
EFFECTS OF TEMPORAL EXPECTATION ON
COMPLEX DECISION MAKING

David Greatrex
Christ’s College

Centre for Music and Science
University of Cambridge

This dissertation is submitted for the degree of Doctor of
Philosophy.

August 2017



Declaration

This dissertation is the result of my own work and includes nothing which is
the outcome of work done in collaboration except as declared in the Preface and
specified in the text. It is not substantially the same as any that I have submitted,
or, is being concurrently submitted for a degree or diploma or other qualification
at the University of Cambridge or any other University or similar institution
except as declared in the Preface and specified in the text. I further state that
no substantial part of my dissertation has already been submitted, or, is being
concurrently submitted for any such degree, diploma or other qualification at
the University of Cambridge or any other University or similar institution except
as declared in the Preface and specified in the text. This dissertation does not
exceed 80,000 words including tables and footnotes, excluding tables of content,
appendices, bibliography, and diagrams.



Abstract

Many complex decisions require integrating and assessing multiple streams of dy-
namic information whilst determining how to act. This dynamic information often
contains rhythmic structures which our sensory systems can adapt to and use to
anticipate future events. Despite the close relationship between rhythmic tempo-
ral expectations and complex decision making being self evident, no experiments
explicitly attempt to understand this interdependence. If the theories that have
emerged from both domains are to generalise to complex interactive behaviour,
the effects of dynamic context on complex decisions must be considered.

I argue that timing research must move beyond simple decisions and develop
a new experimental framework for addressing the problem. This includes increas-
ing the complexity of experimental tasks, testing the effects of timing on percep-
tual averaging and subjective value decisions, incorporating timing as an inherent
dimension of targets, testing degrees of aperiodicity and exploring the effects
that prior knowledge about the temporal structure of a stimulus has on choice.
Seven behavioural experiments are reported that implement the new experimental
framework. Five use a complex auditory-spatial averaging task to examine effects
of periodicity, expectation, prior knowledge and related parameters such as IOI
variance. One tests the effects of rhythmic variability and stimulus duration on
auditory detection to determine specificity to complex decision making, and one
investigates the effects of timing on audio-visual subjective value decisions.

The results show that existing theories of temporal expectation do not nec-
essarily generalise to complex decision making. Periodicity reduces the amount
of information that is needed to form complex decisions. However, the effects of
periodicity (or degree of aperiodicity) on choice are dependent on a number of
factors associated with prior knowledge, stimulus rate, variance, decision type and
task complexity. Using these findings I develop an explanatory framework called
"dynamic inhibition and boosting" that better accounts for behavioural data in
the literature compared with existing theories. This explanation is supported by
the novel proposal that temporal expectations influence confidence and perceived
risk.
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Chapter 1

Introduction

1.1 Aims of the thesis

This thesis is founded on an original argument concerning the unsuitability of
widely used experimental approaches in the timing literature. It argues that to
understand the effects of temporal expectation on interactive behaviour, stimulus
timing must be contextualised and modelled as part of, and not separate from,
goal relevant information. This has required expanding the contexts in which
temporal expectation is typically investigated and exploring how the timing of a
stimulus biases complex decisions. Complex decision making is defined through-
out this thesis as choices that are based on more than one piece of perceptual infor-
mation that require integrating memorised content into decision options and/or
weighting options in terms of subjective value. The benefits of this approach
are two-fold. Firstly, it challenges the use of temporal expectation paradigms in
which participants respond to and categorise isolated stimuli preceded by an un-
related rhythmic pulse. Whilst such experiments are effective in showing how the
structure of incoming sensory information biases simple classification decisions
and sensory processing (Large and Jones, 1999; Barnes and Jones, 2000; Doherty
et al., 2005; Schroeder and Lakatos, 2009; Henry and Obleser, 2012; Cravo et al.,
2013; Hickok et al., 2015), they provide little evidence for whether these findings
generalise to more complex decisions or markably influence everyday interactive
behaviour. Secondly, it ensures that timing is investigated in a way that has rele-
vance for complex decision making and the decision making literature in general.
Whilst decision scientists have been successful in mapping the behavioural and,
more recently, neural correlates of a wide range of decisions (Smith and Vickers,
1988; Gold and Shadlen, 2001, 2007; Smith and Ratcliff, 2004; Glimcher, 2004;
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Carpenter et al., 2009; Plassmann et al., 2007; Behrens et al., 2007; Rushworth
et al., 2009; Alvarez, 2011), stimulus timing has rarely been the explicit focus of
attention. In cases where it has, as in temporal discounting research (Frederick
et al., 2002; Kable and Glimcher, 2007), the research has focused on the effects of
long time intervals between a stimulus and reward and not on fast rhythmic event
timing which is characteristic of interactive behaviours and temporal expectation
paradigms. This thesis therefore brings both the temporal expectation and de-
cision making literatures together to explore interdependence between rhythmic
variability, temporal expectations and complex decision making.

The thesis contains a series of seven auditory experiments which were designed
to achieve two primary aims. The first aim is to determine whether and how the
timing of decision information systematically biases complex decisions. This is
motivated by a desire to test the generalisability of current timing and decision
theories under experimental scenarios more aligned with goal-directed everyday
behaviour. The second aim is to facilitate change in the experimental psychology
and neuroscientific literatures by adopting a new experimental approach that re-
shapes widely used experimental methods. This contributes to knowledge in three
ways: 1. It develops theoretical and methodological connections between the tem-
poral expectation and decision making literatures that have until now remained
relatively separate from one another. 2. It generates data showing how onset
variance within auditory sequences impacts complex averaging and value-based
choice. 3. It determines whether stimulus timing should be incorporated into
models of complex decision making.

1.2 Setting the scene

1.2.1 Movement and time

Neurons fire, hearts beat, eyelids blink, and bodies move. Without the ability to
move it would be extremely hard for us to seek what we need in order to survive
and procreate. Movement is what gives purpose to the cognitive system and leads
to us experiencing a life in motion (Marsh et al., 2009). It is also what enables us
to detect agency and is the medium through which we interact with others (Frith
and Frith, 2010).

Movement is the reason why perception, cognition and behaviour cannot be
reduced to observational exchanges in which static information is processed and
responded to unidirectionally. Take the example of a busy town square. Some
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people walk in opposite directions, others stroll side-by-side and many stand en-
gaged in communicative turn-taking. From afar the scene appears chaotic and
disorderly; up-close it comprises a complex interaction of localised, shared and
intended actions. Attention is sequentially caught and directed towards different
aspects of the scene depending on your goals. This selectivity relies on active
engagement with the event and on making anticipated and synchronised move-
ments. The temporality of the event ensures that the brain must be proactive
(Nobre et al., 2007).

1.2.2 Goals

Many of the movements in the square can be understood from the perspective of
goals. If your goal is to arrive at your next appointment on time, then running
across the square will decrease the likelihood that you are late. If you are hungry,
then standing in-line to buy a sandwich is a socially accepted way to acquire
food. A goal is the object to which effort or ambition is directed (OED, 2016). It
can apply to an individual or constitute joint intended effort aimed at facilitating
shared beneficial outcomes (Gold and Shadlen, 2007).

In addition to movement, perception and the attentional system must also be
understood from the perspective of goals. Goals exist on multiple levels and are
characterised by the anticipated benefit that they afford an organism. If a goal
is to communicate a concept from your last meeting to a colleague then it will
be unlikely that you will pay attention to the colour of a market stall tent; not
to mention a person dressed as a gorilla (Simons and Chabris, 1999). However, if
the gorilla makes threatening noises and suddenly starts to run across the square
at you, your attention would be captured by this unlikely event. The goal is now
to survive. You therefore put all of your effort into trying to avoid harm. Goal
availability, anticipated reward and associated action costs can change unexpect-
edly with time and previous actions (Christopoulos et al., 2015). The cognitive
system must therefore proactively sample the environment for information that
facilitates dynamically competing goals during movement.

1.2.3 Prediction

Instead of running away from the gorilla, you smile and walk towards it. This is
because you know that today your eccentric friend was planning to wear a costume
whilst fundraising in the square. This is an example of prediction based on prior
knowledge and expectation. As the gorilla’s height, build and gait is similar to
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that of your friend, you predict that it does not intend to hurt you. Predicting
the nature and outcome of others’ actions and knowing what they are going to
do next is crucial for survival (Sebanz et al., 2006; Frith, 2007). Without this
information one is forced to rely on sensory patterns and ostensive social signals
that are predictive of goals, intent and time to impact whilst preparing to move.
This is an example of context-sensitive prediction. Examples of predictive cues
are the direction of eye gaze, gestures, rate of movement, trajectory of movement
and the attention and facial expressions of others in the room (Kilner et al.,
2007; Frith and Frith, 2007, 2010). Context-sensitive prediction requires the fast
classification of sensory information and its integration with prior knowledge for
the purpose of prediction.

Pattern completion and the extrapolation of structure is an important char-
acteristic of the predictive mind. Humans are drawn towards repeating statistical
patterns and actively construct cognitive templates on which to guide their be-
haviour (Jones and Boltz, 1989; Wolpert et al., 2003). Dynamically extrapolating
the rate and rhythmic patterning of another’s footsteps provides a predictable
forward-looking template on which to focus attention and synchronise action.
Sensing a common pulse enables friends to coordinate their actions whilst dancing
in time to music. Although a pulse may be perceived, it does not necessarily mean
that there is one in the physical signal (Snyder and Large, 2005; Large and Sny-
der, 2009). Rather, it may constitute an emergent cognitive property that focuses
attention on specific aspects of the sensory stream and facilitates the coordina-
tion of multilevel cognitive processes in a way that allows one to "make sense" of
dynamic and often incomplete perceptual information (Velasco and Large, 2011).
Averaging, "filling in" and detecting structure in noise are all fundamental to
aspects of speech perception, intelligibility, object/event recognition and success-
fully timed coordination (for examples, see: Warren, 1984; Kanizsa, 1985; Repp,
2005; Large, 2008; Hawkins, 2010).

1.2.4 Context

Cognitive structures, concepts and classes emerge through one’s experiences of
what is functionally significant and meaningful in the immediate and recalled en-
vironment (Gallagher, 2009). The sensations and movements within the square
are entirely dependent on factors such as how bodies are positioned, prior expe-
rience, attentional allocation and the types of emotions that are induced during
interaction. Implicit understanding of this context strongly influences actions so
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that they are functionally appropriate and it is context that makes our actions
meaningful or not (Beer, 2014).

1.3 The problem

Our ability to track temporal regularities in the environment and generate expec-
tations about when events will occur is essential for successful human interaction
and survival. It is therefore not surprising that our perceptual and attentional
systems are tuned toward temporally structured moments in time (Jones, 1976;
Nobre et al., 2007; Nobre and Rohenkohl, 2014). Passive entrainment towards pre-
dictable temporal cues and rhythmic patterns increase the accuracy of time inter-
val judgements (Large and Jones, 1999; Jones and Boltz, 1989; Jones, 2004, 2009,
2010), enhance early sensory responses, entrain neural oscillations and increase
perceptual contrast sensitivity and gain (Correa et al., 2005; Doherty et al., 2005;
Rohenkohl and Nobre, 2011; Rohenkohl et al., 2012; Cravo et al., 2013; Mathew-
son et al., 2010, 2012). Temporal expectations, it seems, are closely related to
sensory encoding and the memorisation of information.

In combination with predictive attending, humans use learned representations
of goals, anticipated outcomes and perceived value as means of calculating the
most beneficial behaviours to pursue (Behrens et al., 2007; Kable and Glimcher,
2009; Rangel et al., 2008; Sebanz et al., 2006; Vesper et al., 2011). This ability is
commonly investigated from the perspective of animal foraging or complex deci-
sion making and requires dynamically integrating multiple sources of perceptual
information with learned beliefs about the world. Knowing that colliding with a
moving car can cause serious injury will increase the time taken to gather relevant
perceptual evidence used to predict the car’s movement. The time allocated for
this prediction will depend on the importance that is placed on crossing the road
at that moment in time. A greater expectation that the considered action will
be beneficial will decrease the willingness to wait and increase the likelihood of
engaging in risky action. Successful coordinated interaction therefore relies on
interdependence between predictive attending and complex decision making.

Whilst there is a large body of literature on rhythmic temporal expectations
and complex decision making, there have been no explicit attempts to under-
stand their interdependence. The closest examples in the temporal expectation
literature, albeit not specific to complex decisions, are Rohenkohl et al. (2012),
Cravo et al. (2013) and Jepma et al. (2012) who used decision theoretic models
to investigate what effect temporal expectations had on simple classification deci-
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sions. The closest examples made by complex decision researchers are Armel et al.
(2008) and Lim et al. (2011) who varied eye-gaze duration during an economic
valuation paradigm. Neither author, however, systematically varied temporal
structures nor referenced any temporal expectation research. Typically, nearly
all psychophysical tasks used to investigate temporal expectations require par-
ticipants to classify simple isolated targets that are preceded by an unrelated
rhythmic pulse (Sameiro-Barbosa and Geiser, 2016). This approach has two limi-
tations: Firstly, it is insufficient because the meaning and nature of goal-relevant
decision information (e.g. the target stimulus) is artificially separated from that of
timing information (e.g. the preceding rhythmic pulse). In everyday life, however,
timing is inherent within goal relevant information (such as the rhythm and rate
of speech). It functions as a dimension through which relevant information is ex-
perienced and responded to. For this reason, timing must remain integrated with,
and not separated from, goal relevant decision-information. Secondly, the restric-
tion of the standard psychophysical approach to simple classification judgements
has very limited application, since most interactive decisions require integrating
dynamic sensory information from multiple sources and time points with that of
preference and anticipated reward information. The types of judgements under
investigation must be expanded if current timing theories are to generalise to
complex goal-directed behaviour.

A similar critique can also be applied to the complex decision making lit-
erature. Economic decision making tasks often require participants to make
preference-led decisions between pairs of visually presented items. It is rare,
however, for the contextual presentation of the stimuli to be varied. Instead, de-
cision options are viewed via static images on a computer monitor and are usually
preceded and followed by a blank screen (see Plassmann et al. (2007), Lebreton
et al. (2009) and Hare et al. (2010) for examples). For these experimental findings
to generalise to that of complex goal-orientated behaviour, the effects of dynamic
context on complex decisions must be considered. Thus, to advance an idea pro-
posed by Summerfield and Tsetsos (2012), new experimental paradigms should be
designed in which value-based decisions are not treated as abstracted economic
calculations devoid of context, nor perceptual responses devoid of reward.

1.4 Contents of the thesis

Chapter 2 reviews relevant concepts, methods and definitions used throughout
the thesis and provides a theoretical introduction to the investigation. Temporal
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expectation, rhythm, periodicity, synchronisation, entrainment, and perceptual
and value-based decision making are each discussed in turn to highlight how they
have been defined and studied by others. The chapter then reviews existing
cognitive models of sensory entrainment and decision making to understand how
key models differ from one another and to highlight areas in which they may be
compatible and linked. Here, attentional entrainment and sequential sampling
models are focused on due to the each being largely uncontested in its respective
literature. The chapter concludes by discussing the historic lack of communication
between the timing and decision making literatures, highlighting why periodicity
is important and the proposed benefits of collaboration.

Chapter 3 contains the main theoretical argument of the thesis suggesting
that temporal expectation research must move beyond simple decisions in order
to create experimental conditions that more closely reflect the demands of every-
day decisions. It begins by discussing current limitations of temporal expectation
research by focusing on five areas of temporal expectation paradigms that are in
need of development. These areas are: decision complexity, decision type, time as
an inherent dimension of targets, rhythmic variance and prior knowledge. A new
experimental approach is then proposed as a way to fix these limitations. This in-
cludes incorporating complex averaging and subjective value decision making into
temporal expectation paradigms, using sound lateralization techniques to combine
rhythmic sequences with goal relevant information and using analytical methods
to investigate how degrees of stimulus aperiodicity bias complex decisions. This
new experimental approach is used to design each of the seven behavioural exper-
iments that are reported in later chapters.

Chapter 4 reports two sound lateralization experiments (experiments 1 and 2)
aimed at testing what effect rhythmic temporal expectations and prior knowledge
about stimulus timing have on complex averaging decisions. The experiments
represent the first attempts at implementing the new experimental approach de-
scribed in chapter 3 and were adapted from three conceptually-similar behavioural
studies in the decision making literature. Effects of rhythmic variability are in-
vestigated and a decision weighting analysis run to understand how rhythmic
temporal expectations weight decision information at different moments within a
stimulus stream.

Chapter 5 reports two additional sound lateralization experiments (experi-
ments 3 and 4). The purpose of the experiments is to determine the generalisabil-
ity of chapter 4 findings, whilst refining the implementation of the experimental
approach outlined in chapter 3. This includes reducing the complexity of the
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experimental design compared with experiments 1 and 2 and varying the rate
of rhythmic sequences used to induce temporal expectations. As experiments 1
and 2 both used the same rate of periodic sequence it is important to determine
whether the rate of the stimulus stream interacts with the effects of rhythmic
temporal expectation on choice. Whilst the experimental task required complex
averaging, as in earlier experiments, participants needed to make relative rather
than absolute localisation decisions. The complexity of the task was also bet-
ter controlled for compared with experiments 1 and 2 as a way to enhance the
interpretability of the findings.

Chapter 6 reports a speeded response time paradigm that focuses on the ef-
fects of rhythmic variability on motor preparation and response. As participants’
choices were previously found to be sensitive to the degree of aperiodicity in the
rhythmic stimulus (experiments 1 - 4), the experiment tested whether this sen-
sitivity was specific to complex decisions or applies to simpler perceptual tasks.
This will help to identify the underlying cognitive processes that were responsible
for this earlier finding and to determine whether or not it should be incorporated
into cognitive models of complex decision making. A related topic that is also
investigated is whether the duration of the rhythmic sequence interacts with par-
ticipants’ sensitivity towards IOI variance. This was not tested in experiments
1 - 4 and therefore it is unknown whether the amount of rhythmic information
one is exposed to contributes to the effect. Due to the aims of the experiment,
the experimental design was much simpler than the previous complex averaging
tasks and it did not attempt to fulfil all of the features of the new experimental
approach described in chapter 3.

Chapter 7 returns to complex averaging decisions by reporting an experiment
that investigates how rhythmic temporal expectations bias decisions when partic-
ipants choose how much of a stimulus to listen to. The main difference with the
previous complex averaging experiments is that participants did not have to wait
until the end of a stimulus stream before responding. This tailors the investiga-
tion towards behaviours in which deliberation time can be costly, whilst making
it possible to dissociate the time it takes to reach a decision from responses that
are restricted to a response period. Drift diffusion models (a form of computa-
tional model widely used throughout the perceptual decision making literature)
were fitted to the data to estimate how different components of the decision vary
under different levels of periodicity. This use of cross-disciplinary methods acts as
an example of the additional insight that can be gained if the timing and decision
making literatures collaborate more closely.
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Chapter 8 directs the investigation towards the type of decision that is being
made by testing whether rhythmic temporal expectations bias subjective value
representations. This is the last unexplored feature of the new experimental
approach described in chapter 3 but is key to expanding the generalisability of
the thesis to everyday decision making. As most previous research into subjective
value is associated with preference decisions made between items of food, the
experiment was designed to include non-appetitive audio-visual stimuli. This
was done in an attempt to increase the generalisability and ecological validity of
value-based decision making research.

The concluding chapter ties the experimental findings together to form an
overview of the effects of rhythmic temporal expectation on complex decision
making. This is the first step towards building a predictive framework on which
to quantitively map the underlying cognitive processes and should be used as a
starting point for further experimentation and computational modelling. Real-
world applications for the research are also discussed with an emphasis given to
human-machine interface design and suggestions made for future experimentation.



Chapter 2

Background

2.1 Key concepts, methods and definitions

2.1.1 Temporal expectation

The term "temporal expectation" is used interchangeably with several others, in-
cluding "(rhythmic) temporal predictions" (Arnal and Giraud, 2012; Nobre and
Rohenkohl, 2014; Cravo et al., 2013), "predictive timing" (Arnal and Giraud,
2012), "temporal orienting" (Correa, 2010), "rhythmic expectations" (Zanto et al.,
2006), "temporally adaptive predictions" (Arnal et al., 2014), "anticipatory bi-
ases" (Rohenkohl et al., 2012) and "sensory entrainment" (Sameiro-Barbosa and
Geiser, 2016). They all refer to the ability to expect the time occurrence of an
upcoming sensory event based on prior temporal regularity and cues in the sen-
sory input. Temporal expectations have been widely shown to improve action
preparation and execution and afford a range of behavioural benefits associated
with perceptual processing in both the auditory and visual domains. For exam-
ple, temporal expectations decrease response times (Woodrow, 1914; Niemi and
Näätänen, 1981; Doherty et al., 2005; Stefanics et al., 2010; Rohenkohl and No-
bre, 2011), improve event onset detection (Hickok et al., 2015; Mathewson et al.,
2010, 2012), aid time-interval, pitch and timbre judgements (Klein and Jones,
1996; Large and Jones, 1999; Barnes and Jones, 2000; Jones et al., 2002, 2006),
increase visual contrast sensitivity and gain (Rohenkohl et al., 2012; Cravo et al.,
2013) and decrease threshold detection in noise (Lawrance et al., 2014). Process-
ing gains associated with temporal expectations have also been shown to exert
influence across modalities (Lange and Röder, 2006; Escoffier et al., 2010) and
can arise during the multimodal perception and production of complex rhythms
(Greatrex, 2011).
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Although most experimental research into temporal expectations has been
conducted over the last thirty years, the topic featured in early psychology texts
dating back to the end of the nineteenth century (Bolton, 1894; Wundt, 1904;
Woodrow, 1914; Nobre and Rohenkohl, 2014). For example, Woodrow (1914) ma-
nipulated the time between a warning signal and target (termed the foreperiod) to
be either fixed to a specific time interval or allowed to vary unpredictably. Partic-
ipants’ reaction times to the onset of the target were fastest when the foreperiod
was fixed and hence predictable and longest when it varied and hence unpre-
dictable. Similarly, Newhall (1923) showed that the perceived brightness of a
visual stimulus increased when it was presented in-time versus out-of-time with a
preceding isochronous click. Niemi and Näätänen (1981) summarised these and
later observations by writing that the accuracy of the timing process is inversely
related to the participant’s uncertainty about the time of occurrence of a response
stimulus (henceforth time uncertainty). Since these early studies, researchers have
focused on two conceptually distinct methods for manipulating time uncertainty.
The first has been to use explicit temporal cues and learned knowledge to increase
anticipation of a forthcoming event (Coull and Nobre, 1998). This approach is
analogous to the spatial orientating of attention task proposed by Posner et al.
(1980) and requires participants to learn explicit associations between events so
that detecting one increases the anticipation that second will occur. The sec-
ond has been to use rhythmic stimuli as a means of generating implicit temporal
expectations that are not reliant on explicit cues. This thesis focuses on the latter.

While there are a few everyday instances of explicit temporal cues to an event
which may not affect the individual directly, such as watching (but not otherwise
responding to) traffic lights, the most common source of temporal expectation
arises via engagement with dynamic and meaningful regularities in the environ-
ment. For example, in the social world, dancing in time with a partner requires
tracking salient regularities in the sensory stream and using these to extrapolate
a predictive pulse on which to coordinate future actions. These expectations have
been referred to as "rhythmic expectations", "dynamic attending" and "predic-
tive timing" and are mostly described as being defined by a sensory pattern’s rate
and or rhythm (Jones, 2010). This has led to the general consensus that rhyth-
mic temporal expectations arise implicitly from passive engagement with dynamic
events and are not reliant on cues or knowledge of fixed time intervals. The evi-
dence supporting this claim is moderate but inconclusive. For example, Winkler
et al. (2009) showed that rhythmic stimulation administered to sleeping newborn
infants (37 - 40 weeks old) resulted in anticipatory brain responses occurring at
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metrically aligned moments in time. As the babies were asleep it is unlikely that
they were conscious of the rhythmic stimulation and their age reduced the like-
lihood that expectations were caused by explicitly learned associations. More
recently, Arnal et al. (2014) have claimed that rhythmic temporal expectations
and learned predictions belong to biologically separate processes, each differen-
tiable via the frequency of associated neural oscillations. Whilst theoretically
attractive, evidence demonstrating that both cognitive processes do not interact,
or even that a binary distinction between implicit and explicit expectations (or
endogenous and exogenous processes) is possible, is lacking. Understanding the
autonomy of rhythmic expectations and the degree to which they are separable
from learned cues and temporal orienting is the topic of later chapters. The follow-
ing paragraphs describe current approaches for investigating rhythmic temporal
expectations.

Work conducted by Jones and colleagues since the mid-1970s built on obser-
vations of Helmhotlz and Bolton (Bolton, 1894) to provide a strong foundation
underlying our current understanding of how rhythms modulate attention and per-
ceptual excitability (Jones, 1976; Jones and Boltz, 1989; Klein and Jones, 1996;
Large and Jones, 1999; Barnes and Jones, 2000; Jones et al., 2002; Jones, 2009).
Jones focused on auditory pattern research and began by forming a dichotomy
between two forms of attending. The first was termed "future-orientated" or
"anticipatory" attending. This refers to the use of higher-order timing patterns,
extrapolated from rhythmic events, to direct attentional energy towards future
points in time. The second was termed "analytic" or "reactive" attending. This
refers to the focusing of attention towards local, often adjacent, events and the
constant reorienting of attention due to a lack of predictability in the environment.
This distinction implies that the structural regularities of events are essential in
regulating the degree, and type, of temporal attending deployed at each moment
in time. For example, the reason why tracking a moving fly around a room is
so difficult is that its movement is highly unpredictable and lacks rhythmic pre-
dictability. For this reason attention functions reactively in an attempt to organise
unstructured information. This results in the fly always remaining one step ahead
of tracking movements. Conversely, clapping in time with a beat, or even clapping
on every fourth beat, is a very easy task for most people. This is because tempo-
ral regularity of the musical context provides a framework from which to direct
future orientated attention for the purpose of motor preparation and synchronisa-
tion with external events. Temporal expectations are thus described by Jones as
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preceding perception in that they function to create a heightened receptive region
for forthcoming events (Jones, 1976).

The experimental methods used by Jones and colleagues to investigate rhyth-
mic temporal expectations share similarities with that of Newhall (1923). In
a widely copied method, the temporal onset of the last tone in a stream of
isochronous rhythmic precursors was systematically varied in relation to the pre-
ceding sequence (either early, on-time, or late) (Large and Jones, 1999; Barnes
and Jones, 2000). The task was to determine whether a comparison time in-
terval (heard after the stimulus) was the same, shorter or longer than the gap
between the last two tones in the precursor sequence (the standard time inter-
val). Participants’ response accuracy degraded with increasing leading or lagging
of the final tone and was most accurate when the final tone aligned with the
isochronous sequence. Variants of this design were used to test the effect that
the rate of the precursor, irregular rhythmic precursors and metrical relationships
have on choice accuracy (Barnes and Jones, 2000). In addition to time interval
judgements, pitch, timbre and metre perception was also investigated (Klein and
Jones, 1996; Jones et al., 2002, 2006; Ellis and Jones, 2009). In a pitch comparison
task, listeners judged whether the the pitches of two sine tones were the same or
different from one another when separated by an isochronous acoustic sequence
(Jones et al., 2002). The onset of the second tone was manipulated so that it
either aligned with the isochronous sequence or was slightly early or late. The
results showed that pitch discrimination was best when the second tone aligned
with the isochronous sequence and degraded the further it was from the expected
point in time. Common findings across a range of discrimination, detection and
judgement tasks highlight the ubiquitous effects that temporal expectations have
on boosting sensory processing and facilitating memory recall.

More recent neuroscientific studies have adopted similar experimental ap-
proaches to Newhall (1923) and Jones (2010) for investigating the cognitive and
neural mechanisms responsible for temporal expectations. For example, Henry
and Obleser (2012) used a gap detection task in which participants detected brief
gaps of silence in a stream of frequency-modulated (FM) complex tones. The gaps
were presented at different phases of the FM cycle and task performance was com-
pared with the phase of entrained low-frequency neural oscillations in participants’
electroencepholography data. Similarly, Hickok et al. (2015) tested whether an
acoustic rhythmic sequence induced periodic fluctuations (more than one cycle)
in perception that matched the period of a rhythmic precursor sequence. The
stimulus comprised an amplitude-modulated noise sequence followed by a period
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of unmodulated noise in which a response tone, embedded in the noise, was pre-
sented at one of nine intervals in relation to the rhythmic sequence. Participants
were required to press a button if they detected a tone in the noise and perception
was measured using task accuracy. Although these and similar experiments (e.g.
Mathewson et al., 2010, 2012; Lawrance et al., 2014; Escoffier et al., 2010) often
improved the experimental designs used by Jones and colleagues (such as the use
of continuous rhythmic stimulation which is more characteristic of natural rhyth-
mic stimuli), they are all essentially asking the same question: What effect does
a preceding isochronous pulse have on the detection and processing of an isolated
and unrelated response stimulus?

One exception to this approach is a naturalistic behavioural paradigm used
by Doherty et al. (2005), Correa and Nobre (2008) and Rohenkohl and Nobre
(2011). The task involved tracking a moving ball across a computer screen before
it disappeared behind an occluding barrier. When the ball reemerged from behind
the barrier, participants were to decide whether or not it contained a black dot (it
contained one 50% of the time). By manipulating the spatial trajectory, rate and
rhythm of the ball before the occlusion, as well as the time and location in which
it reemerged, the response target remained fully integrated with the temporal
context of the scene. In other words, timing and associated expectations were not
artificially separated from goal-relevant decision information.

As described earlier, the binary distinction between explicit temporal orien-
tating and implicit rhythmic expectations, whilst useful, may prove to be limiting
for future theoretical development. This is because future-orientated attending is
an endogenous process that arises via exogenous exposure to regularities in the
environment. Thus, what starts off as an implicit automatic anticipatory process
will quickly contain explicit predictive features. This is because it will lead to the
construction of an internal temporal template that generates predictive knowledge
that can be used to inform goal-directed behaviour (Arnal and Giraud, 2012; Her-
rmann et al., 2016). One way to frame this concept is by stating, as Jones does,
that both guided imagination and event structure underlie metrical constructs
(Jones, 2009, p. 87). A different way is to assume that, during interaction, implicit
and explicit temporal expectations function in sustained bidirectional dialogue.
The interdependence between both types of expectation ensures that predictable
patterns are detected and extrapolated and predictive knowledge utilised so that
attention and action function to create perceptual streams and maximize goals.
This interpretation is consistent with arguments of Arnal and Giraud (2012) and
Summerfield and de Lange (2014, p.745). That is, the perceptual system utilises
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information about stimulus frequency, conditional probability and temporal au-
tocorrelation to build expectations about forthcoming stimuli whilst operating
in a hierarchically dependent manner. The use of the term hierarchy refers to
the relationship between forward and backward messages passing between surface
and deep layers of the cortex that assess mismatch between goal-relevant prior
statistically-based predictions (passed from deep to surface layers of the cortex)
and information contained in the sensory input (passed from surface to deep layers
of the cortex) at varying levels of abstraction. Rhythmic temporal expectations
should thus be viewed as a component within a larger perceptual system which
functions to periodically modulate the overall activity of the brain in a way that is
minimally reliant on content, but maximally reliant on the temporal structure, of
forthcoming information (Arnal and Giraud, 2012; Nobre and Rohenkohl, 2014;
Jones, 2010).

2.1.2 Rhythm and periodicity

Rhythm can be used to describe, quantitatively measure and recall the temporal
features of a wide range of dynamic events. It is defined here as a serial pattern
of time intervals marked by sensory and/or motor events and is based on the
interonset interval (IOI) of successive events (Chen et al., 2008; McAuley, 2010;
London, 2012). Rhythms arise via patterned change in the body and environment,
such as beating hearts and blinking eyes, and are often found within continuous
streams of information (Glass, 2001). For this reason, applicable events are not
restricted to those that contain discrete entities, such as a recurring electronically
produced beep in which there is a clear and definite separation between each
sub-event, but include any perceivable grouping that exist in continuous streams
of information. For example, footsteps contain rhythmic information because
the time at which each foot hits the ground creates time intervals forming a
regular pattern that can be extrapolated and responded to. The act of walking
is continuous and therefore rhythmic measurement relies on being able to detect
and classify sub-elements (individual steps) within the larger event (walking).

Contrary to common uses of the term in music and some forms of speech that
focus on describing the experience of metrical hierarchies, rhythm is not synony-
mous with periodicity. Footsteps can speed-up, slow down and generally deviate
from regularity and still remain rhythmic in nature. Thus rhythm can be de-
scribed by the variance of local time intervals, the duration of rhythmic patterns
as well as other statistics describing the durations between sub-events. For exam-
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ple, a periodic sequence, which is a type of rhythmic sequence, contains zero IOI
variance and has a constant IOI between sub-events. Viewing rhythm in these
terms removes the need to distinguish periodicity from aperiodicity and assumes
that all rhythmic sequences exist on a continuum of related time intervals em-
bedded within a larger event. What is required, however, is a way of classifying
which time intervals belong to the same rhythmic streams and are thus mean-
ingfully related. For example, at a busy road crossing there are simultaneously
occurring time intervals produced by different engines, different footsteps and
unrelated conversations and gestures. This scene would typically be described
as containing a number of separate rhythmic events rather than simply as being
rhythmic. That is, the rhythmic relationship between the ticking sound of an
engine and the gestures of someone waving are rarely perceived as meaningfully
related, even though they are sub-events within a larger event (the road crossing
at a specific point in time). Therefore, the definition of rhythm should be changed
from that in the previous paragraph: Rhythm is a serial pattern of time intervals
marked by sensory and/or motor events and is based on the regularity of the IOI
of successive meaningfully-related events.

Although all rhythmic sequences can be described and experienced in terms of
IOI variance, averages and absolute duration, periodic rhythms are traditionally
characterised in terms of period and phase. Period (T ) constitutes the base time
unit of a periodic rhythm and is the time it takes for one complete cycle of an
oscillation without repetition (Pikovsky et al., 2001). This unit is required when
computing the frequency of the periodic rhythm: f = 1/T . Phase is a quantity that
increases by 2π within each oscillatory cycle, proportional to the fraction of the
period (Pikovsky et al., 2001). It can therefore be thought of as a quantity that
moves in uniform circular motion during each periodic cycle (Strogatz et al., 1993).
This means that the phase of an oscillation starts at 0°and increases linearly until
it reaches 360°at which point it returns to zero for the start of the next oscillation.
Both period and phase are useful measurements for quantitatively describing the
relationship between two or more periodic events and can be used to determine
the degree of synchrony that exists between them. For example, two separate
events may share the same period but be out of phase with one another whilst
still remaining in tight coupled synchrony. This concept is especially relevant
for understanding models of neural oscillatory entrainment that are discussed in
section 2.2.

Apart from controlled examples, such as pendulums, experimenter-generated
beeps and metronome clicks, rhythm and periodicity in the natural world is usu-
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ally a lot more variable. For example, a person’s footsteps may be perceived as
regular, yet the measurement of these time intervals would indicate that they are
not strictly isochronous. Understanding what constitutes regularity and how this
varies from isochronous time intervals, both in terms of the physical signal and
perception of that signal, is important for the study of temporal expectations.
This is because rhythmic stimuli used to investigate temporal expectation are
often isochronous and the effects of rhythmic variability on perception are under-
investigated. For this reason the discussion must turn away from definitions and
methods for describing isolated serial patterns in time and focus on rhythmic
interaction and perception. Specifically, how do humans and other species use
rhythmic information to engage and coordinate successfully with dynamic events?

2.1.3 Synchronisation and entrainment

Synchronisation and entrainment are important concepts for understanding theo-
ries of rhythmic temporal expectation. This is due to the required alignment and
coupling of anticipatory cognitive processes with externally generated rhythms
and because the terms are widely used throughout the timing literature. This
section provides definitions and examples which can be used as a foundation for
understanding the cognitive models of expectation and choice that are described
in section 2.2.

When two or more rhythmic processes co-occur and form a sustained non-
random relationship with one another they are said to be in synchrony (Bernieri
et al., 1988). Synchrony can arise within and between biological organisms, inan-
imate physical processes as well as between living organisms and inanimate pro-
cesses. For example, two autonomous metronomes located in separate corners
of a room would be described as being in synchrony if they are set to oscillate
with the same period. This is because both have the same period and exist in
the same phase space, regardless of the fact that they may be out of phase with
one another. If a person were then to clap in time with one of the metronomes,
their clapping would be described as synchronised with the metronome, as both
the hand movements and the cognitive processes responsible are set to oscillate in
time with a fixed rhythmic process (McGrath and Kelly, 1986). Synchronisation,
therefore, is the act of adaptively coupling of one rhythm to another without the
need for both sources to adapt to each other.

When mutual adaptation between multiple self-sustaining rhythms forms a
shared synchronous state it is called entrainment. To cite Clayton et al. (2005),
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"entrainment describes a process whereby two rhythmic processes interact in such
a way that they adjust towards and eventually "lock-in" to a common phase
and/or periodicity." Clayton et al. (2005) and Pikovsky et al. (2001) point out that
there are a number of criteria that must be met for entrainment to occur. Firstly,
there needs to be more than one oscillatory process. Secondly, each oscillatory
process must be autonomous. Autonomy in this context means that each rhythm
must have its own energy source and be able to continue oscillating when not
interacting. For example, the air molecules surrounding a vibrating tuning fork
would not be entrained because they are fully dependent on the vibrations of the
fork. Instead, their movements arise via resonance whereby they get all energy
from an external source (van Noorden and Moelants, 1999; Large, 2008). Lastly,
the oscillators must to some degree be coupled and be able to influence one another
through interaction. This means that both oscillations must share a sustained
connection which can be defined in terms of a common period and "lock-in" phase
relationships. Coupling requires that each process is able to adapt its period and
phase dynamically in response to systematic changes in the others behaviour. If
this coupling is too strong then both processes lose their individuality and hence
their autonomy. If coupling is too weak then a change in one would not affect the
other and thus they not influence each other.

As entrainment does not constitute exact rhythmic imitation, knowing how to
quantify "weak interaction" between coupled oscillators is problematic (Clayton
et al., 2005). For example, as two people walk side-by-side it is common for the
period and sometimes phase of their footsteps to entrain towards sustained syn-
chrony. This is an automatic and largely unconscious phenomenon that is robust
to random and non-random perturbations (Large and Jones, 1999). Therefore,
if the difference in frequency ∆ f = f1 − f2 of two separate rhythmic processes de-
creases over time to be some small value, even after being perturbed, then the
processes are entrained and the starting frequencies said to have existed within
an "entrainment region" (Pikovsky et al., 2001; Jones, 2010). The entrainment
region is thus the range between zero ∆ f and maximal ∆ f in which two oscillators
will entrain. Perturbations can occur via small random deviations in the duration
of an oscillatory cycle or via isolated and temporally deviant event onsets. This
is called "frequency detuning" and can be tested by perturbing either of the two
processes and observing whether ∆ f minimises. Additional characteristics of en-
trained systems to consider are: i) Rhythmic dominance whereby one oscillation
acts as a stronger attractor than the other (Jones, 2010), ii) Phase and period
correction in which out-of-time oscillations are reset to fall within an entrainment
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region (Large and Jones, 1999; McAuley, 2010), and iii) Phase locking whereby
both processes entrain towards opposite positions of phase space (i.e. they exist
180°out of phase) (Clayton et al., 2005).

Entrainment is important to the investigations reported in this thesis because
it provides mechanistic clues as to why rhythmic temporal expectations are in-
duced by quasi-periodic regularities in the environment. Weak oscillatory coupling
ensures that strict isochrony is not a prerequisite for entrainment and that per-
cepts of regularity could emerge via the interaction of cognitive oscillations with
sensory streams. I will return to these ideas in section 2.2 when reviewing current
cognitive models of temporal expectations as well as when discussing the exper-
imental findings in later chapters. Before doing so, however, thought must be
given to how rhythmic expectations bias higher-order cognitive function and how
this information shapes our decisions.

2.1.4 Decision making

Nearly all psychophysical tasks designed to investigate timing can be understood
from the perspective of decision making. For example, Large and Jones (see
section 2.2) built their dynamic attending theory on the observation that rhythmic
expectation increased the accuracy of categorical judgments and the speed in
which these could be made (Large and Jones, 1999; Jones, 2010). Likewise, Cravo
et al. (2013) concluded that neural entrainment enhances contrast sensitivity due
to the speed and accuracy with which participants could correctly decide on the
angle of a visual grating. As the same behavioural metrics are used to measure
both temporal expectations and the integration of noisy decision evidence during
choice, temporal expectations should be conceptualised as facilitating decision
making in some way (Smith and Ratcliff, 2004).

A broad but encompassing definition of a decision is that it is a "commitment
to a mental state that prescribes a course of future action and decision making is
the name given to the neural, cognitive and computational mechanisms by which
such commitments are made" (Summerfield and Egner, 2014, p. 837). Others
have described decisions as the "cognitive process of choosing an option or an
action among a set of two or more alternatives" (Wang, 2008, p. 215), "the
behaviour observed when individuals select one among many available options"
(Padoa-Schioppa and Assad, 2006) and "a deliberate process that results in the
commitment to a categorical proposition" (Gold and Shadlen, 2007, p. 536).
Decision making is a widely discussed process and it is commonplace within many
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everyday utterances concerning healthcare, money and consumption to name just
a few.

It is unclear whether the cognitive processes underlying perceptual judgment
(such as the choices made in timing paradigms) are the same as those underlying
complex goal-directed choice. Is the process of deciding whether a musical note
is out of time any different from deciding in more economic terms whether a
musical passage is any good and how one should respond? Whilst both processes
are labeled as decisions and can often be interpreted as building on one another,
these types of processes are mostly handled separately in the literature (Gold
and Shadlen, 2007; Smith and Ratcliff, 2004; Summerfield and Tsetsos, 2012). If
the same underlying mechanisms govern both, however, then the known effects
of temporal expectation associated with perceptual decision making may have
relevance to complex goal-directed choice.

Although perceptual and economic decisions are conceptually distinct, it seems
increasingly unlikely that the brain processes involved in each will completely ex-
clude the other. All decisions are claimed to rely on an accumulation of evidence
relevant to the identification or evaluation of a sensory stimulus - termed a deci-
sion variable (DecV) - and all experiments in the literature require participants to
identify a stimulus and then to select a response that will lead to reward (Summer-
field and Tsetsos, 2012; Gold and Shadlen, 2007; Gold and Heekeren, 2014). This
implies that there should be common theories capable of describing the neural
circuits underlying both perceptual decision making (PDM) and economic deci-
sion making (EDM) (Krajbich et al., 2010; Krajbich and Rangel, 2011; Tsetsos
et al., 2012). As argued by Summerfield and Tsetsos (2012), however, the con-
ceptual distinction has strongly defined the field and there is a tendency not only
to study one type of decision experimentally whilst disregarding the other, but to
separate the fields of enquiry into distinct research programmes, and for the two
fields to work within different theories and to use different experimental methods.
Before discussing how common theories might interact with those of temporal
expectation, both types of decision and their related experimental methods must
be further defined.

PDM is the process by which humans quantitatively categorise sensory infor-
mation into discrete classes and use these to perform appropriately in a given task
or context (Gold and Shadlen, 2001; Summerfield and Egner, 2014). It is usually
investigated by having participants classify whether a noisy stimulus belongs to
one of two categories. Different task conditions are then achieved by varying i)
the level of noise, ii) the probability that the stimulus belongs to a specific cat-
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egory and iii) the task instructions. For example, when measured in terms of
reaction time and accuracy, choice behaviour varies depending on whether the
task instructions emphasise speed or accuracy. Seen from this perspective it is
clear that most perceptual experiments investigating temporal expectations are in
fact investigating the effects of periodicity and stimulus timing on PDM. Whilst
this statement may appear obvious it is important. This is because historically
there has been very little dialogue between the temporal expectation and deci-
sion making literatures resulting in the entirely separate cognitive models being
developed that should be relatable to one another.

PDM has been traditionally described via statistical concepts such as signal
detection theory (SDT). SDT defines a method for measuring the criterion an
observer uses when deciding on a signal’s existence by calculating the sensitivity
of the observer towards a signal and the log likelihood value at which the observer
discriminates between two choices, normally referred to as observer bias (Green
and Swets, 1966; Gold and Shadlen, 2007; Summerfield and Egner, 2014). A key
limitation of SDT is that it neglects the role of time and prior context within the
decision making process. As discussed in section 2.2, choice requires a dynamic
accumulation of evidence over time and therefore current cognitive models have
since advanced to account for temporality in choice.

To understand how temporal expectations affect complex choice, value, re-
inforcement and learned preferences must be considered. EDM addresses these
topics and is concerned with understanding the processes that enable humans to
choose between actions or goods on the basis of learned value (Kable and Glim-
cher, 2009; Chib et al., 2009; Hare et al., 2010). The literature is characterised
by the general framework that human decision making comprises three distinct
attributes: a multicomponent mechanism of valuation, which encodes and re-
trieves subjective value associated with decision alternatives (Rushworth et al.,
2009; Lim et al., 2011; Hare et al., 2010; Plassmann et al., 2007); competitive
choice, which takes value representation as input and then selects the option with
the largest value (Glimcher, 2004; Kable and Glimcher, 2009; Wang, 2008); and
reinforcement, which updates value associations depending on whether the ex-
pected outcome of a decision was violated or not (Rangel et al., 2008; Rushworth
et al., 2009). This framework closely relates to the field of reinforcement learn-
ing, which aims to computationally automate goal-directed learning - see Sutton
and Barto (1998) for an introduction. For need of a definition, subjective value
is the anticipated future benefit of a considered outcome. A key aspect of the
valuation component is that subjective value is encoded as a form of "common
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currency" or scale as a means of facilitating comparisons between incompatible
options (Montague and Berns, 2002; Kable and Glimcher, 2009; Rushworth et al.,
2009). Subjective value therefore adds an additional layer of complexity to the
choice comparison because any DecV that is influenced by subjective value is not
just reliant on sensory information about a fixed and present event, but must
also represent predictions about the benefits of a yet-to-be-experienced outcome.
One important question for this thesis is whether temporal expectations and the
timing of how decision-relevant information is presented weight the construction
of subjective value. In other words, are events more attractive and subjectively
valuable when they occur at a predictable moment in time (or possibly, when they
occur as an integral part of a wider stimulus context that is regularly structured,
as opposed to irregularly structured), and if so, why?

