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One of the primary targets of current and especially future cosmological observations are light
thermal relics of the hot big bang. Within the Standard Model of particle physics, an important
thermal relic are cosmic neutrinos, while many interesting extensions of the Standard Model
predict new light particles which are even more weakly coupled to ordinary matter and therefore
hard to detect in terrestrial experiments. On the other hand, these elusive particles may be
produced efficiently in the early universe and their gravitational influence could be detectable in
cosmological observables. In this thesis, we describe how measurements of the cosmic microwave
background (CMB) and the large-scale structure (LSS) of the universe can shed new light on the
properties of neutrinos and on the possible existence of other light relics.

These cosmological observations are remarkably sensitive to the amount of radiation in the
early universe, partly because free-streaming species such as neutrinos imprint a small phase shift
in the baryon acoustic oscillations (BAO) which we study in detail in the CMB and LSS power
spectra. Building on this analytic understanding, we provide further evidence for the cosmic
neutrino background by independently confirming its free-streaming nature in different, currently
available datasets. In particular, we propose and establish a new analysis of the BAO spectrum
beyond its use as a standard ruler, resulting in the first measurement of this imprint of neutrinos
in the clustering of galaxies.

Future cosmological surveys, such as the next generation of CMB experiments (CMB-S4), have
the potential to measure the energy density of relativistic species at the sub-percent level and
will therefore be capable of probing physics beyond the Standard Model. We demonstrate how
this improvement in sensitivity can indeed be achieved and present an observational target which
would allow the detection of any extra light particle that has ever been in thermal equilibrium.
Interestingly, even the absence of a detection would result in new insights by providing constraints
on the couplings to the Standard Model. As an example, we show that existing bounds on
additional scalar particles, such as axions, may be surpassed by orders of magnitude.
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1
Introduction

Cosmology is a sensitive probe of particle physics, both within the Standard Model and beyond it.
In fact, cosmological observations have now become precise enough to start complementing labor-
atory and collider experiments. For example, by measuring the radiation density of the universe,
future observations may provide further insights into the properties of neutrinos. Moreover, if
these measurements reach sub-percent level, they have the potential to discover particles that
are more weakly coupled than neutrinos, which are predicted in many interesting models of
physics beyond the Standard Model. In this thesis, we are searching for these elusive particles by
identifying and extracting their robust signatures in cosmological observables.

Experiments at particle accelerators have established the Standard Model (SM) of particle
physics as the description of the elementary building blocks of matter and their non-gravitational
interactions. At the same time, observations of the anisotropies in the cosmic microwave back-
ground (CMB), the fossil radiation from the beginning of the universe, have led to the standard
model of cosmology, which captures the entire evolution of the universe from the hot big bang
until today. Despite the great successes of the standard models of both cosmology and particle
physics, many questions remain unanswered. Strikingly, solutions to some of the cosmological
puzzles may influence those in particle physics and vice versa. For instance, some ingredients of
the cosmological model, such as dark matter and inflation, ask for new microscopic descriptions.
Concurrently, many extensions of the Standard Model give rise to new particles that can be
efficiently produced at the high temperatures in the early universe and may therefore be detectable
in cosmological observables.

About 373 000 years after the big bang, photons decoupled from the rest of the primordial
plasma and the cosmic microwave background was released carrying a treasure-trove of information.
Most of our knowledge about the early universe comes from observations of these relic photons.
As a matter of fact, cosmologists generally study the history and contents of the universe by
detecting relics from the past or extracting their imprints. To probe the time before the epoch of
recombination, we therefore rely either on theoretical extrapolations or the existence of further
relics to get a snapshot of our cosmos. This has been very successfully employed by measuring
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1 Introduction

the relic abundances of the light elements, which were synthesized about three minutes after the
beginning of the universe during big bang nucleosynthesis (BBN).

Roughly one second after the big bang, a thermal background of relic neutrinos was released
when the rate of neutrino interactions dropped below the expansion rate of the universe and
neutrinos were no longer in thermal equilibrium with the rest of the Standard Model. Measuring
this cosmic neutrino background (CνB) would establish a window back to this time, when the
universe was at nearly nuclear densities. Since these neutrinos were a dominant component of the
energy density in the early universe, they played an important role in the evolution of cosmological
perturbations. Extracting the imprints of neutrinos in observations may therefore provide new
insights into the least understood sector of the Standard Model. In fact, as we will show in
this thesis, one of the most remarkable results of the Planck satellite is the detection of cosmic
neutrinos and a confirmation of their free-streaming nature. At present, we can therefore use
cosmological measurements to explore the Standard Model and investigate the history of the
universe back to a time when it was one second old.

Probing even earlier times requires detecting new particles that are more weakly coupled
than neutrinos. Since neutrinos are the most feebly interacting SM particles, these new species
necessarily lie beyond the Standard Model (BSM). There is indeed a lot of circumstantial evidence
from both theoretical considerations and experimental measurements that the Standard Model is
incomplete. In addition to new massive particles, an interesting consequence of many proposals for
BSM physics are extra light species [16], such as axions [17–19], axion-like particles (ALPs) [20],
dark photons [21, 22] and light sterile neutrinos [23]. The search for these particles is one of the
main objectives of particle physics, but detecting them could be difficult in terrestrial experiments
because their couplings might be too small or their masses too large. Interestingly, the temperature
in the early universe was high enough to make the production of weakly-coupled and/or massive
particles efficient. Their gravitational influence could then be detected if the energy density
carried by these particles was significant. This will be the case for light relics which were in
thermal equilibrium with the Standard Model at early times and subsequently decoupled from
the SM degrees of freedom. This sensitivity to extremely weakly interacting particles is a unique
advantage of cosmological probes of BSM physics.

Another advantage of cosmological observations is that they can provide broad constraints
on phenomenological descriptions, whereas particle physics searches can be blind to unknown or
incompletely specified forms of new physics. This means that terrestrial experiments may give
strong constraints on specific scenarios, while cosmological measurements are less sensitive to the
details of the models and can compress large classes of BSM physics into broad categories. This
approach has led to important discoveries in the past: by comparing observations against simple
phenomenological parametrizations, the existence of dark matter (Ωm) and dark energy (ΩΛ) was
established, the baryon asymmetry (η) was identified, and evidence for cosmological inflation (ns)
was presented. We will take a similar path by theoretically describing light thermal relics within
an effective field theory (EFT) framework [24] and experimentally searching for their contribution
to the radiation density in the early universe (Neff).
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Rather remarkably, future cosmological observations, in particular the next generation of
CMB experiments, such as the CMB Stage-4 (CMB-S4) mission [25], have the potential to
determine the value of Neff at the sub-percent level. We find it intriguing that this level of
sensitivity exactly corresponds to the thermal abundance of light relics in minimal scenarios. An
important aspect of this thesis is the realization that the improvement of current constraints by
one order of magnitude would allow us to either detect any particles which have ever been in
thermal equilibrium with the Standard Model, or put strong constraints on their SM couplings.
This sensitivity would therefore not only provide precision tests of the Standard Model, but also a
new window into the very early universe and BSM physics.

Since reaching this threshold may have far-reaching implications, we contribute analytical
and numerical insights into the main cosmological observables to facilitate the optimization of
upcoming experiments. The cosmic microwave background anisotropies, which are the remnants
of sound waves in the primordial plasma, are particularly interesting in this respect. The presence
of neutrinos and other light relics is imprinted in these fluctuations in two notable ways: Their
contribution to the background energy density leads to a characteristic damping of the CMB power
spectra on small scales [26] and their free-streaming nature causes a coherent shift in the locations
of the acoustic peaks [27]. This subtle shift in the temporal phase of the primordial sound waves
has recently been extracted from Planck data [28]. We will present an alternative detection of
this effect and establish a precise link to the underlying particle properties, which will in turn
allow us to probe SM extensions in a complementary way. Furthermore, it will become clear that
future CMB observations will be extremely sensitive to both the damping and the phase shift
of the anisotropy spectrum mainly through measurements of the small-scale anisotropies and
polarization.

The same physics that is imprinted in the CMB also contributed to the initial conditions for
the clustering of matter and may therefore be observable in the large-scale structure (LSS) of
the universe as well. The sound waves in the primordial plasma manifest themselves as baryon
acoustic oscillations (BAO), which we can observe in the distribution of galaxies. This implies
that we should be able to extract the same neutrino-induced phase shift in the BAO spectrum.
As a matter of fact, we will present the first such measurement based on a newly developed
BAO analysis. Moreover, near-future LSS surveys are projected to map more than ten times as
many objects in a much larger cosmic volume than currently operating telescopes. With such
remarkable improvements in sensitivity on the horizon, it is timely to re-assess how the wealth
of incoming CMB and LSS data could sharpen our understanding of the early universe and,
particularly, how they will inform our view of extensions of the standard models of particle physics
and cosmology.
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Outline of the thesis

The rest of this thesis is organized as follows. We first provide a review of the important
aspects of both cosmology and particle physics which underlie the research presented in this
work. This also serves as background material for the later chapters. In Chapter 2, we focus on
the cosmological standard model. We discuss the thermal history of the universe and introduce
the two main observational windows employed in this thesis: the anisotropies of the cosmic
microwave background and the large-scale structure of the universe with its distinct BAO signal.
In Chapter 3, we concentrate on the Standard Model of particle physics and some of its well-
motivated extensions. We collect a few current hints for BSM physics and present an effective
field theory of light species as an efficient tool to study the additional particles that arise beyond
the Standard Model. Furthermore, we unveil the main cosmological parameter studied in this
thesis, the effective number of relativistic species Neff, and analyse the primary signatures of light
relics in cosmological observables.

The remaining chapters consist of the main research results. In Chapter 4, we derive new
constraints on light thermal relics from precise measurements of the radiation density in the early
universe and explicitly demonstrate the sensitivity of future cosmological observations to the
SM couplings of light scalar particles, such as axions. The constraints achievable from cosmology
have the potential to surpass existing bounds from laboratory experiments and astrophysical
searches by orders of magnitude. In Chapter 5, we examine the phase shift in the acoustic
peaks of the CMB as a robust probe of both free-streaming Standard Model neutrinos and new
physics. We find that the physical origin of this signature is limited to either free-streaming
relativistic particles or isocurvature fluctuations. In addition, we provide observational constraints
from Planck data which establish the free-streaming nature of cosmic neutrinos. In Chapter 6,
we explore to what degree these CMB observations can be enhanced by upcoming large-scale
structure surveys. We carefully isolate the information encoded in the shape of the galaxy power
spectrum and in the spectrum of baryon acoustic oscillations. In particular, we propose a new
analysis of the BAO signal and show that the neutrino-induced phase shift can be detected at
high significance in future experiments. In Chapter 7, we implement this analysis and report on
the first measurement of this coherent shift in the peak locations of the BAO spectrum at more
than 95 % confidence in galaxy clustering data collected by the Baryon Oscillation Spectroscopic
Survey (BOSS). Besides being a new measurement of the cosmic neutrino background and its
free-streaming nature, it is also the first application of the BAO signal to early universe physics.
In Chapter 8, we conclude with a brief summary of our results and an outlook.

A series of appendices contains technical details underlying the results presented in the main
part of this thesis. In Appendix A, we provide further details on the calculations underlying the
findings of Chapter 4. In Appendix B, we comment on extensions of the analytic treatment of
the phase shift in Chapter 5. In Appendix C, we collect details of the CMB and LSS forecasts
conducted in Chapter 6. Appendix D finally includes our methods for extracting the broadband
power spectrum of matter fluctuations and the neutrino-induced phase shift as employed in
Chapters 6 and 7.
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Notation and conventions

For ease of reference, we provide a collection of the employed notation and conventions. Table 1.1
contains a list of abbreviations that will commonly be used. Throughout this thesis, we work in
natural units in which the speed of light c, the reduced Planck constant ~ and the Boltzmann
constant kB are set to unity, c = ~ = kB = 1, and the reduced Planck mass is given by
M2

pl = (8πG)−1, with Newton’s constant G. Our metric signature is (−+++) and we use Greek
letters for four-dimensional spacetime indices, µ, ν, . . . = 0, 1, 2, 3. Spatial vectors are written
in boldface, x, or in index notation, xi, with Latin letters, i, j, . . . = 1, 2, 3. Repeated indices
are summed over except in cases where the same index appears unpaired on the other side of
the equation as well. The magnitude of a vector is defined as x ≡ |x| and unit vectors are
hatted, x̂ ≡ x/x. Our Fourier convention is

f̃(k) =

∫
d3x f(x) e−ik·x , f(x) =

∫
d3k

(2π)3
f̃(k) eik·x , (1.1)

where we commonly drop the tilde, f̃(k) → f(k), for ease of notation. Overdots and primes
denote derivatives with respect to conformal time τ and physical time t, respectively. We use τ0

Acronym Expression

BAO Baryon acoustic oscillations
BBN Big bang nucleosynthesis
BOSS Baryon Oscillation Spectroscopic Survey
BSM Beyond the Standard Model (of particle physics)
CDM Cold dark matter
CMB Cosmic microwave background
CMB-S4 CMB Stage-4 (a future CMB experiment)
CνB Cosmic neutrino background
CVL Cosmic variance limit
DES Dark Energy Survey
DESI Dark Energy Spectroscopic Instrument
EFT Effective field theory
EWSB Electroweak symmetry breaking
ΛCDM Standard cosmological model
LSS Large-scale structure (of the universe)
LSST Large Synoptic Survey Telescope
pNGB Pseudo-Nambu-Goldstone boson
QCD Quantum chromodynamics
SM Standard Model (of particle physics)

Table 1.1: Common acronyms used throughout this thesis.
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1 Introduction

for the present time, τrec for the time of recombination and photon decoupling, τeq for matter-
radiation equality, and τin for the time at which we set the initial conditions. We will use a
subscript ‘α’ to denote quantities evaluated at the time τα, such as the radiation energy density
today, ρr,0 = ρr(τ = τ0). As for the radiation content, individual components of the universe (like
photons, matter, neutrinos, etc.) will be denoted by a subscript b = γ,m, ν, · · ·. The conformal
and physical Hubble parameters are H ≡ ȧ/a and H ≡ a′/a, respectively, with the scale factor a
normalized to unity today, a0 ≡ 1. The dimensionfull and dimensionless power spectra Pf (k)

and Pf (k) of a Fourier mode f(k) are defined by

〈
f(k) f∗(k′)

〉
= (2π)3 Pf (k) δ

(3)
D (k − k′) =

(2π)3

k3
Pf (k) δ

(3)
D (k − k′) , (1.2)

where δ(3)D is the three-dimensional Dirac delta function. Finally, statistical error bars are quoted as
one Gaussian standard deviations (1σ, corresponding to about 68 % c.l.), unless stated otherwise.

6



2
Review of Modern Cosmology

Cosmology is the quantitative study of the structure and evolution of the universe. In the last few
decades, it has emerged as a data-driven field of study which has revolutionized our understanding
of the cosmos. The analysis of observations of type Ia supernovae [29, 30], measurements of the
temperature anisotropies in the cosmic microwave background (especially by the satellite missions
COBE [31, 32], WMAP [33, 34] and Planck [35, 36]) and maps of the large-scale structure [37–39]
have contributed decisive insights. Together with important theoretical advances, this has led
to the standard model of cosmology, which describes the roughly 13.8 billion years of cosmic
expansion in terms of just six parameters.

In this chapter, we discuss both the theory and the observations underlying modern cosmology.
In Section 2.1, we consider spatially homogeneous and isotropic spacetimes, collect the basic
equations governing the universe on the largest scales, and introduce the ΛCDM model. In
Section 2.2, we study the thermal history of the universe, including the cosmic neutrino and
microwave backgrounds. In Section 2.3, we move beyond homogeneity and consider small
fluctuations around the smooth universe. Apart from the mechanism underlying the growth
and presence of structure, we will also encounter the sound waves in the primordial plasma
which are of tremendous observational significance. In Section 2.4, we finally review the cosmic
microwave background anisotropies, the large-scale structure of the universe and the baryon
acoustic oscillations. These are the main cosmological observables employed in the rest of this
thesis.

2.1 Homogeneous Cosmology

Cosmological observations indicate that the universe is both spatially homogeneous and isotropic
on large scales and/or at early times. This is the basis of modern cosmology. In the following, we
study the implications of these profound findings for the shape and content of the universe (§2.1.1),
and introduce the ΛCDM model which has emerged as the standard cosmological model (§2.1.2).
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2 Review of Modern Cosmology

2.1.1 Geometry and Dynamics of the Universe

A spatially homogeneous and isotropic spacetime can be described by the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric

ds2 = ḡµν dxµ dxν = −dt2 + a2(t)γij dxi dxj , (2.1)

where γij is the induced metric on the spatial hypersurfaces. The FLRW metric (2.1) depends on
one time-dependent function, the scale factor a(t). To see this, it is instructive to decompose ḡµν
into a scalar, ḡ00, a three-vector, ḡi0, and a three-tensor, ḡij . Homogeneity requires that the mean
value of any scalar can only be a function of time. Absorbing this function into a redefinition of
the time coordinate, we get ḡ00 = −1. Isotropy on the other hand implies that the mean value
of any three-vector has to vanish, i.e. ḡi0 ≡ 0. Finally, the mean value of the three-tensor ḡij
has to be proportional to the three-metric γij based on isotropy. In turn, homogeneity restricts
the three-curvature to be the same everywhere and the proportionality coefficient to be only
a function of time. We therefore have ḡij = a2(t)γij , with γij being restricted by a constant
three-curvature R(3). Since there are three unique three-metrics that lead to R(3) = const, the
spatial geometry of the universe can only be positively curved (R(3) > 0), flat (R(3) = 0) or
negatively curved (R(3) < 0).

Since we mostly rely on observations of photons to study the universe, we have to consider the
propagation of light. It is therefore useful to work with a metric that is conformally invariant
to Minkowski space. This can be achieved by introducing conformal time dτ ≡ dt/a. As a
consequence, we can express the FLRW metric as

ds2 = a2(τ)
(
−dτ2 + dx2

)
, (2.2)

where we defined dx2 ≡ γij dxi dxj . Observations of the CMB have constrained the three-curvature
to be close to zero, which implies that the flat FLRW metric describes the global geometry of the
universe to very good approximation. For the rest of this thesis, we will therefore neglect spatial
curvature, R(3) = 0, in which case γij = δij in Cartesian coordinates.

Of the four fundamental forces of Nature, only the gravitational force is relevant on cosmological
scales because the other three are shielded by opposite charges or confined to subatomic scales.
According to General Relativity, the dynamics of the universe is therefore governed by the Einstein
field equations [40],

Gµν = 8πGTµν , (2.3)

where G is Newton’s constant, and the Einstein tensor Gµν depends on the metric gµν and its
first two derivatives. The energy-momentum tensor Tµν on the right-hand side captures the
entire content of the universe. The fact that energy-momentum is conserved, ∇µT

µν = 0, is
automatically ensured by the Bianchi identities.

The form of the energy-momentum tensor in a homogeneous and isotropic universe can be
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2.1 Homogeneous Cosmology

derived by following a similar argument as for the metric. It is again convenient to decompose Tµν
into a scalar, T00, a three-vector, Ti0, and a three-tensor, Tij . As above, homogeneity implies
that the scalar can only depend on time, i.e. T̄00 = ρ̄(t), with an arbitrary function ρ̄(t). Isotropy
again requires T̄i0 ≡ 0 since there would otherwise be a non-zero energy flux. By isotropy we
also have Tij ∝ gij , with homogeneity restricting the proportionality coefficient to be a function
of time alone. The energy-momentum tensor of a homogeneous and isotropic background can
therefore only take the following form:

T̄00 = ρ̄(t) , T̄i0 = T̄0j = 0 , T̄ij = P̄ (t) gij . (2.4)

This is the energy-momentum tensor of a perfect fluid as seen in the reference frame of a
comoving observer. The content of a spatially homogeneous and isotropic universe can therefore
be characterised by the energy density ρ̄ = ρ̄(t) and the pressure P̄ = P̄ (t) in the rest frame of
the cosmic fluid.

We obtain the evolution equations of the cosmic fluid by plugging the conformal FLRW met-
ric (2.2) and the energy-momentum tensor (2.4) into the Einstein equations (2.3). Given the
imposed symmetries, they simplify dramatically to the first and second Friedmann equations [41],

3H2 = 8πGa2 ρ̄ , 2Ḣ+H2 = −8πGa2 P̄ , (2.5)

where we introduced the (conformal) Hubble rate H = ȧ/a.1 By combining these equations, or by
directly employing energy-momentum conservation, we obtain the continuity equation,

˙̄ρ+ 3H (ρ̄+ P̄ ) = 0 , (2.6)

from which we can read off the evolution of the cosmic fluid with a given equation of state w ≡ P̄/ρ̄.
In this thesis, we will mostly be concerned with two types of cosmological content: radiation
with wr = 1/3, i.e. ρ̄r ∝ a−4, and (pressureless) matter with wm ≈ 0, i.e. ρ̄m ∝ a−3. It is easy
to see that radiation dominates at early times in a universe with these two components, but
matter takes over as the main constituent after matter-radiation equality at aeq ≡ ρ̄r,0/ρ̄m,0, with
ρb,0 = ρb(τ = τ0). The third component, which is important in our universe and dominates at
late times, is dark energy. Many observational clues point towards dark energy being described
by an equation of state of wΛ = −1 with ρΛ = const and, hence, the cosmological constant Λ (see
e.g. [42]).

2.1.2 Standard Model of Cosmology

It is rather remarkable that all current cosmological data (e.g. [34, 36, 39, 43]) is fit by a simple
six-parameter model—the ΛCDM model. As the name suggests, at late times, the universe is

1For convenience, we invert the otherwise standard notation and use overdots (primes) to denote derivatives
with respect to conformal (physical) time τ (t), i.e. ȧ ≡ da/dτ and a′ ≡ da/dt. The physical Hubble rate is therefore
given by H = a′/a.
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2 Review of Modern Cosmology

dominated by the cosmological constant Λ and cold dark matter (CDM). At the same time, these
are the components that we know least about. The radiation energy density is very small today,
but photons and neutrinos still vastly dominate the entropy of the universe due to their large
number densities of about 411 cm−3 and 112 cm−3, respectively (cf. §2.2.3 and §2.2.4). Finally,
cosmologists refer to the visible matter comprised of the known Standard Model particles as
baryonic matter, which, for most of the universe’s history, consists mainly of electrons and protons.

The ΛCDM model includes two parameters characterising the initial conditions, namely the
amplitude As and the tilt ns of the almost scale-invariant spectrum of primordial curvature
perturbations,

Pζ(k) = As

(
k

k0

)ns−1

, (2.7)

where the arbitrary pivot scale is commonly set to k0 = 0.05 Mpc−1. Such a spectrum is notably
predicted by generic inflationary models [44].

The remaining four parameters are associated with the geometry and composition of the
universe. The matter content of the universe is described by the physical baryon and cold dark
matter densities, ωb ≡ Ωbh

2 and ωc ≡ Ωch
2, where Ωa ≡ 8πG/(3H2

0 ) ρa, with reduced Hubble
constant h ≡ H0/

(
100 km s−1 Mpc−1). Sometimes the dark matter density Ωc is traded for the

total matter density Ωm = Ωb +Ωc +Ων , where Ων ≈
∑

imνi/94.1 eV is the (small) contribution
of massive neutrinos to the matter density.2 Instead of the Hubble constant H0, we often use

10−9 10−8 10−7 10−6 10−5 10−4 10−3 0.01 0.1 1.0

a

10−4

10−3

0.01

0.1

1.0

Ωi

photons

neutrinos

CDM

baryons

Λ

Figure 2.1: Evolution of the fractional energy densities Ωi for photons, neutrinos, cold dark
matter, baryons and dark energy described by a cosmological constant within the standard
ΛCDM model. The dashed red line assumes massive neutrinos with

∑
imνi ≈ 58 meV, whereas

the solid red line takes these particles to be massless.

2The minimal sum of masses from neutrino oscillation experiments is about 58 meV [45] and in particular cosmo-
logical measurements are closing in on this value with a current upper bound of

∑
i mνi < 0.23 eV (95 % c.l.) [36].

As the masses are so small that neutrinos have been (ultra-)relativistic for a large part of cosmological history,
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2.2 Thermal History

Parameter Fiducial Value Description

ωb 0.02230 Physical baryon density ωb ≡ Ωbh
2

ωc 0.1188 Physical dark matter density ωc ≡ Ωch
2

100 θs 1.04112 100× angular size of the sound horizon at decoupling
τ 0.066 Optical depth due to reionization

ln(1010As) 3.064 Log of scalar amplitude (at pivot scale k0 = 0.05 Mpc−1)
ns 0.9667 Scalar spectral index (at pivot scale k0 = 0.05 Mpc−1)

Neff 3.046 Effective number of (free-streaming) relativistic species
Yp 0.2478 Primordial helium fraction

Table 2.1: Parameters of our reference cosmological model and their fiducial values based on [36].

the angular size of the sound horizon at photon decoupling (see below), θs ≡ rs(zrec)/DA(zrec),
where rs is the physical sound horizon and DA is the angular diameter distance, both evaluated
at the redshift of decoupling, zrec. The parameter θs receives a contribution from the dark energy
density ΩΛ ≡ Λ/(3H2

0 ). We note that ΛCDM assumes the universe to be exactly flat, R(3) ≡ 0,
i.e. Ωr + Ωm + ΩΛ ≡ 1, where the radiation density is comprised of photons at a temperature
of T0 = 2.7255 K = 0.235 meV [46] as well as three relativistic neutrino species. We refer to
Section 3.3 for further details on the radiation density and neutrinos in particular, but note that
neutrinos carry a sizeable fraction of the energy density in the early universe. As illustrated in
Fig. 2.1, the history of the universe can therefore be divided into three large epochs: the radiation-
dominated, matter-dominated and dark energy-dominated eras. The standard six-parameter
model is completed by the optical depth τ due to reionization in the late universe.3 In Table 2.1,
we list our fiducial values of the ΛCDM parameters, based on the Planck best-fit cosmology [36].
Unless otherwise stated, these values will be used throughout this thesis.

2.2 Thermal History

We now turn our attention to the precise evolution of the different species in the universe. This
is mainly a story of (local) thermal equilibrium, production and decoupling of particles. Before
we provide any details, we give a brief history of the main events in the thermal history of the
universe (§2.2.1). We then discuss its thermodynamic description at early times and the notion of
particles freezing out (§2.2.2). We conclude the section by reviewing the formation of the cosmic
neutrino and microwave backgrounds (§2.2.3 and §2.2.4). They are of particular importance in
this thesis.

especially around the time of photon decoupling (Trec ≈ 0.26 eV), their effect on the aspects of interest in this thesis
is small. For simplicity, we will therefore treat neutrinos as massless particles throughout, except in the BOSS
cosmology of Chapter 7.

3Although we use the same symbol to denote the optical depth and conformal time, its meaning will always be
clear from context.
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2 Review of Modern Cosmology

2.2.1 Brief History of the Hot Big Bang

We take the beginning of the hot big bang to be the end of inflation when the particles of the
Standard Model (and possibly its extensions) were produced during reheating. The associated
energy scale might be as large as 1016 GeV and all (known) particles were massless. When the
temperature of the universe dropped to about 100 GeV, the electroweak symmetry of the SM
became spontaneously broken. As a consequence, the SM particles acquired their mass through
the Higgs mechanism, but most particles were still relativistic. During the quark-gluon transition,
quarks and gluons became confined in composite hadronic states. This event occurred around
the temperature of the non-perturbative QCD scale, T ∼ 150 MeV, and is usually denoted as
the QCD phase transition although it might be a cross-over. When the universe was about one
second old, corresponding to a temperature of T ∼ 1 MeV, neutrinos decoupled from the rest
of the primordial plasma and the cosmic neutrino background was released because the weak
interactions were no longer efficient enough to maintain local thermal equilibrium (cf. §2.2.3).

Around the same time, the interactions between neutrons and protons became inefficient
leading to a relic abundance of neutrons. After about three minutes, the light elements, in
particular hydrogen and helium, were synthesized from these neutrons and protons during big
bang nucleosynthesis. By numerically solving coupled Boltzmann equations, the primordial
helium fraction is predicted to be Yp = 4nHe/nb ∼ 0.25, with the precise value depending on
the baryon density and the amount of radiation in the universe. This estimate agrees well
with both the observations of primordial abundances (see e.g. [47]) and the value inferred from
CMB measurements (see e.g. [36]). In fact, BBN has become one of the main tools to constrain
the evolution of the universe above the MeV scale. Moreover, the theoretical predictions for the
primordial abundances as a function of ωb and ωr can be used to infer the value of Yp that is
consistent within the ΛCDM model. We refer to this procedure as imposing consistency with BBN.

The last major event in the thermal history of our universe was the formation of the first
hydrogen atoms, which is referred to as recombination (cf. §2.2.4). Since the number density of
free electrons dropped sharply as a consequence, photons decoupled from matter at Trec ≈ 0.26 eV
about 373 000 years after the beginning of the universe. They have been free-streaming ever since
and we observe these relics of the big bang today as the cosmic microwave background.

2.2.2 In and Out of Equilibrium

Throughout the thermal evolution of the universe, the interaction rate of particles, Γ ∼ nσ, with
number density n and thermally-averaged cross section σ, competes with the expansion rate H.
As long as Γ � H, thermal equilibrium can be maintained locally because there are many particle
interactions per Hubble time and the evolution is quasi-stationary. On the other hand, if the
universe at some point expands faster than these particles can interact with each other, Γ � H,
they are no longer in equilibrium and evolve separately. In the following, we will discuss both
regimes, including the transition period when Γ ∼ H.
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2.2 Thermal History

Thermal equilibrium

At early times, all SM particles were in local thermal equilibrium, i.e. the interactions between
them were efficient and kept these particles locally in close thermal contact. In phase space, every
particle species a can be described by its distribution function fa(t,x,p), the number of particles
per unit phase space volume, with momentum p. Homogeneity and isotropy dictate that the
distribution function can neither depend on the position x nor the direction of the momentum p̂,
which implies that fa(t,x,p) → f̄a(t, p). The thermal Bose-Einstein and Fermi-Dirac distribution
functions are given by

f̄a(p) =
[
e(Ea(p)−µa)/Ta ∓ 1

]−1
, (2.8)

for bosons (−) and fermions (+), respectively, where Ea is the relativistic energy which includes
the mass ma. The chemical potentials µa are likely small for all SM species and, in particular,
vanish for photons (since the number of photons is not conserved). For electrons, for instance,
we can estimate µe/T ∼ 10−9 because the universe is electrically neutral, i.e. the proton number
density is equal to the difference in the number densities of electrons and positrons, np = ne − n̄e,
the baryon-to-photon ratio is η = nb/nγ ≈ np/nγ ∼ 10−9 and µe/T ∼ (ne− n̄e)/nγ . For simplicity,
we therefore set the chemical potentials to zero, µa ≡ 0, from now on. All species which are in
thermal equilibrium with one another of course share the same temperature Ta = T .

Often, we are only interested in the momentum-integrated quantities. Integrating the distribu-
tion function yields the number density

na = ga

∫
d3p

(2π)3
fa(x,p) , (2.9)

where ga is the number of internal degrees of freedom of species a. Similarly, we obtain the energy
density and pressure from the distribution function via the weighted integrals

ρa = ga

∫
d3p

(2π)3
Ea(p)fa(x,p) , Pa = ga

∫
d3p

(2π)3
p2

3Ea(p)
fa(x,p) . (2.10)

In the non-relativistic limit, ma � Ta, it is easy to see that ρa ≈ mana and Pa � ρa, i.e. a non-
relativistic gas of particles behaves like pressureless matter. If they become non-relativistic while
being in thermal contact with other species, their number and energy densities get exponentially
suppressed, fa → e−ma/T . Physically speaking, this arises because particles and anti-particles
annihilate while the reverse process is kinematically forbidden below the mass threshold. As a
consequence, the primordial plasma is dominated by relativistic species. If particles freeze out,
on the other hand, they retain their equilibrium distribution function and do not get further
depleted which results in a finite relic abundance. This explains why dark matter may be cold
and comprised of thermal relics.

In the relativistic limit, ma � Ta, we recover the equation of state of radiation, Pa = 1
3ρa.

Taking the thermal distributions (2.8) and defining the temperature of the universe as the photon
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2 Review of Modern Cosmology

temperature, T ≡ Tγ , the total radiation energy density can be written as

ρ̄r =
∑
a

ρ̄a =
π2

30
g∗(T )T

4 , (2.11)

where we summed over all relativistic species and introduced the effective number of relativistic
degrees of freedom

g∗(T ) =
∑
a=b

g∗,a(T ) +
7

8

∑
a=f

g∗,a(T ) =
∑
a

ga

(
Ta
T

)4(
1− 1

8
δaf

)
. (2.12)

Here, the Kronecker delta δaf vanishes for bosons, a = b, and equals unity for fermionic species,
a = f , to account for their relative Fermi-Dirac suppression factor of 7/8. We reiterate that
all particles which are in thermal equilibrium with photons have the same temperature Ta = T ,
but the temperature of decoupled species may be different, Ta 6= T . In the Standard Model,
this is only relevant for neutrinos after electron-positron annihilation (cf. §2.2.3). However, this
difference will play a prominent role in Section 3.3 when we discuss additional light relics which
might appear in BSM models. We also note that the effective number of relativistic degrees of
freedom g∗ is approximately constant away from mass thresholds, T ∼ ma, but decreases when a
species becomes non-relativistic and its contribution to the energy density becomes negligible.

The number of internal degrees of freedom ga of a particle species depends on some of its
properties (cf. Table 2.2). For example, real scalar particles carry one degree of freedom, gs = 1,
while Weyl fermions have two spin states, gf = 2. Since massless vector bosons are transversely
polarized, they provide gv = 2 degrees of freedom, while their massive counterparts have an
additional longitudinal polarization, resulting in gv = 3. Accounting for all SM particles, there
are effectively g∗,SM = 106.75 relativistic degrees of freedom at high temperatures. After electron-
positron annihilation around T ∼ 0.5 MeV, the only relativistic SM particles are photons and
neutrinos with gγ = 2 and gν = 3 · 2 = 6. The entire evolution of g∗(T ) within the Standard
Model is displayed in Fig. 2.2. Since the quarks and gluons are confined into hadrons during
the QCD phase transition, and pions are the only relativistic composite particles afterwards, the
value of g∗(T ) is reduced by about one order of magnitude around T ∼ 150 MeV. This will be
of further importance in subsequent chapters and dramatically impact the detectability of light
BSM relics which might have decoupled at very early times.

Spin 0 1/2 1

Type Real Complex Weyl Dirac Massless Massive
ga 1 2 2 4 2 3

Table 2.2: Number of internal degrees of freedom, ga, for scalar particles, spin-1/2 fermions and
vector bosons.
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Figure 2.2: Evolution of the effective number of relativistic degrees of freedom and those in
entropy, g∗(T ) and g∗S(T ), assuming the SM particle content. We used the state-of-the-art lattice
QCD calculations of [48] for 20 MeV . T . 150 GeV and numerically evaluated the left-hand sides
of (2.11) and (2.13) otherwise. The small differences between g∗(T ) and g∗S(T ) for T & 1 MeV
arise from non-perturbative QCD effects which are not captured in (2.14). The gray bands indicate
the QCD phase transition and neutrino decoupling, and the dotted lines denote some of the mass
scales at which SM particles and anti-particles annihilate.

When describing the thermal history of the universe, it is convenient to track conserved
thermodynamic quantities. According to the second law of thermodynamics, the entropy of a
system can only be constant or increase. For relativistic species, the entropy density is given by

s =
∑
a

sa =
∑
a

ρ̄a + P̄a
Ta

=
2π2

45
g∗S(T )T

3 , (2.13)

where we defined the effective number of relativistic degrees of freedom in entropy

g∗S(T ) =
∑
a

ga

(
Ta
T

)3(
1− 1

8
δaf

)
, (2.14)

in analogy to the definition of g∗(T ) in (2.12). In equilibrium, the entropy in a comoving volume is,
in fact, conserved which implies sa3 = const. Moreover, the entropy is approximately constant even
out of equilibrium because any non-equilibrium entropy production, e.g. from decaying particles, is
usually small compared to the large entropy in photons. We can therefore treat the expansion of the
universe as basically adiabatic. When particles and anti-particles annihilate, the released entropy
is then redistributed among all species in thermal equilibrium. This implies that the temperature
of the thermal bath redshifts slightly less than without the annihilation events, T ∝ g

−1/3
∗S a−1.
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Beyond equilibrium

If the SM particles had remained in thermal equilibrium throughout the history of the universe,
Γ � H, any past events would be irrelevant. In this case, our universe would almost entirely
consist of photons and would not be an interesting place. Deviations from equilibrium, Γ . H,
are therefore crucial. The full evolution of a species a is determined by the Boltzmann equation,
which is schematically given by

dfa
dt

= C[fa, {fb}] . (2.15)

This provides the time evolution of the distribution function fa(t,x,p) of each particle species a as
a function of its interactions with all other particles in the system. These interactions are captured
by the collision term C on the right-hand side. Solving the time evolution of an entire system may
therefore involve a set of Boltzmann equations which can become computationally involved. If an
exact treatment is not necessary, it is therefore advantageous to follow an approximate scheme.

At early times, the interactions are frequent enough that they keep the SM particles in thermal
equilibrium. At some point, however, the interaction rate of a species may become of equal size
to the Hubble rate,

Γ(T ) ∼ H(T ) , (2.16)

and these particles freeze out, i.e. they loose their thermal contact with other species and decouple.
This is, of course, not an instantaneous phenomenon at a specific freeze-out temperature TF
defined by Γ(TF ) = H(TF ). Having said that, freeze-out usually happens faster than a few Hubble
times and the instantaneous decoupling limit often provides rather accurate estimates for the relic
abundances at temperatures T � TF when Γ � H. We will therefore usually work within this
approximation and avoid solving a set of Boltzmann equations.

Given the instantaneous decoupling limit, we can get qualitative insights into the competition
between the interaction and the expansion rate in the early universe. By the first Friedmann
equation (2.5), the Hubble rate in the radiation-dominated epoch is given by

H(T ) =

√
ρ̄r(T )

3M2
pl

=

√
π2

90
g∗(T )

T 2

Mpl
, (2.17)

where we inserted (2.11) and defined the reduced Planck mass Mpl ≡ (8πG)−1/2 ≈ 2.4 × 1018 GeV.
Away from mass thresholds, in particular for T & 100 GeV, the Hubble rate therefore has a
quadratic temperature dependence, H ∝ T 2. This means that any interaction with rate Γ ∝ Tm

and m > 2 has the chance to be in thermal equilibrium at high enough temperatures and freeze out
at some later point. In the SM, the particles generally follow Γ ∝ n ∝ T 3 above the electroweak
symmetry breaking (EWSB) scale which implies that all particles (except gravitons which only
have Planck-suppressed couplings) are in thermal equilibrium in the early universe. On the
other hand, particles whose interactions were governed by rates Γ ∝ Tm with m < 2 would not
be in thermal equilibrium at early times, but might have the possibility to come into thermal
equilibrium later. This phenomenon is often referred to as freeze-in.
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2.2.3 Cosmic Neutrino Background

We are now in the position to discuss the cosmic neutrino background which is one of the main
subjects of this thesis. Neutrinos interact with the rest of the Standard Model only through the
weak force. Because neutrinos are, in fact, the most weakly interacting SM particles, they are
the first to decouple from the primordial plasma. There are in particular two processes, which
keep these particles in thermal equilibrium at high temperatures: pair conversion of neutrinos
into leptons (especially electrons and positrons), ν + ν̄ ↔ l + l̄, and neutrino scattering off of
leptons, ν + l ↔ ν + l. For energies far below the mass of the weak gauge bosons, T � 80 GeV,
the corresponding cross section is σ ∼ G2

FT
2, with Fermi’s constant GF ≈ 1.2 × 10−5 GeV−2. The

weak interaction rate for neutrinos is therefore given by Γν ∼ G2
FT

2n̄e ∝ G2
FT

5, where n̄e is the
electron number density in equilibrium. Neutrinos thus freeze out around a temperature of

TF,ν ∼
( √

g∗

G2
FMpl

)−1/3

∼ 1 MeV , (2.18)

when photons, electrons/positrons and neutrinos were the only relativistic particles left in the
primordial plasma. After neutrinos decouple, they maintain their relativistic Fermi-Dirac distribu-
tion function fν(p) ≈ [exp(p/Tν) + 1]−1. Since the momentum p redshifts according to p ∝ a−1,
the neutrino temperature has to have the same scaling and evolve as Tν ∝ a−1.

Since we have measured the temperature of photons T very well from the black-body spectrum
of the CMB (see below), we want to relate the neutrino temperature Tν to this quantity. Until
electrons and positrons annihilate shortly after neutrinos decouple, the temperatures are of course
the same, Tν = T . As noted above, however, the annihilation process releases the entropy of
electrons and positrons. As a consequence, over some short period, the photon bath cools more
slowly than Tν ∝ a−1, which implies T > Tν henceforth. In the limit of perfect and instantaneous
neutrino decoupling,4 electrons/positrons are the only relativistic particles remaining in thermal
equilibrium with photons before the annihilation. The effective numbers of the relativistic degrees
of freedom in entropy, which are in thermal equilibrium at the temperatures T> and T< before
and after the annihilation, are therefore given by

g∗S(T>) = gγ +
7

8
ge = 2 +

7

8
· 4 =

11

2
, g∗S(T<) = gγ = 2 , (2.19)

respectively. Since the entropy (2.13) of the thermal bath is conserved in a comoving volume and
Tν ∝ a−1, we can easily relate the photon and neutrino temperatures:

g∗S
T 3

T 3
ν

= const ⇒ Tν
Tγ

=

(
g∗S(T<)

g∗S(T>)

)1/3
=

(
4

11

)1/3
. (2.20)

The measured photon temperature, T0 = 2.7255 K, implies that the CνB has a thermal spectrum
with a temperature of Tν,0 ≈ 1.95 K today. In consequence, the number density of cosmic neutrinos

4We will come back to this assumption and correct for it in Section 3.3.
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is very large, n̄ν ≈ 112 cm−3, and, in fact, exceeds the flux from astrophysical neutrino sources,
such as our Sun. Nevertheless, the direct detection of the CνB is extremely challenging because
the neutrino distribution peaks at the very small energy of Tν,0 ≈ 0.17 meV. Having said that, as
we will also show in this thesis, there is more and more indirect evidence for its existence.

2.2.4 Cosmic Microwave Background

A very important event in the thermal history of the universe is the formation of the first atoms and
the decoupling of photons. The observation of these photons, which make up the cosmic microwave
background, has ultimately led to a number of major breakthroughs in modern cosmology and is
still one of the main sources of information about our universe.

From the formation of the CνB, we fast forward about 250 000 years in cosmic history.
In the meantime, the light elements, in particular helium, were synthesized during big bang
nucleosynthesis and the universe entered into the matter-dominated epoch. The primordial plasma
at that time consisted of (many) photons, free electrons and ionized nuclei (mostly protons).
Compton scattering, e− + γ ↔ e− + γ, tightly coupled photons and electrons resulting in a small
mean free path for photons. In turn, electrons strongly interacted with protons via Coulomb
scattering, e− + p+ ↔ e− + p+. Finally, electromagnetic reactions such as those forming/ionizing
neutral hydrogen, e− + p+ ↔ H + γ, kept the baryons and photons in equilibrium. However, once
the universe cooled to a temperature of about 0.4 eV, the ionization of neutral hydrogen became
less and less efficient. This is usually referred to as recombination although it is the first time
that electrons and protons combined without being ionized again immediately.

By this time, photon-electron scattering is governed by Thomson scattering, which is the
low-energy limit of Compton scattering and has an interaction rate of Γγ ∼ neσT , with constant
Thomson cross section σT . However, the number density of free electrons ne got reduced
dramatically by the increasing amount of neutral hydrogen and the Thomson scattering rate Γγ

dropped. When Γγ . H, the mean free path of photons became longer than the horizon size and
the photons decoupled from matter. This happened at a temperature of about Trec ≈ 0.26 eV
corresponding to a redshift of z ≈ 1090. These photons have since freely streamed through the
universe effectively unimpeded and are what we observe as the CMB today.

Recombination is not instantaneous, but requires a finite time, i.e. some photons encountered
their last scattering event earlier than others while the plasma was still hotter.5 This results
in the so-called last-scattering surface to have a finite width. However, although these photons
last-scattered at slightly different temperatures, we observe the CMB with an almost perfect
black-body spectrum at a single temperature of T0 = 2.7255 K today. We do not measure a
spectrum comprised of a set of black-body spectra because the photons which decoupled earlier
redshifted according to T ∝ a−1, which is exactly the decrease in temperature that the photons
which last-scattered later experienced as well. It was this uniform background that Penzias and

5Recombination and (photon) decoupling are often used synonymously, in particular when referring to the time
of decoupling, but actually are different processes. We will keep these two notions distinct in those cases where it is
important and it will be apparent in all other cases.
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Wilson discovered in 1965 [49] and whose black-body spectrum was measured exquisitely by the
FIRAS instrument on the COBE satellite in the early 1990s [50]. In the main chapters of this
thesis, we will get a glimpse of the wealth of information about our universe that is transmitted
by these CMB photons.

2.3 Inhomogeneous Cosmology

So far, we have discussed the perfectly homogeneous and isotropic universe. This is an extremely
good approximation on large scales, but breaks down at smaller distances. On the cosmological
scales of interest to us, however, the spacetime is well described by perturbation theory around
FLRW. For our applications, it will, in fact, be sufficient to work at linear order in perturbations as
the departure from spatial homogeneity and isotropy is small. For instance, the CMB temperature
varies across the sky at the level of one part in 104 reflecting small spatial variations in the density
of the primordial plasma (see below). Of course, this approach breaks down when high-density
regions, such as galaxies, form through the gravitational instability of these small fluctuations. In
the following, we will introduce first-order cosmological perturbation theory, and show how the
large-scale structure of the universe formed and evolved (§2.3.1). Studying the perturbations in
the primordial photon-baryon fluid will reveal the presence of sound waves which have since been
imprinted in several cosmological observables (§2.3.2).

2.3.1 Structure Formation

Metric and matter fluctuations are coupled by the Einstein equations and, therefore, have to
be treated simultaneously. We write the perturbations of the FLRW metric (2.2) and of the
energy-momentum tensor of a perfect fluid (2.4) as

gµν(τ,x) = ḡµν(τ) + δgµν(τ,x) , Tµν(τ,x) = T̄µν(τ) + δTµν(τ,x) . (2.21)

Due to the coordinate independence of general relativity, these perturbations are not uniquely
defined. For example, the metric perturbations can be non-zero, δgµν 6= 0, even though the
spacetime is described by a perfect FLRW universe, just in a different set of coordinates, gµν(τ,x) =
ḡµν(τ

′,x′). We therefore choose a particular coordinate system (or ‘fix the gauge’) when defining
the metric perturbations. It is useful to decompose the perturbations in purely scalar, vector
and tensor components which, at linear order, evolve separately under the Einstein equations.
In this thesis, we will focus on the scalar degrees of freedom and, therefore, neglect vector and
tensor perturbations from now on. We refer to the seminal papers [51, 52] (see also [27, 53–56], for
instance) for further details on these points and general treatments of cosmological perturbation
theory. We choose to work in (conformal) Newtonian gauge where the scalar part of the metric is
given by

ds2 = a2(τ)
[
−(1 + 2Φ) dτ2 + (1− 2Ψ)δij dxi dxj

]
. (2.22)
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The name of this gauge stems from the fact that the perturbations Φ and Ψ are related to the
(Newtonian) gravitational potential with Φ controlling the motion of non-relativistic particles
and Ψ being determined by the Poisson equation on small scales.

Every energy-momentum tensor has four scalar degrees of freedom which are related to the
density ρ, the pressure P , the bulk velocity vi and the anisotropic stress Σij . Since the contributions
of different species are simply added, we define the perturbed energy-momentum tensor separately
for each species a as

T 0
0,a = −(ρ̄a + δρa) , T 0

i,a = (ρ̄a + P̄a)vi,a , T ij,a = (P̄a + δPa)δ
i
j + (ρ̄a + P̄a)Σ

i
j,a . (2.23)

The scalar part of the velocity can be written as vi,a = −∇iua, where ua is the velocity potential.
Similarly, the anisotropic stress tensor Σij,a can be expressed as Σij,a = 3

2(∇i∇j − 1
3δij∇

2)σa,
where σa is the scalar potential of the anisotropic stress and the factor of 3

2 was introduced for
later convenience. Instead of the density perturbation δρa we often employ the dimensionless
overdensity

δa ≡
δρa
ρ̄a

. (2.24)

The previously introduced equation of state wa ≡ P̄a/ρ̄a and the speed of sound c2a ≡ δPa/δρa

relate the (adiabatic) pressure Pa to the density ρa, which effectively removes the pressure as a
free variable for adiabatic fluctuations.

The evolution of the remaining three matter and two metric perturbations can be derived using
the conservation of the energy-momentum tensor and the (linearised) Einstein equations. Energy-
momentum conservation for each decoupled species, i.e. those without energy and momentum
transfer, implies the continuity and Euler equations,

δ̇a = (1 + wa)
(
∇2ua + 3Ψ̇

)
− 3H

(
δPa
δρa

− wa

)
δa (2.25)

u̇a = −
[
H(1− 3wa) +

ẇa
1 + wa

]
ua +

1

1 + wa

δPa
δρa

δa +∇2σa +Φ . (2.26)

These two equations can be combined into a second-order differential equation for the density
contrast with a source term comprised of the other three perturbations. For adiabatic fluctuations,
this evolution equation simplifies to

δ̈a + χaδ̇a − c2a∇2δa = (1 + wa)
(
∇4σa +∇2Φ+ 3Ψ̈ + 3χaΨ̇

)
, (2.27)

where χa ≡ H(1−3c2a) is the Hubble drag rate. The two metric potentials Φ and Ψ are determined
by the following first-order Einstein equations:

∇2Ψ− 3H(Ψ̇ +HΦ) = 4πGa2 δρ , (2.28)

Ψ̈ +H(2Ψ̇ + Φ̇) + (2Ḣ+H2)Φ +
1

3
∇2(Φ−Ψ) = 4πGa2 δP , (2.29)
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where δρ ≡
∑

a δρa and δP ≡
∑

a δPa are the total density and pressure perturbations, respectively.
Equation (2.28) is known as the relativistic Poisson equation with the density perturbation sourcing
the metric potentials. Finally, the spatial trace-free part of the Einstein equations results in the
constraint equation

Φ−Ψ = −12πGa2 (ρ̄+ P̄ )σ , (2.30)

where (ρ̄+P̄ )σ ≡
∑

a(ρ̄a+P̄a)σa. This implies that the metric potentials are equal for vanishing σa.
If a finite anisotropic stress potential σa is present, its evolution equation can be obtained from
the corresponding (linearised) Boltzmann equation (cf. §5.2.3). In the standard cosmological
model, free-streaming neutrinos notably induce a small anisotropic stress, but are essentially the
only such source. This closes the system of equations and we can solve the entire evolution at first
order in cosmological perturbation theory. We commonly decompose each variable into Fourier
modes denoted by the same symbol, e.g.

δk(τ) =

∫
d3x e−ik·x δ(τ,x) , (2.31)

and often suppress the mode index, δ(τ) = δk(τ), for convenience. This decomposition is
particularly helpful as each Fourier mode evolves separately under the linear evolution equations.

When applying these evolution equations to our universe, we attempt to solve an initial value
problem. It is convenient to set the initial conditions at sufficiently early times when all scales of
interest in current observations were outside the Hubble radius, k � H. As current observations
strongly suggest adiabatic initial conditions, we will usually assume these in this thesis.6 Adiabatic
fluctuations are characterised by the fact that the initial overdensities of all species are related
according to (1+wb) δa,in = (1+wa) δb,in, i.e. for example δr,in = 4 δm,in/3. They can equivalently
be described as perturbations induced by a common local shift in time δτ(x) of all background
quantities, δρa(τ,x) = ρ̄a(τ + δτ(x)) − ρ̄a(τ). From this point of view, it might not be too
surprising that generic single-field slow-roll models of inflation provide adiabatic initial conditions
for the hot big bang given by

δa,k(τin) = −3(1 + wa)ζk , (2.32)

where τin is the initial time and ζ is the primordial curvature perturbation. The latter is conserved
on super-Hubble scales and predicted to follow the almost scale-invariant power spectrum Pζ(k)
defined in (2.7). Importantly, the equation of state and the speed of sound in an adiabatically
perturbed fluid are approximately equal, c2a ≈ wa.

