extension in the type theory given by working over a

fixed context.

We give the gluing construction itself in Chapter 6. Acting on the plain

models with no thought for type constructors, this is a generalization of the

gluing construction in [38] and essentially the same as the fibrewise-to-total

construction in [43]. In the display map case we detail how to derive the required

type constructors in the gluing model. For dependent products, our approach

is more general than that in [38] and [43] and it abstracts the proof in [46] that

the polynomial model has dependent products. We also give a more general

construction of a universe in the gluing model.

Chapter 7 is an examples chapter. As all the examples are models of type

theory related to various Dialectica-style functional interpretations, we call them

Dialectica models of type theory. We reconstruct the polynomial model of [46] in

our framework using the gluing construction, showing that it models a universe

and the correct notion of finite sum type to allow iteration. We also give an

extension of the polynomial model to include an additional layer of predicates,

bringing it more closely in line with the Dialectica category. An account of a

Diller-Nahm variant of the polynomial model is given, and we sketch how this

might be extended with an additional layer of predicates. We give a Dialect-

ica model based on the exception monad, which only models weak dependent

products. Finally, we combine this example with the idempotent completion

construction to get another model with full dependent products.

4



The last chapter outlines some possible directions for future work, including

the properties of the Dialectica models and their iterations, and the possibility

of a general ‘model theory for type theory’, in which our gluing construction

might have a universal property.

5



6



Chapter 1

Preliminaries

In this chapter we will review some of the fundamental background that we

need. The central notion is that of (Grothendieck) fibration, introduced by

Grothendieck in [17]. The importance of fibrations for logic is well-known, see

for instance [24]. For us, a fibration allows us to speak of a system of contexts

for type theory, where each context is equipped with a good notion of type in

that context.

Next, we will set out several notions of ‘model of type theory’, and what it

means for these models to admit various type constructors. The notions of model

which are most important for us are that of display map category and that of full

comprehension category. We take the view that these two notions encompass

essentially the same intuition about type theory, so rather than formulating

any sort of equivalence between them we simply use whichever notion is most

convenient for the immediate task. It is usually clear how one would express

the same argument in terms of the other language. There are other notions,

which we do not consider here, such as that of contextual category (see [9]) and

category with families (see [12]). In the investigation of the η-rule in Chapter 2

we will need the split version of full comprehension category, so we also cover

that notion. It is apparent that many of the definitions and results apply to

comprehension categories which are not necessarily full, and though it may be

less apparent it is possible that some useful rôle will eventually be found for

these more general structures, hence we give some parts of the exposition in

terms of ‘non-full comprehension categories’.

1.1 Fibrations

This section contains only review material, a good reference for which is [40].

We begin by recalling the definition of fibration.

7



Definition 1.1.1. Let p : E → B be a functor between categories. An arrow

φ : Y → X in E is p-cartesian (or just cartesian) if, for every arrow ψ : Z → X

in E, the function

E/X(ψ, φ)→ B/p(X)(p(ψ), p(φ))

(χ : Z → Y ) 7→ (p(χ) : p(Z)→ p(Y ))

between homsets of slice categories induced by p is a bijection. Given an object

X ∈ E and an arrow f : B → p(X) in B, a cartesian lift of f with codomain X

is a cartesian arrow φ : Y → X with p(φ) = f . The functor p is a fibration if,

for every X ∈ E and f : B → p(X) in B, there exists a cartesian lift of f with

codomain X.

Example 1.1.2. Let B be a category. Then there is a functor cod : B→ → B
from the category of arrows of B to B which sends an arrow to its codomain.

Then cod is a fibration if and only if B has all pullbacks. Indeed, an arrow in

B→ is cartesian if and only if it is a pullback when considered as a square in B.

Definition 1.1.3. A cartesian functor (or morphism of fibrations) from a fibra-

tion p1 : E1 → B1 to a fibration p2 : E2 → B2 is a pair of functors F0 : B1 → B2

and F1 : E1 → E2 such that the square of functors

E1 E2

B1 B2

F1

p2p1

F0

commute and such that p1-cartesian arrows in E1 are sent by F1 to p2-cartesian

arrows in E2. We will often say cartesian functor to mean just such a functor

F1 when the functor F0 between base categories is an identity functor.

The following definition contains two important variations on the notion of

fibration.

Definition 1.1.4. Let p : E → B be a fibration. A cleavage for p is a choice

of cartesian lift for every X ∈ E and f : B → p(X). The functor p is a cloven

fibration if it is equipped with a cleavage. A cleavage is a splitting if the chosen

cartesian lift of an identity arrow is again an identity, and the chosen cartesian

lift of a composite of arrows is the composite of the chosen cartesian lifts of the

two individuals. A split fibration is a fibration equipped with a splitting.

8



Definition 1.1.5. A morphism of cloven fibrations between cloven fibrations is

a cartesian functor which preserves the cleavage. A morphism of split fibrations

between split fibrations is the same as a morphism of cloven fibrations.

Example 1.1.6. Let B be a category equipped with the structure of chosen

finite products. For an object I ∈ B, the simple slice category BI is the co-

Kleisli category of the comonad I × (−). The simple slice categories assemble

into the simple slice fibration PB : B(−) → B whose fibre category over I is BI .
The objects of B(−) are pairs (I,X), and an arrow (f, F ) : (I,X) → (J, Y ) is

given by an arrow f : I → J together with an arrow F : I × X → Y . Given

f : I → J in B and (J,X) in B(J), the arrow (I,X) → (J,X) given by the

arrow f paired with the product projection I ×X → X is a cartesian lift of f

with codomain (J,X). This choice of lifts exhibits PB as a split fibration. It

is possible to reformulate the definition so as to avoid reliance on chosen finite

products in B, but we omit the details.

Remark 1.1.7. The key intuition behind the notion of fibration is that it

provides a notion of ‘family of categories indexed by a category’. However, this

is really only true of cloven fibrations. Assuming a sufficiently strong choice prin-

ciple, every fibration has a cleavage. However, we may avoid limiting ourselves

to cloven fibrations by making finitely many ad hoc choices of cartesian lifts

for a given purpose. We will omit the details when the translation from the

language of cloven fibrations to that of arbitrary fibrations is easy to give.

Notation 1.1.8. When p : E → B is a cloven fibration and f : B → A is a

morphism in B and X an object of E with p(X) = A, we write fX : Y → X for

the chosen cartesian lift of f with codomain X. We will sometimes write fX

even when p is not a cloven fibration, to mean any choice of cartesian lift held

constant throughout a given calculation.

Definition 1.1.9. Let p : E → B. A p-vertical (or just vertical) morphism is

a morphism φ : X → Y in E with p(φ) an identity morphism. For an object

A ∈ B, the fibre category of p over A is the subcategory E(A) of E on those

objects X with p(X) = A together with all vertical morphisms between them.

Definition 1.1.10. Let p : E→ B be a cloven fibration and let f : B → A be a

morphism in B. Then reindexing along f is a functor f∗ : E(A)→ E(B) which

sends an object X ∈ E(A) to dom fX . The action of f∗ on morphisms sends

9



χ : X → Y to the unique factorization f∗(χ) of χ ◦ fX through fY .

f∗X X

f∗Y Y

fX

χ

fY

f∗(χ)

The fibre categories and reindexing functors turn a cloven fibration p into a

pseudofunctor

Bop → Cat,

or in the case of a split fibration, a strict 2-functor. In fact, the notion of cloven

fibration is essentially equivalent to the notion of pseudofunctor into Cat. Thus,

pseudofunctors form an alternative to fibrations as a notion of indexed category,

though we will not be concerned with pseudofunctors here.

We will still refer to the reindexing functors f∗ even when p is not given as

a cloven fibration. One can either take the view that we can always cleave any

fibration using the axiom of choice, or as in Remark 1.1.7 we can understand

that we are writing a shorthand for an elementary argument which really only

requires finitely many choices of cartesian lift when written out.

The following is a useful construction on fibrations which we will use extens-

ively in Chapters 4 and 7. It transforms a fibration into another whose fibre

categories are the opposite categories of the fibre categories we started with.

Definition 1.1.11. For a fibration p : E→ B its opposite fibration pop : Ep,op →
B is defined as follows. The category Ep,op is the category whose objects are

those of E and whose arrows X → Y are triples (Z,F, φ) where Z ∈ E, F :

Z → Y is a p-cartesian arrow in E, and φ : Z → X. The triples are taken up to

equivalence: (Z,F, φ) and (Z ′, F ′, φ′) are equivalent as arrows X → Y if there

exists a vertical isomorphism ψ : Z → Z ′ with F ′ ◦ ψ = F and φ′ ◦ ψ = φ. We

omit the details of composition, which are obvious. It is easy to check that this is

indeed a fibration, where the cartesian arrows are precisely those representable

by a triple (Z,F, φ) where φ is an isomorphism.

An important advantage of the fibrational approach to ‘indexed categories’

over the pseudofunctorial approach is the relative ease with which we can handle

the notion of ‘family of fibrations indexed by a category’. This will allow us

to speak about not just types definable in a context, but also the notion of

dependent context in some context and types in that dependent context. Here

dependent context means what it does in [15].

10



The following is Theorem 4.1 in the set of lecture notes [40]. See also The-

orem 4.16 in [19].

Proposition 1.1.12. Suppose we have functors p : C→ B and q : D→ C, and

suppose that p is a fibration. Then q is a fibration if and only if

• the composite p ◦ q is a fibration;

• q is a cartesian functor from p ◦ q to p;

• each of the restrictions qI : D(I)→ C(I) is a fibration; and

• qI-cartesian arrows are sent to qJ -cartesian arrows by p ◦ q-reindexing

along any map f : J → I in C.

Proof. Suppose that q is a fibration. It is easy to check that fibrations are

closed under composition, with cartesian lifts in the composite being given by

successive cartesian lifts in the factors, hence p ◦ q is a fibration and q is a

cartesian functor. Moreover, since fibrations are stable under change of base,

each of the restrictions qI : D(I)→ C(I), which is the change of base of q along

the inclusion C(I) ↪→ C, is a fibration. Finally, qI -cartesian arrows are just q-

cartesian arrows in D(I), and q-cartesian arrows are preserved by p◦q-reindexing

(which is really just q-reindexing along p-cartesian arrows).

Now let us prove the converse. Suppose we have an object X ∈ D and an

arrow f : B → A = q(X) in C of which we wish to find a q-cartesian lift.

We construct a candidate by first taking a p ◦ q-cartesian lift f̂ : Ĵ → X of

p(f) : J = p(B) → I = p(A), and then taking a qJ -cartesian lift ĝ : B̂ → Ĵ of

the induced factorization g : B → q(Ĵ), using that fact that q(f̂) is q-cartesian

(as q is a cartesian functor).

J
I

B
A

XĴ

q(Ĵ)

B̂

p(f)

f

f̂

q(f̂)

g

ĝ

It remains to show that f̂ ◦ ĝ is indeed q-cartesian (over f). Suppose we have

some map φ : Z → X in D for which q(φ) : C = q(Z)→ A factorizes through f

11



via h : C → B. Then since f̂ is p ◦ q-cartesian, there is a map k̂ : Z → Ĵ lifting

k = p(h) : K = p(C)→ J . Moreover, q(k̂) : C → q(Ĵ) = g ◦ h, since both maps

agree after composition with the p-cartesian arrow q(f̂).

J I

B q(Ĵ) A

B̂ Ĵ X

Z

C

K

p(f)

f

f̂

q(f̂)
g

ĝ

φ

q(φ)

p(q(φ))

h

k

k̂

q(k̂)

So we have reduced the problem to finding a factorization over h of k̂ through

ĝ. To do so, we choose p ◦ q-cartesian lifts κ1 : K̂1 → B̂ and κ2 : K̂2 → Ĵ

of k and observe that the induced q-cartesian map γ : K1 → K2, and that k̂

factorizes through κ2 via some map l : Z → K2, say. Now q(κ1) and q(κ2)

are p-cartesian, hence: q(γ) is the p-reindexing along k of g, and h factorizes

through q(κ1) via some map m : X → q(K1), say, and q(γ) ◦m = q(l). Thus

we use the q-cartesianness of γ to lift m to a factorization m̂ : Z → K1 over m

12



of l through γ. Hence κ1 ◦ m̂ is the required factorization of k̂ through ĝ.

J

q(Ĵ)B

ĴB̂

K

C

Z

q(K2)q(K1)

K2K1

k

ĝ

g

κ1

κ2

q(κ1)

q(κ2)

γ

q(γ)

q(l)

l

m

m̂ k̂

h

q(k̂)

In the setting above, with two composable fibrations p : C→ B and q : D→
C, we may think of the category B as having actions on both the categories C
and D, the category C as having an action on D, and moreover the action of C
on D being compatible with the two actions of B. For instance, given f : J → I

in B, if A ∈ C(I) and X ∈ D(A), then we have an object f∗(X) in D(f∗(A)),

where f∗(A) ∈ C(J). If now we have F : B → A in the fibre category C(I), then

we can act on X to get F ∗(X) ∈ D(B). If we then act by f , we get an object

f∗(F ∗(X)) ∈ D(f∗(B)), which is canonically isomorphic to (f∗(F ))∗(f∗(X)).

In the situation where both q and p are split fibrations, then the reindexing

functors can be chosen in such a way that they are strictly functorial in f and

F , and such that the connecting isomorphism is an identity.

Definition 1.1.13. A fibred fibration is a composable pair of (Grothendieck)

fibrations. Given two fibred fibrations E2
p1−→ E1

p0−→ E0 and F2
q1−→ F1

q0−→ F0,

a morphism of fibred fibrations is a triple of functors fi : Ei → Fi (i = 0, 1, 2)

satisfying fi ◦ pi = qi ◦ fi+1 for i = 0, 1 such that (f0, f1) and (f1, f2) are

morphisms of fibrations p0 → q0 and p1 → q1 respectively.

We conclude this section on fibrations with some review of completeness

properties, which will be important in formulating the definition of type con-

structors in models of type theory.

13



Definition 1.1.14. Let p : E → B be a fibration and let D be a class of finite

categories. Then p is said to have fibred D-limits if each of the fibre categories

has limits of shape A for each A ∈ D and moreover, for each f : I → J in B,

the reindexing functor f∗ : E(J)→ E(I) preserves these limits.

Dually, p has fibred D-colimits if each of the fibre categories has colimits of

shape A for A ∈ D which are preserved by reindexing, or, equivalently, if pop

has fibred D-limits.

We will make use of the following folklore result.

Proposition 1.1.15. Let p : E→ B be a fibration over a category B with finite

products. Then p has fibred finite products if and only if E has finite products

and p preserves them.

The following definition abstracts the idea of taking the product of some

indexed family of objects. In this situation, the indexing objects come from the

base of the fibration.

Definition 1.1.16. Let p : E→ B be a fibration, where B has finite products.

Then p has simple products if for any objects I, J ∈ B, the reindexing functor

π∗I : E(I)→ E(I × J)

admits a right adjoint

ΠJ : E(I × J)→ E(I)

naturally in I. The naturality requirement, known as the Beck-Chevalley con-

dition, means that, for any morphism f : K → I in B, the canonical natural

transformation f∗ΠJ ⇒ ΠJ ◦(f × 1J)∗ is an isomorphism.

The reader should take note that, while πI is the projection from I×J onto

I, the right adjoint to π∗I is ΠJ because it is a J-indexed product.

Remark 1.1.17. A more transparent way to state the Beck-Chevalley condition

is in terms of the counit of the adjunction. Recall that a π∗I : E(I) → E(I ×
J) admits a right adjoint if and only if every object X ∈ E(I × J) admits

a coreflection along π∗I , i.e. an object PX ∈ E(I) together with a map εX :

π∗I (PX)→ X which is universal. Universality means that for any Y ∈ E(I) and

φ : π∗I (Y ) → X there exists a unique ψ : Y → PX such that φ = εX ◦ π∗I (ψ).

The Beck-Chevalley condition states that for any f : K → I and X ∈ E(I × J),

the object f∗(PX) ∈ E(K) together with the map

π∗I (f∗(PX)) ∼= (f × 1J)∗π∗I (PX)
(f×1J )∗(εX)−−−−−−−−→ (f × 1J)∗(X)

is a coreflection of (f × 1J)∗(X) along π∗K : E(K)→ E(I ×K).

14



Dual to simple products we have simple sums, which abstract the idea of

taking the coproduct of some indexed family of objects.

Definition 1.1.18. Let p : E→ B be a fibration, where B has finite products.

Then p has simple sums if for any objects I, J ∈ B, the reindexing functor

π∗I : E(I)→ E(I × J)

admits a left adjoint

ΣJ : E(I × J)→ E(I)

naturally in I (satisfying the Beck-Chevalley condition).

Similarly to the situation for simple products, the Beck-Chevalley condition

for simple sums can be formulated in terms of a canonical natural transformation

ΣJ(f × 1J)∗ ⇒ f∗ΣJ or, equally, in terms of reflections along π∗I .

Remark 1.1.19. The existence of a left adjoint ΣJ : E(I × J) → E(I) is

equivalent to the existence of, for each X ∈ E(I × J), a cocartesian arrow

X → ΣJ X lying over the product projection πI : I × J → I. Given such a left

adjoint, the cocartesian arrow can be recovered as the composite

X
εX−−→ π∗I (ΣJ X)

π
ΣJ X

I−−−−→ ΣJ X

where πΣJ X
I is a cartesian lift of πI : I × J → I with codomain ΣJ X and

εX is the counit of the adjunction ΣJ a π∗I . In this reformulation, the Beck-

Chevalley condition corresponds to the stability of such cocartesian arrows under

reindexing.

1.2 The semantics of type theory

Let us set out the notions of ‘model of type theory’ with which we will be

concerned. The first of these appears in [41]. The idea is that the domain of a

display map f : X � A is thought of as disjoint union
∐
a∈AXa of a family of

types (Xa | a ∈ A) indexed by the codomain of that display map.

Definition 1.2.1. A display map category is a category B together with a

class F of morphisms, called display maps, containing all isomorphisms, such

that pullbacks of display maps along arbitrary maps exist and are again display

maps. A display map category (B,F) is well-rooted if it has a terminal object

> and for every object X the unique morphism !X : X → > is a display map.

We are typically only interested in well-rooted display map categories, but

it is useful to be able to talk about more general ones.

15



Example 1.2.2. Let B be a category with all finite products. Then B is a

well-rooted display map category when equipped with the class F defined by

f ∈ F precisely when f is (isomorphic to) a product projection.

Observe that the pullback condition on F is equivalent to the following,

which should be compared with 1.1.2: the full subcategory F of B→ whose

objects are the display maps is a subfibration of cod : B→ → B. The following

definition, which is found in [23], may be seen as taking this alternative view as

primary.

Definition 1.2.3. A comprehension category consists of a base category B
and a fibration p : E → B over B equipped with a functor χ : E → B→ (a

comprehension) such that cod ◦χ = p and χ sends p-cartesian arrows to pullback

squares.

Since, as stated in 1.1.2, pullback squares are precisely the cod-cartesian

arrows in B→, and the notion of cartesian functor makes sense no matter whether

the target functor is a fibration or not, we may abridge this definition to: ‘a

fibration p : E→ B together with a cartesian functor χ : p→ codB’.

Notation 1.2.4. Let (p : E → B, χ) be a comprehension category. Then for

I ∈ B and A ∈ E(I), we will often use the notation {A} as shorthand for

domχ(A). We use double-headed arrow notation as in {A} � I to emphasize

that a displayed arrow is in the image of χ. We will also use the notation

χI : E(I)→ B/I

for the functor sending A ∈ E(I) to χ(A) : {A} � I. This functor is the

factorization of the restriction χ|E(I) : E(I)→ B→ through the inclusion B/I ↪→
B→.

Example 1.2.5. We can give a version of Example 1.2.2 in terms of compre-

hension categories. Let B be a category with finite products. Then let p : E→ B
be the simple slice fibration of Example 1.1.6. We can equip p with a compre-

hension which sends the pair (I,X) to the product projection I ×X → I.

Remark 1.2.6. It is possible to discuss well-rootedness for comprehension cat-

egories, but we shall not do this. We would like to say that well-rootedness

makes no essential difference to the type-theoretic content of a display map

category or a comprehension category, but this is not quite true. A more seri-

ous defect in its own right, which would resolve this issue, is the absence from

Definitions 1.2.1 and 1.2.3 of what we call dependent sums, (see 1.6.2 and 1.6.1).

This is because dependent sums are not just a type-forming operation, but se-

mantically they play the rôle of context extension, and thus they allow us to

16



consider ‘type theory over some context’. We remark further on this for display

map categories in 1.6.3 and formalize this idea for comprehension categories in

Theorem 5.6.4.

Definition 1.2.7. A split comprehension category is a comprehension category

(p : E→ B, χ) for which p is a split fibration.

The significance of Definition 1.2.7 is primarily for using the syntax of type

theory as a language for reasoning about comprehension categories. It is not

directly possible to do this for general comprehension categories, because rein-

dexing in the fibration p is in general only pseudofunctorial in the base whereas

its syntactic counterpart, substitution, is a strictly associative operation. Hence

we can only reason directly about comprehension categories where the reindex-

ing is strictly functorial in the base, i.e. about split comprehension categories. If

one wishes to reason about more general comprehension categories, one would

apply a coherence theorem such as the one in [32] to find an equivalent split

comprehension category.

Example 1.2.8. The comprehension category of Example 1.2.5 is a split com-

prehension category.

While we will not formally prove any sort of equivalence between display map

categories and comprehension categories here, it is worth noting at least how

to convert between the two. It is easy to check that the following constructions

are well-defined.

Definition 1.2.9. Let (B,F) be a display map category. Then F induces a

comprehension category structure on B whose underlying fibration is cod : F →
B and whose comprehension is the inclusion F ⊆ B→.

Definition 1.2.10. Let (p : E → B, χ) be a comprehension category. Then p

and χ induce a display map category structure on B whose display maps are the

objects of the essential image of χ : E → B→. Equivalently, the display maps

with codomain I are all those of the form χ(A) ◦ s, where A ∈ E(I) and s is an

isomorphism.

Notation 1.2.11. For a display map category (B,F), we denote by F/I the

full subcategory of the slice B/I whose objects are F-maps (with codomain I).

Observe that these restricted slices are the fibre categories of the underlying

fibration of the induced comprehension category. In particular, every morphism

f : J → I induces a pullback functor

f∗ : F/I → F/J

between restricted slice categories.

17



We propose the following notions of morphism between comprehension cat-

egories.

Definition 1.2.12. Let (p : E → B, χ) and (q : F → C, ψ) be comprehension

categories. Then a lax morphism of comprehension categories

(F0, F1, θ) : (p, χ)→ (q, ψ)

consists of a morphism of fibrations (F0, F1) : p → q together with a natural

transformation θ : ψ ◦ F1 → (F0)→ ◦ χ with cod-vertical components.

Let us spell this out. A lax morphism includes a functor F0 : B → C and a

functor F1 : E→ F making the square

B C

E F

F0

p q

F1

commute, and moreover F1 preserves cartesian arrows. For any I ∈ B and

A ∈ E(I), we have two ways to map the comprehension χ(A) : {A}� I into C.

Firstly, we can apply F0 directly to this comprehension arrow. Secondly, we can

apply F1 to A to get a type F1(A) ∈ F(F0(I)) and apply the comprehension ψ in

the target comprehension category. The final piece of data in the lax morphism

is a comparison arrow θA in C making the diagram

F0(I)

F0({A}) {F1(A)}
θA

F0(χ(A)) ψ(F1(A))

in C commute. Moreover, θA is natural in A.

Definition 1.2.13. A strong morphism of comprehension categories is a lax

morphism of comprehension categories for which each of the arrows θA is an

isomorphism. A strict morphism of (split) comprehension categories is a lax

morphism of comprehension categories for which each of the arrows θA is an

identity.

In 7.5.10 we will consider split strict morphisms, which are the natural notion

of homomorphism for split comprehension categories considered as models of an

18



essentially algebraic theory (for instance, see [32]). The (non-split) notion of

strict morphism we give in 1.2.13 is the same as the notion of ‘morphism’ for

non-split comprehension categories given in [32]. Our notion of strong morphism

was suggested in that same article.

It is natural also to consider the dual notion to lax morphism.

Definition 1.2.14. Let (p : E → B, χ) and (q : F → C, ψ) be comprehension

categories. Then a colax morphism of comprehension categories

(F0, F1, ζ) : (p, χ)→ (q, ψ)

consists of a morphism of fibrations (F0, F1) : p → q together with a natural

transformation ζ : (F0)→ ◦ χ→ ψ ◦ F1 with cod-vertical components.

The only difference to the notion of lax morphism is that the natural trans-

formation ζ goes in the opposite direction to θ, so that we get a family of

commutative triangles

F0(I)

F0({A}) {F1(A)}
ζA

F0(χ(A)) ψ(F1(A))

in C. Clearly we could just as well define strong and strict morphisms of com-

prehension categories in terms of colax morphisms, and it makes sense to ask

whether a particular colax morphism is indeed a strong one. We will see some

examples of morphisms of comprehension categories in chapters 5 and 6.

Remark 1.2.15. There is an evident notion of 2-cell between lax morphisms

of comprehension categories, which gives us a 2-category of comprehension cat-

egories. We can instead use colax morphisms. There are also 2-categories given

by restricting to a fixed base category.

Full comprehension categories are slightly closer to display map categories

than general comprehension categories and typically we will mostly be concerned

only with these.

Definition 1.2.16. Let (p : E → B, χ) be a comprehension category. Then

(p, χ) is full if the functor χ : E→ B→ is full and faithful.

A full comprehension category may be thought of as a display map category

in which every display map is equipped with a set of ‘structures’ and for each

display map with structure and morphism with the same codomain there is a

19



specified pullback square together with a display map structure on the pullback

of the display map. This is the idea behind the notion of ‘cloven type-theoretic

fibration categories’ in [38].

The following is related to Lemma 2.5 in [23].

Lemma 1.2.17. Let (p : E → B, χ) be a comprehension category. Then (p, χ)

is full if and only if for each I ∈ B the functor

χI : E(I)→ B/I

is full and faithful.

Proof. Since χI is just a restriction of χ, the ‘only if’ part is obvious. For the

converse, observe that for f : I → J and X ∈ E(I) and Y ∈ E(J), the set of

maps X → Y in E lying over f is in bijection with the set of maps X → f∗(Y )

in E(I), which via χI is in bijection with maps {X} → {f∗(Y )} over I in B.

Since the cartesian arrow fY : f∗(Y ) → Y is sent to a pullback square in B,

this latter set is in bijection with the maps {X} → {Y } making the square

I J

{X} {Y }

f

χ(X) χ(Y )

commute. As the composite bijection is just the action of the functor χ, the

result follows.

Proposition 1.2.18. The comprehension category (p : E→ B, χ) associated to

a display map category (B,F) is full.

Proof. Trivial since the fibre category E(I) is by definition F/I.

1.3 Finite product types

Comprehension categories contain just the structure required to model the most

basic notions of type theory: context, dependent type, term in context. Interest-

ing type theories contain certain basic types and type constructors for building

new types out of old. We spend most of the rest of this chapter detailing what

it means for a model to admit various type constructors, starting with the most

basic.

20



Definition 1.3.1. Let (p : E → B, χ) be a comprehension category. Then

(p, χ) has unit types if the fibration p has fibred terminal objects and χ sends

fibred terminal objects to isomorphisms. The latter condition says equivalently

that each functor χI : E(I) → B/I preserves terminal objects. Also, (p, χ) has

binary product types if the fibration P has fibred binary products and χ sends

each product diagram

A

A×I B

B

in E(I) to a pullback square

{A}

{A×I B}

{B}

I

χ(A) χ(B)

in B. Equivalent to this latter condition is the statement that each functor

χI : E(I) → B/I preserves binary products. We say that (p, χ) has finite

product types if it has both unit types and binary product types.

In view of the following, we need not define unit types for display map

categories: every display map category already has them.

Proposition 1.3.2. Let (B,F) be a display map category. Then its induced

comprehension category (p : E→ B, χ) has unit types

Proof. For each I ∈ B, the identity morphism 1I : I → I is a fibred terminal

object in E(I), whose comprehension, 1I , is an isomorphism.

It is almost the case that every display map category has binary product

types too. All our examples have dependent sums (see 1.6.2), and we will show

in 1.6.6 that binary products are a special case of dependent sums.

1.4 Fullness and Ehrhard comprehension

As well as the notion of fullness, there is another specialization of the notion

comprehension category to make it align more closely with type theory. We

21



briefly explore its connection to fullness and having unit types.

Definition 1.4.1. Let p : E → B be a fibration. We say that p has Ehrhard

comprehension if p has a full and faithful right adjoint > : B→ E which in turn

has a right adjoint P0 : E→ B.

What we are calling fibrations with Ehrhard comprehension were called D-

categories by Ehrhard in [13] and comprehension categories with unit by Jacobs

in [23]. Note that having Ehrhard comprehension is merely a property of the

fibration p, whereas being a comprehension category is a structure.

Proposition 1.4.2. If a fibration p : E→ B has Ehrhard comprehension, then

we may choose > : B → E such that p ◦ > = 1B (i.e. > is a section of p) and

the counit of the adjunction p ` > is an identity morphism. It follows that, for

each I ∈ B, the object >I is a fibred terminal object in E(I) and that, for each

A ∈ E(I), the unit at A is the unique vertical morphism A→ >p(A) = >I .

Proof. This is Proposition 7 in [13].

Thus, we will assume that the right adjoint > : B→ E is indeed a section of

p which picks out the fibred terminal objects of p. Since > is full and faithful,

not only is the counit >◦ p→ 1 an isomorphism, but so is the unit 1→ P0 ◦>.

Proposition 1.4.3. A fibration p : E → B with Ehrhard comprehension gives

rise to a comprehension category structure on p which models unit types and for

which χ : E → B→ sends a type A ∈ E(I) to the result of applying P0 to the

unit A→ >p(A) composed with the inverse of the unit I → P0(>I).

Proof. Firstly, we must check that χ preserves cartesian arrows. Let F : B → A

be a cartesian arrow lying over f : J → I. In the diagram

B A

>I>J

F

ηB

>f

ηA

the horizontally displayed arrows are p-cartesian and the vertically displayed

arrows are p-vertical. Hence the square is a pullback in E. Since P0 is a right

adjoint it preserves this pullback square. Since the components of the unit

K → P0(>K) are isomorphisms, every naturality square (of its inverse) is a

pullback square. This proves that χ preserves cartesian arrows.

22



It remains to check that χ sends the fibred terminal objects to isomorphisms.

This is immediate from the fact that, for any I ∈ B, the map >I → >p(>I) which

is the component of the unit at >I is an isomorphism.

The following proposition helps to explain the connection between Ehrhard

comprehension and the usual notion of comprehension.

Proposition 1.4.4. Let (p : E → B,>,P0) be a fibration with Ehrhard com-

prehension, and χ : E → B→ the induced comprehension. Let f : I → J be a

morphism in B and let A ∈ E(J). Then the bijection of homsets

E(>I , A) ∼= B(I,P0(A))

restricts to a bijection

E(I)(>I , f∗A) ∼= B/J(f, χ(A))

Proof. For f : I → J , if F : >I → A lies over f then it suffices to show that

its corresponding map G : I → P0(A) satisfies χ(A) ◦G = f . But χ(A) is given

by applying P0 to the unit A→ >J and postcomposing with the inverse of the

unit J → P0(>J), whereas G is given by applying P0 to F and precomposing

with the unit I → P0(>I). But F composed with the unit A → >J is the

unique arrow >I → >J lying over f . The result follows by functoriality of P0

and naturality of the unit K → P0(>K) in K.

Proposition 1.4.5. Let (p : E → B, χ) be a comprehension category with unit

types. Then (p, χ) is induced by an Ehrhard comprehension for p if and only if,

for any f : I → J and A ∈ E(J), the operation sending a map t : >I → A lying

over f to a map t̂ : f → χ(A) in B/J is a bijection.

Proof. We have a composite operation

E(>I , A) ∼= {f ∈ B(I, J)} × E(I)(>I , f∗(A))

→ {f ∈ B(I, J)} × B/I(χ(>I), χ(f∗(A)))

∼= {f ∈ B(I, J)} × B/I(1I , χ(f∗(A)))

∼= {f ∈ B(I, J)} × B/J(f, χ(A))

∼= B(I, {A})

which is a bijection by hypothesis. Hence the terminal objects functor has a

right adjoint, and so p has Ehrhard comprehension. One checks easily that χ is

indeed induced by this Ehrhard comprehension.

23



We finish by giving two ways to connect Ehrhard comprehension and full-

ness. In the first, the cocartesianness condition corresponds to the type-theoretic

statement that Σx:A1 ∼= A (see 1.6.2).

Proposition 1.4.6. Let p : E → B be a fibration with Ehrhard comprehension

and χ its induced comprehension functor. Then (p, χ) is a full comprehension

category if and only if, for any I ∈ B and A ∈ E(I), the counit

>{A} → A,

which lies over {A} → I, is cocartesian.

Proof. Suppose that (p, χ) is full. Let A ∈ E(I). Then, for any B ∈ E(J), we

have a bijection

E(A,B) ∼= {f ∈ B(I, J)} × E(I)(A, f∗(B))

∼= {f ∈ B(I, J)} × B/I(χ(A), χ(f∗(B)))

∼= {f ∈ B(I, J)} × E({A})(>{A}, χ(A)∗f∗(B)),

∼= E(>{A}, B)

which one verifies easily is given by precomposing with the counit, as required.

Conversely, suppose the counit >{A} → A is cocartesian. Then we have a

bijection

E(A,B) ∼= {f ∈ B(I, J)} × E(I)(A, f∗(B))

∼= {f ∈ B(I, J)} × E({A})(>{A}, χ(A)∗f∗(B)),

∼= {f ∈ B(I, J)} × B/I(χ(A), χ(f∗(B)))

∼= B→(χ(A), χ(B))

which one verifies easily is given by the functor χ, as required.

Proposition 1.4.7. Let (p : E→ B, χ) be a full comprehension category. Then

p has Ehrhard comprehension and χ is the induced comprehension functor if

and only if (p, χ) has unit types.

Proof. The forward direction is Proposition 1.4.3. For the converse, we define

> : B → E to be the functor sending I to the fibred terminal object >I in

E(I), which is easily seen to be a full and faithful right adjoint to p. We define

24



P0 : E→ B to be dom ◦χ. The adjunction is given by, for I ∈ B and A ∈ E(J),

B(I,P0(A)) ∼= {f ∈ B(I, J)} × B/J(f, χ(A))

∼= {f ∈ B(I, J)} × B/I(1I , χ(f∗(A)))

∼= {f ∈ B(I, J)} × B/I(χ(>I), χ(f∗(A)))

∼= {f ∈ B(I, J)} × E(I)(>I , f∗(A))

∼= E(>I , A).

One checks easily that this bijection is indeed natural, and that the unit of the

adjunction > a P0 is the inverse of the comprehension of >I ∈ E(I). Hence,

the reconstructed comprehension functor χ′ : E → B→, which is given on A ∈
E(I) by applying dom ◦χ to the unit A → >I and then composing with the

comprehension of >I ∈ E(I). This is clearly equal to χ(A). It is straightforward

to check that χ′ and χ also agree on morphisms.

1.5 Dependent products

The infinitary version of the product type is the dependent product or Π-type.

This generalizes the notion of simple product (Definition 1.1.16).

Definition 1.5.1. Let (p : E→ B, χ) be a comprehension category. Then (p, χ)

has dependent products if for every I ∈ B, A ∈ E(I), the reindexing functor

χ(A)∗ : E(I)→ E({A})

admits a right adjoint

ΠA : E({A})→ E(I).

Moreover, these right adjoints satisfy the Beck-Chevalley condition: for every

morphism f : J → I in B, we require that the canonical natural transformation

f∗ΠA ⇒ Πf∗(A){fA}∗, which we obtain by considering the pullback square

{f∗(A)} {A}

J I
f

{fA}

χ(A)χ(f∗(A))

in B, is an isomorphism.

25



Remark 1.5.2. One can easily generalize Remark 1.1.17 to this situation, to

express the Beck-Chevalley condition in terms of the stability under reindexing

of coreflections along χ(A)∗.

Let us formulate the definition for display map categories

Definition 1.5.3. A display map category (B,F) has dependent products if for

every display map f : B � A the pullback functor

f∗ : F/A→ F/B

admits a right adjoint

Πf : F/B → F/A.

Moreover, these right adjoints satisfy the Beck-Chevalley condition. For every

morphism h : C → A in B and any pullback square

D B

C A
h

h

ff

the canonical transformation h∗Πf ⇒ Πf h
∗

is an isomorphism.

Remark 1.5.4. As in the comprehension category case, the Beck-Chevalley

condition can be formulated in terms of coreflections along f∗ which are stable

under pullback.

Actually, there is another way to formulate the Beck-Chevalley condition in

this special case.

Proposition 1.5.5. A display map category (B,F) has dependent products if

and only if for every display map f : B � A, the reindexing functor

f∗ : B/A→ B/B

between the whole slice categories admits a coreflection of every object in the

subcategory F/B ↪→ B/B and moreover each coreflection of such is in the sub-

category F/A of B/A.

Proof. The latter condition says that for any display map g : C � B, there

exists a display map p : Πf g � A such that for arbitrary maps w : W → A

26



there is a natural bijection

B/A(w, p) ∼= B/B(f∗(w), g)

rather than just for those w which are display maps. Suppose that (B,F) has

dependent products, and let f : B � A and g : C � B be display maps and

w : W → A an arbitrary map into A. Fix some pullback square

AB

WW

f

f

ww

in B. Writing p : Πf g � A for the dependent product of g along f and using

the Beck-Chevalley condition to see that it is stable under pullback along w, we

get a bijection

B/A(w, p) ∼= F/W (1w, w
∗(p)) ∼= F/W (1W , w

∗(g)) ∼= B/B(w, g)

which is easily seen to be natural in w, as required.

Let us prove the converse. Given f : B � A and g : C � B, our candidate

for the dependent product is the reflection of g (considered just as a morphism)

along f∗ : B/A → B/B, which we write p : Πf g � A. It remains to show that

this choice of dependent product is stable under pullback. Let w : W → A be

an arbitrary map, and fix some pullback of w and f , as above. Then for any

display map h : D �W we fix a pullback square

WW

DD

f

f

hh

and we obtain a bijection

F/W (h,w∗(p)) ∼= B/A(wh, p) ∼= B/B(wh, g) ∼= F/W (h,w∗(g))

which is clearly natural in h, as required.