Recent work has begun to show that subjective value is context-dependent
and reliant to some degree on how decision information is presented to an ob-
server. Factors such as the number of available options within a given location,
the perceptual attributes of surrounding options, the time between making a de-
cision and receiving a reward and the recency of past information are all known
to modulate value and influence option selection (Tversky and Simonson, 1993;
Green et al., 1994; Iyengar and Lepper, 2000; Tsujimoto and Sawaguchi, 2005;
Kable and Glimcher, 2007; Louie and De Martino, 2013). This has been shown
via visual experiments in which static and easily observable items (i.e. free from
noise) are presented on a computer screen and participants are to decide which
option they think will lead to the most beneficial outcome.

Visual selective attention has also been shown to weight subjective value judge-
ments, in that the longer an item is looked at, the more likely it is to be chosen
from an array of equally preferred options (Krajbich et al., 2010; Lim et al., 2011).
Simply paying more attention to one decision alternative can therefore influence
both the decision time and the item that is selected. The authors of these studies
suggest that the findings are caused by the value of the unattended option being
discounted relative to that of the fixated option and that activity in the prefrontal
cortex, thought to be representative of a DecV, is proportional to the weighted
difference between the values of the attended and unattended options. Although
this example is restricted to the narrow context of a two alternative forced choice
task, in which the decision options were pictures of food, it highlights that the
investigation of goal-directed decision making needs to be expanded in order to ac-
count for selective attention. One way that this could be achieved is by presenting
participants with decision options that contain within them dynamic properties.
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This would make the decisions representative of the huge number of everyday
decisions that involve tracking dynamically-changing information whilst making
value judgments and decisions consequent upon them.

The limitations of using static visual images to test and map out the cognitive
processes underlying EDM are obvious. Imagine a predator chasing prey. As soon
as the chase begins the value of considered outcomes varies constantly depending
on contextual features such as how much energy the predator has left, whether
there are new additional dangers in the environment, how fast the prey is and
whether there are now easier options for catching food. If the predator is hunting
in a pack, the value of a considered action will also vary depending on the actions
of other hunters and the degree to which the predator believes that they will co-
operate fairly throughout the hunt (Skyrms, 2001; Bech and Garratt, 2003). The
computations involved are therefore far more complex than those responsible for
selecting between static images because they must account for the uncertain and
changing nature of the environment and the future actions of co-actors. Selective
attention and anticipatory attending are therefore essential processes responsible
for keeping track of what options are available at any moment in time and what
the likely outcomes might be. Goals, value and risk must be understood as hav-
ing some form of dependence on the flow of sensory information and dynamic
anticipatory expectations.

2.2 Cognitive models of temporal expectation and de-

cision making

A central aim of this thesis is to determine whether and how the timing of decision
information systematically biases complex choice. To achieve this it is important
to review up-to-date cognitive models that are influential in the temporal expec-
tation and decision making literatures. This section therefore aims to identify
similarities between influential models and to establish a theoretical foundation
on which new, more holistic (i.e. complete), models can be built. This will inform
the interpretation of experimental findings and underlie the predictive framework
described in chapter 9. The section describes two classes of models: 1. Attentional
entrainment models (AEMs). 2. Sequential sampling models (SSMs). These have
been chosen because each class of model has substantial empirical support and
remains largely uncontested in its respective literature. AEMs include the theoret-
ical and biological realisation of Jones and colleagues’ dynamic attending theory
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(DAT). They provide a formal account of how driving environmental rhythms
dynamically capture and entrain attentional processes in the human brain. SSMs
describe a class of decision-theoretic models whose basic premise is that deci-
sion evidence accumulates dynamically over time towards a response boundary
at which point a choice is made. As both AEMs and SSMs have relevance to a
number of subfields, several research groups have contributed to the development
of each type of model.

2.2.1 Attentional entrainment models

DAT provides a theoretical backbone to AEMs. It was first proposed by Boltz and
Jones (Jones and Boltz, 1989) and developed by Large, McAuley and Jones in two
highly original doctoral theses and a follow-up publication (Large, 1994; McAuley,
1995; Large and Jones, 1999). DAT is a mathematical model of attentional dy-
namics. It proposes that temporal expectations arise due to biological limit-cycle
oscillations synchronising to regular timing patterns in the environment. This
synchronisation is unidirectional in that it refers to the adaptive alignment of
one rhythm (an attending biological oscillator) to the other (an environmental
rhythm), but the end result is bidirectional entrainment between multiple inter-
nal biological oscillators.

DAT states that temporal expectations are self-sustaining periodic processes
carried out by a biological oscillation. When coupled to an external rhythm they
automatically synchronise resulting in a stable connection that is robust to small
perturbations. As discussed in section 2.1.3, coupling of an attending oscillator
arises if its intrinsic resonant period falls within an entrainment region of the
driving rhythm. Attending rhythms remain adaptive to changes in the external
rhythm by adapting their period and phase in response to rate changes that may
occur. The driving rhythm can therefore be thought of as causing changes in
attending oscillators’ behaviour that move the entrained system through various
states in phase space towards the attractor state of synchrony (Jones, 2010).

Rather than attention being conceptualised as occurring at an isolated point in
time within a limit-cycle (a closed trajectory reflecting traversal through states of
period and phase), it is described as a concentration of energy within a fluctuating
pulse or energy stream. It is modelled as a repeating periodic probability density
function, with time on the x-axis and energy on the y-axis, which contributes an
expectancy region about the mode where attentional energy is non-zero (Large
and Jones, 1999). The pulse is defined by its phase location within the limit cycle,
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termed its locus φ, and its focus k (the concentration of attentional energy within
each cycle). As k increases, due to greater synchronisation between the entrained
rhythms, the pulse narrows so that all concentrated attentional energy is near
the mode. This results in more narrowed probability density functions and hence
focused temporal expectations at specific moments within the entrainment cycle.
As k decreases, due to decreased synchronisation and/or perturbations, the pulse
widens to reflect greater rhythmic uncertainty. When k = 0 the pulse function
is flat indicating a uniform distribution of attentional energy (Large and Jones,
1999). This occurs when entrainment between the two systems is not possible.
Attentional focus therefore reflects the accumulated effect of expectancy violations
rather than sequence variability and is conceptualised as a modulated oscillatory
pulse that is strongest at metrically aligned moments in time (Large and Jones,
1999; Jones, 2009, 2010).

In addition to single oscillatory coupling DAT assumes that people simulta-
neously use multiple attending oscillators to track quasiperiodic components in
complex environmental rhythms (Large and Jones, 1999). This arises via the
entrainment of metrically-related attending oscillators to the synchronised atten-
tional pulse. For example, imagine you hear a ticking metronome with an IOI
of 400 ms. First, an internal attending oscillator whose intrinsic frequency falls
within the entrainment region will synchronise to the external rhythm. This syn-
chronisation will cause other metrically-related internal oscillators from higher
and lower time spans (e.g. with IOIs of 200 and 800 ms) to entrain (Jones, 2009).
In other words, those internal oscillators whose frequencies are harmonically re-
lated to the 400 ms IOI will adapt their period and phase to the synchronised
400 ms oscillator. This results in sustained bidirectional entrainment emerging
between multiple attending oscillators at different frequencies. Over time these
persisting interrelationships lead to "metrical clustering" and the percept of metre
which expresses structural information about the metronome. A metric cluster
"comprises sets of co-occurring oscillations with interrelationships that persist
due to acquired internal bindings" (Jones, 2009). Internal bindings strengthen
as a function of resonance among oscillator periods, phase coincidences and the
durations of co-occurring oscillatory activity. Jones calls this aspect of the model
the "metrical binding hypothesis" (Jones, 2009). Once acquired, metrical clusters
enable observers to direct attentional energy towards metrical levels within this
persisting metrical form that do not exist in the sensory stream. This is what al-
lows one to hear a periodic rhythm but "feel" a faster or slower metrically-related
pulse.
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Whilst DAT elegantly describes the shaping of attentional energy it does not
adequately define attention nor describe how it might fit within a larger decision
framework. This ambiguity is problematic for further development as it leads to
a number of important questions. For example: When oscillators are entrained
to an external stimulus, is the perceptual salience of the incoming information
boosted when it is temporally expected, or suppressed when it is not expected,
or both? If boosted, does this apply to all information within the perceptual
stream, learned associations, or just goal-relevant features? If boosting does not
apply to goal specific information, what is the evolutionary purpose for this system
and what benefit does it afford? Do attentional oscillators function at multiple
stages of information processing? How does prior knowledge interact with driven
oscillations, and can attentional entrainment be voluntarily suppressed? Many
of these questions do not yet have clear answers because only a small set of
paradigms has been used to test DAT. Knowing what aspects of a signal become
enhanced or suppressed and how this relates to action representation and selection
is key to both this investigation and the wider investigation of DAT. One way to
start understanding some of these questions is to consider AEMs that have been
developed within the neuroscience community.

The idea that oscillatory brain activity can entrain or be directed towards
external rhythms is supported by a large number of neurophysiological studies
that show neuronal oscillatory activity as a possible mechanism for timing in the
brain. Engel et al. (2001) and Buzsáki and Draguhn (2004) provide early reviews.
Regularities such as the rate of microsaccades (Bosman et al., 2009; Nobre and
Rohenkohl, 2014), periodic fluctuations in selective attention (Busch and Van-
Rullen, 2010) and phenomena such as the preferred tempo of a musical pulse (van
Noorden and Moelants, 1999) have all been shown to occur at rates similar to
rates of rhythmic brain activity. This indicates that neuronal oscillations may
function to regulate both perceptual processing and timed behaviour.

An early hypothesis for describing the role of neuronal oscillatory networks
was that they act as a partially independent context that affects the processing
of the content of sensory information (Buzsáki and Chrobak, 1995). This led to
the idea that rhythmic fluctuations in large neuronal populations create "windows
of depolarisation" in which arriving inputs are more influential than during hy-
perpolarised states (Engel et al., 2001). The phase-specific gating of information
and temporal alignment of neuronal discharges were thus thought to facilitate
the transmission of sensory information from lower to higher levels of a cognitive
hierarchy (Engel et al., 2001; Jones, 2010; Calderone et al., 2014; Ng et al., 2012;
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Henry and Obleser, 2012; Rohenkohl et al., 2012; Cravo et al., 2013). Schroeder
and colleagues provide a range of biological evidence for this activity in the pri-
mary sensory cortex. They showed that the phase of entrained low-frequency
neural oscillations in the delta range (1 - 4 Hz) not only systematically amplified
response gain and reduced reaction times, but determined momentary power in
higher frequency oscillatory activity (Lakatos et al., 2007, 2008; Schroeder and
Lakatos, 2009; Stefanics et al., 2010). This finding suggests that phase entrain-
ment of large neuronal populations occurs during early sensory processing and
acts to filter all perceptual information depending on its temporal predictability.

AEMs are also thought to be influenced by conscious "top-down" commands
which are transmitted via the back propagation of high-frequency oscillatory ac-
tivity. For example, Iversen et al. (2009) investigated whether individuals can
alter their oscillatory brain responses at will. Participants listened to short re-
peating auditory rhythm and were instructed to imagine a beat to occur either on
the first or second tone of the sequence. By omitting either tone the authors could
determine whether there was a beat in the brain activity that was not present
in the stimulus. On omitted tones, they found beat-like activity in beta-band
(defined as 15 - 30 Hz) oscillations, but not in faster gamma-band (defined as
30 - 100 Hz) activity. This contrasted with a control condition in which neither
tone was omitted and beat like activity was found in both beta and gamma-band
activity. These findings highlight that rhythmic perception and oscillatory activ-
ity can be driven by endogenous processes and that beta-band oscillations play
an important role in this process. Arnal and Giraud (2012) have recently de-
veloped this idea by suggesting that different bands of oscillatory activity have
different filtering and message-passing functions. The authors claim that tem-
poral expectations arise as the result of entrained slow cortical oscillations to
the period and phase of driving environmental rhythms. This entrainment mod-
ulates the overall activity of sensory cortices and facilitates sensory processing
regardless of the informational content of forthcoming information. This process
is complemented by "top-down" expectations about informational content which
are communicated via back-propagated beta-band activity and the validity of
these expectations forward propagated through the cognitive hierarchy via faster
gamma-band oscillations (Arnal and Giraud, 2012).
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2.2.2 Sequential sampling models

SSMs are generally referred to as describing a process of either "sequential sam-
pling" (Smith and Ratcliff, 2004; Gold and Heekeren, 2014), "serial sampling"
(Summerfield and Tsetsos, 2012; Summerfield and Egner, 2014) or "sequential
analysis" (Gold and Shadlen, 2007). These terms are used interchangeably and
refer to processes that enable humans and other primates to make simple classi-
fication decisions based on streams of dynamically presented information. SSMs
first originated over fifty years ago within mathematical statistics and are an ex-
tension of the sequential probability ratio test (SPRT). Given a fixed error rate,
the SPRT uses the minimal amount of evidence required to form a categorical
decision (Wald, 1947; Gold and Shadlen, 2007). This is achieved by updating, at
each sampled moment in time, the log-likelihood ratio of the evidence given a two-
alternative hypothesis until the decision signal exceeds a predefined criterion at
which point the option with the greater likelihood is selected (Gold and Shadlen,
2007; Summerfield and de Lange, 2014). All SSMs follow this framework and are
assumed to consist of three components: sensory encoding, evidence accumulation
and a stopping criterion (Smith and Vickers, 1988). Sensory encoding acts as an
intermediary between the sensory receptors and the decision stage. This encoding
produces a DecV whose statistical features are a function of the stimulus being
presented, which is then fed into the accumulator stage as evidence. Evidence ac-
cumulation determines how successive samples of evidence are accumulated and
contains information about decision options. The stopping criterion determines at
which point in time the accumulation is terminated and which response to make.
This is thought to vary depending on the conditions and goals of the decision and
to be represented biologically as option relevant neurons reaching a critical firing
rate (Gold and Shadlen, 2007).

There are two broad classes of SSMs proposed throughout the decision making
literature. Both agree that decisions are the result of an accumulation of noisy
information over time but disagree on how evidence accumulation occurs (Smith
and Ratcliff, 2004). The first are called "random-walk" or "diffusion" models
which were first proposed by Laming (1968), Link and Heath (1975) and Ratcliff
(1978). These assume that decision evidence during two-alternative choice tasks
accumulates as a single total so that evidence in favour of one alternative is ev-
idence against another. This is conceptualised as a random walk or continuous
diffusion of a particle with Brownian motion moving between two stopping cri-
teria (boundaries representing each option), from a starting location somewhere
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between either boundary. The drift of this motion is determined by momen-
tary inclination towards one or the other option. The second class of models are
"accumulation" or "counter" models, first proposed by Vickers (1970, 1979) and
Smith and Vickers (1988). These assume that evidence favouring each option
accumulates independently and that choice is a race between competing evidence
totals. The selected response is determined by the first accumulator to reach cri-
terion (Townsend and Ashby, 1983; Smith and Ratcliff, 2004). Finally, complex
hybrids of both models have been proposed such as the leaky competing accumu-
lator (LCA) (Usher and McClelland, 2001). The LCA assumes the accumulator
framework but incorporates both a gradual decay in the accumulation process and
lateral inhibition similar to the diffusion models between competing accumulators.
The key area of contention between SSMs is therefore whether the input to the
decision process contains absolute or relative decision information (Summerfield
and Tsetsos, 2012).

This project concerns the intersection between SSMs and AEMs, and it is
this intersection that is the focus of the rest of this section. Neural evidence
suggests the intersection probably occurs between sensory encoding (AEMs) and
the creation of a DecV during later central and motor stages (SSMs) (Summerfield
and Tsetsos, 2012; Wyart et al., 2012; Cravo et al., 2013). Nevertheless, a clear
understanding of a standard SSM is required so that a holistic framework can be
proposed to account for the effects of temporal expectation on complex choice.
For this reason, the following paragraph describes the Ratcliff Drift Diffusion
model (DDM) (Ratcliff, 1978; Ratcliff and McKoon, 2008). The reason for this
selection is that the DDM is supported by an extremely wide range of behavioural
and neurobiological evidence spanning psychology, neuroscience and physiology.
It has also been used to analyse data in chapter 7, so a clear understanding of its
components will aid the comprehension of later chapters.

Figure 2.1 shows a schematic illustration of the DDM. The DDM distinguishes
the quality of decision evidence entering the accumulation process from endoge-
nously controlled decision criteria, as well as other non-decision processes, such
as sensory encoding and response execution (Ratcliff and McKoon, 2008). The
model is characterised by: 1. The distance between each response boundary and
the starting point of the accumulation process (decision threshold a). 2. The rate
at which decision evidence accumulates over time (drift rate v). 3. The starting
point of the diffusion process relative to the two response boundaries (bias z as a
proportion of boundary separation (0 < z < 1)). 4. The total duration of memory
encoding and response output processes that occur before and after the deci-
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Fig. 2.1 A schematic illustration of the Drift Diffusion Model adapted from Wagenmak-
ers (2009).

sion (non-decision time Ter). Variables a and z are assumed to be endogenously
controlled and v to be a representation of the quality of the signal being accumu-
lated. The model allows for trial-by-trial variability in some or all of the estimated
parameters, in effect allowing them to vary across trials for each participant (rep-
resented by st, sz and η in figure 2.1). This means that a process with the same
drift rate or boundary condition will not necessarily produce the same decision
outcome or latency on each trial. The DDM infers the behaviour of decision com-
ponents by accounting for the shape and variance of response distributions and is
able to describe common response biases. For example, the instruction to favour
speed over accuracy is modelled as a decrease in a. This reduces the amount of
accumulated information required to make a response. Because the accumulation
process is modelled as a random walk and is thus prone to errors caused by ran-
domness, participants make faster decisions but with more errors. Similarly, an
increase in the signal-to-noise ratio enhances v whilst keeping the other decision
variables constant: this describes situations when participants make both faster
and more accurate decisions. To summarise, the DDM describes separate compo-
nents of the decision process by accounting for the shape and variance of response
distributions that cannot be computed using averaged response data alone.
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As well as describing perceptual decisions, there is growing evidence to suggest
that the DDM and other SSMs can be used to describe more complex decisions
such as economic choice and value-based decision bias (Basten et al., 2010; Kra-
jbich and Rangel, 2011; Gold and Heekeren, 2014). For example, Tsetsos et al.
(2012) accurately predicted economic choice and biases using a leaky competing
accumulator. Mimicking computational processes described above, the authors
proposed that the process of value-based decision making consisted of an accu-
mulation of subjective value (rather than perceptual evidence) associated with
each choice alternative until a response threshold was reached (Tsetsos et al.,
2012). Similar approaches have also been used to successfully model the effects
of selective attention and eye gaze on value-based decision making (Armel et al.,
2008; Krajbich et al., 2010; Krajbich and Rangel, 2011; Krajbich et al., 2012).

Like AEMs, SSMs have limitations. One area of concern is the assumption
that evidence accumulation is a continuous process that occurs at a constant rate.
As discussed in section 2.2.1, forward and backward message-passing between dif-
ferent levels of cognitive hierarchy is thought to arise via the rhythmic sampling
of sensory information and neural oscillatory activity. If information sampling,
processing and message-passing is rhythmic, then why is the accumulation of de-
cision evidence continuous? How are rhythmic signals transformed into a constant
without the loss of important information? Wyart and colleagues asked a similar
question and argued that the human brain should exhibit slow rhythmic fluctua-
tions in the rate of evidence accumulation during decision making (Wyart et al.,
2012). To test this, the authors had participants classify whether, on average,
the tilt of 8 sequentially presented Gabor patterns fell closer to either the cardi-
nal or diagonal axes whilst recording electroencephalography activity. The data
showed that perceptual information was first weighted according to the phase
of on-going delta-band (defined as 1 - 4 Hz) oscillations overlying the parietal
cortex and that lateralized beta-band (defined as 10 - 30 Hz) activity integrated
the weighted information in an additive fashion (Wyart et al., 2012). In other
words, neural activity that represented an accumulation of decision evidence was
not constant and fluctuated rhythmically resulting in decision refractory periods
that followed the processing of salient decision information. Importantly, both
the rate of recorded delta and beta-band activity was separate from the intrinsic
rate of the stimulus. This suggests that the neural encoding of perceptual and
categorical decision information is dependent on endogenous neural oscillations
and not just the entrainment of neural oscillations towards a rhythmic stimulus.
Recent studies have found similar findings which together call into question the
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fundamental assumption of SSMs that decision evidence accumulates at a con-
stant rate (Cheadle et al., 2014; Wyart et al., 2015; Spitzer et al., 2016). Cognitive
mechanisms traditionally associated with AEMs may, therefore, have explanatory
power for decision making.

2.3 A lack of communication between disciplines

To conclude this review it is important to ask why there has been a lack of
communication between the temporal expectation and decision making literatures
and to address arguments for bringing them together. This is required because
the assumption that rhythmically generated temporal expectations bias complex
decision making is not obviously correct. Relatively few events in nature are
strictly isochronous, so why should periodicity and quasi-periodic structures have
significance for perception and behaviour? Under what situations does periodicity
afford behavioural benefit and what does this have to do with decision making?
To begin addressing these questions this section reviews ways in which periodicity
appears to be functionally important. It focuses on interpersonal coordination,
communication and computational efficiency in an attempt to highlight relevance
for complex decision making. Arguments are then made in support of future
collaboration between the temporal expectation and decision making literatures
and studies discussed that have already tried to bridge this gap.

2.3.1 Why is periodicity important?

Periodicity has relevance for complex decision making because it should affect
how observed and anticipated information is valued. This is because there exist
associations between periodicity and cognitive/social functions (described below)
that can be used strategically to facilitate communication and survival. Under-
standing these strategies and how they relate to the goals and context of the
decision maker will be key to determining how laboratory findings generalise to
real world behaviours. A focus on timing will also ensure that decision making is
not separated from context, but rather described as a process that emerges as a
result of interacting with the world.

The most obvious benefit of periodicity is that, because it decreases temporal
uncertainty, it can be used to facilitate interpersonal coordination between people
or groups. Regular actions such as walking at a steady pace, making exaggerated
movements in time to music, or rhythmically saying "three", "two", "one" out
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loud, allow others to predict with a high degree of certainty when and where you
will be in the future. This reduction in time-space uncertainty forms structured
and predictive information that others can use when planning how to move. It is
especially helpful in the context of organised, goal-directed, group action, where
multiple individuals must coordinate their behaviours to achieve a goal (such as
lifting a heavy weight). The benefits of this ability are context dependent and
only apply when the goal is to coordinate. Making exaggerated quasi-periodic
movements whilst being tracked by a sniper will increase the likelihood that you
are shot. If your goal is to engage in successful conversational turning taking,
however, the use of predictive rhythmic speech patterns will make it easier to
coordinate responses and increase the likelihood that the temporal flow of the
conversation is maintained (Wilson and Wilson, 2005; Sebanz et al., 2006).

A related benefit is that periodicity can be used to aid the transfer of infor-
mation between people. As described in section 2.2.1, periodic signals can induce
in observers a persisting metrical form on which they can direct their attention
towards upcoming, structurally salient, moments in time. Using this structure,
one can strategically place information at predictable moments within this met-
rical hierarchy as a way of increasing the likelihood that it will be communicated
efficiently. This is similar to what Clark (2005) describes as "material signalling",
where actions are used to capture attention and strategically communicate com-
mands and feedback during joint activity. A different way to view this material
signalling is as an ostensive educational tool for prioritising the importance of
information during communication (Csibra and Gergely, 2006). For example, a
teacher may use predictable rhythmic movement to emphasise the importance
of a piece of information to a class of students. This explicitly reduces tempo-
ral uncertainty in the interaction and as a result students should find it easier
to detect, process and memorise important information that has been deliber-
ately timed. The use of periodicity as a knowledge transfer tool may provide
one reason for why humans who wish to successfully interact appear predisposed
to unconsciously imitate each other’s movements, gestures and timing (Clayton
et al., 2005).

A third benefit is that periodicity can be used to increase cognitive compu-
tational efficiency by both reducing the amount of time the sensory system is
required to sample the environment and aiding pattern recognition and comple-
tion. For example, if one predicts that goal relevant information is likely to occur
in a periodic stream, perhaps via the detection of structure in the environment or
an explicit cue, the sensory system need not sample the environment continuously.
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Rather, it can use this knowledge to only sample at rhythmically-determined mo-
ments of anticipated interest. This strategy would help to maximise the amount
of goal-relevant information that can be detected whilst minimising the amount
of sampling that is required (Large and Jones, 1999; Henry and Herrmann, 2014).
Similarly, entrained neural oscillators should help to actively "fill in" missing or
incomplete information within the sensory stream (Velasco and Large, 2011). This
is because entrained oscillators are self-sustaining and robust to small perturba-
tions. As a result, higher dimensionality representations and groupings can be
formed without the need of representing large amounts of low-level variance.

2.3.2 The benefits of collaboration

The most attractive aspect of increased connection between the temporal expec-
tation and decision making literatures is that it will be relatively easy to achieve.
This is because both fields use common psychophysical methods, build models
based on similar behavioural measurements, and use common cognitive concepts.
It is therefore likely that the potential rewards of collaboration will outweigh the
risk of slower progress within each field. Rohenkohl et al. (2012) and Cravo et al.
(2013) provide a good example of this. After running a rhythmic temporal ex-
pectation experiment they fit a DDM (see section 2.2.2) to the behavioural data
to determine what effect rhythmic temporal expectations had on decision model
parameters. They showed that the drift rate was higher in the periodic versus ape-
riodic conditions and that timing did not affect other components of the model.
This suggests that rhythmic predictability enhanced the quality of perceptual in-
formation entering the decision stage, but did not change the decision criterion,
nor other non-decision related processes. Although there were limitations to their
experimental design which I address in chapter 3, this cross-topic analysis in-
creases the accessibility of the topic for researchers in both fields. The next step
is to design a battery of timing experiments that move beyond simple perceptual
decisions and address complex decision making.



Chapter 3

Beyond simple decisions

3.1 Overview

Chapter 3 moves beyond simple decisions by describing a new experimental ap-
proach for investigating the effects of stimulus timing and temporal expectation
on decisions that are more complex than those typically studied in the timing
literature. This approach focuses on ways to test the generalisability of current
timing theories under experimental conditions that more closely reflect the de-
mands of everyday decisions. The chapter begins by addressing areas of existing
temporal expectation paradigms that are in need of development. This includes
the complexity of the decision, the types of decision being tested, the separa-
tion of goal-relevant decision information from properties of rhythmic precursors,
rhythmic variability and prior knowledge about the timing of a stimulus and the
purpose of the experiment. The experimental approach is then outlined and split
into three components. The first expands the complexity of the decision via the
use of complex averaging and valuation tasks. The second incorporates stimulus
timing within goal-relevant decision information on each trial. This is described
from the perspective of a sound localisation paradigm in which the timing of spa-
tially lateralized auditory sequences are systematically varied. The third tests
multiple degrees of rhythmic variability to understand what effect IOI variance
has on complex decision making. The chapter concludes by discussing the benefits
of the approach.



3.2 Areas in need of development 36

3.2 Areas in need of development

As discussed in sections 1.3 and 2.1.1, most perceptual studies investigating tem-
poral expectation are restricted to a relatively small number of experimental con-
texts and tasks. As a result they nearly all investigate, to some degree, the effect
that a preceding isochronous pulse has on the detection and processing of an
isolated and unrelated response stimulus. This temporal invariance somewhat
undermines the generalisability of the results of a large number of studies and
hence the generality and even validity of the complex cognitive models that have
been proposed to explain the data coming from these experiments. To determine
whether these theories generalise to everyday behaviour and more complex goal-
directed decisions, new experiments must be designed that explicitly deal with
temporal variability and varying task demands. To design such studies requires
understanding current limitations and identifying aspects of temporal expectation
paradigms in need of development. The following sections describe five of these
areas.

3.2.1 Decision complexity

Compared with the complexity of decisions one makes whilst walking across a
busy square, the decisions used to investigate the effects of rhythmic temporal
expectations on perception are highly simplistic. The most basic of these requires
a single speeded response near the onset of an isolated target that is preceded
by, or embedded within, a rhythmic sequence. Here, participants are to press
a response button if they detect a target which takes the form of brief gaps of
silence within a continuous auditory stream (Lange, 2009; Henry and Obleser,
2012), auditory tones and visual dots (Doherty et al., 2005; Stefanics et al., 2010;
Mathewson et al., 2010, 2012; Miller et al., 2012; Breska and Deouell, 2014).

The complexity of the decision has been increased by some researchers by us-
ing two-alternative forced-choice tasks that require participants to make a binary
classification decision on each trial. This requires either classifying the existence
or absence of a target stimulus (Hickok et al., 2015), or making decisions based on
stimulus attributes such as whether a target is a complex or pure tone (Rimmele
et al., 2011), brighter or louder than the preceding rhythmic context (Marchant
and Driver, 2012; Geiser et al., 2012; Herrmann et al., 2016), or has a different
pitch or timbre in relation to its context (Klein and Jones, 1996; Morillon et al.,
2016). The fact that these decisions are based on a single event and not multiple
pieces of information, such as the trajectory, rate and actions of people walking
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in a square, represents an abstraction—indeed, a retreat—from real-world com-
plexity that needs to be addressed.

Two ways to address this limitation is to impose memory constraints by having
participants decide between two or more pieces of memorised information or to
have them multitask. As decisions are often based on recalled rather than imme-
diately available perceptual information this should increase both the complexity
and ecological validity of the experimental task. This idea has already featured in
some timing paradigms in which participants either compared a target stimulus
with a previously heard standard (Large and Jones, 1999; Jones et al., 2002), en-
gaged in a separate working memory task (Curtanda et al., 2015; de la Rosa et al.,
2012) or decided which of two previously heard auditory sequences contained a
deviant tone (Large and Jones, 1999; Lawrance et al., 2014). Whilst these studies
are beginning to move towards the domain of real-world decisions by increasing
the complexity of the decision, they are still limited by their reliance on isolated
stimuli or the comparison of isolated events.

A different way in which they can be improved is by having participants make
decisions based on sequences of information. This would not only demand the use
of memory, but also require participants to form ensemble representations (i.e.
averages) on which to base their decisions. Morillon et al. (2014) provides the
only published example of this approach being used in the temporal expectation
literature. That study was published midway through the research leading to this
thesis, after the method had been adopted for the present research. It comprised
a pitch comparison task in which participants decided whether the average pitch
of a rhythmic sequence of frequency modulated pure tones was higher or lower
than a reference pitch. Whilst the details of the task contained limitations that
are discussed later in this chapter, the experimenters use of complex averaging
successfully increased the complexity of the decision under investigation.

Averaging is a useful method for refocusing the research question away from
how stimulus timing affects single event classification to how it affects the con-
struction and representation of complex decision variables (DecVs). This is espe-
cially important for this investigation because averaging requires using structure
and redundancy to form compressed and efficient representations of information
that can be used to describe objects, assign value and compare complex options
(Alvarez, 2011) - see section 3.3.1 for further discussion. Whilst there has been
relatively little research into which neural mechanisms are responsible for differing
types of averages (such as spatial or temporal), there is evidence that the parietal
cortex plays an important role during numerical averaging and that value repre-
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sentations associated with complex decision options arise in the prefrontal cortex
prior to choice (Piazza and Veronique, 2009; Kable and Glimcher, 2009). As the
latter applies to scenarios such as charitable decision making in which decision
makers must incorporate information associated with a range of different factors
such as ethics and wealth (Hare et al., 2010), averaging appears to be a high order
cognitive function that is closely related to memory and appears fundamental to
the construction of most complex DecVs. Whilst averaging itself does not capture
the complexity of decisions such as who to hire, where to invest money or who
to marry, its strong relationship to complex decision making makes it an ecologi-
cally valid and scalable method for increasing the complexity of tasks in temporal
expectation paradigms.

3.2.2 Decision type

All experimental paradigms used to test rhythmic temporal expectation require
participants to either detect, classify or compare perceptual features of existing
objects. This means that there is always an objectively correct or incorrect answer
to the decision as it is referring to something that is already present in the world.
For many everyday decisions, however, there is no objectively correct answer.
Imagine that you must decide whether to walk to the left or right side of someone
walking towards you, or choose which type of coffee to order in a coffee shop.
These decisions are based on expectations about the future state of the world
and are therefore probabilistic inferences that must account for preferences, goals
and prior knowledge. This does not mean that they do not rely on existing
perceptual features within the scene, but simply that they require the integration
of attributions or representations of value and uncertainty predictions.

As there is increasing evidence to suggest that subjective value representa-
tions are weighted by selective attention (Armel et al., 2008; Krajbich et al.,
2010; Krajbich and Rangel, 2011; Krajbich et al., 2012), it is important to test
whether rhythmic temporal expectations bias other types of decisions associated
with subjective value and risk. This is because within many research programmes
temporal attention is claimed to function as a dimension of selective attending
(Jones, 1976, 2010; Nobre et al., 2007; Nobre and Rohenkohl, 2014; Henry and Her-
rmann, 2014). These tests would require a new experimental approach in which
participants make value-based decisions based on rhythmically varying sensory
information. Any positive effect of temporal expectation would force theorists
to expand existing cognitive models to describe not only how rhythmic temporal
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expectations bias low-level sensory processing, but what interaction this has with
higher-order cognitive and motor functions that underlie DecVs.

3.2.3 Time as an inherent dimension of targets

Temporal expectation arises during implicit exposure towards rhythmically pre-
dictable regularities in the environment. For this reason it is common for experi-
ments studying its effects on perception to consist of trials in which an entrainment
period precedes the presentation of a target stimulus. An entrainment period
consists of a sequence of at least three rhythmic precursors presented in either
the auditory or visual domain. These precursors can be presented isochronously,
when stable temporal expectations are desired, or irregularly, as a comparison
condition. A review of twenty experiments in the literature shows that the mean
number of rhythmic precursors was 7 with a standard deviation of 4.04. The only
function of rhythmic precursors in the literature so far is to induce rhythmically
fluctuating temporal expectations by the time the target stimulus is presented.

A major problem with the above approach is that it allows for rhythmic con-
text to be artificially separated from goal relevant information on which decisions
are made. This separation is sometimes made explicit for participants by telling
them to ignore the rhythmic precursors (Jones et al., 2002; Escoffier et al., 2010;
de la Rosa et al., 2012; Bolger et al., 2013). This approach is problematic because
in everyday life timing is inherent within and between meaningful events and
therefore it is not a dimension that is easily separable from context or the task
at hand (Jones, 1990). Therefore, in addition to asking whether a concurrent
working memory task influences the effects of rhythmic precursors on response
times (Curtanda et al., 2015; de la Rosa et al., 2012), a useful secondary question
is whether the temporal presentation of the working memory task stimuli impacts
working memory performance. It would be an alien world in which short sequences
of isochronous clicks accounted for timing and preceded each spoken utterance or
change in facial expression. Similarly, goal-relevant information is unlikely to be
devoid of timing and stored in a format that is entirely separate from the changing
structure of the environment. A small number of studies have started to address
the issue of rhythmic contexts being separated from response targets by trying to
make experimental tasks more representative of natural rhythmic stimuli. For ex-
ample, Henry and Obleser (2012), Rohenkohl et al. (2012) and Cravo et al. (2013)
presented multiple targets at random intervals within a long stream of rhythmic
precursors and Doherty et al. (2005), Correa and Nobre (2008) and Rohenkohl
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and Nobre (2011) overlaid targets with spatial information (see section 2.1.1).
As these attempts still separate rhythmic information from goal-directed decision
information, much more needs to be done to fix the problem.

A different way to consider timing is as a dimension of goal relevant events
that functions to weight the relevance of feature information in some way. From
this perspective it is clear that timing should not be separated from goal relevant
decision information and that a solution is for experimental targets to contain
dynamic properties. Were this the case, rhythmic precursors and separated en-
trainment periods would not be required.

3.2.4 Rhythmic variance

It is common for experiments in the timing literature to contain both periodic
and aperiodic rhythmic conditions. Aperiodic trials typically include a tempo-
rally jittered precursor sequence (i.e. with IOIs that are probably different from
one another) that functions as a comparison for periodic trials in which precursor
stimuli occur at identical temporal intervals. The common finding is that, com-
pared with periodic trials, responses on aperiodic trials are slower, less accurate
and are not accompanied by the entrainment of ongoing neural brain activity.
Whilst this categorical distinction between periodic and aperiodic is a good start-
ing point, more needs to be done to understand why this is the case, particularly
as natural stimuli such as speech and music, to which much of the previous lit-
erature on timing claims relevance, are only very rarely strictly periodic. This
treatment of timing either periodic or not leaves unexplored questions such as:
do varying degrees of aperiodicity and IOI variability bias choice in different ways?
Are decision latencies, accuracy and momentary power in oscillatory brain activ-
ity linearly dependent on IOI variance between precursors? Is the influence of
increasing aperiodicity linearly related to decision quality, or is the relationship
quantal? These questions can be answered by paying more attention to the gen-
eration and analysis of aperiodic precursors and their impact on choice, which
will be key to mapping out the computational processes that underlie rhythmic
sampling and its impact on complex choice.

Mathewson et al. (2012) and Herrmann et al. (2016) are, to the author’s knowl-
edge, the only studies to have investigated how degrees of rhythmic variability,
and not predictability (as in Morillon et al. (2016)), affect perceptual decision
making. During data processing, Mathewson et al. (2012) binned all aperiodic
trials into low and high variability groups based on the IOI variance in each pre-
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cursor sequence. By analysing each variability group separately, they showed that
high variability trials had a lower target detection rate than both the low vari-
ability and strictly periodic trials, thus demonstrating that perceptual decisions
can be sensitive to varying degrees of IOI variability in a precursor sequence, i.e.
to degree of aperiodicity. Herrmann et al. (2016) provides a more in-depth in-
vestigation. They measured whether temporal expectations arise in temporally
variable tone sequences and to what degree these affect perceptual processing.
Each trial consisted of a rhythmic sequence of 25 irregularly presented tones and
contained between 2 to 4 randomly positioned target tones. Target tones were
identical to other tones in the sequence except that they were slightly louder and
the task was to detect the targets. Repeated sampling ensured that sequence
IOIs had an average frequency of 2 Hz (500 ms) and were randomly sampled from
a range ±55 ms either side of the average. This meant that some parts of each
sequence were more irregular than others and that overall degree of irregularity
varied trial-by-trial. After the experiment, a mathematical oscillator model de-
veloped by Large and Jones (1999) was fitted to the data to determine what the
instantaneous phase of attending oscillators should have been at the time of each
target tone. The analysis showed that, regardless of the degree of aperiodicity
of the context, participants’ hit rate improved as a function of the strength of
the entrained mathematical oscillator. In other words, the more predictable the
aperiodic context became, even though it was not completely periodic, the more
likely participants were to detect a target tone.

As humans are sensitive to rhythmic variability, and, as noted above, both
speech and music rhythm is rarely strictly periodic, it makes little sense to
continue addressing periodicity and aperiodicity as simply categorically distinct.
Rather, effort must be made to understand how humans respond to varying de-
grees of aperiodicity and how this is accounted for in models of temporal expec-
tation and decision making. A simple way to do this, as Mathewson et al. (2012)
did, is to bin randomly generated aperiodic sequences into subgroups according
to IOI variance and to then analyse dependent variables by each subgroup of
variability.

3.2.5 Prior knowledge

Imagine that your goal is to catch a tennis ball. As it moves through the air you fo-
cus on what you need to do to catch the ball. This involves tracking its trajectory
and preparing your body to catch the ball based on predictions concerning where
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it will land. Although timing is key to the task, it is no more (nor less) important
than other sources of information such as visuo-spatial information and motoric
control. It therefore remains an integrated dimension of a dynamic visuo-motor
spatial-coordination task and not the explicit focus of attention. This contrasts
with many temporal expectation paradigms in which it is obvious to the partic-
ipant that the primary purpose of the experiment is to investigate timing. For
example, if each trial begins with a rhythmic sequence of repeating stimuli that
have no apparently meaningful relationship to the task, participants seem likely to
infer that they are structurally important to the experiment, and therefore prob-
ably warrant explicit attention. Rhythmic precursors that fall into this category
are streams of repeating flashes and tones (Large and Jones, 1999; Barnes and
Jones, 2000; Mathewson et al., 2012; Marchant and Driver, 2012; Miller et al.,
2012; Herrmann et al., 2016), frequency modulated complex tones (Henry and
Obleser, 2012) and amplitude modulated noise (Hickok et al., 2015). The prob-
lem with this approach is that participants will likely perform differently on the
task if they assume the rhythmic precursors to be functionally important to the
experiment. As a result, their behaviour may have limited relevance to real-world
scenarios in which timing is an implicit dimension of a task.

The more abstract the relationship between rhythmic precursors and the task,
the greater the above problem may be. Escoffier et al. (2010) provides perhaps
the best example of this. Participants were shown sequences of images of different
faces and houses and told to respond as fast and accurately as possible whether
each image was presented upright or inverted. To test whether acoustically in-
duced temporal expectations enhanced task accuracy, participants heard a rock
drum beat over headphones whilst they did the task that either coincided with
the onset of the images or did not. For participants’ doing the task, it is a possi-
bility that due to the rock beat not being related to the images, or accompanied
by other instruments, they may have inferred that its function was to induce
temporal expectations. A small number of studies have successfully avoided this
problem by using tasks in which different types of feature information are over-
laid onto the rhythmic precursors. For example, studies have combined different
colours (Breska and Deouell, 2014), spatial locations (Doherty et al., 2005), and
pitches (Morillon et al., 2014) with (visual or auditory) precursor sequences as a
way of reducing dissociation between targets and task timing.

As rhythmic temporal expectations are thought to be largely implicit and
driven by the structure of rhythmically predictable events, there have been few
direct attempts to understand what effect prior knowledge about the timing of
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a rhythmic sequence has on task performance. This is important for the current
project because complex decision making relies on predictions about future states
of the world and the integration of learned knowledge with sensory information.
One way that the effect of prior knowledge can be investigated is to compare
responses to trials in which subjects know whether stimuli will be periodic or not,
with those where they do not know beforehand. Jones et al. (2006) used a similar
method to test the differences between voluntary and automatic attending. In
their third experiment they explicitly told participants about the timing of the
target tone and ways in which it could be manipulated prior to them starting
the experiment. Task performance was then compared with a previous study
(experiment 2) in which participants were not told about the stimulus timing.
The analysis showed that prior knowledge about the timing of rhythmic sequences
selectively impacted upon choice by increasing response accuracy.

In summary, section 3.2 has addressed five areas of temporal expectation
paradigms that are in need of development. Firstly, the complexity of decisions
required in experimental tasks is overly simplistic compared with many every-
day decisions. Secondly, tasks have been restricted to perceptual decisions about
features of existing objects and other types of decisions have been overlooked.
Thirdly, rhythmic precursors are often dissociated from response targets resulting
in timing being artificially separated from goal-relevant information. Fourthly,
a binary distinction is often made between periodic and aperiodic rather than
investigating degrees of aperiodicity. Lastly, prior knowledge about the timing
of the stimulus has not been well controlled for making it difficult to determine
what effect this has on experimental responses.

3.3 A new experimental approach

The experimental approach outlined in this section proposes methods for investi-
gating the effects of rhythmic temporal expectation on complex decision making.
As stated in chapter 1, complex decision making is defined in this thesis as choices
that are based on more than one piece of perceptual information that require in-
tegrating memorised content into decision options and/or weighting options in
terms of subjective value. It addresses the five limitations described in section 3.2
and focuses on making psychophysical testing more representative of everyday de-
cisions. This is achieved by increasing the complexity of the decision required on
each trial whilst at the same time retaining controlled conditions. The approach
combines auditory psychophysics with features of existing temporal expectation
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and decision making paradigms with the aim of finding common ground between
disparate disciplines. The proposed approach is not a plea to abandon traditional
psychophysical methods, but rather an attempt to develop and enhance them
from within. If successfully implemented, the experimental approach should fa-
cilitate change in the experimental psychology and neuroscientific literatures by
encouraging cross-topic collaboration. The following sections discuss key aspects
of the approach, explaining how it works and what benefit it affords the project.

3.3.1 Complex averaging and subjective value

The first feature of the proposed experimental approach involves increasing the
complexity of decisions required on each trial during temporal expectation para-
digms. This will help to determine the degree to which current theories of tem-
poral expectation generalise to everyday decision making and expand the investi-
gation beyond that of simple perceptual decisions. There are at least two ways in
which this can be done: complex averaging and subjective value decision making.

