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Abstract

Unconventional Fermi surface in insulating SmB6 and

superconducting YBa2Cu3O6+x probed by high magnetic fields

by Yu-Te Hsu

Fermi surface, the locus in momentum space of gapless low-energy excitations, is a concept of

fundamental importance in solid state physics. Electronic properties of a material are deter-

mined by the long-lived low-energy excitations near the Fermi surface. Conventionally, Fermi

surface is understood as a property exclusive to a metallic state, contoured by electronic bands

crossed by the Fermi level, although there has been a continuing effort in searching for Fermi

surface outside the conventional description. In this thesis, techniques developed to prepare

high-quality single crystals of SmB6 and YBa2Cu3O6+x (abbreviated as YBCO6+x hereinafter)

are described. By utilising measurement techniques of exceptional sensitivity and exploring

a wide range of temperatures, magnetic fields, and electrical currents, we found signatures of

unconventional Fermi surfaces beyond the traditional description in these strongly correlated

electronic systems.

SmB6 is a classic example of Kondo insulators whose insulating behaviour arises due to

strong correlation between the itinerant d-electrons and localised f -electrons. The peculiar re-

sistivity plateau onsets below 4 K has been a decades-long puzzle whose origin has been recently

proposed as the manifestation of topological conducting surface states. We found that the in-

sulating behaviour in electrical transport is robust against magnetic fields up to 45 T, while

prominent quantum oscillations in magnetisation are observed above 10 T. Angular depen-

dence of the quantum oscillations revealed a three-dimensional characteristics with an absolute

amplitude consistent with a bulk origin, and temperature dependence showed a surprising de-

parture from the conventional Lifshitz-Kosevich formalism. Complementary thermodynamic

measurements showed results consistent with a Fermi surface originating from neutral itiner-

ant low-energy excitations at low temperatures. Theoretical proposals of the unconventional

ground state uncovered by our measurements in SmB6 are discussed.

YBCO6+x is a high-temperature superconductor with a maximum Tc of 93.5 K and the

cleanest member in the family of copper-oxide, or cuprate, superconductors. The correct de-
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scription of electronic ground state in the enigmatic pseudogap regime, where the antinodal

density of states are suppressed below a characteristic temperature T ∗ above Tc, has been a sub-

ject of active debates. While the quantum oscillations observed in underdoped YBCO6+x have

been predominately interpreted as a property of the normal state where the superconducting

parameter is completely suppressed at ≈ 23 T, we made the discovery that YBCO6.55 exhibits

zero resistivity up to 45 T when a low electrical current is used, consistent with the observa-

tion of a hysteresis loop in magnetisation. Quantum oscillations in the underdoped YBCO6+x

are thus seen to coexist with d-wave superconductivity. Characteristics of the quantum oscil-

lations are consistent with an isolated Fermi pocket reconstructed by a charge density wave

order parameter and unaccompanied by significant background density of states, suggesting

the antinodal density of states is completely gapped out by a strong order parameter involving

pairing correlations, potentially in addition to the other order parameters. Transport measure-

ments performed over a wide doping range show signatures consistent with pairing correlations

that persist up to the pseudogap temperature T ∗.

The surprising observation of quantum oscillations in insulating SmB6 and superconducting

YBCO6+x demonstrates a possible new paradigm of a Fermi surface without a conventional

Fermi liquid. A new theoretical framework outside the realm of Fermi liquid theory may be

needed to discuss the physics in these strongly correlated materials with enticing electronic

properties.
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Preface

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration except declared in the Preface and specified in the text. The

research projects are performed under supervision of Dr Suchitra E. Sebastian in the Quantum

Matter (QM) group at the Cavendish Laboratory. Single crystals of SmB6 and YBCO6+x are

primarily prepared and characterised by myself using methods described in Chapter 3. High

magnetic field measurements are performed in a group setting with colleagues from QM and

supporting staffs at high-field facilities. Experimental data are principally analysed by myself

and Máté Hartstein. The study of quantum oscillations and thermodynamic measurements on

SmB6 presented in Chapter 5 has been published in Science, 349, 287-290 (2015) and Nature

Physics, 14, 166-172 (2018). A number of figures are made with substantial inputs from Máté

Hartstein as credited below (Figures 5.9, 5.10, 5.13-20, 6.4, 6.7-12, 6.19-22).

It is not substantially the same as any that I have submitted, or, is being concurrently

submitted for a degree or diploma or other qualification at the University of Cambridge or any

other University or similar institution. I further state that no substantial part of my dissertation

has already been submitted, or, is being concurrently submitted for any such degree, diploma or

other qualification at the University of Cambridge or any other University of similar institution.

This thesis does not exceed the prescribed word limit for the Degree Committee for the

Faculty of Physics and Chemistry.

iii





Acknowledgements

The Cambridge journey has been a dream-come-true experience for me, one that I have nu-

merous people to thank for.

First of all, I have to thank Suchitra for the providing me the opportunity of studying in

the Cavendish. I still remember how shocked I was to receiving her email, offering me a place

as a postgraduate student in Cambridge, a place I would never dream of attending. Working

with her has vastly broadened my horizons, both scientifically and geographically, and taught

me how to adopt to the most challenging situations. ”No measurements should be performed

on non-optimal samples” is a lesson I will never forget. Thank you for all the guidance and

support during the course of my PhD.

Next, I would like to dedicate my gratitude to Máté, my comrade in highly magnetic bat-
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Chapter 1

Introduction

1.1 Strongly correlated electronic systems

The band theory of solids is a major triumph of twentieth century physics. Based on the

theoretical framework of a single-particle Hamiltonian, it successfully describes a wide range

of physical phenomena of solids and explains the occurrence of conductors and insulators. The

simple band theory, however, works only when the interactions between electrons are weak

and can be ignored. In systems where the electron-electron interactions are strong, known

as strongly correlated electronic systems, the simple band theory ceases to apply and novel

electronic states emerge due to the collective behaviour of interacting electrons. In this section,

a model applicable to describe the strongly correlated systems is introduced, and discussed in

relation to two strongly correlated electronic systems.

1.1.1 t-J model

A simplistic model that has been highly successful to describe many-body system is the t-J

model, pioneered by John Hubbard, with the Hamiltonian

H = −t
∑
<i,j>σ

(c†iσcjσ + h.c.) + J
∑
<i,j>

Si · Sj, (1.1)

where t is the hopping integral, <i, j> denotes the summation over the nearest-neighbour

lattice sites, σ denotes the spin of the particles, c†(c) is the creation (annihilation) operator,

h.c. is the Hermitian conjugate, J is the exchange integral that describes the coupling between

particles, and S is the spin operator [1, 2]. The t-term describes the kinetics of particles, which

favours particle hopping to neighbouring sites. The J-term describes the potential energy due

to nearest-neighbour interactions. The ratio t/J determines the electronic ground state of the

system. Two examples that can be described by the t-J model are discussed below.
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1.1. Strongly correlated electronic systems

1.1.2 Mott insulator

A Mott insulator has a single, partially filled energy band, predicted to be metallic by simple

band theory, but is insulating due to electron-electron interactions. Figure 1.1 illustrates the

formation of such state in a two-dimensional lattice with a half-filled d-band. Each of the free

d-electron occupies an atomic lattice site and can hop to the neighbouring lattice sites. The

hopping of electron is favoured energetically by −t, but punished by Coulomb repulsion U . An

antiferromagnetic configuration of the spins are formed due to Pauli exclusion principle, and an

exchange of neighbouring spins can occur via two virtual hoppings of electrons with a coupling

constant J = 4t2/U . When t � U , electrons can tunnel through the lattice sites without

hinderance and the system is metallic; when t � U , the strong Coulomb repulsion between

electrons render them to be localised and the system is insulating. In such insulating state, the

originally half-filled d-band is split into an upper and a lower Hubbard band, separated by a

bandgap where the Fermi energy EF lies. Mott insulators have been discovered in abundance

since the first occurrence in NiO [3], many of which are transition metal oxides and two-

dimensional organic salts [1, 4].

Figure 1.1: Mott insulating state at half-filing. (a) A schematic two-dimensional
lattice with one d-electron occupying each lattice site, symbolised by the blue arrows
with the arrow directions denoting the spins. The virtual hopping of electrons to
neighbouring sites reduces the total energy by −t but increases the energy by U due
to Coulomb repulsion. The alternation of spin directions in the neighbouring lattice
sites is a result of Pauli exclusion principle. The exchange of neighbouring spins is
associated with a coupling constant J = 4t2/U . (b) A metallic state is predicted when
the Fermi energy EF lies in the half-filled d-band by simple band theory. The d-band
splits into an upper Hubbard band (UHB) and lower Hubbard band (LHB) when the
Coulomb interaction between electrons is considered, leaving the Fermi energy EF

lying within the bandgap and forming a Mott insulating state.
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1.1. Strongly correlated electronic systems

1.1.3 Kondo hybridisation

Another example of unconventional electronic state is the Kondo system, which consists of

the itinerant d-electrons and localised f -electrons. Figure 1.2 illustrates the formation of a

Kondo state in a two-dimensional lattice. The f -electrons with a large magnetic moment

form a lattice with an antiferromagnetic arrangement of the neighbouring spins, known as the

Kondo lattice. At high temperatures, the system is metallic whose transport behaviour is

dominated by the weak scattering of the itinerant d-electrons by localised f -electrons. The

antiferromagnetic interaction between the d- and f -electrons grows as temperature decreases

and, below a characteristic temperature known as the Kondo temperature TK, the scattering

becomes so strong that the d-electron is magnetically bound to the f -electron and forms a spin

singlet state, known as the Kondo singlet. The formation of the Kondo singlets screens the

magnetic moment of the f -electrons and disrupts the antiferromagnetic configuration of the

Kondo lattice, causing the Kondo system to be paramagnetic at low temperatures.

Figure 1.2: Kondo hybridisation between d- and f-electrons. (a) A schematic
two-dimensional lattice with localised f -electrons (red arrows) occupying the lattice
sites with a favourable antiferromagnetic coupling between the spins. Itinerant d-
electrons (blue arrows) act to screen the localised magnetic moments and disrupt the
antiferromangetic arrangement of the f -electrons. A spin-singlet state, illustrated by
the encircled f - and d-electrons, known as the ‘Kondo singlet’ is formed below the
Kondo temperature TK when the magnetic interactions between the d- and f -electrons
are sufficiently strong. (b) Electronic band structure before the hybridisation of d-
and f -bands (top). Below TK, the d- and f -bands hybridise and open up an indirect
bandgap ∆ (bottom). A Kondo insulating state is formed if the Fermi level lies within
the bandgap.
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1.2. SmB6: a Kondo insulator

The collective formation of Kondo singlets can be understood as the hybridisation between

the electronic d- and f -bands. Below TK, the dispersive d-band hybridises with the flat f -band

and forms two bands that are weakly dispersive near the original f -band, with a small indirect

bandgap. If the Fermi level lies within one of these flat bands, the ground state is a metal

with heavy fermions, whose electron effective mass can be several orders of magnitude higher

than that of the free electron. If the Fermi level lies within the hybridisation gap, the ground

state is an insulating state known as the Kondo insulator. A dozen Kondo insulators have been

discovered so far, typically consisting of elements with 4f -electrons such as Ce and Sm [2].

1.2 SmB6: a Kondo insulator

1.2.1 Resistivity behaviour

SmB6 is the first example of a Kondo insulator discovered in 1969 [5]. It has a body-centred

cubic structure with the Sm atom forming a simple cubic lattice and the B6 octahedron locates

at the body centre. At room temperature, it is a paramagnetic metal. Upon cooling, it becomes

an insulator with a small hybridisation gap of ≈ 4 meV, corresponding to a TK ≈ 40 K, as shown

in Figure 1.3. Intriguingly, the resistivity saturates below 4 K and reaches a plateau, suggesting

that an additional conducting channel onsets at T < 4 K. Originally the conducting channel

was attributed to impurity bands in the bulk [5], but the low-temperature resistivity plateau

persists with improved sample quality, which suggests the behaviour is an intrinsic property.

Until recently, the origin of the resistivity plateau in SmB6 had remained an unsolved puzzle

for decades [2].

1.2.2 Topological insulator proposal

Recently, it has been proposed that SmB6 is a strongly correlated topological insulator, which

provides an attractive explanation for the low-temperature transport anomaly [6]. Topological

insulators are a novel electronic state of matter, in which a conducting surface state emerges

from a bulk insulator.

The topological nature in these unconventional insulators is manifested by the attribution of

topological order to the electronic wave functions. Insulators are characterised by a conduction

band and a valence band that are separated by a bandgap. From this aspect, the physical

vacuum and conventional insulators fall into the same class, characterised by the topological

invariant Z2 index of +1 [7]. An analogy of this classification can be found in topology, where a

donut and a mug is famously classified into the same topological class of genus = 1, determined

by the number of holes in the manifold. In a conventional insulator, the electronic wave function

can evolve smoothly from its bulk to the vacuum with the bandgap remains open throughout

4



1.2. SmB6: a Kondo insulator

Figure 1.3: Characteristics of the Kondo insulator SmB6. (a) Crystal structure
of SmB6. The Sm atom forms a simple cubic lattice with a lattice constant of 4.13
Å with the B6 octahedron locates at the body centre. (b) Temperature dependence of
the longitudinal resistivity ρ. The resistivity increases by orders of magnitude upon
cooling below TK = 40 K (bottom axis). However, the resistivity reaches a plateau
below 4 K, corresponding to 103/T > 250 (top axis).

the process, since the wave functions of the insulator and vacuum are topologically equivalent.

Topological insulators, on the other hand, contain an internal twist in the electronic wave

function characterised by the topological order Z2 = -1. This ‘twist’ is typically realised by

band inversion, when the valence and conduction bands of different parities are inverted by

control of chemical doping, lattice distortion, and/or spin-orbit coupling [8]. The distinct

topological orders between the bulk of topological insulator and vacuum forbids the smooth

evolution of the electronic wave function and the bandgap inevitably closes at the interface,

giving rise to a gapless surface state with a linear dispersion near the Dirac point [7]. Figure 1.4

illustrates the band structure and transport behaviour of a topological surface state. The spin

of charge carriers hosted in the Dirac surface state is locked perpendicular to their momentum,

which prevents the scattering against non-magnetic impurity that would necessarily change the

momentum but not the spin.

The Z2 order for a cubic insulator with inversion symmetry is determined by the number of

crossings of bands with different parities, n, at high symmetry points [7]. Each time the band

crossing occurs the Z2 index changes sign, i.e. Z2 = (-1)n. In SmB6, the 5d-band of even parity

crosses three 4f -bands of odd parity at X-point [6], giving a Z2 = (-1)3 = -1, hence is predicted

to be a topological Kondo insulator. A simplified illustration is shown in Figure 1.5. This

theoretical prediction has renewed the research interest in SmB6. Recent experiments studying

the nature of the low-temperature conducting state are briefly discussed in the following section.
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1.2. SmB6: a Kondo insulator

Figure 1.4: Electronic bands and transport behaviour of a topologically in-
sulating state. (a) A topological insulator hosts gapless surface state of linearly
dispersed bands within the bulk gap. The electron spins are locked to their momen-
tum, typically via spin-orbit coupling, and spin-degeneracy of the surface bands is
lifted. The crossing point of individual bands is known as the Dirac point. (b) In a
2D system, the electronic transport is confined to the edge of the material, whereas
the interior remains insulating. Electrons with opposite spins propagate in oppo-
site directions. Such propagation is protected against scattering from non-magnetic
impurities due to spin-momentum locking.

Figure 1.5: Illustration of the topological surface states predicted in SmB6.
(a) Schematics of the energy-momentum dispersion of the unhybridised 5d- and 4f -
bands near the X-point in reciprocal space. The 5d-band has an even parity and the
4f -band has an odd parity. (b) Hybridisation of the 5d- and 4f -bands displaces part
of the 4f -band to the conduction band and part of the 5d-band to the valence band,
facilitating a band inversion and giving rise to topological surface states within the
Kondo gap. Only one of the three 4f -bands of SmB6 is shown for simplicity.
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1.2. SmB6: a Kondo insulator

1.2.3 Recent experimental progress

A number of recent transport studies of SmB6 have demonstrated the surface nature of the

conducting state at T < 4 K [9, 10, 11]. Figure 1.6(a) compares the ratio of resistance measured

on SmB6 doped with rare-earth impurities before and after the sample thickness is reduced. At

T > TK ≈ 40 K, the ratio is given by the geometric factor of the sample in all cases, as expected

for a bulk-dominant transport behaviour. At T < 4 K, where the resistance plateau is observed,

the resistance ratios of SmB6 doped with non-magnetic impurities, Y and Yb, converged to unity

regardless of the thickness, indicating a surface-dominant transport behaviour. In contrast, in

SmB6 doped with highly magnetic Gd impurity, the resistance ratio is still given by the sample

thickness, indicating the destruction of surface-conducting channels at low temperatures. The

effect of impurity on the surface conducing channel is consistent with the behaviour expected

for a topological surface state.

The most direct evidence of the existence of topological surface state is the observation of

Dirac cones within the bulk insulating gap. However, due to the small bandgap of ≈ 4 meV

in SmB6, even state-of-the-art angular resolved photoelectron spectroscopy (ARPES) with a

resolution of ≈ 10 meV is insufficient to resolve such Dirac surface states if existed. Most

ARPES studies do report the existence of in-gap states in SmB6 located at the X-point, also at

the Γ-point as shown in Figure 1.6(b), although the origin of these states remains ambiguous

[12]. With a conclusive experimental evidence of the predicted topological surface state in SmB6

yet to be found, a complementary study of the Fermi surface geometry is warranted. Quantum

oscillations, a direct probe of the Fermi surface geometry, is suited to study the Fermi surface

in the Kondo insulating SmB6 and provide new insight to the longstanding puzzle.
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1.2. SmB6: a Kondo insulator

Figure 1.6: Experimental evidence of the conducting surface state in SmB6.
(a) Ratio of resistance measured before and after the sample thickness is reduced
in SmB6 doped with magnetic (Gd) and non-magnetic (Y, Yb) impurities. Mea-
surements were performed using the same contact configuration with the thicknesses
indicated. In SmB6 samples doped with non-magnetic impurities, Y (red) and Yb
(black), the resistance ratio converges to unity at T < 4 K, independent of the thick-
nesses, indicating a surface-dominant conduction. In contrast, the sample doped with
magnetic Gd impurity shows a resistance ratio given by the geometric factor in the
entire temperature range measured, indicating the destruction of conducting surface
state at low temperatures. Figure reproduced from [10] with permission. (b) Angular
resolved photoelectron spectroscopy measurement on SmB6 that reports the existence
of in-gap states in SmB6. Two distinct Fermi pockets are observed, one centred at Γ
point and one centred at X point at the surface. Figure reproduced from [13] with
permission.
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1.3. YBCO6+x: a doped Mott insulator

1.3 YBCO6+x: a doped Mott insulator

1.3.1 High temperature superconductivity

YBa2Cu3O6+x, referred to as YBCO6+x throughout this thesis, was the first superconductor

to be discovered with a critical temperature Tc above the boiling point of liquid nitrogen [14].

This breakthrough made in 1987 created the field of high-Tc superconductivity and lead to

the Nobel prize awarded to Alex Müller and Georg Bednorz in the same year, who discovered

the first copper oxide-based superconductor (also called cuprate superconductor) in 1986 [15].

YBCO6+x has an orthorhombic crystal structure that consists of two CuO2 planes and one

CuOx chain in the unit cell, along with the Y and BaO layers that serve as carrier reservoirs.

The amount of oxygen in the compound can be varied by adjusting the occupancy of oxygen in

the CuOx chain, which in turn varies the amount of carriers within the CuO2 planes. The Cu2+

ion in the CuO2 planes has a 3d9 electronic configuration, corresponding to a half-filled band at

the highest energy. The formation of CuOx chain increases the valency of Cu ions at the lattice

corners from 0 to +1, as required by charge neutrality, which effectively removes electrons from

the Cu2+ ions in the CuO2 planes. This process, known as hole doping, changes the electronic

properties of YBCO6+x dramatically. The parent compound with no oxygen chains (x = 0)

is an antiferromagnetic Mott insulator with a Neél temperature TN ≈ 450 K, below which the

antiferromagnetic order forms [16]. Superconductivity emerges at x > 0.35 and has a maximal

Tc of 93.5 K at x = 0.92, as shown in Figure 1.7 [17].

1.3.2 Electronic structure

The building block shared by all cuprate superconductors is the CuO2 plane, which hosts the

high-Tc superconductivity. The relevant electronic orbitals are the 3dx2−y2 of Cu2+, which has

the highest energy due to crystal field splitting [18], and the 2px and 2px of O2−, as illustrated

in Figure 1.8. The hybridisation of the 3dx2−y2 and 2px,y orbitals gives rise to an antibonding

band with a single occupancy. The corresponding Fermi surface is a large cylindrical Fermi

surface centred at the Y-point in reciprocal space. However, it is a strongly correlated Mott

insulator at half-filling rather than a metal as predicted by band theory. More surprisingly,

the superconducting gap in the cuprates has a d-wave symmetry, which vanishes along the

(π, π) direction, known as the nodes, and maximises along the (π, 0) and (0, π) directions,

known as the antinodes. The sign of the gap function alternates across the nodes, which is

described as having the d-wave symmetry. The superconducting gap with d-wave symmetry, in

contrast to the s-wave symmetry observed in conventional BCS superconductors, demonstrates

the unconventional nature of superconductivity in the cuprates. Additionally, the superfluid

density in cuprates is reported to be anomalously small and scale with Tc [19, 20], whereas
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1.3. YBCO6+x: a doped Mott insulator

Figure 1.7: Characteristics of the high-temperature superconductor
YBa2Cu3O6+x. (a) Crystal structure of YBCO6+x, which consists of two CuO2

planes (tetrahedrons) and one CuOx chain (squares) in the unit cell. The CuO2

planes and CuOx chains are separated by BaO layers. It has an orthorhombic lattice
with b̂-axis along the CuOx chains slightly longer than the â-axis. (b) Resistivity and
magnetisation of YBCO6.92, the stoichiometry with the maximum Tc of 93.5 K.

the BCS theory predicts the superfluidity density to be equal to the total particle density as

the Cooper pairs condensate into superfluid once formed [21]. It was suggested that the phase

fluctuations of the superconducting order parameter are of an energy scale comparable to the

paring energy [22]. Furthermore, the conventional superconductivity emerges from a metallic

state whose resistivity follows a quadratic dependence in temperature i.e. ρ(T ) = ρ0 + aT 2,

while in the cuprates the most robust superconductivity emerges from a metallic state whose

resistivity follows a T -linear dependence, as shown in Figure 1.7(b). The T -linear resistivity

in LSCO near the optimal doping is observed to persist up to 800 K and shows no sign of

saturation up to 1 000 K, with the resistivity corresponding to a mean free path less than the

interatomic spacing [23], which violates the well-established Mott-Ioffe-Regel limit applicable

to metals [24]. The regime with the T -linear resistivity is known as the ‘strange metal’ region

and has been observed in many other unconventional superconductors and suggested to be

intimately connected to the exotic superconductivity [25, 26].
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1.3. YBCO6+x: a doped Mott insulator

Figure 1.8: Electronic structure and superconducting gap in cuprate super-
conductors. (a) Schematics of the relevant orbitals for the electronic structure of
the CuO2 plane. The 3dx2−y2 orbital of the copper ion has the highest energy due to
crystal field splitting and a single occupancy, which hybridises with the 2px and 2py
orbitals of oxygen ions. (b) Energy dispersion of the highest electronic band calcu-
lated for the CuO2 plane using the tight bonding model. The high symmetry points
in reciprocal space (Γ, M, and Y) are labelled. (c) The large cylindrical Fermi surface
calculated from (b) and the superconducting gap in the cuprate superconductor with
a d-wave symmetry. The superconducting gap has zeros along the (π, π) direction, de-
noted as the nodes (red point), and maximums along the (π, 0) and (0, π) directions,
denoted as the antinodes (blue dot). θ denotes the Fermi angle, which equals to 0◦

at the antinode and 45◦ at the node. The sign of the superconducting gap alternates
between the yellow and blue regions. Figures reproduced from [27] with permission.
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1.3.3 Phase diagram

In addition to the superconductivity and strange metal phases, the cuprates host a variety of

symmetry-breaking electronic phases. Figure 1.9 shows the temperature-doping phase diagram

of YBCO6+x. As mentioned, the undoped YBCO6 is an antiferromagnetic (AF) insulator.

The rotational-symmetry-breaking AF order is strongly suppressed by doping of holes, which

vanishes at p ≈ 0.05 before the superconductivity emerges. The occurrence of superconduc-

tivity in the vicinity of antiferromagnetism has been demonstrated in many unconventional

superconductors, in which p- and d-wave superconductivity has been observed [28]. Naturally,

the magnetic interactions between electrons are believed to be crucial to the mechanism of

unconventional superconductivity. The superconductivity has a dome-like structure with re-

spect to p, with a maximum Tc at p ≈ 0.16, known as the optimal doping popt. The region

with doping higher than popt is known as the overdoped regime, while the region with doping

lower than popt is known as the underdoped regime. Charge order, a periodic variation in the

spatial charge density that breaks translational symmetry, has been recently observed in the

majority of underdoped cuprates [29, 30]. The charge order is believed to compete with su-

perconductivity and is seen to be the most robust at p ≈ 0.125, which coincides with location

where Tc is most suppressed from an empirical quadratic p-dependency. This suppression in

Tc, known as the 1/8-anomaly, is naturally explained by the competition between charge order

and superconductivity [17, 29].

One of the most intensely studied feature of the cuprates is the formation of the pseudo-

gap state, observed below a characteristic temperature T ∗ that increases as p decreases [27].

