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Abstract

In an age where computers challenge the smartest human beings in cognitive tasks, the
conspicuous discrepancy between robot and animal locomotion appears paradoxical. While
animals can move around autonomously in complex environments, today’s robots struggle
to independently operate in such surroundings. There are many reasons for robots’ inferior
performance, but arguably the most important one is our missing understanding of complexity.

This thesis introduces the notion of discrete actuation for the study of locomotion in
robots and animals. The actuation of a system with discrete actuation is restricted to be
applied at a finite number of instants in time and is impulsive. We find that, despite their
simplicity, such systems can predict various experimental observations and inspire novel
technologies for robot design and control. We further find that, through the study of discrete
actuation, causal relationships between actuation and resulting behaviour are revealed and
become quantifiable, which relates the findings presented in this thesis to the broader concepts
of complexity, self-organisation, and self-stability.

We present four case studies in Chapters 3-6 which demonstrate how the concept of
discrete actuation can be employed to understand the physics of locomotion and to facilitate
novel robot technologies. We first introduce the impulsive eccentric wheel model which is
a discretely actuated system for the study of hopping locomotion. We find that the model
predicts robot hopping trajectories and animal related hopping characteristics by reducing the
dynamics of hopping–usually described by hybrid differential equations–to analytic maps.
The reduction of complexity of the model equations reveals the underlying physics of the
locomotion process, and we identify the importance of robot shape and mass distribution
for the locomotion performance. As a concrete application of the model, we compare the
energetics of hopping and rolling locomotion in environments with obstacles and find when
it is better to hop than to roll, based on the fundamental physical principles we discover in
the model analysis. The theoretical insights of this modelling approach enable new actuation
techniques and design for robots which we display in Robbit; a robot that uses strictly convex
foot shapes and rotational impulses to induce hopping locomotion. We show that such
systems outperform hopping with non-strictly convex shapes in terms of energy effective
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and robust locomotion. A system with discrete actuation motivates the exploitation of shape
and the environment to improve locomotion dynamics, which reveals advantageous effect
of inelastic impacts between the robot foot and the environment. We support this idea with
experimental results from the robot CaneBot which can change its foot shape to induce timed
impacts with the environment. Even though inelastic impacts are commonly considered
detrimental for locomotion dynamics, we show that their appropriate control improves the
locomotion speed considerably.

The findings presented in this thesis show that discrete actuation for locomotion inspires
novel ways to appreciate locomotion dynamics and facilitates unique control and design
technologies for robots. Furthermore, discrete actuation emphasises the definition of causality
in complex systems which we believe will bring robots closer to the locomotion behaviour of
animals, enabling more agile and energy effective robots.
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Chapter 1

Introduction

Robots’ great potential in supporting humanity and human endeavours promises to enhance
numerous aspects of our lives. Exploratory ventures, search and rescue missions, and
the support of the elderly are only a few examples where robots can have a significant
economical and cultural impact. However, the success of robots in these areas stands or
falls by their capacity to cope with a complex and uncertain environment. Today’s industrial
robots function in well-defined and simplified domains, but struggle to operate in difficult
surroundings such as disaster areas. Machines that can purposefully operate in these areas
are urgently needed, as the 2011 Fukushima incident showed: a tsunami-caused energy
accident unleashed considerable amounts of radioactive material. While repair work during
the incident posed a lethal task for humans, autonomous robots could have been employed to
repair the critical damage. Initiatives like the DARPA robotics challenge1 were launched to
stimulate the development of such systems which can solve "complex tasks in dangerous,
degraded, human-engineered environments". Even though there have been substantial
advances in the autonomy of robots since the Fukushima incident, robots operating in the
highly challenging and uncertain environment are still not living up to their potential.

The poor performance of robots in natural surroundings is surprising, especially in an age
where artificial intelligence is surpassing humans in cognitive tasks. For instance, the recent
achievements of the company DeepMind in the game of Go have shown that a computer can
outperform the best human player in a game where high intelligence and intuition is required.
Bizarrely, it also emphasises the shortcomings of today’s artificial intelligence: even though
the algorithm based on deep neural networks and reinforcement learning AlphaGo learned
to beat the human world champion [1], it is to this day impossible to build a machine that
can reliably pick up the game stones and place them precisely on the board - a task a two
year old kid could do. This is not to say that it is impossible to build a robot arm which

1https://www.darpa.mil/program/darpa-robotics-challenge
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can recognise a stone, pick it up, and place it on the targeted place on the board, but that
any uncertainty in any of these tasks may lead to a situation that terminates the operation
and human involvement is needed. For instance, the stone may slip out of the robot’s grip
and roll under the table. There is currently no robot which can account for and deal with
such unexpected events. This observation relates to Moravec’s paradox [2], which states that
computation for abstract reasoning is much lower than for sensorimotor interaction with the
environment, even though we think of the first as being much more involved than the latter.

In other words, the abstract thought and reasoning of a sequence of actions may be
simpler than executing the action. While the sequence of actions involves logic and a finite
number of events in an abstracted environment, the action itself is an operation taking place
in continuous space, continuous time, in an uncertain environment consisting of a myriad
of influencing factors. Such a setting where many parts are interacting with each other and
form a global behaviour is subject to complexity. Complexity in a dynamical system is often
characterised by nonlinearities, non-smoothness of the behaviour, and high dimensionality.
Even though we are well aware of the optimal control of robots that are governed by linear
dynamical systems–an abstraction of reality avoiding nonlinearities and non-smoothness–the
same tools have only limited success when applied to robots operating in real environments.
A robot operating in the real world needs to learn the rules of complexity before being able
to purposefully act in it.

Animals living and operating on our planet need to have learned these rules and it is
possible that the tools of nature to deal with complexity can be reverse-engineered. Indeed,
scientists have recognised that the brain is the likely source of cognition and abstract thought,
which inspired engineers to design systems equipped with a central computing unit that
controls and coordinates entire systems. However, the identification of the central nervous
system as the sole source of computation and coordination is only a hypothesis and need not
be correct. There exist views of autonomy and intelligence that emphasises the role of the
body for computation and coordination in animals, stating that motion control is decentralised
and distributed in the body and the brain. The design of a centralised processing unit for
computation and the one of decentralisation is reflected in the two philosophical views of
computationalism [3], which states that thinking is a form of computing, and embodiment
[4], which assumes that cognition can only be understood in the context of a physical body.

Instead of simplifying the nonlinearities in the robot, embodiment advises to exploit these
effects to achieve a desired behaviour. Although the concept appears abstract and hard to
quantify with our current tools, it deeply connects to engineering ideologies which use the
morphology of the body to simplify the control problem. As will be discussed later, the ideas
of global entrainment [5], morphological computation [6], synergetics [7], and self-stability
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[8] address the idea of embodiment and will be useful in developing new theories for design
and control of robots.

Embodiment is exemplified in animals and machines by locomotion – the ability to move
around in an environment. Without a body that interacts with its surroundings, locomotion is
impossible, which shows that locomotion is not solved by computation alone. The interaction
of the nervous system, the body, and the environment give rise to complexity, which, as
discussed previously, renders the use of standard engineering approaches problematic. Fur-
thermore, locomotion exploits nonlinearities and non-smoothness that arise in the dynamic
interaction with the environment, to the extent that the linearised dynamics of the system
cannot give rise to the phenomenon of locomotion. The necessity for locomotion to exploit
complexity makes it a hard problem to engineer, but at the same time provides a motivation
to study and develop novel tools for design and control of systems that can deal with the
complexity of reality.

The state of understanding complex systems is reached once we can unambiguously
define cause and effect of an observed property. However, in reality it is often hard to define
a cause, especially in a complex system where many properties need to hold for a particular
effect to occur. Take for example a running human. What is the cause that effects the running
behaviour? There is most likely no single satisfying answer to this question, as cause and
effect are not graspable on this level of inquiry. The behaviour arises due to an intricate
relationship between the morphology, actuation, control laws, and the environment. In the
next section, the concept of discrete actuation is introduced which addresses the problem of
defining a cause in locomotion.

1.1 Discrete Actuation

An actuator is a component of a robot which can exert forces to the bodies it is connected
to. The closest equivalent of a robotic actuator in biology is a muscle, which analogously
exerts forces on the ends it is connected to. In this thesis we will use the terms actuator
and actuation in a more general context by meaning a mechanism in a dynamical system
with which the system states can be influenced and which acts upon the instructions of a
control law. This of course includes robotic actuators and muscles, where the control law is
generated by the central processing unit and the brain, respectively. Actuators generally exert
finite forces on the system over a period of time, which causes a change in the velocity and
posture of the system. We would like to explore the subset of actuation which can change
velocity and posture in a time instant rather than over an extended time interval. We state the
following definition
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Definition 1.1.1. Discrete actuation. A discrete actuation in a dynamical system is an
actuation that can influence the system states only at a finite number of instants in time and
that is impulsive in these instants.

