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Abstract

Proteins are involved in numerous functions in the human body, including chemi-

cal transport, molecular recognition, and catalysis. To perform their function most

proteins must adopt a specific structure (often referred to as the folded structure).

A microscopic description of folding is an important prerequisite for elucidating the

underlying basis of protein misfolding and rational drug design. However, protein

folding occurs on heterogeneous length and time scales, presenting a grand chal-

lenge to both experiments and simulations. In computer simulations, challenges are

generally mitigated by adopting coarse-grained descriptions of the physical environ-

ment, employing enhanced sampling strategies, and improving computing code and

hardware. While significant advances have been made in these areas, for numerous

systems a large spatiotemporal gap between experiment and simulations still exists,

due to the limited time and length scales achieved by simulation, and the inability

of many experimental techniques to probe fast motions and short distances.

In this thesis, kinetic transition networks (KTNs) are constructed for various

protein folding systems, via approaches based on the potential energy landscape

(PEL) framework. By applying geometry optimisation techniques, the PEL is dis-

cretised into stationary points (i.e. low-energy minima and the transition states that

connect them). Essentially, minima characterise the low-lying regions of the PEL

(thermodynamics) and transition states encode the motion between these regions

(dynamics). Principles from statistical mechanics and unimolecular rate theory may

then be employed to derive free energy surfaces and folding rates, respectively, from

the KTN. Furthermore, the PEL framework can take advantage of parallel and dis-

tributed computing, since stationary points from separate simulations can be easily
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integrated into one KTN. Moreover, the use of geometry optimisation facilitates

greater conformational sampling than conventional techniques based on molecular

dynamics. Accordingly, this framework presents an appealing means of probing

complex processes, such as protein folding. In this dissertation, we demonstrate the

application of state-of-the-art theory, combining PEL analysis and KTNs to three

diverse protein systems.

First, to improve the efficiency of protein folding simulations, the intrinsic rigid-

ity of proteins is exploited by implementing a local rigid body (LRB) approach.

The LRB approach effectively integrates out irrelevant degrees of freedom from the

geometry optimisation procedure and further accelerates conformational sampling.

The effects of this approach on the underlying PEL are analysed in a systematic

fashion for a model protein (tryptophan zipper 1). We demonstrate that conserva-

tive local rigidification can reproduce the thermodynamic and dynamic properties

for the model protein.

Next, the PEL framework is employed to model large-scale conformational

changes in proteins, which have conventionally been difficult to probe in silico.

Methods based on geometry optimisation have proved useful in overcoming the bro-

ken ergodicity issue, which is associated with proteins that switch morphology. The

latest PEL-based approaches are utilised to investigate the most extreme case of

fold-switching found in the literature: the α-helical hairpin to β-barrel transition of

the C-terminal domain of RfaH, a bacterial transcription factor. PEL techniques

are employed to construct the free energy landscape (FEL) for the refolding process

and to discover mechanistic details of the transition at an atomistic level.

The final part of the thesis focuses on modelling intrinsically disordered proteins

(IDPs). Due to their inherent structural plasticity, IDPs are generally difficult to

characterise, both experimentally and via simulations. An approach for studying

IDPs within the PEL framework is implemented and tested with various contem-

porary potential energy functions. The cytoplasmic tail of the human cluster of

differentiation 4 (CD4), implicated in HIV-1 infection, is characterised. Metastable

states identified on the FEL help to unify, and are consistent with, several earlier

predictions.
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Introduction

“There is pleasure in recognising old things from a new viewpoint.”

– Richard Feynman

The almost 70-year inquiry into protein structure and dynamics has, at every

juncture, compelled researchers to confront the problem from a new viewpoint. Be-

fore 1951, it was believed by many that proteins were amorphous entities. That year

Sanger and Tuppy demonstrated that proteins were built from amino acids (§ 1.1).

In 1958, electron density maps from X-ray crystallography studies strongly sug-

gested that proteins formed well-defined structures (§ 1.1). These two discoveries,

in particular, raised several questions, arguably the most important: how is protein

structure determined from the amino acid sequence? Four years later, Anfinsen’s

work on renaturation of ribonuclease (§ 1.2.1) marked a major turning point, and

it was at that juncture that the ‘protein folding problem’ was born. Subsequent

paradoxical discussions by Levinthal (§ 1.2.2) on protein folding would fuel the field

for at least two decades, as researchers sought to propose models (§ 1.2.3) that could

explain how proteins fold. Towards the end of the 1980s it became apparent that no

single model could fully account for protein folding. In 1987, principles learnt from

spin glasses were applied to study protein folding phenomena, and a new holistic

view of folding emerged: the energy landscape perspective (§ 1.2.4).

Experimental work on protein folding (§ 1.3) has presented a grand challenge

to scientists, fostering creativity and advancement of new technologies in the field,

which have led to important insights. On another front, computer “simulation stud-

ies have augmented and directed development of the modern landscape perspective

of protein folding”1 by revealing intricate details, particularly those not amenable

to experiment (§ 1.4). Indeed, the first molecular dynamics simulations in 1977

challenged the view of proteins as static structures and recast them as dynamic
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entities (§ 1.4.1). Computer investigations, however, have presented their own chal-

lenges; some of which have necessitated the development of enhanced sampling tech-

niques (§ 1.4.2), to achieve time scales trivially probed by experiments. Orthogonal

viewpoints and techniques have materialised, each with varying degrees of success.

Certainly, the field of protein folding has benefited, and continues to benefit, from

researchers approaching the problem with a different lens. This dissertation follows

in the same vein.

1.1 Fundamental Levels of Protein Structure

In 1951, Sanger and Tuppy’s seminal work on the sequencing of insulin2,3 trans-

formed our understanding of protein structure: from seemingly amorphous entities

to highly ordered unbranched biopolymers. At the basic level, proteins are syn-

thesised from amino acid monomers, each monomer consisting of an amino group

(NH2), a carboxyl group (CO2H), a unique side-chain (R) (which may be acidic,

basic, polar or non-polar) and a hydrogen atom coordinated to a Cα atom.

During protein synthesis, amino acids are linked via peptide bonds (OC–NH)

to yield polypeptide chains. The sequence of amino acids constitutes the primary

structure of a protein (Figure 1.1a). In the cell, polypeptide chains are assembled on

the ribosomes from the amino end (N-terminal) to the carboxyl end (C-terminal) of

the amino acids. This arrangement results in a net dipole along the main polypeptide

chain (backbone) and encourages the formation of intramolecular hydrogen-bonds

(NH· · ·OC).

Steric interactions of the side-chains play a crucial role in modulating the pe-

riodicity of hydrogen-bonding along the backbone, and ultimately dictate which

secondary structural elements are formed. In naturally occurring proteins, α-helices

(Figure 1.1b) and β-sheets are the most common types of secondary structures.4

Hydrogen-bonding between –NH and –CO groups four residues* apart give rise to

α-helices. Whereas, β-sheets develop when hydrogen-bonds form between –NH and

–CO groups in adjacent segments of a polypeptide chain, and are characterised as

either antiparallel or parallel β-sheets, depending on how the segments are aligned.

*amino acids within polypeptide chains
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(a) primary structure—extended structure
for residues 52 to 73

(b) secondary structure—α-helix (residues
52 to 73)

(c) tertiary strucure—folded chain (residues
1 to 141)

(d) quaternary structure—four folded chains

Figure 1.1: Levels of protein structure depicted using haemoglobin.

Another way of distinguishing protein secondary structure is based on the di-

hedral angles along the backbone; specifically, the φ and ψ angles that describe

the rotation about the N–Cα and Cα–C bonds, respectively (Figure 1.2). Whereas

the peptide bonds are restricted in the trans configuration,� 5 notable variation is

observed in φ and ψ angles. Ramachandran and co-workers investigated the dis-

tribution of φ and ψ angles6 for highly resolved protein structures and found that

not all combinations of φ and ψ angles are allowed. Furthermore, distinct regions

of high density were identified for α-helices and β-sheets. Thus the well-known

Ramachandran plot is characterised by the two-dimensional φ verses ψ space.

�with the exception of proline, the Cα–C–N–Cα dihedral, ω, ≈ 180◦
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H R

Cα

C

O

N

H

Cα

R
H

ψ

ω φ

Figure 1.2: Protein backbone dihedral angles. ψ, ω, and φ angles describe the rotation
about the Cα–C, C–N, and N–Cα bonds, respectively.

A given polypeptide chain may consist of several secondary structural elements

along its length. Intramolecular hydrogen-bonding, hydrophobic, and electrostatic

interactions, or the formation of disulfide bonds (via cysteine residues), between

complementary side-chains, often lead to more compact structures—defining the

tertiary level of protein structure (Figure 1.1c). The first three-dimensional protein

structure was solved for myglobin,7 which consists of a single polypeptide chain

folded into a compact bundle of eight α-helices connected by loops. Later, Perutz

and colleagues demonstrated that the structural hierarchy of proteins may extend

even further to the quaternary level, with the discovery of the crystal structure

of haemoglobin.8 Haemoglobin is characterised by four folded polypeptide chains

(subunits) linked via non-covalent intermolecular interactions, forming a distinct

tetrahedral arrangement (Figure 1.1d).

Discovery of these intricate protein structures, and others, raised the fundamen-

tal question: what rules govern protein folding? In the following sections, various

theories for protein folding are summarised.

1.2 Protein Folding Theories

1.2.1 Thermodynamic hypothesis

During the second half of the 20th century, scientists sought to discover the underpin-

nings of protein folding. The first piece of critical information came from the lab of

Anfinsen. At the time, Anfinsen and colleagues were conducting in vitro studies on
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the refolding of ribonuclease.9 This protein, which contains four disulphide bonds,

was first treated with a chemical denaturant (a cocktail of urea and mercaptoethanol

or thioglycolic acid), in order to break the disulphide bonds, while keeping the other

covalent bonds intact. The denatured (unfolded) protein contained no evidence of

its native structure (i.e. the characteristic fold determined by experiment). However,

when the denaturant was removed the protein spontaneously refolded—reforming

its native disulphide bonds, despite the numerous alternative ways that eight –SH

groups could potentially bond.

Anfinsen hypothesised, “The three-dimensional structure of a native protein in

its normal physiological milieu is the one in which the Gibbs free energy of the

whole system is its lowest,”10,11 (the Thermodynamic Hypothesis). It follows from

the Thermodynamic Hypothesis that the native conformation of the protein is de-

termined entirely by its amino acid sequence in thermodynamic equilibrium.

1.2.2 Levinthal’s paradox

Given that protein structure is governed by the amino acid sequence, Levinthal out-

lined how improbable it would be for a protein (even with a few hundred amino

acids) to fold to its free energy minimum, by sampling all possible amino acid con-

formations. He explained further that even if the dimensionality of the problem was

reduced (e.g. by considering only the backbone and side-chain rotations), the time

taken to fold by a random search would be unrealistically long.12–14 This dilemma

is commonly cited in the literature as Levinthal’s Paradox.

Levinthal’s thoughts on protein folding propelled subsequent discussions on the

theory—many of the models developed in the next three decades would aim to

reconcile Levinthal’s paradox. The basic idea was that there must be some simplified

mechanism that explains how proteins fold.

1.2.3 Models of protein folding

Sequential and nucleation models were among the first postulates for how proteins

fold. The premise of these theories was that since the volume of the configuration

space is so large, there must be some initial event or unique sequence of events that

leads to folding, thus reducing the subsequent number of possibilities. Levinthal con-

sidered the case for specific folding pathways, which might guide the protein from

the denatured state to the folded state.13 In the Cooperative Sequential Model,15

it was argued that, in addition to following a unique pathway (through successive

intermediates), protein folding is initiated by a nucleation event. A similar model
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was proposed by Wetlaufer—the Nucleation Model16—in which the rate of folding

depends on the formation of an initial nucleus (a small localised region). He fur-

ther suggested that the nucleus grows by either adding neighbouring residues (fast

kinetics) or distal residues (slow kinetics).

In subsequent nucleation-based models, namely the Stage-wise Mechanism17 and

the Cluster Model,18 it was proposed that there exist multiple nucleation sites (so-

called “centres of crystallisation” or clusters) along the polypeptide chain, which

eventually merge or collapse to produce the native structure.

Around the same time, Karplus and Weaver presented arguments for the

Diffusion–Collision Model.19,20 In this model, protein folding begins with the for-

mation of transient segments of secondary structure (microdomains). The authors

rationalised that since microdomains are made up of a small number of amino acids,

the protein could efficiently sample all the available conformations for a given mi-

crodomain, thereby avoiding Levinthal’s paradox. Once formed, microdomains were

supposed to move diffusely and collide with each other. The rate-limiting step was

attributed to the formation of microdomain intermediates—produced when colli-

sions lead to coalescence. Unlike classical nucleation models, which were primarily

qualitative, the Diffusion–Collision model provided recipes for extracting quantita-

tive information about the folding process; for example, formulations for the folding

rate (or rate of coalescence) were derived based on the physical properties of the

microdomains.20

In the Noninteracting Local Structure Model,21 a statistical mechanical approach

to the protein folding problem was taken. A local structure is defined as a continuous

segment of the polypeptide chain that adopted an equivalent conformation in the

native structure. An important element of the model is that the interactions between

local structures are assumed to be negligible. Additionally, the free energy of a given

local structure is estimated from the atomic coordinates of the native configuration,

thus providing a means of computing the partition function. This simplified model

was used to demonstrate how protein folding might proceed by first forming local

structures, which subsequently grew or merged (Growth–Merge Model)21 to yield

the native structure.

A year later, Kim and Baldwin described the Framework Model22 for protein

folding. Experimental evidence at the time suggested the existence of folding inter-

mediates that contained significant secondary structure. Consequently, the authors

argued that during folding, hydrogen-bonded secondary structure is formed first,

followed by tertiary interactions (Figure 1.3). Hence, in the Framework Model,

it was suggested that stable secondary structure formed independently of tertiary
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structure.

Dill proposed that protein folding is driven by the association of hydrophobic

residues to avoid contact with the solvent—the Hydrophobic Collapse Model.23 The

protein would undergo rapid collapse around the hydrophobic side-chains and then

fold slowly, from the compact intermediate to the native state (Figure 1.3). In this

model, the intermediate contained very little secondary structure, and was therefore

in direct contrast to the Framework Model.22

Finally, in the Nucleation–Condensation Model,24 strong arguments for two-state

folding (i.e. lack of folding intermediates) were presented. Unlike earlier nucleation

models, in which the nucleus was defined as a small incipient localised region, in this

model the nucleus was assumed to be large and diffuse, and emerged in the transition

state. Thus, the nucleus would correspond to the best-formed interactions in the

transition state, and be stabilised by both local (between neighbouring residues)

and long-range (between distal residues in sequence) interactions. Moreover, in

nucleation–condensation, secondary and tertiary interactions occur simultaneously,

and folding can therefore be described as a two-state process (Figure 1.3).

Framework Model

Hydrophobic Collapse

Nucleation–Condensation

Figure 1.3: Illustration of the Framework, Hydrophobic Collapse and Nucleation–
Condensation models of protein folding. Refer to the text for description.

The preceding models, though not an exhaustive list, give an idea of how thought

has evolved in the field of protein folding since Anfinsen’s experiments. Although

the initial impetus to develop such models was to resolve Levinthal’s paradox, many

7



Introduction

of the later theories sought to account for experimental observations (§ 1.3). How-

ever, as more experimental evidence became available in support of both two-state

and sequential folding, many models became inadequate or obsolete. To obtain a

unified theory for protein folding, a completely different view of the problem became

imperative. In the next section, the energy landscape perspective for protein folding

is outlined.

1.2.4 Energy landscape perspective

Each residue in a polypeptide chain can adopt many different stable configurations.

Therefore, compared to an ordinary chemical reaction, the number of degrees of

freedom in protein folding is considerably greater. Consequently, the reactant (de-

natured protein) and product (native fold) in the folding reaction are distinctively

heterogeneous, to various extents; unlike typical chemical reactions, in which these

states are generally homogeneous. Accordingly, the folding reaction is itself ex-

tremely heterogeneous, and a suitable model for protein folding should explicitly

account for this heterogeneity.

In the Energy Landscape Model,25–28 the organisation of the protein free energy

landscape is considered in terms of ensembles of structures, wherein the structures in

a given ensemble have similar conformations and energies. Therefore, protein folding

can be regarded as a progressive organisation of ensembles, and statistical mechanics

may be applied to study this process. The three key postulates of the model, which

help explain protein folding and avoid Levinthal’s paradox, are: under physiological

conditions (1) the free energy of the folded state is lower than the denatured state,

(2) all states are not equally probable, and (3) the energy landscape is inherently

biased towards the native state. These assumptions are discussed further below.

Entropy and enthalpy (i.e. potential energy), which together encode the free

energy, are the main parameters of the energy landscape model. In the unfolded

ensemble, interactions are predominantly weak and of the same order of magnitude.

Hence, diverse conformations with comparable energies are accessible, and the en-

tropy of the denatured state is high. Conversely, in the folded state interactions

are highly stabilising, and there are smaller fluctuations in structure, corresponding

to reduced configurational entropy upon folding. Therefore, the potential energy

gradient from the denatured to the native state favours folding, whereas the entropy

gradient change opposes folding. Thus, protein folding is achieved by a delicate

balance of these energy terms�; in which the rate of decrease in the potential energy

�The balance of energy terms must also include changes in solvent entropy and enthalpy during
folding.
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exceeds the reduction in the entropy, as more compact states are formed.

Entropy

E
n
th
al
p
y

native fold

kinetic trap

molten globule

unfolded

Figure 1.4: A schematic funnelled landscape for a model protein. The width of the
landscape corresponds to entropy, and the height represents enthalpy (potential energy).
The folded protein resides at the the bottom of the landscape. Folding proceeds from
the unfolded protein, in the high energy regions of the landscape. Hydrophobic collapse
leads to the formation of a molten globular (compact) state, which comprise some native
structure. Occasionally the protein may encounter misfolded states en route to the native
state. These states are generally separated from the rest of the landscape by high energy
barriers, and so act as kinetic traps in the folding process.

In the denatured state, where the conformational entropy is high, the energy

landscape is relatively flat. As the protein folds, formation of native contacts lead

to a large thermodynamic barrier to unfolding. This free energy barrier limits the

9



Introduction

number of accessible conformations and generally guides the search downhill, in the

direction of the free energy gradient. As a result, the protein never has to search

the entire conformational space (as in Levinthal’s Paradox); instead, the search is

guided towards the native state. In this scenario the energy landscape is globally

funnelled,29,30 with the native state residing at the bottom (Figure 1.4).

Onuchic and colleagues27 explained that a funnelled energy landscape is expected

for naturally occurring proteins, due to evolution. In contrast, if one were to as-

semble a random polypeptide chain, efficient folding would be very unlikely. This

is because random heteropolymers (RHPs) contain equally stabilising (local) and

destabilising (non-local) contacts on average; the system is energetically frustrated.25

However, in natural proteins strong interactions are primarily native contacts and

very few interactions oppose folding; so there is minimal energetic frustration.25,26

Within the Energy Landscape description, the mechanism for folding depends

on the underlying topology of the landscape. In general, the free energy landscape

is not globally smooth; rather it supports many local minima, due to the interplay

of entropic and enthalpic terms.27 The dynamics between various states will depend

on the barriers and the overall funnelled organisation. The barrier heights in various

parts of the landscape dictate whether intermediates accumulate during folding.28

Additionally, formation of non-native contacts (increased frustration) may lead to

misfolded states, analogous to deep wells on the landscape, which act as kinetic

traps, slowing down folding.29,30 Due to the structural heterogeneity, it is expected

that multiple pathways lead to the folded state, each becoming increasingly more

distinct as the native state is approached and conformational entropy is minimised.

Since the amino acid sequence encodes the various interactions, from which the

energy landscape emerges, variation in the precise folding events is expected from one

sequence to the next. For example, a uniform attraction of hydrophobic residues

may favour rapid collapse of the unfolded state into a compact globule (folding

intermediate) that slowly rearranges into the native state. In another scenario, local

interactions along the chain may facilitate transient secondary structure formation

in the denatured state and eventual coalescence to give the native fold. Each process

will have associated energetic and kinetic barriers, and the gradient of the energy

will depend on the relative stability of the denatured and folded states. However, the

underlying rules governing folding are the same, and the energy landscape model

can be adopted to interpret the various folding scenarios, and to account for the

ensuing dynamics.31

Ultimately, a global view of the energy landscape is the key ingredient for elu-

cidating protein folding. Over the last few decades much effort has been expended
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in probing the underlying energy landscape of proteins, both experimentally and

via computer simulations. Advances in these areas are discussed in the following

sections.

1.3 Experimental Techniques

1.3.1 Protein folding initiation methods

Protein folding is usually initiated from the denatured state. This process in-

volves perturbing the prevailing conditions to produce a non-equilibrium ensemble,

which can then relax to a new equilibrium state. Rapid mixing-based methods,

namely stopped-flow32–36 and quenched-flow,37–39 are historically the most com-

mon techniques employed to trigger protein folding. Generally, a denaturing agent

(e.g. guanidine hydrochloride or urea) is first used to unfold the protein. The protein-

denaturant solution is then diluted by rapidly mixing a buffer that favours folding.

Once the solutions are mixed the folding process can be probed. Rapid-mixing tech-

niques are appealing, since no chemical changes need to be made to the protein

under investigation. However, these methods suffer from limited time resolution

due to the inherent dead times of the mixing apparatus (on the order of millisec-

onds), which generally exceed the time scales of the fastest folding events (on the

order of nanoseconds to microseconds; Figure 1.5). Alternative variations, such as

the continuous-flow technique,40–42 offer a slight improvement in the time resolu-

tion, with dead times in the microsecond regime. Accordingly, faster folding events,

which occur in the early stages of folding, cannot be probed using these approaches.

Nonetheless, rapid mixing-based methods have been instrumental in probing folding

intermediates, particularly molten globules, as well as providing evidence in support

of early secondary structure formation during folding.33–36,38,39,41

Laser-induced temperature jump from a cold-denatured state is the most widely

used triggering method to study protein folding events on the sub-millisecond time

scale.43–53 Significant lowering of the temperature below physiological values leads

to protein unfolding.54–56 Hence, refolding may be initiated by a rapid jump in tem-

perature from a cold-denatured state. Short laser pulses (picosecond/nanosecond)

can be used to excite the infrared (IR) vibrational modes of water, which generally

relax on the picosecond time scale, and produce a ultra-fast jump in temperature.

The rapid temperature jump destabilises the denatured state and the protein subse-

quently refolds. Fast folding events, particularly formation of secondary structures,

can then be probed. Studies employing laser-induced temperature jump techniques

were among the first to provide time-resolved structural dynamics for the helix-coil
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transition46 and β-hairpin formation.45
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Figure 1.5: Hierarchy of time scales for protein motions.

Alternatively, rapid changes in pressure may be used to induce protein folding

(or unfolding).57–60 Generally, proteins denature under high pressures and may relax

to the native state following a negative jump in pressure. Pressure perturbations can

significantly alter the rate constant for folding; thus, reductions in the folding rate,

via appropriate pressure jumps, can be employed to stabilise folding intermediates

and characterise them.61,62

Another means of initiating protein folding is via rapid electron transfer. This

method is particularly useful in studies involving redox-active proteins, such as cy-

tochrome c.63,64 For cytochrome c, the reduced state (Fe2+) is more stable towards

unfolding than the oxidised form (Fe3+). Hence, rapid injection of electrons into the

unfolded oxidised protein can be employed to trigger folding.