For this state the density of states at EF is suppressed around the antinodes at T > Tc and

persists up to T ∗, which exhibits the same d-wave symmetry as the superconducting gap, as

illustrated in Figure 1.10. Thus far, it is yet unclear whether the antinodal density of states at

EF is rendered incoherent due to thermal and/or classical fluctuations or is completely gapped

due to an unconventional order parameter [21]. Signatures of the pseudogap can be seen in

various experimental probes and follow the same doping dependence [35], although the onset

temperature T ∗ varies between experimental techniques. Whether or not the pseudogap is a dis-

tinct thermodynamic phase, or represents a regime of crossover behaviour is still under debate

[36, 37]. It is widely believed that the pseudogap is closely related to the high-Tc superconduc-

tivity, while whether it signifies precursor pairing at high temperatures or a competition to the

superconductivity remains unclear [36, 37]. The electronic structure of the pseudogap regime

has attracted considerable interest in the field of high-Tc cuprates and is briefly discussed in

the following section.
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Figure 1.9: Temperature-doping phase diagram of YBCO6+x. AFI refers to
the antiferromagnetic insulator phase which vanished at p ≈ 0.05. Superconductivity
onsets at p ≈ 0.05 and vanishes at p ≈ 0.27, which can be accessed by appling
pressure [31]. Diamond indicates the optimal doping level, popt ≈ 0.16, that yields the
maximum Tc. Charge order has been observed in the underdoped regime (p < 0.16)
which is the most robust at p ≈ 1/8. The enigmatic pseudogap state is observed
below an broadly-defined T ∗ line that increases with underdoping. Data from [17, 31,
32, 33, 34].
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1.3. YBCO6+x: a doped Mott insulator

Figure 1.10: Pseudogap in underdoped cuprate above Tc. (a) Temperature evo-
lution of photoemission intensity near the antinode in underdoped Bi2Sr2CaCu2O8+δ

(Bi2212). Below Tc of 92 K, the density of states at EF is gapped out by supercon-
ductivity whereas a suppression at EF, known as the pseudogap, is seen to persist up
to T ∗ ≈ 190 K. (b) Angular dependence of the superconducting gap and pseudogap
size. The two gaps have with similar gap size around the antinode (θ = 0◦) and share
the same symmetry. Figures reproduced from [27] with permission.
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1.3. YBCO6+x: a doped Mott insulator

1.3.4 Fermiology

The description of the electronic ground state from which the superconductivity emerges is of

fundamental importance towards the understanding of high-Tc superconductivity. The Fermi

surface in cuprates has been most extensively studied by photoemission and quantum oscil-

lations [27, 38]. While photoemission detects predominantly the surface and directly probes

the single-particle states, quantum oscillations detect the entire sample bulk and probe the

collective low-energy excitations. The two techniques provide complementary information on

the electronic structure and the findings are briefly reviewed here.

Photoemission

The angular resolution of photoemission technique enables a direct mapping of the Fermi sur-

face in momentum space, as shown in Figure 1.11. In the overdoped regime, a large hole-like

cylindrical Fermi surface centred at (π, π) is observed, in accordance with theoretical calcu-

lations. In stark contrast, broken Fermi arcs located near the antinodes are observed in the

underdoped regime. Studies of the temperature dependence showed that the Fermi arcs grow in

length as temperature increases and a full cylindrical Fermi surface is expected to restore above

T ∗, meanwhile the doping dependence study showed that the Fermi arcs grow as p increases [27].

The topological transition of the Fermi surface from the overdoped regime to the underdoped

regime suggests a quantum phase transition occurs at low temperatures. The superconducting

gap that onsets below Tc has complicated the analysis of photoemission results at T < Tc and

the precise location of p where the Fermi surface transition occurs remains unclear.

Quantum oscillations

The existence of quasiparticles can be directly confirmed by the observation of quantum oscil-

lations, whose frequency reflects the Fermi surface geometry. The requirement of a sufficient

quasiparticle lifetime necessitates the low temperature measurement condition and minimise

the effect of thermal fluctuations. Rapid quantum oscillations corresponding to a large Fermi

surface occupying 60% of the first Brillouin zone, consistent with photoemission results, have

been reported in the overdoped regime [40]; in contrast, slow oscillations corresponding to a

small Fermi pocket occupying 2% of the Brillouin zone have been observed in underdoped

YBCO6+x [38]. Several schemes of Fermi surface reconstruction have been proposed to yield

a small Fermi pocket in the pseudogap state, where an electron pocket is likely to locate at

the nodal region [38]. How to connect the zero-field Fermi arcs to the high-field Fermi pocket

and whether the quantum oscillations in the underdoped regime reflects the normal-state or

vortex-state behaviour remain a subject of active debate.
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1.3. YBCO6+x: a doped Mott insulator

Figure 1.11: Fermi surface in YBCO6+x observed by photoemission. (a) At
p = 0.11, broken ‘Fermi arcs’ are observed around the diagonal in reciprocal space.
(b) At p = 0.28, large cylindrical Fermi surface centred at (π, π) is observed. The
observed intensity is indicated by the colour scale. The high spectral intensity outside
the closed cylindrical contour in (b) indicates the Fermi surface is hole-like. Figures
reproduced from [39] with permission.

Figure 1.12: Quantum oscillations in high-Tc cuprates. (a) Quantum oscil-
lations in the Hall resistance in underdoped YBCO6.51, corresponding to p = 0.10.
Slow oscillations with 530 T frequency are observed, corresponding to a surprisingly
small Fermi surface. Figure reproduced from [41] with permission. (b) Quantum
oscillations in the in-plane resistivity in overdoped Tl2Ba2CuO6+δ, corresponding to
p = 0.30. Rapid oscillations with 18 100 T frequency are observed, in agreement with
the large Fermi surface observed in photoemission. Figure reproduced from [38] with
permission.
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1.4 Thesis structure

The structure of the thesis is as follows. Chapter 2 discusses the concept of Fermi surface and

how it can be studied using quantum oscillations. Chapter 3 describes the preparation tech-

niques to obtain high-quality single crystals of SmB6 and YBCO6+x. Chapter 4 discusses the

measurement techniques of electrical transport and magnetisation at intense magnetic fields.

Chapter 5 presents the discovery of quantum oscillations in SmB6 that arise from the insulat-

ing bulk, complemented by thermodynamic measurements. Chapter 6 presents the discovery

of quantum oscillations in a hidden superconducting state of YBCO6+x and signature of pair-

ing correlations at high temperatures. Chapter 7 remarks on the findings of the unexpected

existence of Fermi surfaces in these strongly correlated electronic materials, where energy gaps

are present at Fermi energy.
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Chapter 2

Fermi surface and quantum oscillations

The Fermi surface plays a decisive role in determining the electronic and thermodynamic prop-

erties of a solid. Originally conceptualised for systems of non-interacting electrons, the descrip-

tion of Fermi surface has been extended to interacting fermions, although it is still considered

as an exclusive property of a metal. In this chapter, the conventional description of the Fermi

surface and how it can be studied using quantum oscillations are briefly discussed.

2.1 Fermi surface: a conventional picture

In the free or nearly free electron models, the Fermi surface can be defined as the boundary

separating the occupied and unoccupied electronic states. This definition, however, becomes

meaningless when the electrons interact with each other. A more general definition for the Fermi

surface is the locus in momentum space that supports low-energy excitations, whose prerequisite

for existence in the conventional picture is discussed below.

2.1.1 Fermi-Dirac distribution

Consider an ensemble of electrons, which are fermions with spin-1
2

and obey the Fermi-Dirac

distribution:

fFD(E) =
1

1 + e(E−µ)/kBT
, (2.1)

where E is the particle energy, µ is the chemical potential, defined as the energy corresponding

to fFD = 0.5, and kB is the Boltzmann constant. fFD as a function of energy and temperature

is shown in Figure 2.1. At T = 0 K, the electrons occupy the available states from the lowest

energy up to the Fermi energy EF, defined as µ(0 K). At finite temperatures, the distribution

spreads out and the occupancy above µ becomes finite. The spread of distribution is determined

by the thermal energy kBT . Due to Pauli exclusion principle, only the electrons within kBT of µ

can be excited to a state of higher energy and contribute to thermal and electrical properties of
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2.1. Fermi surface: a conventional picture

low excitation energy ε. Strictly speaking, EF is only defined at 0 K and at finite temperatures

one can only measure µ. However, in most metals EF are on the order of a few eV, equivalently

to a few thousands kelvin, hence EF ' µ with minimal errors for most measurements.

Figure 2.1: Fermi-Dirac distribution as a function of temperature. At T =
0 K, fFD is a step function that equals to unity below the chemical potential µ, defined
as the energy where fFD = 0.5, and vanishes above µ. The Fermi energy EF is defined
as µ(0 K). As temperature increases, fFD spreads out near µ within kBT . µ = 1 eV
is used here.

2.1.2 Electronic band and density of states

For free electrons, the energy levels can be found by solving the Schrödinger equation with the

wave function eik·r, giving

E(k) =
~2k2

2me

, (2.2)

known as the energy dispersion relation where k is the wavevector and me is the rest mass of

free electron. The energy dispersion in one dimension, represented in the reduced zone scheme,

is shown in Figure 2.2. When the crystal lattice is taken into account, the periodic potential

from the lattice leads to the opening of energy gaps ∆ at the first Brillouin zone boundary,

defined by k = 0,±π/a. The continuum of available electronic states between the bandgaps is

known as the electronic band. The available states per unit energy, or density of states, have

local maxima near the bandgaps. When EF falls within the electronic bands, electrons near EF

can be excited to the nearby states with infinitesimal energy ε. In contrast, when EF falls within

the bandgap, excitations with energy ε are forbidden if kBT � ∆. The manifold of constant

energy EF in momentum space that support excitations at low energy is the Fermi surface.
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2.1. Fermi surface: a conventional picture

Conventionally, the existence of a Fermi surface requires a finite density of states present at EF

with a sharp step at the chemical potential in fFD so the locus remain well-defined.

Figure 2.2: Band structure and density of states of an 1D system in a pe-
riodic potential. (a) Electronic bands within the first Brillouin zone (k = ±π/a)
in the reduced zone representation. Dashed lines illustrate the energy dispersion of
free electrons, and solid lines illustrate electronic bands when the lattice potential is
considered. Bandgaps open at the zone boundary (k = 0,±π/a). (b) Sketch of the
corresponding density of states (D), which exhibits local maxima near the bandgaps
∆. Excitations are possible at infinitesimal energy ε� ∆ when the Fermi energy falls
within the electronic bands.

2.1.3 Landau-Fermi liquid theory

The above discussion is limited to the single-particle picture where electron-electron interaction

is ignored. In real materials, the interaction between electrons can have dominating effects on

its physical properties. Lev Landau developed a successful theoretical framework, known as the

Fermi liquid theory, for interacting systems where electron-electron interaction is introduced

as a perturbation to the non-interacting case. When the interaction is switched on gradually

on a non-interacting system, the system remains in its ground state throughout the process

with an one-to-one correspondence between the old and new ground states according to the

perturbation Hamiltonian, known as the adiabatic theorem. An important implication of the

Fermi liquid theory is the concept of the quasiparticle, which is briefly discussed below.

Consider a single electron with wavevector k and spin σ placed at an energy ∆E above

the Fermi surface. This can be expressed as c†k,σ|Ψ0〉, where |Ψ0〉 is the non-interacting ground

state of the electrons and c†k,σ is the creation operator of a particle with wavevector k and spin
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2.1. Fermi surface: a conventional picture

σ. Considering the Coulomb interaction between electrons, the interaction Hamiltonian can be

written as

Hint =
1

2V

∑
k,k′,σ,σ′

∑
q 6=0

4πe2

q2
c†k+q,σc

†
k′−q,σ′ck′,σ′ck,σ, (2.3)

where V is the volume of the system, q is the momentum transfer between electrons, and ck,σ

is the annihilation operator of particle with wavevector k and spin σ [42]. Turning on the

interaction gradually can be expressed as applying a time-evolution operator

U = Te
− i

~

0∫
−∞

Hint(t)dt

, (2.4)

where T is the time-ordering operator. Since U is unitary, the new ground state under appli-

cation of interaction, Uc†kσ|Ψ0〉, can be written as

Uc†k,σU
†U |Ψ0〉. (2.5)

Defining the quasiparticle creation operator as a†k,σ ≡ Uc†k,σU
† and the ground state of inter-

acting system |Ψ〉 ≡ U |Ψ0〉, the time-evolved state now can be expressed as a†k,σ|Ψ0〉. The

description of the added electron is no longer a single particle since its creation operator now

involves electron-hole pairs in the interaction Hamiltonian. This collection of electron accom-

panied by a ‘cloud’ of electron-hole excitation is known as the quasiparticle. The wavevector k

and spin σ are still good quantum numbers hence the Pauli principle and Fermi-Dirac distribu-

tion are still obeyed. The quasiparticle behaves differently from a free electron under external

excitation, which can be quantified by renormalised parameters such as the effective mass m∗.

2.1.4 Fermi surface of interacting fermions

A comparison of the Fermi surface in the non-interacting and interacting picture is shown in

Figure 6.12. In the Fermi liquid picture, the scattering rate Γ between the quasiparticles is

proportional to the square of the incident quasiparticle energy ε, since the number of available

final states of both the incident and scattered quasiparticles is proportional to ε. Therefore,

Γ → 0 at low excitation energy ε → 0, i.e. the quasipartcles near the Fermi surface are

long-lived. Remarkably, Luttinger has shown that the Fermi surface survives to any order of

perturbation beyond the Fermi-liquid framework [43]. It has been suggested that the Fermi

surface may exist beyond the realm of Fermi liquid [44] and search for such Fermi surface has

been an ongoing effort.
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Figure 2.3: Fermi surface in the free and interacting pictures. (a) For the
Fermi gas picture of (nearly) free electrons, nearly all the electronic ground states
enclosed by the Fermi surface are filled by electrons. The electron can be excited by
an arbitrary energy and creates a hole within the Fermi surface. (b) For the Fermi
liquid picture of interacting fermions, long-lived quasiparticle can only be created near
the Fermi surface, whose excitation creates a quasi-hole near the Fermi surface.
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2.2 Basics of quantum oscillations

A powerful experimental technique to directly measure the Fermi surface is quantum oscilla-

tions, which relies on Landau quantisation of the energy levels in the presence of a magnetic

field at low temperatures. The fundamental ideas and relevant theoretical tools to understand

the quantum oscillation work in this thesis are discussed in this section.

2.2.1 Cyclotron motion in a magnetic field

In the presence of an external magnetic field B, the motion of a quasiparticle is determined by

the Lorentz force:

~
dk

dt
= −e(v ×B), (2.6)

where the velocity of the quasiparticle is given by

v =
1

~
∇kE(k). (2.7)

The quasiparticle will exhibit cyclotron motion with an orbit along a trajectory of constant

energy, as illustrated in Figure 2.4.

Figure 2.4: Schematics of cyclotron motion of a quasiparticle in the presence
of a magnetic field. Left: picture in k-space. The quasiparticle with a momentum
k⊥ perpendicular to the magnetic field moves along a trajectory of constant energy E
(solid ellipse), known as the cyclotron orbit, enclosing an area of Sk. The incremental
area δSk with respect to incremental energy δE and movement from k⊥ to k′⊥ is shown
in blue. Right: picture in real space. The cyclotron orbit encloses an area of Sr and
is a scaled version of that in k-space rotated by 90◦.
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Substituting (2.7) into (2.6) we have

~
dk

dt
= − e

~
(∇kE(k)×B) , (2.8)

and after rearrangement

dt =
~2

e

dk

B×∇kE(k)
. (2.9)

Since only the component of ∇kE(k) perpendicular to B will contribute to the cross product,

we have

dt =
~2

eB

dk⊥
∇k⊥E

, (2.10)

where k⊥ is the component of k perpendicular to B. Substituting ∇k⊥E by δE/δk⊥ we have

dt =
~2

eB

δk⊥dk⊥
δE

, (2.11)

where δk⊥dk⊥ equals to the incremental area in the plane perpendicular to B in reciprocal

space, denoted by δSk, with respect to incremental energy δE. By integrating (2.11) over a

complete orbital motion, the cyclotron period is given by

τc =
~2

eB

∂Sk
∂E

, (2.12)

where Sk is the area enclosed by the cyclotron orbit in reciprocal space. Defining the quasipar-

ticle effective mass by

m∗ =
~2

2π

∂Sk
∂E

, (2.13)

we can then define the cyclotron frequency as

ωc =
eB

m∗
. (2.14)

2.2.2 Landau quantisation

The Hamiltonian of a quasiparticle in a magnetic field B is

H =
(p− eA(r))2

2m∗
, (2.15)

where p = −i~∇ is the kinetic momentum operator, A(r) is the vector potential, and an

isotropic effective mass m∗ is assumed for the cyclotron motion. Without loss of generality, we

can choose the magnetic field B to be in the ẑ-direction and use the Landau gauge

A(r) = Bxŷ, (2.16)
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(2.15) becomes

H = − ~2

2m∗

(
∂2

∂x2
+

∂2

∂z2

)
+

1

2m∗

(
−i~ ∂

∂y
− eBx

)2

. (2.17)

Since the Hamiltonian commutes with py (i.e. no y dependence), py can be replaced by its

eigenvalue ~ky. After rearrangement, we have

H = − ~2

2m∗

(
∂2

∂x2 +
∂2

∂z2

)
+

1

2
m∗ωc

2

(
x− ~ky

m∗ωc

)2

. (2.18)

Now the Hamiltonian can be understood as a two-dimensional harmonic oscillator in the x̂− ŷ
plane with a free electron Hamiltonian in the ẑ-direction. The energy eigenvalues are given by

ε(n, kz) = ~ωc

(
n+

1

2

)
+

~2kz
2

2m∗
, (2.19)

where n is the quantum number of the harmonic oscillator and kz is the wavevector in the

ẑ-direction. The energy of quasiparticle’s motion in the plane perpendicular to B is now

quantised. These quantised energy levels are known as the Landau levels.

Recalling the Bohr-Sommerfeld quantisation condition∮
(~k− eA(r)) · dr′ = 2π~(n+ γ), (2.20)

where the integral is performed around a closed path perpendicular to B and γ is a constant.

Using the integrated form of the Lorentz force:

~(k− k0) = −e(r− r0)×B (2.21)

and the Stoke’s theorem we arrive at

(n+ γ)
2π~
e

= B ·
∮

(r× dr′)−
∫
Sr

B · dSr, (2.22)

where Sr is the area enclosed by the cyclotron orbit in real space as illustrated in Figure 2.4.

The first term in the right hand side is 2BSr since only the r-component perpendicular to B

would contribute, and the second term is −BSr. This remarkable result, known as the Onsager

relation, shows that the magnetic flux passing through the area enclosed by the cyclotron orbit

is quantised in units of flux quantum

BSr = (n+ γ)
2π~
e

= (n+ γ)Φ0. (2.23)
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From (2.21) it can be directly deduced that

Sk =
e2B2

~2
Sr, (2.24)

which relates the cyclotron orbit area in real space to that in reciprocal space, Sk, which is also

quantised according to

Sk = (n+ γ)B
2πe

~
. (2.25)

This quantisation condition gives rise to a series of concentric tubes where quasiparticles motion

are confined in the presence of a magnetic field, known as Landau tubes (see Figure 2.5). At

T = 0 K, only the states enclosed by the Fermi surface will be occupied. It can be shown [45]

that the density of states D of the Landau levels is given by

D =
eBV

2π2~c
. (2.26)

Figure 2.5: Schematics of Landau quantisation for a spherical Fermi sur-
face in reciprocal space. (a) In the presence of a magnetic field B, the allowed
electronic states are rearranged into concentric tubes due to Landau quantisation.
Only the states enclosed by the Fermi surface are occupied at T = 0 K. (b) When
B increases to B + ∆B, the cross-sectional area of the Landau tubes perpendicular
to B increases, which reduces the number of Landau tubes enclosed by the Fermi
surface. The outermost Landau tube exits the Fermi surface periodically as the mag-
netic field increases, causing the free energy and related physical quantities to oscillate
periodically in 1/B. Figure modified from [45].

As the magnetic field increases, the Landau tubes accommodated within the Fermi surface

shrink in height and increase in radius until the area of the outermost Landau tube reaches
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the extremal Fermi surface cross-section perpendicular to B, before leaving the Fermi surface.

Each time a Landau tube leaves the Fermi surface there is a sudden change in the free energy

of the system and the density of states at EF. Therefore material properties related to the total

energy and density of states exhibit oscillatory behaviour with respect to magnetic field, most

notably in magnetisation (de Haas-van Alphen effect) and electrical resistivity (Shubnikov-de

Haas effect). Denote Bn as the field at which the nth Landau tube area equals the extremal

cross-sectional area of the Fermi surface, then at a higher field Bn−1 the (n− 1)th Landau tube

will have the same area. From (2.25) we then have

Sk~
2πeBn

− γ =
Sk~

2πeBn−1

− γ + 1. (2.27)

We can define

F ≡ 1
1
Bn
− 1

Bn−1

=
~Sk
2πe

, (2.28)

where F is the frequency which the Landau tubes pass through the Fermi surface expressed in

the units of tesla T.

2.2.3 Fermi surface geometry

Since the quantum oscillation frequency is proportional to the extremal area of the Fermi

surface cross-section, one can map out the Fermi surface geometry by rotating the magnetic

field, as illustrated in Figure 2.6. For a two-dimensional system, the Fermi surface is an open

cylinder along the kz direction, whereas for a three-dimensional system the Fermi surface is

a sphere in the simplest case. The quantum oscillation frequency exhibits a different angular

dependence for the 2D and 3D systems as shown in Figure 2.6(c). The angular dependence

of quantum oscillations of a more general ellipsoidal Fermi surface is shown in Appendix A.

Three-dimensional geometry of the Fermi surface can be reconstructed by band structure cal-

culation considering the experimentally measured angular dependence of oscillation frequency.

Quantum oscillations and Fermi surface of the well-studied Sr2RuO4 are shown in Figure 2.7,

which illustrates the oscillation waveform due to multiple Fermi surface sheets. An advantage

of quantum oscillations is the capability in accessing the entire bulk of the sample, whereas

spectroscopic probes such as ARPES and scanning-tunneling spectroscopy can only probe the

surface. Another advantage is the resolution in the area of a a closed Fermi surface section

(commonly referred to as a Fermi pocket). Laser-based ARPES with the highest energy reso-

lution of ≈ 3 meV can achieve a momentum resolution of ≈ 0.005 Å−1, correspondingly to a

resolution in Fermi surface area of ≈ 100 T [27, 46]. Meanwhile, a resolution of ≈ 10 T can

be commonly achieved with quantum oscillations, at least one order of magnitude better than

ARPES.
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Figure 2.6: Illustration of the angular dependence of the quantum oscillation
frequency. (a) Schematic of a cylindrical Fermi surface from a two-dimensional
system without dispersion in kz. (b) Schematic of a spherical Fermi surface from an
isotropic three-dimensional system. Sk0 denotes the Fermi surface cross-section area
perpendicular to kz, defined to be equal for both (a) and (b), and Sθ denotes the
extremal Fermi surface cross-sectional area at field angle θ. (c) Angular dependence
of the quantum oscillation frequency F . For the spherical Fermi surface (red) F is
independent of θ, given by F0 = (~/2πe)Sk0, while it follows a 1/cos θ dependence for
the two-dimensional Fermi surface and diverges as θ → ± 90◦ (blue).
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Figure 2.7: Quantum oscillations and Fermi surface of Sr2RuO4. (a) Quantum
oscillations in magnetisation with multiple frequencies contributed by the three Fermi
surface sheets. Rapid oscillations, periodic in 1/B, that grows with magnetic field
due to the three fundamental frequencies (α, β, and γ) are observed. Beat patterns
of the fundamental frequencies, due to the Fermi surface corrugation along ĉ-axis,
are shown in thick black lines. Inset: Fourier transform spectrum of the quantum
oscillations revealing the α and its harmonics, β, and γ frequencies. (b) Calculated
Fermi surface with corrugated cylindrical sheets along ĉ-axis corresponding to the
observed oscillations in (a). The α sheet has a smaller cross sectional area, corresponds
to a lower oscillation frequency of ≈ 300 T, compared to the β and γ sheets with larger
cross-sectional area perpendicular to the ĉ-axis. Figures reproduced from [47] with
permission.
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2.2.4 de Haas-van Alphen oscillations

The oscillations in magnetisation, known as the de Haas-van Alphen (abbreviated as dHvA)

effect, is the most well-studied type of quantum oscillations. Since magnetisation is a thermo-

dynamic property, it provides a direct insight to the system’s total energy and can be calculated

from first principles. The formulae derived in reference [45] for the dHvA oscillations and the

theoretical waveform and amplitude are presented here, which will be useful in understanding

the results presented in the following chapters.

Calculation of bulk magnetisation

The thermodynamic potential Ω of an ensemble of N electrons is defined by

Ω = A−Nµ, (2.29)

where µ is the chemical potential and A is the Helmholtz free energy defined as

A = U − TS, (2.30)

where U is the internal energy and S is the entropy of the system. For a system that obeys

Fermi-Dirac statistics, the thermodynamic potential is given by

Ω = −kBT
∑

ln
(
1 + e(µ−ε)/kBT

)
, (2.31)

where the summation is over all the possible states with energy ε. Using the density of states

of the Landau levels given by (2.26), the thermodynamic potential becomes

Ω = −kBT

∫ ∞
−∞

eBV

2π2c~
∑
i

ln(1 + e(µ−εi)/kBT )dkz, (2.32)

where i denotes the quantum number of the energy states. (2.32) in effect formulates how

to calculate the thermodynamic properties of the system. Next we will present the formulae

derived for the oscillating component of magnetisation.

For a two-dimensional system with a fixed number of total electrons, which is the experi-

mentally relevant condition, the magnetisation M is given by

M = −∂A
∂B

∣∣∣∣
N,T

. (2.33)

Considering the highest occupied Landau level has a quantum number n and the chemical
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potential µ = εn given by (2.19), we have at T = 0 K:

U = D

n−1∑
i=0

εi + (N − nD)εn, (2.34)

whereD is the degeneracy of Landau level given by (2.26). It is convenient to define a continuous

variable X0

X0 = Sk0c~/2πeB = N/D, (2.35)

which would give the quantum number n of the highest Landau level. It can be shown that

δU , the varying component of (2.34), can be expressed as

δU = −1

2

βBδN

X0

[
(X0 − n)2 − (X0 − n) +

1

6

]
, (2.36)

where δN is the change in number of electrons at the highest occupied Landau level and

β = e~/m∗c [45]. Correspondingly, the oscillatory magnetisation δM is given by

δM =
βδN

π

∑
p

sin
2πpX0

p
. (2.37)

Figures 2.8(a) and (b) illustrate the variation of internal energy and magnetisation as a

function of X0 i.e. the number of filled Landau levels. δU reaches a minimum when X0 reaches

an integer, corresponding to the situation where the highest filled Landau tube has just left

the Fermi surface. At T = 0 K, δM exhibits a ‘sawtooth’ waveform that goes backwards with

respect to increasing X0 (Figure 2.8(b)) and forwards with respect to increasing B (Figure

2.8(c)). The corresponding magnetic susceptibility, dδM̃/dB, has a ’downwards spike’ wave-

form, which exhibits a discontinuity at integer fillings of the Landau levels. The deviation of

these characteristic waveforms in δM and dδM/dB from the sinusoidal waveform is a result of

the summation of the harmonics as formulated in (2.37). At finite temperatures, the oscilla-

tion waveform in magnetisation is rounded at the vertices, due to the smeared Fermi surface

(see next section), and correspondingly the susceptibility waveform has an ‘inverted U’-shaped

waveform.

The waveforms shown in Figure 2.8 are unique to the situation when the chemical potential

can jump discontinuously between empty and filled Landau levels, a condition realised when

the Fermi surface comprises of a single section. In contrast, when the Fermi surface consists

of multiple sections, the chemical potential is pinned to the highest Landau level and the

oscillation waveform in magnetisation is reversed compared to Figure 2.8(c), with a negative

slope as the field increases, and consequently a ‘U’-shaped waveform in susceptibility. The

quantum oscillation waveform is a sensitive probe to identify the background of the Fermi
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pocket that gives rise to the quantum oscillations, which can only be used when the sample is

sufficiently pure so higher-order harmonics are not damped out.