This implies that the actuation can induce events where velocity and posture states are
discontinuous. We will mostly consider discontinuous velocity changes due to discrete
actuation, but will come back to discontinuous posture changes in Chapter 6 where we
consider instantaneous foot shape changes in a robot. As an example of a discontinuous
velocity change, take for instance the dynamics of a bouncing ball on an actuated paddle: the
dynamics are governed by the equation of motion of the ball in the gravitational field, and
the ball is actuated through the collision with the moving paddle at which point its velocity is
reversed. The actuation in this system is discrete, as it is zero almost all the time and only
changing at the singular instance of the impulsive ball-plate collision. We are interested
in translating dynamical systems as observed in reality by a discretely actuated equivalent
model because the complexity of the discretised system can often be drastically reduced
while preserving many aspects of the original dynamics. Most importantly, the effect of an
actuation can be uniquely attributed to a cause in time, which is paramount to understand
complex dynamical systems. One of the first success stories of modelling through discrete
actuation is due to Holmes [9]. In his 1982 paper, Holmes shows the dynamical richness of
the bouncing ball on a vibrating plate, which is described by only one difference equation.
Depending on the system parameters, the behaviour of the bouncing ball can vary from a
stable period-1 behaviour all the way to chaotic motion. This example beautifully shows the
power of discrete actuation by capturing the complex dynamics of a real system by a single
difference equation which represents the richness of the infinite number of existing solutions.

The importance of impulsive events is also evident in the study of terrestrial locomotion,
where repetitive collisions of the legs with the ground occur. Theoretical locomotion models
underlying impulsive events are helpful tools in understanding fundamental principles of
animal and robot locomotion. For example, the study of the "simplest walking model" by
Kuo as presented in [10] describes walking with two rigid legs that are linked together at
the hip and actuated through impulsive events at the feet. Impulsive actuation is applied to
the hind foot exactly during the impact of the front foot during the step-to-step transition.
In the non-impulsive phases of the gait cycle the system is purely passive and following its
natural dynamics which is defined through its morphology and the surrounding environment.
Two observations can be made from the simplest walking model. First, that the morphology
of the walking system enables large portions of the gait to be uncontrolled to generate a
stable interaction with the environment, and second, that impulses are the source of energetic
changes. Using impulses to account for energetic changes might seem an unnecessary
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introduction of non-smoothness in the system, and Kuo contrasted this actuation method by
a spring-like hip torque actuation. Surprisingly, the investigation showed that the energetic
cost of walking is only minimised when impulsive actuation is used and the spring-like hip
torque actuation always generated a higher energetic cost.

It may be surprising that a disruption of the natural dynamics and an abrupt change of the
system states can be energetically advantageous over other control inputs. A computational
investigation of legged locomotion by Srinivasan and Ruina as presented in [11], however,
supports this observation: the authors stated the problem of finding a controller for locomotion
as an optimal control problem in a simple model, and asked which actuation, given a
telescopic actuator, will minimise the energetic cost of transport of the system. Remarkably,
the optimisation algorithm not only identified walking and running as energy minimising out
of an infinite number of possible actuations and gaits, but also that the actuation to achieve
these gaits is consistently converging to an impulse.

In this thesis we argue that the use of discrete actuation is the correct tool to model
terrestrial legged locomotion. Besides revealing causal relationships between the complex
interaction of morphology, control, and the environment, discrete actuation also appears to
be the energy-optimal solution. One may argue that the use of discrete actuation is prone to
produce non-smooth locomotion trajectories and jerky motions, but, surprisingly, we observe
in our models a natural tendency to minimise the discontinuity and push the system towards
a continuous output.

We argued earlier that the important aspect of understanding is a clear causality between
action and effect. Discrete actuation can induce a discontinuous change in velocity in the
system which qualitatively changes the behaviour. In the case of hopping locomotion, as
studied in this thesis, the discrete actuation is directly resulting in a transition from stance to
flight phase, two completely distinct dynamical states. The transition from flight to stance
phase emerges through a collision of the body with the environment - another discrete
event. As will become apparent in the subsequent chapters, the causality enables quantitative
definitions of energetics for locomotion and the study of stability and control laws.

Discrete actuation is related to other fields that study and model complex systems. Sim-
plest control inputs are converted through the complex system-environment interaction to
desired behaviour, showing properties of morphological computation in the sense that mor-
phology simplifies control. The function of the passive phase relies on the self-stability
properties of the system which allows for disturbance rejection and locally attractive be-
haviour. Discretised actuation also relates to central pattern generators, when the impulse
is generalised to an impulsive signal: a CPG is commonly excited by a constant signal
which defines the motion of the underlying neuromechanical system. In discrete actuation,
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such a behaviour is obtained when adding a dynamical element which integrates this signal
and releases it to induce repetitive impulsive events, which maintain periodic behaviour
without sensory feedback. Such an element could be an integrate-and-fire model - one of
the oldest models to describe the behaviour of a neuron. In this broad sense, the discrete
actuation system is interpreted as the effect of a central pattern generator. Discrete actuation
furthermore relies on self-organisation and touches the field of synergetics, as the discrete
inputs drive the system from an unordered state to an ordered one. As will be discussed in the
subsequent chapters and Appendix C, for certain cases, self-organisation occurs for particular
impulse properties that can be quantitatively defined. With these connections to complex
systems in mind, the next section will present how locomotion dynamics of a system can be
predicted using a model that uses the concept of discrete actuation.

1.1.1 The Process of Discretisation

The simplification of actuation input through discrete actuation necessarily outsources the
complexity of dynamics to the morphology of the system. As actuation can only be applied
at a finite number of instants in time, the mechanical (or neuromechanical) system needs to
guarantee for a stable behaviour in the passive phases. There are no general design guidelines
which allow for a systematic generation of morphology, but principles of self-stability come
in handy for this task. The importance of morphology for the design of models with discrete
actuation comes from the fact that it strongly influences the system-environment interactions.
Hence, The shape of the foot is a main determinant of the locomotion behaviour. In this
thesis, we will thus exclusively focus on the role of rigid foot shapes and their interaction
with the environment. Not only is the effect of rigid shapes on stability easy to grasp, but
they naturally fit in the framework of discrete actuation: interactions of rigid shapes can
be modelled through collision mechanics, whose main focus is the study of discrete events.
Collision mechanics also provides a simple way to dissipate energy which facilitates the
study of energy effectiveness of locomotion, often disregarded in simple models like the
basic spring-mass model [12].

The simplest walking model as presented by Kuo in [10] provides an example for
a walking system with discrete actuation. We would like to generalise the process of
discretisation of a locomotion system and we will do so by imposing model constraints as
required by discrete actuation. Since the actuation is only allowed at few instants in time, the
model’s passive behaviour is crucial for the overall dynamics. As stated above, we will focus
our attention on rigid shapes, which implies that the information of the required locomotion
trajectory has to be stored in the shape of the model and the rule of interaction with the
environment. Once the shape and environment interaction is defined, the control law needs
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Fig. 1.1 Discretised actuation. The discretisation of the locomotion system is accomplished
by finding a discrete actuation and a shape which can generate the original locomotion
dynamics. Actuation is discretised by integrating the effect of the force FFF(t) and replacing
it with an impulsive event with impulse ζζζ . The discretised shape ensures that the centre of
mass (CoM) to contact point vector σσσ is predefined for every system state qqq.
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to be stated. This can either be open-loop, in which case the impulsive actuation is applied as
a function of time, or closed-loop, where the impulsive actuation is applied as a function of
state.

To clarify the process of discretisation we will demonstrate it for the case of hopping
locomotion such as presented in Figure 1.1 for a kangaroo. The desired locomotion trajectory
consists of a flight phase and a stance phase. While the flight phase is ballistic due to the
passivity of our model, it is the stance phase that needs to be modelled carefully. We found
that a cycloid, i.e. the trajectory of an eccentric point on a wheel rolling over a flat surface,
mimics the trajectory of a hopping or running animal well depending on the radius of the
wheel and its eccentricity. The stance phase trajectory is thus encoded in the shape of the
body and the environment interaction rule, which are the eccentric wheel and rolling without
slip, respectively. If we apply an impulsive actuation at the system-environment interaction,
we find that a flight phase is induced which is followed by a ground collision and subsequent
stance phase. Depending on the control mode (open- or closed-loop) and system parameters,
the discretely actuated model will converge to a stable hopping behaviour. As will be
discussed in detail in Chapter 3, this model robustly predicts locomotion characteristics of
hopping robots and animals.