Photo-induced ligand dissociation may also be utilised to trigger protein folding.

Carbon monoxide (CO) is known to bind to the haem group of proteins such as

myoglobin and cytochrome c and lead to unfolding. Rapid photolysis of the CO

ligand causes the proteins to refold.65,66 Since the dissociation can occur on the sub-

picosecond time scale, this technique is very useful in probing fast folding events. A

more generally applicable approach is to engineer a photo-trigger into the protein,

which can stabilise the unfolded state and then be photo-cleaved to initiate folding,

irreversibly.67,68 Conversely, reversible folding is achieved by using photo-switches

that initiate folding (or unfolding) via photo-induced isomerisation.69,70

Finally, mechanical force can also be employed to control protein folding. Atomic

force microscopy (AFM)71,72 and optical tweezers73,74 facilitate the single-molecule
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protein folding studies, which are generally not possible using other techniques.

Accordingly, invaluable insight into the protein folding landscape can be attained

using these methods.

1.3.2 Structural and kinetic probes

Pioneering work by Kendrew and colleagues in deciphering the structure of myo-

globin via X-ray crystallography7 ushered in a new era of protein discovery. Al-

though the spacial resolution of the initial X-ray crystal structure was low (ap-

proximately 6 Å), the details provided suggested that an intricate connection ex-

isted between protein structure and function. Subsequent X-ray structures for

haemoglobin,8 lysozyme,75 ribonuclease,76,77 among other proteins, further eluci-

dated this connection. To date, X-ray crystallography has been the most extensively

used technique to determine protein structure;78 accounting for over 80% of protein

entries in the Protein Data Bank (PDB). The main challenge of this technique is

in obtaining single crystals for X-ray diffraction. Specifically, membrane proteins,

multi-domain proteins that consist of flexible linkers, and intrinsically disordered

proteins (i.e. proteins that lack well-defined native structures) are often difficult

to crystallise, prohibiting characterisation by traditional X-ray diffraction. Another

drawback of this technique is that X-ray structures are at best static representations

of proteins and do not explicitly capture the inherent structural heterogeneity. As

an extension to this method, small angle X-ray scattering (SAXS), has been suc-

cessfully applied to provide time-resolved structural data for proteins in solution,

albeit at lower spacial resolutions.79–83

Nuclear magnetic resonance (NMR) spectroscopy is one of the leading technolo-

gies for probing protein folding.84–87 In particular, NMR parameters such as chemi-

cal shifts, scalar coupling constants, residual dipolar couplings (RDCs) and nuclear

Overhauser effects (NOEs) provide ensemble averages for protein structure and dy-

namics. Backbone chemical shifts can distinguish between α-helices and β-strands88

and line broadening of NMR peaks (e.g. in 1D 1H-NMR) can be used to monitor

exchange rates between ensembles.89 The extent of line broadening depends on the

ratio of the difference in the resonance frequencies of native and denatured spins and

the rate of exchange between the two states. For large ratios, peaks are not averaged

and appear as separate lines, while small ratios lead to complete averaging and one

line is observed in the NMR spectrum. In the intermediate regime, significant line

broadening occurs due to incomplete averaging. Line shapes can then be fitted to de-

duce the exchange rate constants (with µs to s accessible time scales).89 Relaxation

dispersion NMR techniques,90 which employ multidimensional NMR,91 modulate
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exchange effects, thus altering the sharpness of NMR peaks. These procedures are

commonly used to probe protein dynamics in the µs to ms regime.86

Scalar coupling constants and 1H-1H cross peaks (COSY and NOESY; corre-

lation and NOE spectroscopy, respectively) provide local distance constraints (for

bonded atoms or nuclei within 5 Å) and are particularly useful for structural char-

acterisation of the folded state.85,92 NMR spectrum for partially folded states suf-

fer from poor dispersion of 1H and 13C resonances (peaks overlap severely), NOEs

weaken; therefore, fewer NMR restraints are available for structural characterisa-

tion.93 Two-dimensional 1H-15N NMR correlation spectroscopy techniques provide

reasonably dispersed spectra for these states, and 15N relaxation data can be used

to quantify backbone motion.93 Amide hydrogen-exchange techniques coupled with

NMR are particularly useful for probing partially folded states.94 Exchange rates

are inferred from changes in peak intensities and the fraction of time for which

protons were protected from exchange (by participating in hydrogen-bonding) can

be determined. These techniques are often combined with rapid initiation methods

(discussed in § 1.3.1) to probe folding intermediates and mechanisms.37–39,60,95–97

RDCs are useful for the determination of backbone conformations (helical

axis/backbone curvature) or relative orientations of multi-domains in larger pro-

teins.98,99 This parameter quantifies the relative alignment of internuclear bonds

with the external magnetic field and, therefore, provides information on the relative

orientation of the residues, irrespective of spacial distance. RDCs have also been

used to probe the structure and dynamics of unfolded100 and intrinsically disor-

dered101 proteins.

Another useful technique for probing both equilibrium and kinetic aspects of pro-

tein folding (and unfolding) in solution is circular dichroism (CD).102–106 When chiral

molecules, such as proteins, interact with circularly polarised light, the differential

absorption of the left and right light components at various wavelengths can be used

to decipher structural propensities. Absorption (usually by peptide bonds) in far-

UV CD studies (180 nm to 240 nm) is used to estimate secondary structure content;

whereas absorption (by aromatic side-chains or disulphide bonds) in near-UV CD

experiments (250 nm to 290 nm) gives information about tertiary structure.103,104

Changes in CD spectra can be used to monitor structural changes during folding

and unfolding, and therefore provide key insight into folding mechanisms and sta-

bility, respectively.107 CD techniques were among the first used to detect folding

intermediates or partially folded proteins (molten globule state).108 In many cases,

the intermediates exhibited large CD signatures in the far-UV regime, indicative of

the presence of some secondary structure, and negligible CD signals in the near-UV
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region of the spectrum. This technique has also been employed to quantify struc-

tural changes in related proteins (e.g. mutants),109,110 and follow conformational

transitions in proteins that are prone to misfolding and aggregation,111 such as

amylin112–114 and β-amyloid,115–117 which are implicated in diabetes and Alzheimer’s

disease, respectively. Changes in absorption (or more specifically, ellipticity) in CD

spectra can be directly correlated with changes in equilibrium concentrations, which

can be used to compute thermodynamic parameters; while a CD spectrometer can

be attached to a suitable rapid initiation apparatus to monitor dynamics.

Infrared (IR) spectroscopy is another well-established technique for investigat-

ing protein structure and dynamics.118,119 In particular, Fourier transform infrared

(FTIR) spectroscopy has been extensively used to obtain time-resolved data for pro-

tein folding, with moderate effort and at high temporal resolutions (< 1µs).120–122

Since proteins generally absorb IR radiation throughout their structure, elaborate

labelling procedures are not required. However, this property can also hinder struc-

tural characterisation, due to the existence of numerous overlapping absorption

bands. In general, the IR spectrum of proteins contain nine characteristic bands.119

The amide I band, which is largely attributed to the C–O stretch, is one of the most

prominent, occurring around 1700–1600 cm−1. The amide I band is highly sensitive

to hydrogen-bonding patterns and small changes in backbone geometry. Hence, the

specific position of this band is strongly correlated with secondary structure; making

it a good diagnostic when coupled with empirical fitting techniques. The relative

intensities of absorption bands in the amide I band region can also be used to esti-

mate overall secondary structure composition. While complete structure prediction

may be a challenge, techniques such as difference IR spectroscopy are very useful

in detecting conformational changes, and are often employed to probe reaction sites

(e.g. in enzyme-substrate interactions), folding intermediates and protein flexibility

in general.118,119 Like NMR-based studies, band broadening effects provide informa-

tion on structural flexibility; with more flexible structures giving rise to broader ab-

sorption bands.119 Two-dimensional infrared spectroscopy (2D IR) offers significant

improvements for probing protein conformational dynamics on the sub-picosecond

time scale, since vibrational modes are extremely sensitive.123 Along with FTIR,124

this technique has been instrumental in probing protein misfolding and aggrega-

tion; providing key insight into the evolution of various neurological disorders.125 As

a complementary technique to IR spectroscopy, Raman spectroscopy also provides

highly sensitive signatures for secondary and tertiary structure of proteins.126,127

Fluorescence is the last major experimental probe presented in this section.

Broadly, fluorescence techniques for protein folding either exploit native or non-
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native fluorescence.128,129 In native (intrinsic) fluorescent experiments, residues, such

as tryptophan, tyrosine and phenylalaline, that emit fluorescence are used as the

probes.130,131 In non-native (extrinsic) fluorescence investigations fluorescent dyes

(e.g. ANS) are used to follow the folding process.132 In general, the quantum yields

of fluorescent probes are extremely sensitive to the local environment (e.g. degree of

solvent exposure) and mobility (e.g. movement of side-chains). Additionally, many

probes emit fluorescence on the nanosecond time scale; therefore, high time resolu-

tion kinetic data can be obtained. These features, along with high signal-to-noise

ratios, make fluorescence-based approaches very appealing for monitoring protein

conformational dynamics.

Typically, fluorescence signals of buried residues are blue-shifted; whereas, the

signals are red-shifted when the residues are exposed to solvent.128,129 This property

has been used in folding/unfolding studies to detect various equilibrium or inter-

mediate states. Fluorescent dyes may bind transiently at different stages of the

folding process, which effectively modulates signal intensities. In classical fluores-

cent studies, detailed structural characterisation is inhibited due to the inherent

local nature of signals. Hence, these studies are most meaningful when performed

in conjunction with other techniques, such as FTIR, CD and NMR. Alternative

fluorescence approaches, namely Förster resonance energy transfer (FRET)133 and

fluorescence correlation spectroscopy (FCS),134 provide more direct spacial informa-

tion. In FRET studies, coupling effects between donor and acceptor fluorescent pairs

are used to characterise protein folding events. Generally, energy transfer between

FRET pairs has a 1/r6 dependence (where r is the distance between the probes);

thus carefully chosen pairs (e.g. IAEDANS and IAF) can be used to probe local

structure and degree of compaction. FRET techniques have also been instrumental

in single-molecule protein folding studies; where the structural heterogeneity along

folding/unfolding pathways can be explored.135–137 Finally, in FCS, fluctuations in

signal intensities can be correlated with conformational dynamics and used to com-

pute relaxation constants.

1.4 Computer Simulations

Protein folding simulations can probe atomistic details of the folding process not

amenable to most experimental techniques; in particular, high spacial (distance)

and temporal (fastest motions) resolutions are achievable. The accuracy of protein

simulations depends largely on the form and parameters of the energy functions used

to represent the protein and the surrounding environment, and the methods used
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to sample the conformational space. These factors are intrinsically linked to the

available computing hardware and, unlike experiments, generally limit the length

scales and duration of computer investigations. In this section, an overview of pro-

tein simulation techniques is presented: from classical techniques to more enhanced

methods for exploring the high-dimensional folding space.

1.4.1 Classical protein simulation techniques

Conventional protein simulations focus primarily on refining experimental struc-

tures, where model coordinates are derived mainly from X-ray crystallography stud-

ies.138–140 The earliest study employed coordinate fitting procedures (model build-

ing) to refine atomic coordinates.138 Subsequent refinement procedures sought to

minimise the potential energy of the system with respect to the Cartesian coor-

dinates (energy refinement). In one treatment, Levitt and Lifson139 defined the

potential energy as a function of the bond lengths, bond angles, dihedral angles,

and non-bonded pairs, along with a constraint term, which ensured that the devia-

tions of the atomic coordinates from the experimental ones were kept to a minimum.

Equilibrium bond lengths and angles were obtained from X-ray structures of small

molecules, and torsional parameters were taken from the Ramachandran plot. These

types of coordinate refinement procedures were used to optimise the geometries of

single-domain globular proteins139–141 and to compute the conformational prefer-

ences of side-chains.142,143 Alternative energy minimisation procedures perturbed

internal coordinates (dihedral angles) to search for lower energy structures.144 The

researchers found that the potential energy of the lowest energy structures was about

40 kcal/mol lower than the highest energy ones.144

These initial studies shed light on the complexity of the protein conformational

space and revealed that, even in the vicinity of the native state, proteins exhibited

significant conformational heterogeneity (‘multiple-minima problem’).145 To achieve

better conformational sampling, Levitt and Warshel introduced a simplified repre-

sentation for proteins.146 In their model, each residue in the protein was represented

by the Cα atom and the centroid of the side-chain. Representations such as this

served to reduce the number of degrees of freedom, so a larger region of conforma-

tional space could be explored. The key assumption was that a separation of time

scales of protein motions (short-range verses long-range) existed, which permitted a

time-averaging of the short-range motion to be adopted without significantly alter-

ing the main features of the folding process. They proposed that in the early stages

of folding long-range forces played a central role in restricting the conformational

space by directing protein collapse.146
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Monte Carlo (MC) methods were later developed in an attempt to overcome the

multiple-minima problem, and have been some of the most widely used approaches

for protein structure prediction.147 Though structure prediction techniques do not

probe protein folding directly, they can provide valuable information about the to-

pography of the folding space. In a typical MC protein simulation, the energy of

the starting structure is calculated, followed by a random perturbation of the coor-

dinates to give a new configuration. A Metropolis condition148 is often introduced

next, which serves to bias the search towards the low-lying regions of the energy land-

scape. Additionally, in classical MC only small step sizes in configurational space

are allowed, otherwise all steps would be rejected. This technical aspect makes

convergence of thermodynamic parameters for complex systems, such as proteins,

nearly impossible.

Exploration of conformational space with MC methods has also been used exten-

sively in conjunction with lattice models.149–151 Although overly simplified, lattice

models of proteins were invaluable in shaping the energy landscape view of pro-

tein folding (§ 1.2.4). In 1994, Hao and Scheraga152 suggested that the folding (or

unfolding) of small proteins may involve a first-order transition; wherein at the tran-

sition temperature the prominent structures correspond to the native state and the

unfolded protein, with a negligible population of partially folded states. That same

year, Socci and Onuchic153 used lattice models to classify polypeptides as either

good- or non-folding sequences. They demonstrated that good folders are ones in

which the folding temperature exceeds the glass transition temperate§ (Tf > Tg),

whereas non-folding sequences become kinetically trapped before complete folding

is achieved (Tf < Tg; native state is kinetically inaccessible).

Molecular dynamics (MD)154 is undeniably the most extensively used technique

to simulate proteins.155–157 In classical MD, the dynamics are simulated by solving

Newton’s equations of motion numerically.158 Initial values are assigned for the

position (usually experimentally derived atomic coordinates) and the velocity (often

randomised) of the protein, and the potential energy is modelled by an empirical

potential. At fixed time intervals (time steps) the values are updated, until the final

simulation time is reached. Unlike MC methods, MD simulations are inherently

time-dependant. Furthermore, the time step is usually constrained by the fastest

motion in the system and so fully atomistic simulations, of even small proteins,

require significant computation time, as for standard MC.

Hence, due to limited computing power, classical MD techniques 158–160 are often

§The glass transition temperature, Tg, was defined as the temperature at which the relaxation
time of the system exceeds the observation time.
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only able to probe protein motion in the neighbourhood of the native state, and are

largely employed to refine X-ray/NMR structures. In 1981, Northrup et al. reported

that B factors (a measure of the spread of electron density of atoms) measured in

X-ray crystallography studies showed good agreement with the mean-square fluc-

tuations of atoms in MD simulations.160 The stability of hydrogen-bonds was also

directly related to proton exchange rates in NMR studies, and the role of hydrogen-

bonding in the folded state was probed at high spacial resolutions.159 Additionally,

to achieve greater computing efficiency, NOE distances were used as constraints for

structure prediction from extended states.161

1.4.2 Enhanced sampling of protein conformational space

The barriers associated with folding are generally high¶ and so in a typical simula-

tion the frequency at which the system acquires sufficient energy to overcome those

barriers will be low. Hence, folding can be regarded as a “rare event”, and it is com-

mon for classical simulations to become trapped in a local region of configuration

space. Therefore, to achieve improved sampling of the conformational space numer-

ous MC/MD based algorithms and protocols have been proposed over the past few

decades.

Elevated temperatures were used to drive unfolding and probe the correspond-

ing structure and dynamics; for example, important intermediates in the helix-coil

transition were characterised via high temperature MD. In similar studies, pres-

sure variations, low pH and denaturants were used to unfold proteins and to study

the effects of solvents on protein denaturation.162,163 Such investigations were not

possible via experiment, and MD simulations were able to probe, in atomistic de-

tail, the disruption of hydrogen-bonds in proteins by water during denaturation.164

However, some researchers were sceptical about the validity of these simulations;

specifically, there were queries on the extent to which the principle of microscopic

reversibility would hold under non-equilibrium conditions and on how much infor-

mation about the reverse process (folding) could be inferred from unfolding studies.1

It was suggested that, while the fine details may vary, unfolding at moderately ele-

vated temperatures proceeded via similar intermediates (in reverse order) to folding

under native conditions.1

In the 1980s protein simulations that employed “umbrella” potentials began to

emerge.165,166 In umbrella sampling, a reaction coordinate (or collective variable)

that partitions the configuration space is selected, and a biasing potential (based

on the collective variable) is added to the ‘true’ potential energy function, to direct

¶Barriers are high in comparison to kBT ; the energy of random thermal fluctuations.
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sampling in specific regions. An early study exploited this technique to probe slow

conformational changes in proteins, specifically ring flipping.165 Free energy surfaces

based on the biased simulations (potential of mean force) can be derived using the

weighted histogram analysis method (WHAM).167 During the 1990s Brooks and

colleagues168–172 published several papers on an analogous biased-sampling tech-

nique, which they used to study small peptides in solution. They reported that

the surrounding solvent weakened exposed hydrogen-bonds in helices and loops,

whereas hydrogen-bonds in β-sheets were relatively stronger, about 5 kT. Other

related approaches, which probe the free energy via biased potentials, include meta-

dynamics173–175 (Figure 1.6a), steered MD,176,177 and targeted MD.178 The latter

two methods may be useful for studying protein-ligand binding (and unbinding)

and the effects of mechanical force on protein structure, similar to AFM experi-

ments. Alternatively, energy ranges may be used to restrict the sampling region, as

in the multicanonical179,180 and Wang-Landau181 approaches.

Methods that exploit a priori or time-dependent reaction coordinates to evolve

the system may introduce systematic errors in protein simulations, as it is generally

exceedingly difficult to define these coordinates. One must, therefore, be cautious

when interpreting the results of such studies. Instead of biasing the sampling with a

reaction coordinate, the phase space may be partitioned using some order parameter

(which characterises different states), and unbiased simulations can be performed

between states. This idea is at the heart of methods such as milestoning,182,183 tran-

sition path sampling (TPS)184–186 and its derivative, transition interface sampling

(TIS).187 These methods are capable of yielding accurate folding times and mecha-

nisms; however, they can be computationally costly and so are generally limited to

study smaller proteins. Bolhuis188 applied TPS to investigate the order of folding

events for the β-hairpin of protein G (16 residues) and found that, consistent with

experiment, the peptide folded by hydrophobic collapse, followed by the formation

of secondary contacts. The unfolding time, probed by TIS, was also in reasonable

agreement with that found in fluorescence studies.188
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Figure 1.6: Two common enhanced sampling techniques used to probe protein folding.
(a) Metadynamics: commonly described as ‘filling the energy landscape with sand’. The
system evolves based on collective variables—used to construct a Gaussian, which is added
to the true potential. This formulation discourages resampling of previously explored
regions. (b) Replica exchange: multiple copies of the system are simulated simultaneously
(e.g. at different temperatures). At regular intervals, exchanges between adjacent replicas
are attempted.

Replica exchange methods (REMs), specifically parallel tempering (PT) ap-

proaches, are perhaps the most commonly used techniques for achieving enhanced

sampling of proteins.189,190 In PT, multiple independent copies of the system are

simulated at different temperatures via MC189 or MD sampling.190 Exchanges be-

tween adjacent replicas are attempted after some fixed interval (MC steps or MD

time steps), with exchange probabilities usually based on the Metropolis criterion

(Figure 1.6b). Alternatively, the temperatures of adjacent copies may be swapped.

This protocol facilitates the escape of the system from low-lying regions of phase

space, and, in theory, all barriers can be surmounted via exchange with higher en-

ergy replicas. Replica exchange MD (REMD),190 in particular, has been applied to

study a wide range of protein systems, including: small peptides in explicit/implicit

solvent,191–193 amyloid-forming proteins194,195 and chaperones.196 REMs also take
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advantage of parallel computing and have even been tailored to proceed on dis-

tributed computing, as in multiplexed-REMD.197 The main drawback of REMs is

that these procedures lead to reduced kinetic data, due to the inherent exchange of

trajectories.

In recent years, construction of kinetic transition networks (KTNs) from MD

or MC simulations has been attempted and is capable, in principle, of preserving

the observable features of protein folding. Instead of running one long simulation,

the goal here is to build statistically robust models from numerous independent

simulations. One way of analysing data from MD simulations is by building Markov

state models (MSMs).198–201 MD trajectories are first decomposed into states, and

a transition probability matrix is then built for the coarse-grained system. The

transition matrix is derived based on the observed transitions between the states,

where the transitions are assumed to be history-independent (Markovian). Hence,

the resulting MSM encodes both the thermodynamics and dynamics of the folding

process.202–205 This approach capitalises on distributed computing platforms, such

as Folding@home pioneered by Shirts and Pande.206 Since MSM analyses do not

require that simulations are performed as a single long trajectory, greater simulation

duration can be obtained from simulations performed in parallel.

MSMs have suggested a hub-like character of the native state, wherein the folded

protein is generally accessible via multiple paths from the heterogeneous unfolded

state.207 Importantly, it was shown that non-native states play a crucial role in

slowing down the folding rate, as previously reported in experimental studies.207

Concurrently, Voelz et al.208 presented folding pathways for a millisecond-folder

modelled atomistically with implicit solvent. Notably, the estimated folding time

of 1 ms was in good agreement with the experimental one, 1.5 ms. Later, folding

simulations of an 80-residue protein was conducted at the atomic level with explicit

solvent representation.209 This study further highlighted the power of the MSM

technique in integrating large amounts of MD data, to yield thermodynamic and

dynamic insights, on time and length scales much longer than the conventional

nanosecond–millisecond simulation limit.
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Figure 1.7: The potential energy landscape approach. Using geometry optimisation tech-
niques, the PEL is discretised into stationary points: minima (green circles) and the tran-
sition states that connect them (red circles).

1.5 Thesis Overview

In this thesis, kinetic transition networks (KTNs) are constructed for protein fold-

ing, via approaches based on the potential energy landscape (PEL).210–212 By apply-

ing geometry optimisation techniques, the PEL is discretised into stationary points

(i.e. minima and the transition states that connect them; Figure 1.7). Essentially,

minima characterise the low-lying regions of the PEL (thermodynamics) and tran-

sition states encode the motion between these regions (dynamics). Principles from

statistical mechanics and transition state theory (unimolecular rate theory) may be

conveniently employed to derive free energy landscapes and folding rates, respec-

tively, from the resulting potential energy transition network.212 Furthermore, the

PEL framework can take advantage of parallel and distributed computing, since

stationary points from separate simulations can be easily integrated into one KTN.