The growth of these primordial density fluctuations is determined by a competition between
gravity and pressure. While gravity attracts matter into overdense regions in the universe, pressure
pushes matter out of these regions. This means that gravity leads to a growth of the initial
inhomogeneities, whereas pressure will inhibit this growth. Specializing to matter perturbations

6There may also exist isocurvature perturbations for which the density fluctuations of one species do not
necessarily correspond to density fluctuations in other species. These are disfavoured by current observations, in
particular those of the CMB anisotropies.
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with c2m ≈ wm ≈ 0, the evolution equation (2.27) implies in the subhorizon limit, k � H, after
time-averaging the gravitational potentials over a Hubble time7 that the density perturbations
only grow logarithmically during the radiation-dominated era (due to the large photon pressure),
δm ∝ ln a, but linearly while the universe is dominated by matter, δm ∝ a.8 The sub-horizon
gravitational potential Φk, on the other hand, oscillates with a decaying amplitude ∝ a−2 during
radiation domination, but approaches a constant after matter-radiation equality. In contrast, the
super-horizon modes of the gravitational potential do not evolve in either epoch. The combination
of these power laws gives rise to the characteristic shape of the matter power spectrum (cf. §2.4.2).
Before we provide further details on the growth of structure, we will discuss photon perturbations
because they also leave a small, but distinct imprint which is a key observable.

2.3.2 Cosmic Sound Waves

In the following, we study perturbations in the photon-baryon fluid of the early universe. It
will turn out that the initial fluctuations excited sound waves in the primordial plasma which
are observed today as the so-called baryon acoustic oscillations in both the anisotropies of the
cosmic microwave background (see §2.4.1) and the clustering of galaxies (see §2.4.2). We will give
an approximate description of the main features of these observables and refer to the excellent
reviews [58–60] for a more detailed treatment.

Prior to recombination, photons, electrons and protons were tightly coupled through Thomson
and Coulomb scattering in the photon-baryon fluid. The evolution equation for the density
perturbations in this fluid can be obtained from (2.27) and is given by

δ̈γ +
HR
1 +R

δ̇γ − c2s∇2δγ =
4

3
∇2Φ+ 4Ψ̈ +

4HR
1 +R

Ψ̇ , (2.33)

where we introduced the momentum density ratio of baryons to photons R ≡ 3ρ̄b/(4ρ̄γ). We also
defined the sound speed in the fluid c2s ≡ 1/[3(1 +R)] which is smaller than the standard value
for a relativistic fluid, c2s = 1/3, because the presence of baryons adds inertia to the fluid. The
forced harmonic oscillator equation (2.33) essentially governs the entire BAO phenomenology.
The metric potentials on the right-hand side evolve as determined by the matter in the universe
(including neutrinos and dark matter). They source the fluctuations in the photon-baryon fluid
on the left-hand side which are in turn supported by photon pressure and damped by Hubble
friction. Note that the anisotropic stress of photons vanishes as it can only develop effectively
after decoupling when the photons begin to stream freely.

To extract the general phenomenology of solutions to the master equation (2.33), we make a
few simplifying assumptions.9 However, we will revisit these considerations in §2.4.1 and especially

7The radiation perturbations oscillate on small scales (cf. §2.3.2). After time-averaging over a Hubble time,
these perturbations can however be neglected and the potentials are only sourced by the matter fluctuations [57].
We can therefore neglect the time derivatives of the potentials on subhorizon scales, k2Φ � Ψ̈,HΨ̇.

8Once dark energy takes over as the main component of the universe, the clustering of matter stops and the
growth of structures is halted by the accelerated expansion of the universe.

9Accurately computing the evolution of all perturbations in the universe requires solving many coupled equations
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in Chapter 5. First, we neglect the small anisotropic stress due to neutrinos, i.e. we set Φ = Ψ

according to (2.30). Moreover, we also ignore the time dependence of Φ for now.10 Defining
Θ ≡ 1

4δγ +Φ, equation (2.33) can then be written as

Θ̈ +
HR
1 +R

Θ̇− c2s∇2(Θ +RΦ) = 0 . (2.34)

Since the baryon-photon ratio evolves as R ∝ a, the damping term is proportional to HR = Ṙ.
Similar to the time evolution of the gravitational potentials, the baryon-photon ratio R also
changes on much larger time scales than Θ. Treating R as approximately constant, the evolution
equation is therefore simply given by the differential equation of a harmonic oscillator with
mode-dependent frequency csk,

ϑ̈k + c2sk
2ϑk = 0 , (2.35)

where we introduced ϑ ≡ Θ+RΦ = 1
4δγ + (1 +R)Φ. The solutions to this equation are of course

sound waves:11

ϑk(τ) = Ak cos(cskτ) +Bk sin(cskτ) . (2.36)

Imposing adiabatic initial conditions on superhorizon scales sets Bk ≡ 0 and Ak = 3ζk. The
quantity Θ consequently evolves according to

Θ(k, τ) = 3ζk cos(cskτ)−RΦk . (2.37)

The presence of baryons, R 6= 0, therefore not only changes the sound speed cs of the photon-
baryon fluid, but also moves the equilibrium point of the oscillations from 0 to −RΨ. This effect
is often referred to as ‘baryon loading’ because baryons change the balance of pressure and gravity.
Since photons decouple during recombination, we should evaluate these solutions at τ = τrec.12 At
this time, modes with wavenumbers kn = nπ/rs had their extrema. This implies that the sound
horizon at decoupling, rs ≡ csτrec ≈ τrec/

√
3,13 is imprinted as a fundamental scale in the photon

fluctuations that we can still observe today.
Up to now, we have considered the background to be essentially fixed. However, both the

baryon-photon ratio and the gravitational potentials actually evolve. Including the evolution of
the background densities in R leads to the photon fluctuations being damped over time. While

as the interactions between the various species have to be captured by a set of Boltzmann equations. This can
only be done numerically which is achieved in the current state-of-the-art Boltzmann solvers CAMB [5] and CLASS [6].
Nevertheless, it is instructive to obtain approximate analytic solutions and get analytic insights in order to deepen
our understanding of the underlying physics (cf. e.g. Chapter 5).

10This is a good approximation in the matter-dominated era. During radiation domination, the time evolution of
the gravitational potential around sound-horizon crossing leads to the radiation-driving effect which we will discuss
below.

11Note that we could of course rewrite this solution in terms of an amplitude Ak and a non-zero phase φk, i.e.
cos(cskτ) → cos(cskτ + φk), with Bk = 0 implying φk = 0.

12As decoupling happens during the epoch of recombination, we use τrec instead of τF or τdec to specify the time
of photon decoupling. This will allow easier discrimination of other freeze-out events in later parts of this thesis.

13To be precise, the sound horizon is given by rs(τ) =
∫ τ

0
dτ cs(τ), which also captures the small time dependence

of cs that we however neglect in our analytic treatment.

23



2 Review of Modern Cosmology

the gravitational potentials remain constant in the matter era, their oscillating amplitude decays
proportional to a−2 inside the horizon during the radiation-dominated epoch. Because the decay is
due to photon pressure and happens when the photon-baryon fluid is in its most compressed state,
the fluid bounces back without a counterbalancing effect from the gravitational potential. Since
those fluctuation modes that entered the horizon during matter domination do not experience this
radiation-driving effect, the amplitude of the photon perturbations in the subsequent rarefaction
stage is enhanced in comparison.

Finally, we have to take the finite mean free path of photons into account. In the master
equation (2.33), we assumed that photons and baryons are so tightly coupled that we can treat
them as a single fluid. In reality, however, the mean free path of photons, which is given by
the inverse Thomson scattering rate of photons with electrons, λmfp = 1/(aσTne) (in comoving
coordinates), is small but finite even before decoupling. This diffusion process results in an
additional damping of fluctuation modes. (Note that this damping effect is completely separate
from the damping related to Ṙ 6= 0 which we have just discussed.) Intuitively, this is caused by
photons washing out inhomogeneities in the primordial plasma that are smaller than their mean free
path. Small scales (large k) are therefore exponentially more damped than large scales according
to exp[−(k/kd)

2], where kd is the wavenumber associated with the mean squared diffusion distance
at decoupling. A careful treatment, which includes corrections from the polarization of these
photons, gives [61]

k−2
d ≡

∫ arec

0

da
a3σTneH

R2 + 16
15(1 +R)

6(1 +R)2
, (2.38)

where arec is the scale factor at decoupling. Since the diffusion scale depends on an integral over
the Hubble parameter H, we see that the damping of the fluctuations in the photon-baryon fluid
is sensitive to the expansion history of the early universe.

So far, we have focussed on photon fluctuations, but baryons inherit the same variations since
they are tightly coupled to photons before the CMB is released. It is instructive to discuss the
evolution of the baryon perturbations in real space instead of Fourier space and consider a single
initial overdensity (following [62, 63]) because, for adiabatic fluctuations, the primordial density
field is a superposition of such point-like overdensities. As illustrated in Fig. 2.3, the overdensities
of photons and baryons spread out as spherical shells, while the dark matter perturbation does
not move much and is left behind at the centre. After photon decoupling around z ∼ 1100, the
sound speed drops dramatically and the pressure wave slows down, producing a shell of gas at
about 150 Mpc from the point of the initial overdensity. Subsequently, baryons fall into the dark
matter potential well. At the same time, the baryonic shell also attracts the dark matter which
therefore develops the same density profile with a peak at the same radius.

Going back to Fourier space, the presence of the baryonic shell corresponds to oscillations
whose frequency is determined by the distance of propagation of the primordial sound waves, i.e.
the sound horizon rs.14 At late times, galaxies formed preferentially in the regions of enhanced

14The size of the sound horizon imprinted in the baryon perturbations is slightly larger than the size observed in
the CMB anisotropies. The latter is set at the time when most photons had decoupled from the baryons. At this
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Figure 2.3: Evolution of the radial mass profile (density times radius squared) of initially
point-like dark matter, baryon, photon and neutrino overdensities located at the origin as a
function of the comoving radius (adapted from [63]). All perturbations are fractional for that
species and the photon and neutrino fluctuations were divided by 4/3 to put them on the same
scale. The units of the mass profile are arbitrary, but are correctly scaled between the panels for
synchronous gauge [64]. We observe photons and baryons travelling outwards due to radiation
pressure. After the decoupling of photons, they stream freely at the speed of light, whereas the
baryon perturbation is left behind in a shell. Dark matter remains concentrated at the origin, but
partly falls into the gravitational potential created by the photons and baryons. The baryon and
dark matter fluctuations grow as δm ∝ a due to gravitational instability in the matter-dominated
epoch, and finally trace each other. Today, we can observe the location of the matter shell at
about 150 Mpc in the distribution of galaxies. Since neutrinos have been free-streaming close to
the speed of light since they decoupled around z ∼ 1010, they may travel ahead of the sound
horizon.

25



2 Review of Modern Cosmology

dark matter density. For the most part, these are located where the initial overdensities were,
but there is a small (about 1 %) enhancement in the regions roughly rs ∼ 150 Mpc away from
these positions. Consequently, there should be a small excess of galaxies 150 Mpc away from
other galaxies. This is how the acoustic scale is imprinted in the two-point correlation function
of galaxies (see below) as the so-called BAO peak. As a result, we can observe the remnants of
cosmic sound waves today in both the CMB anisotropies and in the large-scale structure of the
universe. We will discuss these cosmological observables in the next section.

Finally, let us briefly comment on the mathematical form of the BAO signal. From our
discussion so far, one might expect the same pure cosine shape for the matter oscillations as for the
photon perturbations in (2.37). However, we actually observe a pure sine solution, δm ∼ sin(krs).
Heuristically, this can be understood as follows. Assuming decoupling to be instantaneous, we
match the baryon perturbation and its time derivative at the last-scattering surface onto the
growing and decaying mode of the matter fluctuations. Since δ̇b ∼ csk sin(krs), with rs = csτ ,
the time derivative dominates over δb ∼ cos(krs) for large wavenumbers k. In this way, the pure
sine solution gets imprinted in the matter perturbations, with the initial conditions being fixed at
the time of recombination (see e.g. [65] for an analytic treatment).

2.4 Cosmological Observables

So far, we have explained how initially small fluctuations grow and evolve throughout the history
of the universe. In particular, we have seen that cosmic sound waves are excited. In the following,
we will relate the photon and matter perturbations to the quantities that we actually observe.
This includes temperature anisotropies as well as polarization in the CMB sky and the locations
of galaxies in the universe. These are the observables that we will use in the rest of the thesis to
gain new insights into the early universe and particle physics. Although this is only a subset of the
possible and currently employed observables, they dominate the cosmological information that has
been inferred to date. We refer to the review literature [42, 66–69] for a comprehensive discussion
of additional observables such as weak gravitational lensing, galaxy clusters, the Lyman-α forest
and 21 cm tomography.

Understanding the physics behind these observables is important in the quest to uncover the
laws of Nature. At the same time, we also have to know how the data can be best characterised and
compared to theoretical expectations in a quantitative way. The most important statistic when
studying both the cosmic microwave background and the large-scale structure is the two-point
correlation function in real space or, equivalently, the power spectrum in Fourier space. These
quantities contain all of the statistical information if the perturbations are drawn from a Gaussian
distribution function. Since the initial conditions predicted by inflation are very nearly Gaussian,

point, the baryons however still feel the drag of photons and essentially remain coupled to the photons because
there are about 109 times more photons than baryons. The end of the so-called drag epoch, τdrag > τrec, marks
the time when baryons finally loose this contact. The two sizes of the sound horizon inferred from the latest
CMB measurements are rs(zrec ≈ 1090) ≈ 145 Mpc and rs(zdrag ≈ 1060) ≈ 148 Mpc [36], i.e. they are relatively
close, but different at a significance of more than 8σ at the current level of precision.
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the primordial perturbations are almost entirely described by the primordial correlation function
〈ζ(x) ζ(x′)〉 ≡ ξζ(x,x

′) = ξζ(|x−x′|), where we employed statistical homogeneity and isotropy in
the second equality. The primordial power spectrum Pζ(k) is then defined as the Fourier transform
of ξζ(x) and given by 〈

ζk ζ
∗
k′
〉
=

(2π)3

k3
Pζ(k) δ

(3)
D (k − k′) , (2.39)

where δ(3)D is the three-dimensional Dirac delta function. As long as density perturbations can be
described in linear theory, their modes evolve independently and the power spectrum still captures
most of the information. Having said that, the Einstein equations are inherently non-linear and the
gravitational evolution will always couple different modes which introduces non-Gaussianities and,
consequently, non-vanishing (connected) higher-point functions. Nevertheless, linear perturbation
theory is reliable for many scales of interest, in particular for those modes measured in the CMB.
As a consequence, the statistical analysis of CMB and LSS data heavily relies on the power
spectrum at the moment.

2.4.1 CMB Anisotropies

Since the cosmic microwave background anisotropies were first observed by the DMR instrument
on the COBE satellite in 1992 [31], they have proven to be a treasure-trove of information and
have played a pivotal role in establishing the standard cosmological model introduced in §2.1.2. In
the following, we will establish the relation between the photon fluctuations on the last-scattering
surface and the measured CMB power spectra, and illustrate how general properties of our
universe can be deduced from its characteristic shape. We will also discuss the generation of CMB
polarization and mention gravitational lensing. More detailed derivations and an overview of
current developments can be found in [58, 59, 70–72].

Temperature anisotropies

Generally speaking, CMB experiments map the sky at microwave lengths15 and measure the
intensity and polarization of the incident photons. As discussed in §2.2.4, these photons have a
mean temperature of T̄ = 2.7255 K. We are now interested in the deviations δT̃ (n̂) = T (n̂)− T̄ ,
where n̂ indicates the line-of-sight direction in the sky. The dominant contribution to δT̃ comes
from the motion of our solar system with respect to the CMB rest frame. The induced Doppler
effect gives rise to an overall dipole anisotropy with δT̃ ≈ 3.4 mK ∼ 10−3 T̄ [73] which we generally
subtract to get the primordial anisotropies δT (n̂). The resulting CMB temperature map shows
fluctuations of the order of δT/T̄ ∼ 10−4 as illustrated in Fig. 2.4. To relate the perturbations in
the photon density at the last-scattering surface to the observed temperature inhomogeneities, we
follow the free-streaming evolution from decoupling to today and project the acoustic oscillations

15In this context, CMB experiments are surveys which map the CMB anisotropies in the sky. These measurements
are usually not taken at a single, but at several frequencies. This is to reliably subtract galactic and astrophysical
foregrounds, which are other sources of microwave emission and polarization originating, in particular, from galactic
dust. We will generally assume that these foregrounds have been accounted for (or their effects can easily be
marginalized over) so that we have direct access to the primordial signal.
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Figure 2.4: CMB intensity map at 5 arcmin resolution based on Planck observations using the
SMICA component separation algorithm (adapted from [74]). A small strip of the Galactic plane
was masked and subsequently filled in by a constrained realization with the same statistical
properties as the rest of the sky. The characteristic spot size is about 1°.

onto the observer’s celestial sphere. Both effects lead to additional modulations of the primordial
density field that we have to take into account.

To simplify the discussion, we assume that recombination happened instantaneously. This will
capture most of the phenomenology, but the finite width of the last-scattering surface of course
has to be taken into account when comparing to data. Integrating the Boltzmann equation of
photons along their corresponding line-of-sight from decoupling, τrec, to today, τ0, we find

δT

T̄
(n̂) =

(
1

4
δγ +Φ+ n̂ · ve

)
rec

+

∫ τ0

τrec

dτ
(
Φ̇ + Ψ̇

)
, (2.40)

where we dropped the term Φ(τ0) since it only affects the monopole perturbation. The first
term, 1

4δγ , captures the intrinsic temperature variations θ from perturbing the thermal distri-
bution (2.8) of photons, fγ = f̄γ + δfγ =

(
exp

{
p/
[
T̄ (1 + θ)

]}
− 1
)−1, whereas the presence of Φ

accounts for the gravitational redshifting that occurs when photons climb out of a potential well
at decoupling. The combination Θ = 1

4δγ +Φ is called the Sachs-Wolfe (SW) term and can be
thought of as the effective temperature fluctuation of the primordial CMB. Note that an overdense
region at decoupling, which has Φ < 0, leads to a cold spot in the large-scale CMB sky because
photons climbing out of this potential loose more energy than they had at the bottom of the well.
Analogously, hot spots are observed at the locations of underdense regions. Since the electrons in
the photon-baryon fluid are not at rest when the photons scatter off of them, the third term, n̂ ·ve,
is induced and describes the associated Doppler effect. The integral over the evolution of the
gravitational potentials is denoted the integrated Sachs-Wolfe (ISW) term and has both an early
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Figure 2.5: Transfer functions ∆X
` (k) in temperature and polarization, X = T,E, for ` =

10, 100 and 1000 (normalized to the same maximum amplitude). Both functions peak around
` ∼ kχrec and decay towards larger wavenumbers. This decay is however much more pronounced
in polarization and, in general, a smaller number of wavenumbers k contribute to the same
multipole `. We also note that the acoustic peaks in the two transfer functions are out of phase.
Taken together, this explains why the polarization transfer is both cleaner than and complementary
to the temperature transfer.

and a late component because Φ,Ψ 6= const in the presence of either radiation or dark energy.
Overall, the dominating component of δT is the Sachs-Wolfe term Θ, in particular on scales below
the sound horizon.

To project the primordial sound waves onto the two-dimensional sky, it is useful to work in
Fourier space and extract the multipole moments of the temperature anisotropies δT , which are
defined by

δT` =
1

(−i)`

∫ 1

−1

dµ
2
P`(µ) δT (µ) , (2.41)

with Legendre polynomials P`(µ). We then find that the projection results in the SW and
ISW terms being reweighted by Bessel functions j`(kχrec), which arise via a Rayleigh plane-wave
expansion. Similarly, the Doppler term is multiplied by the first derivative of these Bessel functions.
Here, we introduced the comoving scale to the last-scattering surface χrec, which equals τ0 − τrec

in a flat universe. This means that each multipole moment ` in principle gets contributions from
many different momentum modes k. Since the Bessel functions j`(x) are highly peaked near x ≈ `

for large `, this effect is less pronounced on small scales than on large scales. In multipole space,
the acoustic peaks are therefore located at `n ∼ knχrec = nπ χrec/rs. Finally, it is convenient to
introduce the transfer function ∆T

` (k) ≡ δT`(τ0, k)/ζk which captures the entire linear evolution
of the initial perturbations and includes these projection effects. The upper panel of Fig. 2.5
illustrates this function for three representative multipoles.
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Figure 2.6: Planck 2015 temperature power spectrum DTT
` ≡ `(`+ 1)/(2π)CTT` (based on data

from [75]). The error bars of the binned data at high multipoles are smaller than the data points.
The red line shows the best-fit theoretical spectrum of the six-parameter ΛCDM model inferred
from the Planck TT likelihood.

Finally, we turn to the two-point correlation function
〈
δT (n̂) δT (n̂′)

〉
which is the quantity

that we ultimately extract from CMB temperature maps. Assuming the initial conditions are
statistically isotropic, we can expand this two-point function as

〈
δT (n̂) δT (n̂′)

〉
=
∑
`

2`+ 1

4π
CTT` P`(n̂ · n̂′) , (2.42)

where the Legendre polynomials P`(n̂ · n̂′) only depend on the relative orientation of n̂ and n̂′.
The expansion coefficients CTT` in (2.42) are the famous angular (temperature) power spectrum
and given by16

CTT` =
4π

(2`+ 1)2

∫
dln k

(
∆T
` (k)

)2 Pζ(k) . (2.43)

For convenience, we usually show the rescaled spectrum DTT
` ≡ `(` + 1)/(2π)CTT` which is

displayed together with the latest measurement of the Planck satellite in Fig. 2.6. The shape
of DTT

` is very characteristic: The SW effect dominates on large scales (low multipoles), the
acoustic oscillations are observed on intermediate scales (scales smaller than the projected sound
horizon which corresponds to an angular scale of about 1° or ` ∼ 200) and the smallest scales (large
multipoles) are exponentially damped. Because the initial power spectrum is almost scale-invariant,
all features in the CMB power spectrum arise from the evolution of the cosmic sound waves being
captured at the moment of last-scattering, i.e. the observed oscillations are a snapshot of these
waves caught at different phases in their evolution, and subsequently projected onto the sky. The

16We could have equivalently obtained the angular power spectrum by decomposing the temperature fluctu-
ations δT into spherical harmonics and computing the correlation function of the expansion coefficients. This is
how measurements of δT are commonly processed to obtain the power spectrum CTT

` .
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first acoustic peak was discovered by the Toco experiment [76]. The next peaks were tentatively
detected by several experiments, but measured decisively by the WMAP satellite [77]. Nowadays,
Planck has measured the temperature power spectrum to the cosmic variance limit (CVL)17

for multipoles up to ` ≈ 1600 [75]. This measurement is complemented by the results of many
ground-based experiments which mainly target large multipoles as a consequence of their better
angular resolution.

Armed with these insights, we can infer the general dependence of the shape of the power
spectrum on the cosmological parameters. The overall amplitude of the spectrum depends not
only on the primordial amplitude As, but on the combination As e−2τ . The reason for this is that
photons scattered off of electrons again after the neutral hydrogen was reionized by the large
amounts of ultraviolet radiation that were emitted after the first stars and galaxies had formed.
As a result, the optical depth increased and scales smaller than the horizon at that time are
suppressed by a factor of e−τ . This degeneracy between As and τ can be broken to some extent by
CMB lensing measurements (see below). From the measured value As ≈ 2.1 × 10−9 we can infer the
amplitude of the primordial perturbations (at k0 = 0.05 Mpc−1):

√
Pζ(k0) ≈ 5 × 10−5. Moreover,

the spectrum is measured to be slightly red-tilted with a spectral index of ns = 0.968 ± 0.004,
i.e. there is a bit more power on large scales than on small scales. This departure from scale
invariance, ns − 1 < 0, which is a natural consequence of many inflationary models, has now
been measured at a significance of more than 7σ [36]. The spectral tilt and the optical depth are
somewhat degenerate in the temperature power spectrum. This degeneracy can however be lifted
by including information from polarization (see below) since reionization leads to a distinct bump
at low multipoles in the polarization spectrum.

The positions of the peaks in the CMB spectrum, `n, are particularly sensitive to the distance
to last-scattering. In fact, the angular size of the sound horizon at decoupling, θs, is a direct
measure of the first peak location at an angular scale of about 1°, which is the characteristic size
of the spots in the CMB map of Fig. 2.4. Since curvature is exactly zero within ΛCDM,18 the
peak positions become a precise measure of the expansion history and, therefore, of the Hubble
parameter H0 and the physical matter density ωm. The overall peak heights relative to the
large-scale plateau are however a much more sensitive probe of ωm since the amplitude of the
cosmic sound waves depends on the time of matter-radiation equality through the radiation-driving
effect. As a consequence, the small-scale modes, which entered the horizon in the radiation era, are
enhanced in comparison to the modes which started evolving only later during matter domination.
The relative peak heights, on the other hand, are directly related to the baryon density ωb as the

17Cosmic variance refers to the statistical uncertainty inherent in cosmological measurements since we are
only able to measure one realization of the true model underlying the universe. In a cosmic variance-limited
measurement, the statistical error is dominated by this uncertainty, which is given by ∆C` =

√
2/(2`+ 1)C` for a

CMB auto-spectrum.
18The location of the first peak is very sensitive to the curvature of the universe via the distance to last-scattering.

The measurement of this peak famously led to the conclusion that our universe has a geometry that is very close to
flat [78], which laid the groundwork for the ΛCDM model. Today, the famous Ωm-ΩΛ plot shows that the confidence
regions inferred from CMB, BAO and supernovae data, which all have different degeneracy lines, intersect in a
single small region that is consistent with a flat universe, ΩM +ΩΛ +Ωr = 1.
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Figure 2.7: Planck 2015 high-` TE and EE power spectra, DTE
` and DEE

` (based on data from [75]).
The red line shows the best-fit ΛCDM theoretical spectrum inferred from the Planck TT likelihood.
The smallness of the residuals with respect to this model indicates a very good fit providing a
non-trivial confirmation of the standard cosmological model and CMB phenomenology.

odd peaks are larger than the even peaks due to baryon loading, cf. (2.37). Moreover, we can
already anticipate from (2.38) that the damping tail of the spectrum is particularly sensitive to
the early expansion history and, consequently, the radiation density (see Section 3.4 for a detailed
discussion, including the related degeneracies). Finally, the late ISW effect on large scales is
sensitive to dark energy, as we previously mentioned. This list of dependencies as derived from
our relatively simple analytic treatment of the CMB phenomenology only indicates the potential
of uncovering cosmological information encoded in the temperature anisotropies. In Section 5.2,
we will see how much more information we can deduce when adopting a slightly more rigorous
(but still analytic) treatment of cosmic sound waves.

Polarization

We do not only expect that the temperature varies across the CMB sky, but also that this
ancient radiation is linearly polarized at the level of a few µK due to Thomson scattering at the
time of decoupling (and reionization). As we will explain below, the scattering of photons with
electrons is the only possibility to generate CMB polarization. The polarization signal therefore
tracks free electrons and is a particularly clean probe of the physics at the last-scattering surface
(and reionization). DASI detected CMB polarization about ten years after COBE announced
their discovery of the temperature anisotropies [79]. Precise polarization measurements provide
a non-trivial consistency check for the standard cosmological model because the temperature
anisotropies and the polarization signal are directly related. As illustrated in Fig. 2.7, the
Planck 2015 temperature-polarization cross- and polarization auto-spectra show this impressively.
In addition, these spectra help to break degeneracies between cosmological parameters and provide
complementary information. In the following, we give a lightning review of the main aspects of
CMB polarization and refer to the seminal papers [80–84] and the pedagogical review [70] for
further details.
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The generation of CMB polarization is best described in the rest frame of a free electron in the
primordial plasma. If the incident radiation field is isotropic, the Thomson-scattered radiation
remains unpolarized since orthogonal polarization directions cancel out. The same statement
holds if the incoming photons have a dipolar anisotropy. However, a net linear polarization arises
if the radiation field around the electron has a non-zero quadrupole moment. Put differently,
a non-vanishing quadrupole of the temperature anisotropy generates the linear polarization of
the CMB. However, prior to decoupling, Thomson scattering keeps the CMB radiation very nearly
isotropic in the rest frame of the electrons. A local temperature quadrupole can therefore only
develop from a gradient in the velocity field once the photons have acquired an appreciable mean
free path just before they decouple. CMB polarization is therefore only generated in the very last
scattering events and results from the velocities of the electrons on scales smaller than the photon
mean free path. Since both the temperature inhomogeneities and the velocity field of the photons
originate from primordial density fluctuations and are out of phase, we expect the polarization
peaks of the CMB to be both correlated and out of phase with the temperature peaks. This is
exactly what we see in the data (see the left panel of Fig. 2.7). Moreover, cosmological parameters
can be independently constrained from the temperature and polarization spectra because the
CMB temperature primarily traces the density perturbations, whereas the polarization is effectively
induced by the velocity fluctuations. In addition, the polarization spectrum should have less
power than the temperature spectrum because the quadrupole moment is suppressed compared
to the monopole and dipole moments. This prediction has also been confirmed quantitatively as
displayed in the right panel of Fig. 2.7.

In general, a linearly-polarized radiation field can mathematically be described by three
variables: the temperature T , and the Stokes parameters Q and U . Whereas the temperature
can be conveniently decomposed in terms of scalar spherical harmonics, the convenient complex
combinations Q± iU of the Stokes parameters are spin-2 quantities and have to be expanded in
the more complicated tensor spherical harmonics. It is however possible to construct two scalar
quantities which are invariant under coordinate transformations and commonly referred to as E
and B.19 Importantly, scalar/density perturbations only create E-modes and no B-modes, while
tensor perturbations (i.e. gravitational waves) induce both E- and B-modes. In this thesis, we
therefore neglect B-modes and focus on E-modes, which we will generally refer to as polarization,20

i.e. we consider the following temperature and polarization auto- and cross-spectra: TT, TE and
EE (as displayed in Figs. 2.6 and 2.7).

Although the generation mechanism of polarization is somewhat more involved and the power
spectrum is suppressed compared to the temperature anisotropies, the transfer function ∆E

` (k)

is simpler since there are no SW or ISW effects, for instance. Moreover, the mapping between
wavenumbers k and multipoles ` is much sharper for polarization as illustrated in Fig. 2.5. The

19In analogy with the properties of the electric and magnetic fields in electrodynamics, E-mode and B-mode
polarization is curl- and divergence-free, respectively.

20A fraction of the E-modes is converted to B-modes in the late universe through gravitational lensing (see
below). In contrast to the primary B-modes, these induced B-modes have been detected and can in principle be
used to revert the effects of lensing on the temperature and E-mode spectra in a process referred to as delensing.
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underlying reasons are a slightly different projection onto the celestial sphere and the fact that
the polarization signal is only generated effectively in the very last scattering events. The acoustic
peaks in the polarization spectrum are therefore a more direct snapshot of the primordial sound
waves and the peaks themselves are slightly sharper than in the temperature spectrum.

Lensing

There are a number of secondary effects that impact the observed CMB on small scales. For the
purpose of this thesis, only one of them will be of some relevance: the weak gravitational lensing of
the CMB (see [85] for a comprehensive review). On the long way from the last-scattering surface to
our detectors, the CMB photons pass through the increasingly inhomogeneous matter distribution
which acts as gravitational lenses. In effect, the CMB photons are deflected by gradients in the
gravitational potential along the line-of-sight. This not only generates B-mode polarization on
small scales, but also affects the temperature and E-mode power spectra. Since the photon paths
are slightly perturbed, the location in the sky where we observe the photons is slightly offset
from the location where they actually decoupled. The primordial hot and cold spots are therefore
distorted and the acoustic peaks in the lensed power spectra are slightly smeared since power is
transferred between multipoles. Because we will be interested in precisely measuring the acoustic
peaks, this effect is a nuisance (although it is possible to ‘delens’, i.e. revert the effects of lensing,
to some extent [86–91]). At the same time, the lensing power spectrum has now been extracted at
high significance from Planck data [92] and CMB lensing allows to infer the integrated matter
distribution between us and the last-scattering surface.

2.4.2 Large-Scale Structure

Having discussed the imprints of photon perturbations in the cosmic microwave background, we
now return to the matter fluctuations, which grew under the influence of gravity. Eventually,
galaxies formed which we can now observe in cosmological surveys (see Fig. 2.8). The principle
LSS observable, inferred from both theory and data, is the two-point correlation function,
ξ(r) ≡ ξm(r), or the power spectrum of matter perturbations, P (k) ≡ Pm(k), which is defined by

〈
δm(k) δm(k

′)
〉
= (2π)3 P (k) δ

(3)
D (k − k′) . (2.44)

The characteristic shape of the spectrum is easily derived by combining the Poisson equation
on subhorizon scales, δm ∝ k2Φ, which implies P (k) ∝ k4PΦ(k), and the evolution of the
gravitational potential Φ as discussed at the end of §2.3.1. Modes which entered the horizon
after matter-radiation equality, k < keq, remain constant as Φ = const, i.e. PΦ(k) is scale-
invariant and P (k) ∝ k.21 On the other hand, the sub-horizon potential decays as Φ ∝ a−2 ∝ τ−2

during radiation domination. Its power spectrum is therefore suppressed according to PΦ(k) ∝
k−3(keq/k)

4 because a mode k crosses the horizon at τ = 1/k. This implies that the matter

21For simplicity, we set the primordial spectral tilt to unity, ns = 1, in this discussion, i.e. assume a perfectly
scale-invariant primordial power spectrum.
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Figure 2.8: Map of galaxies from the 14th data release of the Sloan Digital Sky Survey (SDSS;
adapted from [93]).

power spectrum peaks around k ∼ keq and scales as P (k) ∝ k−3 log2(k/keq) for k > keq, where
we included the logarithmic growth of matter perturbations in the radiation era. In addition, the
cosmic sound waves are imprinted on top of this power law as we discussed in §2.3.2. Figure 2.9
illustrates that we observe exactly this behaviour on linear scales. Finally, the power increases in
time proportional to a2 since the matter perturbations grow linearly during matter domination.
In order to capture the entire time evolution including the dark-energy era, we usually introduce
the linear growth function D1(z) such that P (k, z) =

[
D2

1(0)/D
2
1(z)

]
P (k, z = 0).

As the density contrast grows, first linear perturbation theory and eventually all perturbative
treatments break down with small scales being affected earlier than large scales. Understanding
the non-linear evolution is one of the main challenges when trying to connect LSS observables
to fundamental physics. A description of non-linear effects is however important because they
can mimic or distort primordial signals, but complicated by the fact that these effects are hard
to characterise from first principles. Fortunately, scales corresponding to k . 0.1 h Mpc−1 (at
z = 0 and larger for earlier times) can be treated well in linear perturbation theory throughout
cosmic history. A lot of effort is currently being put into pushing the scale up to which we trust
perturbative computations into the mildly non-linear regime (see e.g. [101–106]). For smaller
scales, we have to resort to numerical simulations. In general, however, the power on smaller
scales is enhanced, in particular for k & 0.1 h Mpc−1. On the bright side, we are able to model and
account for these non-linearities to some extent. Nevertheless, they clearly impose a limitation on
how well we can use the small-scale information to infer properties of the primordial plasma at
the present time.

Up to now, we have assumed that we can directly measure the matter density field in cosmolo-
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Figure 2.9: Linear matter power spectrum reconstructed from CMB temperature, CMB lensing,
galaxy, cluster and Lyman-α forest measurements (adapted from [94] with data from [94–100]). The
solid and dashed lines display the linear and non-linear power spectra of the best-fit ΛCDM model
inferred from the shown CMB temperature data. The observed agreement highlights the consistency
of the measurements conducted by an array of different cosmological probes over a large range of
scales.

gical surveys. However, this is usually not the case because we generally observe tracers of the
matter density which may be highly non-linear objects. Galaxy surveys for example measure the
three-dimensional spatial distribution of galaxies which we subsequently have to relate to the
underlying distribution of matter. This relation is described, in a statistical sense, by the galaxy
bias b = b(z). In the limit of linear bias, we have δg,k = b δm,k, where the galaxy distribution
is usually captured by its number density field, δg(x) = (n(x) − n̄)/n̄, with the mean density
of galaxies n̄ = 〈n(x)〉. The linear-bias approximation may be sufficient on large scales, but
the bias also picks up a scale dependence, b(k, z), on smaller scales. While there have been a
number of advances in the recent past, this dependence is challenging to predict (cf. [107] for a
comprehensive review). Although the wavenumbers at which this becomes important get smaller
at higher redshifts, the observed objects tend to be more strongly biased since they are intrinsically
brighter in order to be detected.

Further sources of uncertainty in the mapping between theory and observations arise, for
instance, from redshift-space distortions due to the peculiar velocity of galaxies (the relative
velocity with respect to the Hubble flow), and because we cannot measure the positions x of
objects in the universe, but only their redshifts and angular positions on the sky. All these
points (and more) have to be accounted for when trying to link LSS observables, such as the
power spectrum of galaxies, to the physics in the early universe. The large number of potentially
available modes is very encouraging in principle, but it seems as if Nature makes us work hard to
harness this information.
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Figure 2.10: BAO spectrum (left) and BAO peak (right) measurements in the redshift bin
0.5 < z3 < 0.75 of the last data release of the Baryon Oscillation Spectroscopic Survey together
with the respective best-fit model in the employed fitting range (adapted from [110, 111]).

2.4.3 Baryon Acoustic Oscillations

As we have just discussed, several theoretical challenges in the galaxy power spectrum are related
to its overall shape and amplitude. This is in particular the case for the issues of non-linear
evolution and biasing. Subtracting this smooth (‘no-wiggle’) part, P nw(k), from the full spectrum,
we are left with the oscillatory (‘wiggle’) part, Pw(k) ≡ P (k)− P nw(k). This contains the signal
of the cosmic sound waves in the primordial plasma which is why we refer to the ratio of the
oscillatory to the smooth spectrum,

O(k) =
Pw(k)

P nw(k)
=
P (k)− P nw(k)

P nw(k)
, (2.45)

as the BAO spectrum.22 In 2005, this BAO signal was first detected in both the two-point
correlation function of the Sloan Digital Sky Survey (SDSS) [108] and the power spectrum
measured by the 2dF Galaxy Redshift Survey [109]. The currently highest signal-to-noise
measurements are provided by the Baryon Oscillation Spectroscopic Survey and displayed in
Fig. 2.10 for one of their redshift bins.

As in the case of the matter power spectrum, gravity still non-linearly processed the BAO signal
from its primordial form [63, 112, 113]. However, we have been able to understand and get certain
aspects of this observable under better theoretical control. We can schematically express the BAO
spectrum as

O(k) = A(k) sin[ω(k) k + φ(k)] , (2.46)

with the amplitude A, frequency ω and phase φ (see our discussion at the end of §2.3.2). The
amplitude depends on the wavenumber k because of the exponential damping both due to photon

22Although we observe the BAO signal as acoustic peaks both in CMB and in LSS measurements, we will
usually refer to the latter when we mention BAO observations. Strictly speaking, the spectrum of baryon acoustic
oscillations is Pw(k). For convenience, we will however also refer to O(k) as the BAO spectrum.
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diffusion in the photon-baryon fluid and due to non-linear gravitational evolution (see e.g. [63,
114–116]). This is why the BAO amplitude is currently not employed in the standard inference of
cosmological parameters.

The frequency ω of the BAO spectrum is also affected by non-linearities. These effects can
however approximately be removed by BAO reconstruction, which is a well-tested technique to
better estimate the initial (linear) density perturbations (see e.g. [117–121]). By reversing the
displacements of galaxies due to their bulk flow, the non-linear effects of structure formation and
redshift-space distortions can be undone to a certain extent. Thanks to this method, it has now
become possible to measure the frequency of the BAO spectrum [110] and the location of the
BAO peak [111, 122] at the sub-percent level. Using the BAO signal as a standard ruler then
allows to break degeneracies between cosmological parameters in the CMB (e.g. between Ωm

and ΩΛ) resulting in tighter constraints.23

Although the phase is absent for adiabatic initial conditions, as we will explicitly show in
Section 5.2, it can be induced by free-streaming neutrinos. In general, the phase is also affected
by the non-linearities induced by gravity. However, it has been proven that a constant phase,
φ = const, is immune to these effects [125]. This suggests that we can reliably extract the
primordial phase from late-time observables. We will explore how to use the information encoded
in the BAO spectrum, in particular the phase φ, in Chapter 6 and establish a modified BAO
analysis in Chapter 7, which takes some of these considerations into account.

23Another common dataset that is used to break degeneracies are the local H0 measurements from supernovae.
Having said that, with both primordial, such as those from the CMB and BAO, and local measurements improving,
the inferred values of H0 are currently statistically discrepant at the 3σ level [123]. It is however questionable
whether we should be paying too much attention given the vast statistical power of the CMB in particular (see
e.g. [124]).
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We saw in the last chapter that cosmological observables are very sensitive to the composition
of the universe. We assumed that the Standard Model of particle physics accurately describes
the baryonic matter content, which indeed it does to remarkable accuracy. In addition, we had
to however invoke the presence of non-baryonic dark matter to explain some of the cosmological
data, in particular the acoustic peaks of the CMB. This is only one of the many reasons to believe
that the SM is incomplete. Other famous theoretical and experimental shortcomings of the SM
are the strong CP problem, the origin of neutrino masses, the stability of the Higgs mass and
the matter-antimatter asymmetry. Models of physics beyond the Standard Model usually invoke
new degrees of freedom to address some or all of these problems. Many interesting SM extensions
contain new light species [16], such as axions [17–19], axion-like particles [20], dark photons [21,
22] and light sterile neutrinos [23].1 These particles are often so weakly coupled to the SM that
they escape detection in terrestrial experiments. However, they may be efficiently produced in
astrophysical systems and in the early universe, which therefore presents an alternative way of
probing these elusive species.

In this chapter, we provide the connection between cosmological observables and the additional
light relics predicted in some BSM models. In Section 3.1, we give order-of-magnitude estimates
for the constraining power of astrophysical systems and cosmology on weakly-interacting light
particles. In Section 3.2, we introduce the particle physics aspects of this thesis. We first review
the current status of the Standard Model of particle physics and motivate its extensions with
additional light particles. We will then present an effective field theory framework which offers a
convenient parametrization of large classes of light species and their interactions with the SM. In
Section 3.3, we introduce the effective number of relativistic species, Neff, as the main cosmological
parameter capturing neutrinos and any other light thermal relics, and determine the relation
between the observable relic abundance of these particles and their decoupling temperatures. We
show that a single species in thermal equilibrium produces a minimal non-zero contribution to Neff

1In addition, BSM models often require new massive particles which can be too heavy to be produced at the
energies available at colliders even in the distant future. Although it is also possible to constrain these types of
particles using cosmology (see e.g. [126–140]), in this thesis, we will focus on light weakly-coupled species.
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which provides an interesting target for future cosmological measurements. In Section 3.4, we
finally examine the possible signatures that these particles might leave in cosmological observables
such as the CMB and LSS power spectra. This will allow us to search for these signals and
constrain the interactions of light relics with the Standard Model in the following chapters of this
thesis.

3.1 The Power of Astrophysics and Cosmology

Detecting new light species is challenging because their couplings to the Standard Model degrees
of freedom are necessarily small (since we would have already detected them otherwise). In
particular, since the scattering cross sections are tiny, it is difficult to probe these SM extensions in
terrestrial experiments on the intensity or energy frontier of particle physics, i.e. in the laboratory
or at particle accelerators. In astrophysics and cosmology, however, we have access to high-density
environments and/or the ability to follow the evolution over long time scales which can overcome
the small cross sections and allow a significant production of the extra species. For example,
new light particles can be produced in the interior of stars [141]. Since these species are weakly
interacting, they carry energy away from the stellar core similar to neutrinos. The absence of an
anomalous extra cooling over the long lifetime of stars puts some of the best current constraints
on weakly-coupled particles.

To illustrate the origin of this sensitivity, we consider the fractional change in the number
densities of the particles involved in the production process, which can schematically be written as

∆n

n
∼ nσ ×∆t , (3.1)

i.e. it is equal to the interaction rate, Γ ∼ nσ, with thermally-averaged cross section σ, times
the interaction time ∆t. This highlights how small cross sections can be compensated for by the
high densities in the stellar interior, n ∼ (1 keV)3, and especially the very long lifetime of stars
which is typically of the order of ∆t ∼ 108 yrs. We therefore find significant changes in the stellar
evolution, ∆n/n & 1, if

σ > (n∆t)−1 ∼
(
1010 GeV

)−2
. (3.2)

These particles may also be produced in extreme astrophysical events, such as supernovae
explosions, which happen on much shorter time scales, ∆t ∼ 10 s. Because the densities in this
case are much higher, n ∼ (10 MeV)3, the constraints which can be derived from the observed
energy loss are at an order of magnitude comparable to (3.2).

Since the early universe was dominated by radiation, constraints on light relics can also be
inferred from cosmological measurements. In order to get a sense for the power of these possible
bounds, a similar argument based on (3.1) can be applied to cosmology. The high densities
of the early universe, n ∼ T 3 � (1 MeV)3, allow these light particles to have been in thermal
equilibrium with the SM (and therefore efficiently produced) for time scales of ∆t < 1 s. They can
therefore make a significant contribution to the total radiation density of the universe and, hence,
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be possibly detected in CMB and LSS observables. The estimate (3.2) suggests that cosmological
constraints will improve over astrophysical bounds for temperatures above 104 GeV. Moreover,
cosmology may constrain all couplings to the Standard Model equally since thermal equilibrium in
the early universe is democratic,2 whereas astrophysical systems and laboratory experiments are
often only sensitive to a subset of these interactions, e.g. the coupling to photons. This universality
of cosmological constraints is one of the reasons why the search for light thermal relics has been
adopted as one of the main science targets of the next generation of CMB experiments, such as
the CMB-S4 mission [25]. We will further quantify the constraining power of cosmology below
and especially in Chapter 4.

3.2 Physics Beyond the Standard Model

The Standard Model of particle physics is a great success. It provides a theoretically consistent
description of all known particles and their interactions (except gravity) up to the Planck scale.
On the experimental side, large improvements in detector technology and analysis techniques
have led to all predicted particles being found, including the Higgs boson [142, 143], and their
interactions being measured to exquisite precision. Having said that, the SM is clearly incomplete
and cannot be a fundamental theory since it does not address a number of open problems and
several pieces of evidence for new physics. In the following, we briefly review the main aspects
of the SM (§3.2.1) and give a few pieces of evidence for dark BSM sectors (§3.2.2). Finally, we
introduce an effective field theory of light species as a convenient way of parametrizing the new
dark sector and its interactions with the SM for cosmological searches (§3.2.3).

3.2.1 Standard Model of Particle Physics

Theoretically speaking, the Standard Model of particle physics is a highly successful quantum
field theory based on the local gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The elementary fields
associated with these groups are the eight gluons Ga, which mediate the strong force, and the
four gauge bosons W a and B, which mediate the electroweak force. The matter fields can be
divided into quarks and leptons of three generations each. Quarks are charged under the entire
SM gauge group, whereas leptons only interact via the electroweak gauge group SU(2)L ⊗ U(1)Y

as described by the Glashow-Weinberg-Salam model [144–146]. With the gauge bosons being
spin-1 particles and matter consisting of elementary spin-1/2 fermions, the Higgs field is the only
scalar (spin-0) quantity in the SM.

At high energies, all SM particles are exactly massless and the Standard Model Lagrangian
can schematically be written as

L = −1

4
XµνX

µν + iψ̄ /Dψ + (yijHψiψj + h.c.) + |DµH|2 − V (H) . (3.3)

2Any new light particle that was in thermal equilibrium in the past will have a number density which is
comparable to that of photons. This is the reason why neutrinos have been detected with high significance in the
CMB despite their weak coupling (cf. Chapter 5; see also [28, 36]).
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The first term captures the kinetic terms of the electroweak and strong gauge bosons, where
Xµν ≡ {Bµν ,W a

µν , G
a
µν} are the relevant field strength tensors. The second term is the kinetic term

of the SM Weyl fermions ψ and anti-fermions ψ̄ = ψ†γ0, with /D ≡ γµDµ and Dirac matrices γµ.
The covariant derivative Dµ encodes the interaction of these fermions with the force carriers. The
third term are the Yukawa couplings of the matter fields to the Higgs doublet H with Yukawa
matrix yij . The last two terms finally characterise the kinetic term, the gauge boson interactions
and the quartic potential of the Higgs field.

At low energies (. 100 GeV), the Higgs field develops a non-zero vacuum expectation value,
v = 246 GeV, and the electroweak symmetry is spontaneously broken to U(1)em with the photon
being the associated gauge boson. In the process, the Higgs boson itself, the weak gauge bosons
(W± and Z) as well as the quarks and leptons3 receive their mass by means of the Higgs
mechanism [147–150]. The fermion masses are given by mi = yiiv/

√
2, for example. Moreover,

the B and W 3 bosons mix and become the photon and the Z boson. The parameter governing
this relationship is Weinberg’s weak mixing angle θw ≈ 30° which also sets the difference between
the W and Z boson masses, mW = mZ cos θw.

The Standard Model has 19 free parameters which have to be measured in experiments. Most
of these parameters have been determined to exquisite precision and the SM has passed most
of its tests with flying colours [45]. For instance, the electromagnetic fine-structure constant,
α ≈ 1/137, has now been measured with a relative uncertainty of less than one part in 109 [45, 151].
Remarkably, the value obtained from a measurement of the electron magnetic moment together
with a quantum electrodynamics calculation to tenth-order in perturbation theory achieves the
same level of precision and agrees [152, 153].

3.2.2 Motivations for New Physics

Apart from the obvious fact that the Standard Model of particle physics only describes three
of the four fundamental forces of Nature, there are several experimental and theoretical pieces
of evidence pointing towards physics beyond the Standard Model. In the following, we describe
some of these puzzles with a particular focus on those problems which might be solved by dark
sectors containing new light and weakly-interacting particles. For more in-depth reviews, we refer
the reader to [16, 45, 154–156].

It is well known that the weak interactions break charge-parity (CP) symmetry through a com-
plex phase in the CKM matrix describing the mixing of quarks. A long-standing puzzle, however,
is the non-observation of CP violation in the strong interactions although the QCD Lagrangian
allows a CP-violating term,

L ⊃ θ

32π2
Gµν,aG̃

µν,a , (3.4)

where θ is the CP-violating phase and G̃µν,a ≡ 1
2ε
µνρσGaρσ is the dual gluon field strength

tensor. Among other implications, this term induces a neutron electric dipole moment. Current

3It is currently unclear whether neutrinos are coupled to the SM Higgs field as well. In the SM, they are exactly
massless, i.e. the possible Yukawa couplings are taken to be zero.
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experimental bounds on this quantity imply that |θ| < 10−10 [157, 158] and not θ ∼ O(1) as
one might expect. The absence of CP violation in QCD is therefore a fine-tuning problem with
the number of proposed solutions being limited. The most popular suggestion is to promote
this parameter to a dynamical field which can naturally make θ small. This can be achieved by
spontaneous breaking of the (approximate) Peccei-Quinn symmetry [17] at a scale fa which is
known as the decay constant. The spontaneous symmetry breaking gives rise to a pseudo-Nambu-
Goldstone boson, the QCD axion, with a specific relation between the axion mass and its decay
constant, ma ∝ 1/fa, and generic couplings not only to the gluon, but also to quarks. Interestingly,
axions which are non-thermally produced for example via the misalignment mechanism could
make up all or part of the dark matter in the universe [159–162] and thereby solve two of the major
problems in particle physics at once. In principle, axions can also be thermally produced [163–168].
This is possible if the decay constant fa is small enough and/or the reheating temperature of the
universe large enough, so that the axion production rate Γ ∼ T 3/f2a was larger than the Hubble
rate H at early times.