A major challenge for the perceptual system is that the complexity and amount
of information in the surrounding environment usually exceeds sensory processing
capabilities (Albrecht and Scholl, 2010). For this reason, humans use at least two
strategies to detect and process information. One is to direct selective attention
towards important goal-relevant features in the environment. The other is to con-
struct low-resolution probabilistic representations that rapidly provide a broad
overview of the scene. These statistical summaries have been termed ensemble
representations and arise when it is important to process and respond to large
amounts of spatially and temporally dispersed perceptual information (Alvarez,
2011). This explains why you might be able to accurately recall the approximate
size and direction of a group of people walking through a square, but cannot
remember specific features about them. Research investigating ensemble repre-
sentations has traditionally been limited to the visual domain but there is recent
evidence to suggest that the ability to average is also strong in audition (Albrecht
et al., 2012; Piazza et al., 2013; Nelken and de Cheveigné, 2013). One benefit of
incorporating ensemble representations into a temporal expectation task is that it
removes the need to use rhythmic precursors. This is because timing relationships
are inherent within and between the different perceptual elements used to con-
struct ensemble representations, meaning that the temporal presentation of goal
relevant information can be directly manipulated. A second benefit is that it will
determine the extent to which rhythmically presented decision information con-
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tributes to the response. This is useful because it will allow stimulus timing and
feature information to be investigated and modelled in terms of decision weights.

A further benefit of using complex averaging is that it will force theoretical
models of temporal expectation and decision making to jointly describe how dy-
namic sensory information is integrated within complex DecVs. This is currently
lacking within the temporal expectation literature. In a well-cited study, Ariely
(2001) demonstrated that when shown a display of discs of varying sizes, humans
can accurately report the average size of the discs, but are unable to recall if
particular sizes were present. This phenomenon has been widely replicated and is
robust to high frequency stimulus presentation, memory delays, wide variation in
the number and density of discs and different types of statistical distribution from
which stimulus features are drawn (Chong and Treisman, 2003, 2005b; Albrecht
and Scholl, 2010; Alvarez, 2011). One explanation for these findings is that indi-
vidual stimulus properties are computed, combined and then disregarded leading
to a form of compression in which only ensemble representations are available
as input for memory and decision making (Ariely, 2001; Alvarez, 2011). An al-
ternative suggestion is that individual representations are simply so noisy and
inaccurate that observers cannot reliably recall their feature information (Alvarez
and Oliva, 2008). Whichever explanation is true, the finding raises important
theoretical questions for this project concerning whether effects of temporal ex-
pectation on sensory processing are transferred to ensemble representations or
disregarded along with individual stimulus representations.

A simple way to implement complex averaging in a temporal expectation
paradigm is by having participants compare an average feature of a dynamically
presented stimulus array with a referent of some kind. This would allow the onset
timing of the stimulus array to be manipulated and response data used to deter-
mine the degree to which individual onsets weight the ensemble representation.
This is similar to methods used by Morillon et al. (2014) - see section 3.2.1. The
array could also be designed to have the same duration as standard entrainment
periods and would only need to contain a small number of varying but related
stimuli. This is because the accuracy of mean estimations is relatively constant
as the number of items to be averaged passes four (Chong and Treisman, 2005a;
Haberman et al., 2009; Alvarez, 2011; Piazza et al., 2013).

Subjective value decision making affords many of the same benefits as that of
complex averaging. This is because it requires not only investigating how rhythmic
temporal expectations bias low-level sensory processing, but also what impact
stimulus timing has on the integration of prior knowledge and the formation of
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complex DecVs. One way that subjective value decision making can be used is by
having participants make preference decisions between pairs of easily recognisable
visual or auditory options (such as pictures of food items, or the same word
spoken by different people). Rather than presenting the stimuli statically, or
in a way that timing is largely irrelevant, the information should be presented
dynamically within a rhythmic context. By recording participants’ preferences
for each option separately before the experiment and then measuring the effect of
timing on choice, it should be possible to determine whether rhythmic temporal
expectations impact upon subjective value and can lead to preference reversals
between similarly valued options.

3.3.2 Sound lateralization

The second feature of the experimental approach combats issues associated with
isolated response targets (section 3.2.3) and prior knowledge (section 3.2.5). It
does this by using sound lateralization techniques and conforming to the follow-
ing rules: 1. Rhythmic sequences must be combined with goal relevant decision
information, and 2. experimental tasks must be representative of everyday de-
cision making. The first rule has already been addressed by a small number of
experiments in the timing literature (see section 3.2.5). For example, Morillon
et al. (2014) combined goal relevant pitch information by having participants es-
timate the average pitch of rhythmic tone sequences. Whilst their task nicely
integrates timing with goal relevant information, it does not satisfy the second
rule. This is because determining the average pitch of a randomly generated tone
sequence is neither representative of everyday decisions nor musical judgements.
Sound lateralisation, on the other hand, provides an excellent means of satisfying
both conditions whilst allowing for the integration of additional features in the
experimental approach.

The ability to locate a sound source is essential in many everyday situations
and is of considerable importance to both humans and animals. It relies on
the use of various cues generated by the interaction of sound waves with the
head, ears and torso and enables us to both track the location of goal relevant
sounds and segregate different sound sources in acoustically complex environments
(Moore, 2012; Ahveninen et al., 2014; Keating and King, 2015). Spatial hearing is
highly relevant to complex averaging (Kumpik et al., 2010). This is because every
salient head or torso movement changes the spatial location of a sound source
in relationship to the body. Therefore, perceiving the spatial location of a fixed
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sound source requires continuously extracting spatial information and integrating
this into a model of the environment that accounts for body movement. This
is why it is possible to detect the position of a singing bird hidden amongst a
large number of rustling leaves whilst walking down a path. The relevance of
complex averaging to spatial hearing is especially clear when goal relevant sounds
do not have a fixed location. Imagine that you hear a very quiet buzzing sound
and infer that it is a mosquito that you cannot yet see. To avoid being bitten
you want to locate it. This task is especially hard because the buzzing sound
only occurs when the mosquito is flying and therefore the sound source is always
moving. Success relies not only on the ability to rapidly extract and average
dynamic spatial information from a moving sound source, but also being able to
cross-reference this with changes in the acoustic signal caused by one’s own body
movements.

To attain ecological validity, the use of sound localization in temporal expec-
tation paradigms need not be as complex as the above mosquito example. This is
because it is common for humans and animals to intentionally stop moving when
trying to locate a sound source, as a strategy for reducing task complexity. There-
fore, a simpler task might be for participants to determine the average location
of a sequence of spatially localised sounds without moving their head or torso.

3.3.3 Rhythmic variability

As described in section 3.2.4, human hearing and perceptual judgements are sen-
sitive to rhythmic variability. Temporal expectation paradigms must therefore
extend beyond the binary classification of periodic versus aperiodic and be able
to investigate what effect varying degrees of aperiodicity has on choice. The third
feature of the new experimental approach proposes an analytical solution to this
problem. Rather than grouping all aperiodic trials together when analysing the
experimental data, aperiodic trials should be divided into subgroups of variability
according to the degree of IOI variance contained within the stimulus sequence.
Dependent variables can then be analysed by each subgroup of rhythmic vari-
ability. The number of subgroups used in the analysis can vary by experiment
and be tailored to the experimental question being asked. This approach is com-
patible with traditional temporal expectation paradigms in that each trial of the
experiment will either contain a periodic rhythm or an aperiodic rhythm. The
only difference is that a sufficiently large number of aperiodic trials are required
to maintain statistical power when analysing variability subgroups.
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3.4 Conclusion

This chapter has addressed five limitations of existing temporal expectation para-
digms and proposed a new experimental approach aimed at correcting, or at least
improving on, them. This is intended to move the investigation beyond that
of simple decisions in order to determine whether and how temporal expecta-
tions systematically bias complex choice. The approach requires increasing the
complexity of the experimental task by having participants make either com-
plex averaging or subjective value decisions. It exploits sound lateralization as
an ecologically valid way of combining rhythmic sequences with goal relevant in-
formation whilst avoiding the use of irrelevant rhythmic precursors. Rhythmic
variability should also be investigated by binning aperiodic trials into subgroups
of IOI variance and adopting analytical methods that distinguish degrees of stim-
ulus aperiodicity. Together these suggestions add more types of decision to the
investigation, increase the complexity of these decisions, integrate timing with
goal relevant information, avoid the use of isolated response targets, allow for the
investigation of rhythmic variability and avoid making timing the explicit focus
of attention.

The following chapters describe seven behavioural experiments that use and
develop the new experimental approach. Each experiment required participants to
make dichotomic responses and avoided testing decision scenarios with more than
two options. Whilst dichotomic responses restrained the complexity of decisions,
they were deemed necessary so as to facilitate the comparison of experimental
findings to those of published timing studies. They also allowed for common
sequential sampling models that are widely used in the decision making literature
to be applied to the data. Ultimately, however, researchers should be aiming to
investigate the effects of timing on a range of different and unbounded decision
scenarios. This thesis should therefore be seen as being associated with common
testing methods, yet to be taking small steps towards greater decision complexity
and ecological validity.

The first experiment tests the effects of temporal expectation on complex av-
eraging and addresses what effect prior knowledge about stimulus timing has on
decision making (chapter 4). Related questions are then investigated in later
chapters with experiments that focus on stimulus rate and complexity (chapter
5), rhythmic variability (chapter 6) and evidence accumulation (chapter 7). The
final experiment (chapter 8) varies the type of decision under investigation by
testing the effects of temporal expectation on subjective value. Sample sizes for
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all experiments were not estimated but instead based on studies in the rhythmic
temporal expectation and decision making literature (Jones et al., 2002; Correa
and Nobre, 2008; Lim et al., 2011; Mathewson et al., 2012; Henry and Obleser,
2012; Wyart et al., 2012; Jepma et al., 2012; Cravo et al., 2013; Morillon et al.,
2014). This decision was partly governed by project budget but mainly followed
norms in the literature at the time of running each experiment. In order to reduce
variance and increase statistical power each study used a within-subject design
and required participants to complete at least 30 repetitions per experimental
condition (mean: 54, SD: 34.1). This is similar to a number of timing and averag-
ing studies cited in the thesis (Barnes and Jones, 2000; Jones et al., 2002; Chong
and Treisman, 2005b; Piazza et al., 2013; Cravo et al., 2013; Curtanda et al.,
2015). Chapter 9 ties the experimental findings together to propose a predictive
theoretical framework that describes key cognitive processes responsible for the
interdependence between temporal expectation and complex decision making.



Chapter 4

Complex averaging and prior
knowledge (Experiments 1 and 2)

4.1 Experiment 1 and 2: Introduction

Chapter 4 describes the first attempts at implementing the new experimental ap-
proach described in chapter 3 and reports the findings of two new psychophysical
experiments. The work has two primary aims: 1. To gather preliminary evi-
dence as to whether rhythmic temporal expectations systematically bias complex
decision making. 2. To determine what effect prior knowledge about the rela-
tive timing of decision-relevant information has on complex decision making and
bottom-up anticipatory processing. Both aims should help to establish whether
findings in the temporal expectation literature generalise to decision scenarios that
are more representative of everyday decision making. The paradigm used for both
experiments is novel and avoids the experimental limitations described in section
3.2. This is achieved by using a complex averaging task in which participants
make decisions about the average location of an acoustic sequence of spatially
lateralized tones. The method has the benefit of both increasing the complexity
of the decision under investigation, and ensuring that timing is not artificially
separated from goal-relevant decision information. As well as standard response
time and accuracy analysis, classification models were used to estimate decision
"weights". Decision weights quantify the degree to which participants prioritise
stimulus information in their decision. Here, they were used to assess whether
information conveyed by temporally-expected tones influenced choice more than
that of temporally-unexpected tones. Rhythmic variability was also investigated
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by dividing aperiodic trials into subgroups of particular IOI variance and then
analysing each subgroup separately.

The experiments were designed to answer two specific research questions. The
first question asks whether complex auditory-spatial averaging decisions are sen-
sitive to temporal variability in the stimulus. As both experiments used the same
task, this question applies to both studies. The second question asks whether
prior knowledge about the rhythmic variability of a stimulus enhances or inhibits
the ability to make complex auditory-spatial averaging decisions. This was tested
by randomising the order of trials in experiment 1, so that participants did not
know whether a trial would contain a periodic or aperiodic sequence, and by pro-
viding explicit instructions about the timing of the sequence whilst blocking trials
in experiment 2. As discussed in section 3.2.5, determining what influence prior
knowledge has on the processing of rhythmic sensory information is key to deter-
mining the generalisability of temporal expectation theories. It is also needed to
explore the idea presented by Arnal et al. (2014) who claim that sensory entrain-
ment is computationally and biologically distinct from learned top-down predic-
tions (see section 2.2.1). As the findings of Jones et al. (2006) and Iversen et al.
(2009) suggest otherwise, experiments 1 and 2 should help to confirm whether or
not bottom-up and top-down anticipatory processes are autonomous.

Sound lateralization was used in both experiments because it provides an eco-
logically valid way of combining rhythmic information with goal-relevant decision
information (see section 3.3.2). It was administered by varying interaural cues,
so that a sound perceived to ones right would be made slightly louder in the
right compared with left ear (interaural level differences) and onset fractionally
later in the left compared with the right ear (interaural time differences). The
benefits of using this method is that it allowed for the precise manipulation and
measurement of the acoustic signal on each trial. Since the stimulus was deliv-
ered over headphones, the method also removed the effects of room reverberation
that would normally cause acoustic interactions during free field sound localiza-
tion tasks. If standard sensory entrainment models apply to complex averaging,
participants should make faster and more accurate decisions on periodic versus
aperiodic trials. Similarly, if top-down anticipatory processes are autonomous
from bottom-up processes, participant performance should not differ significantly
between the two experiments. If it does differ significantly, it will provide evi-
dence of a more complex anticipatory system in which learned knowledge tunes
temporal attending and decision strategies during complex decision making. Due



4.2 Experiments 1 and 2: Method 52

to the similarities between experiments 1 and 2, the method and results of both
are reported together to facilitate comparisons between them.

4.2 Experiments 1 and 2: Method

4.2.1 Participants

20 participants performed in Expt. 1 (10 females, aged between 18 - 28, mean =
21.95, SD = 2.54) and 21 performed in experiment 2 (11 females, aged between
21 - 35 in Expt. 2, mean = 26.62, SD = 4.20). Participants only ever performed
in one of the two experiments and were paid £10 an hour. An additional two par-
ticipants were excluded from Expt. 1 because they did not finish the experiment.
Neither performed well enough to successfully complete the initial configuration
procedure. All participants were right handed students and reported having nor-
mal hearing, normal or corrected-to-normal vision and no colour blindness. In
Expt. 1, none were practicing musicians. In Expt. 2, two were practicing ama-
teur musicians. Both experiments received ethical approval from the Cambridge
Faculty of Music Research Ethics Review Committee.

4.2.2 Task

Both the task and the experimental design were adapted from three conceptually-
similar studies which investigated perceptual decision making in the visual do-
main: Wyart et al. (2012, 2015) and Cheadle et al. (2014).

Figure 4.1 provides a task schematic. On each trial participants listened to
a tone sequence comprising 8 presentations of tone k, presented via headphone
lateralisation at 8 different spatial locations bounded within a range from far left
(-90° azimuth) to far right (+90° azimuth). Tone lateralisation was manipulated
via both interaural intensity differences and interaural time differences. This was
paired with an on-screen image marking the cardinal (-90°, 0°, +90°) and diago-
nal (-45°, +45°) spatial axes relative to the participant’s midline. The sequence
was preceded and followed by a click and presented either periodically, with fixed
interonset intervals (IOI) of 333 ms (3 Hz), or aperiodically, with pseudo ran-
domised IOIs between 200 ms and 500 ms (see section 4.2.3.1 for details). The
latter resulted in a jittering unpredictable rhythm. Upon hearing the final click,
participants judged whether the average orientation of the eight tones was closer
to the cardinal or diagonal spatial axes. Participants made a forced binary re-
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Fig. 4.1 Expt. 1 and 2. Schematic illustration of task structure: On each trial an
auditory sequence containing eight tones was presented with either a periodic or aperiodic
rhythm. This was preceded and followed by a click that signalled the start and end of
each sequence (yellow horizontal bars). Top panel: periodic. Bottom panel: aperiodic.
Each tone was lateralized to sound at different spatial locations ranging from -90° to
90° azimuth at 0° elevation (see the yellow dots in the figure). Tone lateralisation was
manipulated via both interaural intensity differences and interaural time differences.
Participants were to decide whether on average the spatial location of the tones in the
sequence was closer to the cardinal or diagonal axes. Cyan lines represent the cardinal
spatial axes and the purple lines represent the diagonal spatial axes.
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sponse and received corrective feedback on each trial. The experiment contained
no trials in which the average was exactly mid-way between both categories.

The main experimental factors being tested for were periodicity [periodic,
aperiodic] and spatial category [diagonal, cardinal]. Spatial category featured as
a control factor in the analysis to identify whether percepts of lateralised acoustic
space remained balanced throughout the experiment or were subject to perceptual
biases. This is important to test for due to the novel aspects of the experimental
design and because the only published examples of similar experimental tasks
occur in the visual and not auditory domain.

4.2.3 Stimuli

4.2.3.1 Tone sequence

Each tone in the sequence was the same 200-ms audio clip of a real bass clarinet
note on Bb2 ( f0 = 116.53 Hz, sample rate: 44 kHz, recorded at the Electronic
Music Studio, University of Iowa (Fritts, 2012)). It was fit with 10-ms onset and
offset ramps as part of the 200-ms duration. This sound was chosen because it
contained partials across a broad frequency range (116.53 Hz - 22 kHz) and was
reported as being pleasant to listen to. Importantly, piloting revealed that it was
the easiest sound to locate in space compared with an oboe producing Bb3 ( f0 =
233.08 Hz) and a wood block click.

The tone sequence was preceded and followed by a click presented in mid-line
(a shortened audio clip of a wood block being hit with a drum stick - duration: 200
ms including onset and offset ramps: each 10 ms). The clicks signalled the start
and end of each sequence and were included to disrupt priming effects between
trials. This is similar to masking methods used by Wyart et al. (2012, 2015) and
Cheadle et al. (2014). The last click also controlled for response foreperiod by
ensuring that the IOI following the last tone and the response window was the
same across both the periodic and aperiodic conditions.

4.2.3.2 Sound lateralization

The perceived location of the tone sequence was manipulated using both interaural
time differences (ITD) and interaural level differences (ILD). ITDs were calculated
using:

IT D =
r(θ+ sin(θ))

c
(4.1)
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where r = half the radius of the head, constant at 0.09 metres, θ = azimuth in
radians and c = the speed of sound in air constant at 343 m/s (Howard and Angus,
2009, p. 98). ILDs varied such that the two headphone channels delivered equal
intensities when the sound was deemed to be in mid-line (0°). As the lateralised
sound source moved towards azimuths of ±90° relative to the midline, the sound
in the opposite channel attenuated linearly to a minimum value of -20 dB relative
to that of the signal channel when the latter reached ±90°.

4.2.3.3 Timing

Temporal expectation was manipulated by varying the duration of the IOI be-
tween each tone k in the sequence. In periodic trials the IOI between tones was
constant. It was set at 333 ms (3 Hz) in accordance with similar studies investi-
gating attentional and neuronal oscillatory entrainment (Barnes and Jones, 2000;
Henry and Obleser, 2012; Rohenkohl et al., 2012; Cravo et al., 2013; Hickok et al.,
2015). This frequency is thought to be slow enough to avoid the effects of a de-
cision refractory period (Wyart et al., 2012) and fast enough to ensure that each
trial did not last too long (average time per trial: 4.5 s).

On aperiodic trials the IOI between each tone was randomly selected from
a range spanning 200 to 500 ms. A constraint was applied to this selection in
that IOIs lying within ±30 ms of the two preceding IOIs were resampled until a
more suitable IOI was found. This value was used because it was considerably
larger than the just noticeable tempo difference associated with a base rate of 3
Hz reported by Drake and Botte (1993). This resampling ensured that aperiodic
sequences never contained adjacent IOIs that were perceptually similar to one
another, which reduced the likelihood of metrical relationships forming through-
out the sequence. Piloting revealed that this method of IOI generation produced
rhythms that were perceived as being more aperiodic than when randomly select-
ing IOIs from a small array of non-metrically related values.

4.2.3.4 Ideal decision values

Each tone k in the sequence was coded with an ideal decision value (IDk) which was
selected from a continuous array ranging between -1 and 1. IDk represented the
type and amount of categorical information that each tone carried and described
each tones location within the decision space. IDk was negative if the location
of the tone was closer to the diagonal axes and positive if it was closer to the
cardinal axes. IDk was zero if the tone was located exactly half way between both
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axes. IDk = −1 thus represented fully diagonal locations (-45°, +45°), IDk = +1

represented fully cardinal locations (-90°, 0°, +90°) and IDk = 0 represented the
locations of the category boundaries (-67.5°, -22.5°, 22.5°, 67.5°).

By using an auditory space that covered multiple axis points ID values and
azimuth information remained orthogonal to one another. For example, different
azimuth values (e.g. 20° and -70°) could contain the same categorical information
and thus the same ID value. This ensured that the decision process could be
dissociated from any perceptual biases attaching to specific azimuth locations.
Figure 4.2 illustrates an adapted version of Wyart et al. (2012) saw-tooth decision-
mapping rule that was used to assign ID and azimuth values.

4.2.3.5 Azimuth selection

On each trial, ID and azimuth values were generated dynamically by sampling 8
values from a probability density function spanning the ID space [-1 : +1] and then
by assigning a corresponding azimuth to each value using the decision-mapping
rule (see figures 4.2).

Specifically, this required first sampling an eight digit array from one of two
probability density functions (PDF) that had been shifted either positively or
negatively by a fixed value (the reference value) within the ID space [-1 : +1].
The PDF selection depended on whether the trial was to be more diagonal (PDF
with mean < 0) or more cardinal (PDF with mean > 0). The reference values,
marking the means of both PDFs, were participant-specific and described the
distribution for which participants could correctly classify the sequence 75% of
the time (see section 4.2.4). The standard deviation (SD) of both PDFs were set
to 0.25 to ensure that ID values could be selected from the complete range of
decision space. To standardise the array across trials, resampling was done until
the following criteria were met:

1. The resulting mean and SD of the ID array differed by no more than ±0.01
from the mean and SD of the PDF from which it was sampled.

2. An equal number of ID array values fell either side of the array mean.

Both PDFs were sampled evenly throughout the experiment to ensure that the
number of trials containing predominantly diagonal versus predominantly cardinal
tones was equal.

Once an ID array was found whose mean and SD was similar enough to the
PDF, each of its eight elements was randomly assigned to one of the four corre-
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Fig. 4.2 Top panel: a schematic decision-mapping rule, adapted from Wyart et al.
(2012), and used to map the location of tone k (perceptual information, x-axis) to the
diagonal/cardinal decision axis (ideal decision information, y-axis). All stimuli located
between the diagonal axes [±45° - purple areas] and the points of ambiguity [±67.5°,
±22.5° - dotted lines] were assigned a negative ideal decision value (ID) between [-1,0].
This represented the relative position within the diagonal category. All stimuli located
between the cardinal axes [±90°, 0° - blue areas] and the points of ambiguity [±67.5°,
±22.5° - dotted lines] were assigned a positive ID value between [0,1]. This represented
the relative position within the cardinal category. IDk corresponds to the absolute amount
of categorical evidence provided by onset k in isolation and is a measure of ideal decision
information. Bottom panel: ID values mapped onto the auditory space. Purple spectrum
represents ID values associated with the diagonal category. Cyan spectrum represents ID
values associated with the cardinal category. The inner semicircle marks ideal decision
information and the outer semicircle marks perceptual information.
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sponding azimuth values with the decision space. To understand this last step,
note that on the top panel of figure 4.2, every value on the y-axis corresponds to
four points on the thick black diagonal line. This increased the likelihood that the
azimuths for each trial would be assigned uniformly and ensured that perceptual
information remained orthogonal to IDk values.

4.2.3.6 Auditory feedback

Following Cheadle et al. (2014), auditory feedback consisted of two 100-ms tones,
one of 400 Hz and the other of 800 Hz. An ascending sequence (400 Hz then
800 Hz) signalled a correct response, a descending sequence signalled an incorrect
response. These feedback sequences began 250 ms after each response.

4.2.4 Procedures

4.2.4.1 Experiment 1

Participants were tested individually and completed all stages of the experiment
in sound attenuated recording studio located in the Centre for Music and Sci-
ence at the University of Cambridge. Each participant underwent an adaptive
practice and a calibration session directly before the experiment. The practice
consisted of 80 trials (40 periodic and 40 aperiodic, randomised) in which task
difficulty was adapted based on the participant’s performance. The calibration
session comprised an adaptive three-up one-down psychophysical staircase proce-
dure to estimate the threshold for correctly classifying sequences 75% of the time
(Kaernbach, 1991). This procedure adaptively varied the mean of the PDF on
each trial and selected the threshold after 21 reversals. The resulting mean of
the PDF associated with this threshold was then fixed throughout all subsequent
trials of the experiment for that participant.

After the calibration session participants performed 8 blocks of 52 trials, 26
periodic and 26 aperiodic, presented in random order. They were told to decide
whether the sequence belonged to either the diagonal or cardinal category by
pressing the appropriate one of two response keys on a computer keyboard using
their index fingers. Response keys were counterbalanced across participants. The
response period was cued in two ways: by the appearance of two colour-coded
circles in the top left and right segments of the screen (Cyan for cardinal; Purple
for diagonal), aligned appropriately for the particular counterbalanced key condi-
tion; and by the simultaneous onset of the final woodblock click of the sequence,
which sounded 333 ms after the final tone. Response times were collected from
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the onset of the final woodblock click. Trials timed out if no response had been
made after 3 seconds. Feedback was given 250 ms after a response or else at the
timeout duration in the case of no response. There was always a 666 ms pause
before the next trial, which began from the offset of the auditory feedback.

After each block of 52 trials, participants were presented with a virtual roulette
wheel that randomly selected one trial from the previous block. Participants
won a bonus of £0.50 if their response on the selected trial was correct. The
calibration procedure ensured that participants typically won £3 in additional
bonuses throughout the experiment on top of the base payment of £10. This
measure controlled the incentive and decision strategy used by all participants on
each trial. The experiment lasted about 1.25 hours.

4.2.4.2 Experiment 2

Expt. 2 differed from Expt. 1 in three ways: 1. both the practice and experimen-
tal trials were blocked by periodicity. Periodic and aperiodic blocks alternated
throughout the experiment, with their orders counterbalanced across participants.
2. A phrase, either "Predicable beat trials" or else "Unpredictable beat trials",
was presented on-screen prior to the start of each block. This indicated whether
a block would contain periodic or aperiodic sequences. On reading this phrase
participants needed to click the computer mouse to start the block. 3. Auditory
markers were included in the practice session. The purpose of the markers was
to help participants develop and maintain a clear sense of spatial awareness for
the task before starting the main experimental session. The markers comprised
two tones presented sequentially at each axis location. The presentation order
started at 0° , followed by each of the ±45° positions in turn and then the ±90°
positions (with left/right order counterbalanced). The markers were presented
5 times throughout the practice session at evenly-spaced intervals, i.e. every 16
trials.

4.2.5 Apparatus

All stimuli were partially or fully generated and behavioural responses recorded
using Psychophysics-3 Toolbox (Brainard, 1997) in addition to custom scripts
written for MATLAB (MathWorks). These scripts were written by the author of
this thesis and can be downloaded from an online repository:

https://github.com/dcgreatrex-phd/experiment_1

https://github.com/dcgreatrex-phd/experiment_2
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All audio files were edited using Audacity v.2.0.5. Images were presented on a 22-
inch Iiyama Prolite E2202WS screen with a vertical refresh rate of 60 Hz, which
was positioned 100 cm in front of the participant. Responses were collected via an
Apple keyboard with numeric keypad and sound heard through a Beyerdynamic
DT 990 Pro headset.

4.3 Experiments 1 and 2: Results

The results of Experiments 1 and 2 were analysed separately, but subjected to
the same types of analyses. For ease of comparison, each type of analysis reports
results for both experiments.

4.3.1 Threshold values

There was a wide range of ability in both experiments. This is seen in the dis-
tribution of fixed threshold values estimated during the initial calibration stage.
Threshold values were defined by the absolute mean of the PDFs that were used
for each participant and can therefore be viewed as a measure of each Ps ability
at the task. The closer the mean was to zero (the point of ambiguity), the harder
the experimental conditions were due to the underlying PDF being less biased
towards one of the two categories. In Expt. 1, the threshold values (i.e. the
absolute means of the PDFs) ranged from 0.20 to 0.60 (mean = 0.37; SD = 0.11)
within the ID space [-1 to + 1]. In Expt. 2, they ranged from 0.27 to 0.60 (mean
= 0.48; SD = 0.09). The average threshold in Expt. 1 was therefore 0.11 smaller
than that of Expt. 2, indicating that a greater number of participants in Expt.1
could do the task under harder conditions compared with those in Expt. 2.

4.3.2 Response time and categorisation accuracy

Figure 4.3 shows the mean proportion of errors and response times (RTs) for Expt.
1 and 2. The behavioural data contains obvious differences between responses in
Expt. 1 and Expt. 2, with both periodicity and spatial category having a strong
effect on RTs and choice accuracy. Starting with the similarities, RTs were faster
during the cardinal and periodic trials of both experiments. This was confirmed
by submitting log-transformed RTs to two separate two-by-two repeated measures
Analysis of Variance. The analyses revealed strong main effects of periodicity
(Periodic: mean = 0.475, SD = 0.144; Aperiodic: mean = 0.569, SD = 0.136;
F(1,19) = 92.056; p = < 0.001, partial n2 = 0.83) and spatial category (Cardinal:
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Experiment 1 Experiment 2

Fig. 4.3 Expt. 1 and 2. Left panel column: data from Expt. 1. Right panel column:
data from Expt. 2. Top panel row: mean proportion of errors associated with the
periodicity [Periodic, Aperiodic] and spatial category [Diagonal - dashed lines, Cardinal
- solid lines] conditions. Bottom panel row: mean response time (s) associated with the
periodicity [Periodic, Aperiodic] and spatial category [Diagonal - dashed lines, Cardinal
- solid lines] conditions. Error bars = standard error of the mean.
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mean = 0.505, SD = 0.131; Diagonal: mean = 0.540, SD = 0.161; F(1,19) = 5.908;
p = 0.025, partial n2 = 0.24) in Expt. 1. Participants responded faster on periodic
compared with the aperiodic trials as well as on cardinal compared with diagonal
trials. Similar findings were found in Expt. 2, with main effects of periodicity
(Periodic: mean = 0.506, SD = 0.170; Aperiodic: mean = 0.621, SD = 0.156,
F(1,20) = 64.827; p = < 0.001, partial n2 = 0.76) and spatial category (Cardinal:
mean = 0.544, SD = 0.150; Diagonal: mean = 0.584, SD = 0.192; F(1,20) = 5.950;
p = 0.024, partial n2 = 0.23) on RTs. There were no interactions: Expt. 1 (F(1,19)

= 0.366; p = 0.553, partial n2 < 0.01), Expt. 2 (F(1,20) = 0.018; p = 0.895, partial
n2 < 0.01).

Differences were found in proportion of errors. Participants made fewer errors
on diagonal and periodic trials in Expt. 1, but not in Expt. 2. This suggests
that knowing about the timing of the stimulus in advance of hearing it helped
participants to suppress the effects of the experimental conditions on decision
accuracy. This was supported by subjecting the response accuracy data to two
separate two-by-two repeated measures Analyses of Variance: In Expt. 1, there
was a main effect of periodicity (Periodic: mean = 0.250, SD = 0.084; Aperiodic:
mean = 0.278, SD = 0.084; F(1,19) = 8.268; p = < 0.01, partial n2 = 0.30) and
spatial category (Cardinal: mean = 0.283, SD = 0.086; Diagonal: mean = 0.244,
SD = 0.079; F(1,19) = 4.989; p = 0.04, partial n2 = 0.21) on decision accuracy.
Participants made fewer errors on periodic compared with aperiodic trials as well
as on diagonal compared with cardinal trials. The interaction between the two
factors was not significant, F(1,19) = 0.082; p = 0.778; partial n2 < 0.01. These
findings were not found in Expt. 2 with no effects of periodicity (Periodic: mean
= 0.254, SD = 0.090; Aperiodic: mean = 0.267, SD = 0.100, F(1,20) = 2.281; p
= 0.147, partial n2 = 0.10) nor spatial category (Cardinal: mean = 0.259, SD =
0.100; Diagonal: mean = 0.262, SD = 0.094; F(1,20) = 0.042; p = 0.840, partial
n2 < 0.01).

To support the analyses, d-prime and criterion values were computed (Green
and Swets, 1966). D-prime quantifies participants’ categorisation sensitivity where-
as criterion accounts for categorisation bias. In line with the previous analysis,
paired-sample t-tests showed that mean d-prime values were significantly greater
in the periodic compared with aperiodic condition of Expt. 1 (Periodic: mean
= 1.395, SD = 0.420; Aperiodic: mean = 1.216, SD = 0.325; t(19) = 3.119, p <
0.01), but were not significantly different in Expt. 2 (Periodic: mean = 1.37, SD
= 0.520; Aperiodic: mean = 1.34, SD = 0.680; t(20) = 0.362, p = 0.721). Criterion
values were also, on the whole, significantly greater than zero across all conditions
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of Expt. 1 (mean = 0.06, SD = 0.121, t(19) = 2.2, p = 0.04) but indistinguishable
from zero in Expt. 2 (t(20) = 0.041, p = 0.968) This indicates that participants’
responses were biased towards the diagonal category in the first but not second
experiment.

The main effects of periodicity and spatial category on RTs in both Expt.
1 and 2 suggest that both factors regulated the time it took for participants to
either encode or recall sequence information from memory. This may highlight
a general processing limitation that operates irrespective of prior knowledge or
ability at the task. Additionally, RTs were on the whole noticeably longer in
Expt. 2 (Periodic: mean = 0.506, Aperiodic: mean = 0.621) compared with
Expt. 1 (Periodic: mean = 0.475, Aperiodic: mean = 0.569). As there was no
effect of periodicity or spatial category on choice accuracy in Expt. 2, this may
be indicative of a speed-accuracy trade off. In other words, by knowing more
about the task (due to task instructions, the blocking of trials and the inclusion
of auditory sweeps), and taking longer to respond, participants could reduce the
degree to which the experimental conditions biased the accuracy of their decisions.

4.3.3 Variance analysis

Experiments 1 and 2 contained two sources of uncontrolled variability due to
random sampling across trials. The first was variance in the seven IOIs that
separated tones on aperiodic trials. As aperiodic IOIs were randomly sampled
from a continuous array of values, IOIs were more variable in some sequences
than in others, as the top panel of figure 4.4 illustrates. The second source of
variability was the spread in azimuth values on each trial. This was due to the
random assignment of IDk values to one of four corresponding spatial positions
that lay between the cardinal and diagonal axis points - see section 4.2.3.5 for
details and the bottom panels of figure 4.4 for an example. Some sequences
therefore contained tones that would be heard as located in a small area of space,
whereas others contained tones located across a much wider area.

To test whether IOI or azimuth variance influenced the data, two additional
analyses were done. The first tested whether the SD of IOI values on each trial
reliably influenced responses. The second tested the same question using the
SD of azimuth values on each trial. This was achieved by first computing the
SD of IOI values on each trial and binning each trial into one of four equally
sized IOI variance groups (52 trials each). These groups were participant-specific
and defined using the 25th, 50th and 75th percentiles of each participant’s total
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Fig. 4.4 Expt. 1 and 2. Two sources of uncontrolled variability: sequence IOIs and
azimuth assignment. Top panel: three IOI sequences that conform to the sampling
rule used to generate all aperiodic sequences. 1. High variance sequence. 2. Medium
variance sequence. 3. Low variance sequence. Note that each sequence has a different
IOI mean and standard deviation. Bottom panel: two cardinal (blue axes) azimuth
sequences. Left panel: low variance azimuth distribution. Right panel: high variance
azimuth distribution. Although each azimuth sequence has a different azimuth mean
and standard deviation, both were generated using exactly the same ID array. Variance
between sequences was caused by the random assignment of each IDk value to one of four
corresponding ID distributions within the decision space on each trial (see the four grey
normal distributions). If each of the 8 IDk values had been assigned to the same grey
distribution, the azimuth sequences would be identical.
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IOI SD distribution. This procedure was then repeated for the SD of azimuth
values on each trial. Note, that because the spread of azimuths on cardinal versus
diagonal trials are necessarily different from one another, the grouping procedure
was applied to each spatial category condition separately. This enabled the testing
of azimuth variance on the main experimental factors.

4.3.3.1 IOI variance

Figure 4.5 shows RTs and proportion of errors by IOI variance for both Expt. 1
and Expt. 2. IOI variance clearly affected RTs in both experiments but did not
systematically affect error rates on aperiodic trials. The more variable the IOIs
were on a trial (in relation to all of the aperiodic trials presented during one ex-
perimental session), the slower participants were to respond. This was confirmed
by submitting mean log-transformed RTs from correct aperiodic trials to a one-
way repeated measures ANOVA. There was a significant effect of IOI variance in
both Expt. 1 (F(3,57) = 21.07, p < 0.001, partial n2 = 0.77) and Expt. 2 (F(3,60) =
31.806 p < 0.001, partial n2 = 0.86). To understand which levels of IOI variance
were affected, Bonferroni corrections were used. In Expt. 1, decisions made in
the 0:25th percentile group trials (mean = 0.53, sd = 0.13) were faster than both
the 50:75th (mean = 0.58, sd = 0.14) and >75th (mean = 0.60, sd = 0.14) per-
centile groups trials (both p < 0.001). Similarly, decisions made in the 25:50th
percentile group trials (mean = 0.56, sd = 0.15) were faster than those in the high
>75th percentile group trials (p = 0.003). In Expt. 2, all levels of IOI variance
were significantly different from one another (means = 0.57, 0.61, 0.64, 0.66, SD
= 0.15, 0.15, 0.14, 0.17, from low to high degrees of IOI variance on aperiodic
trials), except between the 50:75th and the >75th percentile groups (p = 0.10).
A follow-up 4X2 repeated measures ANOVA ran on the same RT data showed
that the IOI variance groupings [0:25th, 25:50th, 50:75th, >75th percentiles] did
not interact with the spatial category conditions [Diagonal, Cardinal] during ape-
riodic trials (Expt. 1: F(3,57) = 2.28, p = 0.09, partial n2 = 0.23; Expt. 2: F(3,60)

= 0.758, p = 0.522, partial n2 = 0.10). Finally, two additional one-way repeated
measures ANOVAs with factor IOI variance showed that IOI variance did not
systematically affect error rates during aperiodic trials (Expt. 1: F(3,57) = 0.1187,
p = 0.949, partial n2 < 0.01; Expt. 2: F(3,60) = 0.156, p = 0.926, partial n2 < 0.01).

The finding that IOI variance systematically increased RTs on aperiodic trials
but did not affect error rates is novel. A possible interpretation may be that
humans systematically regulate the speed at which auditory information is re-



4.3 Experiments 1 and 2: Results 66

Experiment 1 Experiment 2

Fig. 4.5 Expt. 1 and 2. Left panel column: data from Expt. 1. Right panel column: data
from Expt. 2. Top panel row: mean response times by IOI variance. The x-axis contains
five levels of IOI variance: "Zero" marks all periodic trials in which IOI variance was
zero. The remaining four levels mark degrees of IOI variance presented during aperiodic
trials (from low to high variance). These were made by binning aperiodic trials into one
of four equally sized groups depending on the 25th, 50th and 75th percentiles of each
participant’s total within-trial IOI SD distribution (see section 4.3.3 for more details).
Bottom panel row: mean proportion of errors by IOI variance. Error bars = standard
error of the mean.
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sponded to depending on how temporally variable it is. This regulation would
not influence the quality of the information that is encoded, and thus the accuracy
of the decision, but simply the time it takes to store and recall this information
during an averaging judgement.

4.3.3.2 Azimuth variance

Figure 4.6 shows the mean response times and proportion of errors by azimuth
variance and spatial category for both experiments. The most obvious difference
between experiments was found in error rates, with there being an interaction be-
tween azimuth variance and spatial category in Expt. 1 but not in Expt. 2 (F(3,57)

= 6.233 p = 0.001, partial n2 = 0.33, in a 2X2X4 repeated ANOVA with periodicity
[Periodic, Aperiodic], spatial category [Diagonal, Cardinal] and azimuth variance
as factors). This means that participants made more errors on cardinal compared
with diagonal trials in Expt. 1 when azimuth locations were located close to one
another, as compared with being widely spread. Follow-up comparisons showed
that this was due to higher error rates on cardinal compared with diagonal trials
with low azimuth variance (0:25th: p < 0.001, 25:50th: p = 0.019). For Expt.
2, although there was no interaction, there was a main effect of azimuth variance
on decision accuracy (F(3,60) = 5.418, p = 0.002, partial n2 = 0.53). Follow-up
comparisons showed this to be caused by participants making more errors in the
highest (most variant) percentile group (>75th). The same analysis was run on
log transformed RTs. Azimuth variance interacted with RTs on cardinal trials in
Expt. 1 (F(3,57) = 3.644, p = 0.018, partial n2 = 0.38), but had no significant effect
in Expt. 2 (F(3,60) = 2.388, p = 0.08, partial n2 = 0.34). In Expt. 1, cardinal
trials in the two highest variance groups (50:75th and >75th percentiles) were
responded to significantly faster than their diagonal-trial counterparts (p = 0.008
and p = 0.01 respectively).

Azimuth variance was not controlled in the experimental design, yet the anal-
ysis highlights that it did affect decision making. It is hard to explain from these
data why interactions were found in Expt. 1 and not in Expt. 2. Future designs
must therefore account for stimulus variability so that findings can be more easily
interpreted.

4.3.4 Decision weight analysis

To test whether serial positioning or implicit metrical functions resulted in par-
ticipants relying more on information associated with some tones in the sequence
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Experiment 1 Experiment 2

Fig. 4.6 Expt. 1 and 2. Left panel column: data from Expt. 1. Right panel column:
data from Expt. 2. Top panel row: mean response times on correct trials by within-
trial azimuth variance and spatial category. Within-trial azimuth variance (x-axis) is
split into four levels from low to high. These groups were made by binning trials into
one of four equally sized groups depending on the 25th, 50th and 75th percentiles of
each participant’s total within-trial azimuth SD distribution (see section 4.3.3 for more
details). Bottom panel row: mean proportion of errors by within-trial azimuth variance
and spatial category. Error bars = standard error of the mean.
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over others, a decision-weighting analysis was made. This meant submitting the
data to a multivariate logistic regression built from a weighted linear combination
of ideal decision (ID) values. As described in section 4.2.3.4, IDk values associ-
ated with each of the eight tones k on each trial were thus used as predictors in
participant-specific regression models. The estimated coefficients associated with
each predictor were then taken as a measure for decision-weight. The analysis
followed Wyart et al. (2012, 2015) procedures and standard statistical methods,
appropriate since the experimental methods were modelled on theirs.

Specifically, the logistic regression estimated decision weights associated with
each of the eight tones in the sequence (Wk), each representing the contribution of
its corresponding IDk value to the binary [Diagonal, Cardinal] choice. The model
was as follows:

P ( Cardinal ) = Φ

(
β0 +

8∑
k=1

Wk · IDk

)
(4.2)

where P(cardinal) corresponds to the probability of judging the sequence as being
cardinal, φ() to the cumulative distribution function (the probit link), and β0 to
a participant-specific bias towards one of the two responses (the intercept).

The model contained 9 free parameters (the intercept term β0 and eight co-
efficient values W1−8, entered in this order) and was fitted to each participant’s
choice data separately for the periodic and aperiodic conditions. This resulted
in two sets of decision weights (maximum likelihood coefficients) being estimated
for each participant, one corresponding to periodic trials, and the other to ape-
riodic trials. Patterns within these decision weights were then tested across the
participant group via hypothesis testing.

The process of fitting models to each participant’s data and then testing group
differences using null hypothesis significance testing on the estimated parameters
is the widely-used "summary statistics approach" to computational modelling -
see Daw (2011) for a review. The approach is related to hierarchical regression
modelling in that it treats each parameter estimate as a random variable (ran-
dom effect) by drawing a participant from the population at random and then
running the entire experiment and analysis on that person’s data. In contrast,
were only one model fit to the entire dataset (i.e. including all participants),
the estimated parameters would be treated as fixed effects and as a result, all
between-participant variability would be neglected (Daw, 2011, pp. 7-8).
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Experiment 1

Experiment 2

Fig. 4.7 Expt. 1 and 2. Mean logistic regression coefficients indexing the 8 decision-
weights in the periodic (left panels) and aperiodic (right panels) conditions, for each
position in the noise burst sequence: Expt. 1 (top panel row), Expt. 2 (bottom panel
row). Error bars = standard error of the mean.
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4.3.4.1 Tone by tone decision weighting

Experiment 1: The top panel row of figure 4.7 shows the group averaged re-
gression coefficients indexing the average decision-weights associated with each
of the 8 tones in both the periodic and aperiodic conditions of Expt. 1. Ap-
pendix A contains figures of the same data at a participant-specific level (figures
A.1 and A.2). All group averaged coefficients were positive and were on aver-
age significantly different from zero (Periodic: mean = 0.272, SD = 0.131, t(7) =
5.86, p =< 0.001, Aperiodic: mean = 0.232, SD = 0.126, t(7) = 5.20, p = 0.001).
They were not, however, equal assigned and some positions in the sequence were
weighted more strongly than others. This was confirmed using one-way repeated
measures ANOVAs (Periodic: F(7,133) = 57.64, p < 0.001, partial n2 = 0.77, Ape-
riodic: F(7,133) = 58.182, p < 0.001, partial n2 = 0.77). To determine which tones
were most influential across the group, follow-up pairwise comparisons with Bon-
ferroni corrections were made. The only signifiant difference, when accounting for
across participant variability, was that the 1st tone was weighted more strongly
than the 4th tone in both Periodicity conditions (Periodicity: p = 0.034, Aperi-
odic: p = 0.015). The lack of other significant differences shows that although
decision weights were not evenly assigned throughout the sequence, the weighting
pattern was mostly participant-specific. As Bonferroni comparisons are conserva-
tive measurements, it is worth noting that the largest averaged weights in Expt.
1 were on tones 1, 2 and 5, and the largest averaged weights in Expt. 2 were on
tones 1 and 5.