Moreover, the use of geometry optimisation facilitates greater conformational sam-

pling than conventional techniques. Accordingly, this framework presents an ap-

pealing means of probing complex processes, such as protein folding.

The remaining parts of this thesis are organised as follows:

� In § 2 the main theories and techniques employed to construct potential energy
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landscapes are summarised.

� § 3 explores the intrinsic rigidity of proteins and describes how a local rigid

body (LRB) approach may be adopted within the PEL framework to probe

protein folding. The LRB approach effectively integrates out irrelevant degrees

of freedom from the geometry optimisation procedure and further accelerates

conformational sampling. The effects of this approach on the underlying PEL

are analysed in a systematic fashion, for a model protein (tryptophan zip-

per 1).213

� § 4 is concerned with fold-switching in proteins. Such large-scale conforma-

tional changes are generally difficult to probe computationally. Methods based

on geometry optimisation have proved useful in overcoming the broken ergod-

icity issue, which is associated with proteins that undergo large-scale con-

formational changes. In this chapter, the latest PEL-based approaches are

utilised to investigate the most extreme case of fold-switching found in the

literature: the α-helical hairpin to β-barrel transition of RfaH, a bacterial reg-

ulatory protein.214,215

� § 5 focusses on modelling intrinsically disordered proteins (IDPs). Due to

their inherent structural plasticity, IDPs are generally difficult to characterise,

both experimentally and via simulations. An updated approach for studying

IDPs within the PEL framework is presented and tested with various con-

temporary potential energy functions. The cytoplasmic tail of human cluster

of differentiation 4 (CD4),216 implicated in HIV-1 infection, is investigated in

this work.

� Finally, § 6 highlights the key findings of the dissertation and future research

directions are proposed.
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2.1 The Potential Energy Surface

The time-independent, non-relativistic Schrödinger equation for a system of N nuclei

and n electrons is given by:217

Ĥψ(x,X) = Eψ(x,X), (2.1)

where Ĥ is the molecular Hamiltonian, ψ(x,X) is the molecular wave function in

terms of the set of electronic and nuclear coordinates (i.e. x and X, respectively),

and E is the total energy. Expressing the Hamiltonian in terms of the various kinetic

and potential energy operators gives:

Ĥ = T̂ + V̂

= T̂N + T̂n + V̂NN + V̂Nn + V̂nn,
(2.2)

corresponding to the nuclear kinetic energy and electronic kinetic energy operators,

and the three pair-wise interaction energy operators. Explicitly, Ĥ has the form:

Ĥ = −
N∑
I

~2

2MI

∇2
I −

n∑
i

~2

2mi

∇2
i

+
N∑
I

N∑
J>I

ZIZJe
2

|XJ −XI |4πε0

−
N∑
I

n∑
i

ZIe
2

|xi −XI |4πε0

+
n∑
i

n∑
j>i

e2

|xj − xi|4πε0

. (2.3)

In equation (2.3), MI and mi represent the mass of nucleus I (with charge

ZI) and electron i (with charge e), respectively. Since the mass of a proton is
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approximately 1836 times greater than the mass of an electron, MI >> mi, Born

and Oppenheimer rationalised that classically the nuclei are fixed.218 Accordingly,

for fixed nuclear coordinates the wave function becomes:

ψ(x,X) = ψelec(x; X)ψnuc(X), (2.4)

where ψelec(x; X) represents the electronic wave function (which is evaluated at

fixed nuclear positions), and ψnuc(X) corresponds to the nuclear wave function.

Substituting equations (2.4) and (2.2) in (2.1), and expanding for T̂N gives:

Ĥψelec(x; X)ψnuc(X) = −
N∑
I

~2

2MI

ψelec(x; X)∇2
Iψnuc(X)

−
N∑
I

~2

2MI

[2∇Iψelec(x; X)∇Iψnuc(X) + ψnuc(X)∇2
Iψelec(x; X)]

+ [T̂n + V̂NN + V̂Nn + V̂nn]ψelec(x; X)ψnuc(X) (2.5)

Since the electronic wave function only depends parametrically on X, the derivatives

of ψelec(x; X) w.r.t nuclear coordinates can be ignored. Additionally, T̂n has no X

dependence. These approximations allow us to simplify equation (2.5) as:

Ĥψelec(x; X)ψnuc(X) = ψelec(x; X)(T̂Nψnuc(X)) + ψnuc(X)(T̂nψelec(x; X))

+ ψelec(x; X)(V̂NNψnuc(X)) + ψnuc(X)(V̂Nnψelec(x; X))

+ ψnuc(X)(V̂nnψelec(x; X))

= Eψelec(x; X)ψnuc(X) (2.6)

We can therefore define the electronic Schrödinger equation as:

Ĥelecψelec(x; X) = T̂nψelec(x; X) + V̂Nnψelec(x; X)

+ V̂nnψelec(x; X)

= Eelec(X)ψelec(x; X). (2.7)

In equation (2.7) the electronic energy Eelec(X) is a function of the nuclear positions,

i.e. the set of electronic energies (of different electronic states) for fixed nuclear

configurations. Hence, for a range of nuclear configurations, Eelec(X) maps out an

electronic potential energy surface; nuclear motion is studied on a surface provided

by the electronic Schrödinger equation.
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Putting equations (2.6) and (2.7) together gives:

Ĥψelec(x; X)ψnuc(X) = (Ĥelecψelec(x; X))ψnuc(X) + ψelec(x; X)(T̂Nψnuc(X))

+ ψelec(x; X)(V̂NNψnuc(X))

= Eψelec(x; X)ψnuc(X). (2.8)

It follows that:

Ĥψnuc(X) = Eelec(X)ψnuc(X) + T̂Nψnuc(X) + V̂NNψnuc(X)

= [T̂N + V̂NN + Eelec(X)]ψnuc(X)

= [T̂N + V (X)]ψnuc(X)

= Eψnuc(X), (2.9)

where V (X) is the effective potential that describes the variation of the electronic

energy as a function of nuclear coordinates, i.e. the potential energy surface (PES).

In this work, PES was computed for systems in their electronic ground state. For

complex systems such as proteins, V (X) is a function of many internal coordinates;

an N atom protein, in general, requires 3N −6 vibrational coordinates.* Hence, the

PES, in terms of these coordinates, is a multidimensional (3N − 6 + 1) hypersur-

face.210

The extrema (stationary points; ∇V (X) = 0) of this multidimensional space are

generally the main points of interest; specifically, minima (stationary points with

all their non-zero Hessian eigenvalues positive) and transition states (stationary

points with a single negative Hessian eigenvalue). By definition, minima lie at the

bottom of wells on the hypersurface, and transition states lie at the well boundaries,

encoding the structure and dynamics of the system, respectively. The remainder of

this chapter is mainly concerned with tools and approaches employed to probe the

discretised PES.

2.2 Potential Energy Functions

In the previous section we showed how the concept of a potential energy surface

develops from the Born-Oppenheimer approximation.218 To construct a PES, we

must first define an appropriate functional form for V (X) (i.e. a potential energy

function). Typically, potential energy functions are defined as a sum of independent

*In the absence of external forces, the PES is invariant to translation and rotation of the entire
molecule.
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or coupled analytical equations that describe the molecular forces. For proteins,

energy functions are generally expressed in terms of nuclear coordinates, and the

physical constants (i.e. parameters) are obtained from ab initio computations or

experimental techniques such as spectroscopy.

A given functional form and parameter set together comprise a force field. Com-

mon force fields used in computer simulations of proteins include: AMBER (Assisted

Model Building with Energy Refinement),219–221 CHARMM (Chemistry at Harvard

Macromolecular Mechanics),222,223 OPLS (Optimised Potentials for Liquid Simula-

tions),224 and GROMOS (GROningen MOlecular Simulation).225

In this work, AMBER force fields were used to simulate protein structure and

dynamics. Weiner and Kollman219 first presented a description of the AMBER

potential, wherein all atoms are represented explicitly. The full energy function is

given by:

VAMBER =
∑
bonds

kr(r − req)2 +
∑
angles

kθ(θ − θeq)2 +
∑

dihedrals

Vn
2

[1 + cos(nθ − γ)]

+
∑
i<j

[
Aij
R12
ij

− Bij

R6
ij

]
+
∑
i<j

∣∣∣∣qiqjεrij

∣∣∣∣. (2.10)

The first two terms in equation (2.10) represent the bond and angle contributions

to the potential energy, respectively. These terms are harmonic potentials centred

on equilibrium values (i.e. req and θeq); accordingly, the AMBER potential does not

allow for bond breaking. The third term in equation (2.10) encompasses the tor-

sional strain in the molecule, and the dihedral parameters (such as rotational energy

barriers, Vn) are derived from empirical fitting procedures. The final two terms in

the AMBER potential are the non-bonded terms—van der Waals and electrostatic

energies, respectively. The van der Waals term includes repulsion (the 1/R12
ij part)

and dispersion attractions (the 1/R6
ij part). The electrostatic energy is represented

by a Coulomb potential, which sums over pairwise atomic charges; atomic charges

are fixed, and so the potential does not account for polarisation effects explicitly.

All-atom AMBER force fields are advantageous since they allow for the com-

putation of 13C and 1H-NMR properties. Moreover, steric effects due to hydrogen

atoms and hydrogen-bonding, which play crucial roles in directing protein structure,

can be accounted for in simulations. In this work, several modern all-atom AMBER

force fields were used namely: ff99SB,226 ff99SB-ILDN,227 ff14ipq,228 and ff14SB.229

28



Methods

2.3 Solvent Models

The structure and dynamics of proteins are significantly influenced by their solvent

environment, and to be physically meaningful in silico experiments must account

for solvent effects. Explicit representation of solvent significantly increases the de-

grees of freedom, leading to longer computer simulation times; thus modelling fully

solvated proteins on biologically relevant time scales has been an ongoing challenge.

Accordingly, implicit solvent models, such as generalised Born (GB) solvation meth-

ods, have been developed to address this issue.

In GB models the free energy of solvation is summarised as:230

∆Gsol = ∆Gcav + ∆GvdW + ∆Gpol, (2.11)

where ∆Gcav is the cavity free energy, which accounts for the disruption of solvent-

solvent interactions to accommodate solute molecules, and ∆GvdW represents the

favorable van der Waals interactions between solute and solvent. These non-polar

terms vary linearly with the solvent-accessible surface area (S) and can be evaluated

together as:

∆Gcav + ∆GvdW =
N∑
k=1

σkSk; (2.12)

σk is the atomic solvation coefficient, which is derived empirically.231,232 The last

term in equation (2.11) refers to the electrostatic free energy, and is a measure of

the dielectric response of the solvent to the solute charge distribution. Different

solvent models are generally distinguished by the method used to assess the po-

lar component of solvation free energy. A numerical solution can be obtained for

∆Gpol by employing the Poisson-Boltzmann (PB) equation, where the electrostatic

potential is modelled by the dielectric function and the charge distribution of the

molecule.233 This approach requires that the potential be evaluated for every struc-

tural change in the molecule, rendering such calculations computationally costly for

most biological systems of interest.

Unlike the PB method, which employs an iterative procedure, the GB treatment

assumes a solvent-induced field energy produced solely by the solute charges:234

∆Gpol = −1

2

(
1

εp
− 1

εw

)∑
i,j

qiqj
fij

, (2.13)

where εp and εw are the dielectric constants of the solute and solvent respectively,

and qi, qj are the partial charges of the solute. The fij term is the effective molecular
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Born radius taken as:

fij = [r2
ij +RiRj exp(−r2

ij/4RiRj)]
1
2 , (2.14)

where rij is the distance between atoms i and j, and Ri is the effective Born radius

of atom i,234 which encompasses both the inherent atomic radius, as well as that

arising from the influence of its neighbouring atoms. An analytical solution for

Ri is then obtained by applying the Coulomb field approximation (CFA), where it

is assumed that as the solvation proceeds the dielectric displacement of atom i is

Coulombic in nature. The effective Born radius then becomes

1

Ri

=
1

ai
− 1

4π

∫
solute, r>ai

1

r4
dV ; (2.15)

ai is the atomic radius of atom i, which is at the centre of a cavity over which the

integral is evaluated.235 GB solvent models differ in their approximation of the inte-

gral in equation (2.15). For instance, in the model developed by Hawkins, Cramer

and Truhlar (GBHCT)236 the integral is evaluated over the van der Waals (vdW)

spheres of the solute atoms, which tend to underestimate the cavity size (molecular

volume). This model was improved by Onufriev, Bashford and Case (GBOBC),237

who rescaled the effective radii to account for the degree of atomic burial within the

cavity, and so provide a better approximation of the molecular volume. Recently,

further improvements have been reported for the GB-Neck2 parameter set.238

2.4 Structure Prediction by Basin-Hopping

Global Optimisation

In the realm of computational biology, global optimisation mainly involves finding

the global minimum of the potential energy function for the system of interest.

Low-lying minima on the PES often form stable ensembles on the free energy sur-

face (FES) computed at low temperatures; hence, locating these structures is an

important area of research. However, even for a short peptide sequence, the PES

supports numerous local minima, many of which may be separated by high energy

barriers. The task then becomes finding an appropriate search algorithm that can

predict the global minimum structure in an efficient and unbiased manner.

The basin-hopping global optimisation procedure239,240 has been utilised in this

work to locate the global minimum. This method employs a hypersurface deforma-

tion, without changing the global minimum of the potential energy surface. Each

30



Methods

configuration on the PES can be represented by a unique 3N -dimensional vector

X, where N is the number of atoms, and the energy corresponding to X is given

by V (X). Accordingly, the energy obtained by a minimisation on the PES starting

from X can be taken as min{V (X)}.
By performing energy minimisations for every point on the PES, the transformed

PES is obtained: Ṽ (X) = min{V (X)}. The PES is now represented by ‘basins of

attraction’241 of discrete energies; each hosting the configurations whose minimisa-

tion led to a particular stationary point (local minimum). Basin-hopping effectively

removes all transition state regions, as shown in Figure 2.1, and thus results in

accelerated motion on the PES.

E
n
er
g
y

Global minimum

Local minimum

Figure 2.1: Illustration of the energy landscape transformation. The green curve is the
original surface, and the red curve represents the transformed surface. Each local minimum
on the original surface V (X) corresponds to a ‘basin of attraction’ on the transformed
surface Ṽ (X).

The main basin-hopping algorithm is summarised below:

Geometry perturbation and energy minimisation

� Let ci represent the initial configuration of the system whose global minimum

is to be determined, and Vi represent its energy.

� An appropriate step-taking routine (e.g. a randomised Cartesian, angular, or
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dihedral move) is then employed to perturb ci.

� The perturbation is then followed by an energy minimisation to yield a new

configuration cn with energy Vn.

Acceptance or rejection of a step

� A step is accepted if the energy of the new configuration Vn is less than that

of the initial one Vi: Vn < Vi.

� A step is also accepted if Vn > Vi and satisfies the Metropolis criterion:148

Ran(0→ 1) < exp[−(Vn − Vi)/kBT ]; where Ran(0→ 1) is a uniformly gener-

ated random number between zero and one.

� If the step is accepted, the next perturbation is applied to cn.

� Otherwise, the step is rejected and another perturbation is applied to the

initial configuration ci.

In the present work, energy minimisations were performed using the limited-

memory BFGS (L-BFGS) algorithm,242,243 named for Broyden,244 Fletcher,245 Gold-

farb,246 and Shanno.247 This algorithm is well suited for large-scale problems, since

the user is able to control the amount of storage required for approximation of the

Hessian matrix. The basin-hopping procedure has been implemented in the GMIN

software,248 which was used in this thesis.

2.5 Building Kinetic Transition Networks from

Discrete Path Sampling

In discrete path sampling249–251 (DPS) the aim is to determine the kinetics of a

system from a collection of pathways, connecting reactant (e.g. an unfolded protein)

to product (e.g. a folded protein). Wales249 describes a discrete path as a sequence

of local minima on the potential energy surface (PES) and the transition states

that directly connect them. Recall that, within the potential energy landscape

framework, minima are classified as stationary points with all their non-zero Hessian

eigenvalues positive, and transition states are defined as stationary points with a

single negative Hessian eigenvalue.
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2.5.1 Finding an initial path

The first step in DPS is to construct an initial path from the reactant (A) to the

product (B). Appropriate initial endpoints (three-dimensional coordinates) must

be chosen to represent the reactant and product. This is the only stage in DPS

where any prior knowledge is required. Once suitable representative structures are

selected, a cycle of events, discussed below, then proceeds to connect them.

Doubly-nudged elastic band method

Transition state guesses are first obtained using the doubly-nudged252 elastic

band253,254 (DNEB) procedure. A double-ended interpolation between A and B

produces an intermediate set of images [X1,X2...XM ], where Xi represents the

Cartesian coordinates of the ith image. Next, harmonic springs are used to con-

nect equivalent atoms in adjacent images, resulting in a spring potential,

Espr =
1

2
kspr

M+1∑
i=1

|Xi −Xi−1|2, (2.16)

where kspr is the force constant of the spring, M is the number of intermediate

images and X0 and XM+1 represent 3N -dimensional vectors of the coordinates of

the endpoints. Additionally, each image also has a true potential, denoted V (Xi).

An important element of the nudged elastic band approach is the derivation of the

elastic band gradient, which involves a projection of the forces due to the spring

potential and the true potential. This projection prevents interference of the spring

potential (which affects convergence of images) and the true potential (which affects

the spacing of images), and gives the band its ‘nudging’ properties.254 The gradient

of the doubly-nudged elastic band252 is taken as:

gDNEB = g⊥ + g‖spr + g∗spr, (2.17)

where g⊥ is the component of the true gradient perpendicular to the path, and g
‖
spr

is the component of the spring gradient parallel to the path. g∗spr is given by:

g∗spr = g⊥spr − (g⊥spr · ĝ⊥)ĝ⊥, (2.18)

with ĝ⊥ representing a unit vector along the component of the true gradient per-

pendicular to the path.
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gtrue
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Harmonic springs

Figure 2.2: Summary of the doubly-nudged elastic-band procedure, which is employed
to obtain transition state candidates in DPS. The blue curve represents an initial inter-
polation between A and B. The elastic-band energy is iteratively minimised, until the
gradient falls below a user-defined threshold. The red curve corresponds to the converged
elastic-band; each transition state guess (TSG) is indicated on the curve. These TSGs can
then be refined further using methods such as hybrid eigenvector-following (discussed in
the text).

The set of paired images is then relaxed by L-BFGS minimisations (Figure 2.2);

gDNEB serves to stabilise the path during minimisations. Without the formulation

in equation (2.18), the spring gradient would prevent the elastic band from forming

a curved energy path (due to ‘corner-cutting’), and the true gradient would cause

images to slide away from transition state regions towards proximate minima. The

objective is to optimise the elastic band until a connected path between A and B is

obtained. However, approximate transition states found during DNEB calculations

must first be converged more tightly via hybrid eigenvector-following (HEF).255,256
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Hybrid eigenvector-following

This is a single-ended eigenvector-following procedure for locating transition states

on the potential energy surface.255,256 In hybrid eigenvector-following (HEF) the

smallest non-zero Hessian eigenvalue (λmin) and the corresponding eigenvector

(xmin) are used for uphill searches, and minimisation (e.g. using the L-BFGS al-

gorithm) is performed in the tangent space until a transition state is found.256 The

smallest non-zero eigenvalue can be found using the Rayleigh-Ritz ratio:255

λ(x) =
xTHx

x2
, (2.19)

where x represents the displacement from the current configuration X, and xT is its

transpose. To avoid explicit computation of the Hessian H, λ(x) is estimated from

the numerical second derivative of the energy:

λ(x) ≈ V (X + x) + V (X− x)− 2V (X)

x2
, (2.20)

where V (X) is the energy of configuration X, and x is a very small change (|x| � 1)

in its geometry. Hence, the minimum value of λ(x) can be obtained by differentiating

equation (2.20):

∂λ(x)

∂x
=
∇V (X + x)−∇V (X− x)− 2λ(x)x

x2
; (2.21)

which can be minimised using the L-BFGS algorithm to give λmin, and thus xmin.�

However, for numerically large values of V (X), equation (2.21) may suffer from

loss of precision due to roundoff error. Ergo, an alternative formulation has been

proposed for estimating λmin:257

λ(x) ≈ {∇V (X + x)−∇V (X− x)} · x
2x2

. (2.22)

In each HEF optimisation cycle, λ(x) is computed, until the root-mean-square de-

viation falls below a user-defined threshold. An uphill step is then taken in the

direction specified by x, and L-BFGS minimisations are performed in the orthog-

onal subspace. Through successive iterations,� tightly converged transition states

are located on the PES. These transition states are then connected to minima by

�Overall rotational and translational degrees of freedom are projected out to avoid convergence
of x to one of the corresponding eigenvectors.

�HEF iterations continue until the overlap of x between the current and previous cycle exceeds
0.999.
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following their approximate steepest-descent paths parallel and anti-parallel to the

corresponding eigenvector.

Dijkstra’s shortest path

Minima and transition states found during DNEB/HEF searches form a database

of stationary points. Recall that the goal is to find a connected path between the

reactant (A) and product (B). Before each new DNEB/HEF cycle, a metric is

needed to determine which minima in the database are to be connected to yield the

shortest path. Carr et al.258 employed Dijkstra’s algorithm,259 which selects minima

based on a minimised Euclidean distance metric.

In a database of stationary points the total set of minima can be described

using a complete graph G(M,D); where M represents all minima and D all the

edges between them. Edges exist between all minima in the database, and the edge

weight between arbitrary minima x and y is taken as a function of the Euclidean

distance:

w(x, y) =


0, if x and y are connected by a single transition state,

∞, if n(x, y) = nmax,

f(d(x, y)) otherwise.

(2.23)

In equation (2.23), n(x, y) is the number of connection attempts between minima

x and y, nmax is the maximum connection attempts (set by the user), and d(x, y)

is their minimised Euclidean distance.§ The above metric is used at the beginning

of each DNEB/HEF cycle to select appropriate minima in the existing database for

connection attempts. This process is repeated until there are no missing connections

along the path—i.e. w(A,B) = 0.

2.5.2 Refining the stationary point database

The initial path found between A and B is usually long with many high barriers,

particularly for endpoints distant in configuration space. The objective then is to

grow and refine the stationary point database by making more connections between

minima. At any point in DPS, the fastest path (B ← A) is taken as the path making

the largest contribution to the steady-state rate constant kSSBA (which can be defined

as a sum over all discrete paths with the steady-state approximation for intervening

minima; see § 2.7.2). Once the fastest path is identified, the energy barriers are

§The minimised Euclidean distance is computed with respect to overall rotation, translation
and permutation of identical atoms.
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calculated, as well as the distances between minima along the path that are not

connected by a single transition state. This path is then perturbed in various ways

in search of paths that are more kinetically relevant.

SHORTCUT

This scheme chooses minima from the current ‘fastest’ path that are separated by

at least a minimum number of transition states (steps).257,260 The minima are then

connected using the procedures discussed in § 2.5.1. The SHORTCUT procedure

usually decreases the total number of steps on the path and leads to an increase in

the rate constant.

SHORTCUT BARRIER

Alternatively, the SHORTCUT BARRIER method258,260 selects minima on either

side of the largest barriers on the current path, up to a maximum number of steps

apart. Additional connection attempts between these minima may find paths avoid-

ing such high barriers, thus improving the rate constant.