One important insight of our modelling approach is that hopping and running trajectories
can be encoded in the rolling of a rigid shape. This adds a new hopping model that comple-
ments the commonly used spring-mass model for hopping and running locomotion. In the
case of walking, rigid shapes have already been exploited in the passive dynamic walking
models [13], which use a rigid leg that pivots around its ground contact point to mimic the
walking stance phase.

Modelling is the standard tool to test causal relationships, and predictions to the original
system can be tested given the obtained insights. In locomotion, models are extensively
used and have been successfully employed to study animal motion and to develop design
and control tools for robots. In the next section, the locomotion modelling approaches and
insights are presented and put into context with the mentioned concepts. We focus mainly on
terrestrial legged locomotion and present the main body of modelling literature in that field.

1.2 Modelling Terrestrial Locomotion

Finding cause and effect in a complex system is not trivial. What is the cause that makes
animals energy effective in locomotion? What is the cause that makes them agile in natural
environments? Models simplify the system and target specific domains of the original
question to show causality. The most studied aspects of terrestrial locomotion are morphology,
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actuation, and control. Focus is commonly placed on one of the three aspects to reveal
causality, but a complete model requires to define all of them to a certain degree. For instance,
actuation can only be studied given a control law and the effect of the actuation is a function
of the morphology. Nevertheless, as the following three subsections will show, it is possible
to highlight one aspect over another by appropriate model choice and technique.

1.2.1 Morphology

Morphology is the study of shape and body properties in the context of functional behaviour.
In terrestrial locomotion, this includes mainly the form and shape of the structure which
interacts with the environment and its compliant property. We will start with the latter aspect
first, as one of the two important energy-saving mechanisms in legged animals is attributed
to the compliance of legs, or, more precisely, the stiffness and its property to enable elastic
energy storage. While one of the applications of stiffness in animals is to temporarily store
kinetic energy during stance phase [14], it is also used to save energy in the leg-swing phase
and in foot pads to prevent chatter [15]. It is observed that larger animals can be modelled
with stiffer leg properties than small ones [16], and that the stiffness increases with running
speed [17].

One of the most studied models in running and hopping locomotion for stiff leg mor-
phology is the spring-mass model [12], [18]. It consists of a point mass which is attached
to a massless spring that can interact with a rigid ground. The model was found to predict
traits of human hopping and running remarkably well. Stability of this system has been
studied in detail in the past [19], and it has also been used for walking to explain experimental
observations which were not matched with more simplistic models [20]. It has also been
used to model robot locomotion such as in [21].

Due to the success of the spring-mass system, many extensions have been developed to
study different aspects of leg morphology. In [22], a model with two telescopic legs with
springs is studied to explain observations in bipedal animals. A similar model was employed
to test if there exists a passive limit cycle for the telescopic leg system [23]. The effect of
segmented legs on stability of the spring-mass model is studied in [24], finding that stability
regions are significantly increased in the segmented case. Spring-based modelling has not
only facilitated the understanding of biological system, but also the development of hopping
robots [25], [26], [27]. The model has further been used to model hexapedal locomotion as
observed in insects [28]. Unconventional gaits like skipping are another topic which was
studied with an extension of the spring-mass model [29].

Hopping and running robots are often based on the spring-mass analogy. The one-legged
hopping robot by Raibert [30] can hop around in three dimensions, and the robot ATRIAS
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[31] was designed to mimic the spring-mass model, with the goal to improve also energy
economy of the system. The robot Kenken [32] mimics the behaviour of the hind limb of
a dog and the authors find that one-legged planar hopping was possible with this design.
A simpler design for human running with biarticular springs was used in [33]. The bow
leg hopping robot [34] uses a curved beam to pre-load a spring and releasing it at the right
time to induce hopping. Analogously, the authors in [35] employ a curved beam, but exploit
the resonance frequency of the resulting spring-mass system to induce locomotion. When
the right frequency is chosen, the authors find that the system can move in a hopping or
bounding gait. The principles of this type of locomotion were studied and generalised in a
rigid configuration in [36]. The system has further been extended and improved in terms of
actuation [37], payload carrying capabilities [38], and high energy effectiveness [39].

Another aspect of morphology is the structure and shape of the body in contact with the
environment. With the appropriate choice of body shape, an important phenomenon called
self-stability can be observed in mechanical systems. As stated in their paper "Intelligence
by mechanics" [8] the authors show how the mechanical design can self-stabilise locomotion,
meaning that a system exhibits attractive behaviour on a desired state without actively
sensing the disturbances. Ringrose shows in his paper [40] that a curved foot can contribute
to a hopping robot’s stability when designed with the appropriate radius for the system,
to the extent that no sensory feedback is required for stable hopping. This self-stabilising
effect was used in [41], where hopping in place is extended to forward hopping – still
without any sensory feedback. A quick divergence to the control of juggling shows that
indeed stabilisation can occur without the use of any sensors but just by the right choice of
morphology [42], [43]. We will see in the next chapter how the morphology, and in particular
the foot shape in combination with actuation, can improve several aspects of locomotion.

The principle of self-stability is deeply connected to the phenomenon called passive
dynamic walking, which describes how walking-like gaits are possible without any control or
actuator. The principle was introduced by McGeer and shows a system that can continuously
and independently walk down a shallow slope [13], given the right initial conditions and
morphology. Stability of these systems have been studied in detail, and can be reduced to
a model which is regarded as the "simplest walking model" [44]. There are many physical
robots which exploit properties of this model to exhibit walking, and there are theoretical
models which are specifically created for these physical models [45]. Models which account
for mass of the leg walk with a compass-like gait [46], [47]. Morphology and mass distri-
bution of passive dynamic walking has indeed been explored in detail. The work in [48],
[49] and [50] study the effect of kneed versus straight legged walkers and also contrast point
feet to curved feet. The influence of foot shape on the collision loss is thereby emphasised.
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As described in [49], a flat foot that exhibits heel and toe collisions is associated with less
energetic losses, as already predicted by [51]. The effect of mass distribution in the passive
dynamic walker on walking stability was studied in [52]. Passive dynamic walking has also
been investigated for quadrupedal systems in [53]. Morphology has a significant influence
on walking down a slope, but also on walking on non-inclined surfaces. In [54] and [55], the
authors study the effect on foot shape in walking on level-ground, and show that curved feet
provide energy saving mechanisms due to the reduced collision loss during the step-to-step
transition. More complex models of level-ground walking extend the system to include knees
and the trunk [56], or model the lateral motion [57].

Passive dynamic walking has not only been studied theoretically, but also in many
experiments, first through the investigations of McGeer [13]. Passive dynamic walking
robots initially had stiff legs such as in a toy walker that cannot stand still [58]. The shape of
the foot has soon been identified as a crucial component to walk in three dimension with stiff
legs, and this was exploited in the work of [59]. The authors in this paper also implemented
the first kneed passive dynamic walkers. So far, the walkers were relying on the gravitational
pull to walk down a shallow slope, but the extension to level-ground walking was soon
achieved through robots such as in [60].

The idea of using morphology to perform or simplify control tasks is in the spirit of
the philosophy of morphological computation [6], which states that the body is not just
a means to execute action, but that the burden of control is offloaded–at least partially–
to the morphology. The study of a soft silicone arm [61], for instance, showed how the
nonlinearities of the soft structure can be used as a computational resource storing short
term information. The use of smart morphology thus opens up new possibilities to simplify
actuation and control laws and can help to establish a clear causality between the complex
parts required for terrestrial locomotion.

1.2.2 Actuation

Wherever an actuator is placed in a robot, the possibility to exert forces and moments between
adjacent bodies is possible. Forces enter the equations of motion as second-order terms,
requiring integration to yield velocities and another integration to obtain positions. Causality
of a force is hard to grasp, as it only induces a quantitative effect when acting over a period
of time. Even a constant force can have complex effects in a dynamically system. One way
to promote causality is to use impulses instead of forces.

Mathematically, an impulse is defined as the integral of a force over time, i.e. ppp =
t1∫
t0

FFF(t)dt. It summarises the temporal effect of a force and defines a velocity change of a
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body with given inertial properties. This restores causality at least on the velocity level, as an
impulse applied at a point in time causes a well-defined velocity state, and the problem of
integrating a differential equation over time is transformed to the problem of solving a mere
algebraic equation. Forces which are well approximated with an impulse occur when the
foot strikes the ground during walking and running, and they account to a large extent for the
energetic costs of walking [62]. This impulse–being dissipative in its nature–is also called
impact. The role of impact for bipedal locomotion was found to be crucial to achieve stable
locomotion [63].