The enhanced averaged weighting of the 1st tone and suppression of the 4th
might imply that participants imposed a metrical structure whilst listening to
the sequence. Attention is known to entrain towards periodically embedded time
ratios in periodic but not in aperiodic contexts (Large and Jones, 1999; Barnes
and Jones, 2000). As similar weighting patterns were found in both periodic and
aperiodic conditions, the pattern is likely to have been caused by event statistics
rather than metricality: that is, the stimulus always comprised eight tones in both
periodic and aperiodic conditions and therefore the 1st and 5th tones could have
been used to group the sequence into two perceptual wholes. This may have led
to less attention being assigned to the 4th tone due to its proximity to the start
of a new group (tone 5). This is equivalent to the phenomenon of "subjective
accenting" in which identical sound events are perceived as unequal (Brochard
et al., 2003). It was also unsurprising that the 2nd tone had on average lower
weighting on aperiodic compared with periodic trials. This is because the IOI
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between the starting click and the first tone was always 333 ms and therefore it
was the second tone that told participants whether the sequence was periodic or
aperiodic via the confirmation or violation in the expected beat

A second 2x2 repeated-measures ANOVA tested whether the decision weights
were larger in the periodic compared with aperiodic condition and whether they
were subject to a primacy or recency bias. The test contained factors periodicity
[Periodic, Aperiodic] and time [Early (tones 1 - 4), Late (tones 5 - 8)]. These
values were calculated for each level of the periodicity condition, resulting in four
averaged decision weights being entered into the analysis for each participant.
Mean decision weights were larger in the periodic compared with the aperiodic
condition (Periodic: mean = 0.272, SD = 0.179; Aperiodic: mean = 0.232, SD =
0.146; F(1,19) = 14.198, p = 0.001, partial n2 = 0.43). There was not, however, any
evidence of primacy or recency biases: decisions weights associated with the first
half of the sequence (early tones 1-4) were not statistically different from those in
the second half of the sequence (late tones 5-8), Early: mean = 0.263, SD = 0.180;
Late: mean = 0.241, SD = 0.147; F(1,19) = 0.483, p = 0.496, partial n2 = 0.02.
This is contrary to findings in similar visual decision making studies that show a
strong recency bias affecting averaging decisions (Wyart et al. 2012;2015; Cheadle
et al., 2014).

Experiment 2: The bottom panel row of figure 4.7 shows the group averaged
regression coefficients indexing the 8 decision weights in both the periodic and
aperiodic conditions of Expt. 2. Appendix A contains figures of the same data at
a participant-specific level (figures A.3 and A.4). The averaged weights were on
the whole positive (Periodic: mean = 0.191, SD = 0.131, t(7) = 4.126, p = 0.004,
Aperiodic: mean = 0.183, SD = 0.086, t(7) = 6.01, p < 0.001) but noticeably
smaller than those in Expt. 1. As in Expt. 1, the averaged weights did not
appear to be evenly assigned according to repeated measures ANOVAs (Periodic:
F(7,140) = 60.67, p < 0.001, partial n2 = 0.85, Aperiodic: F(7,140) = 61.056, p
< 0.001, partial n2 = 0.76). These differences were not, however, significant at
any level when accounting for Bonferroni corrections, meaning that no effects of
metricality or fourth tone suppression were found. This suggests that weighting
patterns were participant-specific and that prior knowledge helped participants
to deploy a more uniform attending strategy which counteracted bias between the
periodicity conditions.
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Summary of tone by tone decision weighting: Contrary to findings re-
ported in the visual literature, participants’ decisions were not biased by the
recency of the stimulus. The size of decision-weights, although positive, were
smaller and more variable than those reported by Wyart et al. (2012) and Chea-
dle et al. (2014) and decision weights appeared to be influenced by the statistical
grouping in Expt. 1 only. This suggest that spatial resolution in the auditory
domain may not be as strong as in the visual domain in this experimental design.
If true, participants would have found it harder to extract specific low-resolution
categorical information from each tone when perceived as part of a fast moving
rhythmic sequence. Likewise, lack of prior knowledge about the stimulus struc-
ture may have caused participants to focus their attention towards tones that are
important for statistical grouping in Expt. 1, rather than adopting a more opti-
mal uniform attending strategy as evident in Expt. 2. For this reason, decision
weights appeared to be more affected by prior knowledge about the timing of the
stimulus rather than the periodicity of the sequence.

4.3.4.2 Inlying versus outlying evidence

The regression analysis was repeated to test whether inlying categorical evidence
(IDk values located close to the ID array mean) was weighted differently to out-
lying evidence (IDk values located far from the ID array mean). Such biasing
has been reported for vision (De Gardelle and Summerfield, 2011; Cheadle et al.,
2014), but has yet to be examined for audition.

Following the analytical methods of De Gardelle and Summerfield (2011), the
8 IDk values from each trial were sorted into ascending order for each participant
separately before including them as predictors in the model. To recap, IDk values
lie within a decision space ranging between -1 and +1, where -1 represents fully
diagonal and +1 represents fully cardinal locations - see figure 4.2. The resulting
coefficients were normalised by dividing by their root mean square in order to
reduce the contribution of individual participants whose weights were associated
with very low or high error rates (see De Gardelle and Summerfield, 2011, for
method). If a bias were to exist, ranked IDk values 3, 4, 5, and 6 (inlying evidence
- IDk values located close to the ID mean) would have higher decision weights than
ranked IDk values 1, 2, 7 and 8 (outlying evidence - IDk values located far from
the ID mean). Therefore, plotted on a graph, the weights should form a negative
parabola if coefficient size were to be measured on the y-axis and ranked IDk

values plotted along the x-axis.
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Experiment 1

Experiment 2

Fig. 4.8 Expt. 1 and 2. Normalised mean regression coefficients indexing the 8 ranked
decision weights in the periodic (left panels) and aperiodic (right panels) conditions. Ideal
decision (IDk) values were ranked by size and not sequence position before being entered
as predictors in the regression model: Expt. 1 (top panel row), Expt. 2 (bottom panel
row). IDk values represent the amount of categorical information [Diagonal, Cardinal]
that each tone k carried regarding the tones spatial location. IDk values thus lie within
a decision space ranging between -1 and +1, where -1 = fully diagonal and +1 = fully
cardinal locations. The smaller the ranked IDk value on the x-axis, the closer it is located
to the diagonal axes in relationship to all other tones in the sequence. Conversely, the
larger the value, the closer it is located to the cardinal axes in relationship to all other
tones in the sequence. Error bars = standard error of the mean.
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Figure 4.8 shows the mean regression coefficients indexing the 8 ranked deci-
sion weights in both Expt. 1 and Expt. 2. The lack of negative parabolas showed
that inlying evidence was not weighted more heavily than outlying evidence in
either condition and therefore the predictions of De Gardelle and Summerfield
(2011) and Cheadle et al. (2014) were not supported. Instead, some of the data
followed a different trend. The weights in three out of the four panels of 4.8 (top
left, bottom left, bottom right) appeared to be positively or negatively correlated
with ranked IDk values, depending on the periodicity of the sequence. In Expt.
1, periodic weights seemed to be larger for low ranked IDk positions (ranks: 1,
2, 3, 4) compared with high ranked IDk positions (ranks: 5, 6, 7, 8), suggesting
that tones closer to the diagonal category were weighted more strongly on peri-
odic trials. This trend was not statistically significant (F(1,19) = 1.514, p = 0.223,
partial n2 = 0.07). This was tested using a repeated-measures ANOVA with IDk

rank size [the mean IDk value for small rank positions - 1, 2, 3, 4, versus mean IDk

value for large rank positions - 5, 6, 7, 8] and periodicity [Periodic, Aperiodic] as
factors. In Expt. 2, the trends formed opposing positive and negative correlations
between rank position and decision weight in the periodic (negative correlation:
rho = .-18, p = 0.02) and aperiodic (positive correlation: rho = .40, p < 0.001)
conditions. Using the same ANOVA as above, this interaction was significant
(F(1,20) = 11.314, p = 0.003, partial n2 = 0.36).

To better understand this interaction, the participant-specific models were re-
fit separately to the ranked IDk data for each of the four periodicity and spatial
category conditions [Aperiodic:Diagonal, Aperiodic:Cardinal, Periodic:Diagonal,
Periodic:Cardinal]. Figure 4.9 shows the mean regression coefficients across all
participants indexing the 8 ranked decision weights for each of these conditions.
The x-axis marks the average location within the ideal decision space that each
ranked IDk value occurred within the experiment, rather than ordinal rank posi-
tion as in figure 4.8). Interestingly, the interaction was caused by a relationship
between the periodicity and spatial category conditions. On diagonal trials, the
weights of aperiodic rhythms increased the further away the IDk value was from
the diagonal category, but not when the rhythm was periodic. The exact opposite
was seen on cardinal trials. On cardinal trials, the weights of periodic rhythms
increased the further away the IDk value was from the cardinal category, but not
when the rhythm was aperiodic. This was confirmed using a 2X2X2 repeated
measures ANOVA with spatial category [Diagonal, Cardinal], periodicity [Peri-
odic, Aperiodic] and rank size [mean IDk value for rank positions 1:4, mean IDk

value for rank positions 5:8] as factors. As expected there was a main effect of
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Fig. 4.9 Expt. 2. Normalised mean regression coefficients indexing the 8 ranked decision
weights in each of the periodicity [Periodic, Aperiodic] and spatial category [Diagonal,
Cardinal] conditions. The x-axis marks the average location within the ideal decision
space that each ranked IDk value occurred within the experiment. Error bars = standard
error of the mean.
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spatial category (F(1,20) = 4.966, p = 0.037, partial n2 = 0.20) and an interaction
between periodicity and rank size (F(1,20) = 7.436, p = 0.013, partial n2 = 0.27).

Summary of inlying versus outlying evidence: The interaction in Expt. 2,
implies that a more complex classification process was in operation than the one
described in equation 4.2. Ideal decision information did not appear to be simply
accumulated and weighted in a linear fashion. Rather, decision weights interacted
with both the rhythmic onset of tones and their perceived location in space.
This highlights the complexity of the underlying process and the importance of
developing more flexible computational models that better account for stimulus
features, such as timing and location, during complex decision making.

4.4 Experiments 1 and 2: Discussion

Experiments 1 and 2 used a novel auditory averaging task to investigate the effects
of timing on complex averaging decisions. Their purpose was to highlight whether
or not rhythmic temporal expectations bias complex decision making and to what
degree prior knowledge about the timing of the stimulus influences this process.
The main findings were:

1. Stimulus-induced temporal expectation facilitated auditory averaging deci-
sions by decreasing RTs and error rates.

2. Responses were affected by IOI and azimuth variance in the stimulus se-
quence.

3. Prior knowledge about the timing of the stimulus reduced the degree to
which the experimental conditions biased decision accuracy and led to the
use of more uniformly-distributed decision-weights.

Effects of periodicity: There were noticeable differences between the results
of both experiments and therefore the hypothesis that top-down predictions about
the timing of the stimulus and bottom-up rhythmic temporal expectations are in-
dependent of each other, each operating autonomously, is rejected. In experiment
1, periodic trials were associated with faster responses and lower error rates. This
finding is similar to those reported in single target timing studies (Rohenkohl
et al., 2012; Cravo et al., 2013). It suggests that rhythmic temporal expectations
biased complex decision making by enhancing the perception and classification
of the tones in each sequence. Importantly, when asked after the experiment



4.4 Experiments 1 and 2: Discussion 78

about the timing of the sequences in experiment 1, no participant could recall
with accuracy the types of rhythms that were used or the frequency of their oc-
currence. This highlights the automatic nature of the bias and its independence
from conscious awareness.

In experiment 2, however, there was no effect of periodicity on choice accuracy,
but still a main effect on response times (figure 4.3). Therefore, by presenting tri-
als in blocks of periodicity and making participants explicitly aware of timing,
the effect of rhythmic temporal expectation on decision accuracy was lost, but
not the effect on speed of response. One possible explanation for this finding is
that task instructions and practice conditions encouraged listeners to be more
careful. This suggestion is supported by response times being on average slower
in experiment 2 compared with experiment 1, and could be tested by emphasis-
ing the need for fast responses, and/or de-emphasising the need for accuracy in
future experiments. An alternative, but complementary explanation is that prior
knowledge enabled participants to deploy different attending strategies in order
to complete the task. This idea is advocated by Jones and colleagues (Jones and
Boltz, 1989; Jones et al., 2006), and more recently by Schroeder and Lakatos
(2009) and Henry and Herrmann (2014) who both use the terms rhythmic and
continuous processing modes, as illustrated in figure 4.10. Further investigation
into this hypothesis would likely require EEG or MEG data and therefore it will
not be focused on for the rest of this discussion.

Lastly, the auditory markers used in the practice session of experiment 2 may
have been responsible for the difference in results. The markers were included in
the design to help participants develop a clearer sense of the auditory space before
doing the task. As the markers were not included in experiment 1, it is possible
that they were the sole cause of the difference between the two experiments. In
order to check for this, both experiments would ideally be repeated, either using
markers in the first experiment or removing them from the design.

Effects of IOI variance: By removing the categorial distinction between pe-
riodic and aperiodic, and instead discussing the experimental findings from the
perspective of IOI variance (i.e. periodic as zero IOI variance), the timing of the
sequence appeared to affect responses in two seemingly independent ways: Firstly,
when participants did not know in advance what the rhythm of the sequence would
be (experiment 1), participants made more accurate decision when the stimulus
did not contain IOI variance (periodic trials). This suggests that, under these con-
ditions, the periodic presentation of auditory tones somehow enhanced the quality
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Fig. 4.10 A schematic illustration of the rhythmic and continuous processing modes of
neural oscillations. From Henry and Herrmann (2014, p. 71). Having prior knowledge
about the rhythmicity of a tone sequence in Expt. 2 may have allowed participants to
deploy differing processing modes that were tuned towards the rhythmic structure of
each trial. This may have reduced the effect of periodicity on choice accuracy in Expt. 2:
rhythmic mode processing on periodic trials, continuous mode processing on aperiodic
trials.

of the information being encoded and used in complex decision making. Secondly,
the timing of the sequence regulated response latencies as a function of IOI vari-
ance (both in experiments 1 and 2) in a way that was separate from the quality of
decision information. This is because, in both experiments, IOI variance on each
trial positively correlated with response latencies but not error rates (figure 4.5).
This effect was proportional to the uncertainty and did not affect the quality of
the information being encoded. Sensory systems are already known to adapt their
coding towards the statistics of attributes of their environment (Dahmen et al.
(2010), De Gardelle and Summerfield (2011) and Michael et al. (2014) for recent
examples). However, to the author’s knowledge, the present finding is the first to
show similar effects associated with the IOIs of randomly-timed acoustic events.
These two functions of timing (enhanced decision information and RT regulation)
should be classed as separate components within a cognitive model that describes
how timing biases complex decision making.

Effects of spatial category: Spatial category [Diagonal, Cardinal] affected
choice accuracy in experiment 1 but not experiment 2, and response times in
both experiments. In experiment 1, diagonal trials were associated with fewer er-
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rors than on cardinal trials and in both experiments cardinal trials were responded
to faster than diagonal trials. Whilst these effects were unexpected, they can be
partially understood when considering the azimuth variance analysis reported in
section 4.3.3.2. For example, in experiment 1, participants were more likely to in-
correctly classify the sequence as belonging to the diagonal category if the spread
of tones was limited to a small area in space (figure 4.6). A likely explanation for
this is that the number of categorial axes to choose from was uneven, with three
cardinal and only two diagonal axes within the decision space, and therefore an
intuitive assumption is that there should be less azimuth variance on diagonal
versus cardinal trials. This means that although the azimuth selection procedure
comprised an evenly balanced number of IDk distributions between both cate-
gories (see section 4.2.3.5), the asymmetry in on-screen axes may have biased the
decision.

Participants also made more errors on high compared with low azimuth vari-
ance trials in experiment 2. Asked after the experiment, many reported finding
it harder to classify tones within the sequence that were located close to the
left/right cardinal axes (±90°) than those in more centralised positions. These
accounts concur with psychophysical work investigating minimal audible angles
(MAA) and point towards limitations in localisation and lateralization capabil-
ities of the human auditory system (Moore, 2012). Mills (1958) demonstrated
that for low frequency tones, MAA increased steadily with azimuth, from 1° for
centralised sound sources (0° azimuth), up to 8° for azimuths of ±75° or more. If
spatial resolution was weaker for tones associated with the ±90° axes, participants
would have had weaker spatial resolution on trials with larger azimuth variability.
This explanation does not, however, account for why there were faster response
times on cardinal trials or why there were similar error rates on both cardinal and
diagonal trials in experiment 2. As cardinal trials were likely to include widely
spaced tones, cardinal trials should have resulted in greater error rates in both
experiments. A different possible explanation, similar to one proposed by Cheadle
et al. (2014), is that participants were most sensitive to the features of tones that
shared a similar spatial location with previous tones in the sequence. Therefore
the greater the variance among azimuths on each trial the lesser the feature detec-
tion. This could represent a process through which previous tones primed spatial
attention and increased perceptual gain for specific areas of the auditory space.

Decision weights: In both experiments decision weights were smaller and more
variable that those reported by Wyart et al. (2012, 2015) and Cheadle et al. (2014).
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There was also no evidence of a recency bias nor heavier weighting of inlying ver-
sus outlying decision evidence. This departure from the visual literature implies
that participants may have found it harder to extract detailed categorical informa-
tion from each tone. One reason for this may have been due to the experimental
design using a broad auditory decision space which forced participants to con-
tinuously reorientate their attention throughout each trial. There were, however,
distinct patterns differing between the experiments which imply that different
listening strategies were in operation (figures 4.7, 4.8 and 4.9). In experiment
1, the 1st tone was weighted more strongly than the 4th on both periodic and
aperiodic trials resulting in a noticeable grouping pattern between the weights
associated with tones 1:4 and tones 5:8. Although there was a high degree of
between-participant variability, this suggests that participants may have percep-
tually grouped the sequence into two halves as a means of focusing on structurally
important time points (see section 4.3.4.1 for further discussion). In experiment
2, decision weights were more uniformly distributed and no grouping pattern was
found. The difference suggests that top-down knowledge about the periodicity of
the sequence helped to remove bias and orient the decision process towards the
structural properties of the stimulus.

The correlations between ranked IDk value and decision weight, and their
interaction with periodicity, signifies that a more complex classification process
was in operation than that of a simple linear accumulation of ideal decision in-
formation. Not only were responses not reliant on an equal accumulation of
information in experiment 1 (as assumed by sequential sampling models (SSMs)
- section 2.2.2), but patterns of relative decision weights changed depending on
prior knowledge and contextual features such as the periodicity and spatial lo-
cation of the tone sequence. This sensitivity highlights that decision theoretic
models of choice must be developed to describe how stimulus timing and other
contextual factors affect the different components of a decision. A good example
of an area in which SSMs could be improved is the assumption that decision evi-
dence accumulates linearly and at a constant rate (Smith and Ratcliff, 2004; Gold
and Shadlen, 2007). As subjective grouping patterns were observed in decision
weights of experiment 1, information encoding may have at times been fluctuat-
ing rhythmically. This suggestion is supported by Wyart et al. (2012) and might
represent a general sampling constraint that is not accounted for in the widely
used "diffusion" or "race" models of choice (Smith and Ratcliff, 2004; Carpenter
et al., 2009) - refer to section 2.2.2 for a more detailed discussion.
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Finally, the interpretation of the decision weighting analysis may be compli-
cated by the fact that, compared with high ability participants, low-ability partic-
ipants needed to do the task with ID arrays whose means were close to the true
categorical boundaries. Consequently, stimuli used for low-ability participants
were more likely to contain tones close to or on the true cardinal and diagonal
axes. These participants would only need to detect one of these tones in order to
infer the sequence membership and could then stop paying attention to the rest
of the sequence. Under harder conditions, the sequences would have contained
smaller absolute IDk values and more between-category variability. This would
have forced high ability participants to allocate equal amounts of attention to all
eight tones. As figures 4.7, 4.8 and 4.9 show decision weights averaged across
both low- and high-ability participants, the results must be interpreted in light of
this caveat. Between-subject variability could be reduced in future experiments
by increasing the amount of practice time participants are given on the task.

4.5 Experiments 1 and 2: Summary

The experiments described in this chapter are the first attempts at implementing
the new experimental approach described in chapter 3. They show that rhythmic
presentation of information can systematically bias complex averaging decisions
and that prior knowledge about the timing of the stimulus interacts with this pro-
cess. Rather than periodicity affecting responses in categorically distinct ways,
decisions were sensitive to degrees of temporal and spatial variance in the stimu-
lus. For example, IOI variance affected responses in two seemingly distinct ways.
The first was that under conditions of high temporal uncertainty (experiment 1),
periodic sequences were easier to categorise than aperiodic sequences. This may
have been due to periodicity enhancing the quality of decision information being
encoded. The second was that decision latencies were proportionally affected by
the degree of IOI variance in the stimulus in both experiments. This may suggest
that humans systematically regulate the time it takes to compute and respond
to decision information depending on how temporally variable it is. Having prior
knowledge about the timing of a stimulus also affected responses by reducing
bias and ensuring decision information was sampled uniformly. These findings
highlight the importance of prior knowledge and context for complex averaging
and question the modelled independence between sensory entrainment, top-down
knowledge, and evidence accumulation.



4.5 Experiments 1 and 2: Summary 83

A number of experimental design features limit the interpretability and gen-
eralisability of the current findings. Firstly, the rate of periodic stimuli used was
fixed and did not vary. It is therefore unknown whether the findings replicate
under varying presentational rates or are frequency specific. Secondly, the experi-
mental design and task is unnecessarily complex making some of the data hard to
interpret. A simpler design in future studies may limit the number of findings that
were not anticipated, such as the difference in performance between the diagonal
and cardinal spatial conditions. This could be easily achieved by better control-
ling the spatial presentation of targets, fixing the total duration of each stimulus
regardless of condition and using shorter sequences. Finally, interaural cues are
not the same as free-field sound localization and a relative, rather than absolute,
sound lateralization task should produce clearer results. All three limitations act
as the starting point to chapter 5.



Chapter 5

Stimulus rate and complexity
(Experiments 3 and 4)

5.1 Experiments 3 and 4: Introduction

Chapter 5 reports two new behavioural experiments which investigate how audi-
tory stimulus rate interacts with effects of rhythmic temporal expectations during
complex averaging. The purpose of both experiments is to determine the gener-
alisability of some of the experimental findings of chapter 4 and to refine the
implementation of the experimental approach outlined in chapter 3. The aims of
the chapter are: 1. To determine whether key findings of chapter 4 replicate un-
der a different experimental paradigm that tests the same fundamental research
question. 2. To determine whether the rate of rhythmic stimuli interacts with
the effects of rhythmic temporal expectations during complex averaging. 3. To
use a less complex experimental design than used in experiments 1 and 2. The
experiments involved participants making relative and not absolute spatial aver-
aging decisions on a task in which the interaural level differences (ILD) range and
presentational order of the lateralised sound sequence were controlled.

Attentional entrainment models, such as Dynamic Attending Theory (DAT),
state that rhythmic temporal expectations arise automatically via the coupling
of non-linear biological oscillators to periodicities of similar frequencies in a sen-
sory stream (Large and Jones, 1999). For this reason, from the perspective of
DAT, rhythmic temporal expectations should arise during exposure to any peri-
odic sequence, regardless of rate, as long as there exists a biological oscillator of a
similar frequency to entrain to. It might, therefore, be assumed that perceptual
enhancement associated with rhythmic temporal expectations will not be rate
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specific, but rather generalise to a wide range of stimulus rates and context. This
is because the underlying cognitive mechanism is theorised to be adaptive to a
range of different inputs. Indeed, Sanabria et al. (2011) showed that both fast
(500 ms IOI) and slow paced (950 ms IOI) rhythmic precursors helped to reduce
participants response times towards rhythmically expected, but not necessarily
metrically aligned, auditory targets in a standard temporal expectation task.

Apart from a small number of studies that have explicitly tested the generality
of DAT, the idea that DAT generalises across rates appears to have influenced pre-
vious experiments in the literature. Table 5.1 illustrates that 15 out of 20 reviewed
experimental paradigms used only one periodic stimulus rate to investigate effects
of rhythmic temporal expectations on reaction times and perception and there-
fore did not test whether experimental findings replicated at different rates within
the same experimental design. This is problematic not only in that it makes it
difficult to determine whether experimental findings associated with perceptual
and decision enhancement generalise to different rates or are the result of specific
features of an experimental design, but also because any attempt to assess from
the literature whether stimulus rate does not matter entails experimental findings
being compared adhoc across a range of independent experiments.

There is, however, evidence to suggest that the rate of a rhythmic sequence
may influence the effects of rhythmic temporal expectation on choice. For exam-
ple, Wyart et al. (2012) demonstrated that during extended categorical decision
making the rate of evidence accumulation fluctuated rhythmically. This resulted
in refractory periods in which new sensory information had a weaker impact on
the same choice. These periods occurred for 250 ms after the onset of salient deci-
sion information within a rhythmic stream. This suggests that periodic sequences
with an IOI of 250 ms or less will be harder to process and categorise compared
with slower rhythms in which sequentially presented decision information does not
fall within the refractory period. A less technical reason to question the assump-
tion, however, is that humans demonstrate preferred rates for tapping in-time,
walking, clapping and engaging in other natural movement. Moelants (2002) pro-
vides evidence that our average preferred tempo is around 500 ms (120 bpm) and
that this corresponds to the average natural walking speed of adult males (513
ms - 117 bpm), as well as other activities such as rhythmically synchronised ap-
plause. If some stimulus rates align with common and preferred cognitive and
motor processes, it is perhaps likely that information contained within the rhyth-
mic sequence will be easier to detect, process and respond to. It may also be
assigned more value. Drake and Botte (1993) support this idea by showing that
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Experiment Periodic IOI ms Aperiodic IOI ms Domain
Large and Jones (1999):
- Expt. 2 600 NA A
Barnes and Jones (2000):
- Expt. 1, 2, 4, 5, 6 600 NA A
Jones et al. (2002) 600 200 to 850 A
Doherty et al. (2005) 550 200 to 900 V
Ellis and Jones (2009) 500 NA A
Iversen et al. (2009) 200 NA A
Henry and Obleser (2012) 333 NA A
Mathewson et al. (2012) 82.3 11.7 to 257.4 V
Rohenkohl et al. (2012) 400 200 to 600 V
de la Rosa et al. (2012) 800 400 to 1200 A
Cravo et al. (2013) 400 200 to 600 V
Lawrance et al. (2014) 250 150 to 350 A
Morillon et al. (2014) 667 NA A
Curtanda et al. (2015) 800 400 to 1200 A
Hickok et al. (2015) 333 NA A
Barnes and Jones (2000):
- Expt. 3, 7 300, 500, 600 NA A
Rohenkohl and Nobre (2011) 400, 800 300 to 900 V
Sanabria et al. (2011) 450, 950 NA A
Marchant and Driver (2012) 100, 200, 300, 400 100 to 400 AV
Sanabria and Correa (2013) 450, 950 NA A

Mean IOI: 482.69

Table 5.1 The rates of rhythmic stimuli used in a sample of rhythmic temporal ex-
pectation experiments reported in the timing literature. The list represents a subset of
experimental designs that have relevance to this thesis. "Domain" refers to the type of
rhythmic stimuli used in each experiment: A = Auditory. V = Visual. AV = Auditory-
visual. NA means that the experiment did not have an aperiodic condition.
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humans make better tempo discrimination judgements when the IOI of a periodic
sequence falls within a range of 300 to 800 ms.

As identified in table 5.1, there are a small number of studies that have incor-
porated multiple rates into a single experiment when studying rhythmic temporal
expectations. Barnes and Jones (2000) used periodic sequences with different rates
to determine whether harmonically related expectations resulted in the same per-
ceptual effects across conditions. Marchant and Driver (2012) used four different
rates as part of their periodic stimuli and averaged response data across these rates
when testing for temporal expectations. Sanabria et al. (2011) and Sanabria and
Correa (2013) demonstrated that both fast and slow rhythmic temporal precur-
sors facilitate speeded responses times towards isolated auditory targets. Finally,
Rohenkohl and Nobre (2011) used two different rates and compared participants’
responses between them. They showed that responses to a rhythmically presented
visual target were significantly faster when the target was preceded by a periodic
versus aperiodic sequence with an IOI of 400 ms, but this distinction was not
significant when a slower periodic rhythm was used (IOI of 800 ms).

In addition to stimulus rate, a major concern for this chapter is to ensure that
the experimental task is less complicated than that of experiments 1 and 2. This
is because, whilst experiments 1 and 2 act as a good starting point to the investi-
gation, there are a number of specific features that limited the interpretability of
the experimental data. Firstly, the range of ILDs used on a single trial was not
constrained to a specific area in space and could occur in extreme left or right
locations. This meant that participants needed to continuously reorientate their
attention across the entire frontal spatial plane on every trial. This wide atten-
tional reorientation was not controlled and therefore it may have interfered with
processes associated with rhythmic temporal expectations. Some researchers in
the visual domain avoid this problem by having participants make spatial deci-
sions about the tilt of an orientated Gabor pattern positioned within a stationary
circle (Cheadle et al., 2014; Wyart et al., 2012, 2015). This has the benefit of
ensuring that selective attention is fixed to one area in space during each deci-
sion. Although this is harder to achieve in the auditory domain, the range of
lateralized sounds used on every trial could be limited to a specific area in space.
Ideally, this should be forward facing and avoid large absolute ILD values. This
is because auditory spatial resolution is known to deteriorate the further a sound
source moves away from mid-point (Mills, 1958).

Two other limitations are that the spatial order in which the lateralized tones
were presented on each trial was randomised and not controlled and that the total
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duration of aperiodic sequences was not fixed. This assumes, perhaps falsely, that
the presentational order of the spatial locations and/or small variations in the total
duration of aperiodic sequences had no inhibiting or enhancing effect on choice.
Intuitively, however, tracking a sound that moves sequentially from left-to-right
is a very different task to tracking a sound that moves in a random order; even
if the same absolute spatial locations are used in both sequences. One way that
the issue associated with spatial order can be corrected is to develop a measure of
movement complexity that quantifies the total change in ILDs between the sounds
in a lateralized sequence. Once computed, only order permutations that have the
same movement complexity score can be used as stimuli. One way to control the
total duration of aperiodic sequences is to randomly sample IOIs whilst applying
sampling constraints.

Lastly, other researchers have discussed problems that can arise when partic-
ipants make absolute spatial judgements based on a lateralised sound signal. As
discussed by Hopkins and Moore (2010), the perceived position of a lateralised
acoustic signal can be influenced by factors other than interaural differences and
therefore the mapping between these differences and perceived azimuth may not
be linear under certain conditions of experiments 1 and 2. Additionally, neuronal
ILD and interaural time difference (ITD) sensitivity, as well as the perception of
auditory space, has been shown to change according to the statistical distribution
of a preceding lateralized stimulus (Keating and King, 2015; Dahmen et al., 2010;
Maier et al., 2012). One way to avoid this limitation is to require participants to
make relative rather than absolute spatial decisions on each trial.

Experiments 3 and 4 advance the new experimental approach outlined in chap-
ter 3 by implementing the above suggestions. Apart from stimulus rate, all other
aspects of experiments 3 and 4 were identical so that cross-experimental compar-
isons could be made.

5.2 Experiment 3: When the pulse is fast

Experiment 3 used a 4 Hz periodic rhythm (IOI of 250 ms) to investigate whether
periodicity affects complex auditory averaging decisions during fast stimulus pre-
sentation. This was 1 Hz faster than that the 3 Hz rate used in experiments 1 and
2 (IOI of 333 ms) and was the second fastest rate used by other auditory studies
in the timing literatures (i.e. only Iversen et al. (2009) was faster in table 5.1).
The task required making a relative auditory averaging decision between the per-
ceived spatial location of a lateralized rhythmic sound sequence and a probe tone.
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It was hypothesised that IOI variance would strongly affect decision latencies and
that periodic sequences would be responded to faster than aperiodic sequences.
Periodicity was also expected to enhance choice accuracy if the responses were
similar to experiment 1. This is because participants were given no information
about the timing of the rhythmic sequence prior to each trial, a situation similar
to experiment 1. It was unknown, however, what effect the decision refractory
period described by Wyart et al. (2012) would have on responses.

5.3 Experiment 3: Method

5.3.1 Participants

A total of 24 participants (14 female) took part. All were students aged between
18 to 40 (Mean = 23.5, SD = 4.59) and were paid £10 an hour. Two out of the
24 participants were excluded from the analysis because neither performed well
enough to successfully complete the initial configuration procedure. All partici-
pants had tone detection thresholds of 15 dB HL or better as measured with a
Grason-Stadler GSI 16 audiometer at octave frequencies between 250 Hz and 8000
kHz. At each tested frequency the thresholds for each ear differed by less than
10 dB HL. All but two participants were right handed and three were practicing
musicians. The experiment received ethical approval from the Cambridge Faculty
of Music Research Ethics Review Committee.

5.3.2 Auditory stimulus

The basic stimulus consisted of a train of six 40-ms bursts of broadband Gaussian
noise, each including 5-ms cosine-squared ramps at both onset and offset. These
were followed by a 40-ms 2 kHz probe tone with 5-ms cosine-squared ramps at both
onset and offset. The noise was bandpass filtered using an 8th order Butterworth
filter with cutoff frequencies at 300 Hz and 20 kHz. Both the bandpass filter
and the frequency of the probe were used to target high-frequency sounds in
which sensitivity towards interaural level difference (ILD) is optimal and mimicked
stimuli used in other published sound localisation studies (Wenzel et al., 1993;
Kumpik et al., 2010; Johnson and Hautus, 2010; Carlile et al., 2001). Each noise
burst and probe tone was lateralised by presenting the sound to the right ear at
∼70 dB sound pressure level (SPL) plus 0.5 times the total ILD, and the sound to
the left ear at ∼70 dB SPL minus 0.5 times the total ILD. As discussed by Wright
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Fig. 5.1 Expt. 3. Schematic illustration of task structure: each trial began with silence
lasting anywhere between 1500 and 1750 ms, randomly selected. This was followed by an
auditory sequence containing six bursts of noise followed by a high pitched probe tone,
periodic (top panel), aperiodic (bottom panel). The IOI between the final noise burst
and probe tone was fixed throughout the experiment. Each individual noise burst and
the probe tone were spatially lateralised via inter-aural level differences. The task was
to decide whether the average spatial location of the noise burst sequence (represented
by the dashed black lines in the right panels) was located to the left or right of the
probe tone (represented by the solid green lines in the right panels). The rhythm of the
noise burst sequence was periodic on 50% of trials and aperiodic for the rest, randomly
sequenced.
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and Fitzgerald (2001) this technique helped to keep the perceived overall level of
the stimulus constant across different ILDs.

5.3.3 Noise burst lateralization

On every trial, ILDs were individually assigned to each of the six noise bursts
in the stimulus sequence, such that the sequence’s average ILD took one of five
possible values, -4, -2, 0, +2, or +4 dB, with the value of its individual ILDs never
exceeding ±14 dB, and the sequence ILDs always deviating from the average by
-10, -6, -2, +2, +6 and +10 dB. Thus the ILD in the noise burst sequence were
never closer than 4 dB, which exceeds by 3 dB the discrimination thresholds for
detecting lateralisation differences (Moore, 2012). Sequences with each of the 5
ILD averages [-4, -2, 0, +2, or +4 dB] occurred with equal likelihood throughout
the experiment. Balancing the average ILD around mid-point (0 dB ILD) ensured
that any directional biases could be identified and separated from the effects of
timing on choice. Directional biases have been previously reported to be caused
by a deterioration in spatial resolution the further a sound source deviates from
mid-point on the horizontal plane (Mills, 1958; Moore, 2012). Additionally, a
spatial "aftereffect" is known to occur whereby attenuation towards a left or
right lateralised acoustic signal biases the percept of the mid-point (Kashino and
Nishida, 1998; Carlile et al., 2001; Dahmen et al., 2010).

Once the ILDs had been assigned to a trial, the six lateralised noise bursts
were presented in a pseudo-randomised order. Piloting revealed that sequences
with a simple presentation order, such as a sweep from left to right, were harder to
average than those containing large spatial jumps and direction reversals. For this
reason, on each trial, the presentation order was randomly selected from a list of
88 order permutations that controlled for spatial pattern complexity. Specifically,
each presentational order contained three direction reversals and a movement
complexity score of 13. Movement complexity measures the size of spatial jumps
within a sequence and was calculated using the following equation:

Movement_Complexity =

i−1∑
k=1

abs(S k+1−S k) (5.1)

where, S = spatial location of noise burst (normalised 1-6 from left to right), k =
current noise burst on the trial, i = number of noise bursts within a trial (set to 6
for the current experiment). A score of 13 represents the 75th quartile boundary
of all possible movement complexity scores within the current design.
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5.3.4 Timing

Temporal presentation of the sequence of noise bursts could be either periodic
or aperiodic. Periodic IOIs were always 250 ms. Aperiodic IOIs were randomly
selected from a range between 125 and 375 ms. This range was determined using
the temporal jitter procedure described by Goupell et al. (2009) and Brown and
Stecker (2011). For each trial, the IOI was drawn randomly from a uniform
distribution centered at a IOI of 250 ms (4 Hz), with a dispersion equal to 2i times
the centered IOI. The parameter i thus defined the degree of temporal jitter, with
i = 0 corresponding to no jitter, i.e. perfect periodicity, and i = 1 to maximal
jitter (individual IOIs ranged from 0 to 2 * centered IOI). Periodic sequences were
thus generated with i = 0 while i = 0.5 was chosen for the aperiodic sequences. In
order to reduce the likelihood of metrically related IOIs occurring in the aperiodic
condition, aperiodic IOIs were resampled if their value was within ±25 ms of the
preceding IOI in the sequence. This followed methods described in experiments
1 and 2 (see section 4.2.3.3 and Drake and Botte (1993)). Resampling ensured
that the total duration of the aperiodic sequence was always the same as the
total duration of the periodic sequence, with a variability of ±5 ms. Each trial
used a new random jitter seed with resampling conducted before each trial until
IOIs were found that fit the selection criteria. The IOI between the final noise
burst of the sequence and the probe tone was always 250 ms on both periodic
and aperiodic trials. This controlled against different foreperiods between the
two events affecting responses between conditions.

5.3.5 Design and procedure

Practice trials: Participants practiced the task helped by visual feedback. On
each trial they were shown an on-screen semicircle representing the auditory space.
This was similar to those shown in the righthand panels of figure 5.1, but without
the circles and lines representing averages. The task was to decide whether the
average spatial location of the noise train was to the left or the right of the probe
tone by pressing one of two response keys on the numeric pad of a computer
keyboard. During each trial participants rested their index finger of their preferred
hand on key 5, and responded by pressing the key immediately above (8) or below
(2) the 5 (response keys were counterbalanced across participants). Use of vertical
response keys avoided counterintuitive response mapping which would have arisen
were horizontal response keys used.
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Each trial began with silence that lasted anywhere between 1500 and 1700 ms.
The noise train and probe tone then followed. To aid responses, a small white
circle appeared on-screen at the same time and in the same spatial location as the
probe tone. Participants could respond at any time from the onset of the probe
tone and had a maximum of 5 seconds before the response period timed out. After
a response, the true average location of the sequence was represented by a coloured
line, which originated from the bottom centre of the semicircle and projected at
the correct angle relative to the semicircular space. The line was green if the
answer was correct and red if it was incorrect. A 200 ms pause followed either a
response or the timeout period in the case of no response, before the next trial
began. The practice session comprised 50 trials randomised by difficulty. Visual
feedback (the coloured line) was given for the first 30 trials only; the last 20 had
no feedback. For no feedback trials, participants were told they could either look
at the screen or to close their eyes, depending on which felt most comfortable.
Feedback was not given in any other portions of the experiment.

Calibration: After the practice session, participants were asked to adjust their
headphones until the subjective location of a stream of broadband Gaussian noise
with 0 dB ILD was perceived as centered relative to the mid-point on-screen. This
was intended to minimise variations in the stimulus caused by misplacement of
the headphones and replicated procedures used in other sound localisation stud-
ies (Hafter and Dye Jr, 1983; Yost and Dye Jr, 1988). Each participant then
underwent a calibration session using a 3 up 1 down adaptive staircase procedure
(Kaernbach, 1991). Its purpose was to estimate the difference in ILD between the
probe tone and the average noise train location associated with correct classifica-
tion 75% of the time (i.e. the decision threshold). This estimate was later used
to tailor the location of the probe tone relative to the sequence average for each
participant in the main experiment.

During the calibration, the difference between the probe tone ILD and the
noise train average ILD was systematically varied from a starting difference of 11
dB between the two. To start with, the difference between the probe tone and
average ILDs was decreased in steps of 2 dB after every correct response, and then
set at the permanent default of 0.33 dB after the first incorrect response. For the
rest of the calibration session, incorrect responses were followed by an increase in
ILD of 3 * 0.33 dB, whereas correct responses were followed by a decrease in ILD
of 1 * 0.33 dB.
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As in the practice session, participants were shown an on-screen semicircle. As
it was hypothesised that periodic sequences may be associated with more accurate
decisions, the perceptual threshold was estimated using aperiodic trials only. To
ensure that participants received equal exposure to both types of rhythms, the
process contained two randomly interspersed staircasing tracks, one using periodic
rhythms, the other aperiodic rhythms. The calibration session terminated after
10 reversals on aperiodic trials, following which the 75% decision threshold was
estimated as the average of the last 6 aperiodic reversal points. This estimated
was made due to 75% being the convergence point of the 3 up 1 down method
described by Kaernbach (1991).

Experiment proper: The experiment proper began after the calibration ses-
sion ended and when participants indicated that they were happy to continue.
Each participant responded to three blocks of 140 trials (70 periodic, 70 aperiodic
trials per block) in which the average location of the noise burst sequence was
balanced. This was achieved using the method of constant stimuli whereby the
probe tone took one of seven different positions relative to the average location
of the noise train. Specifically, the probe tone could either be located at the true
mean of the sequence, or ±k, ±2k, ±3k dB ILD away from it. This is referred
in the rest of this chapter as "Probe tone ILD". The parameter k is participant-
specific and represents the 75% correct ILD threshold that was estimated after the
calibration procedure. In total, each probe tone position was repeated 30 times
within each of the periodic and aperiodic conditions. In between the experimental
sessions and blocks participants were allowed to take a short break and remove
their headphones. If they chose to, however, they had to repeat the headphone
placement procedure used in the calibration session before starting the following
block.

Data cleaning: Trials that timed out before a response was made were removed
from the dataset. Trials in which the response time (RT) was greater than +3
standard deviations from the mean RT for the particular participant were also
removed. In total this trimming resulted in 2.04% of all experimental trials being
removed from Expt. 3, and 2.01% from Expt. 4.

Psychometric model fitting: The psychometric data from each participant
and rhythmic condition were fitted with sigmoidal Gaussian cumulative density
functions. Each function was defined by three parameters: fitted threshold, fitted



5.4 Experiment 3: Results 95

slope and fixed lapse rate. Guess rates were fixed at 0 (equivalent to the par-
ticipant pressing the right key on every trial) across all subjects and conditions.
The three parameters were fitted separately for each subject and periodicity con-
dition (periodic or aperiodic). Fitted threshold was taken as being the predicted
probe tone ILD that corresponded to 50% accuracy on each psychometric func-
tion. To test whether there was an effect of periodicity on choice accuracy, the
fitted threshold and slope values for each participant were submitted to paired
t-tests. This followed common analytical methods used throughout the timing
and decision making literatures (Daw, 2011; Rohenkohl et al., 2012; Cravo et al.,
2013) - see section 4.3.4 for an overview. The quality of fit for each subject was
assessed by correlating predicted values from the best fitting psychometric func-
tion with observed accuracy. All fitted functions passed a deviance goodness-of-fit
test, with periodic fits having a mean deviance of 4.46 (SD = 3.168) and aperiodic
fits having a mean deviance of 5.02 (SD = 3.669). The analysis of the psychome-
tric function was performed using the Palamedes toolbox for Matlab (Prins and
Kingdom, 2009).

5.3.6 Apparatus

All phases of the experiment took place in a sound attenuated recording stu-
dio in the Centre for Music and Science, University of Cambridge. All stimuli
were fully generated and behavioural responses recorded using Psychophysics-3
Toolbox (Brainard, 1997) in addition to custom scripts written for MATLAB
(MathWorks). These scripts were written by the author of this thesis and can be
downloaded from an online repository:

https://github.com/dcgreatrex-phd/experiment_3

Images were presented on a 22-inch Iiyama Prolite E2202WS screen with a vertical
refresh rate of 60 Hz, which was positioned 100 cm in front of the participant.
Responses were collected via an Apple keyboard with numeric keypad. Sound
was heard through a Beyerdynamic DT 990 Pro headset.