UNTRAP

While the SHORTCUT and SHORTCUT BARRIER approaches improve the rate

constant, these procedures may also introduce kinetic traps on the PES. These traps

take the form of low-lying minima separated from the product minimum by high

barriers. Most traps are artificial and are due to incomplete sampling. To find low-

barrier paths for these minima the UNTRAP scheme260 is used. Candidate minima

for ‘untrapping’ are chosen based on the ratio of the potential energy barrier and

potential energy difference from the product (B). Hence, minima at low potential

energies connected by high barriers are most likely to be chosen. Connection at-

tempts between these minima and the product minimum then proceed in search of

better paths.

2.6 Calculating Thermodynamic Properties

The canonical partition function, Z(T ), is computed as a sum of contributions from

the basins of attraction of different local minima in our stationary point database:210

Z(T ) =
∑
i

Zi(T ); (2.24)
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where Zi(T ) is the partition function for the catchment basin of minimum i. The

catchment basin of i represents all the configurations whose minimisations led to i.

It follows that the equilibrium occupation probability of minimum i is given by:

peqi =
Zi(T )

Z(T )
. (2.25)

A harmonic approximation is used to estimate the vibrational partition function

of each minimum i:210,261

Zi(T ) =
nie
−βVi

(βhν̄i)κ
; (2.26)

where ni is a factor that ensures that Zi accounts for all nonsuperimposible permu-

tation isomers of i. For a system of NA atoms of A, NB atoms of B, and so on,

ni = 2NA!NB!NC ! · · ·/oi; where oi is the point group order.210 β = 1/kBT (kB is the

Boltzmann constant), Vi is the potential energy of minimum i, h is Plank’s constant,

and κ = 3N − 6 (total number of vibrational degrees of freedom).210

The ν̄i term in equation (2.26) represents the geometric mean vibrational fre-

quency, ν̄i = [
∏κ

α=1 να(i)]1/κ; where the vibrational frequencies of each minimum,

να(i), are computed via normal mode analysis.210,261

Equilibrium statistical mechanics can then be employed to estimate the free

energy of minimum i,¶

Fi(T ) = −kBT lnZi(T ), (2.27)

the total energy in the canonical ensemble,

〈E〉 = κkBT +
1

Z(T )

∑
i

ZiVi, (2.28)

and the canonical heat capacity at constant volume (the derivative of 〈E〉 with

respect to T ),210

Cv(T ) = κkB −
(Z1(T ))2

kBT 2(Z0(T ))2
+

Z2(T )

kBT 2Z0(T )
; (2.29)

where

Zp(T ) =
∑
i

Zi(Vi)
p. (2.30)

¶The free energies of transition states are computed in a similar fashion, except the imaginary
vibrational frequency is omitted from ν̄i.
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2.7 Calculating Rate Constants

2.7.1 Unimolecular rate constants

Transition state theory (TST) can be used to estimate the unimolecular canonical

rate constant, k†i (T ), out of minimum i through transition state † at temperature

T :

k†i (T ) =
kBTZ

†(T )

hZi(T )
e−∆V/kBT , (2.31)

where Z†(T ) and Zi(T ) are the partition functions for † and i, respectively; ∆V

is the potential energy difference between † and i. For a transition from minimum

i to j, the total rate constant kij(T ) may be computed by summing k†i (T ) for all

intervening transition states. This procedure provides an upper-bound to the true

rate constant; since it does not correct for recrossing events (certain transition states

may be encountered more than once), which reduce the overall rate.

2.7.2 Steady-state rate constant

The TST unimolecular rate constants for elementary transitions can be used to

compute rate constants kAB and kBA between reactant A and product B states.

In an optimised DPS stationary point database A and B may be connected by

an infinite number of discrete paths. The aim here is to locate the most kinetically

relevant paths connecting A and B; which may be achieved by taking a weighed sum

all discrete paths, based on the equilibrium occupation probabilities of the states on

those paths.

At equilibrium:

pa(t)

pA(t)
=
peqa (t)

peqA (t)
and

pb(t)

pB(t)
=
peqb (t)

peqB (t)
, (2.32)

where pa(t) and pb(t) represent the occupation probabilities of a and b minima

at time t within states A and B, respectively. If we assume that the dynamics is

Markovian (memoryless), then the change in the occupation probability of minimum

a, for example, can be expressed as:249

dpa(t)

dt
=
∑
b 6=a

[kabpb(t)− kbapa(t)], (2.33)

where kab is the unimolecular rate constant for transitions from b to a, with b 6= a

indicating that the sums are over geometrically distinct minima.210
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From equation (2.33), it follows that:249

dpA(t)

dt
= kABpB(t)− kBApA(t) and

dpB(t)

dt
= kBApA(t)− kABpB(t), (2.34)

where

kAB =
1

peqB

∑
a∈A

∑
b∈B

kabp
eq
b and kBA =

1

peqA

∑
a∈A

∑
b∈B

kbap
eq
a . (2.35)

In many cases it may be difficult to classify all minima in the stationary point

database as belonging to set A or B. It therefore becomes necessary to define a

third set I for all intervening minima. To recover two-state rate constants, we must

assume that the time evolution of the occupation probability of each minimum i in

I is negligible:249

dpi(t)

dt
=
∑
j

kijpj(t)− pi(t)
∑
i

kji ≈ 0; (2.36)

thus,

pi(t) =

∑
j

kijpj(t)∑
i

kji
. (2.37)

Accordingly, kAB and kBA, within the steady-state approximation, can be expressed

as:249

kSSAB =
1

peqB

∑
a←b

kai1ki1i2 ...kinbp
eq
b∑

j1

kj1i1
∑
j2

kj2i2 ...
∑
jn

kjnin
(2.38)

and

kSSBA =
1

peqA

∑
b←a

kbi1ki1i2 ...kinap
eq
a∑

j1

kj1i1
∑
j2

kj2i2 ...
∑
jn

kjnin
, (2.39)

respectively. The fastest path between A and B is then appropriately defined as the

discrete path making the largest contribution to kSSBA, and can be extracted from the

kinetic transition network using Dijkstra’s shortest path algorithm.

2.7.3 New graph transformation rate constant

The new graph transformation (NGT) procedure262 provides a robust formalism for

extracting two-state rate constants (kAB and kBA) from kinetic transition networks.

For a given minimum a the mean waiting time in that minimum (i.e. time for

escape from a) can be defined as:

τa =
1∑

β

kβa
, (2.40)
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and the transition probability from a to b can be estimated as:

Pba = kbaτa. (2.41)

Thus, the transition probability from a to the set B is given by:

PBa =
∑
b∈B

Pba. (2.42)

When the NGT scheme is applied, minima in the database are first assigned to

one of three sets: reactant (A), product (B), or intervening (I). Minima in I are

then progressively removed and the transition probabilities and waiting times are

renormalised to leave the average mean first passage time (MFPT)� unchanged.263

The overall rate constants are then given by:

kNGTAB =
1

peqB

∑
b∈B

P ′Abp
eq
b

τ ′b
and kNGTBa =

1

peqA

∑
a∈A

P ′BAp
eq
a

τ ′a
, (2.43)

where the prime symbol is used to indicate that the terms have been renormalised.

The NGT method is advantageous in that it avoids the steady-state assumption,

and can be implemented efficiently to obtain kinetics at different temperatures.

Rate constants reported in this dissertation were computed via the NGT procedure.

2.7.4 Free energy regrouping

At equilibrium, protein reactant (A) and product (B) states correspond to ensem-

bles of unfolded and folded structures, respectively. To appropriately define these

ensembles for our kinetic transition networks, we employed an iterative regrouping

scheme264 (REGROUPFREE in PATHSAMPLE), which lumps minima into free

energy groups based on the relative free energy barriers.

In this scheme, the free energy of a group of minima I is given by:

FI(T ) = −kBT
∑
i∈I

lnZi(T ), (2.44)

and the free energy of the group of transition states connecting I to J is taken as:

FIJ(T ) = −kBT
∑
(i,j)†

lnZ†(T ), (2.45)

�The simulation time for a path from A to B can be estimated as a sum of the waiting times
of states on the path. The weighted sum of simulation times for all discrete paths connecting A to
B is the MFPT.
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where Z†(T ) is the canonical partition function of the transition state connecting i

and j.264

Unless otherwise stated, steady-state and NGT rate constants reported in this

thesis were computed by first lumping minima and transition states into their re-

spective free energy groups, based on a pre-defined free energy threshold for the

barrier heights.

2.8 Representing Energy Landscapes as Discon-

nectivity Graphs

Originally introduced by Becker and Karplus,265 disconnectivity graphs have played

a pivotal role in conceptualising energy landscapes.266–268 Figure 2.3 illustrates how

a disconnectivity graph (red curve) may be constructed from a database of minima

and the transition states that connect them (blue curve). The energy is represented

on the vertical axis of the graph, while the horizontal axis can be arbitrary or may

represent an order parameter. In the disconnectivity graph, a vertical line is drawn

from each minimum (A–D), beginning at the potential energy of that conformer. At

the energy threshold E2 minima A and B are grouped together, since the transition

state connecting them lies below the threshold, and similarly for minima C and

D. However, at this threshold the two sets of minima are still disjoint, since the

transition state connecting them lies above the threshold. When the threshold is

high enough (i.e. at E3) the two sets of minima merge. Since the energy spacing

(∆E) determines how the analysis is performed, the graph is most meaningful when

the thresholds are spaced at suitable regular intervals. For instance, if the spacing

is too small, it may be difficult to obtain any useful information from the analysis,

and if it is too large, the graph may be misleading (in that, minima separated by

particularly high barriers may be grouped together.
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∆E

A B
C D

E1

E2

E3

E4

Figure 2.3: Construction of a disconnectivity graph from a database of stationary points.
Minima are labelled A–D on the energy surface (blue). In the disconnectivity graph
(red) each local minimum is represented by a vertical line, starting at the energy of that
minimum. At a given energy threshold, E + n∆E, minima connected by transition states
that lie below the threshold are grouped into disjoint sets.

The final analysis is a graph that resembles a tree of some sort; for example,

the ‘palm tree’ disconnectivity graph, depicted in Figure 2.4, is characterised by

a well-defined global minimum with the minima leading towards it separated by

relatively small downhill barriers.266 These graphs may aid in identifying putative

‘kinetic traps’ in the landscape,269 which may take the form of low-lying minima

of comparable energy to the global minimum, but separated by particularly high

energy barriers.
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Disconnectivity graphEnergy landscape

Figure 2.4: An energy landscape and the corresponding disconnectivity graph. The dis-
connectivity graph has a palm tree-like topology.

Free energy disconnectivity graphs can be constructed from their corresponding

potential energy graphs by employing the superposition approach and the harmonic

vibrational densities of states, at a chosen temperature.261,270–272 In approximating

the free energy using disconnecting graphs, these graphs can also be coloured based

on some order parameter (e.g. number of hydrogen-bonds, radius of gyration etc.) to

give further insight into the underlying thermodynamics and kinetics of the system.
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Protein Folding as a Function of

Local Rigidification

3.1 Introduction

Computer simulations continue to improve our understanding of protein fold-

ing.273–275 However, the interplay of hierarchical length and time scales poses a

significant challenge to in silico investigations. With standard techniques, con-

formational dynamics of proteins can only be probed over relatively short time

scales, which do not capture important biological processes. Accordingly, advance-

ments in computing code and hardware,276–278 sampling techniques,190,201 and en-

ergy functions227,279,280 have been actively pursued, to achieve longer spatiotemporal

scales.203,281,282 Alternatively, some of the complexity may be mitigated by develop-

ing approaches that reduce the number of degrees of freedom.283–285

Coarse-graining involves reducing the degree of detail used to describe a sys-

tem. Numerous coarse-grained models have been proposed and implemented for

biomolecules, with varying levels of success.21,286–293 In one approach, amino acid

side-chains and α-helices are represented as spheres and cylinders, respectively;286

in elastic network models287,294 amino acid residues are reduced to beads interact-

ing via interresidue potentials. Structure-based potentials, such as Gō models,21,295

lead to smoother landscapes, which may assist structure prediction. In these mod-

els, native-like structures are faithfully represented, while competing structures on

the protein energy landscapes are penalised. Over the last decade, much effort has

been expended on deriving multiscale procedures296–298 for simulating biomolecules.

These methods aim to capitalise on both the efficiency of coarse-graining and the

detail present in fully atomistic computations. However, multiscale procedures rely

on extensive statistical analysis and structural data obtained from ab initio compu-
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tations and experiments; hence, success is based on the extent to which the models

have been parametrised and optimised. Consequently, these approaches can be quite

system specific and transferability between unrelated structures may be an issue.

Here we adopt a different route, based on the local rigid body (LRB) frame-

work,299–302 to address some of the inherent difficulties in modelling proteins. This

framework has been benchmarked for structure prediction of model peptides using

all-atom potentials301 and, in the current contribution, we extend it to explore the

global thermodynamics and mechanics of peptide folding. Local rigidification ex-

ploits the separation of time scales283–285,303,304 between low frequency vibrational

modes and localised, fast vibrations, which suggests that specific regions within the

protein can be described as rigid bodies. As a result of rigidification, the number of

stationary points (minima and transition states) on the potential energy landscape

is significantly reduced, resulting in substantial computational speedup.301 Despite

the reduction in the total number of degrees of freedom, local rigidification preserves

the full atomistic resolution, and thus the resulting interatomic interactions. Hence

it might be viewed as a coarse-graining of the energy landscape, rather than the

potential energy function.

In the present work, we provide systematic benchmarks for tryptophan zipper 1

at different levels of local rigidification. Our results indicate that a suitable choice of

local rigidification can capture the underlying physics of protein folding, and faith-

fully represent the global features of the energy landscape—preserving key aspects

of an unconstrained description of the protein. We believe that this framework will

present new opportunities for exploring the structure, dynamics and thermodynam-

ics of proteins.

3.2 Methods

Deciphering the folding pathway for large proteins necessitates a detailed under-

standing of how elementary structures, such as β-hairpins, are formed. The β-

hairpin is the simplest β-structural element, composed of two hydrogen-bonded an-

tiparallel strands connected by a short turn. Many of the fundamental characteris-

tics of protein folding are represented in β-hairpin formation, such as hydrogen-bond

and hydrophobic core stabilisation, and a distinct funnelled energy landscape.45,251

Therefore, β-hairpins are good candidates for benchmarking new protein folding

simulation methods.
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Figure 3.1: NMR structure for the tryptophan zipper 1 (TZ1; PDB code: 1LE0) showing
the characteristic stacking of indole rings.

In this work we focus on the tryptophan zipper 1 (TZ1). TZ1 is one of the

family of 12-residue β-hairpins designed by Cochran and coworkers.213 The peptides

are monomeric and adopt a well-defined tertiary structure with a unique structural

motif termed a ‘trpzip’: cross-strand tryptophan residues interlock in a zipper-like

fashion, resulting in a stable native state. In addition to their small size, the peptides

fold on the microsecond time scale,49 making them accessible in fully atomistic

simulations.

The NMR structure for TZ1 is shown in Figure 3.1. It has a type II turn (turn

sequence EGNK) flanked on either side by the WTW triad, and terminated by ser-

ine and lysine residues (TZ1 sequence: SWTWEGNKWTWK). TZ1 was represented

by the AMBER ff99SB226 potential energy function and the GBOBC solvation po-

tential.237 We employ an implicit solvent representation to avoid convolution with

explicit solvent degrees to freedom, which would make some of our conclusions less

definitive. Since the peptide is charged, a salt concentration of 0.1 M was maintained

to represent mobile counterions in solution.305 No periodic boundary conditions were

imposed on the system, and no cutoffs were set for non-bonded interactions. For

calculation of effective atomic Born radii a cutoff of 25 Å was used. The AMBER

potential was symmetrised, as described by Ma lolepsza et al.,306 so that intercon-

vertible permutational isomers have the same energy.
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Local rigid body framework

Local rigidification involves grouping sets of atoms into rigid units, each with six

remaining degrees of freedom: three translations and three rotations. Rigid body

representations have been exploited in many areas, including molecular dynamics

simulations with explicit water,307 structure prediction of organic compounds308,309

and water clusters,300,302,310 protein-protein docking,311,312 and self-assembly of virus

capsids.299,313

Definitions

In the present work, rigid body translational degrees of freedom (XI) are defined by

Cartesian coordinates of the centre of geometry,

XI =
1

nI

nI∑
i∈I

xi, (3.1)

where the number of atoms in rigid body, I, is given by nI . The orientation of a

local rigid body, relative to a fixed reference structure, is described using angle-axis

variables:299–302

pI = θIp̂I , (3.2)

where pI is a rotation vector, characterising the angle θI and axis p̂I of rota-

tion.299,300 Rigid body reference coordinates are usually obtained from the global

minimum of the potential energy landscape, corresponding to the unconstrained

representation.301

Using the local rigid body (LRB) approach, the coordinate space for the pep-

tide was redefined in terms of mixed (atomistic and rigid body) coordinates,

{x1, ..,xn,X1, ..,XN ,p1, ...,pN}; n is the number of unconstrained atoms in the

peptide and xn represents the atomistic coordinates of the nth free atom; N is the

number of LRBs and {XN ,pN} are the rigid body coordinates of the N th rigid body.

This implementation leaves the potential energy function unchanged, although there

is no need to include terms corresponding to sites in the same rigid body. To com-

pute the potential energy of the system using an all–atom force field, we must be

able to map the rigid body coordinates to the atomistic ones. Accordingly, the

rotation vector pI is used to construct a rotation matrix (RI),
314,315 which can be

applied to the reference structure of the rigid body (x0
i∈I) to obtain the atomistic

coordinates:

xi∈I = XI + RIx
0
i∈I . (3.3)
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Groupings and schemes

Suitable LRB groupings can be suggested from principal component analysis,316,317

approaches developed from graph theory,318–320 or some other metric. In this study,

the LRB groupings for TZ1 were adopted from previous work;301 namely tryptophan

rings, peptide bonds, termini and trigonal planar centres (Figure 3.2).

(a) tryptophan ring
(b) peptide bond

(c) termini

(d) trigonal planar centres

Figure 3.2: Local rigid bodies considered for tryptophan zipper 1.

These groupings were used to define several local rigidification schemes, outlined

in Figure 3.3. The TZ1 model peptide contains 220 atoms, and the number of

degrees of freedom for the unconstrained representation is therefore 660. In scheme I,

aromatic rings in tryptophan residues were grouped as LRBs; the benzene and

pyrrole components in each indole ring were treated separately to allow for slight

bending motions. Hence, each peptide in this scheme contains eight LRBs (around

27 percent of the atoms) and 160 unconstrained atoms (8 × 6 + 160 × 3 = 528

degrees of freedom). Thus, scheme I represents conservative local rigidification, since

only a small percentage of atoms were constrained. Conversely, scheme III is more

aggressive—with about 60 percent of the atoms grouped as LRBs (25×6 + 89×3 =

417 degrees of freedom).
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U: unconstrained

?

I: TRP rings

?

II: TRP rings, peptide bonds

?

III: TRP rings, peptide bonds,
termini, trigonal planar centres

Figure 3.3: Systematic application of local rigidification for trptophan zipper 1. For U no
local rigid bodies were used; for schemes I to III, increasingly larger subsets of the peptide
were locally rigidified.

Potential energy landscapes with LRBs

The local rigidification was applied within the framework of potential energy land-

scape theory.210 Conceptually, the potential energy landscape (PEL) supports the

local minima and the transition states that connect them (§ 2.1). These stationary

points constitute a kinetic transition network (KTN; § 2.5), from which the global

thermodynamics (§ 2.6) and kinetics (§ 2.7) may be extracted. The complexity of

the PEL increases as the system size grows. Hence, a LRB formalism becomes ap-

pealing; since this approach effectively reduces the number of stationary points on

the PEL, leading to increased computational efficiency.

Energy minimisations

Energy minimisations were performed using a customised L-BFGS algorithm,242,243

in the mixed coordinate space. This approach has the advantage of reducing the

number of minimisation steps required for convergence.301 Rühle et al.302 have de-

veloped a method for computing the energy gradients with respect to generalised

coordinates (mixed or atomistic), hence providing a convenient means of measuring

convergence, which is invariant to coordinate transformations, as it should be.302

Building kinetic transition networks

Appropriate initial endpoints for the reactant (A) and product (B) were first chosen.

Here, a denatured conformation (obtained from an MD simulation at 330 K), with
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a high occupation probability in the vicinity of the experimental melting temper-

ature,213 was selected as the reactant. The product was represented by the global

minimum of the potential energy landscape (obtained by basin-hopping global op-

timisation; § 2.4)210,240,248 corresponding to the unconstrained peptide.

Once the endpoints were selected, the LRB scheme provided the rigid body

groupings for the endpoints, which were then represented using mixed coordinates.

The doubly-nudged252 elastic band253,254 (DNEB) procedure was then used to locate

transition state candidates, which were converged further using hybrid eigenvector-

following (HEF).255,256 Transition states were subsequently connected to minima

by following approximate steepest-descent paths parallel and antiparallel to the

unique downhill direction. Both the DNEB and transition state refinement meth-

ods have been reformulated for use in the generalised coordinate space.302 Iterative

DNEB/HEF searches249–251 eventually provided a global survey of the potential en-

ergy landscape. All these procedures are implemented in the OPTIM321 and PATH-

SAMPLE322 programs, which are available for use under the GNU General Public

License.

Thermodynamic calculations

The partition function for the model peptide, Z(T ), was computed as a sum of contri-

butions from the basins of attraction of local minima,
∑

α Zα(T ), in the stationary

point database. A harmonic approximation was used to estimate the vibrational

partition function of each minimum (§ 2.6). Equilibrium statistical mechanics was

then used to estimate free energies, as well as heat capacities, from the molecu-

lar partition function (§ 2.6). Vibrational frequencies were computed using normal

mode analysis, and within the local rigid body framework these are evaluated for the

generalised coordinates by including the appropriate metric tensor.302 Additionally,

we can adapt the normal mode analysis to scale favourably with system size, by

utilising a sparse Hessian approach for larger biomolecules.

Generally, the harmonic approximation holds at low temperatures, and reliable

estimates of the density of states of low-lying minima can be obtained. However,

at higher temperatures, where vibrational modes are softer and anharmomic ef-

fects become more significant, corrections are needed. These can be added by

employing methods such as the reaction path Hamiltonian superposition approach

(RPHSA).261 Nonetheless, a consistent use of the harmonic superposition approx-

imation (HSA) here is sufficient for comparing the global thermodynamics within

the various LRB schemes.
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Depicting energy landscapes

Disconnectivity graphs265,266 were used to visualise the energy landscapes (§ 2.8).

3.3 Results and Discussion

We begin by characterising the unconstrained TZ1 peptide. Locally rigidified po-

tential energy landscapes are then constructed, and their resulting topological prop-

erties are compared to those of the unconstrained representation. Next, the effects

of local rigidification on the thermodynamic properties of TZ1 are assessed further

by systematically evaluating the heat capacity corresponding to the various TZ1

models. Finally, we discuss how the predicted folding pathways are affected by local

rigidification.