The neutrino sector is the least understood part of the SM. These very weakly interacting
particles are famously predicted to be massless, but flavour oscillations4 have been observed for
solar, atmospheric, reactor and accelerator neutrinos. This implies that these particles must have
non-zero masses which are however constrained to be at the sub-eV level and, therefore, much
smaller than the mass of any other known particle. From these neutrino oscillation experiments,
we know the mass-squared differences, ∆m2, of two pairs of neutrinos, but their ordering is still
unknown, i.e. we do not know whether there are two light neutrinos and one slightly heavier
neutrino (normal hierarchy) or whether it is the other way around (inverse hierarchy). In fact, the
overall mass scale and the mechanism by which neutrinos obtain their masses is still a mystery. It
might be the standard Higgs mechanism with very small Yukawa couplings (if neutrinos are not
their own anti-particle), it could be through a new Higgs-like field or the underlying process might
be of an entirely different nature. Many attempts to incorporate neutrino masses in the Standard
Model rely on new hidden sectors with new forces and/or particles, some of which might be light
or even massless (see e.g. [169–171]). This also applies to solving additional problems related to
neutrinos, such as the possibility of CP violation and the question whether they are Majorana or
Dirac fermions, i.e. their own anti-particle or not.

The anomalous magnetic moment of the muon can be measured accurately in the laboratory by
studying the precession of µ+ and µ− in a constant external magnetic field. Precise SM calculations,
however, are discrepant at the level of about 3.5σ [45]. One possibility for addressing this tension
is the presence of a new force mediated by an extra Abelian U(1) gauge boson A′

µ [172], which is
usually referred to as a dark photon. This new particle may be very weakly coupled to electrically
charged particles (including muons) through kinetic mixing with the photon [21] and thereby
alleviate the gµ − 2 discrepancy. Further motivation for this type of BSM model [173] comes from
the unexpected energy-dependent rise in the ratio of positrons to electrons in cosmic rays, as

4A neutrino which is produced or emitted in a well-defined flavour eigenstate has a non-zero probability of
being detected in a different flavour state.
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observed for example by PAMELA [174]. Moreover, a substantial number of dark matter models
also employ new millicharged species, i.e. particles with small un-quantized electric charge, as
dark matter candidates. These new particles usually arise naturally in many SM extensions which
include dark photons or extra dimensions. As in the case of axions, light dark photons themselves
may also constitute (part of) the dark matter.

One of the most famous theoretical problems of the SM is the hierarchy problem. At the
core, it raises the question why the weak force is 1024 times stronger than gravity or, in other
words, why the Higgs boson mass, mH ≈ 125 GeV, is so much smaller than the Planck mass,
Mpl ≈ 2.4 × 1018 GeV, despite of quantum corrections. For a long time, the most popular
solution has been to introduce a new spacetime symmetry known as supersymmetry. One of its
consequences would be that every SM particle has a (heavier) superpartner. Apart from being
theoretically appealing in a number of ways, supersymmetry could also, for instance, solve the
problem of gauge coupling unification, provide a dark matter candidate and, imposed as a local
symmetry, lead to a theory of supergravity. Having said that, no sign of any supersymmetric
extension of the Standard Model has so far been seen at the LHC or elsewhere. This has led
particle physicists to further explore alternative ways of solving the hierarchy problem. Examples
include composite Higgs models in which the Higgs boson may arise as a pseudo-Nambu-Goldstone
boson (pNGB) [175–177], extra dimensions [178–180], a relaxation mechanism [181] or a large
number of hidden sectors [182]. Instead of new heavy degrees of freedom, which have not been
observed to date, light particles arise in these approaches for instance as mediators between the
dark sector and the Standard Model or as a consequence of symmetry breaking patterns.

Ultimately, we would like to find a unified theory of the four fundamental forces or, in other
words, of particle physics and gravity. Candidates for such a theory, e.g. string theory, generically
predict (very rich) hidden sectors with a large number of moduli (scalar) fields, additional gauge
bosons or even higher-spin particles. Some of these extra fields may have small or vanishing
masses and may only be very weakly coupled to the SM degrees of freedom. In fact, most of
the scenarios discussed above, in particular axions and hidden photons, generically occur in
string compactifications [154, 162, 183, 184]. For example, axions arise as Kaluza-Klein modes of
higher-dimensional form fields when compactifying the d > 4 spacetime dimensions to the usual
four. These axions are exactly massless to all orders in perturbation theory, but receive their mass
by non-perturbative effects, such as instantons. The presence of a large number of such axions
with a wide range of masses is sometimes referred to as the string axiverse [20].

This comparably short and condensed list of current puzzles and their possible solutions only
indicates the wealth of particle physics phenomenology these days. Having said that, many of the
proposed SM extensions have in common that they contain a dark sector which is only (very)
weakly coupled to the Standard Model. Since the SM symmetries restrict the kind of interactions
or “portals” between the sectors, four of them are commonly used: the axion and vector portals,
which we introduced above, as well as the Higgs and neutrino portals, which contain additional
scalars or sterile neutrinos to mediate the interaction. There has been substantial experimental
effort as well as progress in recent years at both the energy and intensity frontiers. This includes
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probing higher and higher energies especially at particle colliders, and using intense sources and
ultra-sensitive detectors, for example in laser experiments [16, 154, 155]. In this thesis, we will
contribute to the efforts on the cosmic frontier, i.e. the search for new physics in cosmology.

3.2.3 Effective Field Theory of Light Species

We have just seen that additional light species arise in many well-motivated extensions of the
Standard Model. In addition, cosmology tends to provide constraints on broad classes of models
rather than very specific scenarios. Instead of working through these BSM models one by
one, it is therefore more efficient to study the interactions between the new species with the
SM degrees of freedom within the framework of effective field theory and thereby capture their
main phenomenology. Generally speaking, this means parametrizing these interactions as

L ⊃
∑

gOXOSM , (3.5)

where OX and OSM are operators of light and SM fields, respectively. Since the small masses of X
could receive large quantum corrections, we employ (approximate) symmetries to prevent this.
The allowed couplings in (3.5) are then restricted by these protective symmetries. Ultimately, we
will be able to put constraints on the interaction terms from cosmological measurements because
the relic abundance of a new species is governed by its decoupling temperature, cf. Fig. 3.2, which
in turn depends on the coupling parameters g.

Introduction to effective field theory

The effective field theory framework builds upon the realization that Nature comes with many
separated scales and that we can usually analyse natural phenomena by considering one relevant
scale at a time. For example, we are able to describe the formation of hydrogen during recom-
bination in terms of protons and electrons, and do not have to take the dynamics of quarks and
gluons inside the proton into account. Similarly, we can treat the primordial plasma prior to
decoupling as a fluid with certain properties without knowing the exact trajectories of the baryons
and photons. In the same spirit, we were able to use Fermi theory instead of the full Standard
Model to study neutrino decoupling. This is due to the fact that Fermi theory well describes the
weak interactions of neutrinos with the other leptons at energy scales far below the mass of the
W boson and can therefore be seen as an effective description of this part of the Standard Model.

An effective field theory is a quantum field theory which takes advantage of scale separation
and only includes the appropriate degrees of freedom to describe certain phenomena occurring at
a particular energy scale. This way, we capture the important aspects at the scale of interest and
do not have to worry about the potentially rich spectrum of states in the underlying microscopic
theory. In the case of Fermi theory, the full description in terms of the weak force within the SM
is known (and perturbative), but we can simplify the calculation of neutrino scattering by turning
to the effective description. In the search for new physics, on the other hand, we usually do not
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have a full high-energy theory, but EFTs allow us to parametrize the unknown interactions, to
estimate the magnitudes of these interactions and to classify their relative importance.

The guiding principle in the construction of EFTs are the symmetries obeyed by the relevant
particle or field content. In this thesis, we are interested in EFTs which contain light fields in
addition to the SM degrees of freedom. Following [24], we only consider models that are minimal
and technically natural. Minimality here means that the additional particle content is as small as
possible, i.e. it usually consists of only one additional elementary particle. The possible theory
space is further reduced by imposing an (approximate) symmetry to protect the small mass from
large quantum corrections.5 We therefore require that our EFT not only obeys the SM symmetries,
in particular Poincaré and gauge invariance, but also additional protective symmetries related
to the specific scenario. Since the available symmetries depend on the spin of the new particle,
it is convenient to organize the EFT according to spin. In the following, we consequently study
the effective field theories of light species with different spins s ≤ 2. Since interacting particles
with spin s > 2 necessarily have to be composites [185], we therefore exhaust all possibilities for
elementary particles.

Spin-0: Goldstone bosons

A particularly well-motivated example of a new light particle are Goldstone bosons which generically
appear when global symmetries are spontaneously broken. Goldstone bosons are either massless
(if the broken symmetry was exact) or naturally light (if it was approximate). Examples of
light pseudo-Nambu-Goldstone bosons are axions [17–19], familons [186–188], and majorons [189,
190], associated with spontaneously broken Peccei-Quinn, family and lepton-number symmetry,
respectively. Below the scale of the spontaneous symmetry breaking, the couplings of the Goldstone
boson φ to the SM particles can be characterised through a set of effective interactions

L ⊃
∑ OφOSM

Λ∆
, (3.6)

where Λ is related to the symmetry breaking scale and the operators Oφ are restricted by an
approximate shift symmetry, φ→ φ+ const.

Axion, familon and majoron models are characterised by different couplings in (3.6).6 For
example, below the electroweak symmetry breaking scale the axion couplings to the photon and
gluon fields is given by

L ⊃ −1

4

(
φ

Λγ
FµνF̃

µν +
φ

Λg
Gµν,aG̃

µν,a

)
, (3.7)

with the field strength tensors Fµν and Gaµν , and their duals F̃µν and G̃aµν . The photon interaction

5The requirement of minimality essentially prevents us from employing strong dynamics in the new sector to
generate large anomalous dimensions for the mass terms to render them small in the EFT because these models
generically have a rich spectrum.

6We will follow the common practice of reserving the name axion or axion-like particle for pNGBs that couple
to the gauge bosons of the SM through operators like φFµν F̃

µν . For simplicity, we will refer to all such particles
simply as axions.
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term is somewhat model dependent, but typically arises together with the gluon coupling. Strictly
speaking, only the latter has to be present in order to solve the strong CP problem. The interaction
of familons with the charged SM fermions are generally governed by a current, e.g. the axial vector
current Jµ5 , derivatively coupled to the scalar field,

L ⊃ −∂µφ
Λψ

Jµ5 = −∂µφ
Λψ

ψ̄γµγ5ψ , (3.8)

where ψ is any charged SM fermion. Majorons may arise as Goldstone bosons associated with the
spontaneous breaking of the neutrino flavour symmetry which might be related to the existence of
neutrino masses. Their interactions with the SM may be of a similar form as for familons. For a
more in-depth discussion of light spin-0 fields, we refer to Chapter 4.

Spin-1
2 : Light fermions

Light spin-12 particles can either arise as Weyl or Dirac fermions. Both are natural possibilities
since their mass terms can be protected by a chiral and axial symmetry, respectively. A hidden
Dirac fermion Ψ, which is invariant under Ψ → eiαγ5Ψ, with arbitrary phase α and γ5 ≡ iγ0γ1γ2γ3,
can couple to the hypercharge gauge boson Bµ through a dimension-5 dipole interaction,

L ⊃ − 1

Λd
Ψ̄σµνΨBµν , (3.9)

with σµν ≡ i
2 [γ

µ, γν ]. This coupling may arise from loops in a high-energy theory that involve
heavy charged particles. Another option is to couple the new particle Ψ to any SM fermion ψ via
dimension-6 four-fermion interactions,

L ⊃ 1

Λ2
f

(
ds Ψ̄Ψ ψ̄ψ + dp Ψ̄γ

5Ψ ψ̄γ5ψ + da Ψ̄γ
µΨ ψ̄γµψ + dvΨ̄γ

µγ5Ψ ψ̄γµγ
5ψ
)
, (3.10)

where the parameters di, i = s, p, a, v, are in principle O(1) numbers for the scalar, pseudo-scalar,
axial and vector couplings, respectively. One possibility for inducing such an interaction is the
exchange of a massive scalar or vector boson, such as those generated by spontaneously broken
gauge symmetries. A well-studied example are light sterile neutrinos which may be coupled to
the SM via a new massive vector boson Z ′ from a spontaneously broken U(1) symmetry [23, 191,
192].

A Weyl fermion χ, which is protected by the chiral symmetry χ→ eiαχ, with arbitrary phase α,
can be coupled to SM fermions by four-fermion interactions as in (3.10). Alternatively, we can
couple χ to the hypercharge gauge boson Bµ through a dimension-6 anapole moment,

L ⊃ − 1

Λ2
a

χ†σ̄µχ∂νBµν , (3.11)

where (σ̄µ) = (1,−σi) with Pauli matrices σi.
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Spin-1: Vector bosons

Massless spin-1 particles carry fewer degrees of freedom than their massive counterparts which
means that a mass term cannot arise from perturbative quantum effects. This implies that massless
vector bosons are technically natural. A small protected mass can nevertheless be generated,
for example via the standard Higgs mechanism, a Stückelberg mechanism or in LARGE volume
compactifications of string theory [154]. The most minimal scenario is to couple one hidden U(1)

gauge boson A′
µ, a dark photon, to the SM fermions via a dipole interaction. Prior to electroweak

symmetry breaking, this coupling can be written as

L ⊃ − 1

Λ2
A′
F ′
µν Hψ̄σ

µνψ , (3.12)

where F ′
µν is the field strength associated with the dark photon and the presence of the Higgs

field H is required by gauge invariance. Once the Higgs has acquired its non-zero vacuum
expectation value v, this operator will be effectively of dimension-5 with an effective scale of
Λ̃A′ = Λ2

A′/v.
Another option to couple a dark photon to the Standard Model is by kinetically mixing the new

boson A′
µ with the hypercharge gauge boson, L ⊃ −(ε/2)F ′µνBµν [21]. If the extra particle A′

µ is
exactly massless, we can decouple it from the SM by a field redefinition. This scenario therefore
requires to enlarge the particle content by a new Dirac fermion χ which is millicharged under the
electroweak SM gauge group, e.g.

L ⊃ −εgA′ cos θw χ̄ /Aχ− εgA′ sin θw χ̄/Zχ− gA′ χ̄ /A
′
χ , (3.13)

where gA′ is the coupling between χ and the dark photon, and ε is the kinetic mixing parameter.
As mentioned above, the additional fermion χ can be (a fraction of) the dark matter in many
models.

Spin-3
2 : Gravitino

There is one unique elementary particle with spin-3/2, the gravitino. The existence of the gravitino
as the superpartner to the graviton is a universal prediction of supergravity. Its mass is set by the
supersymmetry breaking scale, m3/2 ∼ F/Mpl, and can be very small in low-scale supersymmetry
breaking scenarios. Although the gravitino typically interacts with gravitational strength, its
longitudinal component couples to the SM in the same way as the Goldstino,

L ⊃ − 1

F 2
χ†σµ∂νχT

µν . (3.14)

The coupling parameter of this component of the gravitino is therefore enhanced compared to the
Planck scale.
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Spin-2: Graviton

The graviton is the unique elementary spin-2 particle and the force carrier of gravity. It is massless
and only interacts with gravitational strength, i.e. all its interactions with the SM fields are
suppressed by Mpl ≈ 2.4 × 1018 GeV.

This concludes our discussion of the effective field theory of light species. We will return to
these EFT couplings in §3.3.3 where we discuss some of the current constraints from particle
accelerators, laboratory experiments, astrophysics and cosmology.

3.3 Neutrinos and Dark Radiation

In this thesis, we are particularly interested in measurements of the radiation density of the
universe to probe particle physics. The contribution from photons, ργ , is fixed by the very well
measured value of the CMB temperature,

ργ,0 =
π2

15
T 4
0 ≈ 2.0 × 10−15 eV4 , (3.15)

which corresponds to a physical photon density of ωγ = Ωγh
2 ≈ 2.5 × 10−5. As we discussed

in §2.2.3, the standard models of cosmology and particle physics also predict a contribution from
neutrinos. According to equations (2.12) and (2.20), the expected radiation density from each
neutrino species in the instantaneous decoupling limit is7

ρνi =
7

8

(
Tν,0
T0

)4/3
ργ =

7

8

(
4

11

)4/3
ργ ≡ a−1

ν ργ , (3.16)

where we defined aν ≈ 4.40 instead of its inverse for later convenience. The three neutrino
species of the Standard Model consequently contribute a significant amount to the total radiation
density in the early universe: ρν/ρr =

∑
i ρνi/ρr ≈ 41 %. The gravitational effects of neutrinos

are therefore significant at early times which is why we can observe their imprints in the CMB
and BAO spectra (cf. Chapters 5 and 7; see also [28]) although their contribution to the total
energy density today is very small.

3.3.1 Effective Number of Relativistic Species

We have assumed so far that neutrinos decoupled instantaneously and, therefore, did not receive
any of the entropy that was released when electrons and positrons annihilated. However, a small
amount of the entropy is actually transferred to the neutrino sector as well. Instead of changing
the prefactor aν in (3.16), it is common to introduce the effective number of neutrinos Nν as

ρr = ργ + ρν =
[
1 + a−1

ν Nν

]
ργ . (3.17)

7In principle, the decoupling temperatures of the three different neutrino species slightly differ from each other
(see e.g. [193, 194]). We neglect this and effectively take Tν to be the average neutrino temperature.
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In the instantaneous decoupling limit, we have Nν = 3. Accounting for plasma corrections of
quantum electrodynamics, flavour oscillations and, in particular, the fact that neutrinos have not
fully decoupled when electrons and positrons annihilated, one finds Nν = 3.046 in the SM [195].8

In this sense, measurements of Nν > 0 probe the energy density of the CνB and Nν 6= 3.046 could
be a sign for non-standard properties of neutrinos or changes to the standard thermal history.

The introduction of this new parameter also provides a convenient way to include the possibility
of radiation in excess of the SM expectations. BSM physics may add extra radiation density ρX
to the early universe which is often referred to as dark radiation. It is conventional to measure
this radiation density relative to the density ρνi of a single SM neutrino,

∆Neff ≡
ρX
ρνi

= aν
ρX
ργ

, (3.18)

and define the effective number of relativistic species

Neff ≡ Nν +∆Neff = 3.046 + ∆Neff . (3.19)

The parameter Neff therefore captures the difference between the total radiation density of the
universe, ρr, and the CMB photon energy density, ργ , normalized to the energy density of a single
neutrino species, ρνi . This is the central cosmological parameter under investigation in this thesis.
Slightly generalizing the statement from above, measurements of Neff > 0 therefore probe the
energy density of the CνB, and Neff 6= 3.046 would be a signature of physics beyond the standard
models of particle physics and/or cosmology.

Current observations of the CMB anisotropies and the light element abundances find [36,
197]9,10

Neff = 3.04± 0.18 (CMB) , (3.20)

Neff = 2.85± 0.28 (BBN) , (3.21)

which are consistent with the SM prediction of Neff = Nν = 3.046. These measurements represent
a highly significant detection of the energy density associated with the cosmic neutrino background
and a non-trivial confirmation of the thermal history back to about one second after the big bang
when neutrinos decoupled. The consistency of the measurements is remarkable, although the
interpretation is somewhat sensitive to assumptions about the cosmological model and constraints
weaken considerably in some extensions of the ΛCDM model (cf. Section 5.3). Furthermore, these

8Recently, a more accurate calculation including neutrino oscillations with the present values of the mixing
parameters found Nν = 3.045 [196]. At the level of precision anticipated in the near future and under consideration
in this thesis, the difference is irrelevant which is why we keep the standard value of Nν = 3.046 as our baseline
assumption.

9Stated imprecisely, colliders also constrain the number of neutrino species through precision measurements of
the width of the Z decay. Yet, when stated more carefully, collider measurements only tell us how many fermions
with mass below 1

2
mZ couple to the Z boson [198]. These experiments find very close agreement with three families

of active neutrinos.
10The quoted CMB constraint includes high-` polarization data which has been labelled as preliminary by the

Planck collaboration. Only considering temperature and low-` polarization data results in Neff = 3.13+0.30
−0.34 [36].
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Figure 3.1: Particles beyond the Standard Model can be classified according to their masses M
and their mean free paths λmfp (both normalized relative to the Hubble rate at recombination, Hrec,
relevant for CMB observations). Particles with M > Trec contribute to the cold dark matter of
the universe at recombination, while particles with M < Trec are relativistic at recombination.
Massive, strongly interacting particles are Boltzmann-suppressed and, therefore, do not contribute
a cosmologically interesting radiation density. Dark radiation separates into free-streaming and
non-free-streaming particles. Note that non-thermal relics, such as non-thermally produced axions,
escape the simple characterisation of this figure.

measurements put interesting limits on many extensions of the SM containing additional light
fields and/or thermal histories that enhance or dilute the radiation density (see e.g. [24, 199–207]).

Strictly speaking, the parameter Neff is usually taken to capture neutrinos and neutrino-like
species, i.e. it refers to free-streaming radiation. As we illustrate in Fig. 3.1, not all relativistic
BSM particles have to fall into this category. We will hence also allow for a contribution from
non-free-streaming radiation and capture this by the following parameter:11,12

Nfluid ≡ aν
ρY
ργ

, (3.22)

with non-free-streaming radiation density ρY . In Chapter 5, we will characterise the different
effects of Neff and Nfluid on the photon-baryon fluid, and study their distinct cosmological imprints
in detail. In particular, we will keep Nfluid 6= 0 when analysing Planck data and forecasting future
constraints. In Chapters 6 and 7, we will restrict ourselves to Neff and implicitly set Nfluid ≡ 0

11Another attempt to parametrize (non-)free-streaming radiation is in terms of a viscosity parameter cvis [208].
This parameter has recently been detected by Planck, c2vis = 0.331± 0.037 [36] (see also [209, 210]). However, as
discussed in [211], c2vis =

1
3

is not equivalent to free-streaming radiation and differs from ΛCDM by ∆χ2 = 20. Our
parametrization has the advantage that it reproduces ΛCDM when Neff = Nν = 3.046 and Nfluid = 0. A similar
parametrization has appeared in [207, 212–214] and was analysed with WMAP data in [212, 213]. However, it has
only recently become possible to distinguish these parameters with high significance (see Section 5.3).

12This approach of reducing large numbers of models to a single model which captures their essential features is
analogous to the use of simplified models to search for new physics at the LHC [215].
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because many BSM models, in particular simple extensions of the SM, only predict free-streaming
species.

3.3.2 Thermal History with Additional Species

A natural source for ∆Neff 6= 0 are extra relativistic particles.13 Let us therefore consider a
light species X as the only additional particle in some BSM theory. Assuming this species was
in thermal equilibrium with the SM particles at some point in the history of the universe, we
can compute its contribution to ∆Neff in a similar way to our calculation of the relic density of
neutrinos. Furthermore, assuming that the species X freezes out well before neutrino decoupling,14

TF,X & 10 MeV, the temperature associated with X in relation to the neutrino temperature Tν is

TX =

(
g∗(TF,ν)

g∗(TF,X)

)1/3
Tν =

(
10.75

g∗,SM

)1/3( g∗,SM
g∗(TF,X)

)1/3
Tν ≈ 0.465

(
g∗,SM
g∗(TF,X)

)1/3
Tν , (3.23)

where we employed entropy conservation among the particles in thermal equilibrium, i.e. we
assumed no significant entropy production after the decoupling of X. We also inserted g∗,SM =

106.75, and g∗(TF,ν) = 10.75 due to photons, electrons and neutrinos. (We omitted the additional
subscript for entropy since g∗(T ) = g∗S(T ) in thermal equilibrium.) Note that neither g∗(TF,ν)
nor g∗(TF,X) include a contribution from the particle X as it has decoupled and does not receive
any of the released entropy of later annihilation processes.

After neutrinos decouple, the evolution of TX and Tν is the same since both scale as Ti ∝ a−1.
Provided that the extra species are relativistic when they freeze out and remain decoupled, their
energy ratio stays constant and we get

∆Neff =
ρX
ρνi

=
g∗,X T

4
X

g∗,νi T
4
ν

≈ 0.027 g∗,X

(
g∗,SM
g∗(TF,X)

)4/3
, (3.24)

where we used g∗,νi = 7/4 and g∗,X depends on the spin of the particle (cf. §2.2.2). Figure 3.2
shows the contribution to ∆Neff from a single thermally-decoupled species as a function of the
decoupling temperature TF and the spin of the particle based on (3.24). We see that decoupling
after the QCD phase transition produces a contribution to Neff that is comparable to that of a
single neutrino species, which is ruled out (or at least strongly disfavoured) by current observations.
On the other hand, decoupling before the QCD phase transition creates an abundance that is
smaller by an order of magnitude due to the much larger number of available degrees of freedom g∗.
Since Planck is blind to these particles, such scenarios are still consistent with current limits.

13For simplicity, we set Nfluid = 0 in this section, but note that the thermal history is unchanged if an additional
species contributes to Nfluid instead of ∆Neff because we will only be concerned with the relic energy density. As
we will see later, distinguishing Neff and Nfluid relies on more subtle effects.

14If the particle X froze out after electron-positron annihilation, its temperature would be the same as for
photons, TX = T , for all times. On the other hand, we would have T > TX > Tν if the new species decoupled in
the relatively small window between the onset of neutrino decoupling and the conclusion of e+e− annihilation. As
illustrated in Fig. 3.2, both scenarios are ruled out by current measurements at more than 5σ (3σ) for new particles
with (without) spin. We therefore do not discuss them further.
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Figure 3.2: Contributions of a single thermally-decoupled Goldstone boson, Weyl fermion or
massless gauge boson to the effective number of relativistic species, ∆Neff, as a function of its
decoupling temperature TF . The current Planck limit at 95 % c.l. from [36] and the possible
future sensitivity (cf. Chapter 6) illustrate the current and future power of cosmological surveys
to constrain light thermal relics. The drop in ∆Neff by about one order of magnitude around
TF ∼ 150 MeV is due to the QCD phase transition, which is denoted by a vertical gray band as is
neutrino decoupling. The dotted lines denote some of the mass scales at which SM particles and
anti-particles annihilate.

Future observations will therefore give us access to particles that are more weakly coupled than
neutrinos and decoupled before the end of the QCD phase transition.

Employing g∗(TF,X) ≤ g∗,SM = 106.75 in (3.24), we get the asymptotic values displayed in
Fig. 3.2. We find that any additional species X which has been in thermal equilibrium with the
Standard Model at any point in the history of the universe contributes the following minimal
amount to the radiation density of the universe:

∆Neff ≥ 0.027g∗,X =


0.027 Goldstone boson (spin-0),

0.047 Weyl fermion (spin-1/2),

0.054 massless gauge boson (spin-1).

(3.25)

This is an important result. Provided that future cosmological surveys are sensitive to ∆Neff =

0.027, we can detect any particle which has ever been in thermal equilibrium with the SM. Reaching
this minimal thermal abundance is therefore a very interesting target for upcoming measurements
with important consequences for BSM physics (see Chapter 4 and [24, 207], for instance). We find
it intriguing that this threshold seems to be within reach of future observations. In Chapters 5
and 6, we will quantify this expectation and see that future CMB and LSS experiments indeed
have the potential to achieve such measurements. In this case, these cosmological surveys either
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have to detect extra light relics or we can put strong constraints on their couplings to the SM, as
we will show in Chapter 4 for the case of Goldstone bosons.

When deriving equation (3.24), we assumed an extension of the SM in which there is no
significant entropy production and the species X is the only addition to the SM particle content.
We briefly revisit these assumptions in the following. Arguably, many BSM models come with
additional massive particles which increase the effective number of relativistic degrees of freedom g∗

at high temperatures, T � 100 GeV. Moreover, their annihilation might subsequently reduce the
relic abundance of X according to (3.24), since g∗(TF,X) > g∗,SM , allowing for ∆Neff < 0.027g∗,X .
This is however degenerate with the uncertainty on the reheating temperature, i.e. the question
whether such an additional particle has ever been in thermal equilibrium, because the energy density
is only diluted for decoupling temperatures above the masses of these new particles. Furthermore,
a dilution of the minimal contribution to Neff by a factor of two requires g∗,BSM ≈ 1.7g∗,SM , i.e.
almost a doubling of the SM degrees of freedom. Although this is possible in SM extensions,
these models commonly contain many additional light particles as well (see e.g. [20, 182]) which
in turn enhance the expected value of ∆Neff. For instance, just three light degrees of freedom
can compensate for the large increase in field content in the Minimal Supersymmetric Standard
Model (MSSM). In this sense, our assumption of one new particle X is to be considered as a
conservative choice.

In certain BSM models, the minimal contribution to ∆Neff might also be diluted because
entropy is produced, e.g. by out-of-equilibrium decays of massive BSM particles or a phase
transition. Introducing the parameter γ = s(TF,X)/s(TF,ν) to capture the amount of entropy
production after the species X decoupled, equation (3.24) becomes

∆Neff = 0.027 g∗,X

(
g∗,SM
g∗(TF,X)

)4/3
× γ−4/3 . (3.26)

To illustrate the possible size of γ, we consider a massive particle χ which decays out of equilibrium,
i.e. after it has decoupled and acquired an abundance Yi = nχ/s. If we assume that this particle
dominates the energy density of the universe when it decays, the entropy ratio is given by
γ ∼ g

1/4
∗,d Yi (m

2
χτχ/Mpl)

1/2 [216], with particle mass mχ and lifetime τχ. This might potentially be
large and, for example, heavy gravitinos are constrained to have never been in thermal equilibrium
during the hot big bang evolution in this way. For concreteness, let us consider a light scalar
particle, which froze out at high temperatures, and an additional massive species with mass
mχ = 1 TeV, which decoupled at T > mχ and has a lifetime corresponding to a decay temperature
TD ∼ 10 GeV. Such a particle would dominate the energy density of the universe at T ∼ 1 TeV
and easily dilute the contribution of the light particle to ∆Neff. Having said that, this scenario is
no different than assuming the reheating temperature to be TR ∼ 10 GeV, in which case the scalar
particle would have never been in thermal equilibrium. In a sense, we are therefore expanding the
definition of the reheating temperature TR to include a possible second reheating phase caused by
an out-of-equilibrium decay process after inflationary reheating. This is therefore degenerate with
our general uncertainty on the reheating temperature. Depending on the involved time scales, the
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combined constraints on Neff from BBN and the CMB/LSS, together with other cosmological
signatures of particle decays, might be able to put some constraints on the entropy factor γ and
thereby limit the possible dilution of ∆Neff due to entropy production at correspondingly late
times (see e.g. [128, 131, 217]).

So far, we have implicitly assumed that ∆Neff > 0. The annihilation or decay of particles into
neutrinos after their decoupling could however produce ∆Neff < 0, for instance. This type of
signature would therefore hint towards certain types of BSM models. One such example may be a
light particle which is unstable and may decay to neutrinos. Interestingly, its out-of-equilibrium
decay, i.e. after it decoupled at early times, would lead to a larger suppression of Neff than its
equilibrium decay and would therefore be easier to detect. Alternatively, non-standard neutrino
properties or particles decaying to photons could effectively lead to ∆Neff < 0 as well.

3.3.3 Current Constraints on EFT Parameters

As we have already argued in Section 3.1, astrophysics and cosmology can put strong constraints
on light and weakly-coupled particles. In the following, we reconsider the EFT of light species
and discuss some of the constraints on the effective interactions from current measurements. We
will also connect these couplings to the thresholds (3.25) for ∆Neff. As in §3.2.3, we will study
the new species separately according to their spin.

Spin-0: Goldstone bosons

The Goldstone couplings (3.7) and (3.8) are constrained by laboratory experiments [16, 218], by
astrophysics [141, 219] and by cosmology [24, 162] (see [220] for a recent review).15 While laboratory
constraints, such as those from light-shining-through-walls experiments, helioscopes or haloscopes,
have the advantage of being direct measurements, their main drawback is that they are usually
rather model-specific and sensitive only to narrow windows of pNGB masses. Astrophysical and
cosmological constraints are complementary since they are relatively insensitive to the detailed form
of the couplings to the SM and span a wide range of masses. The main astrophysical constraints
on these new light particles come from stellar cooling [141]. In order not to disrupt successful
models of stellar evolution, any new light particles must be more weakly coupled than neutrinos.
The axion-photon coupling, for example, is bounded by Λγ & 1.5 × 1010 GeV (95 % c.l.) in this
way [226], in agreement with our estimate (3.2). Moreover, since neutrinos couple to the rest of
the SM through a dimension-six operator (suppressed by the electroweak scale), the constraints on
extra particles are particularly severe for dimension-four and dimension-five couplings to the SM.

We refer to Chapter 4 for constraints on the SM interactions of Goldstone bosons from precise
cosmological measurements. We will see that current bounds may be improved by many orders of
magnitude if the threshold value ∆Neff = 0.027 can be observationally excluded. In addition, most
bounds on familon couplings can already be substantially improved by cosmological experiments
that are only sensitive to ∆Neff ∼ 0.05.

15With the advent of gravitational-wave astronomy, very light pNGBs could potentially also be probed around
rapidly-rotating black holes (see e.g. [221–225]).

55



3 Light Species in Cosmology and Particle Physics

Spin-1
2 : Light fermions

The best constraint on the dipole interaction (3.9) between new light Dirac fermions and the
Standard Model comes from stellar cooling with Λd & 109 GeV [219]. On the other hand,
collider searches provide the most competitive bounds on the four-fermion couplings of (3.10),
Λf & O(1 TeV), with the precise numbers depending somewhat on the type of SM fermion [24]. The
anapole coupling (3.11) of extra Weyl fermions has similar constraints from particle accelerators.

Figure 3.2 shows that any dark Dirac or Weyl fermion must have decoupled before the end
of the QCD phase transition in order to be compatible with the current Planck limits on the
radiation density. Cosmological measurements will be able to put strong constraints on these
couplings since Dirac fermions minimally contribute ∆Neff = 0.094 to the radiation density, which
will be well within the sensitivity of future surveys. For interactions including light Weyl fermions,
the cosmological threshold is smaller by a factor of 2, but the combination of upcoming CMB and
LSS experiments still has the potential to improve these bounds by many orders of magnitude.

Spin-1: Vector bosons

The constraints on the dipole coupling (3.12) of dark photons from stellar and supernova cooling
depend on the type of SM fermions that are involved. For instance, the coupling to electrons is
bounded by ΛA′ & 107 GeV and the muon interaction by ΛA′ & 104 GeV [24]. Models with extra
millicharged particles, such as those of (3.13), also have strong stellar and supernova bounds.
These constraints are complemented by a number of collider searches and laboratory experiments,
for instance in beam dump experiments and using helioscopes (see e.g. [16, 154]). For hidden
millicharged fermion masses of mχ . 100 keV for example, the current bound on the kinetic mixing
parameter is ε . 10−13 [154]. These constraints are again supplemented by current measurements
of Neff from BBN and the CMB as well [24].

Since massless gauge bosons in thermal equilibrium contribute at least 0.054 to Neff, future
cosmological measurements will be able to severely restrict the allowed parameter space of these
models, including scenarios where millicharged fermions make up the dark matter. It goes without
saying that bounds on non-Abelian gauge fields will be much stronger because they would carry a
radiation density equivalent to Nfluid ∼ 0.07(N2 − 1) for a dark SU(N) gauge group [227].

Spin-3
2 : Gravitino

Since the gravitino coupling (3.14) is suppressed by the supersymmetry breaking scale and not
the Planck scale, the gravitino may have been in thermal equilibrium with the Standard Model
at early times. It minimally contributes ∆Neff = 0.047 to the radiation density in the early
universe because it behaves like a Weyl fermion as far as its contribution to ∆Neff is concerned.
In fact, current cosmological constraints on m3/2 could indicate that the gravitino may be so light
(and hence F so small) that it only decouples at T . 100 GeV [25], i.e. the remaining minimal
contribution to Neff gets enhanced compared to the value for a Weyl fermion, ∆Neff & 0.057, and
therefore more easily detected in upcoming observations.
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Spin-2: Graviton

It is unlikely that the graviton has ever been in thermal equilibrium because it only interacts
with gravitational strength. Its thermal abundance is therefore negligible. Having said that, since
gravitational waves are massless and free-streaming, the energy density of a stochastic background
in the early universe may contribute a small amount to the radiation density and therefore to the
effective number of relativistic species Neff [228–231].

3.4 Cosmological Signatures of Light Relics

Changing the radiation density by adding additional light species16 to the universe will impact
a number of cosmological observables in more or less subtle ways. In the following, we will
describe the influence of light relics on the CMB anisotropies, the matter power spectrum, the
BAO spectrum and big bang nucleosynthesis. We will see that precise measurements of the various
observables and reliable extraction of several signatures turns cosmology into an accurate tool for
probing cosmic neutrinos as well as other light thermal relics and, hence, this type of SM and
BSM physics.

3.4.1 Diffusion Damping

A change in the radiation density impacts the CMB power spectrum in several ways (see [26] for an
excellent discussion). At the level of the homogeneous cosmology, the largest effect of relativistic
particles is a change in the expansion rate during radiation domination, which according to the
first Friedmann equation (2.5) is given by

3M2
plH

2 = ργ

(
1 +

Neff +Nfluid
aν

)
, (3.27)

where free-streaming particles (Neff) and non-free-streaming particles (Nfluid) contribute equally,
and aν ≈ 4.40 was introduced in (3.16). As we anticipated in §2.3.2, the change in the Hubble
rate manifests itself in a modification of the damping tail of the CMB (see Fig. 3.3). However,
understanding the precise impact of a change in the radiation density is non-trivial [26], since
changing H will also affect the location of the first acoustic peak, which is extremely well measured.
To study the effects of Neff +Nfluid, it is instructive to consider the ratio of the angular sizes of
the damping scale and the sound horizon, θd = 1/(kdDA) and θs = rs/DA, in order to eliminate
the a priori unknown angular diameter distance to the last-scattering surface, DA, which also
depends on the Hubble rate. Around the time of recombination, the wavelength associated with
the mean squared diffusion distance is proportional to the Hubble rate, k2d ∝ Hrec, according

16A change in Neff might not be related to new light, but new heavy particles which could decay or otherwise
mimic the effects of light degrees of freedom [201, 232–234]. However, these scenarios are usually accompanied
by additional signatures. The late decay or annihilation to photons led to ∆Neff > 0, for example, but could
also change BBN, prompt spectral distortions of the CMB frequency spectrum or leave distinct signals in the
CMB anisotropy spectrum, depending on when this additional energy injection into the thermal bath of photons
occurred (see e.g. [127, 130, 134] and references therein).
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to (2.38). Since the sound horizon is inversely proportional to Hrec, the ratio scales as

θd
θs

=
1

kd rs
∝ 1

H
1/2
rec H

−1
rec

= H
1/2
rec . (3.28)

Increasing Neff (and hence Hrec) therefore leads to a larger θd if we keep the angular scale of the
first acoustic peak, θs, fixed, e.g. by simultaneously varying the Hubble constant H0. This implies
that the damping kicks in at larger angular scales (smaller multipoles) and reduces the power
in the damping tail when increasing the radiation density. This is exactly the behaviour that
we observe for the CMB power spectrum in Fig. 3.3. The constraint in (3.20) is, in fact, mostly
derived from measurements of the CMB damping tail [36, 235].

It is useful to anticipate the possible degeneracies between the effects of extra relativistic
species and changes in the cosmological parameters as these may limit the constraining power.
The physical origin of the effect on the damping tail is given by (2.38), so we can understand the
most severe degeneracy analytically. As pointed out in [27], there is an important degeneracy
between the expansion rate H and the primordial helium fraction Yp. Since helium has a much
larger binding energy than hydrogen, increasing the helium fraction for fixed ωb (which is well
determined by the relative peak heights) will decrease the number of free electrons at the time
of hydrogen recombination, ne ∝ (1 − Yp), resulting in a larger photon mean free path and, in
consequence, more damping. It is then possible to change Yp and H simultaneously in a way
that keeps the damping scale fixed, cf. k−2

d ∝ (neH)−1. Including the dependence on ne in (3.28),
we therefore have θd/θs ∝ (Hrec/ne)

1/2. For fixed θs, the damping scale consequently remains
unchanged if Yp is reduced while simultaneously increasing Neff, i.e. the parameters Neff and Yp
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are anti-correlated. If we want to measure Yp independently from BBN, this degeneracy will be
one of the main limiting factors for constraints on extra relativistic species in the future.

Given that the physics underlying the acoustic peaks in the CMB and BAO spectra is the
same, we expect to see similar effects of relativistic species. In particular, the baryon acoustic
oscillations are also damped due to photon diffusion and hence sensitive to Neff in the same way as
the CMB anisotropies. However, there is an additional exponential damping in the BAO spectrum
because it is non-linearly processed by gravitational evolution. Since a change in diffusion damping
is therefore degenerate with theoretical uncertainties in the amount of non-linear damping, the
constraining power of the damping tail is restricted in this observable.

3.4.2 Phase Shift

Before Planck, the CMB constraints on Neff were mainly provided by the damping tail and
therefore just probed the homogeneous radiation density. Recently, the experimental sensitivity
has however improved to such a level that the measurements have started to become susceptible
to neutrino perturbations (and those of other free-streaming relics). These affect the photon-
baryon fluid through their gravitational influence and lead to a distinct imprint in the acoustic
oscillations [27]. In the following, we present a heuristic description of this effect and refer to
Section 5.2 for the proper treatment.

For this purpose, let us reconsider the single point-like overdensities that we discussed in §2.3.2
and whose evolution is visualized in Fig. 2.3. Since neutrinos freely stream through the universe
close to the speed of light after their decoupling, they induce metric perturbations ahead of the
sound horizon. The baryons and photons experience this change in the gravitational potential and
the peak of these perturbations is slightly displaced to a larger radius. In Fourier space, this results
in a small change in the temporal phase of the acoustic oscillations which is imprinted in both
the temperature and polarization spectra of the CMB as a coherent shift in the peak locations
(see Fig. 3.4). A precise determination of the acoustic peaks therefore allows a measurement
of free-streaming radiation independent of the Hubble rate. As a consequence, the degeneracy
between Neff and Nfluid, as well as between Neff and Yp can be broken by this subtle effect. We
will study this phase shift in the acoustic oscillations and its measurable implications in great
detail throughout this thesis.

Since the baryon acoustic oscillations in the matter power spectrum originate from the same
mechanism as those in the CMB spectra, the BAO spectrum exhibits the same phase shift induced
by the supersonic propagation of free-streaming species, cf. Fig. 3.5. Importantly, it was recently
pointed out that this shift should also be robust to non-linear gravitational evolution in the
late universe [125]. This means that we can circumvent the usual LSS complications related to
non-linearities and use linear perturbation theory to predict and measure this shift in late-time
observables such as the BAO spectrum of galaxy clustering. This will be the basis of the modified
BAO analysis that we propose in Chapter 6 and will ultimately lead to the first measurement of
this imprint of neutrinos in the distribution of galaxies in Chapter 7.
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Figure 3.4: Variation of the CMB temperature power spectrum as a function of Neff. The
spectra have been rescaled, so that the fiducial spectrum for Neff = 3.046 is undamped, K` =

DTT
` exp{a(`θd)κ}, with θd ≈ 1.6 × 10−3 and the fitting parameters a ≈ 0.68, κ ≈ 1.3, i.e. the

exponential diffusion damping was removed. Following [28], the physical baryon density ωb, the
scale factor at matter-radiation equality aeq ≡ ωm/ωr and the angular size of the sound horizon θs
are held fixed in all panels. The dominant effect in the first panel is the variation of the damping
scale θD. In the second panel, we fixed θD by adjusting the helium fraction Yp. The dominant
variation is now the amplitude perturbation δA. In the third panel, the spectra are normalized
at the fourth peak. The remaining variation is the phase shift φ (see the zoom-in in the fourth
panel).

The largest impact on the BAO spectrum is actually a change in the sound horizon coming
from a difference in the expansion history. By increasing the expansion rate during the radiation
era and, hence, reducing the time over which the sound waves can propagate and diffuse, the
acoustic scale decreases, rs ∝ H−1. This of course appears as a variation in the frequency of the
acoustic oscillations that BAO surveys are very sensitive to. The influence of light species on the
BAO amplitude should be taken with care when constraining Neff because it is degenerate with
theoretical uncertainties on the non-linear damping.

3.4.3 Matter-Radiation Equality

The two main consequences of an enhanced (diminished) radiation density on the matter power
spectrum are a change in the location of the turn-over of the spectrum towards larger (smaller)
scales and a decrease (increase) in power on small scales (see the top panel of Fig. 3.5). These
two effects are related as they are both linked to a change in the time of matter-radiation equality.
For fixed matter density, ωm = const, an increase in the radiation density leads to a longer epoch
of radiation domination. The maximum of the matter power spectrum therefore shifts to larger
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Figure 3.5: Variation of the matter power spectrum P (k) (top) and the BAO spec-
trum Pw(k)/P nw(k) (bottom) as a function of Neff. The physical baryon density ωb and the
physical sound horizon at the drag epoch, rs, are held fixed in all panels of the BAO spectrum.
In the second BAO panel, we fixed the scale factor at matter-radiation equality, aeq ≡ ωm/ωr.
Note that we effectively fix rs by appropriately rescaling the wavenumbers for each spectrum,
whereas we can vary ωc to fix aeq. The variation in the BAO amplitude δA is then the dominant
contribution. In the third BAO panel, the spectra are normalized at the fourth peak and the
bottom panel shows a zoom-in illustrating the remaining phase shift.

scales as its location corresponds to the wavenumber which enters the horizon at aeq. At the same
time, the amplitude of those modes that crossed the horizon before matter-radiation equality
is suppressed since the growth of structures is only logarithmic during radiation domination
(compared to linear during matter domination). Larger scales remain unchanged as they evolve
deep in the matter-dominated era. Although these effects are clearly visible in the linear matter
power spectrum, non-linearities make the matter power spectrum a less robust probe of Neff than
the phase shift.

In the CMB, the power of more modes gets increased by radiation driving if the radiation
density is larger. Moreover, a later matter-radiation equality also results in an enhanced ISW effect
because the gravitational potentials evolve by a slightly larger amount after recombination. This
effect is however sub-dominant, unless we marginalize over Yp [26]. In this case, the ISW effect
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contributes some constraining power as the sensitivity of the damping tail to Neff is greatly
reduced.

3.4.4 Light Element Abundances

Before the advent of precision cosmology, in particular before the leap in CMB detector sensitivity,
the most important model-independent constraints on light relics came from big bang nucleosyn-
thesis. Still today, the measurements of the primordial relic abundance of light elements are an
important and independent probe of additional light species. The sensitivity of the predicted
abundances from BBN on Neff is mainly through its impact on the expansion rate between about
one second and a few minutes after the big bang. This is due to the fact that a larger expansion
rate implies an earlier freeze-out of neutrons which leads to an increase in the neutron-to-proton
ratio. As a consequence, more neutrons are available for the synthesis of helium and the other
elements which results in an enhancement of the primordial abundances (see e.g. [45, 131, 197,
236–238] for reviews of BBN and its implications on BSM physics).

With the sensitivity of the CMB and BBN to Neff and Yp reaching similar levels, there are
a number of exciting possibilities to use these measurements in conjunction. First, we can
independently check the predictions of BBN by measuring the two BBN input parameters Neff

and ωb as well as the output Yp. Moreover, since the CMB and BBN provide snapshots of the
universe at different times, we can also compare the measured values and investigate whether
the radiation density might have evolved over time, for example due to the decay or presence of
additional non-relativistic particles [202, 232]. Having said that, for most parts of this thesis, we
will assume that the physics underlying the cosmological observables and BBN are consistent
which will result in the tightest possible constraints on the radiation density in the early universe.
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We have seen that many interesting extensions of the Standard Model of particle physics predict
new light species. These particles have to be more weakly coupled than neutrinos, but may have
been in thermal equilibrium in the early universe. In addition, we established that cosmological
observations are, in principle, very sensitive to these types of particles. Given the Moore’s law-like
improvements in CMB detector sensitivity [239, 240], cosmology will push the sensitivity to new
light particles beyond the strength of weak-scale interactions and has the potential to explore
a fundamentally new territory of BSM physics. Specifically, observations may become sensitive
to any light relics that have ever been in thermal equilibrium with the Standard Model. In this
chapter, we demonstrate that even the absence of a detection would be informative since it would
allow us to put constraints on the Standard Model interactions of light BSM particles, such as
axions. In many cases, the constraints achievable from cosmology will surpass existing bounds
from laboratory experiments and astrophysical observations by orders of magnitude.

The outline of this chapter is as follows. In Section 4.1, we lay out the general philosophy
underlying these new constraints on light relics. In principle, this is applicable to all effective
field theories introduced in §3.2.3. As an example, we then focus on the EFT of pseudo-Nambu-
Goldstone bosons and consider the couplings to gauge bosons, to fermions and to neutrinos in
turn. In Section 4.2, we study the axion interactions focussing on the photon and gluon couplings,
which are of particular phenomenological interest. In Section 4.3, we derive two types of bounds
on familon interactions. Apart from constraints arising from the possibility that these pNGBs
could have frozen out in the early universe, we also consider the case in which these particles
might have frozen in, i.e. came back into thermal contact at later times. In Section 4.4, we finally
discuss the same two classes of constraints for majorons. We conclude this chapter in Section 4.5
with a summary of the derived constraints. Some technical details underlying these bounds are
relegated to Appendix A.

63



4 New Target for Cosmic Axion Searches

4.1 Novel Constraints on Light Relics

In §3.3.2, we derived the minimal contribution of any light thermal relic to the radiation density
of the universe to be ∆Neff = 0.027. The fact that this contribution may be detectable in future
cosmological observations has interesting consequences. First, the level ∆Neff = 0.027 provides
a natural observational target (see e.g. [24, 168, 207, 241, 242] for related discussions). Second,
even the absence of a detection would be very informative, because it would strongly constrain
the EFT couplings between the extra light relics and the SM degrees of freedom, which can
schematically be written as

L ⊃
∑ OφOSM

Λ∆
. (4.1)

These new bounds arise since a thermal abundance can be avoided1 if the reheating temperature
of the universe, TR, is below the would-be freeze-out temperature, i.e. TR < TF . In that case, the
extra particles have never been in thermal equilibrium and their densities therefore do not have
to be detectable. In the absence of a detection, requiring TF (Λ) > TR would place very strong
bounds on the scale(s) in (4.1), i.e. Λ > T−1

F (TR). As we will see, in many cases the cosmological
bounds will be much stronger than existing bounds from laboratory experiments and astrophysical
observations. We note that these constraints make no assumption about the nature of dark matter
because the thermal population of axions arises independently of a possible cold population. On
the other hand, we have to assume that the effective description of the pNGBs with interactions
of the form of (4.1) holds up to TF � Λ. This is equivalent to assuming that the ultraviolet
completion of the effective theory is not too weakly coupled. Moreover, we also require the absence
of any significant dilution of ∆Neff after freeze-out. In practice, this means that we are restricting
to scenarios in which the number of additional relativistic degrees of freedom at the freeze-out
temperature is bounded by ∆g∗(TF ) . gSM

∗ (TF ) ≈ 102 (cf. our discussion in §3.3.2).

The couplings of pNGBs to SM fermions ψ can lead to a more complicated thermal evolution
than the simple freeze-out scenario. Below the scale of electroweak symmetry breaking, the
approximate chiral symmetry of the fermions makes the interactions with the pNGBs effectively
marginal. The temperature dependence of the interaction rate is then weaker than that of the
Hubble expansion rate, leading to a recoupling (i.e. freeze-in) of the pNGBs at low temperatures.
To avoid a large density of pNGBs requires that the freeze-in temperature TF̃ is smaller than
the mass of the fermions participating in the interactions, TF̃ < mψ, so that the interaction
rate becomes Boltzmann suppressed before freeze-in can occur. Again, this constraint can be
expressed as a bound on the scale(s) Λ that couple the pNGBs to the SM fermions. Although the
freeze-in constraints are usually weaker than the freeze-out constraints, they have the advantage
that they do not make any assumptions about the reheating temperature (as long as reheating

1We remind ourselves that a thermal abundance may be diluted below the level of Fig. 3.2 if extra massive
particles are added to the SM. As we have discussed in §3.3.2, however, a significant change to our conclusions
would require a very large number of new particles or a significant amount of non-equilibrium photon production.
In addition, the possibility that dark sectors never reach thermal equilibrium with the SM (see e.g. [243–247]) is
strongly constrained by the physics of reheating [248].
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occurs above T ∼ mψ). Furthermore, freeze-in produces larger contributions to ∆Neff which are
detectable with a less sensitive experiment.