5.4 Experiment 3: Results

Decision thresholds: Decision thresholds established during the calibration
session ranged from 1.3 dB ILD to 3.3 dB ILD (Mean = 2.53, SD = 0.56). They
did not correlate with participant age (r = -0.041, p = 0.858), gender (t = -0.219,
p = 0.829), or handedness (t = -1.351, p = 0.193).
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5.4.1 Effects on decision accuracy

Figure 5.2 shows the fitted psychometric curves for four out of the twenty-two
participants across both the periodic and aperiodic conditions. Each fitted psy-
chometric function regressed the probability that a participant responded Left
over each of the seven probe-tone locations relative to the average location of the
noise train. Each curve is characterised by a fitted threshold and slope value.
The fitted threshold of the curve is the point on the x-axis where the proportion
of Left responses is 0.5. A value less than zero represents a leftward bias in the
perceived location of the average relative to the probe tone. A value greater than
zero represents the opposite. The fitted slope was computed at the point on the
curve where the proportion of Left responses is 0.5. Steeper fitted slopes repre-
sented more accurate classification of the average noise burst relative to the probe
tone location.

As expected, the proportion of Left responses increased as a function of probe
tone ILD in both conditions. Participants could thus reliably identify the average
location of the noise burst sequence. This was supported by submitting fitted
slope values for each periodicity condition to two one-sampled t-tests. Fitted
slope values were significantly positive in both conditions indicating that there
was a significant main effect of probe tone ILD on Left responses regardless of
periodicity (Periodic: t(21) = 14.716, p < 0.001; Aperiodic: t(21) = 15.451, p <
0.001).

Effects of periodicity were assessed by submitting the fitted threshold and
slope values for all participants’ responses in the periodic and aperiodic conditions
to two-tailed t-tests. Neither fitted threshold (Periodic: mean = -0.319, SD =
1.447; Aperiodic: mean = -0.076, SD = 1.681; t(21) = -1.437, p = 0.165) nor slope
(Periodic: mean = 0.283, SD = 0.090; Aperiodic: mean = 0.284, SD = 0.086;
t(21) = -0.0004, p = 0.999) differed significantly. This implies that the timing
of the noise burst stimulus did not systematically bias the accuracy with which
participants could compute the average location of the noise burst sequence. This
is shown in figure 5.3 in that there is no group level bias towards either of the two
periodicity conditions.

Participant ability: Figure 5.4 shows the fitted threshold and slope values by
each participant’s decision threshold estimate, as estimated during the calibra-
tion staircasing session. The differences between each level of probe tone ILD was
set to be smaller for participants with a low decision threshold (represented by
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Fig. 5.2 Expt. 3. Fitted psychometric curves for 4 of the 22 participants (Ps 2, 5, 13,
14) showing proportion of Left responses relative to the difference between the ILDs of
the probe tone and average of the noise bursts. Green solid curves: periodic stimuli. Red
dashed curves: aperiodic stimuli. The four participants were chosen because they share
similar fitted threshold values, which facilitates the visual comparison of fitted slopes.
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Fig. 5.3 Expt. 3. Scatterplots showing the fitted threshold and slope values for all par-
ticipants by the periodic and aperiodic conditions. Left panel = fitted threshold values.
Right panel = fitted slope values. Blue symbols mark the group average. Deviation from
the dotted line indicates a bias towards one of the two periodicity conditions.

the red circles), whose discernment was more precise on the calibration task than
others. To test whether overall ability on the task (indexed by decision threshold)
interacted with sensitivity towards the periodicity of the sequence, a correlation
analysis was made. This comprised the following stages: 1. The absolute differ-
ence between fitted slope values on periodic and aperiodic trials was computed for
each participant, resulting in one value for each participant. 2. Spearman correla-
tion coefficients were estimated between these absolute differences values and the
decision-thresholds. A negative correlation would imply that the timing of the
sequence [Periodic, Aperiodic] categorically affected the fitted slope value (and
hence accuracy of the decision) for participants with smaller decision thresholds.
The correlation was negative, but not significantly so (rho = -0.322, df = 20, p
= 0.143). There was also no significant correlation between the fitted threshold
values and decision thresholds (rho = 0.346, df = 20, p = 0.115).

Lastly, to test whether there was a bias in fitted slope values towards just
one of the periodicity conditions, the above analysis was repeated except that
rather than computing the absolute difference between the fitted slope values and
the periodicity conditions, the signed difference was used. A negative correlation
would imply that participants with smaller decision-thresholds were more accurate
on periodic compared with aperiodic trials. Again, the relationship between the
signed difference in fitted slope values and decision-threshold was negative, but
not significantly correlated (rho = -0.135, df = 20, p = 0.549).
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Fig. 5.4 Expt. 3. Scatterplots showing fitted threshold (left) and slope (right) values by
decision threshold (colour spectrum). Red circles mark participants with a low decision-
threshold. Green circles mark participants with a high decision-threshold. Deviation
from the dotted line indicates a bias towards one of the two periodicity conditions.

5.4.2 Effects on response time

Figure 5.5 shows raw RTs by probe tone ILD. Log-transformed response times
for correct trials were submitted to a repeated-measures 2 X 7 ANOVA with
periodicity [Periodic, Aperiodic] and probe tone ILD [-3k, -2k, -1k, 0k, 1k, 2k, 3k]
as factors. Note that although participants were forced to respond incorrectly at
0k these trials were not excluded from the analysis due to this being a feature
of the experimental design and not participant error. As expected there was a
main effect of probe tone ILD (F(6,126) = 19.909, p < 0.001, partial n2 = 0.83),
with response times increasing as the difference between the average ILD of the
noise burst sequence and probe tone decreased. Response times were also shorter
for sequences with a periodic versus aperiodic rhythm (Periodic: mean = 1.392,
SD = 0.166, Aperiodic: mean = 1.421, SD = 0.186, F(1,21) = 9.356, p = 0.006,
partial n2 = 0.31). The interaction between the factors was not significant (F(6,126)

= 1.062, p = 0.389, partial n2 = 0.26).

Rhythmic variability: To test whether response times were sensitive to vary-
ing degrees of IOI variance, each participant’s data was divided into three IOI
variance groups [Zero, Low, High]. These groups were formed by computing the
SD of the five IOIs between the noise bursts on each trial. Periodic trials had
zero variability by definition (50% of all data). Amongst aperiodic trials, "low
IOI variance" trials were those with an IOI SD less than or equal to the 50th SD
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Fig. 5.5 Expt. 3. Mean response time data at each level of probe tone ILD (k dB) and
periodicity. Error bars = standard error of the mean.

percentile for each participant (25% of all data), whilst those with SDs > 50th
percentile were classed as "High IOI variance" (25% of all data). Figure 5.6 shows
a positive correlation between response time and IOI variance, indicating that par-
ticipants took longer to respond as IOI variance increased. As with the previous
analysis log-transformed response times from correct trials were submitted to a
one-way repeated-measures ANOVA with IOI variance [Zero, Low, High] as its
factor. This was significant overall (F(2,42) = 4.350, p = 0.019, partial n2 = 0.42),
due to high variance sequences being associated with longer response times (Zero:
mean = 1.391, SD = 0.782, Low: mean = 1.400, SD = 0.782, High: mean =
1.443, SD = 0.822). Posthoc pairwise comparisons with Bonferroni corrections
highlighted however that the finding was restricted to the difference between the
zero and high variability conditions and did not occur between other levels of IOI
variance.

5.4.3 Mixed-effects regression analysis

A mixed-effect regression analysis was run to support the psychometric analysis
described in section 5.4.1. Including all participants data in a single model, rather
than modelling each participant’s data separately, ensured that multiple sources of
variability within the data were accounted for. The analysis was used to determine
what effect the absolute location of the sequence had on choice and to confirm
whether or not there were any interactions between periodicity and probe tone ILD
across participants. The analysis followed procedures laid out by Knoblauch and
Maloney (Knoblauch and Maloney, 2012). The analysis consisted of two stages:
1. Different generalized linear mixed effect models (GLMM) with the same fixed
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Fig. 5.6 Expt. 3. Mean response time data by IOI variance. Zero IOI variance =
periodic trials (50% of all data). Low IOI variance = sequences with an IOI SD less than
or equal to the 50th SD percentile for each participant (25% of all data) High IOI variance
= sequences with an IOI SD greater than the 50th SD percentile for each participant
(25% of all data). Error bars = standard error of the mean.

effects and a variety of random effects were compared to identify the best fitting
random factors. 2. Models with the same random effects (determined by stage 1)
but differing fixed effects were compared as means of identifying the best fitting
overall model. Model selection was done using Likelihood ratio tests (LRTs) and
Akaike Information Criterion (AIC) measurements.

Random effects: The starting model contained fixed effects of probe tone ILD
[-3k, -2k, -k, 0, k, 2k, 3k], periodicity [Periodic, Aperiodic], average ILD of the noise
burst sequence [-4, -2, 0, 2, 4] and all interactions. Random factors of participant,
probe tone ILD and block were also included. LRTs were then conducted to
determine the most appropriate combination of random factors in the model.
The best fitting model was one in which both the intercept and slope of the probe
tone ILD varied by participant ID (AIC = 7082.9).

Fixed effects: A backwards stepwise procedure was then used to determine the
best fitting fixed effects in the model. The best fitting model had fixed effects of
probe tone ILD and average ILD of the noise burst sequence. It also had random
effects (both intercept and slope) of probe tone ILD by participant. This was
selected using the following procedure: Firstly, the three-way interaction between
the fixed effects was removed from Model 1 (= Model 2). A LRT showed that
there was no significant difference between Models 1 and 2 (χ2 = 0.559, df = 1, p
= 0.455) and that Model 2 reduced AIC by 1.5. Model 2 was retained. All paired
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Fig. 5.7 Expt. 3. The predictions of the best fitting mixed-effects model overlaid on
average proportion of Left responses by probe tone ILD (x-axis) and the average ILD of
the noise burst sequence (colour). The different locations of the curves in relationship to
the x-axis indicates that there was a spatial bias associated with the average ILD of the
noise burst sequence.

interactions were then removed from Model 2 (= Model 3). There was again no
significant difference between Models 2 and 3 (χ2 = 2.664, df = 3, p = 0.446) and
Model 3 reduced AIC by 3.3. Model 3 was retained. The main effect of periodicity
was removed from Model 3 (= Model 4). Models 3 and 4 were not significantly
different from one another (χ2 = 1.618, df = 1, p = 0.203) and Model 4 reduced
AIC by 0.4. Model 4 was retained. Finally, the average ILD of the noise sequence
was removed (= Model 5). This time Model 5 was a significantly worse fit than
Model 4 (χ2 = 312.18, df = 1, p < 0.001) and AIC increased by 310.2. Model 5
was rejected and Model 4 retained.

Figure 5.7 shows the best fitting mixed effects model overlaid on the average
proportion of Left responses (y-axis) by probe tone ILD (x axis) and average ILD
of the sequence (colour). As noted at the start of section 5.4.1, the positive slopes
of the curves show that participants were sensitive to the probe tone ILD relative
to the noise burst average and could do the task. The different locations of the
curves in relationship to the x-axis (i.e. different fitted threshold values) depict
the main effect of average ILD of the noise burst sequence that was included in
the best fitting model. This meant that there was not always a linear relationship
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Fig. 5.8 Expt. 3. Mean response times by probe tone ILD (x-axis) and average ILD of
the sequence (panels and colours). The reaction time curves appear to be displaced by
average ILD of the noise burst sequence. Error bars = standard error of the mean.

between perceived azimuth and ILD and that this varied as a function of the
true average ILD of the noise burst sequence. This spatial bias is similar to that
previously described as a "spatial aftereffect" and is addressed in more detail in
the discussion (Kashino and Nishida, 1998; Carlile et al., 2001; Dahmen et al.,
2010).

To test whether RTs also reflected the above spatial bias, log-transformed RTs
from correct trials were submitted to a repeated measures ANOVA. Figure 5.8
shows RTs by probe tone ILD and the average ILD of the noise burst sequence.
The ANOVA was a 5x5 design containing factors probe tone ILD [-2k,-1k, 0k, k,
2k] and average ILD of the noise burst sequence [-4,-2,0,2,4]. The easiest condi-
tions of probe tone ILD (-3k and 3k) were excluded from the analysis due to the
dimensionality of the full model being too high for model stability. There was
an expected main effect of probe tone ILD (F(4,80) = 12.824, p < 0.001, partial
n2 = 0.68) whereby RTs increased as probe tone ILD decreased relative to the
average ILD of the noise burst sequence. There was also a significant interaction
between probe tone ILD and average location (F(16,320) = 8.741, p < 0.001, partial
n2 = 0.91). This meant that negative probe tone ILD relative to the average ILD
of the noise burst sequence resulted in shorter RTs when the average ILD of the
noise burst sequence was negative and longer RTs when it was positive. Whilst
pairwise comparisons indicated that only levels -2k,-1k of probe tone ILD reached
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statistical significance, a consequence of this pattern is that the longest RT is not
always at 0 probe tone ILD.

5.5 Experiment 3: Discussion

The purpose of experiment 3 was to determine whether the key finding from
experiments 1 and 2—that rhythmic temporal expectations bias complex averag-
ing decisions—replicates under a less complex experimental design and a faster
stimulus rate. The main findings were:

1. Responses were sensitive to IOI variance in the rhythmic sequence and were
fastest on periodic trials. Periodicity did not, however, systematically affect
response accuracy.

2. Responses were affected by a spatial bias that caused fitted threshold values
to vary as a function of the average ILD of the noise burst sequence.

Effects of periodicity: As in experiments 1 and 2, RTs were not only signifi-
cantly faster following periodic versus aperiodic sequences but were also sensitive
to degrees of aperiodicity. Aperiodic sequences with low IOI variance were re-
sponded to faster than those with high IOI variance. This finding supports the
idea discussed in section 4.4 that rhythmic uncertainty affects response times to
a degree proportional to the uncertainty, but does not affect the quality of the
information being encoded. This is because, contrary to the experimental hy-
pothesis, periodicity did not affect the accuracy of the decision. This represents
a departure from the findings of experiment 1 and suggests that, in experiment
1, the effects of rhythmic temporal expectation on complex decision making was
influenced by either task complexity and/or stimulus rate.

If task complexity was the reason why periodicity affected choice accuracy
in experiment 1 but not in experiment 3, it would have been caused by one or
more of the following changes in experiment 3: 1. The rhythmic sequence was
shortened to include 6 rather than 8 sounds. 2. ILDs were limited to a fixed range
on each trial and did not include extreme values. 3. The presentational order of
ILDs on each trial was controlled and not fully random. 4. The total duration of
all sequences were controlled. This complexity explanation can be supported by
considering the fact that periodicity did not influence choice accuracy in experi-
ment 2. Experiment 2 differed from experiment 1 in that participants were told
in advance about the timing of the rhythmic sequence before starting each trial.
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If prior knowledge is considered as another way of reducing task complexity, the
results of experiments 2 and 3 could be considered compatible.

A different explanation is that the fast 4 Hz rate interacted with the effects
of periodicity and was the reason why periodicity did not affect choice accuracy
in this experiment. As discussed in section 5.1, Wyart et al. (2012) showed that
during extended categorical decision making the rate of evidence accumulation
fluctuated rhythmically. This fluctuation resulted in a decision refractory period
which lasted for 250 ms after the onset of salient decision information. This meant
that information that fell within the refractory period had a weaker impact on the
same choice. As periodic sequences in the current experiment had an IOI of 250
ms, a decision refractory period may have cancelled accuracy enhancing effects of
periodicity that would have normally been observed with a lower stimulus rate.
A simple way to test for this is to repeat the experiment using a slower stimulus
rate, which is done in experiment 4 below (section 5.6). If periodic sequences
enhance choice accuracy in experiment 4, the rate explanation will be supported.
If not, the complexity explanation will be supported.

Spatial bias: Participants’ responses were affected by a spatial bias. This was
evident in that the fitted thresholds of the psychometric functions were sensitive
to the average ILD of the noise burst sequence. This bias implies that there
was not always a linear relationship between perceived azimuth and ILD and can
be described as representing one of two things: Either the greater the absolute
average ILD of the noise burst sequence, the greater the perceptual bias towards
the midpoint (of x), or the greater the perceptual bias of the probe tone away
from midpoint. This bias is similar to the "spatial aftereffect" mentioned earlier.
Spatial aftereffects are known to occur after prolonged exposure to a preceding
sound at a fixed location. This results in the apparent location of a test sound
shifting away from its true location in relation to the adaptor sound (Kashino
and Nishida, 1998; Carlile et al., 2001; Phillips and Hall, 2005; Maier et al., 2010;
Dingle et al., 2010; Dahmen et al., 2010). Phillips and Hall (2005) theorised that
aftereffects occur due to circuits serving laterality in one ear becoming selectively
"fatigued" following exposure to a lateralised sound source at the same frequency
and in the same ear. The authors showed this by having participants decide
whether a probe tone was located to the left or right of mid-point (which was
marked by three centralised clicks) both before and after an adaptation phase.
The adaptation phase consisted of a 5 second long sine tone which had the same
frequency as the target tone but was strongly lateralized to either the participant’s
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left or right. The results showed that participants’ percept of mid-point was biased
towards the location of the adaptor sound after but not before the adaptation
phase was administered.

Assuming that the aftereffect described by Phillips and Hall (2005) was the
cause of the spatial bias observed in this experiment, it follows that the most
likely explanation is that participants’ percept of the probe tone was biased away
from mid-point and that the noise burst sequence functioned as a spatial adaptor.
If this is the case, the finding provides novel evidence that a spatial aftereffect
can be induced by a short rhythmic sequence of lateralized noise bursts. As the
experiment was fully balanced and used a relative rather than absolute decision
task, the spatial bias should not have negatively affected the results of periodicity
on choice.

5.6 Experiment 4: When the pulse is slow

Experiment 4 used a slower periodic rate than experiment 3, with the rest of the
experiment remaining unchanged. The rate used, a 2 Hz periodic rhythm (IOI
of 500 ms), was selected during piloting because it was comfortable to track and
attend to. It was also half the frequency of that used in experiment 3 and is slower
than the average IOI of 482.69 ms used by the studies reported in table 5.1. It was
hypothesised that there would be little difference between experiments 3 and 4
apart from the effects of periodicity being more pronounced and perhaps affecting
choice accuracy. This was hypothesised for two reasons: Firstly, a 2 Hz rate is
slow enough to avoid the inhibiting effects of the decision refractory described by
Wyart et al. (2012) from influencing sequence processing. Secondly, 2 Hz is close
to the preferred tempo reported by Moelants (2002) and the average rates of a
range of natural movements. For this reason the lateralized stimuli should have
been easier to locate, process and respond to.

5.7 Experiment 4: Method

5.7.1 Participants

A total of 17 participants (9 female) took part. All were all students aged between
20 to 31 (mean = 25.18, sd = 3.78) and were paid £10 an hour. All participants
had tone detection thresholds of 15 dB HL or better as measured with a Grason-
Stadler GSI 16 audiometer at octave frequencies between 250 Hz and 8000 kHz.
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At each tested frequency, the thresholds for each ear did not differ by more than
10 dB HL. All participants were right handed and none were practicing musicians.
The experiment received ethical approval from the Cambridge Faculty of Music
Research Ethics Review Committee.

5.7.2 Auditory stimulus and timing

All stimuli were identical to those used in Expt. 3. The only difference is that the
presentational timing of the individual noise bursts were half the speed. Periodic
IOIs were always 500 ms and aperiodic IOIs were randomly selected from a range
between 250 and 750 ms. For each trial the IOI was randomly drawn from a
uniform distribution centered at 500 ms (2 Hz). This distribution had a dispersion
equal to 2i times the nominal IOI, whereby i = 0 was used on periodic trials and
i = 0.5 was used on aperiodic trials. See section 5.3.4 for more information about
the IOI selection process.

5.7.3 Procedure and design

As the total duration of each trial was longer than in Expt. 3, more blocks with
fewer trials were used, to ensure that participants did not get too tired when doing
the task and could take adequate breaks. Specifically, each participant performed
6 blocks of 70 trials (35 periodic, 35 aperiodic trials per block) in which the average
location and complexity of the sequences were balanced. All other features of the
procedure and design were identical to that of Expt. 3 (see section 5.3.5). The
software for this experiment can be accessed here:

https://github.com/dcgreatrex-phd/experiment_4

5.8 Experiment 4: Results

Decision thresholds: Decision thresholds obtained during the calibration stage
of the experiment ranged from 1.4 dB ILD to 3.3 dB ILD (Mean = 2.69, SD =
0.78). See section 5.3.5 for an explanation of decision thresholds. Decision thresh-
olds did not correlate with participant age (r = 0.378, p = 0.135), gender (t =
0.464, p = 0.650), or handedness (t = 1.501, p = 0.156).

5.8.1 Effects on decision accuracy

Figure 5.9 shows individually fitted psychometric functions for four out of the
seventeen participants across both the periodic and aperiodic conditions. As in
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Expt. 3 the proportion of left responses increased as a function of probe tone
ILD in both conditions, indicating that participants could reliably detect the
average location of the sequence. This was confirmed using two one-sampled t-
tests which showed fitted slope values were on average significantly positive in
both the periodic and aperiodic conditions (Periodic: t(16) = 10.954, p < 0.001;
Aperiodic: t(16) = 14.257, p < 0.001). Figure 5.10 shows the fitted threshold
and slope values for all participants by the periodic and aperiodic conditions.
As in Expt. 3, two additional two-tailed t-tests highlighted that neither fitted
threshold (Periodic: mean = 0.318, SD = 1.532; Aperiodic: mean = 0.505, SD
= 1.631; t(16) = -0.344, p = 0.733) nor fitted slope (Periodic: mean = 0.334, SD
= 0.126; Aperiodic: mean = 0.306, SD = 0.088; t(16) = 0.754, p = 0.457) values
were significantly different from one another. This suggests that the timing of the
noise burst sequence did not systematically bias decision accuracy, regardless of
the slower stimulus rate that was used in the experiment.

Participant ability: Figure 5.11 shows the fitted psychometric threshold and
slope values by each participant’s decision threshold estimate. To test whether
task ability (estimated during the calibration session) interacted with the fitted
psychometric functions, two correlation analyses were made. This followed the
same procedure described in section 5.4.1. This relationship was negative but
not significant (rho = -0.144, df = 15, p = 0.582). There was also no correlation
when fitted threshold values were used (rho = 0.027, df = 15, p = 0.917). To test
whether more able participants were more accurate on periodic versus aperiodic
trials, the correlation analysis was repeated using the signed and not absolute
differences between fitted slope values on periodic and aperiodic trials. Unlike in
Expt. 3, there was a significant negative correlation between the signed difference
in slope values and decision thresholds (rho = -0.687, df = 15, p = 0.002). Par-
ticipants with a lower decision threshold (higher ability) were significantly more
accurate on periodic versus aperiodic trials compared with participants with a
high decision threshold (low ability). No correlation was found between the signed
difference in fitted threshold values and decision thresholds (rho = 0.105, df = 15,
p = 0.689).

5.8.2 Effects on response time

Figure 5.12 shows raw RTs by probe tone ILD. As in Expt. 3, log-transformed
response times for correct trials were submitted to a repeated-measures ANOVA
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Fig. 5.9 Expt. 4. Fitted psychometric curves for 4 of the 17 participants (Ps 6, 7, 13,
17) showing proportion of Left responses relative to the difference between the ILDs of
the probe tone and average of the noise bursts. Green solid curves: periodic stimuli. Red
dashed curves: aperiodic. The four participants were chosen because they share similar
fitted thresholds, which facilitates the visual comparison of fitted slopes.
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Fig. 5.10 Expt. 4. Scatterplots showing the fitted threshold and slope values for all
participants by the periodic and aperiodic conditions. Left panel: fitted threshold. Right
panel: fitted slope. Blue symbols mark the group average. Deviation from the dotted
line indicates a bias towards one of the two periodicity conditions.

Fig. 5.11 Expt. 4. Scatterplots showing fitted threshold (left) and slope (right) values
by decision threshold (colour spectrum). Deviation from the dotted line indicates a bias
towards one of the two periodicity conditions.
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Fig. 5.12 Expt. 4. Mean response time data at each level of probe tone ILD (k dB) and
periodicity. Error bars = standard error of the mean.

with probe tone ILD and periodicity as factors. There was again a main effect of
both probe tone ILD (F(6,96) = 13.170, p < 0.001, partial n2 = 0.96) and sequence
periodicity (Periodic: mean = 1.316, SD = 0.139, Aperiodic: mean = 1.365, SD
= 0.145, F(1,16) = 16.367, p = 0.001, partial n2 = 0.50). Response times increased
as the difference between the ILDs of the probe tone and the sequence average
decreased, and they were significantly faster on periodic compared with aperiodic
trials. The interaction between the factors was not significant (F(6,96) = 0.454, p
= 0.840, partial n2 = 0.17).

Rhythmic variability: Using the same procedure described in section 5.4.2,
each participant’s data was divided into three groups according to IOI variance in
each rhythmic sequence [Zero, Low, High]. Figure 5.13 shows a positive correlation
between response time and IOI variance with longer RTs associated with higher
IOI variance. Log-transformed response times from correct trials were submitted
to a one-way repeated-measures ANOVA with IOI variance as its factor. As in
Expt. 3 there was a main effect of IOI variance with longer responses occurring
on high IOI variance trials (Zero: mean = 1.315, SD = 0.700, Low: mean = 1.352,
SD = 0.735, High: mean = 1.374, SD = 0.736, F(2,32) = 6.495, p = 0.004, partial
n2 = 0.54), however, this was again only significant between the zero and high
variance conditions and not between the other stimulus levels (measured using
pairwise comparisons with Bonferroni corrections).
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Fig. 5.13 Expt. 4. Mean response time by IOI variance. See figure 5.6 for definitions
of IOI variance. Error bars = standard error of the mean.

5.8.3 Mixed-effects regression analysis

As in Expt. 3, a mixed-effect regression analysis was conducted to ensure that
multiple sources of variability within the data were accounted for. The starting
model contained fixed effects of probe tone ILD [-3k, -2k, -1k, 0, k, 2k, 3k], peri-
odicity [Periodic, Aperiodic], average ILD of the noise burst sequence [-4, -2, 0,
2, 4] and all interactions. It also had random factors of participant, probe tone
ILD and block.

Random and fixed effects: Fitted sub-models with different combinations of
random factors were compared using likelihood ratio tests (LRTs). As in Expt. 3,
the best fitting model was one in which both the intercept and slope of the probe
tone ILD varied by each participant (Model 1: AIC = 5078.4). A backwards
stepwise procedure was then used to test the significance of fixed effects in the
model. The best fitting model contained fixed effects of probe tone ILD, average
ILD of the noise burst sequence and a significant interaction between probe tone
ILD and periodicity. This was selected using the following procedure: Firstly,
the three-way interaction between the fixed effects was removed from Model 1 (=
Model 2). A LRT showed that there was no significant difference between Model
1 or 2 (χ2 = 1.196, df = 1, p = 0.274) and that Model 2 reduced AIC by 0.8.
Model 2 was retained. All two-way interactions were then removed from Model
2 (= Model 3). Model 3 fit was significantly worse than Model 2 (χ2 = 13.454,
df = 3, p = 0.004) and AIC increased by 7.4. Fitted coefficients indicated that
this was due to a significant interaction between probe tone ILD and periodicity.
Model 3 was rejected. The two other interactions (average sequence location by
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Fig. 5.14 Expt. 4. The predictions of the best fitting mixed-effects model overlaid on
average proportion of Left responses by probe tone ILD (x-axis) and the average location
of the noise burst sequence (colour). The different locations of the curves in relationship
to the x-axis indicates that there was the same spatial bias as described in Expt. 3 - see
section 5.4.3.

periodicity and average sequence location by probe tone ILD) were removed from
Model 2 (= Model 4). Neither Model 2 or 4 were statistically different from one
another (χ2 = 4.977, df = 1, p = 0.060) and AIC reduced by 1.9. Model 4 was
retained.

Figure 5.14 shows the predictions of the best fitting mixed-effects model on
the average proportion of Left responses by probe tone ILD (x-axis) and average
ILD of the noise burst sequence (colour). Due to the varying locations of the
curves in relationship to the x-axis, the same spatial bias described in Expt. 3
occurred in Expt. 4 (see section 5.5). To determine the nature of the interaction
between probe tone ILD and periodicity, follow-up comparisons were made. This
involved fitting Model 4 separately to each level of probe tone ILD and comparing
each fit against a null model in which the interaction with periodicity had been
removed. LRTs were used to determine significance. The comparison showed that
the interaction between probe tone ILD and periodicity was due to a difference
in periodicity conditions when probe tone ILD was equal to zero relative to the
average ILD of the noise burst sequence (χ2 = 3.915, df = 1, p = 0.048) and
1k (χ2 = 4.175, df = 1, p = 0.041). This meant that participants were more
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Fig. 5.15 Expt. 4. Density plots of proportion of Left responses by each level of probe
tone ILD (panels) and periodicity (green = periodic, red = aperiodic). The difference
between the periodicity conditions is only significant at probe tone ILD levels 0 (mid-
point on x-axis) and +1.

likely to be correct on periodic compared with aperiodic trials when probe tone
ILD was 1k relative to the average. They were also more likely to press the Left
response button on periodic trials when the probe tone ILD was 0. As means of
plotting a different view of this interaction, figure 5.15 shows probability density
functions for all proportion of Left responses by probe tone ILD (different panels)
and periodicity (colour).

Lastly, RTs were submitted to the same repeated measures ANOVA described
in section 5.4.3. This was to test whether RTs were also sensitive to average
sequence location. As in Expt. 3 there was a strong main effect of probe tone
ILD (F(4,64) = 6.428, p < 0.001, partial n2 = 0.88) whereby RTs increased as
probe tone ILD decreased relative to the average ILD of the noise burst sequence.
There was also a significant interaction between probe tone ILD and average
sequence location (F(16,256) = 3.598, p < 0.001, partial n2 = 0.99), however follow-
up comparisons showed this not to be significant at any level of probe tone ILD.
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5.9 Experiment 4: Discussion

Experiment 4 used a slow stimulus rate and the same experimental design as ex-
periment 3 to investigate whether rhythmic temporal expectations are influenced
by stimulus rate during complex averaging decisions. The main findings with
respect to those of experiment 3 were:

1. RTs were not affected by rate of stimulus presentation. In both experiments,
they were sensitive to IOI variance and fastest on periodic trials.

2. Decision accuracy was not affected in a simple way by periodicity. When the
rate was slow (experiment 4) high ability participants made more accurate
decisions on periodic trials and accuracy increased generally on a subset of
difficult stimulus conditions. When it was fast (experiment 3) periodicity
had no effect on accuracy.

3. The same spatial bias was observed at both rates of presentation.

Effects of periodicity: Periodicity affected response times in much the same
way as in experiment 3. RTs were fastest on periodic trials and sensitive to IOI
variance in the rhythmic sequence. This strengthens the findings of experiments 1,
2 and 3. It implies that rhythmic uncertainty affects response times, proportional
to the uncertainty, but is robust to changes in average stimulus rate (at least
within the range of 2 Hz and 4 Hz). The major difference between experiments
3 and 4, however, was that in experiment 4 the mixed effect model identified an
interaction between periodicity and two levels of probe tone ILD [0k and +1k] with
regards to choice selection. This suggests that periodicity did affect the outcome
of participants decisions, but that it was limited to only a small subset of difficult
stimulus conditions. One explanation for this findings is that the rate of the
stimulus in experiment 4 was longer than a decision refractory period described
by Wyart et al. (2012) and therefore more rhythmically weighted information was
processed in experiment 4 compared with experiment 3.

A second difference between experiments 3 and 4 was that there was a sig-
nificant correlation between the signed difference of fitted slope values between
the periodicity conditions and participants’ decision thresholds. This meant that
participants with low decision thresholds were more likely to make more accu-
rate decisions on periodic versus aperiodic trials on experiment 4. A low decision
threshold meant that a participant successfully completed the task under hard
conditions during the calibration session and that the ILD difference between a
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single level of probe tone ILD was set to be relatively small in the main experi-
ment. As this effect was not found in experiment 3, a slower stimulus rate was
presumably the cause of this difference. If true, a good question to ask is why does
the data not look like that of experiment 1? In experiments 1, a 3 Hz rhythm was
used and there was a main effect of periodicity on choice accuracy. One reason
may have been the difference in task complexity between experiments 1 and 4.
As discussed in section 5.5, experiments 3 and 4 were designed to be less com-
plex than that of experiments 1 and 2. Therefore, a reduction in task complexity
may have helped to diminish the effects of periodicity on decision accuracy, but
the slower stimulus rate may have ensured that periodicity still affected choice
outcome on difficult trials. One way to test this in a future experiment is by
replicating experiment 4 except with increased task complexity. The effects of
periodicity on choice accuracy should disappear if task complexity is the cause of
experiment 4’s finding. Task complexity could be increased by either including
more noise bursts in each stimulus sequence, or by presenting the noise bursts in
more complicated orders.

Spatial bias: The same spatial bias was observed in experiment 4 as in ex-
periment 3 - see section 5.5 for a discussion. Importantly, this suggests that the
spatial bias is robust enough not to be a consequence of the rate of the rhythmic
sequence.

5.10 Experiments 3 and 4: Summary

Experiments 3 and 4 tested two research questions: Firstly, whether key findings
of chapter 4 replicate under a different experimental paradigm that tests the same
fundamental research question. Secondly, whether the rate of rhythmic stimuli
interact with the effects of rhythmic temporal expectations during complex aver-
aging. Both questions were investigated using a less complex experimental design
than used in experiments 1 and 2 in an attempt to increase the interpretability
of the experimental data. The data showed that, in both experiments, the effects
of periodicity on RTs replicated that of experiments 1 and 2. Participants made
faster decisions on periodic trials and slower decisions on aperiodic trials with
high IOI variance. RTs also increased as probe tone ILD decreased relative to
the average ILD of the noise burst sequence indicating sensitivity towards task
difficulty. The only large difference between RTs in experiments 3 (fast rate)
and 4 (slow rate) is that they were on average slower in experiment 3 than in
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experiment 4 (Periodic mean: Expt. 3 = 1.391 s, Expt. 4 = 1.316 s; Aperiodic
mean: Expt. 3 = 1.421 s, Expt. 4 = 1.365 s). This suggests that participants
found information contained in the slower 2 Hz rhythmic rate easier to process
and respond to compared with the faster 4 Hz rate.

Unlike in experiment 1, periodicity did not strongly bias decision accuracy in
either experiment 3 or 4. There was no effect of periodicity on decision accuracy
in experiment 3, and periodicity only affected decision accuracy for a subset of
high ability participants and hard stimulus types in experiment 4. This difference
suggests that stimulus rate and/or task complexity interacted with the effects of
rhythmic temporal expectations during complex averaging. The fact that there
was a difference between experiments 3 and 4 in this measure implies that the fast
4 Hz stimulus rate may have cancelled the effects of periodicity on choice accuracy.
This is because, apart from a difference in stimulus rate and consequent changes
in block length, the two experimental designs were identical. An unexpected spa-
tial bias was also observed in both experiments regardless of periodicity whereby
decisions were biased depending on the average ILD of the noise burst sequence.
The most likely explanation, based on publications that investigate "spatial af-
tereffect", is that participants’ percept of the probe tone was biased away from
mid-point the greater the absolute average ILD of the noise burst sequence. If
true, this finding provides novel evidence that a short rhythmic sequence of later-
alized noise bursts with onsets that are perceptually distinguishable can function
as an adaptation stimulus at multiple rates.

To conclude, the timing of the rhythmic stimulus had a large effect on de-
cision latencies during complex averaging but did not appear to systematically
affect the quality of the information being encoded. That said, choice accuracy
was enhanced on periodic trials in experiment 4 for a subset of high ability par-
ticipants, as well as on a subset of stimulus levels. These findings suggest that the
slower presentational rate increased the likelihood that periodicity would affect
choice accuracy, but that it did not influence how rhythmic temporal expectations
affected response times.



Chapter 6

Rhythmic variability
(Experiment 5)

6.1 Experiment 5: Introduction

Whereas experiments 1 to 4 used a complex decision task and controlled for the
precursor’s overall duration, experiment 5, reported in this chapter, was designed
with three aims in mind. 1. To determine whether RTs are sensitive to IOI variance
in a rhythmic precursor during an experimental task that requires a simple rather
than a complex decision. 2. To determine whether the duration of the rhythmic
sequence interacts with effects of IOI variance on response time. 3. To determine
whether effects of IOI variance are robust or diminish with task repetition.

The first aim assesses the generality of the IOI variance findings of experiments
1 to 4, and is expected to contribute towards determining whether the cognitive
processes responsible seem general to a range of decision types, or just to complex
decisions. Whilst there have been no explicit attempts in the timing or decision
making literatures to answer this question, there is a strong probability that the
findings will generalise to simple decisions. This is because Mathewson et al.
(2012) and Herrmann et al. (2016) have both shown that degrees of aperiodicity
affect responses in simpler psychophysical tasks than experiments 1 to 4 (see
section 3.2.4 for a discussion), albeit using methods that differ from those of this
thesis.

The second aim should lend insight into the range of precursor durations re-
quired for sensitivity towards IOI variance to be observable. This question is
investigated because the duration of the rhythmic sequence used on each trial has
not yet been addressed in this thesis, yet would enhance its aim of achieving eco-
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logical validity. Natural rhythmic stimuli do not usually share the same duration
and there is a large degree of variability between the durations of rhythmic events.
A secondary reason for investigating precursor duration is that it has been widely
shown that the duration between a warning signal and response stimulus, known
as the "foreperiod", strongly affects reaction times (see Niemi and Näätänen,
1981, for a review). When the foreperiod is constant across experimental tri-
als, short (though not extremely short) foreperiods are generally associated with
faster reaction times and long foreperiods with slower reaction times (Woodrow,
1914; Klemmer, 1956). The opposite is true when the foreperiod is unknown and
varies across experimental trials (i.e. in situations of high temporal uncertainty)
(Woodrow, 1914; Davis, 1965). In these situations short foreperiods generally
correlate with longer reaction times and long foreperiods with shorter reaction
times. These findings highlight the strong effect that temporal uncertainty, prior
knowledge and the conditional probability of the stimulus occurring over time has
on reaction times. If these effects are associated with processes of motor prepa-
ration and response, there is a possibility that the total duration of the precursor
sequence may determine what degree participants are sensitive to IOI variance.

The third aim assesses whether task learning reduces or removes effects of
IOI variance on response times. This is important to test because it will help
to determine how robust effects of IOI variance are on motor preparation and
whether it can be suppressed or unlearned. Whilst IOI variance is a novel topic
in this experimental setting, effects of task repetition and learning on response
times can be easily tested by including experimental block as a factor in the
analysis.

The simpler task comprised pressing a response key when a high-pitched tone
was heard, following a rhythmic precursor sequence of noise bursts whose overall
duration was relatively unpredictable. Thus experiment 5 was a simple detection
task making minimal demands on memory and cognitive processing. If partici-
pants’ RTs are affected by IOI variance it will imply that the findings of experi-
ments 1 to 4 were caused by processes that are relatively general to perception-
action tasks. If an effect of IOI variance is not found, it will suggest that the
findings of experiments 1 to 4 are specific to complex decision making. It was
hypothesised that IOI variance would affect response times in ways similar to
that of experiments 1 to 4, and that the duration of the rhythmic sequence used
on each trial would interact with effects of IOI variance on response. The latter
is compatible with attentional entrainment models (see section 2.2.1) and implies
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Fig. 6.1 Expt. 5. Schematic illustration of task structure: each trial began with silence
lasting anywhere between 1000 and 1500 ms. This was followed by an auditory sequence
of centrally located noise bursts that was between 4 to 10 bursts long (yellow circles),
followed by a 2 kHz probe tone (green circles). The IOI between the final noise burst
and probe tone was fixed at 250 ms. Participants were to respond by pressing a response
key as soon as they heard the probe tone. IOI variance was manipulated in three levels:
zero (top panels), low-aperiodic (middle panels), high-aperiodic (bottom panels). For
the duration of each trial participants were shown a grey screen with a fixation point at
mid-point (rightmost panel).

that prolonged exposure towards a rhythmic sequence is required in order for its
statistical qualities to influence response.

6.2 Experiment 5: Method

6.2.1 Participants

A total of 13 participants (9 female) took part. All were students aged between
21 and 28 (Mean = 24.3, SD = 2.46) and were paid £10 an hour. All but one were
right handed and none were practicing musicians. All reported to have normal
hearing. The experiment received ethical approval from the Cambridge Faculty
of Music Research Ethics Review Committee.

6.2.2 Auditory stimulus

Noise burst sequence: A rhythmic sequence of short noise bursts was used
on each trial. This followed the same principles described in Expts. 3 and 4
(see section 5.3.2), except that (as explained in the introduction of this chapter)
the total duration of the sequence was not fixed and the number of sounds in
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each sequence varied across trials. Each sound was centrally located and was not
spatially lateralized.

Probe tone: The probe tone was identical to that used in Expts. 3 and 4 but
was not spatially lateralised. It always sounded 250 ms after the final noise burst
on each trial.

6.2.3 Timing

Foreperiod: The duration between the onset of the first noise burst in the
rhythmic sequence and probe tone was manipulated across trials by varying the
number of noise bursts in each sequence. Seven durations were used in total with
each sequence containing between four to ten bursts of noise. Sequences containing
four, five and six noise bursts were classified as having short foreperiods (the term
used in this chapter to represent total precursor duration). Sequences containing
seven, eight and nine noise bursts were classified as having long foreperiods. To
prevent participants learning the maximum number of possible noise bursts on
each trial and then using this knowledge to anticipate, rather than to react to
the onset of the probe tone, there were also sequences that contained 10 noise
bursts. These ensured that all test foreperiods (sequences containing four to nine
noise bursts) were associated with a temporal uncertainty of 50% or less. Each of
the seven foreperiods was presented with equal likelihood and randomised within
each experimental block. Selecting foreperiods from a rectangular distribution
increased the likelihood that the subjective probability for each foreperiod was
equal at the beginning of every trial (Niemi and Näätänen, 1981).

Rhythm: Three distinct rhythm types were used to investigate the effect of IOI
variance on reaction times: "Zero IOI variance" (periodic), "Low IOI variance"
and "High IOI variance". Periodic IOIs were always 250 ms (4 Hz), the same as
the periodic IOI in Expt. 3. Aperiodic IOIs were randomly selected from a range
between 125 and 375 ms. This range was determined using the temporal jitter
procedure described by Goupell et al. (2009) and Brown and Stecker (2011).
This meant that for each trial, each IOI was randomly drawn from a uniform
distribution centered at an IOI of 250 ms, with a dispersion equal to 2i times
the 250 ms. Periodic sequences were thus generated with i = 0 and aperiodic
sequences were generated with i = 0.5. The number of IOIs selected for each
sequence was determined by the length of the foreperiod on each trial.
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To differentiate between low and high IOI variance, a second constraint was
imposed on aperiodic stimuli after an array of IOIs, used to construct the forepe-
riod sequence, had been selected. For low IOI variance trials, the SD of the IOIs
within the selected array needed to be within -2.5 and -1 SD of all possible SD
values that could be generated using this method. Likewise, for high IOI variance
the SD of the IOIs within the selected array needed to fall within +1 and +2.5
SD of all possible SD values. The method used to determine which values of SD
corresponded to these low and high variance categories is as follows: 1. randomly
generate 10,000 aperiodic IOI arrays for each foreperiod length, 2. compute the
SD for each IOI array, 3. select the SD values corresponding to -2.5, -1, +1 and
+2.5 SDs of the underlying SD distribution (10,000 data points), 4. repeat this
process for each foreperiod length used in the experiment to create an array of
SD cut-off values. 5. take the average of each corresponding cut-off value. The
resulting average values were 0.035 (-2.5 SD cut-off), 0.059 (-1 SD cut-off), 0.090
(1 SD cut-off) and 0.114 (2.5 SD cut-off). Using this method, low IOI variance
arrays were resampled until one was selected that had a SD of between 0.035 and
0.059. High IOI variance arrays were resampled until one was selected that had
a SD of between 0.090 and 0.114.

Three additional controls were used to ensure that the stimuli shared similar
qualities to that of Expt. 3 and 4. These were the same as those used in Expt.
3 in that: 1. Aperiodic IOIs were resampled if their value was within ±25 ms of
the preceding IOI in the sequence. 2. Resampling ensured that the total duration
of the aperiodic sequence was always the same as the total duration of its corre-
sponding periodic sequence, with a variability of ±5 ms. 3. The IOI between the
final noise burst of the sequence and the probe tone was always 250 ms on both
periodic and aperiodic trials.

6.2.4 Design and procedure

The task was administered within a sound attenuated recording studio located in
the Centre for Music and Science at the University of Cambridge. The experi-
mental delivery and data collection were controlled by a Matlab program written
by the author of this thesis:

https://github.com/dcgreatrex-phd/experiment_5

Participants were told that the experiment tested their ability to detect and re-
spond to high pitched sounds and required listening to rhythmic sequences via
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headphones. They were instructed that on each trial they would hear a rhyth-
mic sequence followed by a high pitched probe tone. Their task was to press a
response key as quickly as possible as soon as they heard the tone.