Figure 2.8: Theoretical quantum oscillation waveforms calculated for a
fixed number of total electrons. Scaled variations in (a) internal energy
δŨ = δU(2X0/βHδN) and (b) magnetisation δM̃ = δM/βδN plotted as a func-
tion of X0 = Sk0c~/2πeB. (c) δM̃ and (d) corresponding magnetic susceptibility
dδ̃M/dB plotted as a function of 1/X0. Solid lines correspond to T = 0 K and dashed
lines correspond to T > 0 K. (a) and (b) modified from [45].
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2.2.5 Lifshitz-Kosevich theory

A generalised formula has been developed by I. M. Lifshitz and A. M. Kosevich to describe the

magnetisation of metals at low temperatures [48]. The Lifshitz-Kosevich formula incorporates

independent terms to account for various damping effects, known as phase smearing, due to

thermal fluctuation, impurity scattering, and spin splitting. Physical properties specific to the

measured sample, such as quasiparticle effective mass, lifetime, and g-factor, can be extracted

by fitting to the Lifshitz-Kosevich formula. The fundamental oscillatory magnetisation ∆M is

given by

∆M = D ·RTRDRS · sin(2πF/B + φ), (2.38)

where RT, RD, and RS are the damping terms due to finite temperature, scattering, and spin-

splitting, φ is a phase factor that relates to the Berry phase β via

φ = β + δ − π, (2.39)

where δ = 0,±π/4 for a 2D and 3D Fermi surface, respectively [49], and D is the infinite field,

zero spin-splitting amplitude given by

D = −µBS
3/2
k0 me

2π4m∗

√
B

F |S ′′|
, (2.40)

where µB is the Bohr magneton, F is the oscillation frequency, and |S ′′| is the second derivative

of the extremal Fermi surface area with respect to the effective wavevector along B. Equation

(2.40) determines the theoretical oscillation amplitude of the magnetisation without any damp-

ing. In experiments, this amplitude will be suppressed due to the various sources of damping

discussed below.

Finite temperature

At finite temperature, the Fermi-Dirac distribution is no longer a step function that abruptly

vanishes at the chemical potential µ, but with a finite component spreading above µ that is

compensated by the loss of weight below µ, as illustrated in Figure 2.1. The corresponding Fermi

surface becomes less-defined, or blurred, which leads to a reduced amplitude in the quantum

oscillation. The reduction in the quantum oscillation amplitude due to finite temperature is

given by

RT =
πλ

sinh(πλ)
, (2.41)

where

λ = 2πp
m∗kBT

e~B
= 2πp

kBT

~ωc

. (2.42)
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λ can be thought of the ratio between the thermal energy, kBT , to the magnetic energy, ~ωc.

When the magnetic energy scale is much larger than the thermal energy scale i.e. πλ � 1,

the phase smearing due to temperature is negligible i.e. RT ≈ 1. When the thermal energy

becomes comparable to the magnetic energy i.e. πλ & 1,

RT =
4π2pkBT

~ωc
e−

2π2pkBT

~ωc . (2.43)

Therefore, an increase in T would decrease the oscillation amplitude exponentially, which affects

the harmonics of higher order p even more. The quasiparticle effective mass can be inferred

from the temperature dependence of the oscillation amplitude using (2.41), as illustrated in

Figure 2.9.
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Figure 2.9: Lifshitz-Kosevich temperature dependence of quantum oscilla-
tion amplitude and extraction of quasiparticle effective mass m∗. Mea-
surements performed on YBCO6+x of three doping levels as indicated. Oscillation
amplitudes as a function of temperature are fitted using the Lifshitz-Kosevich for-
mula (2.41) and normalised at T = 0 K. The steeper increase in oscillation amplitude
with decreasing temperature reflects the heavier m∗ of quasiparticle. Data reproduced
from [50] with permission.

Finite scattering

Another source of phase smearing is quasiparticle scattering. When the lifetime of quasiparti-

cles becomes finite due to scattering events, the Landau levels become broadened due to the

uncertainty principle. This broadening leads to a reduction in oscillation amplitude given by

RD = e−
Bc
B , (2.44)
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and
Bc

B
=

πp

ωcτ
=
πprc

l
, (2.45)

where τ is the quasiparticle lifetime, l is the mean free path, and rc is the cyclotron orbit radius.

It is instructive to define the Dingle temperature TD = ~
2πkBτ

, (2.44) then becomes

RD = e−
2π2pkBTD

~ωc = e−
B0
B , (2.46)

where B0 is related to TD via B0 = 2π2pkBm
∗

e~ TD. Now (2.46) is of the same form as (2.43), in

which TD can be interpreted as a temperature scale that quantifies the amount of scattering.

TD and B0 can be obtained by fitting the oscillation amplitude as a function of magnetic field

using (2.46) and be used to evaluate sample quality and infer the mean free path using

l =
πp~kF

eB0

. (2.47)

Finite spin-splitting

The oscillation amplitude is also modulated due to the quasiparticle spins. In a magnetic field,

the spin-degenerate energy levels are separated due to Zeeman splitting by

∆E =
1

2
g∗βB, (2.48)

where g∗ is the spin-splitting factor (g = 2.0023 for free electron) and β = e~/m∗c. The effect

of this splitting is equivalent to a phase difference φ in the oscillations between the spin-up and

spin-down quasiparticles [45], given by

φ = 2π∆E/βB. (2.49)

The superposition of the spin-up and spin-down oscillations will therefore lead to a modulation

of the oscillation waveform given by a prefactor

RS = cos

(
1

2
pπg∗

m∗

me

)
. (2.50)
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Chapter 3

Sample preparation

Samples of the highest quality possible are vital for investigating the intrinsic material property

without the inclusion of measurement artefacts. I, together with my colleagues, have set up a

suite of equipments to prepare SmB6 and YBCO6+x single crystals of exceptional quality which

enables further new discoveries in these already well-studied materials. In this chapter, the

working principles and techniques of these sample preparations are described in detail.

3.1 SmB6 preparation

3.1.1 As-grown crystals

Single crystals of SmB6 are grown by the group of G. Balakrishnan at the University of Warwick

using two different techniques: flux method and floating zone method. Details of the crystal

growth can be found in [51], that are briefly described below. In the flux method, commercial

SmB6 powder is mixed with a large excess of aluminium (SmB6:Al = 0.2:99.8 wt%) and placed

in an alumina crucible. The mixture is heated at 1450 ◦C for four hours to form a homogeneous

solution, then slowly cooled down to 650 ◦C at 4 ◦C/hr for the single crystals to spontaneously

grow out of the solution. Crystals grown by the flux method have naturally exposed {100} and

{110} surfaces with sub-millimetre lateral dimensions, as shown in Figure 3.1. Inclusions of

aluminium flux are commonly found on the surfaces of flux-grown crystals, which can usually

be removed by cleaning with 1% hydrochloric acid. In the floating zone method, commercial

SmB6 powder is firstly pressed into a rod and sintered at 1550 ◦C with flowing argon. The

sintered rod is then heated above its melting point by focusing intense light generated by four

Xenon arc lamps into a small region of the rod. Single-crystalline regions form as the melted

zone travels through the length of the rod. Crystals grown by the floating zone method are

exempt from the contaminations due to crucible or flux, and can be grown into large boules of

several centimetres in length. However, the crystal orientation is pre-determined by the seed
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Figure 3.1: Pristine SmB6 single crystals. (a) Pictures of a single-crystalline
boule grown by floating zone method (left) and a small crystal grown by flux method
(right). (b) Magnified view of the flux-grown crystal showing the high symmetry
crystallographic planes {100} and {110}. (c) Laue pattern of SmB6 with incident
X-ray beam perpendicular to the (001) plane.

used for the growth and often misaligned with the boule’s principal axes. Crystal orientation

is identified using Laue diffractometer, then discs of ≈ 3 mm in diameter and ≈ 500 µm in

thickness with dominant {100} or {110} surfaces are made using diamond cutting wheel for

further preparation.

3.1.2 Sectioning

Flux-grown crystals are usually of suitable size for transport and quantum oscillation mea-

surements without further treatment. Floating-zone crystals, on the other hand, need to be

sectioned into pieces of approximately 1 mm × 1 mm × 0.4 mm for high-field measurements.

This can be done by a precision wire saw with 50 µm or thinner tungsten wire or by LatticeAx

120, a device developed for wafer cleaving by LatticeGear, as shown in Figure 3.2. Cuts of

arbitrary crystallographic directions can be made using the wire saw, but it usually takes sev-
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Figure 3.2: Cleaving device and cleaved SmB6 crystal. (a) The LatticeAx 120
cleaving device. Sample is placed below the diamond indenter with <100> aligned
against the alignment slab using a glass slide. The indenter can be moved horizontally
using the positioning knob with one mark corresponding to ≈ 0.25 mm. Cleaving
is done by lowering the indenter with the control knob until the sample breaks. (b)
Zoom-in view of the indenter and a SmB6 disc with cleaved surface. (c) A rectangular
SmB6 sample with ≈ 1 mm sides made by cleaving.

eral hours to cut through a thickness of 500 µm with considerable material loss. Well-defined

cleaved surfaces can be achieved within minutes using LatticeAx 120 regardless of the sample

thickness. However, SmB6 preferentially cleaves along the <100> directions, hence the cleaved

surfaces can only be made with {100} orientation, limiting the flexibility of sample preparation.

Another drawback with cleaving is the yield. Cleaved edges usually terminate at surface steps

or internal cracks, which often leaves incomplete cuts and sample wastes. The usage of wire

saw and cleaver can be combined to section samples with maximal efficiency.

3.1.3 Electropolishing

Samples cut by a diamond wheel or a wire saw suffer from surface damage and strain that can

propagate into the crystal bulk. We have developed a technique to polish the sample surface

electrochemically, known as electropolishing, to remove the damaged surface layer and improve

sample quality. The working principle of electropolishing is illustrated in Figure 3.3. The

positive terminal of a DC power supply is connected to the sample that acts as anode, and the

negative terminal is connected to a platinum electrode that acts as cathode. Both the sample
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Figure 3.3: Working principle of electropolishing. (a) Schematic diagram of the
electropolishing setup. Metallic sample and Pt electrode are immersed in a liquid
electrolyte and connected to a DC voltage source. (b) Characteristic current-voltage
curve of the electropolishing process adapted from [52]. The voltage range for a
polishing effect is between Vb and Vc with the best result achieved at just below Vc.

and electrode are immersed in an acidic solution that serves as electrolyte. A current flows

through the anode, which oxidises the sample and releases electrons which are collected at the

cathode, which can be illustrated with the following equations:

M −−⇀↽−− Mn+ + ne−(Anode) (3.1)

2 H2O + 2 e− −−⇀↽−− H2 + 2 OH−(Cathode) (3.2)

The surface layer of the metal object dissolves as a result of the oxidisation reaction. A larger

electric field will be established at the protruding parts (hence a faster reaction rate) compared

to the recesses parts of the surface, resulting in a polishing effect and ideally an eventual uniform

surface.

Several parameters affect the electropolishing results, including temperature, acid concentra-

tion, and, mostly importantly, the applied voltage. A schematic current-voltage characteristic

is shown in Figure 3.3(b). It has been established that the ideal working voltage range is the

plateau between Vb and Vc [52]. Below Va, the reaction is effectively etching rather than polish-

ing which results in a pitted surface; above Vc, gas bubbles start to form and can be trapped at

sample surface, which will also result in a pitted surface. The I − V curve, in theory, provides

a guidance for the ideal operating voltage; however, in practice, the fluctuation in the current

reading is very large for a small sample and it is very difficult to establish the I−V curve with

reasonable precision. Much of the optimisation is done by trial-and-error. For SmB6, we have

found that the operating voltage between 10 to 12 V gives consistently good results.

We use the commercial Model 451 Electrolytic Crystal Polisher from South Bay Technology,
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Figure 3.4: Setup of Model 451 Electrolytic Crystal Polisher. Pictures of (a)
sample holder (left) and goniometer (right) and (b) Zoom-in view of the polishing
wheel and and a mounted sample.

which requires an external DC voltage source and ammeter to complete the setup. Sample is

mounted onto a homemade sample holder using a conductive wax, a mixture of CrystalBond

509 and silver powder (> 80 vol.%). It is important to keep the targeted surface parallel to the

base of the sample holder so the crystal orientation can be maintained. The platinum-plated

polishing wheel is covered by a Teflon cloth with its lower part immersed in 1% perchloric acid-

methanol solution in a PVC container. As the wheel rotates, the acid is uniformly distributed

over the wheel. The acid solution is cooled by a salt-ice bath (1:3 by weight) below 12 ◦C to

ensure the reaction proceeds in a controlled manner. A thermocouple with corrosion-resistant

coating is in contact with the back of the polishing wheel for temperature monitoring.

With the parameters described above (voltage = 10 - 12 V, Tacid < 12 ◦C), a current ≈ 10

mA and polishing rate of ≈ 10 µm/minute is usually obtained with samples of surface area ≈
1 mm2. The optimal polishing time seems to be between 4 to 5 minutes when a smooth surface

is just formed. Further polishing appears to give the crystal rounded edges and a less-defined

surface orientation.

3.1.4 Wiring

Contact resistances < 10 Ω between electrical leads can be made using conducting adhesives

with electropolished or cleaved SmB6 samples, while pristine flux-crystals usually give a contact

resistance in the range of tens to hundreds of ohms. Spot welding with an applied voltage of

5.7 V can reduce the contact resistance to sub-ohm, if needed.
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3.2 YBCO6+x preparation

A significant amount of research effort in the field of high-Tc superconductivity has been dedi-

cated to improve the sample quality and the results have been rewarding. YBCO6+x is known

to be the cleanest cuprate in which large quantum oscillations have been consistently observed

[41], and Liang [53] and Lin [54] are known to produce YBCO6+x single crystals of exceptional

quality. I have combined their approaches in sample preparation and optimised the procedure

in the order presented in the following sections.

3.2.1 Self-flux growth

YBCO6+x single crystals grown by the self-flux technique have proven to be of exceptionally

high quality [53]. In the self-flux technique, the BaO-CuO flux used contains the chemical

components of YBCO6+x with lower melting points, hence eliminates the contamination in

the crystals from the flux. The high temperature part of the pseudo-binary phase diagram of

YBCO6+x-BaCuO2 system is shown in Figure 3.5. An issue intrinsic to the self-flux method

is the high reactivity of BaO-CuO flux, which reacts with most crucible materials and leads

to sample contamination. Two materials have been shown to be a good choice for crucibles:

yittria-stablised-zirconia (Y2O3-ZrO2, or YSZ) and barium zirconate (BaZrO3).

In YSZ, 3 to 8 mol.% of Y2O3 is added into ZrO2 to prevent a tetragonal-monoclinic struc-

tural transition occurring at 1200 ◦C in pristine ZrO2, which can crack the ceramic. BaO in

the flux reacts with ZrO2 at high temperature, forming a thick layer of flux on the crucible

wall rendering a low growth yield and crucibles that cannot be re-used after growth. Y2O3

in the crucible can also be dissolved into the flux and change the stoichiometry of starting

materials. Nevertheless, high-quality YBCO6+x single crystals can still be obtained using YSZ

crucibles. To address the issues pertinent to YSZ, Liang [53] and Erb [55] have reported that

the use of homemade BaZrO3 crucibles can solve these issues pertinent to YSZ and claimed a

superior sample quality using BaZrO3 crucibles. However the BaZrO3 powder with Ba:Zr ratio

between 0.992 and 1.008, a requirement for a leak-tight ceramic, is not commercially available

and difficult to make, limiting the widespread use of BaZrO3 crucibles for YBCO6+x growth.

We have performed measurements on YBCO6+x single crystals grown from both YSZ cru-

cibles at Cambridge and Max Planck Institute for Solid State Research, and BaZrO3 crucibles

at University of British Columbia. The best quantum oscillations with less Dingle damping

were observed in crystals grown using YSZ crucibles. Single crystals studied in this thesis were

grown using YSZ crucibles.
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3.2. YBCO6+x preparation

Figure 3.5: High temperature part of the pseudo-binary phase diagram for
YBCO6+x-BaCuO2 in ZrO2 crucible. L refers to the liquid phase, 211 refers to
the parasitic phase Y2BaCuO5, 123 refers to the targeted phase YBa2Cu3O6+x, and
011 refers to the flux phase BaCuO2. The ideal starting material composition is at
the peritectic point marked by the cross symbol, where the YBCO6+x starts to form
without the presence of the parasitic Y2BaCuO5 phase. Figure from [56].
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3.2.2 Sample selection

Typically tens to hundreds of single crystals with varying sizes and shapes can obtained in one

growth. The ideal sample size and geometry depends on the experiment. For in-plane electrical

transport measurements, rectangular platelets of dimensions ≈ 1.5 mm × 0.5 mm × 0.05 mm

with clean, flux-free surfaces are ideal. The longitudinal resistance Rxx and Hall resistance Rxy

are given by

Rxx = ρxx(l/wt) (3.3)

Rxy = RHBz/t, (3.4)

where l, w, t, ρxx, RH, are the length, width, thickness, longitudinal resistivity, and Hall co-

efficient of the sample, respectively, and Bz is the magnetic field applied perpendicular to the

(100) plane. Since Rxx scales with l/wt and Rxy scales with 1/t, it is important to use samples

with an aspect ratio l/w & 3 and thickness t < 100 µm to maximise the signals and ensure a

uniform current distribution. Samples with l/w � 3 or t < 20µm, however, are very fragile and

tend to break during the multi-stage preparation. A rectangular shape with well-defined l and

w is important for ρxx calculation and twin-removal (see Section 3.2.5). Clean and flat surface

without residual flux is indicative of a fully detwinnable crystal with good contact resistance.

If a sample is too large or has unparallel edges, it is possible to cleave it with a sharp scalpel

along the crystalline â- or b̂-axis if it is thinner than 100 µm. Alternatively, samples can be

trimmed using the wire saw, with a significant loss of material.

For quantum oscillation measurements using contactless techniques, such as magnetic torque

or proximity effect measurements, signals scale with sample size so dimensions of ≈ 1.5 mm

× 1.5 mm × 0.15 mm are preferred. Samples of much larger size are more likely to contain

impurities or defects and suffer from significant self-heating in pulsed fields.

3.2.3 Electrical contact

The outermost layer of YBCO6+x is insulating due to the formation of BaCO3 from the BaO

layer reacting with CO2 in the atmosphere. The contact resistance is in the range of kΩ to MΩ

when leads are made using conducting adhesives without any further treatment, rendering it

unusable for reliable measurements. Good electrical contacts with sub-ohm resistances can be

achieved by depositing gold pads onto the sample surface and annealing at high temperature

for the gold to diffuse through the insulating layer into the bulk. Annealing at 500 ◦C for two

days is usually sufficient to bring the contact resistance to a few ohms, if not sub-ohm.

The mask for gold deposition is made by cutting a 10 µm aluminium foil with a scalpel into

the shape outlining the standard six-contact configuration, as shown in Figure 3.6. To prevent

the aluminium foil from moving during the cutting, it is glued to a flat metal plate using a thin
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Figure 3.6: Making electrical contact for YBCO6+x. (a) A YBCO6+x sample
masked by 10 µm-thick Al foil with six-contact configuration, then stuck down to a
glass slide using Kapton tape. (b) The same sample after 160 nm and 80 nm of gold
is deposited on the top and side surfaces, respectively, by thermal evaporation.

solution of CrystalBond 509 in acetone. Slits of 50 µm width can be made with sharp No. 11

scalpel blade. There is a compromise when preparing the mask dimensions. Wide slits would

increase the error in resistivity calculation while narrow slits would increase the difficulty in

sample wiring and potentially contact resistances. Distances between the voltage slits should be

maximised for maximal signal without risking the voltage leads to be shorted to current leads.

After a mask is cut, it is folded around the crystal tightly to expose the targeted area then

stuck down to a glass slide using Kapton tape. A thin strip of Kapton tape is used to divide

the parallel voltage slits into four voltage pads and prevent the relative movement between the

mask and the sample.

Gold pads of 100 nm in thickness are deposited using either magnetron sputtering or thermal

evaporation. The advantage of magnetron sputtering is that the entire volume enclosed by the

Ar plasma will be deposited at the same time. It is important to deposit both the top surface

and the sides of the sample with gold to eliminate the contribution from the ĉ-axis to the in-

plane signals, as the ĉ-axis resistivity is several orders of magnitude higher than the in-plane

resistivity. The sputtered film also has a better adhesion to the sample surface, and often lower

contact resistances, than the evaporated film. However, the plasma often goes underneath the

mask if there is a gap between the mask and the sample, which gives pads with a diffusive

(rather than well-defined) boundary and can lead to shorts between the voltage and current

leads. The advantage of thermal evaporation is that it is a directional technique and deposits

pads with clear boundary. Two evaporation sessions, however, are needed to deposit gold on

all sides of the crystal. Samples are oriented at an angle such that edges are facing towards the

gold source each time.
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3.2.4 Oxygen setting

A major advantage of YBCO6+x over other cuprates is that the doping level p can be changed by

varying the oxygen content without introducing additional disorder. The equilibrated oxygen

content x in YBCO6+x is a function of oxygen partial pressure and temperature, which has been

established in [57]. The time needed to reach equilibrium can be estimated from the diffusion

time constant τ given by

τ =
t2

π2D0

e
Ea
kBT , (3.5)

where t is the sample thickness, D0 is the diffusion constant of 10−2 cm2s−1, and Ea is the

activation energy of 0.8 eV [58]. A duration of 10τ is sufficient to achieve a homogenous

distribution of oxygen throughout the sample bulk. A continuous flow of ultra-high purity

(99.9999%) oxygen is maintained throughout the annealing process. At the end of the annealing,

samples are quickly quenched into liquid nitrogen to prevent oxygen escaping from sample

surface and ensure sample homogeneity.

The diffusion of gold pads is done together with the oxygen setting, without the process of

sealing the contacted samples with YBCO6+x ceramic powder of the same doping in a quartz

ampoule and annealing at 570 ◦C as reported in [53]. I have found that samples suffer a oxygen

loss from the sealing and annealing process, likely due to the voids created by the ceramic

powder in the ampoule. It is also difficult to retrieve single crystals from ceramic powder.

Samples with x ≈ 1 are annealed at 520 ◦C for 48 hours to diffuse the gold effectively into

the bulk, before the required temperature to achieve the desired oxygen content is set for an

extended period.

3.2.5 Twin removal

YBCO6+x with x > 0.3 is orthorhombic at room temperature with the crystalline b̂-axis longer

than the â-axis [59]. The random distribution of â- and b̂-axis in an oxygenated crystal leads to

a random orientation of (100) and (010) planes and forms twin domains which can be identified

using an optical microscope. The formation of twins not only makes the crystal apart from

being truly single-crystalline but also causes stresses and segregation of oxygen on the twin

boundaries. Application of a uniaxial stress of 100 MPa at 250 ◦C for 20 minutes can remove

these twins, realising a homogeneous, stress-free YBCO6+x single crystal [53]. A de-twinning

apparatus has been designed and manufactured in our lab with modification from [54]. The

stress is applied through a pair of stress plates capped with 50 µm Au foil as a buffer layer.

Samples are kept under vacuum during de-twinning and no loss of oxygen has been observed

after the process.
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Figure 3.7: Twin-removal of YBCO6+x single crystal. (a) Sample space of the
de-twinning apparatus built in the Cavendish laboratory. Sample is placed on top of
a rectangular quartz rod in the centre of the chamber. Stress of 100 MPa is applied to
the crystal via a pair of stress plates capped with 50 µm-thick gold foil using a force
feedthrough on the left. (b) A twinned YBCO6+x single crystal with twin boundary
running along the diagonal which can be identified by the coloured-lines. (c) The
same crystal after the twin-removal treatment. Diagonal lines in (b) are no longer
visible.
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3.2.6 Oxygen-chain ordering

Superstructures with a periodicity larger than the lattice parameter of â-axis is known to

be present in YBCO6+x with 0.3 < x < 0.85 at room temperature, due to the preferential

distribution of the Cu-O chains [59]. The so-called ortho-N order is illustrated in Figure 3.8,

with N corresponding to the superstructure periodicity in the unit of â-axis lattice constant.

The conditions for oxygen-chain ordering, done by annealing at a temperature 10 ◦C below the

phase boundary of the ortho-N phase for one week, are summarised in Table 3.1. Disordering of

the oxygen chains, reported to affect the amplitude of quantum oscillations in YBCO6+x with

p ≈ 0.12 and ≈ 0.13 [50], can be done by heating at 120 ◦C for one hour followed by quenching

into liquid nitrogen. Measurements are to be done quickly after quenching to prevent the re-

ordering of oxygen chains, especially for p ≈ 0.12 samples for its low lying phase boundary of

40 ◦C.

Figure 3.8: Cu-O chain superstructure in YBCO6+x with 0.3 < x < 0.85.
Schematic diagram of various superstructures present in YBCO6+x with the vertical
lines representing the Cu-O chains along b̂-axis. Dashed line indicate the superstruc-
ture periodicity.

Table 3.1: Temperature profiles used for oxygen-chain ordering in YBCO6+x.

Ortho-order Temperature profile
O-II 92 ◦C for two days, followed by 67 ◦C for five days

O-VIII 30 ◦C for one week
O-III 65 ◦C for one week

3.2.7 Preparation sequence

As presented, the sample preparation of YBCO6+x involves multiple steps and the order of steps

should be optimised for maximum effectiveness. The guiding principle is that the sequence of

preparations should follow in order of decreasing temperature, otherwise the process carried

out at an earlier stage may be nulled. For example, annealing a de-twinned crystal above 400
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◦C may lead to re-twinning, and detwinning an ortho-ordered sample would disrupt the chain

ordering. Magnetisation characterisation should be performed after oxygen setting so only the

samples with sharp transition proceed for further treatments. I found that pre-selecting samples

with sharp transition for electrical contacting is not an effective strategy, as a small variation

within a single batch could lead to significantly different sample quality i.e. a good sample in

one batch is not necessarily good in another batch. It is more useful to prepare several samples

for a batch, choose the superior ones for further preparation, and save the inferior ones for later

batches. Table 3.2 summarises the parameters used for thermal treatments of samples studied

in this thesis.

Table 3.2: Experimental parameters for thermal treatments of YBCO6+x. p
refers to the approximate hole dopings, Tset and t refer to the annealing temperatures
and durations used for setting oxygen content under 1 bar oxygen, respectively, and
O-N refers to the oxygen-chain order, if exists.

x p Tset(
◦C) t (days) O-N

0.55 0.11 723 3 II
0.67 0.12 668 3 VIII
0.75 0.13 626 3 III
0.84 0.14 580 5 III
0.87 0.15 551 5 -
0.92 0.16 520 5 -
0.97 0.17 375 20 -

Ca-doped 0.18 - 0.20 375 20 -

3.2.8 Wiring

The wires attached to the sample for transport measurements suffer from large environmental

vibrations due to running cooling water and pulsed magnet movement, as well as the torque ex-

erted on any open loop due to the intense magnetic field. A broken wire can end a measurement

prematurely. I have learnt the technique to wire sample securely to survive such conditions

from Dr Cyril Proust at LCNMI in Toulouse, as described below:

1. Attach 25 µm gold wires to the sample using silver paint DuPont 4929N. The amount of

silver paint should be kept minimal while keeping the wires firmly attached to the sample.