27



We also give the appropriate definition of dependent product for split com-

prehension categories.

Definition 1.5.6. Let (p : E→ B, χ) be a split comprehension category. Then

when (p, χ) has strictly stable dependent products it is equipped with, for every

I ∈ B and A ∈ E(I), a right adjoint

ΠI,A : E({A})→ E(I)

to the reindexing functor

χ(A)∗ : E(I)→ E({A})

with counit

evI,A,B : χ(A)∗(ΠI,A(B))→ B.

For any h : J → I in B the equations

ΠJ,h∗(A)(χ(hA)∗(B)) = h∗(ΠI,A(B))

and

evJ,h∗(A),χ(hA)∗(B) = χ(hA)∗(evI,A,B)

hold.

1.6 Dependent sums

Whereas dependent products are modelled by right adjoints to reindexing func-

tors, dependent sums (or Σ-types) are left adjoints. We can easily define what

we would call weak dependent sums by analogy to Definitions 1.5.1 and 1.5.3

which generalize Definition 1.1.18, but we normally require a stronger condition.

In type theory Σ-types usually have an eliminator where the target type is al-

lowed to be a dependent type over the Σ-type itself. The following is Definition

5.8 in [23].

Definition 1.6.1. A comprehension category (p : E → B, χ) has dependent

sums if for every I ∈ B and A ∈ E(I), the weakening functor

χ(A)∗ : E(I)→ E({A})

has a left adjoint

ΣA : E({A})→ E(I)

such that, for any B ∈ E({A}), the canonical map {B} → {ΣAB} is an iso-

28



morphism. Moreover, this family of left adjoints satisfies the Beck-Chevalley

condition.

The canonical map {B} → {ΣAB} is the comprehension of the composite

B
ηI,A,B−−−−→ χ(A)∗(ΣAB)

χ(A)ΣA B

−−−−−−→ ΣAB

in E, where ηI,A,B is the unit of the dependent sum adjunction.

Definition 1.6.2. A display map category (B,F) has dependent sums if F is

closed under composition.

Remark 1.6.3. As we remarked in 1.2.6, the notion of dependent sum is a

fundamental one as it allows us to take localizations of display map categories.

Given a display map category (B,F) with dependent sums and an object I ∈ B,

the slice at I is a display map category whose underlying category is the restric-

ted slice F/I. Using the fact that F is closed under composition, one checks

easily that dom : F/I → B creates pullbacks of morphisms whose underlying

B-morphism is in F . Hence the collection of such maps is a class of display

maps in F/I, which moreover models dependent sums. The fact that for any

map f : I → J there is a pullback functor f∗ : F/J → F/I allows us to view a

display map category (B,F) with dependent sums which is not well-rooted as a

family of well-rooted display map categories indexed by B.

Lemma 1.6.4. Let (p : E→ B, χ) be a full comprehension category. Then (p, χ)

has dependent sums if and only if the induced display map category (B,F) has

dependent sums.

Proof. If (p, χ) has dependent sums then since F is always closed under com-

position with isomorphisms, it is easy to see that F is closed under composition.

Conversely, let I ∈ B, A ∈ E(I) and B ∈ E({A}). Then the composite

χ(A)χ(B) is a display map, so by the description in 1.2.10 there is a commuting

square

I{A}

{B} {S}

χ(B)

χ(A)

χ(S)

s

where S is some object of E(I) and s is an isomorphism. We will show that S

29



is a reflection of B along χ(A)∗ : E(I)→ E({A}). Suppose C ∈ E(I).

I{A}

{B} {S}

{C}{χ(A)∗(C)}

χ(B)

χ(A)

χ(S)

χ(C)

χ(χ(A)∗(C))

s

Then we have a bijection

E({A})(B,χ(A)∗(C)) ∼= B/{A}(χ(B), χ(χ(A)∗(C)))

∼= B/I(χ(A)χ(B), χ(C))

∼= B/I(χ(S), χ(C))

∼= E(I)(S,C)

which is clearly natural in C, as required. It is straightforward to check that

the canonical map {B} → {S} induced by this injection is indeed just s, so

in particular it is an isomorphism. Finally, it is clear that S is stable under

reindexing as a reflection of B along χ(A), since the isomorphism s : {B} → {S}
always pulls back to an isomorphism.

Lemma 1.6.5. A display map category (B,F) has dependent sums if and only

if its induced full comprehension category (p : E→ B, χ) has dependent sums.

Proof. It is easy to check that F is the class of display maps in B induced by

the comprehension category structure (p : E → B, χ) on B which is induced by

F . Hence the result follows from Lemma 1.6.4, (p, χ) has dependent sums.

Dependent sums can be used to construct binary products.

Proposition 1.6.6. Let (B,F) be a display map category with dependent sums.

Then its induced comprehension category (B,F) has binary product types.

Proof. Let I ∈ B and f : A � I and g : B � I be two objects in E(I). Let us

form a pullback square

IA

BC

f

gg

f

30



in B. Then since F is closed under composition, gf = fg is in F . Moreover,

since E(I) = F/I, we see that gf is a binary product of f and g in E(I), which

is preserved by inclusion E(I) = F/I ↪→ B→. Finally, since pullback squares

are stable under pullback, gf is reindexing-stable as a product of f and g.

We finish our treatment of dependent sums by recalling the definition of the

strictly stable version. For simplicity we restrict to the full case.

Definition 1.6.7. Let (p : E → B, χ) be a full split comprehension category.

When (p, χ) has strictly stable dependent sums it is equipped with, for each

triple I ∈ B, A ∈ E(I) and B ∈ E({A}), an object ΣI,AB ∈ E(I) together with

an isomorphism

θI,A.B : {B} → {ΣI,AB}

in B making the diagram

{B}

{A} I

{ΣI,AB}

χ(B)

χ(A)

χ(ΣI,AB)

θI,A,B

commute. For any h : J → I, the equations

h∗(ΣI,AB) = ΣJ,h∗(A){hA}∗(B) ∈ E(J)

h∗(θI,A,B) = θJ,h∗(A),{hA}∗(B) ∈ B

hold.

1.7 Finite sum types

We can define finite sum types in a way analogous to Definition 1.3.1. Neither

display map categories nor comprehension categories have sum types automat-

ically. In fact we will mostly be concerned with some much stronger formu-

lations, hence the qualifier “weak” in our terminology below — even though

much weaker versions of finite sums are possible. We give definitions of various

notions of finite sum types in display map categories only, based on the notions

of finite sum in [46].

Definition 1.7.1. A display map category (B,F) has weak finite sum types if

the fibration F → B has fibred finite coproducts, and for each I the inclusion

31



F/I → B/I preserves finite coproducts.

Remark 1.7.2. Since, for any I ∈ B, the forgetful functor dom : B/I → B is

a left adjoint (with right adjoint A 7→ (πI : I × A → I)) it preserves colimits.

Hence, when (B,F) has weak finite sum types, the empty type (fibred initial

object) in any context is an initial object (for the whole category B) and a

binary sum in any context is a binary coproduct (for the whole category B).

Recall that a strict initial object is an initial object 0 such that every map

X → 0 is an isomorphism.

Lemma 1.7.3. A well-rooted display map category (B,F) has weak finite sum

types if and only if B has finite coproducts including a strict initial object such

that copairing pullback-stably preserves display maps. This latter condition

means that for any two display maps f : A � C and g : B � C, their co-

pairing [f, g] : A + B → C is also a display map and, for any h : D → C, the

square

A+B A+B

D C

hA + hB

h

[f, g] [f, g]

is a pullback, where f , g, hA and hB are given by the following pullback squares.

A A

D C

hA

h

f f

B B

D C

hB

h

g g

Proof. Suppose that (B,F) has weak finite sum types. Then B ' F/1 has finite

coproducts. Let 0 be the initial object. Since, for any I ∈ B, the forgetful

functor dom : B/I → B is a left adjoint we see that the unique map !I : 0→ I is

a display map and is the initial object in F/I. Moreover, display maps of this

form are stable under pullback. Now suppose we have a map f : X → 0. Then

32



by the above the square

0 0

X 0
f

is a pullback, hence X ∼= 0. So 0 is indeed a strict initial object.

Now suppose that f : A � C and g : B � C are display maps. Then their

sum in F/I is preserved by the inclusion into B/I and by the functor dom :

B/I → B. Hence their sum is the copairing [f, g] : A+B → C. This shows that

the copairing preserves display maps. Pullback-stability follows immediately

from the pullback-stability of sums in F/I.

For the converse, it is easy to see that if 0 is a strict initial object then

all pullbacks of maps of the form !X : 0 → X exist and maps of this form are

stable under pullback. Since the unique map 0→ > is a display map, by pulling

back we see that every map 0 → X is a display map. Hence such maps define

a fibred initial object in the fibration F → B and, for each I, the inclusion

F/I → B/I preserves initial objects. If f : A � C and g : B � C are two

display maps, then the copairing [f, g] : A + B → C is a display map and is

a binary coproduct of f and g in B/I and hence a binary coproduct in F/I,

which is pullback-stable. Hence F → B has fibred binary coproducts and the

inclusion F/I → B/I preserves binary coproducts, for each I.

We will need the following formulation of weak finite sums in a full split

comprehension category.

Definition 1.7.4. A full split comprehension category (p : E → B, χ) has

strictly stable finite sum types if for each I there is an operation sending A,B ∈
E(I) to a coproduct A+I B ∈ E(I) which is strictly preserved by reindexing in

I. These coproducts are preserved by the functors χI : E(I)→ B/I. Moreover,

there is a strictly-reindexing-stable choice of initial object in each E(I), and

these are also preserved by the functors χI : E(I)→ B/I.

Given a display map f : D � A+B into a sum, we can pullback along each

of the coproduct inclusions to get fA : DA � A and gB : DB � B. Our first

strengthening of the notion of finite sum types ensures that morphisms between

types over a sum A+B are equivalent to morphisms between their restrictions

to A and B.

Definition 1.7.5. A display map category (B,F) has strong finite sum types

if it has weak finite sum types (hence B has finite coproducts) and moreover,

33



for any A,B ∈ B, the functor F/(A+B)→ F/A×F/B given by pulling back

along the coproduct inclusions is full and faithful.

We can give an alternative characterization of this property, based on the

notion of extensive category, see [8].

Definition 1.7.6. A display map category (B,F) is semi-extensive if it has

weak finite sum types and, in any diagram of the form

A A+B B

X C Y

(1.1)

where the vertical arrows are display maps and the bottom row is a coproduct

diagram, if both squares are pullbacks then the top row is a coproduct diagram.

N.B. This is not an if-and-only-if condition as for an extensive category: we do

not require that the if the top row of (1.1) is a coproduct then the two squares

are pullbacks.

Lemma 1.7.7. A well-rooted display map category has strong finite sum types

if and only if it is semi-extensive.

Proof. Suppose that (B,F) is semi-extensive and let f : C � A+B be a display

map into a sum. Then the diagram below, where both squares are pullbacks,

A A+B B

CA C CB

f

is of the form (1.1) and hence the top row is a coproduct diagram. Hence if we

have another display map g : D � A+ B then similarly D ∼= DA +DB and it

is easy to check from the diagram

A A+B B

CA C CB

DA D DB

f

g

34



that the functor F/(A+B)→ F/A×F/B is full and faithful.

Conversely, suppose that (B,F) has strong finite sum types and consider

a diagram of the form (1.1) where the vertical arrows are display maps, the

bottom row is a coproduct diagram, and both squares are pullbacks. Let D be

an object of B. Then the projection (A + B) × D → A + B is an object of

F/(A+B), and maps C → D correspond naturally to maps C → D× (A+B)

over A+ B. Since the pullback of D × (A+ B)→ A+ B along A→ A+ B is

D × A→ A (and similarly for B → A+B) and using the assumption that the

functor F/(A+B)→ F/A×F/B is full and faithful, we see that in turn such

maps correspond naturally to pairs of maps X → D×A over A and Y → D×B
over B, i.e. to pairs of maps X → D and Y → D. Hence the top row is indeed

a coproduct diagram.

The next strengthening of the notion of finite sum type allows us to define

a dependent type over a sum A + B by specifying a type over each of A and

B. Thinking of a display map into C as a family of types indexed by the ‘set’

C, this corresponds to the fact that a family of sets indexed by a disjoint union

AtB is the same thing as a family of sets indexed by A together with a family

of sets indexed by B. The terminology is drawn from [46].

Definition 1.7.8. A display map category (B,F) has strong sums for types if it

has weak finite sum types and, for all objects A,B ∈ B, the functor F/(A+B)→
F/A × F/B is an equivalence. Equivalently, if it has strong finite sum types

and the functor F/(A+B)→ F/A×F/B is essentially surjective.

Lemma 1.7.9. Let (B,F) be a well-rooted display map category modelling

strong sum types. Then the following are equivalent.

(a) (B,F) models strong sums for types.

(b) Display maps are closed under addition and the functor + : F/A×F/B →
F/(A + B) is a quasi-inverse to the functor F/(A + B) → F/A × F/B
induced by reindexing along the coproduct inclusions.

(c) Display maps are closed under addition and for any diagram of the form

(1.1) where the vertical arrows are display maps and the bottom row is a

coproduct diagram, if the top row is also a coproduct diagram then both

squares are pullbacks.

35



(d) For any diagram of the form

A A+B B

X C Y

(1.2)

where the outer two vertical arrows are display maps and the bottom row

is a coproduct diagram, if the top row is also a coproduct diagram then the

middle vertical arrow is a display map and both squares are pullbacks.

Proof. Trivially (b) implies (a), Let us assume (a) and prove (b). Let g : X � A

and h : Y � B be two display maps. Since pulling back along the coproduct

inclusions induces an essentially surjective functor F/(A+ B) → F/A× F/B,

there exists a display map f : C � A+B and a diagram

A A+B B

X C Y

g f h

in which both squares are pullbacks. By Lemma 1.7.7, the top row is a coproduct

diagram. By inspection, we see that with respect to this coproduct structure

f = g+h. Hence the sum of two display maps is a display map. It is clear from

the above that summing display maps gives the quasi-inverse to F/(A+B)→
F/A×F/B.

Let us assume (b) and prove (c). We already have that display maps are

closed under addition. Suppose we have a diagram of the from (1.1) where both

rows are coproducts.

A A+B B

X C Y

g hf

Then with respect to these two coproduct structures, f = g+h. Since addition

of display maps is quasi-inverse to pulling back along the coproduct inclusions,

we see that the two squares are pullbacks, as required.

Let us assume (c) and prove (d). Given a diagram 1.2 where both rows are

coproduct diagrams, we see that, with respect to the coproduct structures, the

36



middle vertical arrow is the sum of the two outer ones. Since display maps are

closed under addition, the middle vertical arrow is a display map. Hence we

have a diagram of the form 1.1, thus by (c) the two squares are pullbacks.

Let us assume (d) and prove (a). By definition of strong finite sum types, we

already have that F/(A+B)→ F/A×F/B is full and faithful. Given display

maps g : X � A and h : Y � B, it suffices to find a display map f : C → A+B

whose pullbacks along the coproduct inclusions are f and g respectively. We

take the sum f + g : X + Y → A + B, which by (d) is a display map with the

required property.

Recall (from A1.4.4 of [25]) that a category C with finite coproducts has

disjoint coproducts if binary coproduct inclusions are monic and for any objects

A,B ∈ C, the square

0

A

B

A+B

is a pullback.

Proposition 1.7.10. Let (B,F) be a well-rooted display map category which

models strong sums for types. Then F is closed under addition, contains the

coproduct inclusions and coproducts are disjoint.

Proof. From Lemma 1.7.9, we get that the display maps are closed under addi-

tion. It follows that the coproduct inclusions are display maps, since A→ A+B

is the sum of the identity 1A : A → A and !B : 0 → B. Now for any objects A

and B, by (b), the two squares in the diagram

A A+B B

A A 0

are both pullbacks, the left-hand of which implies that A → A + B is monic.

Thus the coproduct A+B is disjoint, as required.

In order to give the last notion of finite sum, which is the strongest of those

we will consider, let us recall the following definition from [8].

Definition 1.7.11. Let C be a category with finite coproducts. Then C is

37



extensive if for each pair of objects A and B, the functor

C/A× C/B → C/(A+B)

is an equivalence.

Proposition 2.2 in [8] states that a category C with finite coproducts is

extensive if and only if it has pullbacks of coproduct inclusions and, in every

diagram of the form (1.1) with arbitrary vertical arrows and the bottom row a

coproduct diagram, the top row is a coproduct diagram if and only if the two

squares are pullbacks. It is also shown, in Proposition 2.8, that the initial object

in an extensive category is strict. The characterization (b) of strong sums for

types from Lemma 1.7.9 shows us that we have been considering a generalized

version of extensivity for display map categories.

Definition 1.7.12. Let (B,F) be a display map category. Then (B,F) has

extensive finite sums if it has strong sums for types and each category F/A is

extensive.

Lemma 1.7.13. Let (B,F) be a well-rooted display map category. Then (B,F)

has extensive finite sums if and only if B is extensive, and copairing and addition

preserve display maps.

Proof. Let us suppose that (B,F) has extensive finite sums. Then in particular

it has strong sums for types, so by Lemma 1.7.9, the display maps are closed

under addition. By Lemma 1.7.3, every map !X : 0 → X is a display map and

copairing preserves display maps. Since B ' F/>, we see that B is extensive,

as required.

Let us prove the converse. To use Lemma 1.7.3 to get weak finite sums, we

need to check the pullback-stability of copairing. Let f : A� C and g : B � C

be two display maps and h : D → C an arbitrary morphism. Then pulling back

the coproduct diagram for A+B along h gives us

A A+B B

A X B

C

D

h

f

f

g

g
[f, g]

hA

hB

38



where all five squares are pullbacks. Since the top two squares are pullbacks,

extensivity implies that the top row is a coproduct diagram. Inspection shows

that X → D is the copairing map [f, g] : A+B, as required.

It is clear that extensivity of B implies semi-extensivity of (B,F), hence

(B,F) models strong sums. Moreover, it is clear that extensivity plus closure

of display maps under addition implies condition (b) in Lemma 1.7.9, so (B,F)

models strong sums for types.

Finally, we must show that each category F/I is extensive. As in Remark

1.6.3, pullbacks of F-maps in F/I exist and are preserved and reflected by the

forgetful functor dom : F/I → B. Since dom : F/I → B also preserves and

reflects coproducts, extensivity of F/I reduces to extensivity of B.

Proposition 1.7.14. Let (B,F) be a well-rooted display map category modelling

dependent sums. Then (B,F) has extensive finite sums if and only if B is

extensive, every coproduct inclusion is in F , and copairing preserves F ..

Proof. The forward direction follows from Lemma 1.7.13 by observing that every

map of the form !X : 0→ X is a display map and hence, since addition preserves

display maps, all coproduct inclusions are display maps. The reverse direction

also follows from 1.7.13. Addition of maps is built out of copairing and compos-

ing with the coproduct inclusions, and by hypothesis both of these operations

preserve F .

Let us give an application of finite sum types, which we will use to construct

the polynomial model of [46].

Definition 1.7.15. Let C be a category with finite coproducts. For any two ob-

jects A and B, a partial map from A to B consists of a coproduct decomposition

A ∼= X + Y together with a map X → B.

Proposition 1.7.16. Let (B,F) be an extensive display map category and let

f : A� I and g : B � I be two display maps. Then partial maps from f to g in

F/I are in bijective correspondence with maps f → g +I 1I in F/I. Moreover,

this bijection is stable under pullback in I.

Proof. We will give the bijection in an extensive category C with a terminal

object — when it is specialized to F/I it is clearly stable under pullback in I.

Given a map s : A → B + >, we use s to pullback the coproduct diagram for

B + I to decompose A as A : AB + A> This decomposition comes with a map

AB → B, so we get partial map from A to B. Conversely, given A ∼= X + Y

and t : X → B, we take

A ∼= X + Y
t+!Y−−−→ B + I.

39



It is easy to see that these operations are mutually inverse.

1.8 Identity types

Identity types give an internalized notion of equality between terms of a type.

This internal notion is much coarser than the equality between arrows in the

category of contexts and, indeed, it was shown in [15] that identity types give

rise to a weak factorization system on the syntactic category of a type theory.

Hence it is thought of as a notion of intensional equality, meaning that there

may be many different terms of an identity type and these may contain non-

trivial information about different identifications between two individuals. In

Homotopy Type Theory (see [42]), where a type represents a space or homotopy

type, the identity type is interpreted as a space of paths between two points.

The idea that a category with a weak factorization system should be a model

of intensional type theory appears in [1].

We begin with a formulation of identity types for full split comprehen-

sion categories, as it appears in [32], although we assume that we have binary

products. This definition matches the syntactic definition quite closely.

Definition 1.8.1. Let (p : E → B, χ) be a full split comprehension category

with strictly stable binary product types. Then when (p, χ) has strictly stable

identity types it is equipped with, for every I ∈ B and A ∈ E(I), a type IdI,A ∈
E({A×I A}) and a map reflI,A : {A} → {IdI,A} making

{A} {A×I A}

{IdI,A}

χ(IdI,A)

∆A

reflI,A

commute, where ∆A is the diagonal map {A} → {A}×I {A} ∼= {A×IA}. There

is, for every C ∈ E(IdI,A) and map f : {A} → {C} making

{A}

{C}

{IdI,A}

χ(C)

reflI,A

f

40



commute, a map JI,A,C : {IdI,A} → {C} making the diagram

{A}

{IdI,A}

{C}

{IdI,A}

χ(C)

f

reflI,A
JI,A,C

commute. Moreover, all of this data is stable under reindexing along maps

J → I in B.

Remark 1.8.2. This is a standard definition of identity type, see for instance

section 2.3 of [32]. However, it is formally weaker than the most natural defini-

tion of identity type, see section 3.4.3 of [32]. The two definitions are interderiv-

able, provided we have dependent products (or even weak dependent products,

see 2.2.1).

We omit any formulation of identity types for more general comprehension

categories. However, we will recall and make use of a convenient way of model-

ling identity types in a well-rooted display map category. The arguments of [15]

may be ported to more general settings to show that a model of type theory

with identity types in the sense of Definition 1.8.1 admits a weak factorization

system (see, for example, [38] and [14]). We will not consider here the issue

of defining identity types in display map categories which are not well-rooted

other than to say that it should mean having identity types in each slice which

are preserved by change-of-base between slices — for a well-rooted display map

category this slice-wise definition follows from the formally weaker definition we

give here.

Definition 1.8.3. Let (B,F) be a display map category. An acyclic cofibration

or left map is a map m : I → J such that, for any display map f : A � J and

morphism u : I → A making the diagram

I

J

A

fm

u

commute, there exists a map s : J → A such that fs = 1J and sm = u. Such

a map m is said to have the left lifting property with respect to F , and the

class of such maps is denoted �F . An acyclic cofibration u : A→ B is stable if

41



whenever we have display maps f : A� I and g : B � I such that fu = g and

a map h : J → I, the pullback h∗(u) is again an acyclic cofibration. A pair of

classes (L,R) of classes of arrows in B is factorizing if for any f : A → B in B
there exists a factorization

A
∈L−−→ X

∈R−−→ B

of f as the composite of an L-arrow followed by an R-arrow. The display

map category (B,F) has identity types if (�F ,F) is factorizing and the class of

acyclic cofibrations is stable (that is, if every acyclic cofibration is stable).

Example 1.8.4. The example of 1.2.2 is a display map category (B,F) with

identity types. It is easy to check that the class �F consists of precisely the

split monomorphisms. The factorization of a map f : A→ B is given by

A
(1A,f)−−−−→ A×B πB−−→ B

where (1A, f) is split with retraction πA : A×B → A.

42



Chapter 2

Adding the η-rule

In Martin-Löf’s 1984 formulation of dependent type theory in [34], the depend-

ent product of a family of types

x : A ` B(x) type

` Πx:AB(x) type
(Π−Form)

with introduction and elimination rules

x : A ` t(x) : B(x)

λx.t(x) : Πx:AB(x)
(Π−Int)

a : A f : Πx:AB(x)

app(f, a) : B(a)
(Π−Elim)

enjoys both the β and η computation rules

` a : A x : A ` t(x) : B(x)

app(λx.t(x), a) = t(a) : B(a)
(Π−β)

` f : Πx:AB(x)

f = λx.app(f, x) : Πx:AB(x)
(Π−η),

since this is the behaviour we expect from the usual cartesian product of a family

of sets. Indeed, these two computation rules are standard in formulations of

Homotopy Type Theory (see [42]).

In some contexts it is appropriate to consider the terms of the Π-type as

programs or codes for functions. Then λ-abstraction is an operation which

turns a program specification — or description of what a program is supposed

to do — into a canonical program satisfying it. The β-rule is what tells us that

the result of λ does indeed match the given specification. The η-rule would tell

us that this program is the only such, which is clearly an unreasonable situation

when terms are interpreted as program code, but acceptable if we think of its

terms as functions-in-extension or graphs of functions. Thus it is common to

use the qualifier extensional for Π-types satisfying the η-rule. (N.B. This is not

43



what ‘function extensionality’ means in [42]: Homotopy Type Theory relies on

its identity types for its intensional content.)

Hence the η-rule is often omitted, as it was in Martin-Löf’s original 1972

formulation [35]. This has the effect of making the ‘true’ type of dependent

functions a retract of Πx:AB(x), where we think of ‘true functions’ as being

in correspondence with the dependent terms x : A ` t(x) : B(x) up to judge-

mental equality. The inclusion of dependent terms into Πx:AB(x) is given by

λ-abstraction, and the retraction in the other direction is given by f : Πx:AB(x)

goes to x : A ` app(f, x) : B(x).

We specified in 1.5.3 that, in a display map category, the full Π-type (with

both β- and η-rules) of B � A along a display map A � Γ is modelled by

applying to B � A the right adjoint to the functor induced by pulling back

along A� Γ. To model the weak Π-type case, we need to consider a weakened

notion of adjoint which gives a retraction between two hom-sets rather than an

isomorphism.

2.1 Weak adjunctions

Definition 2.1.1. Let F : C → D be a functor between categories and let B

be an object of D. Then a weak coreflection of B along F is an object GB of C
together with a family of retractions

(rA,B , iA,B) : D(FA,B) / C(A,GB)

which are natural in A.

Observe that unlike usual right adjoints, a weak coreflection of an object is

not necessarily unique. However, we can still phrase the definition in terms of a

‘counit’. For instance, here is a characterization corresponding to the universal

arrow characterization of the right adjoint.

Proposition 2.1.2. Let F : C → D be a functor between categories and let B

be an object of D. To give a weak coreflection of B along F is equivalently to

give:

• an object GB ∈ C,

• an arrow εB : FGB → B in D,

• and an arrow λB : GB → GB

such that

• λB ◦ λB = λB,

44



• and for every h : FA→ B in D, there is a unique h̄ : A→ GB such that

λB ◦ h̄ = h̄ and h = εB ◦ F (h̄).

Proof. Suppose we are given a weak coreflection of B along F . Then let εB =

rGB,B(1GB), (cf. the usual definition of the counit) and let λB = iGB,B(εB).

Now for any object A of C, the image of each iA,B is given by precomposi-

tion with λB ; since for any f : A → GB, the following diagram commutes by

naturality of the retractions

C(GB,GB) D(FGB,B) C(GB,GB)

C(A,GB) D(FA,B) C(A,GB)

rGB,B iGB,B

rA,B iA,B

− ◦ f − ◦ Ff − ◦ f

and by following 1GB around the outside of the diagram, we see that λB ◦ f =

iA,B(rA,B(f)). In particular we see that λB is idempotent.

Now, given h : FA→ B, let h̄ = iA,B(h). Then λB ◦ h̄ = iA,B(rA,B(h̄)) = h̄.

Moreover, by following 1GB through the middle path and through the top-right

corner in the diagram above with f = h̄, we see that h̄ = λB ◦ h̄ = iA,B(εB ◦Fh̄).

Apply rA,B to this equation we see that εB ◦ Fh̄ = rA,B(h̄) = h. This h̄ is

suitably unique since if εB ◦ Fg1 = εB ◦ Fg2, then by a similar diagram chase

we deduce that λB ◦ g1 = λB ◦ g2.

Conversely, suppose we are given an object GB, an idempotent λB and an

‘almost-universal’ arrow εB : FGB → B. Then for any object A of C, define

iA,B(f : FA → B) to be the unique arrow f̄ : A → GB such that λB ◦ f̄ = f̄

and f = εB ◦F (f̄). Define rA,B(g : A→ GB) = εB ◦F (g). This clearly gives the

desired retraction, natural in A. These two constructions are clearly mutually

inverse.

Remark 2.1.3. Since we have essentially dropped the uniqueness condition,

we also lose the result that a complete set of choices of coreflections along F

assembles into a functor G : D → C. However, we still see that such a set

of choices of weak coreflections assembles into a semifunctor (a mapping that

preserves binary composition but not necessarily identities).

We could equally well express this by saying that to choose a weak coreflec-

tion along F for every object in D is equivalently to choose a functor G : D → C
such that F is a left J-relative adjoint to G (see [45]). Here C is the Karoubi

envelope (see Definition 2.3.1) of C, and J : C → C is the inclusion. Note that

each coreflection along F is not unique, and this is reflected in the asymmetry of

45



the relative adjunction: G determines F uniquely (up to natural isomorphism)

but F does not determine G uniquely (even up to natural isomorphism).

Definition 2.1.4. A weak right adjoint for a functor F : C → D is a functor

G : D → C such that F is a left J-relative adjoint to G.

2.2 Modelling weak dependent products

We give what it means for a model of type theory to model weak dependent

products, starting with the simpler case of display map categories.

Definition 2.2.1. Let C be a category with class of display maps F . Then

given F-maps f : B � A and g : C � B, a weak dependent product of g

along f is a weak coreflection (Πf (g), λf,g, εf,g) of the object g ∈ F/B along the

pullback functor f∗ : F/A→ F/B. Such a dependent product is weakly stable

(in the sense of [32]) if it is stable under pullback: for every map h : C → A

and pullback square

AC

BD

f

h

f̄

h̄

the triple (h∗(Πf (g)), h∗(λf,g), h̄
∗(εf,g)) is a weak coreflection of h̄∗(g) along

f̄∗ : F/C → F/D. Then (C,F) has weak dependent products if there is a

weakly-stable weak dependent product for every composable pair of display

maps. (Equivalently, for every display map f : B → A there is a weak right

adjoint Πf to the pullback functor f∗ : F/A→ F/B satisfying the appropriate

version of the Beck-Chevalley condition.)

Of course, the usual notion of dependent product can be recovered from the

weak version by requiring that λf,g be an identity.

For reasons related to the fact that they do not correspond to the strict

syntax of type theory, display map categories are not a good setting to consider

the idempotent completion of a model of type theory. We will instead work

directly with split comprehension categories and head straight to the definition

of the strictly stable version.

Definition 2.2.2. Let (C,E, χ) be a split comprehension category. Then (C,E, χ)

is equipped with weak Π-types if for each A ∈ C, each β ∈ E(A) with compre-

hension f : B → A and each γ ∈ E(B) we are given: a type ΠA,β(γ) ∈ E(A),

46



an idempotent λA,β,γ on ΠA,β(γ) in E, and a map εA,β,γ : f∗(ΠA,β(γ)) → γ

in E(B) such that (ΠA,β(γ), λA,β,γ , εA,β,γ) is a weak coreflection of γ along

f∗ : E(A) → E(B). Moreover, we require for any h : C → A the equations

ΠC,h∗(β)(h̄
∗(γ)) = h∗(ΠA,β(γ)), λC,h∗(β),h̄∗(γ) = h∗(λA,β,γ) and εC,h∗(β),h̄∗(γ) =

h̄∗(εA,β,γ), where h̄ comes from the pullback square

AC

BD

f = χ(β)

h

χ(h∗(β))

h̄

which is the comprehension of the cartesian arrow with codomain β that lifts h.

We will see in Chapter 7 that there is an ‘error Dialectica’ model which has

weak Π-types. It is clear that the syntactic model of type theory with weak

dependent products has weak Π-types.

2.3 The category of retracts

Recall from 1.2.2 that if a category C has finite products then it admits a class

of display maps given by (maps isomorphic to) product projections. In this

case, the corresponding dependent type theory is really a non-dependent one:

the type family corresponding to the projection A × B → A is the constant

one which provides the type B independently of the parameter x : A. Now

for C to have dependent products is equivalent to its having a cartesian closed

structure, and in this case it is a model of the simply typed λ-calculus (with β-

and η-rules). The correspondence between simply typed λ-calculi and cartesian

closed categories can be found in [29].

The rest of this chapter serves to generalize the following idea from untyped

λ-calculus. Informally, given some λ-calculus subject to a β-equality rule, we

can construct a cartesian closed category whose objects are the idempotent

terms in the theory, i.e. those closed terms A satisfying A = λx.(A(Ax)) (see

[37]). Morphisms A→ B are (equivalence classes of) those closed terms f such

that f = λx.B(f(Ax)). Since this category is cartesian closed and the object

U = λx.x is a reflexive object – i.e. there is a retraction (U ⇒ U) / U — the set

of maps U → U is itself a λ-theory with β-equality. This theory, the theory of

U , is precisely the original untyped calculus with which we began. Hence, this

‘category of retracts’ construction shows that an untyped λβ-calculus admits a

conservative embedding into a typed λβη-calculus.

47



What if we begin with a typed calculus lacking the η-rule? As shown by

S. Hayashi [18], if we start with a category C, then its category of retracts

(also known as its Karoubi envelope after M. Karoubi [26], or its Cauchy com-

pletion following [30]) is a cartesian closed category if and only if C is a semi

cartesian closed category. This condition on C corresponds in type theory to

having weakened finite product types as well as weakened function spaces. For

our present purposes we will not need to weaken the finite product types, so be-

low we recall in Proposition 2.3.4 the special case of the result where C already

has true categorical products.

Definition 2.3.1. Let C be a category. Then the Karoubi envelope ([26]) of C
is the category C̃ having

• as objects pairs (A,α) where A is an object of C and α is an arrow A→ A

with α ◦ α = α, and

• as arrows (A,α)→ (B, β) those arrows f : A→ B satisfying βfα = f .

Observe that C admits a full and faithful embedding into C̃, via the functor

A 7→ (A, 1A).

Remark 2.3.2. It can be helpful to see that the Karoubi envelope of C is

equivalent to the closure under retracts of the image of C under the Yoneda

embedding C ↪→ [Cop,Set].

Definition 2.3.3. Let C be a category. Then C is a weakly cartesian closed

category if it has finite products and for each object A of C, the functor A× (−)

has a weak right adjoint.

The following well-known result is a special case of a result from [18]. We

do not concern ourselves here with the extra generality of starting from ‘weak

finite products’ which can be found in that article.

Proposition 2.3.4. Let C be a category with finite products. Then C is a weakly

cartesian closed category if and only if its Karoubi envelope C̃ is a cartesian

closed category.

Proof. Firstly, it is easy to check that C̃ has finite products, merely on the

assumption that C has them. The terminal is given by (1, 11) and the product

of (A,α) with (B, β) is given by (A × B,α × β), and the product projections

are, as maps in C, given by απA : A×B → A and βπB : A×B → B, where πA

and πB are the product projections in C.
Now, suppose C is a weakly cartesian closed category. Then given objects

(B, β) and (C, γ) of C̃, suppose that the weak function space of maps from B to

48



C is given by the object B ⇒ C with idempotent λ and evaluation ε : B× (B ⇒
C)→ C. Then we define the function space (B, β)⇒ (C, γ) to be B ⇒ C in C
equipped with idempotent given by transposing the composite

B × (B ⇒ C)
β×1−−−→ B × (B ⇒ C)

ε−→ C
γ−→ C

and this composite is also the evaluation map.

Conversely, if (B ⇒ C, λ) is the function space (B, 1B) ⇒ (C, 1C), with

evaluation ε : B× (B ⇒ C)→ C, then it is easy to check that B ⇒ C is a weak

function space for B into C in C, with idempotent λ and evaluation ε.

Note that since C embeds fully and faithfully inside C̃, this gives us a conser-

vativity result: adding extensional Π-types to a type theory with weak Π-types

does not add new typing or equality judgements between terms and types that

do not feature the new Π-types.

2.4 The split comprehension category of retracts

We have seen that a typed λβ-theory can be conservatively embedded into a

typed λβη-theory. We aim to extend this story to dependently typed theor-

ies. We will see that every split comprehension category (C,E, χ) over a base

category C embeds fully and faithfully into a split comprehension category cat-

egory (C̃,F, χ̃), where C̃ is the Karoubi envelope of C; and (C,E, χ) models weak

dependent products if and only if (C̃,F, χ̃) models (strict) dependent products.

In the rest of this section, (C,E, χ) denotes a split comprehension category.

The Karoubi envelope of C will be denoted C̃. We work towards a definition of

F and χ̃.

Notation 2.4.1. For A,B ∈ C, f : B → A, φ ∈ E(A), denote by fφ : f∗(φ)→ φ

the (chosen) cartesian arrow over f with codomain φ. We are particularly

interested in the special case where we have A ∈ C, α : A→ A with α ◦ α = α,

φ ∈ E(A), so that αφ : α∗(φ) → φ is the cartesian lift of α with codomain φ.

Whenever α∗(φ) = φ, by functoriality of the chosen cartesian arrows, we see

that αφ is idempotent.

Definition 2.4.2. For an object (A,α) of C̃, the fibre category F(A,α) is the

Karoubi envelope of the (not necessarily full) subcategory of E(A) which is fixed

(on-the-nose) by reindexing under α.

Let us spell this out. A type over (A,α) is a type φ ∈ E(A) over A for

which α∗(φ) = φ, equipped with an vertical idempotent b : φ→ φ in E(A) such

that, in E, the equation αφb = bαφ holds (which is saying that α∗(b) = b). A

49



morphism of types (φ, b)→ (ψ, c) over (A,α) is given by a morphism w : φ→ ψ

in E(A) such that cwb = w (in E(A)) and αψw = wαφ (in E).

Definition 2.4.2 (continued). Given an arrow h : (C, γ) → (A,α) in C̃, the

reindexing of an object (φ, b) of F(A,α) to F(C, γ) is (φ, b), where φ = h∗(φ)

and b = h∗(b) in E, and this extends to morphisms in the obvious way.