On each trial of the experiment participants were shown a grey screen con-
taining a small white circle located at mid-point (radius = 10 px). They were
told to fixate on the white circle and to avoid looking at different areas of the
room whilst doing the task. Participants were then instructed to rest their index
finger of their dominant hand on the response key ("B" on an Apple computer
keyboard) and to maintain this position throughout the entire experiment. All
trials began with a period of silence lasting anywhere between 1 and 1.5 seconds.
This method mimicked the task structure of similar experiments in the decision
making and timing literatures (Carpenter et al., 2009; Lawrance et al., 2014).
It was long enough for participants to anticipate the forthcoming sequence, yet
variable enough not to elicit accurate expectations concerning the onset of the
rhythmic sequence. The noise burst sequence, probe tone and response period
then followed. As soon as the participant pressed the response key, the central
fixation point flashed green for 50 ms and then back to white. The next trial began
200 ms later. If participants responded before the onset of the probe tone, they
were shown the message "You responded too early!" and the trial was aborted.
This message appeared on-screen for 1.3 seconds and was followed by the same
200 ms pause as above. It was included to highlight to participants that they
anticipated the onset of the target rather than reacted to it. Aborted trials were
not replaced due to the relatively large number of trials in the experiment.

The experiment proper contained 8 blocks of 63 trials (21 periodic, 21 aperi-
odic low IOI variance, 21 aperiodic high IOI variance) and lasted on average 35
minutes. These were preceded by 21 practice trials. The practice session consisted
of three repetitions of the six test foreperiods and boundary condition: rhythmic
variability [Zero, Low, High] x foreperiod [3–Short, 3–Long, 1–Boundary], pre-
sented in randomised order. Participants were aware that the practice trials were
not part of the main experiment and were allowed to take a short break prior to
starting the experiment proper. All experimental conditions in both the practice
and experiment proper were fully randomised within each block.

6.2.5 Random sampling

As random sampling was used to generate the aperiodic rhythmic stimuli, it is
important to check whether this method contributed to unexpected correlations
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Low IOI variance trials

High IOI variance trials

Fig. 6.2 Expt. 5. Correlation matrices showing relationships between the randomly
sampled IOIs used in Expt. 5’s precursor sequences. (IOI_1 = the first IOI in the se-
quence). Correlations with a p-value less than or equal to 0.01 are represented by the
coloured squares: red = negative correlation, blue = positive correlation. The difference
in red hues represents the strength of the negative correlation: dark hue = strong corre-
lation. light hue = weak correlation. Top panel - Low IOI variance trials. Bottom panel
- High IOI variance trials.
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Fig. 6.3 Expt. 5. Number of early response trials by number of noise bursts in the
precursor sequence for all participants. Participants were more likely to respond early as
the number of noise bursts in the precursor sequence increased.

in the stimulus that may have negatively affected the response data. Figure 6.2
shows correlation matrices for all of the IOI values used in both low IOI variance
(top panel) and high IOI variance (bottom panel) trials in the experiment. Cor-
relations with a p-value less than or equal to 0.01 are represented by coloured
squares: red = negative correlation, blue = positive correlation, with darker reds
representing stronger negative correlations compared with light reds. The matri-
ces show significant correlations between IOIs in all of the aperiodic conditions.
These were expected and caused by the IOI sampling rules used when generating
the stimulus (see section 6.2.3). Specifically, there were mostly negative correla-
tions between neighbouring IOIs (evidence in the diagonal pattern running from
top left to bottom right in each panel), and there were relatively more correlations
on shorter precursor sequences. The most important point is that the patterns
are similar between the low and high aperiodicity conditions (top versus bottom
panels). This suggests that any differences found in responses between the two
conditions will likely be the result of IOI variance and not trial-by-trial stimulus
sampling.

6.2.6 Data preparation and outliers

Of the original 6552 trials, 65 (1%) were removed. Of these 65 rejected trials, 42
were removed because participants pressed the response key before the onset of
the probe tone. Figure 6.3 shows that participants were more likely to respond
early as the number of noise bursts in the sequence increased. 7 trials were
removed due to RTs exceeding 1 second and 16 trials removed due to RTs being
less than 150 ms. RTs longer than 1 second were assumed to represent a loss of
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attention and to be the result of a different cognitive process than the one under
investigation (Ratcliff, 1993). RTs less than 150 ms were assumed to be the result
of well timed anticipation rather than reaction towards the response stimulus.
This cut off value was used because 150 ms is claimed to be the minimum RT
threshold when foreperiod duration is unknown (Niemi and Näätänen, 1981). In
the remaining 6487 trials, the minimum and maximum response times across all
participants were 151 ms and 868 ms respectively.

As Shapiro-Wilk tests revealed that no participant’s RT distributions were
normally distributed, all RTs in the data were transformed using both the log-
normal (log(RT )) and inverse transformation (−1/RT ) for the purpose of statistical
analysis. Further normality testing indicated that the distributions of the inverse
transformation were closer to normal than the log-normal, so the inverse trans-
formation was retained as the dependent variable in the analysis. Regardless
of this transformation, six of the participant-specific distributions remained not
normally distributed. To allow for this, two separate datasets were made for com-
parison in the ANOVA, following Ratcliff (1993) and Baayen and Milin (2015)
who both recommend using the inverse transformation and multiple datasets in
RT analysis: The first dataset (DS1) contained all remaining trials and used the
inverse RT transformation as a dependent variable. The second dataset (DS2)
was a subset of the first, containing only the 6276 trials in which the inverse RT
transformations were within 2.5 SD of the mean for each participant. The 211
(3.22%) trials were removed manually so that participants’ RT distribution best
met the assumptions of normality.

6.3 Experiment 5: Results

6.3.1 Reaction time analysis

Each of the two datasets (DS1 and DS2) were subjected to a 2x3x2 repeated
measures ANOVA, with factors foreperiod [Short, Long], IOI variance [Zero, Low,
High] and session [Blocks 1:4, Blocks 5:8]. As the same pattern of significant
F-values were found in both datasets (section 6.2.6) only the statistical results
associated with the reduced dataset are reported. This is because the findings
associated with this dataset should be more reliable due to participant’s data
being normally distributed. In order to aid interpretability of the data, however,
all charts and summary statistics relating to the analysis were made using non-
transformed RT data.
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Fig. 6.4 Expt. 5. Three groupings of averaged non-transformed RT data from dataset 1:
Top panel: mean RTs by IOI variance (x-axis) and foreperiod (colour and shape). Middle
panel: mean RTs by IOI variance (x-axis), foreperiod (colour and shape) and number of
noise bursts in the precursor sequence (panels). Bottom panel: as in the middle panel,
with the addition of experimental session (black fill = blocks 1:4, white fill = blocks 5:8).
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Figure 6.4 shows three groupings of the averaged non-transformed RT data
from DS1. Significant differences were found in all of the main experimental
conditions. RTs were longer on short compared with long foreperiod trials (Short:
mean = 0.27, SD = 0.06, Long: mean = 0.24, SD = 0.05, F(1,12) = 149.358; p <
0.001, partial n2 = 0.92). RTs also positively correlated with IOI variance (Zero:
mean = 0.25, SD = 0.06, Low: mean = 0.255, SD = 0.06, High: mean = 0.26,
SD = 0.06, F(2,24) = 13.905; p < 0.001, partial n2 = 0.69), and were shorter in
the second half of the experiment compared with the first half (Session 1: mean
= 0.255, SD = 0.025; Session 2: mean = 0.247, SD = 0.020, F(1,12) = 8.250;
p = 0.014, partial n2 = 0.40). There was also a significant interaction between
foreperiod and IOI variance (F(2,24) = 4.581; p = 0.021, partial n2 = 0.44), but no
interaction between foreperiod, rhythmic variability and session (F(2,24) = 2.959;
p = 0.071, partial n2 = 0.07). Two follow-up one-way ANOVAs highlighted that
this was caused by RTs being sensitive to rhythmic variability on long (F(2,24) =
13.859; p < 0.001, partial n2 = 0.64) but not short foreperiod trials (F(2,24) = 2.412;
p = 0.111, partial n2 = 0.29). On long foreperiod trials, pairwise comparisons with
Bonferroni corrections showed that RTs slowed significantly at each level of IOI
variance (Zero variability: mean = 0.235, SD = 0.021; Low variability: mean =
0.239, SD = 0.022, High variability: mean = 0.244, SD = 0.025; Zero/Low p =
0.05, Zero/High p < 0.01, Low/High p = 0.04). Finally, although the boundary
condition was excluded from the statistical analysis (square points in the middle
and bottom panels of figure 6.4), it appears to have been responded to differently
compared with the other foreperiod conditions, thus supporting the inclusion of
the boundary condition in the experimental design (section 6.2.3).

6.3.2 Mixed effects analysis

One limitation with the above ANOVA is that it overlooks temporal discrepancies
that may exist between trials. RTs are known to correlate with those of recently
completed trials and participants develop response strategies as the experiment
progresses (Baayen and Milin, 2015). Figure 6.5 provides evidence of these effects
in the current data. The plot shows that there were significant autocorrelations
at short trial lags across the majority of participants (all except 2, 4, 9, 10) and
across a much wider span of lags for participants 3, 5, and 11. This means that
for some participants, some observed RTs were not independent of earlier ones. A
second limitation of repeated measures ANOVAs is that they do not account for
the same degree of between participant variability as a linear mixed effect model
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Fig. 6.5 Expt. 5. A trellis plot showing autocorrelation functions for participant-
specific trial-by-trial sequential dependencies in response latencies. x-axis: the mean
autocorrelation lag between RTs and those of previous trials in the experiment. Panels:
individual participants. The grey horizontal line in each panel represents the upper
bound of a 95% confidence interval around zero. Any autocorrelation greater than the
upper bound represents a significant correlation between RTs and those on the lagged
trial. The functions were generated using the acf.fnc function from the "languageR"
package in R (Baayen, 2013).
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due to the need for prior averaging. For these reasons a mixed effect analysis
was run. This involved finding the best fitting random and fixed effects using a
backwards stepwise procedure using inverse RTs as the dependent variable. The
same model selection methodology was used as in chapter 5 (section 5.4.3).

Starting model: The starting model contained fixed effects of foreperiod [Short,
Long], IOI variance [Zero, Low, High], trial index and lagged inverse RT. Trial
index describes the order with which all of the experimental conditions were pre-
sented to each participant throughout the experiment. Lagged inverse RT is the
inverse RT of the preceding trial in each experiment (except for the initial trial of
each participant’s dataset for which the mean of the RT distribution was used).
Both trial index and lagged inverse RT functioned as control covariates. They
were included in the model due to the non-independence that was found in the
autocorrelation plots. Each helped to satisfy the independence assumption of the
linear model and to reduce the residual error of the model fit (Baayen and Milin,
2015). Including trial index also meant that the predictor "session" (used in the
initial ANOVA - see section 6.3.1) was no longer required. This is because there
was a high correlation between factors trial index and session. Three random ef-
fects were also included in the model: 1. Participant ID (ID). 2. Number of noise
bursts in each sequence (No. noise bursts). 3. Duration between trial onset and
the start of the precursor sequence (Randomised start interval). These allowed
each corresponding value to be regarded as drawn from a larger population.

Backwards stepwise selection: To determine the best fitting random effects,
three initial models were compared using a likelihood ratio test (LRT) and Akaike
information criterion (AIC) measurements: Model 1 contained only a random
intercept for ID. Model 2 contained random intercepts for ID and No. noise bursts.
Model 3 contained random intercepts for ID, No. noise bursts and randomised
start interval. Model 2 had the best fit (χ2 = 339.89, df = 1, p = < 0.001) and
the lowest AIC measurement compared with Models 1 and 3 (Model 1 AIC =
9215.2; Model 2 AIC = 8877.3; Model 3 AIC = 8879.1). Model 2 was retained as
it was simpler and better fitting than Model 3. Model 2 was then compared with
a fourth model. This contained random intercepts and slopes for No. noise bursts
by participant ID as well as a random intercept for No. noise bursts. It did not
include randomised start interval. Model 4 provided a better fit (χ2 = 339.89, df
= 2, p = < 0.001) and reduced AIC by 56.2. Model 4 was retained.
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Estimate Std. Error t value
(Intercept) -3.5048 0.1412 -24.8240
Foreperiod-Long -0.4793 0.1556 -3.0810*
IOIVar-Low 0.0114 0.0514 0.2220
IOIVar-High 0.0465 0.0517 0.9010
Trial -0.0003 0.0001 -2.0650*
LaggedInverseRT 0.0768 0.0123 6.2470*
Foreperiod-Long : IOIVar-Low -0.0215 0.0724 -0.2970
Foreperiod-Long : IOIVar-High 0.1844 0.0725 2.5440*
Foreperiod-Long : Trial 0.0000 0.0002 0.2790
IOIVar-Low : Trial 0.0000 0.0002 0.2090
IOIVar-High : Trial 0.0001 0.0002 0.5220
Foreperiod-Long : IOIVar-Low : Trial 0.0003 0.0002 1.0400
Foreperiod-Long : IOIVar-High : Trial -0.0004 0.0003 -1.541

Table 6.1 Expt. 5. Estimated coefficients, standard errors, and t-values for the best
fitting mixed-model (Model 4) fitted to inverse transformed reaction-times elicited for a
probe tone following a rhythmic sequence. Absolute t-values greater than 2 for experi-
mental factors are marked by asterisks.

A second stepwise selection process was then performed on all fixed effects and
interactions in Model 4. Single term deletions (achieved by using the "dropterm"
function in the "MASS" package in R (Venables and Ripley, 2002)) showed that
there was a significant three-way interaction between foreperiod, rhythmic vari-
ability and trial and a main effect of preceding inverse RT. To explore the influence
of this interaction, a fifth model (Model 5) was constructed in which the three-way
interaction was removed. A LRT showed that Model 4 was a slightly better fit
than Model 5 (χ2 = 6.763, df = 2, p = 0.034) and had a lower AIC value (Model
4 AIC = 8821.1; Model 5 AIC = 8823.9) regardless of it being more complex in
design.

Model estimates: Table 6.1 lists model estimates (intercept and slopes) for
the experimental factors and interactions of the best fitting model: Model 4. As
discussed by Baayen et al. (2008), Baayen and Milin (2015) and Lo and Andrews
(2015), an absolute t-value exceeding 2 is an excellent indicator of significance in
the model. This rule was adopted as a measure of significance due to the prob-
lems of associating p-values with mixed-effect models (see Baayen et al. (2008)
for a discussion). The predictors with t-values above 2 were: 1. Lagged inverse
RT, t = 6.2470 2. Foreperiod, t = -3.0810, 3. Foreperiod-Long : IOIVar-High,
t = 2.5440, 4. Trial, t = -2.0650 As in the ANOVA (section 6.3.1) there was a
significant interaction between foreperiod and IOI variance. When the foreperiod
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was long, participants took longer to respond on trials with high IOI variance
compared with zero IOI variance (periodic) trials. The interaction between low
IOI variance and periodic trials was, however, not significant. Interestingly, both
control covariates were significant predictors which indicates that RTs were influ-
enced by the previous response in the experiment and decreased as the experiment
progressed. This finding is common in a broad range of RT studies and is char-
acteristic of the type of task used (Taylor and Lupker, 2001; Baayen and Milin,
2015). Lastly, although the t-value for the three-way interaction was larger than
most, it did not achieve significance and therefore is not a model predictor. This
is similar to the strength of the 3-way interaction found in the ANOVA (F(2,24) =
2.959; p = 0.071, partial n2 = 0.07) - section 6.3.1.

The difference between the findings of the ANOVA and mixed effects analysis
was that sensitivity towards IOI variance was weaker in the mixed effects model
compared with the ANOVA and that RTs were dependent on past responses in
the mixed effects analysis.

6.4 Experiment 5: Discussion

Experiment 5 aimed at identifying whether response time sensitivity towards IOI
variance in a rhythmic sequence is specific to complex decision making or the
result of preparatory motor activity. It also investigated what effect the duration
of the rhythmic sequence had on RTs and whether this interacted with effects of
IOI variance. The main findings were:

1. RTs were sensitive to IOI variance in the rhythmic sequence on trials with
long foreperiods, being slowest when the precursor sequence contained high
IOI variance and fastest when it was periodic.

2. Trials with long foreperiods were responded to faster than trials with short
ones.

These results confirm the experimental hypotheses. They show that the IOI
variance findings of experiments 1 to 4 generalise to a very simple task. The
implication is that sensitivity towards IOI variance results from general cognitive
processes rather than being specific to complex decision making.

By demonstrating that IOI variance affects RTs in a task that did not require
complex decision making, the findings of experiment 5 suggest that IOI variance
influences behaviour in a way that is relatively general to perception-action tasks.
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This suggestion has been previously associated with periodic stimulation (Nobre
et al., 2007; Rohenkohl and Nobre, 2011; Morillon et al., 2016), but this is the first
explicit demonstration that a critical factor is the degree of aperiodicity rather
than a categorical periodic-aperiodic distinction. For example, Rohenkohl and
Nobre (2011) showed that periodic compared with aperiodic stimulation not only
reduced RTs but led to earlier onsets and increased amplitude in the lateralized
readiness potential (LRP). The LRP isolates lateralized activity in the premotor
and motor cortex and is known to be negatively correlated with RTs (Osman et al.,
1995). The current finding may suggest that oscillatory mechanisms located in
the premotor and motor cortex regulated this process. As discussed in section
2.1.3, this is because oscillatory coupling is known to passively strengthen or
weaken depending on the degree of phase alignment between interacting systems,
resulting in windows of readiness that reflect this coupling. It therefore follows
that a rhythmic signal with low IOI variance should produce stronger coupling in
an attending oscillatory system than one with relatively higher IOI variance. As
a result, RTs towards a target should decrease with decreasing IOI variance. The
fact that similar mechanisms are also proposed during early sensory processing
(Cravo et al., 2013) implies that temporal expectations may modulate different
brain areas through similar mechanisms. This also raises the possibility that the
experimental findings may not have been purely the result of motoric processes.

In addition to IOI variance, the duration of the rhythmic sequence affected
RTs. Participants responded faster to the onset of the probe tone as the duration
of the rhythmic sequence increased. This replicates a well known phenomenon
whereby temporal uncertainty negatively affects RTs when the total duration of
the sequence is unknown (Woodrow, 1914; Davis, 1965). Interestingly, however,
the sequence foreperiod also interacted with IOI variance. This highlights that
sensitivity to IOI variance requires prolonged exposure to a rhythmic sequence in
order to affect responses. This finding may again be indicative of oscillatory pro-
cesses, consistent with Large and Jones’ (1999) claim that the window of readiness
or "attentional pulse" associated with the coupling of biological oscillators reflects
an accumulated effect of expectancy violations rather than sequence variability.
Therefore, there may not have been enough accumulated expectancy violations
on short duration trials for motor responses to have been affected.

Finally, the three-way interaction between periodicity, foreperiod and session,
whilst positive, was not significant. This means that IOI variance affected long
foreperiod response times in both experimental sessions and that the effect of IOI
variance was robust throughout the duration of the experiment. This implies that
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sensitivity towards IOI variance is an endogenous, stimulus-driven, process that
makes minimal demands on higher-order cognitive functions such as memory and
conscious awareness.

6.5 Experiment 5: Summary

Chapter 6 reports a new experiment in which participants made simple rather
than complex decisions whilst responding to acoustic targets preceded by rhyth-
mic precursors. Whilst the experimental design does not conform to the new
experimental approach outlined in chapter 3, it was necessary in order to deter-
mine the generalisability of a replicated finding reported in earlier chapters. In
experiments 1 to 4, participants’ RTs were sensitive to the degree of aperiodicity
in the experimental stimulus during complex averaging. By reducing the complex-
ity of the task, yet maintaining common features of the previous experiments, it
was possible to determine whether the cognitive processes responsible for this bias
seem general to a range of decision types, or just to complex decisions. The results
show that, as in experiments 1 to 4, RTs were sensitive to degrees of aperiodicity
in the rhythmic stimuli. As IOI variance increased, RTs became longer. This
suggests that the previous findings were caused by cognitive processes that are
not specific to complex decision making. There was also a significant interaction
between IOI variance and sequence duration whereby the effects of IOI variance
only occurred on trials that had long precursors. This suggests that sensitivity
towards IOI variance requires prolonged exposure to a stimulus in order to affect
response. Finally, RTs were much faster on long compared with short duration
trials and decreased as the experiment progressed whilst remaining sensitive to
IOI variance. The thesis now turns towards an important yet unexplored question
relating to complex decisions. Namely, what effect does timing have on complex
decisions when the participant, and not the experimental environment, determines
how much decision evidence to sample prior to responding.



Chapter 7

Evidence accumulation
(Experiment 6)

7.1 Experiment 6: Introduction

A limitation of experiments 1 to 4 and indeed many psychology experiments is
that participants had to wait until the end of the stimulus before responding.
This makes it difficult to determine at what point in time participants would
have responded naturally were they to have the freedom to do so, raising the
possibility that stimulus features biased the decision process in a way that was
not recorded in the experimental data.

Experiment 6 reported in this chapter investigates how rhythmic temporal
expectations bias complex averaging when participants choose how much of a
stimulus to listen to. Critically, this procedure distinguishes the time it takes to
reach a decision from responses that are restricted to a response period wholly
after the stimulus has finished. It also increases the ecological validity of the task
by investigating decisions in which people, and not the experimental environment,
determine how much of a stimulus to attend to, thus allowing the investigation
to be tailored towards behaviours in which deliberation time can be costly. An
added benefit of this approach is that Drift Diffusion Models (DDMs), a form of
sequential sampling model, can be fitted to the data. DDMs use response dis-
tributions to estimate how different components of the decision function under
varying experimental conditions. (The key components of the model are the drift
rate v, boundary separation a, non-decision time Ter and response bias z: see fig-
ure 7.1 C for a schematic reminder). Specifically, experiment 6 was designed with
three aims in mind: 1. To investigate what effect rhythmic temporal expectations
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have on complex decision making when participants determine how much of the
stimulus to listen to before responding. 2. To determine which components of a
DDM are affected by rhythmic temporal expectations during complex averaging.
3. To increase ecological validity and reduce task complexity compared with ex-
periments reported previously in the thesis. The task required deciding whether
a long rhythmic sequence of lateralized noise bursts were drawn from a spatial
distribution with a mean that was either to the left or right of mid-point. Using
the mid-point as the decision criterion meant that, unlike experiments 3 and 4,
probe tones were no longer required in the experimental design.

Unlike switching T.V channels, the decision maker does not always control
the duration of the stimulus. Decisions must sometimes be based on missing
evidence, or responses must be postponed until all of the available information
has been acquired (for example, as in judges rating a performance). Regardless
of these environmental constraints it is unlikely that decisions are based on all
the observed information all of the time. This is because perceptual sampling is
thought to be a costly process, helping to penalise decisions that are not timely
or that make excessive demands on cognitive resources (Gold and Shadlen, 2007;
Drugowitsch et al., 2012; Forstmann et al., 2016). One consequence of this cost
is that the accumulation of evidence can terminate well before the end of an
observed stimulus stream (Kiani et al., 2008).

As described in section 2.2.2, DDMs propose that perceptual decisions follow
the noisy integration of information over time until a threshold level is reached and
a response is made. This framework allows for the quantitative modelling of sep-
arate decision components under varying experimental conditions. Surprisingly,
however, there have been few attempts to apply this approach to the investiga-
tion of temporal expectations. Rohenkohl et al. (2012) and Cravo et al. (2013)
provide an exception to this. Both studies used a DDM to determine what effect
rhythmic temporal expectations had on decision model parameters (see section
2.3). They showed that the periodic presentation of a stimulus increased the rate
of evidence accumulation in the model, compared with aperiodic presentation,
but that timing did not affect other model parameters. However, Jepma et al.
(2012) failed to replicate this latter finding. They used static visual cues to elicit
temporal expectations and showed that it was the non-decision time component of
the model that was affected by the expectation. These discrepancies suggest that
the type of task greatly influences how temporal expectations bias the decision
making process. As all three studies required participants to make simple classi-
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fication decisions, the use of a DDM in this study should provide novel insights
into the effects of temporal expectations on complex decision making.

Based on previous findings in this thesis it was hypothesised that periodicity
would decrease the time it took for participants to respond during complex av-
eraging (and thus the amount of sampled evidence required to reach a decision),
but not necessarily increase the accuracy of the decision. As a result, participants
would need to listen to less of the noise burst sequence on periodic trials before
making a decision. Forecasting which components of the decision processes would
be affected by rhythmic temporal expectation was less clear due to the lack of
information in the literature. As sensory entrainment is generally claimed to in-
crease the quality of sensory information, the drift rate of the model should be
affected (Rohenkohl et al., 2012; Cravo et al., 2013). However, if true, periodicity
should also help to increase the accuracy of the decision (Ratcliff and McKoon,
2008). As this has not generally been the case in previous chapters, this hypoth-
esis appears to lack support. An alternative scenario is that periodicity will bias
both the decision boundary and drift rate components of the model. Whilst this
effect may be specific to complex averaging, it would ensure that additional accu-
mulated evidence (and hence time) is required on aperiodic versus periodic trials
without necessarily improving the accuracy between conditions. Finally, based on
a common finding in the decision making literature, task difficulty was expected
to affect the drift rate of the model.

7.2 Experiment 6: Method

7.2.1 Participants

A total of 20 participants (9 females) took part. All were students aged between 19
and 35 (Mean = 26.8, SD = 3.7) and were paid £10 an hour. All participants had
tone detection thresholds of 15 dB HL or better as measured with a Grason-Stadler
GSI 16 audiometer at octave frequencies between 250 Hz and 8000 kHz. At each
tested frequency the thresholds for each ear differed by less than 10 dB HL. All
but two participants were right handed and none were highly trained practicing
musicians. The experiment received ethical approval from the Cambridge Faculty
of Music Research Ethics Review Committee.
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Fig. 7.1 Expt. 6. Schematic illustration of task structure and analytical methods. A:
example of three trial conditions. On each trial participants heard a sequence of later-
alized noise bursts that had been drawn from a normal spatial distribution. Their task
was to decide whether the mean of the distribution was located either to the left or right
of mid-point. Yellow dots represent the locations of the lateralized noise bursts. Grey
distributions represent the Gaussian spatial distribution of ILDs from which the loca-
tions were sampled. Participants did not need to listen to the entire sequence and could
respond as soon as they had an answer. B: timing of noise bursts in two trial sequences.
Sequences formed either a periodic (top panel) or aperiodic (bottom panel) rhythm on
each trial. C: a schematic illustration of the Drift Diffusion Model adapted from Wa-
genmakers (2009). DDMs are characterised by the drift rate of evidence accumulation v,
the decision threshold/boundary a, the non-decision time Ter and a response bias z. See
section 2.2.2 for a full description of the model.
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7.2.2 Auditory stimulus

The auditory stimulus consisted of a train of twenty 40-ms bursts of broadband
Gaussian noise, each including 5-ms cosine-squared ramps at both onset and off-
set. Each noise burst was spatially lateralized using interaural level differences
(ILDs) and was bandpass filtered using an 8th order Butterworth filter with cut-
off frequencies at 300 Hz and 20 kHz. The bandpass filter was used to target
high-frequency sounds in which ILD sensitivity is optimal. Sound lateralization
was achieved as in experiments 3 and 4, namely by presenting sound to the right
ear at ∼70 dB SLP plus half the total ILD, and sound to the left ear at ∼70 dB
SPL minus half the total ILD.

Preceding every noise burst sequence were two 50-ms 2 kHz sine tones, pre-
sented in mid-line with 80 ms IOI, and followed by a silence whose duration ranged
randomly between 1400 - 1733 ms. The purpose of these tones was to centre par-
ticipants’ attention on the mid-point and interrupt priming biases associated with
recently completed trials. Each tone included 5-ms cosine-squared ramps at both
onset and offset.

7.2.3 Noise burst lateralization

On each trial, twenty ILD values were randomly sampled from one of seven ILD
distributions. Each distribution was normally distributed, had a mean of either -
4k, -2k, -k, 0k, k, 2k, 4k dB ILD and was sampled with equal likelihood throughout
the experiment. k was set during the calibration session (see section 7.2.5). It
represented the mean ILD of the ILD distribution for which each participant was
able to correctly classify the sequence 75% of the time. Each spatial distribution
also had a SD of 5 which ensured that the spread of ILD values on each trial
was not too narrow. This value was selected during piloting. Once a twenty
element ILD array had been selected from one of the seven distributions on each
trial, resampling was conducted until the resulting mean and SD of the ILD array
differed by no more than ±0.1 from that of the underlying distribution from which
it was drawn. This ensured that each noise burst sequence had similar statistical
qualities to the distribution from which it was sampled. The elements in the
resulting ILD array were then randomly assigned to one of the twenty noise bursts
in the sequence. This process was repeated until the ILD that was assigned to the
first noise burst in the sequence fell within one SD of the mean of the underlying
ILD distribution.
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7.2.4 Timing

Temporal presentation of the noise burst sequence could be either periodic or
aperiodic. Periodic IOIs were always 333 ms (3 Hz). This rate mimicked that
used in experiments 1 and 2 as well as in similar timing studies (Henry and
Obleser, 2012; Hickok et al., 2015). It was slow enough to avoid the effects of a
decision refractory period (Wyart et al., 2012) but fast enough to ensure that the
total duration of the experiment was less than than 1.5 hours. Aperiodic IOIs
were randomly selected from a range between 166.5 ms and 499.5 ms. The timing
of the individual noise bursts were determined using exactly the same temporal
jitter procedure and sampling constraints as used in experiments 3, 4 and 5 - see
section 5.3.4 for a full description. Briefly: 1. Aperiodic IOIs were resampled if
their value was within ±25 ms of the preceding IOI in the sequence. 2. The total
duration of the aperiodic sequence was always within ±10 ms of the total duration
of the periodic sequence. Each trial used a new random jitter seed and resampling
was conducted until IOIs were found that fitted the selection criteria.

Feedback: Visual feedback was administered on every trial as soon as a response
was made. This consisted of a small green or red dot appearing at 0° on an
on-screen semi-circle for 200 ms (see section 7.2.5). Green indicated that the
response was correct. Red indicated that it was incorrect. Trials in which the
spatial distribution had a mean of zero dB ILD (1/7 of all trials) were associated
with pseudorandom feedback that was positive on 60% of trials. This mimicked
the method used in a similar perceptual averaging task (Wyart et al., 2012).

7.2.5 Design and procedure

The task was administered via headphones within a sound attenuated recording
studio located in the Centre for Music and Science at the University of Cambridge.
The experimental delivery and data collection were controlled by a Matlab pro-
gram written by the author of this thesis:

https://github.com/dcgreatrex-phd/experiment_6

The experiment consisted of three stages [practice, calibration and experiment
proper] in which the task was identical. Participants heard a long sequence of spa-
tially lateralized noise bursts that were drawn from a normal spatial distribution
and were required to decide as accurately and as fast as possible whether the
mean spatial location of the distribution was either to the left or right of mid-
point. Participants could respond at any point before the end of the sequence as
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soon as they had an answer. On every trial they were shown an on-screen semi-
circle presented on a grey background which represented the auditory space. The
trial began with a white dot that flashed on-screen at 0° on the outer perimeter
of the semi-circle for 200 ms. This dot started at the same time as the first sine
tone of the auditory sequence (see section 7.2.2) and functioned as a visuo-spatial
reference for the decision. The silent interval and noise burst sequence then fol-
lowed. Participants could respond at any point from the onset of the first noise
burst by pressing one of two vertically aligned response keys (numbers "2" and
"8" on the number pad of a computer keyboard). They were to respond using
the index finger of their dominant hand and to keep their response finger rested
on a separate key ("5") when not responding. The resting position was always
equidistant from both left/right response keys and the response key mapping was
counterbalanced across participants. The trial timed out 10 seconds from the on-
set of the first noise burst. Visual feedback appeared 200 ms after a response or
the timeout and was always negative following a timeout (see section 7.2.4). The
next trial began 600 ms after the visual feedback ended, regardless of whether a
response was made.

Prior to starting the experiment proper, participants read task instructions
and were shown the left and right images of figure 7.1 A as an illustrative ex-
ample of the task. They then completed 26 practice trials (13 periodic and 13
aperiodic, randomised), which varied in difficulty. After the practice session par-
ticipants underwent the same headphone adjustment and staircasing procedures
used in experiments 3 and 4 (section 5.3.5). The only difference was that the 3
up 1 down staircase procedure, used to determine a particular participant’s 75%
accuracy on the task, varied the mean ILD of the underlying spatial distribution
and not the difference in ILD between the probe tone and the average noise train
location. This estimate of the decision threshold k was used in the experiment
proper to tailor the mean location of the ILD distribution in relation to mid-point
on each trial. The experiment proper began 5 minutes after the calibration ses-
sion ended. Each participant performed 8 blocks of 70 trials, 35 periodic and 35
aperiodic, presented in random order, with ILDs within a noise burst sequence
randomly sampled as described in section 7.2.3. In total, each of the seven ILD
distributions was used 40 times within each of the periodic and aperiodic condi-
tions. Participants were allowed to remove their headphones after the calibration
session and again after the fourth block of the experiment proper but were to
re-calibrate headphone placement before proceeding.
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7.2.6 Hierarchical Drift Diffusion Model (HDDM)

Drift Diffusion models (DDMs) were fitted to each participant’s accuracy and RT
distribution to determine which aspects of choice were modulated by the timing
and location of the auditory sequence. As described in section 2.2.2, DDMs
are widely used in the decision making literature and provide a computational
account of how separate elements of the decision process vary under different
experimental conditions. The hierarchical drift-diffusion model (HDDM) toolbox
written by Wiecki et al. (2013) was used to fit the models to the data. The
HDDM assumes that parameters for individual participants are random samples
from group-level distributions and uses Bayesian statistics to produce estimates of
the DDM parameters. These assumptions help to optimise the trade-off between
fully independent models that are applied to each participant and fully dependent
models that are applied to all participants, such that individual estimates are
constrained by group-level distributions (Wiecki et al., 2013). This approach has
two benefits over traditional DDM implementations: Firstly, rather than just
providing the most likely value for each model parameter, uncertainty in the
estimation is quantified by generating posterior distributions. Secondly, it has
been shown to produce more accurate parameter estimates compared with other
DDM implementations when fitting the model to less than 600 trials (Wiecki
et al., 2013; Cavanagh et al., 2011, 2014; Ratcliff and Childers, 2015).

The fitting procedure involved comparing variants of the HDDM to identify
which combinations of model parameters best accounted for the response data.
This required testing whether choices and response times could be captured by
a HDDM in which the drift rate v, boundary separation a and non-decision time
Ter (or combinations of these parameters) varied as a function of the experimental
conditions. In total 19 variants of the HDDM with different parameter constraints
were compared in the primary analysis. Following Ratcliff and McKoon (2008), all
models included group level trial-by trial variability in the drift rate sv, response
bias sz and non-decision time st, as well as bias z estimates for each participant.
Prior to modelling the data, fast response outliers were removed for each subject
using the exponentially weighted moving average (EWMA) package in D-MAT, a
toolbox for fitting diffusion models (Vandekerckhove and Tuerlinckx, 2008). This
followed methods used by Dunovan et al. (2014) and ensured that the estimated
non-decision time component Ter was never longer than the fastest response. In
total, 1.72% of trials were eliminated based on subject-specific EWMA estimates.
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Markov Chain Monte Carlo (MCMC) sampling was used to estimate the joint
posterior distribution of all models in each HDDM. For each, 10,000 posterior
samples were generated with the first 5000 discarded prior to computing the pa-
rameter estimation. Discarding the initial samples of a Markov Chain (commonly
referred to as "burn in") is a standard technique that assumes the initial samples
are too unreliable for use in estimating an unbiased statistic. This followed similar
methods used by Zhang and Rowe (2014) and was recommended by Wiecki et al.
(2013). Model convergence was assessed by inspecting traces of model parame-
ters, their autocorrelation and by using the Geweke statistic (Gelman and Rubin,
1992). Parameter estimates in all HDDM models converged after 10,000 samples,
as assessed by the Gelman-Rubin convergence statistic run on four chains of the
three best fitting HDDM models. For all model parameters, this statistic was
between 0.990 and 1.004, suggesting 10,000 samples was sufficient for achieving
model convergence (Gelman and Rubin, 1992; Wiecki et al., 2013). The Deviance
Information Criterion (DIC) was used for model comparison as recommended by
Gelman and Rubin (1995), Wiecki et al. (2013) and Frank et al. (2015). DIC
applies a degree of penalty for additional free model parameters whereby lower
values represent models with the highest likelihood and best fit. Once the best fit-
ting model was identified, the effects of the experimental conditions on estimated
parameters were tested.

7.3 Experiment 6: Results

7.3.1 Decision accuracy and latency

Figure 7.2 shows the mean proportion of errors and response times for all partic-
ipants on the task. See figures B.1 and B.2 in appendix B for participant-specific
plots. Neutral trials (in which the underlying ILD distribution had a mean of
0 dB ILD) were omitted from the proportion of errors plot (left panel) due to
participants being forced to respond incorrectly on these trials. The figure shows
that participants’ responses were highly sensitive to the average position of the
underlying spatial distribution. As the distribution moved closer to mid-point,
participants took longer to respond and made more errors. Response times were
also affected by the periodicity of the sequence and were on average longer on ape-
riodic trials. This means that participants tended to listen to less of the sequence
before responding on periodic trials.
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Fig. 7.2 Expt. 6. Mean proportion of errors (left) and response time (right) data at
each of the ILD distribution locations relative to mid-point, for periodic and aperiodic
stimuli. Error bars = standard error of the mean.

These informal observations were largely confirmed in two separate repeated
measures ANOVAs on response times and error rates. For response times, factors
were 2 periodicity [Periodic, Aperiodic] x 7 mean ILD distribution levels [-4k, -2k,
-k, 0k, k, 2k, 4k dB ILD]. Participants responded faster on periodic compared with
aperiodic trials (Means: 2.09 versus 2.21 s, SD: 0.76 versus 0.81 for periodic and
aperiodic sequences respectively, F(1,19) = 21.10, p < 0.001, partial n2 = 0.53). The
slowing of responses (over a range of about 0.9 s) as the mean ILD approached
zero, which is clear in the right hand panel of figure 7.2, was strongly significant
(ILD distribution, F(6,114) = 28.15, p < 0.001, partial n2 = 0.83). No post-hoc tests
between individual ILD levels were conducted, as the results would be uninforma-
tive for current purposes. The periodicity x ILD distribution interaction was not
significant. Similar results were found for log-transformed RTs from correct trials
only (Periodicity: F(1,19) = 19.15, p < 0.001, partial n2 = 0.50; ILD distribution:
F(5,95) = 26.08, p < 0.001, partial n2 = 0.84), and a non-significant interaction.

The ANOVA on the proportion of errors used 2 periodicity x 7 ILD factors.
There was a main effect of ILD distribution on proportion of errors, with increas-
ingly more errors at levels closer to zero ILD, but no effect of periodicity, and
their interaction was again not significant. [ILD distribution: F(6,114) = 398.445,
p < 0.001, partial n2 = 0.99; Periodicity: means 0.135 and 0.144, SD 0.130 and
0.141 for periodic and aperiodic stimuli respectively, F(1,19) = 3.475, p = 0.078,
partial n2 = 0.15].

Unlike the analysis of the previous experiments, the effects of IOI variance on
response was not analysed statistically for Expt. 6. This is because averaged re-
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sults would have been uninterpretable owing to varying stimulus durations across
trials caused by participants responding before the end of some sequences.

7.3.2 Psychometric model fitting

To further examine effects of periodicity on participants’ responses, two sigmoidal
cumulative distribution functions were fitted to each participants’ data by the
periodicity condition. This was the same method used in Expt. 3 and 4 - see
sections 5.3.5, 5.4.1 and 5.8.1. Briefly, each curve was defined by three parameters:
fitted threshold α, fitted slope β, and a fixed lapse rate λ as implemented in the
Palamedes toolbox (Prins and Kingdom, 2009). Guess rates were fixed at 0 across
all participants and conditions and fitted threshold fixed at 50% accuracy. Each
parameter was fitted separately for each subject and periodicity condition. A
difference between the periodicity conditions in the slope of the function would
indicate enhanced choice accuracy for the steeper slope, whereas a difference in
the 50% threshold would highlight a directional bias in favour of one or other
periodicity condition. All functions passed goodness of fit (GoF) tests and had a
deviance that ranged between 0.56 - 9.29 (Mean = 4.01, SD = 2.31). See Table B.1
in appendix B for all fitted thresholds and slopes values, estimated standard errors,
deviance and GoF parameters for each participant and periodicity condition.

Figure 7.3 shows the mean psychometric curves for all participants (top panel)
and four participant-specific psychometric curves (bottom panel). See figure B.3
in appendix B for participant-specific plots. These four participants were cho-
sen because they share similar fitted threshold values which facilitates the visual
comparison of fitted slopes. Each curve had a positive slope. This indicates that
participants could reliably identify the mean location of the underlying noise burst
distribution on the majority of trials. This was confirmed using two one-sample
t-tests that compared fitted slope values in each periodicity condition against zero
(Periodic: mean = 0.67, SD = 0.21, t(19) = 14.15, p < 0.001; Aperiodic: mean =
0.66, SD = 0.18, t(19) = 16.07, p < 0.001). The fitted threshold and slope values
for all participants were then submitted to two paired t-tests (two-sided) to test
for effects of periodicity. The tests revealed that neither thresholds (Periodic:
mean = -0.093, SD = 0.483; Aperiodic: mean = -0.146, SD = 0.530; t(19) = 1.088,
p = 0.290), nor slopes (Periodic: mean = 0.674, SD = 0.213; Aperiodic: mean =
0.658, SD = 0.183; t(19) = 0.828, p = 0.418) were significantly different from one
another. As with the initial ANOVA described in section 7.3.1, this finding con-
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Fig. 7.3 Expt. 6. Fitted psychometric curves showing proportion of Right responses
relative to the mean of the underlying ILD distribution. k refers to each participant’s de-
cision threshold value that was estimated during the calibration session. Group average:
top panel. 4 of the 20 participants: bottom panel. Grey solid curves: periodic stimuli.
Red dashed curves: aperiodic stimuli.
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Fig. 7.4 Expt. 6. Scatterplots showing fitted threshold and slope values by decision
threshold (colour spectrum). Left panel = Fitted thresholds. Right panel = Fitted
slopes. Red circles mark participants with a low decision threshold. Green circles mark
participants with a high decision threshold. Crosses mark average values for all partici-
pants. Deviation from the dotted line indicates a bias towards one of the two periodicity
conditions.

firms that the periodicity of the sequence did not significantly bias the accuracy
of the decision.

7.3.3 Decision threshold

Figure 7.4 shows fitted threshold and slope values from the psychometric curve
analysis by each participant’s decision threshold that was estimated during the
calibration session (colour spectrum). In each panel, the centre of the cross marks
the average value for all participants. Absolute decision thresholds ranged from
0.825 dB ILD to 3.425 dB ILD (Mean = 1.828, SD = 0.690) and did not corre-
late with participant age (r = 0.033, p = 0.890), gender (t = 0.659, p = 0.519),
nor handedness (t = 0.397, p = 0.696). Unlike in Expt. 4, but similar to Expt.
3, decision thresholds were not predictive of whether a participant was sensitive
towards the periodicity of the sequence, according two Spearman’s test of correla-
tion and the same method reported in sections 5.4.1 and 5.8.1 (absolute difference
between periodicity slopes and decision thresholds: rho = 0.399, p = 0.081; Signed
difference between periodicity slopes and decision thresholds: rho = 0.086, p =
0.719).

7.3.4 HDDM selection

The mean ILD of the spatial distribution was used to regroup the data into two
new factors: "Perceived average direction" (Left: k < 0 , Centre: k = 0, Right:
k > 0) and "Difficulty" (High: [−k, k], Medium: [-2k, 2k], Low: [-4k, 4k] db ILD).
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Fig. 7.5 Expt. 6. Quantile probability plots showing RT quantile information and
averaged proportion of errors on the same graph split by the periodicity and difficulty
conditions. y-axis: vertically stacked quantile information (quantile centres: [0.1, 0.3,
0.5, 0.7, 0.9]) for RT distributions associated with each experimental condition. x-axis:
average proportion of errors.

This was done to make it easier to detect more general differences in decision com-
ponents during the DDM analysis and to increase the number of trials associated
with each group. Figure 7.5 shows a quantile probability plot of the difficulty
and periodicity groups, excluding neutral trials (k = 0). Specifically, it shows
vertically stacked quantile information (quantile centres: [0.1, 0.3, 0.5, 0.7, 0.9])
for averaged RT distributions split out by the experimental conditions. Quantile
probability plots are commonly used in the decision making literature to visualise
differences in response distributions prior to running a DDM analysis (Ratcliff and
McKoon, 2008). The plot shows that periodicity affected response distributions
on medium and hard difficulty trials and implies that decision components did
not vary on trials classed as easy.

To find the DDM that best described the experimental data, 19 variants of
the HDDM with different parameter constraints were fitted to the data. This
relatively large number of model comparisons was due to the lack of evidence
in the literature to strongly support specific hypotheses. Each model varied by
whether the three key model parameters (drift rate v, boundary separation a and
non-decision time Ter) were invariant or varied across the task conditions. The
aim of the analysis was to determine which features, if any, of the decision making
process were affected by rhythmic temporal expectations. The HDDM analysis
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Fig. 7.6 Expt. 6. The deviance information criterion (DIC) value differences between
nineteen variants of the drift-diffusion model. The models varied by whether the drift
rate v, boundary separation a and non-decision time Ter were invariant or varied across
the task conditions. The horizontal dashed line represents a significance cut-off point for
difference in DIC value. The model structures are shown below the top panel. Filled
squares indicate that the particular parameter (labelled at the right) varied by the cor-
responding experimental condition (labelled at the left). Empty squares indicate that
the parameter value was constant in the corresponding experimental condition. Green
squares indicate the best fitting model (Model 17, DIC = 22066.22).

was restricted to trials in which the mean ILD of the noise burst sequence was
either ±2k or ±k. As explained above, this was because the lack of an effect of
periodicity on easier trials (±4k - see figure 7.5) meant that changes in model
parameters would be restricted to harder task conditions. All models included
trial-by-trial variability parameters and participant-specific response bias z as de-
scribed in section 7.2.6. Model fits were assessed by comparing the DIC values.