2. Glue the sample down to a 2 mm × 2 mm × 0.25 mm quartz platelet using diluted GE

Varnish. Enough varnish needs to be used to prevent the sample from being lift off the

quartz platelet due to the torque exerted at high magnetic field. Care should be taken

to avoid the varnish overflowing to the gold pads, as the varnish solvent can dissolve

silver paint and weaken the contact robustness and increase contact resistances. It can

be avoided by controlling the amount and consistency of the varnish.
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3. Bend the gold wires towards the edge of the quartz platelet and glue them down to avoid

possible wire movement. Three or more layers should be applied.

4. Connect the gold wires to twisted wire pairs leading to the probe with silver paint. Open

loops should be minimised to reduce any torque exerted on the wires and voltage induced

by a time-varying magnetic field. Twisted wire pairs of diameter similar to the gold wires

should be used, as it is difficult to connect wires with very different diameters securely

using silver paint.

All wires should be glued down to an immobile surface whenever possible to avoid any possible

movement during the measurements. For YBCO6+x samples with x > 0.85, it can be useful to

use silver epoxy such as Epo-Tek H20E to further strengthen the contacts. Baking at 120 ◦C

for 15 minutes is needed for epoxy curing. For samples with oxygen-chain order, such thermal

treatment will disrupt the superstructure and should be done before the ordering process.

Figure 3.9: YBCO6+x samples wired for high-field measurements. Picture of
two wired YBCO samples for in-plane transport measurements. 25 µm gold wires are
attached to the sample using silver paint, then secured to the edges the quartz platelets
using GE Varnish. Gold wires are connected using silver paint to the twisted wire
pairs arranged for simultaneous measurements of longitudinal and Hall resistances.
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Chapter 4

Measurement techniques

The majority of work presented in this thesis is performed in international high magnetic

field facilities including the National High Magnetic Field Laboratory in the US, Wuhan High

Magnetic Field Centre in China, and Laboratoire National des Champs Magnétiques Intenses

in France. In this chapter, I will give a brief introduction of the high-field magnets used in this

work and a detailed discussion of the experimental techniques used for electrical transport and

magnetisation measurements.

4.1 High field magnets

Magnetic fields up to 5 T can be generated using a permanent magnet made of iron [60]. To

generate magnetic fields well above 5 T, one can only use electromagnets. Various magnets

that can produce continuous magnetic fields up to 45 T and pulsed magnetic fields up to 65 T

have been used in this work. The design principles and technical limitations of these magnets

are briefly discussed in this section.

4.1.1 Superconducting magnet

The electromagnet is a natural application of superconductors given its ability to carry elec-

trical current without dissipation. A magnetic field is generated when a current, usually on

the order of 100 A, is passed through a solenoid made of superconducting materials. Three

material parameters set the constraints for the operation of a superconducting magnet: the

critical temperature (Tc), the upper critical field (µ0Hc2), and the critical current density (jc).

Tc and µ0Hc2 are intrinsic material properties. A superconducting magnet needs to be operated

at temperatures below Tc and cannot generate a magnetic field larger than µ0Hc2 above which

the superconductivity is destroyed. jc, however, depends largely on metallurgical treatments of

the material. Magnetic flux vortices, whose movement leads to finite resistivity in type-II su-
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perconductors, can be pinned by crystallographic defects to maintain the zero resistivity state.

These pinning centres, such as grain boundaries and impurities, can be effectively introduced

by mechanical processing and increase jc from 100 A·cm−2 to 100 kA·cm−2 in the same ma-

terial [60]. As the maximum achievable magnetic field (below µ0Hc2) is limited by jc, which

decreases with increasing temperature, superconducting magnets are typically operated at 4.2

K to achieve high magnetic field.

Although numerous superconductors have been found, only a few are of practical relevance

for magnet application. NbTi, a low temperature superconductor with a Tc of 10.2 K and

µ0Hc2 of 12 T, is the universal material choice to produce magnetic fields up to 9 T, since it is a

ductile, metallic material from which wires can be readily made. Nb3Sn, a brittle intermetallic

compound with a Tc of 18.3 K and µ0Hc2 of 22 T, is only used to produce magnet fields >

9 T as it is difficult and expensive to be made into wires. Dual NbTi/Nb3Sn coils are often

used to produce magnetic fields up to 21 T for cost effectiveness. Although high temperature

superconductors have a much higher Tc and µ0Hc2, they are ceramic materials with complex

structures and present a major technical challenge for coil winding. They also have a lower

achievable jc at 4.2 K than NbTi and Nb3Sn at magnetic fields below 9 T and 18 T, respectively,

therefore are only used to generate magnetic fields above 21 T [60].

Superconducting magnets require a minimal electricity to operate but can be seriously

damaged by electrical disruption. A superconducting solenoid operating at a current of 100 A,

with a typical inductance of 40 H, stores an energy of 200 kJ. If any part of the superconducting

coil becomes resistive due to a transient perturbation or strain-induced underperforming of the

coil, ohmic heating will occur and the resistive zone can propagate across the entire coil rapidly.

Only a very small amount of energy is required to induce the resistive transition locally due

to the small heat capacity of superconductors at 4.2 K. The stored energy will dissipate and

evaporate the liquid helium instantly, which elevates the magnet temperature and damages the

coil. This process is known as quenching. A protection circuit can be installed to dissipate

the energy controllably. Interestingly, new superconducting magnets usually experience several

quenches to release the strain built up during coil winding until the designed field strength can

be reached.

4.1.2 Resistive magnet

The field strength of a resistive electromagnet, unlike the superconducting magnet, is not

limited by any law of physics but by economics. It requires a power of 8 MW to generate a

magnetic field of 25 T, 19 MW to generate 35 T, and over 40 MW to generate 45 T using

current technology [60]. More power input means more heat dissipation, and more cooling

power required to operate the magnet. Moreover, the force applied on the coil due to the

produced magnetic field further limits the magnet performance. A force of ≈ 100 kN can be
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generated on the coil at a magnetic field of ≈ 35 T. Materials with high mechanical strength are

thus needed for coil construction, accompanied by an increased electrical resistivity, more heat

dissipation, and higher requirements for the cooling power. A widely employed design for a

resistive magnet is the Florida-Bitter magnet, an improved version of Bitter’s original invention

in 1939, developed at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee,

Florida. Schematic diagrams of the Bitter magnet and Florida-Bitter plate are shown in Figure

4.1. The Bitter magnet consists of stacked conducting Bitter plates separated by insulating

spacers, which serves to guarantee the desired flow of electrical current, with a distribution of

holes for flowing cooling water. The Florida-Bitter plate has elongated slits, rather than circular

holes used in Bitter plate, distributed along the polar direction to optimise the balance between

cooling surface area, structural integrity, and electrical conductivity. Cu-based alloys, such as

Cu-Ag and Cu-Al2O3, provide an enhanced mechanical strength that outweigh the sacrifice in

conductivity.

The most powerful resistive magnet in the world is currently the 41.5 T magnet at the

NHMFL in Tallahassee. It requires 33 MW of power at the maximum magnetic field, which in

one hour uses equivalently seven years of power consumption of an average UK household.

Figure 4.1: Schematics diagrams of resistive magnet components. (a) Coil of
a resistive Bitter magnet. (b) The Florida-Bitter plate. Figures reproduced from [61].
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4.1.3 Hybrid magnet

The combination of a resistive magnet (insert) with a surrounding superconducting magnet

(outsert), known as a hybrid magnet, can boost the achievable magnetic field for a given avail-

able power. It is a technological challenge that involves many considerations in magnet design.

Firstly, it requires an unusually large superconducting magnet with bore size of ≈ 600 mm

compared to the typical bore size of ≈ 50 mm. Secondly, a very large cryostat needs to be

installed to accommodate the superconducting magnet. As the magnetic field in the insert

varies, a current will be induced in the superconducting outsert. In the event of the insert

tripping from the maximal field, over 20 kJ of energy can be stored in the outsert and quench

it. Superfluid helium produced at 1.8 K has a very high thermal conductivity and low viscosity,

which can be used to increase the reliability of the superconducting magnet considerably and

prevent quenching. Thirdly, a magnetic force up to 3 MN can be generated on the resistive coil

when the insert operates in a background magnetic field of ≈ 10 T [60]. Special Cu-alloy with

unusually high mechanical strength and lower electrical conductivity is required to construct

the insert coil, which leads to a lower power efficiency than a standalone coil. The 45 T hybrid

magnet at NHMFL in Tallahassee, currently the record-holder of the highest continuous field,

uses 33 MW of power and 15 000 litres of cooling water per minute for the 34 T insert and 2

800 litres of superfluid helium circulating at 1.8 K for the superconducting outsert.

4.1.4 Pulsed magnet

Magnetic fields of even higher magnitude can be generated at the expense of field duration.

This technology is known as the pulsed magnet. A pulse of magnetic field can be created by

sending a large transient current through a resistive coil. This approach circumvents the issue

of a limited cooling power for a continuous resistive magnet. The coil sits in liquid nitrogen and

is cooled sufficiently between each pulse. The pulsed magnet is typically charged by a capacitor

bank with energy capacity of ≈ 1 MJ at a voltage of ≈ 10 kV. The duration of magnetic pulses

is typically of the order of 10 ms, with the rising part being shorter than the falling part. Field

profiles of pulsed magnets used in this work are shown in Figure 4.3.

Magnetic fields of 60 T can now be routinely generated at pulsed field facilities worldwide,

with a few having the ability to generate fields over 80 T using multiple coils. Key parameters

of selected pulsed magnets worldwide are summarised in Table 4.1. Currently the highest

magnetic field generated by non-destructive pulsed magnet is 101.3 T achieved at the NHMFL

in Los Alamos using an immense energy of 150 MJ per pulse. The majority of pulsed field

measurements on YBCO6+x were performed at Wuhan High Magnetic Field Center in China.
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Figure 4.2: Sketch of the 45 T hybrid magnet at the NHMFL in Tallahas-
see. It consists a 34 T resistive insert and an 11 T superconducting outsert. Figure
reproduced from [61].
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Table 4.1: Key parameters of selected magnets from pulsed field facilities
worldwide. HLD refers to the Dresden High Magnetic Field Laboratory in Germany.
NHMFL-PFF refers to the National High Magnetic Field Laboratory’s Pulsed Field
Facility at Los Alamos, New Mexico. LNCMI-T refers to the Laboratorie National
des Champs Magnétiques Pulsés at Toulouse, France. WHMFC refers to the Wuhan
High Magnetic Field Center in Wuhan, China. Values in the parenthesis indicate the
durations of the peak field pulses.

Facility B Number Energy Pulse duration Bore size Time between
(T) of coils (MJ) (ms) (mm) pulses (hr)

HLD 65 1 1 25 20 1
95 2 9.5 100(10) 16 4

NHMFL-PFF 65 1 1 25 15 0.75
100 2 150 2500(25) 10 3

LNCMI-T 60 4 5 300 28 1.25
90 2 13 1200(40) 8 1.5

WHMFC 65 1 3 60 22 1
90 2 12.6 200(8) 12 3.5

Figure 4.3: Magnetic field-time profiles of pulsed magnets used in this work.
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4.2 Electrical transport

The electrical transport properties of a material are often the first properties to be studied but

the last to be understood. The principle of the measurement is simple, yet it can be challenging

to perform successfully. In this section, methods used to measure electrical resistivity in both

continuous and pulsed fields are discussed in detail.

4.2.1 Continuous field measurement

Resistivity measurements on YBCO6+x for studying the superconductivity down to 40 mK and

temperature dependence up to 300 K under fixed magnetic fields were performed at the NHMFL

in Tallahassee using the experimental setup described in Figure 4.4. Four electrical leads are

attached to the sample, with one pair of leads sending an electrical current I and the other

pair measuring the potential difference Vxx (or Vxy). An AC current with a frequency of 10 to

40 Hz is applied using the Keithley 6221 current source in order to use a lock-in amplifier to

measure the signal of a chosen measurement frequency and filter out the background noise. The

measurement frequencies are adjusted individually for each sample in a magnetic field above

11 T to minimise the noise level at higher fields. A pre-amplifier is used to further enhance

the signal-to-noise ratio (S/N). We find that the specialised preamplifier SA-400F3 from NF

Corporation, which amplifies the signal but not the noise, gives a superior noise performance

than the commonly-used SR551 from Stanford Research Systems. Noise level of ≈ 10 nV can

be achieved at fields below 35 T, similar to the noise level measured in the commercial Physical

Property Measurement System from Quantum Design Inc. The noise increases significantly

at the maximum field of 45 T to ≈ 100 nV due to the increased mechanical vibrations and

magnetic force acting on the sample.

Rxx and Rxy of YBCO6+x are of the order of 50 mΩ and 5 mΩ, respectively. When a voltage

lead is shorted to a current lead, the measured resistance will increase by at least one order of

magnitude. This issue cannot be circumvented by re-arranging the leads on the instruments’ or

probe’s end, and the voltage leads on the sample have to be re-made. A diagonal arrangement

of the voltage leads, as shown in Figure 4.5, can be used to extract ρxx and ρxy simultaneously.

The diagonal signal consists of both longitudinal (Vxx) and transverse (Vxy) components, which

can be extracted using

Vxx = (V +
diagonal + V −diagonal)/2 (4.1)

Vxy = (V +
diagonal − V

−
diagonal)/2, (4.2)

where V +
diagonal and V −diagonal are the voltages measured when the magnetic field is applied with

positive and negative polarity, respectively. The Vxy component can only be reliably extracted

when it is sufficiently large compared to Vxx, usually on the order of 5%; otherwise it will be
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Figure 4.4: Block diagram of the four-probe resistivity measurement setup
used in continuous fields. An electrical current I is supplied by Keithley 6221
current source and the voltage signal Vxx is amplified by NF SA-400F3 pre-amplifiers
and measured via SR830 Lock-in amplifier.

dominated by the uncertainty in Vxx.

A current of 3 mA gives a good signal-to-noise ratio without risking the wires to be damaged

due to magnetic force. A low current below 1 mA, however, should be used for measurements

taken at temperatures below 1 K to minimise the effect of ohmic heating. After signal opti-

misation, a noise level of ≈ 10 µΩ (i.e. S/N & 103) can be achieved using I = 3 mA, and ≈
3 mΩ can be achieved using I = 10 µA (i.e. S/N & 3), a necessary condition to access the

superconducting state in the underdoped YBCO6+x below 1 K.

Figure 4.5: Schematic diagram of the diagonal arrangement of voltage leads.
The measured signal Vdiagonal consists of both longitudinal (Vxx) and transverse (Vxy)
components. In the absence of a magnetic field, Vxy = 0 and Vdiagonal = Vxx.
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4.2.2 Pulsed field measurement

Resistivity measurements on YBCO6+x to establish the vortex-state boundary over a broad

range of doping were performed at WHMFC. It is considerably more challenging to measure

electrical resistivity using the four-probe technique in pulsed fields compared to that in continu-

ous fields. The intense magnetic pulse is accompanied by a large energy release and vibrational

noises. A successful resistivity measurement relies on achieving a satisfactory signal-to-noise

ratio. A measurement frequency of 30 to 100 kHz, much higher than that used in continuous

field, is used to effectively filter out the vibrational noises that are more prominent at low

frequencies. An AC current is applied by sending an AC voltage across a shunt resistance.

Data is recorded at ≈ 1 MHz sampling rate to collect enough data points during the transient

magnetic pulse. The major challenge of high-frequency resistivity measurements is to reduce

the contribution of reactive components to the impedance signal, whose contribution increases

with frequency. As the resistivity signal, which is in phase with the AC current, is the only

quantity of interest, the out-of-phase signal comprised of the capacitive and inductive compo-

nents should be minimised. The signal optimisation relies on choosing a frequency that gives a

high signal-to-noise ratio without a significant out-of-phase component. The strategy used to

achieve successful four-probe resistivity measurements in pulsed fields is outlined below.

Contact resistance

First and foremost, the contact resistance between the voltage leads of the sample has to be as

low as possible. A large contact resistance indicates a high capacitance between the lead and

the sample. The two-point resistance measured between the voltage leads should be below 5 Ω,

and ideally below 2 Ω. Note that the absolute value of the out-of-phase signal is sensitive to the

exact circuit configuration and varies significantly when a test lead is removed and reconnected.

It is the change in the out-of-phase signal with magnetic field that defines the signal quality,

which should be < 2 mΩ over the entire field range.

Probe

A well-maintained probe gives a good signal. One should consult the local user support about

the probe condition before mounting the sample. There are usually over 16 wires running along

the probe and some of them may be damaged. The wire resistances should be checked without

the sample and the wires with unusual resistances need to be fixed or avoided. Coax cables

should be avoided for voltage leads due to the complexity for instrument connection. Probes

with a glue-on sample space and soldering pads for lead connections are preferred to ones that

use a standard DIP chip. The latter option uses a spring mechanism to secure the chip to

the probe, which vibrates during the pulse and amplifies the noise at high fields. A stabilising
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piece, if available, should be used to prevent the probe tail from touching the cryostat wall,

which would cause very large noises.

Crosstalk

High-frequency AC signals can propagate outside the transmitting cable and leak into the

adjacent wires, causing the signal from one sample to appear in the other sample’s signal. This

phenomenon is known as crosstalk. The most effective way to eliminate the crosstalk is to keep

the leads from different samples physically apart. It should be done on the sample platform

and at the breakout box where the leads are connected to the instruments.

Frequency choice

The frequency chosen for the measurement should be high enough to effectively eliminate the

background noise while maintaining a minimal, field-independent out-of-phase contribution.

Frequency that lies in close proximity to another measurement frequency and/or background

noise with high intensity should be avoided. It is useful to study the background noise present

in the circuit using a spectrum analyser. The presence of high-intensity noise at high frequency

often leads to a large, field-dependent out-of-phase signal that needs to be eliminated. Note that

a shift in measurement frequency as small as 4 kHz could reduce the noise by 50%. Extensive

efforts should be made before deciding the measurement frequency.

Temperature control

The temperature of the sample space is determined by the heater’s power output and the

dewar’s cooling power, moderated by the amount of exchange gas within the probe. For the

best temperature stability, low heater power with low exchange gas pressure should be used.

A pressure of 10−3 mbar and heater power below 10% using the Lakeshore 335 temperature

controller gives a good temperature stability. The temperature reading can sometimes be

misleading, due to self-heating from the vortex motion and eddy currents, and the field values

of the resistive transition can provide a calibration for the sample temperature.

A noise level of ≈ 100 µΩ at B = 60 T can be achieved with a current of 10 mA after signal

optimisation. However, it is still at least one order of magnitude higher than that in continuous

fields using similar measurement current. Therefore, the thinnest samples with lowest contact

resistances should be used for optimal signal-to-noise ratio in pulsed fields, especially for ρxy

measurements.
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Figure 4.6: Typical ρxx signal measured in pulsed fields. (a) Field-time profile of
a 54 T pulse made in WHMFC. (b) Raw voltage signal measured using a frequency of
83 kHz at T = 75 K in a YBCO6+x sample (Tc = 85 K). The sample became resistive
between t = 10 ms and 40 ms with voltage signal exceeds the noise floor in the
superconducting state. (c) Rxx as a function of field after signal processing. A slight
mismatch between rising and falling parts can be seen, possibly due to insufficient
data collection in the rising part or self-heating due to eddy currents.
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4.2.3 Proximity detector oscillator

A complementary technique to measure electrical resistivity is the proximity detector oscillator

(PDO) method. It is a contactless technique which has proven to be very successful for quan-

tum oscillation studies on superconductors with high sensitivity [62]. Studies of the quantum

oscillation waveform in contactless resistivity of YBCO6+x were performed at the NHMFL in

Los Alamos and WHMFC. PDO consists of a resonant LC circuit with the sample placed on an

inductive coil, as illustrated in Figure 4.7. A change in the sample resistivity induces a change

in the effective inductance Leff of the coil given by

Leff = L1

[
1− M2

L1(L2 + L0 + Lcoax)

]
, (4.3)

where M is the coupling factor, Lcoax is the inductance of the coax cable, and L1 and L2 are the

inductors as shown in Figure 4.7(a) [63]. As a result, the resonant frequency f0 shifts according

to
∆f

f0

= − ∆L

2Leff

, (4.4)

where ∆f and ∆L are the change in resonance frequency and effective inductance, respectively

[63]. The signal is amplified, down-converted, and filtered twice for noise reduction before being

analysed in the oscilloscope. The PDO sensitivity is sensitive to the resonance frequency, which

can be altered by changing the capacitors C1 and C2, and/or the inductors L1 and L2. We have

found that the resonance frequency of ≈ 32 MHz gives the highest sensitivity.

The sample coil is made by hand-winding enamelled AWG50 copper wire. Picture of a coil

without a sample is shown in Figure 4.7(b). Thin GE Varnish is used to glue the coil down

to a sapphire platform. The number of turns is determined by the sample size, which should

fully cover the coil. It usually take five to six turns, followed by a counter-wound circle with

contour area matching the area of the spiral. The counter-circle cancels the induced emf from

the spiral. After the coil is made, the sample is glued to the coil using GE Varnish. Prominent

quantum oscillations in underdoped YBCO6.55 measured using the PDO technique are shown

in Figure 4.7(c). The noise level is ≈ 100 Hz, or 100 ppm.
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Figure 4.7: Proximity diode oscillator (PDO) technique for contactless re-
sistivity measurement. (a) Schematic diagram of the PDO circuit from [63].
TDA0161 is a commercial integrated circuit commonly used for proximity detector.
The output signal is amplified by 100 times (+20 dB) and filtered twice before reaching
the oscilloscope. (b) Picture of the sample coil on a sapphire platform. (c) Quantum
oscillations in YBCO6.55 measured by PDO technique at the NHMFL in Los Alamos.
The change in resistivity is expressed as the shift in the resonance frequency ∆fPDO.
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4.3 Torque magnetometry

A powerful technique for magnetisation measurement is torque magnetometry, which is partic-

ularly suited for high field conditions for its compactness and sensitivity. In this section, the

principle and experimental setups of torque magnetometry measurements are discussed.

4.3.1 Basic principles

Torque magnetometry measures the anisotropy of magnetic susceptibility along different crys-

tallographic axes. As illustrated in Figure 4.8, a torque τ is exerted on a sample with magnetic

moment m in magnetic field B given by

τ = |m×B|

= µ0V (McHx −MaHz),
(4.5)

where µ0, V , and Ma,c are the vacuum permeability, sample volume, and magnetisation along â-

and ĉ-axis of the sample, respectively. For convenience the â- and ĉ-axis of the sample coincide

with the x̂- and ẑ-axis of the coordinate frame. We can substitute Mc = χcHz = χcH cos θ and

Ma = χaHx = χaH sin θ into equation (4.5) and get

τ = µ0V (χcH cos θ sin θ − χaH sin θ cos θ)

=
1

2
µ0V H∆χ sin 2θ,

(4.6)

where ∆χ = χc − χa.

Figure 4.8: Illustration of a sample with magnetisation m in a magnetic field
B. The x̂- and ẑ-axis of the coordinate frame coincide with the â- and ĉ-axis of the
sample. θ is the angle between the magnetic field and ẑ-axis.

Very high sensitivity of 3 × 10−11 emu at B = 10 T has been achieved using torque mag-

netometry [64], three orders of magnitudes better than the commercial magnetometers. Two

types of torque magnetometry techniques used in this work, the capacitive and piezo methods,

are described below.
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4.3.2 Capacitive method

Quantum oscillation measurements on SmB6 and YBCO6+x down to 40 mK were performed

at the NHMFL in Tallahassee using the capacitive technique, the most sensitive technique of

torque magnetometry. A capacitor is formed between a thin cantilever, where the sample is

mounted, and a metallic plate at the bottom, spaced by a small gap, as shown in Figure 4.9.

In an applied magnetic field, the cantilever beam deflects due to the magnetic torque exerted

on the sample and the capacitance changes accordingly. Cantilevers are made of beryllium

copper, a highly elastic and non-magnetic material. The bottom plate is made of copper/G10

composite with lead pattern made by chemical etching. Miniature coax cables should be used

for lead connections, which eliminates the parasitic capacitance when enamelled copper wires

are used instead.

Figure 4.9: Magnetometer used in the capacitive torque measurements. (a)
Top view and (b) side view of the magnetometer. A SmB6 single crystal is mounted
to the 20 µm Be-Cu cantilever, spaced by a 100 µm gap to the patterned circuit
board underneath. The capacitance between the cantilever and the bottom plate is
measured via two miniature coax cables on the edges of the magnetometer.

At intense magnetic fields, a highly magnetised sample can come off the cantilever due to

the magnetic force exerted; thus it is crucial to mount the sample securely. The protocol used

is described below.

1. Firstly, the cantilever is roughly sanded using fine sandpaper to increase the contact area

with the adhesive. The use of inert solvents such as ethanol or isopropanol helps to keep

the cantilever stationary while sanding. Care should be taken to maintain the flatness

of the cantilever while sanding. The sanded cantilever is then cleaned with acetone to

remove dust residues.

2. Next, the sample is glued onto the cantilever by adhesives. GE Varnish is used for

samples that are not sensitive to thermal cycling such as YBCO6+x. A piece of cigarette

64



4.3. Torque magnetometry

paper with size slightly larger than the sample is glued down to the cantilever, followed

by placing the sample onto the paper and coated with numerous layers of GE Varnish.

Cigarette paper absorbs the varnish very well and improves the adhesion between the

sample and cantilever. For samples that are sensitive to thermal cycling such as SmB6, a

two-part epoxy with exceptionally low thermal expansion coefficient (EP30LTE-LO from

MasterBond Inc.) is used. Small droplets of well-mixed epoxy, aligned with the sample

corners, are applied onto the cantilever using a fine needle. The epoxy needs to be cured

at room temperature for 24 hours or under intense illumination for minimum of 6 hours.

3. After the adhesive is set, the sample is covered by short segments of Teflon tape for

protection in case the sample falls off the cantilever. GE Varnish is used for YBCO6+x and

Loctite 304 is used for SmB6 to glue the tapes, respectively. Solution of methanol-toluene

(50:50 vol.%) and dichloromethane can be used to remove GE Varnish and EP30LTE-LO

epoxy, respectively, if needed.

4. The bottom plate should be cleaned using acetone and/or air-duster before the cantilever

is mounted to the magnetometer. A flat spacer of desired thickness, usually of 100 µm, is

placed between the bottom plate and cantilever. The cantilever is soldered to the bottom

plate at the joint point using a soldering iron with fine tip for minimal heating of the

cantilever. The spacer is removed after the cantilever is soldered and the gaps on both

sides should be checked to ensure a uniform spacing.

The capacitance at room temperature is typically around 1 pF, which can be tested using

the Andeen-Hagerling 2700A digital capacitance bridge (referred as AH bridge hereinafter).