We need to check that (φ, b) is a valid object in F(C, γ). Let ξ : φ→ φ be the

chosen cartesian arrow in E lifting h with codomain φ. Then αφξ = ξ = ξγφ,

since all three arrows lift h. It follows that γ∗(φ) = φ and γφ is idempotent. By

definition of b, bξ = ξb. Moreover,

ξbγφ = bξγφ = bξ = ξb = ξγφb

and as these arrows lie over s, we deduce that γφb = bγφ. A similar calculation

shows that the reindexing of a vertical morphism is well-defined. This is enough

to give F→ C̃ the structure of a split fibration.

Notation 2.4.3. The comprehension functor χ sends arrows in E to commuting

squares in C. Let χ1 denote the composite of χ with the domain functor C→ → C.

Definition 2.4.2 (continued). The comprehension χ̃ : F → C̃→ is given as

follows. On types: if the comprehension of φ ∈ E(A) is f : B → A in C then the

comprehension of (φ, b) ∈ F(A,α) is αf : (B,χ1(αφb)) → (A,α). On vertical

arrows: given (φ, b), (ψ, c) ∈ F(A,α), where φ, ψ ∈ E(A) have comprehensions

f : B → A and g : C → A respectively, an arrow w : (φ, b) → (ψ, c) (i.e.

an arrow w : φ → ψ in E(A) with cwb = w) has comprehension given by

χ̃1(w) = χ1(wαφ).

We will return to define the comprehension of cartesian arrows shortly. For

now, we easily verify that

α ◦ (αf) ◦ χ1(αφb) = α ◦ (f ◦ χ1(αφb)) = αf

since α is idempotent and χ1(αφb) is a map f → f in the slice category C/A.

Hence the given comprehension arrow is a valid arrow in C̃.
We also need to check that the action of the comprehension on arrows is

well-defined. On vertical arrows, first note that χ̃1(w) = χ1(wαφ) = χ1(αψw) =

χ1(αψwαφ), since w is an arrow in F(A,α). Now,

χ1(αψc)χ1(wαφ)χ1(αφb) = χ1(cwbαφ) = χ1(wαφ),

as required.

50



Definition 2.4.2 (continued). On cartesian arrows, say on the lift s(φ,b) of

s : (C, γ)→ (A,α) with codomain (φ, b), the comprehension gives the square

(A,α)(C, γ)

(B,χ1(αφb))(D,χ1(γφb))

s

γg

χ1(αφb) ◦ t ◦ χ1(γφb)

αf (2.1)

where g : D → C is the comprehension of φ ∈ E(C), and

AC

BD

s

g

t

f

is the comprehension of the reindexing of φ ∈ E(A) along s : C → A.

This concludes the definition. We check that the comprehension of cartesian

arrows is well-defined. We see that χ1(b) and χ1(b) are idempotents fitting into

the pullback square

D

D

B

B

t

t

χ1(b) χ1(b)

in C since χ sends cartesian arrows to pullback squares. Now χ1(αφ) and χ1(γφ)

are also idempotent, and they fit into pullback squares

A A

B B
χ1(αφ)

f

α

f

C C

D D
χ1(γφ)

g

γ

g

in C, and moreover since αs = sγ, functoriality of the reindexing tells us that

we also get the equation χ1(αφ)t = tχ1(γφ). From the mere commutativity of

51



these squares, it is easy to check that the square (2.1) commutes, and that all

four arrows are valid morphisms in C̃ (for the top arrow one uses that χ1(b) and

χ1(αφ) commute, as do χ1(b) and χ1(γφ)). Since we may also write the top

arrow as either χ1(αφ)t or tχ1(γφ), we see that this comprehension is indeed a

strict functor.

Finally, it remains to check that the square (2.1) is indeed a pullback square

in C̃. It is convenient to check this using generalized element notation. Suppose

we have x ∈ B and y ∈ C satisfying

χ1(αφ)(x) = x, χ1(b)(x) = x, γ(y) = y, αf(x) = s(y).

Then f(x) = f(χ1(αφ)(x)) = αf(x) = s(y). Hence there is a unique z ∈ D

with t(z) = x and g(z) = y. Now t(χ1(γφ)χ1(b)z) = χ1(αφ)χ1(b)t(z) = x and

g(χ1(γφ)χ1(b)z) = γg(z) = y, hence z is indeed fixed by χ1(αφχ1(b)).

We have in the course of the above already asserted that χ1(αφ)χ1(b)t(z) =

x and γg(z) = y. Suppose there is some w ∈ D fixed by χ1(γφ)χ1(b) with

χ1(αφ)χ1(b)t(w) = x and γg(w) = y. Then it is straightforward to check that

t(w) = x and g(w) = y, so that w = z. Hence, (2.1) is a pullback square, as

required.

Proposition 2.4.4. For any split comprehension category (C,E, χ), there is a

split comprehension category (C̃,F, χ̃) into which it embeds via the morphism

(F1, F0) : (C,E, χ) → (C̃,F, χ̃), where F0 : C → C̃ and, for each A ∈ C, (F1)A :

C(A)→ C̃(F0(A)) are each the inclusion of a category into its Karoubi envelope.

Proof. The construction of (C̃,F, χ̃) is as above, and the statement about F0 is

immediate. To verify that each (F1)A is the inclusion into a Karoubi envelope,

just observe that for φ ∈ E(A) we always have 1∗A(φ) = φ and every idempotent

b : φ→ φ commutes with (1A)φ = 1φ. We need to verify that (F0, F1) behaves

well with respect to reindexing and comprehension, but this is a trivial check.

Let us refer to this split comprehension category as the retract completion

of (C,E, χ) or idempotent splitting model.

Proposition 2.4.5. For any split comprehension category (C,E, χ) with finite

product types, the idempotent splitting model (C̃,F, χ̃) also has finite product

types. Moreover the inclusion functor (F0, F1) preserves them.

Proof. This follows easily from the construction of products in the Karoubi

envelope from Proposition 2.3.4.

Remark 2.4.6. We could perform an analogous construction for display map

categories. Seen this way, our construction of the idempotent splitting model

52



is a generalization of the construction in Proposition 2.5.7 in [36]. Given a

display map category (C,F), we could consider the problem of finding a class

F̃ of display maps in C̃. Whenever f : B � A is in F and α : A → A is an

idempotent for which there exists a pullback square

B B

A A

α

f f

α

(2.2)

where α is an idempotent, then we need

αf : (B,α)→ (A,α)

to be in F̃ . If, moreover, there is an idempotent β : B → B satisfying fβ = f

and αβ = βα, then we also need

αf : (B,αβ)→ (A,α)

to be in F̃ . This might seem to correspond to the construction we have just

carried out, however, a class of display maps needs to be closed under com-

position with isomorphisms, and the class of isomorphisms in C̃ might contain

some unexpected members: it contains not just the isomorphisms of C (between

objects in the image of the embedding of C) but also the map α as the identity

on (A,α). Even more generally, whenever two idempotents (C, γ) and (D, δ)

represent the same presheaf (using the viewpoint of Remark 2.3.2) they are iso-

morphic, even though C and D might seem quite far from isomorphic. Hence

we would have to close our tentative class of display maps under composition

with isomorphism, and be satisfied with no better description than that.

There is another advantage of using comprehension categories: they allow us

to consider ‘being a display map’ as a structure rather than a property of maps.

A full comprehension category can be seen as a category where every morphism

comes equipped with a possibly empty set of display map structures, where the

existence of a structure on a morphism implies the existence of all pullbacks of

that morphism and the existence of a structure on those pullbacks, hence the

class of morphisms with non-empty sets of structures form a class of display

maps. A full split comprehension category includes strictly functorial choice of

pullback of structures, which may exist even when the underlying category does

not admit a strictly functorial choice of pullbacks for all display maps. The fibre

categories of non-full comprehension categories may be seen as encoding more

53



information about these structures, if they contain only ‘structure-preserving’

morphisms or morphisms with structure themselves. However, we will largely

concern ourselves here with making use of the existence of structure, and from

§2.7 we will restrict to full comprehension categories. In the situation of Defin-

ition 2.4.2, a map h : (C, γ)→ (A,α) is a display map in C̃ because it factorizes

as some g : C → B followed by some display map f : B � A followed by

α : A → A, where there exists a pullback square as in (2.2) where α is idem-

potent, and a β : B → B which is idempotent and satisfies fβ = f and αβ = βα,

and g is an isomorphism (C, γ) ∼= (B,αβ). There is no reason to expect any

such choice of (f, g, α, β) to be unique in any useful sense, yet all constructions

on display maps involve making a choice of such ‘structure’.

Remark 2.4.7. In principle, one should be able to give analogues to 2.4.5 for

the various notions of finite sum types. We omit them here, as to include them

would require either formulating the definition of finite sums for comprehen-

sion categories or formulating the idempotent splitting model for display map

categories.

2.5 Dependent products

We have already restricted to the case of split comprehension categories, but

the following argument can be made to work in the case of a well-rooted display

map category. In that case, the following may be seen as a generalization of

Proposition 2.5.11 in [36]. Seen in the present context, it is clear that the use

of identity types in the proof of that proposition is to make a canonical choice

of presentation as a retract of a display map for each map in the saturation of

the class of display maps.

Proposition 2.5.1. Suppose that (C̃,F, χ̃) has strictly stable dependent products.

Then (C,E, χ) has strictly stable weak dependent products.

Proof. Let A ∈ C be a base-type, φ ∈ E(A) a type over A with comprehension

f : B → A, and ψ ∈ E(B) a type over B with comprehension g : C → B.

Then this data includes into the idempotent splitting model as (A, 1A) ∈ C̃,
(φ, 1φ) ∈ F(A, 1A) and (ψ, 1ψ) ∈ F(B, 1B). It is easy to check that the data of a

Π-type for this triple of types in the idempotent splitting model is precisely the

data of a weak Π-type for the original triple of types. Moreover, strict stability

under reindexing of these weak Π-types follows directly from the strict stability

of the Π-types in the idempotent splitting model.

The main result of this chapter is the following converse to Proposition 2.5.1.

54



Theorem 2.5.2. Suppose that (C,E, χ) has weak Π-types. Then (C̃,F, χ̃) has

Π-types.

Notation 2.5.3. Let (A,α) be an object of C̃. Let (φ, b) an object of F(A,α),

where the comprehension of φ is f : B → A in C and χ1(b) = β. Finally, let

(ψ, c) be an object of F(B,χ(αφb)). If we consider the underlying types then we

can form the weak Π-type in (C,E, χ), so let Πφψ be (π ∈ E(A), λ : π → π, ε :

f∗(π)→ ψ).

We must now find an idempotent on π making it into Π(φ,b)(ψ, c). We take

the idempotent ρ, which corresponds to “postcompose with c”. More precisely,

ρ is the unique map with λρ = ρ and ε ◦ f∗(ρ) given by the following composite

f∗(π) = β∗(f∗(π))
β∗(ε)−−−→ β∗(ψ) = ψ

c−→ ψ.

Note that ε need not be fixed by reindexing along β, but β∗(ε) is fixed by it.

Proposition 2.5.4. (π, ρ) gives an object of F(A,α).

Proof. We use the fact that weak Π-types in (C,E, χ) are stable under rein-

dexing. We are given that reindexing along α preserves φ. That ψ is fixed by

reindexing along χ1(αφ) (the pullback of φ along f) follows from the hypothesis

that ψ is fixed by reindexing along χ1(αφb). Hence π is fixed by reindexing

along α.

It remains to check that ρ is idempotent and commutes with αφ. We are

given that the weak Π-type (π, ρ, ε) is stable under reindexing, in particular by

α. Since χ1(αφ)β = βχ1(αφ), we see that χ1(αφ)∗(β∗(ε)) = β∗(ε). We are

given that χ1(αφb)∗(c) = c and hence χ1(αφ)∗(c) = c. Hence ρ is indeed fixed

by reindexing along α, i.e. it commutes with αφ.

Let us consider the transpose of ρρ:

ε ◦ f∗(ρρ) = ε ◦ f∗(ρ) ◦ f∗(ρ)

= c ◦ β∗(ε) ◦ f∗(ρ)

= c ◦ β∗(ε ◦ f∗(ρ))

= c ◦ β∗(c ◦ β∗(ε))

= c ◦ β∗(ε)

= ε ◦ f∗(ρ)

which is the transpose of ρ.

We need to give an evaluation map.

55



Proposition 2.5.5. The map ev = c ◦ β∗(ε) defines a map (α ◦ f)∗(π, ρ) →
(ψ, c).

Proof. Note that (αf)∗(π, ρ) = (f∗(π), f∗(ρ)), since π and ρ are fixed by rein-

dexing along α. So we need to check that c ◦ ev ◦ f∗(ρ) = ev, and that

ev ◦ (χ1(αφb))f
∗(π) = (χ1(αφb))ψ ◦ ev. The first equation is similar to the

calculation above in Proposition 2.5.4. The second is just the statement that

ev is fixed by reindexing along χ1(αφb), which was also checked in Proposition

2.5.4.

Proposition 2.5.6. ((π, ρ) ∈ F(A,α), ev : (α ◦ f)∗((π, ρ))→ (ψ, c)) is a Π-type

for (φ, b) ∈ F(A,α), (ψ, c) ∈ F(B,χ1(αφβ)).

Proof. Let (ω,w) ∈ F(A,α). We are required to show that the map

F(A,α)((ω,w), (π, ρ))→ F(B,χ1(αφb))((α ◦ f)∗(ω,w), (ψ, c))

t 7→ ev ◦ (α ◦ f)∗(t)

is a bijection. Let us express the map in a more convenient form. Given t :

(ω,w)→ (π, ρ), we have (α ◦ f)∗(t) = f∗(t) since t is fixed under reindexing by

α. Also since ε ◦ f∗(ρ) = ev and ρ ◦ t = t, we have ev ◦ f∗(t) = ε ◦ f∗(t). Hence

the map in question is the restriction of the weak adjunction map E(A)(ω, π)→
E(B)(f∗(ω), ψ).

Given t1, t2 : (ω,w) → (π, ρ), if ε ◦ f∗(t1) = ε ◦ f∗(t2), then λ ◦ t1 = λ ◦ t2.

But ti = ρ ◦ ti = λ ◦ ρ ◦ ti = λ ◦ ti, so indeed t1 = t2. To complete the

check that this map is a bijection, it is enough to check that the section of

t 7→ ε◦f∗(t) given by the weak adjunction restricts to a map F(B,χ1(αφb))((α◦
f)∗(ω,w), (ψ, c)) → F(A,α)((ω,w), (π, ρ)). So suppose that t : ω → π satisfies

λ ◦ t = t and s = ε ◦ f∗(t) satisfies γsf∗(w) = s, β∗(s) = s and χ1(αφ)∗(s) = s.

Then

ε ◦ f∗(ρ ◦ t) = γ ◦ β∗(ε) ◦ (f ◦ β)∗(t)

= γ ◦ β∗(εf∗(t))

= γ ◦ β∗(s)

= γ ◦ s

= s

= ε ◦ f∗(t)

and since λ ◦ ρ ◦ t = ρ ◦ t, we deduce that ρ ◦ t = t. We see trivially that

ε◦f∗(t◦w) = ε◦f∗(t) and hence that t◦w = t. Finally, we have ε◦f∗(α∗(t)) =

ε ◦χ1(αφ)∗(f∗(t)) and χ1(αφ)∗(ε) = ε (because the weak Π-type is stable under

56



reindexing along α), so α∗(t) = t. Thus t is a valid map (ω,w) → (π, ρ) in

F(A,α).

Proof of Theorem 2.5.2. It remains to check that the Π-types we have just con-

structed are stable under reindexing. This follows immediately from their defin-

ition in terms of the reindexing-stable weak Π-types.

2.6 Fullness and Ehrhard comprehension

Proposition 2.6.1. If the split comprehension category (C,E, χ) is full, then

the comprehension category of retracts (C̃,F, χ̃) is also full.

Proof. Let (A,α) ∈ C̃ be a base-type, and suppose that we have dependent types

(φ, b), (ψ, c) ∈ F(A,α) where the comprehensions in (C,E, χ) of φ, ψ ∈ E(A) are

f : B → A and g : C → A respectively. Then the comprehensions of (φ, b)

and (ψ, c) are αf : (B,χ1(αφb)) → (A,α) and αg : (C,χ1(αψc)) → (A,α)

respectively.

Recall that the comprehension of an arrow w : (φ, b)→ (ψ, c) is χ1(w)χ1(αφ) =

χ1(αψ)χ1(w). given that χ1 is a faithful functor, it follows that this operation

is injective. Conversely, given s : (B,χ1(αφb))→ (C,χ1(αψc)). Then since

gs = gχ1(αψ)s

= αgs

= αf

there is a unique t : B → C such that χ1(αψ)t = s and gt = f . It is then an

easy exercise to check that t satisfies t ◦ t = t, χ1(c)tχ1(b) = t and χ1(αψ)t =

tχ1(αφ). Hence t corresponds to a map t̂ : φ→ ψ in E(A) giving rise to a map

(φ, b)→ (ψ, c) in F(A,α) whose comprehension is s, as required.

Proposition 2.6.2. If the split comprehension category (C,E, χ) has (strong

unit types and) Ehrhard comprehension, then so does (C̃,F, χ̃).

Proof. We apply 1.4.5. We have already seen that the idempotent splitting

model has unit types in 2.4.5. let h : (C, γ) → (A,α) be a map in C̃ and

(φ, b) a type in F(A,α) where the comprehension of φ is f : B → A. Given

a map t : (>C , 1>C ) → (φ, b) lying over h, i.e. a map t : >C → φ satisfying

αφbtγ>C = t, the induced map ť : (C, γ)→ (B,χ1(αφb)) is given by χ1(αφb)t̂γ :

C → B, where t̂ is the map C → B over A corresponding to t via the operation

in (C,E, χ). Now ť does indeed satisfy αfť = h and χ1(αφb)ťγ = ť. We are

required to show that this is a bijection.

57



It is an injection because if ť1 = ť2 then

t̂1 = ̂αφbt1γ>C = χ1(αφb)t̂1γ = χ1(αφb)t̂2γ = ̂αφbt2γ>C = t̂2

and hence t1 = t2. To see that it is a surjection, consider some s : C → B

which satisfies αfs = h and χ1(αφb)sγ = s. It is easy seen that it also satisfies

fs = h, and so using the fact that (C,E, χ) has Ehrhard comprehension we can

write s = t̂ for some unique t : >C → A lying over h. It remains to check that

t satisfies αφbtγ>C = t and that ť = s. But

̂αφbtγ>C = χ1(αφb)sγ = s = t̂

and hence we get the first equation. Finally,

ť = χ1(αφb)t̂γ = χ1(αφb)sγ = s

as required.

2.7 Dependent sums

Henceforth we will assume that our split comprehension categories are full.

Theorem 2.7.1. If the original comprehension category (C,E, χ) is equipped

with dependent sums then so is the idempotent splitting comprehension category

(C̃,F, χ̃).

Proof. We use the notation of Definition 1.6.7 for dependent sums. Let (A,α) ∈
C̃ be a base-type, (φ, b) ∈ F(A,α) a dependent type where the comprehension

of φ ∈ E(A) is f : B → A, and (ψ, c) ∈ F(B, β) where the comprehension of

ψ ∈ E(B) is g : C → B. Then letting

σ = θA,φ,ψ ◦ (χ1(αφ))ψ ◦ χ1(χ1(b)ψ) ◦ χ1(c) ◦ θ−1
A,φ,ψ,

there is a unique s : ΣA,φψ → ΣA,φψ such that χ1(αΣA,φψ)◦χ1(s) = σ and this s

satisfies s ◦ s = s and α∗(s) = s (as in the proof of Proposition 2.6.1). Hence we

take (ΣA,φψ, s) ∈ F(A,α) as the underlying type, and the θ-isomorphism is given

by σ◦θA,φ,ψ. Stability under reindexing is immediate from the construction.

2.8 Identity types

We would like the idempotent splitting construction to preserve the existence

of identity types. We cannot expect this in general, but it does hold given a

58



mild additional condition on the identity types of the original model. We say

that the identity types in these well-behaved models preserve idempotents. The

construction given here is closely related to the one in Proposition 2.5.10 in [36].

We formulate this result for full split comprehension categories.

Notation 2.8.1. For convenience and since we always work with full compre-

hension categories, in the following we will assume that the hom-sets of the

original fibre categories E(A) are actually identified with the hom-sets of the

slice categories C/A of the original base category. We shall not do this for the

idempotent splitting comprehension category, as this would induce two incom-

patible ways of identifying the arrows of the fibre categories F(A,α) with arrows

in C (see the definition of χ̃). Instead, we shall continue to identify arrows of

each F(A,α) with arrows in E(A) satisfying some conditions, and hence with

certain arrows in C/A.

Definition 2.8.2. Given a full split comprehension category (C,E, χ) with bin-

ary product types and identity types, we say that identity types preserve idem-

potents if it is equipped with, for each A ∈ C, φ ∈ E(A) and idempotent map

b : φ → φ in E(A), an idempotent map KA,φ(b) : IA,φ → IA,φ which fits into

the commutative diagram

B ×B B ×B

B B

IA,φ IA,φ

reflA,φ

b

pA,φ

KA,φ(b)

b× b

reflA,φ

pA,φ

(2.3)

where we have written χ1(φ× φ) as B ×B, since it is indeed a product in C/A.

Moreover, we require the maps KA,φ(b) to be stable under reindexing in A.

Remark 2.8.3. There is a natural candidate for the dotted map in (2.3), which

is stable under reindexing. It is the map induced by the structure of identity

types, or more precisely, KA,φ(b) is given by

KA,φ(b) = χ1((b× b)IdA,φ) ◦ J
A,φ,χ1((b×b)IdA,φ )∗(IdA,φ)

(k)

where k : B → χ1((b × b)IdA,φ) is given by factorizing through a pullback as in

59



the diagram

B ×B B ×B

χ1((b× b)∗(IdA,φ)) IA,φ

B B reflA,φ
b

∆

k

χ1((b× b)IdA,φ

χ((b× b)∗(IdA,φ) pA,φ

b× b

in C.
We would not expect this map to be an idempotent in a general intensional

type theory: we would only expect the idempotence up to propositional equality.

However, we might expect it to be idempotent if the identity types are of the

special kind that arise from forming function spaces with an interval object.

Whether the KA,φ(b) are constructed in this canonical way is irrelevant to the

argument below, all we use is that the KA,φ(b) fit into the diagram (2.3), are

idempotent, and are stable under reindexing.

Theorem 2.8.4. Let (C,E, χ) be a full split comprehension category with bin-

ary product types and identity types which preserve idempotents. Then the idem-

potent splitting model (C̃,F, χ̃). is a full split comprehension category with binary

product types and identity types.

Let us give the construction of the identity types in (C̃,F, χ̃). Let (A,α) ∈
C̃ be a base type and suppose we have a type (φ, β) ∈ F(A,α), where the

comprehension of φ ∈ E(A) is f : B → A. Let us write χ1(φ× φ) as B × B (it

is indeed a product of B with itself in C/A). Now IdA,φ is not necessarily stable

under reindexing along β × β. But if we let Idβ ∈ E(B ×B) be (β × β)∗(IdA,φ),

then Idβ is preserved by reindexing along the idempotent β × β. Using the

interpretation of types as spaces (see [42]), we can give some topological intuition

for this construction. For points x, y of φ, the type IdA,φ(x, y) is the space of

paths in φ from x to y, and the type Idβ(x, y) is the space of paths in φ from

β(x) to β(y).

We will take Idβ to be the underlying object of the identity type. Observe

that since identity types are stable under reindexing, we have (αφ×φ)∗(IdA,φ) =

IdA,φ and also (αφ×φ)∗(Idβ) = Idβ since β and β×β are stable under reindexing

along α. Denote the comprehensions of IdA,φ and Idβ by IA,φ and Iβ respectively.

By assumption, we have an idempotent map KA,φ(β) : IA,φ → IA,φ, which we

think of as applying β pointwise to each path. Define the map β̂ : IdA,φ → Idβ

60



in E(B × B) to be given by the dotted arrow induced by the pullback in the

diagram in C below.

B ×B B ×B

Iβ IA,φ

IA,φ

β × β

KA,φ(β)

pA,φ

(β × β)IdA,φ

pβpA,φ

β̂

In terms of the intuitive topological picture, the map β̂ maps the triple (x, y, p :

x→ y) to (x, y, β ◦ p : β(x)→ β(y)). Now define βId : Idβ → Idβ as (β × β)∗(β̂).

Equivalently, βId is (β × β)∗(KA,φ(β)). Hence βId is idempotent, and preserved

by reindexing along αφ×φ and along β×β. Intuitively, the map βId corresponds

to sending (x, y, p : β(x)→ β(y)) to (x, y, β ◦ p : β(x)→ β(y)) where β ◦ p is the

result of apply β pointwise to the path p.

Proposition 2.8.5. (Idβ , βId) is an identity type for (φ, β) ∈ F(A,α).

Proof. The ‘reflexivity’ map,

reflβ : (B,αφ ◦ β)→ (Iβ , (α
φ×φ)Idβ ◦ (β × β)Idβ ◦ βId),

is given by reflβ = β̂ ◦ reflA,φ ◦ αφ ◦ β. It is easily checked that the map reflβ

really does define a map

(B,αφ ◦ β)→ (Iβ , (α
φ×φ)Idβ ◦ (β × β)Idβ ◦ βId)

if one first checks the equations β̂ ◦KA,φ(β) = (β × β)Idβ ◦ β̂ and βId ◦ β̂ = β̂.

Note that it follows from the former of these that reflβ may also be written as

(αφ×φ)Idβ ◦ (β × β)Idβ ◦ β̂ ◦ reflA,φ.

Now suppose that we have a type (ψ, γ) ∈ F(Iβ , (α
φ×φ)Idβ ◦ (β× β)Idβ ◦ βId),

where the comprehension of ψ ∈ E(Idβ) is g : C → Iβ , and a map

h : (B,αφβ)→ (C, ((αφ×φ)Idβ )ψ ◦ ((β × β)Idβ )ψ ◦ (βId)ψ ◦ γ)

with ((αφ×φ)Idβ ◦ (β × β)Idβ ◦ βId ◦ g) ◦ h = reflβ . We may rewrite the left-

hand side of this equation simply as g ◦ h. Now ψ is preserved by reindexing

along (αφ×φ)Idβ ◦ (β × β)Idβ and we have ((αφ×φ)Idβ )ψ ◦ ((β × β)Idβ )ψ ◦ h =

h, so let h1 : B → C be the unique factorization of h : B → C through

((αφ×φ)Idβ )ψ◦((β×β)Idβ )ψ satisfying gh1 = β̂◦reflA,φ. Let h2 : B → C[β̂] be the

61



unique factorization of h1 through β̂ψ : C[β̂]→ C satisfying g[β̂] ◦ h2 = reflA,φ,

where g[β̂] : C[β̂]→ IA,φ is the comprehension of β̂∗(ψ) ∈ E(IA,φ).

We are now in a situation where we may use the eliminator for the original

identity types. The map JA,φ,ψ(h2) : IdA,φ → C satisfies JA,φ,ψ(h2)◦reflA,φ = h2

and g[β̂] ◦ JA,φ,ψ(h2) = 1IdA,φ .

Now, the required extension of h is given by

j = ((αφ×φ)Idβ )ψ ◦ γ ◦
(
β̂ψ ◦ JA,φ,ψ(h2) ◦ (β × β)IdA,φ

)
◦ (αφ×φ)Idβ ◦ βId

Note that the inner bracketed composite is given by traversing from bottom-left

to top-right in the diagram

Idβ IdA,φ Idβ

C C[β̂] C
((β × β)IdA,φ )β̂

∗(ψ) β̂ψ

gg

(β × β)IdA,φ β̂

g[β̂]JA,φ,ψ(h2)

containing two pullback squares, since ψ is fixed by reindexing along (β × β)Idβ

and βId, and β̂ ◦ (β × β)IdA,φ = (β × β)Idβ ◦ βId. Hence j factorizes through the

map

(β̂ ◦ (β × β)IdA,φ)ψ = ((β × β)Idβ )ψ ◦ (βId)ψ

so that ((β × β)Idβ )ψ ◦ (βId)ψ ◦ j = j. Hence, j is a valid map

(Iβ , (α
φ×φ)Idβ ◦ (β × β)Idβ ◦ βId)→ (C, ((αφ×φ)Idβ )ψ ◦ ((β × β)Idβ )ψ ◦ (βId)ψ ◦ γ)

in the Karoubi envelope. It is trivial to check that

((αφ×φ)Idβ ◦ (β × β)Idβ ◦ βId ◦ g) ◦ j = 1
(Iβ ,(αφ×φ)Idβ ◦(β×β)Idβ ◦βId)

= (αφ×φ)Idβ ◦ (β × β)Idβ ◦ βId

i.e., that j is a section of the comprehension of (ψ, γ) ∈ F(Iβ , (α
φ×φ)Idβ ◦ (β ×

β)Idβ ◦ βId).

62



We have only to show that j ◦ reflβ = h. So we calculate

j ◦ reflβ = γ ◦ ((αφ×φ)Idβ )ψ ◦ β̂ψ ◦ JA,φ,ψ(h2) ◦ (β × β)IdA,φ ◦ βId ◦ β̂ ◦ reflA,φ ◦ αφ ◦ β

= γ ◦ ((αφ×φ)Idβ )ψ ◦ β̂ψ ◦ JA,φ,ψ(h2) ◦ (β × β)IdA,φ ◦ β̂ ◦ reflA,φ ◦ αφ ◦ β

= γ ◦ ((αφ×φ)Idβ )ψ ◦ β̂ψ ◦ JA,φ,ψ(h2) ◦KA,φ(β) ◦ reflA,φ ◦ αφ ◦ β

= γ ◦ ((αφ×φ)Idβ )ψ ◦ β̂ψ ◦ JA,φ,ψ(h2) ◦ reflA,φ ◦ β ◦ αφ ◦ β

= γ ◦ ((αφ×φ)Idβ )ψ ◦ β̂ψ ◦ h2 ◦ β ◦ αφ ◦ β

= γ ◦ ((αφ×φ)Idβ )ψ ◦ h1 ◦ β ◦ αφ

= γ ◦ ((αφ×φ)Idβ )ψ ◦ (β × β)Idβ ◦ h1 ◦ αφ

= γ ◦ h ◦ αφ

= h

as required.

Proof of Theorem 2.8.4. We have just constructed the identity types in Pro-

position 2.8.5 and it remains to complete the check that they are stable under

reindexing. This is clear from the construction given.

To conclude this chapter, we have shown how to take a model of the ba-

sic Martin-Löf type theory minus the η-rule for dependent products and build

another model which includes the η-rule. Here, one may take Martin-Löf type

theory to be dependent type theory with Π-types, Σ-types, intensional iden-

tity types, and finite product types. The only extra condition required on the

original model is the condition that identity types preserve idempotents from

Definition 2.8.2.

63



64



Chapter 3

Biproducts of algebras

A biproduct of two objects A and B is a product which is also a sum in such

a way that the product and sum structures are compatible. It makes sense to

postpone investigation of the Diller-Nahm category until after we have made

a careful investigation of biproducts — and in particular biproducts in Kleisli

categories — in the present chapter. Much of this chapter can be found in less

detail in, for example, section 4 of [10].

3.1 Biproducts in a category with a zero object

Let us recall some definitions from [33].

Definition 3.1.1. A category A has a zero object if it has an object 0 ∈ C
which is both an initial and a terminal object.

Clearly any zero object is unique up to unique isomorphism.

Definition 3.1.2. Let A be a category with a zero object. Then for any two

objects X,Y ∈ C, the zero morphism, denoted 0 : X → Y , from X to Y is

the unique map X → Y which factorizes through 0. That is to say, it is the

composite

X
!X−→ 0

!Y−→ Y

where the first arrow is induced by the fact that 0 is a terminal object and the

second is induced by the fact that 0 is an initial object.

Clearly, zero morphisms form a two-sided ideal in the morphisms of A in the

sense that the composite of any morphism with a zero morphism is again a zero

morphism. Henceforth, let A be a category with a zero object 0.

65



Definition 3.1.3. Suppose we are given objects X,Y ∈ A. Then a biproduct

for X and Y consists of an object X ⊕ Y , together with maps

ι1 : X → X ⊕ Y ι2 : Y → X ⊕ Y

π1 : X ⊕ Y → X π2 : X ⊕ Y → Y

satisfying the equations

π1ι1 = 1X π1ι2 = 0

π2ι1 = 0 π2ι2 = 1Y ,

making

X
ι1−→ X ⊕ Y ι2←− Y

a coproduct diagram, and making

X
π1←− X ⊕ Y π2−→ Y

a product diagram.

Remark 3.1.4. A biproduct is not simply a coproduct which coincides with a

product. There needs to be a compatibility between the product and coproduct

structures. Using exercise 4.(a) of VIII.2 in [33], we can express this compatib-

ility condition as follows. We use the matrix notation from [33], described for

maps from a coproduct to a product in III.5 and for the special case of maps

between biproducts in VIII.2.

Proposition 3.1.5. Objects X and Y in A admitting both a product and a

coproduct admit a biproduct if and only if the canonical map

c : X + Y → X × Y

given by (
π1cι1 π1cι2

π2cι1 π2cι2

)
=

(
1X 0

0 1Y

)
is an isomorphism.

Proof. In the forward direction, it is easy to check that if we take the biproduct

X ⊕ Y for both the coproduct X + Y and the product X × Y , then the map c

is actually an identity. Moreover, for any choice of coproduct and product of X

and Y , the map c factorizes as

X + Y
[ιX ,ιY ]−−−−→ X ⊕ Y (πX ,πY )−−−−−→ X × Y

66



both of which are isomorphisms.

For the converse, it is easy to check that if we equip with X × Y with the

coprojections

X
ιX−−→ X + Y

c−→ X × Y

Y
ιY−→ X + Y

c−→ X × Y

then it is a coproduct and moreover the equations of 3.1.3 are satisfied.

Remark 3.1.6. It is not sufficient that some isomorphism X + Y ∼= X × Y
exists. For example, consider the category of pointed sets, which has zero object

({∗}, ∗). The product of (X,x0) and (Y, y0) is simply (X × Y, (x0, y0)) and the

coproduct is X qY/ ∼, where ∼ identifies x0 and y0, where the chosen element

is the equivalence class [x0] = [y0]. Then for any infinite set X and x0 ∈ X,

there is an isomorphism

(X,x0) + (X,x0) ∼= (X,x0)× (X,x0).

However, the canonical map

(X,x0) + (X,x0)→ (X,x0)× (X,x0).

is never an isomorphism for |X| ≥ 2.

3.2 Naturality of the product-coproduct isomorph-

ism

We will check one of the basic properties of biproducts, namely, that when

every pair of objects in A has a biproduct, then the functorial operations on

arrows between pairs of objects of induced by the coproduct agrees with the one

induced by the product. This will be used in the construction of function and

dependent product types in Proposition 4.5.7 and Lemma 7.3.5.

Proposition 3.2.1. Let A,B,X, Y be objects of A and let f : A → X and

g : B → Y be arrows. Then f + g = f × g are equal arrows A⊕B → X ⊕ Y .

Proof. It is easy to calculate that

π1,X,Y ◦ ((f + g) ◦ ι1,A,B)

= π1,X,Y ◦ (ι1,X,Y ◦ f) = f = (f ◦ π1,A,B) ◦ ι1,A,B
= (π1,X,Y ◦ ((f × g) ◦ ι1,A,B)

67



and so on.

We remarked in 3.1.6 that it does not suffice to exhibit an arbitrary iso-

morphism X + Y ∼= X × Y to obtain a biproduct for X and Y . However, if we

assume that every pair of objects X and Y is equipped with a chosen binary

coproduct and product (including chosen coprojections and projections), then

we can deduce that every pair of objects admits a biproduct provided we can

find a family of isomorphisms

αX,Y : X + Y → X × Y

natural in X and Y (not necessarily the canonical map).

Let us record this result precisely. It will allow us to avoid some spurious

generality when we come to the Diller-Nahm category.

Proposition 3.2.2. Suppose that every pair of objects X and Y in A are

equipped with objects X + Y and X × Y together with maps

ι1,X,Y : X → X + Y ι2,X,Y : Y → X + Y

π1,X,Y : X × Y → X π2,X,Y : X × Y → Y

making X + Y and X × Y into a coproduct and product respectively, and an

isomorphism

αX,Y : X + Y → X × Y

which is natural in X and Y where the coproduct and product functors are

determined by our choice of coprojections and projections. Then every pair of

objects in A admits a biproduct.

Proof. The underlying object of the biproduct will be X ⊕Y = X +Y , and the

coprojections will be given by ι1,X,Y : X → X + Y and ι2,X,Y : Y → X + Y .

Observe that if we were to take π1,X,Y ◦αX,Y : X+Y → X and π2,X,Y ◦αX,Y :

X + Y → Y as the projections, this would almost give us a biproduct in the

sense that the two composites from 3.1.3 that are required to be zero morphisms

are indeed so. For instance, the following diagram commutes

X X + Y X × Y Y

X X + Y X × Y Y

1X + 0 1X × 0 0

ι1,X,Y αX,Y π2,X,Y

ι1,X,Y αX,Y π2,X,Y

68



by naturality of αX,Y , coprojections and projections, which shows that π2,X,Y ◦
αX,Y ◦ ι1,X,Y is a zero morphism, and similarly for π1,X,Y ◦ αX,Y ◦ ι2,X,Y .

We do not necessarily have the composite π1,X,Y ◦ αX,Y ◦ ι1,X,Y being the

identity on X. However, it is an isomorphism: the diagram

X X + 0 X × 0 X

X X + Y X × Y X

1X + 0 1X × 0

ι1,X,0 αX,0 π1,X,0

ι1,X,Y αX,Y π1,X,Y

commutes by naturality of αX,Y , coprojections and projections, but the three

arrows along the top are all isomorphisms, hence so is the composite of the three

arrows along the bottom. We denote this automorphism π1,X,Y ◦ αX,Y ◦ ι1,X,Y
of X by λX,Y : X → X, and denote the analogous automorphism π2,X,Y ◦
αX,Y ◦ ι2,X,Y of Y by ρX,Y : Y → Y . (Aside: we have also shown that λX,Y is

independent of Y and that ρX,Y is independent of X). Now it is easy to check

that taking for the projections

λ−1
X,Y ◦ π1,X,Y ◦ αX,Y : X + Y → X ρ−1

X,Y ◦ π2,X,Y ◦ αX,Y : X + Y → Y

makes X + Y into a biproduct of X and Y .