In the rest of this chapter, we will show that cosmology is highly sensitive to axions, and
other pNGBs, when ∆Neff = 0.027 is detectable. To simplify the narrative, we will assume that
this sensitivity will be reached with CMB-S4, either on its own or in conjunction with other data
(cf. Chapters 5 and 6; see also [249, 250]). Alternatively, our arguments could be viewed as strong
motivation for reaching this critical level of sensitivity in future experiments. In the following, we
will derive bounds on the couplings of pNGBs to the SM arising from the absence of a detection.
We will assume the mass range 0 ≤ mφ < 1 MeV, so that the only possible decays of the pNGBs
are to photons or neutrinos. This regime is probed by measurements of Neff for mφ ≤ Trec and
by warm dark matter constraints for mφ > Trec (see e.g. [251, 252]), where Trec ≈ 0.26 eV is the
temperature at recombination.

4.2 Constraints on Axions

Axions arise naturally in many areas of high-energy physics, the QCD axion being a particularly
well-motivated example. Besides providing a solution to the strong CP problem [17–19], the
QCD axion also serves as a natural dark matter candidate [159–161]. Moreover, light axions
appear prolifically in string theory [20, 183, 184] and have been proposed to explain the small
mass of the inflaton [253] as well as to solve the hierarchy problem [181]. Finally, axions are a
compelling example of a new particle that is experimentally elusive [16, 218] because of its weak
coupling rather than due to kinematic constraints.

What typically distinguishes axions from other pNGBs are their unique couplings to the
SM gauge fields. Prior to EWSB, we consider the following effective theory with shift-symmetric
couplings of the axion to the SM gauge sector:

LφEW = −1

4

φ

Λ

(
c1BµνB̃

µν + c2W
a
µνW̃

µν,a + c3G
a
µνG̃

µν,a
)
, (4.2)

where Xµν ≡ {Bµν ,W a
µν , G

a
µν} are the field strengths associated with the gauge groups

{U(1)Y , SU(2)L, SU(3)C}, and X̃µν ≡ 1
2ε
µνρσXρσ are their duals. Axion models will typic-

ally include couplings to all SM gauge fields, but only the coupling to gluons is strictly necessary
to solve the strong CP problem.

At high energies, the rate of axion production through the gauge field interactions in (4.2) can
be expressed as [168] (see also [164–167])

Γ(T,Λn) =

3∑
n=1

γn(T )
T 3

Λ2
n

, (4.3)

where Λn ≡ Λ/cn. The prefactors γn(T ) have their origin in the running of the couplings and
are only weakly dependent on temperature. For simplicity of presentation, we will treat these
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functions as constants in the main text, but take them into account in Appendix A. We see that
the production rate, Γ ∝ T 3, decreases faster than the expansion rate during the radiation era,
H ∝ T 2. The axions therefore freeze out when the production rate drops below the expansion
rate, with the freeze-out temperature TF determined by Γ(TF ) = H(TF ). This thermal abundance
can be avoided if the reheating temperature of the universe TR was below the would-be freeze-out
temperature, i.e. TR < TF . In that case, the temperature of the universe was simply never high
enough to bring the axions into thermal equilibrium. We can express this condition as

Γ(TR,Λn) < H(TR) =
π√
90

√
g∗,R

T 2
R

Mpl
, (4.4)

where g∗,R ≡ g∗(TR) denotes the effective number of relativistic species at TR. For a given
reheating temperature, this is a constraint on the couplings Λn in (4.3). Treating the different
axion couplings separately, we can write

Λn >

(
π2

90
g∗,R

)−1/4√
γn,RTRMpl , (4.5)

where γn,R ≡ γn(TR). In the following, we will evaluate these bounds for the couplings to
photons (§4.2.1) and gluons (§4.2.2), and compare them to existing laboratory and astrophysical
constraints.

4.2.1 Coupling to Photons

The operator that has been most actively investigated experimentally is the coupling to photons,

LφEW ⊃ Lφγ = −1

4

φ

Λγ
FµνF̃

µν . (4.6)

The photon coupling Λγ is related to the electroweak couplings Λ1 and Λ2 via Λ−1
γ = cos2 θwΛ−1

1 +

sin2 θwΛ
−1
2 , where θw ≈ 30° is Weinberg’s mixing angle. Photons are easily produced in large

numbers in both the laboratory and in many astrophysical settings which makes this coupling a
particularly fruitful target for axion searches.

In Appendix A, we show in detail how the constraints (4.5) on the couplings to the electroweak
gauge bosons map into a constraint on the coupling to photons. This constraint is a function of
the relative size of the couplings to the SU(2)L and U(1)Y sectors, as measured by the ratio c2/c1
in (4.2). To be conservative, we will here present the weakest constraint which arises for c2 = 0

when the axion only couples to the U(1)Y gauge field. A specific axion model is likely to also
couple to the SU(2)L sector, i.e. have c2 6= 0, and the constraint on Λγ would then be stronger (as
can be seen explicitly in Appendix A). Using γ1,R ≈ γ1(1010 GeV) = 0.017 and g∗,R = 106.75 + 1,
we find

Λγ > 1.4 × 1013 GeV
(

TR

1010 GeV

)1/2
. (4.7)
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Figure 4.1: Comparison between current constraints on the axion-photon coupling and the
sensitivity of a future CMB-S4 experiment (figure adapted from [254]). Future laboratory
constraints (IAXO and ADMX) are shown as shaded regions. The yellow band indicates a range
of representative models for the QCD axion (not assuming that it provides all of the dark matter).
The future CMB bound is a function of the reheating temperature TR and the displayed constraint
conservatively assumes that the photon coupling derives only from the coupling U(1)Y above the
electroweak scale. Specific axion models typically also involve a coupling to SU(2)L in which
case the bound would strengthen by an order of magnitude or more (see Appendix A). We note
that ADMX assumes that the axion is all of the dark matter, while all other constraints do not
have this restriction.

For a reheating temperature of about 1010 GeV, the bound in (4.7) is three orders of magnitude
stronger than the best current constraints (cf. Fig. 4.1). Even for a reheating temperature as low
as 104 GeV the bound from the CMB would still marginally improve over existing constraints.

Massive axions are unstable to decay mediated by the operator φFF̃ . However, for the range of
parameters of interest, these decays occur after recombination and, hence, do not affect the CMB.
To see this, we consider the decay rate for mφ & T [255],

ΓD,γ =
1

64π

m3
φ

Λ2
γ

. (4.8)

The decay time is τD = Γ−1
D,γ and the temperature at decay is determined by H(TD) ≈ τ−1

D = ΓD,γ .
We will not consider the regime mφ < TD as it does not arise in the range of parameters of interest.
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Assuming that the universe is matter dominated at the time of the decay, we get

TD
Trec

≈ 9.5 × 10−10
(

Λγ

1010 GeV

)−4/3(mφ

Trec

)2
. (4.9)

Using the stellar cooling constraint, Λγ > 1.3 × 1010 GeV [256], we therefore infer that TD <

7.1 × 10−10 Trec (mφ/Trec)
2, so that the axions are stable on the time-scale of recombination as

long as mφ . 10 keV. CMB-S4 will probe this regime through sensitivity to Neff for mφ . Trec

and through sensitivity to warm dark matter for larger masses. Warm dark matter is already
highly constrained by cosmology, with current CMB data limiting the mass of the QCD axion
to mφ < 0.53 eV (95 % c.l.) [252]. The regime 10 keV < mφ < 1 MeV (where the axion decays
between neutrino decoupling and recombination) is constrained by effects on the CMB and on big
bang nucleosynthesis [200, 206, 257].

4.2.2 Coupling to Gluons

The coupling to gluons is especially interesting for the QCD axion since it has to be present in order
to solve the strong CP problem. The axion production rate associated with the interaction φGG̃
is [168]

Γg ' 0.41
T 3

Λ2
g

, (4.10)

where Λg ≡ Λ/c3. As before, we have dropped a weakly temperature-dependent prefactor, but
account for it in Appendix A. The bound (4.5) then implies

Λg > 5.4 × 1013 GeV
(

TR

1010 GeV

)1/2
. (4.11)

Laboratory constraints on the axion-gluon coupling are usually phrased in terms of the induced
electric dipole moment (EDM) of nucleons: dn = gdφ0, where φ0 is the value of the local axion
field. The coupling gd is given for the QCD axion with an uncertainty of about 40 % by [258, 259]

gd ≈ 2π

αs
× 3.8 × 10−3 GeV−1

Λg
< 1.3 × 10−14 GeV−2

(
TR

1010 GeV

)−1/2

. (4.12)

Constraints on gd (and hence Λg) are shown in Fig. 4.2. We see that future cosmological
observations will improve over existing constraints on Λg by up to six orders of magnitude if
TR = O(1010 GeV). Even if the reheating temperature is as low as 104 GeV, the future CMB
constraints will be tighter by three orders of magnitude. In Figure 4.2, we also show the projected
sensitivities of the proposed EDM experiment CASPEr [261]. We see that CASPEr and CMB-S4
probe complementary ranges of axion masses. It should be noted that CASPEr is only sensitive
to axion dark matter, while the CMB constrains a separate thermal population of axions which
does not require assumptions about the dark matter.
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Figure 4.2: Comparison between current constraints on the axion-gluon coupling and the
sensitivity of a future CMB-S4 experiment (figure adapted from [259, 260]). The dotted lines are
the projected sensitivities of the NMR experiment CASPEr [261]. We note that CASPEr, the
static EDM [259] and BBN constraints [260] assume that the axion is all of the dark matter, while
SN 1987A [141] and the future CMB constraint do not have this restriction.

4.3 Constraints on Familons

Spontaneously broken global symmetries have also been envoked to explain the approximate
U(3)5 flavour symmetry of the Standard Model. As we discussed in §3.2.3, the associated
pNGBs—called familons [186–188]—couple to the SM through Yukawa couplings,

Lφψ = −∂µφ
Λψ

ψ̄iγ
µ
(
gijV + gijAγ

5
)
ψj

→ φ

Λψ

(
iH ψ̄L,i

[
(λi − λj)g

ij
V + (λi + λj)g

ij
A

]
ψR,j + h.c.

)
+ O(φ2) , (4.13)

where H is the Higgs doublet and ψL,R ≡ 1
2(1∓γ

5)ψ. The SU(2)L and SU(3)C structures in (4.13)
take the same form as for the SM Yukawa couplings [255], but this has been left implicit to avoid
clutter. In the second line we have integrated by parts and used the equations of motion. The
subscripts V and A denote the couplings to the vector and axial-vector currents, respectively, and
λi ≡

√
2mi/v are the Yukawa couplings, with v = 246 GeV being the Higgs vacuum expectation

value. We note that the diagonal couplings, i = j, are only to the axial part, as expected from
vector current conservation. Due to the chiral anomaly, a linear combination of the axial couplings
is equivalent to the coupling of axions to gauge bosons. In this section, we only consider the
effects of the couplings to matter with no contribution from anomalies.

In Table 4.1, we have collected accelerator and astrophysics constraints on the effective couplings
ΛIij ≡ Λψ/g

ij
I and Λij ≡ Λψ/[(g

ij
V )

2 + (gijA )
2]1/2. We see that current data typically constrain
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Current Constraints Future CMB Constraints

Coupling Bound [GeV] Origin Freeze-Out [GeV] Freeze-In [GeV] ∆Ñeff

Λee 1.2 × 1010 White dwarfs 6.0 × 107 2.7 × 106 1.3
Λµµ 2.0 × 106 Stellar cooling 1.2 × 1010 3.4 × 107 0.5
Λττ 2.5 × 104 Stellar cooling 2.1 × 1011 9.5 × 107 0.05
Λbb 6.1 × 105 Stellar cooling 9.5 × 1011 – 0.04
Λtt 1.2 × 109 Stellar cooling 3.5 × 1013 – 0.03

ΛVµe 5.5 × 109 µ+ → e+ φ 6.2 × 109 4.8 × 107 0.5
Λµe 3.1 × 109 µ+ → e+ φγ 6.2 × 109 4.8 × 107 0.5
Λτe 4.4 × 106 τ− → e−φ 1.0 × 1011 1.3 × 108 0.05
Λτµ 3.2 × 106 τ− → µ−φ 1.0 × 1011 1.3 × 108 0.05
ΛAcu 6.9 × 105 D0-D̄0 1.3 × 1011 2.0 × 108 0.05
ΛAbd 6.4 × 105 B0-B̄0 4.8 × 1011 3.7 × 108 0.04
Λbs 6.1 × 107 b→ sφ 4.8 × 1011 3.7 × 108 0.04
Λtu 6.6 × 109 Mixing 1.8 × 1013 2.1 × 109 0.03
Λtc 2.2 × 109 Mixing 1.8 × 1013 2.1 × 109 0.03

Table 4.1: Current experimental constraints on Goldstone-fermion couplings (taken from [24,
262, 263]) and future CMB constraints. In some cases, the current constraints are only on
the coupling to right-handed particles (namely for Λττ , Λbb, Λtt) and to left-handed particles
(namely for Λtu,Λtc). The quoted freeze-out bounds are for TR = 1010 GeV and require that a
future CMB experiment excludes ∆Neff = 0.027. In contrast, the freeze-in bounds from avoiding
recoupling of the familons to the SM at low temperatures do not depend on TR and assume
weaker exclusions ∆Ñeff [see the last column for estimates of the freeze-in contributions associated
with the different couplings, ∆Ñeff ' ∆Neff(

1
4mi)]. Hence, they may be detectable with a less

sensitive experiment. Qualitatively, the bounds from the CMB are stronger for the second and
third generations, while laboratory and stellar constraints are strongest for the first generation
(with the exception of the constraint on Λtt).

the couplings to the first generation fermions much more than those to the second and third
generations. We wish to compare these constraints to the reach of future CMB observations. We
will find distinct behaviour above and below the EWSB scale, due to the presence of the Higgs.
The effective scaling of the operator (4.13) changes from irrelevant to marginal and we therefore
have both freeze-out and freeze-in contributions.

4.3.1 Freeze-Out

At high energies, the flavour structure of (4.13) is unimportant since all SM particles are effectively
massless. The role of the flavour is only to establish the strength of the interaction by the size of
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4.3 Constraints on Familons

the Yukawa coupling. Above the EWSB scale, the production of the familon φ is determined by a
four-point interaction. This allows the following processes: ψ̄i+ψj → H+φ and ψi+H → ψj+φ.
The total production rate is derived in Appendix A,

ΓIij ' 0.37Nψ
(λi ∓ λj)

2

8π

T 3

(ΛIij)
2
, (4.14)

where Nψ = 1 for charged leptons and Nψ = 3 for quarks. The ‘−’ and ‘+’ signs in (4.14) apply
to I = V and I = A, respectively. We see that the rate vanishes for the diagonal vector coupling,
as it should by current conservation. Deriving the freeze-out temperature and imposing TF > TR,
we find

ΛIij >


1.0 × 1011 GeV mi ∓mj

mτ

(
TR

1010 GeV

)1/2
i, j = leptons,

1.8 × 1013 GeV mi ∓mj

mt

(
TR

1010 GeV

)1/2
i, j = quarks,

(4.15)

where mτ ≈ 1.8 GeV and mt ≈ 173 GeV. In Table 4.1, we show how these bounds compare to
current laboratory and astrophysics constraints for a fiducial reheating temperature of 1010 GeV.
Except for the coupling to electrons, the constraints from future CMB experiments are orders of
magnitude stronger than existing constraints. For lower reheating temperatures the constraints
would weaken proportional to

√
TR. We note that while laboratory and astrophysical constraints

are considerably weaker for second and third generation particles because of kinematics, the
cosmological constraints are strengthened for the higher mass fermions due to the larger effective
strength of the interactions. The exception to this pattern is the top quark which is strongly
constrained by stellar cooling due to a loop correction to the coupling of W± and Z to φ, with
the loop factor suppression being offset by the large Yukawa coupling of the top quark.

4.3.2 Freeze-In

Below the EWSB scale, the leading coupling of the familon to fermions becomes marginal after
replacing the Higgs in (4.13) with its vacuum expectation value. As the temperature decreases,
the production rate will therefore grow relative to the expansion rate and we may get a thermal
freeze-in abundance. By observationally excluding such a relic density, we can then put constraints
on the familon interactions (cf. Section 4.1). The leading familon production mechanism will
depend on whether the coupling is diagonal or off-diagonal in the mass eigenbasis.

Diagonal couplings.—For the diagonal couplings in (4.13), the production rate is dominated
by a Compton-like process, {γ, g} + ψi → ψi + φ, and by fermion/anti-fermion annihilation,
ψ̄i+ψi → {γ, g}+φ, where {γ, g} is either a photon or gluon depending on whether the fermion is
a lepton or quark. The full expression for the corresponding production rate is given in Appendix A.
Since freeze-in occurs at low temperatures, the quark production becomes sensitive to strong
coupling effects. Although qualitative bounds could still be derived for the quark couplings, we
choose not to present them and instead focus on the quantitative bounds for the lepton couplings.

71
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Below the scale of EWSB, but above the lepton mass, the production rate is

Γ̃ii ' 5.3α
|ε̃ii|2

8π
T , (4.16)

where ε̃ii ≡ 2mi/Λii. The freeze-in temperature TF̃ follows from Γ̃ii(TF̃ ) = H(TF̃ ). To avoid
producing a large familon abundance requires that the fermion abundance becomes Boltzmann
suppressed before freeze-in could occur. This implies TF̃ < mi, or

Λii > 9.5 × 107 GeV
(
g∗,i
g∗,τ

)−1/4( αi
ατ

)1/2(mi

mτ

)1/2
, i = lepton, (4.17)

where g∗,i and αi are the effective number of relativistic species and the fine-structure constant
at T = mi. The scalings in (4.17) have been normalized with respect to g∗ and α at T = mτ ,
i.e. we use g∗,τ = 81.0 and ατ = 134−1. In Table 4.1, these bounds are compared to the current
astrophysical constraints. Except for the coupling to electrons, these new bounds are significantly
stronger than the existing constraints.

Off-diagonal couplings.—For the off-diagonal couplings in (4.13), we have the possibility of a
freeze-in population of the familon from the decay of the heavy fermion, ψi → ψj + φ. For
mi � mj , the production rate associated with this process is

Γ̃ij ' 0.31Nψ
|ε̃ij |2

8π

m2
i

T
, (4.18)

where ε̃ij ≈ mi/Λij . Requiring the corresponding freeze-in temperature to be below the mass of
the heavier fermion, TF̃ < mi, we get

Λij >


1.3 × 108 GeV

(
g∗,i
g∗,τ

)−1/4(mi

mτ

)1/2
i, j = leptons,

2.1 × 109 GeV
(
g∗,i
g∗,t

)−1/4(mi

mt

)1/2
i, j = quarks.

(4.19)

We see that this improves over existing constraints for the third generation leptons and for the
second and third generation quarks (except the top).

The freeze-in abundance is created after the annihilation of the most massive fermion in the
coupling. In the presence of a single massive fermion, the prediction for a freeze-in scenario is
the same as that for a freeze-out scenario with TF � mi since decoupling occurs after most of
the fermions ψi have annihilated and their abundance is exponentially suppressed. This then
results in a relatively large contribution to Neff. Of course, the SM contains fermions with
different masses. To capture the energy injection from the relevant fermion annihilation without
incorrectly including the effects from the annihilation of much lighter fermions, we take the
decoupling temperature to be 1

4mi. This choice of decoupling temperature gives good agreement
with numerical solutions to the Boltzmann equations and leads to the following estimate for the
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freeze-in contributions:

∆Ñeff ' ∆Neff(
1
4mi) =

4

7

(
43

4 g∗(
1
4mi)

)4/3

. (4.20)

When the heaviest fermion is a muon (electron), one finds ∆Ñeff ' 0.5 (1.3) which is excluded
by Planck at about 3σ (7σ). It is worth noting that the Planck constraint on the diagonal
muon coupling, Λµµ > 3.4 × 107 GeV, improves on the current experimental bound by more than
an order of magnitude. Couplings involving the tau and the charm or bottom quark produce
∆Ñeff ∼ 0.05 which will become accessible when the sensitivity of CMB experiments reaches
σ(Neff) . 0.025.

4.4 Constraints on Majorons

In the Standard Model, the masses of Majorana neutrinos do not arise from renormalizable
couplings to the Higgs, but instead must be written as irrelevant operators suppressed by a scale of
about 1015 GeV. Moreover, the existence of neutrino masses and mixings point to structure in the
flavour physics of neutrinos. Much like in the case of familons, it is plausible that this structure
could arise from the spontaneous breaking of the neutrino flavour symmetry. The associated
Goldstone bosons are often referred to as majorons [189, 190].

Assuming that neutrinos are indeed Majorana fermions, the leading coupling of the majoron is

Lφν = −1

2

(
eiφTik/(2Λν)mkl e

iφTlj/(2Λν)νiνj + h.c.
)

= −1

2

[(
mijνiνj + i ε̃ijφνiνj −

1

2Λν
εijφ

2νiνj + · · ·
)
+ h.c.

]
, (4.21)

where νi are the two-component Majorana neutrinos in the mass eigenbasis, mij is the neutrino
mass matrix and Tij are generators of the neutrino flavour symmetry. After expanding the
exponentials, we have defined the dimensionless couplings ε̃ij ≡ (Tikmkj +mikTkj)/(2Λν) and
εij ≡ (mikTklTlj + 2TikmklTlj + TikTklmlj)/(4Λν). For numerical estimates, we will use the
cosmological upper limit on the sum of the neutrino masses [36],

∑
mi < 0.23 eV, and the mass

splittings m2
2 −m2

1 ≈ 7.5 × 10−5 eV2 and |m2
3 −m2

1| ≈ 2.4 × 10−3 eV2 from neutrino oscillation
measurements [45]. The couplings in Lφν are identical to the familon couplings after a chiral
rotation, except that there is no analogue of the vector current in the case of Majorana neutrinos.
The representation of the coupling in (4.21) is particularly useful as it makes manifest both the
marginal and irrelevant couplings between φ and ν. As a result, we will get both a freeze-out2

and a freeze-in production of the majorons.

2Technically speaking the operator in (4.21) is only well-defined below the EWSB scale. However, in §4.4.1 we
will find that in order for freeze-out to occur in the regime of a consistent effective field theory description (T < Λν),
we require TF . 33 MeV and, therefore, the operator as written will be sufficient for our purposes.
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4.4.1 Freeze-Out

Thermalization at high energies is dominated by the dimension-five operator φ2νiνj in (4.21). In
Appendix A, we show that the corresponding production rate is

Γij ' 0.047sij
|εij |2

8π

T 3

Λ2
ν

, (4.22)

where sij ≡ 1− 1
2δij is the symmetry factor for identical particles in the initial state. This leads

to a freeze-out temperature of

TF ' 0.23 MeV s−1
ij

(
g∗,F
10

)1/2 ( µij
0.1 eV

)−2
(

Λν
10 MeV

)4
, (4.23)

where µij ≡ |εij |Λν . Consistency of the effective field theory description requires TF to be below
the cutoff Λν associated with the interactions in (4.21). Using (4.23), this implies

TF < Λν < 35 MeV s
1/3
ij

(g∗,F
10

)−1/6 ( µij
0.1 eV

)2/3
. (4.24)

Taking µij . m3 < 0.1 eV from both the mass splittings and the bound on the sum of neutrino
masses, and g∗ ≈ 14, we obtain TF . 33 MeV. Such a low freeze-out temperature would lead to
∆Neff & 0.44 (cf. Fig. 3.2) which is ruled out by current CMB measurements at more than 2σ. To
avoid this conclusion, we require Λν > 33 MeV, so that the would-be freeze-out is pushed outside
the regime of validity of the EFT. Moreover, we have to assume that the production of majorons
is suppressed in this regime. This logic leads to the following constraint:

Λν > 33 MeV
µij . 0.1 eV

−−−−−−−−→ |εij | < 3 × 10−9 . (4.25)

Somewhat stronger bounds can be derived for individual elements of εij . This simple bound
is much stronger than existing constraints from neutrinoless double beta decay [264, 265] and
supernova cooling [266], εij . 10−7. Note also that the constraints on εij are stronger for smaller
values of µij .

4.4.2 Freeze-In

At low energies, the linear coupling φνiνj in (4.21) will dominate. The corresponding two-to-
one process is kinematically constrained and we therefore get qualitatively different behaviour
depending on whether the majoron mass is larger or smaller than that of the neutrinos.

Low-mass regime.—For mφ � mi −mj , with mi > mj , the off-diagonal couplings allow the decay
νi → νj + φ, while other decays are kinematically forbidden. As a result, only the off-diagonal
couplings are constrained by freeze-in. Including the effect of time dilation at finite temperature,
the rate is

Γ̃ij ' 0.31
|ε̃ij |2

8π

m2
i

T
, (4.26)
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where we have assumed mi � mj , which is guaranteed for the minimal mass normal hierarchy
(for the general result see Appendix A). When the freeze-in occurs at TF̃ > mi, then the
majorons and neutrinos are brought into thermal equilibrium, while the comoving energy density
is conserved. However, since the momentum exchange at each collision is only ∆p2 ' m2

i � T 2,
the neutrino-majoron radiation is free-streaming at the onset of the freeze-in and is difficult3 to
distinguish from conventional neutrinos. As the temperature drops below Tfluid, with Γ̃ij(Tfluid) =

(Tfluid/mi)
2H(Tfluid), enough momentum is exchanged between the neutrinos and they will behave

as a relativistic fluid rather than free-streaming particles [213, 267, 268]. From the rate (4.26), we
find

Tfluid ' 0.10Teq ×
(

ε̃ij
10−13

)2/5 ( mi

0.05 eV

)4/5
, (4.27)

where we used g∗,F̃ ≈ 3.4 and Teq ≈ 0.79 eV for the temperature at matter-radiation equality. In
this regime, the majoron scenario predicts both free-streaming and non-free-streaming radiation
with Neff ≤ 2 and Nfluid ≥ 1 (with equality when the majoron couples to one single neutrino
species), which is inconsistent with the constraints from Planck data that we will find in the next
chapter. To avoid this conclusion requires Tfluid < Teq,4 which puts a bound on the neutrino-
majoron coupling5

ε̃ij < 3.2 × 10−11 ×
( mi

0.05 eV

)−2
. (4.28)

This constraint has been pointed out previously in [213, 267, 268, 270].

High-mass regime.—For mφ � mi ≥ mj , the majoron decays into neutrinos, φ → νi + νj , and
is produced by the inverse decay. For T � mφ, the production rate of the majoron is identical
to the rate in (4.26) after making the replacement mi → mφ/

√
1− 4/π2 and the corresponding

freeze-in temperature is

TF̃ ' 1.0Teq × s
1/3
ij

(
ε̃ij

10−13

mφ

Teq

)2/3
. (4.29)

If TF̃ > mφ, then freeze-in occurs while the majorons are relativistic, and the neutrinos and
the majorons are brought into thermal equilibrium. How this affects the CMB will depend on
whether mφ is greater or smaller than Teq. For mφ > Teq, the majorons decay to neutrinos
before matter-radiation equality. To compute the effect on the CMB, we note that the initial
(relativistic) freeze-in process conserves the comoving energy density and, once in equilibrium, the
decay will conserve the comoving entropy density. This information allows us to derive the final

3Since neutrinos have been converted to majorons with mφ � mi, this scenario predicts that the cosmological
measurement of the sum of the neutrino masses would be significantly lower than what would be inferred from
laboratory measurements.

4The imprint of dark radiation is suppressed during matter domination since its contribution to the total energy
density is sub-dominant. As a result, constraints on Neff are driven by the high-` modes of the CMB which are
primarily affected by the evolution of fluctuations during radiation domination (see Section 3.4).

5The effect of the linear coupling between a massless majoron and neutrinos on the CMB was also studied
in [269] and a flavour-independent constraint of ε̃ij < 8.2 × 10−7 was obtained. This constraint is substantially
weaker than our bound (4.28) because it only accounted for the scattering of neutrinos through the exchange of a
virtual Goldstone boson. The neutrino cross section in that case is suppressed by a factor of |ε̃ij |4 which is much
smaller than the rate for the production of real Goldstone bosons in (4.26).
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neutrino temperature analytically (see Appendix A) and to determine the extra contribution to
the radiation density,

∆Neff ≥
(
1 +

4

7

)1/3
− 1 = 0.16 . (4.30)

This extra radiation density is easily falsifiable (or detectable) with future CMB experiments. If
mφ � Teq, on the other hand, the neutrinos and the majorons could effectively form a fluid at
matter-radiation equality leading to a similar constraint as (4.28) with mi → mφ.

Assuming that future experiments do not detect the above effects would require either that
the would-be freeze-in temperature is below the mass of the majoron, TF̃ < mφ, or that freeze-in
occurs after matter-radiation equality, TF̃ < Teq. Converting these constraints into a bound on
the coupling, we find

ε̃ij < 9.9 × 10−14 s
−1/2
ij

(
mφ

Teq

)1/2
, for mφ > Teq . (4.31)

A similar constraint, of the same order of magnitude, applies in the narrow range mi � mφ < Teq.
This bound is stronger than the freeze-out constraint (4.25) over the full range of allowed masses
up to the neutrino decoupling temperature TF,ν ' 1 MeV (note that although in general εij 6= ε̃ij ,
the two parameters are related by the symmetry under which the majoron transforms). For
mφ > TF,ν , the decay of the majorons occurs while the neutrinos are still in equilibrium with
the SM and, therefore, it has no impact on Neff.

4.5 Summary

Light pseudo-Nambu-Goldstone bosons arise naturally in many proposals for physics beyond
the Standard Model and are an exciting window into the early universe. In this chapter, we
showed that future cosmological surveys will either detect these new particles, or place very
strong constraints on their couplings to the SM. These constraints arise because the couplings
to the SM can bring the Goldstone bosons into thermal equilibrium in the early universe. At
the same time, cosmological experiments are becoming sensitive enough to detect thermal relics
up to arbitrarily high freeze-out temperatures (see Fig. 3.2). To avoid producing this detectable
relic abundance requires that the reheating temperature of the universe was below the would-be
freeze-out temperature. In that case, the temperature in the universe simply was never high
enough to bring the extra particles into thermal equilibrium with the SM. For a given reheating
temperature TR, this puts bounds on the scales Λi in the effective interactions between the
Goldstone boson φ and the SM fields,

LφSM = −1

4

φ

Λγ
FF̃ − 1

4

φ

Λg
Tr(GG̃)− ∂µφ

Λψ
ψ̄γµγ5ψ + · · · . (4.32)
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The bounds on the couplings to photons and gluons are

Λγ > 1.4 × 1013 GeV
√
TR,10 , (4.33)

Λg > 5.4 × 1013 GeV
√
TR,10 , (4.34)

where TR,10 ≡ TR/1010 GeV. When considering the interactions with fermions, we distinguish
between the couplings to charged leptons and quarks. The resulting bounds are

Λψ >

 2.1 × 1011 GeV mψ,τ

√
TR,10 ψ = lepton,

3.5 × 1013 GeV mψ,t

√
TR,10 ψ = quark,

(4.35)

where mψ,τ ≡ mψ/1.8 GeV and mψ,t ≡ mψ/173 GeV. For all reasonable reheating temperat-
ures these bounds improve significantly over existing constraints, sometimes by many orders of
magnitude. Moreover, while some of the current constraints only apply if the new particles are
identified with the dark matter, our bounds do not have this restriction.

Below the scale of electroweak symmetry breaking, the couplings to the SM fermions become
effectively marginal which can bring the decoupled Goldstone bosons back into thermal equilibrium
leading to a detectable freeze-in abundance. Furthermore, the coupling to the light Goldstone boson
can lead to a new force between the fermions which becomes relevant at low temperatures [213,
267, 268, 270]. As we will show in the next chapter, both of these effects are highly constrained,
even with current data. These arguments are particularly relevant for the couplings to neutrinos,

Lφν = −1

2

(
i ε̃ijφνiνj + h.c.

)
+ · · · . (4.36)

For the off-diagonal couplings, the following constraints apply:

ε̃ij <


3.2 × 10−11 ×

( mi

0.05 eV

)−2
mφ � mi ,

9.9 × 10−14 ×
(
mφ

Teq

)1/2
mφ > Teq ,

(4.37)

where mi is the mass of the heavier neutrino in the off-diagonal interaction. A combination of
freeze-in and freeze-out also constrain the diagonal couplings ε̃ii. These constraints are orders of
magnitude stronger than existing laboratory and astrophysics constraints.

It is also interesting to consider a scenario in which one of the many ongoing searches directly
detects axions, familons or majorons. This would determine the coupling strength to at least
one of the SM fields (depending on the detection channel) and would predict the freeze-out
temperature of these particles; cf. Figs. 4.1 and 4.2. Excitingly, the cosmological estimation
of ∆Neff would then provide information about the reheating temperature of the universe: the
absence of a detection of Neff 6= 3.046 would put an upper bound on TR [see e.g. (4.33)–(4.35)],
while a measurement of ∆Neff ≥ 0.027 would imply a lower bound on TR. The combination of
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a cosmological measurement of Neff and a direct detection could therefore be used to probe the
energy scale of the beginning of the hot big bang.

In closing, we would like to re-emphasize that ∆Neff = 0.027 is an important theoretical
threshold. Remarkably, we will show in the next two chapters that this target is within reach of
future cosmological surveys. These observations therefore have the potential to probe for light
thermal relics up to arbitrarily high decoupling temperatures. We consider this to be a unique
opportunity to detect new particles, or place very strong constraints on their couplings to the
Standard Model.
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5
Searching for Light Relics with the CMB

Fluctuations in the cosmic neutrino background are known to produce a phase shift in the acoustic
peaks of the CMB. It is through the sensitivity to this effect that the recent CMB data has
provided a robust detection of free-streaming neutrinos [28]. In this chapter, we revisit the phase
shift of the CMB anisotropy spectrum as a probe of new physics. The phase shift is particularly
interesting because its physical origin is strongly constrained by the analytic properties of the
Green’s function of the gravitational potential. For adiabatic fluctuations, a phase shift requires
modes that propagate faster than the speed of fluctuations in the photon-baryon plasma. This
possibility is realized by free-streaming relativistic particles, such as neutrinos or other forms
of dark radiation. Alternatively, a phase shift can arise from isocurvature fluctuations. We
present simple models to illustrate each of these effects and provide observational constraints
from the Planck temperature and polarization data on additional forms of radiation. We also
forecast the capabilities of future CMB Stage-4 experiments. Whenever possible, we give analytic
interpretations of our results.

The outline of this chapter is as follows. In Section 5.1, we briefly review the phase shift in the
acoustic oscillations and preview some of this chapter’s results. In Section 5.2, we analytically
derive the effects of new relativistic particles on the perturbations of the photon density. We
identify the precise physical conditions that produce a phase shift in the CMB anisotropy spectrum
and illustrate these effects through an exactly solvable toy model. In addition, we compute the
phase shift for a simple model with isocurvature fluctuations and for free-streaming relativistic
particles. In Section 5.3, we confirm some of these pen-and-paper results through a numerical
analysis. We present new constraints on dark radiation from the Planck 2015 data [75] and
forecast the capabilities of future CMB-S4 experiments [25]. In Section 5.4, we consider possible
implications of this future sensitivity of the CMB on different scenarios beyond the Standard
Model. Section 5.5 contains a summary. In Appendix B, we comment on the inclusion of matter
and polarization in our analytic treatment.
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5.1 Phases of New Physics in the CMB Spectrum

After accounting for the difference in the sound horizon, the main effect of increasing the radiation
density of the early universe on the CMB anisotropy spectrum is to enhance the damping of
the high-` multipoles. As we discussed in §3.4.2, neutrinos and other free-streaming particles
also induce a distinct shift in the temporal phase of sound waves in the primordial plasma [27].
This subtle effect manifests itself in the CMB spectrum as a coherent shift in the locations of the
acoustic peaks (see Fig. 5.1).1
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Figure 5.1: Variation of the CMB power spectrum as a function of Neff. The spectra have been
undamped, i.e. the exponential diffusion damping was removed. Following [28], the physical
baryon density ωb, the scale factor at matter-radiation equality aeq ≡ ωm/ωr, the angular size of
the sound horizon θs and the angular size of the damping scale θD are held fixed in the second
panel. In addition, the spectra are normalized at the fourth peak. The remaining variation is
the phase shift φ with a zoom-in shown in the bottom panel. To illustrate the sensitivity of the
Planck 2015 high-` temperature data, we also display their 1σ error bars.

In this chapter, we will revisit the analytic treatment of the CMB anisotropies with an eye
towards BSM applications. While numerical codes are ultimately necessary in order to make
precise predictions for any particular model, analytic results still play a vital role. It is through
the physical understanding of the data that we can devise new tests and motivate new models.
For example, the use of B-modes in the search for primordial gravitational waves arose from a
clear analytic understanding of CMB polarization [82–84, 275]. Similarly, we wish to identify
CMB observables that are sensitive to well-motivated forms of BSM physics, but are not strongly
degenerate with other cosmological parameters. We will advocate the phase shift of the acoustic

1This phase shift refers to a coherent shift in the locations of the high-` acoustic peaks. We emphasize that
this is a distinct effect from the locations of the first few acoustic peaks which are sensitive to many cosmological
parameters, as studied e.g. in [271–273]. A detailed study of the CMB peak locations recently appeared in [274].
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peaks of the CMB spectrum as an observable with the desired characteristics. As we will see
below, the physical conditions that lead to a phase shift are rather restrictive and determined
by the analytic properties of the Green’s function of the gravitational potential. For adiabatic
fluctuations, a phase shift requires fluctuations that travel faster than the sound speed of the
photon-baryon fluid, which arises naturally for free-streaming relativistic particles. Alternatively, a
shift in the temporal phase of the cosmic sound waves can also arise from isocurvature fluctuations.
The phase shift therefore probes an interesting regime in the parameter space of BSM models.

We have previously seen that it is useful to characterise the effects of extra light species in
terms of free-streaming species (X) and non-free-streaming species (Y ). We parametrize their
respective energy density in terms of the parameters Neff and Nfluid, i.e. with respect to the energy
density of a single SM neutrino species (cf. Section 3.3). Until recently, CMB observations were
not sensitive enough to distinguish between these types of relativistic species since they contribute
equally to the background density of the universe and, therefore, affect the CMB damping tail
in the same way [26]. To separate Neff and Nfluid requires measuring subtle differences in the
evolution of perturbations. Free-streaming particles (like neutrinos) create significant anisotropic
stress which induces a characteristic phase shift in the CMB anisotropies [27]. This phase shift
has recently been detected for the first time [28]. As we will show, non-free-streaming particles
(e.g. [207, 227, 270, 276, 277]), in general, do not produce a phase shift (at least as long as the
fluctuations are adiabatic and their sound speed is not larger than that of the photons).

Guided by our analytic understanding, we will explore the sensitivity to these effects with the
Planck satellite and with a future CMB-S4 experiment, focussing on the ability to distinguish the
parameters Neff and Nfluid. Our analysis of the Planck temperature and polarization data leads
to the following constraints:2

Neff = 2.80+0.24
−0.23 (1σ) , Nfluid < 0.67 (2σ) . (5.1)

We see that the current data is already sensitive to the free-streaming nature of the fluctuations.
We will explain the important role played by the polarization data in breaking the degeneracy
between Neff and Nfluid, as well as that with the helium fraction Yp. We will also show that a
CMB-S4 experiment would improve these constraints by up to an order of magnitude under a
number of experimental configurations. We will highlight how much present and future constraints
are driven by measurements of the phase shift. In addition, we will explore how these measurements
may be optimized, including through the use of delensing to sharpen the acoustic peaks.

5.2 Physical Origin of the Phase Shift

We will now study under which circumstances a phase shift is imprinted in the CMB anisotropies.
The structure of the acoustic peaks in the CMB is largely determined by the propagation of
fluctuations in the photon-baryon plasma. The physics of the cosmic sound waves is that of a

2These constraints assume that the helium fraction Yp is fixed by consistency with BBN. Results that marginalize
over Yp are presented in §5.3.2.
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harmonic oscillator with a time-dependent gravitational forcing,

d̈γ − c2γ ∇2dγ = ∇2Φ+ , (5.2)

where c2γ ≈ 1
3 . Following [27], we wrote this equation in terms of the overdensity in the particle

number with respect to the coordinate volume, da ≡ δρa/(ρ̄a + P̄a) − 3Ψ = δa/(1 + wa) − 3Ψ.
Moreover, it will be convenient to work with the sum and the difference of the two metric
potentials,

Φ± ≡ Φ±Ψ . (5.3)

A non-trivial evolution of Φ+ is sourced either by anisotropic stress σ or by pressure perturba-
tions δP (see Fig. 5.2). Under certain conditions, which we will identify, this induces a contribution
to dγ which is out of phase with its freely oscillating part.

gravitational
potential

photon perturbations

pressure perturbations (§5.2.2, §5.2.3)

anisotropic stress (§5.2.3)

Figure 5.2: Illustration of the coupled perturbations in the primordial plasma.

In this section, we will give an analytic description of these effects, building on the pioneering
work of Bashinsky & Seljak [27]. We first extract the two possible origins of a phase in the
acoustic oscillations (§5.2.1). We then study a simple toy model to illustrate these abstract
conditions (§5.2.2). Finally, we explicitly derive the phase shift in a curvaton-like model with
isocurvature fluctuations and for light free-streaming particles, such as neutrinos (§5.2.3).

5.2.1 Conditions for a Phase Shift

In the following, we will analyse the evolution of perturbations in the photon-baryon plasma.
We have seen in Section 2.3 that the CMB couples gravitationally to fluctuations in the matter
densities. In terms of the variable dγ , the evolution equation (2.27) for the photon perturbations
is given by

d̈γ + χγ ḋγ − c2γ∇2dγ = ∇2(Φ + 3c2γΨ) , (5.4)
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5.2 Physical Origin of the Phase Shift

where we omitted the term ∇4σγ , since the anisotropic stress is absent before decoupling, σγ ≈ 0.
For simplicity, we will ignore the small effect due to the baryons,3 so that the speed of the
perturbations in the photon density is c2γ ≈ 1

3 . The Hubble drag rate in (5.4) therefore vanishes,
χγ ≈ 0, and we get the evolution equation (5.2). The solution for dγ can then be written as

dγ(y) = dγ,in cos y − c−2
γ

∫ y

0
dy′Φ+(y

′) sin(y − y′) , (5.5)

where y ≡ cγkτ and the first term is the homogeneous solution with constant superhorizon adiabatic
initial condition dγ,in ≡ dγ(yin � 1). Primordial isocurvature modes would be straightforward
to include here and in the following by an additional sine contribution. The second term is the
inhomogeneous correction induced by the evolution of metric fluctuations. Since sin(y − y′) =

sin y cos y′ − cos y sin y′, we can write (5.5) as

dγ(y) =
[
dγ,in + c−2

γ A(y)
]

cos y − c−2
γ B(y) sin y , (5.6)

where we defined

A(y) ≡
∫ y

0
dy′Φ+(y

′) sin y′ , (5.7)

B(y) ≡
∫ y

0
dy′Φ+(y

′) cos y′ . (5.8)

We wish to evaluate (5.6) at recombination, y → yrec. For the high-` modes of the CMB, it is
a good approximation to take the limit y → ∞ and assume that the background is radiation
dominated (see Appendix B for further discussion). If the integral in (5.8) converges in this limit,
then a non-zero value of B ≡ limy→∞B(y) will produce a constant phase shift φ relative to the
homogeneous solution,

sinφ =
B√(

A+ c2γ dγ,in
)2

+B2
. (5.9)

This phase shift will be reflected in a shift of the acoustic peaks of the CMB anisotropy spectrum.
In the following, we will identify the precise physical conditions for which such a phase shift is
generated.

It will be convenient to combine B and A into a complex field

B + iA =

∫ ∞

0
dy eiy Φ+(y) =

1

2

∫ ∞

−∞
dy eiy

[
Φ
(s)
+ (y) + Φ

(a)
+ (y)

]
, (5.10)

where Φ
(s)
+ (y) is an even function of y, while Φ

(a)
+ (y) is an odd function. It is easy to see that the

3We ignore the contributions of baryons and dark matter to the energy density, but we are implicitly including
the baryons when we assume that the photons are not free-streaming particles.
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even part of Φ+ determines B and the odd part determines A:

B =
1

2

∫ ∞

−∞
dy eiy Φ(s)

+ (y) , iA =
1

2

∫ ∞

−∞
dy eiy Φ(a)

+ (y) . (5.11)

We will get B = 0 as long as Φ(s)
+ (y) is an analytic function and eiyΦ(s)

+ (y) vanishes faster than y−1

for |y| → ∞.4 This suggests two ways of generating a non-zero B and, hence, a phase shift in the
solution for the photon density:

i. rapid growth of Φ(s)
+ (±iy) −→ mode traveling faster than cγ ,

ii. non-analytic behaviour of Φ(s)
+ (y) −→ non-adiabatic fluctuations.

The mathematical requirements listed on the left are mapped directly into physical conditions,
shown on the right.

• The first condition is easy to understand physically: in (5.10), the Green’s function of dγ ,
i.e. sin(y − y′), leads to exponential suppression for y → i∞. To have a growing solution at
y = i∞, we therefore need a term in Φ+ of the form e−icskτ = e−i(cs/cγ)y with cs > cγ .5

• The second possibility, non-analyticity, is easy to understand mathematically, but the
physical requirements are less transparent. First of all, the equations of motion for any mode
should be analytic around any finite value of kτ in the radiation-dominated era since there
is no preferred time. Hence, the only moment at which non-analytic behaviour is possible is
around kτ = 0, i.e. where the initial conditions are defined. Let us first show that adiabatic
initial conditions are analytic at kτ = 0. By definition, for adiabatic initial conditions, any
long-wavelength mode is locally generated by a diffeomorphism [278]. In the limit kτ → 0,
we then have Φ+ = Φ+,in +O(k2τ2). This expansion is necessarily analytic in k2 (by locality
and rotational invariance), but also in k2τ2, because the scaling k → λk and τ → λ−1τ

can be absorbed into the overall normalization of the scale factor a which has no physical
effect.6 Hence, Φ(s)

+ (y) must be analytic around y = cγkτ = 0, as long as the modes are
adiabatic. Conversely, any violation of analyticity requires a source of non-adiabaticity.

In the following sections, we will illustrate the different physical origins of the CMB phase shift
through a number of simple examples.

5.2.2 Intuition from a Toy Model

To gain more intuition for the system of equations discussed in the previous section, let us
solve them exactly in a simple toy model. In particular, we will study an example in which the

4Since the equations are symmetric in y → −y, the odd part Φ
(a)
+ (y) is not analytic around y = 0. This is why

we always find contributions to A.
5Note that cs is just a parameter of the wave-like solution and is not necessarily the sound speed of a fluid.

Indeed, in the case of free-streaming radiation, it corresponds to the propagation speed of the individual particles.
6In a universe with a preferred time, this rescaling would also require a shift in this preferred time to keep the

density fluctuations fixed. For adiabatic modes, the curvature perturbation ζ is conserved outside the horizon even
in the presence of such a preferred time and so this is unlikely to have an impact on gauge-invariant observables.
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metric fluctuations Φ+ propagate with a different speed than the photons, cs 6= cγ . We wish to
understand under which conditions this mismatch leads to a phase shift in the photon oscillations.

The Einstein equations for the metric potentials, eq. (2.29), can be rewritten in terms of the
fields Φ± as

Φ̈+ + 3HΦ̇+ + (2Ḣ+H2)Φ+ = 8πGa2 δP + S[Φ−] , (5.12)

where the source term on the right-hand side is defined as

S[Φ−] ≡ Φ̈− +HΦ̇− −
(
2Ḣ+H2 +

2

3
∇2

)
Φ− . (5.13)

The field Φ− is related to the total anisotropic stress σ via the constraint equation (2.30). In
the standard model, both photons and neutrinos contribute to δP , but only neutrinos provide a
source for σ (and hence Φ−). BSM particles may lead to additional pressure and/or anisotropic
stress. In general, we can write the pressure perturbation as [279]

δP = c2s δρ+ δPen , (5.14)

where cs is the speed controlling the propagation of the total density perturbation δρ and δPen

denotes the non-adiabatic entropy perturbation. For adiabatic fluctuations, one has δPen = 0

and c2s = w − [3H(1 + w)]−1 ẇ, where we emphasize that we are not assuming that P = wρ, but
P̄ = wρ̄. We eliminate the density perturbation δρ using the relativistic generalization of the
Poisson equation (2.28). Equation (5.12) can then be written as

Φ̈+ + 3H(1 + c2s)Φ̇+ − 3H2(w − c2s)Φ+ + c2sk
2Φ+ = 8πGa2 δPen , (5.15)

where we further assumed the absence of anisotropic stress, in which case the source term S[Φ−]

vanishes.
So far, this is fairly general and has only assumed vanishing anisotropic stress. In particular,

at this point w and cs are still general, possibly time-dependent parameters. To be able to derive
an analytic solution for the evolution of Φ+(τ), we will now make a few simplifying assumptions.
First, we assume that the equation of state w is nearly constant, so that we can integrate the
combined Friedmann equations (2.5) to get

H =
2

1 + 3w

1

τ
. (5.16)

Second, we take c2s ≈ const and δPen ≈ 0. This allows us to solve (5.15) analytically. For arbitrary
w and cs, these assumptions are not guaranteed to be easily realizable in a physical model. Our
analysis only serves as a simple illustration of some of the effects that give rise to phase shifts in
the CMB. More concrete examples of these effects will be discussed in §5.2.3.

85



5 Searching for Light Relics with the CMB

It is convenient to define z ≡ cskτ and write (5.15) as

d2

dz2
Φ+ +

1− 2α

z

d
dz

Φ+ +

[
1− β

z2

]
Φ+ = 0 , (5.17)

with
α ≡ 1

2
− 3(1 + c2s)

1 + 3w
, β ≡ 12(w − c2s)

(1 + 3w)2
. (5.18)

In the physically interesting parameter regime, 0 ≤ (c2s, w) ≤ 1, we have −11
2 ≤ α ≤ −1

4 , with
equality for (c2s, w) = (1, 0) and (0, 1), respectively. The general solution of (5.17) is

Φ+(z) = zα (c1Jκ(z) + c2Yκ(z)) , κ ≡
√
α2 + β , (5.19)

where Jκ(z) and Yκ(z) are Bessel functions of the first and second kind, respectively. Note that κ
is strictly positive and real-valued for the physically relevant parameter range, 1

2

√
3 ≤ κ ≤ 1

2

√
73,

with the minimum at (c2s, w) = (13 , 1) and the maximum at (c2s, w) = (1, 0).
To impose initial conditions, we consider the superhorizon limit, z � 1,

Φ+(z) '
2−κ (c1 + c2 cot (πκ))

Γ(1 + κ)
zα+κ − 2κc2Γ(κ)

π
zα−κ + · · · . (5.20)

Since α+ κ > α− κ, the “growing mode” solution corresponds to c2 ≡ 0. Hence, we have

Φ+(z) = c1z
αJκ(z) . (5.21)

The overall normalization in (5.21) will depend on the nature of the initial conditions (adiabatic
or entropic). For c2s = w, the superhorizon limit of Φ+ is a constant, which we match to the
superhorizon value of the primordial curvature perturbation ζ. This leads to the normalization
c1 = 2

√
2π ζ. We will maintain this normalization even for c2s 6= w, although, in principle, the

normalization of non-adiabatic modes is model-dependent. The y → ∞ limit of (5.8) then becomes

B = 2
√
2π ζ

∫ ∞

0
dy
(
cs
cγ
y

)α
Jκ

(
cs
cγ
y

)
cos y , (5.22)

and similarly for A. Together with dγ,in = −3ζ, this allows us to compute the phase shift via (5.9).
A graphical illustration of the dependence of the phase shift φ on the parameters c2s and w is
given in Fig. 5.3. Let us emphasize again that we do not imagine that all of the combinations
of c2s and w that we show in the figure can be realized in a physically realistic model. In the
following, we take slices through the parameter space to show that the most important features of
the figure can be understood analytically.

Consider first the special case c2s = w, which corresponds to adiabatic fluctuations. The
parameters in (5.18) and (5.19) then reduce to

α = − 5 + 3c2s
2(1 + 3c2s)

, β = 0 , κ = |α| . (5.23)
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Figure 5.3: Phase shift φ for varying speed of sound (cs) and equation of state (w). The dashed
line denotes φ = 0. Below this line, the phase shift is negative, while above it is positive.