The setup for the electronics is shown in Figure 4.10. The General Radio 1616 analogue

capacitance bridge (referred as GR bridge hereinafter) requires additional electronics for digital

data processing, but provides a superior signal-to-noise ratio than the AH bridge. An AC

voltage of 30 to 100 V, powered by a General Radio audio oscillator at frequency ≈ 5 kHz,

is applied across the sample capacitor via the GR bridge. The output signal is sent to two

analogue SR124 lock-in amplifiers (Stanford Research Systems) to measure the in-phase and

out-of-phase signals simultaneously. The amplified signals are measured using the Keithley

2000-series multimeters for data collection. A comparison of data measured using the AH and

GR bridges is shown in Figure 4.11.
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Figure 4.10: Block diagram of a capacitive torque measurement setup.
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Figure 4.11: Comparison of capacitance signals measured by the AH and GR
capacitance bridges. (a) Measurements were performed on a SmB6 crystal with a
fast sweeping rate in which the low frequency oscillations are prominent. The data
collected using the analogue GR1616 bridge is has a lower noise than that using the
digital AH2700A bridge. (b) FFT spectrum of quantum oscillations after background
subtraction in (a). The noise floor obtained using the GR bridge is significantly better
than that using the AH bridge.

The measured capacitance signal can be converted into magnetisation using the expression

derived below. The torque τ exerted on the cantilever is proportional to its deflection given

by τ = lkδ, where l is the length, k is the spring constant, and δ is the deflection of the

cantilever. δ is proportional to the change in capacitance given by δ = d0 · ∆C/C0, where d0

is the distance between the cantilever and the bottom plate, and C0 is the capacitance at zero

magnetic field. Using the relation between and torque and magnetic moment of τ = mB sin θ

and the expressions of τ and δ, one finds

∆m =
lkd0

BC0 sin θ
∆C. (4.7)

By substituting k into equation (4.7) using

k =
Ewt3

4l3
, (4.8)

where E,w, t are the Young’s modulus, width, and thickness of the cantilever, respectively, one
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finds the sensitivity in magnetic moment δm given by

δm =
Ed0

BC0 sin θ

wt3

l2
δC, (4.9)

where δC is the sensitivity in the capacitance. Equation (4.9) shows that the use of a long,

narrow, and thin cantilever, and a small gap between the capacitor plates increases the sensi-

tivity. Using the typical values of l = 3.8 mm, k = 28 N·m−1, and d0 = 0.1 mm in our setup,

we have a sensitivity of 10−7 emu using the AH bridge and 3× 10−10 emu using the GR bridge

at B = 40 T.

4.3.3 Piezo method

Although it is a powerful technique in continuous fields, the capacitive method is not suitable

for pulsed field measurements because (1) the capacitance signal is compromised by the me-

chanical vibrations associated with magnetic pulse and (2) the cantilever response is too slow

for transient data collection. An alternative technique is the piezo method, which measures the

change in resistance of a piezoresistive cantilever induced by the magnetic torque. Studies of

the quantum oscillation waveform in the magnetic torque of YBCO6+x were performed at the

NHMFL in Los Alamos. An illustration of the experimental setup for piezo-torque measurement

is shown in Figure 4.12. Commercial piezocantilevers from Seiko Instruments of dimensions 120

µm × 50 µm × 4 µm with a resonance frequency of 250 to 300 kHz are used. The high reso-

nance frequency ensures a fast response of the piezocantilever to the magnetic pulse. A small,

sub-µg sample is mounted onto the measurement cantilever using vacuum grease. A second

cantilever on the platform acts as a reference to eliminate the background signal from the

piezocantilever due to the change in temperature and magnetic field. The change in resistance

of the piezoresistor is measured by a Wheastone bridge with the induced emf signal eliminated

by a compensation coil.

The resistance-torque relationship is approximated by

∆R

R
= πL

6τ

(2a)t2
, (4.10)

where ∆R, πL, a, and t are the change in resistance, piezoresistive coefficient, width, and

thickness of the cantilever, respectively [65]. The resistance through the path is ≈ 700 Ω at

room temperature and ≈ 500 Ω at 4.2 K, which can achieve a sensitivity of 5 × 10−11 emu at

B ≈ 50 T. A drawback of the piezo method is the fragility of the piezocantilever, which can

break under an excessive torque and end the measurement prematurely.
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Figure 4.12: Experimental setup of a piezo-torque measurement. (a)
Schematic diagram of the piezo-torque magnetometry setup taken from [65]. (b)
Picture of a piezocantilever platform with one cantilever mounted with a sample and
a reference cantilever. Picture taken from webpage of the NHMFL in Los Alamos.
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Chapter 5

Fermi surface in SmB6

In this chapter, a comprehensive study of the transport, quantum oscillations, and thermo-

dynamic properties of SmB6 is presented. While the transport measurements revealed the

insulating behaviour persists at magnetic fields up to 45 T, quantum oscillations with a three-

dimensional characteristic are observed in the magnetic torque above 10 T, with an absolute

amplitude consistent with a bulk origin. The surprising observation of de Haas-van Alphen os-

cillations in the Kondo insulating SmB6, taken together with complementary thermodynamic

evidence, points to a new electronic ground state in SmB6 with an in-gap state of itinerant low

energy excitations.

5.1 Electrical transport of SmB6

The formation of a bulk charge gap in SmB6 at low temperature has been verified by a variety of

experimental probes, including optical absorption and conductivity, neutron scattering, specific

heat, and electrical resistivity [66]. The majority of these measurements were performed on

flux-grown crystals; meanwhile, the hallmarks of Kondo insulating behaviour have also been

observed in floating-zone crystals with subtle differences [51, 67]. In this section, the effect of

sample preparation and magnetic field on the transport properties is discussed, revealing that

the insulating behaviour is robust against magnetic field up to the highest available field.

5.1.1 Effects of sample preparation

We first performed resistivity measurements on SmB6 single crystals prepared by different

growth methods and surface treatments to investigate how the sample quality is affected by

preparation technique. Figure 5.1 shows the surface image of crystals prepared by different

techniques. The floating-zone (FZ) crystals were prepared either by cutting with a diamond

wheel (cut), cleaving (CL), or electropolishing (EP). Cutting a floating-zone crystal with a
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diamond wheel introduces severe damage, several microns deep into the sample surface, as

shown in Figure 5.1(a), which can be minimised by cleaving or electropolishing. The surface

of pristine flux-grown crystals, while having high-symmetry crystallographic planes, is rougher

than the electropolished or cleaved floating-zone crystals.

Figure 5.1: Surface image of SmB6 crystals with different surfaces. Surfaces
are prepared by (a) cutting with diamond wheel, (b) cleaving, (c) electropolishing
of floating-zone crystals, (d) a pristine flux-grown crystal. Cleaved or electropolished
floating-zone crystals have surfaces much smoother than that made by cutting wheel.
Flux-grown crystals, while having pristine high-symmetry surfaces, has many partic-
ulates present on the surface.

Figure 5.2 compares the temperature dependence of the longitudinal resistivity ρxx(T ) of the

various SmB6 single crystals shown in Figure 5.1. The resistivity of all samples is seen to diverge

below the Kondo temperature TK of 40 K, which signifies the opening of the hybridisation gap.

The diverging behaviour stops at 4 K when the resistivity starts to reach a plateau. The

plateau itself occurs at varying values, ranging from 5 to 30 Ω·cm, while the resistivity at

300 K only varies within a factor of two. It is known that impurities and defects can give rise

to conducting states within the insulating gap thus reducing the resistivity of an insulator. The
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inverse resistance ratio (IRR), defined as Rxx(2 K)/Rxx(300 K), is thus used as an indicator of

the sample quality. The IRRs of our SmB6 crystals are of the order of 105, higher than many

previous reports [68, 69], indicating an improved sample quality. The IRRs of electropolished

or cleaved floating-zone crystals are typically better than that of cut floating-zone or pristine

flux-grown crystals. It should be noted that the resistivity defined here is a bulk property,

ρxx = Rxx(wt/l), where Rxx is the measured resistance, and l, w, t are the sample length, width,

and thickness, respectively. At 2 K, the electrical transport is dominated by the surface and the

inclusion of t in the calculation is not appropriate to reflect the surface resistivity. Therefore,

we found that the IRR normalised by sample thickness, IRR/t, should be used to assess the

sample quality of SmB6. Having characterised over sixty samples, the crystals with the highest

IRR/t were selected for measurements at high magnetic fields.
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Figure 5.2: Longitudinal electrical resistivity of SmB6 crystals prepared by
different techniques. (a) ρxx(T ) of three floating-zone SmB6 crystals with surfaces
prepared by cutting with diamond wheel (cut), cleaving (CL), and electropolishing
(EP), and one pristine flux-grown crystal. ρxx increases by over five orders of magni-
tude between 300 and 2 K in all samples. Inset: An expanded view at T < 20 K to
illustrate the resistivity plateau below 4 K. (b) Resistance normalised by the value at
300 K of the data shown in (a). At T > 20 K, all traces collapse into a single curve,
indicating a bulk-dominant behaviour independent of surface conditions. The ratios
at 2 K are seen to correlate with the sample surface quality as shown in Figure 5.1.

72



5.1. Electrical transport of SmB6

5.1.2 Effects of magnetic field

We next investigated how the Kondo gap in SmB6 responds to a magnetic field. Figure 5.3 shows

the longitudinal resistance Rxx of an electropolished floating-zone crystal, FZ-EP2, measured

at T < TK in magnetic fields up to 45 T. The temperature dependence of the resistance is

qualitatively the same under different field intensities, with the resistance reducing only slightly

as the magnetic field increases. The reduction is expected for an insulator as the energy gap for

charge transport is reduced via the Zeeman effect. Rxx reduces by 40 Ω with a magnetic field

of 14 T, 2.5% of its zero field value. The sample remains insulating at the highest available

field of 45 T.
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Figure 5.3: Effect of a magnetic field on the longitudinal resistance Rxx.
The temperature dependence of Rxx remains qualitatively the same at varying field
intensities. Inset: expanded view at low temperatures to illustrate the effect of
magnetic field on the resistance plateau. The sample remains insulating at B = 45 T.

The size of the energy gap for charge transport is extracted using the Arrhenius-type equa-

tion:

Rxx = R0e
∆/kBT , (5.1)

where ∆ is the activation energy [70]. Fits made to two SmB6 crystals, one floating-zone and

one flux-grown, are shown in Figure 5.4. The temperature range fitted is between 5 and 15 K,

before the resistance plateaus. The magnetic field has only a minor effect on the slopes and gap

sizes. The extracted ∆ as a function of magnetic field for the two samples is shown in Figure

5.5. At zero magnetic field, ∆ for the floating-zone and flux-grown crystals are 3.8 and 2.9

meV, respectively. ∆ decreases monotonically with magnetic field and is reduced by 21% for

EZ-EP2 at 45 T. Recent measurements on flux-grown SmB6 crystal show ∆ reduced by 50%

at 60 T with the gap estimated to close at ≈ 120 T [70]. The insulating behaviour of SmB6 is

thus found to be robust against magnetic fields of 45 T from electrical transport.
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Figure 5.4: Extraction of energy gap ∆ for charge transport in SmB6. Mea-
surements were performed on (a) an electropolished floating-zone crystal and (b) a
pristine flux-grown crystal at fixed magnetic fields as indicated. Rxx = R0e

∆/kBT is
used for linear fits between T = 5 and 15 K. Data are shifted vertically for clarity.
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Figure 5.5: Transport energy gap ∆ as a function of magnetic field in SmB6.
Good quantitative agreement in the field dependence of ∆ is found between our mea-
surements on the flux-grown crystal and recent measurements reported in [70].
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5.2 Quantum oscillations in SmB6

The theoretical proposal of a topological surface state in SmB6 offers an attractive explanation

for the low temperature resistivity plateau [6] and prompts searches for experimental evidence

of the predicted two-dimensional Fermi surface. Recently, Li et al. have reported quantum

oscillations in magnetic torque measured on flux-grown SmB6 [71] and attributed its origin to

the predicted topological surface states with a two-dimensional Fermi surface. However, the

interpretation requires arbitrary grouping of the observed oscillation frequencies and the large

oscillation amplitude, dominating over the background bulk signal, is difficult to be reconciled

with the surface model. Here, we have measured the magnetic torque in both floating-zone and

flux-grown SmB6 crystals over an extended angular and temperature range, and found that the

observed quantum oscillations are consistent with a three-dimensional Fermi surface geometry

that is shared by the metallic rare-earth hexaborides and a bulk origin, despite the insulating

behaviour in the electrical transport.

5.2.1 de Haas-van Alphen oscillations

Raw data from capacitive torque measurements on an electropolished floating-zone crystal and

a flux-grown SmB6 crystal are shown in Figure 5.6. Measurements were done in magnetic fields

up to 40 T and down to T = 0.4 K, in magnetic fields up to 33.5 T and down to T = 0.04 K,

and in magnetic fields up to 18 T and down to T = 0.018 K. Quantum oscillations periodic

in inverse magnetic field are observed against a quadratic background. Dominant oscillations

with frequency ≈ 410 T can be seen in both samples, with a larger oscillation amplitude in

the flux-grown crystal than the floating-zone crystal. Fast oscillations on top of the dominant

oscillations can be clearly seen above 30 T in the floating-zone crystal, while not prominent

in the flux-grown crystal even at the highest field of 33.5 T before background subtraction.

The components of the oscillatory signals are revealed by taking the Fourier transform of the

quantum oscillations after background subtraction, as shown in Figure 5.7. Frequencies ranging

from 30 T to 16 000 T are observed in both samples, with the frequencies below 1 000 T more

prominent in the flux-grown crystal and the frequencies above 4 000 T more prominent in the

floating-zone crystal. The observation of rapid quantum oscillations with frequencies higher

than 10 kT is surprising. This very high oscillation frequency corresponds to nearly half the

volume of the first Brillouin zone in SmB6 and is typically characteristic of a highly conductive

metal [72], in direct contrast to the insulating behaviour of SmB6.
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Figure 5.6: Quantum oscillations in magnetic torque in SmB6. Measurements
were performed on single crystals grown by the (a) floating-zone and (b) flux method,
with magnetic field lies close to the [100] axis of the crystals. Dominant oscillations
with frequency ≈ 410 T can be seen against a quadratic background in both samples,
with the additional rapid oscillations above 30 T visible in (a). Large-amplitude slow
oscillations with a frequency of 31 T are seen in the flux-grown crystal over the entire
field range.
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Figure 5.7: Analysis of the dHvA oscillations in SmB6. (a, e) Quantum oscilla-
tions in the (a) floating-zone and (e) flux-grown crystals after background subtraction
of a sixth order polynomial over 12 T < B < 40 T and 11 T < B < 33.5 T, respec-
tively. (b, f) Fast Fourier transform (FFT) spectra of dHvA oscillations shown in
(a, e) as a function of inverse magnetic field, revealing the low quantum oscillatory
frequencies ranging from 30 T to 1 000 T. (c, g) Quantum oscillations over the field
range of 38 T < B < 40 T in the floating-zone crystal and 17.5 T < B < 18 T in the
flux-grown crystal, showing the rapid oscillations after background subtraction. (d,
h) FFT spectra of magnetic torque shown in (c, g) revealing the high quantum oscil-
latory frequencies ranging from 2 000 T to 16 000 T. Field ranges for analysis have
been chosen to best capture the observed oscillations, with the highest frequencies
only appearing in the higher field ranges.
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5.2.2 Angular dependence of oscillation frequency

To establish the origin of the observed quantum oscillations, we studied the angular dependence

of the oscillation frequency in detail, covering both the [100]-[111]-[011] rotation plane (denoted

as positive field angle θ) and [100]-[110] rotation plane (denoted as negative θ). Figure 5.8 shows

the fast Fourier transform (FFT) spectrum of the dominant quantum oscillations measured

on two flux-grown SmB6 crystals with magnetic field rotating along different crystallographic

planes. Three peaks are visible in the FFT spectrum at most angles, leading to the well-defined

ρ-branch between 200 T and 1 000 T as shown in Figure 5.9(a). The observation of multiple

FFT peaks over a wide range of angles, with a modest change in frequency, does not support the

model of a two-dimensional Fermi surface confined to the crystal surfaces, for which a diverging

behaviour in oscillation frequency near the [100] or [110] directions is expected. Instead, we

find a strong resemblance in the angular dependence of the oscillation frequencies seen in

insulating SmB6 to those observed in the metallic rare-earth hexaborides (RB6, R = La, Ce,

Pr), as compared in Figure 5.9. The three-dimensional Fermi surface geometry common to the

metallic RB6 family is shown in Figure 5.10, which consists of three large ellipsoidal electron

pockets along the 〈100〉 directions, corresponding to the α-branch with oscillation frequencies ≈
9 kT, and twelve small ellipsoidal electron pockets along the 〈110〉 directions, corresponding to

the ρ-branch with oscillation frequencies between 450 T and 900 T in PrB6 [73]. The ellipsoidal

Fermi pockets can be parameterised by their semi-principal axes ak0, bk0, and ck0, and the

extreme cross-sectional area Fmin. The ρ-pockets are ellipsoids with c > a ≈ b, and the α-

pockets are prolate spheroids with c & a = b. We fitted the observed ρ- and α-branches in

SmB6 using the formulae shown in Appendix A and the fitted parameters are summarised in

Table 5.1. Good agreement is found between the experimental data and the fits for the ρ-

and α-branch. The angular dependence of the oscillations with the lowest frequencies below

200 T construct a branch that is analogous to the ρ’-branch found in PrB6 [73], which can be

reasonably fitted to the ellipsoidal model as shown in Figure 5.11. However, there is a large

error in the frequencies since very few oscillations are observed within the accessed field range

and the branches are not as well-defined as with the ρ-branch.

The fact that the characteristics of the angular dependence of quantum oscillation frequen-

cies in the metallic rare-earth hexaborides are reproduced in the Kondo insulating SmB6 is

striking. This observation suggests that a three-dimensional Fermi surface arises from an in-

sulating bulk, contradictory to the conventional description of a Fermi surface being exclusive

to a metallic ground state. The insulating behaviour at 45 T excludes the possibility of the

quantum oscillations originating from a high-field state in which the charge gap is closed by the

magnetic field. The possibility of spatially disconnected metallic patches in SmB6 that gives

the observed quantum oscillations has been explored. The presence of rare-earth elements other

than Sm has been ruled out to within 0.01% by x-ray spectroscopy.
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5.2. Quantum oscillations in SmB6

Figure 5.8: Angular dependence of the dominant oscillation frequencies in
SmB6. θ denotes the angle of the magnetic field B with respect to the [100] axis.
Measurements are taken on two flux-grown SmB6 crystals. Left: measurements per-
formed with B rotating along the [100]-[111]-[110] plane, denoted as positive θ. Right:
measurements performed with B rotating along the [100]-[110] rotation plane, denoted
as negative θ. Dotted lines are guides to the eye illustrating the ρ-branch shown in
Figure 5.9.
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Figure 5.9: Comparison of the angular dependence of the quantum oscilla-
tion frequencies in insulating SmB6 and metallic PrB6. (a) Angular depen-
dent quantum oscillations measurements in the [100]-[110] rotation plane performed
on two flux-grown crystals (open and solid diamonds), and in the [100]-[111]-[011] ro-
tation plane performed on two floating-zone crystals (open and closed circles) and one
flux-grown crystal (close squares). (b) Angular dependence of quantum oscillations
frequencies in the metallic PrB6 [73]. Strong resemblance is found between (a) and
(b). The α-branch in red is fitted to three large ellipsoidal electron pockets along the
〈100〉 directions and the ρ-branch is fitted to twelve ellipsoidal electron pockets along
the 〈110〉 directions as shown in Figure 5.10.

80



5.2. Quantum oscillations in SmB6

The impact of off-stoichiometry is found to be minimal as atomic emission spectroscopy

shows the bulk B:Sm ratio to be 6.02(3) and x-ray spectroscopy shows a surface Sm homogeneity

within 1% over multiple scans of 500 µm × 500 µm area. The large amplitude of the dominant

oscillations, consistent with the theoretical estimation assuming a contribution from the entire

bulk (see Section 5.2.5), makes the contribution from finite metallic patches undetectable by

chemical analysis unlikely. The identical quantum oscillation frequencies observed in floating-

zone and flux-grown crystals at the same field angle excludes the contribution of aluminium

inclusion pertinent to the flux growth. SmB6 is known to become metallic under applied

pressure of 4 GPa [69]. The fact that the electropolished floating-zone crystals exhibit the

same oscillations as the electropolished and pristine flux-grown crystals shows the quantum

oscillations are intrinsic to SmB6 rather than due to surface effect such as strain. However, we

observed a significant decrease in oscillation amplitude after thermal cycling in all the samples

measured, suggesting the amplitudes of quantum oscillations in SmB6 are sensitive to strain.

The possibility of the quantum oscillations originating from the quantum interference of

electron waves between alternative trajectories of an open orbit [74] is found to be inconsistent

with our observations. Firstly, it is generally understood that such effect would only manifest in

resistivity, but not in thermodynamic properties [45, 75]. Additionally, the oscillation amplitude

due to quantum interference is expected to exhibit a very weak, if any, temperature dependence

[45], in contrast to our temperature-dependent study (see next Section). Lastly, in the scenario

where the largest cyclotron orbits originating from tunnelling through the neighbouring orbits,

the magnetic breakdown field is estimated using

Hbreakdown =
π~
e

(
k3
g

ar + br

)1/2

, (5.2)

where 1/ar and 1/br are the radii of curvature of the two closest Fermi surface sections, and kg

is their separation in reciprocal space [45]. In SmB6, kg ≈ 3.8 nm−1 for the ρ-ellipsoids which

are separated by one quarter of the Brillouin zone, 1/ar = 1/br = 1 nm (see Table 5.1), and

we find Hbreakdown ≈ 11 000 T. This giant breakdown field, well beyond the access field range,

excludes the possibility of a magnetic breakdown occurring in SmB6.
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Figure 5.10: Fermi surface models shared by insulating SmB6 and metallic
rare-earth hexaborides. A density functional theory with a downward shift of the
Fermi energy from its calculated position within the gap is used to yields pocket sizes
similar to that observed in SmB6.
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Figure 5.11: Angular dependence of the lowest dHvA frequencies in SmB6.
Measurements were performed with B rotating along the [100]-[110] plane. Errors
are given by the full width at half maximum of the peaks in the Fourier transform
spectra.

Table 5.1: Parameters of the observed dHvA frequency branches in SmB6.
Quasiparticle effective mass m∗, in units of free electron mass me, are extracted by
fitting the temperature dependence of the oscillation amplitude using the Lifshitz-
Kosevich formula down to 1 K (section 5.3). The relative ratio of the semi-principal
axes of the ellipsoidal Fermi pockets (a, b, and c) are obtained by fitting to the angular
dependence of the quantum oscillation frequencies.

Sheet Fmin(T) m∗/me ak0 (nm−1) b/a c/a

α 7750(90) 0.70(4) 4.85(3) 1 1.36(2)
ρ 309(14) 0.18(1) 1.00(2) 0.94(4) 2.3(1)
ρ′ 31(6) 0.12(1) 0.23(2) 1.2(2) 3.9(5)
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5.2.3 Temperature dependence and effective mass

We next studied the temperature dependence of the observed dHvA oscillations to investigate

the low-energy excitations associated with the Fermi surface observed in SmB6. Figure 5.12

shows the quantum oscillations of the floating-zone crystal, FZ-EP1, measured at selected

temperatures between 0.4 K and 27 K during the same thermal cycle. Prominent oscillations

with a dominant frequency F = 330 T can be observed at all temperatures, while the fast

oscillations with F > 1 000 T are rapidly suppressed above 10 K. The more pronounced

suppression in amplitude of the high-frequency oscillations suggests a higher effective mass m∗

of the associated Fermi pockets. Figure 5.13 shows m∗ as a function of oscillation frequency

observed in SmB6, extracted by fitting the oscillation amplitude as a function of temperature

between 1 K ≤ T ≤ 27 K using the Lifshitz-Kosevich formula of the temperature-damping

factor
AT

T
=

A0

sinhX
, X = 14.69

m∗T

B
, (5.3)

shown in Figure 5.14. We found thatm∗/me observed in SmB6 above 1 K lies in the range of 0.12

to 0.90, a surprising low value considering the Kondo effect would typically give rise to heavy

fermions. However, m∗ as a function of oscillation frequency is found to track closely to that

observed in the metallic hexaborides, especially LaB6, as shown in Figure 5.13, which supports

a common Fermi surface geometry shared by SmB6 and the metallic rare-earth hexaborides.
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Figure 5.12: Temperature dependence of the quantum oscillations in SmB6.
Magnetic torque measured on the floating-zone crystal FZ-EP1 with magnetic field
applied along ≈ [011] (θ = 87◦) at temperatures as indicated. The signals are sub-
tracted with a polynomial background of 8th order. High-frequency oscillations can
be seen at B > 28 T, which are suppressed rapidly with increasing temperature.
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Figure 5.13: Comparison of m∗ in various rare-earth hexaborides. m∗ of
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Pr) are from [76, 77, 78, 79].
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Figure 5.14: Extraction of effective masses m∗ of the observed Fermi pockets
in SmB6. The oscillation amplitude of the frequencies observed at θ = 87◦ plotted
as a function of temperature. Solid lines are fits to the Lifshitz-Kosevich formula
down to ≈ 1 K. The error in the amplitude corresponds to the noise floor of the
Fourier transform. Below 1 K the oscillation amplitude is considerably higher than
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5.2.4 Non-Lifshitz Kosevich behaviour

Given the lightness of the observed m∗, the quantum oscillation amplitude is expected to sat-

urate as temperature decreases below 1 K. However, an unexpected increase in the oscillation

amplitude is observed below 1 K across most frequencies, as shown in Figures 5.12 and 5.14,

suggesting a deviation from the Lifshitz-Kosevich description. The Lifshitz-Kosevich formalism

has been known to be very robust in most strongly correlated electronic systems, most notably

the cuprate and heavy fermion superconductors [80, 81]. The departure from the Lifshitz-

Kosevich formula indicates the unconventional character of the Fermi surface in SmB6. The

increase in oscillation amplitude below 1 K is further investigated by extending the measure-

ment temperature range down to ≈ 30 mK. Figure 5.15 shows the amplitude of the dominant F

= 330 T oscillations as a function of temperature measured on two floating-zone SmB6 crystals.