Figure 7.6 shows the fitted DIC values for each of the 19 models. The best
fitting model (the one with the lowest DIC value) to describe the data across task
conditions was Model 17. In this model the boundary separation a was allowed to
vary across the periodicity conditions and the drift rate v to vary across both the
difficulty and direction conditions. The non-decision time Ter was set to a constant
in all experimental conditions. The second best fitting model (Model 16) was the
same as Model 17 apart from the non-decision time Ter component was allowed to
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Fig. 7.7 Expt. 6. Proportion of errors (left) and RT plots (right) for medium difficulty
[±2k] and high difficult [±k] trials arranged by periodicity (rows: top row = aperiodic
sequences) and direction relative to 0k (columns). Circles and solid lines are empirical
responses (error bars are standard error of the mean). Triangles and dashed lines are
posterior predictive simulations from Model 17 (error bars are SDs of posteriors).

vary by the direction condition. This model had a DIC value 13.40 larger than the
best fitting model. A difference of 10 or more between DIC scores is interpreted as
significantly different (Zhang and Rowe, 2014; Dunovan et al., 2014). The worst
fitting model (Model 1) was one in which the three main parameters were invariant
in all of the experimental conditions. This had a DIC value 529.24 greater than
the best fitting model. The process that was used to select which models to
compare within the analysis was as follows: 1. Qualitatively compare empty and
complete models (Models 1 and 2) to determine which decision components were
most likely to be influenced by the periodicity and difficulty conditions. The
average direction of the noise burst sequence was not considered at this stage
because it was not originally hypothesised to influence the decision. 2. Based on
this assessment, compare a selection of reduced models that are likely to improve
the model fit (Models 3 to 12). 3. Once the best model was found (Model 11),
systematically add variants of the direction condition to the model design (Models
13 to 19) to determine if direction significantly improved DIC.

To evaluate how well the best fitting model predicted the experimental data,
methods recommended by Cavanagh et al. (2014), Zhang and Rowe (2014) and
Dunovan et al. (2014) were used. Posterior predictive simulations were made
using Model 17. This involved using the posterior estimates of the model pa-
rameters for each participant and experimental condition to simulate the same
amount of predicted data as observed in the experiment. This procedure stim-
ulated datasets to be compared with the observed data in order to ensure that
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the estimated model parameters are capable of recreating the main trends in the
experimental data. Posterior predictive checks fulfil a similar function to cross-
validation and were used because cross-validation is very time-consuming when
associated with MCMC sampling. Figure 7.7 shows participants’ data plotted
against the simulated data produced from Model 17. It shows that there was
reasonable agreement between the observed data and the simulated data with
the majority of the empirical trends being replicated in the model, although with
consistently fewer errors and slower responses estimated. All simulated estimates
occurred within 3 standard errors of the experimental means - (see Table B.2 in
appendix B for the underlying data).

Finally, to ensure that no better fitting models were excluded from the anal-
ysis, a further 12 models were run. These used Model 17 as a base and allowed
previously excluded variants of the decision components to vary across the pe-
riodicity and difficulty conditions. None of these models provided a statistically
better fit to the data than Model 17 - see figure B.4 in appendix B for differences
in fitted DIC values.

7.3.5 HDDM analysis

The analysis of Model 17 compared the means of the participant-level posterior
distributions using repeated-measures ANOVAs, and where relevant, the group-
level posteriors using Bayesian methods as recommended by Wiecki et al. (2013)
and described by Kruschke (2014). The first ANOVA on the drift rate v used 2
difficulty [Medium, Hard] x 2 direction [Left, Right] factors. The second ANOVA
on the boundary separation a used 2 periodicity [Periodic, Aperiodic] x 2 difficulty
[Medium, Hard]. In the following results, p is used to refer to the classical p-value
from ANOVA and PP|D to refer to the proportion of the posteriors supporting the
testing hypothesis at the group level.

Figure 7.8 shows the group-level posterior mean and SD and posterior proba-
bility density distributions for the hierarchical model parameters. The drift rate v

was approximately halved for high compared with medium difficulty trials [High:
mean = 0.414, SD = 0.229; Medium: mean = 0.809, SD = 0.247; F(1,19) = 231.488,
p < 0.001; PP|D = 1]. The boundary separation a was also smaller on periodic
(Mean = 2.740, SD = 0.603) than aperiodic (Mean = 2.862, SD = 0.632) trials
at both levels of difficulty [F(1,19) = 9.341, p = 0.006; PP|D = 0.767]. The effect of
direction on drift rate and the interaction between direction and difficulty were
not significant [Direction: F(1,19) = 0.409, p = 0.530; Direction * Difficulty: F(1,19)
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Fig. 7.8 Expt. 6. Group-level posterior estimates of the hierarchal drift-diffusion model
parameters from the best fitting Model 17: Top row: boundary separation a (left),
drift rate v (middle), non-decision time Ter and response bias z (top right). The bars
are the sampled mean posterior estimates and the error bars are standard deviations
from sampled posterior distributions. Bottom row: the distributions are the Bayesian
posterior density functions for each group-level parameter. Asterisks indicate differences
significant at p = 0.05 in the ANOVA of individual participant estimations.
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= 0.755, p = 0.396; PP|D Left High < PP|D Right High = 0.792; PP|D Left Medium
< PP|D Right Medium = 0.642].

7.4 Experiment 6: Discussion

Experiment 6 aimed at determining what effect rhythmic temporal expectations
have on complex averaging when participants decide how much of a stimulus to
listen to before responding. This is an important change from experiments 1 to
4 as the task provided greater insight into the duration of evidence accumulation
on each trial. A hierarchical drift diffusion model (HDDM) analysis was used
to determine which components of the decision process are affected by rhythmic
temporal expectations. The main findings were: 1. Overall, RTs were sensitive to
the periodicity of the sequence with participants listening to more of the sequence
on aperiodic versus periodic trials before responding. There was, however, no
overall difference in proportion of errors and therefore periodicity did not signifi-
cantly bias the accuracy of the decision (also found in experiments 2 - 4). 2. Both
RTs and proportion of errors were strongly influenced by the location of the un-
derlying spatial distribution (also found in experiments 1 - 4). As the spatial
distribution moved closer to the mid-point, participants took longer to respond
and made more errors. 3. The periodicity of the noise burst sequence affected
the boundary separation a of the HDDM, increasing the boundary separation on
medium and hard difficulty aperiodic trials. See figure 7.9 A (left panels) for a
schematic illustration of the observed changes in the model. This finding contra-
dicts that of Rohenkohl et al. (2012), Cravo et al. (2013) and Jepma et al. (2012)
who showed that temporal expectations either bias the drift rate or non-decision
time components of simple decisions. As these authors used experimental tasks
that are very different from that employed in experiment 6, this may indicate
that the type of task strongly influences how temporal expectations bias decision
making processes. 4. Task difficulty affected the drift rate v of the model by in-
creasing the drift on easier trials. This finding is similar to those of a wide range
of perceptual decision making studies (e.g. Ratcliff and McKoon, 2008).

From a behavioural perspective, it can be thought that temporal expectations
enhanced participants’ decisions. Participants made faster decisions based on less
evidence on periodic trials without making significantly more errors. This suggests
that temporal expectations aided the construction of ensemble representations,
perhaps by enhancing the quality of decision information, so that the average
location of the noise burst sequence could be more easily inferred from less decision
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Fig. 7.9 Expt. 6. A: schematic illustration of the changes in the components of the best
fitting HDDM model applied to experimental data. Top panel = periodic trials. Bottom
panel = aperiodic trials. Grey jagged line = Weiner diffusion process on a single trial in
which the participant responds "Left". Drift rate = solid and dashed tilted arrows. Blue
vertical lines = moment that the participant initiates a response. Key differences are:
1) Periodic trials have a smaller boundary separation a than aperiodic trials. 2) Hard
difficulty trials have a smaller drift rate v than medium difficulty trials but drift rate
does not vary by periodicity. B: schematic illustration of the effect that narrow and wide
boundary separation a has on the speed and accuracy of a decision. Narrow boundary
separation = dashed horizontal lines. The diffusion process is defined by the stochastic
differential equation: dX(t) = vdt + sdW(t), where dX(t) = change in accumulated evidence
for a small time interval dt, v = drift rate and sdW(t) are zero-mean random increments
with infinitesimal variance s2dt (Wagenmakers, 2009). When boundary separation is nar-
row, participants respond quickly, but with increased likelihood of errors due to random
variance causing the accumulating signal to terminate on the boundary opposite to v.
When the boundary separation is wide, there is a reduced likelihood of errors in exchange
for longer accumulation time.
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evidence. This behaviour differs from the widely reported speed-accuracy tradeoff
in which task instructions to respond either "quickly" or "accurately" result in a
negative correlation between RT and proportion of errors.

From the perspective of the HDDM, however, the conclusion that temporal
expectations enhanced the perceived quality of decision-relevant information is
not supported. This is because signal enhancement is characteristic of an increase
in the drift rate v and not a change in the boundary separation a. As participants
did not make more accurate decisions, but simply responded sooner on periodic
trials, the model behaviour is inconsistent with the observed behaviour. That is,
a reduction in the boundary separation a on periodic trials implies that partic-
ipants should have responded faster but with more errors. To understand why,
further description of the DDM is required. In a DDM, trial-by-trial evidence ac-
cumulation is described as following a Wiener diffusion process in which decision
evidence fluctuates randomly over time (Smith and Ratcliff, 2004; Ratcliff and
McKoon, 2008). Figure 7.9 B (left panel) shows a schematic illustration of the
diffusion process and how random variance can trigger fast error responses. A nar-
row boundary separation thus increases the likelihood that the diffusion process
will terminate quickly (i.e., fast RTs), but simultaneously increases the likelihood
that it will terminate on the boundary opposite to the direction of the drift due
to random variation in the signal (i.e., a higher likelihood of errors) (Starns and
Ratcliff, 2010). Why, therefore, was there a decrease in the boundary separation
without an increase in error rates?

Starting with the simplest idea, there is a possibility that the effect of period-
icity on boundary separation was not robust and would disappear with a different
participant set. For example, although the ANOVA showed that participants’
individual boundary separations were quite strongly significantly smaller on peri-
odic compared with aperiodic trials (F(1,19) = 9.341, p = 0.006), the probability
of the posteriors in which the boundary separation for aperiodic trials was greater
than the boundary separation for periodic trials was 0.767. This means that ac-
cording to hierarchical Bayesian hypothesis testing there is a 0.233 probability
that the finding would not replicate were a different subset of participants to
have been drawn from from the wider population. Whilst this indicates that a
decrease in the boundary separation without a change in error rates (as described
above) may have occurred due to chance, there are reasons to look for different
explanations. Firstly, it is common to assess the explanatory power (i.e. valid-
ity) of DDM parameters by comparing DIC and ANOVA significance levels of
individual parameter estimations and to then contextualise the strength of these
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findings using Bayesian hypothesis testing (Jahfari et al., 2013; Zhang and Rowe,
2014; Nie et al., 2016). Secondly, and more importantly, there should theoreti-
cally be no instances in which periodicity does not feature in the HDDM if there
is behavioural evidence to show that it strongly biases RTs. This is because even
were periodicity not to have biased the decision process it should have impacted
non-decision time.

A different explanation for why there was a difference in the boundary sepa-
ration without a change in error rates is that the boundary separation was dis-
proportionately large compared with the variance of the accumulating signal. In
this scenario it becomes increasingly unlikely that random variance will cause
the signal to revert to the decision boundary that is opposite to its drift (see
the red shaded circle in figure 7.9 B for an example of how high variance paired
with a small boundary separation can lead to an incorrect response). This is
because when the boundaries are widely spaced the drift should eventually deter-
mine which boundary the accumulating signal terminates on. Therefore, a small
increase in their spacing (caused by periodicity) in the latter stages of the ac-
cumulation process should result in increased RTs but not necessarily decreased
accuracy. This idea leads to an intriguing hypothesis: if participants were to force
themselves to respond on aperiodic trials as quickly as they do on periodic trials
they would have responded with the same accuracy. This would be because the
additional time associated with widening the boundary separation on aperiodic
trials is unlikely to have been large enough to change the course of the accumu-
lating signal and thus affect error rates. According to this argument, aperiodicity
therefore made participants less confident and unnecessarily conservative in their
deliberation time.

Finally, the use of DDMs in a complex auditory averaging task is novel and
therefore potential limitations of the approach need to be discussed. Firstly, RTs
in experiment 6 (Mean periodic = 2.09 s) were longer than that of most decision
making tasks on which the DDM was originally developed (RTs usually feature
within the range of 0.2 - 1.5 s). This could indicate that the decision was too
complex to be fully explained using a DDM, but it is unknown at this stage what
model would be a better fit. Secondly, the task required averaging a dynamic
and not fixed source of information. Decision evidence is therefore likely to have
accumulated rhythmically rather than in a linear fashion which is one of the base
assumptions of the DDM. Neither caveat is reason to discard the use of DDMs in
timing research, but rather, they offer incentives to develop new, more suitable
models.
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7.5 Experiment 6: Summary

Experiment 6 investigates how rhythmic temporal expectations bias complex av-
eraging when participants choose how much of a stimulus to listen to. The task
required deciding whether a long rhythmic sequence of lateralized noise bursts
had been drawn from a spatial distribution with a mean that was either to the
left or right of mid-point. Unlike in experiments 1 to 5, participants were allowed
to respond as soon as they had an answer and were not required to wait until
the end of the stimulus. This had the benefit of affording greater insight into the
process of evidence accumulation, whilst simultaneously increasing the ecological
validity of the task.

The data showed that participants were sensitive to the periodicity of the noise
burst sequence, as well as to the location of the underlying spatial distribution.
Participants made faster decisions based on less evidence on periodic trials without
making significantly more errors. They also responded faster and with fewer errors
the further the spatial distribution was located away from mid-point.

A hierarchical implementation of the DDM revealed that the periodicity of the
noise burst sequence affected the boundary separation component of the model
on medium and high difficulty trials. This implies that participants required less
decision evidence before responding on periodic compared with aperiodic trials
and that periodicity did not strongly enhance the quality of encoded decision
information. As participants did not know before hearing the stimulus whether
the sequence would be periodic or aperiodic, this parameter change is likely to have
happened in real time during sensory processing on each trial. One hypothesis that
accounts for these findings is that aperiodicity made participants less confident
and unnecessarily conservative in their deliberation time. In order to validate this
idea, additional testing would be required to first replicate the current findings and
secondly, expand the context of the task to include visual, tactile or cross-modal
averaging decisions.

Having established that aperiodicity increases decision time but not errors,
probably by decreasing decision confidence, the thesis now moves away from com-
plex averaging to address the final outstanding area of the new experimental
approach described in chapter 3. Namely, do rhythmic temporal expectations
bias subjective value decisions?



Chapter 8

Subjective value (Experiment 7)

8.1 Experiment 7: Introduction

Experiment 7 reported in this chapter expands the investigation beyond per-
ceptual decision making to test whether rhythmic temporal expectations bias
subjective value representations. This is the last unexplored feature of the new
experimental approach described in chapter 3 and is key to expanding the general-
isability of the thesis to everyday decision making. A large proportion of everyday
decision making is concerned with not only the detection and identification of a
stimulus (as in experiments 1 - 6), but predictions about the benefits of outcomes
that are yet to be experienced. Understanding, therefore, whether the presenta-
tional timing of a stimulus biases the attractiveness of options will afford new in-
sights into the effects of expectation and timing on choice. Most previous research
into subjective value is associated with tasks in which participants make preference
decisions between items of food. Experiment 7, in contrast, used non-appetitive
audio-visual stimuli relating to music in order to increase the generalisability and
ecological validity of value-based decision making research. Thus experiment 7
was designed with three aims in mind: 1. To determine whether rhythmic tem-
poral expectations bias subjective value representations. 2. To explore whether
results from the literature on subjective value generalise to non-appetitive stimuli,
specifically musical preferences. 3. To test whether preference decisions associated
with music are any different to those associated with tangible substances such as
food.

As discussed in sections 2.1.4 and 3.2.2, there is good reason to believe that
temporal expectations may influence subjective value representations. Krajbich
and colleagues showed that visual selective attention biases subjective value in
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that the longer one looks at one of two equally liked food items (with liking
determined prior to the experiment), the more likely participants are to select
the option from the pair (Armel et al., 2008; Krajbich et al., 2010; Krajbich
and Rangel, 2011; Krajbich et al., 2012). This is thought to be caused by the
value of the unattended option being discounted during the decision relative to
the value of the attended option. As rhythmic temporal expectations are also
theorised to affect selective attention (Jones, 1976, 2010; Nobre et al., 2007; Nobre
and Rohenkohl, 2014; Henry and Herrmann, 2014), temporal expectations should
influence subjective value if both literatures are referring to the same cognitive
processes when they interpret results in terms of selective attention. If they do not,
it will mean that either the findings of Krajbich and colleagues do not generalise
to dynamic multi-modal situations, or that the term selective attention is used
by the two literatures to describe distinct cognitive processes.

The experiment incorporated elements from two series of studies, one inves-
tigating perceptual modulation associated with neural entrainment (Rohenkohl
et al., 2012; Cravo et al., 2013) and the other investigating the role of visual se-
lective attention in complex decision making (Krajbich et al., 2010; Lim et al.,
2011). The perceptual modulation studies contributed the use of periodically
versus aperiodically presented visual stimuli in a perceptual classification task.
The complex decision making studies contributed the use of binary preference
comparisons and dynamic stimuli in a subjective value task. The novel aspect
of experiment 7 was in combining these methods to test the effects of temporal
expectations on abstract valuation processes which concern musical preference
and are common in many cultures. It was hypothesised that if rhythmic tem-
poral expectations boosted subjective value representations, participants would
be more likely to choose to listen to a piece of music if information relating to
the music was temporally aligned versus temporally mis-aligned with a periodic
rhythmic context. Temporal expectations were manipulated by having partici-
pants watch either a periodic or aperiodic visual flash that immediately preceded
the sequential presentation of two musical items, after which participants decided
which musical track they would prefer to listen to. Each musical item comprised
a very short sound clip of music paired with an image of its corresponding CD
cover.

Whilst experiment 7 is the last experiment to be reported in the thesis, it
was the first experiment to be run during the PhD. It is placed last because after
running the experiment it was decided that further ground work was required into
the effects of temporal expectations on perceptual decision making and complex
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averaging before subjective value could be properly investigated. For this reason
the experimental design was not informed by the findings of experiments 1 to 6
and in hindsight could have been improved. These improvements are discussed in
section 8.4 alongside ideas for further testing.

8.2 Experiment 7: Method

8.2.1 Participants

A total of 25 participants (14 females) took part. All were aged between 18-
32 (mean = 21.9, SD = 3.4) and reported having normal or correct-to-normal
hearing and vision. 2 participants were left handed, 7 were actively performing
musicians and the average time spend listening to music per day was reported as
2.54 hours (DS = 1.22). Participants were paid £10 for their time. An additional
14 participants (6 females) took part in a pilot study but did not take part in
the main experiment. All were aged between 20-60 years (mean = 32.4, SD
= 13.48) with an average time spent listening to music per day of 1.75 hours.
The experiment received ethical approval from the Cambridge Faculty of Music
Research Ethics Review Committee.

8.2.2 Stimulus

Stimuli were 55 audio-visual items comprising a 350-ms sound clip of culturally
familiar music accompanied by the image of its corresponding CD cover - see Table
C.1 in appendix C for a list of all the musical samples used to create the stimuli.
350 ms was long enough to trigger an emotional response, yet short enough to
avoid participants entraining to a musical pulse (Filipic et al., 2010; Gjerdingen
and Perrott, 2008; Krumhansl, 2010). To increase the chances of a song being
familiar, each auditory clip was taken from either the first chorus of the song, or
from central motifs in cases where there was no chorus (Krumhansl, 2010). The
55 stimuli were selected from a larger list of 70 well-known musical recordings: 26
popular songs used by Krumhansl (2010), 24 from the top 100 of Rolling Stone’s
top 500 songs of all time 1, and 20 from well known jazz and classical recordings.
These 70 clips were rated by the 14 pilot participants using methods similar to
that of the familiarity task of the main study via a custom built webpage 2. The

1http://www.rollingstone.com/music/lists/the-500-greatest-songs-of-all-time-20110407
2http://dcgreatrex-phd-experiment-7.s3-website-us-east-1.amazonaws.com
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Fig. 8.1 Expt. 7. A schematic illustration of the familiarity and liking task (Task 1).

15 tracks that were least familiar to the pilot participants were omitted from the
experimental stimulus set.

8.2.3 Task preparation

One day before the experiment, the 25 experimental participants were asked to
prepare by reviewing all of the experimental stimuli under non-timed conditions.
This required visiting a webpage that contained images of the 55 CD covers as
well 30 s samples of corresponding music (this was similar to the website used
by the pilot participants). They were to review each musical item and to listen
to the music over headphones. To standardise the time between reviewing this
material and doing the experiment proper, participants were again shown the
same webpage within the laboratory before doing the experiment. This time,
they were told to re-familiarise themselves with the musical items by spending
around 5 s listening to parts of each track whilst viewing its CD cover. The
presentational order of the on-screen items was randomised across participants
and all participants reviewed every stimulus before starting the main experimental
tasks.

8.2.4 Task 1: Familiarity and liking

Task 1 established each participant’s individual rating of familiarity and liking for
each stimulus. Each participant was instructed to imagine that they were flicking
through radio stations. Their task was to answer how well they already knew the
music and then how likely they would be to tune into it because they liked it.

Figure 8.1 shows a schematic illustration of the task. On each trial partic-
ipants were shown an image of a CD cover which appeared in the centre of a
grey screen (6.7°x 6.7°visual angle) and its corresponding 350-ms sound clip was
played simultaneously. This was preceded by a 6 s interval of silence during which
a centrally located dot flickered on the screen. The purpose of this interval was
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to reduce trial-by-trial carry-over effects and to allow participants to focus their
attention on the centre of the screen. After the sound clip and visual presentation
of the CD cover (3 s), the first of two untimed response windows appeared - the
first for familiarity and the second for liking. The familiarity response window
contained a 5-point scale ranging from "Completely unfamiliar" to "Very famil-
iar". The response was recorded by pressing one of five corresponding response
buttons on a computer keyboard, which produced the next untimed response win-
dow: a 5-point "liking" scale relating to the likelihood that the participant would
choose to listen to that clip on the radio. The end points were "Very unlikely to
choose it - Dislike it" to "Very likely to choose it - Love it". The next trial followed
immediately after a liking response. If at any point in the response period partici-
pants wanted to see or hear the stimulus again, they could repeat the presentation
stage by pressing a marked button on the computer keyboard. Familiarity was
always rated before liking, but the button responses were counterbalanced across
participants and the order of the audio-visual stimuli randomised on the screen.

After a participant completed Task 1, stimuli that he or she had rated as 4 or
5 on the familiarity scale were grouped into pairs such that there was a difference
in liking of between 0 and 2 between the members of each pair. These pairs were
to be used in Task 2 for exploring preferences. Thus, each participant’s preference
choices in Task 2 were based on their actual preferences as established in Task 1,
and for any given participant, all stimuli in Task 2 would be more or less equally
familiar, but some members of a pair would be more likeable than the other.
In principle, if there were not enough familiar items (rated 4 or 5) in Task 1 to
generate 8 blocks of unique pairs, the participant would not be able to continue to
Task 2. However, all participants passed this condition, thus all completed both
Tasks 1 and 2.

8.2.5 Task 2: Binary preference task

As described at the end of section 8.2.4, Task 2 comprised a series of paired
stimulus presentations. On each trial, participants were shown the CD covers of a
pair of stimuli along with corresponding sound clips, and were to decide which of
the two musical items was most preferred. A singe trial comprised a sequence of
"pre-target light flashes", followed by presentation of the two musical items and
a response period. Details are described separately below.
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Fig. 8.2 Expt. 7. Example of a Gaussian noise patch used on each trial (Task 2). The
black rectangle highlights the size of the noise patch relative to the computer monitor.

8.2.5.1 Pre-target flashes

Each trial began with a sequence of rhythmically flashing noise patches (hereafter
termed pre-target flashes). The purpose of these flashes was to vary the rhythmic
context in which the task decision was made. The pre-target flashes were identical
to those used by Rohenkohl et al. (2012) and Cravo et al. (2013) and were used
because Cravo et al. (2013) provide EEG evidence that they induce delta-band
entrainment within the visual cortex. As illustrated in figure 8.2, the pre-target
flashes consisted of circles (each with a diameter of 4°of visual angle) containing
Gaussian noise with a constant root mean square contrast of 10%. In the center
of each circle was a clearly visible green fixation point (diameter 20 pixels with
rgb value of [0 190 0]). Each flash appeared on-screen for 50-ms.

8.2.5.2 Timing

Temporal presentation of the pre-target flashes could be either be periodic or
aperiodic and lasted for a total of 6.8 s (17 flashes on periodic trials). This was long
enough to induce sensory entrainment on periodic trials, whilst making it difficult
to predict when the paired stimulus would appear in absolute time. Periodic
interonset intervals (IOIs) were always 400 ms. Aperiodic IOIs were randomly
selected from values 200, 300, 400, 500 and 600-ms in which two identical values
never preceded one another. These parameters and constraints were similar to
that used by Rohenkohl et al. (2012) and Cravo et al. (2013). Importantly, to
control for effects of foreperiod on RTs, the IOI between the final noise patch and
paired stimulus presentation was always 400-ms.
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Fig. 8.3 Expt. 7. A schematic illustration of a periodic trial in the binary preference
task (Task 2). Aperiodic trials used an identical structure apart from the 6.8 s of pre-
target flashes comprising randomly selected time intervals of 0.2, 0.3, 0.4, 0.5, and 0.6
s. The duration between the final pre-target flash and the onset of the CD covers was
always 0.4 s on both periodic and aperiodic trials. If participants took longer than 3 s
to respond, the trial timed out and the next one began.

8.2.5.3 Structure of a single trial

Figure 8.3 illustrates the structural sequence of two binary preference trials. Each
trial began with the appearance of two vertical lines (width 15 pixels), one black
and the other blue (rgb value of [0 160 255]), set 16.3°apart. Both were positioned
in the same location as the outer edge of each CD cover image. The blue line
indicated the side of the screen (left or right) that the participant should attend to
when the two CD cover images appeared. After 1.6 seconds, the pre-target flashes
started and continued for 6.8 s. Participants were instructed to look steadily at
the green fixation point and to pay attention to the flashes until the CD covers
appeared. When this happened a green frame surrounded the cover on the side of
the blue vertical line and its corresponding sound clip was played. At this moment
participants were to look at the cover with the green frame, whilst listening. After
1.32 s the green frame moved to surround the second image and the second sound
clip was played, whilst the participant looked at that cover. This duration of
1.32 s was used because it had minimal metrical relationship with the periodic
precursors and was long enough for participants to consider each option. After
another 1.32 s, a response window appeared. Participants had a maximum of 3 s
to indicate which item they preferred to listen to by pressing the relevant one of
two response keys ("C" and "M" on a computer keyboard).
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8.2.5.4 Distractor trials

In addition to the main task, distractor trials were used to increase the likeli-
hood that participants followed task instructions and were paying attention. The
distractor trial began in exactly the same way as a binary preference trial but
with one difference. The fixation point within the final pre-target flash was either
yellow, red or blue. This change of colour was immediately followed by a response
window in which participants were to identify the colour of the last fixation point.
An exclusion criterion was associated with these trials in that inattentive partici-
pants who scored less than 85% correct would be excluded from the experimental
analysis (see results section 8.3.1).

8.2.6 Procedures

All phases of the experiment took place in a sound attenuated recording studio
in the Centre for Music and Science, University of Cambridge. Stimuli were
presented using Psychophysics-3 Toolbox (Brainard, 1997) on a 22-inch Iiyama
Prolite E2202WS screen (vertical refresh rate of 60 Hz) that was positioned 100
cm in front of the participant. Sound was heard through a Beyerdynamic DT 990
Pro headset and responses collected via an Apple keyboard with numeric keypad.
The experimental software included custom MATLAB (MathWorks) functions
written by the author of this thesis:

https://github.com/dcgreatrex-phd/experiment_7

Both tasks began with on-screen instructions followed by 3 practice trials
and were administered one after the other within a single experimental session
(separated by a 5 minute pause). Task 1 comprised 55 trials which participants did
without taking a break. Task 2 comprised 8 blocks of 24 binary preference trials
with a unique stimulus pair being used on every trial. In each block, 6 pairs had a
liking difference of 1, 6 had a difference of 2 and 12 had a difference of 0 presented
in random order. The left right presentational order of the musical items was also
controlled within each block whereby the first looked at item appeared on the
left hand side of the screen on 12 out of the 24 trials. In addition to these trials,
Task 2 included 36 distractor trials that were randomly interleaved throughout
the experiment (appearing on average after every 6th binary preference trial).
These made it hard for participants to predict what type of task each trial would
contain and therefore encouraged them to pay attention to the pre-target flashes
on every trial. Unlike in Task 1, participants were given the option to take a short
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Fig. 8.4 Expt. 7. Histogram of dataset 2 (DS2) showing truncated RT data used in the
analysis. The dotted line marks the left truncation point (0.1 s) where very fast responses
were removed from the raw data (DS1). Dataset 2 (DS2) is 3.28% smaller than dataset
1 (DS1).

break after every block in Task 2 and were forced to wait 2 seconds after every
6th trial before continuing. These conditions allowed participants sufficient time
to rest and refocus their attention during the task.

Finally, an incentive was used to encourage engagement in Task 2. At the
start of the task participants were given a £3 iTunes voucher and told that they
would need to spend the voucher on music relating to their choice on a randomly
selected binary preference trial. This purchase was to be made in front of the
experimenter directly after the experiment. The incentive encouraged participants
to make honest decisions throughout the experiment as they did not know which
trial would be selected at the end.

8.3 Experiment 7: Results

8.3.1 Distractor trials

All participants scored above the 85% accuracy criterion on the distractor trials
and were included in the experimental analysis (mean proportion correct = 0.94,
SD = 0.04).

8.3.2 Data preparation and analytical procedures

The majority of responses occurred more than 100 ms after the onset of the re-
sponse period and therefore most participants waited until they had observed the
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entire stimulus presentation before initiating their response. There was, however,
a small number of trials in which responses were much faster than 100 ms. This
implies that, on these trials, the decision was made relatively early during the
presentation of the second musical item, after which the participant tried to syn-
chronise their response with the onset of the response period. This resulted in a
spike in RTs at close to 0 s values. As this response pattern strategy was possible
and was allowed in the experiment, such responses were not necessarily outliers,
although their clumping close to 0 ms is almost certainty artifactual. Nonethe-
less, two datasets were used in the analysis. The first dataset (DS1) contained all
original trials and the second dataset (DS2, shown in figure 8.4) contained only
trials in which RTs were greater than 100 ms. DS2 had 3.28% less trials than DS1
and allowed for standard unimodal statistical tests to be applied to the RT data.
Since patterns of statistical significance were identical in both datasets, only the
results from DS2 are reported.

The hypotheses were tested using two hierarchical logistic regression analyses
that regressed 1) the probability of participants selecting the first item of each
pair against the experimental factors and 2) log-transformed RTs against the ex-
perimental factors. Both used stepwise selection procedures as well as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC) and Likeli-
hood Ratio Tests (LRTs) for assessing model fit (as recommended by Knoblauch
and Maloney (2012)). As there was a high degree of participant variability in
the data, choices were also investigated using participant-specific psychometric
functions.

8.3.3 Preference reversals

Participants’ responses on the binary preference task remained fairly congruent
with their choices during the familiarity and liking task. The probability of a pref-
erence reversal was 0.153 when the absolute difference score between the paired
items was 1, and 0.042 when it was 2. These probabilities are smaller than those
recorded by Lebreton et al. (2009) who used a similar binary preference task (hard
comparisons: 0.311, easy comparisons: 0.253). As hypothesised, the periodicity
of the pre-target flashes did not significantly bias preference reversals when the
absolute difference score was greater than zero [F(1,24) = 0.708, p = 0.409].
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Fig. 8.5 Expt. 7. Choice and RT data. Top-left panel: averaged probability of par-
ticipants selecting the first musical item by the absolute difference score and periodicity
conditions. Top-right panel: averaged RTs by the difference score and periodicity condi-
tions. Bottom panel: participant-specific probabilities of selecting the first musical item
by the absolute difference score and periodicity conditions; each curve represents a single
participant. Error bars: standard error of the mean.
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8.3.4 Probability of selecting the first item

Figure 8.5 shows, for the absolute difference score and corresponding RTs, the
probability that a participant selected the first item of the stimulus pair. Figures
C.1 and C.2 in appendix C show the same information for individual partici-
pants. Contrary to the hypothesis advanced in the introduction, periodicity did
not appear to strongly increase the likelihood that participants selected the first
item when the difference in liking between the two items was zero. The bottom
panel shows that the group averaged results comprised a large degree of between-
participant variability.

To make sense of this variability, choice data were submitted to a hierarchical
logistic regression analysis. The analysis consisted of two stages: 1. Different
generalized linear mixed effect models (GLMM) with the same fixed effects and
a variety of random effects were compared to identify the best fitting random
factors. 2. Fixed effects were compared using a backwards stepwise procedure to
identify the best fitting overall model. The starting model contained fixed effects
of Difference score [-2, -1, 0, 1, 2], Periodicity [Periodic, Aperiodic] and Location
of the first looked at item [Left, Right]. Four control covariates were also included
to account for trial-by-trial carry over effects. The first two covariates, entitled
"Recency of item 1" and "Recency of item 2", recorded how many trials earlier
in the experiment the corresponding musical item of the pair was last used. The
second two covariates, "Repeat of item 1" and "Repeat of item 2", recorded how
many times the corresponding musical item had featured in a previous stimulus
pair earlier in the experiment. These factors helped to satisfy the independence
assumption of the linear model and to reduce the residual error of the model fit
(Baayen and Milin, 2015).

Appendix C contains full details of the model selection procedure used to anal-
yse the probability that participants selected the first musical item (see section:
"Expt. 7. Hierarchical logistic regression analysis"). In summary, four variants
of the starting model with different random effects were compared using a LRT
to determine the best fitting random effects. This revealed that the best model
to describe variance in the data had random slopes that varied by the Difference
score and random intercepts that varied by Participant ID. A backwards stepwise
selection procedure then revealed that significant fixed effects were Difference
score, Repeat of item 1 and Repeat of item 2 and that Periodicity and Location
were not significant. Table 8.1 lists model estimates (intercept and slopes) for the
best fitting hierarchical model that excludes non-significant factors. As expected,
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Estimate Std. Error z-value
(Intercept) -0.0447 0.0446 -1.003
Difference score 1.8199 0.1277 14.248
Repeat of item 1 -0.1156 0.0547 -2.116
Repeat of item 2 0.0994 0.0546 1.818

Table 8.1 Expt. 7. Estimated coefficients, standard errors, and z-values for the best
fitting generalized linear mixed effect model (Model 3.3) fitted to the probability of
participants selecting the first presented item of each musical pair.

there was a strong positive slope associated with the Difference score, which sup-
ports the previous finding that participants’ preferences remained fairly stable
throughout the experiment. Further, the more often an item had been used (in a
different stimulus pair) earlier in the experiment, the less likely participants were
to select that item in the current trial. As the periodicity of the pre-target flashes
did not feature in the best fitting model, any effects of periodicity that may have
occurred were not consistent across participants.

8.3.5 Response times

The top-right panel of figure 8.5 shows averaged RT data by the Difference score
and Periodicity conditions. RTs increased as the Difference score approached
zero but did not appear to be systematically affected by the periodicity of the
pre-target flashes. To test for these relationships log-transformed RTs were sub-
mitted to a linear mixed-effects regression (LMER) analysis. The starting model
contained the same fixed effects and interactions used in the starting model of
section 8.3.4, with the addition of Trial ID to capture the autocorrelation of RTs
between trials. As with the choice data, the same four combinations of random
effects described in appendix C were compared using a LRT. This showed that the
best model to explain variance in the data had random intercepts for both Par-
ticipant ID and Experimental Block. See section "Expt. 7. Linear mixed-effects
regression analysis" in appendix C for full details of the model fitting procedure
used. A backwards stepwise selection procedure then revealed that only Differ-
ence score, Location and Trial ID significantly contributed to the model. Table
8.2 lists model estimates (intercept and slopes) for fixed effects in the best fit-
ting log-transformed RT model. As expected, RTs significantly slowed as the
difference score approached zero and were strongly autocorrelated with the RT in
the previous trial. There was also a weak spatial bias whereby participants took



8.3 Experiment 7: Results 171

Estimate Std. Error t-value
(Intercept) -0.9769 0.0473 -20.621
Difference score: -1 0.0586 0.0209 2.809
Difference score: 0 0.1468 0.0181 8.134
Difference score: 1 0.0872 0.0208 4.184
Difference score: 2 0.0143 0.0209 0.687
Location: Right 0.0224 0.0120 1.866
Trial ID -0.1194 0.0166 -7.193

Table 8.2 Expt. 7. Estimated coefficients, standard errors, and t-values for the best
fitting linear mixed effects model (Model 2.3) fitted to log-transformed RTs.

slightly longer to respond when the first musical image was presented on the right
compared to the left hand side of the screen.

8.3.6 Participant-specific psychometric curves

Although the periodicity of the pre-target flashes did not affect the probability
of selecting the first item at the group-level, the rhythm of the pre-target flashes
did appear to strongly affect some of the participants’ choices (see individual par-
ticipant plots in appendix C). To explore these cases and to determine whether
additional information can be extracted from the data, two sigmoidal cumula-
tive distribution functions were fit to each participants’ data by the periodicity
condition. This was implemented using the Palamedes toolbox for Matlab (Prins
and Kingdom, 2009) and followed procedures described in previous chapters (see
sections 5.3.5, 5.4.1, 5.8.1 and 7.3.2). If periodicity affected participants’ pref-
erences there should be a difference between the fitted 50% thresholds of each
curve (0.5 probability of selecting the first item) with it being smaller on periodic
compared with aperiodic trials. The model fitting procedure was applied to all
participants’ data and Goodness of Fit (GoF) tests used to assess each model fit.
Models associated with five out of the twenty five participants [participants 5, 6,
13, 14, 22] failed the GoF test due to high variability in these participants’ data.
These data were excluded from the analysis.

Figure 8.6 shows data for eight of the remaining twenty participants (see figure
C.3 in appendix C for all psychometric curves). The top row shows the four
participants who were most affected by periodicity and the bottom row shows
those who were least effected by periodicity when the Difference score was zero.
Interestingly, although five out of the seven performing musicians (indicated by
triangles in figure 8.6) who took part in the experiment are among the eight
participants shown in figure 8.6, they are more or less equally distributed between
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Fig. 8.6 Expt. 7. Psychometric curves for 8 individual participants, showing the prob-
ability of selecting the first musical item for a selection of participants by periodicity
condition. Top row: participants who were most affected by the periodicity of the pre-
target flashes at difference score = 0. Bottom row: participants who were least affected
by periodicity at difference score = 0. Shapes: reported musical experience.
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the two subgroups: only three were in the group most affected by periodicity,
the other two being in the least affected group. This could mean that either
the effects of rhythmic temporal expectation on subjective value representations
interact with musical experience (such as the type of instrument or music that one
plays), or that musical experience simply has no replicable effect on preference
choices. As the topic of musical training was not the primary research question
for this experiment, further empirical work is needed to clarify this issue.

Two further characteristics of the choices made by participants in the top row
of figure 8.6 are also worth discussing. Firstly, participants 23, 18 and 1 all had
highly consistent preferences compared with their familiarity and liking task data.
On the binary preference task they made on average 3.7% of preference reversals
at difference score = 1 and 0.5% of preference reversals at difference score = 2.
This is very low compared with the group average of 15.32% and 4.17% respec-
tively. It may indicate that there is a relationship between preference consistency
and increased sensitivity towards the periodicity conditions. To test for this, all
participants’ data were used to correlate the average proportion of preference
reversals for each participant at difference scores 1 and 2 with their sensitivity
towards the periodicity conditions. Sensitivity to periodicity was quantified as
the absolute difference in the probability of choosing the first item between the
periodicity conditions at difference score 0. Figure 8.7 plots this data. As indi-
cated by the blue regression line, there was a mild negative correlation between
the two measurements but it fell short of statistical significant (rho = -0.359, p
= 0.078).

The second characteristic is that participants in the top row, whose choices
were most effected by periodicity, differed in how it affected them. Participants
23 and 18 were more likely to select the first item when the pre-target flashes were
aperiodic, whereas, participants 1 and 10 were more likely to select the first item
when the pre-target flashes were periodic. These differences between participants
presumably at least partly explain why periodicity was not a significant predictor
in the hierarchical regression analysis, even though it did affect some individuals.
Further empirical work is again required to clarify this problem and to determine
whether there are specific reasons for these reversals.

8.4 Experiment 7: Discussion

Experiment 7 aimed to determine whether rhythmic temporal expectations bias
subjective value representations during a preference task in which participants
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Fig. 8.7 Expt. 7. Proportion of preference reversals at difference scores 1 and 2 (x-axis)
against participants’ sensitivity towards the periodicity conditions (y-axis). Sensitivity
was quantified as the absolute difference in the probability of selecting the first item
between the periodicity conditions at difference score 0. The blue line represents the best
fitting linear regression line and shaded areas represent predicted confident intervals.

chose between pairs of musical items. The main findings were: 1. Choices were
most affected by the difference in liking between the two musical items as well
as the frequency of each item. Items with a higher liking rating were more likely
to be selected and participants became less likely to select an item the more
times it had featured in previous trials. 2. Preferences in the binary preference
task were largely consistent with those recorded in the familiarity and liking task
and the average number of preference reversals was smaller than that recorded
in a similar subjective value experiment that used images of faces, houses and
paintings (Lebreton et al., 2009). 3. The periodicity of the pre-target flashes did
not bias choices or RTs for the group as a whole but did strongly affect a small
subset of participants when the difference score was zero. For these participants
the effect of periodicity was not consistent, however, with some participants being
more likely to select the first item on periodic trials and others on aperiodic trials.
4. There was a very weak negative correlation between participants’ sensitivity
towards the periodicity conditions and the number of preference reversals for each
participant.

The group results do not support the idea that rhythmic temporal expecta-
tions bias subjective value representations. Whilst this finding might generalise to
a broader range of tasks and situations, a number of behavioural observations and
features of the experimental design encourage consideration of a more nuanced
interpretation. For example, some of the participants were strongly influenced by
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the periodicity of the pre-target flashes when the difference score was zero. This
could mean that there were participant-specific factors that were not controlled
for that interacted with effects of temporal expectation on subjective value rep-
resentations. Henry and Obleser (2012) demonstrate that the effects of rhythmic
temporal expectation on choice can be participant-specific. They showed that
the optimal phase within a periodic stimulus for the correct detection of near
threshold targets differs across participants. Specifically, the entrained phase of
each participant’s neural delta oscillations differed (by varying degrees) in phase-
lag relative to the stimulus, and that it was the peak of the delta oscillation
and not the stimulus that determined optimal target detection. As the current
study tested a relatively small number of participants, further work is required to
find out if the reported results replicate under different tasks that test the same
research question and whether performance differs across different participant
groups. This could involve comparing participant groups associated with specific
rhythmic expertise, such as professional drummers, dancers or poets against a
control group who have little or no such specific rhythmic training. Alternatively,
electroencephalography data could be recorded, as in Henry and Obleser (2012),
to determine whether the phase of neural delta oscillations biases the probability
of participants selecting the first item.

In addition to the differences between individual participants there were a
number of features of the experimental design that may have reduced the inter-
pretability of the data. Firstly, although each trial contained a unique stimulus
pair, there was no upper limit to the number of times a single musical item could
feature in the experiment. As already noted, this biased responses, with partic-
ipants being less likely to select an item the more times it was used throughout
the experiment. One result of this issue is that item replication will have likely
caused forced preference reversals. A simple solution is to present each musical
item a fixed number of times in each of the Difference score conditions.

Secondly, a number of participants reported after the experiment that the du-
ration of the pre-target flashes (6.8 seconds) was too long and as a result they
lost interest or became frustrated with the task. The long duration was used to
ensure that the pre-target flashes induced sensory entrainment in observers. As
demonstrated in experiments 1 to 6, however, the effects of timing on complex
choice occur after exposure to short rhythmic sequences and therefore this dura-
tion could have been much shorter, but was not known when the experiment was
conducted. Further piloting is required to determine more appropriate presen-
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tation durations so that they remain comparable with natural and unrestricted
decision latencies between musical options.

Thirdly, the design of experiment 7 does not allow us to explicitly measure
whether the musical judgements were compatible to those about tangible sub-
stances such as food. The experimental design could therefore be replicated,
except with the musical items replaced by images of food or a range of stimulus
types.

Fourthly, the fact that the pre-target flashes were restricted to the visual
domain may have reduced the effects of periodicity on choice. This is because it is
largely untested whether visual sensory entrainment triggers auditory entrainment
and whether a cross-modal connection is made during complex decision making.
This means that for participants who based their decision primarily on information
contained in the musical clip, rather than in the CD cover image, the effects of
visual sensory entrainment would have had little effect on their decision. A simple
way to test this would be to include a condition in which the pre-target flashes
are synchronised with clicks or noise bursts to ensure that both the visual and
auditory cortices are entrained to the periodic pulse prior to the presentation of
the musical items.