3.3.1 Potential energy landscapes

Figure 3.4 illustrates the potential energy landscape corresponding to the uncon-

strained TZ1 peptide. The landscape exhibits a prominent funnel-like bias towards

the global minimum. Each branch on the potential energy (PE) disconnectivity

graph represents a minimum on the PEL, and is coloured based on the value of two

order parameters, L and S. The structural order parameter L, defined by Snow

et al.49 in a previous study on the kinetics of tryptophan zippers, represents the

sum of the inner native hydrogen-bond lengths and the distances between adjacent

TRP rings.49 L therefore measures the degree of compaction, and can be used to

distinguish between compact and extended/denatured peptides. We also define an

order parameter S, which describes the orientation of the TRP rings with respect

to the TZ1 backbone. Two dihedral angles d1 (TRP4:CZ2–TRP9:CA–TRP4:CA–

TRP9:CZ2) and d2 (TRP2:CZ2–TRP11:CA–TRP2:CA–TRP11:CZ2) were com-

puted and, based on the sign of these angles, S was assigned a value of either

+1 (d1, d2 positive ) or −1 (d1 or d2 negative). This order parameter was mainly

used to identify folded/partially folded states on the TZ1 landscape with indole rings

exhibiting non-native stacking (i.e S value of −1 for rings on opposite faces of the

hairpin, or with reversed stacking compared to the native arrangement).
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m1

m2

m3

m4

m5

m6

8 kcalmol
−1

Figure 3.4: Potential energy disconnectivity graph for the unconstrained TZ1 peptide.
The branches are coloured based on order parameters L (the sum of the four inner native
hydrogen-bond lengths and the distances between the CD2 atoms of the three TRP pairs)
and S (the orientation of the TRP rings—refer to text for description). The three main
morphologies are: red denoted F1 (L < 60 Å, S value = +1), blue denoted F2 (L < 60 Å,
S value = −1), green denoted F3 (all other minima).

The L and S values were together used to visualise the organisation of different

minima on the PE landscape. Three interspersed groups of minima were identified in

the graph: F1 consists of structures with partial or complete hairpin architectures,

with all TRP rings oriented on one face of the hairpin (m2, m6, m5). Several
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minima in F1 have all four inner native hydrogen-bonds intact; these structures

constitute the bottom of the major funnel and include the global minimum (m5).

F2 corresponds to conformational ensembles exhibiting some hairpin structure, but

with indole rings lying on both faces (m3, m4). These hairpins can be characterised

as competing structures, which lead to topological frustration. Yang and Gruebele

demonstrated that such structures act as kinetic traps,323 since the reorientation of

TRP rings requires that existing hydrogen-bonds must be broken and then reformed.

These processes are generally associated with high energy barriers. Consequently,

several hairpins in F2 are arranged in distinct subfunnels on the landscape. The

final group, F3, consists of structures with residual β-hairpin content and minimal

native contacts. Members of this group are located in the higher potential energy

regions, where most denatured peptides reside (m1).

In addition to the main end points (m1 and m5), structures in each of the PE

groups described above provided useful targets for building KTNs with local rigidi-

fication. Accordingly, initial folding paths, starting from the unfolded peptide and

selected structures in each of the PE groups, were constructed within each of the

LRB schemes. At each level of local rigidification, the resulting pathways were com-

bined to yield one KTN. Minima and transition states on the unconstrained land-

scape were also reoptimised at the appropriate level of local rigidification and added

to the corresponding database. Upon convergence of the folding rate constants,

each stationary point database was analysed using the same metrics as described in

Figure 3.4.
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∆E

(a) unconstrained peptide

∆E

(b) I—TRP rings rigidified

∆E

(c) II—TRP rings, peptide bonds rigidifed

∆E

(d) III—TRP rings, peptide bonds, termini,
trigonal planar centres rigidified

Figure 3.5: Potential energy disconnectivity graphs for TZ1 at different levels of local
rigidification. The branches are coloured based on order parameters L and S, as in Fig-
ure 3.4. The three main PE conformational groups are: red—F1 (L < 60 Å, S value = +1),
blue—F2 (L < 60 Å, S value = −1), green—F3 (all other minima), as described in the
text.

Comparing the disconnectivity graphs in Figure 3.5, depicting the PE landscapes

of TZ1 from the unconstrained representation up to aggressive local rigidification,
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reveals several trends:
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Figure 3.6: Distribution of the total energies of minima (solid lines) and transition states
(dashed lines) on the potential energy landscapes of TZ1 at different levels of local rigidi-
fication: U—unconstrained (no local rigid bodies), I—TRP rings, II—TRP rings, peptide
bonds, III—TRP rings, peptide bonds, termini, trigonal planar centres.

Potential energy range

The PE range for all four graphs is similar (Figure 3.6), with a difference of ap-

proximately 64 kcal mol−1 between the highest and lowest transition states. Local

rigidification does, however, lead to a slight increase in barrier heights. For exam-

ple, the highest and lowest transition states on the unconstrained landscape lie at

−390.0 and −453.8 kcal mol−1 respectively, while the corresponding transition states

on the most rigidified landscape lie at −388.3 and −452.7 kcal mol−1. The range of

energies covered by local minima on the various landscapes is comparable; on the

unconstrained landscape the PE range is 50 kcal mol−1, while local minima on the

PE landscape for schemes I, II and III cover a range of 51, 57 and 54 kcal mol−1,

respectively.
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Figure 3.7: Potential energy disconnectivity graph for TZ1 (∆E = 8 kcal mol−1) at dif-
ferent levels of local rigidification. The branches are coloured based on overall geometric
root-mean-square deviation with reference to the global PE minimum.

Structural heterogeneity

A diverse collection of local minima, with varying geometric root-mean-square de-

viations from the global minimum, is identified in each scheme (Figure 3.7). The
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three PE groups identified for the unconstrained potential energy landscape are also

present on the locally rigidified landscapes. Hence, we find that upon reoptimisation

most local minima on the unconstrained landscape are recovered on the rigidified

landscapes, and the structural heterogeneity of the folding subspace is largely pre-

served with local rigidification. This result supports previous findings,301 where

a strong correlation was found between unconstrained and locally rigidified local

minima for TZ1. This correlation is very important if the approach is to be useful.
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Figure 3.8: Roughness of the potential energy landscape of TZ1 corresponding to the
unconstrained representation (U), and locally rigidified representations (I—TRP rings,
II—TRP rings, peptide bonds, III—TRP rings, peptide bonds, termini, trigonal planar
centres). Here, the landscape roughness is defined as the variation of the roughness density
with energy; where the roughness density is taken as the quotient of the percentage of
minima that branch off at a particular energy level and the energy threshold, ∆E, used
for the superbasin analysis. In the plots ∆E = 2 kcal mol−1.

Landscape roughness

Levy and Becker presented an account of how disconnectivity graphs may be used

to assess energy landscape roughness.324 In their treatment, the roughness density

is taken as the quotient of the percentage of minima that branch off a given en-

ergy level and the energy threshold used for the superbasin analysis. We computed

this property for our disconnectivity graphs (Figure 3.8). On the unconstrained
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landscape and the locally rigidified landscapes corresponding to schemes I and II,

the maximum roughness occurs around 30 kcal mol−1 above the global minimum.

The overall landscape roughness for scheme II is comparable to the reference land-

scape; however, there is a significant increase in the roughness density in the lower

energy region of the disconnectivity graph when only TRP rings are locally rigidi-

fied. Conservative local rigidification creates a small initial bias to the folded state,

which leads to increased sampling of native-like conformations (most minima around

10 kcal mol−1 above the global minimum are in F1). For scheme III, maximum land-

scape roughness occurs closer to the global minimum (about 20 kcal mol−1 above),

and the overall roughness is somewhat greater than that observed for the other

schemes.

Overall connectivity

As larger subsets of TZ1 are locally rigidified, the number of prominent subfun-

nels in the landscape generally increases. The inherent reduction in local flexibility,

which is associated with the LRB framework, leads to decreased connectivity among

structurally dissimilar minima. With aggressive local rigidification, scheme III, the

extensive reduction in local flexibility results in increased frustration in the land-

scape and a dramatic change in the connectivity of basins within the F1 group

(Figure 3.5d).

Additional trends

In addition to the potential energy landscapes depicted in Figure 3.5, landscapes

were computed for several other local rigidification schemes (not shown), namely:

IV—TRP rings, termini, V—peptide bonds, VI—TRP rings, trigonal planar cen-

tres, VII—TRP rings, peptide bonds, termini, VIII—peptide bonds, termini, trig-

onal planar centres, IX—entire side-chains. The trends observed for schemes I to

III are also apparent when we include the additional schemes in our analysis; for

example, on moving from scheme V → II → VII and from scheme VIII → III, the

landscapes become evidently more frustrated, as larger sets of the protein are con-

strained. We also evaluated the effects of different types of local rigid bodies; for

instance, comparison of schemes II, IV, and VI revealed that rigidification of trigo-

nal planar centres results in the greatest increase in the landscape frustration, while

rigidification of termini is least significant. The most aggressive local rigidification

(i.e. scheme IX) failed to yield connected pathways in an efficient manner; thus, for

TZ1 the flexibility of the side-chains is required for cooperative folding.
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∆E

(a) unconstrained peptide

∆E

(b) I—TRP rings rigidified

∆E

(c) II—TRP rings, peptide bonds rigidifed

∆E

(d) III—TRP rings, peptide bonds, termini,
trigonal planar centres rigidified

Figure 3.9: Free energy disconnectivity graph for TZ1 (∆E = 8 kcal mol−1) computed at
298 K at different levels of local rigidification. The branches are coloured based on order
parameters L (the sum of the four inner native hydrogen-bond lengths and the distances
between the CD2 atoms of the three TRP pairs) and S (the orientation of the TRP rings—
refer to text for description). The three main morphologies are: red—F1 (L < 60 Å, S
value = +1), blue—F2 (L < 60 Å, S value = −1), green—F3 (all other minima).
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3.3.2 Thermodynamics of folding

The free energy landscape (FEL),267,268 computed at 298 K using harmonic vibra-

tional densities of states, for the unconstrained and locally rigidified systems, reveals

similar trends to those observed for the PELs, although there is some difference in the

ordering of minima when entropy is considered (Figure 3.9). Here we are considering

free energies for individual potential energy minima, without further regrouping. To

gain further insight into the effects of local rigidification on the folding thermody-

namics of TZ1, we evaluate the heat capacity, and compare the predicted melting

temperature of TZ1 within the various LRB schemes (Figure 3.10).

Figure 3.10: Constant volume heat capacity curves for TZ1 at various levels of local rigid-
ification: unconstrained—no local rigid bodies; I—TRP rings, II—TRP rings, peptide
bonds, III—TRP rings, peptide bonds, termini, trigonal planar centres treated as rigid
bodies. The heat capacities are divided by the appropriate total number of degrees of
freedom (DOF), and the melting temperature of the unconstrained peptide, TUm , is in-
dicated. The global minimum structures of the free energy landscape, computed at low
(0.48 kcal mol−1) and high (0.88 kcal mol−1) temperatures, are superimposed on the plot;
Key: red (U), green (I), blue (II), magenta (III).

The melting temperature (Tm) is an important thermodynamic property for pro-

teins, as it is often used as a measure of protein stability. Hence, a good model

should aim to reproduce Tm. The temperature dependent equilibrium occupation
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probabilities of the folded and unfolded ensembles should then also be reasonably

well reproduced (Figure 3.11), which translates to preservation of the main basins

of attraction and phase volumes on the energy landscape when local rigidification is

applied.
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Figure 3.11: Variation in the equilibrium occupation probabilities of the PE global min-
imum at different levels of local rigidification: U—unconstrained (no local rigid bodies),
I—TRP rings, II—TRP rings, peptide bonds, III—TRP rings, peptide bonds, termini,
trigonal planar centres.

For the unconstrained peptide (red curve in Figure 3.10), the melting transi-

tion is calculated at a temperature equivalent to 0.68 kcal mol−1 (experimental value

= 0.64 kcal mol−1).213 The heat capacity curve for scheme I is qualitatively similar

to that of the unconstrained peptide, and the melting temperature is accurately

predicted (Figure 3.10). A small positive offset in Tm from the reference value was

observed for schemes II (Tm = 0.69 kcal mol−1) and III (Tm = 0.70 kcal mol−1). These

shifts in Tm suggest that local rigidification may lead to a small underestimation of

the landscape entropy; hence slightly higher temperatures are needed to stabilise

the unfolded state. However, this effect is minimal, and the Tm for schemes I to III

roughly coincides with that of the unconstrained landscape (Figure 3.10), implying

that the important basins that govern the phase transition are retained.

In the unconstrained landscape and the landscapes corresponding to schemes I
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and II, the PE global minimum dominates the thermodynamic properties at low

temperatures, Figure 3.11. However, at these temperatures the equilibrium occupa-

tion probability of the PE global minimum is notably lower in scheme III than in

the other schemes; implying that other states make significant contributions to the

thermodynamics as well.

We also assessed the convergence of the heat capacity for the individual land-

scapes, to ensure that the trends observed were not artifacts of incomplete sam-

pling. The heat capacity curves were evaluated as a function of all the minima in

the database lying below a given energy threshold (Figure 3.12). For all schemes

approximately 40% of the minima are sufficient to provide a good estimate of the

melting peak and Tm. Therefore, we are confident that the observable features are

well converged.
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Figure 3.12: Convergence of the heat capacity of TZ1 computed using the harmonic
superposition approach. Each Cv curve is calculated for minima below a given energy
threshold. The threshold and the corresponding fraction of minima are indicated in the
legend. As a reference, the heat capacity curves for each scheme, as well as the position
of the melting peak TXm , is also shown on the plots.
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The global minimum of the FEL was computed for each local rigidification

scheme at temperatures below and after the melting transition (Figure 3.10). At

0.48 kcal mol−1, the overall geometric rmsd values of the FE global minimum for

schemes I, II, II with respect to the unconstrained peptide are 0.47, 0.60, 0.67 Å,

respectively. The corresponding deviations at 0.88 kcal mol−1 are 3.01, 5.79, 3.00 Å.

As expected, there is greater structural variation among the FE global minima at

higher temperatures, due to entropic factors. However, in general, qualitatively

similar minima are responsible for the melting transition on the unconstrained and

locally rigidified landscapes. In addition, the good agreement between the different

FE global minima, especially at low temperatures, demonstrates the validity of local

rigidification in structure prediction.

3.3.3 Folding mechanism

To evaluate the effects of local rigidification on the folding pathways, we compare the

individual fastest paths from the denatured state to the PE global minimum for each

TZ1 model. The fastest path (A→ B) is the one that makes the largest contribution

to the steady–state rate constant, kSSBA (the sum over all discrete paths with the

steady–state approximation for intervening minima; see § 2.7.2).249–251 The main

conformational states encountered on each path were then identified by employing

the density–based clustering algorithm325 available within AMBER tools;326 this

approach essentially defines an average structure for different sections of the path.

Figure 3.13a illustrates the fastest folding pathway corresponding to the uncon-

strained representation of TZ1. The unfolded state (s1) undergoes initial hydropho-

bic collapse to yield a compact intermediate (s2), which possesses a native-like face-

to-face stacking of the TRP4 and TRP9 indole rings. In the next phase of folding,

the zipping process commences with the formation of some inner native hydrogen-

bonds. The TRP2 and TRP11 residues of the frayed–like intermediate (s3) then

rotate to complete the ‘trpzip’, and the final inner native hydrogen-bonds form,

tethering the ends of the hairpin. This mechanism agrees with the hydrophobic–

collapse model for β–hairpin formation proposed by Karplus and coworkers327 and

follows the order of TZ folding events determined by temperature jump fluorescence

.49

On the conservatively rigidified landscape (Figure 3.13b), the first stage of fold-

ing is consistent with the unconstrained counterpart. However, the s3–intermediate

is not encountered; rather, in one phase the inner hydrogen-bonds form, concur-

rently zipping the hairpin. As a result, the number of transition states on this

pathway (16) is significantly less than on the reference folding path (32). Further
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local rigidification (scheme II, Figure 3.13c) leads to an increase in the relative PE

barriers traversed in the early stages of folding, and a short-lived intermediate (s5)

is encountered prior to forming the compact state (s2). The last phase of folding

is comparable to that of scheme I. This path is comparable in length (27 transition

states) to the unconstrained folding pathway.

s4

s3

s2

s1
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s1

s6

s5

s2

s7

s8

s7
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(d) III—TRP rings, peptide bonds, ter-
mini, trigonal planar centres

Figure 3.13: Variation of the total potential energy (kcal mol−1) with the integrated path
length (Å) for the fastest folding path from the denatured TZ1 peptide to the global
minimum. The major conformational ensembles encountered along each path are shown.

With aggressive local rigidification (Figure 3.13d), there is substantial length-

ening of the folding pathway, and the number of transition states (63) encountered

doubles relative to the unconstrained pathway. A significant reduction in the local

flexibility of the peptide results in the formation of many unfavorable non–native

contacts, increasing the PE barriers along the path. Moreover, the peptide revisits

the same average structure twice (s7), as it tries to locate the native state. These re-

sults support the the observations in Figure 3.5d, where the landscape is noticeably

more frustrated.
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Finally, we comment on how the folding kinetics may be affected by local rigid-

ification. Here we adapt the procedure outlined in a previous study,269 where the

number of rearrangements on the fastest path from a given local minimum to the

global PE minimum is computed. The distributions for the number of rearrange-

ments can then be used to analyse the structure-seeking properties of the peptide

within the various schemes. For schemes I and II the distribution is narrower than

for the reference (Figure 3.14), indicating that there is a general acceleration in the

folding dynamics when local rigidification is applied. However, for the most rigid-

ified system, scheme III, a broader distribution is obtained, and the major mode

at 10–20 steps vanishes. This level of local rigidification may be too aggressive for

correctly describing the folding kinetics of TZ1, since the folding is hindered by the

significant loss in local flexibility.
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Figure 3.14: Distribution of the number of steps (transition states) on the fastest paths
from a given minimum to the global minimum for TZ1 at different levels of local rigidifi-
cation.
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3.4 Conclusions

We have investigated how the underlying potential energy landscape for the TZ1

peptide is affected by local rigidification. The atoms associated with various func-

tional components of TZ1 were systematically grouped into local rigid bodies, and

the corresponding landscape was characterised using the discrete path sampling

approach. The predicted melting temperatures corresponding to the unconstrained

representation and local rigid body schemes I (TRP rings) to III (TRP rings, peptide

bonds, trigonal planar centres and termini) are reasonably consistent and in agree-

ment with experiment.213 For the unconstrained peptide, schemes I and II (TRP

rings, peptide bonds), the folding mechanism corresponds to an initial hydropho-

bic collapse and subsequent zipping.49,327 However, for the most rigidified system

(scheme III), the peptide visits several structural ensembles that do not appear on

the unconstrained pathway.

These results support the hypothesis that a subset of relevant degrees of freedom

are sufficient to describe protein folding pathways. However, the local rigid body

scheme must be judiciously chosen to preserve the observable properties of interest.

Moreover, a representation that reproduces the folding thermodynamics does not

necessarily reproduce the mechanism, which tends to be more sensitive to changes

in local flexibility of the peptide. The LRB framework does not alter the atomistic

resolution of the peptide, so greater accuracy for of the properties of interest (such

as the folding pathways) may be conveniently obtained by relaxing the rigidified

systems to their unconstrained counterparts.

The number of minima on the potential energy landscape scales with system

size in a roughly exponential fashion.210 However, local rigidification reduces the

conformational search space, by constraining degrees of freedom that fluctuate on

a much faster time scale than the process of interest, decreasing the number of

irrelevant minima significantly. Additionally, since the degrees of freedom within

each local rigid body are frozen, corresponding terms in the potential energy function

need not be calculated. In previous work, this formulation was shown to result in a

significant reduction in the computational effort required to locate local and global

minima. We anticipate that computational gains will be even more impressive for

larger proteins, where regions might be locally rigidified depending on the time scale

to be probed (for example, in the study of drug/ligand binding, pocket dynamics).

Lastly, since the local rigid bodies implemented in this work constitute the basic

building blocks of proteins, this approach is likely to be transferable between different

systems.

67



4

Energy Landscape for

Fold-Switching in RfaH-CTD

4.1 Introduction

Over the last two decades there has been increasing evidence of fold-switching,

where certain proteins are capable of adopting distinct, stable folds in a reversible

fashion.328–335 These proteins, commonly referred to as metamorphic,332 extend the

classical view of protein conformational dynamics, beyond movements of loop regions

and side-chains, to large-scale rearrangements at the level of secondary structure.

For example, human chemokine lymphotactin (Ltn) exists as two distinct confor-

mations: a monomeric form (Ltn10), consisting of a three-stranded β-sheet and an

α-helix, and an all-β-sheet dimeric form (Ltn40).333 Under physiological conditions,

the two conformers are in equilibrium, and bind to different molecular partners.

Other well-known examples of metamorphic proteins include mitotic arrest defi-

ciency 2 (Mad2) protein329 and chloride intracellular channel 1 (CLIC1) protein.328

Perhaps the most dramatic example of protein conformational switching has

been reported for RfaH (162 amino acids)*.336 RfaH is a regulatory protein found in

Escherichia coli (E.coli) and Salmonella,337 and is known to increase the expression

of genes in operons containing an operon polarity suppressor (ops) site (a short,

well-conserved DNA sequence)�.337–339 RfaH comprises two domains connected by a

flexible linker: an N-terminal domain (NTD) and a C-terminal domain (CTD).214 In

the domain-closed state, the CTD adopts an α-helical hairpin fold, and binds tightly

to the NTD.214,215 When the transcribing RNA polymerase (RNAP) pauses at the

*RfaH is named after the rfaH gene that encodes it.
�Operon polarity encompasses the decreased expression of genes in an operon. Hence, an operon

polarity suppressor site acts to counteract this effect.
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ops site, interactions between RNAP, the ops site, and RfaH lead to domain separa-

tion.215 At this stage, RfaH-NTD binds to RNAP in a clamp-like fashion, modifying

RNAP into a pause-resistant state, and ensuring that synthesis of messenger RNA

(mRNA) is complete without pausing or premature termination. Accordingly, the

main purpose of the CTD in the domain-closed state is to mask the RNAP binding

site of RfaH-NTD (a hydrophobic cavity);215 thus, RfaH-CTD serves as a regulator

of transcription, and effectively restricts RfaH to operons containing an ops site.

Upon domain separation, the CTD of RfaH undergoes a dramatic conforma-

tional transition: the α-helical hairpin refolds into a five-stranded β-barrel scaffold

(i.e. an all-α → all-β transition).215 RfaH-CTD, in the β-barrel conformation, then

binds to ribosomal protein S10, thereby recruiting the ribosomal 30S subunit to the

nascent mRNA, significantly promoting translation.215 Hence, for RfaH-CTD the

same amino acid sequence folds into two distinct conformations with two distinct

functions, constituting a special type of metamorphic system known as a transformer

protein340 (Figure 4.1).

β1

β2

β3

β4

β5

α4

α5

RfaH X-ray crystal structure (NTD and CTD) NMR solution structure of the isolated CTD

Figure 4.1: X-ray crystallography structure of RfaH (residues 1–100 and 115–156), and
NMR solution structure of the C-terminal domain of RfaH (residues 115–162). Upon
domain separation, the CTD of RfaH transforms from an α-helical hairpin (α4 = 115–130;
α5 = 135–155) to a five-stranded β-barrel scaffold: β5 (158–160), β1 (115–118), β2 (127–
130), β3 (138–144) and β4 (149–155). The N-terminus and C-terminus are highlighted
with blue and red spheres, respectively.