One of the simplest models to understand locomotion through an impulse-based model
was presented in [51]. The studied locomotion system is reduced to a point mass and a
massless leg, which showed that pseudo-elastic collisions are more energy effective than other
types of collisions, irrespective of the presence of elastic elements. Furthermore, multiple
collisions per stride length are also found to be more energy effective, which matches the
observation of sequenced collisions in galloping horses. The same model has been applied
to explain the differences in hopping of kangaroo rats and tammar wallabies, showing that
kangaroo rats have only 69-71% the mechanical cost of transport of the wallaby for equivalent
hopping velocities [64].

As introduced in Section 1.2.1, the passive dynamic walking model uses gravity as a
source of actuation, but walking normally occurs on flat terrain. Even though there exist
peculiar theoretical models which require no energy input to walk [65], this is never the
case in a real system, which makes actuation an important aspect of theoretical modelling
of locomotion on even ground. The energetic costs of level-ground walking are commonly
ascribed to collisions during step-to-step transitions [66], [67]. The inverted pendulum model
for walking thereby explains why the centre of mass position in human walking moves up
and down instead of staying at the same vertical position [68]. Impulse-based modelling has
not only been applied to describe passive impacts, but impulses have been used to model
actuation forces. In [10], the author shows that toe-off impulses at the step-to-step transition
can reduce the energetic cost of actuation as compared to a hip torque actuated system.
The impulsive actuation was also described in [69] and [70], where the latter predicts the
speed–step length relationship in human walking.

One of the most impressive walking robots based on impulsive actuation and that walks
on flat ground is presented in [71]. The toe acts as the actuator as it exerts toe-off impulses to
propel the robot forward. Not only did this robot remarkably demonstrate stable walking on
level-ground, but it also achieved a world record in endurance walking in 20062.

2http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011/
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Impulse-based modelling is not confined to legged locomotion, but has been used in many
other applications of biomechanics and engineering. For instance, in arboreal locomotion the
brachiation of gibbons has been studied using collision-based models [72], [73]. Another
example is juggling, which is characterised by repetitive collisions well modelled with
impulses. The underlying principles of juggling are indeed closely related to hopping, as has
been underscored in several publications [74], [75].

Robots that are designed to study the effect and benefit of impulsive actuation have shown
to be highly useful in tasks like jumping and overcoming rough terrain. Designed for forward
jumping, the robot Grillo can jump at 30 body lengths per second [76]. Similarly in [77], a
small jumping robot is designed that can hop over 27 times its own size. The time to recharge
the impulsive actuation unit is however too slow to continuously hop. The robot Salto [78]
was built on a similar design, but improved in its capability to recharge in a short period
of time. The authors show how this system can jump off the ground and redirect its legs
to bounce off a wall immediately after. The cited systems exploit impulsive actuation for
locomotion, but there exist systems which use impacts to alter their locomotion gaits. In
[79], a hopping robot was designed capable of changing its foot shape, thereby controlling
the impact behaviour of the robot. When the passive impacts were timed correctly, the
locomotion speed of the system increased.

1.2.3 Control Laws

Given a morphology and an actuator, how do we decide on the actuation timings to achieve
a desired behaviour of the overall system? Cause and effect become difficult to grasp and
mathematical tools are being employed to design control laws which guarantee stability. As
we will see, there are some genuine ideas which lead to an intuitive understanding of the
resulting behaviour.

The mainstream approach in control synthesis of underactuated robotic systems is to solve
an optimal control problem through computational methods. These models do not a priori
depend on human intuition as they offload the task of modelling to an optimisation algorithm.
The algorithm has the advantage of solving problems that are potentially high dimensional
and not directly comprehensible for the human mind. The only objective is to either match
experimental data, or minimises a defined quantity such as energy consumption. In a simple
point mass model with telescopic legs, Srinivasan and Ruina [11] describe how such a
computer optimisation with energy-optimality objective prefers walking at lower speeds and
running at higher speeds. The results were later derived analytically through the minimisation
of work [80]. The assumption that humans are using constrained optimisation to choose their
walking speed and frequency has been suggested in [81]. A real life implementation of a robot



14 Introduction

that is computationally optimising its locomotion capabilities is demonstrated by Tedrake
in [82]. He uses a policy gradient reinforcement learning algorithm on a mechanical biped
that is based on a passive dynamic walker. After one minute of learning, the robot is capable
of moving forward, and after 20 minutes, it converges to the desired walking trajectory.
Stochasticity has also been in the centre of attention of Byl and Tedrake’s investigations [83].
It hypothesises that stochasticity needs to be taken into account in order to design control
laws that perform well in real life situations. Walking modelled as a metastable process
changes the optimal control policy. Another study which includes uncertainty in the model
was presented in [84] where the authors use model predictive control for a compass-gait
system to overcome uneven terrain. The theory of hybrid zero dynamics as presented in [85]
uses a 5-link biped to show how zero dynamics can be used to synthesise an exponentially
stable walking controller for an underactuated system.

Even though optimal control approaches can robustly generate control laws which work,
the use of intuitive control laws still has an edge over optimal control approaches especially
in dynamic locomotion tasks. Take for instance the hopping controller by Raibert [86].
The control strategy was first applied to 3D hopping monopods, and separates the hopping
motion into three domains: height stabilisation, forward speed, and body attitude. Each
law summarises a simple cause-and-effect relationship and turns out to work remarkably
well on the actual system. The extension of the controller with the principle of virtual legs
[87] expands the control method to the class of multi-legged robots. Another intriguing
approach was proposed by [88]. The authors suggest to build a virtual frame made of springs
and dampers around the robot which supports and prevents it from falling over. If the
robot has actuation in some joints, a method is presented to map the forces induced by the
virtual mechanical components to joint torques. The actuators can then be controlled by the
calculated torques and the system will act as if the springs and dampers were actually there.
This method can deal with complex control problems, but requires precise state feedback
and actuation in order to map the virtual forces to the correct joint torques. One of the most
prominent techniques to stabilise bipedal locomotion was introduced by Vukobratovic in
the late 60’s [89]. By calculating and measuring the centre of pressure on the foot, dynamic
equilibrium conditions were derived, given the forces and moments that are acting on the
foot ankle. Another intuitively derived feedback control method for the compass gait biped
model is presented by Spong in [90]. Spong demonstrated that the potential energy could
be shaped by a feedback control law that renders the equations of motion rotation invariant.
This enabled the controlled compass gait biped to walk over different inclined surfaces.

The above examples emphasise that intuitive control laws work remarkably well for
complex dynamical tasks. However, they depend on the fact that the system’s state can be



1.2 Modelling Terrestrial Locomotion 15

measured and used to compute the actuator action. There exist control laws which do not rely
on state feedback and use open-loop control such as in [91], [92], where actuation is sent to
actuators by a predefined, clocked signal. These systems generally rely on self-stabilising
properties of the robot, where the clocked actuation merely injects energy to the system with
a predefined rate in time. Although simple conceptually, such robots can exhibit remarkable
feats such as the robot RHex [93] which impresses with its robust locomotion over rough
terrain. It uses six elastic curved beams that rotate in synchrony and with an open-loop control
law. The system exploits the self-stabilising properties of the spring-mass model, for which
evidence in this robot has been presented in [94]. Another study shows how quadrupedal
bounding can emerge through a simple sinusoidal open-loop locomotion controller in a
quadruped [95].

These examples hint towards the fact that complexity of the control law can be reduced by
designing an appropriate body. Based on this philosophy, Taga showed in his seminal paper
[5] how an appropriate neuromechanical design of the body can lead to stable locomotion
which can switch from walking to running and back by a simple change in control gain.
The term global entrainment thereby captures the idea of synchronisation of the interacting
nonlinear elements in the system, through which a meaningful behaviour emerges. Evidence
of such mechanisms in animals was suggested with so-called central pattern generators
(CPGs) [96], where locomotion emerges as an interaction of self-sustained neural oscillations
that are influenced through feedback loops from the environment and neighboring oscillators.
CPGs have been extensively used in robotics [97], notably the study of central pattern
generators in a salamander-like robot due to Ijspeert et al. [98] showed how walking and
swimming are induced through a mere change in oscillator gain factor. Oscillation in a
CPG is self-sufficient, meaning that it needs no external sensory input. On the other side of
the spectrum are models which have no internal clock or pattern generators, but which are
purley reflex based. In [99], the authors show how walking locomotion can emerge through
reflex-based control and the interaction of the mechanical system with the environment in a
human model.