Proposition 3.2.3. Suppose the category A has zero objects and binary cop-

roducts. Then for any X,Y ∈ A, X and Y admit a biproduct in A if and only

if the maps

1X + 0 : X + Y → X + 0 ∼= X 0 + 1Y : X + Y → 0 + Y ∼= Y

make X + Y into a product of X and Y .

Proof. The given maps clearly validate the equations in 3.1.3. So if they make

X + Y into a product, then we clearly have a biproduct.

Conversely, if A has biproducts, then there is a canonical natural isomorph-

ism

αX,Y : X + Y → X ⊕ Y

69



which intertwines the coprojections. Now, it is easy to see that the diagram

X + Y X ⊕ Y

X + 0 X ⊕ 0

X

αX,Y

1X ⊕ 01X + 0

αX,0

ι−1
1,X,0

π1,X,0

π1,X,Y

commutes and similarly for a diagram with sink Y . Hence the maps given in

the proposition are isomorphic to a pair of product projections, so do indeed

give the structure of a product to X + Y .

3.3 Biproducts in Kleisli categories

Henceforth, instead of an arbitrary category A with zero object, we will suppose

we have a category C with finite products and coproducts and a monad M over

it. We will look at categories of algebras for this monad, starting with the Kleisli

category. The reader may refer to [33] for background. Our task is to derive

conditions on M that ensure that C does indeed have a zero object, and then to

ensure that it has biproducts.

Lemma 3.3.1. The Kleisli category CM has finite coproducts.

Proof. The inclusion C → CM preserves coproducts since it is a left adjoint.

Moreover it is surjective on objects.

In light of Lemma 3.3.1, if CM has a zero object, then the underlying object

of that zero object must be 0, the initial object of C. Hence we need, for each

X ∈ C, a bijection

CM(X, 0) = C(X,M 0) ∼= {∗}.

In other words, we need M 0 to be a terminal object of C.

Axiom (M-0). There is an isomorphism M 0 ∼= >.

Here > is the terminal object of C. We have shown:

Proposition 3.3.2. The Kleisli category CM has a zero object if and only if

(M-0) holds.

70



For the rest of this section we assume that (M-0) holds. In light of Proposi-

tion 3.2.3, in our situation the Kleisli category CM having biproducts is merely

a property. We know that the biproduct projections must be given as in the

following.

Axiom (M-biprod). The Kleisli arrows X + Y −7→ X and X + Y −7→ Y

π̃1,X,Y : X + Y
ηX+!Y−−−−→ MX + M 0→ M(X + 0) ∼= MX

π̃2,X,Y : X + Y
!X+ηX−−−−→ M 0 + MY → M(0 + Y ) ∼= MY

give the structure of a product of X and Y to X + Y in CM.

Let us reformulate this axiom in terms of C rather than CM. Suppose that

π̃1,X,Y : X+Y → MX and π̃2,X,Y : X+Y → MY make X+Y into a product of

X and Y in CM. Then Kleisli-composing a map F : A→ M(X+Y ) with the first

projection is the same as composing (in C) F with τ1,X,Y : M(X + Y ) → MX

where

τ1,X,Y = µX ◦M π̃1,X,Y

and similarly for π̃2,X,Y where

τ2,X,Y = µY ◦M π̃2,X,Y .

The product property of π̃1,X,Y and π̃2,X,Y then amounts to saying that the

map

τX,Y : M(X + Y )
(τ1,X,Y ,τ2,X,Y )−−−−−−−−−−→ MX ×MY

is an isomorphism.

Axiom (M-+-×). The maps

M(X + Y )
M(ηX+!Y )−−−−−−−→ M(MX + M 0)→ M M(X + 0) ∼= M MX

µX−−→ MX

M(X + Y )
M(!X+ηY )−−−−−−−→ M(M 0 + MY )→ M M(0 + Y ) ∼= M MY

µY−−→ MY

induce an isomorphism M(X + Y ) ∼= MX ×MY .

The following is immediate from the foregoing discussion.

Proposition 3.3.3. Assume (M-0). Then the following are equivalent:

• (M-biprod) holds,

• (M-+-×) holds,

• CM has biproducts.

71



A monad satisfying (M-0) and (M-+-×) is called an additive monad in [10].

Proposition 3.3.3 follows from Theorem 19 therein.

3.4 Coherence

It is worth collecting here some equations satisfied by the maps τ1,X,Y , τ2,X,Y

and τX,Y .

Proposition 3.4.1. The diagram

M(MX ×MY )

M MX ×M MY

MX ×MYM(X + Y )

M M(X + Y )

(MπX ,MπY )

µX × µY

M τX,Y

µX+Y

τX,Y

commutes.

Proof. Without loss of generality, let us just consider the projection onto MX.

Then we are required to check that the outer rectangle of

M M(X + Y ) M M(MX + M 0) M M M(X + 0) M M MX M MX

M(X + Y ) M(MX + M 0) M M(X + 0) M MX MX

M
M(ηX

+!Y )

M
M(can)

M
M

M(∼=)

M
µX

M(ηX
+!Y )

M(can)

M
M(∼=)

µX

µX+Y µXµMX

commutes. But the left-hand rectangle is a naturality square for the multiplic-

ation and the right-hand square is the associativity axiom for monads.

72



Proposition 3.4.2. The diagram

M MX ×M MY

MX ×MY

M(X + Y )M M(X + Y )

M(MX + MY )

µX × µY

τX,Y

τMX,MY

M(can)

µX+Y

commutes.

Proof. Without loss of generality we need only prove this for its projection to

MX. This amounts to checking that the diagram

M(MX + MY ) M(M MX + M 0) M M(MX + 0) M M MX M MX MX

M M(X + Y ) M(X + Y ) M(MX + M 0) M M(X + 0) M MX MX

M(ηM
X

+!Y )

M(can)

M
M(∼=)

µM
X

µX

µX
+Y

M(ηX
+!Y )

M(can)

M
M(∼=)

µX

M(can)

commutes. Using the naturality of the monad multiplication, and the monad

73



associativity law, we can rewrite this equation as

M(MX + MY ) M(M MX + M 0) M M(MX + 0) M M MX M MX MX

M M(X + Y ) M M(MX + M 0) M M M(X + 0) M M MX M MX MX

M(ηM
X

+!Y )

M(can)

M
M(∼=)

M
µX

µX

M
M(ηX

+!Y )

M
M(can)

M
M

M(∼=)
M
µX

µX

M(can)

To prove this equation, it is sufficient to prove that the diagram

MX + MY M MX + M 0 M(MX + 0) M MX MX

M(X + Y ) M(MX + M 0) M M(X + 0) M MX MX

ηMX+!Y can M(∼=) µX

M(ηX+!Y ) M(can) M M(∼=) µX

can

commutes, since we get back the equation above by applying M and postcom-

posing with µX . Now to prove this equation, we need only check it upon

composing with each of the coproduct inclusions. Firstly, on composing with

ιMX : MX → MX + MY we get the identity both ways round, since both of

the diagrams

MX + MY M MX + M 0 M(MX + 0) M MX MX

MX M MX M MX M MX MX

ηMX+!Y can M(∼=) µX

ηMX µX

ιMX ιM MX M ιMX

74



and

MX M MX M MX M MX MX

M(X + Y ) M(MX + M 0) M M(X + 0) M MX MX

M ηX µX

M(ηX+!Y ) M(can) M M(∼=) µX

M ιX M ιMX M M ιX

commute, and µX ◦ ηMX = 1MX . Secondly, on composing with ιMY : MY →
MX + MY , we must check the commutativity of the diagram

MY M 0 M(MX + 0) M MX MX

M(X + Y ) M(MX + M 0) M M(X + 0) M MX MX

!Y M ι0 M(∼=) µX

M(ηX+!Y ) M(can) M M(∼=) µX

M ιY

of which the top composite simplifies to µX ◦ M(!MX) ◦ !Y and the bottom

composite simplifies to µX ◦M M(!X)◦M(!Y ) = M(!X)◦µ0◦M(!Y ) = M(!X)◦ !Y .

It remains to check that µX ◦M(!MX) = M(!X). But we obtain this from the

equation ηX ◦ !X = !MX by applying M and postcomposing with µX .

Proposition 3.4.3. The family of maps τX,Y : M(X + Y )→ M(X)×M(Y ) is

natural in X and Y .

Proof. This is obvious from the definition of τ1,X,Y : M(X + Y )→ MX as

M(X + Y )
M(ηX+!Y )−−−−−−−→ M(MX + M 0)

M(can)−−−−→ M M(X + 0)
M M(∼=)−−−−−→ M MX

µX−−→ MX

and similarly for τ2,X,Y : M(X + Y )→ MY .

3.5 Commutative monoids

Let us recall the following definition.

Definition 3.5.1. In a category C with finite products, a commutative monoid

is an object A ∈ C equipped with morphisms

m : A×A→ A

e : > → A

75



such that the diagrams

A×A×A A×A

A×A A

m× 1A

1A ×m m

m

>×A A×A

A A

e× 1A

∼= m

1A

A×> A×A

A A

1A × e

∼= m

1A

commute.

Let us assume (M-0) and (M-+-×). Then any free M-algebra

(MA,µA : M MA→ MA)

is a commutative monoid with addition ⊕A : MA×MA→ MA given by

MA×MA ∼= M(A+A)
M([1A,1A])−−−−−−−→ MA (3.1)

and unit eA : > → MA given by

> ∼= M 0
M !A−−−→ MA. (3.2)

Proposition 3.5.2. The morphisms above equip MA with the structure of a

commutative monoid.

Proof. Associativity is clear once one checks that the two maps

M(A+A+A)→ MA×MA×MA

given by the two different ways of associating the binary operations are equal.

Unitality follows easily using the definition of τX,Y , commutativity is trivial.

Proposition 3.5.3. For any map f : A → B, the induced morphism of free

M-algebras M f : MA→ MB is also homomorphism of monoids.

76



Proof. We must check that the diagrams

> ∼= M 0

MA

MB

M !A

M !B

M f

and

MA×MA

MB ×MB

M(A+A)

M(B +B)

MA

MB

∼=

∼=

M([1A, 1A])

M([1B , 1B ])

M f ×M f M f

commute. The first is clear since f ◦ !A = !B . The second is also easy, using the

naturality of MA×MA ∼= M(A+A) and the naturality of the copairing.

What we have just shown is that the functor M : C → C lifts through the

forgetful functor V : CMon(C) → C, i.e. there is a functor M̂ : C → CMon(C)

making the diagram

C C

CMon(C)

M

V
M̂

commute. Our aim now is to show that this lift admits an extension to the

Eilenberg-Moore category CM.

Theorem 3.5.4. There exists a functor CM → CMon(C) making the following

diagram commute

C CMon(C)

CM C

M̂

F

U

V

with M̂ the functor described above.

Rather than simply producing a formula for the commutative monoid struc-

ture induced by an algebra, we will take a slightly abstract approach. We will

77



give a variant of the argument of Beck’s monadicity theorem (see Volume 2 §4
of [6], §I.V of [33], or Chapter 3 of [2]).

Let us recall some definitions.

Definition 3.5.5. Let V : B→ A be a functor. Then a parallel pair f, g : X ⇒

Y in B is called V -split if the pair V f, V g : V X ⇒ V Y has a split coequalizer

in A, or more precisely, if there is an object Z ∈ A and arrows

V Y
h−→ Z

Z
s−→ V Y

V Y
t−→ V X

such that hs = 1Z , V f ◦ t = 1V Y , and V g ◦ t = sh. The functor V creates

coequalizers of V -split pairs if every V -split pair admits a coequalizer in B which

is preserved by V and moreover every diagram of shape

•⇒ • → •

in B which is mapped by V to a split coequalizer in A is already a coequalizer

in B.

Now let us recall the monadicity theorem.

Theorem 3.5.6 (Beck’s monadicity theorem). A functor V : B→ A is monadic

if and only if V has a left adjoint and V creates coequalizers of V -split pairs.

A key step in the proof of Theorem 3.5.6 is to construct a functor from

an Eilenberg-Moore category to the domain of V , using the fact that every

Eilenberg-Moore algebra is a reflexive coequalizer of free algebras. We will

deduce 3.5.4 from the following.

Proposition 3.5.7. Let W : D→ C be a faithful functor which creates coequal-

izers of W -split pairs and suppose we have a commutative diagram

C D

CM C .

M̂

F

U

W

If there exists a lift µ̂ : M̂ M ⇒ M̂ of µ : M M ⇒ M then there exists a dotted

functor filling in the diagram.

78



Proof. We define a functor S : CM → D on objects by sending an algebra (A,α)

to the object S(A,α) which is given by the coequalizer diagram

M̂ MA M̂A S(A,α)
M̂α

µ̂A

α̂

which exists since

M MA MA A
Mα

µ̂A

α

is a split coequalizer, so indeed V S(A,α) = A (and α̂ lies over α). It is now easy

to check, using the fact that µ̂ is a natural transformation, that this assignment

on objects extends to a functor on algebra morphisms.

It remains to check that we can choose our coequalizer diagrams in D in such

a way that SF = M̂ . For this it suffices to observe that, for an object A ∈ C,

the fork

M̂ M MA M̂ MA M̂A

M̂µA

µ̂MA

µ̂A

which lies over a split coequalizer diagram in C (split by ηMA and ηM MA) is

a possible choice of coequalizer for the W -split pair M̂µA, µ̂MA : M̂ M MA ⇒

M̂ MA, since W creates coequalizers of W -split pairs. Actually, we must con-

sider the case when A 6= B but (MA,µA) = (MB,µB). In this case, since W

is faithful we have µ̂MA = µ̂MB so the two choices of coequalizer diagram are

actually the same.

To deduce Theorem 3.5.4, we must check that V : CMon(C) → C satisfies

the conditions of 3.5.7. We can check that V creates coequalizers of V -split pairs

by inspection, and the same argument will work for the category of models in

C of any algebraic theory in the sense of [31], say. Alternatively, we can use

Theorem 3.5.6 to deduce this fact, by embedding C in its free cocompletion

Ĉ = [Cop,Set]. The functors C ↪→ Ĉ and CMon(C) ↪→ CMon(Ĉ) are inclusions

of full subcategories making the square

CMon(C) CMon(Ĉ)

C Ĉ

V V̂

commutative and moreover the square is a pullback. Since Ĉ is cocomplete, one

79



can see that Ĉ admits free commutative monoids. Hence V̂ : CMon(Ĉ) → Ĉ is

monadic, and so by 3.5.6 it has a left adjoint and creates coequalizers of V̂ -split

pairs. Since split coequalizers are preserved by any functor, and in particular

the inclusion C ↪→ Ĉ, any V -split pair in CMon(C) maps to a V̂ -split pair in

CMon(Ĉ), hence that pair has a coequalizer in CMon(Ĉ) lying over an object of

C, hence lying in CMon(C). Moreover, any fork in CMon(C) lying over a split

coequalizer gives a fork in CMon(Ĉ) also lying over a split coequalizer, which is

therefore a coequalizer, and since CMon(C) is a full subcategory of CMon(Ĉ), it

is also a coequalizer in CMon(C).

To complete the proof of Theorem 3.5.4, we need to verify that µ : M M⇒ M

lifts to a natural transformation µ̂ : M̂ M ⇒ M̂. This amounts to checking the

following.

Lemma 3.5.8. For every A ∈ C, the map µA : M MA → MA is a monoid

homomorphism for the commutative monoid structures given in (3.1) and (3.2).

Proof. For the unit, we need to check that µA ◦M(!MA) = M(!A). But ηA ◦ !A =

!MA, since both sides are maps 0→ MA. By apply M and postcomposing with

µA we get the desired equation.

For the addition, we start with

M MA×M MA

MA×MA

M(A+A)M M(A+A)

M(MA+ MA)

µA × µA

τA,A

τMA,MA

M(can)

µA+A

which we obtain from 3.4.2 by reversing the direction of the isomorphisms and

substituting A for X and Y . Postcomposing with M([1A, 1A]) and a little re-

80



writing gives us

M MA×M MA M(MA+ MA) M MA

MA×MA M(A+A) MA

τ−1
MA,MA M([1MA, 1MA])

µAµA × µA

τ−1
A,A

M[1A, 1A]

(3.3)

as required.

This completes the proof of 3.5.4. If one calculates the coequalizers of V -

split pairs, then one can give the commutative monoid structure on an M-algebra

(A,α : MA→ A) explicitly. The unit eα is given by

> ∼= M 0
M !A−−−→ MA

α−→ A

and the addition ⊕α is given by

A×A ηA×ηA−−−−−→ MA×MA ∼= M(A+A)
M([1A,1A])−−−−−−−→ MA

α−→ A.

Corollary 3.5.9. Let f : (A,α) → (B, β) be a homomorphism of M-algebras.

Then f is also a homomorphism of monoids (A, eα,⊕α)→ (B, eβ ,⊕β).

Corollary 3.5.10. For free algebras, we have two equal formulations of the

commutative monoid structure, More precisely, for any object A, we have ⊕µA =

⊕MA : MA×MA→ MA, i.e.

MA×MA ∼= M(A+A)
M([1A,1A])−−−−−−−→ MA

is equal to

MA×MA
ηMA×ηMA−−−−−−−→ M MA×M MA ∼= M(MA+MA)

M([1MA,1MA])−−−−−−−−−−→ M MA
µA−−→ MA

and also eµA = eMA : > → MA, i.e.

> ∼= M 0
M !A−−−→ MA

is equal to

> ∼= M 0
M !MA−−−−→ M MA

µA−−→ MA.

Proof. For the unit, observe that ηA ◦ !A = !MA since both sides are maps 0→
MA. By applying M and postcomposing with α we get the desired equation.

81



We end this section with the following useful result.

Proposition 3.5.11. For any M-algebra (A,α), the unit eα and addition ⊕α
are both algebra homomorphisms (from the terminal algebra and product algebra

(A,α)× (A,α), respectively).

Proof. For the unit, we are required to show that

M> ∼= M M 0 M MA MA

> ∼= M 0 MA A

M M !A Mα

αµ0

M !A α

commutes, but this is equivalent to the commutativity of the outer rectangle in

M> ∼= M M 0 M MA MA

> ∼= M 0 MA A

M M !A µA

αµ0

M !A α

µA

by the algebra axioms, and this square commutes by the naturality of the monad

multiplication.

For the multiplication, the result follows if we can prove the commutativity

of the diagram

M(A×A) MA×MA

MA

A

MA

can

⊕µA

α

M(⊕α)

α

(3.4)

82



for then we can break down the homomorphism equation as

M(A×A) MA

A×A A

MA×MA

M(⊕α)

α

can ⊕µA

α× α

⊕α

where the upper triangle commutes after composition with α by (3.4) and the

trapezium commutes by 3.5.9 since α is an algebra homomorphism (MA,µA)→
(A,α).

Now, equation (3.4) follows from the equality of the two outer composites of

M(A×A)

MA×MA

M MA×M MA M(MA+ MA)

M MAMA×MA

M(A+A) MA

M(MA×MA)

M MA×M MA

M M(A+A) M MA

can

ηA × ηA

τ−1
MA,MA

M([1MA, 1MA])

µA

µA × µA

τ−1
A,A

M([1A, 1A])

M(ηA × ηA) can

µA × µA

M(τ−1
A,A)

µA+A

M M([1A, 1A])

µA

A

B

C

D

by postcomposing with α and using the associativity axiom for algebras once.

But in fact the whole diagram is commutative. The subdiagram A commutes

by a trivial calculation, and B commutes by (3.3) from 3.5.8. The pentagon

C is 3.4.1 and D is just naturality of the monad multiplication.

83



3.6 Biproducts in Eilenberg-Moore categories

To complete our survey of biproducts of algebras, let us consider when bi-

products exists in Eilenberg-Moore categories. Corollary 3.6.2 below follows

from Theorem 19 in [10], but here we provide the detail that had been left to

the reader. Given M-algebras (A,α) and (B, β), their product is given by A×B
together with the structure map

M(A×B)→ MA×MB
α×β−−−→ A×B.

If we assume (M-0) then the category of M-algebras has a zero object: (1 ∼=
M 0, !M 1 = µ0). Hence, by the dual of proposition 3.2.3, the category of algebras

has biproducts if and only if (A,α)×(B, β) is given the structure of a coproduct

by the maps

A ∼= A×M 0
1A×M !B−−−−−−→ A×MB

1A×β−−−−→ A×B

B ∼= M 0×B M !A×1B−−−−−−→ MA×B α×1B−−−−→ A×B

or alternatively we can write these as

A ∼= A×> 1A×eβ−−−−→ A×B

B ∼= >×B eα×1B−−−−→ A×B.

which are clearly algebra homomorphisms.

Suppose we are given another algebra (C, γ) and two algebra homomorph-

isms f : A→ C and g : B → C. Then there is a map

A×B f×g−−−→ C × C ⊕γ−−→ C

or, equivalently,

A×B ηA×ηB−−−−−→ MA×MB ∼= M(A+B)
M[f,g]−−−−→ MC

γ−→ C.

Proposition 3.6.1. Assuming (M-+-×), the structure on (A,α)× (B, β) given

above does indeed give it the structure of a coproduct of (A,α) and (B, β).

Proof. By 3.5.9, g is a monoid homomorphism (B, eβ ,⊕β) → (C, eγ ,⊕γ) and

hence g ◦ eβ = eγ . Thus,

⊕γ ◦ (f × g) ◦ (1A × eβ) = ⊕γ ◦ (f × eγ) = f

and similarly ⊕γ ◦ (f × g) ◦ (eα × 1B) = g. It remains to check that the

84



coprojections and the copairing are indeed algebra homomorphisms. However,

by 3.5.11 the units eα and eβ are algebra homomorphisms (>, !>) → (A,α)

and (>, !>) → (B, β) and also the addition ⊕γ is an algebra homomorphism

(C, γ)×(C, γ)→ (C, γ). We finish by observing that the product and composite

of algebra homomorphisms are again algebra homomorphisms.

Corollary 3.6.2. Assuming (M-0) and (M-+-×), the Eilenberg-Moore category

for M admits finite biproducts.

85



86



Chapter 4

The Diller-Nahm category

Our goal here is to give a detailed presentation of the construction of the cat-

egory Dill proposed in [21], which is the motivating idea in this thesis. Thus

we should take some time to elucidate the construction and to list the subtle

hypotheses required to show that we do indeed obtain a cartesian closed cat-

egory. We aim to analyse the construction in terms of fibrations, with a view

to understanding it as a construction which glues together categorical structure

in the fibre categories into structure on the total category. We shall take an ab-

stract view on the finite multisets monad as one whose Kleisli category admits

biproducts, as in Chapter 3, rather than assuming our base category admits free

commutative monoids. In contrast to [11] and [21], but in line with [4], we shall

not assume that the fibration of predicates is preordered.

4.1 Three settings

In [21] the basic setting is that we have a system of types, represented by a

category T with finite products. There is also a strong monad (−)• on T. The

basic example is that of the category of sets equipped with the free commutative

monoid monad, i.e. X• is the set of finite multisets with elements from X. We

also assume there is a preordered fibration p : P→ T, representing a system of

predicates on the types of T. Moreover, the monad (−)• admits some kind of

extension to P, also denoted (−)•. This is enough data to define the category

Dill as a category, provided we are more precise about what we mean by the

extension of (−)• to P. In fact, we do not merely define a category, because Dill

will naturally come equipped with a fibration s : Dill → T, which we will refer

to as the Diller-Nahm fibration.

As one of the main goals of this thesis is to define a Diller-Nahm model of

type theory, it is worth considering how the construction in the simply-typed

87



case already uses dependently-typed concepts. In order to better clarify how

the simply-typed construction is a special case of what we shall do later, and in

order to keep the calculations manageable, we will introduce three settings (A),

(B) and (C) in increasing order of abstraction, each of whose definitions will be

spread across this chapter. We will define and investigate s : Dill→ T in setting

(C). Each setting is just a list of hypothesized objects and properties thereof.

The settings may be briefly described as follows:

(A) The simply-typed case. We assume, as in [21], that we have a ‘system of

types’ (category) T, a ‘system of predicates’ (fibration) p : P → T, and a

‘finite multisets monad’ (−)•.

(B) A more dependently-typed case. We have an indexing category C, a fibra-

tion q : E → C each of whose fibres is a ‘system of types’, a fibration

r : Q→ E thought of as a ‘fibred system of predicates’, and indexed ‘finite

multisets’ monads on E and Q.

(C) We abstract away the finite multisets monad, replacing it with its Kleisli

category. Hence we assume a fibration q : E → C with fibred biproducts

and a fibration r : P → E .

We also give two translations (A) −→ (B) and (B) −→ (C). That is, we will

show how the objects and properties assumed in setting (A) give rise to an

example of the objects postulated in (B) satisfying the relevant hypotheses, and

similarly for (B) and (C).

Furthermore, in order to describe the most basic features of the Diller-Nahm

category independently of the assumptions needed for the more complicated

ones, we will define three settings by cumulatively through this chapter. Each

time new hypotheses are added we will also check that the translations can be

expanded to validate them.

As well as describing the precise assumptions in detail as we go, we will also

spell out some of the constructions in the more concrete settings (A) and (B)

after giving them in (C). Finally, we the reader may also have in mind one more

setting, (0), which is the main example of (A). In (0) we consider the category

of sets equipped with the fibration of subsets and the finite multisets monad.

4.2 The Diller-Nahm fibration

Let us first consider minimal assumptions needed in each of our three settings

in order to merely define the Diller-Nahm category and fibration.

Since these are so modest for setting (C), we will simply give them here: we

require two fibrations q : E → C and r : P → E .

88



Definition 4.2.1. In setting (C), the Diller-Nahm fibration s : Dill → C is

(q ◦ rop)op. The Diller-Nahm category is the total category of this fibration.

The definition of the Diller-Nahm category in settings (A) and (B) will follow

as soon as we have described these settings precisely and the translations (A)→
(B) and (B)→ (C).

4.2.1 Assumptions for setting (A)

Let us begin by recalling a definition (see, for instance, [27]).

Definition 4.2.2. A strong monad (T, η, µ, σ) on a category C with finite

products is a monad (T, η, µ) together with a natural transformation σA,B :

A× TB → T (A×B) making the following diagrams commute,

>× TA T (>×A)

TA

∼=

σ>,A

T (∼=)

A×B A× TB

T (A×B)

ηA×B

1A × ηB

σA,B

A×B × TC

A× T (B × C)

T (A×B × C)

1A × σB,C σA,B×C

σA×B,C

A× TTB T (A× TB) TT (A×B)

A× TB T (A×B)

σA,TB T (σA,B)

µA×B1A × µB

σA,B

where we have suppressed the associativity of the product.

The category of types T must have finite products and a strong monad (−)•,

which admits a fibred extension to P. By such a fibred extension, we mean a

monad (−)• on P such that the functor part satisfies p ◦ (−)• = (−)• ◦ p and

preserves cartesian arrows and the unit and multiplication in P are p-cartesian

arrows lying over the unit and multiplication in T.

4.2.2 Assumptions for setting (B)

Let us spell out (B) more precisely. In saying that it resembles the dependently-

typed case, for now we mean that rather than considering merely a system

89



of types and a system of predicates on those types, we consider an abstract

‘indexing category’ C and for each indexing object I ∈ C we have a system of ‘I-

indexed type-families’, which is to say we have a fibration q : E→ C. Moreover,

we have a system of ‘predicates’ on each I-indexed type-family, which is to say

that we have a fibration r : Q→ E.

We deal with the finite multisets monad as follows. Let us suppose we have

a functor ME : E→ E making a morphism of fibrations

E E

C C

ME

q q

and a functor MQ : Q→ Q making a morphism of fibrations

Q Q

E E .

MQ

r r

ME

We suppose that ME is the functor part of a fibrewise monad on q in the sense

that there are natural transformations ηE : idE ⇒ ME and µE : MEME ⇒ ME

with q-vertical components making (ME, ηE, µE) into a monad on E. Equival-

ently, we have a monad in each fibre of q which is preserved by reindexing.

We also suppose that MQ is the functor part of a monad on Q which is a

‘cartesian lift’ of (ME, ηE, µE). This means that there are natural transforma-

tions ηQ : idQ ⇒ MQ and µQ : MQMQ ⇒ MQ where for each I ∈ C, X ∈ E(I),

α ∈ Q(I,X), the components ηQ,α and µQ,α are r-cartesian over ηE,X and µE,X

respectively.

4.2.3 From (A) to (B): the simple slice fibration

Let us spell out how (B) generalizes (A). The idea here is that from a system

of simple types T we can produce an indexed system of types q : E → C
where for I ∈ C, each object of E(I) is a ‘constant’ type-family. However, the

maps between I-indexed families do not need to be constant families of maps.

This situation is described by the simple slice fibration of Example 1.1.6. We

90



take the fibration of type-families q : E → C to be the simple slice fibration

PT : T(−) → T. The fibration of predicates on type-families r : Q→ E is taken

to be the fibration p(−) : P(−) → T(−) given by change of base of p : P → T
along the functor T(−) → T given by (I,X) 7→ I × X. Explicitly, an object

of P(−) is a triple (I,X, α) where I,X ∈ T and α ∈ P(I × X) and an arrow

(I,X, α) → (J, Y, β) lying over (f, F ) : (I,X) → (J, Y ) in T(−) is given by an

arrow φ : α→ β in P lying over (f ◦ πI , F ) : I ×X → J × Y in T.

It remains to show how to extend the strong monad (−)• on T with its

extension to P to the relevant sort of indexed monad on p(−) : P(−) → T(−).

The monadic strength σ induces a monad on each simple slice category TI ,
which in fact assemble into a fibrewise monad. Given I ∈ T and (I,X) ∈ T(−),

we define ME(I,X) to be (I,X•) and

ME((f, F ) : (I,X)→ (J, Y ))

to be the pair

f : I → J, F • ◦ σI,X : I ×X• → Y •.

This is easily seen to be a cartesian functor T(−) → T(−). We define ηE,I,X :

(I,X)→ (I,X•) to be the pair

1I : I → I, ηX ◦ πX : I ×X → X•

and µI,X : (I,X••)→ (I,X•) to be the pair

1I : I → I, µX ◦ πX•• : I ×X•• → X•.

It is trivial to check that these are natural transformations with T(−)-vertical

components.

Completing the translation will involve making some choices of cartesian

lifts in the fibration p : P→ T. As an alternative to assuming that p is a cloven

fibration, we replace it by an equivalent cloven fibration, which will yield an

equivalent category at the end. For I,X ∈ T and α ∈ P(I × X), let σ̂I,X,α

be the chosen cartesian lift of σI,X : I × X• → (I × X)• with codomain α•.

We define MQ(I,X, α) to be the domain of σ̂I,X,α and for an arrow (f, F, φ) :

(I,X, α)→ (J, Y, β) in P(−) we define MQ(f, F, φ) to be (f, F • ◦ σI,X , φ̂) where

φ̂ is the unique arrow dom σ̂I,X,α → dom σ̂J,Y,β lying over

ME(f, F ) = (f, F • ◦ σI,X) : (I,X•)→ (J, Y •)

91



making the diagram

• •

α• β•

φ̂

σ̂J,Y,β σ̂I,X,α

φ•

commute.

We define the unit ηQ first as a family of arrows in P(−). For α ∈ P(I×X) we

define ηQ,I,X,α : α→MQ(I,X, α) to be the unique factorization of η̂I×X,α : α→
α• through σ̂I,X,α lying over 1I × ηX : I ×X → I ×X•, and this factorization

exists since σI,X ◦ (1I × ηX) = ηI×X . Since the unit η̂I×X,α in P is p-cartesian

over ηI×X : I×X → (I×X)•, and the strength σ̂I,X,α is p-cartesian over σI,X ,

it follows that ηQ,I,X,α is p-cartesian over 1I × ηX . Hence it is easy to see that

the arrows ηQ,I,X,α give a natural transformation idP ⇒MP with p(−)-cartesian

components lying over ηE,I,X .

We define the multiplication µQ,I,X,α in a similar manner, by considering

the commuting square

I ×X•• (I ×X•)• (I ×X)••

I ×X• (I ×X)•

σI,X•

1X × µX

σ•I,X

µI×X

σI,X

in T and letting µQ,I,X,α : MQMQ(I,X, α) → MQ(I,X, α) be the factorization

of

µ̂I×X,α ◦ σ̂•I,X,α ◦ σ̂I,X•,(MQ(I,X,α))• : MQMQ(I,X, α)→ α•

through

σ̂I,X,MQ(I,X,α) : MQ(I,X, α)→ α•.

As before, µQ,I,X,α is p-cartesian over 1I×µX . Hence it is easy to check that

the µQ,I,X,α form a natural transformation MQMQ ⇒ MQ with p(−)-cartesian

components over µE,I,X .

Remark 4.2.3. In [21], the indexed extension of (−)• to P(−) is assumed to

exist, rather than derived from a monad on P. This gives some additional

generality, but at the cost of a rather unnatural way of describing the basic

inputs to the construction. Moreover, in setting (0), the indexed monad sends

92



a subset α ⊆ I ×X to

MQ(I,X, α) = {(i, χ) ∈ I ×X• | ∀x ∈ χ.(i, x) ∈ α}

which is indeed of our slightly restricted form.

4.2.4 From (B) to (C): the Kleisli fibrations

We obtain the two fibrations in (C) by applying a version of the Kleisli category

construction to the fibrations from (B). However, we will not actually be able to

prove that the fibrations support fibred biproducts or have cartesian closed fibres

at this stage — we will need to add more assumptions to setting (B), which we

shall do when we come to proving that Dill admits products and exponentials.

When dealing with Kleisli categories, we use the term pure morphism to mean

a Kleisli arrow A −7→ B which can be expressed, as an arrow A → TB in the

underlying category, in the form

A
f−→ B

ηB−−→ TB

for some morphism f : A→ B in the underlying category.

We now define the Kleisli fibrations, which we give first as mere functors

and prove to be fibrations in Propositions 4.2.5 and 4.2.6. Note that the ‘M ’

in ‘qM ’ and ‘rM ’ is just notation, and reflects the dependence on the pair M =

(ME,MQ).

Definition 4.2.4. The first Kleisli fibration is qM : EME → C where EME is the

Kleisli category of E with respect to ME and qM is the functor sending X ∈ EME

to q(X) ∈ C and F : X →MEY to

q(X)
q(F )−−−→ q(ME(Y )) = q(Y ).

The second Kleisli fibration rM : QMQ → EME has base EME and total category

QMQ the Kleisli category of Q with respect to MQ and rM is the evident functor

QMQ → EME which sends α ∈ QMQ to r(α) ∈ EME and φ : α → MQβ to

r(φ) : r(α)→ r(MQ(β)) = ME(r(β)).

Let us investigate the extent to which the Kleisli fibrations are fibrewise

constructions.

Proposition 4.2.5. The functor qM : EME → C is a fibration, and the fibre

of qM over I ∈ C is the Kleisli category of the fibre over I of q : E → C with

respect to the restriction of the monad ME. Moreover the action of reindexing

along f : J → I in C on an arrow F : X −7→ Y in EME(I) is to send it to the

93



arrow f∗(X) −7→ f∗(Y ) represented by

f∗(X)
f∗(F )−−−−→ f∗(ME(Y )) ∼= ME(f∗(Y )).

Proof. Given a map f : J → I in C and X ∈ EME(I) (i.e. X ∈ E(I)) a cartesian

lift of f with codomain X is given by the composite

f∗(X)
fX−−→ X

ηE,X−−−→MEX

where fX is a q-cartesian lift of f with codomain X. To see that this arrow is

qM -cartesian, let G : Z → MX be an arrow in EME lying over qM (G) : K → I

and let h : K → J be an arrow satisfying f ◦ h = qM (G). Then, since ME

preserves cartesian arrows, there is a unique factorization of G through ME(fX)

lying over h, say H : Z →ME(f∗(X)). Then this H is the required factorization

with respect to Kleisli composition, since

µE,X ◦ME(ηE,X) ◦ME(fX) ◦H

= ME(fX) ◦H

= G.

Uniqueness of H is easy to see from this calculation.

The assertion that the fibres are Kleisli categories is trivial. The description

of reindexing along f : J → I of an arrow X −7→ Y represented by F : X →
ME(Y ) is represented by the unique arrow F : f∗(X)→ME(f∗(Y )) satisfying

µY ◦ME(F ) ◦ (ηX ◦ fX) = µY ◦ME(ηY ◦ fY ) ◦ F

where fY : f∗(Y )→ Y is a cartesian lift of f with codomain Y . The left-hand

side simplifies to F ◦ fX and the right-hand side simplifies to

f∗(X)
F−→ME(f∗(Y )) ∼= f∗(ME(Y ))

fME(Y )

−−−−−→ME(Y )

so the unique possibility for F is the one claimed in the proposition.

Proposition 4.2.6. The functor rM : QMQ → EME is a fibration, and for I ∈ C,

X ∈ E(I) (so X ∈ EME(I)), the fibre QMQ(X) is isomorphic to the fibre Q(X).

Moreover, these isomorphisms respect reindexing along qM -cartesian arrows and

along arrows X −7→ Y in EME(I) of the form

X
F−→ Y

ηE,Y−−−→ME(Y )

where F is an arrow in EME(I).

94



Proof. Suppose that X ∈ E, α ∈ Q(X), and F : Y →MEX represents an arrow

Y −7→ X in EME . Then a rM -cartesian lift of F with codomain α is given by a

map

F ∗(MQ(α))
FMQ(α)

−−−−−→MQ(α)

which is an r-cartesian lift of F with codomain MQ(α). To see that this is

rM -cartesian, let Z ∈ E with γ ∈ Q(Z), let φ : γ → MQ(α) be a Kleisli arrow

γ −7→ α, and let G : Z → ME(Y ) be a a Kleisli arrow Z −7→ Y such that

F ◦G = MQ(α) using Kleisli composition, i.e. the composite in E

Z
F−→ME(Y )

ME(F )−−−−→MEME(X)
µE,X−−−→ME(X)

is r(φ) : Z → ME(X). Now Kleisli maps ψ : γ −7→ F ∗(MQ(α)) lying over

G : Z −7→ Y that Kleisli-compose with FMQ(α) to give φ : γ −7→ α are in

bijective correspondence with maps χ : γ → MQ(F ∗MQ(α)) in Q lying over

G : Z →MEY making the composite

γ
χ−→MQ(F ∗(MQ(α)))

MQ(FMQ(α))−−−−−−−−→MQMQ(α)
µQ,α−−−→MQ(α)

in Q, but as MQ preserves cartesian arrows and the components of the multi-

plication are cartesian, there is a unique such arrow χ. This completes the proof

that rM is a fibration.