In both samples the oscillation amplitude exhibits a steep upturn as the temperature decreases

from 1 K and shows no sign of saturation down to 33 mK. In contrast, the upturn in the oscil-

lation amplitudes of the same frequency is absent in the flux-grown crystals. This observation

further illustrates the subtle difference between the two types of SmB6 crystals. Such diverging

behaviour is often associated with quantum criticality, and possibly points to the floating-zone

crystals being in close proximity to a postulated quantum critical point, potentially associated

with the pressure-induced insulator-metal transition [69].
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Figure 5.15: Departure from the Lifshitz-Kosevich behaviour in SmB6. (a)
Fourier transform of the dominant oscillation frequency F = 330 T in two floating-
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as indicated. (b) Amplitude of the F = 330 T oscillations in floating-zone crystals
(open and close circles) shows a steep upturn deviating from the Lifshitz-Kosevich fit
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5.2.5 Evidence of a bulk origin

The surprising observation of quantum oscillations originating from the insulating bulk of SmB6

is further supported by comparing the experimental oscillation amplitude with theoretical cal-

culations. Figure 5.16 compares the amplitudes of quantum oscillations with the lowest fre-

quencies measured in the metallic LaB6 and insulating SmB6, with the theoretical calculations

assuming either a bulk or surface origin. The lowest frequency oscillations are chosen since they

are closest to the zero phase, infinite field limit. The LaB6 and SmB6 measurements are per-

formed using an identical setup, and the measured capacitance ∆C is converted into magnetic

moment using

∆ps =
d0Lka

3

s3µBB sin θM

∆C

C0

(5.4)

as derived in Section 4.3, where ps = m(a3/s3)/µB is the magnetic moment in units of Bohr

magneton per unit cell, θM is the angle between the magnetic field B and the total magnetic

moment, and s3 is the sample volume. Using the experimental parameters of d0 = 0.1 (0.1)

mm, L = 3.8 (3.8) mm, k = 17 (28) N·m−1, a = 0.413 (0.416) nm, and s3 = 0.16 (0.25) mm3

for the LaB6 (SmB6) crystal, the quantum oscillation amplitudes are estimated to be ≈ 1.3·10−5

sin θM

for LaB6 at 9 T and ≈ 1.1·10−5

sin θM
for SmB6 at 18 T.

The infinite field, zero spin-splitting amplitude in the oscillatory magnetisation M assuming

a bulk origin in the Lifshitz-Kosevich theory is given by

D = −µBS
3/2
k0 me

2π4m∗

√
B

F |A′′|
, (5.5)

where Sk0 is the Fermi surface area normal to the magnetic field, m∗ is the effective mass in

absolute units, F is the oscillation frequency, and |A′′| is the second derivative of the Fermi

surface area with respect to the effective wave vector along B [45]. We define the magnetic

moment per unit cell in units of Bohr magnetons as Dv/µB, where v = a3 is the volume of the

unit cell, and the theoretical amplitude in the infinite field, zero spin-splitting limit becomes

ps =
|D|v
µB

=

√
2π

|A′′|
me

m∗

(akF

π

)3
√

B

8F
, (5.6)

where we define the effective Fermi wavevector kF via Sk0 = πk2
F. The anisotropy term,√

2π/|A′′|, is dependent on the eccentricity r of the ellipsoidal Fermi surface, and hereafter

will be written as f(r).

A comparison of the measurements with the expected theoretical amplitudes for oscillations

from the bulk is shown in Figure 5.16(a,b). For LaB6, using the experimentally measured values

of F = 5.9 T, m∗/me = 0.05, a = 0.416 nm, and considering the damping terms RD = exp(-1
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T/B), RS = 0.5 − 1, an estimated f(r) ≈ 1 − 2, and a degeneracy factor of 2, we find the

theoretical amplitude of the F = 5.9 T oscillations to be of the order ≈ 10−4 µB per unit cell at

B = 6.2 T. This calculated amplitude is consistent with the measured value within an order of

magnitude, since sin θM is of the order 0.1 to 1. Similarly for SmB6, using the experimentally

measured values of F = 31 T, m∗/me = 0.12, a = 0.413 nm, and RD = exp(-30 T/B), and an

estimated f(r) ≈ 1− 2, RS = 0.5− 1, and a degeneracy factor of 2− 8, we find the theoretical

amplitude is of the order≈ 10−5−10−4 µB per unit cell at B = 16.7 T. This calculated amplitude

is again consistent with the measured value within an order of magnitude.
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Figure 5.16: Comparison of the observed quantum oscillations to theoretical
values assuming a 3D and 2D Fermi surface model. (a, b) Amplitude of the
lowest frequency quantum oscillations in units of µB ·B per unit cell assuming a bulk
origin measured using the same setup in (a) metallic LaB6 and (b) insulating SmB6.
The theoretical estimates using the Lifshitz-Kosevich formalism and assuming that the
quantum oscillations originate from the bulk using the Lifshitz-Kosevich formulation
are shown in grey dashed lines. (c) Amplitude of the dominant quantum oscillations
in SmB6 assuming a bulk origin. The lowest frequency oscillations are subtracted
away. (d) Amplitude of the lowest frequency quantum oscillations in SmB6 assuming
a surface origin with the same data shown in (b). Experimental amplitude is at least
an order of magnitude larger than the theoretical values assuming a surface origin.
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A theoretical estimation of the quantum oscillation amplitude is made for the dominant

quantum oscillations with F = 410 T in SmB6, using m∗/me = 0.18, RD = exp(-51 T/B), and

similar estimates for f(r), RS, and degeneracy factor, as previously discussed. This calculated

amplitude is again found to be consistent with the measurement within an order of magnitude,

as shown in Figure 5.16(c).

In the two-dimensional limit, the carrier density per unit surface area is given by

n =
2

(2π)2
πk2

F, (5.7)

including a factor of 2 for spin degeneracy. For the lowest observed quantum oscillation fre-

quency of F = 31 T, we find n = 1.5×1016 m−2. We define the magnetic moment per unit cell in

units of Bohr magneton, which yields the peak amplitude in the infinite field, zero spin-splitting

limit given by

ps = na2 2me

πm∗
=

4me

m∗
( kF

kBZ

)2
, (5.8)

where kBZ = 2π/a. Using the measured parameters for the F = 31 T oscillations in SmB6, we

find the theoretical maximum value of the peak amplitude to be ≈ 10−2 µB per surface unit

cell before considering the damping terms RD and RS, which would reduce the theoretically

predicted value to ≈ 10−3 µB per surface unit cell at B = 18 T. Considering the ratio of surface

unit cells to all unit cells of ≈ 10−6, calculated using the sample dimensions, the magnetic

moment is at least ≈ 10 µB per surface unit cell at B = 18 T (Figure 5.16(d)), without

accounting for the orientation of the magnetic moment sin θM that would further increase ps.

This magnetic moment associated per surface unit cell is an unphysically large value for the

non-magnetic SmB6 and several orders of magnitude larger than the theoretical calculation.

The quantum oscillations associated with a surface origin is thus not supported.

The absence of quantum oscillations in the resistivity of SmB6 in magnetic fields up to

93 T [70], and the presence of large bulk quantum oscillations in the torque magnetisation from

magnetic fields as low as 10 T is striking. One possibility to resolve the different responses

of SmB6 to magnetic field in electrical transport and in magnetisation is to invoke a neutral

low-energy itinerant excitation within the charge Kondo gap. Such itinerant neutral low-energy

excitations could exhibit quantum oscillations by Landau quantisation of the density of states

within the charge gap. Experimental evidence from specific heat and thermal conductivity

supporting this scenario is presented in the following section.
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5.3 Evidence of neutral itinerant in-gap excitations

The measurements described in this section were performed in collaboration. The specific heat

measurements were performed by A. Padgett and Y. Yakano at the University of Florida, and

S. Yamashita from Osaka University. The thermal conductivity measurements were performed

by W. Toews and R. Hill from the University of Waterloo, and X. Chen and M. Sutherland

from the University of Cambridge.

5.3.1 Specific heat

The available electronic density of states near the Fermi level contributes directly to the specific

heat of a material, making it a direct probe of low-energy excitations within the charge gap at

the Fermi energy EF. The specific heat of a solid can be expressed as

CV =
π2

2
NkB

kBT

EF

+
12π4

5

kB

a3

( T

ΘD

)3

= γT + AT 3,

(5.9)

where N is the number of electrons, a is the lattice constant, and ΘD is the Debye temperature.

Since the compressibility of a solid is negligible, CV ≈ CP under experimental conditions.

The T -linear term is the electronic contribution with the proportionality factor γ, known as

the Sommerfeld coefficient, and the T 3-term is the phonon contribution. CP/T is expected

to vanish at zero temperature for an insulator while a residual term is expected for a metal

due to the finite electronic contribution. Figure 5.17 shows the specific heat and Sommerfeld

coefficient of a floating-zone SmB6 crystal measured between 0.06 K and 10 K. The phonon

contribution is calculated using ΘD = 373 K [82]. A finite γ is observed down to the lowest

temperature, in contrast to what is expected for an insulator.

Known effects that can contribute to a finite specific heat, such as the electronic and nuclear

Schottky anomaly, are found to be insufficient to account for the observed γ within the probed

temperature range. The electronic Schottky anomaly, due to the opening of a charge gap, is

known to occur in SmB6 at T ≈ 40 K with an estimated ∆ ≈ 10 meV [83], in good agreement

with the transport measurements. The nuclear contribution due to splitting of the nuclear

energy levels, by either an effective magnetic field (from electron orbital motion) or an electric

field gradient (acting on nuclear quadrupole moment), are found to be negligible. A finite

time-average of the effective magnetic field is required for an observable nuclear contribution

to specific heat. The absence of a static magnetic order in SmB6 down to 19 mK [84] excludes

of a magnetic origin of the measured γ down to 63 mK. The nuclear quadrupole contribution is

estimated to be ≈ 0.02 mJ·mol−1·K−2, two orders of magnitudes smaller than the observed γ

[85]. Rather, this observation of a finite γ down to the lowest temperature suggests that a size-
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able additional density of states emerges at low temperatures, consistent with the observation

of quantum oscillations due to the Landau quantisation of the density of states.
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Figure 5.17: Sommerfeld coefficient γ of floating-zone SmB6 at zero magnetic
field. Measurements were performed on an electropolished floating-zone crystal, FZ-
HC1, down to 63 mK. A finite γ at low temperatures is found, unexpected for an
insulator. Inset: the measured total specific heat and calculated phonon contribution
using the Debye temperature ΘD of 373 K [82].

We calculate γ using the three-dimensional Fermi surface model obtained from the quantum

oscillations, and find a good quantitative agreement with that observed in the specific heat

measurement. Within conventional Fermi liquid theory [86], the linear specific heat coefficient

γ is related to the density of states at the Fermi energy, D(EF), by

D(EF) =
3γ

π2k2
B

(5.10)

=
1

4π3~

∫
S

dS

|v∗|
, (5.11)

where v∗ is the quasiparticle velocity and S is the Fermi surface in k-space. We parameterise

the Fermi surface of SmB6 using

EF =
~k2

x

2a2m∗
+

~k2
y

2b2m∗
+

~k2
z

2c2m∗
, (5.12)

where a, b, and c are the relative ratios of the semi-principal axes for the ellipsoidal Fermi

pockets. Using kx = ak0 cosφ sin θ, ky = bk0 cosφ cos θ, and kz = ck0 sinφ, the area element dS
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5.3. Evidence of neutral itinerant in-gap excitations

and quasiparticle velocity v∗ are given by

dS = k0 cosφ
√
a2b2 sin2 θ + c2 cos2 φ(a2 sin2 θ + b2 cos2 θ)dφdθ, (5.13)

|v∗| = |1/(~k0)∇kEF| =
~k0

abcm∗

√
a2b2 sin2 φ+ c2 cos2 φ(b2 sin2 θ + a2 cos2 θ). (5.14)

Using the fitted parameters for a, b, c, and m∗, as summarised in Table 5.1, and integrating

over φ = (−π/2, π/2) and θ = (0, 2π), γ is found to be 4(1) mJ·mol−1· K−2 from the quantum

oscillation measurements, with the large α sheet contributing 3 mJ·mol−1· K−2. This calculated

γ is found to agree quantitatively with γ = 4(2) mJ·mol−1· K−2 observed in the specific heat

measurements at ≈ 4 K, before the further increase in γ occurs and the conventional Fermi

liquid picture no longer applies. A common origin of in-gap low-energy excitations is indicated

from the agreement between the specific heat and quantum oscillation measurements.

A distinction between the SmB6 grown by the floating zone and flux methods is observed,

as shown in Figure 5.18. The behaviour of CP/T as a function of temperature is qualitatively

similar down to 1 K between the floating-zone and flux-grown crystals, with the latter showing

a higher CP/T . Upon cooling below 1 K, a further increase in CP/T is observed in the floating-

zone crystals while absent in flux-grown crystal. The steep increase in γ at low temperatures

resembles the increase of quantum oscillations amplitude in the floating-zone crystals as shown

in Figure 5.15, potentially a characteristic of proximity to a quantum critical point.
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Figure 5.18: Measured specific heat of three SmB6 crystals grown by the
floating zone and flux methods at zero magnetic field. A finite specific heat
at low temperature is observed in all samples. A further increase in CP/T below 1 K
is observed in floating-zone crystals but is absent in flux-grown crystal.
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5.3.2 Thermal conductivity

A complementary technique to probe the itinerant excitations at EF is the thermal conductivity

measurement at low temperature where the electronic contribution is isolated. The thermal

conductivity κ of a solid can be expressed as

κ =
1

6
nπ2kB

2 T

EF

vF
2τ +

4π2

5

kB

a3
dvs

(
T

ΘD

)3

= βT + αT 3,

(5.15)

where n is the electron density, τ is the carrier lifetime, a is the cubic lattice constant, and vs

is the sound velocity. It can be rewritten as

κ/T = β + αT 2, (5.16)

where β is the electronic contribution and αT 2 is the phonon contribution. At zero temperature

when the phonon contribution vanishes, β is expected to vanish for an insulator while remain

finite for a metal.

Figure 5.19 shows the thermal conductivity measured on a floating-zone SmB6 crystal down

to 150 mK, plotted as a function of T 2. At zero magnetic field, the temperature dependence of

κ/T is well modelled with a phonon contribution calculated using sample dimensions and ΘD

= 373 K, as shown in Figure 5.19(a). The peak in κ with decreasing temperature indicates the

phonon contribution transitions from being limited by the mean free path at higher tempera-

tures (due to phonon-phonon scattering) to being limited by the number of active phonons at

lower temperatures (while the mean free path is limited by sample dimensions) [87]. The fact

that the low-temperature phonon contribution is limited by sample boundary reflects the high

sample quality in our study. Surprisingly, κ/T is enhanced significantly with an application

of magnetic field, in contrast to what is expected for an insulator. This additional κ/T arises

from a phonon contribution is unlikely as the boundary-limit has already been reached. The

electronic contribution of κ/T after subtracting the phonon contribution is highlighted in Fig-

ure 5.19(b). The expected contribution from the conducting surface layer is calculated using

the Wiedemann-Franz relation:
κ

σ
= L0T, (5.17)

where L0 is the Lorenz number = 2.44 × 10−8 W·Ω·K−2. The expected surface contribution

is found to be 3×10−6 W·m−1·K−2, four orders of magnitudes lower than the measurement,

excluding the possibility of a surface origin of the field-enhanced thermal conductivity.

93



5.3. Evidence of neutral itinerant in-gap excitations

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5
0 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 1 0 2 0 3 0 4 00
2 0
4 0
6 0
8 0

� p h

5  T

0  T

1 2  T

�/T
��

�
��

-1 ��
-2 )

T 2  ( K 2 )

a
F Z - κ1

L 0 T / � ( T )

b

5  T

0  T

1 2  T
(��

� p
h)/T

��
�

��
-1 ��

-2 )

T 2  ( K 2 )

F Z - κ1

��
��

��
-1 ��

-1 )

T  ( K )

Figure 5.19: Thermal conductivity of SmB6 at fixed magnetic fields. (a)
Measured κ/T as a function of T 2 of a floating-zone crystal, FZ-κ1, down to 150 mK.
The phonon contribution κph is calculated using ΘD = 373 K [82]. Good agreement
is found between the measured κ at zero magnetic field and calculated κph.A signif-
icant enhancement in κ/T is found with increased magnetic field, unexpected for an
insulator. Inset: Measured κ up to 40 K at zero magnetic field. The peak at ≈ 10
K signifies the phonon mean free path is limited by sample dimensions [87]. (b) κ/T
after subtraction of the phonon contribution κph. The red line shows the expectation
from the Wiedemann-Franz relation using the resistivity at zero magnetic field.
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We estimate the carrier mean free path, l, from the measured thermal conductivity and find

good agreement with that inferred from the quantum oscillations. For a spinon Fermi surface

with gapless excitations, κ is related to the scattering time τ by

κ

T
=

k2
Bτ

m∗a3
, (5.18)

where a is the lattice constant and τ = l
vF

, where vF is the Fermi velocity [88]. Using the

relation m∗vF = ~kF, one finds

l =
κ

T

~kFa
3

k2
B

, (5.19)

where kF =
√

2eF/~ = 5.8 × 109 m−1 for the 11 kT α-pocket in SmB6, and a = 4.13 Å.

The large α-pocket is used since it contributes the most to the density of states at EF and

thus to the thermal conductivity. At temperature ≈ 0.2 K and magnetic field ≈ 12 T, we

find κ/T = 0.04 W·m−1·K−2 and l ≈ 10−8 m. The mean free path obtained from quantum

oscillations is calculated using

l =
π~kF

eB0

, (5.20)

with the exponential damping term B0 found to be ≈ 200 T for the 11 kT α-pocket in the

floating-zone crystal. l is found to be ≈ 5×10−8 m from quantum oscillations, which agrees

with that estimated from thermal conductivity within one order of magnitude. The agreement

between the thermal conductivity and quantum oscillation measurements points to a common

bulk origin of the itinerant neutral carriers.

Recent studies have reported a significant field-enhancement in κ/T in the floating-zone

SmB6 crystals and a less-pronounced enhancement in the flux-grown crystals [89, 90], similar

to our observations. The absence of a neutral fermionic excitation, however, was concluded

based on the extrapolation of κ/T → 0 as T → 0 in their measurements down to 70 mK,

with the field-enhancement interpreted as an increased phonon contribution due to a scattering

mechanism suppressed by magnetic field. We note that thermal conductivity measurements

in the insulating SmB6 are challenging due to the large contact resistances at very low tem-

peratures. Known effects such as a long thermal equilibrium time and the phono-electron

thermal decoupling [91] can lead to experimental uncertainties, hence we are careful to only

report results within the low temperature limit where the κ/T can be reliably measured. The

interpretation of the field-enhancement due to an increased phonon contribution appears to

be inconsistent with our results as the phonon contribution has reached the boundary limit at

zero field (see Figure 5.19(a)), which cannot further increase in a magnetic field. We note that

the observation in [89, 90] of a non-boundary limited phonon contribution is possbly due to a

difference in sample quality, as evidenced by the lower IRR in [89] and a lower height of the

phonon κ(T ) peak at high temperature [90].
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Intriguingly, the field enhancement of the thermal conductivity of SmB6 in a magnetic

field is reminiscent of what has been observed in the Mott insulating organic systems EtMe3Sb-

[Pd(dmit)2]2 and κ-(BEDT-TTF)2Cu2(CN)3 [92, 93]. Figure 5.20 shows the field dependence of

the thermal conductivity enhancement expressed as κ(B)/κ(0) at T ≈ 0.3 K in SmB6 and in the

organic compounds, which are thought to be spin liquid candidates with neutral quasiparticles

within the charge gap. The remarkable similarity of the field-enhanced thermal conductivity

observed in SmB6 and the spin liquid candidates suggests the presence of in-gap itinerant

neutral low-energy excitations at low temperatures in SmB6.
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Figure 5.20: Field dependence of field-induced enhancement in thermal con-
ductivity κ(B)/κ(0) in SmB6 and insulating spin liquid candidates. (a) Mea-
surements from two floating-zone and one flux-grown SmB6 crystals. (b) Data in the
organic spin liquid candidates at low temperatures reproduced from [92, 93]. Large
increase in κ(B)/κ(0) in magnetic field is seen in two floating-zone SmB6 crystals with
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in the flux-grown SmB6 is observed, in contrast to what is seen in the floating-zone
crystals.
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5.4 Proposals for the electronic ground state in SmB6

The observation of dHvA oscillations with three-dimensional characteristics in the Kondo in-

sulating SmB6 is striking. The collective experimental evidence of (i) an electrically insulating

behaviour at high magnetic field, (ii) a large quantum oscillation amplitude consistent with

theoretical calculations assuming a bulk origin, (iii) a finite linear specific heat at low tem-

peratures, and (iv) an electronic thermal conductivity enhanced in a magnetic field at low

temperatures points to additional fermionic density of states emerging from the charge gap.

This in-gap state is found to have charge-neutral and itinerant low-energy excitations that do

not carry electrical charge but carry heat.

Known systems that exhibit key experimental observations similar to SmB6 are the organic

quantum spin liquid (QSL) materials EtMe3Sb[Pd(dmit)2]2 and κ-(BEDT-TTF)2Cu2(CN)3 [92,

93]. These QSL candidates have been associated with a theoretical model of novel neutral low-

energy excitations, known as spinons, which carry energy but not charge. However, no quantum

oscillations have been reported to date in the QSLs. A possible explanation of the absence of

quantum oscillations is the large size of the charge gap ≈ 50 meV in the QSLs, an order of

magnitude higher than ≈ 4 meV in SmB6. In addition, the linear specific heat coefficients at low

temperature are ≈ 30 mJ·K−2· mol−1, again an order of magnitude higher than that in SmB6.

These observations implies the quasiparticle effective mass is much larger in the QSLs, making

the observation of quantum oscillations more challenging. A caveat in associating SmB6 with

the QSLs is the different nature of the insulating gaps between these two systems. In the QSLs,

the insulating behaviour is due to the Mott interaction in the 2D building blocks, in contrast

to the Kondo gap formed by the hybridisation between the f - and d-electrons in cubic SmB6.

The theoretical framework to describe spinons in a QSL requires the virtual charge fluctuations

in the 2D geometry [94], while it is not immediately clear how charge fluctuation is facilitated

in a 3D lattice.

A viable theoretical model to describe the electronic ground state in SmB6 must account for

all the experimental observations. The model that invokes inter-band tunnelling to explain the

occurrence of quantum oscillations in an insulating state [95] appears to be at odds with the

thermodynamic evidence which indicates the existence of a substantial density of states within

the Kondo gap. Alternative proposals that invoke low-energy excitations within the charge gap

have been presented, including spinons [94], magnetic excitons [96], composite excitons [97], and

Majorana fermions [98]. However, these models are based on the framework of conventional

Fermi liquid in which novel excitations are invoked to construct a neutral quasiparticle. A

central challenge in the aforementioned models would be how to reconcile the different responses

of the quasiparticles to electric and magnetic fields. From the Maxwell formulation, a particle

that responds to the magnetic field must also respond to the electric field due to gauge invariance

of the vector potential. Unless the gauge invariance is locally broken. A proposal that SmB6
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is a ’failed’ superconductor has been presented [99], with sub-Kelvin Tc and sub-Gauss Hc,

making the experimental verification challenging. An outstanding possibility is to discard the

conventional description of a Fermi liquid, which has shown some of its limitations in the last

two decades, and explore a new route to the realisation of Fermi surface in the absence of a

Fermi liquid [100].
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Chapter 6

Fermi surface in YBCO6+x

The correct description of the mysterious pseudogap regime is crucial towards a better under-

standing of the high-Tc cuprates. The origin of the small nodal Fermi arcs accompanied by

large antinodal gaps, in stark contrast to the starting large paramagnetic Fermi surface cal-

culated from band structure and observed in overdoped cuprates [21], and the description of

the low-temperature ground state in underdoped cuprates has remained unclear [38, 101]. In

this chapter, results of transport and magnetisation measurements on YBCO6+x over a wide

range of temperature, electrical current, doping, and magnetic field are presented. We unveiled

a hidden vortex solid state that constitutes the ground state of the pseudogap regime in un-

derdoped YBCO6+x at millikelvin temperatures, resilient to magnetic field but fragile against

thermal or electrical perturbations. A surprising coexistence of superconductivity and quantum

oscillations, with signatures of a nodal Fermi pocket formed by connecting the truncated Fermi

arcs, is thus found. This field-resilient vortex solid state at low temperature evolves to a state

with pairing correlations up to T ∗, suggesting a large pairing energy scale but suppressed phase

coherence in the underdoped YBCO6+x.

6.1 Hidden vortex solid state in underdoped YBCO6+x

Since YBCO6+x is a high-Tc superconductor, previous efforts on studying the underlying elec-

trical transport properties by suppressing superconductivity with magnetic fields have been

made primarily in pulsed fields, for the higher available magnetic fields, meanwhile it limits the

lowest accessible temperature to ≈ 1.5 K and requires the use of a high measurement current

on the order of 10 mA for satisfactory signal-to-noise. By performing electrical transport mea-

surements in continuous fields down to millikelvin temperature and using a vanishingly small

applied current, on the order of 10 µA, we found a dramatic dependence of the onset magnetic

field of finite resistivity on the applied current density, and revealed a previously hidden vortex

state in underdoped YBCO6+x which persists to the highest accessible field of 45 T.
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6.1. Hidden vortex solid state in underdoped YBCO6+x

6.1.1 Onset magnetic field of finite resistivity

We first performed electrical resistivity measurements on YBCO6.55, with a hole doping p =

0.108, where quantum oscillations and transport properties have been intensively investigated

[38, 102]. Figure 6.1 shows the in-plane resistivity and magnetic torque measured as a function

of magnetic field on two YBCO6.55 samples, with an applied current I of 1 mA along the crys-

talline â-axis and magnetic field along the crystalline ĉ-axis. Experimental setups are shown

in Figures 3.9 and 4.9, respectively. The same configuration is used hereinafter unless stated

otherwise. The onset magnetic field of finite resistivity, µ0Hr, defined as the magnetic field at

which the resistivity exceeds the noise level, is seen to increase quickly with decreasing temper-

ature and exceeds 35 T at 1.2 K in both YBCO6.55 samples. This observation is complemented

by the hysteresis observed in magnetic torque upon sweeping the magnetic field in different

directions, which signifies the trapping of vortices in a superconductor.
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Figure 6.1: Superconductivity in YBCO6.55 revealed by electrical resistivity
and torque magnetometry. (a, b) In-plane resistivity ρxx as a function of magnetic
field measured on two samples using an electrical current of 1 mA at temperatures as
indicated. The magnetic field and electrical currents were applied along the ĉ- and
â-axis of the sample, respectively. The samples remain superconducting above 30 T
at T ≤ 2.3 K. (c) Capacitive torque measurements on sample 2, after subtraction
of normal state background measured at 83 K. Black arrows indicate the direction
in which the field is swept. Inset: Magnified view at µ0H > 27 T to highlight the
persistence of the hysteresis between the up- and down-sweep at T ≤ 2.3 K, consistent
with the observation in (a, b).
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To further investigate the persistence of superconductivity at low temperature, we expanded

the experimental parameters of temperature, magnetic field, and electrical current to the range

that was previously unexplored. Measurements were performed on three underdoped YBCO6+x

samples with p = 0.108, 0.116, and 0.132, the doping range that has been previously reported to

have the lowest µ0Hc2 [102]. Figure 6.2 shows the low-field magnetisation of the three samples,

which shows sharp transitions in temperature and a high sample homogeneity.