Reflex-based control, CPGs, and self-stability share the property of self-organisation,
which states that order can arise through interaction of the system’s parts from an initially
disordered state. Haken [7] introduces the field of synergetics which studies the conditions
under which systems undergo self-organisation. The open-loop, CPG, and reflex based
control laws exploit this concept and the idea is related to discrete actuation which will be
introduced in Section 1.1.
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1.2.4 Other Modelling Aspects

The previous sections have introduced the bottom-up approach of modelling for terrestrial
locomotion, but causality can also be established on a general level using statistical tools.
This section aims as an extension of these and other modelling methods and will be revisited
in some of the chapters of this thesis.

One example is the use of empirical power laws which are often used in biology. In [100],
the authors describe the energetic cost of locomotion as a power law, depending on body
mass. This modelling technique has also been used in [101] to predict the locomotion speed
of dinosaurs, based on data of living animals, and [102] for the case of fast running insects.

Locomotion has been studied on a most fundamental basis in terms of the physical
conditions under which the system operates. If walking is assumed to be accurately described
with the inverted pendulum analogy, there is a limit at which the system can travel due to
the unilateral ground constraint. Assume the system moves at velocity v and the leg length
be r, then the acceleration due to the centripetal force of the inverted pendulum is v2/r. If
this value exceeds the gravitational acceleration g, i.e. v2/r > g, then the leg would lift off
the ground. Applying this method to a human adult in an inverted pendulum model, we find
that the maximal walking speed is around 3ms−1, roughly corresponding to the observed gait
transitions to running. This method of analysis has not only been employed for walking and
running [103], [104], but also for jumping [105].

Some models specialise only on aspects of the locomotion gait, such as in [106] and
[107] where the swing phase during walking is analysed. The authors argue that walking
requires energy to establish the initial conditions for stance phase, and the rest of the cycle is
purely "ballistic", i.e. only influenced by gravity.

1.3 Objectives

This thesis argues that, through the discretisation of actuation, the basic principles of dynamic
locomotion can be understood and explored. The argument is supported by the subsequent
thesis chapters where the discretised actuation is studied for the case of hopping locomotion.
Among other things, the benefit of this approach is brought forward for the prediction
of locomotion trajectories, the understanding of self-stabilising and energetic principles,
actuation, and control in real-world robots. The implications and benefits of the theory will
be analysed theoretically in a model, computationally in simulation, and physically in robot
implementations. The following three objectives state the specific targets to be achieved with
this work.
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O1 Mathematical formulation of locomotion with discretised actuation. To develop a
mathematical framework for discretised actuation. This thesis focuses predominantly
on hopping locomotion in animals and robots.

O2 Implications of discretised actuation. To study the implications of the results derived
from the mathematical model. Insights for energy effectiveness, stability, and control
of hopping locomotion are of primary interest.

O3 Robot implementation of discretised actuation. To approximate discretised mod-
elling in robots. This involves primarily to find real-world representations of impulses
and impulsive actuation, such that the theoretical concept of impulses can be used in
real systems.

Objective O1 will be addressed in the beginning of Chapter 3, Chapter 5 and Appendix C.
The mathematical tools of discretised actuation are then applied to tackle Objective O2 in
Chapter 3 and Chapter 4. Real-world implementations of discretised actuation as required by
Objective O3 are developed in Chapter 5 and Chapter 6. The outcome of the presented work
with respect to the objectives and the impact will be discussed in the conclusion in Chapter 7.
The concrete contributions as a result of the broad objectives stated here, are summarised
next.

1.4 Contributions

As has been discussed previously, this work aims to study the merit of discretised actuation
to improve our understanding of complex systems by establishing clear causality between
actuation and its effect on dynamics. Based on the case of terrestrial legged locomotion we
provide contributions to theoretical modelling, the understanding of locomotion physics,
robot actuation and control, and self-organisation in a complex system. The following
subsections will provide a more detailed picture of the contributions of this thesis and the
fields they relate to.

1.4.1 Physics of Locomotion

The idea of using impulses and rigid shapes to model legged locomotion has been successfully
used in the past to model human and animal locomotion (see Section 1.2.2), but is commonly
studied in the context of impulses which induce a velocity change only in the translational
components of the system. In Chapter 3, we show that the effect of an impulse on the
rotational degree of freedom can result in perpetual forward hopping locomotion. The simple



18 Introduction

model was used to predict robot and animal locomotion properties, and helps add a novel
modelling approach to the field of locomotion.

A thorough analysis of the impulsive model reveals that physical effects give rise to stable
locomotion. More precisely, the effect of an impulse is sensitive to the mass distribution in
the system, opening up the possibility to alter the dynamics by changing the mass distribution.
We show in Chapter 4 and Appendix A how these effects arise and how they contribute to
locomotion energetics and behaviour. The analysis further allows for an analytic energy
comparison between different locomotion strategies in terrain with obstacles, which we use
to find advantages of hopping over rolling locomotion. The results show that hopping is
energetically advantageous for higher Froude numbers, rolling is preferred for lower ones.
This analysis reveals the importance of swing-leg retraction, moment of inertia in locomotion,
and addresses the question why there are only few rolling gaits found in nature.

1.4.2 Locomotion Actuation and Control

The implementation of impulse-like events for actuation purposes in robots poses a challenge
due to multiple reasons. Most importantly, impulsive actuation mechanisms commonly need
to charge and store energy, which is reflected in the gradual change in one of the system states.
For instance, the use of a flywheel to induce a rotational impulse requires to increase kinetic
energy, which is reflected in the angular velocity state of the flywheel. The charging process
is often temporally expensive and is accompanied by parasitic effects, e.g. the charging of
the flywheel creates a torque. Rather than preventing this effect, we built the robot Robbit
as presented in Chapter 5 to take advantage of it. The mechanism uses the induced torque
to accelerate during stance phase, and the subsequent impulses is used to induce the flight
phase, resulting in a forward hopping motion. The exploitation of such effects shows how
robots can be designed to work with their natural dynamics instead of forcing an unnatural
behaviour, which relates to the ideology of passive dynamics, decentralised control, and
self-stability.

Another naturally occurring effect in locomotion are inelastic impacts due to the robot-
environment interaction. Impacts are commonly considered to hamper the locomotion
performance due to their energy-dissipating effect. However, impacts can alter the dynamics
in a way which most actuators can’t in that they change the system velocity in an instant.
Though energy is being lost, the latter may be beneficial in tasks where directionality is
important for performance of the system, which is the case in the task of locomotion. To
study the potential benefit of impacts, we built the robot CaneBot as presented in Chapter 6
which can alter its foot shape and can thus induce impacts at desired instants in time. We
found that for certain control schemes of the induced impact, the resulting locomotion speed
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is increased by up to 40% as compared to locomotion without artificially induced impacts.
The results suggest that, although lossy, impacts can defy intuition and increase locomotion
performance, which opens up new paradigms and methods for control of legged robots.

1.4.3 Self-Organisation

The emergence of organised behaviour in an initially disorganised state is often observed
in complex systems and appears to be an important and recurring process in nature. We
study this self-organisation in our case of discrete locomotion actuation, where repetitive
impulses are applied to the system that drive the initially resting robot to a steady and stable
locomotion behaviour. The emergence of this phenomenon can be attributed to the intricate
interaction of the impulse with the mechanical shape of the robot and the environment. The
shape or body thereby contributes distinctly to the successful motion of the robot, which
relates to the field of morphological computation. In Chapter 5 we show the effect of strictly
convex foot shapes on the locomotion performance, clearly indicating its influence on the
quantitative locomotion dynamics, but also showing that a wide range of morphologies lead
to the same qualitative behaviour. The thesis thus contributes to the study of morphology and
suggests quantifiable ways to determine when self-organisation can occur.

The process of self-organisation is difficult to comprehend, as an analytic expression
of the dynamics is often not possible and prevents the definition and assignment of cause
and effect. In some simplest cases, however, the nonlinear equations can provide great
insights into the underlying mechanisms of self-organisation. In Appendix C, we show how
our impulsive model can be simplified such that analysis of stability becomes analytically
tractable. The results show that impulses can lead to stable locomotion if they are chosen in
a given range of magnitude and open-loop control frequency. The study presents a simplest
model that displays the power of self-stability and defines concrete design choices to achieve
such a behaviour. The model provides a tool and approach to study emergence of self-
organisation through the study of stability, and adds an analytically tractable example that
can be used for educational purposes in courses on nonlinear dynamics and underactuated
control.