If α, β ∈ Q(X) where X ∈ E(I), then arrows α −7→ β in QMQ(X) correspond

to arrows φ : α → MQ(β) in Q lying over ηE,X : X → ME(X) in E(I). But

ηQ,α : α → MQα is r-cartesian over ηE,X , hence these arrows correspond to

arrows α → β in Q(X). A short calculation shows that this correspondence

respects Kleisli composition and identities so is in fact an isomorphism.

We need only check the statement that reindexing along pure morphisms

commutes with this isomorphism, since in the proof of proposition 4.2.5 we saw

that every qM -cartesian arrow is pure. Given F : Y → X in E, we have seen that

reindexing in rM along ηE,X ◦ F amounts to applying MQ and then reindexing

along ηE,X ◦F in r. However, since for any α ∈ Q(X) the unit ηQ,α is r-cartesian

over ηE,X , this whole process is equivalent just to reindexing in r along F , as

required.

This completes the translation of setting (B) into setting (C).

4.2.5 The Diller-Nahm category in (B)

We can describe the construction of s : Dill → C in setting (B) directly. One

takes the opposite fibration of r, composes with q, takes the fibred Kleisli cat-

egory of the induced fibred monad and finally one takes the opposite fibration.

95



Let us describe the various steps in more detail. The first point to check is

that the monad (MQ, ηQ, µQ) over (ME, ηE, µE) gives rise to a monad on qop also

lying over (ME, ηE, µE). This is the case since taking opposites is functorial, so

we do indeed get the functor part. The key point for the monad is that the

components of the unit and multiplication are r-cartesian arrows, hence they

also represent (cartesian) arrows in rop. Thus we get a monad (M ′Q, η
′
Q, µ

′
Q) on

rop lying over (ME, ηE, µE).

The next step is to check that we get a fibrewise monad on q◦rop. We do this

by forgetting the E part of the monad so that the monad is just (M ′Q, η
′
Q, µ

′
Q).

Subsequently, we take the fibred Kleisli category, (q ◦ rop)M
′
Q . This may be seen

as either applying the usual Kleisli category construction on each fibre, with the

evident reindexing, or taking the Kleisli category of the total category together

with the obvious projection functor to the base category.

The final steps are simply to take the opposite fibration again and then the

usual total category.

A concrete description

Let us describe the Diller-Nahm category in more concrete terms for setting (B).

An object of Dill is just an object of Q, but we write it as a triple (I,X, α) with

I ∈ C, X ∈ E(I) and α ∈ Q(I,X). A morphism (f, F, φ) : (I,X, α)→ (J, Y, β)

is given by a map

f : I → J,

in C, a map

F : f∗Y →ME(X)

in E(I), together with a map

φ : F ∗(MQ(α))→ f∗β

in Q(f∗Y ), where f∗β is the reindexing of β ∈ Q(Y ) along f : I → J with

respect to the fibration q ◦ r : Q→ C.

Let us describe the composition. Given objects (I,X, α), (J, Y, β) and

(K,Z, γ), and maps

(f, F, φ) : (I,X, α)→ (J, Y, β)

and

(g,G, ψ) : (J, Y, β)→ (K,Z, γ)

then the composite map is constituted by

g ◦ f : I → K

96



in C together with

(gf)∗Z ∼= f∗g∗Z
f∗G−−−→ f∗ME(Y ) ∼= ME(f∗Y )

ME(F )−−−−→MEME(X)
µE,X−−−→ME(X)

in E(I) and

(µE,X ◦ME(F ) ◦ (f∗G))∗(MQ(α)) ∼= (f∗G)∗ME(F )∗µ∗E,XMQ(α)

∼= (f∗G)∗ME(F )∗MQMQ(α)

∼= (f∗G)∗MQ(F ∗MQ(α))

(f∗G)∗MQ(φ)−−−−−−−−−→ (f∗G)∗MQ(f∗β)

∼= f∗(G∗MQ(β))

f∗ψ−−→ f∗g∗γ

∼= (gf)∗γ

in Q((gf)∗Z). The identity on (I,X, α) is given by

1I : I → I

in C,

ηE,X : X →ME(X)

in E(I) and

ηE,X
∗(MQ(α)) ∼= α

in Q(X) is the canonical isomorphism induced by the fact that ηQ,α is cartesian.

We omit a concrete description of the Diller-Nahm category in settings (A)

or (0) as it is straightforward to specialize the situation of setting (B). Altern-

atively, one may consult the treatments given in [11] and [21].

Notation 4.2.7. It may be convenient at some points to represent the objects

and maps of Dill pictorially, following the practice in [11] and [21]. An object

(I,X, α) is drawn as

I X .
α

97



A map (f, F, φ) : (I,X, α)→ (J, Y, β) is then represented by a diagram

I X•

J Y

f

F

α•

β

which unfortunately suppresses the role of φ. However, in setting (A), the

fibration p : P→ T is assumed to be preordered, so it is not necessary to record

the name of the map φ.

4.3 Finite Products

In this section we will show that Dill has finite products. As we start to explore

the logical structure of Dill, we will see that it is useful to keep hold of the Diller-

Nahm fibration. In fact, we shall immediately see that it is convenient to define

finite products in Dill by constructing fibred finite products in s. Let us give the

additional conditions that we need for finite products to exist in each setting in

summary form here and then spell them out more precisely afterwards.

(A) We need the base category of types T to be a distributive category, for

each X and Y the evident functor P(X + Y ) → P(X) × P(Y ) (given by

reindexing along the coproduct inclusions) to be an isomorphism, and

P(0) ∼= 1.

(B) The base category C has finite products, the fibration q : E→ C has fibred

finite coproducts, for each I, X and Y the evident functor Q(X +I Y )→
Q(X) × Q(Y ) (given by reindexing along the coproduct inclusions) is an

isomorphism and Q(0I) ∼= 1.

(C) The base category C has finite products, the fibration q : E → C has fibred

finite coproducts, for each I, X and Y the evident functor P(X +I Y )→
P(X) × P(Y ) (given by reindexing along the coproduct inclusions) is an

isomorphism, and P(0I) ∼= 1.

98



4.3.1 Finite products and fibred finite products in (C)

Let us spell out the additional assumptions for setting (C) given above. The

coproduct inclusions ιX : X → X +I Y and ιY : Y → X +I Y induce functors

ι∗X : P(X +I Y )→ P(X)

ι∗Y : P(X +I Y )→ P(Y )

and hence a functor

(ι∗X , ι
∗
Y ) : P(X +I Y )→ P(X)× P(Y ).

We ask that this functor be an isomorphism. We write the inverse to this

isomorphism as

extI,X,Y : P(X)× P(Y )→ P(X +I Y ).

We also ask that P(0I) ∼= 1, the category with one object and one (identity)

morphism.

Proposition 4.3.1. In (C), the fibration s : Dill→ C has fibred finite products.

Proof. Given I ∈ C, the terminal object in Dill(I) is given by (0I , ∗), where ∗
is the unique object of 1 ∼= P(0I). It is easy to see that this is indeed terminal

and stable under reindexing.

Given I ∈ C, X,Y ∈ E(I), α ∈ P(X) and β ∈ P(Y ), the fibred product of

(X,α) and (Y, β) is

(X +I Y, extI,X,Y (α, β)).

This really is a coproduct in the fibre over I, since given Z ∈ E(I), γ ∈ P(Z), a

map from this object to (Z, γ) in Dill(I) corresponds to a map [f, g] : X+IY → Z

in E(I) together with a map

[f, g]∗(γ)→ extI,X,Y (α, β)

in P(X +I Y ), naturally in (Z, γ) as an object of rop. Since the isomorphism

P(X +I Y ) ∼= P(X)×P(Y ) is induced by coproduct inclusions means that the

latter is equivalent to a map

(f∗(γ), g∗(γ))→ (α, β)

in P(X)× P(Y ), naturally in γ, as required.

Corollary 4.3.2. The category Dill has finite products.

99



Proof. By 1.1.15, this follows immediately from 4.3.1.

4.3.2 Translation from (B) into (C)

Let us spell out the conditions required for (B). We will suppose that C has finite

products and that q has fibred finite products. This is equivalent to requiring

that the categories C and E have finite products and that q preserves them. We

will also ask that q has fibred finite sums.

Notation 4.3.3. Write > for the terminal object in C, and >I and 0I respect-

ively for the fibred terminal and initial objects in E(I). We use the usual × for

products in C, and ×I and +I respectively for the fibred product and fibred

sums in E(I).

We assume that the fibration r satisfies Q(0I) ∼= 1 for each I ∈ C, where

1 is the terminal category, and also that for each X,Y ∈ E(I), Q(X +I Y ) ∼=
Q(X) × Q(Y ). To state the latter more precisely, reindexing along the fibred

coproduct inclusions ιX : X → X +I Y and ιY : Y → X +I Y gives rise to a

functor

(ι∗X , ι
∗
Y ) : Q(X +I Y )→ Q(X)×Q(Y )

which we require to be an isomorphism with inverse denoted by

extI,X,Y : Q(X)×Q(Y )→ Q(X +I Y ).

For the actual translation, we must first show the following.

Proposition 4.3.4. The first Kleisli fibration qM : EME → C admits fibred

finite coproducts.

Proof. This is clear since the construction of a Kleisli category preserves the

existence of finite coproducts and the coproduct inclusions are given by pure

arrows. Moreover, by 4.2.5, reindexing respects the Kleisli construction and

acts in the obvious way on pure arrows, hence reindexing preserves the finite

coproducts.

The other thing we have to show is the ‘extensivity’ condition for the second

Kleisli fibration. Here we use 4.2.6, which tells us that reindexing along the

coproduct inclusions (pure arrows) in rM is the same as reindexing in r. This

completes the translation from (B) into (C).

4.3.3 Translation from (A) into (B)

Let us spell out the additional assumptions we use in (A). Let us assume that the

base category of types T has finite products and finite coproducts and moreover

100



that it is a distributive category (see [8]). This means that the canonical map

X × Z + Y × Z → (X + Y )× Z

is an isomorphism. It follows from this that 0× Z ∼= 0 for every object Z.

Notation 4.3.5. Write 0 and > respectively for the initial and terminal objects

in T.

We do not make assumptions of fibred products or coproducts on p : P→ T,

but we do assume a sort of ‘extensivity’ property. Precisely, for any objects

X,Y ∈ T, reindexing along the coproduct inclusions ιX : X → X + Y and

ιY : Y → X + Y induces a functor

(ι∗X , ι
∗
Y ) : P(X + Y )→ P(X)× P(Y )

and we ask that this functor is an isomorphism. We denote its inverse by

extX,Y : P(X)× P(Y )→ P(X + Y ).

We also insist that P(0) ∼= 1, where 1 is the terminal category.

Let us check that the new assumptions for setting (A) validate our new

assumptions for (B) after the translation. It is easy to see that when T has

products, PT : T(−) → T has fibred finite products. For an object I ∈ T, the

terminal object in TI is > and the product of X and Y is just the same as the

product X × Y in T.

When T is a distributive category, PT : T(−) → T has fibred finite coproducts.

For an object I ∈ T, the initial object in TI is 0, (since I × 0 ∼= 0 in distributive

categories). The coproduct of X,Y ∈ TI is the same as the coproduct X + Y

in T, since maps X + Y → Z in TI are given by maps

I × (X + Y ) ∼= I ×X + I × Y → Z

in T.

Given I,X, Y ∈ T, we define

extI,X,Y : PI(X)× PI(Y )→ PI(X + Y ))

to be

P(I ×X)× P(I × Y )
extI×X,I×Y−−−−−−−→ P(I ×X + I × Y ) ∼= P(I × (X + Y )).

Finally PI(0) ∼= P(I × 0) ∼= P(0) ∼= 1, since I × 0 ∼= 0 in a distributive category.

101



4.3.4 Concrete description of finite products in (B)

Let us given a concrete description of the finite products in Dill in setting (B).

The product of (I,X, α) with (J, Y, β) is

(I × J, π∗IX +I π
∗
JY, extI×J,π∗IX,π∗JY (π∗Iα, π

∗
Jβ)).

The terminal object is (>, 0>, ∗), where ∗ is the unique object of Q(0>) ∼= 1.

In the simply-typed case we may write the product as

(I × J,X + Y, extI×J×X,I×J×Y (π∗I×Xα, πJ×Y ∗ β)),

where πI×X is the projection I × J ×X → I ×X and πJ×Y is the projection

I × J × Y → J × Y , and we may write the terminal object as

(>, 0, ∗)

where ∗ is the unique object of P(>× 0) ∼= P(0).

4.4 Simple products

Let us summarize the additional assumptions we need in order to define simple

products, which we will make more precise below.

(A) No additional assumptions required.

(B) The fibration q : E → C has simple sums which preserve predicates in

the sense that the functor Q(ΣJ X) → Q(X) given by reindexing along

the canonical cocartesian map X → ΣJ X is an isomorphism for each

X ∈ E(I × J).

(C) The fibration q : E → C has simple sums which preserve predicates in

the sense that the functor P(ΣJ X) → P(X) given by reindexing along

the canonical cocartesian map X → ΣJ X is an isomorphism for each

X ∈ E(I × J).

4.4.1 Simple products in setting (C)

Let us be more precise about the new assumption for (C). The isomorphism

P(ΣJ X) ∼= P(X) should not be arbitrary. Instead, we ask that reindexing along

the canonical map εI,J,X : X → ΣJ X, which is a functor P(ΣJ X)→ P(X), is

an isomorphism. We write the inverse as

sumI,J,X : P(X)→ P(ΣJ X).

102



Proposition 4.4.1. In setting (C), s : Dill→ C has simple products.

Proof. It suffices to show that q ◦ rop has simple sums, since then upon taking

opposites we get simple products. Given I, J ∈ C, X ∈ E(I×J), α ∈ P(X), the

sum ΣJ(X,α) is given by

(ΣJ X, sumI,J,X(α)).

This is indeed a sum, since for any Y ∈ E(I), β ∈ P(Y ), maps

F : ΣJ X → Y

in E(I) together with

φ : F ∗(β)→ sumI,J,X(α)

in P(ΣJ X) correspond to maps

G : X → π∗I (Y )

in E(I × J) together with

ψ : G∗(π∗I (β))→ α

where G and F are adjuncts via the simple sum adjunction in q , and ψ is given

by ε∗I,J,X(φ), where

ε∗I,J,X(F ∗(β)) ∼= G∗(π∗I (β))

because F ◦ εI,J,K = πYI ◦G where πYI is a cartesian lift of πI : I × J → I with

codomain Y . The bijection between F and G is natural in Y since it comes

from a simple sum. The other bijection is also clearly natural since it is given

by reindexing. To verify the Beck-Chevalley condition it suffices to check that

for any map g : K → I in C, the induced map

(f × 1J)∗(X,α)→ f∗(ΣJ X, sumI,J,X α)

exhibits its codomain as a simple sum along πK : K × J → K of its domain.

This is easy to verify, using the fact that sumI,J,X is inverse to reindexing.

4.4.2 Translation from (B) into (C)

Let us clarify the additional assumption on (B). We assume that q : E→ C has

simple sums and moreover that for any I ∈ C and X ∈ E(I), reindexing along

the canonical map εI,J,X : X → ΣJ X gives rise to an isomorphism Q(ΣJ X) ∼=

103



Q(X). We write the inverse as

sumI,J,X : Q(X)→ Q(ΣJ X).

For the translation, we must first check that the first Kleisli fibration has

simple sums. It is easy to see that it does, using the same formula for the simple

sum, using the description of reindexing in 4.2.5. We must also verify that these

sums preserve the fibres of the second Kleisli fibration. This is trivial using the

fact that the canonical arrows εI,X,Y : X −7→ ΣJ X are pure morphisms and the

description of the fibres and reindexing given in 4.2.6.

4.4.3 Translation from (A) into (B)

We did not add any new assumptions in (A) for this part, so it remains to verify

that the translation validates our new assumptions for (B).

Firstly, we must check that the simple slice fibration has simple sums. Let

I, J,X ∈ T. Then considering (I × J,X) as an object of TI×J , its simple sum

with respect to J is (I, J ×X). It is trivial to verify that this has the correct

universal property, together with the map

(I × J,X)→ (I, J ×X)

given by the projection I × J × X → J × X. The Beck-Chevalley condition

is trivial. For predicates, reindexing along this map is an isomorphism by the

associativity of products:

PI(J ×X) = P(I × (J ×X)) ∼= P((I × J)×X) = PI×J(X),

which isomorphism we usually suppress.

4.5 Function spaces

We now turn to the remarkable fact that Dill is a cartesian closed category in

our basic example with sets, subsets and the finite multisets monad (setting

(0)). This is true in spite of the fact that s : Dill → T does not have fibrewise

dependent products even along product projections. Sticking with this con-

crete example, consider a map (f, F, φ) : (I,X, α) × (J, Y, β) → (K,Z, γ), or

104



pictorially:

I × J (X + Y )•

K Z

f
F

(α, β)•

γ

where, (for all i ∈ I, j ∈ J , z ∈ Z),

∀w ∈ F (i, j, z).(w ∈ X ⇒ α(i, w)) ∧ (w ∈ Y ⇒ β(j, w)) ` γ(f(i, j), z).

Now maps f : I×J → K correspond to maps f : I → KJ . Maps F : I×J×Z →
(X + Y )• correspond to pairs of maps

F1 : I × J × Z → X•

F2 : I × J × Z → Y •

since (X + Y )• ∼= X• × Y •. The condition on predicates then just says that we

have the sequent

∀x ∈ F1(i, j, z).α(i, x) `
(
∀y ∈ F2(i, j, z).β(j, y)

)
⇒ γ(f(i, j), z).

Now we can take the exponential transpose of the map F2 to get

F2 : I → (Y •)
J×Z

.

Hence we can give the exponential object [(J, Y, β), (K,Z, γ)] to be the object

KJ × (Y •)
J×Z J × Z

δ

where δ is the subset/predicate on JK × (Y •)
J×Z × J × Z given by

δ(g,G, j, z) =
(
∀y ∈ G(j, z).β(j, y)

)
⇒ γ(g(j), z).

105



It is now easy to check that the mapping sending an arrow (f, F, φ) as above to

I X•

KJ × (Y •)
J×Z J × Z

(f, F2)
F1

α•

δ

is a bijection.

What is not so clear is that this bijection is natural. We will show that it

is axiomatically, but this will require extending all three of our settings (A),

(B) and (C) with more assumptions. Let us summarize the required additional

assumptions:

(A) The category T is cartesian closed, the fibration p : P → T is cartesian

closed, in the fibres of P the monad (−)• preserves fibred finite products,

and on T the monad (−)• satisfies (M-0) and (M-+-×).

(B) The category C is cartesian closed, the fibration q : E→ C is locally small

with fibred finite products, the fibration r : Q→ E is cartesian closed, the

monad MQ preserves fibred finite products, and the monad ME satisfies

(M-0) and (M-+-×) when restricted to each fibre of q.

(C) The category C is cartesian closed, the fibration q : E → C is locally small

and has fibred finite biproducts, the fibration r : P → E has fibred finite

products, and the fibres of r are cartesian closed with the exponentials

being preserved by reindexing along q-cartesian arrows.

4.5.1 Locally small fibrations

We should first explain what is meant by the condition of locally small fibration

used in the hypotheses for (B) and (C).

Definition 4.5.1. Let p : C → B be a fibration. Then p is locally small if

for any I ∈ B, X,Y ∈ C(I) there exists an object [X,Y ]I ∈ B (a function

comprehension) which induces, for any J ∈ B and g : J → I, a natural bijection

of homsets B(J, [X,Y ]I) ∼= C(J)(g∗(X), g∗(Y )). The bijection is natural in g in

the sense that, for an object K ∈ B and any map h : K → J , precomposing a

map J → [X,Y ]I with h corresponds under this bijection to reindexing a map

g∗(X)→ g∗(Y ) along h.

106



From the naturality of the bijection we can deduce that there is a generic

arrow

genI,X,Y : π∗I (X)→ π∗I (Y ) ∈ C(I × [X,Y ]I),

namely the one corresponding to the product projection I × [X,Y ]I → [X,Y ]I ,

such that for g : J → I the bijection is given by the operation taking a map

f : J → [X,Y ]I in B to

(g, f)∗(genI,X,Y ) : g∗(X)→ g∗(Y )

in C(J).

Remark 4.5.2. Built into this notion of locally small is the idea that the

objects of the fibre categories C(I) are constant I-indexed (type-)families. A

map between constant families (X)i∈I → (Y )i∈I is just an I-indexed family

of maps X → Y . In Chapter 6, we will deal with non-constant type-families.

The treatment we give there in terms of quasifibred dependent products, which

generalize the quasifibred exponentials below, as applied to the examples of

Chapter 7 can be analysed in terms of a generalization of this notion of local

smallness.

4.5.2 Function spaces from quasifibred exponentials

The construction of function spaces in setting (C) will use the follow general

construction, reducing the problem to finding quasifibred exponentials in s :

Dill→ C.
Let B be a cartesian closed category and let p : C → B be a fibration over

it. We will suppose that p has fibred finite products. It is well-known that the

following are equivalent:

• Each fibre of p is cartesian closed and reindexing preserves the cartesian

closed structure.

• C is cartesian closed and p preserves the cartesian closed structure.

However, in the situation of interest to us here we wish to show that C is

cartesian closed but we do not expect p to preserve the cartesian closed structure.

We will describe a more general situation in which C is cartesian closed. We

will assume that p has simple products.

The key condition that we will use now is the following, which appears to

be novel.

107



Definition 4.5.3. A fibration p : C→ B has quasifibred exponentials if for each

I ∈ B, and Y, Z ∈ C(I), there exists an object

JY, ZKI ∈ B

and an object

LY,ZMI ∈ C(I × JY, ZKI)

such that for any object J ∈ B, any arrow f : J → I in B and any object

X ∈ C(J), there is a natural bijection between the set of arrows

F : X ×J f∗(Y )→ f∗(Z)

in C(J) and the set of pairs (g, φ) where

g : J → JY,ZKI

is an arrow in B and

φ : X → (f, g)∗(LY,ZMI)

is an arrow in C(J). The naturality has two components. The first, naturality

in X, is the requirement that for any ψ : W → X, the composite arrow

W ×J f∗(Y )
ψ×J1f∗(Y )−−−−−−−→ X ×J f∗(Y )

F−→ f∗(Z)

corresponds to the pair g, φ ◦ ψ, where F corresponds to g, φ as above. The

second, naturality in f is the requirement that for any h : K → J in B the map

h∗(X)×J (fh)∗(Y )
h∗(F )−−−−→ (fh)∗(Z)

in C(K) corresponds to the pair g ◦ h, h∗(φ) : W → (fh, gh)∗(LY, ZMI) where

F corresponds to g, φ as above. Moreover, this bijection is natural in J and X

in the sense that if K ∈ B, W ∈ C(K) and we are given h : K → J in B and

ψ : W → h∗(X) in C(K), then under the bijection sending a map F as above

to

h∗(F ) ◦ (ψ × 1(fh)∗(Y )) : W ×K (fh)∗(Y )→ (fh)∗(Z)

corresponds to sending a pair (g, φ) as above to

g ◦ h : K → JY,ZKI

together with

h∗(φ) ◦ ψ : W → (fh, gh)∗(LY, ZMI).

108



Remark 4.5.4. There is an equivalent definition of quasifibred exponential

which omits mention of the arrow f : J → I and the naturality in J — i.e.

we only have the bijection for f = 1I . The correct definition then includes

a condition of stability under reindexing in I. One might compare this with

the alternative form of the Beck-Chevalley condition for display map categories

from 1.5.5.

Remark 4.5.5. Having fibred exponentials is the special case of Definition 4.5.3

where JY,ZKI is always a terminal object.

Proposition 4.5.6. If B is cartesian closed and p : C → B has quasifibred

exponentials, fibred finite products, and simple products, then the total category

C is cartesian closed.

Proof. Let J,K ∈ B, Y ∈ C(J) and Z ∈ C(K). We will construct the exponen-

tial (Y ⇒ Z). Writing evJ,K : J × (J ⇒ K)→ K for the counit of exponentials

in B, we consider the objects

π∗J(Y ), ev∗J,K(Z) ∈ C(J × (J ⇒ K))

and take the quasifibred exponential

Lπ∗J(Y ), ev∗J,K(Z)MJ×(J⇒K) ∈ C
(
J × (J ⇒ K)× Jπ∗J(Y ), ev∗J,K(Z)KJ×(J⇒K)

)
.

Our candidate for the exponential object is given by reindexing this object along

the map

(πJ , π(J⇒K), evJ,Jπ∗J (Y ),ev∗J,K(Z)KJ×(J⇒K)
◦ πJ×Jπ∗J (Y ),ev∗J,K(Z)KJ×(J⇒K)

) :

J × (J ⇒ K)× Jπ∗J(Y ), ev∗J,K(Z)KJ×(J⇒K) →

J × (J ⇒ K)× (J ⇒ Jπ∗J(Y ), ev∗J,K(Z)KJ×(J⇒K)),

which we denote by EJ,K,Y,Z , and then taking the simple product with respect

to J . Our claim is that the exponential object (Y ⇒ Z) is

ΠJ

(
E∗J,K,Y,ZLπ∗J(Y ), ev∗J,K(Z)MJ×(J⇒K)

)
lying over

(J ⇒ K)× (J ⇒ Jπ∗J(Y ), ev∗J,K(Z)KJ×(J⇒K))

∼= (J ⇒ K × Jπ∗J(Y ), ev∗J,K(Z)KJ×(J⇒K)).

To see this, let I ∈ B and X ∈ C(I) and let us suppose we have a map from

109



X into the candidate exponential object, so we have

f : I → (J ⇒ K) ∈ B

g : I → (J ⇒ Jπ∗J(Y ), ev∗J,K(Z)KJ×(J⇒K)) ∈ B

φ : X → (f, g)∗ ΠJ E
∗
J,K,Y,Z

(
Lπ∗J(Y ), ev∗J,K(Z)MJ×(J⇒K)

)
∈ C(I).

By the Beck-Chevalley condition, we may replace (f, g)∗ ΠJ with ΠJ (1J ×
(f, g))∗. But we can easily calculate

EJ,K,Y,Z ◦ (1J × (f, g)) = (1J × f, g)

: J × I → J × (J ⇒ K)× Jπ∗J(Y ), ev∗J,K(Z)KJ×(J⇒K)

Hence our data naturally corresponds to

f : J × I → K ∈ B

g : J × I → Jπ∗J(Y ), ev∗J,K(Z)KJ×(J⇒K) ∈ B

φ : π∗I (X)→ (1J × f, g)∗
(
Lπ∗J(Y ), ev∗J,K(Z)MJ×(J⇒K)

)
∈ C(J × I).

By the definition of quasifibred exponentials, this naturally corresponds to

f : J × I → K ∈ B

F : π∗I (X)×J×I (1J × f)∗(π∗J(Y ))→ (1J × f)∗(ev∗J,K(Z)) ∈ C(J × I)

as required, since we may simplify the expressions

(1J × f)∗(π∗J(Y )) ∼= π∗J(Y )

(where the πJ maps are product projections with codomain J but different

domains) and

(1J × f)∗(ev∗J,K(Z)) ∼= f
∗
(Z)

and also the object π∗I (X) ×J×I π∗J(Y ) is indeed the product of X and Y in

C.

4.5.3 Quasifibred exponentials in (C)

To obtain function spaces in s : Dill→ C in setting (C), we only need to construct

quasifibred exponentials.

Proposition 4.5.7. In setting (C) the fibration s : Dill→ C admits quasifibred

exponentials.

110



Proof. Let I ∈ C, Y,Z ∈ E(I), β ∈ E(Y ) and γ ∈ E(Z). We use the local

smallness of q : E → C to define J(Y, β), (Z, γ)KI to be

[Z, Y ]I

and L(Y, β), (Z, γ)MI ∈ Dill(I × J(Y, β), (Z, γ)KI) to be

(π∗I (Z), gen∗I,Z,Y (β)⇒ γ)

(where πI is the projection I × [Z, Y ]I → I).

To see that this is indeed a quasifibred exponential, let us consider another

object J ∈ C, map f : J → I, and also objects X ∈ E(J) and α ∈ P(X), and

give the required bijection between the two kinds of data. Suppose we have an

arrow

(X,α)×J f∗(Y, β)→ f∗(Z, γ)

in Dill(I), which is to say we are given the data

F : f∗(Z)→ X ⊕J f∗(Y ) ∈ E(J)

φ : F ∗(π∗X(α)×f∗(Z) π
∗
f∗(Y )(f

∗(β)))→ f∗(γ) ∈ P(f∗(Z))

where ⊕J is the biproduct in the fibre of q over J . This data corresponds to

F1 : f∗(Z)→ X ∈ E(J)

F2 : f∗(Z)→ f∗(Y ) ∈ E(J)

φ : F ∗1 (α)× F ∗2 (f∗(β))→ f∗(γ) ∈ P(f∗(Z))

just by using properties of the fibred products. On the other hand, suppose we

also have the data classified by our proposed quasifibred exponential:

g : J → [Z, Y ]I ∈ C

G : (f, g)∗π∗I (Z)→ X ∈ E(J)

χ : G∗(α)→ (f, g)∗(gen∗I,Z,Y (β)⇒ γ) ∈ P((f, g)∗π∗I (Z)).

Now maps with the type of F2 correspond to maps with the type of g, so let

us continue to specify the bijection in the situation where F2 and g are paired

under this correspondence. With the silent use of some coherence isomorphisms

from the reindexing and the fact that the exponentials in the fibres of r are

111



stable under reindexing along maps of C we can write this last triple as

g : J → [Z, Y ]I ∈ C

G : f∗(Z)→ X ∈ E(J)

ψ : G∗(α)→ F ∗2 (f∗(β))⇒ f∗(γ) ∈ P(f∗(Z)).

Now F1 and G actually have the same type, so we will finish off specifying the

bijection in the situation where F1 and G are actually equal. We need a bijection

between maps

φ : F ∗1 (α)× F2(f∗(β))→ f∗(γ) ∈ P(f∗(Z))

and maps

ψ : F ∗1 (α)→ F ∗2 (f∗(β))⇒ f∗(γ) ∈ P(f∗(Z))

But these classes of maps are in bijection because the fibres of r are cartesian

closed.

It remains to check that this bijection is natural in J and (X,α). Suppose

we are given the map K → J and a map (W, δ)→ (X,α) over it, i.e. the data

h : K → J ∈ C

H : h∗(X)→W ∈ E(K)

ω : H∗(δ)→ h∗(α) ∈ P(h∗(X)).

Then the action of this data sends F to

(H ⊕K 1(fh)∗(Y )) ◦ h∗(F ) : (fh)∗(Z)→W ⊕K (fh)∗(Y ) ∈ E(K)

and sends F1 and F2 to

H ◦ h∗(F1) : (fh)∗(Z)→W ∈ E(K)

h∗(F2) : (fh)∗(Z)→ (fh)∗(Y ) ∈ E(K)

which do indeed correspond because with biproducts, crucially, by Proposition

3.2.1, the sum of the arrows H and 1(fh)∗(Y ) is equal to their product. The

maps g and G are sent to

g ◦ h : K → [Z, Y ]I ∈ C

H ◦ h∗(G) : (fh, gh)∗π∗I (Z)→ X ∈ E(K)

112



which do indeed correspond to F2 and F1 respectively. The action of the data

on φ is to send it to the composite of

(h∗(F1))∗(ω)×(fh)∗(Z) 1 :

(H ◦ h∗(F1))∗(δ)×(fh)∗(Z) (h∗(F2))∗((fh)∗(β))→

(h∗(F1))∗(h∗(α))×(fh)∗(Z) (h∗(F2))∗((fh)∗(β))

with

(h∗(F1))∗(h∗(α))×(fh)∗(Z) (h∗(F2))∗((fh)∗(β))

∼= h∗
(
F ∗1 (α)×f∗(Z) F

∗
2 (f∗(β))

) h∗(φ)−−−→ (fh)∗(γ).

The action of the data on ψ is to send it to the composite of

(h∗(F1))∗(ω) : (H ◦ h∗(F1))∗(δ)→ (h∗(F1))∗(h∗(α))

with

(h∗(F1))∗(h∗(α)) ∼=

h∗(F ∗1 (α))
h∗(ψ)−−−−→ h∗(F ∗2 (f∗(β))⇒ f∗(γ))

∼= (h∗F2)∗((fh)∗(β))⇒ (fh)∗(γ)

which does indeed correspond to the action of the data on φ, by the preservation

of exponentials under reindexing along h and the naturality of the bijection on

homsets induced by exponentials. Finally, it is clear that the action of the

data on χ preserves the correspondence of χ with ψ from the naturality of the

local-smallness bijection.

4.5.4 Translation from (B) into (C)

Since the base category C of (B) is mapped directly to the base category C of

(C) under the translation, we automatically get that C is cartesian closed.

Proposition 4.5.8. The first Kleisli fibration qM : EME → C is locally small.

Proof. Given I ∈ C, X,Y ∈ E, recall from 4.2.5 that the fibres of qM are just

the Kleisli categories of the fibres of q. Hence, we define the Kleisli function

comprehension [X,Y ]ME,I in terms of the function comprehension for q, namely

as the object

[X,MEY ]I

113



with generic arrow genME,I,X,Y : π∗I (X) −7→ π∗I (Y ) being given by

πI ∗ (X)
genI,X,MEY−−−−−−−→ π∗I (MEY ) ∼= ME(π∗I (Y )).

It is straightforward to check from the description of the fibres of and reindexing

in qM given in Proposition 4.2.5 that this does satisfying Definition 4.5.1.

Let us show that the second Kleisli fibration has fibred finite products. This

requires the assumption that MQ preserves fibred finite products in Q. This is

a natural one to make since, in the set-theoretic case, if I and X are sets and

α, β ⊆ I ×X then

(α ∧ β)• = {(i, ξ) ∈ I ×X• | ∀x ∈ ξ. α(i, x) ∧ β(i, x)}

= {(i, ξ) ∈ I ×X• | ∀x ∈ ξ. α(i, x)} ∩ {(i, ξ) ∈ I ×X• | ∀x ∈ ξ. β(i, x)}

= α• ∩ β•.

Proposition 4.5.9. In setting (B), the fibration rM : QMQ → EME has fibred

finite products.

Proof. By 4.2.6 each fibre of rM has finite products given by taking finite

products in the corresponding fibre of Q. It remains to check that reindexing

preserves these finite products, but this follows from the description of the rein-

dexing in 4.2.6 and the assumption that MQ preserves fibred finite products.

It is worth considering the fibred finite products in the composite qM ◦ rM :

QMQ → C, which we can calculate using the foregoing results. Given I ∈ C,

the terminal object in the fibre over I is given by (0I , ∗), where 0I is the initial

object in E(I) and ∗ is the unique object in Q(0I) ∼= 1 Given I ∈ C, X,Y ∈
E(I), α ∈ Q(X) and β ∈ Q(Y ), the fibred product (X,α) ×I (Y, β) is (X +I

Y, extI,X,Y (α, β)). Note that extI,X,Y (α, β) is the product of extI,X,Y (α,>Y )

with extI,X,Y (>X , β).

Proposition 4.5.10. The second Kleisli fibration rM : QMQ → EME has cartesian

closed fibres, and the cartesian closed structure is stable under reindexing along

qM -cartesian arrows.

Proof. Since r : Q→ E is a cartesian closed fibration, by 4.2.6 each fibre of rM

is cartesian closed. Moreover, the description of reindexing in 4.2.6 shows that

the exponentials are stable under reindexing along pure morphisms in EME , so

in particular they are stable under reindexing along qM -cartesian arrows.

To complete the check that the translation from (B) to (C) validates the

assumptions of (C), it remains to see that the first Kleisli fibration admits

fibred finite biproducts.

114



Proposition 4.5.11. The first Kleisli fibration qM : EME → C admits fibred

finite biproducts.

Proof. As we saw in 4.3.4, qM admits fibred finite coproducts. By 4.2.5 the

fibres of qM are just Kleisli categories of the fibres of q, hence we can use 3.3.3

to deduce from the assumption that ME satisfies (M-0) and (M-+-×) that each

fibre of qM has finite biproducts. The fact that they are indexing stable is

obvious since all ingredients in the construction are preserved by reindexing,

in particular the natural map τX,Y : ME(X +I Y ) → MEX ×I MEY is stable

under reindexing, being defined out of the reindexing-stable fibred coproduct

and terminal object structure.

This completes the translation from settings (B) into setting (C).

4.5.5 Translation from (A) into (B)

Since T plays the role of the base C under the translation, we have that C is

cartesian closed.

Proposition 4.5.12. The simple slice fibration PT : T(−) → T is locally small.

Proof. Given I,X, Y ∈ T, let the function comprehension be given by

[(I,X), (I, Y )]I = X ⇒ Y

and let the generic arrow

genI,(I,X),(I,Y ) : (I × (X ⇒ Y ), X)→ (I × (X ⇒ Y ), Y )

be represented by

I × (X ⇒ Y )×X → (X ⇒ Y )×X evX,Y−−−−→ Y.

It is straightforward to check that this satisfies Definition 4.5.1.

Proposition 4.5.13. The fibration PT : T(−) → T has fibred finite products.

Proof. Suppose we have an object I ∈ T. It is easy to check that the terminal

object in the fibre over I is (I,>). Given X,Y ∈ T, it is straightforward to

check that their product as objects of TI is X × Y .

Proposition 4.5.14. The fibration p(−) : P(−) → T(−) is cartesian closed.

Proof. This is trivial, since p : P → T is cartesian closed and p(−) is given by

change of base.

115



Recall from §4.2.3 that we construct MQ and ME from a strong monad (−)•

which admits a fibred extension to P. Recall that we have added the assumption

for this section that (−)• preserves fibred finite products in the fibres of P.

Proposition 4.5.15. The monad MQ on P(−) preserves fibred finite products.

Proof. Recall that the monad MQ on P(−) is given on (I,X, α) by applying

(−)• to α ∈ P(I × X) to obtain α• ∈ P((I × X)•) and then reindexing along

the strength σI,X : I × X• → (I × X)•. By assumption, (−)• : P(I × X•) →
P((I ×X)•) preserves finite products, and reindexing along any map preserves

the finite products in each fibre of p. Hence MQ preserves fibred finite products

in P(−).

Finally, we must check that the global conditions of (M-0) and (M-+-×) on

(−)• on T translate to the fibred version for ME on T(−).