As shown in the left panel of Fig. 5.4, the phase shift vanishes in this case for cs ≤ cγ = 1√
3

and is
positive for cs > cγ . This is consistent with our abstract reasoning of the previous section. At
large z = cskτ , the solution (5.21) behaves as zα−

1
2 cos(z) ∝ cos(cs/cγ y), with y = cγkτ . Since

the contour at infinity in (5.11) will not vanish when cs > cγ , we cannot conclude that φ = 0

(cf. condition i. in §5.2.1). To find φ 6= 0 was still not guaranteed, but there was no reason to
expect otherwise. In contrast, φ vanishes for cs ≤ cγ for exactly the reasons discussed before. In
particular, the solution (5.21) now takes the form zαJ|α|(z) with α < 0. Near z = 0, the solution
is analytic (cf. condition ii. in §5.2.1) since the non-analytic behaviour of zα cancels that of the
Bessel function. Of course, this is precisely what we expected for adiabatic modes.

Taking c2s 6= w corresponds to non-adiabatic fluctuations, i.e. fluctuations which contain an
isocurvature component. In this case, we expect a phase shift to arise for any values of c2s and w.
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Figure 5.4: Phase shift φ for varying c2s = w (left), and for varying c2s at fixed w = 1
3 (right).
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To illustrate this, let us take w = 1
3 and only allow c2s to vary. We then have

α = −1− 3c2s
2
, β = 1− 3c2s , κ =

1

2

√
8 + 9c4s . (5.24)

The corresponding phase shift is shown in the right panel of Fig. 5.4. We see that the phase shift
now only vanishes at the special point c2s = w = 1

3 , where the fluctuations are adiabatic. This is
also where the parameter β changes sign, which is the origin of the change in the sign of the phase
shift, φ ≶ 0 for c2s ≶ w. This time the phase shift is associated with the non-analytic behaviour
of Φ+(z) near the origin. To see this explicitly, consider the z → 0 limit of (5.21):

Φ+(z) =
c1

2κΓ(1 + κ)
zα+κ

[
1 +O(z2)

]
. (5.25)

For 0 ≤ c2s ≤ 1, we have α + κ < 2 and, hence, Φ+(z) is non-analytic at z = 0 (cf. condition ii.
in §5.2.1), except for the special case of the adiabatic limit where α+ κ = 0. This corresponds to
the non-trivial superhorizon evolution of Φ+ in the presence of isocurvature modes.

5.2.3 Simple Examples

The toy model of the previous section suggests that isocurvature perturbations and free-streaming
particles produce a phase shift. To study this further, it is useful to consider more realistic models.
In the following, we will therefore compute the phase shift in a curvaton-like model, and for
neutrinos and neutrino-like species.

Isocurvature perturbations

To simplify the calculations as much as possible, our curvaton-like model will include three species:
photons (γ), a dark radiation fluid (Y ) and a matter component (m) that decays into the dark
radiation. The matter will carry the isocurvature fluctuations. We include the dark radiation
because we are only interested in the gravitational effects on the photons, i.e. we want to avoid
the direct heating of the photons due to the decaying matter. The model will allow us to explore
small deviations from the adiabatic limit c2s = w.

The coupled equations for the background densities of m and Y are

1

a3
d

dτ
(a3ρ̄m) = −Γa ρ̄m , (5.26)

1

a4
d

dτ
(a4ρ̄Y ) = +Γa ρ̄m , (5.27)

where Γ is a constant decay rate. To simplify the calculations, we will work perturbatively in
εm ≡ ρ̄m/ρ̄. At zeroth order in εm, the universe is radiation dominated and hence a = τ/τin.
Integrating (5.26), we get

ρ̄m(a) =
ρ̄m,in
a3

e−
1
2
Γτin(a2−1) , (5.28)
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where we set the initial value ρ̄m,in ≡ ρ̄m(τin). Substituting (5.28) into (5.27), we would get the
solution for ρ̄Y (a), but this will not be needed for our purposes.

We now wish to determine how the decaying matter affects the evolution of the metric
perturbation Φ+ as given by (5.12). The pressure perturbations only receive contributions from γ

and Y , so we have
δP = c2γ(δργ + δρY ) =

1

3
δρ− 1

3
δρm , (5.29)

where we have used c2Y = c2γ = 1
3 . Using the Poisson equation (2.28), we can write (5.12) in the

absence of anisotropic stress as

Φ̈+ + 4HΦ̇+ − 1

3
∇2Φ+ = (3w − 1)H2Φ+ −H2εmδm . (5.30)

We wish to solve this at linear order in εm.
We will shortcut the computation by isolating the isocurvature contribution. Suppose we write

Φ+ = Φad
+ +Φiso

+ and similarly for δm. Equation (5.30) then implies

Φiso
+

′′ +
4

y
Φiso
+

′ +Φiso
+ = −εm

y2
δiso
m +O(ε2m) , (5.31)

where the primes denote derivatives with respect to y ≡ cγkτ and we have used that Φiso
+ ∼ O(εm),

so that all terms multiplying Φiso
+ can be evaluated at zeroth order in εm. The evolution of δiso

m is
governed by δiso

m
′′ + 1

y δ
iso
m

′ = 0 +O(εm) according to (2.27). Since the right-hand side of (5.31) is
proportional to εm, we only need the homogeneous solution, which is

δiso
m (y) = c1 + c2 ln y , (5.32)

where c1,2 are constants that may depend on k. We solve (5.31) using the Green’s func-
tion GΦ+(y, y

′). Substituting (5.28) and (5.32), we get

Φiso
+ (y) =

1

cγkτin
ε̃m,in

∫ y

yin

dy′GΦ+(y, y
′)

(
− exp

[
−1

2

(y′)2

(cγkτdec)2

]
c1 + c2 ln(y′)

y′

)
︸ ︷︷ ︸

≡ I(y)

, (5.33)

where ε̃m,in ≡ εm,ine
1
2
(τin/τdec)

2 and we have introduced the “decay time scale” τ2dec ≡ τin/Γ.
Let us comment on a few features of this solution. First of all, we notice that the integral

is highly suppressed when kτdec � 1. The reason is easy to understand: the integral would
have been dominated by contributions around the time of horizon crossing, y ∼ O(1), but, for
kτdec � 1, this is long after ρm has decayed. Second, we see that the solution has an overall factor
of (cγkτin)

−1. This reflects the growth of εm from the initial time, τin, to the time of horizon
crossing, (cγk)−1.

It is convenient to define τeq as the time at which ρ̄m and ρ̄γ + ρ̄Y would be equal if there was
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Figure 5.5: Numerical value of Biso cγkτeq as a function of ydec. The blue and red solid lines
show the effect from c1 and c2, respectively. The dashed lines are the asymptotic values calculated
in (5.38).

no decay. This is given by τeq ' τin/ε̃m,in. Equation (5.33) then becomes

Φiso
+ (y) =

1

cγkτeq
I(y) . (5.34)

We compute the phase shift by substituting (5.34) into (5.7) and (5.8), and taking the limits
yin → 0 and y → ∞,

Aiso ≡ 1

cγkτeq

∫ ∞

0
dy′ I(y′) sin y′ , (5.35)

Biso ≡ 1

cγkτeq

∫ ∞

0
dy′ I(y′) cos y′ . (5.36)

In Figure 5.5, we display the numerical result for Biso as a function of ydec ≡ cγkτdec. In the limit
ydec � 1, we can simplify the calculation by dropping the exponential in (5.33). We then get

Aiso ydec�1−−−−−−→ π

4
c2

1

cγkτeq
, (5.37)

Biso ydec�1−−−−−−→ 1

2
(c1 − c2γE)

1

cγkτeq
, (5.38)

where γE ≈ 0.5772 is the Euler-Mascheroni constant. We see from Fig. 5.5 that the analytic
result (5.38) becomes a good approximation for ydec & 5.

To summarize, we have demonstrated in a simple model that isocurvature perturbations give
rise to a phase shift, as we expected from condition ii. of §5.2.1. As suggested by Fig. 5.5,
this phase shift has a nontrivial scale dependence which probably allows it to be distinguished
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from other sources for a phase shift. This scale dependence is likely to be a general feature of
isocurvature models.

Free-streaming particles

Above, we have seen that a phase shift is also generated if fluctuations in the gravitational potential
travel faster than the speed of sound in the photon-baryon fluid. A simple way to realize this is
through free-streaming relativistic particles,7 such as neutrinos [27]. In the following, we give a
new derivation of this result. In Section 5.3, we will show that the CMB data is now accurate
enough to detect this effect (see also [28]).

Since most of the modes relevant to current and future CMB observations entered the horizon
during the era of radiation domination, our discussion in this section will ignore both the matter
and baryon content of the universe. In Appendix B, we show that this is a good approximation
for high-` modes and also discuss some of the implications of a finite matter density.

In the absence of pressure perturbations δPa = c2a δρa, with ca 6= cγ , the evolution equa-
tion (5.12) takes the form

Φ′′
+ +

4

y
Φ′
+ +Φ+ = S̃[Φ−]

≡ Φ′′
− +

2

y
Φ′
− + 3Φ− . (5.39)

The solution for Φ+ can be written as

Φ+(y) = 3Φ+,in
sin y − y cos y

y3
+

∫ y

yin

dy′ S̃[Φ−(y
′)]GΦ+(y, y

′) , (5.40)

where we introduced the Green’s function

GΦ+(y, y
′) = Θ(y − y′)

y′

y3

[
(y′ − y) cos(y′ − y)− (1 + yy′) sin(y′ − y)

]
, (5.41)

with the Heaviside step function Θ. Following [27], we will write the solution for Φ+ as an
expansion in powers of the fractional energy density contributed by the species of free-streaming
particles, X, as measured by the dimensionless ratio

εX ≡ ρX
ργ + ρX

=
Neff

aν +Neff
. (5.42)

7While it should be physically clear that free-streaming radiation travels at the speed of light, this property
is sometimes not very transparent in the equations for the density perturbations of this radiation. Instead, what
is usually more apparent is that free-streaming particles can induce a significant anisotropic stress, which then
provides a source for Φ+ and, hence, the evolution of dγ through (5.2). The origin of the phase shift is therefore
often identified with the presence of anisotropic stress. However, in principle, one could imagine situations with
significant anisotropic stress, but no supersonic propagation modes (e.g. non-relativistic, free-streaming particles).
In those cases, we would not expect a phase shift. Hence, it is the propagation speed, not the anisotropic stress
itself, that makes the phase shift possible.
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For the Standard Model neutrinos, we have εν ≈ 0.41. We determine the superhorizon initial
condition of the homogeneous solution, Φ+,in, by matching to the constant superhorizon solution
for adiabatic initial conditions [27],

Φ+,in =
20 + 4εX
15 + 4εX

ζ =
4

3
ζ

(
1− 1

15
εX +O(ε2X)

)
, (5.43)

where ζ is the conserved curvature perturbation.
To find the inhomogeneous part of the solution (5.40), we require an expression for Φ−(y).

This is determined by the anisotropic stress σX induced by the free-streaming particles,

Φ−(y) = −2k2εX
y2

σX(y) , (5.44)

which follows from the Einstein constraint equation (2.30) with σ = εXσX . An evolution equation
for the anisotropic stress σX can be derived from the Boltzmann equation for the distribution
function fX(τ,x, q, n̂) with comoving momenta q = q n̂. We separate fX into a background
component f̄X and a perturbation δfX ≡ fX − f̄X . For massless particles, it is convenient to
integrate out the momentum dependence of the distribution function and define∫

dq q3
(
δfX + q∂qf̄XΨ

)
=

4

3
DX(τ,x, n̂)×

∫
dq q3f̄X(q) . (5.45)

The linearised, collisionless Boltzmann equation is then given by

ḊX + ikµDX = −3ikµΦ+ , (5.46)

where we introduced µ = n̂ · k̂. We note that DX only depends on Φ+, but not on Φ−. It is useful
to expand the momentum-integrated distribution function DX into multipole moments,

DX =
∞∑
`=0

(−i)`(2`+ 1)DX,`P`(µ) , (5.47)

with the Legendre polynomials P`(µ). The monopole moment DX,0 determines the overdensity dX ,
while the quadrupole moment DX,2 is associated with the anisotropic stress σX . To see this, one
writes the perturbed stress-energy tensor in terms of the perturbed distribution function,

δTµν,X = a−4

∫
dΩn̂ n̂µn̂ν

∫
dq q3 δfX . (5.48)

Comparing this expression to (2.23), we find

DX,0 = dX , DX,1 = kuX , DX,2 =
3

2
k2σX . (5.49)

The quadrupole moment of (5.46) then provides the missing evolution equation for the anisotropic
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stress and we can rewrite (5.44) as

Φ−(y) = −4

3

εX
y2
DX,2(y) . (5.50)

Defining DX,in ≡ DX(τin) at some time τin, the solution to (5.46) is

DX(τ) = e−ikµ(τ−τin)DX,in − 3ikµ

∫ τ

τin

dτ ′ e−ikµ(τ−τ ′)Φ+(τ
′) . (5.51)

We wish to extract the quadruple moment DX,2 of the solution. Since DX,`(τin) ∝ τ `in, we will
only keep the monopole term DX,0(τin) in the homogeneous part of the solution. This is possible
because we can set the initial conditions at a sufficiently early time τin � k−1, so that the modes
with ` > 0 will be sub-dominant. In fact, we will take kτin → 0 from now on. Assuming adiabatic
initial conditions, i.e. DX,0(τin) = dX,in = −3ζ, we get

DX,2(y) = −3ζ j2
[
c−1
γ y
]
+

3

cγ

∫ y

0
dy′Φ+(y

′)

{
2

5
j1
[
c−1
γ (y − y′)

]
− 3

5
j3
[
c−1
γ (y − y′)

]}
, (5.52)

where the Bessel functions j` arise from the Rayleigh expansion of the exponentials. Substituting
this into (5.50) directly links the two gravitational potentials Φ+ and Φ−. The most important
feature of the solution (5.52) is that it contains modes that travel at the speed of light. Specifically,
recall that c−1

γ y = kτ and, therefore, the Bessel functions describe oscillatory solutions with
a speed of propagation of cs = 1. As we have emphasized before, this is the property of the
free-streaming radiation that makes a phase shift possible.

The above is a closed set of equations which we can solve perturbatively in εX :

Φ± ≡
∑
n

Φ
(n)
± , dγ ≡

∑
n

d(n)γ , (5.53)

where the superscripts on Φ
(n)
± and d

(n)
γ count the order in εX . Here, we present the solution up

to first order:

• At zeroth order in εX , we have Φ
(0)
− (y) = 0 and, hence, Φ(0)

+ is given by the homogeneous
solution,

Φ
(0)
+ (y) = 4ζ

sin y − y cos y
y3

. (5.54)

Inserting this into (5.7) and (5.8), we find

A(0)(y) = 2ζ − 2ζ
sin2(y)

y2
y→∞−−−−→ 2ζ , (5.55)

B(0)(y) = 2ζ
y − cos y sin y

y2
y→∞−−−−→ 0 . (5.56)
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The result for the photon density perturbations then is

d(0)γ (y) ≈ 3ζ cos y . (5.57)

We conclude that in the absence of anisotropic stress, the correction due to Φ+ is in phase
with the homogeneous solution and B vanishes as expected.

• At first order in εX , we only need the zeroth-order solution of the anisotropic stress, σ(0)X ,
since the source in (5.50) already comes with an overall factor of εX . We can therefore
write (5.50) and (5.52) as

Φ
(1)
− (y) = 4ζ

εX
y2

j2
[
c−1
γ y
]

(5.58)

− 4

cγ

εX
y2

∫ y

0
dy′Φ(0)

+ (y′)

{
2

5
j1
[
c−1
γ (y − y′)

]
− 3

5
j3
[
c−1
γ (y − y′)

]}
,

where Φ
(0)
+ is given by (5.54). Substituting (5.58) into (5.40), we obtain

Φ
(1)
+ (y) = − 4

15
ζ εX

sin y − y cos y
y3

+

∫ y

0
dy′ S̃[Φ(1)

− (y′)]GΦ+(y, y
′) . (5.59)

Inserting this into (5.7) and (5.8), we finally get expressions for A(1) and B(1). These have
to be evaluated numerically and we find

A(1) ≈ −0.268 ζ εX , B(1) ≈ 0.600 ζ εX . (5.60)

The non-zero value of B(1) corresponds to the expected phase shift.

Using (5.9) with dγ,in = −3ζ, we get

φ ≈ 0.191π εX +O(ε2X) , (5.61)

which is consistent with the result of Bashinsky & Seljak [27].

The phase shift is a clean signature of free-streaming particles and will naturally play an
important role in the observational constraints discussed in Section 5.3. To put these constraints
into context, let us use the analytic result of this section to relate changes in Neff to shifts ∆` in
the peaks of the CMB spectra. As we show in Appendix B, the E-mode spectrum will exhibit
precisely the same phase shift as the temperature spectrum and, therefore, our analytic estimates
are applicable in either case. In the small-angle approximation, a shift in angle φ is related to a
multipole shift by ∆` ' (φ/π)∆`peak, where ∆`peak ∼ 330 [75] is the distance between peaks in
the temperature anisotropy spectrum for modes entering the horizon during radiation domination.
Using (5.61), with Neff = Nν = 3.046, we find that the shift of the peaks arising from ordinary
neutrinos is ∆`ν ≈ 26 (compared to a neutrinoless universe). Similarly, small variations ∆Neff
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around the standard value Nν = 3.046 will lead to a multipole shift of order

∆`∆Neff ≈ 5.0×∆Neff , (5.62)

where we have expanded to linear order in ∆Neff. While this result is likely subject to a 20 to
30 percent error, it is reliable enough to see that a sensitivity of σ(Neff) ∼ 0.1 will constrain
a phase shift of order ∆` . 1. Current constraints on Neff imply ∆` ∼ O(1). As we will see
in Section 5.3, future CMB experiments are expected to constrain, or measure, shifts of order
∆` ∼ O(0.1). This is consistent with the rough expectation from measuring O(10) peaks and
troughs in the E-mode power spectrum.

5.3 Current and Future Constraints

The CMB has the potential to distinguish between many distinct sources of BSM physics: new
free-streaming or non-free-streaming particles, isocurvature perturbations and/or non-standard
thermal histories. However, ultimately the observability of the new physics depends both on the
size of the effect and whether it is degenerate with other cosmological parameters. In this section,
we present new constraints on the density of free-streaming and non-free-streaming radiation from
the Planck satellite [75] and then discuss the capabilities of a proposed CMB-S4 experiment [25].
Whenever possible, we will give some approximate analytic understanding of the qualitative origin
of our results. For precise quantitative results, we will perform a full likelihood analysis.8

As we have discussed in §3.4.1, a change in the radiation density is degenerate with a shift in
the primordial helium fraction Yp since they are anti-correlated at fixed θs. We therefore expect
that the CMB temperature constraints on Neff +Nfluid and Yp to weaken considerably if we allow
both of these parameters to vary. Of course, we also have to break the degeneracy between Neff

and Nfluid, which are not distinguished by their effects on the damping tail. Fortunately, future
datasets will be much less sensitive to these degeneracies for two reasons:

• First, as we show in Appendix B, the amplitude of the polarization of the CMB, ΘP,`,
is proportional to n−1

e , but not H, and, therefore, it is sensitive to Yp alone. The key
feature is that polarization is a direct measurement of the quadrupole at the surface of
last-scattering, while the damping tail of the temperature spectrum is the integrated effect
of the quadrupole on the monopole. This difference allows us to break the degeneracy
between Yp and Neff +Nfluid.

• Second, as we demonstrated in Section 5.2, the CMB is sensitive to the perturbations in
the free-streaming particles and not just their contribution to the background evolution.
This is illustrated in Fig. 5.6 and will be explored in more detail in the next subsection.
What is important here is that the phase shift associated with free-streaming particles is

8In this section, we prefer the use of Markov chain Monte Carlo (MCMC) techniques over Fisher matrix forecasts
because Fisher matrices can underestimate the impact of degeneracies on the posterior distributions [280]. We
believe this to be the origin of the (small) differences between our results and those of [240].
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not expected to be degenerate with other effects and it is measurable out to very high
multipoles. Furthermore, as we discuss in Appendix B, the same phase shift appears in both
temperature and polarization which means there is room for significant improvement in the
sensitivity to this effect. This will largely eliminate the issues of degeneracies for Neff.

As we move towards more sensitive experiments, the perturbations in the radiation density will
play an increasingly important role. In this section, we will demonstrate the potential of current
and future experiments to detect the free-streaming nature of relativistic species.

5.3.1 MCMC Methodology

The following data were used in our analysis:

• The Planck likelihoods are described in detail in [75]. The low-` likelihoods (2 ≤ ` ≤ 29)
include both the temperature and polarization data (even in the cases labelled “TT-only”).
For the remaining multipoles (` ≥ 30), we use the plik joint TT+TE+EE likelihood.9 This
contains information about the TT spectrum up to `max = 2508 and about the TE and
EE spectra up to `max = 1996. The lensing potential is reconstructed in the multipole range
40 ≤ ` ≤ 400 using SMICA temperature and polarization maps. For the TT-only constraints,
we use the plik TT-only likelihood with range 30 ≤ ` ≤ 2508 and the lensing reconstruction
involves only the temperature map.

• Our forecasts for CMB-S4 experiments assume 106 polarization-sensitive detectors with
a 1 arcmin beam and sky coverage fsky = 0.75. The default observing time is chosen to
be five years, resulting in a sensitivity of σT = σP /

√
2 = 0.558µK arcmin matching the

most optimistic experimental setup studied in [240]. Our analysis included multipoles up to
`max = 5000 for both temperature and polarization.10 We also study how our results change
if we vary the beam size and the maximum multipole.

Our modification of the Boltzmann code CLASS [6] includes an additional relativistic fluid,
whose energy density is measured by the parameter Nfluid defined in (3.22). The equation of
state and the sound speed of the fluid were fixed to wY = c2Y = 1

3 , with initial conditions that
were chosen to be adiabatic. With this choice, our analytic results imply that this fluid does
not contribute to the phase shift in the acoustic peaks. We use MontePython [10] to derive
constraints on the parameters Neff and Nfluid. Whenever the primordial helium abundance Yp was
not varied independently (which we will refer to as “Yp fixed”), it was set to be consistent with the
predictions of BBN, using the total relativistic energy density including both Neff and Nfluid in
determining the expansion rate. All Monte Charlo Markov chains were run until the variation in

9Note that the high-` polarization data was publicly released by the Planck collaboration, but labelled preliminary
due to possible unresolved systematics. It should therefore be used with caution.

10These experimental specifications are slightly more optimistic (in particular the maximum temperature
multipole of `Tmax = 5000 which will be hard to achieve because of astrophysical foregrounds) than those currently
considered by the CMB-S4 collaboration [25]. We present forecasts on Neff using these specifications in Appendix C.
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Figure 5.6: Top: Temperature spectrum DTT
` (left) and polarization spectrum DEE

` (right) for
(Neff = 3.046 , Nfluid = 0) (blue) and (Neff = 2.046 , Nfluid = 1.0) (red) with DX

` ≡ `(`+1)CX` /(2π)

in units of µK2. The TT and EE spectra represented by the red curves were rescaled by the same
constant factor chosen such that the height of the seventh peak of the TT spectrum matches
for the red and blue curves. The solid and dashed lines show the unlensed and lensed data,
respectively. The phase shift from Neff and the peak smearing from lensing can be seen in both
the TT and EE spectra. Bottom: Illustration of the relative difference δDX

` ≡ ∆DX
` /DX

` between
the (Neff = 3.046 , Nfluid = 0) and (Neff = 2.046 , Nfluid = 1.0) spectra of the upper panels. The
green solid and dashed lines are the differences in the unlensed and lensed data, respectively. We
see that the change is largest in the unlensed EE spectrum.

their means was small relative to the standard deviation (using R− 1 . 0.01 in the Gelman-Rubin
criterion [281]).

Our analysis makes use of the effects of gravitational lensing of the CMB in two distinct
ways. “Lensing reconstruction” will refer to a reconstruction of the power spectrum of the lensing
potential from the measurements of the temperature and polarization four-point functions. In
the case of the CMB-S4 forecasts, the power spectrum of the lensing potential was computed
with CLASS. CMB lensing also modifies the observed CMB power spectra (TT, TE, EE), primarily
in the form of smearing the peaks [282], as is illustrated in Fig. 5.6. “Delensing” removes the
effect of lensing on these power spectra using the reconstructed lensing potential. This is trivially
implemented in forecasts in the limit of perfect delensing (we will just output spectra without
computing the lensing), but is an involved procedure to implement on real data. The utility of
this procedure is that lensing moves information from the power spectra to higher-point functions,
but delensing moves this information back to the power spectra, so that it can easily be accounted
for in our likelihood analysis (rather than through some more elaborate multi-point function
likelihood).

Our Planck 2015 results use the publicly available lensing reconstruction likelihood, but do
not include any delensing of the power spectra. For CMB-S4, the lensing reconstruction noise
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was computed using the iterated delensing method described in [283] (based on [86, 88, 284]).
Forecasts using delensed spectra assumed perfect delensing, which is a good approximation for a
CMB-S4 experiment across a wide range of multipoles. Taking lensing reconstruction noise into
account when computing delensed spectra would require a more careful analysis (see [25, 89] for
subsequent studies).

The fiducial cosmology used for all forecasts is described by the following parameters: Ωbh
2 =

0.022, Ωch
2 = 0.120, h = 0.67, As = 2.42 × 10−9, ns = 0.965, τ = 0.078, Neff = 3.046 and

Nfluid = 0.0.

5.3.2 Planck 2015 Results

The Planck 2015 results have reached an important threshold. The level of sensitivity is now
sufficient to detect the free-streaming nature of the neutrinos (or any additional dark radiation). In
Table 5.1, we present marginalized constraints on Neff and Nfluid, with their posterior distributions
shown in Fig. 5.7. We show results both for the combined TT, TE and EE likelihoods, and for
TT alone. The two-dimensional joint constraints are presented in Fig. 5.8. In each case, we
compare the results for fixed Yp with those when Yp is allowed to vary. These results robustly
demonstrate that there is very little degeneracy between Neff, Nfluid and Yp when using both
temperature and polarization data from Planck.

TT, TE, EE TT-only

varying Yp fixed Yp varying Yp fixed Yp

Neff 2.68+0.29
−0.33 2.80+0.24

−0.23 2.89+0.49
−0.62 2.87+0.45

−0.37

Nfluid < 0.64 < 0.67 < 1.08 < 0.94

Table 5.1: Best-fit values and 1σ errors for Neff and 2σ upper limits for Nfluid for the Planck 2015
data. Both Nfluid and Neff are allowed to vary in all cases. The lensing reconstruction and
low-P likelihoods were used for all of the constraints.

From the left panels in Figs. 5.7 and 5.8 we see that the constraints on Neff are largely insensitive
to the marginalization over Nfluid and only mildly affected by the marginalization over Yp, even
when the polarization data is removed. This robustness of the constraints suggests that they
receive considerable constraining power from the phase shift because Neff is degenerate with Yp

and Nfluid in the damping tail. Since Neff is the unique parameter capable of producing the phase
shift, the measurement of the latter breaks the degeneracy between Neff and both Nfluid and Yp.
We also see that adding polarization data leads to a large improvement in the constraint on Neff,
most likely because the peaks of the E-mode spectrum are sharper, which makes the phase shift
easier to measure [27]. This is illustrated in Fig. 5.6, where we show the relative differences in
the TT and EE spectra when varying Neff and Nfluid. While the phase shift is visible in both
cases, the size of the effect is larger in the polarization spectrum which increases the impact of
the E-mode data.
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Figure 5.7: Left: Posterior distributions for Neff from Planck TT, TE and EE marginalized
over Nfluid. The blue curve involves the marginalization over Yp, while the black curve keeps Yp
fixed. Both likelihoods rule out Neff = 0 at high significance. Right: Posterior distributions
for Nfluid from Planck TT, TE and EE marginalized over Neff. The blue curve involves the
marginalization over Yp, while the black curve keeps Yp fixed. In both panels, the likelihoods for
Planck TT-only with the same marginalizations are shown as dashed lines.

Similar analyses were performed in [212, 213] using WMAP data (and external datasets). Their
results are qualitatively similar to our TT-only analysis with Yp fixed, although with weaker
constraints on Neff and Nfluid. By comparison, adding E-mode data further improves constraints
in the Neff -Nfluid plane, also when Yp is allowed to vary.

Figure 5.8 shows that there is a significant difference in the constraints in the Neff -Yp plane,
with and without the polarization data. Without polarization, allowing Nfluid to vary weakens the
constraints on Neff and Yp. This is consistent with our discussion of degeneracies in §3.4.1 and
at the beginning of this section. Using only the temperature data, Yp and Nfluid are measured
mostly from the damping tail, but their effects on the latter are degenerate. As a result, the
constraints on Yp and Neff weaken when Nfluid is allowed to vary. The situation changes when
polarization data is added. Now, there is very little difference in the constraints as we vary the
marginalization over additional parameters. This is most noticeable in the right panel in Fig. 5.8,
where the constraints on Yp and Neff become nearly independent of the treatment of Nfluid. This
feature was anticipated above, where we observed that polarization breaks the degeneracy between
Yp and Nfluid.

In [28], a constraint was recently placed on the effective number of free-streaming species by
isolating the phase shift in the Planck 2013 temperature data: Neff = 2.3+1.1

−0.4 (68 % c.l.) while
keeping the damping tail fixed and Neff = 3.5± 0.65 (68 % c.l.) when marginalizing over the effect
on the damping tail [285]. To compare to that analysis, we remove the polarization data. We
then find Neff = 2.89+0.49

−0.62 , which is quite similar to the direct measurement of the phase shift.11

When we add the TE and EE likelihoods, our constraint improves by about a factor of two to
11Due to the marginalization over Nfluid and Yp, our analysis is most comparable to the marginalized result:

Neff = 3.5 ± 0.65 [285]. One difference in our approach is that it includes information in the amplitude shift
produced by the free-streaming species. However, this effect is likely sub-dominant to the phase shift due to the

99



5 Searching for Light Relics with the CMB

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Nfluid

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Neff

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Neff

0.15

0.20

0.25

0.30

0.35

Yp

Figure 5.8: Left: Constraints on Neff and Nfluid using the Planck TT, TE and EE likelihoods
for varying Yp (red) and when Yp is fixed (green). Shown are also the Planck TT-only results
for varying Yp (indigo) and when Yp is fixed (olive). Right: Constraints on Neff and Yp using the
Planck TT, TE and EE likelihoods for varying Nfluid (red) and when Nfluid is fixed (cyan). Shown
are also the Planck TT-only results for varying Nfluid (indigo) and when Nfluid is fixed (gray). In
both panels, the lensing reconstruction and low-P likelihoods were used for all of the constraints.

Neff = 2.68+0.29
−0.33. From the estimate12 in (5.62), we conclude that these constraints correspond

to a phase shift of about δ` ≈ 1. While this is compatible with expectations,13 it is nonetheless
impressive that the data is sensitive to these small and subtle effects.

5.3.3 CMB Stage-4 Forecasts

While current data is already sensitive to the free-streaming nature of neutrinos, future experiments
are expected to improve these constraints by at least an order of magnitude. As we have been
emphasizing, an increase in the sensitivity to the σ(Neff) ∼ 10−2 level probes a number of plausible
BSM scenarios that are currently unconstrained. In the following, we forecast not only the
constraints on Neff, but also on Yp and Nfluid in order to identify more clearly the types of
BSM physics we might be sensitive to. We perform a full likelihood analysis (rather than a Fisher
forecast) to ensure that degeneracies are treated correctly (see [280] for a discussion).

The results of our forecasts are summarized in Table 5.2. Given the constraints from Planck, it
is not surprising that Neff is easily distinguished from Nfluid with CMB-S4 experiments. As before,
the constraints on Neff are significantly stronger than those on Nfluid, which is consistent with the
interpretation that these parameters are being distinguished by differences in the perturbations for
the two types of radiation. When both radiation components are included, the detailed matching

degeneracy with the amplitude of the primordial power spectrum. As we will discuss in the next subsection, when
we allow Yp to vary, future CMB experiments get a considerable fraction of the sensitivity to Neff from the phase
shift and so we expect our methods to produce increasingly similar results.

12We can also estimate this more schematically from the knowledge that Neff = 3.046 produces δ` ≈ 10 for
` . 3000 relative to Neff = 1 [28]. Current constraints allow for roughly a 10 percent variation in Neff, which would
imply δ` ≈ 1. Direct measurements of the individual peak locations are given in [75] with a similar level of precision.

13Forecasts using the isolated phase shift alone give σ(Neff) = 0.41 for Planck with polarization [28].
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Experiment Delensing Reconstruction σ(Neff) σ(Yp) Nfluid

Planck 2015 No Yes 0.31 0.019 < 0.64

No No 0.062 0.0053 < 0.18

CMB-S4 Yes No 0.054 0.0044 < 0.17

Yes Yes 0.050 0.0043 < 0.16

Table 5.2: Marginalized likelihoods for Planck and CMB-S4. All likelihoods allow Neff, Nfluid

and Yp to vary. The Planck likelihood uses the TT, TE and EE power spectra as well as the
lensing reconstruction likelihood. The forecasts for CMB-S4 include the possibilities of delensing
and lensing reconstruction. We excluded the forecast using lensed spectra combined with lensing
reconstruction since this is known to produce overly optimistic error forecasts due to a double
counting of lensing information [286]. The double counting can be safely ignored for Planck, but
will become more important for future experiments [287]. Displayed are 1σ error bars for Neff

and Yp, and 2σ upper limits for Nfluid.

of the acoustic peaks is very sensitive to the phase shifts due to Neff, but is much less affected
by Nfluid. This is illustrated by the left panel in Fig. 5.9, which presents the joint constraints
on Nfluid and Neff, both for fixed Yp and when it is allowed to vary. When Yp is fixed, there is a
strong degeneracy between Neff and Nfluid which is absent when Yp is allowed to vary. Yet, in
both cases, the contours close at roughly the same value of Neff, indicating that the degeneracy is
broken in a way that is insensitive to the damping tail.

As we have emphasized throughout, the strong constraint on Neff arises in part from the
sharpness of the peaks of the E-mode spectrum, which leads to better measurements of the phase
shift. This same intuition explains why the constraints on Neff are strengthened by using the
delensed power spectrum. One of the well-known effects of lensing is a smearing of the acoustic
peaks [282] (see Fig. 5.6). By delensing the power spectra, we sharpen the peaks, which makes the
measurements of the phase shift more precise. We illustrate the impact that delensing can have
in Fig. 5.6, where we see that the effect of changing Neff produces a much larger relative change
on the unlensed data. This procedure is analogous to reconstructing the BAO peak to sharpen
distance measurements [117]. In both cases, non-linearities transfer information from the power
spectrum to higher-point correlation functions. Delensing or BAO reconstruction moves that
information back to the power spectrum, so that it is more easily accounted for in these analyses.
As a result, the error in the measurement of any quantity that is sensitive to the sharpness of the
peak will be reduced (like the phase shift and the BAO scale). This suggests that delensing will
be a useful tool for improving constraints on cosmological parameters in these future experiments.

While much of our efforts have been devoted to understanding the degeneracies between Neff,
Nfluid and Yp, the actual physical models we wish to constrain may not exhibit these degeneracies.
First of all, many models with additional light fields still have Nfluid = 0 (i.e. only free-streaming
radiation) [24], which would in principle allow us to combine information from the damping tail
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Figure 5.9: Left: Forecasted CMB-S4 constraints on Neff and Nfluid for Yp fixed (orange) and
varying (blue). Right: Forecasted CMB-S4 constraints on Neff and Yp for Nfluid = 0 fixed (purple)
and varying (blue).

and the phase shift to constrain Neff. Furthermore, while Yp is often affected by BSM physics
at the time of BBN, the precise degeneracy needed to keep the damping tail fixed is unlikely to
occur naturally. The constraints on such models would be significantly stronger. As we see in
Table 5.3, a factor of 3 to 4 improvement in the constraints is possible when this degeneracy with
changes in Yp is not present.

Finally, perhaps the most important feature of these forecasts is the dramatic improvement,
relative to Planck 2015, that can be expected from the studied experimental configuration of
CMB-S4. Our projections suggest that a factor of 5 to 10 improvements are achievable, but
we should also investigate the robustness of this conclusion to changes of the experimental
specifications. Here, we study variations of the beam size (θb) and the maximal available
multipole (`max). These are important for two reasons: (i ) the beam size is ultimately a choice
made within the context of limited resources and (ii ) the presence of foregrounds or systematics
make it difficult to predict `max reliably beforehand. In Table 5.4 we show the forecasts for various
values of θb and `max, assuming 106 detectors.

Experiment σ(Neff) σ(Yp)

Planck 2015
0.30 0.018
0.19 –

CMB-S4
0.048 0.0027
0.013 –

Table 5.3: Results for the marginalized 1σ errors for Planck (TT, TE, EE, lensing reconstruction)
and forecasts for CMB-S4 for Neff and Yp, when Nfluid = 0 is held fixed. The CMB-S4 forecasts
assumed both delensing and lensing reconstruction. A dash in the σ(Yp) entry indicates that Yp
was fixed by consistency with BBN.
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Parameter 1′ 2′ 3′ `max = 3000 `max = 4000

σ(Neff) (Yp fixed, Nfluid = 0) 0.013 0.015 0.016 0.023 0.015
σ(Neff) (Yp fixed, Nfluid 6= 0) 0.026 0.027 0.029 0.034 0.028
σ(Neff) (Yp varying, Nfluid = 0) 0.048 0.051 0.055 0.058 0.052
σ(Neff) (Yp varying, Nfluid 6= 0) 0.050 0.052 0.055 0.061 0.051

Nfluid (Yp varying) < 0.16 < 0.17 < 0.18 < 0.20 < 0.17

Nfluid (Yp fixed) < 0.068 < 0.072 < 0.076 < 0.090 < 0.072

Table 5.4: Forecasts for a CMB-S4 experiment with varying beam size and maximum multipole
assuming 106 detectors. We take `max = 5000 as we vary the beam size and θb = 1′ when we
vary `max. Displayed are 1σ error bars for Neff and 2σ upper limits for Nfluid.

There are two simple lessons we can draw from this table. First of all, measuring modes
with ` > 3000 offers only a moderate improvement on our constraints. Similarly, the benefit to
reducing the beam size significantly is also limited. Most of the improvement in the measurement
of the phase shift is coming from high-precision measurements of E-modes with ` < 3000. In
contrast, when Yp is fixed and Nfluid = 0, the sensitivity to the beam size and `max is stronger,
which suggests14 that we are gaining useful information from the damping tail at ` > 3000.

We have fixed the number of detectors to be 106, but the precise value will play a very important
role in the ultimate reach of CMB-S4, not just for Neff, but for most physics targets. For Neff

specifically, we may still improve the constraints until we reach the limit set by cosmic variance15

in the E-mode power spectrum since modes with ` & 3700 (` & 2300) are still dominated by noise
for 106 (104) detectors. As a result, within the range of 104 to 106 detectors being considered, we
improve constraints significantly by further reducing the detector noise and, hence, increasing the
number of detectors. Forecasts for Neff with varying numbers of detectors were studied in [25,
240], which confirm this intuition.

5.4 Consequences for BBN and BSM

With the substantially improved constraints on Neff, Nfluid and Yp expected from future CMB ex-
periments, it is interesting to examine the possible impacts that these measurements might have
on our understanding of the laws of Nature. In the following, we consider some consequences of
combining these CMB observations with those of big bang nucleosynthesis (§5.4.1) and discuss a
few opportunities to probe physics beyond the Standard Model (§5.4.2).

14We have not been careful to account for foregrounds in temperature or polarization. Information in our
forecasts coming from high-` temperature data is unlikely to be available in a real experiment.

15The cosmic variance-limited constraint is roughly given by σ(Neff) ∼ 0.008 (cf. Appendix C).
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5.4.1 Interplay Between CMB and BBN

One of the important benefits of measuring the fluctuations in the dark radiation is that it
eliminates the degeneracy between Yp and Neff. This has important consequences for constraints
on BSM physics, since Yp is sensitive to the total radiation density at the time of BBN (3 min after
the big bang), while Neff and Nfluid are related to these radiation densities around the time of
recombination (373 000 years after the big bang). As a result, CMB measurements of Yp and Neff

probe scenarios where these densities change between those two times, perhaps through the decay
of a heavy particle or through some other production mechanism [232].

It is useful to translate constraints on Yp into bounds on the radiation density at the time
of BBN [288],

Yp ≈ 0.247 + 0.014×∆NBBN
eff+fluid , (5.63)

where ∆NBBN
eff+fluid ≡ NBBN

eff + NBBN
fluid − 3.046. Marginalizing over Nfluid, we found a standard

deviation in the helium fraction of σ(Yp) = 0.0043 for CMB-S4 (see Table 5.2), while for fixed
Nfluid = 0, we get σ(Yp) = 0.0027 (cf. Table 5.3). Using (5.63), these constraints imply

σ(NBBN
eff+fluid) =

{
0.31 Nfluid 6= 0 ,

0.19 Nfluid = 0 .
(5.64)

The last constraint is stronger than the current limit of σ(NBBN
eff+fluid) = 0.28 from BBN alone [197].

The CMB will therefore provide independent measurements of Neff at two different times in
a single experiment, each surpassing our current level of sensitivities from combining multiple
probes.

While the constraint on NBBN
eff+fluid from a CMB-S4 experiment is only a modest improvement

over current measurements from primordial abundances, it has the unique advantage that it is a
clean measurement (i.e. it is not affected by astrophysical processes at later times) and it can be
combined with measurements of other cosmological parameters (e.g. Ωbh2) without combining
different datasets. A common approach with current data is to combine the constraints from the
CMB and primordial abundances in order to improve the overall sensitivity to Neff, in the case
where it is time independent. From Table 5.3, we see that if we do not allow a variation in Neff

between BBN and the CMB, we get very strong constraints on Neff due to the lack of degeneracies
in the damping tail. Given that these results are sufficiently strong, it is unlikely that including
information from primordial abundances will lead to much improvement.

When discussing the time variation of Neff, we have focussed only on the model-independent
measurement implied by varying Neff and Yp independently. As a result, the constraints we derive
are controlled primarily by the degeneracy between Neff and Yp in the damping tail. Without this
degeneracy, the constraints on Neff are much stronger. In realistic models, it may be the case that
both Neff and Yp are changed independently, but that they do not produce this degeneracy in the
relevant range of parameters. For such models, a dedicated analysis of CMB data would likely
offer a much larger gain over the current limits from primordial abundances.
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Signature Influenced by Degeneracies broken by

CMB damping tail NCMB
eff +NCMB

fluid , Yp, ECMB
inj Phase shift, polarization

Phase shift Neff, N iso
fluid, ��GR Scale dependence

Spectral distortions Epost-BBN
inj

Primordial abundances NBBN
eff +NBBN

fluid , Nν , ηBBN, EBBN
inj CMB

Table 5.5: Cosmological probes of BSM physics and their sensitivity to free-streaming and
non-free-streaming radiation (Neff and Nfluid), the number of active neutrinos (Nν), the baryon-
to-photon ratio (η) and the amount of energy injection (Einj). The superscripts BBN, CMB, or
post-BBN denote the time at which a quantity is being probed, where post-BBN refers to redshifts
of z . 106 when spectral distortions become possible. The parameter N iso

fluid abstractly stands for
isocurvature fluctuations, while ��GR denotes modified gravity.

5.4.2 Implications for BSM Physics

So far, we have concentrated on simple descriptions of BSM physics in terms of the effective
parameters Neff, Nfluid and Yp. These parameters capture important aspects of CMB physics and
our cosmological history, which may be used to test a number of scenarios for BSM physics (see
Table 5.5):

• As we discussed in §3.3.2, Neff is sensitive to the freeze-out of the particle for minimal exten-
sions of the Standard Model with a light field. At current levels of sensitivity, σ(Neff) & 0.1,
we can rule out some scenarios where particles freeze-out after the QCD phase transition [24].
Freeze-out before the QCD phase transition typically dilutes the contribution to Neff by a
factor of 10, which allows such models to easily evade current constraints. Fortunately, some
of these scenarios are likely to be accessible with CMB-S4 experiments [25]. For these cases,
we are sensitive to sufficiently early times so that BSM physics above the TeV scale may be
important and can be probed along the lines of Chapter 4.

• Measurements of the effective number of free-streaming particles at recombination, NCMB
eff ,

are also sensitive to any energy which is injected into the Standard Model particles after
the time of neutrino decoupling. Depending on the time and nature of this energy injection,
it may alter the primordial abundances or introduce spectral distortions which would
distinguish it from a new light field. For example, a decay to photons after BBN would
lower NCMB

eff and ηBBN (the baryon-to-photon ratio at BBN), while keeping the radiation
density at BBN, NBBN

eff , fixed [200].

• Energy injection of many kinds is a typical byproduct of changing Neff, but may also be the
dominant signature of BSM physics. Decays during BBN can disrupt the formation of nuclei
without substantially changing the total energy in radiation. Alternatively, recombination is
very sensitive to energy injection [129] which can alter the form of the visibility function.16

16The common element of both of these examples is that the tail of the Boltzmann distribution is playing a
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• As we discussed in Section 5.2, phase shifts of the acoustic peaks may also be produced by
isocurvature perturbations (denoted by N iso

fluid in Table 5.5). We offered a simple curvaton-like
example of this effect, but we expect to be broadly sensitive to physics in the dark sector
that is not purely adiabatic. Since there are many good reasons to imagine why isocurvature
perturbations might arise in the dark sector, this motivates a future exploration of the
observability of these effects.

• Finally, we have assumed the validity of the Einstein equations throughout. This enforced
that Φ− = 0 in the absence of anisotropic stress. Modified theories of gravity are often
parameterized in terms of their change to the Einstein constraint equation and the corres-
ponding effect on Φ−; see e.g. [289]. Since the field Φ− played an important role in our
analysis of the phase shift, it would be interesting to explore how the result changes for
specific modifications of GR. Conversely, the phase shift of the CMB spectrum may be an
interesting probe of modified gravity.

5.5 Summary

CMB observations have become precise enough to probe the gravitational imprints of BSM physics
on the perturbations of the primordial plasma. In the upcoming era of CMB polarization
experiments, our sensitivity to these subtle effects will increase significantly and will offer new
opportunities in the search for new physics. It is therefore timely to re-evaluate how CMB data
can inform our view of the laws of physics.

In this chapter, we have explored how the phase shift of the acoustic peaks might be used
as such a probe. This phase shift is particularly interesting because analytic properties of the
Green’s function of the gravitational potential strongly limit the possible origins of such a shift to

i. waves propagating faster than the sound speed of the photon-baryon fluid,

ii. isocurvature fluctuations.

For adiabatic initial conditions, the phase shift is most easily generated by free-streaming radiation
and becomes an excellent measure of the effective number of free-streaming relativistic species, Neff,
at the time of recombination. Realistic models of isocurvature fluctuations typically produce a
scale-dependent phase shift, which allows them to be distinguished from changes to the energy
density of the radiation.

What makes these results particularly compelling is that current and future CMB experiments
are sensitive enough to detect these phase shifts at high significance [28]. We have demonstrated
this with an analysis of the 2015 data from the Planck satellite and forecasts for a CMB Stage-4
experiment (see Fig. 5.10). Our results highlight the important role played by the polarization data
in breaking the degeneracy between the contributions from free-streaming and non-free-streaming

critical role (due to the large value of η−1). As a result, the change to the small number of high-energy photons is
more important than the total energy density.
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Figure 5.10: Left: Planck constraints on the effective number of free-streaming and non-free-
streaming relativistic species, Neff and Nfluid, allowing the helium fraction Yp to vary (red) and
keeping it fixed (green). Right: Planck constraints on Yp and Neff for varying Nfluid (red) and
when Nfluid = 0 is fixed (cyan). In both plots, the contours from the CMB-S4 forecasts, presented
in Fig. 5.9, have been included to show the expected improvements in sensitivity.

species, Neff and Nfluid, as well as that with the helium fraction Yp. We also provide a clear
detection of the free-streaming nature of neutrinos which constitutes further evidence for the
cosmic neutrino background.
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6
Searching for Light Relics with LSS

We have established in the previous chapter that the cosmic microwave background is a sensitive
probe of light thermal relics. The forecasts for a CMB Stage-4 experiment indicate that the
possible bounds on Neff are tantalizingly close to well-motivated theoretical targets, in particular
the threshold value ∆Neff = 0.027 associated with the minimal abundance of any light thermal
relic. Since the initial conditions for the clustering of matter are set by the same physics that leads
to the acoustic oscillations in the CMB, we expect to find imprints of relativistic species also in
the large-scale structure of the universe. In this chapter, we therefore explore to what degree the
CMB observations can be enhanced by future LSS surveys. We carefully isolate the information
encoded in the shape of the galaxy power spectrum and in the spectrum of baryon acoustic
oscillations. We find that measurements of the shape of the power spectrum can significantly
improve on current and near-term CMB experiments. We also propose a modified analysis of
BAO data and show that the phase shift induced by relic neutrinos in the BAO spectrum can be
detected at high significance in future experiments.

The outline of this chapter is as follows. In Section 6.1, we recapitulate the effects of free-
streaming radiation on the matter power spectrum as well as the baryon acoustic oscillation
signal, focussing especially on the phase shift in the BAO spectrum. In Section 6.2, we forecast
combined CMB and LSS constraints on the number of relativistic species, Neff, for a range of
future observations. In Section 6.3, we isolate the information encoded in the phase shift of the
BAO spectrum and study the prospects for extracting this effect in upcoming surveys. A summary
is presented in Section 6.4. We refer to Appendices C and D for technical details of our analysis,
such as the experimental specifications of the surveys, and the methods used to extract the matter
broadband spectrum and the phase shift.

6.1 Phases of New Physics in the BAO Spectrum

Having seen that the next generation of CMB experiments will be very sensitive to the radiation
density, we will now explore the additional constraining power provided by current and future
LSS experiments, such as (e)BOSS [290, 291], DES [292], DESI [293], LSST [294] and Euclid [295].
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It was established in [249, 296, 297] that these surveys carry information about relativistic species.
We will examine how this information is stored in both the power spectrum shape and the
BAO spectrum.
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Figure 6.1: Variation of the matter power spectrum P (k) (top) and the BAO spec-
trum Pw(k)/P nw(k) (bottom) as a function of Neff. The physical baryon density, ωb, the physical
sound horizon at the drag epoch, rs, the scale factor at matter-radiation equality, aeq ≡ ωm/ωr,
and the BAO amplitude A at the fourth peak are held fixed in the second BAO panel (as
in Fig. 3.5). This panel and the bottom zoom-in show the remaining phase shift induced by
free-streaming relativistic species.

In §3.4.3, we discussed the main effects of the radiation density in the early universe on the
growth of structure. In brief, increasing the radiation density moves the maximum of the power
spectrum to larger scales and the amplitude on small scales gets suppressed (cf. Fig. 6.1). On the
other hand, a change in the size of the sound horizon (and therefore in the BAO frequency) has the
dominant impact on the BAO spectrum. The phase shift is clearly sub-dominant, but a distinct
feature of free-streaming particles (see §3.4.2). Currently, of all these effects, only the change
in the BAO frequency is taken into account when analysing LSS data. In principle, however,
there is much more additional information available that can be used to improve the constraints
and learn about the physics of the early universe. Although its accessibility is hampered by
non-linear effects, we will demonstrate that some of these clues can still be robustly extracted
from LSS observables.

We will pay particular attention to the information about Neff contained in the BAO spectrum
and propose a new analysis of this observable. To isolate the BAO signal, we split the power
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spectrum into a smooth (‘no-wiggle’) part and an oscillatory (‘wiggle’) part,

P (k) ≡ P nw(k) + Pw(k) , (6.1)

with our method for performing this separation being described in Appendix D. We will demon-
strate that the most robust information about Neff lives in Pw(k). The peak locations of the
BAO spectrum carry additional information about light relics that is immune to corrections
to the overall shape of the power spectrum, such as those arising from non-linear gravitational
evolution [63, 112, 113]. The reason underlying this is that the phase of the BAO spectrum is
unaffected by the effects of non-linear gravitational evolution [125]. We claim that this information
is preserved after non-linear corrections are taken into account and explore in detail how it can be
isolated in the BAO spectrum. This protected information may play a useful role in elucidating
apparent discrepancies between CMB and low-redshift measurements, and be a valuable tool in
the search for exotic physics in the dark sector.