The all-α → all-β transition of RfaH-CTD is interesting for several reasons.

Firstly, the genes in RfaH-regulated operons encode several bacterial virulence fac-
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tors, including lipopolysaccharide (LPS) core, exopolysaccharide and haemolysin

toxin, and the action of RfaH increases the expression of these factors, which are

otherwise poorly transcribed (due to the large percentage of rare codons) and trans-

lated (due to a lack of canonical ribosomal recruitment sites). Hence, RfaH-CTD

represents a good model for understanding gene regulation of these operons, which

may be shared by other regulation factors. Secondly, the rules governing the refold-

ing of RfaH-CTD may also be implicated in protein misfolding, so elucidating the

mechanism for the large-scale structural transition of RfaH-CTD may aid in protein

engineering and drug design.

While several experimental studies have been successful in characterising the

domain-closed and domain-opened states of RfaH, the details of the refolding process

have been inherently difficult to probe. NMR studies of the full-length RfaH are

complicated by precipitation of the hydrophobic NTD once the protein dissociates

from RNAP, or once domain dissociation is initiated in vitro.215 Additionally, NMR

shifts for the isolated CTD strictly mirror those of the β-barrel conformer,215 and

conversion back to the α-helical structure is not observed. This effect is largely due

to the fact that contacts with the NTD are critical for inducing refolding to the

α-helical state.341 Therefore, several groups have implemented computer simulation

techniques to analyse the refolding process.

Unfortunately, large-scale structural rearrangements generally occur on relatively

long time scales, and so are difficult to simulate in an efficient manner via standard

techniques. The refolding of RfaH-CTD has been probed using several computa-

tional approaches, including replica exchange molecular dynamics (REMD),342 con-

struction of Markov state models (MSMs),343 and replica-exchange-with-tunnelling

(RET).344

REMD has been used to investigate the refolding of the isolated RfaH-CTD in

implicit solvent.342 A free energy surface was constructed by projecting the replicas

simulated at 310 K onto the root-mean-square deviation (rmsd) from the all-α state

and the end-to-end distance. The structural transition was reported to proceed via

a completely unfolded state, and the simulation yielded a relatively flat all-β-sheet

structure compared to the barrel-like scaffold obtained in the NMR experiments.215

Li et al.343 constructed an MSM for RfaH-CTD from numerous MD trajectories.

Based on the final MSM, they concluded that the conversion process could occur

via heterogeneous routes, and postulated that the underlying energy landscape for

refolding was ‘rough’, which we interpret in terms of competing low energy structures

separated by high barriers.

Recently, Bernhardt and Hansmann applied RET to decipher the refolding mech-
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anism for RfaH-CTD.344 In RET,345,346 replicas evolve in the microcanonical ensem-

ble for a short period, and are then provisionally exchanged, while simultaneously

rescaling their velocities to ensure that the total energy before and after exchange is

invariant. The replicas are then allowed to evolve again at constant energy, and the

final structures are accepted or rejected based on a Metropolis criterion. This pro-

cedure ultimately may lead to improved acceptance probabilities compared to the

standard REMD procedure. Using RET, a significant free energy barrier (approx-

imately 10 RT) separating the all-α and all-β states of RfaH-CTD was identified,

and the transition was reported to occur via a disordered conformer.344

In the present work, the potential energy landscape (PEL) framework and kinetic

transition network (KTN) analysis are combined to probe the refolding of RfaH-

CTD. In particular, discrete path sampling (DPS)249–251 is used to construct the

PEL (which encompasses low-lying minima and the corresponding transition states

that connect them) for the structural transition at full atomistic resolution. The

free energy landscape (FEL) for RfaH-CTD is then derived from the PEL avoiding

low-dimensional projections, and mechanistic details of the refolding process are

outlined. We find that the free energy landscape of isolated RfaH-CTD at 310 K is

multifunnelled. Consistent with previous NMR studies, the β-barrel state is more

stable than the α-helical hairpin ensemble. The structural transition occurs via a

compact coil-like intermediate, and complete loss α-helical character.

4.2 Methods

Preparation of initial structures

The crystal structure of RfaH (residues 1–100 and 115–156) and the NMR solution

structure of the isolated C-terminal region of RfaH (residues 97–162) were obtained

from the protein data bank via the PDB accession codes 2OUG214 and 2LCL,215

respectively. Residues 115–162 of the NMR structure were selected as the initial all-

β conformer. The terminal six residues (157–162) were added to residues 115–156 of

the crystal structure using PyMOL,347 and the resulting structure represented the

initial all-α conformer for the MD simulations.

Explicit solvent MD

The atomic interactions were modelled using the AMBER ff99SB-ILDN227 param-

eter set. The initial all-α and all-β structures were first minimised in vacuum for

10000 steps. Each structure was then solvated using TIP3P water307 in a trun-
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cated octahedron, with the box edges restricted to a minimum distance 10 Å from

the protein. The solvated systems were then minimised for a further 10000 steps,

and a restraining force of 100 kcal mol−1 Å−2 was applied to each protein struc-

ture. They were then heated from 0 to 300 K over 20 ps, with a weak restraint

of 10 kcal mol−1 Å−2 on the protein molecule. The restraints were subsequently re-

moved and each system was equilibrated in the NPT ensemble (pressure = 1 atm;

temperature = 300 K) for 5 ns, followed by 2 ns of constant volume MD. Finally, a

300 ns production run was performed at 300 K in the canonical ensemble. For all MD

runs the temperature was regulated using a Langevin thermostat with a collision

frequency of 1 ps. All bonds involving hydrogen were constrained using SHAKE,

permitting a time step of 2 fs. Structures were saved every 10 ps for further analysis.

Preliminary analysis of the MD trajectories revealed that the all-β conformer

sampled the native basin throughout the simulation (with relatively small deviations

from the NMR topology). The structure with the lowest energy was selected as

the starting geometry for discrete path sampling (DPS). For the all-α conformer,

significant structural fluctuations were observed on the simulation time scale. Hence,

additional equilibration and production (50 ns) runs were conducted for the α-helical

hairpin, using backbone dihedral angle restraints, based on the crystal structure

(i.e. for residues 115–156). The lowest energy α-helical conformers from both sets

of MD runs were chosen as endpoints for DPS.

Construction of the potential energy landscape with DPS

To improve the efficiency of DPS, a generalised Born implicit solvent, GB-Neck2,238

was used, with a cutoff 25 Å for evaluation of the Born radius. A salt concentra-

tion of 0.1 M was maintained, and the ff99SB-ILDN force field was also properly

symmetrised, using the method suggested by Ma lolepsza et al.306

DPS249–251 was performed using the OPTIM321 and PATHSAMPLE322 pro-

grams, with a GPU interface for OPTIM to accelerate sampling.348 Firstly, we

obtained paths connecting the two α-helical conformers to the β-barrel scaffold

(suggested by the MD simulations). Once two endpoints were chosen, a structural

alignment was performed, which minimises the distance between the endpoints based

on overall rotation, translation and permutation of identical atoms. The next step

involves interpolation between the aligned configurations.

Since the conformational transition from the α-helical hairpin to the β-barrel

scaffold is expected to be complex, RfaH-CTD is a good test system for the enhanced

quasi-continuous interpolation (QCI)349 scheme. Here, an auxiliary potential is used

to derive a set of discrete images between two endpoints. The auxiliary potential
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contains constraint and repulsive terms for bonded and non-bonded atoms, respec-

tively, and, in the latest scheme, sequence information from the AMBER topology

file is employed. The new QCI routine also includes harmonic springs between im-

ages, and cis-trans peptide bond constraints. These improvements together minimise

the likelihood of chain-crossings and cis-trans isomerism, which are undesirable con-

sequences of (linear) interpolation techniques, especially for distant conformations.

The auxiliary potential is set up for the aligned endpoints, and discrete images

between these two starting configurations are built by adding one atom (or residue)

at a time. Before another atom (or residue) is added, the potential is minimised us-

ing an L-BFGS minimiser,242,243 with a predefined root-mean-square (rms) gradient

condition. This procedure is repeated until the full set of intermediate configu-

rations is obtained for all atoms. The minimised images were then used to seed

a double-nudged252 elastic band253,254 (DNEB; § 2.5.1) computation, which yields

transition state guesses that are then tightly converged using hybrid eigenvector-

following (HEF; § 2.5.1).255,256

For a given set of RfaH-CTD endpoints one QCI cycle was performed in the

first connection attempt. DNEB–HEF cycles were then used for subsequent con-

nection attempts. After each cycle, pairs of minima for connection were selected

using a modified Dijkstra algorithm.258 To locate an initial path, this process was

performed in parallel using the PATHSAMPLE program. The number of minima

pairs to connect per cycle was defined a priori. The ‘best path’ between the two

main endpoints was then computed using the Dijkstra missing connection algorithm

(§ 2.5.1).258 Unconnected minima on the best path (see § 2.5.1) were then chosen

for QCI–DNEB–HEF�/DNEB–HEF computations. Once the connection runs for

minima pairs were completed, the new minima and transition states were added to

the existing database of stationary points.

To compute the best path we must keep track of all distances between minima

in the database; it is therefore important that the stationary point database does

not grow too quickly before an initial path is found. Accordingly, two key strategies

were employed in this work: (i) For each unconnected pair, an individual best path

was computed and connection attempts between minima separated by the largest

gaps were prioritised. (ii) On completion of connection runs, only stationary points

on the individual best paths were added to the main database. Connection cycles

were repeated until an initial path was found.

The initial connected database was then refined using the SHORTCUT257,258,260

and UNTRAP260 procedures in PATHSAMPLE, and the progress was monitored by

�QCI was only used if the minimal aligned distance between a given minima pair exceeded 50 Å.
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checking for convergence of the α→ β rate constant and the heat capacity curve.

Derivation of the free energy landscape

The free energy landscape for RfaH was computed at 300 and 310 K using the har-

monic superposition approximation (HSA).261 A recursive regrouping procedure264

was employed to cluster minima and transition states in the kinetic transition net-

work (KTN) into free energy groups, based on a free energy threshold. The struc-

tural rearrangement pathways were computed for the regrouped KTN using Dijk-

stra’s shortest path algorithm with suitable edge weights.258

Computation of structural order parameters

Secondary structure analysis was performed using the DSSP algorithm.350 The mass-

weighted geometric root-mean-square deviation (rmsd) from selected minima/free

energy groups, and the radius of gyration (Rg) of free energy groups were computed

using the CPPTRAJ program in the AMBER tools package.326 The CPPTRAJ

software was also used to compute the total number of hydrogen-bonds in the various

RfaH-CTD conformational states, with hydrogen-bond distance and angle cutoffs of

3.5 Å and 150◦, respectively.

Depiction of energy landscapes

The computed potential and free energy landscapes were visualised using disconnec-

tivity graphs.265,266

4.3 Results and Discussion

4.3.1 MD simulations for the α-helical and β-sheet conform-

ers

In the domain-closed X-ray crystal structure the C-terminal domain of RfaH assumes

an α-helical hairpin conformation with two antiparallel α-helices, and an intervening

turn region. When domain separation is triggered, the CTD is known to refold

to a β-barrel scaffold, with five antiparallel β-strands. Short molecular dynamics

simulations (300 ns) were used to probe the short time stability of the two extreme

RfaH-CTD forms.
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Figure 4.2: Secondary structure assignments for configurations along MD trajectories.
The MD simulations (300 ns) for RfaH-CTD α-helical hairpin and β-barrel conformers
were computed at 300 K in the NVT ensemble with explicit solvent.

The simulation initiated from the α-helical conformer (Figure 4.2a) shows that

α4 (residues 115–140; see Figure 4.1) has a higher propensity for helical unwinding

than α5 (residues 135–155); α4 is partially unfolded throughout the entire production

run, while α5 maintains most of its α-helical structure. These findings agree well

with previous work,342,343 in which α4 was reported to be less stable than α5 for the

isolated CTD. Several authors341,351 suggest that interdomain contacts between the
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NTD and the CTD are responsible for maintaining the stability of the α-helical form

of RfaH-CTD, and when these contacts are disrupted the probability of forming the

β-sheet analogue increases.

Figure 4.2b reveals that the β-barrel form of isolated RfaH-CTD is quite stable on

the short MD simulation time scale. Throughout the MD run, the β-strands remain

intact; with β2 (127–130), β3 (138–144) and β4 (149–155) closely matching the NMR

solution structure,215 and β1 (116–119) and β5 (159–161) starting one residue later.

An additional short β-strand (residues 132–133) was predicted between β2 and β3.

A previous study also found that these residues had a tendency to adopt β-sheet

structure, specifically, predicting that β2 extended from residues 127 to 134.342

Figure 4.3: Secondary structure assignments for configurations along an MD trajectory.
The MD simulation (50 ns) for RfaH-CTD α-helical hairpin was computed at 300 K in
the NVT ensemble with explicit solvent. Backbone dihedral angle restraints for residues
115–156 were employed throughout.

The MD β-barrel and the partially unfolded α-helical structure are likely to be

important conformers on the potential energy landscape for RfaH-CTD. They were

therefore chosen as endpoints for discrete path sampling. However, since we are

mainly interested in probing the refolding process from the α-helical hairpin form,

we performed further structural refinement of the crystal structure with dihedral

angle restraints (Figure 4.2). The refined structure was also used as an endpoint

for DPS. These initial DPS endpoints closely resemble the structures depicted in

Figure 4.5a.
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4.3.2 Effects of QCI parameters on optimised paths

Computation of initial pathways between selected endpoints represents one of the

main challenges in DPS. An interpolation procedure is first used to predict interven-

ing structures between a given pair of conformers, which are then optimised to yield

transition states and corresponding local minima, as described in § 4.2. For conform-

ers close in configuration space, an initial linear interpolation scheme is generally

sufficient; however, such schemes perform poorly for distant minima.

The quasi-continuous interpolation (QCI) scheme349,352 has recently been shown

to yield kinetically relevant paths for several large-scale rearrangements.349,353 It

allows the user to control several parameters; including the total number of images

(i.e. intervening geometries; N images
max ), the cutoff distance for activating repulsive

terms between unconstrained atoms (rrep), the force constant for harmonic springs

connecting images (kspr), and the method used for growing the images (e.g. atom-

by-atom, residue-by-residue), among others.

QCI parameters Int-I Int-II

rrep (Å) 8.0 6.0

kimages
spr 10.0 10.0

N images
max 200 50

method add residue add residue

Table 4.1: Comparison of selected QCI parameters for two different interpolations.

Table 4.1 compares some QCI parameters for two different interpolations from

the RfaH-CTD lowest MD α conformer to the lowest MD β structure. In the first

interpolation (Int-I) more images were used (N images
max = 200) and a slightly larger

repulsive cutoff distance was employed (rrep = 8.0) than in Int-II. In both schemes

the same value was set for the spring force constant, and images were constructed

by adding one residue at a time.

The resulting optimised initial path corresponding to each QCI interpolation

scheme is depicted in Figure 4.4. Int-II leads to a significantly shorter path connect-

ing the α and β conformers than the final path obtained using Int-I. In the latter

case, the protein becomes kinetically trapped, over about 1000 steps, before finally

folding downhill towards the β-sheet structure. In this case, it seems that having a

large number of images is actually less efficient. Interestingly, when the two paths

were merged into one KTN, the longer path was no longer kinetically competitive.

Hence, it is beneficial to include initial paths corresponding to different QCI inter-
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polations (for the same set of endpoints) in the KTN, to increase the likelihood of

finding the most biologically relevant paths.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Number of transition states along path

−2000

−1950

−1900

−1850

−1800

P
o
te

n
ti

a
l

E
n

e
rg

y
(k

ca
l

m
o
l−

1
)

Int-I

Int-II

Figure 4.4: Optimised initial paths corresponding to two different QCI interpolations from
the lowest-α to lowest-β conformer.

4.3.3 Potential and free energy landscapes

The PEL for the isolated RfaH-CTD is shown in Figure 4.5a; there are two prominent

deep funnels. The major funnel, which includes the all-β conformer, is notably

lower in energy than the one corresponding to the all-α structure, and contains the

global minimum. The partially unfolded α-helical conformer is enthalpically more

favourable than the α-helical hairpin form.
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partially unfolded α-helical form

α-helical hairpin

global minimum of PEL

20 kcalmol−1

(a) Potential energy landscape

G3

G1

G2
20 kcalmol−1

(b) Free energy landscape

Figure 4.5: Disconnectivity graphs for the isolated RfaH-CTD, in terms of (a) potential
and (b) free energies. In (a) the lowest energy α-helical conformer (partially unfolded),
the α-helical conformer with maximum helical content (hairpin), and the global minimum
of the PEL are all superimposed on the graph. The free energies were computed at 310 K
with minima and transition states regrouped based on an energy threshold of 5 kcal mol−1.
Representative structures for selected free energy groups (G1 to G3) are also shown.

The FEL was computed from the PEL at 300 K (not shown) and 310 K (Fig-

ure 4.5b). These two temperatures were chosen to allow for direct comparison with

previous simulations (MSM construction at 300 K;343 replica exchange approaches

at 310 K342,344) and the original NMR experiment (at 310 K).215 There was no signif-

icant difference between the two the landscapes, and so further analysis refers to the

FEL at 310 K. Each branch on the free energy disconnectivity graph corresponds

to a free energy group. The topology of the global free energy minimum, G3, is

consistent with the NMR solution structure for the isolated RfaH-CTD (all-atom

geometric rmsd = 1.57 Å); however, β2 is visibly longer compared to the experimen-

tal structure. From the FEL, it is evident that the β-barrel scaffold is the most

stable conformer for the isolated CTD of RfaH. In addition, the partially unfolded

α-helical state, G2, is slightly more stable than the analogue with both helices in-

tact, G1. Combined with the MD results, these results suggest that upon domain

separation α4 quickly loses some of its helical character, and G2 is an important
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intermediate in the refolding process of RfaH-CTD.

Since the barriers on the FEL for the isolated domain are particularly high,

we infer that, in the absence of the appropriate molecular partner, the refolding

process is likely to be slow. In fact, Burmann et al. probed the refolding process,

by engineering a cleavage site into the linker region between the two domains, and

reported that β-sheet structure was only detected 42 hours after incubation.215
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Figure 4.6: Free energy disconnectivity graphs (∆E = 20 kcal mol−1) for RfaH-CTD com-
puted at 310 K with a regrouping threshold of 5 kcal mol−1. The landscape is reproduced
for several structural order parameters, and representative structures for selected free
energy groups are highlighted.
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4.3.4 Conformational states on the FEL

To gain better insight into the various conformational states on the FEL, the free

energy disconnectivity graph was coloured based on several structural order param-

eters. Secondary structure analysis was performed for each free energy group, and

these results are summarised in Figures 4.6a–c. Considerable variation in α-helical

and β-sheet content is observed in Figures 4.6a and b. The G1 ensemble displays

about 77% α-helical content, while ensembles in the high energy regions of the FEL

and in the neighbourhood of the global FE minimum (G3) generally show negligible

α-helical character. Maximum β-sheet content was observed for G3 (68%), while

ensembles in the intermediate regions of the FEL contain some degree of α-helical or

β-sheet content. Significant coil–like structure (i.e. lack of regular secondary struc-

ture) was observed for many ensembles in the high energy region of the landscape

(e.g. G11 in Figure 4.6c).

The free energy disconnectivity graphs are also depicted in terms of the all-

atom geometric rmsd from G1 (Figure 4.6d) and G3 (Figure 4.6e). These graphs

further highlight the inherent structural heterogeneity of the states on the FEL. The

principal funnel corresponding to ensembles with high α-helical content separates

into two main sub-funnels: ensembles closely related to the hairpin state (G1) and

those with α4 partially unfolded (e.g. G7). The ensembles gradually deviate from

G1 on traversing the landscape towards G3. A similar trend is observed from G3

towards G1.

Based on these results, we infer that on moving from the α-helical hairpin en-

semble to the β-barrel state, RfaH-CTD gradually loses α-helical character, and the

structural conversion occurs via an essentially unstructured intermediate.

4.3.5 Mechanism for fold-switching in RfaH-CTD

A detailed description of the refolding process can be obtained by examining the

pathway between the all-α and all-β conformations that makes the largest contribu-

tion to the rate constant. For RfaH-CTD, the two forms were again defined as states

by lumping stationary points into free energy groups, using recursive regrouping264

with an energy threshold of 11 kcal mol−1.§ The fastest pathway between selected

states was then extracted by employing Dijkstra’s shortest path algorithm on the

clustered stationary point database with appropriate edge weights.258

§Regrouping thresholds for which the rate constant is converged give constant results. However,
if the threshold is too small excessive detail may be retained, and analysing the mechanism may
prove difficult.
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Figure 4.7: Evolution of selected order parameters on the fastest folding pathway from the
α-helical hairpin to β-barrel state of RfaH-CTD: (a) all-atom geometric rmsd from all-α or
all-β state; (b) secondary structure content; (c) radius of gyration; (d) total number of
hydrogen-bonds. Representative structures for some states along the path are shown. The
number of steps corresponds to the number of transition states along the path.

Figure 4.7 shows the variation in several structural order parameters along the
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fastest pathway. A significant deviation from the initial α-helical hairpin coincides

with helical unwinding of α4 (Figure 4.7a); GLU124 to THR131 unfolds and a

short turn develops (GLN127 to ALA128). Two other groups also reported that

unwinding of α4 marked the first stage of the structural transition.342,343 Geometric

rms deviations from the all-α state oscillate at around 7 Å for about eight steps; α4

continues to shorten, while α5 generally remains intact. The protein then passes

through an ‘unstructured’ intermediate (at step 19; Figure 4.7a), and then the

configurations progressively become more β-like. Li et al. also observed a high

population of compact coil-like states in their MSM for RfaH-CTD.343

The α-helical content decreases sharply at step ten of the folding transition

(Figure 4.7b). At this stage, a transition state develops with low helical content in

α5, only maintaining helical structure from ALA137 to LEU142. From steps 14 to

19 the protein contains negligible α-helix or β-sheet structure; in that part of path

states display maximum coil-like structure (notice the green curve in Figure 4.7b).

The protein only adopts β-sheet-like structure in the latter segment of the path, as

the canonical β-strands begin to form.

The radius of gyration (Rg), which was taken as the average mass-weighted

squared distances of all atoms from protein centre of mass, is another useful order

parameter for monitoring structural changes during the rearrangement process. For

most of the refolding process Rg is about 12 Å, suggesting that the protein remains

relatively compact during the transition (Figure 4.7c). Notably, in the early stages

of folding, a significant increase in Rg is observed; a transition state forms with

the two α-helices orientated roughly orthogonal to each other. This state is strik-

ingly similar to the one located on the free energy surface of RfaH-CTD by GC et

al.342 On further investigation, it seems that this state forms due to breakage of a

hydrogen-bond between THR119:HG1 (in α4) and GLU149:O (in α5), which causes

the two helices to separate. However, new hydrogen-bonds are formed; for example,

a short turn simultaneously forms in α4, perhaps to accommodate the nearby bulky

phenylalanine residues (PHE126, PHE130).