Proposition 4.5.16. The monad ME satisfies (M-0) and (M-+-×) in each fibre

of T(−).

Proof. Suppose we have I ∈ T. The initial object in TI is (I, 0), and this is sent

by ME to (I, 0•) ∼= (I,>).

Now suppose we also have X,Y ∈ T and recall that their sum as objects of

TI is X + Y . Then we are required to show the composite

I × (X + Y )•
σI,X+Y−−−−−→ (I × (X + Y ))• ∼= (I ×X + I × Y )•

(πX+πY )•−−−−−−−→ (X + Y )•
(ηX+!Y )•−−−−−−→ (X• + 0•)•

can−−→ (X + 0)•• ∼= X••
µX−−→ X•

paired with its dual into Y • gives a map I × (X + Y )• → X• × Y • which is

an isomorphism in TI . In fact, we can use the axioms for the strength and

properties of distributive categories to simplify the composite above to

I × (X + Y )•
π(X+Y )•−−−−−→ (X + Y )•

τ1,X,Y−−−−→ X•

where τ1,X,Y is the canonical map (X + Y )• → X• in terms of the original

monad (−)• on T. Hence the canonical map

ME((I,X) +I (I, Y ))→ME(I,X)×I ME(I, Y )

is given by

I × (X + Y )•
π(X+Y )•−−−−−→ (X + Y )•

τX,Y−−−→ X• × Y •

which, by assumption, is an isomorphism as a map in TI .

116



4.6 The Diller-Nahm category

Let us collect together the main results of this chapter.

Theorem 4.6.1. Let C be a cartesian closed category, let q : E → C be a locally

small fibration with fibred finite biproducts, and let r : P → E have fibred finite

products. Moreover, suppose that the fibre categories of r are cartesian closed,

with exponentials preserved by reindexing along q-cartesian arrows, and that,

for all I ∈ C, r satisfies P(0I) ∼= 1, as well as, for all I ∈ C, X,Y ∈ E(I), the

functor P(X ⊕I Y ) → P(X) × P(Y ), given by reindexing along the coproduct

inclusions, is an isomorphism. Suppose also that q has simple sums such that for

any I, J ∈ C, X ∈ E(I × J), the functor P(ΣJX)→ P(X), given by reindexing

along the canonical cocartesian map X → ΣJX, is an isomorphism, Then the

total category of (q ◦ rop)op) is cartesian closed.

Theorem 4.6.2. Let C be a cartesian closed category, let q : E → C be a

locally small fibration with fibred finite products and fibred finite coproducts and

let q : Q → E be a cartesian closed fibration. Suppose that for any I ∈ C,

q satisfies Q(0I) ∼= 1 and also that for any I ∈ C, X,Y ∈ E(I), the functor

Q(X+I Y )→ Q(X)×Q(Y ), given by reindexing along the coproduct inclusions,

is an isomorphism. Suppose also that q has simple sums such that for any

I, J ∈ C, X ∈ E(I × J), the functor Q(ΣJX) → Q(X), given by reindexing

along the canonical cocartesian map X → ΣJX, is an isomorphism, Moreover

over suppose we have monads ME on E and MQ on Q whose functor parts give

rise to morphisms of fibrations (ME, 1C) : q → q and (MQ,ME) : r → r, for

which the components of the unit and multiplication of ME are q-vertical and

the components of the unit and multiplication of MQ are r-cartesian morphisms

lying over the corresponding components of the unit and multiplication for ME.

Suppose also that MQ preserves fibred finite products, and that ME is fibrewise

additive in the sense that it satisfies (M-0) and (M-+-×) in each fibre of q.

Then the Diller-Nahm category Dill as described in §4.2 is a cartesian closed

category.

Theorem 4.6.3. Let T be a cartesian closed category with finite coproducts and

p : P → T a cartesian closed fibration. Suppose that P(0) ∼= 1 and that for all

X,Y ∈ T, the functor P(X + Y )→ P(X)× P(Y ), given by reindexing along the

coproduct inclusions, is an isomorphism. Moreover, suppose we have a strong

monad (−)• on T and a monad on P also denoted (−)•, such that the functor

parts satisfy p ◦ (−)• = (−)• ◦ p, (−)• on P preserves p-cartesian arrows, and

the unit and multiplication in P are p-cartesian arrows lying over the unit and

multiplication in T. Finally, suppose that (−)• preserves fibred finite products

in P and that, in T, the monad (−)• is additive in that it satisfies (M-0) and

117



(M-+-×). Then the Diller-Nahm category Dill as described in §4.2 is a cartesian

closed category.

118



Chapter 5

Fibred models of type

theory

In this chapter we shall set up the context for the main construction used in this

thesis: the gluing construction. Descriptions of versions of this construction for

dependent type theory can be found in [38], [43] and [46]. The general gluing

construction can be seen as a sort of ‘comprehension completion’. We take a

‘partial model’ of type theory, for which there are some (new) dependent types

which do not yet have comprehensions (meaning the context cannot be extended

to include variables of those types) then we freely add in such comprehensions,

expanding the collection of contexts. We need to know in advance something

about what the types over these new contexts should be. This corresponds to

knowing about a ‘fibred model of type theory’: we have some base contexts,

and over each of these there is a type theory of new types and types dependent

on those new types. We will give the notion of fibred model of type theory,

and justify the viewpoint that a fibred model of type theory is a model of type

theory which just lacks a comprehension. In the next chapter we will describe

the gluing construction for turning a fibred model of type theory into an ordinary

model.

5.1 The Fibred fundamental fibration

Definition 5.1.1. The fibred arrow category (p)→ of a fibration p : E → B is

the full subcategory of the arrow category E→ of E whose objects are p-vertical

as arrows in E. The fibred codomain functor codp : (p)→ → E is the restriction

of the codomain functor cod : E→ → E.

119



Note that for any object I ∈ B, the restricted functor

(codp)I : (p)→(I)→ E(I)

is just the usual codomain functor cod from the arrow category E(I)
→

of the

fibre category E(I) to the category E(I) itself.

Proposition 5.1.2. The functor codp : (p)→ → E is a fibration if and only if

p has fibred pullbacks.

Proof. It is straightforward to check that the composite

(p)→
codp−−−→ E p−→ B

is a fibration, where given f : J → I in B and an I-vertical arrow φ : B → A,

there is a cartesian lift of f with codomain φ given by the square

A

B

f∗(A)

f∗(B)

φf∗(φ)

where the top and bottom arrows are p-cartesian over f . Moreover, we can see

from this that codp sends p◦codp-cartesian arrows to p-cartesian arrows. Hence

it suffices to show that the remaining two conditions of Proposition 1.1.12 are

equivalent to p having fibred pullbacks.

The restricted functors (codp)I : (p)→(I) → E(I) are by definition just the

codomain functors cod : E(I)
→ → E(I). These are fibrations if and only each

fibre category E(I) has pullbacks. In fact, cartesian arrows for these functors

are precisely pullback squares. Hence, to say that (codp)I -cartesian arrows

are preserved by p ◦ (codp)-reindexing is just to say that pullbacks in E(I) are

preserved by p-reindexing.

Remark 5.1.3. When a category C has pullbacks, the functor cod : C→ → C
is often referred to as the fundamental fibration or self-indexing of C. Hence

Definition 5.1.1 may be seen as giving a “fibred fundamental fibration” in the

situation where p has fibred pullbacks.

120



5.2 Fibred comprehension categories

Given a fibration p0 : E1 → E0, we can use the fibred codomain functor codp0 :

(p0)→ → E1 to define the notion of fibred comprehension category.

Definition 5.2.1. A fibred comprehension category consists of

• a base fibration p0 : E1 → E0,

• a fibration of types p1 : E2 → E1, and

• a functor χ1 : E2 → (p0)→

such that

• codp0
◦ χ1 = p1, and

• χ1 sends p1-cartesian arrows to codp0
-cartesian arrows.

These are conditions on χ1 with respect to the total category. We can

replace them with ‘fibrewise’ conditions, which we give assuming that p0 and

p1 are cloven fibrations — it is easy to reformulate them in elementary terms.

Proposition 5.2.2. Given a cloven fibration p0 : E1 → E0, a cloven fibration

p1 : E2 → E1 and a functor χ1 : E2 → (p0)→ satisfying codp0
◦ χ1 = p1, the

triple (p0, p1, χ1) is a fibred comprehension category if and only if

• for each I ∈ E0 the restricted functors (χ1)I : E2(I)→ (p0)→(I) = E1(I)
→

make (p1)I : E2(I)→ E1(I) into a comprehension category; and

• for each f : J → I in E0, the canonical colax morphism of comprehension

categories

((p1)I : E2(I)→ E1(I), (χ1)I)→ ((p1)J : E2(J)→ E1(J), (χ1)J)

given by the action of f by reindexing is moreover a strong morphism.

Let us describe what this canonical colax morphism of comprehension cat-

egories is. On base categories we simply have the reindexing functor f∗ :

E1(I) → E1(J), and similarly on total categories we take f∗ : E2(I) → E2(I).

For the 2-cell (χ1)J ◦f∗ ⇒ f∗◦(χ1)I , we give its component on some X ∈ E2(A)

where A ∈ E1(I): it is the canonical vertical map by which χ1(fX) factor-

izes through the p0-cartesian arrow f codχ1(X) (lying over f with codomain

codχ1(X)), where fX is the p0 ◦ p1-cartesian arrow lying over f with codo-

main X, as in the diagram below.

121



A

X

I

{X}

J

f∗A

f∗X

{f∗X}

f∗{X}

E0

E1

E2

f

fA

fX

f{X}

χ1(fX)

Proof. We divide the condition that χ1 preserves p1-cartesian arrows into two

conditions: preserving p1-cartesian arrows that lie over p0-vertical arrows, and

preserving p1-cartesian arrows that lie over p0-cartesian arrows.

Using the description of cartesian-over-vertical arrows in (p0)→ given in 5.1.2

we see that for χ1 to preserve cartesian-over-vertical arrows is exactly the condi-

tion that each (χ1)I makes (p1)I : E2(I)→ E1(I) into a comprehension category.

The second condition in the proposition says that the canonical comparison ar-

rows {f∗X} → f∗{X} in the diagram above are isomorphisms, but this is

clearly equivalent to χ1(fX) being p0-cartesian, i.e. the condition that χ1 pre-

serves cartesian-over-cartesian arrows.

Example 5.2.3. The notion of fibred comprehension category reduces to the

usual notion of comprehension category if we take p0 to be a functor of the form

B→ 1, where 1 is the terminal category.

Our goal for the rest of this chapter is to construct our main example of a

fibred comprehension category. This is the one that comes from an ordinary

comprehension category: the indexing base is just the category of contexts,

and for each context we consider the comprehension category of extensions of

that context and types over each extension. Dependent sums are crucial to

the implementation of a comprehension functor in this construction. However,

plain comprehension categories with no extra structure or properties beyond

dependent sums do not seem to be enough. Hence, we will eventually assume

that all comprehension categories involved are full.

5.3 Full fibred comprehension categories

Definition 5.3.1. A fibred comprehension category (p0, p1, χ1) is full if the

functor χ1 : E2 → codp0
is full and faithful.

122



As with Definition 5.2.1, this is a ‘total’ definition which should have a

‘fibrewise’ counterpart to which it is equivalent.

Proposition 5.3.2. A fibred comprehension category (p0, p1, χ1) is full if and

only if for every I ∈ E0 the comprehension category (p0(I), p1(I), (χ1)I) is full.

Proof. The “only if” direction is obvious. For the converse, suppose that each

fibre comprehension category is full. This means that χ1 is full and faithful with

respect to p0 ◦ p1-vertical maps going to p0 ◦ codp0
-vertical maps. It remains

to show that χ1 is full and faithful with respect to p0 ◦ p1-cartesian arrows.

However, between any two objects of E2 there is at most one p1 ◦ p0-cartesian

arrow up to unique p1 ◦p0-vertical isomorphism. As we know that χ1 is full and

faithful with respect to this latter sort of morphism, the result follows.

At this point we observe that we can define ‘fibred model of type theory’ in

terms of display map categories, as follows.

Definition 5.3.3. A fibred display map category consists of a fibration p :

E → B together with for each I ∈ B a class of morphisms EI ⊆ MorE(I)

making (E(I), EI) a display map category such that reindexing along maps in B
preserves the classes of display maps and preserves pullbacks of display maps.

5.4 Fibred unit types

We will generally say that a fibred comprehension category has a certain type

constructor if each of its fibre comprehension categories has that type con-

structor and it is preserved by reindexing.

Definition 5.4.1. A fibred comprehension category (p0, p1, χ1) has unit types

if p1 : E2 → E1 has fibred terminal objects and χ1 sends them to isomorphisms.

Proposition 5.4.2. A fibred comprehension category (p0, p1, χ1) has unit types

if and only if each fibre comprehension category has unit types and these are

preserved by the reindexing action of E0.

Proof. Both hypotheses assert in particular that every fibre of p1 : E2 → E1

has a terminal object sent by comprehension to an isomorphism. The former

asserts in addition that these are stable under reindexing along arbitrary arrows

of E1. The latter asserts in addition that these are stable under reindexing along

p0-vertical arrows of E1 and along arbitrary arrows of E0 (i.e. along p0-cartesian

arrows).

123



5.5 Fibred Ehrhard comprehension

The following generalizes Definition 1.4.1.

Definition 5.5.1. Recall that a fibred adjunction, over C say, is an adjunction

between the total categories of two fibrations with base C consisting of two

functors which are morphisms of fibrations such that the unit and counit have

vertical components. A fibred fibration

E2
p1−→ E1

p0−→ E0

has fibred Ehrhard comprehension if p1 has a fibred right adjoint section > :

p0 → p0 ◦ p1 which itself has a fibred right adjoint Q0 : p0 ◦ p1 → p0.

Remark 5.5.2. Although we have used the language of fibred adjunctions, this

definition is equivalent to one where we assume that each of the fibre fibrations

(p1)I : (E2)I → (E1)I has Ehrhard comprehension and moreover the Ehrhard

comprehensions are suitably preserved by the reindexing functors. The equival-

ence follows from standard facts about fibred adjunctions.

A fibred fibration with fibred Ehrhard comprehension gives rise to a fibred

comprehension category as follows. Since the counit εX : >Q0(X) → X of the

adjunction > a Q0 is p0 ◦p1-vertical, X 7→ p1(εX) is the object part of a functor

χ1 : E2 → (p0)→, easily seen to satisfy codp0
◦ χ1 = p1. The proof that this χ1

preserves cartesian arrows is similar to the usual situation for fibrations with

Ehrhard comprehension.

Observe that just as in the usual non-fibred case, having Ehrhard com-

prehension is a mere property of a fibred fibration, and being induced by an

Ehrhard comprehension is a mere property of a fibred comprehension category.

Moreover, the results of §1.4 generalize easily to the fibred case, and we see

that for full fibred comprehension categories, being induced by a fibred Ehrhard

comprehension is equivalent to having unit types.

5.6 Dependent sum as comprehension

Definition 5.6.1. The fibred fibration of second-level types of a comprehension

category (p : E→ B, χ) is the fibred fibration

E2
p1−→ E1

p0−→ E0

124



given by E0 = B, E1 = E, p0 = p and the fibration p1 : E2 → E1 is given by the

pullback of p along dom ◦χ : E→ B.

E2 E1 = E

E1 = E B

d1

p1 p

dom ◦χ

Remark 5.6.2. For any Γ ∈ B, the restricted fibrations (p1)Γ : E2(Γ)→ E1(Γ)

can be described as follows. The base category is E(Γ) and the fibre over

A ∈ E(Γ) is the category E(Γ.A). Reindexing along f : A → B in E(Γ) is

given by p-reindexing along the comprehension Γ.f : Γ.A→ Γ.B.

Given f : ∆ → Γ, the action of f by reindexing on E2(Γ) is to send a type

X ∈ E(Γ.A) to its reindexing along ∆.f∗A→ Γ.A.

Proposition 5.6.3. When the comprehension category (p : E→ B, χ) has unit

types, the fibred fibration of second-level types has fibred terminals.

Proof. From the description in Remark 5.6.2, it is clear that all of the restric-

ted fibrations have fibred terminals, and also that these fibred terminals are

preserved by reindexing along maps in E0.

Now we will justify the claim that dependent sums in type theory are a form

of second-level comprehension.

Theorem 5.6.4. Let (p : E → B, χ) be a full comprehension category with

Ehrhard comprehension. Then it admits strong dependent sums if and only if

its fibred fibration of second-level types is a full fibred comprehension category

with Ehrhard comprehension.

Proof. Let us suppose that (p : E→ B, χ) admits strong dependent sums. Then

we will construct a fibred Ehrhard comprehension for the fibred fibration of

second-level types by showing, for any Γ ∈ B, A ∈ E(Γ), X ∈ E(Γ.A), that

ΣAX as an object of E1(Γ) has the universal property required of Q0(X).

Let ∆ ∈ B and let B ∈ E(∆). Then maps

>B X

B A

∆ ΓE0

E1

E2

125



in E2 are given by families of maps

>B X

{B} {A}

∆ Γ

B

E

which, since (p, χ) has Ehrhard comprehension, correspond naturally to dia-

grams

{>B} {X}

{B} {A}

∆ Γ

∼=

in B. But as {>B} ∼= {B}, and the square

Γ{A}

{X} {ΣAX}
{θΓ,A,X}

(5.1)

in B commutes, such diagrams correspond naturally to diagrams

{B} {ΣAX}

∆ Γ

in B. Since (p, χ) is full and faithful, these then correspond naturally to diagrams

B ΣAX

∆ ΓE

B

i.e. to maps (∆, B) → (Γ,ΣAX) in E1, as required. It is clear from the de-

scription of the bijection that the display map ΣAX → A is just the expected

‘first projection map’ corresponding to {ΣAX} ∼= {X} → {A}. Hence it is

straightforward to check that the comprehension is full.

Conversely, suppose the fibred fibration of second-level types is a full com-

126



prehension category with unit types. We will show that for Γ ∈ B, A ∈ E(Γ) and

X ∈ E({A}), its comprehension Q0(X) (in E1(Γ)) has comprehension {Q0(X)}
isomorphic to {X} over Γ in B. Hence from fullness we get a map X → Q0(X)

in E lying over {A} → Γ whose comprehension is an isomorphism, so that we

may apply 1.6.4 to conclude the proof.

Consider diagrams of the form

C Γ

{A}

{X}

in B. Trivially, these correspond (naturally in C) to pairs of diagrams

C Γ

{A}

C {A}

{X}

in B, where the map C → {A} on the right is equal to the dashed map C → {A}
on the left. Since (p, χ) has Ehrhard comprehension, these correspond to pairs

of diagrams

C Γ

{A}>C

B

E

C ∼= {>C} {A}

>C X

where the map {>C} → {A} on the right is the comprehension of the map

>C → A on the left and the isomorphism C ∼= {>C} is the unit of the adjunction

between fibred terminals and Ehrhard comprehension. Since there is a natural

isomorphism of fibred terminals >C ∼= >{>C} lying over this latter isomorphism,

we can naturally recast these diagrams as a single arrow in E2.

>{>C} X

>C A

C ΓE0

E1

E2

Now we can use the Ehrhard comprehension in the fibred fibration of second-

127



level types to write this as an arrow in E1 = E:

>C A

C Γ

Q0X

E0

E1

where the composite >C → Q0X → A is the map >C → A from the previous

diagram. Now we use the Ehrhard comprehension in (p, χ) to see that this

corresponds naturally to a diagram

C Γ

{Q0(X)}

in B. Hence {X} and {Q0(X)} are isomorphic as objects in the slice B/Γ, as

required.

Remark 5.6.5. Theorem 5.6.4 is phrased for full comprehension categories

with Ehrhard comprehension and we leave it open as to whether a similar result

is true for more general notions of comprehension. Note that the formulation

of such a result for full comprehension categories, say, is not immediate since

in general comprehension category structures (not necessarily with Ehrhard

comprehension) on a given fibration need not be unique.

128



Chapter 6

Gluing models of type

theory

6.1 Comprehension categories from fibred com-

prehension categories

A fibred comprehension category may be thought of as a model for a certain

kind of ‘multi-layered type theory’. We have ‘context-types’ (objects of the

base category E0), and for each context-type I a set of ‘dependent types’ over

I (objects of E1(I)), but we do not have a way to extend the context-type I

by objects A of E1(I). We also have ‘second-level dependent types’ over each

dependent type A (objects of E2(A)), and this time we do have a way to ‘extend’

A by objects X of E2(A). We saw at the end of the last chapter that, in the

fibred fibration of second-level types, this ability to extend first-level types by

second-level ones corresponds to dependent sums. We will show that there is

a ‘comprehension completion’ construction on fibred comprehension categories,

which freely adds a comprehension to the fibration p0 : E1 → E0 in such a way

that for any I ∈ E0 and A ∈ E1(A), Ẽ1(I.A) ∼= E2(A).

Proposition 6.1.1. Let (p0, p1, χ1) be a fibred comprehension category. Then

there is a comprehension category with underlying fibration p1 : E2 → E1 and

comprehension given by the composite of χ1 with the inclusion (p0)→ ↪→ E→1 .

Moreover this comprehension category is full or has Ehrhard comprehension

whenever the original fibred comprehension category is full or has Ehrhard com-

prehension respectively.

We actually need to generalize this construction slightly. Rather than treat-

ing the base as a mere category, we assume it also has a notion of dependent

129



type (i.e. is the base of a comprehension category) which also give rise to types

in the resulting model. In order to give type constructors we will eventually

have to assume certain compatibility conditions between the base model of type

theory and the fibred one.

The basic situation is as follows: we assume we are given a comprehension

category (p : F → B, χ) and a fibred comprehension category with the same

base, (p0 : E1 → B, p1 : E2 → E1, χ1). The goal is to produce a comprehension

category whose base contains as a subcategory the original category of contexts

B, but now the fibre category of types over an old context Γ should contain both

the basic dependent types F(Γ) and the new types E1(Γ).

We will soon find it much more convenient to give the constructions in terms

of fibred display map categories rather than fibred comprehension categories, but

we will include some of the constructions for the fibred comprehension category

case. Hence the basic situation will be one where we are given a display map

category (B,F) and a fibred display map category p : E → B with fibrewise

classes of display maps EI ⊆ MorE(I).

The basic construction of the gluing comprehension category actually breaks

down into two steps. The first is the ‘change-of-base along a fibration’ construc-

tion (see 4.1.11(ii) of [22]) and the second is the ‘juxtaposition’ construction

(see 4.1.11(iii) of [22]).

Definition 6.1.2. Given a comprehension category (p : E→ B, χ) and a cloven

fibration r : C → B, the change-of-base comprehension category is the compre-

hension category with base C given as follows. The fibration of types is the

fibration r∗(p) given by the pullback of p along r.

E • C E

C B

pr∗(p)

r (6.1)

The comprehension C • E→ C→ may be described as the composite

E • C χ•idC−−−→ B→ • C→ C→

where the second map sends an object A of C together with an arrow with

codomain r(A) to the chosen r-cartesian lift of that arrow with codomain A.

(Consult [22] for the proof that this is a comprehension category.)

Remark 6.1.3. For display map categories, the change-of-base of a display

map category (B,F) along a fibration r : C → B is given by the category C

130



together with the class F of maps which are r-cartesian over a map in F . It is

easy to check that this is indeed a display map category.

Remark 6.1.4. There is a strict morphism of comprehension categories

E • C→ E.

The underlying functors are the two horizontal arrows in diagram (6.1) above

and it is straightforward to check that these arrows intertwine the comprehen-

sion strictly.

Proposition 6.1.5. The change-of-base construction is functorial in both lax

and colax morphisms of comprehension categories over the same base B.

Proof. Suppose that (F, α) : E1 → E2 is a lax morphism of comprehension

categories. Since pullbacks are functorial, there is clearly a functor

F • C : E1 • C→ E2 • C

over C. Moreover, since pullback is 2-functorial, there is a 2-cell

α • C : χ1 • idC ⇒ (χ2 • idC) ◦ (F • C),

which on composition with B→ → C gives the required comprehension compar-

ison 2-cell.
E1 • C

E2 • C

B→ • C C→

χ1 • C

F • C

χ2 • C

⇓α • C

The case of a colax morphism is similar.

Remark 6.1.6. Suppose that r : C → B has fibred terminal objects, so that

r has a right adjoint section > : B → C. Then there is a strong morphism of

comprehension categories E → E • C over > : B → C. On types it sends (B, e)

(where B ∈ B and e ∈ E(B)) to (>B , e), since E • C(>B) = E(B). Now the

comprehension of (>B , e) is a cartesian lift of {e} → B with codomain >B ,

hence it is canonically (and naturally) isomorphic to >{e} → >B , which is the

image of the comprehension of (B, e) under >.

Both of the following propositions are straightforward consequences of the

fact that comprehension in E • C is given by taking a cartesian lifting of the

comprehension in E. They are left as exercises in [22].

131



Proposition 6.1.7. The change-of-base construction preserves fullness of com-

prehension categories.

Proposition 6.1.8. The change-of-base construction applied to a comprehen-

sion category with Ehrhard comprehension has Ehrhard comprehension.

Definition 6.1.9. Let (p : D→ B, χD) and (q : E→ B, χE) be comprehension

categories over a common base B. The juxtaposition comprehension category

(q ? p : E ? D → B, χD?E) is the comprehension category with base B given as

follows. The total category of types E ? D is given by the pullback of q along

cod ◦χD.

E ? D E

D BB→

E • B→

q(cod ◦χD)∗(q)

χD cod

The fibration q ? p is given by the composite of (cod ◦χD) ∗ (q) with p : D→ B.

The comprehension is given by the composite

E ? D→ E • B→ χE•idB→−−−−−−→ B→ • B→ → B→

where the last arrow is given by composition in B. It is easy to check that this

does indeed give a comprehension category.

Remark 6.1.10. For display map categories, the juxtaposition E ? D of two

classes of display maps D, E ⊆ MorB is simply the class of maps which factorize

as a map in E followed by a map in D

Remark 6.1.11. There is a lax morphism of comprehension categories E?D→
D over B. The functor E?D→ D is given by (cod ◦χD)∗(q), i.e. a context I ∈ B
with a type A ∈ D(I) and a type X ∈ E({A}) is sent to just A ∈ D(I). For any

(I, A,X) ∈ E ?D the component of the comprehension comparison 2-cell is just

{X} {A}

{A}

{I} {I} .

Proposition 6.1.12. The juxtaposition construction is functorial in each ar-

gument with respect to colax morphisms of comprehension categories over the

base B.

132



Proof. Suppose we have (F, α) : D1 → D2 and (G, β) : E1 → E2 colax morphisms

of comprehension categories. Then there is a morphism E1?D1 → E2?D2 whose

functor part sends a type (B, d, e) ∈ E1 ? D1 (where B ∈ B, d ∈ D1(B) and

e ∈ E({d})) to (B,F (d), G(e)), where G(e) is the reindexing of G(e) ∈ E({d})
along αd : {F (d)} → {d}. The comprehension comparison 2-cell is given by the

top composite in the diagram

B

{F (d)} {d}

{G(e)} {G(e)} {e}
αd

βe

where the square is a pullback, being the comprehension of a cartesian arrow.

Remark 6.1.13. It is easy to check that the juxtaposition of two full com-

prehension categories is full and that the juxtaposition of two comprehension

categories with Ehrhard comprehension has Ehrhard comprehension.

We can now define the gluing model. Though it is plausible that much of

the type-theoretic structure that we will construct for the gluing model can be

derived in two steps from general theorems about the existence of type con-

structors in the change-of-base and juxtaposition comprehension categories, we

will not attempt this approach here.

Definition 6.1.14. Given a cloven comprehension category (p : F → B, χ)

and a fibred comprehension category over the same base (p0 : E1 → B, p1 :

E2 → E1, χ1), the gluing comprehension category the comprehension category

(q : G→ E1, χG) with base E1 defined as the juxtaposition E2 ? (F • E1) of the

comprehension category E2 on base E1 with the change-of-base F•E1 of F along

p0 : E1 → B.

We can describe G more explicitly as follows. An object of G consists of

an object Γ ∈ E1 together with an object A ∈ B(p0(Γ)) and an object X ∈
E2(χ(A)∗Γ). A morphism (Γ, A,B) → (Γ′, A′, B′) consists of a morphism f :

Γ→ Γ′ in E1 together with a morphism g : A→ A′ in F satisfying p(g) = p0(f)

and a morphism h : X → X ′ in E2 satisfying p1(h) = f , where g : χ(A)∗(Γ)→
χ(A′)∗(Γ′) is the unique morphism satisfying p0(f) = χ(g) and χ(A′)Γ′ ◦ f =

f ◦ χ(A)Γ. The functor q is given by q(Γ, A,B) = Γ and the obvious mapping

on morphisms. The comprehension functor sends (Γ, A,B) to the composite

{B} χ1(B)−−−−→ χ(A)∗(Γ)
χ(A)Γ

−−−−→ Γ

133



in E1. Compare this to the description of the gluing construction for display

map categories in Definition 6.1.18 below.

Remark 6.1.15. By composing the two (lax) morphisms of comprehension

categories of 6.1.4 and 6.1.11 we get a lax morphism

G = E2 ? (F • E1)→ F • E1 → F.

In fact, since the comprehensions of types in E2 are all p0-vertical, and the

second map is a strict morphism, the composite is also a strict morphism of

comprehension categories.

Remark 6.1.16. In the situation where F has strong unit types, there is a

strong morphism of comprehension categories E2 → G over E1. Since F has

strong unit types, there is a strong morphism of comprehension categories 1B →
F from the trivial comprehension category on B to F. By the functoriality of

change-of-base from 6.1.5, we get a strong morphism

1E1
∼= 1F • E1 → F • E1.

Hence by the functoriality of juxtaposition from 6.1.12, we get a strong morph-

ism

E2
∼= E2 ? 1E1

→ E2 ? (F • E1) = G.

Remark 6.1.17. Suppose that the fibred comprehension category E2 has strong

unit types and that p0 : E1 → B has fibred terminal objects. Then there is a

strong morphism F→ G over the fibred terminals functor > : B→ E1 (the right

adjoint section to p0). We obtain this by composing the functor F → F • E1

from 6.1.6 with the juxtaposition of the identity on F • E1 and the unit types

functor 1E1
→ E2.

F→ F • E1
∼= 1E1

? (F • E1)→ E2 ? (F • E1) = G

(One checks easily that indeed F • E1
∼= 1E1

? (F • E1).)

Note that it is not immediate to translate the gluing construction to display

map categories, for the reason that, when p : E → B is a fibred display map

category with fibrewise display maps EI ⊆ E(I), it is not in general the case that

E =
⋃
I EI is a class of display maps in E. It is possible to make a mildly weaken

the notion of class of display maps to accommodate this example, but we shall

not discuss that here. Instead, we state directly what the gluing construction

means in terms of display map categories.

134



Definition 6.1.18. Let (B,F) be a well-rooted display map category, p : E→ B
a fibration and for each I ∈ B let EI be a well-rooted class of display maps in

E(I) such that these fibrewise display maps are preserved by reindexing. Then

the glued display map category has underlying category E and class of display

maps G given by f ∈ G if and only if p(f) ∈ F and the vertical component of f

is in Ep(dom f).

It is easy to verify that (E,G) is indeed a well-rooted display map category,

and that it arises as a change-of-base construction followed by a juxtaposition

if we generalize the latter construction to arbitrary classes of maps.

6.2 Type constructors in the gluing model

Before we consider some interesting examples of gluing models in Chapter 7, we

will consider in the abstract situation some sufficient and sometimes necessary

conditions for the gluing model to have various type constructors. We will

mainly work in the setting of a display map category (B,F) and a fibred display

map category (p : E → B, E), with G the class of display maps in the category

E forming the gluing model. However, we will also cover Σ-types in the setting

where (p : F → B, χ) is a comprehension category, (p0 : E1 → B, p1 : E2 →
E1, χ1) is a fibred comprehension category over the same base B, and (q : G→
E1, χG) is the gluing comprehension category.

For the situation of a fibred display map category, versions of the problem of

finding type constructors in the glued display map category have been considered

in [38], [46], and [43]. In [38] attention is given to the situations of inverse

diagrams and oplax limits. This does not seem to be exactly the same as the

situation here, but it is closely related since the situation given by restricting to

inverse diagrams with shape the ordinal 2 corresponds to the special case of the

gluing construction where the fibrewise models in p : E→ B are given by pulling

back the fibred fundamental fibration of some other model along some functor

out of B. In [46] the situation of a display map category fibred over a display map

category is considered and some general conditions are given for the existence

of Σ-, Id- and Π-types in the total display map category. A separate calculation

is performed to see that the polynomial model admits Π-types. In [44], an

equivalence is demonstrated between fibrewise structure and total structure.1

More precisely, it is an equivalence between Σ- and Id-type constructors in the

fibres which are fibrewise — meaning stable under reindexing — and the same

type constructors in the total category E which are suitably preserved by the

1The article [44] is a preprint of [43], and contains a few results omitted from the published
version.

135



fibration p. Additionally, there is a similar treatment of Π-types, but here the

fibrewise notion also involves a completeness condition for the fibration p.

The construction of identity types that we use here is the one given in both

[46] and [43]. We will compare the two constructions of identity types given in

each of those articles — we will ultimately find it more convenient to employ

the one given in [43]. The construction of fibred dependent products given as

a necessary and sufficient condition in Theorem 3.21 in [44] (N.B. the same

sufficient condition is Proposition 3.14 in [46]) does not apply to our examples

here, which are closely related to the polynomial model of [46]. We will introduce

the notion of quasifibred Π-type to give a sufficient condition for the gluing model

to have dependent products.

6.3 Dependent sums

Proposition 6.3.1. Suppose that the comprehension category F and the fibred

comprehension category E2 admit dependent sums. Then the gluing comprehen-

sion category G of Definition 6.1.14 also admits dependent sums.

Proof. Let us suppose we have a type (Γ, A,X) in G(Γ) and a type ({X}, B, Y )

over it. Since the comprehensions of E2-types are p0-vertical, we actually have

that B is a type in F({A}), and we can represent our input data pictorially as

p0(Γ){A}{B}

AB

ΓÂ

{X}

B̃

B̂

{X}{Y }

{Y }

XX
Y

Y

B

F

E1

E2

∼=∼=

where Â→ Γ is the chosen cartesian lift of {A} → p0(Γ) with codomain Γ, B̃ →
Â and B̃ → {X} are the chosen cartesian lifts of {B} → {A} with codomains Â

and {X} respectively, and B̂ → B̃ is the map induced by (reindexing) {X} → Â.

The type X is a reindexing of X ∈ E2(Â) along B̃ → Â, hence the fact that

{X} → {X} is cartesian induces a canonical isomorphism {X} ∼= B̂. The type

Y is a reindexing of Y ∈ E2(B̂) along this isomorphism. The comprehension of

(Γ, A,X) is the composite

{X} → Â→ Γ

136



and the comprehension of ({X}, B, Y ) is the composite

{Y } → B̂ → {X}

and we see from the diagram that the composite of these composites is iso-

morphic to the composite from {Y } to Γ.

Hence we are guided to what the sum should be. We take the sum ΣAB in

F, which comes with a canonical isomorphism {B} ∼= {ΣAB}. Then we take

the sum ΣXY over B̃ in E2, and reindex to ΣXY in E2(Σ̂AB) where Σ̂AB → B̃

is a chosen cartesian arrow lifting the isomorphism {ΣAB} ∼= {B}. If we add in

the comprehension of this type to our diagram above,

ΓÂ

{X}

B̃

B̂

{X}{Y }

{Y }

Σ̂AB
{ΣXY }

{ΣXY }

∼=∼=

∼=

∼=

∼=

we see that the comprehension of (Γ,ΣAB,ΣXY ) is isomorphic over Γ to the

composite of the comprehension of our two starting types. In the special case

where F and E2 are full (fibred) comprehension categories, G is also a full

comprehension category and so by 1.6.4 what we have is enough to conclude that

G has dependent sums. In the general case, it is straightforward but notationally

awkward to give the canonical map Y → ΣXY lying over B̂ → Σ̂AB and to

show that this gives a q-cocartesian arrow which is stable under reindexing.

Remark 6.3.2. The proof appears to be simpler in the display map category

case. It reduces to showing that one can write an ‘alternating composite’ of

display maps

IAI

XBX

Y

p(I)AB
∈ F ∈ F

∈ E2

∈ E2

BAI

in the form required for a glued display map. We do this by considering the

cartesian lift BAI → AI of B � A with codomain AI and the induced map

BX → BAI , which is a reindexing of X � AI and hence a display map. We

137



conclude by simply composing the two E2-display maps and also the two maps

cartesian over F-display maps.

Remark 6.3.3. We can encode the seemingly simpler proof from 6.3.2 for

the full comprehension category case using something that looks a bit like a

distributive law (see [3]) of the comprehension categories E2 and F • E1 over

the common base E1. Observe that, even without fullness, there is a strong

morphism of comprehension categories

(F • E1) ? E2 → E2 ? (F • E1)

given as follows. A triple consisting of a context Γ ∈ E1, a type e ∈ E2(Γ), and

a type A ∈ F(p0({e})) = F(p0(Γ)) is sent to the triple with context Γ, the type

A ∈ F(p0(Γ)), and the type e ∈ E2(Ã) where Ã→ Γ is the chosen cartesian lift

of A� p0(Γ) and e is the reindexing of e along the Ã→ Γ.

Now if Â→ {e} is a chosen cartesian lift of {A} → p0(Γ) then the composite

Â → {e} → Γ is the comprehension of (Γ, e, A), and the composite {e} →
Ã → Γ is the comprehension of (Γ, A, e). These are connected by a canonical

isomorphism coming from the fact that the diagram

ΓÃ

{e}Â

{e}

contains two cartesian squares.

Now, observe that a full comprehension category (p : E → B, χ) has de-

pendent sums if and only if there exists a strong morphism of comprehension

categories

E ? E→ E

over B (this follows from 1.6.4). Hence, suppressing the associativity of juxta-

position, the composite

G ?G ∼= E2 ? (F • E1) ? E2 ? (F • E1)→

E2 ? E2 ? (F • E1) ? (F • E1)→ E2 ? (F • E1) = G

constructs the dependent sums in G from the dependent sums in E2 and F •E1

(it is easy to check that the latter inherits its dependent sums from those in F.

138



6.4 Identity types

We will only describe the remaining type constructors in the case of well-rooted

display map categories. The conditions for the existence of identity types that

we give here are essentially those of Shulman [38] and Uemura [43].