1.5 Structure of Dissertation

After having introduced the concept of discretised actuation and the main body of literature
related to the topic, this chapter is followed by an introductory chapter to rigid body contact
dynamics and four case studies where the concept is applied to model the case of hopping
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locomotion, to understand the energetics of overcoming obstacles through hopping, to build a
robotic system that uses discretised actuation for locomotion, and to exploit passive impacts
to improve locomotion dynamics in a robotic system.

Chapter 2 summarises the required theory of planar rigid body contact dynamics for the
subsequent technical chapters. While we tried to make the technical chapters self-contained,
this chapter is intended to provide an extension and reference to the used methods.

Chapter 3 presents the impulsive eccentric wheel model, which uses discretised actuation
to model hopping locomotion of robots and hopping animals. The theory of the model will be
explained in detail and will be used to model locomotion trajectories of real-world systems.

Chapter 4 presents the use of discretised actuation to understand the energetics of hopping
and rolling in terrain with obstacles. After explaining the detailed model and considered
locomotion strategies, theoretical results are presented which give a quantitative rule at
which hopping outperforms rolling for given locomotion characteristics. The results are
applied to mimic hopping and running animals to see how hopping compares to rolling for
animal-related parameters. The results of the theoretical predictions are largely verified in an
experimental test platform and are presented in detail.

In Chapter 5, the discretised actuation approach is implemented in a real-life robot to
test its power to improve performance of impulse-actuated robots. The concept of rotational
impulses is therefore introduced and stability considerations of the design are discussed in
theory and simulation. The concept and design of the hopping robot Robbit is then presented
followed by the experimental conditions and results.

Chapter 6 studies the effect of discrete foot shape changes on the hopping performance
in the hopping robot CaneBot. The chapter discusses the timing of impacts which are
induced through the shape change. Though dissipative in its nature, the impacts can increase
locomotion speed when applied at the right time during the gait cycle. Experimental results
are shown and analysed using a quantitative discretised model to understand the observations.

Chapter 7 discusses the impact of the presented work and puts the results of the individual
chapters in the framework of discrete actuation. The concept of discrete actuation opens up
several paths and ideas for future work, which are also presented in that chapter.



Chapter 2

Planar Rigid Body Contact Dynamics

This thesis studies the role of discrete actuation in locomotion systems operating in a terres-
trial environment. To appreciate the effects of discrete actuation on locomotion performance
such as cost of transport and stability, we want to use theoretical models that can quantita-
tively define such a performance metric. Here we argue that rigid body contact dynamics
is an adequate framework to this end, as it not only allows to efficiently predict the motion
of multibody systems, but also for an energetic assessment of the locomotion performance.
Take for instance the bouncing ball as discussed in the last chapter: rigid body contact
dynamics allows for the prediction of the continuous flight phase, can compute the impulsive
velocity change at paddle collision, and define the energetic loss that occurred during the
collision. We thus have a powerful tool with which we can compare discretely actuated
systems quantitatively.

This chapter will introduce the basic equations of contact dynamics as required for this
thesis. Wherever possible, we will make use of simple impact laws without modelling friction,
as the resulting equations offer a clearer insight into the basic energetic principles of the
studied systems. However, where an accurate description of the system dynamics is preferred
over the lucidity of the dynamics, we will model collisions with unilateral impact laws and
Coulomb friction. We tried to keep the technical chapters of this thesis as self-contained as
possible and added this chapter mostly to offer a consistent description and reference of the
contact dynamics, and to extend the mathematical details of the used methods.

One word of caution has to be said about contact dynamics. The combination of rigid
body dynamics with geometric and kinematic constraints can lead to inconsistencies in the
predicted system energies, which is why the model parameters have to be chosen carefully.
In particular, it was shown that the combination of impact laws and friction laws can lead
to an increase in the total system energy over a dissipative collision, which is obviously a
physically erroneous solution. However, the error depends on the chosen restitution laws
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at collision, and it was shown that energetic consistency in Newtonian kinematic impact
laws coupled with Coulomb friction is guaranteed if all coefficients of restitution are close
to zero [108]. In this thesis, we will use a completely inelastic impact law, which implies
that the coefficients of restitutions are equal to zero and thus consistency is given in all the
subsequent models.

This chapter is structured as follows. Section 2.1 defines basic rigid body kinematics
required for the subsequent sections, which is followed by the procedure to define constrained
rigid body dynamics in Section 2.2. Section 2.3 presents the impact equations for a single
rigid body colliding with a static environment. The methods to include discrete impulsive
actuation in the equations of motion are presented in Section 2.4. Finally, Section 2.5 presents
the multi-contact dynamics model with impacts and friction.

2.1 Planar Rigid Body Kinematics

The state of a rigid multibody system is described by the generalised coordinates qqq(t) and
its derivative q̇qq(t) = uuu(t). We will omit the notation of the independent variable t from now
on for convenience. We will only consider the planar case, which means that every rigid
body has three degrees of freedom with respect to an inertial frame of reference, for instance
horizontal position, vertical position and angular position. For a single rigid body this would
imply the generalised coordinates

qqq = [x,y,φ ]T (2.1)

and the generalised velocity
uuu = [ẋ, ẏ, φ̇ ]T , (2.2)

where x is the horizontal displacement with respect to the inertial frame of reference, y is
the vertical displacement with respect to the inertial frame of reference, and φ is the angular
position with respect to the inertial frame of reference. Figure 2.1 shows the case of an
eccentric disc where x and y point to the position of the centre of mass of the body and φ

indicates the rotation of the eccentric disc. The inertial frame of reference has unit vectors eeex,
eeey, and eeeφ

One important kinematic measure for collision dynamics is the gap function gN(qqq) which
measures the closest distance between the environment and any potential contact point on
the rigid body. For the eccentric disc as illustrated in Figure 2.1, the gap function is

gN (q) = y+acos(φ)−R, (2.3)
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Fig. 2.1 Sketch of planar rigid disc with radius R, eccentricity a, and generalised coordinates
qqq with respect to an inertial frame of reference. x and y point to the centre of mass CoM of
the rigid body. gN(qqq) is the gap function and indicates the smallest distance between the
environment and any potential contact point on the rigid body.

with R the radius and a the eccentricity of the eccentric disc.
In case of collision, an important measure is the relative velocity between the approaching

rigid bodies. In the case of a static environment, the relative velocity of contact point c is
defined as

γγγ = Jcuuu, (2.4)

where Jc = [wwwT
T ;wwwT

N ] is a matrix consisting of the tangential and normal generalised contact
force direction wwwT and wwwN , respectively. We will refer to Jc as contact Jacobain. For the case
of the eccentric disc colliding with a flat static environment, the contact Jacobian is

Jc =

[
1 0 R−acosφ

0 1 −asinφ

]
, (2.5)

The generalised force directions in this example are thus

wwwT =
[
1 0 R−acosφ

]T
, (2.6)

and
wwwN =

[
0 1 −asinφ

]T
. (2.7)
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The generalised force directions define how a planar force FFF enters the equations of motion.
The transformation of the planar force FFF acting on the contact point to the generalised force
F̃FF is done using the contact Jacobian, i.e. F̃FF = JT

c FFF .

2.2 Constrained Rigid Body Dynamics

The unconstrained equations of motion of the generalised coordinates are defined by

Mu̇uu−hhh(qqq,uuu, t) = 000, (2.8)

where M is the mass matrix, and hhh is the vector of external forces and gyroscopic accelera-
tions. We would like to impose geometric and kinematic constraints on the system without
having to redefine it. This can be done by first defining the constraints on position or velocity
level and then take their derivatives such that they are defined on acceleration level. We can
then use Gauss’ principle to enforce the constraints via Lagrange multipliers in the equations
of motion. The Lagrange multipliers then have the interpretation of the forces which are
required for the constraints to hold in the equations of motion.