The variation in the number of hydrogen-bonds along the path was also exam-

ined. Figure 4.7d reveals that the protein does maintain some degree of hydrogen-

bonding throughout refolding. For instance, between steps 13 to 19 (when the

coil-like character is at a maximum) there is still some hydrogen-bonding due to

turns (e.g. PRO133 to ASP134) and 310 helices (e.g. GLY125 to GLN127). The in-

termediates in that region also contain a significant amount of bends (loops), which

lead to compact morphologies. The hydrogen-bond pattern then increases steadily

as the β-strands nucleate to yield the all-β state.
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Figure 4.8: Pathway for the α-helical hairpin → β-barrel structural rearrangement of
RfaH-CTD. Stationary points in the kinetic transition network were regrouped based on a
threshold of 11 kcal mol−1. Representative structures of selected states are superimposed
on the path. States are numbered based on their positions along the path: s1 corresponds
to the α-helical hairpin ensemble, and s51 represents the β-barrel state.

Finally, the refolding pathway of RfaH-CTD is presented in Figure 4.8 in terms

of free energies. The structural transition occurs in three main stages:

1. The formation of a kink (short turn) in the neighbourhood of the bulky pheny-

lalanine residues initiates the refolding process (s3). α4 gradually shortens in

the direction of the N-terminus (s19). Loss of α-helical character in α4 then

accommodates expansion of α5 (s21)—starting from the C-terminus.

2. Helical unwinding eventually leads to the formation of a compact intermediate

(s23), which includes residual α-helical character (ALA137 to LEU142). The

formation of this intermediate is preceded by a major free energy barrier in

the refolding process, which may therefore be classified as rate-limiting. Once

unfolding of α5 is complete, the C-terminal part of the protein crosses over

the N-terminus, yielding a compact coil-like state (s27). Small conformational
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changes lead to the formation of s39, which exhibits a β-barrel-like topology,

with complete loss of α-helical character.

3. Once s39 forms, nucleation of the β-strands commences. β3 (LEU142 to

ASN144) and β4 (GLU149 to LYS151) begin to develop first (s41), followed by

nucleation of β2 (s43). Strands 1 and 5 form last—completing the β-scaffold

(s51).

4.4 Conclusions

Large-scale conformational changes in proteins are relatively difficult to probe. Such

structural transformations may lead to the exposure of hydrophobic residues, result-

ing in aggregation in vitro, impeding experimental characterisation. Additionally,

one metamorphic partner may be more stable than the other, and so probing the

reverse process, at physically relevant temperatures, may be a challenge.

Computer simulations of fold-switching can therefore play an important role

in improving our understanding of these processes, and aid in the design of novel

protein-based architectures. However, in silico studies of systems undergoing large-

scale changes have their own challenges. In particular, these processes often occur on

long time scales, and the morphologies of interest may be separated by substantial

free energy barriers. To circumvent these issues various sampling and data analysis

strategies have been adopted.

In the present work, methods based on geometry optimisation were employed to

characterise energy landscapes for the all-α to all-β transition of RfaH-CTD. The

new quasi-continuous interpolation scheme349 was employed to obtain initial guesses

for putative structures on the refolding path; together with other discrete path

sampling strategies, a kinetic transition network for RfaH-CTD was constructed

consisting of stationary points on the potential energy landscape.

The free energy landscape for RfaH-CTD was computed at 310 K within the har-

monic superposition approximation. The landscape is characteristically multifun-

nelled, and, consistent with experiment,215 the β-barrel scaffold is the favoured con-

former. The proposed mechanism for the structural transition is in good agreement

with previous work,343 and some of the important structural ensembles identified in

this study have been found in REMD simulations342 and in MSM constructions.343

New details for the refolding process have been provided in the present work.

The ability of our approach to preserve the full atomistic resolution should aid in

deriving design principles for protein fold–switching. It would therefore be of interest
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to extend this work to other transformer proteins (as they become available) and

related systems.
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5

Intrinsically Disordered

Landscapes for Human CD4

Receptor Peptide

5.1 Introduction

In the mid-1990’s, the suggestion that many functional proteins were natively dis-

ordered was met with much scepticism.354,355 This notion was in direct conflict with

the linear sequence–structure–function paradigm that had guided molecular biology

for over half a century. Since then, overwhelming evidence from experiment356–360

and bioinformatics surveys of entire genome sequences361,362 have driven a paradigm

shift, and the abundance and importance of intrinsically disordered proteins (IDPs)

or regions (IDRs) are now widely recognised. It has been estimated that about 50%

of mammalian proteins contain contiguous disordered regions (>30 residues long)

and about 25% are fully disordered.363 Disordered sequences are generally charac-

terised by a low content of bulky hydrophobic amino acids, a high proportion of polar

and charged amino acids, and an overall low complexity*.357,364,365 Due to their com-

position, IDPs usually do not collapse to form hydrophobic cores, or fold into stable

three-dimensional structures. 354,360 Instead, under physiological conditions, they

display a high degree of conformational flexibility, in which several states rapidly in-

terconvert.366,367 Accordingly, IDPs exhibit diverse functional modes: in some cases,

their functions may depend directly on the disordered state,358,368 while, in other

instances, they undergo induced folding upon interaction with a molecular part-

ner.356,369,370

These characteristics confer several functional advantages to IDPs, such as the

*Low complexity sequences contain multiple repeats of single amino acids or amino acid motifs.

87



Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide

ability to regulate distance and orientation of protein domains, bind to targets with

high specificity and low affinity, interact with multiple targets, and undergo post-

translational modifications. IDPs therefore play a central role in many fundamental

processes, including transcription regulation, translation, cell signalling and phos-

phorylation.360,368,371,372 On the other hand, intrinsic disorder in proteins “can also

have a biological cost in terms of the promotion and proliferation of protein folding

diseases”.360 Specifically, the altered expression of IDPs has been linked to several

diseases,373 including cancer, diabetes, neurodegenerative diseases, and cardiovas-

cular diseases.374–379 Additionally, structural disorder has been associated with the

action of pathogens;354 for example, certain viruses may mimic IDRs and interfere

with their regulation inside the cell.380

Thus, characterisation of IDPs is an important research area, to elucidate their

functions and to identify potential therapeutic targets. Experimental characterisa-

tion of IDPs via conventional techniques has proved to be challenging, largely due

to the fact that these methods were originally optimised for folded proteins. In

particular, due to their dynamic nature, the electron density of IDRs is often absent

from X-ray diffraction maps.358 Additionally, in standard NMR studies, IDPs usu-

ally form aggregates at the required experimental concentrations, interconversion of

conformational states leads to line-broadening effects, and peaks corresponding to

disordered proteins are often poorly dispersed (see also § 1.3.2).381 Techniques such

as near and far-UV circular dichroism (CD) have been employed to distinguish be-

tween folded and disordered proteins. Since intrinsic disorder is commonly confined

to a small region of the protein, CD methods, which lack residue-specific informa-

tion, need to be combined with other techniques to properly characterise IDRs.358

Mutidimensional NMR approaches,85,381 SAXS,83,382 single-molecule FRET383 and

AFM384 have all proved useful in providing structural and dynamical information for

disordered proteins. In one study, multidimensional NMR was used in conjunction

with isotopic labelling to probe IDPs in vivo.385 Other hybrid approaches, such as

protease digestion with mass spectrometry,386 have also been employed to identify

IDPs, albeit less effectively than NMR-based techniques.

Molecular simulations, which can provide high resolution structural and kinetic

information for IDP ensembles, have complemented experimental studies.387–390 In

particular, these simulations can provide predictions for experiment, or can be used

in conjunction with experiments to aid interpretation.391,392 The quality of such pre-

dictions and interpretations depends primarily on the accuracy of protein force fields

and on the efficiency of the sampling strategy employed. As for conventional ex-

perimental techniques, protein force fields were originally developed for well-folded
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globular proteins; thus, they may display secondary structure biases.226,393 Hence,

is its necessary to develop force fields that can achieve a good balance among sec-

ondary structures. To this end, several standard force fields have been modified and

benchmarked for IDPs.227,394–400 While most modifications have led to improved

performance, several studies have yielded inconsistent results, and there is currently

no general consensus on the best force field for IDPs.

Since the conformational space of disordered proteins is significantly more com-

plex and heterogeneous than for globular proteins, enhanced sampling for IDPs

is critical.401–403 Accordingly, various enhanced sampling schemes and algorithms

have been employed, such as temperature replica exchange molecular dynamics

(tREMD),404 bias-exchange metadynamics (BE-META),405–408 and Markov state

models (MSMs).409–414 In replica exchange protocols the protein undergoes a random

walk, where information is exchanged between replicas periodically.190 Metadynam-

ics based approaches may use experimental data to guide sampling (i.e. need biased

collective coordinates to be defined),415 whereas in MSMs the goal is to probe long

time dynamics by constructing kinetic models from numerous (mainly short) unbi-

ased MD simulations.205 Several other sampling approaches exist,401–403 including

some that utilise reweighing techniques.392

In the present work, the cytoplasmic tail of human cluster of differentiation 4

(CD4), an IDR linked to HIV-1 infection, is investigated computationally.216 CD4

is a glycoprotein (gp), mainly expressed on the surface of regulatory T cells (a sub-

class of white blood cells).416 The glycoprotein contains 433 residues and is made

up of three regions: an extracellular N-terminal region (371 residues), a transmem-

brane helix (24 residues) and a cytoplasmic C-terminal domain (38 residues), Fig-

ure 5.1.216,417,418 The T cell receptors (TCR) are responsible for recognising antigen

peptides bound to Major Histocompatability Complex class II (MHC-II) molecules.

During this recognition process, CD4 functions as a coreceptor, whereby the ex-

tracellular region binds to a region of MHC-II.419,420 Additionally, the cytoplasmic

tail of CD4 interacts with a lymphocyte-specific protein kinase (p56lck), by jointly

coordinating Zn2+ via a pair of cysteines on each molecule (residues 420 and 422 in

CD4).421 Ultimately, the interaction between CD4 and the TCR complex recruits

p56lck to TCR (which induces phosphorylation of TCR-associated molecules),422,423

and is a central upstream event in TCR signal transduction and the immune re-

sponse.

CD4 also acts as a primary receptor of human immunodeficiency virus type 1

(HIV-1).424–427 Specifically, entry of HIV-1 into the T cells is initiated by binding of

the glycoprotein gp120 (on the HIV-1 envelope) to the extracellular region of CD4.428
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This initial interaction eventually leads to fusion of the viral and cell membranes

and subsequent infection. Once the cell has become infected, the presence of CD4

is known to interfere with the viral life cycle;429,430 for example, CD4 may inhibit

the release of nascent viruses.431,432 However, HIV-1 has evolved to produce viral

proteins, Nef (negative factor) and Vpu (viral protein U), which physically bind to

and downregulate CD4 in T cells, ensuring viral proliferation.433,434

Co-immunoprecipitaion and mutational analyses suggest that residues 402–419

of CD4, located in the membrane-proximal region of the cytoplasmic tail, are nec-

essary for HIV-1 viral protein-induced downregulation.435–438 Moreover, a putative

amphipathic α-helix in that region was found to be responsible for binding of both

Nef and Vpu to CD4.437,439–442 The CD4 receptor peptide (residues 403–419) was

characterised by CD and NMR spectroscopy and it was reported that residues 403–

412 formed an α-helix, with an equilibrium population of about 25%.443 In a recent

simulation study, employing REMD and MSM building techniques, it was demon-

strated that the free energy landscape (FEL) for the receptor peptide (residues

402–419) was mainly flat—a characteristic feature of IDPs.444

Figure 5.1: NMR solution structure for the transmembrane and cytoplasmic domains of
human CD4 (PDB code: 2KLU).418 The CD4 receptor peptide (402–419) is highlighted
in red.
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Here, an alternative approach for modelling intrinsic disorder in proteins, based

on the potential energy landscape (PEL) framework,210–212 is presented. Specifically,

geometry optimisation-based approaches, namely basin-hopping parallel tempering

(BHPT)445 and discrete path sampling (DPS),249–251 are utilised to map out the PEL

and FEL for the CD4 receptor peptide (CD4RP). Recently, Chebaro et al.446 used

REMD and DPS to probe the FEL for an IDR of the p53 upregulated modulator of

apoptosis (PUMA) protein, and found that the potential energy landscape was in-

herently multifunnelled. In earlier work, BHPT was employed to predict favourable

oligomers of amyloid β-peptide, Aβ1−42,445 implicated in Alzheimer’s disease.

The BHPT–DPS approach combines structure prediction and network build-

ing for efficient sampling of IDPs. Using these tools, benchmarks are presented

for CD4RP ensembles generated with various state-of-the-art AMBER force fields

(ff99SB-ILDN,227 ff14ipq,228 ff14SB229). AMBER force fields are widely used to

model protein folding and there is an ongoing need to examine their performance,

particularly for IDPs. Since the PEL framework offers an integrated approach for

probing structure, dynamics and thermodynamics, along with powerful landscape

visualisation techniques,210 it can provide systematic comparisons of IDP ensembles

generated by different force fields. We find that ff99SB-ILDN achieves a better bal-

ance of helical and random-coil structure for CD4RP than the more recent ff14ipq

and ff14SB parametrisations (§ 5.3.3 and 5.3.4). The free energy landscape for

CD4RP was computed for ff99SB-ILDN, and various metastable states were iden-

tified (§ 5.3.5). These results unify previous conflicting experimental findings for

CD4RP and account for the rich functional repertoire of this intrinsically disordered

region. Finally, we discuss the biological implications of our results relating to HIV-1

infection and opportunities for rational drug design (§ 5.4).

5.2 Methods

Preparation of initial structures

The NMR solution structures for human CD4 (403–419) were obtained from the

Protein Data Bank (PDB ID: 1WBR). All 32 models were extracted, and the missing

arginine residue (402) was added using PyMOL.347 The N- and C-terminal ends of

the peptide were capped with an acetyl group and methylamide, respectively.
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Force fields and solvent models

The performance of three AMBER force fields was tested in this study. AM-

BER ff99SB-ILDN227 was developed to improve the side-chain torsion potentials of

isoleucine, leucine, aspartate and asparagine in AMBER ff99SB.226 Improvements

of side-chain torsion potentials for most amino acids, as well as backbone φ and

ψ dihedral parameters, were later implemented as AMBER ff14SB.229 Hence, these

two force fields derive from the same parent (AMBER ff94).221 In contrast, AMBER

ff14ipq228 represents a full rederivation of torsion parameters, coupled with the im-

plicitly polarised charge (IPolQ) model447 for approximating protein partial charges

in the condensed phase.

Simulations of CD4RP (402–419) using the above force fields were performed with

both explicit and implicit solvent models. For the explicit solvent investigations,

ff99SB-ILDN and ff14SB force fields were paired with TIP3P,307 and ff14ipq was

paired with TIP4P-Ew.448 The explicit solvent models were chosen to be consistent

with the models used to parametrise the respective force fields.

All implicit solvent simulations were conducted by coupling the force fields with

GB-Neck2238 (igb=8 in Sander). Maffucci and Contini400 reported that GB-Neck2

was able to compensate for slight helical biases displayed by the ff99SB series.

The ff99SB-ILDN/GB-Neck2 combination was also able to discriminate helices from

IDPs and reasonably predicted β-hairpins in their study.400 An effective salt con-

centration of 0.1 M was maintained to provide mobile counterions in solution, and

a cutoff of 25 Å was used for computation of the effective Born radius. The AM-

BER force fields were also correctly symmetrised,306 to ensure that the energies of

permutational isomers were identical.

Structural refinement via MD

For each force field, the 32 initial structures were first minimised in vacuum for 8000

steepest-descent (SD) steps, followed by 2000 steps using the conjugate gradient

(CG) method. The minimised structures were then solvated in an octahedral box,

with a minimum distance of 12 Å between the peptide and the box edge. For each

system, four Cl− ions were added to neutralise the charges on the peptide. The

solvated structures were then minimised for 10000 steps (8000 SD; 2000 CG) with

a cutoff of 10 Å and periodic boundary conditions for computing non-bonded inter-

actions. A force constant of 100 kcal mol−1 Å−2 was used to restrain the peptide.

The restraint was subsequently removed and the systems were allowed to relax for

a further 10000 steps, using the same minimisation protocol as before.

Each system was then heated to 300 K for 20 ps, and the temperature was reg-
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ulated using a Langevin thermostat with a collision frequency of 1 ps. A small

restraint of 10 kcal mol−1 Å−2 was imposed on the peptide, and bonds involving hy-

drogen were constrained using the SHAKE algorithm, permitting an integration

time step of 2 fs. The peptide restraints were removed and 5 ns of constant pressure

(1 atm) MD was carried out; followed by 2 ns of MD in the canonical ensemble. Fi-

nally, 100 ns of MD in the NVT ensemble at 300 K was performed for each system

(i.e. an aggregate production time of 3.2µs for each force field). Frames along the

trajectories were saved every 10 ps. The lowest energy conformer from each MD

simulation (32 conformers per force field) was then selected to initiate structure

prediction runs via basin-hopping parallel-tempering (BHPT).

Structure prediction via BHPT

In BHPT, multiple basin-hopping (BH)239,240 runs for replicas at different tempera-

tures are performed simultaneously.445 As with other replica exchange methods, the

lower temperature limit for BHPT is usually chosen as the temperature at which

physical observables are to be evaluated, while the high temperature limit is selected

to permit crossing of the highest energy barriers on the landscape. After a given

number of BH steps, replicas at adjacent temperatures may be exchanged, based on

a Metropolis criterion for the energies of the replicas.

In this work, the goal is not to locate the global potential energy minimum, since

this structure for IDPs is unlikely to dominate the equilibrium properties. Instead,

BHPT was utilised to explore the low energy regions of the PEL. The exchange of

replicas in the BHPT procedure avoids kinetic trapping and facilitates accelerated

exploration and sampling of the conformational space.

For each CD4RP conformer, BHPT runs were conducted using 16 replicas at tem-

peratures exponentially distributed between 300 and 550 K using an implicit solvent

representation. Each BHPT run consisted of 5000 BH steps and exchanges among

neighbouring replicas were attempted every 10 steps. To explore the conformational

space, random displacements of Cartesian coordinates were used (with a maximum

step size of 1 Å) and step sizes were adjusted to achieve an acceptance probability

of 20%. The most stable conformer at 300 K from each BHPT run was chosen as a

starting point for construction of the PEL via discrete path sampling (DPS).

Construction of potential energy landscapes via DPS

Initial discrete paths between pairs of CD4RP conformers were first constructed.

The starting conformer pairs (endpoints) were aligned using the LPERMDIST pro-

cedure in OPTIM.321 This procedure effectively computes the minimised distance
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between endpoints with respect to translation, rotation and permutation. The up-

dated quasi-continuous interpolation (QCI) scheme349 was then used to predict con-

figurations between the two endpoints. The interpolated geometries were then fed

to the doubly-nudged252 elastic band253,254 (DNEB) routine, providing a discrete set

of images between selected endpoints. Maxima along this profile were then taken as

initial transition state guesses. These candidates were then tightly converged using

the hybrid eigenvector-following (HEF) procedure.255,256 Refined transition states

were then connected to minima by following steepest-descent paths parallel and

anti-parallel to the unique downhill direction. Minima were converged using a mod-

ified limited-memory Broyden-Fletcher-Golgfarb-Shano (L-BFGS) algorithm242,243

with a convergence condition of 10−7 kcal mol−1 Å−1 for the root-mean-square gra-

dient. The initial paths were then optimised using the SHORTCUT257,258,260 and

UNTRAP260 schemes in PATHSAMPLE322 to produce the final stationary point

databases (kinetic transition networks). These procedures are summarised in sec-

tions 2.5.1 and 2.5.2.

Estimation of free energies and conversion pathways

The free energy landscape (FEL) was computed at 300 K using the harmonic super-

position approximation (HSA; § 2.6).261 Minima and transition states were first clus-

tered into free energy groups using a recursive lumping procedure (REGROUPFREE

in PATHSAMPLE; § 2.7.4).264 The conversion pathways between conformers were

obtained by applying Dijkstra’s shortest path algorithm258 to the clustered kinetic

transition network (KTN).

Secondary structure analysis, computation of NMR shifts and coupling

constants

Secondary structure analysis of minima in each transition network was conducted

using the DSSP program350 and NMR shifts were computed with ShiftX.449 To

determine overall NMR shifts, weighted sums, based on the equilibrium occupation

probabilities, were calculated at 300 K for minima in the KTN.

Three-bond JHNHα coupling constants were computed using the Karplus equa-

tion:
3JHNHα(φ) = Acos2(φ) +Bcos(φ) + C, (5.1)

with A = 9.5, B = −1.4 and C = 0.3, as proposed by Brüschweiler and Case.450

94



Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide

Visualisation of energy landscapes

Finally, the potential energy landscapes (and free energy surfaces) were visualised

using disconnectivity graphs.265,266

5.3 Results and Discussion

5.3.1 Low-lying conformers on the potential energy land-

scape

The NMR solution structures for CD4 (residues 403–419) are depicted in Figure 5.2a.

The NMR-averaged ensemble displays notable structural variation, particularly in

the C-terminal region, and the conformers show some tendency to form α-helices

between residues 403–412, as reported earlier by Willbold and Rösch.443 Each of the

32 structures in the NMR ensemble were simulated via MD and subsequently BHPT

using the three AMBER force fields. Explicit solvent MD was used to probe regions

of local stability on the potential energy landscape of CD4RP. Seeding BHPT from

MD trajectories is not strictly required, since BHPT runs can be initiated from the

prepared NMR structures themselves. However, starting from locally stable regions

on the PEL meant that fewer BHPT steps were required to satisfactorily explore

low-lying wells on the PEL. On average, the potential energy of conformers improved

by about 8 kcal mol−1 after BHPT, and the final 32 conformers covered a range of

less than 20 kcal mol−1 for each of the three force fields.

The BHPT predicted conformers from each force field are shown in Figure 5.2.

It is evident that ff99SB-ILDN and ff14ipq show greater structural variation than

ff14SB. The conformers for the first two force fields resemble molten globules, in

which there is partial formation of helical structure. Conversely, the final ensemble

for ff14SB reveals significant helical character, where the CD4RP forms linear helices.

On average, contiguous α-helices nine, seven, and eleven residues long were obtained

for ff99SB-ILDN, ff14ipq, and ff14SB, respectively. Notably, consistent with the

NMR experiment, no antiparallel β-strands were seen.
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(a) NMR ensemble (403–
419) (b) ff99SB-ILDN

(c) ff14ipq
(d) ff14SB

Figure 5.2: Structural ensembles for the human CD4 receptor peptide: (a) 32 NMR solu-
tion structures (residues 403–419); (b)–(d) conformers (residues 402–419) obtained after
BHPT, using various AMBER force fields. The conformers were clustered using PyMOL
and were oriented with the N-terminal region on the left. The colouring scheme is: teal
(helices), salmon (loops).