Recall from 1.8.3 that for a well-rooted display map category to support

identity types, we must first identify the acyclic cofibrations or left class with

respect to the display maps, secondly we must show that this class is suitably

stable under pullback, and thirdly we must demonstrate factorizations of arbit-

rary morphisms into an acyclic cofibration followed by a display map.

Lemma 6.4.1. Let m : I → J be a map in B, and let n : A → B be a map in

E lying over m. Then the following are equivalent.

(i) The map n has the left lifting property with respect to morphisms which

are cartesian over display maps in B.

(ii) The map m is an acyclic cofibration in (B,F).

Proof. If f : X → Y is cartesian over a F-map, then for any lifting problem

A

B

X

Y

n f

u

v

s

in E it is easy to see that solutions s correspond to solutions of the lifting

problem

I

J

p(X)

p(Y )

m p(f)

p(u)

p(v)

in B.

Lemma 6.4.2. Let I ∈ B and m : A → B a morphism in E(I), considered as

a p-vertical morphism in E. Then the following are equivalent.

(i) The map m is in �G.

(ii) The map m is an acyclic cofibration in (E(I), EI).

139



Proof. Observe that fibrewise display maps are stable under reindexing and

under fibred pullback. Thus they are stable under pullback in E. Hence, for any

vertical map m over I, the left lifting property with respect to fibrewise display

maps in E is equivalent to the left lifting property with respect to display maps

in E(I). Thus we get (i) =⇒ (ii).

For (ii) =⇒ (i), we must also check the left lifting property with respect

to morphisms which are cartesian over display maps in B, since G is the closure

under composition of these maps and the fibrewise display maps. But since

p(m) = 1I is an acyclic cofibration, this follows from Lemma 6.4.1.

In general it need not be the case that �G is given as the class of maps

which lie over an acyclic cofibration and whose vertical component is an acyclic

cofibration. In [43], necessary and sufficient conditions are given for �G to be

this class and for the total category to have identity types. Two of the conditions

are that the base (B,F) has identity types and that the fibration p : E→ B has

fibred identity types, i.e. each fibre category E(I) has identity types and the left

classes are stable under reindexing. The last condition is as follows.

Definition 6.4.3. The gluing data satisfies the acyclic cofibration condition if,

for any acyclic cofibration i : A → B in the base B and every display map

f : X → Y in E(B), every section of the reindexing i∗(f) is the reindexing of

some section of f .

Since the acyclic cofibration condition seems more fundamental than the

existence of fibrewise identity types, we deviate from the treatment in [43] to

investigate the class �G while putting off the assumption of identity types in

our base models for as long as possible, and not using the full set of assumptions

until Proposition 6.4.9.

Proposition 6.4.4. The acyclic cofibration condition condition holds if and

only if for any acyclic cofibration i : A→ B and any X ∈ E(B) the functor

i∗/X : EB/X → EA/i∗(X)

is full.

Proof. Let i : A → B be an acyclic cofibration in B, and let f : Y � X and

g : Z � X be two display maps in E(B). Now maps Y → Z over X correspond

to sections of f∗(g).

Lemma 6.4.5. The acyclic cofibration condition holds if and only if every p-

cartesian map lying over an acyclic cofibration has the left lifting property with

respect to vertical display maps.

140



Proof. Since the vertical display maps are stable under reindexing, the two

statements are trivial restatements of each other.

Proposition 6.4.6. The acyclic cofibration condition holds if and only if �G
consists of all maps lying over acyclic cofibrations with vertical component an

acyclic cofibration.

Proof. Supposing the latter statement, then any cartesian map lying over an

acyclic cofibration is in �G so by Lemma 6.4.5 we have the acyclic cofibration

condition.

Conversely, by Lemmas 6.4.1 and 6.4.5 we see that �G contains all cartesian

maps lying over acyclic cofibrations, and by Lemma 6.4.2 it contains all vertical

maps which are acyclic cofibrations in the respective fibre category. Since left

classes are closed under composition, it follows that �G contains the proposed

class. To see that �G contains nothing more, by 6.4.1 it suffices to check that

the vertical component of any member of �G is an acyclic cofibration in the

respective fibre category.

Let f ◦ φ : X → A be the cartesian-vertical factorization of some member of
�G, where f : B → A is cartesian and F : X → B is vertical over p(B) = I, say.

Then by Lemma 6.4.1, we see that f lies over an acyclic cofibration. Hence, by

6.4.5 and 6.4.1, we see that f ∈ �G itself. Now, in order to show that φ is an

acyclic cofibration, suppose that we have a lifting problem in E(I)

B

X

Y

Z
u

v

φ qs

where q is in EI . Then we may equivalently consider it as a lifting problem in

E. Since f : B → A is in �G, it follows that there is a map r : A→ Y such that

r ◦ f = v. Now we can use that fact that f ◦ φ ∈ �G to find a solution t to the

141



lifting problem

B

X

Y

Z

A

u

φ q

t

f
r

in E. It is now easy to check that tf is a solution s to the original lifting

problem.

Thus the acyclic cofibration condition determines the left class of G. The

class described in Proposition 6.4.6 is called the class of Reedy cofibrations

in, for example, [38] and [43]. It remains to check that every arrow admits a

(�G,G)-factorization, and that �G is a stable class. For the first, we will need to

assume that we have factorizations in each of the fibres and in the base category.

Proposition 6.4.7. Suppose that every map in B admits a (�F ,F)-factorization,

and that for each I ∈ B every map in E(I) admits a (�EI , EI)-factorization.

Then the acyclic cofibration condition implies that every map in E factorizes as

a �G-map followed by a G-map.

Proof. Let f : B → A be a map in E. Then there exists a (�F ,F)-factorization

of p(f) : p(B)→ p(A).

p(B)
s−→ K

q−→ p(A)

Now s admits a retraction r : K → p(B), and hence there is a cartesian lift

r̂ : X → B of r with codomain B and a cartesian arrow ŝ : B → X lying over s

with domain B. We also consider a cartesian lift q̂ : Y → A of q with codomain

A, and the induced factorization h : A→ Y of f through q̂.

B A

X Y

f

ŝ q̂
h

Now, by 6.4.5, ŝ has the left lifting property with respect to the vertical display

142



map Y → >K . Hence there is a map k : X → Y filling the square

X

B Y

>K

ŝ

h

k

meaning that kŝ = h and p(k) = 1K . Hence we may factorize k in the fibre

category E(K) into an acyclic cofibration followed by a display map.

X
x−→ L

y−→ Y

Then q̂ ◦ y is a G-map. Moreover, x and ŝ are both �G-maps by 6.4.2 and 6.4.5,

and since left classes are closed under composition, so is their composite.

Clearly, we will need to assume stability of left classes for our input data

in order to prove stability of �G. In fact we will also assume that the identity

types are fibred, i.e. the fibrewise left classes must be stable under reindexing.

Lemma 6.4.8. Suppose that (B,F) has identity types, that each fibre category

(E(I), EI) has identity types, and that the left classes �F in each fibre are pre-

served by reindexing. Then the class of maps in E which lie over acyclic cofibra-

tions and have vertical component an acyclic cofibration is stable.

Proof. Beginning with a diagram of the form

A

BC

XYZ

F
∗

G
∗

φ
v

χ
v

m∗
µ
v

where the cartesian arrows are marked with an asterisk and the vertical ones

with a ‘v’, we are required to show that its pullback along a map into A is of

the same form. We can complete the interior of the diagram as shown below.

A

BC

XYZ

F
∗

G
∗

φv
χ

v ψv

m∗
µ
v

n
∗

143



For a cartesian arrow f : A → A, pulling back along f in E amounts to calcu-

lating the pullback of the triangle p(F ) ◦ p(n) = p(G) in B and then computing

some reindexings — it is easy to check that the composite m ◦ µ goes to an

arrow of the required form using the fact that fibrewise acyclic cofibrations are

stable under reindexing. For a vertical arrow φ : A′ → A, pulling back along φ

in E amounts to calculating some reindexings of φ along p(F ), p(n) and p(G),

and then computing some fibrewise pullbacks — again it is easy to check that

the composite m ◦ µ goes to an arrow of the required form using the fact that

in each fibre the acyclic cofibrations are a stable class.

The following is now immediate.

Proposition 6.4.9. Assume the acyclic cofibration condition and suppose that

(B,F) has identity types, that each fibre category (E(I), EI) has identity types,

and that the left classes �EI in each fibre are preserved by reindexing. Then

(E,G) has identity types.

Remark 6.4.10. It is worth comparing the treatment here, based on [43],

with that in [46]. In [46] the acyclic cofibration condition is replaced by the

following: the terminal objects functor preserves left morphisms if for any �F-

map m : A → B in B the induced (cartesian) map >A → >B in E is in �G.

Since by 6.4.1 any such map already has the left lifting property with respect

to cartesian morphisms lying over a display map, this is clearly a special case

of the acyclic cofibration condition. The construction in [46] then proceeds

by verifying the full acyclic cofibration condition in the situation where (E,G)

has dependent products, for in this situation the �G-maps are stable under

pullback along G-maps. Every cartesian morphism X → Y is a pullback of

one >p(X) → >p(Y ), and hence if the terminal objects functor preserves left

morphisms and G models dependent products, then every cartesian morphism

lying over an acyclic cofibration is in �G.

6.5 Dependent products

The following was shown by Hermida as Corollary 4.12 in [19].

Theorem 6.5.1 ([19]). Let p : E → B be a fibration where B is a cartesian

closed category, p has simple products, and each fibre of p is a cartesian closed

category with finite products and exponentials preserved by reindexing. Then

E is a cartesian closed category and p strictly preserves the cartesian closed

structure.

144



In fact, the converse is true. Proposition 3.14 in [46] generalizes 6.5.1 to the

gluing construction, giving one direction of the following theorem. The converse

is given Theorem 3.21 in [44].

Theorem 6.5.2. Suppose that (B,F) has dependent products. Then (E,G)

has dependent products and p : E → B preserves them if and only if for each

I ∈ B the fibre category (E(I), EI) has dependent products which are stable

under reindexing and the fibration p : E→ B has F-products which preserve the

fibrewise display maps.

In the polynomial model of [46], the dependent products in (E,G) are not

preserved by the fibration p. We will give the following generalization of 6.5.2

which covers the construction of the Polynomial model and the examples of

the present work. The statement of the Theorem uses the notation F from

Remark 6.1.3 for the class of p-cartesian maps f with p(f) ∈ F , and also refers

to concepts defined below in Definitions 6.5.4 and 6.5.9.

Theorem 6.5.3. Suppose that (B,F) has dependent products and dependent

sums. Then (E,G) has dependent products such that p sends F-dependent

products to F-dependent products if and only if p has quasifibred dependent

products and F-products that preserve the fibrewise display maps.

It is worth investigating 6.5.2 first, in order to see which parts of the proof

can be salvaged. To do this we will introduce terminology for discussing display

map categories where only certain dependent products exist.

Definition 6.5.4. Let (B,F) be a display map category and let D and E be

subclasses of F . Then B has D-products of E-maps if for any f : B → A in D
and any g : C → B in E the pullback functor

f∗ : B/A→ B/B

admits a coreflection of g and this coreflection is an object of the subcategory

F/A of B/A. In the case that E = F and (B,F) has D-products of F-maps, we

say that (B,F) has D-dependent products.

By a similar observation to 1.5.5 this is really the existence of a partial right

adjoint satisfying a pullback-stability (Beck-Chevalley) condition. One direction

of the following proposition appears as Lemma 3.13 in [46].

Proposition 6.5.5. Suppose that (B,F) has F-dependent products. Then (E,G)

has F-dependent products which are sent to F-dependent products by p if and

only if p has F-products which preserve fibrewise display maps.

145



Proof. Supposing that (E,G) has F-dependent products which are sent to F-

dependent products by p, we can define an F-product as follows. For f : B � A

an E-map, and X ∈ E(B), define Πf (X) to be the domain of the dependent

product of the vertical display map X � >B along the cartesian map >B → >A
lying over f . This dependent product is indeed a vertical map, since it was

assumed that F-dependent products are sent to F-dependent products by p.

Hence it is easy to check that this is indeed a functor and a right adjoint to

reindexing, and that it preserves display maps. The Beck-Chevalley condition

follows from the Beck-Chevalley condition for the F-dependent products.

Conversely, let u : Y → X be a cartesian morphism lying over a display map

f : B � A and let v : Z → Y be a cartesian morphism lying over a display map

g : C � B and w : W � Z an EC-map, so that vw is a general member of G.

Consider the diagram

B A

C

Πf Cf∗(Πf C)

g

f

Πf gΠ̂f g

f̂
ε

in B formed by taking the dependent product Πf g, pulling it back along f and

filling in the counit ε : f∗(Πf C) → C. We fill in the picture in E by taking

cartesian lifts, as in the diagram below.

XY

Z

W

PQ

W Πf̂ W

Πf̂ Q

R

u
∗

v
∗

û∗

∗ ∗

w v

w v v v

∗

∗

v

v

We have also added into the diagram w : W � Q, which is the reindexing

of w along ε : f∗(Πf C) → C, Πf̂ W � Πf̂ Q which is the fibred F-product

of w along f̂ , and R � P , which is the pullback of Πf̂ W � Πf̂ Q along the

unit of the adjunction f̂∗ a Πf̂ . It is now straightforward to check that the

composite R � P � X is a dependent product of vw along u. The Beck-

Chevalley condition is an easy check using the Beck-Chevalley condition for the

F-products. Finally, note that p does indeed send the dependent product of vw

146



along u to the dependent product of g along f , since R� P is vertical.

Proposition 6.5.5 is useful because, given a composite of display maps gf , the

dependent product functor along gf exists and factorizes (up to isomorphism)

as a dependent product functor along f followed by a dependent product functor

along g, whenever these latter two functors exist. Thus we have reduced the

problem of finding dependent products of G-maps along arbitrary G-maps to just

finding them along maps in E =
⋃
I∈B EI . We can reduce the problem further

still, by making use of the restriction of the class of display maps of which we

take dependent products (as opposed to just along which).

Observe that the following does not require any specific assumptions on the

gluing data.

Lemma 6.5.6. For any vertical display map φ : Y � X over A ∈ E(I), the

pullback functor between restricted slice categories φ∗ : F/X → F/Y is an

equivalence of categories. In particular, such restricted pullback functors have

right adjoints (satisfying a Beck-Chevalley condition).

Proof. Pullbacks of vertical maps with cartesian maps are given by reindexing.

More precisely, in our present scenario we are given φ : Y � X a vertical display

map and u : Z → X cartesian over a display map f : C → A, say. Then the

pullback is the square

XZ

YW
û∗

u
∗

φv

φ̂

v

where û is a cartesian lift of f with codomain Y , and φ̂ is the unique factorization

of φû through u.

Now for any Z ∈ E the functor p/Z : F/Z → F/p(Z), which simply applies

p, is an equivalence. Since the restricted pullback functor fits into the equival-

ence (p/Y ) ◦ φ∗ ' p/X, we see that φ∗ : F/X → F/Y itself is an equivalence.

The remaining claims are immediate.

Proposition 6.5.7. Suppose that (B,F) has dependent sums. Then (E,G) has

E-products of G-maps if and only if it has E-products of E-maps.

Proof. The ‘only if’ direction is trivial since E ⊆ G. Let us consider the converse.

Let φ : Y � X be a vertical display map and

W Z Y
w
v

v∗

147



a map in G. As in the proof of 6.5.6, v is actually the pullback along φ of some

cartesian map u : U → X. Writing φ̂ : W → U for the pullback of φ along u,

let π : P → U be dependent product of the E-map w along the E-map φ̂.

Y X

Z U

W P

Aφ∗A

u∗v∗

φ
v

φ̂
v

wv

π

Now since F is closed under composition, the composite uπ is in G. In order

to verify that uπ is a dependent product of vw along φ, we suppose we have a

test map A→ X, write φ∗A→ Y for its pullback along φ. Whenever there is a

map A→ P over X, we get a factorization of A→ X through u by composition

with π, and similarly if there is a map φ∗A → W , then we get a factorization

of φ∗A → Y through v by composition with w. Observe that the argument of

Lemma 6.5.6 can be adapted to show that pullback along φ gives a bijection

(natural in A) between maps A→ U over X and maps φ∗A→ Z over Y , and of

course this bijection is given by pulling back along φ̂. Hence we get the following

chain of bijections natural in A:

{A map φ∗A→ Y together with a map φ∗A→W over Y }
∼=

{A map φ∗A→ Z together with a map φ∗A→W over Z}
∼=

{A map A→ U together with a map A→ P over U}
∼=

{A map A→ X together with a map A→ P over X}.

Hence uπ is indeed a dependent product of vw along φ.

The most natural way to ask for E-products of E-maps would appear to be

to ask for the fibre categories of p : E→ B to support dependent products. Let

us verify that this is indeed sensible.

Proposition 6.5.8. The display map category (E,G) has E-products of E-maps

and these products are again in E if and only if for each I ∈ B the fibre display

148



map category (E(I), EI) has dependent products and reindexing functors preserve

dependent products.

Proof. The forward direction is trivial, using the fact that pullbacks of (vertical)

display maps along (vertical) morphisms are preserved by the inclusions of the

fibre categories, and that reindexing between the fibre categories corresponds to

pulling back along a cartesian morphism.

Conversely, we need to verify that the dependent product in E(I) of two

EI -maps has the correct universal property for arbitrary test maps, not just

vertical ones. But it is easy to see that if the dependent products in each fibre

category E(I) have the correct property for arbitrary vertical test maps, then

having the correct property for arbitrary test maps in E is equivalent to stability

under reindexing of the dependent products.

Now we may complete the proof of the first theorem of dependent products.

Proof of Theorem 6.5.2. The theorem is immediate from the preceding sequence

of propositions, observing that the hypothesis of dependent sums in (B,F) used

in Proposition 6.5.7 may be left out since, in the notation of the proof of that

proposition, we know that π is vertical so we already have uπ ∈ G.

Now we may move on to the proof of Theorem 6.5.3. First, we must define

one of its terms, which is the condition required for (E,G) to have E-products

of E-maps without p : E→ B having fibrewise dependent products.

Definition 6.5.9. The fibration p : E → B has quasifibred dependent products

if for any I ∈ B, and any composable pair of display maps

Z Y X
ψ φ

in E(I) there exists a display map q : Q � I in B and a display map π : P →
q∗(X) in E(Q) together with, for every map w : W → X in E(I) a bijection,

natural in W , between the set of maps φ∗(w) → ψ in the slice E(I)/Z and

the set of pairs whose first component is a section s : I → Q of the display

map q and whose second component is a map w → s∗(π) in the slice E(I)/Y .

Moreover, this data must be stable under reindexing, in the sense that for any

map h : I ′ → I, the pullback q̂ of q along h together with ĥ∗(π) (where ĥ is

the pullback of h along q) has the same property for h∗(φ) and h∗(ψ), and the

correspondence is preserved by the reindexing and pulling back (as appropriate)

149



along h.

I

XY

Z

Q

q∗X

P

Wφ∗W

s∗P

φ

ψ

q

πs∗(π)
wφ∗(w)

s

Lemma 6.5.10. The fibration p : E→ B has quasifibred dependent products if

and only if (E,G) has E-dependent products of E-maps.

Proof. It is straightforward to verify that the definitions unfold to the same

thing.

Theorem 6.5.3 now follows immediately.

6.6 Universes

A special case of our main result on universes, Proposition 6.6.3, appears as

Proposition 4.3 of [43], based on ideas of Shulman in [38]. This corresponds to

the special case of quasifibred universe given below where Ω is taken to be the

terminal object of B.

Definition 6.6.1. A quasifibred universe in p : E → B consists of an object

Ω ∈ B together with an EΩ-map v : Ṽ � V. Then for any I ∈ B, a display map

φ : Y � X in (E(I), EI) is v-small if there exists a morphism f : I → Ω in B
such that φ arises as a pullback of f∗(v) : f∗(Ṽ) � f∗(V).

Lemma 6.6.2. Suppose we are given a quasifibred universe (Ω, v : Ṽ → V) in

p : E → B and a universe u : Ũ → U in (B,F). Suppose moreover that (B,F)

has dependent products and that the fibration p : E → B has F-products. Then

we can construct a universe w : W̃ → W in (E,G) for which the w-small display

maps are precisely the G-maps which lie over a u-small display map and which

have vertical component a v-small display map.

Proof. The projection down to B of the base object of the universe is given by

p(W) = (Ũ ⇒U U∗(Ω)), the fibred exponential over U from the fibration u to

the product projection U × Ω → U . Maps I → p(W) give rise (naturally in I)

150



to a display map J � I together with a map J → Ω. The component of W in

E(p(W)) is given as follows. Writing u for the pullback of u along the structure

map Ũ ⇒U U∗(Ω)→ U as in the square

Ũ ⇒U U∗(Ω)

Ũ ×U (Ũ ⇒U U∗(Ω))

U

Ũ

uu

we letW be the object Πu ((πΩε)
∗(V)), that is to say, the object given by starting

with V ∈ E(V), reindexing, and then taking a fibred product, as indicated by

the diagram

Ω

U × Ω

Ũ ×U (Ũ ⇒U U∗(Ω))

Ũ ⇒U U∗(Ω)

V

(πΩε)
∗(V)

W = Πu(πΩε)
∗(V)

πΩ

ε

u

(πΩε)
∗ Πu

where ε is the evaluation map for the fibred exponential.

Now given A ∈ E(I), a map φ : A→W gives, by applying p, a map

h : I → Ũ ⇒U U∗(Ω)

along which we can take a pullback of u as in the square

I

J

Ũ ⇒U U∗(Ω)

Ũ ×U (Ũ ⇒U U∗(Ω))

h

h

uf

151



to get a display map f : J � I. We also get a map

J Ũ ×U (Ũ ⇒U U∗(Ω)) U × Ω Ω .
h ε πΩ

Taking a cartesian lift of f : J � I gives us a cartesian display map f̃ : B � A

(lying over a small display map). Our starting map φ : A → W lies over h, so

it is really a map

A→ h∗(W) ∼= Πf (πΩεh)∗(V)

where the isomorphism comes from the Beck-Chevalley condition for fibred

products. Such maps correspond naturally to maps

B ∼= f∗(A)→ (πΩεh)∗(V).

But now by pulling back (πΩεh)∗(v) along this map we get a small vertical

display map over B.

It is clear from the construction that all G-maps lying over a small F-map

with vertical component a small E-map arise in this way. We can describe the

universal fibration w : W̃ → W explicitly: it lies over

u : Ũ ×U (Ũ ⇒U U∗(Ω))→ Ũ ⇒U U∗(Ω)

with codomain Πu ((πΩε)
∗(V)) and vertical component the pullback of v : Ṽ → V

along the map

u∗Πu ((πΩε)
∗(V))→ (πΩε)

∗(V)→ V

where the first map is the counit of the fibred adjunction u a Πu.

Proposition 6.6.3. Suppose we are given a quasifibred universe (Ω, v : Ṽ → V)

in p : E→ B and a universe u : Ũ → U in (B,F). Suppose moreover that (B,F)

has dependent products and that the fibration p : E→ B has F-products.

(i) If F-maps and, for each I, the EI-maps have dependent sums and if the

classes of u-small and v-small display maps are closed under dependent

sums, then the class of w-small display maps is closed under dependent

sums.

(ii) If (B,F) has identity types and the fibred display map category (p : E →
B, E) has fibrewise identity types, and if the classes of u-small and v-small

display maps are closed under identity types, then the class of w-small

display maps is closed under identity types.

(iii) If (B,F) has dependent sums and u-small display maps are closed under

152



dependent sums, if the F-product of a v-small display map along a u-small

display map is v-small, and if p : E → B admits quasifibred dependent

products in such a way that for any v-small display map the induced oper-

ation on E-maps of taking the E-dependent product along it maps v-small

display maps to w-small display maps, then the class of w-small display

maps is closed under dependent products.

Proof. Each of the claims is proved easily by inspecting the constructions given

above.

153



154



Chapter 7

Dialectica models of type

theory

In this chapter we apply the results of Chapter 6 to produce some specific

examples of models of type theory. Our examples are Dialectica models of type

theory in the sense that the objects of these models represent propositions of

the form generated by Gödel’s Dialectica interpretation or a related functional

interpretation, such as the variant due to Diller and Nahm.

7.1 The polynomial model

The polynomial model was introduced by von Glehn in [46]. We give a full

construction of it here, in order to demonstrate how it fits into the framework

developed in Chapters 6, the main point being the construction of dependent

products using quasifibred dependent products. We also extend the treatment

in [46] to include the construction of a universe in the polynomial model.

Let (B,F) be a well-rooted display map category modelling dependent sums,

dependent products and identity types. Moreover, we suppose that B has ex-

tensive finite sums (see 1.7.12). Finally, we also assume that the model admits

a universe u : Ũ → U closed under finite sums, dependent sums, dependent

products and identity types.

Definition 7.1.1. The polynomial model of type theory over (B,F) is the model

given by the gluing construction of Definition 6.1.18 applied to the fibred display

map category described as follows. We take the fibration p : Poly → B, where

p is the opposite of the codomain fibration cod : F → B, we equip B with the

class F of display maps, and for each object I ∈ B we equip the fibre category

Poly(I) = (F/I)op with the class EI of product projections.

155



Indeed, p : Poly→ B does have fibred finite products since it is the opposite

of a fibration with fibred finite sums, so we do have a fibred display map category.

Recall that, by 6.1.18, (Poly,G) is a display map category with G being the class

of maps which lie over an F-map and have vertical component an E-map (formal

dual of coproduct inclusion) as in the diagram

I

A

J

AA+B

which depicts a display map from left to right, where the square is a pullback.

Proposition 7.1.2. The polynomial model admits dependent sums.

Proof. By 6.3.2, it suffices to check that the base and fibrewise models admit

dependent sums. The base does by assumption, the fibrewise models do since

product projections are closed under composition.

Proposition 7.1.3. The polynomial model admits identity types.

Proof. We use 6.4.9. The base was assumed to have identity types. By 1.8.4, any

category with finite products considered as a display map category has identity

types where the acyclic cofibrations are precisely the split monomorphisms. Split

monomorphisms are clearly preserved by reindexing, so it remains to check the

acyclic cofibration condition.

Let m : J → I be an acyclic cofibration in B and let x : X � I and y : Y � I

be two display maps over I, so that X represents a general object of Poly(I),

and the coproduct inclusion

iX : X ↪→ X +I Y

represents the general form of a display map in Poly(I). We must check that

every retraction of m∗(iX) is the pullback along m of some retraction of iX .

Since m∗ preserves fibred coproducts, this amounts to showing that every map

m∗Y → m∗X over J arises from a map Y → X over I, i.e. that m∗ is full.

Suppose we have a map m∗Y → m∗X over J . Then since the acyclic cofibra-

tions in B are stable under pullback along display maps, the map m∗Y → Y in

156



the diagram

I

J

Y X

m∗Y m∗X

m

is an acyclic cofibration. We may use its left lifting property with respect to

X � I to find a dotted arrow making the diagram

m∗Y m∗X X

Y I

commute. A simple application of the pullback lemma shows that this arrow is

indeed pulled back to the arrow m∗Y → m∗X.

Lemma 7.1.4. The fibration p : Poly → B has F-products which preserve

display maps.

Proof. The codomain fibration cod : F → B has F-sums given by dependent

sum, i.e. composition. Hence its opposite, p : Poly → B, has F-products. As

they are right adjoints, the F-products preserve the fibrewise product projec-

tions.

Proposition 7.1.5. The polynomial model admits dependent products.

Proof. We apply 6.5.3. As the fibration p : Poly → B has F-products by 7.1.4,

It remains to check that p has quasifibred dependent products.

Let I ∈ B and let X � I, Y � I and Z � I be display maps over I. Then

a quasifibred product of X +I Y +I Z ←↩ X +I Y along X +I Y ←↩ X needs to

classify, for any W � I, the set of maps Z →W +I X +I Y over I.

XX +I Y

X +I Y +I Z

W +I XW +I X +I Y

Let q : Q � I be Z ⇒I (Y +I I) � I, (where I, or really the identity on I, is

used as the unit type in context I). Now let R � Q be ΣπQε
∗(iI), where iI is

157



the coproduct inclusion I ↪→ Y +I I, ε is the evaluation morphism

Z ×I (Z ⇒I (Y +I I))→ Y +I I

and πQ is the product projection

Z ×I (Z ⇒I (Y +I I))→ Z ⇒I (Y +I I).

Then a quasifibred dependent product is given by q : Q � I together with

R +Q q
∗X ←↩ q∗X. Intuitively, this is because a map Z → W +I X +I Y over

I corresponds to a map Z → Y +I I over I (section s of q) together with a

partially defined function Z → W +I X over I whose domain is the preimage

of I in the first function (i.e. s∗(R)). One may use Lemma 1.7.16 to make this

proof precise.

Now we consider universes in Poly, which were not considered in [46].

Proposition 7.1.6. The polynomial model admits a universe closed under de-

pendent sums, dependent products and identity types, whose small display maps

are precisely those lying over a small display map and with vertical component

represented by the inclusion of an object into a binary sum with a small object.

Proof. We use 6.6.2 to construct the universe itself. This requires us to give a

quasifibred universe. Let Ω = U and let v : Ṽ → V in Poly(Ω) be represented

by 0 + Ũ ←↩ 0. It is easy to check that this is indeed quasifibred universe with

the correct class of small maps.

To verify its closure under type constructors, we use 6.6.3. By assumption,

small display maps in the base are closed under dependent sums, dependent

products and identity types. Since the universe is closed under finite sum types,

the small fibrewise display maps are closed under dependent sum. The fibrewise

identity types are just given by isomorphisms, so the fibrewise display maps

are trivially closed under identity types. The fibred F-products are given by

dependent sums, which preserve coproducts and smallness, so F-product in

p : Poly → B preserve small display maps. Finally, we must check that the

quasifibred dependent product of two small fibrewise display maps is small, but

this is clear from the construction given in 7.1.5.

We finish our investigation of the polynomial model by considering the finite

sum types.

Proposition 7.1.7. The polynomial model has extensive finite sums.

Proof. We use Proposition 1.7.14. The initial object of Poly is the identity

10 : 0 → 0. It is easy to check that this is indeed a strict initial object. Let

158



f : A � I and g : B � J be two objects of Poly. Then a coproduct of f and g

is given by the sum

f + g : A+B � I + J

which is indeed a display map since (B,F) has extensive finite sums. The first

coproduct inclusion is

I

A

I + J

A+B

f f + g

which is a pullback square (since B is extensive) and hence a display map f →
f + g in Poly. The construction does indeed give us a coproduct, since for

h : C � K, maps f + g → k correspond, by extensivity, to maps I + J → K

together with maps CI → A over I and CJ → B over J , where CI is the pullback

of C along I → I + J → K, and similarly for CJ , as required.

We check that copairing preserves display maps. Suppose that we have two

display maps

I K

XXIA+XI

and

J K

XXJB +XJ

in Poly. Then their copairing is displayed as

I + J K

XXI +XJ(A+B) + (XI +XJ)

which is indeed in the form of a display map in Poly.

Finally, we check extensivity of Poly. Suppose we have F-maps f : A � I,

159



g : B � J , w : W � K, x : X � L, and y : Y � M considered as objects in

Poly and a diagram

(f) (f + g) (g)

(x) (w) (y)

in which the bottom row is a coproduct diagram in Poly. It is straightforward,

but notationally awkward, exercise to check that in such diagram both squares

are pullbacks if and only if the top row is a coproduct diagram.

Remark 7.1.8. Since the universe in (B,F) is closed under finite sums, it is

easy to see that the small display maps in Poly are closed under addition.

7.2 The Dialectica model

With the techniques developed heretofore, we can extend the polynomial model

of [46] to one that more closely matches the Dialectica categories introduced by

de Paiva in [11] by including the fibration of predicates. In [11], the fibration of

predicates was taken to be the subobject fibration of the base category — here

we shall allow the fibration of display maps to play an analogous role.

We assume that (B,F) is a well-rooted display map category modelling de-

pendent sums, dependent products, identity types and extensive finite sums.

Definition 7.2.1. The Dialectica fibration p : Dial → B has as total category

the opposite of the fibred opposite fibration of the fibred fibration of second-level

types. In other words, an object of Dial is a composable pair of display maps

C
g−→ B

f−→ A

160



and a map (g, f)→ (g′, f ′) is a diagram of the form

A

B

C

A′

B′

C ′

B′

C ′C

where all three interior quadrilaterals are pullback squares. The functor p sends

the object displayed above to its codomain A.

The Dialectica fibration has finite products. The terminal object in Dial(I)

is the composable pair

0 � I � I

and the product of

X
f1−→ A

f0−→ I

with

Y
g1−→ B

g0−→ I

is

X + Y
f1+g1−−−−→ A+B

[f0,g0]−−−−→ I.

One uses the extensive finite sums in (B,F) to check the universal property.

Hence the Dialectica fibration is a fibred display map category in which the

fibre categories have product projections as display maps. In particular, we get

a well-rooted display map category (Dial,G).

As in §7.1, we use the results of Chapter 6 to derive the type constructors

in the Dialectica model.

Proposition 7.2.2. The Dialectica model admits dependent sums.

Proof. Almost identical to the proof of 7.1.2.

Proposition 7.2.3. The Dialectica model admits identity types.

Proof. This is similar to the proof of 7.1.3. It is straightforward to adapt the

verification of the acyclic cofibration condition, the rest is identical.

Proposition 7.2.4. The Dialectica fibration has F-products which preserve

display maps.

161



Proof. As in the proof of 7.1.4, the products are given by composition: the

dependent sum of

B
f−→ A

g−→ I

along h : I � J is

B
f−→ A

hg−→ J.

It is easy to check that this preserves the fibred products.

Proposition 7.2.5. The Dialectica model admits dependent products.

Proof. As in 7.1.5 we just need to check that p : Dial → B has quasifibred

dependent products. Extending the notation of 7.1.5, suppose we have A� X,

B � Y , and C � Z, display maps over the display maps X � I, Y � I, and

Z � I.

Then the quasifibred dependent product of (A + B + C → X + Y + Z) →
(A+B → X + Y ) along (A+B → X + Y )→ (A→ X) is given by the object

Q represented in type theory by

Z ⇒ Y + 1Σ(f : Z ⇒ Y + 1)Π(z : Z)Π(y : 1Y (f(z)))B(y)⇒ C(z)

together with the display map R� Q over it represented in type theory by

< f, >: Q ` Σ(z : Z)11(f(z))

together with the display map over that represented by the type

q : Q,< z, >: R(q) ` C(z).

Here we using the notation

z : X + Y ` 1X(z)

for the coproduct inclusion X ↪→ X+Y and the underscore for unused variables.

We omit the verification that this satisfies the definition of quasifibred dependent

product.

7.3 The Diller-Nahm model

We will adapt the construction of the polynomial model to give a model which

corresponds to the Diller-Nahm variant of Gödel’s Dialectica interpretation.

This model is to the Diller-Nahm category of Chapter 4 (and the category DC!

of [11]) as the polynomial model is to the Dialectica category DC of [11].

162



Let (B,F) be a well-rooted display map category modelling dependent sums,

dependent products and identity types. We need to assume that it models

strong finite sum types, but we do not need extensive finite sums as we did for

the polynomial model. We will also assume that the model admits a universe

u : Ũ → U closed under finite sums, dependent sums, dependent products and

identity types.

We also need structure on (B,F) corresponding the monad M from Chapter

4. In terms of the syntax of type theory, we want a type-forming rule

Γ ` A type

Γ ` A• type
((−)•−form)

together with introduction rule,

Γ ` a : A

Γ ` {a} : A•
((−)•−intη)

a sort of ‘elimination rule’,

Γ, x : A ` t : B•

Γ, s : A• `
⋃
x∈s

t : B•

and some other rules which allow us to deduce that (−)• is a monad on the

category of types in context Γ. We model this not merely by a monad (M, η, µ)

on the category B, but by a fibred monad M on the fibration of types cod : F →
B — by a fibred monad we mean one whose functor part is a cartesian functor

and whose unit and multiplication are vertical. For each I ∈ B, the monad M

satisfies M 0I ∼= >I , and also for any pair of display maps X � I and Y � I

the canonical map M(X +I Y )→ MX ×I MY is an isomorphism.

Definition 7.3.1. The Diller-Nahm model of type theory fibred over (B,F) is

the fibration p : Dill(F ,M) → B where p is the opposite of the fibred Kleisli

category of M. For each object I ∈ B the class EI in Dill(I) = Dill(F ,M)(I) is

the class of product projections.

Note that p does indeed have fibred finite products since (F)M has fibred

finite sums, since it is the fibrewise Kleisli category of F which was assumed to

have fibred finite sums. Moreover, it follows from 3.3.3 that the fibres of p have

finite biproducts (which are clearly stable under reindexing).

Let us make explicit what the maps and display maps are in Dill(B,F). A

163



map (I, f : A� I)→ (J, g : B � J) is given by a diagram

I J

MA BB

or rather an equivalence class of such diagrams. A display map is one for which

A ∼= B +J C for some h : C � I and the map B → M(B +J C) is a coproduct

inclusion B ↪→ B +J C followed by the unit of the monad.

Lemma 7.3.2. The Diller-Nahm model has Σ-types.

Proof. This is the same as 7.1.2.

Lemma 7.3.3. The Diller-Nahm model has Id-types.

Proof. As in 7.1.3, F was assumed to model Id-types, and the fibres of p to have

product projections for display maps, and hence Id-types. Thus it remains to

verify the acyclic cofibration condition.

Let X � I, Y � I be two display maps, and suppose that m : J → I

is an acyclic cofibration in (B,F). Then we must check that any section of

m∗(X) ⊕J m∗(Y ) ∼= m∗(X ⊕I Y ) → m∗(Y ) in (F)op
M (J) is the pullback along

m of some section of X ⊕I Y → Y in (F)op
M (J). Unpacking the definition, this

means that any map m∗(X) → Mm∗(Y ) ∼= m∗(MY ) over J must arise as a

pullback along m of some map X → MY over I.

I

J

X M(Y )

m∗(X) M(m∗(Y ))

m

Since acyclic cofibrations in F are stable under pullback, it follows thatm∗(X)→
X is an acyclic cofibration. Hence it has the left-lifting property with respect

to the display map M(Y ) → I, and so we get a map X → M(Y ). Indeed, the

original map m∗(X)→ M(m∗(Y )) is a reindexing of this map, by the pullback

lemma.