4 0 5 0 6 0 7 0 8 0 9 0
- 1 . 0

- 0 . 5

0 . 0

( 1 . 4  K )( 1 . 0  K )
7 5 . 1  K6 3 . 6  KT c  =  6 0 . 9  K

( ∆ T c  =  0 . 9  K )4π
� 

(a.
 u.

)

T  ( K )

 0 . 1 0 8
 0 . 1 1 6
 0 . 1 3 2

d o p i n g  ( p )

Figure 6.2: Superconducting transitions characterised by low-field magnetic
susceptibility. Magnetisations were measured by a superconducting quantum infer-
ence device at µ0H = 0.2 mT. Tc is defined by the midpoint of the transition (i.e.
4πχ = −0.5) and transition width (∆Tc) is defined by the difference in temperatures
corresponding to 10% and 90% of total magnetisation (i.e. 4πχ = −0.1 and -0.9).

Figure 6.3 shows the resistivity as a function of magnetic field measured at fixed temper-

atures and applied currents on underdoped YBCO6+x samples. At 10 K, the onset of finite

resistivity is independent of the applied current for all samples, as expected for an ohmic

conductor. However, upon decreasing temperature, µ0Hr becomes increasingly dependent on

applied current, which shows a dramatic increase from ≈ 33 T to ≈ 42 T by reducing the

applied current from 5 mA to 10 µA at 0.44 K, as shown in Figure 6.3(b). At 40 mK, all

samples remain superconducting at the highest magnetic field of 45 T when a current < 10 µA

is applied, corresponding to a current density ≈ 0.10 mA·cm−2, three orders of magnitude lower

than that used in previous pulsed field measurements. The possibility of the current depen-

dence of µ0Hr caused by Ohmic heating is excluded down to 0.44 K, since the cooling power

≈ 100 µW of a He-3 refrigerator is much larger than the dissipation power of ≈ 25 µW using

a current of 5 mA, considering the contact resistance ≈ 1 Ω in our samples. The substantially

lower cooling power of a dilution refrigerator, on the order of 1− 10 µW at 40 mK, requires an

applied current below 1 mA to be used.
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Figure 6.3: In-plane resistivity of underdoped YBCO6+x as a function of
magnetic field, temperature, and applied electrical currents. Measurements
were performed on samples with doping levels p of (a-d) 0.108, (e-g) 0.116, and (h-
k) 0.132 using electrical currents as indicated. Arrows indicate the onset magnetic
field of finite resistivity at the low current density limit, µ0Hr(j → 0). Temperature
readings recorded by the thermometer are used, which accurately reflect the sample
temperature down to 0.44 K. At 40 mK, significant self-heating occurs through ohmic
dissipation when I > 300 µA is used hence are not shown. The gaps between the traces
measured at different applied currents become widened with decreasing temperature.
Here an applied current I = 1 mA corresponds to a current density j ≈ 5 A·cm−2.
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6.1. Hidden vortex solid state in underdoped YBCO6+x

The extracted dependence of µ0Hr on the applied current is shown in Figure 6.4. A steeper

increase in µ0Hr with decreasing temperature is seen with a lower measurement current. The

irreversibility field (µ0Hirr) corresponding to the closure of the hysteresis loop in magnetic

torque is shown for p = 0.108, which tracks closely to µ0Hr at the lowest applied current,

suggesting its correspondence to µ0Hr(j → 0).
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between µ0Hirr and µ0Hr is seen at the lowest applied current density, indicating the
presence of bulk superconductivity below µ0Hr(j → 0).
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6.1. Hidden vortex solid state in underdoped YBCO6+x

6.1.2 Evidence of bulk superconductivity

We examined the possibility of surface-induced superconductivity in our measurements and

found evidence supporting the bulk nature of the observed superconductivity rather than a

surface effect. Firstly, the homogeneity of the measured samples is evidenced by the narrow

transition width of ≈ 1 K in magnetisation measured at 0.2 mT, as shown in Figure 6.2, and

prominent quantum oscillations (see next section), arguing against the sensitivity of µ0Hr due

to sample inhomogeneity.

Secondly, the bulk nature of the observed superconductivity is evidenced by the sharp tran-

sition from a resistive to zero-resistivity state in a magnetic field, as shown in Figure 6.5. A

sharp transition is observed when a low measurement current is used, with a transition width

comparable to that observed from the low-field magnetisation. The superconducting state ex-

hibits a zero resistivity, rather than a reduced but finite resistivity, arguing against a filamentary

superconductivity with a small volume contribution.
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Figure 6.5: Electrical resistivity of YBCO6.55 as a function of temperature
and electrical current at fixed magnetic field. (a) In-plane resistivity ρxx tran-
sition into the zero resistivity superconducting state for p = 0.108 at magnetic fields
and currents as indicated. The corresponding current densities are ≈ 25, 15 and
0.15 A·cm−2, respectively. The width of the transition is similarly narrow to that
observed at zero magnetic fields. (b) In-plane resistivity ρxx as a function of applied
current at fixed magnetic field of 44 T, measured at temperatures as indicated. The
measured resistivity is strongly dependent on the applied current, indicating a vortex
liquid state with non-ohmic behaviour.
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6.1. Hidden vortex solid state in underdoped YBCO6+x

Furthermore, if the observed high µ0Hr at low temperature originates from a filamentary

inclusion of superconducting volume with near-optimal doping, a high Tc and jc are expected.

Instead, we observed a very low Tc and jc accompanied by a high µ0Hr. The observation that

µ0Hr and Tc evolve with doping, as shown in Figures 6.4 and 6.7, further argues against the

observation due to filamentary superconductivity.

Lastly, we calculated the critical density, jc, from the hysteresis loop and found a good

agreement with that inferred from resistivity measurement, as shown in Figure 6.6. jc is

calculated using the Bean model, which assumes a bulk contribution of vortex pinning in a type-

II superconductor [104]. For strong pinning of individual vortices, assuming a slab geometry

with magnetic field perpendicular to the dominant surface, jc is given by

jc = 3
∆M

πD
, (6.1)

where ∆M is the size of the hysteresis loop and D is the sample thickness [104]. For weak

pinning of collective vortices, jc is given by

jc = 20
∆M

r
, (6.2)

where r = a/(1 − a/3b) and a, b are the long and short sample dimensions perpendicular to

the magnetic field, respectively [105]. jc inferred from the two measurements agree within one

order of magnitude, indicating the bulk nature of the observed superconductivity.
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Figure 6.6: Comparison of the critical current density inferred from resis-
tivity and magnetic hysteresis. In-plane resistivity and magnetic torque mea-
surements were performed on the same YBCO6.55 sample at 40 mK. jc inferred from
magnetic hysteresis, assuming individual and collective pinning of vortices are shown
in red and black, respectively. Inset: Raw capacitive torque data with arrows indi-
cating the direction at which the magnetic field is swept.
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6.1. Hidden vortex solid state in underdoped YBCO6+x

6.1.3 Phase boundary of vortex solid

Our finding of the resistivity onset dependent on applied current indicates the vortex solid

regime at low temperatures can only be accessed using a vanishingly small electrical current

density. Figure 6.7 shows the temperature dependence of µ0Hr at the low current density limit,

reflecting the true boundary of the vortex solid state. µ0Hr above 10 K were measured using

I = 10 mA in pulsed field, when µ0Hr is independent of applied current density. Below 10 K,

µ0Hr(j → 0) is seen to deviate strongly from the extrapolation made from high temperatures

and show no sign of saturation up to the highest accessible field of 45 T. This previously hid-

den vortex solid state indicates the superconductivity in underdoped YBCO6+x is surprisingly

resilient against magnetic field, while fragile against elevated temperature and electrical cur-

rent. We note that the step-like feature in thermal conductivity [102], previously attributed to

µ0Hc2, is found to be well below the µ0Hr(j, T → 0) and likely to be associated with density-

wave order [103]. Previous studies performed in magnetic fields, including Hall resistivity [106],

heat capacity [107], and quantum oscillations [41], and others, should thus be interpreted as a

property of a vortex liquid state, rather than a conventional metallic state.
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6.2. Quantum oscillations in the pseudogap regime

6.2 Quantum oscillations in the pseudogap regime

While the Fermi surface in the underdoped cuprates has been studied in remarkable detail using

quantum oscillations, the origin of the observed oscillations is still a subject of active debate.

A key outstanding question is whether quantum oscillations originate from a conventional

metallic state or a vortex state, and the number of sections present in the Fermi surface.

Here, by performing quantum oscillation measurements with improved sample quality and

measurement sensitivity, we find the high-field pseudogap ground state is characterised by the

surprising coexistence of superconductivity and quantum oscillations, with signatures of an

isolated nodal Fermi pocket. This observation suggests that the antinodal electronic density

of states in the pseudogapped cuprates is completely gapped out at Tc < T < T ∗, rather than

rendered incoherent due to scattering or thermal fluctuations, possibly due to an additional

order parameter.

6.2.1 Coexistence of quantum oscillations and superconductivity

Previously, quantum oscillations in underdoped YBCO6+x were predominantly thought to re-

flect the underlying Fermi surface of the normal metallic ground state when superconductivity

is fully suppressed [41, 108]. However, considering the newly revealed vortex solid state with

µ0Hr > 45 T at millikelvin temperature, the quantum oscillations that onsets at ≈ 20 T are seen

to occur deeply within the superconducting state. Figure 6.8 shows the de Haas-van Alphen

oscillations in magnetic torque measured in two YBCO6.55 sample at T = 0.04 K and 1.0 K.

Prominent quantum oscillations can be seen on top of a hysteresis loop, consistent with the

previous reports but with a much increased amplitude [109]. Interestingly, although the size

of the hysteresis loop depends strongly on temperature, the amplitude of the oscillations is

the same at 0.04 K and 1 K, indicating that quantum oscillations are relatively insensitive to

the presence of a vortex solid or vortex liquid state. Quantum oscillations are also observed

in in-plane resistivity as shown in Figure 6.9. Shubnikov-de Haas oscillations in ρxx are seen

immediately after the resistivity onset at 32 T using I = 5 mA at T = 0.44 K. Meanwhile,

the zero-resistivity superconducting state persists to 42 T at the same temperature using I <

30 µA. This observation demonstrates the surprising coexistence of quantum oscillations with

zero-resistivity superconductivity, and the quantum oscillations, although exhibiting seemingly

Fermi-liquid behaviour [110], occur within a vortex solid or liquid regime.
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Figure 6.9: Coexistence of Shubnikov-de Haas oscillations and superconduc-
tivity in YBCO6.55. In-plane resistivity as a function of magnetic field measured
at 0.44 K using different applied currents as indicated. Inset: quantum oscillations
after background subtraction. Oscillations are seen immediately after µ0Hr ≈ 32 T
using I = 5 mA, while superconductivity persists to over 42 T upon using I < 30 µA.
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6.2. Quantum oscillations in the pseudogap regime

Although quantum oscillations in the vortex solid state have been observed in other type-II

superconductors [111, 112], a dramatic increase in amplitude is seen when the vortex solid state

is destroyed by magnetic field, unlike the observation in YBCO6+x. This difference is likely to

originate from the substantial vortex liquid regime that persists in cuprate superconductors,

unlike other type-II superconductors. Additionally, the typical condition for quantum oscilla-

tions in a type-II superconductor requires ~ωc/∆ & 1, where ωc the cyclotron frequency and

∆ is the maximum of the superconducting gap [113]. For YBCO6.55, using the onset magnetic

field of the quantum oscillations of 20 T, effective mass m∗ of 1.6me [80], and ∆ estimated by

5kBTc [35], we find ~ωc/∆ = 0.06, making the oscillations originating from the strongly gapped

antinodal region very unlikely. An unusual scenario where the carriers in one CuO2 plane in

the unit cell of YBCO6+x form the superconducting condensate, while carriers in the other

CuO2 plane remain uncondensed and give rise to quantum oscillations onset at fields much

lower than µ0Hirr, appears to be challenging to reconcile with our observations. Firstly, the

oscillation amplitude does not change dramatically when crossing the vortex solid boundary ≈
38 T at 1 K (see Figure 6.8), in contrast to the expectation that the oscillation amplitude would

increase abruptly when the superconducting condensate is destroyed. Furthermore, the beat

pattern due to the bilayer magnetic breakdown [62] is seen to occur throughout the entire field

range, which cannot occur unless both CuO2 planes contribute to the quantum oscillations.

This scenario may be further explored by measuring the superfluid density at high magnetic

fields, a technically challenging experiment.

Alternatively, we consider the possibility of observing quantum oscillations that originate

from the ungapped nodal region in the momentum space while the antinodal region remains

strongly gapped. A Fermi surface reconstructed by the charge order wavevectors that yields an

isolated nodal pocket appears to be consistent with our observations [108]. Further supporting

evidence for such a Fermi surface model is presented in the following section.
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6.2.2 Evidence of an isolated nodal Fermi pocket

Measurements and simulations shown in this section were performed in collaboration with Dr

R. McDonald and Dr N.Harrison at NHMFL.

The small Fermi pocket observed in the underdoped cuprates [38], in sharp contrast to the

large Fermi pocket observed in the overdoped regime [39, 40], indicates that the Fermi surface

undergoes a reconstruction by a symmetry-breaking order parameter. The recently discovered

charge density wave order in the underdoped cuprates is believed to be responsible for the Fermi

surface reconstruction [29, 30], yielding a small nodal electron pocket per CuO2 plane per unit

cell, while the details of the reconstruction are still under debate [101, 108]. It is further unclear

whether the antinodal electronic states in the pseudogap regime are suppressed by a complete

gapping or a loss of quasiparticle coherence [22, 1]. By measuring quantum oscillations with

an improved sample quality and sensitivity, we found evidence that suggests the nodal Fermi

pocket is isolated in the Brillouin zone, with the antinodal states being completely gapped, in

the pseudogap ground state at high magnetic field.

Figure 6.10 shows contactless resistivity measurements on a YBCO6.55 sample at 1.5 K

using the proximity detector oscillator technique. Compared to the previous report [108], we

found an improved data quality in our measurements indicated by (i) an earlier onset of the

prominent quantum oscillations at≈ 22 T, (ii) a lower Dingle temperature and higher oscillation

amplitude when normalised at the infinite field limit, and (iii) a richer harmonic content revealed

by the Fourier transform, with the fifth harmonics also being visible. An asymmetric oscillation

waveform deviating from a sinusoidal waveform, with a rounder top and sharper bottom, can

be observed, as a result of the rich harmonic content present in our data.

The quantum oscillation waveform is a sensitive probe of whether the associated Fermi

pocket is accompanied by additional electronic density of states at the Fermi energy [114, 115,

116], which can be only be used when the sample has an exceptional high quality with minimal

scattering and minimal contribution to the density of states from the impurities. As illustrated

in Chapter 2, the hallmarks of a clean two-dimensional metal with an isolated Fermi pocket

unaccompanied by a background density of states include (i) a forward ‘sawtooth’ waveform

in the oscillatory magnetisation, (ii) a subsequent inverted ‘U’-shape waveform in the magnetic

susceptibility and resistivity, and (iii) harmonics whose amplitudes lie on an exponential curve.

Quantum oscillations in magnetic susceptibility and resistivity measured on YBCO6.55 at field

angle θ ≈ 36◦, defined as the angle between the magnetic field and crystalline ĉ-axis, are

shown in Figure 6.11, compared with that measured in a GaAs heterostructure, a known two-

dimensional system with a single component of Fermi surface [115]. The forward sawtooth

waveform in magnetisation and inverted ‘U’-shape waveform in susceptibility can be seen in

both systems, showing good agreement with simulations assuming an absence of background

density of states, pointing to an isolated Fermi pocket in YBCO6.55.
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Figure 6.10: Quantum oscillations in contactless electrical resistivity in
YBCO6.55. (a) Resistivity measured by the shift in the resonant frequency of a
proximity detector oscillator circuit (∆fPDO) as a function of magnetic field with
comparison to a previous report [108]. The beating pattern arises from the bilayer
splitting of the nodal pocket due to the presence of two CuO2 planes in the unit cell
[62], which can be eliminated by rotated the field angle to ≈ 36◦ with respect to the
ĉ-axis. Inset: Quantum oscillations after background subtraction. The extracted
Dingle temperatures TD are found to be significantly lower in our data. (b) Fourier
transform of the quantum oscillations within the field range of 42.5 T to 65 T. The
two datasets are scaled to have equal amplitude at the infinite field limit (dashed
line).
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Figure 6.11: Quantum oscillation signatures of a two-dimensional Fermi sur-
face with negligible background density of states. (a, b) de Haas-van Alphen
oscillations in (a) magnetisation and (b) susceptibility of YBCO6.55 (red curve) with
the magnetic field inclined at an angle of 36◦ from the crystalline ĉ-axis. Contact-
less resistivity measured at a similar angle (green curve) is scaled to the torque data.
Simulations assuming a zero background density of state (gres = 0, black curve) are
found to agree well with the experimental data, while the simulations assuming a large
background density of state (gres = 25× g2D, grey curve) showed a marked deviation.
(c, d) de Haas-van Alphen oscillations in (c) magnetisation and (d) susceptibility
of a GaAs heterostructure, a known two-dimensional system with an isolated Fermi
pocket, from [115]. Similar features in the oscillation waveforms are found between
YBCO6.55 and GaAs heterostructure.

112



6.2. Quantum oscillations in the pseudogap regime

The observation of quantum oscillation signatures of an isolated Fermi pocket in the un-

derdoped YBCO6.55 is surprising. Given the starting paramagnetic band structure, the recon-

structed Fermi surface is expected to consist of multiple fragmented sections spanning both

nodal and antinodal regions as illustrated in Figure 6.12(a). The isolation of the observed

Fermi pocket in momentum space indicates that the Fermi arcs are sharply truncated at their

edges in momentum space with the antinodal density of states completely gapped, rather than

rendered incoherent due to thermal or classical fluctuations. The Fermi arcs are connected by

the biaxial CDW vectors in the presence of a magnetic field into an isolated electron pocket in

the nodal region, as illustrated in Figure 6.12(b).

Figure 6.12: Proposed pictures of Fermi surface in the pseudogap state of
underdoped YBCO6+x. (a) In the first picture, the Fermi arcs are part of a large
cylindrical Fermi surface with the antinodal density of states suppressed by thermal or
classical fluctuations. In an applied magnetic field, the Fermi surface is translated by
the biaxial CDW vectors, Qx and Qy, and reconstruct into a nodal electron pocket, two
antinodal hole pockets, and one-dimensional open sheets. (b) In the second picture,
the Fermi arcs are isolated in the Brillouin zone with sharply truncated edges, with the
antinodal density of states completely gapped. In an applied magnetic field, the Fermi
arcs are connected by the same CDW vectors into a single nodal electron pocket.

113
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Previously, the origin of the suppression of the antinodal density of states in the pseudogap

regime at elevated temperatures was unclear [21]. The observation of the identifying signatures

in quantum oscillation waveform indicates the small Fermi pocket in YBCO6.55 is isolated in the

Brillouin zone unaccompanied by other Fermi pockets or open sheets. The antinodal density

of states at the Fermi energy in underdoped YBCO6+x is therefore shown to be completely

gapped, given that complementary measurements have placed the small Fermi pocket in the

nodal region of the Brillouin zone [80, 108]. An additional order parameter associated with the

pseudogap is suggested to eliminate the antinodal density of states, which is likely a consequence

of proximity to the antiferromagnetic Mott insulator.

6.3 Evidence of pairing correlations at high temperature

The field-resilient superconductivity in the underdoped YBCO6+x suggests a large energy scale

for electron pairing, while its fragility against temperature and electrical current at low temper-

ature suggests a frustrated pairing coherence. A wide temperature regime where the electrons

exhibit pairing correlations without the phase coherence for long-range superconductivity is

indicated. Here, by measuring in-plane resistivity over a broad range of doping, temperature,

and magnetic field, we identified a characteristic temperature To, suggestive of the pairing

correlations above Tc(0 T) and a pairing energy scale of ≈ 100 meV.

6.3.1 Onset temperature of pairing correlations

Figure 6.13 shows the in-plane resistivity normalised at 170 K as a function of temperature

in YBCO6+x, measured using I = 3 mA in fixed magnetic fields applied perpendicular to the

CuO2 plane. Three regimes in the resistivity as a function of temperature can be identified.

At high temperature, ρxx exhibits T -linear behaviour which can be fitted using ρlin = ρ0 +

aT . At intermediate temperature, ρxx shows a downward departure from ρlin below an onset

temperature To, identified using the criterion of ρxx/ρlin < 0.99, as illustrated in Figure 6.14.

The sharpness of the resistivity reduction makes the uncertainty associated with To due to

the choice of criterion minimal. A similar but slightly higher onset temperature is found

by taking the first derivative of ρxx(T ) with respect to T , as shown in Figure 6.15 for three

dopings at zero magnetic field. At finite fields, this method leads to a larger uncertainty

in determining the onset temperature, as limited by the noise performance. As temperature

further decreases, the regime of reduced resistivity gives way to a zero-resistivity regime below

the superconducting temperature Tc. At zero magnetic field, ρxx in overdoped samples with

p > 0.19 shows an extended regime of linearity before the superconducting transition occurs

abruptly at Tc(0 T), whereas the reduction in resistivity becomes more gradual as p decreases

and onsets at temperatures increasingly higher than Tc(0 T).
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Figure 6.13: In-plane resistivity normalised at 170 K as a function of tem-
perature in YBCO6+x. (a-k) ρxx measured using I = 3 mA in fixed magnetic fields
and hole dopings p as indicated. Pinks lines indicate the linear fits (ρlin = ρ0 + aT )
made to the high temperature regime where resistivity exhibits a T -linear dependence.
Green arrows mark the broad maximum in ρxx, which we associated with the long
range CDW order. The temperature below which the resistivity vanishes is defined
as Tc(µ0H).
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Figure 6.14: Onset temperature To of reduced resistivity at fixed magnetic
fields in YBCO6+x. (a-k) Deviation of resistivity from a T -linear behaviour revealed
by plotting data shown in Figure 6.13 as ρxx/ρlin. Pink lines indicate the linear fits ρlin.
Arrows indicate To at the magnetic fields of 45 T (red), 35 T (green), and 0 T (black).
(l) The criterion used to extract To, defined as the temperature where ρxx/ρlin < 0.99.
The uncertainty associated with To due to the choice of criterion is minimal owing to
the sharpness of the resistivity reduction.
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for the regime of nearly-constant slope at high temperature. Arrows indicated the To

extracted using the ρxx/ρlin < 0.99 criterion as illustrated in Figure 6.14.

An additional feature is present in the samples with 0.108 6 p 6 0.140, where ρxx exhibits

a broad peak at T ≈ 50 K that becomes more pronounced with increasing magnetic field. We

attributed this feature to the long-range CDW order observed in nuclear magnetic resonance

measurements at similar temperature and doping range [117].

In the optimally and overdoped cuprates, the resistivity reduction occurring at To has been

interpreted as superconducting fluctuations presiding the Tc [118, 119]. In the case of under-

doped cuprates, the origin of the downward departure from the T -linear resistivity around the

pseudogap temperature T ∗ has remained unclear. Here, we reviewed the experimental signa-

tures of pairing correlations without phase coherence and found the intermediate temperature

regime below To is consistent with such description. Within the conventional Ginzburg-Landau

theories [120], the experimental signatures of superconducting fluctuations includes: (i) a down-

ward departure in resistivity from the normal state behaviour at high temperature, (ii) a weak-

ening of this suppression in electrical resistivity upon the application of a magnetic field, due to

orbital pair-breaking effect such as vortex creation, and (iii) a marked anisotropy in the effect

of applied magnetic fields, with a minimal effect when the magnetic field is applied parallel

to the CuO2 plane, given the confinement of electronic orbital motions. Figure 6.16 shows

the resistivity of four dopings with magnetic fields applied parallel to the CuO2 plane i.e. H

⊥ ĉ-axis. Compared with the situation where H || ĉ-axis as shown in Figures 6.13 and 6.14,
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the increase in resistivity induced by magnetic field below Tc(0 T) is much suppressed in Figure

6.16. Taken together, our observations in high magnetic fields indicate the electron pairs evolve

from a long-range superconducting state at low temperatures to local pairing correlations at

intermediate temperature up to at least To.
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Figure 6.16: In-plane resistivity as a function of temperature with mag-
netic field applied perpendicular to crystalline ĉ-axis in YBCO6+x. (a-d)
Resistivity normalised at 170 K for different magnetic fields and multiple hole dop-
ings p as indicated. Pink lines indicate the linear fits (ρlin = ρ0 + aT ) made to the
high-temperature regime. (e-h) Deviation of resistivity from the T -linear behaviour
revealed by plotting data shown in (a-d) as ρxx/ρlin. Arrows indicate To at the mag-
netic fields of 35 T (orange) and 0 T (black) using the criterion of ρxx/ρlin < 0.99.
The reduction of To with magnetic field is much suppressed compared the situation
where H || ĉ-axis as shown in Figures 6.13 and 6.14.
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A less sensitive measure of the local pairing correlations at intermediate temperature is the

deviation of ρxx(µ0H) from a H2-dependence, expected for a conventional metallic state, at

T � Tc(0 T) [121]. Figure 6.17 shows the increase in ρxx due to magnetic field divided by the

zero magnetic field value, ∆ρ/ρ0, as a function of (µ0H)2 in YBCO6+x at p = 0.108. Apparent

deviation in ∆ρ/ρ0 from a H2-dependence can be observed up to 120 K, while the deviation at

T > 130 K is more subtle and persists to at least 180 K, the highest temperature measured, as

shown in Figure 6.17(b). By analysing over the doping range 0.132 6 p 6 0.200 as shown in

Figure 6.18, we found the highest temperatures where a deviation from H2-dependence is seen,

TH, to be similar to To (see Figure 6.23).
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Figure 6.17: Normalised increase in the in-plane resistivity due to magnetic
field in YBCO6.55. (a) Field-induced resistivity divided by the zero field value,
(∆ρ = ρ(µ0H)− ρ0)/ρ0, as a function of the square of magnetic field at fixed temper-
atures as indicated. Dashed lines indicate linear fits to the high-field regime where ∆ρ
exhibits a H2-dependence. (b) An expanded view of the high temperature data reveals
a subtle deviation from H2-behaviour in ∆ρ/ρ0. A deviation from H2-behaviour can
be observed at 180 K, the highest temperature where the measurements were taken.
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Figure 6.18: Deviation of field-induced increase in in-plane resistivity from
a H2-dependence of in YBCO6+x over a broad doping range. Normalised
increase in the in-plane resistivity due to magnetic field observed in YBCO6+x with
(a) p = 0.20, (b) 0.17, and (c) 0.132. Field sweeps taken at the highest temperatures
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where a H2-behaviour is fully complied (red) are shown. Dashed lines are fits using
∆ρ/ρ0 = aH2 down to the magnetic field where an apparent deviation from linearity
is found, as marked by black arrows.
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Recent study has reported an obedience of Kohler’s rule in underdoped HgBa2CuO4+x at

T � Tc in magnetic fields up to 30 T, suggesting a Fermi liquid-like magnetotransport behaviour

in the pseudogap regime [122]. The Kohler’s rule states the increase in isothermal resistivity

due to applied magnetic field, ∆ρ, can be described by a functional form

∆ρ/ρ0 = F (µ0H/ρ0), (6.3)

where ρ0 is the zero-field resistivity that is proportional to the scattering rate 1/τ [123]. For a

Fermi liquid, ∆ρ ∝ H2 and ρ0 ∝ T 2, hence the Kohler’s rule is obeyed if a plot of ∆ρ/ρ0 versus

(µ0H/ρ0)2 collapse into a single, temperature-independent curve and the relation ∆ρ/ρ0 ∝
H2T−4 holds. Figure 6.19 shows the Kohler plot for the same data shown in Figure 6.17. The

curves measured at different temperatures do not collapse into a single curve and the transverse

magnetoresistance coefficient a⊥ ∝ ∆ρ/(ρ0H
2) exhibits a T−3-dependence, rather than the T 4-

dependence expected for a Fermi liquid. By extending the measurement field range to 60 T at

T � Tc, we hereby find a violation of the Kohler’s rule in YBCO6.55.
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Figure 6.19: Kohler plot of in-plane resistivity with out-of-plane magnetic
field in YBCO6.55. Normalised increase in the in-plane resistivity versus (µ0H/ρ0)2

using the same data shown in Figure 6.17. The curves measured at different temper-
ature do not collapse into a single curve, which indicates a violation of the Kohler’s
rule. Inset: The magnetoresistance coefficient a⊥, extracted by fitting the high-field
regime where ∆ρ/ρ0 = a⊥(µ0H)2, versus temperature in log-log scale. a⊥ is found to
follow a T−3-dependence rather than T−4-dependence expected for a Fermi liquid.