5.3.2 Convergence of stationary point databases

The conformers in Figure 5.2b–5.2d were used to construct potential energy land-

scapes for CD4RP via discrete path sampling. To test for convergence of the respec-

tive stationary point databases, the constant volume heat capacity (Cv) curves were

computed for subsets of the local minima. In particular, Cv curves were derived

for minima within a given threshold above the global potential energy minimum

(Figure 5.3). At low temperatures, we expect that features in the heat capacity

may be attributed to a small subset of local minima. Hence, this approach should

be robust in testing for convergence of the databases and should be able to reveal

any deficiencies in sampling. For the three force fields tested, the low-temperature

features in the heat capacity are converged when about 50% of all minima in the

corresponding stationary point database are included. A summary of the number of

local minima and transition states in the final database for each force field is given

in Table 5.1. In the next section, the properties of the resulting potential energy

landscapes for CD4RP are compared systematically.
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Figure 5.3: Constant volume heat capacity curves (Cv) for the human CD4 receptor
peptide. The curves were computed using the harmonic superposition approximation for
the peptide simulated by various AMBER force fields. Minima within a specified energy
threshold of the global potential energy minimum were incrementally included in the
calculation of Cv. The energy thresholds (kcal mol−1) and the corresponding fraction of
minima in the database are provided for each plot in parentheses.
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AMBER force field No. of MIN No. of TS

99SB-ILDN227 47434 51675

14ipq228 53926 58008

14SB229 67276 68689

Table 5.1: Number of minima (MIN) and transition states (TS) in the DPS databases for
the CD4 receptor peptide modelled by various AMBER force fields

5.3.3 Characterisation of potential energy landscapes

The potential energy landscape for CD4RP modelled by the ff99SB-ILDN force field

is presented in Figure 5.4; it is distinctively multifunnelled, with several prominent

low-lying funnels. It was previously postulated that such multifunnelled potential

energy landscapes are characteristic features of intrinsically disordered proteins.446

The disconnectivity graphs in Figure 5.4 are coloured based on the secondary

structure content; specifically, the percent α-helical, random-coil, and turn structure

are shown, since these features were most common in the computed KTNs. The

fractional α-helicity is best able to classify the funnels on the landscape (Figure 5.4a).

Many low energy conformers contain linear α-helices, differing mainly in the length

of the helical segment and orientation of side-chain groups. The shortest α-helices in

that region are about six residues long (approx. 1.7 turns), and the longest consists of

18 residues. Slightly higher in energy are conformers that display helical propensities

in the N- and C-terminal segments of the peptide. There are also a number of

conformers that lack α-helical structure and are quite low in energy.

Chebaro et al. found that for the PUMA peptide the contiguous α-helix was

enthalpically unstable and that low-lying minima were relatively unstructured.446

The organisation of the PEL for the PUMA peptide strongly suggested that the

interaction of this IDP with molecular partners would mainly involve an induced-

fit type mechanism. As mentioned above, the longest contiguous α-helix (residues

402–419) in CD4RP corresponds to a low energy conformer on the PEL. This result

suggests that interactions involving direct binding to CD4RP are most likely to occur

via conformational selection.
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Figure 5.4: Potential energy landscape for CD4RP modelled by the AMBER 99SB-ILDN
force field. In the disconnectivity graphs, minima (branches) are coloured based on sec-
ondary structure content. Selected structures are superimposed on the graph and the
α-helical segments are coloured in teal.
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The potential energy barriers between conformers exceeding 50% α-helical con-

tent are much smaller than those separating conformers with residual helical content.

The latter conformers generally lie higher in energy and display greater coil-like and

turn secondary structure. Very few β-strand conformers were identified for the

ff99SB-ILDN force field. For this representation, the conformers generally show

α-helical propensities, and only a few of them are largely unstructured.

Figure 5.5 illustrates the potential energy landscape for CD4RP computed with

the first-generation ff14ipq force field. As for ff99SB-ILDN, the landscape is intrin-

sically disordered, with multiple prominent funnels. However, the relative potential

energy barriers between the various low-lying conformers are notably larger than

those obtained with ff99SB-ILDN. The conformers for ff14ipq are also more hetero-

geneous than those located with ff99SB-ILDN. The predicted linear α-helical motifs

in CD4RP are also shorter, by about two residues, for this force field. As before,

conformers lacking significant helical structure, characterised by turns (Figure 5.5c)

and coil-like (Figure 5.5b) secondary structure, generally reside in the high energy

regions of the landscape. Additionally, a greater proportion of minima contain

random-coil character than observed for ff99SB-ILDN.

Finally, the landscape for CD4RP was probed using the ff14SB force field; the

topology is evidently less multifunnelled than for the former two force fields (Fig-

ure 5.6). Additionally, the landscape is dominated by linear α-helical conformers.

Secondary structure characterisation also reveals regions with substantial coil-like

structure (Figure 5.6b), separated from the main part of the landscape by particu-

larly high potential energy barriers. However, even in these regions, conformers still

exhibit some helical character. Similar regions were also identified on the ff99SB-

ILDN and ff14ipq landscapes, and the entropic barrier between them and the other

parts of the PEL is therefore likely to be physically realistic.
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Figure 5.5: Potential energy landscape for CD4RP modelled by the AMBER 14ipq force
field. In the disconnectivity graphs, minima (branches) are coloured based on secondary
structure content. Selected structures are superimposed on the graph in (a) and the α-
helical segments are coloured in teal.
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Figure 5.6: Potential energy landscape for CD4RP modelled by the AMBER 14SB force
field. In the disconnectivity graphs, minima (branches) are coloured based on secondary
structure content. Selected structures are superimposed on the graph in (a) and the α-
helical segments are coloured in teal.
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The distribution of the radius of gyration (Rg) for the local minima of CD4RP is

shown in Figure 5.7a. For all the force fields, there is a single peak in the Rg distri-

bution. Conformers generated with ff14SB are most extended (i.e., corresponding to

linear helices), while those predicted with ff14ipq are most compact (consistent with

a greater presence of molten-globule like structures on the landscape). A slightly

broader Rg distribution is obtained for ff99SB-ILDN, which peaks between the two

newer AMBER force fields.

Figure 5.7b summarises the distribution of fractional α-helicity. All force fields

show multiple peaks in the distribution (at a bin width of 10%), with the major

peaks for ff99SB-ILDN and ff14SB at about 60–70% α-helicity. The distribution for

ff14ipq is shifted to the left; in general, ff14ipq predicts peptides with fewer helical

residues than the other two force fields. Additionally, on inspecting the left tails of

the distributions, it is apparent that only a few conformers located with f14SB lack

α-helical character. The distributions for ff99SB-ILDN and ff14SB are somewhat

similar, although the former parametrisation predicts a greater fraction of structures

with low α-helical content.
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Figure 5.7: Distribution of radius of gyration (Rg) and fractional α-helicity for local
minima of CD4RP generated with various AMBER force fields, as indicated.

5.3.4 NMR shifts and coupling constants

Predicted NMR shifts are a useful tool for validating simulation data by comparison

with experiment. The computed HN NMR shifts for human CD4 (residues 403–419)

are presented in Figure 5.8. The agreement between the experimental and calculated
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NMR shifts was assessed by computing

χ2
σ =

1

N

N∑
i=1

(δi,cal − δi,exp)2

σ2
δ

, (5.2)

where i is the residue number, N is the number of residues, δi,cal and δi,exp are the

calculated (as described in § 5.2) and experimental chemical shifts, respectively, and

σ2
δ is the uncertainty (σδ = 0.49 ppm for HN using SHIFTX). By definition, χ2

σ > 1

indicates a significant difference between computed and experimental structures.451

The χ2
σ values for the HN NMR shifts for ff99SB-ILDN, ff14ipq and ff14SB structures

are 0.28, 0.55 and 0.42, respectively. Based on this metric, the HN shifts for the

ensembles generated with all three force fields agree quite well with the experimental

findings.443 The main deviations from the NMR experiments occur in the C-terminal

region of the peptide (residues 417–419); the de novo approach employed in this work

generally yields more ordered C-termini than found in experiment. In the N-terminal

part of the peptide, ff14SB predicted more structured helices, while ff14ipq predicts

more disorder than experiment. However, the overall HN NMR shifts, particularly

those computed for ff99SB-ILDN, closely match the literature values.
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ff14ipq (0.55)

ff14SB (0.42)

Figure 5.8: Comparison of HN NMR shift for CD4RP ensembles generated with various
AMBER force fields and experiment. The χ2

σ uncertainty, which measures the agreement
between computed and experimental shifts, is given in parentheses.

In addition to NMR shifts, average 3JHNHα values (weighted by occupation prob-

abilities at 300 K) were computed for residues 403–419, and the root-mean-square

deviation (rmsd) of the calculated and experimental values was determined. For

ff99SB-ILDN, ff14ipq and ff14SB rms deviations of 1.40, 1.68 and 1.50 Hz were ob-

tained, respectively. Overall, ff99SB-ILDN performs best for CD4RP, in terms of
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reproducing the HN NMR shifts and J coupling constants. This force field was

therefore selected for further analysis, specifically for probing the free energy sur-

face.

5.3.5 Free energy landscape for CD4RP

The free energy landscape for CD4RP was produced by clustering minima and tran-

sition states in the ff99SB-ILDN-derived KTN, based on the relative free energy

barriers. To cluster the stationary points, the lowest energy minima with highest

fractional random-coil and α-helical structure were taken as the starting configura-

tions for A (reactant) and B (product), respectively. Using a recursive regrouping

scheme, A and B were then expanded as free energy groups, based on a predefined

free energy threshold (∆F ) at 300 K. The rate constant for the A → B conversion

was derived by employing the new graph transformation formulation (see § 2.7.3 for

details).262 To determine an appropriate value for ∆F , the procedure was repeated

for different values in the range 0 to 20 kcal mol−1, and the smallest threshold (in this

case, 5.5 kcal mol−1) for which the rate constant converged was chosen for probing

the free energy surface.

The resulting free energy landscape is depicted as a disconnectivity graph in

Figure 5.9, and representative structures for various free energy groups are super-

imposed on the graph. The computed FEL is similar to the corresponding PEL in

Figure 5.4. The lowest free energy group at 300 K (g1) contains a contiguous α-helix

extending from residues ALA404 to SER415. Other free energy groups, of compa-

rable energies, also contain linear α-helical motifs: g2 (406–415), g4 (403–419), g5

(402–415).

A putative amphipathic α-helix between residues 402–419 of the cytoplasmic

tail of human CD4 may be necessary for interaction with both Nef and Vpu—HIV-1

accessory proteins.437,439–442 Willbold and Rösch predicted an α-helix from residues

403–412 for CD4RP.443 Putative α-helices extending from residues 402–417,216 406–

415452 and 404–413417,418 have also been reported for the cytoplasmic tail of human

CD4. On the computed free energy surface, these motifs are most similar to those

found in g4, g2 and g9, respectively, which are all low-lying states. These results

suggest that CD4RP is capable of adopting a wide range of helical motifs of vary-

ing lengths, which extend from different residues; however, the precise α-helical

structure observed is most likely dependent on the prevailing conditions or the reso-

lution of the experiment. The results here help to unify previous experimental work,

and explain the ability of CD4RP to bind different molecular partners. Addition-

ally, Wittlich and collegues reported that the amphipathic helix was stable even at
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45◦C.418 The free energy landscape was also examined at 318 K (not shown) and is

in agreement with those findings.
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g8
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g5
g4

g3g2
g1

% α-helical content

8 kcalmol−1

Figure 5.9: Free energy disconnectivity graph for CD4RP modelled by the ff99SB-ILDN
force field. The free energy groups (branches) are coloured according to the α-helical
content. Representative structures of selected free energy groups are superimposed on the
graph and the α-helical motifs are coloured in teal.

The relatively high free energy barriers between the various α-helical states on

the FEL also suggest that conversion between them is likely to occur on long time

scales. Furthermore, fully unstructured states are generally higher in energy on the

FEL and it is unlikely that CD4RP is unstructured under physiological conditions.
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Moreover, the intrinsic disorder in this peptide may be accurately described as a

tendency to adopt various ordered states encompassing α-helical scaffolds. The

dominance of these α-helical scaffolds in the low-lying regions of the FEL suggests

that interaction with molecular partners may occur via conformational selection.

5.3.6 Folding mechanism for CD4RP

Figure 5.10: Folding pathway from a fully unstructured (A) state to a state containing a
contiguous α-helical structure 18 residues long (B) on the FEL for CD4RP. The number
of steps corresponds to the number of transition states on the discrete path.

To gain further insight into the folding dynamics of CD4RP, the folding pathway from

a fully unstructured state (g13) to a state containing the longest contiguous α-helix

(g7; 18 residues long) was examined� (Figure 5.10). Folding from the ‘random-coil-

like’ state occurs in a cooperative fashion; i.e. there is a gradual decrease in the free

energy of the states encountered as the peptide folds. This result agrees well with

the findings of Ahalawat and co-workers,444 who also reported that the formation

of the helix began at residues 407–410.444 For the pathway depicted in Figure 5.10,

the helix initiates from a similar region (410–413). The N-terminal portion of the

helix forms first and several states on the pathway (between steps 8–12) exhibit α-

helical residues for the membrane proximal region (403–413) with an unstructured

C-terminus. Interestingly, the helical motif in that segment of the path is almost

�These free energy groups correspond to the final free energy groups for the initial A and B
conformers selected by defining the reactant and product via regrouping.
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identical in length and position with the original experimental prediction (403–412).

It appears that this scaffold is an important structure for CD4RP function.

Finally, pathways and corresponding rate constants for conversions between var-

ious states on the FEL were examined. Generally, the rate for folding from states

with linear helical motifs (e.g. g4, g9) to g1 is four to six orders of magnitude faster

than from states without helices (e.g. g10, g11, g13). However, the rate constant for

interconversions of various ordered helical scaffolds (e.g. g7 → g1) is of the order of

10−5 s−1, suggesting that these transformations may occur slowly. The free energy

barriers for such interconversions may be lowered in the presence of a molecular part-

ner. Alternatively, different prevailing conditions in the cell may favour one state

over the another, explaining why several groups have reported differing lengths for

linear helical motifs for CD4RP.

5.4 Conclusions

Binding of HIV-1 glycoprotein gp120 to the extracellular domain of CD4 leads to

exposure of epitopes, which can be targeted by antibodies.453 However, the presence

of HIV-1 accessory proteins, Vpu and Nef, indirectly reduces the exposure of these

epitopes by downregulating CD4 from the surface of infected cells.454,455 Several ap-

proaches for HIV-1 antiviral drug design have focused on inducing exposure of HIV-

1 epitopes, in the absence of CD4, to promote antibody-mediated responses.456–459

These approaches adopt the conventional structure-based drug design model, which

is based on targeting well-defined regions in proteins.460

Recently, some researchers suggested that an alternative route for drug devel-

opment could be based on designing drugs that can mimic the interaction of the

cytoplasmic tail of CD4 with HIV-1 accessory proteins, in an antagonistic fash-

ion.459,461 Similar design principles have already been adopted in cancer therapies,

where small molecules that mimic intrinsically disordered regions have been used

to inhibit critical protein-protein interactions.462,463 However, the development of

CD4 cytoplasmic tail-mimicking molecules has been less prolific, because the CD4–

Vpu/Nef interaction site has been difficult to characterise.

In the present work, the free energy landscape for the CD4 receptor peptide

has been characterised by employing geometry optimisation-based approaches. The

metastable states we have identified help to unify, and are consistent with, several

earlier predictions. The conformers identified herein may be used as starting points

in docking studies with HIV-1 accessory proteins, to better probe the recognition

process. Additionally, the strategies presented in this work may be used to charac-
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terise the full-length cytoplasmic domain. These investigations may prove useful, not

only in achieving thorough characterisation of the reaction interface, but may also

represent a critical step towards developing viable CD4 receptor peptide mimetics.
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Conclusions and Outlook

In 1977, McCammon and Karplus published their seminal paper, entitled “Dynam-

ics of folded proteins”.158 Their molecular dynamics simulation of bovine pancreatic

trypsin inhibitor (a folded globular protein) would be the first of its kind and was

only about nine picoseconds long. Today, similar proteins are simulated on super-

computers, such as Anton,464 in the millisecond regime. Advancements of computing

hardware and algorithms have been accompanied by critical theoretical discussions,

improvements in physical models and development of new sampling techniques—all

of which have broadened our understanding of proteins and protein folding. No-

tably, investigations of disordered and misfolded proteins and their role in disease

have been significantly aided by in silico approaches.

However, new discoveries have presented new challenges: experimental charac-

terisation of larger protein structures (beyond the conventional 25 kDa limit)465

necessitates greater computational efficiency. Large-scale structural changes (e.g. in

proteins that switch folds) represent kinetic bottlenecks, and models traditionally

optimised for folded globular proteins are generally insufficient for describing disor-

dered proteins.

In this thesis, we sought to address some of the aforementioned challenges by

adopting approaches based on the computational potential energy landscape (PEL)

methodology. In this framework, the PEL is discretised into stationary points (min-

ima and transition states) via geometry optimisation techniques. Thermodynamic

and kinetic information is then extracted from the resulting kinetic transition net-

works (KTNs) using established methods from equilibrium statistical mechanics and

unimolecular rate theory.

First, we demonstrated how a local rigid body (LRB) framework may be imple-

mented to probe protein folding (§ 3). This framework had previously been used to

improve computational efficiency in global optimisation. In this work, we investi-
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gated how the properties of the underlying PEL of tryptophan zipper 1 varied as a

function of local rigidification. We found that conservative local rigidification was

able to reproduce the thermodynamic and kinetic properties of the model protein,

as well as the mechanistic details of folding. However, a more aggressive local rigid-

ification led to undesirable features, such as increased frustration in the landscape

and lengthening of putative folding pathways. Accordingly, we propose that within

the context of protein folding local rigid bodies must be carefully chosen.

Next, we mapped out the energy landscape for the C-terminal domain (CTD) of

bacterial regulatory protein RfaH (§ 4), which undergoes a dramatic structural rear-

rangement from an α-helical hairpin to the β-barrel scaffold. Large-scale structural

transitions, such as those observed in RfaH-CTD, are generally not amenable to

conventional molecular dynamics simulations. Additionally, within the PEL frame-

work, interpolation issues have impeded studies of such transitions. In this work,

we adopted a new quasi-continuous interpolation scheme, and constructed KTNs for

the refolding process. Our computed free energy landscape for RfaH-CTD at 310 K

is multifunnelled, and the predicted free energy ensembles are in good agreement

with experiment and other simulation studies. We found that the structural rear-

rangement (from the α-helical conformer to the β-sheet) proceeded via a completely

unstructured state.

Finally, in § 5, the human CD4 receptor peptide (CD4RP), implicated in HIV-1,

was characterised via basin-hopping parallel tempering (BHPT) and discrete path

sampling (DPS). In this study, we also investigated the effects of three state-of-

the-art AMBER forcefields on the energy landscape. Through comparison with

experiment, our study revealed that AMBER ff99SB-ILDN is best suited to model

the intrinsically disordered protein (IDP). Furthermore, we were able to rationalise

why several previous studies had reported seemingly conflicting results for the CD4

cytoplasmic tail. Our work therefore helps to unify prior findings, as well as identify

possible starting points for investigating the reaction interface between CD4 and

HIV-1 accessory proteins.

Some avenues for future studies emerge from the results in this thesis. These

include, but are not limited to:

� Extending the LRB framework to probe pocket dynamics in enzymes and

other receptor proteins.466 Hybrid approaches467 can be employed, in which

the binding pocket is represented in full atomistic detail, and the rest of the

protein is treated as a larger rigid body. We anticipate that these studies

may achieve significant gains in computing efficiency, while preserving the

properties of interest.
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� Employing the updated PEL approaches in the design of artificial proteins and

synthetic foldamers.468,469 For instance, the design of novel cyclic peptides with

diverse therapeutic capabilities is an emerging field,470 and the computational

PEL framework may prove useful in this context.

� Utilising the approaches presented in this dissertation to investigate other im-

portant IDPs,372 and in the optimisation of corresponding protein forcefields.

Construction of KTNs via DPS may emerge as an important step towards

characterisation of the reaction interfaces between IDPs and their molecular

partners.

Throughout this thesis, we employed implicit solvation to permit efficient energy

landscape construction. However, it would be worthwhile to optimise the approaches

described therein for explicit solvent and ion representation, which should provide

a better approximation of the physical environment. Overall, the PEL framework

presents many opportunities for probing protein folding, by providing powerful pro-

cedures for obtaining thermodynamic and kinetic information. Furthermore, the

derivation of free energy landscapes does not require the use of reaction coordinates

(or collective variables), which are generally difficult to define a priori, and may lead

to overly simplified representations of the complex folding subspace.

It is indeed an exciting time to be studying proteins and protein folding. I

envision a future in which the strengths of different approaches are integrated to

yield robust hybrid formalisms, capable of replicating conditions inside the cell.

“A combination of these theoretical approaches with the interpretation of related

experiments will provide a unified description of motions in proteins.”

– McCammon, Karplus (1977)
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[111] S. Benjwal, S. Verma, K.-H. Röhm and O. Gursky, Protein Sci., 2006, 15,
635–639.

[112] L. R. McLean and A. Balasubramaniam, Biochim. Biophys. Acta, Protein
Struct. Mol. Enzymol., 1992, 1122, 317–320.

[113] C. Goldsbury, K. Goldie, J. Pellaud, J. Seelig, P. Frey, S. A. Müller, J. Kistler,
G. J. S. Cooper and U. Aebi, J. Struct. Biol., 2000, 130, 352–362.

[114] D. Kurouski, R. K. Dukor, X. Lu, L. A. Nafie and I. K. Lednev, Biophys. J.,
2012, 103, 522–531.

[115] C. J. Barrow, A. Yasuda, P. T. M. Kenny and M. G. Zagorski, J. Mol. Biol.,
1992, 225, 1075–1093.

[116] E. Terzi, G. Hoelzemann and J. Seelig, Biochemistry, 1994, 33, 1345–1350.

[117] P. K. Mandal and J. W. Pettegrew, Neurochem. Res., 2004, 29, 2267–2272.

118



REFERENCES

[118] R. B. Dyer, F. Gai, W. H. Woodruff, R. Gilmanshin and R. H. Callender, Acc.
Chem. Res., 1998, 31, 709–716.

[119] A. Barth, Biochim. Biophys. Acta, Bioenerg., 2007, 1767, 1073–1101.

[120] W. K. Surewicz, H. H. Mantsch and D. Chapman, Biochemistry, 1993, 32,
389–394.

[121] J. Kong and S. Yu, Acta Biochim. Biophys. Sin., 2007, 39, 549–559.

[122] H. Yang, S. Yang, J. Kong, A. Dong and S. Yu, Nat. Protoc., 2015, 10, 382.

[123] A. Ghosh, J. S. Ostrander and M. T. Zanni, Chem. Rev., 2017, 117, 10726–
10759.

[124] J. Seo, W. Hoffmann, S. Warnke, X. Huang, S. Gewinner, W. Schöllkopf, M. T.
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J. Mol. Biol., 2002, 323, 573–584.

[376] J. M. R. Baker, R. P. Hudson, V. Kanelis, W.-Y. Choy, P. H. Thibodeau, P. J.
Thomas and J. D. Forman-Kay, Nat. Struct. Mol. Biol., 2007, 14, 738.

[377] M. Wells, H. Tidow, T. J. Rutherford, P. Markwick, M. R. Jensen, E. Mylonas,
D. I. Svergun, M. Blackledge and A. R. Fersht, Proc. Natl. Acad. Sci. USA,
2008, 105, 5762–5767.

[378] V. N. Uversky, C. J. Oldfield and A. K. Dunker, Annu. Rev. Biophys., 2008,
37, 215–246.

[379] M. D. Mukrasch, S. Bibow, J. Korukottu, S. Jeganathan, J. Biernat,
C. Griesinger, E. Mandelkow and M. Zweckstetter, PLoS Biol., 2009, 7,
e1000034.
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