Without loss of generality, we will use this method to enforce a rolling constraint of the
eccentric disc in Figure 2.1. The constraint on position level is a geometric property as a
function of the generalised coordinates which has to be equal to zero, e.g. in the case of the
eccentric disc

ggg(qqq) =

(
x−asinφ +Rφ

y+acosφ −R

)
= 000. (2.9)

Note that the second entry of this constraint is equal to the gap function gN(qqq), which implies
that no penetration of the ground is allowed. The first entry states that the disc rolls over
the ground without slip. This definition of ground constraint will later on lead to dynamics
without friction as the no-slip condition will be enforced regardless of whether the forces can
physically be generated by the ground or not. The derivative of the geometric constraint is

ġgg(qqq, q̇qq) =

(
ẋ−aφ̇ cosφ +R

ẏ−aφ̇ sinφ

)
= Jcuuu = 000. (2.10)

We see that ġgg = γγγ from Equation (2.4). Finally we obtain on acceleration level

g̈gg(qqq, q̇qq, q̈qq) =

(
ẍ−aφ̈ cosφ +aφ̇ 2 sinφ

ÿ−aφ̈ sinφ −aφ̇ 2 cosφ

)
= Jcu̇uu+ξξξ = 000, (2.11)
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where we summarise all terms that do not depend on a second derivative in the vector ξξξ .
Next, we define the dynamics of the constrained system by

Mu̇uu−hhh(qqq,uuu, t) = F̃FFc (2.12)

where we have added the generalised vector F̃FFc that represents the forces that enforce the
kinematic constraint. As already indicated in the last section, the transformation of a planar
force to a generalised force is accomplished using the contact Jacobian and we hence obtain

Mu̇uu−hhh(qqq,uuu, t) = JT
c λλλ (2.13)

where λλλ is now the Lagrange multiplier which enforces the constraint, or in this case the
planar contact force at ground contact. Equations (2.11) and (2.13) combined give an
expression for the ground contact force λλλ

λλλ =−
(
JcM−1JT

c
)−1 (JcM−1hhh+ξξξ

)
. (2.14)

Substitution of (2.14) into (2.13) leads to the constrained equations of motion of the system.
The resulting equations will enforce the rolling constraint, and they will do so irrespective

of the magnitude of the required ground contact forces. This means that it would render a bad
model for a system which is largely influenced by friction, as slip can not occur. Furthermore,
it is a bilateral constraint, meaning that the ground contact will pull the system down in
the case of detachment and force it to stay on the ground. This is not a physically correct
behaviour in terrestrial locomotion systems, as the ground can in general only create repelling
reaction forces, not attracting ones. Section 2.5 will present a method that allows for unilateral
constraints, which resolves the problem. Despite the shortcoming of the bilateral constrained
equations of motion as presented in this section, we have used them in several instances in
this thesis due to their simplicity and transparency. To avoid errors of an attracting ground
reaction force in these cases, we have monitored the ground reaction forces at all times to
assure that our model is operating in a valid range.

2.3 Inelastic One-Contact Collision without Friction

The transition between unconstrained and constrained dynamics is often not smooth, meaning
that system states have to jump in order to comply with the constrained dynamics. This
transition is achieved through the impact equations. In this section, we only consider inelastic
one-contact collisions without friction, which can be used, for instance, in the case of the
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eccentric disc as it transitions from a gap function gN > 0 to gN = 0 where the dynamics are
governed by the unconstrained and constrained equations, respectively. The impact equations
of a contact c with a static environment are

M(uuu+−uuu−) = JT
c ΛΛΛ, (2.15)

with M the mass matrix, uuu+ the post-impact generalised velocity, uuu− the pre-impact gen-
eralised velocity, Jc the contact Jacobian as defined in Section 2.1, and ΛΛΛ the impulse
transferred at collision.

Next, an impact law needs to be defined. In this thesis we exclusively use inelastic impact
laws as they capture the contact dynamics in real terrestrial locomotion systems well. In
addition, this avoids problems with energetic consistency during the collisional event [108].
The inelastic impact law is a kinematic law and hence defined on velocity level. It states that
the post-collision velocity of the contact point is equal to zero, in other words

γγγ
+ = Jcuuu+ = 000. (2.16)

Combining Equations (2.15) and (2.16) we get

Jcuuu+ = JcM−1JT
c ΛΛΛ+Jcuuu− = 000, (2.17)

which we can solve for the transferred impulse during collision

ΛΛΛ =−
(
JcM−1JT

c
)−1 Jcuuu−. (2.18)

Using this definition of transferred impulse and inserting it in Equation (2.15) leads to the
post-collision generalised velocity

uuu+ =
(

I−M−1JT
c
(
JcM−1JT

c
)−1 Jc

)
uuu−. (2.19)

This equation relates the pre-impact generalised velocity to the post-impact generalised
velocity. It is valid in a multibody system for one-contact collisions with inelastic coefficient
of restitution and no friction. We will make extensive use of this equation to model the
system-environment interaction of our discretely actuated systems.

Another quantity we will exploit is what we call the collision matrix Mc defined as

Mc =−JT
c
(
JcM−1JT

c
)−1 Jc. (2.20)
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The collision matrix is a useful tool to study energetics of an inelastic collision, as it provides
the dissipated energy during collision when used in the quadratic form

∆E =
1
2
(uuu−)T Mcuuu−, (2.21)

which can easily be shown to hold when subtracting the post-collision energy from the
pre-collision energy.

2.4 Impulsive Actuation

Impulses are induced in collision dynamics to account for the collisional system-environment
interactions, but they can also be imposed on the system dynamics as an impulsive actuation
which changes the system velocities in an instant. The computation of the post-actuation
velocities is analogous to the case of inelastic one-contact collisions without friction as
presented in the last section. Assume we are applying a planar impulse ζζζ at a point i to our
system. The post-actuation velocity is

uuu+ = M−1JT
i ζζζ +uuu−, (2.22)

where Ji is the Jacobian at the point of attack of the impulse. This equation assumes that the
impulse can be transferred without any restrictions to the system velocities at point i. In real
systems this won’t always be possible as for instance the transmission of the impulse might
be restricted due to the effects of friction. For such cases we will use a more detailed model
that includes frictional impulses as will be presented in the next section. In Chapter 5 we will
use rotational impulses instead of translational ones, in which case the Jacobian in Equation
(2.22) will be the rotational Jacobian for the body at which the impulse is applied.

2.5 Multi-Contact Collision with Friction

In the case where multiple contacts are closed at the same time, the previously presented
methods can’t be used as they may result in solutions which are physically implausible.
For example, if two instead of one contacts close on a single rigid body, the system would
instantly come to a rest after collision as this is the only solution when the methods presented
in Section 2.3 are used. The sudden halt is not what we would observe in a real physical
system. Rather, one or both of the contacts will open over the impact. We mostly avoid
multi-contact problems in this thesis as we would like to focus on using the more transparent



28 Planar Rigid Body Contact Dynamics

methods presented so far. For certain cases, however, it makes sense to use a multi-contact
formulation, especially because the effects of friction can be elegantly included in it to form
a more realistic model.

We will use the modelling method as presented by Glocker and Studer [109] which is
based on an LCP (linear complementarity problem) formulation of the contact dynamics and
which will be elaborated in the next few subsections. This method will lead to physically
accurate collision dynamics while also considering the limitations of force transmission due
to friction. First, the set-valued functions are introduced which will be used to express the
unilateral impact and friction laws.

2.5.1 Set-Valued Functions

Instead of assigning a one-to-one correspondence of an element in the codomain to an
element in the domain of a function, a set-valued function can assign sets to an element in
the domain. The two set-valued functions we will need are the unilateral primitive (Upr) and
the set-valued signum function (Sgn), not to be confused with the sign function (sgn) which
is zero for sgn(0). The functions are defined as

Fig. 2.2 Unilateral primitive (Upr) and set-valued relay function (Sgn).

Upr(ξ ) =

{
(−∞,0] if ξ = 0

0 if ξ > 0
, (2.23)

and

Sgn(ξ ) =


−1 if ξ < 0

[−1,1] if ξ = 0
1 if ξ > 0

. (2.24)
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These two functions, for which their graph is depicted in Figure 2.2, will be used to define
the kinematic laws for hard contact and friction. The Upr function has the property that it is
set-valued at Upr(0) between −∞ and 0, and is 0 for positive values. The Sgn function is −1
for negative values, 1 for positive values, and set-valued between −1 and 1 for Sgn(0).

2.5.2 The Linear Complementarity Problem

In a multi-contact problem with frictional impulsive events and unilateral constraints, contacts
can be open or close and in the state of sticking or slipping. An impulsive event can cause a
transition from one state to another in the set of closed contacts, which poses a combinatorial
problem. It turns out that this combinatorial problem can be stated as a linear complementarity
problem (LCP). An LCP is defined as follows. Given a linear system of equations

yyy = Axxx+bbb (2.25)

with the conditions
yyy ≥ 000, xxx ≥ 000, yyyT xxx = 0, (2.26)

where A ∈ Rn×n and b ∈ Rn×1, find xxx ∈ Rn×1 and yyy ∈ Rn×1. Defining E := (eee1, ...,eeen) the
identity matrix and A := (aaa1, ...,aaan), the LCP can be rewritten as

(eee1, ...,eeen,−aaa1, ...,−aaan)

(
yyy
xxx

)
= bbb, (2.27)

yi ≥ 0, xi ≥ 0, yixi = 0 ∀i = (1, ...,n) . (2.28)

Now be ccci ∈ {eeei,−aaai} the i-th complementary pair of vectors, and zi ∈ {yyyi,xxxi} the i-th
complementary pair of variables such that

zi =

{
yi if ccci = eeei

xi if ccci =−aaai
. (2.29)

There are 2n possible matrix-vector combinations Ck := (ccc1, ...,cn) and ZZZk := (z1, ...,zn)
T

which can potentially solve CkZZZk = b. As n will increase with increasing number of closed
contacts, the solution of the LCP will become more difficult to find the more contacts are
involved in the collision dynamics.
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2.5.3 The Multi-Contact LCP with Friction and Impacts

The derivation of the LCP for the multi-contact problem with friction is done in detail in
Glocker’s work [109], and we will only mention the basic concepts and main results in this
section.