6.2 Current and Future Constraints

We have been arguing throughout this thesis that measuring the radiation density at the percent
level provides an interesting window into early universe cosmology and BSM particle physics.
We have already seen that upcoming CMB experiments will considerably improve the current
constraints. In the following, we will further quantify the constraining power of future cosmological
observations by including LSS surveys. We will consider two types of forecasts based on P (k)

and Pw(k), which we refer to as ‘P (k)-forecasts’ and ‘BAO-forecasts’, respectively.

6.2.1 Fisher Methodology

In this section, we will use standard Fisher information theory to forecast the constraints of future
observations. While Fisher forecasts have to be used with care, they provide useful guidance for
the sensitivities and design of future experiments. In the following, we recall the basic elements of
the Fisher methodology and its application to galaxy surveys [298, 299]. The relatively standard
Fisher forecasting of CMB observations is summarized in Appendix C, where further details on
the LSS forecasting can be found as well.

Given a likelihood function L(~θ ) for the model parameters ~θ ≡ {ωb, ωc, θs, τ, As, ns, Neff, Yp},
we define the Fisher matrix as the average curvature of the log-likelihood around the fiducial point
in parameter space,

Fij = −
〈
∂2 lnL
∂θi ∂θj

〉
, (6.2)

where the expectation value denotes an average over all possible realizations of the data. If the
likelihood is Gaussian, then the inverse Fisher matrix gives the covariance matrix. This means
that F−1/2

ii is the error on the parameter θi, when all other parameters θj 6=i are known, while
σ(θi) = (F−1)

1/2
ii is the error on θi after marginalizing over the other parameters. More generally,
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the Cramér-Rao bound,
σ(θi) ≥

√
(F−1)ii , (6.3)

gives a lower limit on the marginalized constraints.

The Fisher matrix for a galaxy survey is [300]

Fij =

∫ 1

−1

dµ
2

∫ kmax

kmin

dk k2

(2π)2
∂ lnPg(k, µ)

∂θi

∂ lnPg(k, µ)
∂θj

Veff(k, µ) , (6.4)

where Pg(k, µ) is the anisotropic galaxy power spectrum, µ is the cosine between the wavevector k
and the line-of-sight, and Veff is the effective survey volume,

Veff(k, µ) ≡
∫

d3x

[
ng(x)Pg(k, µ)

ng(x)Pg(k, µ) + 1

]2
≈
[

n̄gPg(k, µ)

n̄gPg(k, µ) + 1

]2
V . (6.5)

In the second equality, we have assumed that the comoving number density of galaxies is
independent of position, ng(x) ≈ n̄g = const, and introduced the actual survey volume V . To
derive the constraints from independent redshift bins, we take V to be the volume within each
bin and add the corresponding Fisher matrices. The minimum wavenumber accessible in a survey
is given by the volume of the survey1 as kmin = 2π [3V /(4π)]−1/3.

Modelling the power spectrum

In §2.4.2, we introduced the linear matter power spectrum Plin(k) as the main LSS observable
and discussed some of the complications that arise because we cannot observe it directly. In order
to obtain semi-realistic constraints on most parameters of the cosmological model, it is often
sufficient to model the observed galaxy power spectrum as Pg(k) ≈ b2Plin(k), where b is the linear
biasing parameter. However, the constraints on extra relativistic species are particularly sensitive
to the way degeneracies are broken and to the non-linear damping of the oscillatory feature, so we
need to be more careful in the modelling of the signal [116, 301, 302]. Moreover, since observations
only determine the angular positions and redshifts of objects, we need to take into account the
corresponding redshift space distortions (RSD) and geometric projection effects.

Separating the spectrum into its smooth and oscillatory parts according to (6.1), our model
for the observed galaxy power spectrum is the following remapping of the linear matter power
spectrum:

Pg(k, µ) = b2F 2(k, µ)P nw(k, µ)
[
1 +O(k, µ)D(k, µ)

]
Z(k, µ) . (6.6)

All functions in this expression have an implicit redshift dependence. We now define the different
elements of (6.6):

1We assume that the survey volume has a spherical geometry. The geometry of a given redshift bin (or the full
survey volume) is neither spherical nor cubic, but we have checked that all of our results are essentially unaffected
by this choice.
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• O(k, µ): This function encodes the BAO signal and can be written as

O(k, µ) ≡ B(k)Olin(k
′(k, µ)) +A(k) , (6.7)

where Olin(k
′) ≡ Pw

lin(k
′)/P nw

lin (k′) is the normalized wiggle spectrum evaluated at the rescaled
wavenumbers [303]

k′ = k
√

(1− µ2)/q2⊥ + µ2/q2‖ , with q⊥ ≡ DA(z)

Dfid
A (z)

, q‖ ≡
H fid(z)

H(z)
. (6.8)

This rescaling reflects the fact that the wavenumbers k cannot be measured directly, but
instead have to be derived from the measured angles and redshifts using the angular diameter
distance Dfid

A (z) and Hubble rate H fid(z) of a fiducial cosmology. This is often referred to as
anisotropic geometric effects. In the limit of spherically-averaged clustering measurements,
these become isotropic and k′ = k/q, where q = q

2/3
⊥ q

1/3
‖ = DV (z)/D

fid
V (z), with the radial

BAO dilation given by DV ∝ (D2
A/H)1/3.

To model uncertainties in the BAO extraction, we have introduced two free functions B(k)

and A(k) in (6.7), which we take to be smooth polynomials in k (see below). Ultimately, we
will marginalize over these polynomials to remove any information that is not robust to the
BAO signal itself.

• b(z): The bias of the target galaxies (e.g. luminous red galaxies, emission line galaxies or
quasars) sets the overall amplitude of the signal in each redshift bin. We will make the
common assumption that b(z) ∝ 1/D1(z), where D1(z) is the linear growth function. This
means that the bias is larger at high redshifts, which implies that the galaxy power spectrum
may get significant corrections from non-linear biasing even at high redshifts.

• F (k, µ): This function characterises the effect of redshift space distortions. Following [304],
we write

F (k, µ) =
1(

q2⊥q‖
)1/2 [1 + βµ′(k, µ)2R(k)

]
, (6.9)

where β ≡ f/b, with the linear growth rate f ≡ dlnD1/dln a. The factors of qi account for
differences in the cosmic volume in different cosmologies. Projection effects on the angle to
the line-of-sight are included as [303]

µ′(k, µ) = µ/
√
µ2 + (1− µ2)Q2 , (6.10)

where Q ≡ q‖/q⊥, which becomes unity in the isotropic case. BAO reconstruction removes
redshift space distortions on large scales, which we have modelled by adding the factor
R(k) = 1 − exp[−(kΣs)

2/2] in (6.9), where the value of Σs depends on the experimental
specifications, in particular the noise levels. In our baseline forecasts, we take Σs → ∞,
i.e. R ≡ 1, but we comment on finite values of Σs in §6.2.2.
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• D(k, µ): This function models the non-linear damping of the BAO signal [63, 114]

D(k, µ) ≡ exp
[
−1

2

(
k2µ2Σ2

‖ + k2(1− µ2)Σ2
⊥

)]
, (6.11)

where the damping scales perpendicular and parallel to the line-of-sight are given by

Σ⊥(z) = 9.4 (σ8(z)/0.9) h−1 Mpc , (6.12)

Σ‖(z) = (1 + f(z))Σ⊥(z) , (6.13)

with σ8 being the amplitude of (linear) matter fluctuations at a scale of 8 h−1 Mpc. We
account for BAO reconstruction by decreasing these damping scales by an appropriate factor,
e.g. 0.5 for 50 % reconstruction. Following [249, 305], we include the degradation in the
reconstruction due to shot noise using a reconstruction multiplier r(x), i.e. Σi → r(x)Σi.
We obtain r(x) by interpolating over the table

r = (1.0, 0.9, 0.8, 0.7, 0.6, 0.55, 0.52, 0.5) ,

x = (0.2, 0.3, 0.5, 1.0, 2.0, 3.0, 6.0, 10.0) ,
(6.14)

with r(x < 0.2) = 1.0 and r(x > 10.0) = 0.5, which depends on the number density n̄g via
x ≡ n̄gPg(k0, µ0)/0.1734 evaluated at k0 = 0.14 h Mpc−1 and µ0 = 0.6. This means that we
assume 50 % reconstruction at high number densities and no reconstruction for low densities.

• P nw(k, µ): The linear no-wiggle spectrum P nw
lin (k, µ) is determined from the linear power

spectrum using the method described in Appendix D. Non-linear corrections to this spectrum
can be parameterized as

P nw(k, µ) = B̃(k)P nw
lin (k′(k, µ)) + Ã(k) , (6.15)

where B̃(k) and Ã(k) are smooth functions (see below). For the purpose of our BAO-
forecasts, Ã(k) and B̃(k) are degenerate with A(k) and B(k) in (6.7) and it is therefore
consistent to use the linear spectrum.

• Z(k, µ): For photometric surveys, we take the uncertainty in the redshift determination of
the targets into account through the following function:

Z(k, µ) = exp
[
−k2µ2Σ2

z

]
, (6.16)

where Σz = c (1+z)σz0/H(z) is given in terms of the root-mean-square redshift error σz0 [306,
307]. The redshift error, which depends on the experimental specifications, reduces the
effective resolution for modes along the line-of-sight. We neglect this effect for spectroscopic
surveys.

When evaluating the derivatives in the Fisher matrix (6.4), the parameters b(z), β, R(k), D(k, µ)
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and Z(k, µ) are always computed using the fiducial cosmology. We are assuming that, after
accounting for modelling uncertainties, no relevant cosmological information can be recovered
from these functions.

Accounting for broadband effects

Non-linear evolution and biasing can change the shape of the power spectrum at high wavenumbers
in a way that cannot be modelled from first principles. We account for this uncertainty by
marginalizing over polynomials in k in both the P (k)- and BAO-forecasts. In particular, the
functions introduced in (6.15) are defined as

Ã(k, zi) =

Na∑
n=0

ãn,i k
n , B̃(k, zi) =

Nb∑
m=0

b̃m,i k
2m . (6.17)

As indicated, we allow independent polynomials in each redshift bin centred around zi. The
coefficients ãn,i and b̃m,i are included in the list of parameters θi. Derivatives with respect to these
parameters are determined analytically, using the fiducial values b̃0,i = 1 and ãn,i = b̃m 6=0,i = 0.
A more careful treatment would replace this polynomial model with a perturbative model for
the dark matter and biasing, and would marginalize over the bias parameters. In practice, this
has been shown to give qualitatively similar forecasts [308]. Our marginalization procedure is
therefore sufficient to illustrate the sensitivity of our forecasts to broadband information.

Our BAO-forecasts will marginalize over the ‘broadband corrections’ in (6.7), with A(k)

and B(k) defined as in (6.17).2 At the level of the Fisher matrix, marginalizing over a polynomial
and an exponential are equivalent. As a result, the function B(k) captures the uncertainty in the
damping scales Σ‖ and Σ⊥ in (6.11). This implies that our marginalization procedure will eliminate
any cosmological information associated with the non-linear damping of the power spectrum,
leaving the distinct information contained in the oscillating part of the spectrum Olin(k

′(k, µ)).
This type of procedure is used in the analysis of BAO data to correct for errors made in the
modelling of P nw(k), see e.g. [110].

We will choose various levels of marginalization in our forecasts. This will help to distinguish
the information encoded in the smooth shape of the spectrum, P nw(k), from that contained in
the frequency and phase of the BAO spectrum, Pw(k). In addition, these marginalizations also
give a sense for the level of robustness of each type of information when accounting for the various
uncertainties in modelling the data of a realistic galaxy survey.

Extracting the BAO signal

In describing the power spectrum, we introduced the idea of marginalizing over polynomials
to remove the information in Pg(k) that is thought to be degenerate with non-linear evolution

2To avoid a proliferation of parameters, we will use an and bn for the parameters in both (6.7) and (6.15), i.e.
we will drop the tildes from now on. Which parameter set is meant will be clear from the context.
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6 Searching for Light Relics with LSS

and galaxy biasing. The BAO spectrum is known to be robust to these effects and should
therefore survive any such treatment. In principle, the BAO signal could be isolated with sufficient
marginalization. However, in practice, it is more useful to extract the information associated
with the BAO signal before any marginalization. The robustness of the BAO spectrum to non-
linearities means we can be more aggressive with our choice of kmax and less cautious with our
marginalization. Consequently, it is convenient to treat the BAO signal and the broadband
information independently.

The observed BAO spectrum is defined by

Og(k, µ) ≡
Pw
g (k, µ)

P nw
g (k, µ)

= D(k, µ)O(k, µ) , (6.18)

where D(k, µ) and O(k, µ) were introduced in (6.6). To derive the new Fisher matrix for the BAO
spectrum directly, we first write the derivatives of Pg(k, µ) as

∂ lnPg(k, µ)
∂θi

=
1

P nw
g + Pw

g

(
∂P nw

g

∂θi
+
∂Pw

g

∂θi

)
. (6.19)

We then drop the term proportional to ∂θiP nw
g since it is degenerate with the marginalization

over the broadband corrections. For the same reason, we write ∂θiPw
g ≈ b2F 2P nwD∂θiO, i.e. we

do not act with the derivatives on the functions D(k, µ) and bF (k, µ). The derivative in (6.19)
therefore becomes

∂ lnPg(k, µ)
∂θi

≈ D(k, µ)

1 +D(k, µ)O(k, µ)

∂O(k, µ)

∂θi
. (6.20)

While the derivatives that we have dropped are non-zero, the marginalization procedure described
above is designed to remove them and the forecasts for cosmic parameters should consequently be
the same. Removing this information by hand (and marginalizing) ensures that our BAO-forecasts
do not include these broadband effects, as we will show in Fig. 6.3. The resulting Fisher matrix is
then given by

Fij =

∫ 1

−1

dµ
2

∫ kmax

kmin

dk k2

(2π)2
D(k, µ)2

(1 +D(k, µ)O(k, µ))2
∂O(k, µ)

∂θi

∂O(k, µ)

∂θj
Veff(k, µ) . (6.21)

We note that this Fisher matrix depends on P nw
g (k, µ) only through Veff(k, µ), which determines

the signal-to-noise. For photometric surveys, we replace Veff(k, µ) → Z(k, µ)2 Veff(k, µ) to account
for the redshift error and the associated reduction of power along the line-of-sight. In principle,
we should model P nw

g (k, µ) using the non-linear (galaxy) power spectrum, given that we will
work close to the non-linear regime. However, non-linear evolution also correlates the modes and
produces a non-Gaussian covariance matrix. Since most of the surveys under consideration in
this chapter are limited by shot noise, using the non-linear power spectrum without taking into
account the associated mode coupling in the covariance would artificially increase the number of
signal-dominated modes. To be consistent with the use of a Gaussian covariance, our forecasts
will therefore use the linear broadband spectrum.
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6.2.2 Constraints from Planned Surveys

We are now ready to forecast the constraints of current and future CMB and LSS observations
on the effective number of relativistic species Neff. Unless stated otherwise, our baseline analysis
assumes a ΛCDM+Neff cosmology in which the primordial helium fraction Yp is fixed by consistency
with BBN. At the end of the section, we will also present results with Yp as a free parameter. We
will further dissect the information content of the BAO spectrum in Section 6.3.

In Appendix C, we present detailed forecasts for current and future CMB experiments. The
expected 1σ constraints for representative versions of the Planck satellite, a near-term CMB-S3
experiment and a future CMB-S4 mission are σ(Neff) = 0.18, 0.054, 0.030, respectively.3 We also
show how these constraints depend on variations of the experimental configurations in the same
appendix.

We would like to know how much these CMB constraints would improve with the addition of
LSS data. A number of galaxy surveys are expected to take place over the next decade. The power
of these surveys to constrain Neff is most sensitive to the survey volume, the number densities of
galaxies and the redshift errors (spectroscopic versus photometric). The precise specifications of
the surveys used in our analysis are given in Appendix C, where we also present more detailed
forecasts for the full set of parameters.

We will give the results of two types of forecasts based on P (k) and Pw(k). Our P (k)-forecasts
apply the Fisher matrix (6.4) with kmax = 0.2 h Mpc−1 and marginalize over bm≤1. To be
conservative about non-linear biasing, we do not increase kmax at large redshifts, despite the
(near-)linearity of the matter power spectrum. Our BAO-forecasts use the Fisher matrix (6.21)
with kmax = 0.5 h Mpc−1 and marginalize over an≤4, bm≤3. We will also show how these forecasts
depend on the choice of kmax and the level of marginalization.

Baseline results In Table 6.1, we present the 1σ constraints on Neff for various combinations
of current and future CMB and LSS experiments using the full P (k)-forecast. In Table 6.2,
we compare these results to the same experiments using our BAO-forecasts. At BOSS levels

spectroscopic photometric

CMB BOSS eBOSS DESI Euclid DES LSST

Planck 0.18 0.14 0.13 0.087 0.079 0.17 0.14
CMB-S3 0.054 0.052 0.051 0.045 0.043 0.054 0.052
CMB-S4 0.030 0.030 0.030 0.028 0.027 0.030 0.030

Table 6.1: Forecasted 1σ constraints on Neff for various combinations of current and future CMB
and LSS experiments using P (k)-forecasts with kmax = 0.2 h Mpc−1.

3This precise CMB-S4 value of σ(Neff) differs from that in Chapter 5 because we employ slightly different
experimental specifications based on [25].

117



6 Searching for Light Relics with LSS

spectroscopic photometric

CMB BOSS eBOSS DESI Euclid DES LSST

Planck 0.18 0.15 0.15 0.14 0.14 0.16 0.15
CMB-S3 0.054 0.052 0.052 0.050 0.050 0.054 0.052
CMB-S4 0.030 0.030 0.030 0.029 0.029 0.030 0.030

Table 6.2: Forecasted 1σ constraints on Neff for various combinations of current and future CMB
and LSS experiments using BAO-forecasts with kmax = 0.5 h Mpc−1.

of sensitivity and number densities, the BAO feature makes the most significant impact on
constraints, particularly when combined with a CMB experiment like Planck. In contrast, with
the larger volume and redshift range of DESI, the broadband shape carries most of the information
and can lead to a significant improvement in the constraint on Neff both for Planck and a typical
CMB-S3 experiment. Finally, photometric redshift surveys like DES and LSST generally perform
worse than spectroscopic surveys because they are effectively two-dimensional for the scales of
interest. However, the employed redshift error is conservative and we do not take the full potential
of these surveys into account as we are only considering observations of galaxy clustering and have
not included weak gravitational lensing measurements, for instance. We expect the constraints to
improve with these additional LSS observables, but quantifying this is beyond the scope of this
work.

Sensitivity to kmax The broadband signal is sensitive to non-linear effects and we should
therefore understand how sensitive these results are to the choice of kmax. In particular, we have
chosen kmax = 0.2 h Mpc−1 in Table 6.1, but the usable range of scales is uncertain. Figure 6.2
shows how the constraints vary as a function of the maximal wavenumbers included in the
analysis, kmax, for both the P (k)- and BAO-forecasts. For the BAO-forecasts, we see a clear
plateau for kmax > 0.2 h Mpc−1. This behaviour is due to the damping of the oscillations at
higher k relative to the smooth power spectrum. Cosmic variance is ultimately determined by
the amplitude of the smooth power spectrum and one cannot recover the high-k oscillations
even by lowering the shot noise. In contrast, the P (k)-forecasts show improvements out to
kmax > 0.3 h Mpc−1.

Given that the BAO spectrum is robust to non-linear evolution, it is natural to consider an
optimal combination of the P (k) and BAO spectra that uses all the available information. This
means using P (k) up to a certain kmax and adding BAO-only information for larger k. The kmax

of the P (k) analysis then becomes the kmin of the BAO analysis to avoid double counting the
information. Results for this optimal combination are shown as the dotted line in Fig. 6.2.

Sensitivity to marginalization High-redshift galaxy surveys benefit significantly from meas-
uring highly biased objects. These large biases can offset the growth function, b(z)D1(z) = const,
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Figure 6.2: Forecasts for BOSS and DESI combined with Planck as a function of the smallest (left)
and largest (right) Fourier modes used in the forecast, kmin and kmax, with kmax = 0.5 h Mpc−1

in the left panel. The solid and dashed lines indicate the constraints from the P (k)- and BAO-
forecasts, respectively. Shown as the dotted lines are the “optimal constraints” as described in the
main text. The lower panel displays the linear BAO spectrum and an estimate of the noise levels.

and keep the amplitude of the galaxy power spectrum effectively fixed at high redshift. This
boost is important for maintaining a signal above the shot noise, which we have assumed is
redshift-independent. As a consequence, high-redshift and low-redshift galaxy power spectra are
equally sensitive to uncertainties in the biasing coefficients. This is particularly significant when
determining the largest wavenumbers that carry useful cosmological information. While taking
kmax > 0.2 h Mpc−1 is appealing to maximize the constraints on Neff, we must also marginalize
over successively more bias parameters. Figure 6.3 shows how the results depend on the margin-
alization scheme. While both the P (k)- and BAO-constraints degrade significantly when going
from no marginalization to a few bias parameters, the BAO-forecasts quickly become robust to
the marginalization. In contrast, the P (k)-forecasts weaken notably with additional biasing, but
always lie below the BAO-only results, as one would expect. This confirms the intuition that the
information that is primarily driving the constraints derived from P (k) is present in the no-wiggle
power spectrum, P nw(k), instead of the BAO spectrum.

It is instructive to compare the results of our BAO-forecasts with those of a standard BAO ana-
lysis. Specifically, it is conventional to use the BAO signal to constrain only qi, i =⊥, ‖, defined
in (6.8) and derive parameter constraints from them.4 These derived limits on Neff are shown

4We also compared the constraints coming from the full anisotropic treatment (cf. §6.2.1) with the isotropic
approximation. The BAO-forecasts only weaken at small wavenumbers depending on the marginalization procedure,
but reach the same plateau values at large wavenumbers as our baseline analysis. In contrast, the constraints
on Neff are systematically weaker in the isotropic P (k)-forecasts at the level of 15 % for kmax = 0.2 h Mpc−1.
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Figure 6.3: Forecasts for BOSS and DESI combined with Planck as a function of the largest
Fourier modes used in the forecast, kmax, using various levels of both additive and multiplicative
marginalization, cf. the ai and bi-terms in (6.17). We have varied the number of parameters in
the marginalization from none (/a) to five (an≤4) and none (/b) to six (bm≤5), respectively. The
dashed line shows the constraints from a standard isotropic BAO analysis for comparison.

as the dashed lines in Fig. 6.3. The fact that the standard BAO constraints are slightly weaker
than those of our full BAO-forecasts, even after marginalization, suggests there is information in
the BAO spectrum beyond the BAO scale. Combined with our marginalization procedure, the
analytic insights of Chapter 5 suggest that the improvement from the grey dashed line to the green
line in the top row of Fig. 6.3 is carried by the phase shift. The more prominent enhancement in
sensitivity indicated by the blue lines should then be related to the amplitude shift induced by
free-streaming particles. We will explore this further in Section 6.3.

Degeneracy with Yp To explore possible degeneracies between the effective number of re-
lativistic species Neff and the primordial helium fraction Yp, we now consider a ΛCDM+Neff+Yp
cosmology. In Tables 6.3 and 6.4, we present the 1σ constraints on Neff and Yp for various combin-
ations of current and future CMB and LSS experiments using P (k)-forecasts and BAO-forecasts,
respectively. As expected, the CMB-only constraint on Neff become worse due to the well-known
degeneracy between Neff and Yp in the CMB damping tail. When broadband information is
included, we find significant improvements in the constraints on both Neff and Yp. However, this
improvement cannot be attributed to the phase shift as we see only modest improvements in our
BAO-forecasts. The broadband shape of the matter distribution is sensitive to the expansion
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spectroscopic photometric

Parameter CMB BOSS eBOSS DESI Euclid DES LSST

Planck
Neff 0.32 0.25 0.22 0.14 0.13 0.29 0.23
Yp 0.018 0.016 0.016 0.013 0.012 0.017 0.015

CMB-S3
Neff 0.12 0.12 0.11 0.094 0.088 0.12 0.11
Yp 0.0069 0.0068 0.0067 0.0060 0.0058 0.0069 0.0066

CMB-S4
Neff 0.081 0.079 0.078 0.070 0.067 0.081 0.078
Yp 0.0047 0.0046 0.0046 0.0043 0.0042 0.0047 0.0046

Table 6.3: Forecasted 1σ constraints on Neff and Yp for various combinations of current and
future CMB and LSS experiments using P (k)-forecasts with kmax = 0.2 h Mpc−1.

spectroscopic photometric

Parameter CMB BOSS eBOSS DESI Euclid DES LSST

Planck
Neff 0.32 0.29 0.29 0.28 0.28 0.30 0.29
Yp 0.018 0.018 0.018 0.018 0.018 0.018 0.018

CMB-S3
Neff 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Yp 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069

CMB-S4
Neff 0.081 0.080 0.080 0.079 0.079 0.081 0.080
Yp 0.0047 0.0047 0.0047 0.0046 0.0046 0.0047 0.0047

Table 6.4: Forecasted 1σ constraints on Neff and Yp for various combinations of current and
future CMB and LSS experiments using BAO-forecasts with kmax = 0.5 h Mpc−1.

history and to free-streaming neutrinos, but is not significantly affected by Yp. As a result,
the broadband information in P (k) can break CMB degeneracies even without the phase shift
information.

Comments on reconstruction In our baseline forecasts, we took R ≡ 1 in (6.9), which is
equivalent to taking Σs → ∞. A few comments are in order regarding the effect of a finite Σs.
As discussed in [121], the optimal smoothing scale Σs used in the BAO reconstruction depends
on the noise levels of the experiment. Having said that, we have found only small changes in
our results when going from Σs = ∞ to finite Σs. The constraints quoted in Tables 6.1 to 6.4
are basically unaffected, except for DESI and Euclid in the P (k)-forecasts, where the impact is
also mild. Changing Σs from 30 h−1 Mpc to 15 h−1 Mpc and 10 h−1 Mpc, the constraint on Neff

slightly weakens from 0.090 to 0.093 and 0.096 for Planck+DESI (0.082, 0.086 and 0.090 for
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6 Searching for Light Relics with LSS

Planck+Euclid) in ΛCDM+Neff compared to the quoted 0.087 (0.079) in Table 6.1. In practice,
this roughly 10 % effect has to be compared to the impact on the reconstruction efficiency.

6.2.3 Designer’s Guide for Future Surveys

One of the main benefits of a Fisher forecast is that it can inform the design of future experiments.
For spectroscopic surveys, the basic parameters are the total number of objects, Ng, the maximal
redshift, zmax, and the sky area in square degrees, Ω. From these, we derive the survey volume, V ,
and the comoving number density, n̄g.5 In this section, we will explore how the constraints on Neff

depend on these parameters.

Most of the survey characteristics are encoded in the effective survey volume,6 Veff, cf. (6.5)
and (6.21). The dependence of Veff on the survey parameters is somewhat non-trivial. Increasing V
(by increasing zmax and/or Ω), at fixed Ng, will also reduce n̄g. For signal-dominated modes,
n̄gPg � 1, this effect is not important and the effective volume scales approximately as Veff ∝ V .
However, for n̄gPg � 1, the shot noise is important and the reduction in the comoving density is
more important than the increase in the volume, so that the effective volume scales as Veff ∝ V −1.
This means that we will only benefit from an increase in the volume as long as the modes of
interest, k ∈ [0.1, 0.3] h Mpc−1, are signal dominated.

As mentioned before, the increased linearity of the matter distribution at high redshifts is
undermined by the larger biasing. As a result, the main benefit of large zmax is the increased
survey volume and hence the total number of modes. Unfortunately, the survey volume only
grows slowly with redshift for z > 2 and the resulting improvements in parameters is relatively
modest for large increases in zmax. The situation is slightly different for the BAO spectrum as
the non-linear damping factor D(k, µ) depends on the clustering of the matter directly and is
therefore less important at high redshifts. However, the BAO signal alone has a relatively modest
effect on Neff -forecasts in general and the change to the damping factor consequently does not
make a visible difference in our forecasts.

In the top panel of Fig. 6.4, we present P (k)-forecasts for Neff for a variety of survey configura-
tions, assuming Yp is fixed by BBN consistency. We see that the largest improvement comes from
increasing Ng from 107 to 108. As we increase the number of objects further, we reach the cosmic
variance limit for all modes of interest. We see that an optimistic future survey combined with a
near-term CMB experiment can provide constraints that are comparable to (or slightly stronger
than) those projected for CMB-S4 alone. Having said that, it does not appear that one can push
the measurement of Neff well beyond the CMB-S4 target. Moreover, as in the case of the planned
experiments, the improvements from the BAO signal alone are rather small.

5For simplicity, we will assume that the comoving number density can be approximated by a constant over the
complete survey volume. However, very similar results are obtained for BOSS and DESI when using the specific
redshift-dependent number densities.

6The effective survey volume also depends on the linear bias parameter b through n̄gPg ∝ n̄gb
2. This dependence

is degenerate with a rescaling of n̄g, so we will take b(z = 0) ≡ 1 and vary n̄g. This ignores the impact that changes
in b may have on redshift space distortions.
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Figure 6.4: Future constraints for ΛCDM+Neff (top) and ΛCDM+Neff+Yp (bottom) from the
full galaxy power spectrum, Pg(k), up to kmax = 0.2 h Mpc−1 as a function of the total number of
objects, Ng, at fixed survey area Ω = 20 000 deg2 (left) and as a function of the survey area Ω

(or sky fraction fsky) for fixed zmax = 2 (right). The comoving number density is assumed to
be constant and given by the total volume of the survey. For “CVL” (red), all modes in the
survey are assumed to be measured up to the limit set by cosmic variance. Solid and dashed lines
correspond to combining the LSS data with CMB-S3 and CMB-S4 data, respectively. The gray
lines indicate the level of sensitivity of the respective CMB experiments alone.

The value of LSS becomes more significant as we expand the space of parameters. The bottom
panel of Fig. 6.4 shows P (k)-forecasts for ΛCDM+Neff+Yp. We again see that the most significant
jump in sensitivity arises when Ng increases from 107 to 108. We note that a factor of two
improvement in σ(Neff) over CMB-S4 seems possible. We also see that the P (k)-forecasts for Neff
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Figure 6.5: Forecasts for two future surveys combined with CMB-S4 as a function of the largest
Fourier modes used in the forecast, kmax, using various levels of both additive and multiplicative
marginalization. We have varied the number of parameters in the marginalization from none (/a)
to five (an≤4) and none (/b) to six (bn≤5), respectively. The employed experimental specifications
for the “Future’’-survey are Ng = 108, zmax = 3 and fsky = 0.5, whereas the “CVL’’-survey is
cosmic variance limited for all k up to kmax over fsky = 0.5 and zmax = 6.

marginalized over Yp are competitive with CMB-only forecasts with Yp held fixed. In this sense,
P (k) adds robustness to the measurement of Neff under broader extensions of ΛCDM. The
improvement in Yp is slightly weaker, but shows the same general trend.

The range of accessible modes in near-term galaxy surveys is limited by their reliance on highly
biased objects, but more futuristic surveys may not have the same limitations. Future surveys can
also have high signal-to-noise beyond k = 0.2 h Mpc−1, making it worth to consider the impact of
increasing kmax. In Figure 6.5, we show the potential reach of two representative surveys. The
first, denoted “Future”, is characterised by Ng = 108, fsky = 0.5 and zmax = 3, which is roughly
the same as a spectroscopic follow-up to LSST. The second, denoted “CVL”, is cosmic variance
limited for all k ≤ kmax over fsky = 0.5 and zmax = 6. In principle, a 21 cm intensity mapping
survey could achieve similar performance [297]. We see that σ(Neff) ∼ 0.015 is achievable through
the measurement of P (k) in either survey for kmax = 0.5 h Mpc−1, although the improvement
with CVL is more robust to marginalization.
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6.3 Measurements of the Phase Shift

In the previous section, we showed how much the combination of future CMB and LSS meas-
urements can improve the sensitivity to extra relativistic species. The dominant source of
improvement came from the broadband shape of the power spectra, P nw(k), rather than the
BAO spectrum, Pw(k). Nevertheless, the shift of the acoustic peaks is a particularly robust
signature of free-streaming, relativistic species [125] and is therefore an interesting observable in its
own right. In this section, we will isolate the signal coming from the phase shift and forecast our
ability to measure it in future surveys. Measuring the BAO phase shift provides an independent
test of pre-recombination physics in a low-redshift observable. This could be used to shed light on
possible discrepancies between low- and high-redshift measurements or as a discovery channel for
exotic new physics.

6.3.1 Isolating the Phase Shift

The BAO feature in Fourier space can be written as

Olin(k) = A(k) sin
[
α−1rsk + φ(k)

]
, (6.22)

where the parameter α represents changes in the BAO scale rs, and the amplitude modulation A(k)
and the phase shift φ(k) encode a number of physical effects that alter the time evolution of
the baryons. While α and A(k) are implicit functions of redshift, φ(k) is redshift independent.
Relativistic species are the unique source of a constant shift in the locations of the BAO peaks
in the limit of large wavenumbers, i.e. φ(k → ∞) = φ∞ (cf. §5.2.3). In practice, however, the
measurement of the BAO spectrum occurs over a relatively small range of scales with a small
number of (damped) acoustic oscillations. On these scales, the k-dependence of the shift can be
relevant. Furthermore, additional k-dependent shifts from other cosmological parameters may
also have to be taken into account [274].

To measure the phase shift φ(k), we will construct a template for the k-dependence as a
function of the relevant parameters. For small variations around their fiducial values, it is a good
approximation to treat the shifts arising from each cosmological parameter independently. By
varying one parameter at a time and measuring the change in the peak locations, we can construct
a template φ(k) =

∑
i βi(

~θ )fi(k). For ΛCDM+Neff, the parameters As, ns, and τ do not affect
the evolution of the baryons prior to recombination and, therefore, do not change the phase of the
oscillations. The parameters ωb and θs do alter the BAO spectrum, but are effectively negligible
for any realistic parameter range. The shifts induced by ωc and Neff, on the other hand, can be
significant.

The parameter that is most independent of Neff is not the dark matter density ωc, but the
scale factor at the time of matter-radiation equality, aeq. Since CMB data essentially fixes aeq,
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Figure 6.6: Template of the phase shift f(k) as defined in (6.23). The numerical phase shifts (blue)
were obtained by sampling from 100 different cosmologies with varying Neff and rescaling by β(Neff)

as defined in (6.27). The bars indicate the standard deviation in these measurements at the
positions of the peaks (light blue) and zeros (dark blue) compared to the fiducial BAO spectrum.
The red line shows the fitting function defined in (6.24). The dashed gray line is the analytic
approximation (5.61) to the constant phase shift.

our template model can be reduced to

φ(k) = β(Neff)f(k) , (6.23)

namely the shift induced by changing Neff at fixed aeq. This is the same choice made by Follin
et al. [28] in their CMB measurement of the phase shift. Fixing aeq also reproduces the expected
constant phase shift at large wavenumbers. The template for the phase shift at fixed ωc, in
contrast, does not approach a constant at large wavenumbers, which implies that the change
of aeq to maintain constant ωc is introducing a phase shift of comparable size to the constant shift
induced by varying Neff. For our applications, this additional shift plays no role, but it could be
useful in future investigations.

We describe the measurement of the phase shift and the construction of the template in
Appendix D. In short, we determine the shift in the locations of the peaks/troughs and zeros of
the BAO spectrum compared to the fiducial cosmology with Neff = 3.046 and sample 100 different
cosmologies with varying Neff at fixed aeq. It is convenient to normalize the template f(k) such
that β = 0 and 1 for Neff = 0 and 3.046, respectively. In Figure 6.6, we illustrate how the
peaks/troughs and zeros of the BAO spectrum change in response to this variation in Neff. We
see that the phase shift created by Neff approaches a constant at large wavenumbers in line with
physical expectations.

The measurement of the phase shift is challenging because it requires a very accurate model of
the no-wiggle spectrum P nw(k) across a wide range of cosmological parameters. Errors in P nw(k)
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effectively change the functions A(k) and B(k) in (6.7) and lead to errors in the measurement
of the BAO peaks and zeros, respectively. The small size of the phase shift in Fig. 6.6 only
exacerbates this problem. Fortunately, while the template is difficult to generate, our forecasts
using the template are very stable. Furthermore, the template is well approximated by a simple
fitting function,

f(k) =
φ∞

1 + (k?/k)ξ
, (6.24)

where φ∞ = 0.227, k? = 0.0324 h Mpc−1 and ξ = 0.872 were obtained by a weighted fitting
procedure. From the analytic treatment in §5.2.3, we expect φ∞ = 0.191π εfid +O(ε2fid) ≈ 0.245

to linear order, where ε(Neff) = Neff/(aν + Neff) is a measure of the excess radiation density,
(ρr − ργ)/ρr, with aν ≈ 4.40 as introduced in (3.16). This approximation overestimates the value
obtained using the fitting formula by about 8 %, which is consistent with the expected corrections
from higher orders in εfid = εν ≈ 0.41. Around k ∼ 0.1 h Mpc−1, where BOSS and DESI have the
largest signal-to-noise ratio, the relative difference is almost 50 %, which makes it evident that the
offset from the analytic approximation has to be taken into account in an analysis such as the one
proposed below, whereas the precise shape of the template plays a sub-dominant role. We also
note that this template is basically independent of changes to the BAO scale rs, for example due
to changes in the dark matter density.

We use the measured phase template to write the BAO spectrum in terms of the spectrum in
the fiducial cosmology:

O(k) = Ofid
(
α−1k + (β − 1) f(k)/rfid

s

)
, (6.25)

where α ≡ α(zi) takes an independent value in each redshift bin centred around zi and β is a
single parameter for the entire survey. A measurement of α(zi) and β can then be translated into
constraints on cosmological parameters using

α(~θ; z) ≡ q rfid
s /rs = [DV (z)/rs] / [DV (z)/rs]fid , (6.26)

β(Neff) ≡ ε/εfid , (6.27)

where the parameters q and DV were introduced in §6.2.1. With this normalization, the largest
possible phase shift due to Neff is given by β(Neff → ∞) = 2.45.

In §7.2.1, we will show that the forecasts produced using only these templates are in agreement
with the forecasts using the full BAO spectrum. From a measurement of β > 0, one gets a
constraint on Neff that is only associated to the size of the phase shift. This approach is analogous
to the template-based measurement of the phase shift in the CMB by Follin et al. [28]. The
measurement of Neff from the phase alone ignores the effects of Neff on α, but has the advantage
that any detection is unambiguously7 a measurement of free-streaming relativistic particles.

We will also be interested in the measurement of β when a prior on α is included, e.g. from

7We have explicitly checked that our template gives an unbiased measurement of β, cf. §7.2.2. In particular, we
have verified that we reproduce β ≈ 0 for a cosmology with Neff = 0.
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6 Searching for Light Relics with LSS

the CMB.8 In a given cosmological model, the parameter α is fully determined by the set of
cosmological parameters, α = α(~θ ). As the α(zi) inferred from the CMB are correlated between
the n redshift bins of a galaxy survey and n is in general larger than the number of cosmological
parameters, we compute the n-dimensional inverse covariance matrix according to C−1

α = ATFA,
where F is the Fisher matrix and A is the pseudo-inverse of ∇~θ ~α. We use the CMB Fisher matrices
for the ΛCDM+Neff cosmology as in Section 6.2. We can then impose the α(zi)-prior on the redshift-
binned likelihood function L(α, β; zi) according to L(β) ∝

∫ ∏
zi

dαi
∏
zi
L(αi, β; zi)π(α1, . . . , αn),

where αi ≡ α(zi) and π is the n-dimensional Gaussian prior with covariance matrix Cα. The
observed posterior distribution for α(zi) could also be constructed by evaluating α(zi) for each
point in a given CMB Markov chain.

6.3.2 Constraints from Planned Surveys

We will now show how well the phase shift can be measured in planned galaxy surveys. It
is useful to first understand the parameter space α-β without imposing a prior on α. Both
parameters affect the locations of the acoustic peaks and are therefore quite degenerate. We will
use likelihood-based forecasts to ensure accuracy. We will confirm that the posterior distributions9

of α and β are Gaussian, while the constraints on Neff derived from this parametrization are
significantly non-Gaussian. This suggests that a Fisher matrix forecast in terms of α and β would
be more reliable than one that starts directly from Neff.

We define the phase shift relative to the fiducial model with Neff = 3.046. The broadband
spectrum for the fiducial model can be isolated by using the method in Appendix D or through
the use of a fitting function along the lines of [110]. These methods generate the BAO spectrum
Ofid(k) and hence O(k) via (6.25). We compute the log-likelihood using the same noise and
modelling as in the Fisher matrix (6.21).

Forecasts for the one- and two-dimensional posteriors are shown in Fig. 6.7 for both BOSS and
DESI. We see that for both surveys the posterior distributions are Gaussian. The best-fit Gaussian
for BOSS and DESI has σ(β) = 1.3 and 0.47, respectively, which corresponds to a rejection of
β = 0 at 77 % and 98 % confidence. Clearly, BOSS cannot exclude β = 0 (and hence Neff = 0)
without any prior information from the CMB. Since the weakness of the constraint on β is driven
by the degeneracy with α (see the left panel in Fig. 6.7), we expect to get significant improvements
in the constraints on β after imposing a CMB prior on α. Inspection of the two-dimensional
contours already shows that we will sizeably limit the range of β. The posterior distribution
with the prior from Planck (CMB-S4) is shown in the right panel of Fig. 6.7. For BOSS, we find
σ(β) = 0.76 (0.50) which implies that β > 0 at 81 % (95 %) confidence. For DESI, we should find
strong evidence for a phase shift with σ(β) = 0.30 (0.22) which excludes β = 0 at 3.5σ (4.6σ).

To translate these results into constraints on Neff, we use the relationship between β and Neff

given in (6.27). This map is non-linear over the measured range of β and we therefore anticipate
8We also indirectly use the CMB data to constrain other cosmological parameters, in particular the scale factor

at matter-radiation equality aeq, so that we can ignore any additional phase shifts not associated with Neff.
9Since we assume flat priors for the parameters, we can identify the posteriors with the likelihoods.
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Figure 6.7: Left: Contours showing 1σ and 2σ exclusions in the α-β plane for BOSS and DESI.
For purpose of illustration, we have reduced these surveys to a single redshift bin (and therefore a
single α-parameter). The gray bands indicate Planck priors for α assuming the median redshift is
z = 0.4 and 1.0 for BOSS and DESI, respectively. Right: One-dimensional posterior distributions
of β for BOSS and DESI. The dashed and dotted lines indicate the use of a redshift-dependent
CMB prior on α from Planck and CMB-S4, respectively.

the posteriors to be non-Gaussian. The derived Neff -posteriors in Fig. 6.8 indeed show a highly
non-Gaussian distribution. As anticipated from the β-posterior for BOSS, the constraints on Neff

are relatively weak without imposing a Planck prior on α.
We also see that the constraining power is significantly weaker at bounding large values of Neff

than small ones. This asymmetry is simply a reflection of the fact that increasing Neff does
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Figure 6.8: Posterior distributions of Neff for BOSS (blue) and DESI (red) derived from the
phase shift in the BAO spectrum, i.e. via the measurement of β. The dashed and dotted lines
indicate that a redshift-dependent CMB prior on α has been imposed using Planck and CMB-S4,
respectively.
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spectroscopic photometric

BOSS eBOSS DESI Euclid DES LSST

BAO 1.3 1.0 0.47 0.40 2.6 1.0

+ Planck prior 0.76 0.70 0.30 0.26 1.1 0.50

+ CMB-S4 prior 0.50 0.48 0.22 0.19 1.0 0.42

Table 6.5: Forecasted 1σ constraints on the amplitude of the phase shift β for current and future
LSS experiments. We also show the constraints on β after imposing a redshift-dependent prior on
the BAO parameter α from Planck and CMB-S4.

not produce proportionally larger phases shifts. The same asymmetry was also seen in the
CMB constraints of Follin et al. [28], likely for the same reason. Recall that we have an upper
limit on the phase shift of β < 2.45, which is saturated for Neff → ∞. In practice, this means
that for Neff � aν ≈ 4.40, we will have an equal likelihood10 for every value of Neff because they
produce identical spectra. As a result, a flat prior on Neff (rather than β) will lead to ill-defined
results because the integral

∫∞dNeff L(Neff) will diverge. On the other hand, for highly-significant
detections of β > 0, a flat prior over any reasonable range of Neff will produce stable results. We
are not quite in this regime with BOSS, which is why we will only quote constraints on β.

Table 6.5 shows the projected constraints on β for a variety of planned surveys with and
without priors from the CMB. We see that roughly a factor of three improvement can be achieved
in spectroscopic surveys going from BOSS to Euclid. Both DESI and Euclid should have sufficient
sensitivity to reach a more than 5σ exclusion of β = 0 when imposing a Planck prior. As before,
galaxy clustering measurements in photometric surveys do not lead to competitive constraints as
they are effectively two-dimensional on the relevant scales.

6.3.3 Constraints from Future Surveys

Given the robustness of the phase shift as a probe of light relics, a high-significance detection
of the phase shift in LSS would be a valuable piece of cosmological information. We have seen
that current and planned surveys can detect the phase shift, but are not expected to produce
constraints on Neff that are competitive with those from the CMB. It is natural to ask if future
surveys can reach this level of sensitivity.

Like the measurement of the BAO scale, the measurement of the phase requires large signal-to-
noise for 0.1 h Mpc−1 . k . 0.3 h Mpc−1. As long as the number density is sufficiently large to
keep the shot noise below cosmic variance, we gain primarily by increasing zmax to achieve larger
survey volumes. At larger levels of the shot noise, we only measure a few peak locations well
which increases the degeneracy between α and β. Figure 6.9 shows results for a variety of possible

10Realistic values of Neff are not quite in the asymptotic regime, but still show the weakened distinguishing
power for larger Neff.
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Figure 6.9: Future constraints on the amplitude of the phase shift β as a function of zmax and Ng,
assuming fsky = 0.5. The dashed and dotted lines indicate that a CMB prior on α has been
imposed using Planck and CMB-S4, respectively. The corresponding 1σ lower limit on Neff, which
is Neff = 3.046− σ−(Neff), is computed by inverting (6.27) and indicated by the right axis.

survey configurations. As before, the constraints on β can be mapped into constraints on Neff

using (6.27). We see that with 108 objects and zmax > 3, we consistently obtain σ(Neff) < 0.5 (1.0)

with (without) a prior on α included.

To put these results into context, the measurement of Follin et al. [28] of Nφ
eff = 2.3+1.1

−0.4 from
the Planck TT spectrum is comparable to a survey with Ng = 109 objects out to redshift zmax = 3.
Follin et al. also forecasted σ(Nφ

eff) = 0.41 for Planck TT+TE+EE which is near the sensitivity
of future LSS surveys when increasing the redshift range to zmax = 6. Reaching this level of
sensitivity will be extremely challenging with an optical survey, but could potentially be achieved
with 21 cm intensity mapping [297].

6.4 Summary

Large-scale structure surveys are an untapped resource in the search for light relics of the hot big
bang. The growing statistical power of these surveys will make them competitive with the CMB in
terms of the constraints they will provide on a broad range of cosmological parameters. Moreover,
the combination of CMB and LSS observations will allow powerful and robust tests of the physical
laws that determined the structure and evolution of the early universe.

In this chapter, we have explored the potential impact of LSS surveys on measurements of
the parameter Neff. We have found that the dominant statistical impact of future surveys lies
in the shape of the galaxy power spectrum. The distribution of dark matter in the universe is
altered through the gravitational influence of the free-streaming radiation, leading to changes in
the shape of the power spectrum that can be detected at high significance. A summary of the
reach of selected planned and future surveys is given in Fig. 6.10. We see that BOSS and DESI
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Figure 6.10: Sensitivity of planned and future LSS surveys to Neff using the galaxy power
spectrum (solid) and the BAO spectrum (dashed) marginalized over two bias parameters, bm≤1.

can extend results significantly beyond the current CMB constraints. Futuristic surveys combined
with a future CMB-S4 mission could achieve σ(Neff) ∼ 0.015, which is close to reaching the target
of ∆Neff = 0.027 at a significance of 2σ.

Future LSS surveys will also be able to detect the coherent shift in the peak locations of the
BAO spectrum. This would be an intriguing measurement as this phase shift is a highly robust
and unambiguous probe of light relics and the cosmic neutrino background [125]. The fact that
the phase shift should agree between the CMB and BAO measurements is a highly non-trivial
consequence of physics both before and after recombination, and could be an interesting test of
exotic extensions of ΛCDM without requiring the CMB as an anchor. Being a new low-redshift
observable, improved measurements of the BAO phase shift may therefore play a useful role in
elucidating apparent low-z/high-z discrepancies in some cosmological data [309].

In the future, the combination of different cosmological observations might significantly advance
our insights into fundamental physics. In this chapter, we observed that CMB and LSS observations
can complement each other by providing tighter as well as more robust constraints on Neff. In
addition, we demonstrated that the BAO spectrum encodes cosmological information beyond
the acoustic scale which can be extracted reliably. A broader exploration will likely reveal more
targets that benefit from this complementarity.

132



7
Measurement of Neutrinos in the BAO Spectrum

The existence of the cosmic neutrino background is a remarkable prediction of the hot big bang
model. These neutrinos were a dominant component of the energy density in the early universe
and, therefore, played an important role in the evolution of cosmological perturbations. In
particular, fluctuations in the neutrino density produced a distinct shift in the temporal phase of
sound waves in the primordial plasma, which has recently been detected in the cosmic microwave
background [28]. In the previous chapter, we proposed a new analysis of the baryon acoustic
oscillation signal which extends the conventional BAO analysis presented in [39, 110] by including
the amplitude of the neutrino-induced phase shift as a free parameter in addition to the BAO scale.
In this chapter, we report on the first measurement of this neutrino-induced phase shift in the
spectrum of baryon acoustic oscillations of the BOSS DR12 data, based on this novel approach.
Constraining the acoustic scale using Planck data while marginalizing over the effects of neutrinos
in the CMB, we find evidence for a non-zero phase shift at greater than 95 % confidence. We
also demonstrate the robustness of this result in simulations and forecasts. Besides providing a
new measurement of the cosmic neutrino background, this work is the first application of the
BAO feature beyond its application as a standard ruler and to early universe physics.

The outline of this chapter is as follows. In Section 7.1, we briefly review the phase shift
induced by cosmic neutrinos and lay out the modified BAO analysis pipeline which employs the
proposed template-based approach. In Section 7.2, we check the new method in likelihood-based
forecasts and on mock catalogues. In Section 7.3, we measure the amplitude of the phase shift in
Fourier space and find statistically significant evidence for the presence of the phase shift in the
BOSS DR12 dataset, in line with expectations from the mocks and forecasts. In Section 7.4, we
describe and perform our alternative analysis in configuration space with results that are broadly
compatible with the main Fourier-space constraints. We conclude, in Section 7.5, with a brief
summary of our results and an outlook on future improvements of our measurement.
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7.1 Modified BAO Analysis

A variety of experiments have been proposed to observe the CνB directly [310–312]. However,
these experiments are very challenging because neutrino interactions at low energies are extremely
weak. Cosmological observations of the radiation density in the early universe, on the other
hand, are making an increasingly strong case that the CνB has already been detected indirectly
(cf. e.g. §3.3.1). As we showed in Chapters 5 and 6, the effect of neutrinos on the perturbations
in the primordial plasma, which have been detected in the CMB, is a particularly robust probe
of the CνB. An interesting feature of the phase shift in the BAO spectrum is the fact that it is
robust to the effects of non-linear gravitational evolution [125]. This provides the rare opportunity
of extracting a signature of primordial physics which is immune to many of the uncertainties that
inflict the modelling of non-linear effects in large-scale structure observables. The BAO phase
shift therefore presents a clean imprint of early universe physics and the CνB. In this chapter, we
will provide its first measurement.

The analysis of the (isotropic) BAO signal is usually reduced to the measurement of a single
parameter, the BAO scale. In this chapter, we consider the extension of the conventional
BAO analysis that we proposed in Chapter 6 and which takes the information contained in the
phase of the spectrum into account. Since we only observe a finite number of modes, some of
which evolved primarily during matter domination, we cannot simply search for a constant phase
shift in the data. This means that recovering all of the accessible information requires an accurate
momentum-dependent template for the phase shift that applies to the modes of interest.