Finally, the methods used in experiment 7 are at odds with one of the principles
outlined in the new experimental approach of chapter 3 (section 3.3.2) as well as
a general aim of the thesis. As the pre-target flashes did not contain goal-related
information they violated the suggestion of using time as an inherent dimension
of targets (section 3.2.3). Experiment 7 also lacked ecological validity as choices
made between musical items do not usually occur within rhythmic contexts. These
limitations exist, of course, because the experiment was designed and run before
the main argument of the thesis was fully formed. There are, however, a number of
real world contexts in which value-based decision information is embedded within
dynamic rhythmic streams. For example, it is common to form social judgements
about the trustworthiness or approachability of people whilst navigating through a
busy town. An experiment could be run to test whether the temporal variability
of peoples gait, or of one’s own movement, biases these judgements. Knight
et al. (2016) asked a similar question by having participants indirectly judge
the trustworthiness of a person who was filmed walking in-time versus out-of-
time with an auditory pulse. They showed that people judged the person to
be implicitly engaging in a trustworthy activity when the auditory pulse aligned
with their footsteps, but explicitly engaging in an untrustworthy activity when
it did not. Alternatively, one could investigate market situations, such as an
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auction, when participants are required to make value decisions based on rapidly
changing rhythmic information. Armel et al. (2008) investigates a similar scenario
in the context of dynamic object selection but did not focus explicitly on rhythmic
temporal expectations.

8.5 Experiment 7: Summary

To conclude, this chapter documents the first attempt at investigating whether
rhythmic temporal expectations bias subjective value representations. To avoid
appetitive stimuli and increase the generalisability of value-based decision mak-
ing research, participants made preference decisions between periodically or ape-
riodically presented musical items. The results showed that choices were highly
sensitive towards the prior liking of each musical item and that participants were
less likely to select an option the more times it was used throughout the experi-
ment. The number of preference reversals was also on average smaller than in a
similar visual study that used pictures of faces, houses and paintings as stimuli
(Lebreton et al., 2009). This finding validates the use of musical stimuli in the
experiment and suggests that musical preferences are the same or more reliable
than commonly investigated preferences in the decision making literature. Impor-
tantly, periodicity did not affect choices for the group as a whole, but did affect
decisions made by a subset of the participants, though only when they had no
initial difference in preference between a particular pair of items. This implies
that participant abilities, which are presumably at least partly affected by their
experience, interact with the effects of periodicity on choice. Whilst the current
experimental design has a number of limitations, it forms a baseline of results and
acts as a starting point from which further research can be made.



Chapter 9

Towards a predictive framework

9.1 Key findings using the new experimental frame-

work

This thesis proposes a new approach for studying temporal expectations and
decision making. It argues that to better understand the effects of temporal
expectation on perception and action, theories of timing must be tested under
experimental conditions that more closely align with everyday goal-directed be-
haviour. This requires moving beyond simple decisions to consider the effects of
temporal expectations on complex decision making, whilst ensuring that stim-
ulus timing is contextualised and modelled as part of, and not separate from,
goal-relevant information. The experiments reported in the thesis investigated
this interdependence between temporal expectations and complex decision mak-
ing by conforming to a new experimental framework outlined in chapter 3. The
framework addresses five areas of existing temporal expectation research that are
in need of further development in order to expand the generalisability and rele-
vance of experimental data to everyday situations and offers guidelines on how to
achieve these improvements in experimental design. Specifically, the framework
recommends: 1. increasing the complexity of experimental tasks by using multi-
ple targets, 2. requiring participants to make perceptual averaging and subjective
valuation decisions, 3. incorporating sequence timing as an inherent dimension of
targets, 4. testing degrees of aperiodicity and 5. exploring the effects that prior
knowledge about the temporal structure of a stimulus has on choice.

Table 9.1 summarises the main independent and dependent variables and re-
sults of each experiment in the thesis.
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Table 9.1 Summary of the independent variables (IVs), dependent variables (DVs) and
results of the seven experiments reported in the thesis. "C" represents control covariates.

Expt.
No.

IVs DVs Results

1.
Chp. 4

Periodicity
Spatial category
IOI variance
Azimuth variance

Response times
Proportion errors
Decision weights

- Main effect of periodicity and spatial
category on response times and
proportion of errors. Faster responses and
fewer errors on periodic versus aperiodic
trials. Faster responses and more errors
on cardinal versus diagonal trials.
- Main effect of IOI variance on response
times but not proportion of errors (slower
responses with increasing IOI variance).
- Interaction between azimuth variance
and spatial category (higher errors on
cardinal trials with low azimuth variance).
- Larger decision weights on periodic
versus aperiodic trials but no recency or
inlying/outlying decision evidence bias.

2.
Chp. 4

Same as Expt. 1 Same as Expt. 1

- Main effect of periodicity and spatial
category on response times. Faster
responses on periodic versus aperiodic
trials and on cardinal versus diagonal
trials.
- No effect of periodicity nor spatial
category on proportion of errors. This is
different to Expt. 1.
- Main effect of IOI variance on response
times but not proportion of errors (slower
responses with increasing IOI variance).
- Main effect of azimuth variance on
decision accuracy (more errors with
increasing azimuth variance).
- Smaller decision weights than in Expt.1
and fewer differences between the
periodicity conditions. No recency or
inlying/outlying decision evidence bias
but an unexpected decision weight
interaction between the periodicity and
spatial category conditions.
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Table 9.1 Continued.
Expt.
No.

IVs DVs Results

3.
Chp. 5

Periodicity
Probe tone ILD
IOI variance
Average noise ILD (C)

Response times
% Left responses

- Main effect of periodicity and probe
tone ILD on response times.
- No effect of periodicity but a main effect
of probe tone ILD on decision accuracy.
- Main effect of IOI variance whereby
responses slowed with increased IOI
variance.
- Main effect of Average noise ILD on
response accuracy and response times
highlighting a spatial bias analogous to
the "spatial aftereffect" (Phillips and
Hall, 2005).

4.
Chp. 5

Same as Expt. 3 Same as Expt. 3

- Main effect of periodicity and probe tone
ILD on response times (same as Expt. 3).
- No main effect of periodicity but a main
effect of probe tone ILD on decision
accuracy. High ability participants were
significantly more accurate on periodic
versus aperiodic trials compared with low
ability participants.
- Main effect of IOI variance whereby
responses slowed with increased IOI
variance (same as Expt. 3).
- Main effect of Average noise ILD on
response accuracy highlighting a spatial
bias analogous to the "spatial aftereffect"
(Phillips and Hall, 2005) (similar to Expt.
3).
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Table 9.1 Continued.
Expt.
No.

IVs DVs Results

5.
Chp. 6

Foreperiod
IOI variance
Session
Lagged RT (C)

Response times

- Main effect of foreperiod. Response
times were longer on short compared with
long duration trials.
- Significant interaction between IOI
variance and foreperiod. Response times
were affected by IOI variance on long but
not short foreperiod trials (IOI variance
slowed responses).
- Main effect of experimental session.
Responses were faster in the second half
of the experiment.
- Main effect of lagged inverse response
time. RTs positively correlated with the
RT of the previous trial.

6.
Chp. 7

Periodicity
Average noise ILD

Response times
Proportion errors
% Right responses
HDDM (v, a, Ter)

- Main effect of periodicity and average
noise ILD on response times. RTs were
faster on periodic versus aperiodic trials
and slowed as the average noise ILD
approached zero.
- No effect of periodicity on proportion of
errors but a main effect of average noise
ILD. Participants made more errors under
harder task conditions.
- Main effect of task difficulty (low versus
high average noise ILD) on the drift rate
v of the HDDM. v was higher under easier
task conditions.
- Main effect of periodicity on the decision
boundary a of the HDDM. a was smaller
on periodic versus aperiodic trials.
- No effect of direction (positive versus
negative average noise ILD - control
covariate) on any of the HDDM
parameters.
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Table 9.1 Continued.
Expt.
No.

IVs DVs Results

7.
Chp. 8

Periodicity
Difference score
Location (C)
Item rep (C)

Response times
% Select item 1
Preference reverse

- No effect of periodicity nor spatial
location on response times but a main
effect of difference score. Response times
increased as the difference score between
items decreased.
- No effect of periodicity nor spatial
location on the probability of selecting
the 1st musical item but a main effect of
difference score.
- Preference reversals decreased with
increased difference score and were
generally smaller that those reported in
similar studies (Lebreton et al., 2009).
- Participants were less likely to select the
1st musical item the more times it
appeared in the experiment and response
times negatively correlated with that of
the previous trial.

Experiments 1 and 2 used a complex auditory averaging task to investigate
complex decision making and whether prior knowledge about the periodicity of
the stimulus, as well as degrees of aperiodicity, bias choice. As this was the first
attempt at implementing the new experimental framework, the experiments ad-
dressed as many of the above five points as possible. The results showed that,
under conditions of temporal uncertainty (experiment 1), the average location of
periodic lateralized sequences was categorised faster and more accurately than
that of aperiodic sequences. Under situations of temporal certainty (experiment
2) the effect of periodicity on accuracy disappeared and decision weights were
more evenly distributed. In both experiments, decision latencies became propor-
tionally longer as the degree of IOI variance in the stimulus increased. Together,
these findings imply that the rhythmic presentation of information can bias the
accuracy of complex averaging decisions when the task contains temporal uncer-
tainty and that prior knowledge about the timing of the stimulus counteracts
this bias, presumably by increasing the likelihood of information being sampled
uniformly during the decision. It also shows that the degree of aperiodicity in
the stimulus systematically regulates the time it takes to reach a decision in a
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way that is not reliant on prior knowledge, decision accuracy, nor, presumably,
conscious control.

Experiments 3 and 4 developed the approach by having participants make rel-
ative rather than absolute auditory spatial averaging decisions and by varying the
rate of the stimulus (experiment 3 - fast rate, experiment 4 - slow rate). Unnec-
essary complexities were also removed from the experimental design or controlled
for. These included reducing the number of sounds in the rhythmic sequence, and
controlling the order in which spatial targets were presented. The purpose of both
experiments was to test whether key findings of experiments 1 and 2 replicate un-
der a different experimental paradigm that tests the same fundamental research
question and whether the rate of rhythmic stimuli interacts with the effects of
rhythmic temporal expectations during complex averaging. Unlike experiment 1,
periodicity did not result in participants responding more accurately in experi-
ment 3 (fast rate) and experiment 4 showed that enhanced decision accuracy on
periodic trials only occurred for a subset of participants who were able to do the
task under the harder conditions of the slow rate. This suggests that the slower
presentational rate increased the likelihood that periodicity would affect choice
accuracy for high ability participants, and that effects of temporal expectation on
the accuracy of complex decisions is dependent on several factors that include,
but are not limited to, decision complexity, the rate of the stimulus, knowledge
about the timing of the stimulus and participant ability. The effect of IOI variance
on decision latencies was replicated in both experiments 3 and 4 and therefore
sensitivity towards IOI variance in a stimulus stream has a more robust effect on
decision latencies than the other factors listed here.

Experiment 5 diverged from complex decision making and the rules outlined
in chapter 3 to investigate the cause and characteristics of the IOI variance finding
in experiments 1 to 4. Experiment 5 comprised a simple detection task making
minimal demands on memory and cognitive processing. If the same effects of IOI
variance on RTs was observed in this task it would provide evidence that the find-
ings of experiments 1 to 4 were caused by cognitive processes that are relatively
general to perception-action tasks. The results showed that RTs were sensitive
to the IOI variance in the precursor sequence but that the effects of IOI variance
were limited to trials that had long precursors. This suggests that sensitivity to-
wards IOI variance is not specific to complex decision making although prolonged
exposure to a stimulus is needed for responses to be affected.

Experiment 6 returned to complex decision making and the experimental
framework to investigate how rhythmic temporal expectations bias complex aver-
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aging when participants choose how much of a stimulus to listen to before making
a decision. Unlike experiments 1 to 5, participants were allowed to respond as
soon as they had an answer rather than being required to wait until the end of
the stimulus before responding. This had the benefit of affording greater insight
into the process of evidence accumulation, whilst simultaneously increasing the
ecological validity of the task. The results showed that participants made faster
decisions based on less evidence on periodic trials without making significantly
more errors. Whilst this meant that there was no difference in accuracy between
the periodicity conditions, periodic decisions were more efficient as they required
less information and time. A hierarchical implementation of the Drift Diffusion
Model (HDDM) using the data from experiment 6 revealed that the periodicity
of the noise burst sequence affected the boundary separation component of the
model on medium and high difficulty trials. This means that rather than peri-
odicity enhancing the quality of accumulating decision information, on aperiodic
trials the decision process simply required more accumulated evidence before ter-
minating. One hypothesis that explains this behaviour, but needs testing, is that
aperiodicity made participants less confident and hence unnecessarily conservative
in their deliberation time.

Experiment 7 addressed the last unexplored feature of the experimental frame-
work by testing whether rhythmic temporal expectations bias subjective value
decisions. This topic remains at the forefront of the investigation and is key to
understanding interdependence between temporal expectation and complex de-
cision making. On each trial participants made a preference decision between
pairs of musical items that were preceded by a rhythmic sequence of on-screen
flashes. This use of dynamic audio-visual stimuli and music aimed to increase
the generalisability and ecological validity of value-based decision research, which
traditionally uses static images of appetitive food items as stimuli. It was hy-
pothesised that if rhythmic temporal expectations boosted subjective value, par-
ticipants would be more likely to select the first item of the pair on periodic trials
in which both musical items were equally liked. The results showed that con-
trary to the hypothesis, the periodicity of the on-screen flashes strongly biased
neither the preference decisions nor the response times. Decisions were, however,
highly sensitive towards previously recorded preferences for each musical item;
furthermore, participants were less likely to select an option the more times it
was used throughout the session. These findings, when paired with the number
of observed preference reversals, validates the use of musical stimuli in the exper-
iment and suggests that musical preferences are the same as or more reliable than
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more commonly investigated preferences in the decision making literature such as
those associated with food and faces. The fact that rhythmic temporal expecta-
tions did not influence subjective value decisions may have been due to features of
the experimental design, such as the use of rhythmic precursors, which is argued
against in chapter 3. For this reason, further research needs to be conducted into
the area before this conclusion concerning the effects of temporal expectations on
subjective value can be supported.

In summary, the seven experiments produced four key findings that have the-
oretical implications for future research:

1. The degree of IOI variance in the stimulus proportionally affects decision
latencies but not decision accuracy during both complex averaging and sim-
ple response time tasks. As this was observed in experiment 5, it is likely
that the bias is caused by cognitive processes that are relatively general to
perception-action tasks rather than just to complex decision making.

2. Apart from experiment 1 and a subset of participants in experiment 4, rhyth-
mic temporal expectations did not bias the accuracy of complex averaging
or subjective value decisions. This finding is contrary to key theories in the
temporal expectation literature which are validated using simply percep-
tual decision making tasks. During complex decision making, however, it
appears that the degree to which rhythmic temporal expectations will bias
the accuracy of the decision is dependent on contextual factors such as the
complexity of the decision, the rate of the stimulus, knowledge about the
timing of the stimulus and participant ability at the task.

3. Participants required less decision information in order to respond faster
and with the same accuracy on periodic versus aperiodic trials. This sug-
gests that whilst periodicity does not consistently increase the accuracy of
complex decisions, it does make them more efficient. This behaviour was as-
sociated with a change in the boundary separation of a HDDM and therefore
may have occurred due to aperiodicity making participants less confident
and unnecessarily conservative in their deliberation time.

4. Periodicity did not appear to influence subjective value representations of
musical items when rhythmic precursors were used to generate temporal
expectations. Musical preferences are, however, the same or more reliable
than commonly investigated preferences in the decision making literature
and therefore can be used in future experimentation.
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9.2 Theoretical implications

9.2.1 Dynamic inhibition and boosting

Dynamic Attending Theory (DAT), described in section 2.2.1, provides an elegant
account of how attending neural oscillations entrain to periodic regularities in
a sensory signal. To recap, as entrainment increases, due to fewer expectancy
violations, attentional energy concentrates towards the peak of the oscillatory
cycle resulting in attentional fluctuations (Large and Jones, 1999). As a result,
information becomes easier to detect, memorise and respond to if it falls near to
the peak of an entrained cycle, and it is suppressed if it falls far away from the
peak. The evidence supporting this theory shows that targets that are presented in
time with a preceding periodic pulse are responded to more accurately than those
that are presented slightly out of time. The regularity of the pulse is assumed
to entrain neural oscillations which then influence how the response targets are
processed. An explanation for this behaviour is that entrainment enhances the
quality of decision information when it aligns with the period and phase of the
entrainment cycle. This notion of perceptual enhancement is commonly used
throughout the temporal expectation literature (Klein and Jones, 1996; Escoffier
et al., 2010; Walker and King, 2011; Cravo et al., 2013; Lawrance et al., 2014).

A second idea associated with DAT and theories of neural oscillatory entrain-
ment is that in the absence of periodic stimulation, neural oscillations revert from
a rhythmic to a continuous processing mode in which information is sampled uni-
formly (Schroeder and Lakatos, 2009; Henry and Herrmann, 2014). This is caused
by the attentional energy that is concentrated at the peaks of an entrained os-
cillatory cycle becoming more evenly distributed across all moments in time. It
therefore becomes more likely that the observer will detect a greater number of
irregularly spaced events, but less likely that the quality of the perceptual in-
formation will be enhanced. Whilst this idea implies that it should be easier to
recall features of periodic versus aperiodic information due to the enhanced qual-
ity of information, few studies have explicitly asked this question. For the few
that did, the results are inconclusive. Jones et al.’s (2002) experiment 3 showed
that whilst aperiodicity resulted in a flatter expectancy profile, it did not reduce
response accuracy compared with periodic stimuli. Similarly, Mathewson et al.
(2012) showed that accuracy was not significantly different between periodic and
aperiodic stimulus conditions. Rohenkohl et al. (2012) and Cravo et al. (2013)
on the other hand showed that periodic stimuli were responded to faster and
more accurately than aperiodic stimuli. Finally, in this thesis, periodicity had no
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Fig. 9.1 A. Schematic illustration of dynamic inhibition and boosting: A. top panel:
continuous processing mode. A. middle panel: dynamic inhibition of out-of-time infor-
mation. A. bottom panel: dynamic boosting of in-time information. Red shading =
inhibited sensory information. Green shading = enhanced sensory information. Grey
shading = baseline processing. Yellow circles = time of onset of sensory information.
B. Schematic illustration of top-down control mechanism for dynamic boosting: B. top
panel: examples of attentional enhancement filters that account for prior knowledge, ex-
pertise, task difficulty, task importance. B. middle panel: periodic rate filter. B. bottom
panel: classification filter that determines degree of dynamic boosting. Red shading =
dynamic inhibition. Green shading = dynamic boosting

effect on the accuracy of complex decisions on four out of the six classification
experiments.

What is the reason for this inconsistency and why did periodicity not guaran-
tee more accurate decision making? A theoretical explanation to this question is
that rather than enhancing decision information, the default behaviour of periodi-
cally entrained neural oscillations is to inhibit. I will call this behaviour "dynamic
inhibition". It means that under situations of periodic stimulation, entrained os-
cillations inhibit the processing of information that does not align with the peak
of the oscillation, but importantly, does not simultaneously enhance information
processing that does coincide with a peak in entrained oscillations. This is il-
lustrated in the top two panels of figure 9.1A. The top panel shows that when
sensory information is aperiodic, a continuous processing mode applies in which
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all information is processed equally and with the same degree of perceived qual-
ity. When the sensory information is periodic (middle panel), oscillatory activity
systematically inhibits the quality of perceived sensory information the further
the onset of information is from the oscillatory peak. This activity is compu-
tationally more efficient than the continuous processing mode and produces the
same transduction results as long as the sensory information remains periodic.
This model better accounts for the behavioural results in the literature and is
compatible with DAT; not only will targets that do not temporally align with a
periodic pulse remain harder to detect than targets that do align during sensory
entrainment, but periodic stimuli will not necessarily be classified more accurately
than aperiodic stimuli.

As demonstrated in experiment 1 and for a subset of participants in experiment
4, there are instances in which periodic stimuli lead to more accurate decision
making. I suggest that this is the result of "dynamic boosting" as illustrated in
the bottom panel of figure 9.1A. Dynamic boosting is a context specific effect that
occurs when the conditions of the decision require attentional enhancement. Its
function is to ensure that the quality of sensory information is enhanced when that
information aligns with peaks of an entrained oscillatory response but is inhibited
when it does not. Dynamic boosting is thus a more computationally expensive
procedure than the more general and low-level process of dynamic inhibition and
is most likely controlled via a combination of factors.

Figure 9.1B shows an example of what the control mechanism for dynamic
boosting might look like. I suggest that during complex decision making at least
four filters are used to determine the degree to which attentional enhancement
is required for the task (two are illustrated in the top panel of figure 9.1B). The
first two filters modify attentional enhancement depending on the degree of prior
knowledge and expertise one has about the task (blue curve). The second two
filters modify attentional enhancement depending on the difficulty and importance
of the task (black curve). The resulting value for attentional enhancement from
this stage is most likely a weighted average of all four. The second stage (middle
panel) indicates that the rate of the periodic stimulus may have an influencing
effect on attentional enhancement, whereby IOIs in the range of 500 ±100 ms
promote dynamic boosting. The evidence for this come from experiment 4, in
which the slower periodic rate increased the likelihood that participants were
more accurate on periodic trials. As with the previous filters, the degree to
which the input signal is affected by this filter will most likely be participant-
specific, perhaps dependent on preferred beat and tapping rates. Finally, because
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dynamic inhibition is a computationally more efficient mechanism, only control
signals that indicate high attentional enhancement will trigger dynamic boosting
(bottom panel).

Dynamic inhibition and boosting are testable hypotheses that together make
the following predictions: 1. Sensory information that falls out-of-time with an
entrained periodic pulse will be harder to detect and respond to compared with in-
formation that aligns with the pulse. 2. Under situations that do not require high
attentional enhancement, periodic and aperiodic stimuli will be classed equally
accurately. 3. The effect of periodicity on task accuracy during complex decision
making can be increased by increasing task difficulty, task importance and by us-
ing slower periodic rates within the estimated IOI range of 500 ±100 ms. Features
of this theory needing investigation most urgently are the specific characteristics
of the attentional enhancement filters, the specific range of IOIs that affect dy-
namic boosting and the generalisability of the theory across a range of decision
types, rates and contexts.

9.2.2 Message passing using temporal probability matching

The most consistent finding throughout this thesis is that decision latencies vary
proportionally with IOI variance in a stimulus sequence in a way that does not
affect decision accuracy. The larger the IOI variance in a stimulus sequence,
the longer the RTs. The fact that this finding was observed in experiment 5
suggests that it is a general characteristic of perception-action tasks and is not
specific to complex decision making. It should therefore be modelled as a separate
component of the response process.

A possible explanation for why RTs were affected by IOI variance in the stim-
ulus sequence is that responses were regulated by message passing functions using
a form of probability matching. This seems plausible because the bias was specific
to a statistical quality in the sensory signal (IOI variance) and did not seem to
be influenced by the signals content or prior knowledge. To explain, imagine the
challenge that an adaptive network of neurons face when trying to transmit a sig-
nal as quickly and efficiently as possible: if individual neurons fire too early or too
late and there will be a delay in transmission, if they fire on time the information
will propagate quickly. Perhaps the reason why RTs were consistently sensitive to
IOI variance, even when participants had prior knowledge about the timing of the
stimulus (experiment 2), is that IOI variance is a measure of randomness. As IOI
variation decreases, the accuracy of neural prediction increases, systematically
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reducing the mismatch between the predictions and input and proportionally in-
creasing the speed of transmission. This could also explain why effects of IOI
variance were not immediate and required prolonged exposure to the rhythmic
signal: without sufficient evidence it is impossible to determine whether a signal
is random or structured. Whilst the idea of temporal probability matching has
strong connections with the topics of reinforcement learning, adaptive resonance
theory and predictive coding (Sutton and Barto, 1998; Grossberg, 2000; Sum-
merfield and de Lange, 2014), it is hard to test and thus remains speculative in
nature. This is emphasised by the fact that it could occur at any point within the
cognitive circuit that transmits the sensory signal, such as during pre-processing,
evaluation or memorisation.

9.2.3 Confidence and risk

Experiment 6 demonstrates that stimulus periodicity increases the efficiency of
complex averaging decisions by reducing the amount of time and information
needed to respond. Temporal probability matching can account for the reduced
RTs, but it cannot account for why participants needed less decision information
on periodic trials, nor why periodicity affected the boundary separation and not
the drift rate of the HDDM. In chapter 7 (section 7.4) I proposed the explanation
that stimulus aperiodicity influenced participants’ confidence and made them un-
necessarily conservative in their deliberation time. A different way to frame this
proposal is that aperiodicity influenced perceived risk during the decision process.
The more aperiodic the sequence became, the more risk participants associated
with responding early. What is interesting about this observation is that the
change towards a more delayed decision did not afford the obvious benefit of
increasing decision accuracy, which implies that aperiodicity made participants
more cautious, but unnecessarily so i.e. without any obvious benefit of the cau-
tion. This implies that were participants to have forced themselves to respond as
quickly on aperiodic trials as they did on periodic trials, there would have likely
been no difference in the outcome of the decision.

The connection of temporal expectations with confidence and risk is novel
yet can be contextualised somewhat from the perspective of the explore / exploit
dilemma (Stephens and Krebs, 1986; Cohen et al., 2007; Wittmann et al., 2016).
The explore / exploit dilemma describes the trade-off that foraging animals face
between exploiting current knowledge about their environment or exploring new
untested areas in the hope that they may contain a better source of food. A
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common strategy when confronted with this dilemma is to exploit when the en-
vironment is stable, going directly to places where good food is known to be, and
explore when the environment is volatile, because volatility increases the likeli-
hood that knowledge about the environment is out-of-date. Sequence aperiodicity
may have had a similar effect, with aperiodicity representing volatility. Whilst
this logic describes the behaviours observed in experiment 6, it does not neces-
sarily mean that periodicity will always result in exploitation. As discussed by
Yu and Dayan (2005) and recently by Geana et al. (2016), if the task becomes
overly predictable, such as during periods of prolonged periodicity, participants
are likely to revert to exploration to avoid boredom. In terms of task performance
this will lead to increased errors due to reduced attention to the task.

The effects of temporal expectations on confidence and risk have untested im-
plications for a range of interactive activities that involve fast adaptive decision
making based on rhythmically structured information. For example, a fighter
jet pilot should be quicker to decide whether an approaching dot on a radar
screen represents a friend or foe if the dot flashes periodically versus aperiod-
ically and may weight possible preparatory responses differently depending on
the (a)periodicity of this information. During group musical improvisation, mu-
sicians may assign more value to exploring untested and risky ideas when the
structure of the interaction is temporally predictable (i.e. when co-performers
play in a prolonged predictable manner), whereas they should weight safe and
well-practiced ideas more positively when the structure of the interaction is tem-
porally unpredictable (i.e. when mistakes are made or co-performers play out
of time). Financial traders interacting in the financial markets may be faster
to predict short term market movements if the structure of the on-screen order
flow is periodic. They may also be more likely to take additional risk when the
structure of market orders is temporally predictable over a long period of time,
but less likely to take risks during short bursts of temporal uncertainty. This last
point could partially explain why it is common for market participants to report
boredom as the reason for engaging in excessive trading (Willman et al., 2006).
Finally, similar predictions could be made for gambling situations, with obvious
implications for both the auditory and visual stimuli used in fruit machines and
the like, and the regularity with which, for example, a croupier deals out cards
and the like, and perhaps even how they speak.
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9.3 Applications and future work

The experiments reported in this thesis have relevance for both theoretical re-
search and technology. Firstly, the investigation highlighted the fact that not
all popular theories in the timing literature, such as the ability of periodicity to
enhance perception and action, generalise directly to complex decision making.
This observation should encourage psychophysicists, for example, to develop new
theories and paradigms for testing the effects of temporal expectations in situ-
ations that are more akin to everyday decision making. The new experimental
framework described in chapter 3 outlines one approach, but significant progress
will only be likely to be made when the topic is investigated using a wide range
of varied and independent methods. One application of this thesis is to provide
researchers with an example of how this can be done.

A second application relates to information prioritisation and the field of
human-machine interface design. In addition to formatting and spatial layout,
stimulus timing can be used to either increase or decrease the likelihood that key
information is detected, memorised and responded to quickly when users interact
with an interface. For example, during tasks where the importance of certain
events and information streams are known, goal relevant information could be
presented via an interface in time with a medium to slow periodic pulse and goal
irrelevant information slightly out of time with a fast periodic pulse. As the im-
portance of information streams change, based on the demands of the task or
changing goals, so to can the timed delivery of information. This example of
dynamic interface design would be particularly useful for high stress scenarios in
which users make fast decisions whilst dealing with multiple sources of dynami-
cally changing information.

Lastly, if future experimentation validates the idea that temporal expectations
interact with confidence and risk, bias warning systems can be designed to help
people make less biased decisions. Again, a good application for this could be
within the financial services industry with the aim of helping traders make better
decisions whilst monitoring price change and order flow on computer screens.
Whereas the rate of orders can inform about changes in supply and demand, the
rhythmic structure of the order flow is random and should be ignored. A warning
system could be designed that monitors the variance in the order flow and signals
to users when the temporal structure of the market is likely to negatively influence
their willingness to expose themselves to risk.
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There are three avenues that seem worth investigating in order to support the
development of the above applications:

1. Develop a formal computational model of dynamic inhibition and boosting:
Whilst the theory outlined in section 9.2.1 provides testable predictions, the
next step is to build a mathematical model that can be used to predict trial-
by-trial responses. This will require further investigation into the weighting
functions that underlie dynamic boosting as well as the formal integration
of the theory with the models that define DAT.

2. Investigate whether the rhythmic presentation of time series data on a com-
puter screen biases valuation and directional judgements: The rhythmic
presentation of numerical time series data offers a novel and ecologically
valid way of investigating the effects of temporal expectations on subjective
value, confidence and risk. A simple experiment, that has parallels with
the financial markets, is for participants to watch a dynamic stream of nu-
merical data (representing prices) whilst predicting whether the price series
will increase or decrease in value at a future point in time. By systemati-
cally manipulating the timed presentation of this information, it should be
possible to determine how rhythmic temporal expectations affect positive
and negative directional judgements. Variants of this experimental design
can be used to investigate the effects of stimulus timing on risk by having
participants place monetary bets on their directional predictions.

3. Investigate the effects of temporal expectation on cross-modal decision mak-
ing: Although experiments 1 - 6 investigated auditory decision making, their
congruence with many other results in the literature lead me to expect that
the present findings are unlikely to be exclusive to auditory processing. For
this reason, further work should test whether the findings replicate during
complex decisions that rely on visual and tactile information, as well as
combinations of different sensory streams.

9.4 Closing remarks

Throughout this thesis I have attempted to bring the temporal expectation and
decision making literatures together to investigate the effects of temporal ex-
pectation on complex decision making. This involved arguing against common
experimental approaches and designing hybrid solutions that better account for
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a range of interactive decisions. The results demonstrated that existing theories
of temporal expectation do not necessarily generalise to complex decision mak-
ing and that the effects of timing on choice interact with a number of factors
associated with prior knowledge, stimulus rate, variance, decision type and task
complexity. This does not mean that existing theories, such as DAT, are necessar-
ily wrong, but simply that they lack detail—specifically, they are too narrow—to
fully account for the role of timing in complex choice.

As we strive towards developing a unified theory of how our interaction with
the environment affects choice it is crucial that timing is not artificially separated
from the activities and judgements that comprise the initial source of interest in
the topic. This will require developing an application led research agenda and de-
signing new experimental scenarios that more closely reflect real life, and in doing
so they should replicate and probe a wide variety of contextualised goal-relevant
behaviours. This type of research programme should not only advance scientific
knowledge about how the brain operates, leading to more complete computational
and biologically plausible models, but also produce a range of applications that
can be used to help humans as they attempt to successfully navigate and interact
with the world. Whilst timing, expectation and decisions are all fundamental as-
pects of cognition, it is their interdependence, and the questions that this brings,
that makes the idea of future research in this area so appealing.
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Appendix A

Experiments 1 and 2

Fig. A.1 Expt. 1. Periodic trials: mean logistic regression coefficients indexing the
8 decision-weights for each position in the noise burst sequence for each participant.
Panels: individual participants. Grey dots: All group averaged coefficients.
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Fig. A.2 Expt. 1. Aperiodic trials: same structure as in figure A.1.
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Fig. A.3 Expt. 2. Periodic trials: mean logistic regression coefficients indexing the
8 decision-weights for each position in the noise burst sequence for each participant.
Panels: individual participants. Grey dots: All group averaged coefficients.
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Fig. A.4 Expt. 2. Aperiodic trials: same structure as in figure A.3.



Appendix B

Experiment 6

Fig. B.1 Expt. 6. Mean proportion of errors at each of the seven ILD distribution
locations relative to mid-point for periodic and aperiodic stimuli. Panels: individual
participants. Error bars: standard error of the mean.
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Fig. B.2 Expt. 6. Response time data at each of the seven ILD distribution locations
relative to mid-point for periodic and aperiodic stimuli. Panels: individual participants.
Error bars: standard error of the mean.
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Fig. B.3 Expt. 6. Fitted psychometric curves for each participant showing proportion of
Right responses relative to the mean of the underlying ILD distribution. k refers to each
participant’s decision threshold value that was estimated during the calibration session.
Grey solid curves: periodic stimuli. Red dashed curves: aperiodic stimuli.
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Fig. B.4 Expt. 6. The deviance information criterion (DIC) value differences between
12 additional variants of the drift-diffusion model compared with the base Model 17. The
horizontal dashed line represents a significance cut-off point for difference in DIC value.
Filled squares indicate that the particular parameter (labelled at the right) varied by the
corresponding experimental condition (labelled at the left). Empty squares indicate that
the parameter value was constant in the corresponding experimental condition. Green
squares indicate the best fitting model (Model 17, DIC = 22066.22).
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P ID Threshold Slope
Threshold
Std Error

Slope
Std Error

Model
Deviance

GoF
p-value Periodicity

1 0.1951 0.876 0.1303 0.1192 7.8114 0.07 Periodic
1 -0.2465 0.9233 0.1194 0.1242 8.2592 0.0975 Aperiodic
2 0.5181 0.415 0.2538 0.0592 1.8527 0.8675 Periodic
2 0.7249 0.4997 0.218 0.068 2.4134 0.75 Aperiodic
3 0.7752 0.5748 0.198 0.0788 5.6921 0.28 Periodic
3 0.8692 0.6157 0.1664 0.0857 9.2078 0.0825 Aperiodic
4 -0.1875 0.7515 0.1721 0.112 0.5646 0.95 Periodic
4 -0.2896 0.7158 0.1472 0.0942 6.9509 0.145 Aperiodic
5 -0.3049 1.0474 0.1194 0.1396 3.8509 0.26 Periodic
5 -0.277 0.839 0.1369 0.1135 5.6027 0.2025 Aperiodic
6 0.0992 1.1115 0.1176 0.1684 2.3456 0.5525 Periodic
6 0.0995 1.0348 0.1198 0.1398 0.5684 0.94 Aperiodic
7 -0.2531 0.765 0.1738 0.1286 5.1887 0.2175 Periodic
7 -0.4278 0.7423 0.1687 0.1277 1.2279 0.8525 Aperiodic
8 0.0799 0.429 0.2524 0.0607 4.2368 0.5375 Periodic
8 -0.2812 0.4203 0.2487 0.0588 2.5164 0.7525 Aperiodic
9 0.0975 0.8269 0.128 0.0966 2.295 0.585 Periodic
9 0.0952 0.6703 0.1608 0.0803 4.5753 0.3275 Aperiodic
10 -0.3623 1.0175 0.1147 0.1493 7.2974 0.0625 Periodic
10 -0.717 0.9797 0.1202 0.1458 2.867 0.4575 Aperiodic
11 -0.9261 0.603 0.1763 0.0764 3.2968 0.63 Periodic
11 -0.9921 0.5152 0.1919 0.0627 3.5543 0.5825 Aperiodic
12 -0.3155 0.4734 0.23 0.0618 3.8757 0.5575 Periodic
12 0.0724 0.5467 0.1863 0.0867 9.2957 0.075 Aperiodic
13 -1.0388 0.6184 0.1571 0.0777 1.753 0.8325 Periodic
13 -0.9532 0.7319 0.1636 0.0959 3.0094 0.62 Aperiodic
14 -0.4218 0.6584 0.1862 0.0979 2.7821 0.635 Periodic
14 -0.3834 0.6421 0.153 0.0808 3.6085 0.53 Aperiodic
15 0.5827 0.3757 0.3109 0.0497 3.235 0.6825 Periodic
15 0.5774 0.4421 0.2799 0.0618 3.0155 0.69 Aperiodic
16 -0.4403 0.6025 0.1635 0.0715 3.7424 0.555 Periodic
16 -0.17 0.625 0.1626 0.073 5.1422 0.2825 Aperiodic
17 -0.1742 0.4434 0.2291 0.0636 2.7489 0.715 Periodic
17 -0.4169 0.3968 0.2813 0.0635 1.9815 0.775 Aperiodic
18 -0.2211 0.6358 0.155 0.075 4.9003 0.3575 Periodic
18 -0.4962 0.758 0.1462 0.102 7.9217 0.07 Aperiodic
19 -0.2505 0.622 0.1744 0.0933 4.2751 0.3525 Periodic
19 -0.4005 0.5356 0.2152 0.0711 3.8251 0.485 Aperiodic
20 0.6848 0.652 0.1741 0.0922 0.9672 0.895 Periodic
20 0.7003 0.5331 0.1943 0.07 2.2738 0.7625 Aperiodic

Table B.1 Expt. 6. Fitted thresholds and slopes values, estimated standard errors,
deviance and goodness of fit parameters for fitted psychometric functions associated
with each participant and periodicity condition.
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Periodicity Difficulty Direction PE
Expt

PE
M 17

RT
Expt

RT
M 17

Aperiodic High Left 0.309 0.260 2.584 2.515
Aperiodic High Right 0.239 0.226 2.558 2.414
Aperiodic Medium Left 0.143 0.110 2.247 2.166
Aperiodic Medium Right 0.132 0.106 2.218 2.095
Periodic High Left 0.264 0.267 2.435 2.385
Periodic High Right 0.248 0.235 2.354 2.300
Periodic Medium Left 0.141 0.117 2.117 2.059
Periodic Medium Right 0.111 0.114 2.114 2.017

Table B.2 Expt. 6. Simulated mean posterior predictions using the best fitting Model
17 (M 17) compared with experimental data (Expt) for both proportion of errors (PE)
and response times (RT) across the periodicity, difficulty and direction conditions.



Appendix C

Experiment 7

Expt. 7. Hierarchical logistic regression analysis

The starting model contained fixed effects of Difference score [-2, -1, 0, 1, 2], Pe-
riodicity [Periodic, Aperiodic] and Location [Left, Right]. Four control covariates
were also included to account for trial-by-trial carry over effects. The first two
covariates, entitled "Recency of item 1" and "Recency of item 2", recorded how
many trials earlier in the experiment the corresponding musical item of the pair
was last used. The second two covariates, "Repeat of item 1" and "Repeat of item
2", recorded how many times the corresponding musical item had featured in a
previous stimulus pair earlier in the experiment. These factors helped to satisfy
the independence assumption of the linear model and to reduce the residual error
of the model fit (Baayen and Milin, 2015).

Four variants of the starting model with different random effects were com-
pared using a LRT to determine the best fitting random effects. Model 1 contained
random intercepts for Participant ID. Model 2 contained random intercepts for
both Participant ID and Experimental Block. Model 3 contained random slopes
by the Difference score and random intercepts for Participant ID. Model 4 con-
tained random slopes by the Difference score and random intercepts for both
Participant ID and Experimental Block. Due to the relatively small number of
trials, more complicated design matrices were excluded from the comparison due
to lack of model convergence. The test showed that Model 3 (L.R: X2 = 65.77, df
= 1, p = < 0.001, BIC = 4010, AIC = 3913) had the best fit and lowest AIC and
BIC estimations compared with the other models (Models 1,2 4: BIC = [4058,
4067, 4018], AIC = [3975, 3977, 3915]).

The backwards stepwise selection procedure was then performed on all fixed
effects and interactions of Model 3. Single term deletions (achieved using the



227

dropterm function in the "MASS" package in R (Venables and Ripley, 2002))
showed that neither the three-way interaction between Difference score, Period-
icity and Location factors, nor the covariate Recency of item 1 were significant
predictors in the model. Both were removed to create Model 3.1 which decreased
model complexity and increased model fit (change in BIC = -12.9, change in
AIC = -1). The selection process was repeated using Model 3.1 which showed
that none of the two-way interactions between the Difference score, Periodicity
and Location factors, nor the Recency of item 2, were significant. These were
removed to create Model 3.2 which again increased model fit (change in BIC =
-28.8, change in AIC = -3.1). Finally, factors Periodicity and Location were re-
moved from Model 3.2 to create Model 3.3. This reduced model complexity and
increased fit (change in BIC = -16.1, change in AIC = -3.2). All remaining factors
significantly contributed to Model 3.3. The best fitting model therefore contained
fixed effects of Difference score, Repeat of item 1 and Repeat of item 2, with a
random slope for Difference score and a random intercept for Participant ID.

Expt. 7. Linear mixed-effects regression analysis

The starting model contained the same fixed effects and interactions as described
in appendix C "Expt. 7. Hierarchical logistic regression analysis" with the addi-
tion of Trial ID to capture the autocorrelation of RTs between trials. Next, the
same four combinations of random effects described in appendix C "Expt. 7. Hi-
erarchical logistic regression analysis" were compared using a LRT. This showed
that the second model (L.R: X2 = 31.05, df = 1, p < 0.001, BIC = 5102, AIC =
4922) with a random intercept for both Participant ID and Experimental Block
had the best fit and lowest AIC and BIC estimations compared with the other
model variants (Models 1, 3, 4: BIC = [5125, 5171, 5147], AIC = [4951, 4928,
4977]). A backwards stepwise selection procedure was then performed on all fixed
effects and interactions of Model 2. Firstly, the three-way interaction between the
Difference score, Periodicity and Location factors, as well as all control covariates
apart from Trial ID were classified as non-significant. They were removed from the
model to create Model 2.1 which decreased model complexity and increased model
fit (change in BIC = -61.5; change in AIC = -10.1). The selection process was
repeated using Model 2.1 which showed that none of the two-way interactions
between the Difference score, Periodicity and Location factors were significant.
All three were removed to create a better fitting Model 2.2 (change in BIC =
-72.7; change in AIC = -14.8). Finally, the Periodicity factor was removed from
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Model 2.2 to create Model 2.3. This reduced model complexity and increased fit
(change in BIC = -8.2, change in AIC = -1.8). The remaining fixed effect factors
of Difference score, Location and Trial ID significantly contributed to Model 2.3.

Fig. C.1 Expt. 7. Probability of participants selecting the first musical item by the
absolute difference score and periodicity conditions. Panels: individual participants.
Error bars: standard error of the mean.
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Fig. C.2 Expt. 7. Response times by the difference score and periodicity conditions.
Panels: individual participants. Error bars: standard error of the mean.
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Fig. C.3 Expt. 7. Participant-specific psychometric curves showing the probability of
selecting the first musical item by periodicity condition. Grey solid curves: periodic
stimuli. Red dashed curves: aperiodic stimuli.
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Musical tracks

Stevie Wonder: Superstitious Miles Davis: All blues
The Beach Boys: God only knows Jacqueline Du Pré: Elgar cello concerto
John Williams: Jurassic Park main theme John Lennon: Imagine
Beastie Boys: Intergalactic Out Kast: Hey Ya
Whitney Houston: I will always love you Led Zeppelin: Stairway to heaven
Paul McCartney: Hey Jude Glen Gould: The Goldberg variations
Donna Summer: I feel love Simon and Garfunkel: Bridge over troubled water
Jackson 5: ABC Amy Winehouse: Rehab
U2: Beautiful day Coldplay: Viva La Vida
Duke Ellington: Take the A train Louis Armstrong: What a wonderful world
Beyonce: Put a ring on it Lang Lang: Chopin
Christina Aguilera: Beautiful Bob Dylan: Mr. Tambourine man
Guns n roses: Sweet child of mine Will Smith: Getting jiggy wit it
Dave Brubeck: Take 5 Jimi Hendrix: Purple Haze
Nigel Kennedy: Beethoven violin concerto Madonna: Like a virgin
ABBA: Dancing queen Eagles: Hotel California
Queen: Bohemian Rhapsody Michael Jackson: Thriller
Brad Mehldau Trio: Day is done Nirvana: Smells like teen spirit
Jeff Buckley: Hallelujah Aretha Franklin: Respect
Bob Marley: No woman no cry The Police: Every breath you take
Keith Jarrett: Someone to watch over me Britney Spears: Baby one more time
Debussy: Clair de lune Red Hot Chili Peppers: Californication
Marvin Gaye: I heard it through the grapevine Brian Adams: Everything I do
John Coltrane: Giant steps Elvis Presley: Hound dog
Elgar: Nimrod Ray Charles: Hit the road Jack
Jodi Mitchell: Both sides now Run DMC: Walk this way
Katie Perry: I kissed a girl Trinity choir: Hark the herald angels sing
Rolling Stones: Satisfaction

Table C.1 Expt. 7. A list of the 55 culturally familiar musical tracks that were used to
create the experimental stimuli.
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