Lemma 7.3.4. The fibration p : Dill→ B has F-products which preserve display

maps.

164



Proof. As in 7.1.4, the codomain fibration cod : F → B has F-sums given by

dependent sum. Now it is easy to check that F-sums in any fibration induce

F-sums in the Kleisli fibration. Hence we get F-products in the opposite, which

is Dill → B. As they are right adjoints, the F-products preserve the fibrewise

product projections.

Lemma 7.3.5. The Diller-Nahm model has Π-types.

Proof. By 6.5.3, it suffices to verify that the Diller-Nahm fibred model of type

theory has quasifibred Π-types. Let I ∈ B and suppose that A� I, B � I and

C � are three display maps over I, so that we have the following diagram of

display maps in the fibre Dill(F ,M)(I),

AA⊕I B

A⊕I B ⊕I C W ⊕I A

W ⊕I A⊕I B

where the display maps have been drawn as the underlying coproduct inclusion

in the opposite direction. For any other type over A, i.e. coproduct inclusion

A ↪→ W ⊕I A, its weakening with respect to A⊕I B is the pushout A⊕I B ↪→
W ⊕I A⊕I B. Now maps

W ⊕I A⊕I B → A⊕I B ⊕I C

in the slice Dill(F ,M)(I)/A⊕I B are just given by maps

C → M(W +I A+I B)

in the slice B/I. But the fact that W +I A+I B is a biproduct of W +I A and

B in FM(I) means that these maps correspond naturally to pairs of maps

C → M(W +I A), C → MB

in F/I.

Hence we can define the quasifibred Π-type to have component in the base

the display map

I � (C ⇒I MB)

(the fibred exponential in F/I) and over the weakening A of A to (C ⇒I MB)

165



we take the display map given by

A ↪→ A⊕C⇒IMB C

where C is the weakening of C to context (C ⇒I MB).

AA⊕I B

A⊕I B ⊕I C

I C ⇒I MB

A

A⊕C⇒IMB CW ⊕I A

W ⊕I A⊕I B

Since the reindexing of A ↪→ A⊕C⇒IMBC along any section of (C ⇒I MB) � I

is A ↪→ A ⊕I C, it is easy to verify that this does indeed have the required

property of a quasifibred exponential. Moreover, it is easy to verify stability

under reindexing.

Proposition 7.3.6. The Diller-Nahm model admits a universe closed under de-

pendent sums, dependent products and identity types, whose small display maps

are precisely those lying over a small display map and with vertical component

represented by the inclusion of an object into a binary sum with a small object.

Proof. As in 7.1.6, we can use 6.6.2 to construct the universe from a quasifibred

universe. Let Ω = U and let v : Ṽ → V in Dill(Ω) be represented by M(0+ Ũ)←↩
0, the formal dual of a coproduct inclusion. The details are similar to 7.1.6.

7.4 Diller-Nahm with predicates

In this section we informally sketch out a ‘Diller-Nahm model with predicates’.

This adds back in the layer of predicates considered for the Diller-Nahm category

in Chapter 4, now in our dependently-typed setting. The relationship to the

model of §7.3 is more general than between the models of §7.1 and §7.2: in §7.2

we considered only the special case where the predicates are given by display

maps. We do not set out the ‘polynomial model with predicates’, but the main

ideas necessary should be covered in this section.

We assume that we have a well-rooted display map category (B,F) modelling

Σ, Π, Id, and strong finite sum types, and that we are given a fibred monad

166



(M, η, µ) on the fibration cod : F → B which is an additive monad in each fibre.

However, now we will also assume that for each I ∈ B, the monad MI comes

with a display map
εX

X ×I MX

eX

for each display map X � I, and these display maps are stable (up to isomorph-

ism) under reindexing along maps into I. As a type, εX should be thought of as∐
S∈MX S, or the ‘membership relation’ between X and MX where an element

of X can be a member of an element of MX in multiple ways. Thus we will

assume we are also given dotted maps fitting in the following diagram making

both squares pullbacks, with both families of maps stable under reindexing.

X ×X X ×I MX

εI,XX

1X ×I ηX

σX

(1X , 1X)

X ×I M MX

ΣMX(εX × εMX)

X ×I MX

εX

1X ×I µX

τX

Intuitively, these express the statements ‘η(x) = {x}’ and ‘µ(F ) =
⋃
F ’.

We can use this to extend the fibred monad to a system of predicates above

F . The natural case to consider is the one where the predicates are just display

maps. That is to say, we take the fibration F2 → F given by change-of-base

of cod : F → B along dom : F → B. We can extend M to a fibred monad on

F2 → F using the membership predicates. As a functor, this is given by pulling

back along εX → X and taking the dependent product along εX → MX.

X

εX

MX

Y

Y

MX Y(πXeX)∗ ΠπMXeX

More generally, we could consider a fibred cartesian closed category p : P →
B with F-products and F-sums. Then our ‘membership predicates’ are given

by a choice, for each I ∈ B and X � I, of εI,X ∈ P(X ×I MX), which is

stable under reindexing in I. Then the additional conditions correspond to

isomorphisms

(a : X) εI,X(a, ηX(a)) ∼= >

167



in P(X) and

(a : X, z : M MX) ε(x, µX(z)) ∼= Σb:M(X)εI,X(a, b)× εI,M(X)(b, c)

in P(X ×I M MX), with both isomorphisms stable under reindexing in I. We

lift M to the change of base of P along dom : F2 → F by sending φ ∈ P(X � I)

to

(b : MI X) Πa:Xε(a, b)⇒ φ(a),

which we denote by MX�I φ(b). From the isomorphisms above we easily con-

struct, for any φ ∈ P(X), isomorphisms

(a : X) MX�I φ(η(a)) ∼= φ(a)

and

(c : M MX) MX�I φ(µ(c)) ∼= Πa:XΠb:MXε(a, b)× ε(b, c)⇒ φ(a)

∼= MMX�I MX�I φ(c)

both reindexing stable in I and natural in φ. These tell us that we can define

a unit and multiplication for the lifted monad which are cartesian above the

original unit and multiplication.

This data allows us to define a version of a fibred model of type theory

which combines the Dialectica fibration of 7.2.1 with the first and second Kleisli

fibration constructions of 4.2.4.

7.5 The error Dialectica model

The final example will be a dependently-typed version of the category Dial+

considered in [4]. We might call this the ‘error Dialectica’ model, since it is to

the error monad (−) +> in a category with binary coproducts and a terminal

object what the Diller-Nahm model is to the finite multisets monad. We will be

able to construct dependent sums and identity types in a manner which is by now

routine. However, the error Dialectica model only has weak dependent products,

just as the analogous category construction did in [4]. Hence, we conclude our

treatment of this example by checking that the results of Chapter 2 apply. For

this last part, we will have to restrict our work to the full split comprehension

category case, which will involve providing an ad hoc construction of the identity

types, since we did not provide a construction of strictly stable identity types

in Chapter 6.

Let (B,F) be a well-rooted display map category modelling dependent sums,

168



dependent products and identity types. Moreover, we suppose that B has strong

finite sum types.

We can use the strong finite sum types and the unit type to get a fibred

monad (−) + 1 on cod : F → B. This monad is fibred in the same sense as the

monad M in section 7.3. For I ∈ B, the monad on F/I is the one with functor

part given by taking X � I to X +I 1I � I, where 1I here is the identity on I,

modelling the unit type in context I.

Definition 7.5.1. The error Dialectica model of type theory fibred over (B,F)

is the fibration p : Dial+ → B where Dial+ is the opposite of the Kleisli fibration

F+ for the monad (−) + 1 on F . For an object I ∈ B, the class E is the class of

product projections in Dial+/I.

Indeed, p : Dial+ → B does have fibred finite products, since it is the opposite

of the Kleisli fibration F+ → B which has fibred finite sums, so we do have a

fibred display map category. Hence, by 6.1.18, (Dial+,G) is a display map

category with G being the class of maps which lie over an F-maps and have

vertical component an E-map.

Proposition 7.5.2. The error Dialectica model admits dependent sums.

Proof. This is the same argument as 7.1.2.

Proposition 7.5.3. The error Dialectica model admits identity types.

Proof. This is very similar to 7.1.3. The only slight difference is in checking the

acyclic cofibration condition.

Let m : J → I be an acyclic cofibration in B and let x : X � I and y : Y � I

be two display maps over I, so that X represents a general object of Dial+(I),

and the map

X
iX−−→ X +I Y

ηX+IY−−−−→ X +I Y +I 1I

given by a coproduct inclusion followed by the unit of the monad (which, incid-

entally, is another coproduct inclusion) represents the general form of a display

map in Dial+(I). We must check that every retraction of m∗(iX) is the pull-

back along m of some retraction of iX , where the retractions are retractions as

Kleisli arrows. Since m∗ preserves fibred coproducts, this amounts to showing

that every map m∗Y → m∗X +J 1J ∼= m∗(X +I 1I) over J arises from a map

Y → X +I 1I over I, i.e. that m∗ is full.

Suppose we have a map m∗Y → m∗(X+I 1I) over J . Then since the acyclic

169



cofibrations in B are stable, the map m∗Y → Y in the diagram

I

J

Y X +I 1I

m∗Y m∗(X +I 1I)

m

is an acyclic cofibration. We may use its left lifting property with respect to

X � I to find a dotted arrow making the diagram

m∗Y m∗(X +I 1I) X +I 1I

Y I

commute. A simple application of the pullback lemma shows that this arrow is

indeed pulled back to the arrow m∗Y → m∗(X +I 1I).

Lemma 7.5.4. The fibration p : Dial+ → B has F-products which preserve

display maps.

Proof. As in 7.1.4, the codomain fibration cod : F → B has F-sums given by

dependent sum. Now it is easy to check that F-sums in any fibration induce

F-sums in the Kleisli fibration. Hence we get F-products in the opposite, which

is Dial+ → B. As they are right adjoints, the F-products preserve the fibrewise

product projections.

Proposition 7.5.5. The display map category (Dial+,G) has F-dependent products

of G-maps, and E-products of F-maps.

Proof. For the first statement we use 6.5.5 which requires the existence of fibred

products which preserve the fibrewise display maps. This was checked in 7.5.4.

The second statement is just 6.5.6.

Proposition 6.5.7 tells us that we would have all dependent products if we

could find E-dependent product of E-maps in Dial+. However, this is not to be

expected. Instead, we can construct weak dependent products of E-maps along

E-maps.

To see this, we will show that it admits weak dependent products of E-

maps along E-maps. This suffices since an ordinary dependent product is a

170



weak dependent product, and it is easy to see that an operation taking weak

dependent products along a composite can be given by giving weak dependent

products along each factor.

Lemma 7.5.6. The error Dialectica model has E-dependent products of E-maps.

Proof. The proof will go by showing that p : Dial+ → B has ‘weak quasifibred

dependent products’, which is the obvious weak analogue of the ordinary quasi-

fibred dependent products of Definition 6.5.9. It can be found by unfolding the

evident definition of weak E-dependent products of E-maps.

Let I ∈ B and let X � I, Y � I. Then a weak quasifibred dependent

product of X +I Y +I Z +I 1I ←↩ X +I Y along X +I Y +I 1I ←↩ X needs to

weakly classify, for any W � I, the set of maps Z → W +I X +I Y +I 1I over

I. Intuitively, a partial map Z →W +X+Y can be broken down into a partial

map Z →W +X and a partial map Z → Y (with disjoint domains).

I

XX +I Y

X +I Y +I Z

W +I XW +I X +I Y

Let q : Q � I be Z ⇒I (Y +I 1I) � I. Now let R � Q be the pullback of

the coproduct inclusion W +I X +I 1I ←↩ X along q. Hence for any section

s : I → Q of q, the pullback s∗(R� Q) is just W +I X +I 1I ←↩ X.

We must show that there is a natural, reindexing-stable retraction of the set

of maps

f : Z →W +I X +I Y +I 1I

over I inside the set of pairs

g : Z → Y +I 1I

over I together with

h : Z →W +I X +I 1I

over I. Given such a map f , we construct g as

Z
f−→W +I X +I Y +I 1I ∼= Y +I W +I X +I 1I

1Y +!W+IX+I1I−−−−−−−−−−→ Y +I 1I

171



and we construct h as

Z
f−→W +I X +I Y +I 1I

1W+IX
+!Y+I1I−−−−−−−−−−→W +I X.

Conversely, given such a pair (g, h), we construct f as

Z
(1Z ,g)−−−−→ Z×(Y+I1I) ∼= Z×IY+IZ

πY +Ih−−−−→ Y+I(W+IX+I1I) ∼= W+IX+IY+I1I

It it is easy to check that this retraction is natural and reindexing-stable.

Corollary 7.5.7. The error Dialectica model has weak dependent products.

We would now like to apply the results of Chapter 2 to obtain a model of

type theory in the Karoubi envelope of Dial+. We must face up to the issue

that our theory of gluing models takes place in the ‘weak’ world of display map

categories, whereas our development of the idempotent completion models takes

place in the ‘strict’ world of split comprehension categories.

One solution is to employ a coherence theorem such as that in [32] to obtain

a split model with strictly stable type constructors from our weak model. The

issue with this approach is that to apply the coherence theorem in [32] we

would require their condition ‘(LF)’ to hold in the gluing model. This condition

is closely related to having dependent products, this it is unlikely to hold in the

error Dialectica model, which only has weak dependent products. We are either

faced with the problem of generalizing [32] or returning to the problem of the

Karoubi envelope in the non-split situation.

The alternative is to redevelop the theory of gluing models in terms of split

comprehension categories from the beginning. This is analogous to the approach

taken in [38] for inverse limits of (split) type-theoretic fibration categories. One

advantage of this approach is that it gives us more detailed information about

the split model at the end. Since the input to the error Dialectica model is a

model of type theory with dependent products then, if necessary, we can apply

the coherence theorem of [32] to the input model instead of the output.

We take the latter approach. Actually, for most results it is largely obvious

that they can be sharpened to the split case. The case of identity types is the

one where we must be careful.

Definition 7.5.8. A split fibred split comprehension category is a fibred com-

prehension category (p0 : E1 → B, p1 : E2 → E1, χ1) such that p0 and p1 are

both split fibrations and for each f : J → I the canonical colax morphism of

(split) comprehension categories

((p1)I : E2(I)→ E1(I), (χ1)I)→ ((p1)J : E2(J)→ E1(J), (χ1)J)

172



as in Proposition 5.2.2 is moreover a strict morphism.

Proposition 7.5.9. Given a split fibred split comprehension category (p0 : E1 →
B, p1 : E2 → E1, χ1) over a split comprehension category (p : F → B, χ), the

gluing model (q : G→ E1, χG) is a split comprehension category.

Proof. It is easy to check that the change-of-base along a split fibration of a

split comprehension category is a split comprehension category and that the

juxtaposition of two split comprehension categories is again split.

Now we must show that our constructions of dependent sums, dependent

products and identity types produce strictly stable type constructors when

provided with correspondingly strictly stable input data. We restrict to the

case of full split fibred split comprehension categories over a full split compre-

hension category.

Definition 7.5.10. A (co)lax morphism of comprehension categories between

split comprehension categories is itself split if it is split as a morphism of fibra-

tions, i.e. if it preserves the chosen cartesian arrows.

Remark 7.5.11. It is easy to check that the canonical strong morphisms

((p1)I : E2(I)→ E1(I), (χ1)I)→ ((p1)J : E2(J)→ E1(J), (χ1)J)

induced by reindexing along f : J → I between the fibres of a split fibred split

comprehension category are split morphisms. (This is just a statement about a

fibration over a fibration).

Proposition 7.5.12. Suppose that (p : F→ B, χ) has strictly stable dependent

sums (see Definition 1.6.7 and that (p0 : E1 → B, p1 : E2 → E1, χ1) has fibrewise

strictly stable dependent sums, meaning strictly stable dependent sums in each

fibre comprehension category that are strictly preserved by B-reindexing. Then

(q : G→ E1, χG) has strictly stable dependent sums.

Proof. Observe that a full split comprehension category (p : F → B, χ) has

strictly stable dependent sums if and only if it admits a split strong morphism

of comprehension categories F ? F → F. Also observe that a full split fibred

split comprehension category admits fibred strictly stable dependent sums if

and only if its total full split comprehension category E2 admits a split strong

morphism of comprehension categories E2 ?E2 → E2. Now we use the fact that

reindexings along maps in B are split strong morphisms of split comprehension

categories to see that there is a canonical split strong morphism

(E1 • F) ? E2 → E2 ? (E1 • F)

173



of split comprehension categories over E1. We can now use the technique of

Remark 6.3.3 to deduce the existence of dependent sums in the gluing model.

For dependent products, we at least ask for strictly stable dependent products

in the base. The following corresponds to having F-products which preserve the

fibrewise display maps.

Definition 7.5.13. Let (p0 : E1 → B, p1 : E2 → E1, χ1) be a full split

fibred split comprehension category over a full split comprehension category

(p : F → B, χ). Then it has split F-products if for each I ∈ B and φ ∈ F(I)

with comprehension f : A → I we have a functor mapping ψ ∈ E1(A) to

Πφ(ψ) ∈ E1(I) together with a natural transformation evI,φ,ψ : f∗(Πφ(ψ))→ ψ

making Πφ into a right adjoint to the reindexing f∗ : E1(I)→ E1(A), such that

this data is strictly stable under reindexing in I, and moreover for each such I

and φ the functor Πφ extends to a split strong morphism of split comprehen-

sion categories E2(ψ) → E2(Πφ(ψ)) and these functors commute strictly with

reindexing in I.

It is easy to see that the existence of strictly stable dependent sums in

(q : G → E1, χG) can be broken down into the existence of strictly stable F-

dependent products and E2-dependent products, as in §6.5.

Proposition 7.5.14. Suppose that (p0 : E1 → B, p1 : E2 → E1, χ1) has split

F-products and that (p : F→ B, χ) has strictly stable dependent products. Then

(q : G→ E1, χG) has strictly stable F-dependent sums.

Proof. It is straightforward to check that the proof of Proposition 6.5.5 trans-

lates to the split setting and results in strictly stable dependent products.

Definition 7.5.15. Let (p0 : E1 → B, p1 : E2 → E1, χ1) be a full split fibred

split comprehension category over a full split comprehension category (p : F→
B, χ). Then it has split quasifibred dependent products if for each I ∈ B, X ∈
E1(I), φ ∈ E2(X) with comprehension f : Y � X in E1(I), and ψ : E2(Y ) we

are given choices of a type ξ ∈ F(I) with comprehension q : Q � I in B and a

type π ∈ E1(Q), which are strictly stable under reindexing in I, and, for each

type ω ∈ E2(X), a bijection which is strictly stable under reindexing in I and

natural in ω between the set of maps f∗(ω) → ψ in E2(Y ) and the set whose

elements are pairs composed of a section s : I → Q of q : Q � I together with

a map ω → s∗(π) in E2(X).

Proposition 7.5.16. Suppose that (p0 : E1 → B, p1 : E2 → E1, χ1) has split

quasifibred dependent products and that (p : F → B, χ) has strictly stable de-

pendent products and strictly stable dependent sums. Then (q : G → E1, χG)

has strictly stable F-dependent sums.

174



Proof. It is straightforward to port the proofs of Proposition 6.5.7 and 6.5.10

to the strictly stable situation.

For identity types, we need to take a few more steps back. This is because

for the gluing model we worked with identity types defined in terms of a fac-

torization system on the category of contexts as in 1.8.3, whereas we defined

strictly stable identity types in 1.8.1 in terms of path objects, i.e. factorizations

of diagonal morphisms.

It was first shown by Gambino and Garner in [15] that the syntactic category

of contexts of a type theory with identity types admits a weak factorization sys-

tem whose right class is the closure under retracts of the display maps. The

identity types are used in a sort of ‘mapping space’ to construct the factoriz-

ations of arbitrary morphisms into a left-map followed by a display map. The

argument has been translated to more general models of type theories by Shul-

man in [38] and Emmenegger in [14]. The natural thing to do here would be

to adapt the arguments of [15] to our situation. However, we can save work by

considering the particular situation at hand, where the fibrewise models of type

theory are all comprehension categories of the form given in Example 1.2.8.

Remark 7.5.17. It is worth remarking that it seems likely that the arguments

of [15] can be transported to this situation, along the following lines. Define

a structured left map in context I to be a map i : A → B in E(I) equipped

with, for every f : J → I and every X ∈ E(f∗(B)), a left map structure on

X∗(f∗(i)). That it is to say, for each C ∈ E(X∗(f∗(B))) for which we have a

map {X∗(f∗(A))} → {C} making the obvious triangle in B commute, we get a

section of {C} → {X∗(f∗(B))}, making the obvious pair of diagrams commute.

Furthermore, we ask that this filling operation is stable under reindexing (in

I) and weakening (‘in B’). Hence structured left maps can be reindexing and

weakened. The weakening part is not necessary if we have dependent products,

but in our example here we do not have dependent products. An identity fac-

torization of a morphism f : A → B in E(I) is a type C ∈ E({B}) and a

structured left map A → ΣBC such that the obvious triangle in B commutes.

Having identity types means having a strictly stable choice of identity factoriz-

ations for diagonal maps. We would interpret [15] as deriving arbitrary identity

factorizations from identity factorizations for diagonals in any split comprehen-

sion category with dependent sums. To make this more precise, we define the

comprehension category of contexts to have base B′ with objects lists of types

(I, A1, . . . , An) with I ∈ B and A1 ∈ E(I), A2 ∈ E({A1}), etc. and the evident

morphisms. The types E′((I, A1, . . . , An)) are given as ‘dependent contexts’,

i.e. lists (B1, . . . , Bm) with B1 ∈ E({An}), B2 ∈ E({B1}), etc. and we give this

category the evident morphisms. There is an evident comprehension, and this

175



comprehension category has ‘strict dependent sums’. We also have a strong

morphism of comprehension category (B′,E′)→ (B,E) given by taking depend-

ent sums until a context is just a single type, and this strong morphism is an

equivalence. Now the objects and types of (B′,E′) model the rules for contexts

given in [15], so, although that article officially only dealt with the classifying

category of some type theory, mutatis mutandis we can interpret its arguments

as giving us identity factorizations for arbitrary arrows in (B′,E′). The equival-

ence to (E,B) gives us identity factorizations there too.

Then clearly this argument translates to the fibred model of type theory

case, in that we get arbitrary identity factorizations in the fibrewise models

and these are stable under reindexing. We must also formulate the ‘structured

acyclic cofibration condition’ and show that structured left maps are closed

under composition. A possible issue with taking this approach here is that as

well as checking the details of the above we also need to verify the ‘preserving

idempotents’ condition. We can shortcut this work in our specific case.

From here on we assume that the fibrewise comprehension categories E2(I)→
E1(I) are of the form 1.2.8, coming from a strictly stable choice of fibred finite

products. Let us described the identity types in (q : G→ E1, χG).

Definition 7.5.18. Suppose that each fibre of (p0 : E1 → B, p1 : E2 → E1, χ1)

is given as in 1.2.8 by a category with finite products. Then we say it satisfies

the split acyclic cofibration condition (with respect to (p : F→ B, χ)) if for every

I ∈ B and A ∈ F(I), the reflexivity map reflA : {A} → {IdA} is equipped with,

for each B,C ∈ F(IdI,A) and f : refl∗A(B)→ refl∗A(C) a choice of g : B → C with

refl∗A(g) = f , and moreover these choices are stable under reindexing in I.

Proposition 7.5.19. Suppose that (p : F → B, χ) has strictly stable identity

types and that each fibre of (p0 : E1 → B, p1 : E2 → E1, χ1) is given as in 1.2.8

by a category with finite products and that the split acyclic cofibration condition

is satisfied. Then (q : G→ E1, χG) has strictly stable identity types.

Proof. Let (A,X) be an object of E1 and let (B, Y ) be an object of G(A,X),

thus B ∈ F(A) and Y ∈ E1(A). Then to give an identity type for (B, Y ) we must

give a type over (B ×A B, Y1 ×B×AB Y2) where Yi is the reindexing of Y along

(the comprehension of) πi : B ×A B → B. We give this type as (IdB ,>IdB ),

where IdB is the usual identity type of B in context A.

To give a reflexivity morphism we need to give a dotted arrow filling in the

176



diagram

A

{B} {B ×A B}

{IdB}

X

X ×B Y X ×B×AB Y1 ×B×AB Y2

X ×IdB Y1 ×IdB Y2

We let its component in the base be reflB , the reflexivity morphism for B. Now

the reindexing refl∗B(Y1×IdBY2) is just Y ×BY , so we take the vertical component

to the product of X with the diagonal map Y → Y ×B Y . Now suppose we

have a type (C,Z) over (IdB ,>IdB ) and maps u and v as in the following.

B IdB

C

X ×B Y X ×IdB Y1 ×IdB Y2

X ×C Y1 ×C Y2 ×C Z

u

v

Then using the structure of identity types in the base we obtain a section s :

IdB → C of C � IdB making the evident triangle commute. To lift the section

to E1, we need to give a map X ×IdB Y1 ×IdB Y2 → s∗(Z). By the split acyclic

cofibration condition, it suffices to give such a map after reindexing along reflB ,

i.e. to give a map X ×B Y ×B Y → v∗(Z). We give this map as the composite

X ×B Y ×B Y
(π1,π2)−−−−→ X ×B Y

u−→ X ×B Y ×B Y ×B v∗(Z)→ v∗(Z)

177



where u is the vertical component of u. It is easy to see that this construction

does indeed equip (q : G→ E1, χG) with strictly stable identity types.

Proposition 7.5.20. In the situation of Proposition 7.5.19, if (p : F → B, χ)

has identity types that preserve idempotents, then the identity types of (q : G→
E1, χG) preserve idempotents.

Proof. Continuing with the notation of 7.5.19, suppose we have an idempotent

(b, β) : (B, Y )→ (B, Y ) in G(A,X), so that we have an idempotent b : B → B

in F(A) and a map β : X × Y → b∗(Y ) in E1({B}) such that the composite

X × Y
(πX ,β)
−−−−→ X ×B b∗(Y ) = b∗(X ×B Y )

b∗(β)−−−→ (bb)∗(Y ) = b∗(Y )

is equal to β. Let KA,B(b) : IdB → IdB be the idempotent associated to b as in

Definition 2.8.2. Then the idempotent we require on (IdB , Y1 ×IdB Y2) lies over

KA,B(b) and has vertical component

X ×IdB Y1 ×IdB Y2 → X ×IdB Y1 ×IdB X ×IdB Y2

β1×IdB
β2−−−−−−→ Y1 ×IdB Y2,

i.e. simply the reindexing of the product over B×AB of the reindexings β1 and

β2 of β along π1, π2 : B ×A B ⇒ B respectively. It is easy to see that this does

indeed give an reindexing stable choice of idempotent, and that it makes the

diagram (2.3) commute.

The development above culminates in the following result.

Theorem 7.5.21. Suppose that (p : F → B, χ) is a full split comprehension

category with (strictly stable type constructors modelling) dependent sums, weak

dependent products, identity types which preserve idempotents, and strong finite

product and coproduct types. Then the idempotent completion of its error Dia-

lectica model (of §7.5) is a full split comprehension category modelling dependent

sums, (strong) dependent products and identity types.

178



Further work

To summarize the content of this thesis, we have set out two main theories of

building models of type theory: the gluing construction and the idempotent

splitting construction. We have employed these to show that de Paiva’s Dia-

lectica categories [11] may be generalized to the dependent type theory case,

extending the work of von Glehn in [46].

It remains to investigate which type-theoretic principles are validated by

these models. In [46] it was shown that the polynomial model does not in gen-

eral validate functional extensionality in the sense of [42]. To understand the

status of this principle in the Diller-Nahm model constructed in §7.3, we need to

make more assumptions about the identity types of objects of the form M(A).

The argument of [46] can be adapted to show that function extensionality is

not validated in a situation where propositionally distinct elements a, b of A

remain propositionally distinct elements {a}, {b} of M(A). In the situation

where Id(M(A)) is always contractible — for instance, M(A) is something re-

sembling the free real vector space on the set of points of A together with the

natural topology — it seems reasonable to conjecture that the resulting model

is equivalent to the starting one, in some suitable sense.

It is natural to seek to iterate these constructions. In [46] it is observed that

the twice-iterated polynomial model is in general different to a certain hypo-

thetical model, which model we have constructed here as the Dialectica model

in 7.2. We showed in 7.1.7 that the polynomial model admits the correct sort

of finite sum types to allow iteration, but we leave thorough comparison of the

Dialectica and iterated polynomial models to future work. One may ask when

a monad M suitable for the Diller-Nahm can be found both in examples of Dia-

lectica models, to allow iteration, and also in general models. It is worth noting

that, although our intuition for the monad M is based on the free commutative

monoid monad or finite multisets monad, the axioms (which are closely related

to those for a Girardian comonad given in [4]), may be satisfied more generally.

Finally, we mention one more avenue for further exploration, which was also

subject to speculation in [46]. This is to create a general ‘model theory of type

179



theory’, by analogy with the connection between topos theory and higher-order

intuitionistic type theory [25]. What makes the case of topos theory interesting

is the correspondence between Grothendieck toposes over a base and geometric

theories defined with respect to that base. Another way to say this is to say that

the construction of the category of sheaves over a site, a relatively simple and

well-understood process, is a rich source of models of higher-order intuitionistic

type theory. It remains to tie down precisely the apparent parallels between

the construction of presheaves on a small category and the construction of the

polynomial model, the former being a free completion under small colimits and

the latter a model carried by the free completion under dependent sums. As we

saw in Chapter 6, the gluing construction can be thought of as adding in missing

context extensions to a fibred model of type theory. Perhaps the framework we

have given here will allow one to formulate a universal property for the gluing

construction in terms of our notion of morphism of comprehension categories,

exhibiting gluing models as a ‘free comprehension completion’.

180



Bibliography

[1] S. Awodey and M. A. Warren. Homotopy theoretic models of identity

types. Math. Proc. Cambridge Philos. Soc., 146(1):45–55, 2009.

[2] M. Barr and C. Wells. Toposes, triples and theories. Repr. Theory Appl.

Categ., pages x+288, 2005.

[3] Seminar on Triples and Categorical Homology Theory, 2008. Lectures

from the seminar held at Forschungsinstitut für Mathematik, ETH, Zürich,

1966/1967, Reprint of the 1969 original, With a preface to the reprint by

Michael Barr.

[4] B. Biering. Cartesian closed Dialectica categories. Ann. Pure Appl. Logic,

156(2-3):290–307, 2008.

[5] B. Biering. Dialectica Interpretations: A Categorical Analysis. PhD thesis,

IT University of Copenhagen, Denmark, 2008.

[6] F. Borceux. Handbook of categorical algebra. 1, volume 50 of Encyclopedia of

Mathematics and its Applications. Cambridge University Press, Cambridge,

1994.

[7] S. R. Buss, editor. Handbook of proof theory, volume 137 of Studies in

Logic and the Foundations of Mathematics. North-Holland Publishing Co.,

Amsterdam, 1998.

[8] A. Carboni, S. Lack, and R. F. C. Walters. Introduction to extensive and

distributive categories. J. Pure Appl. Algebra, 84(2):145–158, 1993.

[9] J. Cartmell. Generalised algebraic theories and contextual categories. Ann.

Pure Appl. Logic, 32(3):209–243, 1986.

[10] D. Coumans and B. Jacobs. Scalars, monads, and categories, 2010.

arXiv:1003.0585.

[11] V. C. V. de Paiva. The Dialectica categories. Technical Report UCAM-CL-

TR-213, University of Cambridge, Computer Laboratory, January 1991.

181



[12] P. Dybjer. Internal type theory. In Types for proofs and programs (Torino,

1995), volume 1158 of Lecture Notes in Comput. Sci., pages 120–134.

Springer, Berlin, 1996.

[13] T. Ehrhard. A categorical semantics of constructions. In [1988] Proceedings.

Third Annual Information Symposium on Logic in Computer Science. IEEE

Comput. Soc. Press, 1988.

[14] J. Emmenegger. A category-theoretic version of the identity type weak

factorization system, 2014. arXiv:1412.0153.

[15] N. Gambino and R. Garner. The identity type weak factorisation system.

Theoret. Comput. Sci., 409(1):94–109, 2008.

[16] K. Gödel. über eine bisher noch nicht benützte Erweiterung des finiten

Standpunktes. Dialectica, 12:280–287, 1958.

[17] A. Grothendieck. Revêtements étales et groupe fondamental (SGA 1),

volume 224 of Lecture notes in mathematics. Springer-Verlag, 1971.

[18] S. Hayashi. Adjunction of semifunctors: categorical structures in nonex-

tensional lambda calculus. Theoret. Comput. Sci., 41(1):95–104, 1985.

[19] C. Hermida. Some properties of Fib as a fibred 2-category. J. Pure Appl.

Algebra, 134(1):83–109, 1999.

[20] P. J. W. Hofstra. The dialectica monad and its cousins. In Models, logics,

and higher-dimensional categories, volume 53 of CRM Proc. Lecture Notes,

pages 107–137. Amer. Math. Soc., Providence, RI, 2011.

[21] J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Logic,

114(1-3):43–78, 2002. Commemorative Symposium Dedicated to Anne S.

Troelstra (Noordwijkerhout, 1999).

[22] B. Jacobs. Categorical Type Theory. PhD thesis, University of Nijmegen,

1991.

[23] B. Jacobs. Comprehension categories and the semantics of type depend-

ency. Theoretical Computer Science, 107(2):169 – 207, 1993.

[24] B. Jacobs. Categorical logic and type theory, volume 141 of Studies in

Logic and the Foundations of Mathematics. North-Holland Publishing Co.,

Amsterdam, 1999.

[25] P. T. Johnstone. Sketches of an elephant: a topos theory compendium.

Vols. 1–2, volume 43–44 of Oxford Logic Guides. The Clarendon Press,

Oxford University Press, New York, 2002.

182



[26] M. Karoubi. K-theory. Springer-Verlag, Berlin-New York, 1978. An intro-

duction, Grundlehren der Mathematischen Wissenschaften, Band 226.

[27] A. Kock. Strong functors and monoidal monads. Arch. Math. (Basel),

23:113–120, 1972.

[28] U. Kohlenbach. Applied proof theory: proof interpretations and their use

in mathematics. Springer Monographs in Mathematics. Springer-Verlag,

Berlin, 2008.

[29] J. Lambek. From λ-calculus to Cartesian closed categories. In To H. B.

Curry: essays on combinatory logic, lambda calculus and formalism, pages

375–402. Academic Press, London-New York, 1980.

[30] F. W. Lawvere. Metric spaces, generalized logic, and closed categories.

Rend. Sem. Mat. Fis. Milano, 43:135–166 (1974), 1973.

[31] F. W. Lawvere. Functorial semantics of algebraic theories and some algeb-

raic problems in the context of functorial semantics of algebraic theories.

Repr. Theory Appl. Categ., pages 1–121, 2004. Reprinted from Proc. Nat.

Acad. Sci. U.S.A. 50 (1963), 869–872 [MR0158921] and ıt Reports of the

Midwest Category Seminar. II, 41–61, Springer, Berlin, 1968 [MR0231882].

[32] P. L. Lumsdaine and M. A. Warren. The local universes model: An over-

looked coherence construction for dependent type theories. ACM Trans.

Comput. Logic, 16(3):23:1–23:31, July 2015.

[33] S. Mac Lane. Categories for the working mathematician, volume 5 of Gradu-

ate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[34] P. Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof The-

ory. Lecture Notes. Bibliopolis, Naples, 1984. Notes by Giovanni Sambin.

[35] P. Martin-Löf. An intuitionistic theory of types. In Twenty-five years of

constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides,

pages 127–172. Oxford Univ. Press, New York, 1998.

[36] P. R. North. Type theoretic weak factorization systems. PhD thesis, Uni-

versity of Cambridge, 2017.

[37] D. S. Scott. Relating theories of the λ-calculus. In To H. B. Curry: es-

says on combinatory logic, lambda calculus and formalism, pages 403–450.

Academic Press, London-New York, 1980.

[38] M. Shulman. Univalence for inverse diagrams and homotopy canonicity.

Mathematical Structures in Computer Science, 25(05):1203–1277, Novem-

ber 2014.

183



[39] T. Streicher. A semantic version of the Diller-Nahm variant of Gödel’s

Dialectica interpretation. unpublished note, 2000–2006.

[40] T. Streicher. Fibred categories à la Jean Bénabou, 2018. arXiv:1801.02927.

[41] P. Taylor. Practical foundations of mathematics, volume 59 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge,

1999.

[42] The Univalent Foundations Program. Homotopy Type Theory: Univalent

Foundations of Mathematics. https://homotopytypetheory.org/book,

Institute for Advanced Study, 2013.

[43] T. Uemura. Fibred fibration categories. In 2017 32nd Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS), pages 1–12, June 2017.

[44] T. Uemura. Fibred fibration categories, 2016. arXiv:1602.08206v1.

[45] F. Ulmer. Properties of dense and relative adjoint functors. J. Algebra,

8:77–95, 1968.

[46] T. von Glehn. Polynomials and Models of Type Theory. PhD thesis, Uni-

versity of Cambridge, September 2014.

184

https://homotopytypetheory.org/book

	Introduction
	Preliminaries
	Fibrations
	The semantics of type theory
	Finite product types
	Fullness and Ehrhard comprehension
	Dependent products
	Dependent sums
	Finite sum types
	Identity types

	Adding the -rule
	Weak adjunctions
	Modelling weak dependent products
	The category of retracts
	The split comprehension category of retracts
	Dependent products
	Fullness and Ehrhard comprehension
	Dependent sums
	Identity types

	Biproducts of algebras
	Biproducts in a category with a zero object
	Naturality of the product-coproduct isomorphism
	Biproducts in Kleisli categories
	Coherence
	Commutative monoids
	Biproducts in Eilenberg-Moore categories

	The Diller-Nahm category
	Three settings
	The Diller-Nahm fibration
	Finite Products
	Simple products
	Function spaces
	The Diller-Nahm category

	Fibred models of type theory
	The Fibred fundamental fibration
	Fibred comprehension categories
	Full fibred comprehension categories
	Fibred unit types
	Fibred Ehrhard comprehension
	Dependent sum as comprehension

	Gluing models of type theory
	Comprehension categories from fibred comprehension categories
	Type constructors in the gluing model
	Dependent sums
	Identity types
	Dependent products
	Universes

	Dialectica models of type theory
	The polynomial model
	The Dialectica model
	The Diller-Nahm model
	Diller-Nahm with predicates
	The error Dialectica model

	Further work