We examine the validity of a two-carrier model to account for the non-H2 behaviour in

∆ρ, which yields a T 2-behaviour in ρxx(T ) below 100 K in YBa2Cu4O8, as suggested in [124].

A qualitative difference between the expectation from a two-carrier Fermi-liquid model and a
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superconducting fluctuation model is the curvature of ρxx(T ): the former model would yield an

upward curvature at high temperatures whereas the latter would yield a downward curvature

[120]. Figure 6.20 shows ρxx as a function of magnetic field and temperature for a YBCO6+x

crystal with p = 0.140, a doping level most similar to YBa2Cu4O8. The zero-field resistivity be-

low Tc is extracted by fitting the high-field regime of ρxx(µ0H) using ρ = ρ(H → 0)+AH+BH2.

At T < Tc, the extracted ρ(H → 0) exhibits a seemingly T 2-behaviour that can be described

by both the two-carrier Fermi-liquid and the superconducting fluctuation model; however, at

T > Tc, ρ(H → 0) diverges from the parabolic fit and exhibits a downward curvature at

Tc < T < To ≈ 150 K, which can only be reasonably fitted using a model of superconduct-

ing fluctuations [120]. The form of ρxx(T ) with the signature downward curvature, observed

in both zero and high magnetic fields (see Figure 6.13), points to a state of superconducting

fluctuations as inferred from the To analysis. We thus conclude that the high-field transport

behaviour in the underdoped YBCO6+x is most consistent with a state with broad regime of

pairing correlations, rather than a conventional Fermi liquid-like metallic state.
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Figure 6.20: Extraction of zero-field resistivity below Tc(0 T) in YBCO6.84.
(a) ρxx as a function of magnetic field at temperatures as indicated. Dashed lines are
fits to the high-field regime using ρ = ρ(H → 0) + AH + BH2. T < 42 K was not
accessible for this sample due to a severe self-heating in pulsed fields. (b) Extracted
ρ(H → 0) as a function of temperature. ρ0 is measured at zero field. Red dashed
curve is a parabolic fit made to the low-temperature data and green dashed curveis
a fit using a model of superconducting fluctuations using a T -linear normal state
resistivity [120]. ρ(H → 0) deviates from the parabolic fit above 80 K while its entire
form can be described using the superconducting fluctuation model.
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6.3.2 Estimation of pairing energy scale

The extent of local pairing correlations without phase coherence is illustrated by the colour

plots of normalised resistivity ρxx/ρlin as a function of magnetic field and temperature shown

in Figure 6.21. In the overdoped regime, To is not significantly higher than Tc(0 T), whereas

the separation between the boundaries set by the zero resistivity superconductivity (µ0Hr) and

the persistence of pairing correlations (To) widens as p decreases. To decreases only slightly as

the magnetic field increases, indicating that the pairing correlations are remarkably resilient to

magnetic field and associated with a large pairing energy scale. We estimate the magnetic field

Ho(To → 0) by extrapolating the weak suppression of To under a magnetic field using

To/To(0 T) = 1− (H/Ho)2. (6.4)

A rough estimate of the corresponding energy scale is obtained using [125]

ξ0 =
√

Φ0/2πµ0Hc2 = 2~vF/πEo, (6.5)

where Φ = ~/2e is the magnetic flux quantum, Hc2 is approximated by Ho, and vF ≈ 2.5× 105

ms−1 is the Fermi velocity of YBCO6+x [126]. A pairing energy scale Eo ≈ 102 meV is found

as summarised in Table 6.1.

Table 6.1: Values of the oxygen composition x of measured YBCO6+x samples, hole
doping p, critical temperature at zero magnetic field Tc(0 T), critical temperature at
45 T in the limit of low applied current density Tc(45 T), onset temperature of pairing
correlations at zero field To(0 T), onset temperature of pairing correlations at 45 T
To(45 T), extrapolated magnetic field corresponding to To = 0 K µ0Ho, and pairing
energy scale Eo (* represents values obtained at 35 T).

x p T
(0 T)
c (K) T

(45 T)
c (K) T

(0 T)
o (K) T

(45 T)
o (K) µ0Ho (T) Eo (meV)

0.55 0.108 61 0.04 237 235* 205(51) 82(8)
0.67 0.116 65.2 0.04 202 182* 112(28) 61(10)
0.75 0.132 75.8 0.3 175 167 175(44) 76(8)
0.84 0.14 84.1 4.8 165 154 170(43) 75(11)
0.87 0.149 89.5 30* 140 122* 94(24) 56(8)
0.92 0.162 93.8 43.1 123 116 205(51) 82(9)
0.97 0.17 93.2 45.5 118 108 167(42) 74(9)

2% Ca 0.187 88.2 48.5 108 100 145(36) 69(7)
3% Ca 0.191 86.5 40.2 102 92 143(36) 68(8)
4% Ca 0.194 84.7 40.6 96 88 150(38) 70(8)
5% Ca 0.20 81.5 42 89 76 109(27) 60(7)
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Figure 6.21: Extent of pairing correlations and zero electrical resistivity su-
perconductivity in YBCO6+x. (a-i) Magnetic field-temperature phase diagrams
constructed from colour contours of the normalised in-plane resistivity ρxx/ρlin for sev-
eral different hole dopings p as indicated. Red corresponds to the normal state with
T -linear resistivity ρxx/ρlin = 1 while grey denotes the vortex solid state with zero re-
sistivity ρxx = 0. The intervening region of superconducting fluctuations and pairing
correlations appears in blue. Circles indicate the onset magnetic field of finite resis-
tivity, µ0Hr, extracted from Figure 6.13. Diamonds indicate the onset temperature of
resistivity reduction, To, extracted from Figure 6.14.
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Figure 6.22: Determination of µ0Ho from the magnetic field dependence of
To. (a) Symbols show To as a function of magnetic field. Solid line represents a fit
of To/To(0 T) = 1 - (H/Ho)2 to the magnetic field dependence of To. To(0 T) refers
to the value of To at zero magnetic field, µ0Ho refers to the magnetic field where To

is suppressed to zero at T = 0 K. A fit is performed to obtain Ho for a doping of
p = 0.20, where the variation of To is largest as a function of magnetic field. µ0Ho

for the remaining dopings is obtained by scaling against the fitting curve, enabling
independent estimates of µ0Ho to be obtained for each of the dopings. (b) µ0Ho

obtained as in (a) for a range of doping.
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6.4 Interplay between pseudogap and superconductivity

The ongoing debate of the correct description of the electronic ground state in the underdoped

cuprates, even on the experimental level, has proven difficult to settle. We found that the

electronic ground state in underdoped YBCO6+x is characterised by an unusual coexistence

of a Fermi surface with d-wave superconductivity at millikelvin temperature, with a very low

critical temperature and critical current density in strong magnetic fields, which evolves to an

extended regime of pairing correlations onset at temperatures up to the pseudogap temperature

T ∗. The onset of pairing correlations at a temperature much higher than Tc that only become

coherent near Tc have also been suggested by complementary measurements such as Nernst

effect [127], diamagnetism [128], and interlayer tunnelling [129].

The extreme sensitivity of the low-temperature superconductivity to thermal and electrical

perturbations suggests some form of frustration is responsible for the suppression of super-

conductivity in the underdoped cuprates. Such frustration responsible for the suppression of

long-range coherence of electron pairs may arise due to the large on-site repulsive energy scale

of the Mott parent state or fluctuations of an additional order parameter, as suggested by vari-

ous complementary measurements which observed a broken symmetries near T ∗ [34, 131, 132].

Various theoretical models have been proposed to describe the pseudogap regime as a result of

local electron pairing correlations, including incoherent singlet pairs that effectively acquires a

charge upon doping [1, 133], the BEC-BCS crossover [134], a regime of superconducting phase

fluctuations [22], and others. Meanwhile, unconventional order parameters have also been

considered to describe the pseudogap regime including a pair density wave state with finite

superconducting order parameter and broken translational symmetry [135], an Amperean state

with unconventional electron pairing [136], an association of topological order with discrete

broken symmetries [137], and others.

Ultimately, it would be desirable to manipulate the pseudogap by suppressing or eliminat-

ing the frustration and enhance the critical temperature. A recent pump-probe spectroscopy

experiment has demonstrated the signature of superconductivity persisting up to T ∗ [138], sug-

gesting a transient near-room temperature superconductivity in underdoped YBCO6+x. The

radiation causes strong symmetry-selective distortion of the lattice, much higher than what

can be achieved by realistic pressure, and suggests the important role played by the lattice

configuration [139]. Architectural design to suppress the frustration and stabilise the transient

superconductivity at T ∗ presents a possible route in the interfacial systems to pursue of an ever

higher Tc [140, 141].
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Figure 6.23: Temperature-doping phase diagram of superconductivity,
charge density wave order, and onset of pairing correlations in YBCO6+x.
Diamonds denote the onset temperatures of pairing correlations. TH is defined as the
the highest temperature at which a deviation from a H2-dependence is observed in
∆ρ = ρ(µ0H) − ρ(0) as shown in Figure 6.17. Red shading denotes the pseudogap
temperature T ∗ from various measurements. Circles denote the critical temperatures
at zero magnetic field (grey) and 45 T (blue). The temperature axis has been offset
by 5 K for clearer visibility of very low temperature superconductivity at low dopings.
Green shading denotes short range charge density wave correlations observed from
scattering experiments [33, 130] and downward triangles denote the long range charge
order observed in Figure 6.13. Open hexagon denotes the position of a quantum
critical point identified in quantum oscillation measurements [50].
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Chapter 7

Concluding remarks

In the last chapter, I will review the motivating questions that initiated this work, summarise

the main findings, and discuss some open questions regarding the Kondo insulator SmB6 and

high-Tc superconductor YBCO6+x. The observation of unconventional Fermi surface in these

strongly correlated materials suggests a new paradigm of Fermi surface in the absence of a

conventional Fermi liquid.

7.1 SmB6

Motivation

Can one observe a Fermi surface in the proposed topological Kondo insulator SmB6? If so, how

does it differs from the weakly correlated topological insulators?

Findings

De Haas-van Alphen oscillations are found to occur within the insulating state revealed by

electrical transport. The observed Fermi surface has a three-dimensional geometry that is

shared by the metallic rare-earth hexaborides and an absolute oscillation amplitude consistent

with a bulk origin. The emergence of a neutral Fermi surface in SmB6 is further supported

by a sizeable linear specific heat coefficient and a significant field-enhancement of thermal

conductivity at low temperatures, despite the extreme instance of Fermi liquid breakdown.

Outlook

In the quest to elucidate the origin of the low-temperature conducting channel in SmB6, more

questions have surfaced in light of the surprising discoveries. It has become clear that there is

still much to be learnt about SmB6 and, more generally, Kondo insulators. Some unaddressed

questions that warrant further investigations are discussed below.
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1. Is the surface state topologically non-trivial? As the observed quantum oscillations are

not consistent with a surface origin, the topological conducting surface states, if they

exist, are not observed in our measurements. Landau indexing, a method to identify the

associated Berry phase (hence topological nature) of observed quantum oscillations [142],

is not suited for SmB6 since the oscillation frequencies are on the order of several hundred

teslas. Other experimental probes are thus needed to conclusively address the topological

nature of the surface conducting states.

2. How can one observe quantum oscillations with a neutral Fermi surface? An open ques-

tion pertains to the observation of a neutral Fermi surface is that how can neutral quasi-

particles exhibit quantum oscillations, which requires a coupling to the magnetic field for

Landau quantisation. Among the existing theoretical proposals, the neutral Fermi surface

arises from a composition or fractionalisation of quasiparticles. In the exciton model [96],

the neutral exciton is a bound state of the electron and hole near the Fermi level, which

exhibits quantum oscillations due to its constituents. In the spinon [94] and Majorana

fermion models [99], the conventional quasiparticles fractionalise into chargeless spinons

and Majorana fermions, which couple to the magnetic field via a non-vanishing coupling

to the magnetic field above first order. In the composite exciton model [97], the neutral

quasiparticle is a bound state of the unhybridised d-electron and fractionalised spinless

holon. The gapped d-electrons remain coupled to the magnetic field and the gapless

holons experience an effective magnetic field due to a strong coupling to the d-electrons.

While these proposals provide explanations for our key observations, including the quan-

tum oscillations and thermodynamic measurements, a quantitative comparison between

theory and experiment remains outstanding. Other experimental predictions, such as a

Meissner effect at low temperature and magnetic field [99] and a bulk thermal Hall ef-

fect [97] remain to be tested. An alternative possibility for a neutral Fermi surface is to

consider a description beyond the convention of quasiparticles, such as topological and

holographic models [143, 144].

3. Is the neutral Fermi surface unique to SmB6 or universal to Kondo insulators? The strik-

ing observation of dHvA oscillations in a bulk insulating state calls for the investigation

of similar systems. YbB12, a Kondo insulator that shares key features with SmB6 such

as mixed Yb valency, bandgap size, and finite linear specific heat coefficient at low tem-

perature [145, 146], is a promising candidate. Interestingly, it is also predicted to be a

topological insulator [147], although the existence of surface conducting channels at low

temperatures is not established. Other candidates includes SmS and Ce3Bi4Pt3, which

are Kondo insulators with finite linear specific heat coefficients at low temperature and

near a insulator-metal transition tuned by pressure [148] and magnetic field [149] .
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7.2 YBCO6+x

Motivation

What is the correct description of the pseudogap ground state in underdoped YBCO6+x at low

temperature?

Findings

A superconducting state that is resilient to magnetic field yet highly susceptible to thermal and

electrical perturbations is revealed at millikelvin temperature. Quantum oscillations are found

to occur deep within the vortex solid state, suggesting an unusual coexistence of nodal Fermi

liquid quasiparticles with an antinodal superconducting gap. The long-range superconducting

state at low temperature evolves into a state with short-range pairing correlations persisting

up to the pseudogap temperature T ∗, suggesting a form of frustration is responsible for the

suppression of superconductivity in underdoped cuprates.

Outlook

The pseudogap ground state has proven to be more complex than a conventional metal plus

a symmetry-breaking order parameter, despite the observation of seemingly Fermi liquid-like

quantum oscillations. Although a complete description of the pseudogap state remains out-

standing, progress has been made which led us much closer to the long-sought answer. Some

open questions pertinent to the findings made in this work are discussed below.

1. What determines the Fermi pocket size and quantum oscillations frequency in underdoped

YBCO6+x? Among the various proposals for the Fermi surface reconstruction in under-

doped cuprates [101, 150, 151], the one that invokes the charge order which leads to a

nodal Fermi pocket is most consistent with our experimental observations [152]. In such

a scenario, the Fermi pocket size is expected to be determined by the length of the Fermi

arcs at zero magnetic field. It has been recently shown that a good correspondence can

be found between the observed charge order vectors and quantum oscillation frequen-

cies in the underdoped cuprates [153]. The onset magnetic field of quantum oscillations

may therefore correspond to the magnetic field required to sufficiently suppress the nodal

gap and reveal the full Fermi arcs for reconstruction, or for the charge order to become

sufficiently long-range to reconstruct the Fermi surface.

2. What breaks up the Fermi surface into Fermi arcs in the pseudogap regime? The iso-

lation of the nodal Fermi pocket in momentum space indicates the annihilation of den-

sity of states near the antinodal region, possibly due to an additional order parameter
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and/or pairing correlations prior to the onset of charge order [136, 154]. Complementary

measurements have reported signatures of various broken symmetries associated with the

pseudogap, including rotational symmetry [131], time-reversal symmetry [132, 155], inver-

sion symmetry [34], among others , which may relate to the additional order parameter.

Experimental signatures of precursor superconductivity have also been reported up to

T ∗ [127, 128, 129]. Some theoretical proposals have suggested the possibility of a state

with intertwined order parameters that leads to a unconventional pair-density wave state

[135, 156], among the various theoretical proposals that invoked pairing correlations as

previously mentioned. The pseudogap phenomenology has been recently reproduced in

Sr2IrO4, an analogue to the single layer cuprate La2CuO4, while superconductivity and

charge density wave have not been observed in the accessed doping range [157, 158]. Fur-

ther investigation into the formation of pseudogap in a system without superconductivity

and charge order may provide new insights into understanding the formation of Fermi

arcs.

3. What is the nature of the frustration for the long-range superconductivity? The fragility of

the low-temperature superconductivity in the underdoped regime, despite a large pairing

energy scale nearly independent of doping, suggests a form a frustration that is sup-

pressing the long-range coherence of electron pairs. The possibilities of such frustration

include a large on-site repulsive energy scale, due to the proximity of a Mott parent state

with J ≈ 1000 K, and fluctuations of a competing or intertwined order parameter as

previously discussed. Geometric frustrations such as certain lattice configuration and

low dimensionality may also be responsible. Identifying such a frustration factor will

provide important clues for designing better superconductors, clues that may be found

by investigating certain cuprates with similar crystal structure but very different critical

temperatures [159].

−−

Quantum oscillations were first observed in 1930 in bismuth through the pioneering work of

de Haas and van Alphen [160], soon after Landau published his paper on diamagnetism of

metals in which he applied the newly developed quantum mechanics to free electrons and pre-

dicted the existence of discrete Landau levels [161]. However, Landau himself dismissed the

possibility of observing the effect of Landau quantisation, as he thought the conditions are

too stringent to be realised in experiment. Meanwhile, the concept of Fermi surface was only

introduced in 1933 by Sommerfeld and Bethe as a property exclusive to metals [162]. For a

long time, quantum oscillations were considered a mysterious and unique property of bismuth,
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until the same effect was observed in zinc in 1947 and soon in many other metals [163]. In the

early 1950s, Onsager, Lifshitz, and Kosevich collectively formulated the theory for quantum

oscillations [48, 164], which led to Pippard’s much-celebrated mapping of the Fermi surface in

copper in 1957 [165]. Fermiology has then become an established branch of solid state physics

and the observation of quantum oscillations has been considered as the defining signature of

the existence of quasiparticles within Landau’s Fermi liquid framework [166]. Our surprising

observation of quantum oscillations in insulating SmB6 and superconducting YBCO6+x demon-

strates a possible new paradigm of Fermi surfaces without a conventional Fermi liquid state.

It remains to be seen whether an unconventional Fermi surface is a common characteristic of a

broad family of strongly correlated materials and indicative of a new form of quantum matter.

Once thought to be a phenomenon that can only be observed in metals and low temperatures,

quantum oscillations have now been observed in gapped systems and above room temperature

[167]. I have no doubt that there will be more fundamental breakthroughs to be made by this

beautiful experimental technique that transforms theoretical concept into physical reality.

132





References

[1] Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-

temperature superconductivity. Reviews of Modern Physics 78, 17 (2006).

[2] Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo Insulators. Annual

Review of Condensed Matter Physics 7, 80 (2016).

[3] de Boer, J. H. & Verwey, E. J. W. Semi-conductors with partially and with completely

filled 3d-lattice bands. Proceedings of the Physical Society 49, 59 (1937).

[4] Fukukawa, T., Miyazawa, K., Taniguchi, H., Kato, R. & Kanoda, K. Quantum criticality

of Mott transition in organic materials. Nature Physics 11, 221 (2015).

[5] Menth, A., Buchler, E. & Gelable, T. H. Magnetic and semiconducting properties of

SmB6. Physical Review Letters 22, 295 (1969).

[6] Dzero, M., Sun, M., Galitski, V. & Coleman, P. Topological Kondo insulators. Physical

Review Letters 104, 106408 (2010).

[7] Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Reviews of Modern

Physics 82, 3045 (2010).
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Appendix A

Fitting functions for ellipsoidal Fermi

surface

Considering a parabolic energy band of free electrons, the general ellipsoidal surface of constant

energy is determined by the energy dispersion

E(k) =
~2

2me

∑
αijkikj, (A.1)

where the suffices denote 1, 2, 3 (or x, y, z) of the Cartesian coordinate axes, and αij is a

symmetric matrix i.e. αij = αji. αij is determined by the the orientation of the ellipsoid

with respect to the rectangular axes and its semi-principal axes ak0, bk0, ck0 (referred as a-,

b-, or c-axis herein). For a spherical surface, αij = δij. If the magnetic field H has direction

cosines (ν1, ν2, ν3) with respect to the (kx, ky, kz) axes, it can be shown [45] that the extremal

cross-section of the ellipsoid by a plane normal to H has an area

S(E) =
2πmeE

~2W 1/2
, (A.2)

where W is given by

W = ν2
1(α22α23 − α2

23) + 2ν2ν3(α12α13 − α23α11)

+ ν2
2(α33α31 − α2

31) + 2ν3ν1(α23α21 − α31α22)

+ ν2
3(α11α12 − α2

12) + 2ν1ν2(α31α32 − α12α33).

The quantum oscillation frequency F = ~c
2πe
S(EF) due to the ellipsoidal Fermi surface is thus

given by

F =
mec

~
1

W 1/2
. (A.3)
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A.1. ρ-pocket

A.1 ρ-pocket

We model the ρ-branch of the Fermi surface in SmB6 by twelve small ellipsoids with a ≈ b < c,

as shown in Figure A.1. The c-axes of the ρ-pockets are aligned along the 〈110〉 directions in

reciprocal space. The quantum oscillation frequency corresponding to the ρ-pockets, when H

rotates in the [100]-[110] plane at an angle θ with respect to [100], is given by

ρ1,2 : F ρ
min

√
2c√

2b2 cos2 θ + (a2 + c2) sin2 θ
(A.4)

ρ3,4 : F ρ
min

√
2c√

(a2 + c2) cos2 θ + 2b2 sin2 θ
(A.5)

ρ5 : F ρ
min

√
2c√

a2 + c2 − (c2 − a2) sin 2θ
(A.6)

ρ6 : F ρ
min

√
2c√

a2 + c2 + (c2 − a2) sin 2θ
, (A.7)

where F ρ
min corresponds to the Fermi surface cross-section constructed by the a- and b-axes of

the ellipsoids. The subscript corresponds to the labelled Fermi pocket shown in Figure A.1(a).

Figure A.1: ρ-branch of Fermi surface model for SmB6. (a) ρ-pockets are twelve
small ellipsoids with the relative ratios of the semi-principal axes a ≈ b < c, oriented
with the c-axes along the 〈110〉 directions. (b) Angular dependence of the quantum
oscillation frequencies from ρ-pockets with magnetic field rotates along [100]-[111]-
[011] and [100]-[110] planes. The branches are labelled by the corresponding pockets
shown in (a). F ρ

min of 309 T is used, as obtained by fitting to the experimental data.
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A.2. α-pocket

When H rotates in the [100]-[111]-[011] plane at an angle θ with respect to [100], the

quantum oscillation frequencies are given by

ρ1 : F ρ
min

c√
b2 cos2 θ + a2 sin2 θ

(A.8)

ρ2 : F ρ
min

c√
b2 cos2 θ + c2 sin2 θ

(A.9)

ρ3,5 : F ρ
min

√
2c√

3a2 + 3c2 + 2b2 + (a2 + c2 − 2b2) cos 2θ − 2
√

2(a2 − c2) sin 2θ
(A.10)

ρ4,6 : F ρ
min

√
2c√

3a2 + 3c2 + 2b2 + (a2 + c2 − 2b2) cos 2θ + 2
√

2(a2 − c2) sin 2θ
. (A.11)

The quantum oscillation frequency of the ρ-pockets as a function of θ is shown in Figure A.1(b),

where four branches can be seen in both [100]-[111]-[011] and [100]-[110] rotation planes.

A.2 α-pocket

The α-branch of the Fermi surface in SmB6 is modelled by six prolate spheroids with a = b < c,

as shown in Figure A.2. The c-axes of the top and bottom spheroids (labeled 1) are aligned

along the [001] direction, while the spheroids labeled 2 and 3 have c-axis aligned along [010]

and [100] directions.

The quantum oscillation frequency corresponding to the α-pockets, when H rotates in the

[100]-[110] plane at an angle θ with respect to [100], is given by

α1 : Fα
min

c

a
(A.12)

α2 : Fα
min

1√
a2

c2
cos2 θ + sin2 θ

(A.13)

α3 : Fα
min

1√
cos2 θ + a2

c2
sin2 θ

, (A.14)

where Fα
min corresponds to the Fermi surface cross-section constructed by the the circle of radius

a. When H rotates in the [100]-[111]-[011] plane at an angle θ with respect to [100], the quantum
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A.2. α-pocket

oscillation frequencies are given by

α1,2 : Fα
min

c

a

1√
cos2 θ + (1

2
+ c2

2a2
) sin2 θ

(A.15)

α3 : Fα
min

1√
cos2 θ + a2

c2
sin2 θ

(A.16)

The quantum oscillation frequency of the α-pockets as a function of angle θ is shown in

Figure A.2. Two and three α-branches of the quantum oscillations frequency can be seen in

the [100]-[111]-[011] and [100]-[110] rotation planes, respectively.

Figure A.2: α-branch of Fermi surface model for SmB6. (a) α-pockets are six
prolate spheroids with relative ratios of the semiprincipal axes a = b < c, oriented
with the c-axes along the 〈100〉 directions. (b) Angular dependence of the quantum
oscillation frequencies from α-pockets with magnetic field rotates along [100]-[111]-
[011] and [100]-[110] planes. The branches are labelled by the corresponding pockets
shown in (a). Fα

min of 7 750 T is used, as obtained by fitting to the experimental data.
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