The phase shift (relative to Neff = 0) can be written as φ(k) ≡ β(Neff)f(k), where β is the
amplitude of the phase shift and f(k) is a function that encodes its momentum dependence (see
Section 6.3 and Appendix D for further details). The amplitude is proportional to the fractional
neutrino density, εν(Neff) ≈ Neff/(4.4 + Neff), and we have chosen the normalization so that
β = 0 and 1 correspond to Neff = 0 and 3.046, respectively. We note that the parameter β is
a non-linear function of Neff that asymptotes to β → 2.45 for Neff → ∞ because adding more
neutrinos does not change the phase shift when neutrinos become the dominant source of energy
density in the universe. The template f(k) is shown in Fig. 7.1 and is well approximated by the
fitting function (6.24).

The observed BAO spectrum receives various non-linear corrections. We model these contribu-
tions as in the standard BAO analysis, e.g. [110], but now introduce the amplitude of the phase
shift β as an additional free parameter. Following equation (6.25), we write the non-linear BAO
spectrum as

Og(k) ≡ Ofid
lin
(
k/α+ (β − 1)f(k)/rfid

s

)
e−k2Σ2

nl/2 , (7.1)

where Ofid
lin(k) and rfid

s are the linear BAO spectrum and the BAO scale in the fiducial cosmology,
which is chosen to be the same as in [110].1 The exponential factor in (7.1) describes the non-linear
damping of the BAO signal after reconstruction [117, 118]. The parameter α captures the change

1The fiducial cosmology is described by the following parameters: Ωbh
2 = 0.022, Ωch

2 = 0.119, h = 0.676,
As = 2.18 × 10−9, ns = 0.96, τ = 0.08, Neff = 3.046 and

∑
mν = 0.06 eV.
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Figure 7.1: Template of the phase shift f(k) as defined in (6.23), with the fitting function (6.24)
shown as the red curve. The bottom panel displays the linear BAO spectrum O(k) as a function
of the amplitude of the phase shift β.

in the apparent location of the BAO peak due to changes in the acoustic scale and the angular
projection,

α(Neff) =
DV (z) r

fid
s

Dfid
V (z) rs

, with DV (z) =

[
(1 + z)2D2

A(z)
cz

H(z)

]1/3
. (7.2)

In Section 7.2, we will show that this model is effectively unbiased in the sense that we recover β ≈ 0

for a universe with Neff = 0 even when we assume a fiducial model with Neff = 3.046. Moreover,
given the template (6.24), the modelling is robust to the precise method for extracting Ofid

lin(k)

and we will therefore use the same method as [110].
We model the non-linear broadband spectrum in each redshift bin as

P nw(k) = B2P nw
lin (k)F (k,Σs) +A(k) . (7.3)

This includes two physical parameters: a linear bias parameter, B, and a velocity damping term
arising from the non-linear velocity field (“Fingers of God”),

F (k,Σs) =
1

(1 + k2Σ2
s/2)

2
. (7.4)

In addition, we have introduced the polynomial function

A(k) =
a1
k3

+
a2
k2

+
a3
k

+ a4 + a5k
2 , (7.5)

whose coefficients an will be marginalized over. This polynomial does not represent a physical
effect, but removes any residual information that is not encoded in the locations of the peaks
and zeros of the BAO spectrum. With such a marginalization over broadband effects, our
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α-β parametrization contains essentially all of the information of the ΛCDM+Neff cosmology
available in the BAO spectrum (cf. §7.2.1). The free parameters in this model will be fitted
independently in each redshift bin.

To summarize, the measured galaxy power spectrum is described by two cosmological para-
meters, α and β, and a number of nuisance parameters. Except for β, all parameters are
redshift dependent, and we will fit our model to the signal in two independent redshift bins,
(0.2 < z1 < 0.5) and (0.5 < z3 < 0.75).2 In total, our fit to the power spectrum in the range
0.01 h Mpc−1 < k < 0.3 h Mpc−1 therefore has 21 free parameters:

β, αz1 , αz3 ; {BNGC,z, BSGC,z, Σs,z, Σnl,z, an,z}z1,z3 , (7.6)

where we have allowed for independent bias parameters in the North Galactic Cap (NGC) and
the South Galactic Cap (SGC) as in [110]. We generally employ flat priors for all parameters, in
particular β.3 We require the αz parameters to be between 0.8 and 1.2, and the damping scales,
Σs,z and Σnl,z, to be between 0 and 20 h−1 Mpc, while no explicit priors are imposed on the bias
parameters Bi,z, the phase parameter β or the polynomial terms an,z. Our goal is to measure the
new parameter β, while marginalizing over all other parameters.

7.2 Validation of the Method

Before applying our analysis pipeline to the BOSS data, we perform several checks and show that
the new method provides reliable and consistent results. First, we explicitly demonstrate that
the advocated template-based approach captures most of the information on neutrinos in the
BAO spectrum (§7.2.1). Second, we establish in forecasts that the phase shift inferred in analyses
employing the BAO spectrum (7.1) does not depend on the employed BAO extraction and is
unbiased, in the sense that it correctly recovers the input value of the phase amplitude even if a
different fiducial cosmology is assumed (§7.2.2). Finally, we validate our modified BAO analysis
using mock catalogues created for the BOSS DR12 analysis (§7.2.3).

7.2.1 Comparison to Parameter-Based Approach

We have suggested the use of a phase template to characterise the effect of neutrinos. This is a
natural choice as the phase shift is the physical effect we wish to isolate. One might however worry
that the template (6.23) does not capture the entire relevant information in the BAO spectrum. For
this purpose, it is instructive to compare the results of our template-based forecasts of Section 6.3
to a more direct parameter-based approach to isolating the phase shift. In the parameter-based
approach, we define two new parameters θ̃s and Ñeff that play the role of θs and Neff in the
BAO signal, but are taken to be independent of the same parameters in the CMB. We will then fix

2The middle redshift bin (0.4 < z2 < 0.6), which was used in the BOSS DR12 analysis, carries little additional
information on the BAO signal since it overlaps with the other two bins.

3We note that the choice of a flat prior on β, rather than Neff, weakens the statistical significance of the β > 0
measurement compared to the analyses in the CMB, which use Neff. In other words, a flat prior on Neff would lead
to stronger constraints on the phase shift and, therefore, the CνB.
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all remaining cosmological parameters in the BAO spectrum using the CMB, except the physical
cold dark matter density ωc which we traded for the scale factor at matter-radiation equality aeq.
As with our template extraction, holding aeq fixed ensures that the phase shift approaches a
constant at large wavenumbers, whose value is determined by Ñeff. Beside measuring the phase of
the BAO signal, the parameter Ñeff also contributes to the scale parameter α and could therefore
be constrained by the standard BAO-scale measurement if all the other cosmological parameters
are fixed to their Planck best-fit values. Introducing the additional parameter θ̃s gives enough
freedom to remove this effect and any constraint on Ñeff must be coming from the phase shift
alone. This is analogous to isolating the phase shift in the CMB by marginalizing over Yp or any
other parameters that are degenerate with the Neff -induced change to the damping tail. We will
confirm this expectation in our forecasts.

Typically, the advantage of the parameter-based approach is that it is easy to implement.
However, in this case, we found it more difficult to set up reliably. The phase shift ultimately
controls the breaking of the degeneracy between θ̃s and Ñeff and, as we discussed in §6.3.1, P nw(k)

must therefore be determined sufficiently accurately to not produce errors in this shift. To compute
the likelihood directly, we must re-compute P nw(k) for every value of the cosmological parameters.
Producing stable results for the BAO spectrum across a wide range of parameters can be very
computationally expensive and technically challenging. Simpler and faster methods can work well
near the fiducial cosmology (such as the use of a fitting function), but often produce noisy results
as the parameters vary significantly and typically underestimate the likelihood as we depart from
the fiducial cosmology (and, hence, overestimate the constraining power).

Despite the challenge presented by a parameter-based approach, it has the advantage that
it should capture all of the cosmological information available. For this reason, it is useful to
compare the results of the parameter-based and template-based approaches to see if the template
is missing information. Fortunately, we will see that the posterior distributions for Ñeff and θ̃s

can be largely reproduced as a derived consequence of the template-based forecasts. From our
results of §6.3.2, we should anticipate that the posteriors for Ñeff and θ̃s will be non-Gaussian,
and will therefore require the calculation of the likelihood for Ñeff and θ̃s directly (and not only
the Fisher matrix). We will follow the same approach as described in §6.3.2. Computing the full
likelihood is quite involved, which is the reason why we will assume that the CMB data fixes the
other cosmological parameters to their fiducial values, except for Ñeff and θ̃s.

Results of the likelihood analysis in terms of these parameters for both BOSS and DESI are
shown in Fig. 7.2. We see that the results are similar, which establishes that our templates are
capturing most of the information available in the BAO spectrum, in particular for BOSS. This is
an important observation because it allows us to simplify the analysis to a two-parameter template
without much loss of information. In fact, the conclusion that these likelihoods are the same is not
easily reproduced with any method of BAO extraction, but requires the robustness and stability
of a method such as the one we use (see Appendix D). Given instead our phase shift template,
one can reliably compute Fisher matrices or likelihoods for α and β, and derive the implications
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Figure 7.2: BOSS (left) and DESI (right) two-dimensional 1σ and 2σ contours for Ñeff and θ̃s,
determined (‘directly’) from the likelihood for the BAO spectrum for each value of the parameters
and derived (‘from (α, β)’) from the redshift-binned likelihood for α and β. We find good agreement
between both methods, suggesting that the two-dimensional parametrization is capturing most of
the relevant information. The dashed lines indicate the fiducial values.

for cosmological parameters from them. Future surveys, such as DESI, show somewhat larger
differences between the two methods, which suggests that more information could potentially be
extracted by using additional and/or alternative templates.

The doubling of cosmological parameters to treat the CMB and LSS independently, like
in the case of Ñeff and θ̃s, has useful conceptual advantages even if we derive constraints on
these parameters from the posterior of α and β. Growing tensions between the CMB and
certain low-z measurements have garnered much attention, but lack a compelling explanation.
Measuring θ̃s and Ñeff in the BAO spectrum may provide a new perspective on this issue without
the need for a CMB anchor.

7.2.2 Validation of the Modified Analysis

We have seen in the left panel of Fig. 7.2 that our approach captures essentially all of the
information in the BAO spectrum at the sensitivity levels of the BOSS experiment. However, one
may still worry that the mapping

Olin(k) → Olin
fid
(
k/α+ (β − 1)f(k)/rfid

s

)
(7.7)

introduces additional unphysical changes to the BAO spectrum. Since we use Neff = 3.046,
corresponding to β = 1, as the fiducial model, a poor modelling for β 6= 1 could lead to artificially
strong evidence for a phase shift and could bias the measurement of β if Neff 6= 3.046.

Our interest lies mostly in the exclusion of β = 0. A straightforward check that our method is
reliable is to compute the posterior distribution for β in a cosmology with Neff = 0 to see that the
result is effectively unbiased. We use the same likelihood-based forecasts as in Section 6.3 and
the resulting posterior for β is shown in Fig. 7.3. The expected values for α and β are retrieved
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Figure 7.3: Posterior distributions for the BAO scale parameter α and the amplitude of the
phase shift β when the mock data for BOSS (top) and DESI (bottom) were generated using
N in

eff = 3.046 (blue) and 0 (red), corresponding to β = 1 and 0. In both cases, the model in (7.7)
used a fiducial cosmology with Neff = 3.046 and the posteriors for α are shown for one redshift
bin similar to z1. The dotted lines show the posterior distributions after imposing a prior from
a Planck-type CMB experiment. We see that the posteriors reproduce the expected behaviour,
which indicates that the estimation of αi and β is essentially unbiased.

reliably in both cases. We also find good agreement when imposing the CMB prior from Planck
with the respective input values of Neff. This test demonstrates that even though the fiducial
model with Neff = 3.046 is used for constructing the template, the model with Neff = 0 is correctly
recovered, especially for BOSS.4 At higher levels of sensitivity, e.g. for DESI, the expected values
for β are recovered even more accurately for both Neff = 0 and 3.046. However, due to the smaller
error bars and the slight difference between the parameter-based and template-based approaches
around Neff = 0 for DESI, the mean β̄ is found about 0.8σ(β) too high, whereas it is excellent for
the fiducial Neff = 3.046.

One may also be concerned that these results could depend sensitively on the method of
BAO extraction. Indeed, as we have discussed, the phase shift template f(k) is quite sensitive
to the BAO extraction and demands a method that is accurate across a wide range in Neff. In

4In detail, the solid red curve in Fig. 7.3 shows a mean of β̄ = 0.27 rather than zero for a Neff = 0 cosmology.
This level of bias is acceptably small given the much larger statistical error of σ(β) = 0.97. Of course, this bias
should be accounted for when determining the precise statistical significance of the exclusion of β = 0, but it does
not affect our main conclusion in this chapter that β > 0 at 95 % confidence in the BOSS DR12 dataset.
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Figure 7.4: Distribution of maximum-likelihood values in the α-β plane for the two BOSS redshift
bins z1 and z3 (left), and for β (right) in 999 MultiDark-Patchy mock catalogues [313], yielding
β = 1.0± 2.4.

contrast, the model in (7.7) only requires an accurate BAO extraction for the fiducial cosmology.
We have verified that the results in Fig. 7.3 do not depend on the BAO extraction method being
used.

7.2.3 Tests on Mock Catalogues

Finally, we test our entire analysis pipeline including the phase shift template using 999 MultiDark-
Patchy mock catalogues [313], which have been created for the BOSS DR12 analysis. The Patchy
mock catalogues have been calibrated to an N-body simulation-based reference sample using
analytical-statistical biasing models. The reference catalogue is extracted from one of the
BigMultiDark simulations [314]. The mock catalogues have a known issue with overdamping
of the BAO, making the signal for the traditional BAO approximately 30 % weaker [110]. We
therefore forecast the mocks and the real data separately, taking these differences into account.
For the mock forecasts, we use Σnl = 7 h−1 Mpc as the fiducial value of the non-linear damping
scale.

An appealing feature of using the mock catalogues is that we can check that the performance
expected from our forecasts is reproduced by the distribution of maximum-likelihood points
across the catalogue. Figure 7.4 confirms that the distributions for the parameters α and β are
indeed in good agreement with the fiducial value of β = 1. A Gaussian fit to the distribution of
maximum-likelihood values yields β = 1.0± 2.4 (αz1 = 1.000± 0.035, αz3 = 1.000± 0.035), which
is consistent with the value found from a likelihood-based forecast as in Section 6.3, σ(β) = 2.1.

As seen in the left panel of Fig. 7.4, there is a strong degeneracy between the effects of the
parameters α and β. The origin of this degeneracy is easy to understand. If the only well-
determined quantity in the data were the position of the first peak in the BAO spectrum, there
would be a perfect degeneracy between phase and frequency determination. In reality, several
peaks and troughs are present in the data which breaks the perfect degeneracy and allows the
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parameters α and β to be constrained independently. However, one still expects them to remain
significantly correlated, partly because the peaks are measured with decreasing accuracy due
to damping. Since this degeneracy is a limiting factor in the measurement of β, we anticipate
a significant improvement in the constraint on β when the degeneracy with α is broken with
additional data. Below we will see that this is indeed the case.

7.3 Analysis of BOSS Data

Having demonstrated that our new method passes all the reported checks, we can apply it to
the BAO signal of the final data release (DR12) of the Baryon Oscillation Spectroscopic Survey;
see [315]. As described in detail in [316], this dataset contains 1 198 006 galaxies with spectroscopic
redshifts in the range 0.2 < z < 0.75 and covers 10 252 deg2 of the sky.

7.3.1 BAO-only Analysis

First, we analyse the two BOSS redshift bins without any additional data or external prior.
To explore the BAO likelihood function, we use the Python-based, affine-invariant ensemble
sampler emcee [12] for Markov chain Monte Carlo. The convergence is determined with the
Gelman-Rubin criterion [281] by comparing eight separate chains and requiring all scale-reduction
parameters to be smaller than R − 1 = 0.01. Figure 7.5 shows the posterior distribution for
the parameters β and αz1 , αz3 . The measured α-values are in good agreement with those found
in [110], but the errors have increased due to the degeneracy with β. We find αz1 = 1.001± 0.025,
αz3 = 0.991± 0.022 and β = 1.2± 1.8. These results are in good agreement with likelihood-based
forecasts for the data,5 σ(αz1) = 0.021, σ(αz3) = 0.019 and σ(β) = 1.5. A similar level of
agreement between forecasts and actual performance was obtained for the measurement of α in
the conventional BAO analysis of BOSS DR12 [110].

7.3.2 Adding a CMB Prior

The BAO-only measurement of β is limited by the degeneracy with α(z). However, in a given
cosmology, the allowed range of α(z) has to be consistent with constraints on the cosmological
parameters. Our interest is to measure the neutrino-induced phase shift in the BAO signal
assuming a background cosmology that is consistent with the Planck CMB constraints. We
infer the prior on α(z) from the Planck 2015 temperature and polarization data6 [36], while
marginalizing over any additional cosmological information (including all effects of Neff). If
available, we directly employ the Markov chains supplied by the Planck collaboration, which
were computed using CAMB [5] and CosmoMC [7] with the publicly released priors and settings. In
particular for the ΛCDM+Neff+AL prior cosmology, we sample the data using the same codes and

5These forecasted values are slightly larger than those in §6.3.2 because we accounted for the roughly 30 %
smaller galaxy bias measured in [110].

6We use the low-` (2 ≤ ` ≤ 29) temperature and LFI polarization data, and the high-` (30 ≤ ` ≤ 2508)
plik cross half-mission temperature and polarization spectra. In “TT-only”, we omit the high-` polarization spectra.
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Figure 7.5: Left: Contours showing 1σ and 2σ exclusions in the α-β plane for the two redshift
bins z1 and z3, both from the BAO data alone and after imposing a CMB prior on α. Right: One-
dimensional posterior distributions of β without (blue) and with (red) the α-prior for the combined
redshift bins. The dashed line is the result after marginalizing over the lensing amplitude AL.

priors. At each point in the Monte Carlo Markov chains obtained from the Planck likelihood for a
certain background cosmology, we compute the values of αz1 and αz3 associated with the given
set of cosmological parameters. In this way, we obtain the two-dimensional (Gaussian) posterior
for αz1-αz3 . We confirmed on the mock catalogues that a Gaussian prior with the expected mean
values and the Planck ΛCDM+Neff covariance matrix results in an unbiased measurement of
β = 1.00± 0.85 (see also §7.2.2 for the equivalent forecasts with unbiased posterior distributions).
On the data, we impose the Planck posterior on α by importance-sampling our BAO-only Monte
Carlo Markov chains.

The right panel of Fig. 7.5 shows the marginalized posterior distributions for the parameter β.
We see that including the α-posterior from the Planck ΛCDM+Neff chains as a prior sharpens
the distribution significantly. Having obtained a constraint of β = 2.05± 0.81 on the phase shift
amplitude, we want to evaluate the statistical significance of an exclusion of β = 0, corresponding
to no phase shift and no free-streaming neutrinos. For this purpose, we extract the fraction of
Monte Carlo samples which have β > β0. To be cautious about the small bias found in §7.2.2,
we employ β0 = 0.27 instead of β0 = 0.7 In this and other aspects of the analysis, we have
therefore made intentionally conservative choices in stating our statistical significance. The
measurement of β = 2.05± 0.81 consequently corresponds to an exclusion of β = 0 at greater than
99 % confidence. The statistical error of the measurement is in good agreement with the forecasted
value of σ(β) = 0.77. On the other hand, the central value is more than a 1σ fluctuation away
from the expected Standard Model value β = 1. Any upward fluctuation adds to the confidence
of our exclusion, provided that it is simply a statistical fluctuation. We tested the stability of this
upward fluctuation to changes in the cosmological model and the CMB likelihood (see Table 7.1).

7We explicitly checked that the computation based on likelihood ratios leads to essentially the same confidence
levels, which is expected since the posterior distributions are very close to Gaussian.
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Prior Cosmology β

None (BAO-only) 1.2 ± 1.8

ΛCDM+Neff 2.05 ± 0.81
ΛCDM 1.97 ± 0.73

ΛCDM+Neff (TT-only) 1.6 ± 1.1
ΛCDM (TT-only) 1.87 ± 0.89

ΛCDM+Neff+AL 1.53 ± 0.83
ΛCDM+AL 1.49 ± 0.76

Table 7.1: Constraints on the amplitude of the phase shift β with and without a Planck prior on
the BAO scale, assuming various underlying cosmologies. Our baseline result uses the ΛCDM+Neff

prior, marginalizing over all of the effects of Neff in the CMB. We see that this result is robust
to including or excluding Neff and AL in the prior cosmology. Finally, we show the large central
value of β also appears when using TT-only spectra and is therefore not solely a consequence of
the polarization data.

The statistical significance of the result is largely insensitive to the choice of cosmology and
likelihood. The largest deviation from ΛCDM within the Planck data alone is the preference for
a larger lensing amplitude AL [317]. To estimate the impact of this upward fluctuations on our
analysis, we marginalized over AL in the implementation of the α-prior. The dashed posterior
curve in Fig. 7.5 shows the result obtained from the ΛCDM+Neff+AL prior cosmology, which
corresponds to β = 1.53± 0.83. We see that marginalizing over AL indeed brings the central value
of β into closer agreement with β = 1, suggesting that part of our large central value is due to a
known upward fluctuation of the Planck data. Having said that, even with this marginalization,
we find evidence for a positive phase shift, β > 0, at greater than 94 % confidence.8 In summary,
while the precise significance of the phase shift measurement depends on the implementation of
the CMB prior, the exclusion of β = 0 at greater than 95 % confidence is stable to all choices of
the prior that we have considered.

7.4 Analysis in Configuration Space

The neutrino-induced phase shift is characteristically a Fourier-space (FS) quantity. By contrast,
the BAO frequency is more commonly described in configuration space (CS) as the scale of
the BAO feature in the two-point correlation function. Consequently, the measurement of the
BAO scale is often depicted as the determination of the BAO peak location in CS [111, 122].
The phase shift modifies the shape of the BAO peak and manifests itself in CS as a transfer of
correlations around the peak position from small to large scales (see Fig. 7.6). Given that the

8Note that we marginalized over AL because it experiences a large fluctuation in the Planck data. The statistical
significance of the corresponding result should therefore not be compared to the results of our blind analysis.
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BAO scale measurement is known to give compatible results in CS and FS (see e.g. [39]), we
anticipate the same to be true of the phase shift. We will therefore implement a modified version
of the CS method used in [122] as a cross-check of our main FS analysis.

In the following, we first describe how we have incorporated the phase shift into the configuration-
space analysis of the BAO signal (§7.4.1). Similar to the validation in FS, we also check the
modified method on mock catalogues. We then apply the analysis pipeline to the BOSS DR12 data
and impose the same Planck priors on α as in FS, and find results that are consistent with those
of the Fourier-space analysis (§7.4.2).

7.4.1 Modified Pipeline and Cross-Checks

Our non-linear model for the correlation function starts from the processed matter power spectrum

P (k) = F (k,Σs)P
nw
lin (k) [1 +Og(k)] , (7.8)

where Og(k) is the template-based non-linear BAO spectrum defined in (7.1) and F (k,Σs) is
given by (7.4). The two-point galaxy correlation function is then modelled as

ξg(r) = B2

∫
dlog k k3

2π2
P (k) j0(kr) +A(r) , (7.9)

where j0(kr) is a spherical Bessel function. We introduced the constant bias parameter B and the
polynomial function A(r), taken to have the same form as in [122],

A(r) =
a1
r2

+
a2
r

+ a3 , (7.10)
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Figure 7.7: Comparison of the distribution of maximum-likelihood values in 999 mock cata-
logues [313] for the Fourier-space (FS, blue) and configuration-space (CS, red) analyses. We also
show the correlation between the inferred phase shift amplitudes in the two analyses (green).

where the coefficients an are marginalized over. While the constant bias matches the same
parameter in the FS analysis, the polynomial A(r) is not equivalent to the polynomial A(k)
in (7.5). This is one of the notable differences between the FS and CS analyses. Except for the
amplitude of the phase shift β, all parameters are redshift dependent. Since the scale Σs is held
fixed to the best-fit value obtained on the mock catalogues, we fit the following 13 parameters to
the correlation function in the range r ∈ [55 − 160] h−1 Mpc:9

β, αz1 , αz3 ; {Bz, Σnl,z, an,z}z1,z3 , (7.11)

for the same two redshift bins as in Fourier space.

We apply the same pipeline as in [122] to the MultiDark-Patchy mock catalogues [313] and
determine the distributions of maximum-likelihood values for the parameters α and β. The results
are shown in Fig. 7.7 and correspond to βCS = 0.0±2.4 (αz1 = 0.989±0.033, αz3 = 0.990±0.034).
Comparing these distributions with the FS mock catalogue analysis of §7.2.3, we observe a
strong correlation with correlation coefficient r = 0.84, but a statistically significant bias of
about 1/3 of a standard deviation for both αi and β, albeit with approximately the same standard
deviations. When including the CMB prior, the mean shifts upwards and gives βCS = 0.75± 0.89,
corresponding to a bias of about 1/4 of a standard deviation which is also slightly larger than

9We employ flat priors on the cosmological parameters, requiring β to be between −10 and 10, and αz to be
between 0.5 and 1.5, but do not impose explicit priors for the other ten parameters. On the data, we speed up the
analysis by analytically marginalizing over the broadband parameters an,z in each step.
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Figure 7.8: Left: Contours showing 1σ and 2σ exclusions in the α-β plane for the two redshift
bins z1 and z3 in configuration space, both from the BAO data alone and after imposing a CMB
prior on α. Right: One-dimensional posterior distributions of β without (blue) and with (red) the
α-prior for the combined redshift bins.

in FS. These values demonstrate good statistical agreement between the CS and FS analyses,
and demonstrate that CS provides a useful cross-check of the FS analysis. While CS does show
larger biases, they are sufficiently small that they should not meaningfully affect the statistical
significance of our results. On the other hand, we noticed that the precise choice of the broadband
polynomial A(r) altered both the mean and standard deviation, while being consistent with the
fiducial cosmology. These features of the CS analysis will be explored in future work. The shifts
seen in CS further highlight the remarkable robustness of the phase shift in FS.

7.4.2 Analysis of BOSS Data

With these caveats in mind, we apply the CS pipeline to the BOSS DR12 dataset. The posterior
distributions for the parameters αz1 , αz3 and β are presented in Fig. 7.8, and correspond to
measurements of αz1 = 0.991 ± 0.027, αz3 = 0.973 ± 0.026 and βCS = 0.4 ± 2.1. These mean
values of αi are about 1/4 of a standard deviation lower than the ones found in the standard
BAO analysis [122]. In addition, the error bars increased, mainly related to the degeneracy
between α and β discussed in §7.2.3. The value of β̄ is 0.3σ lower than in FS with a 16 % larger
error. When adding a Planck prior to break the degeneracy, we measure βCS = 2.36± 0.86 which
is larger than in FS because of the mentioned bias in αi towards lower values. Nevertheless, these
CS measurements are statistically consistent with the main FS results, with similar shifts in the
mean values as observed in the mock analysis. Given that the broadband modelling and peak
isolation in configuration and Fourier space are distinct, an agreement between the two analyses
was not guaranteed, although the change to the BAO peak is simply the inverse Fourier transform
of the phase shift. Having said that, this analysis confirms that a measurement can also be made
in configuration space and, despite the discussed differences, is comparable to the main analysis
in Fourier space.
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7.5 Summary

In this chapter, we have reported on the first measurement of the neutrino-induced phase shift in
the BAO spectrum. This is the first evidence for the cosmic neutrino background in the clustering
of galaxies and the first application of the BAO signal beyond its use as a standard ruler.

To extract the phase information, we modified the conventional BAO data analysis by allowing
the amplitude of the phase shift to be an additional free parameter. We determined this new
parameter to be non-zero at greater than 95 % confidence, even allowing for very conservative
marginalization over corrections to the broadband spectrum. Our measurement is a nontrivial
confirmation of the standard cosmological model at low redshifts and a proof of principle that there
is additional untapped information in the phase of the BAO spectrum. Since this phase information
is protected from the effects of non-linear gravitational evolution [125], it is a particularly robust
probe of early universe physics.
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Figure 7.9: Constraints on the amplitude of the phase shift β including a CMB prior on the
BAO scale parameter α from Planck. The lines are forecasted constraints as a function of the
maximum redshift zmax and the number of objects Ng of a cosmological survey observing a sky
fraction of fsky = 0.5 (see §6.3.3 for details). Shown is also the cosmic variance limit. The square
indicates the result obtained in this work. The dots mark projected constraints for DESI and
Euclid assuming zmax to be given by the largest redshift bin used to define the survey in [249].

A number of galaxy surveys are planned over the next decade which have the potential to
significantly improve on our measurement of the neutrino background (see Fig. 7.9). The Dark
Energy Spectroscopic Instrument, for example, should be sensitive to the CνB at more than 3σ,
making the BAO phase shift measurement more comparable to current limits from the CMB [28].
Combining Euclid with a prior from a next-generation CMB experiment would allow a 5σ detection
of the CνB. Moreover, having shown that there is valuable information in the phase of the BAO
spectrum, we should ask what else can be learned from it beyond the specific application to light
relics. As the observed BAO feature is the result of the combined dynamics of the dark matter
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and baryons, it is broadly sensitive to new physics in these sectors. The BAO phase shift is one
particularly clean probe of this physics and we hope that our work will inspire new ideas for
exploring the early universe at low redshifts.
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8
Conclusions and Outlook

The wealth of cosmic microwave background and large-scale structure data has transformed
the field of cosmology. Remarkably, these observations have not only become precise enough
to answer questions about the universe at large, but also to start addressing puzzles in the
microscopic description of Nature. Cosmological measurements are particularly well suited to
study Standard Model neutrinos and to shed light on the possible existence of other light relics
beyond the Standard Model. In this thesis, we have contributed to this endeavour by uncovering
new constraints and identifying robust signatures of these particles in cosmological observables.
We established the free-streaming nature of cosmic neutrinos in both the cosmic microwave
background anisotropies and the clustering of galaxies, and paved the way to more efficiently
using the wealth and precision of cosmological datasets in the future. In this final chapter, we
summarize the main results of this work and make a few remarks on future directions.

Summary

We employed cosmological observations to probe fundamental physics in two domains: within and
beyond the Standard Model of particle physics. We focussed on providing new insights into the
neutrino sector of the Standard Model as well as some of its extensions containing extra light and
weakly-coupled species. In particular, we presented the first measurement of the cosmic neutrino
background in the clustering of galaxies, obtained new CMB constraints on additional forms of
radiation and derived novel bounds on light scalar particles, such as axions. Along the way, we
highlighted the power of a subtle phase shift in the acoustic oscillations of the primordial plasma
as a robust probe of neutrinos and other free-streaming relativistic species.

Based on a detailed analytical understanding of the phase shift, we presented new evidence for
the cosmic neutrino background. We achieved this by establishing the free-streaming nature of
these particles separately in cosmic microwave background observations of the Planck satellite
and in the large-scale structure mapped by the Baryon Oscillation Spectroscopic Survey. In
the BAO analysis, we established a new method to extract the neutrino-induced phase shift.
This allowed us to perform the first measurement of the imprint of neutrinos in a low-redshift
observable. At the same time, this investigation marked the first application of the BAO signal to
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early universe physics and illustrated that the spectrum of baryon acoustic oscillations carries
more accessible cosmological information than only the acoustic scale. The gravitational effect of
the cosmic neutrino background has now been observed in the damping and the phase shift of both
the CMB anisotropies and the BAO spectrum of galaxy clustering. Cosmological observations
have therefore been able to provide new tests of the least understood part of the Standard Model.

Our forecasts indicate that future observations are guaranteed to explore regimes of BSM physics
which have so far been inaccessible. We showed that future CMB measurements have the potential
to probe the energy density in neutrinos and other relativistic species at the one-percent level,
corresponding to an order of magnitude improvement over current bounds. In addition, we
established that there is further, currently untapped information in the LSS data which will help
us to push constraints on the effective number of relativistic species, Neff, below well-motivated
theoretical targets. This might have far-reaching consequences for new light particles, such as
axions, which are predicted in many interesting SM extensions. These BSM species are hard to
detect in terrestrial experiments due to their weak couplings, but the large number densities in
the early universe make it possible to measure their gravitational effects. We demonstrated that
reaching the sensitivity of the minimal thermal contribution of one scalar particle, ∆Neff = 0.027,
would have important implications: We could either detect any light particles that have ever been
in thermal equilibrium with the Standard Model, or put strong bounds on their SM interactions.
We exemplified this for axions and other scalar BSM particles, and found that, in many cases,
existing constraints from astrophysical and terrestrial searches could be surpassed by orders of
magnitude. This result and the target ∆Neff = 0.027 have now been adopted by the CMB Stage-4
collaboration as one of their main science targets [25].

Outlook

We have shown that future CMB and LSS observations could have a significant impact on our
understanding of fundamental physics. In order to harvest all of the hidden clues stored in the
observables, our ability to extract information from cosmological measurements should however
further increase in this age of data-driven cosmology. In addition, we have argued that, in the case
of Neff, these observations can play complementary roles by both enhancing the raw sensitivity and
adding to the robustness of the measurement. Our forecasts also suggest that the constraints on
certain cosmological parameters, such as the effective number of relativistic species or the matter
density, may be tightened when moving beyond the standard BAO analysis. A broader exploration,
including additional observables such as weak gravitational lensing and the cross-correlation of
different probes, will likely reveal more aspects of the early and/or late universe that could be
discovered in this way. It would also be intriguing in this respect if we could uncover further
quantities like the phase shift that are robust against non-linear gravitational evolution.

With the increasing precision of cosmological surveys, we are not only measuring the ho-
mogeneous background evolution of the universe, but have become sensitive to differences in
the evolution of perturbations. This motivates revisiting the predictions of specific models of
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BSM physics. When we studied the impact of future Neff measurements on the SM couplings
of axions, we provided one such avenue within an effective field theory of light scalar species.
Since the theoretical threshold for ∆Neff is larger for particles with spin and might soon be
reached by CMB polarization experiments together with LSS surveys, the EFT of light species
should be revisited. Moreover, these effective models could also include massive particles which
are abundant in well-motivated SM extensions and might decay. The type of energy injection
from such decays may then be observable over a wide range of times, even in the absence of
new light fields. Including other cosmological observables, such as CMB spectral distortions or
further late-time LSS probes, could therefore jointly constrain these models. Furthermore, the
detailed predictions for Neff may be significantly altered from the minimal case, which can change
the impact of future constraints. Finally, the investigation of light dark matter models, whose
SM interactions must be mediated by new light fields to satisfy current thermal abundance limits,
could link the search for light relics with the hunt for the (particle) nature of dark matter.

The prospects of probing the early universe with the future influx of cosmological data are very
bright. At the same time, the possible implications on particle physics cannot be overstated.
These observations will provide an opportunity to probe physics beyond the Standard Model
at a much more precise level than was previously possible and in a regime that is inaccessible
to terrestrial experiments. We are optimistic that this will teach us something interesting. We
will either discover a whole new world of dark physics, or learn to what remarkable degree it is
decoupled from the rest of physics. In the meantime, we remain curious what future cosmological
measurements will tell us about the universe and the underlying laws of Nature.
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A
Goldstone Production and Decay

In this appendix, we provide supplemental material to Chapter 4. We compute the production
rates of axions, familons and majorons via their Standard Model interactions (§A.1), and discuss
the effects of the possible decays of these Goldstone bosons to photons and neutrinos (§A.2).

A.1 Production Rates

In this section, we derive the rates of Goldstone boson production used in the main text. We
consider separately the couplings to gauge fields and to matter fields.

A.1.1 Couplings to Gauge Fields

Above the scale of electroweak symmetry breaking, the coupling of the Goldstone boson to the
Standard Model gauge sector is

LφEW = −1

4

φ

Λ

(
c1BµνB̃

µν + c2W
a
µνW̃

µν,a + c3G
a
µνG̃

µν,a
)
. (A.1)

The dominant processes leading to the production of the axion φ are illustrated in Fig. A.1. In the

ψ

g

ψ

φ

√

αs

Λ
−1

g

(a) Primakoff process. (b) Fermion annihilation.

√

αsΛ
−1

g

(c) Gluon fusion (representative diagrams).

Figure A.1: Feynman diagrams for the dominant Goldstone production via the gluon coupling.
For gluon fusion, there are t- and u-channel diagrams in addition to the presented s-channel
diagram. Similar diagrams apply for the couplings to the electroweak gauge bosons.
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Figure A.2: Left: Axion production rate associated with the coupling to gluons as parametrized
by γg(T ) in (A.3). Right: Constraint on the axion-gluon coupling Λg as parametrized by λg(TR)
in (A.4).

limit of massless gauge bosons, the cross sections for some of these processes have infrared (IR)
divergences. The results therefore depend slightly on how these divergences are regulated; see
e.g. [164–168]. The most detailed analysis has been performed in [168], where the total production
rate was found to be

Γ =
T 3

8πΛ2

[
c21F1(T ) + 3c22F2(T ) + 8c23F3(T )

]
, (A.2)

where the functions Fn(T ) were derived numerically. We extracted Fn(T ) from Fig. 1 of [168],
together with the one-loop running of the gauge couplings αi(T ).

Coupling to gluons

To isolate the effect of the coupling to gluons, we write c1 = c2 ≡ 0 and define Λg ≡ Λ/c3. In this
case, the production rate (A.2) becomes

Γg(T ) =
F3(T )

π

T 3

Λ2
g

≡ γg(T )
T 3

Λ2
g

, (A.3)

with γg(1010 GeV) = 0.41. The function γg(T ) is presented in the left panel of Fig. A.2. The
freeze-out bound on the gluon coupling then is

Λg >

(
π2

90
g∗,R

)−1/4√
γg,RTRMpl ≡ λg(TR)

(
TR

1010 GeV

)1/2
, (A.4)

where g∗,R ≡ g∗(TR) and γg,R ≡ γg(TR). The bound in (A.4) is illustrated in the right panel of
Fig. A.2. In the main text, we used λg(1010 GeV) = 5.4 × 1013 GeV.
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Figure A.3: Left: Axion production rate associated with the coupling to the electroweak gauge
bosons as parametrized by γ(T, ca) in (A.7) for ca = 0 (dotted line), 1/

√
2 (dashed line) and 1 (solid

line). Right: Constraint on the axion-photon coupling Λγ as parametrized by λγ(TR, ca) in (A.14).
The solid and dashed lines correspond to bounds on positive and negative Λγ for TR = 1010 GeV.
The band displays the change for reheating temperatures between 104 GeV (upper edge) and
1015 GeV (lower edge).

Coupling to photons

To isolate the coupling to the electroweak sector, we set c3 = 0. In this case, the Lagrangian (A.1)
can be written as

LφEW = −1

4

φ

Λ

(
caBµνB̃

µν + saW
a
µνW̃

µν,a
)
, (A.5)

where we have defined

Λ → Λ√
c21 + c22

and ca ≡
c1√
c21 + c22

, sa ≡
c2√
c21 + c22

. (A.6)

Note that c2a + s2a = 1, so we can use Λ and ca as the two free parameters. The production
rate (A.2) is then given by

Γ =
[c2aF1(T ) + 3s2aF2(T )]

8π

T 3

Λ2
≡ γ(T, ca)

T 3

Λ2
. (A.7)

The function γ(T, ca) is shown in the left panel of Fig. A.3. In the main text, we employed
γ(1010 GeV, 1) = 0.017. The freeze-out bound on the coupling then is

Λ(ca) >

(
π2

90
g∗,R

)−1/4√
γR(ca)TRMpl , (A.8)

with γR(ca) ≡ γ(TR, ca). We wish to relate this bound to the couplings below the EWSB scale.
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At low energies, the axion couplings to the electroweak sector become

LφEW = −1

4

(
φ

Λγ
FµνF̃

µν +
φ

ΛZ
ZµνZ̃

µν +
φ

ΛZγ
ZµνF̃

µν +
φ

ΛW
W+
µνW̃

−µν
)
, (A.9)

where Fµν , Zµν and W±
µν are the field strengths for the photon, Z and W±, respectively. Here,

we have dropped additional (non-Abelian) terms proportional to c2 which are cubic in the gauge
fields. In order to match the high-energy couplings in (A.5) to the low-energy couplings in (A.9),
we define

Λ−1
γ =

(
c2w ca + s2w sa

)
Λ−1 , (A.10)

Λ−1
Z =

(
c2w sa + s2w ca

)
Λ−1 , (A.11)

Λ−1
Zγ = 2swcw (sa − ca) Λ

−1 , (A.12)

Λ−1
W = saΛ

−1 , (A.13)

where {cw, sw} ≡ {cos θw, sin θw}, with Weinberg’s mixing angle θw ≈ 30°. Using (A.10), we can
write (A.8) as a bound on the photon coupling,

Λγ(ca) >
(
c2w ca + s2w sa

)−1 ×
(
π2

90
g∗,R

)−1/4√
γR(ca)TRMpl

≡ λγ(TR, ca)

(
TR

1010 GeV

)1/2
. (A.14)

This bound is illustrated in the right panel of Fig. A.3. We see that we get the most conservative
constraint by setting sa ≡ 0, for which we have λγ(1010 GeV, 1) = 1.4 × 1013 GeV.

A.1.2 Couplings to Matter Fields

The calculation of the Goldstone production rates associated with the couplings to the SM fermions
is somewhat less developed. In this section, we calculate the relevant rates following the procedure
outlined in [166].

Preliminaries

The integrated Boltzmann equation for the evolution of the number density of the Goldstone
boson takes the form

dnφ
dt

+ 3Hnφ = Γ(neq
φ − nφ) , (A.15)

where neq
φ = ζ(3)T 3/π2 is the equilibrium density of a relativistic scalar. In order to simplify

the analysis, we will replace the integration over the phase space of the final states with the
centre-of-mass cross section, σcm, or the centre-of-mass decay rate, Γcm. While this approach is
not perfectly accurate, it has the advantage of relating the vacuum amplitudes to the thermal
production rates in terms of relatively simple integrals.
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• For a two-to-two process, 1 + 2 → 3 + 4, we have

Γ2→2 '
1

neq
φ

∫
d3p1
(2π)3

d3p2
(2π)3

f1(p1)

2E1

f2(p2)

2E2

[
1± f3

][
1± f4

]
2sσcm(s) , (A.16)

where f1,2 are the distribution functions of the initial states and s ≡ (p1 + p2)
2 is the

Mandelstam variable. We have included simplified Bose enhancement and Pauli blocking
terms,

[
1± f3

][
1± f4

]
→ 1

2

(
[1± f3(p1)][1± f4(p2)] + {p1 ↔ p2}

)
, which is applicable in the

centre-of-mass frame where the initial and final momenta are all equal.1 For s� m2
i , the

centre-of-mass cross section is given by

σcm(s) ' 1

32π

∫
dcos θ

∑
|M|2(s, θ)

s
, (A.17)

where
∑

|M|2 is the squared scattering amplitude including the sum over spins and charges,
and θ is the azimuthal angle in the centre-of-mass frame. For all models of freeze-out
considered in the main text, the centre-of-mass cross section is independent of s. Moreover,
we will only encounter fermion-boson scattering or fermion annihilation in this section. With
the enhancement/blocking terms, one finds that the numerical pre-factors in both cases
agree to within 10 percent. To simplify the calculations, we will therefore use the fermion
annihilation rate throughout,

Γ2→2 ' σcm T
3

(
7

8

)2 ζ(3)

π2
≈ 0.093σcm T

3 . (A.18)

The advantage of this approach is that we can relate the centre-of-mass cross section directly
to the production rate with minimal effort and reasonable accuracy.

• For a one-to-two process, 1 → 2 + 3, the decay rate in the centre-of-mass frame is

Γcm ' 1

32πm1

∫
dcos θ

∑
|M|2 , (A.19)

where we have taken the two final particles to be massless. Since Γcm is independent of
energy, the rate only depends on whether the initial state is a fermion or boson. Transforming
this rate to a general frame gives

Γ1→2 '
1

neq
φ

∫
d3p1
(2π)3

f1(p1)
[
1± f2(p1/2)

][
1± f3(p1/2)

]m1

E1
Γcm , (A.20)

where f1 is the distribution function of the decaying particle (not necessarily φ). We are

1These Pauli blocking and Bose enhancement terms were not included in [166], as they complicate the rate
calculations. We have included them to ensure that the rates computed for both the forward and backward processes
give the same results.
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Figure A.4: Feynman diagrams for the dominant Goldstone production via the coupling to
charged fermions above the electroweak scale. For the vector and axial vector couplings, I ∈ {V,A},
the ‘−’ and ‘+’ signs apply, respectively.

mostly interested in the limit T � m1, in which case the rate (A.20) reduces to

Γ1→2 '
m1

T

π2

16ζ(3)
Γcm ×

 1− 4

π2
fermion,

1 boson,
(A.21)

where the dependence on the number of degrees of freedom of the decaying particle has
been absorbed into Γcm through the sum over spins and charges. Note that, in equilibrium,
the rates for decay and inverse decay are equal.

Coupling to charged fermions

We consider the following coupling between a Goldstone boson and charged fermions:

Lφψ =
φ

Λψ

(
iH ψ̄L,i

[
(λi − λj)g

ij
V + (λi + λj)g

ij
A

]
ψR,j + h.c.

)
, (A.22)

where H is the Higgs doublet, ψL,R ≡ 1
2(1∓ γ5)ψ, and the SU(2)L and SU(3)C structures have

been left implicit. Distinct processes dominate in the various limits of interest:

• Freeze-out At high energies, the Goldstone boson is produced through the following two
processes (see Fig. A.4): (a) ψi + ψ̄j → H + φ and (b) ψi +H → ψj + φ. Summing over the
spins and charges, we get

∑
|M|2(a) = 4Nψ s

(λi − λj)
2(gijV )

2 + (λi + λj)
2(gijA )

2

Λ2
ψ

, (A.23)

∑
|M|2(b) = 4Nψ s(1− cos θ)

(λi − λj)
2(gijV )

2 + (λi + λj)
2(gijA )

2

Λ2
ψ

, (A.24)

where we have combined fermion and anti-fermion scattering in the sum over charges and
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Figure A.5: Feynman diagrams for the dominant Goldstone production via the coupling to
charged fermions below the electroweak scale. For quarks, the coupling to photons is replaced
by that to gluons. In addition to the displayed s- and t-channel diagrams for the Compton-like
process and fermion annihilation, there are u-channel diagrams which are not shown.

introduced

Nψ ≡

{
1 ψ = lepton,

3 ψ = quark.
(A.25)

We also find it convenient to define ΛIij ≡ Λψ/g
ij
I , with I ∈ {V,A}. Using (A.17) and (A.18),

and treating the vector and axial-vector couplings separately, we obtain

ΓIij = Nψ

(
7

8

)2 4ζ(3)

π2
(λi ∓ λj)

2

8π

T 3

(ΛIij)
2
' 0.19Nψ

(λi ∓ λj)
2

8π

T 3

(ΛIij)
2
, (A.26)

where the ‘−’ and ‘+’ signs apply to I = V and I = A, respectively.

• Freeze-in Below the scale of EWSB, the Lagrangian (A.22) becomes

Lφψ = i φ
Λψ

ψ̄i

[
(mi −mj)g

ij
V + (mi +mj)g

ij
Aγ

5
]
ψj , (A.27)

with mi ≡
√
2λi/v. The Goldstone production processes associated with these couplings are

shown in Fig. A.5.

Diagonal couplings.—We first consider the diagonal part of the interaction, which takes the
form iε̃ii φψ̄iγ5ψi, with ε̃ii ≡ 2mig

ii
A/Λψ. Kinematical constraints require us to include at

least one additional particle in order to get a non-zero amplitude. The two leading processes
are (a) ψi + {γ, g} → ψi + φ (cf. Fig. A.5a) and (b) ψi + ψ̄i → φ + {γ, g} (cf. Fig. A.5b),
where {γ, g} is either a photon or gluon depending on whether the fermion is a lepton or
quark, respectively. Summing over spins and charges, we obtain

∑
|M|2(a) = 16πAψ |ε̃ii|2

s2

(m2
i − t)(m2

i − u)
, (A.28)

∑
|M|2(b) = 16πAψ |ε̃ii|2

t2

(s−m2
i )(m

2
i − u)

, (A.29)
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where s, t and u are the Mandelstam variables and

Aψ ≡

{
α ψ = lepton,

4αs ψ = quark.
(A.30)

In the massless limit, the cross section has IR divergences in the t- and u-channels from
the exchange of a massless fermion. The precise production rate therefore depends on the
treatment of the soft modes. Regulating the IR divergence with the fermion mass and taking
the limit s� m2

i , we find

σcm(s) ' 1

s
Aψ |ε̃ii|2

[
3 log s

m2
i

− 3

2

]
. (A.31)

At high temperatures, the fermion mass is controlled by the thermal mass m2
i → m2

T =
1
2πAψT

2 and the production rate becomes

Γ̃ii =
3π3

64ζ(3)
Aψ

|ε̃ii|2

8π
T

[
log 2

πAψ
+ 2 log 2− 3

2

]
. (A.32)

This formula is expected to break down at T . mi, but will be sufficient at the level of
approximation being used in this work. A proper treatment of freeze-in at T ∼ mi should
go beyond Γ = H and fully solve the Boltzmann equations. However, this level of accuracy
is not needed for estimating the constraint on the coupling ε̃ii.

The result (A.32) will be of limited utility for the coupling to quarks. This is due to the fact
that, for T . 30 GeV, the QCD coupling becomes large and our perturbative calculation
becomes unreliable.2 In fact, we see that the production rate (A.32) becomes negative in
this regime. While the top quark is sufficiently heavy to be still at weak coupling, its mass
is close to the electroweak phase transition and, therefore, the assumption s� m2

t is not
applicable. For these reasons, we will not derive bounds on the quark couplings from these
production rates.

Off-diagonal couplings.—When the coupling of φ is off-diagonal in the mass basis, the
dominant process at low energies is the decay ψi → ψj + φ, cf. Fig. A.5c. Since the mass
splittings of the SM fermions are large and mφ � mψ, the centre-of-mass decay rate is well
approximated by

Γcm =
Nψ

8π

m3
i

Λ2
ij

, (A.33)

where Λij ≡
[
(gijV )

2 + (gijA )
2
]−1/2

Λψ. Using (A.21), we get

Γ̃ij =
(π2 − 4)

16ζ(3)

Nψ

8π

1

T

m4
i

Λ2
ij

' 0.31Nψ
|ε̃ij |2

8π

m2
i

T
, (A.34)

2These effects are computable using the techniques of [168], but this is beyond the scope of the present work.
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Figure A.6: Feynman diagrams for the dominant Goldstone production via the coupling to
neutrinos. The double arrows denote the sum over the spinor index structure for two-component
fermions [318].

with ε̃ij ≈ mi/Λij . In addition to this decay, we also have production with a photon or
gluon, given by (A.32) with ε̃ii → ε̃ij . We will neglect this contribution as it is suppressed
by a factor of α or αs for T ∼ mi.

Coupling to neutrinos

The coupling between the Goldstone boson and neutrinos is

Lφν = −1

2

(
i ε̃ijφνiνj −

1

2Λν
εijφ

2νiνj + · · ·
)
+ h.c. , (A.35)

where we have written the Majorana neutrinos in two-component notation. The first term in (A.35)
will control freeze-in and the second will determine freeze-out:

• Freeze-out At high energies, the dominant production mechanism is νi + νj → φ + φ

(cf. Fig. A.6a) through the second term in Lνφ. The spin-summed amplitude squared is

∑
|M|2 = |εij |2

2s

Λ2
ν

, (A.36)

which results in the production rate

Γij =
1

2
sij

(
7

8

)2 ζ(3)

π2
|εij |2

8π

T 3

Λ2
ν

' 0.047sij
|εij |2

8π

T 3

Λ2
ν

, (A.37)

where the factors of 1
2 and sij ≡ 1− 1

2δij are the symmetry factors for identical particles
in the initial and final states, respectively. The contribution to the rate from higher-order
terms in (A.35) is suppressed by further powers of T 2/Λ2

ν .

• Freeze-in Unlike for charged fermions, the freeze-in abundance from the coupling to
neutrinos arises only through decays. Below the scale of EWSB, the couplings of neutrinos
to the rest of the SM are suppressed by the weak scale and are irrelevant. The only freeze-in
processes that are allowed by kinematics are therefore three-body decays.
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A Goldstone Production and Decay

Low-mass regime.—For mφ � mi −mj , with mi > mj , the off-diagonal linear coupling
allows the decay νi → νj + φ, cf. Fig. A.6b. The decay rate in the centre-of-mass frame is

Γcm =
1

8π

m2
i −m2

j

m3
i

(
|ε̃ij |2(m2

i +m2
j ) + 2Re

[
(ε̃ij)

2
]
mimj

)
. (A.38)

In order to simplify the calculations in the main text, we take mi � mj which is guaranteed
for the minimal mass normal hierarchy. Since the decaying particle is a fermion, the thermal
production rate in (A.21) becomes

Γ̃ij =
π2 − 4

16ζ(3)

|ε̃ij |2

8π

m2
i

T
' 0.31

|ε̃ij |2

8π

m2
i

T
. (A.39)

Notice that the off-diagonal decay rate is the same for charged leptons and neutrinos even
though the neutrinos have a Majorana mass.

High-mass regime.—Formφ � mi ≥ mj , the Goldstone boson decays to fermions, φ→ νi+νj ,
both through the diagonal and off-diagonal couplings. The inverse decay νi + νj → φ (see
Fig. A.6c) is therefore a production channel. The decay rate is given by

Γcm =
|ε̃ij |2

8π
mφ , (A.40)

which, in equilibrium, is equal to the rate for the inverse decay. Since the decaying particle
is a boson, the thermal production rate in (A.21) becomes

Γ̃ij = sij
π2

16ζ(3)

|ε̃ij |2

8π

m2
φ

T
' 0.51sij

|ε̃ij |2

8π

m2
φ

T
. (A.41)

The rate is somewhat enhanced compared to the decay in the low-mass regime because the
decaying particle is a boson.

The dominant Goldstone production mechanism through the couplings to neutrinos is quite
sensitive to kinematics. For mφ . mν , the diagonal decay is forbidden and the dominant
Goldstone production is through freeze-out. In addition, when mφ ∼ mν there are additional
kinematic constraints for both diagonal and off-diagonal couplings. As a result, the limits on the
interaction scale Λν (or the dimensionless couplings εij and ε̃ij) are sensitive to mφ.

A.2 Comments on Decays

Throughout Chapter 4, we treated each of the operators which couple the pseudo-Nambu Goldstone
bosons to the Standard Model independently. For computing the production rates, this is justified
since the amplitudes for the different processes that we consider do not interfere and the couplings
therefore add in quadrature. One may still ask, however, if the interplay between several operators
can affect the cosmological evolution after the production. In particular, one might worry that
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some operators would allow for the decay of the pNGBs and that this might evade the limits
on Neff. In the following, we will address this concern. We are assuming that mφ < 1 MeV, so
that the only kinematically allowed decays are to photons and neutrinos.

A.2.1 Decay to photons

If the decay occurs after recombination, then the pNGBs are effectively stable as far as the CMB
is concerned and our treatment in the main text applies directly. To see when this is the case,
we computed the decay temperature TD associated with the decay mediated by the coupling to
photons (4.6):

TD
Trec

≈ 9.5 × 10−10
(

Λγ

1010 GeV

)−4/3(mφ

Trec

)2
. (A.42)

Recalling the stellar cooling bound, Λγ > 1.3 × 1010 GeV [256], we see that the pNGBs are
effectively stable as long as mφ . 10 keV. For comparison, a stable particle with mφ & 100 eV
produces Ωm > 1 and is therefore excluded by constraints on the dark matter abundance. For
mφ > 10 keV, the decay to photons does affect the phenomenology and must be considered
explicitly. Nevertheless, in the regime of interest, the pNGBs are non-relativistic and, therefore,
carry a large energy density, ρφ ' mφnφ. As a result, this region is highly constrained by current
cosmological observations [206, 257].

A.2.2 Decay to neutrinos

Depending on the mass of the pNGB, the decay to neutrinos leads to the following three scenarios:

• For mφ < Trec, the implications of the decays are relatively easy to characterise. As discussed
in §4.4.2, the phenomenology is only modified if Tfluid > Trec. In this case, strong interactions
between the pNGBs and the neutrinos imply that the neutrinos are no longer free-streaming
particles, which is ruled out by current CMB observations, cf. Section 5.3.

• For TD > mφ > Trec, the pNGBs are brought into equilibrium with the neutrinos at T ∼ TD

and then become Boltzmann suppressed for T . mφ. This process leads to a contribution
to Neff, even if the pNGBs have negligible energy density to begin with. To estimate the
size of the effect, we first note that the freeze-in at TD conserves the total energy density in
neutrinos and pNGBs,

(g∗,ν + g∗,φ)(a1T1)
4 = g∗,ν(a0T0)

4 , (A.43)

where T0 and T1 are the initial and final temperatures during the equilibration, and g∗,ν

and g∗,φ = 1 are the effective numbers of degrees of freedom in ν and φ, respectively. When
the temperature drops below the mass of the pNGBs, their energy density is converted to
neutrinos. This process conserves the comoving entropy density,

(g∗,ν + g∗,φ)(a1T1)
3 = g∗,ν(a2T2)

3 , (A.44)
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where T2 � mφ is some temperature after the pNGB population has decayed. The final
energy density of the neutrinos becomes

a42ρν,2 =

(
g∗,ν + g∗,φ

g∗,ν

)1/3
a40ρν,0 , (A.45)

where ρν,i ≡ ρν(ai). Using the definition of Neff in (3.19) together with (2.20) as well
as (3.16), and ργa

4 = const, we find

Neff =

(
g∗,ν + g∗,φ

g∗,ν

)1/3
Neff,0 . (A.46)

Considering the coupling to a single neutrino flavour (rather than all three), i.e. Neff,0 ' 1

and g∗,ν = 7/4, we then get

∆Neff =

(
1 +

4

7

)1/3
− 1 ' 0.16 , (A.47)

where ∆Neff ≡ Neff −Neff,0. Coupling to more than one neutrino flavour and including a
non-zero initial temperature for the pNGBs would increase this number slightly, so that we
will use ∆Neff ≥ 0.16.

• The production of pNGBs through the freeze-in process is avoided if mφ > TD > Trec, in
which case the pNGBs decay to neutrinos out of equilibrium. To a good approximation,
this decay conserves the energy density, which is therefore simply transferred from φ to ν at
the time of the decay. The contribution to ∆Neff is enhanced by the amount of time that φ
is non-relativistic before its decay, which may be a large effect for mφ � 1 eV (see e.g. [232]
for a related discussion).

In summary, operators that allow the Goldstone bosons to decay do not substantially alter
the predictions presented in the main text. On the one hand, decays to photons cannot occur
early enough to impact the CMB. On the other hand, decays to neutrinos typically increase the
contributions to ∆Neff and would therefore strengthen our bounds.
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B
Further Aspects of the Phase Shift

In this appendix, we provide supplemental material to Chapter 5. We estimate the effects of
matter domination on the neutrino-induced phase shift (§B.1) and derive that the phase shift in
the CMB polarization spectrum is the same as in the temperature spectrum (§B.2).

B.1 Comments on Matter

In the main text, we computed the phase shift of the photon density fluctuations assuming a
radiation-dominated background. While this simplification made an analytic treatment possible,
we may wonder if it misses important effects. In this appendix, we will bridge this gap to the
degree which is possible without using numerics, focussing on the contributions from free-streaming
radiation.

There are several reasons why we want to understand the contributions to the phase shift from
modes in the matter era. First, recombination occurs during matter domination and, in principle,
it could therefore be important for every mode in the CMB.1 Second, modes corresponding to
large angular scales (small `) enter the horizon during (or near) matter domination and their
complete evolution is consequently governed by the physics in the matter era. Finally, ref. [28]
found a logarithmic dependence of the phase shift on the multipoles ` for observable modes.
One may be tempted to interpret this as an effect of the finite matter density. Our goal in this
appendix is to further clarify these effects, by studying the limits `→ ∞ and `→ 0, accounting
for the contributions from matter. We will study these limits in turn:

• We first consider modes which entered the horizon during the radiation era. These correspond
to small angular scales in the CMB anisotropy spectra. We begin by writing (5.8) as

B(y) =

∫ yeq

0
dy′Φ+(y

′) cos y′︸ ︷︷ ︸
≡ Brad

+

∫ y

yeq

dy′Φ+(y
′) cos y′︸ ︷︷ ︸

≡ Bmat

, (B.1)

1We derive the effects of matter on the phase shift in the acoustic peaks of the CMB. However, it should be
clear from our discussion in Chapter 6 that this treatment equally applies to the phase shift in the BAO spectrum.
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where yeq = cγkτeq corresponds to the moment of matter-radiation equality. Modes that
entered the horizon long before τeq correspond to yeq � 1. For these modes, the first term
in (B.1) can be approximated as

Brad '
∫ ∞

0
dy′Φ(rad)

+ (y′) cos y′ , (B.2)

which is precisely the result computed in Section 5.2. The main correction from the matter
era then is the second term in (B.1):

Bmat '
∫ y

yeq

dy′Φ(mat)
+ (y′) cos y′ . (B.3)

To estimate this effect, we simply have to repeat the discussion of §5.2.3 for the matter era.
The important difference is that εX ≡ ρ̄X/ρ̄ now is not a constant, but scales as a−1 ∝ τ−2.
Setting τin in the matter era, we have εX = εX,in τ

2
in/τ

2 and eq. (5.50) becomes

Φ−(y) = −8k2

y4
εX,iny

2
in σX(y) = −16

3

1

y4
εX,iny

2
inDX,2(y) . (B.4)

To determine Φ−(y) to first order in εX , we only need the quadrupole moment DX,2(y) to
zeroth order. From (5.52), we get

D
(0)
X,2(y) = dX,in j2

[
c−1
γ (y − yin)

]
+

3

cγ
Φ+,in

∫ y

yin

dy′
{
2

5
j1
[
c−1
γ (y − y′)

]
− 3

5
j3
[
c−1
γ (y − y′)

]}
, (B.5)

where we have used that Φ
(0)
+ = const during the matter era. In the limit, y � 1, this

leads to

Φ
(1)
− (y) ' 16εX,in y

2
in

sin(c−1
γ y)

c−1
γ y5

(
Φ+,in +

1

3
dX,in

)
. (B.6)

Hence, we get Φ− ∝ y−5 → 0 in the limit y → ∞. At late times, Φ+ is therefore no longer
sourced by Φ− and will be given by the homogeneous solution (with coefficients that may
depend on εX). Importantly, the value of B will be the same as that predicted in Section 5.2.
At high k (and thus `), the phase shift of the acoustic oscillations will consequently be equal
to the value in a radiation-dominated universe.

• Next, let us study modes which entered the horizon during the matter era, corresponding
to large angular scales in the CMB. In this case, it is more challenging to cleanly separate
the result into a correction to the amplitude of oscillations and a phase shift. Our primary
goal will be to understand how the result scales with wavenumber k in the limit k → 0.
Fortunately, this scaling is the same for the amplitude correction and the phase shift, and is
easy to understand analytically.

Intuitively, we expect the contributions from dark radiation (including neutrinos) to vanish
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as k → 0. As we lower k, the time of horizon entry increases compared to the time of
matter-radiation equality and, therefore, the radiation energy density should be diluted
relative to the matter. Since this radiation only affects observations through its gravitational
influence, its role in the evolution of the modes should become negligible.

We can confirm this intuition by returning to (B.4) and noticing that yin = cγkτin, where
τin is a fixed time which is independent of k, e.g. we may choose τin to be the time of
matter-radiation equality. We therefore have Φ

(1)
− = εX,inc

2
γk

2τ2in g(y) and the correction
to dγ at linear order in εX will take the form

d(1)γ (τ) = εX,in c
2
γk

2τ2in

∫ y

yin

dy′f(y, y′) . (B.7)

If the integral converges as y → ∞, it is clear that d(1)γ ∝ k2 → 0. In fact, if the integral
diverges as τ → ∞, the result will be suppressed by additional powers of k, due to the
scaling of the upper limit of integration (y = cγkτ at fixed τ). Hence, we conclude that the
amplitude and phase corrections from neutrinos (or any dark radiation) will vanish at least
as fast as k2.

From these asymptotic scaling arguments, we draw the following conclusions:

• For k → ∞, the phase shift due to free-streaming particles approaches a constant.

• For k → 0, the phase and amplitude corrections scale at least as k2.

In the flat-sky limit, these results translate approximately to ` ' k(τ0 − τrec), where τ0 is the
conformal time today. We therefore expect a constant phase shift at high `. Given that matter-
radiation equality corresponds to relatively low `, we do not expect our asymptotic formula for
k → 0 to be more than a rough guide. The primary purpose of this discussion was to highlight
that a power law is the likely behaviour, simply due to the power law decay of the energy density
of the extra radiation. As a result, the phase shift per ` should be some function that interpolates
between a power law and a constant, and is unlikely to follow the ansatz of [28] in detail (although
the logarithmic dependence appears to work well enough on intermediate scales).

B.2 Comments on Polarization

The analytic discussions in the main text were phrased in terms of the temperature anisotropy,
but as we saw in Section 5.3, CMB polarization plays a crucial role in present and future data
analyses. In this appendix, we show that the phase shift of the polarization spectrum is the same
as that of the temperature spectrum.

Following [61], we write the Boltzmann equation for the amplitude of polarized anisotropies, ΘP ,
as

Θ̇P + ikµΘP = −κ̇
[
−ΘP +

1

2
(1− P2(µ))Π

]
, (B.8)
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where Π ≡ Θ2+ΘP,0+ΘP,2 and κ̇ = −neσTa is the time derivative of the optical depth κ (to avoid
confusion with the conformal time τ). The temperature quadrupole is determined by the photon
anisotropic stress, Θ2 ≡ 1

2k
2σγ . Equation (B.8) admits a solution as a line-of-sight integral,

ΘP (τ0) =

∫ τ0

τin

dτ eikµ(τ−τ0)−κ(τ)
(
3

4
κ̇(τ) (µ2 − 1) Π(τ)

)
. (B.9)

The integral in (B.9) is proportional to the visibility function −κ̇e−κ and is therefore peaked at
the surface of last-scattering. In the limit of instantaneous recombination, −κ̇e−κ ' δD(τ − τrec),
we get

ΘP (τ0) ' eikµ(τrec−τ0) 3

4

(
1− µ2

)
Π(τrec) . (B.10)

Solving for Π to leading order in κ̇ � 1, one finds Π ' 5
2Θ2 ' −10

9 k κ̇
−1Θ1 (using the collision

term in the Boltzmann equation for temperature). Applying the continuity equation, ḋγ = −3kΘ1,
and performing a multipole expansion, one then finds

ΘP,`(τ0) '
5

18
ḋγ(k, τrec) κ̇

−1(τrec)

(
1 +

∂2

∂(kτ0)2

)
j`(kτ0) . (B.11)

Two facts should be noticed about this result:

• ΘP,` ∝ ḋγ .—Since the time derivative will not affect the phase shift from dark radiation, we
see that the locations of the acoustic peaks in the polarization spectrum are affected by the
fluctuations in the dark radiation in the same way as in the temperature spectrum.

• ΘP,` ∝ κ̇−1 ∝ n−1
e .—This is important because it allows the degeneracy between H and ne

(or Yp) in the damping tail (which scales as (neH)−1; cf. §3.4.1) to be broken.

168



C
Details of the Fisher Forecasts

In this appendix, we provide supplemental material to Chapter 6. We first describe our CMB Fisher
forecasts and present results for a range of experimental configurations (§C.1). We then provide
details of our LSS forecasts, define the specifications for the employed galaxy surveys, and report
results for a range of data combinations and cosmologies (§C.2). Finally, we show a few of the
convergence tests that we performed to establish the stability of our numerical computations (§C.3).

C.1 Forecasting CMB Constraints

Forecasting the sensitivities of future CMB observations is by now a standard exercise; see e.g. [25,
240, 319, 320]. For completeness, this appendix collects the basic elements of our CMB Fisher
analysis as well as the specifications of the CMB experiments that were used in our forecasts of
Section 6.2.

C.1.1 Fisher Matrix

The Fisher matrix for CMB experiments can be written as

Fij =
∑
X,Y

`max∑
`=`min

∂CX`
∂θi

[
CXY
`

]−1 ∂CY`
∂θj

. (C.1)

The covariance matrix CXY
` for each multipole ` and X = ab, Y = cd, with a, b, c, d = T,E,B, is

defined by

Cabcd
` =

1

(2`+ 1)fsky

[
(Cac` +Nac

` )(Cbd` +N bd
` ) + (Cad` +Nad

` )(Cbc` +N bc
` )
]
, (C.2)

where CX` are the theoretical CMB power spectra, NX
` are the (Gaussian) noise spectra of a given

experiment and fsky is the effective sky fraction that is used in the cosmological analysis. We
employ perfectly delensed power spectra and omit the lensing convergence for simplicity as it is
sufficient for our purposes. We however comment on the effects of these assumptions below. The
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Frequency [GHz] 30 44 70 100 143 217 353

θb [arcmin] 33 23 14 10 7 5 5
∆T [µK arcmin] 145 149 137 65 43 66 200
∆P [µK arcmin] – – 450 103 81 134 406

Table C.1: Specifications for the Planck-like experiment used in [320] and in the CMB-S4 Science
Book [25]. The dashes in the first two columns for ∆P indicate that those frequency channels are
not sensitive to polarization.

noise power spectra are

NX
` = (∆X)2 exp

{
`(`+ 1) θ2b

8 ln 2

}
, (C.3)

with the map sensitivities for temperature and polarization spectra ∆X = ∆T,∆P , respectively,
and the beam width θb (taken to be the full width at half maximum). Note that we set NTE

` ≡ 0

as we assume the noise in temperature and polarization to be uncorrelated. For a multi-frequency
experiment, the noise spectrum (C.3) applies for each frequency channel separately. The effective
noise after combining all channels is

NX
` =

[∑
ν

(
NX,ν
`

)−1
]−1

, (C.4)

where NX,ν
` are the noise power spectra for the separate frequency channels ν.

C.1.2 Experimental Specifications

Our specifications for the Planck satellite are collected in Table C.1. The adopted configuration is
the same as that used in the CMB-S4 Science Book [25]. For the low-` data, we use the unlensed
TT spectrum with `min = 2, `max = 29 and fsky = 0.8. We do not include low-` polarization data,
but instead impose a Gaussian prior on the optical depth, with σ(τ) = 0.01. For the high-` data,
we use the unlensed TT, TE, EE spectra with `min = 30, `max = 2500 and fsky = 0.44. Since the
low-` and high-` modes are independent, we simply add the corresponding Fisher matrices.

We parametrize future CMB experiments in terms of a single effective frequency with noise
level ∆T , beam width θb and sky fraction fsky. We will present constraints as a function of
these three parameters. We take θb = 3′, ∆T = 5µK arcmin and fsky = 0.3 as the fiducial
configuration of a CMB-S3-like experiment. For a representative CMB-S4 mission, we adopt
the same configuration as in the CMB-S4 Science Book [25]: θb = 2′, ∆T = 1µK arcmin and
fsky = 0.4. For both experiments, we use unlensed temperature and polarization spectra with
`min = 30, `Tmax = 3000, `Pmax = 5000. We add the low-` Planck data as described above, include
high-` Planck data with fsky = 0.3 and fsky = 0.2 for CMB-S3 and CMB-S4, respectively, and
impose the same Gaussian prior on the optical depth τ as for Planck. In addition, we forecast a
cosmic variance-limited experiment with `min = 2, `Tmax = 3000, `Pmax = 5000 and fsky = 0.75 to
estimate the potential reach.
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Parameter Planck CMB-S3 CMB-S4 CVL Planck CMB-S3 CMB-S4 CVL

105 ωb 16 5.1 2.7 0.97 26 8.3 3.8 1.3
104 ωc 16 8.3 7.1 4.5 26 10 7.9 4.5
107 θs 29 9.4 5.9 3.5 44 13 6.7 3.5

ln(1010As) 0.020 0.020 0.020 0.0041 0.021 0.020 0.020 0.0041
ns 0.0040 0.0023 0.0020 0.0012 0.0093 0.0040 0.0030 0.0020
τ 0.010 0.010 0.010 0.0020 0.010 0.010 0.010 0.0020
Neff – – – – 0.18 0.054 0.030 0.011

Table C.2: Forecasted sensitivities of Planck, CMB-S3, CMB-S4 and a CVL experiment for the
parameters of ΛCDM and ΛCDM+Neff.

Unlike the CMB-S4 Science Book, we do not include delensing of the T- and E-modes. For
Neff -forecasts, this was shown to have a negligible impact [89], while using unlensed spectra
overestimates the constraining power of the CMB by roughly 30 % for Neff+Yp. We are primarily
interested in the improvement in parameters from adding LSS data, which should be robust to
these relatively small differences. We also ignore the lensing convergence as it basically does not
impact the constraints on these parameters.

C.1.3 Future Constraints

As a point of reference and for comparison with the results of Section 5.3, we present constraints
derived from CMB observations alone. In Table C.2, we show the 1σ constraints for Planck, the
described representative configurations of CMB-S3 and CMB-S4, and the mentioned CVL experi-
ment. In Table C.3, we display how these constraints vary when we allow the helium fraction Yp to
be an additional free parameter. The differences in the forecasted sensitivities for Planck compared

Parameter Planck CMB-S3 CMB-S4 CVL Planck CMB-S3 CMB-S4 CVL

105 ωb 24 8.2 3.8 1.4 26 8.4 3.8 1.4
104 ωc 17 8.6 7.2 5.0 49 21 14 8.4
107 θs 33 9.9 6.3 3.8 89 27 15 6.9

ln(1010As) 0.020 0.020 0.020 0.0041 0.022 0.020 0.020 0.0042
ns 0.0082 0.0038 0.0029 0.0019 0.0093 0.0040 0.0030 0.0020
τ 0.010 0.010 0.010 0.0020 0.010 0.010 0.010 0.0020
Neff – – – – 0.32 0.12 0.081 0.045
Yp 0.012 0.0037 0.0021 0.0008 0.018 0.0069 0.0047 0.0026

Table C.3: Forecasted sensitivities of Planck, CMB-S3, CMB-S4 and a CVL experiment for the
parameters of ΛCDM+Yp and ΛCDM+Neff+Yp.
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Figure C.1: Marginalized constraints on Neff as a function of the sky fraction fsky for three
values of the beam width θb and fixed noise level ∆T = 1µK arcmin.

to the constraints published in [36] can be attributed entirely to the improvement in σ(τ) which
arises from the imposed prior on the optical depth τ . The forecast of Neff for CMB-S3 is a rough
estimate and will be subject to the precise specifications of the respective experiment. While the
precise design of CMB-S4 is also undetermined at this point, σ(Neff) = 0.03 is a primary science
target and is therefore more likely to be a reliable estimate of the expected performance. For a
CVL experiment, some improvement is expected when including the lensing convergence, with
constraints possibly reaching σ(Neff) . 0.008.

In Figure C.1, we demonstrate how the constraints on Neff depend on the sky fraction fsky,
for three different values of θb and fixed noise level ∆T = 1µK arcmin. When varying the total
sky fraction, we also appropriately change the contribution of the included high-` Planck data. In
Figure C.2, we illustrate the constraint on Neff as a function of the beam size θb and the noise
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Figure C.2: Marginalized constraints on Neff as a function of the beam size θb and the temperature
noise level ∆T , for fixed sky fraction fsky = 0.4.
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C.2 Forecasting LSS Constraints

level ∆T , for fixed sky fraction fsky = 0.4. Comparing Figure C.2 to the equivalent figure in
the CMB-S4 Science Book [25] (Fig. 22), we see that the difference between the two forecasts is
∆σ(Neff) ≈ 0.002. This can be attributed to the effects of imperfect delensing and is completely
negligible for our purposes.

C.2 Forecasting LSS Constraints

In this appendix, we collect the specific information regarding the planned LSS surveys which we
used in our Fisher and likelihood forecasts. We also provide the full set of constraints on all of
the cosmological parameters and cosmologies that are studied in Chapter 6.

C.2.1 Survey Specifications

Below, we provide the experimental specifications for the galaxy surveys used in our forecasts.
We have slightly simplified the details compared to [249], for example. In particular, we group
different types of tracers (e.g. luminous red galaxies, emission line galaxies or quasars) into a
single effective number density and bias. We find our results to be fairly insensitive to many of
these details and well approximated by a fixed number of objects distributed with a constant
comoving number density over the same redshift range.

The employed parametrization of the spectroscopic redshift surveys BOSS, eBOSS, DESI and
Euclid are provided in Tables C.4 to C.7. For eBOSS, we combine BOSS and the two eBOSS
configurations of Table C.5 into one survey neglecting the small overlap. We effectively treat
each redshift bin with mean redshift z̄ as an independent three-dimensional survey. Our Fisher
matrix is the sum of the Fisher matrices associated with each bin, F =

∑
z̄ Fz̄. We translated the

survey specifications used in [249] into three numbers per redshift bin: the linear galaxy bias b,
the comoving number density of galaxies n̄g and the bin volume V . This is sufficient to fully
specify the Fisher matrix in each bin. The spherical bin volume is given by

V =
4π

3
fsky

[
dc(zmax)

3 − dc(zmin)
3
]
, dc(z) =

∫ z

0
dz c

H(z)
, (C.5)

where fsky is the sky fraction, dc(z) is the comoving distance to redshift z, and zmin = z̄ −∆z/2

z̄ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75

b 1.79 1.90 1.98 2.09 2.32 2.26 2.38 3.09
103 n̄g [h3 Mpc−3] 0.289 0.290 0.300 0.304 0.276 0.323 0.120 0.0100
V [h−3 Gpc3] 0.0255 0.164 0.402 0.704 1.04 1.38 1.72 2.04

Table C.4: Basic specifications for BOSS derived from [249] with a sky area of Ω = 10 000 deg2

resulting in roughly 1.4 × 106 objects in a volume of about 7.5 h−3 Gpc3.
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z̄ 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25

b 3.07 2.07 1.57 1.57 1.61 3.51 1.98 2.35
105 n̄g [h3 Mpc−3] 0.463 21.3 35.5 23.6 5.40 0.563 1.53 1.48
V [h−3 Gpc3] 0.208 0.258 0.307 0.352 0.392 0.429 0.461 0.489

b 3.07 2.42 2.45 2.56 7.84 3.51 1.98 2.35
105 n̄g [h3 Mpc−3] 0.463 13.5 7.02 3.35 0.0412 0.563 1.53 1.48
V [h−3 Gpc3] 0.830 1.03 1.23 1.41 1.57 1.71 1.84 1.96

z̄ 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15

b 3.65 2.40 2.42 2.08 2.10 3.33 3.35 1.72 1.73
105 n̄g [h3 Mpc−3] 0.664 1.66 1.76 2.03 2.15 0.912 0.965 2.91 3.07
V [h−3 Gpc3] 0.513 0.533 0.551 0.565 0.577 0.587 0.594 0.600 0.604

b 3.65 2.40 2.42 2.08 2.10 3.33 3.35 1.72 1.73
105 n̄g [h3 Mpc−3] 0.664 1.66 1.76 2.03 2.15 0.912 0.965 2.91 3.07
V [h−3 Gpc3] 2.05 2.13 2.20 2.26 2.31 2.35 2.38 2.40 2.42

Table C.5: Basic specifications for eBOSS derived from [249]. The redshift range is covered twice,
first showing the survey covering Ω = 1500 deg2 that will include emission line galaxies (resulting
in roughly 3.8 × 105 objects in a volume of about 8.0 h−3 Gpc3), and then the survey with Ω =

6000 deg2 that will not (resulting in roughly 7.2 × 105 objects in a volume of about 32 h−3 Gpc3).

and zmax = z̄ + ∆z/2 are the minimum and maximum redshift of the respective bin. We use
redshift bins of width ∆z = 0.1 throughout.

For the photometric surveys DES and LSST, we follow [249] and define the surveys by
using (α, β, z∗, Ntot, b0) = (1.25, 2.29, 0.88, 12 arcmin−2, 0.95) and (2.0, 1.0, 0.3, 50 arcmin−2, 0.95),

z̄ 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

b 1.13 1.39 1.64 1.81 1.87 1.89 1.90 1.82 1.53
103 n̄g [h3 Mpc−3] 2.38 1.07 0.684 0.568 0.600 0.696 0.810 0.719 0.558
V [h−3 Gpc3] 0.229 0.563 0.985 1.45 1.94 2.41 2.86 3.28 3.66

z̄ 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85

b 1.47 1.49 1.58 1.62 1.73 2.01 1.98 2.56 4.17
103 n̄g [h3 Mpc−3] 0.522 0.506 0.454 0.356 0.242 0.127 0.0736 0.0289 0.00875
V [h−3 Gpc3] 4.00 4.30 4.56 4.79 4.98 5.14 5.28 5.39 5.48

Table C.6: Basic specifications for DESI derived from [249], covering a sky area Ω = 14 000 deg2

and resulting in roughly 2.3 × 107 objects in a volume of about 61 h−3 Gpc3.
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z̄ 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35

b 1.06 1.11 1.16 1.21 1.27 1.33 1.38 1.44
103 n̄g [h3 Mpc−3] 0.637 1.46 1.63 1.50 1.33 1.14 1.00 0.837
V [h−3 Gpc3] 2.58 3.07 3.52 3.92 4.29 4.61 4.89 5.13

z̄ 1.45 1.55 1.65 1.75 1.85 1.95 2.05

b 1.51 1.54 1.63 1.70 1.85 1.90 1.26
103 n̄g [h3 Mpc−3] 0.652 0.512 0.357 0.246 0.149 0.0904 0.0721
V [h−3 Gpc3] 5.33 5.51 5.65 5.77 5.87 5.94 6.00

Table C.7: Basic specifications for Euclid derived from [249], covering a sky area Ω = 15 000 deg2

and resulting in roughly 5.0 × 107 objects in a volume of about 72 h−3 Gpc3.

respectively. These parameters are related to those employed in our forecasts as follows:

n̄g(z̄) =
Ntot
V

β/z∗
Γ [(α+ 1)/β]

∫ zmax

zmin

dz (z/z∗)
α exp

{
− (z/z∗)

β
}
, (C.6)

b(z̄) =
D1(0)

D1(z̄i)
b0 , (C.7)

with gamma function Γ and linear growth function D1(z).

For DES, we employ a survey area of Ω = 5000 deg2 and a redshift coverage of 0.1 ≤ z ≤ 2.0,
while we take 20 000 deg2 and 0.1 ≤ z ≤ 3.5 for LSST. This results in approximately 1.4 × 108

and 5.9 × 108 objects in a total survey volume of about 24 h−3 Gpc3 and 215 h−3 Gpc3 for the two
surveys, respectively. We neglect the spectroscopic redshift error as it is expected to be comparable
to (or smaller than) the longitudinal damping scale Σ‖, but use a conservative root-mean-square
photometric redshift error of σz0 = 0.05 for both DES and LSST. Finally, we reiterate that, by
considering galaxy clustering alone, we only take a subset of the cosmological observables into
account, in particular for photometric surveys, and we therefore expect to underestimate the full
power of these experiments.

C.2.2 Future Constraints

Using these specifications, we generated forecasts for all of the cosmological parameters discussed
in the main text in combination with the Fisher matrices for Planck, CMB-S3 and CMB-S4.
We include both P (k)- and BAO-forecasts for ΛCDM (Table C.8), ΛCDM+Neff (Table C.9),
ΛCDM+Yp (Table C.10) and ΛCDM+Neff+Yp (Table C.11). As in §6.2.2, the P (k)-forecasts use
wavenumbers up to kmax = 0.2 h Mpc−1 and marginalize over the bm≤1-terms of (6.17). For the
BAO-forecasts, we set kmax = 0.5 h Mpc−1 and marginalize over an≤4 and bm≤3 in each redshift
bin. As we marginalize over galaxy bias, our forecasts show no improvements beyond the CMB
for ln(1010As) and τ . We therefore do not include these two parameters in the following tables.
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Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 16 13 13 12 11 14 12
104 ωc 16 8.9 7.7 4.6 4.3 13 8.2
107 θs 29 28 27 27 27 29 28
ns 0.0040 0.0033 0.0032 0.0028 0.0027 0.0037 0.0033

(a) Planck + P (k)

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 5.1 4.9 4.9 4.7 4.6 5.0 4.8
104 ωc 8.3 6.7 6.1 4.0 3.7 7.8 6.3
107 θs 9.4 9.1 9.0 8.7 8.6 9.3 9.1
ns 0.0023 0.0021 0.0021 0.0019 0.0019 0.0022 0.0021

(b) CMB-S3 + P (k)

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 2.7 2.7 2.7 2.6 2.6 2.7 2.6
104 ωc 7.1 6.0 5.6 3.9 3.6 6.8 5.8
107 θs 5.9 5.7 5.6 5.3 5.2 5.9 5.7
ns 0.0020 0.0018 0.0018 0.0016 0.0016 0.0019 0.0018

(c) S4 + P (k)

Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 16 13 13 13 13 15 14
104 ωc 16 8.7 8.0 5.1 5.5 13 9.4
107 θs 29 27 27 27 26 29 27
ns 0.0040 0.0031 0.0031 0.0028 0.0028 0.0037 0.0032

(d) Planck + BAO

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 5.1 5.0 5.0 4.9 4.9 5.1 5.0
104 ωc 8.3 6.5 6.2 4.4 4.6 7.9 6.8
107 θs 9.4 9.0 8.9 8.6 8.6 9.3 9.0
ns 0.0023 0.0021 0.0020 0.0019 0.0019 0.0022 0.0021

(e) CMB-S3 + BAO

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 2.7 2.7 2.7 2.7 2.7 2.7 2.7
104 ωc 7.1 5.9 5.7 4.2 4.3 6.8 6.1
107 θs 5.9 5.6 5.6 5.2 5.2 5.9 5.7
ns 0.0020 0.0018 0.0018 0.0016 0.0016 0.0019 0.0018

(f) S4 + BAO

Table C.8: Full set of forecasted 1σ constraints in a ΛCDM cosmology for current and future
LSS surveys in combination with the CMB experiments Planck, CMB-S3 and CMB-S4. We
do not quote the sensitivities to ln(1010As) and τ as they are the same as in Table C.2 for all
combinations.
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Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 26 19 18 15 15 24 20
104 ωc 26 23 21 15 13 25 19
107 θs 44 41 40 35 34 43 39
ns 0.0093 0.0068 0.0061 0.0039 0.0035 0.0085 0.0069
Neff 0.18 0.14 0.13 0.087 0.079 0.17 0.14

(a) Planck + P (k)

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.3 7.9 7.8 7.3 7.1 8.2 8.0
104 ωc 10 9.6 9.2 7.8 7.5 10 8.8
107 θs 13 12 12 12 12 12 12
ns 0.0040 0.0037 0.0036 0.0029 0.0028 0.0039 0.0037
Neff 0.054 0.052 0.051 0.045 0.043 0.054 0.052

(b) CMB-S3 + P (k)

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.7 3.7 3.6 3.6 3.8 3.7
104 ωc 7.9 7.1 6.8 5.5 5.3 7.6 6.7
107 θs 6.7 6.6 6.5 6.2 6.2 6.7 6.5
ns 0.0030 0.0029 0.0028 0.0025 0.0024 0.0030 0.0029
Neff 0.030 0.030 0.030 0.028 0.027 0.030 0.030

(c) S4 + P (k)

Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 26 18 18 17 17 22 19
104 ωc 26 26 26 26 26 26 26
107 θs 44 43 43 43 43 44 44
ns 0.0093 0.0065 0.0063 0.0059 0.0059 0.0081 0.0067
Neff 0.18 0.15 0.15 0.14 0.14 0.16 0.15

(d) Planck + BAO

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.3 7.8 7.7 7.4 7.4 8.2 7.8
104 ωc 10 10 9.9 9.6 9.6 10 10
107 θs 13 13 13 13 13 13 13
ns 0.0040 0.0035 0.0035 0.0031 0.0032 0.0039 0.0036
Neff 0.054 0.052 0.052 0.050 0.050 0.054 0.052

(e) CMB-S3 + BAO

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.7 3.7 3.7 3.7 3.8 3.7
104 ωc 7.9 7.2 7.1 6.5 6.5 7.8 7.3
107 θs 6.7 6.6 6.6 6.5 6.5 6.7 6.6
ns 0.0030 0.0028 0.0028 0.0025 0.0025 0.0030 0.0028
Neff 0.030 0.030 0.030 0.029 0.029 0.030 0.030

(f) S4 + BAO

Table C.9: As in Table C.8, but for an extended ΛCDM+Neff cosmology.
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Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 24 19 19 17 16 22 20
104 ωc 17 8.9 7.8 4.7 4.3 13 8.6
107 θs 33 30 29 27 27 32 30
ns 0.0082 0.0066 0.0063 0.0048 0.0044 0.0077 0.0068
Yp 0.012 0.011 0.0100 0.0087 0.0082 0.011 0.011

(a) Planck + P (k)

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.2 7.9 7.8 7.5 7.4 8.1 7.9
104 ωc 8.6 6.8 6.3 4.0 3.7 8.1 6.6
107 θs 9.9 9.5 9.4 8.9 8.8 9.8 9.5
ns 0.0038 0.0035 0.0034 0.0030 0.0029 0.0037 0.0036
Yp 0.0037 0.0036 0.0036 0.0034 0.0033 0.0037 0.0036

(b) CMB-S3 + P (k)

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.8 3.8 3.7 3.7 3.8 3.8
104 ωc 7.2 6.1 5.7 3.9 3.6 6.9 5.9
107 θs 6.3 6.0 5.9 5.5 5.4 6.2 6.0
ns 0.0029 0.0028 0.0028 0.0025 0.0024 0.0029 0.0028
Yp 0.0021 0.0021 0.0021 0.0020 0.0020 0.0021 0.0021

(c) S4 + P (k)

Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 24 19 19 18 18 22 19
104 ωc 17 8.7 8.0 5.5 5.7 14 9.4
107 θs 33 29 29 28 28 31 29
ns 0.0082 0.0063 0.0062 0.0059 0.0059 0.0075 0.0065
Yp 0.012 0.011 0.011 0.0100 0.011 0.011 0.011

(d) Planck + BAO

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.2 7.8 7.8 7.6 7.6 8.1 7.9
104 ωc 8.6 6.6 6.3 4.4 4.6 8.2 6.9
107 θs 9.9 9.3 9.3 8.8 8.9 9.8 9.4
ns 0.0038 0.0034 0.0034 0.0031 0.0031 0.0037 0.0035
Yp 0.0037 0.0036 0.0036 0.0035 0.0035 0.0037 0.0036

(e) CMB-S3 + BAO

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.8 3.8 3.8 3.8 3.8 3.8
104 ωc 7.2 5.9 5.7 4.2 4.3 6.9 6.1
107 θs 6.3 5.9 5.8 5.4 5.5 6.2 5.9
ns 0.0029 0.0027 0.0027 0.0025 0.0025 0.0029 0.0028
Yp 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021

(f) S4 + BAO

Table C.10: As in Table C.8, but for an extended ΛCDM+Yp cosmology. The constraints
on ln(1010As) and τ are the same as in Table C.3 for all combinations.
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Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 26 20 19 17 16 24 21
104 ωc 49 40 35 23 21 45 34
107 θs 89 76 70 53 50 84 69
ns 0.0093 0.0069 0.0065 0.0048 0.0045 0.0086 0.0071
Neff 0.32 0.25 0.22 0.14 0.13 0.29 0.23
Yp 0.018 0.016 0.016 0.013 0.012 0.017 0.015

(a) Planck + P (k)

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.4 8.0 7.9 7.5 7.5 8.3 8.1
104 ωc 21 20 19 15 14 20 18
107 θs 27 26 26 22 21 27 25
ns 0.0040 0.0037 0.0036 0.0030 0.0029 0.0039 0.0037
Neff 0.12 0.12 0.11 0.094 0.088 0.12 0.11
Yp 0.0069 0.0068 0.0067 0.0060 0.0058 0.0069 0.0066

(b) CMB-S3 + P (k)

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.8 3.8 3.7 3.7 3.8 3.8
104 ωc 14 14 13 12 11 14 13
107 θs 15 15 14 13 13 15 14
ns 0.0030 0.0029 0.0028 0.0025 0.0024 0.0030 0.0029
Neff 0.081 0.079 0.078 0.070 0.067 0.081 0.078
Yp 0.0047 0.0046 0.0046 0.0043 0.0042 0.0047 0.0046

(c) S4 + P (k)

Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 26 19 19 18 18 23 20
104 ωc 49 49 49 48 48 49 49
107 θs 89 87 87 87 87 88 88
ns 0.0093 0.0066 0.0065 0.0060 0.0061 0.0081 0.0068
Neff 0.32 0.29 0.29 0.28 0.28 0.30 0.29
Yp 0.018 0.018 0.018 0.018 0.018 0.018 0.018

(d) Planck + BAO

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.4 7.9 7.9 7.6 7.7 8.3 8.0
104 ωc 21 21 21 21 21 21 21
107 θs 27 27 27 27 27 27 27
ns 0.0040 0.0035 0.0035 0.0032 0.0032 0.0039 0.0036
Neff 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Yp 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069

(e) CMB-S3 + BAO

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.8 3.8 3.8 3.8 3.8 3.8
104 ωc 14 14 14 14 14 14 14
107 θs 15 15 15 15 15 15 15
ns 0.0030 0.0028 0.0028 0.0025 0.0026 0.0030 0.0028
Neff 0.081 0.080 0.080 0.079 0.079 0.081 0.080
Yp 0.0047 0.0047 0.0047 0.0046 0.0046 0.0047 0.0047

(f) S4 + BAO

Table C.11: As in Table C.10, but for an extended ΛCDM+Neff+Yp cosmology.
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Apart from the improvements in the constraints on Neff and Yp, which we already discussed
in §6.2.2, we see that mainly ωb and ωc benefit from combining the considered LSS surveys
with CMB experiments. The sensitivities may be enhanced by factors of three (two) and more
compared to Planck (CMB-S3). We note that the DESI specifications of Table C.6 are slightly more
optimistic overall than what was considered in [293] resulting in roughly the same BAO-forecasts
and up to about 5 % better P (k)-forecasts.

Comparing our forecasts with the ones obtained from the BAO scale alone (combined with
Planck), we see that the BOSS analysis for ΛCDM is nearly optimal, but improvements on
the constraints of more than 10 % can be achieved in extended cosmologies. For instance, the
constraints on ωb, ns and Neff improve by 3 % or more, and ωc in ΛCDM+Yp even by 12 %.
For DESI, the obtained sensitivities can generally be increased by a larger amount, e.g. up to 15 %
for ωb and ns in ΛCDM+Neff, and for ωc in ΛCDM+Yp.

C.3 Convergence and Stability Tests

One of the motivations for including our full list of forecasts in Appendix C.2 is to make the
results reproducible. It is therefore also important that we explain how the numerical derivatives
were computed in the Fisher matrix, including the employed step sizes. In this appendix, we
provide this information and demonstrate that the step sizes are appropriate for the convergence
and stability of our calculations.

The numerical derivatives in (6.4) and (6.21) are computed using a symmetric difference
quotient or two-point stencil, f ′(θ) = [f(θ + h)− f(θ − h)]/(2h), with fiducial parameter value θ
and absolute step size h. For each parameter, we choose the step sizes given in Table C.12 resulting
in relative step sizes, hrel = h/θ, that are generally of order O

(
10−2).

In Figures C.3 and C.4, we show that our results are converged for both the P (k)- and

Parameter h hrel

ωb 0.0008 3.6 × 10−2

ωc 0.002 1.7 × 10−2

100 θs 0.002 1.9 × 10−3

ln(1010As) 0.05 1.6 × 10−2

ns 0.01 1.0 × 10−2

τ 0.02 3.0 × 10−1

Neff 0.08 2.6 × 10−2

Yp 0.005 2.0 × 10−2

Table C.12: Absolute and relative step sizes, h and hrel, used when computing the derivatives in
the Fisher matrices.
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Figure C.3: Results of the convergence test for the P (k)-forecasts of DESI in the fiducial
ΛCDM+Neff cosmology. The spectra for the numerical derivatives were computed using a high-
accuracy setting of CLASS. The dashed lines indicate the step sizes employed in our forecasts.

BAO-forecasts. The results in these figures (as in the rest of our forecasts) use CLASS with a
high-accuracy setting. We have also checked that the forecasted constraints are converged when
employing the standard accuracy setting, but note that the results are slightly less stable to
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Figure C.4: As in Figure C.3, but for the BAO-forecasts of DESI.
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changes away from these values. For the P (k)-forecasts, we see that a sufficiently small step size is
needed, but a further decrease in the step size still leads to converged results. The BAO-forecasts,
by contrast, show islands of convergence where performance decreases both when the step size is
increased and when it is decreased. This behaviour is more noticeable using the standard accuracy
setting of CLASS, but likely reflects the fact that the BAO feature is itself a small effect and small
step sizes are therefore more likely to produce effects comparable to numeric or modelling errors.
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D
Broadband and Phase Extraction

In this appendix, we provide supplemental material to Chapters 6 and 7. We describe our
implementation of a robust method to extract the matter broadband power spectrum (§D.1) and
the computation of the phase shift template (§D.2).

D.1 Broadband Extraction

The split of the matter power spectrum into a broadband (‘no-wiggle’) part and an oscillatory
(‘wiggle’) part, P (k) = P nw(k) + Pw(k), is not uniquely defined, but depends on the method that
is being used. In the following, we describe our procedure for extracting the broadband spectrum
which is robust and stable over a very large parameter space.

Computationally, it is easier to identify a bump over a smooth background than to find the
zeros of oscillations on top of a smooth background. This suggests that it is convenient to sine
transform the matter power spectrum to discrete real space where the oscillations map to a
localized bump. We then remove this bump and inverse transform back to Fourier space.

An algorithm for the discrete spectral method was outlined in §A.1 of [321]. Concretely, the
relevant steps of our implementation are:

1. Provide P (k): Compute the theoretical matter power spectrum P (k) using CLASS for discrete
wavenumbers k up to a chosen kmax and log-log interpolate using cubic splines.

2. Sample log[kP (k)]: Sample log[kP (k)] in 2n points for an integer number n. These points
are chosen equidistant in k.

3. Fast sine transform: Perform a fast sine transform of the log[kP (k)]-array using the or-
thonormalized type-II sine transform. Denoting the index of the resulting array by i, split
the even and odd entries, i.e. those entries with even i and odd i, into separate arrays.

4. Interpolate arrays: Linearly interpolate the two arrays separately using cubic splines.

5. Identify baryonic bumps: Compute the second derivative separately for the interpolated even
and odd arrays, and average over next-neighbouring array entries to minimize noise. Choose
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imin = i∗ − 3, where i∗ is the array index of the first minimum of the second derivative. Set
imax = i∗ +∆i, where i∗ is the array index of the second maximum of the second derivative,
and ∆i = 10 and 20 for the even and odd array, respectively. These shifts were obtained
empirically, but are found to give reliable and stable results for a large range of n and kmax.

6. Cut baryonic bumps: Having found the location of the bumps within [imin, imax] for the
even and odd arrays, respectively, remove the elements within this range from the arrays.
Then, fill the gap by interpolating the arrays rescaled by a factor of (i + 1)2 using cubic
splines. This is analogous to interpolating r2 ξ(r) instead of the correlation function ξ(r) at
separation r.

7. Inverse fast sine transform: Merge the two arrays containing the respective elements without
the bumps, and without the rescaling factor of (i+ 1)2, and inversely fast sine transform.
This leads to a discretized version of log[kP nw(k)].

8. Provide P nw(k) and Pw(k): In order to cut off numerical noise at low and high wavenumbers,
perform two cuts at k1 and k2, where k1 = 3 · 2−n and the value of k2 is found as the
trough of |P (k)− P nw(k)|/P nw(k) following the smallest maximum (before the oscillation
amplitude increases again due to the numerical artefacts intrinsic to the procedure). The
reliably extracted no-wiggle spectrum P nw(k) is then valid for k ∈ [k1, k2]. In practice,
choose n and kmax large enough initially so that k1,2 are outside the range of wavenumbers
of interest, e.g. those covered by a survey. The wiggle spectrum in this range is then given
by Pw(k) = P (k)− P nw(k).

Examples of the broadband extraction using this procedure are shown in Fig. D.1. We see that
the extraction method is unbiased, i.e. the resulting wiggle spectrum both oscillates around zero
and asymptotes to zero for large wavenumbers. In addition, it is robust and stable over a large
parameter space at small computation time (depending on n). As the position of the first BAO peak
is close to the peak of the matter power spectrum, it is sensitive to how exactly the baryonic bump
is removed. However, we have checked that the computed constraints on cosmological parameters
are insensitive to this uncertainty. The same holds for varying the parameters n and kmax with
fixed shifts in step 5 as long as k1,2 are outside the range of wavenumbers of interest.

D.2 Phase Shift Measurement

In the following, we describe our method for computing the phase shift template used in the
likelihood forecasts of Section 6.3 and in the BOSS DR12 data analysis of Chapter 7.

First, we compute the BAO spectrum using CLASS and the broadband extraction method
detailed above for a given value of Neff. In practice, we set the primordial helium fraction Yp to
the fiducial value, but the final template is independent of this choice. As discussed in §6.3.1, we
keep the time of matter-radiation equality fixed at its fiducial value by changing the dark matter
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Figure D.1: Top: Extracted broadband spectrum P nw(k) compared to the full power spec-
trum P (k) for Neff = 3.046 (left) and 10 (right). The spectra are rescaled by k3/2 to exaggerate
any oscillations. Bottom: Extracted BAO spectrum Pw(k)/P nw(k) for Neff = 3.046 and 10 with
linear (left) and logarithmic (right) k-axis.

density ωc according to
ωc =

aν +Neff

aν +N fid
eff

(
ωfid
c + ωfid

b

)
− ωfid

b , (D.1)

where aν is defined in (3.16). We then fit the following envelope function to the maxima of the
absolute value of the BAO spectrum:

a(k) ≡ e(k)d(k) , where
e(k) ≡ 1−Ae exp {−ae (k/ke)κe} ,

d(k) ≡ Ad exp {−ad (k/kd)κd} .
(D.2)

The parameters Ai, ai, κi, with i = d, e, are fitting parameters, while ke is the location of the
peak of P nw(k) and kd is the wavenumber associated with the mean squared diffusion distance.
These fitting functions are motivated by the modelling in [28, 115]. We define the ‘undamped
spectrum’ as

O(k) ≡ a(k)−1Pw(k)/P nw(k) . (D.3)

For the fiducial cosmology, for instance, we find the following parameters: Ae ≈ 0.141, ae ≈ 0.0035,
κe ≈ 5.5, ke ≈ 0.016 h Mpc−1, and Ad ≈ 0.072, ad ≈ 0.32, κd ≈ 1.9, kd ≈ 0.12 h Mpc−1.

Before we can measure the phase shift, we have to match the sound horizon at the drag
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epoch, rs, to that in the fiducial cosmology to remove the change to the BAO frequency induced
by Neff. By rescaling the wavenumbers as k → rfid

s /rs k, we fix rsk to the fiducial model for all
wavenumbers k. For convenience, we also normalize the spectrum such that the amplitude of the
fourth peak is the same as in the fiducial cosmology.

Finally, we can extract the phase shift as the shift of the peaks/troughs and zeros of O(k)

relative to the fiducial cosmology, δk∗ = k∗ − kfid
∗ . To obtain the template f(k), we sample

100 cosmologies with varying Neff ∈ [0, 3.33],1 and define

f(k) ≡
〈

1

1− β(Neff)

δk∗(k;Neff)

rfid
s

〉
Neff

, (D.4)

where β(Neff) is the normalization introduced in (6.27). The bars in Fig. 6.6 indicate the locations
of the peaks/troughs/zeros of the fiducial spectrum O(k) and their length shows the standard
deviation in these measurements which is generally small.

1We restrict to this range of values of Neff as we observed a small, but unexpected jump in the peak locations
around Neff ∼ 3.33. Below and above, the peak locations change coherently with Neff. This range was then chosen
as we are mostly interested in smaller Neff. However, we expect the template to also be valid for larger Neff outside
the sampling range.
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