An elegant way to combine the impact-free motion (2.8) with the impact equations (2.15)
is by using measure differential inclusions [110]. Say there are currently n contacts closed,
then the measure differential inclusion reads

Mduuu−hhhdt −
n

∑
i=1

JidΛΛΛi = 0 (2.30)

where duuu = u̇uudt+(uuu+−uuu−)dη and dΛΛΛi = λ̇λλ idt+(ΛΛΛ+−ΛΛΛ
−)dη = λ̇λλ idt+ΛΛΛidη are differen-

tial measures for the velocity uuu and percussion ΛΛΛ. The measure dη is a Dirac point measure
and its integral is equal to 1 only at the impulsive event and vanishes during non-impulsive
phases. Therefore, at the instance of the impact, the equality of measure yields the impact
equations, and the constrained or unconstrained equations of motion otherwise. The per-
cussions are the sum of their normal and tangential components over the set H of all closed
contacts, i.e.

dΛΛΛ = ∑
i∈H

wN dΛN +wT dΛT , (2.31)

where wN and wT are the generalized normal- and tangential force directions, respectively.
The kinematics of the contacts are defined by the relative velocities of the contact point

and the static environment as presented in Section 2.1. We define the velocity difference
before and after impact by

ξN := γ
+
N + εN γ

−
N , ξT := γ

+
T + εT γ

−
T , (2.32)

where we set the coefficients of restitution εN = εT = 0 to model inelastic impacts. The γ are
as defined in Equation (2.4), but split into normal and tangential direction, hence

γN = wT
N u, γT = wT

T u. (2.33)

With the derived set-valued functions in Section 2.5.1, it is possible to define an inelastic
kinematic impact- as well as a Coulomb frictional law for our system:

−dΛN ∈ Upr(ξN), −dΛT ∈ µ dΛN Sgn(ξT ), (2.34)
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where µ is the dynamic friction coefficient of the system. The above equations can be
combined to define a LCP which needs to be solved to provide the contact forces that comply
with the kinematic contact laws (2.34) in this multi-contact problem. This step is not trivial
and we refer the reader once again to the paper of Glocker [109].ξξξ N

ξξξ R

ΛΛΛN

=

WT
N M−1 (WN −WT µµµ) WT

N M−1 WT 0
WT

T M−1 (WN −WT µµµ) WT
T M−1 WT I

2 µµµ −I 0


ΛΛΛN

ΛΛΛR

ξξξ N



+

WT
N M−1 h∆t +(I+ εεεN)γγγA

N

WT
T M−1 h∆t +(I+ εεεT )γγγA

T

0

 ,

ξξξ N

ξξξ R

ΛΛΛN

≽ 0

ΛΛΛN

ΛΛΛR

ξξξ N

≽ 0

ξξξ N

ξξξ R

ΛΛΛN


T ΛΛΛN

ΛΛΛR

ξξξ N

= 0. (2.35)

Equations (2.35) form the linear complementarity problem needed for the ground contact
forces where,

ΛΛΛR := µµµ ΛΛΛN +ΛΛΛT , (2.36)

ξξξ T := ξξξ R −ξξξ L, (2.37)

ξξξ R := WT
N uE + εεεT γγγ

A
T , (2.38)

where the superscript A in γγγA
T refers to the initial point of the numerical step, and E as in uE

to the end point as will be discussed in more detail shortly, and

WN := (wNi1, ...,wNik), WT := (wTi1, ...,wTik) ∈ R f×k

ΛΛΛN := (ΛNi1 , ...,ΛNik)
T, ΛΛΛT := (ΛTi1, ...,ΛTik)

T ∈ Rk

γγγ
A
N := (γA

Ni1, ...,γ
A
Nik)

T, γγγ
A
T := (γA

Ti1, ...,γ
A
Tik)

T ∈ Rk

ξξξ N := (ξNi1, ...,ξNik)
T, ξξξ T := (ξTi1, ...,ξTik)

T ∈ Rk

εεεN := diag(εNi1, ...,εNik), εεεT := diag(εTi1, ...,εTik) ∈ Rk×k

µµµ := diag(µi1, ...,µik) ∈ Rk×k,

where f is the number of generalised coordinates and k the number of closed contacts.
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2.5.4 Time Stepping Algorithm

The integration of measure differential inclusions is done here by time stepping methods
which account for a combined evaluation of impact- and impact-free motion. The procedure
is using a mid-point rule and can be summarised as follows. See also [109] for a more
detailed description.

1. After choosing a time interval ∆t, define the midpoint time tM := tA + 1
2∆t, and end time

tE := tA +∆t, where tA is the initial time of the current iteration.

2. Define the midpoint displacement qqqM := qqqA + 1
2∆t uuuA ∈ R f .

3. Calculate matrix properties at midpoint time

(a) M(qqqM, tM) ∈ R f× f , hhh(qqqM,uuuA, tM) ∈ R f

(b) Out of i = 1, ...,n contact points, set up the index set H of all k contacts i1, ..., ik
that are currently closed

(c) Then, combining all i∈H , calculate WN(qqqM, tM)∈R f×k, as well as WT (qqqM, tM)∈
R f×k

4. Solve the linear complementarity problem (2.35) in order to get ΛΛΛN and ΛΛΛR

5. Compute the end velocity of the iteration step uuuE

uuuE = M−1(WN −WT µµµ)ΛΛΛN +M−1 WT ΛΛΛR +M−1 hhh∆t +uuuA

6. Compute the final state of the iteration qqqE := qqqM + 1
2∆t ·uuuE ∈ R f

This concludes the used contact dynamics methods in this thesis. The multi-contact
method due to Glocker as presented in this section was used in Chapter 5, where we model
a multi-body system with two contacts that can potentially be closed at the same time. In
the next chapter, the impulsive eccentric wheel model is introduced and analysed using the
methods presented in this chapter.



Chapter 3

The Impulsive Eccentric Wheel Model1

The last chapter has introduced planar rigid body contact dynamics as a tool to model systems
with discrete actuation. In this chapter, we develop a mathematical model based on contact
dynamics for hopping locomotion which uses discrete actuation and rigid body shapes. We
use the model to predict locomotion properties of hopping animals and robots and show that
the model can produce a variety of locomotion trajectories as a function of control law and
morphology.

3.1 Introduction

It has been reported that kangaroos use up less energy for hopping locomotion when moving
faster due to the elastic energy storage in tendons and muscles [111]. This unique property
and the fact that hopping on a small support polygon requires distinguished balance and
poses hence a demanding control challenge, has urged engineers to design machines that
reproduce animal like hopping behaviour. Significant contribution to the balance problem of
hopping was due to Raibert [86], by introducing an intuitive control method for the hopping
problem. Inspired by Raibert, many others have investigated hopping behaviour of monopod
robots [112]. Energy efficiency of hopping motion has been demonstrated in [38], where

1This chapter presents the collaborative work with my supervisor F. Iida. I have initiated the problem
statement, derived the theoretical equations, set up and conducted the simulation, prepared the figures in the
experiment section, and wrote the paper. F. Iida helped revising the paper. The peer-reviewed publication which
forms the basis of this chapter is

• Fabio Giardina and Fumiya Iida. Simulation of forward hopping dynamics in robots and animals using
a template with a circular foot and impulsive actuation. In Biomedical Robotics and Biomechatronics
(BioRob), 2016 6th IEEE International Conference on, pages 7–12. IEEE, 2016.



34 The Impulsive Eccentric Wheel Model

the simple robot Cargo (Figure 3.2) showed not only highest energy efficiencies, but also
flexibility in hopping with different payloads.

Mathematical modelling has proven to be valuable for the analysis of animal behaviour.
Some models are strong enough to explain locomotion dynamics in biological systems in
a simplified way, such as the walk to run transition observed in humans [11]. In [113] it
was proposed that general traits of locomotion should be analysed by building a "template"
(mathematical model) that focuses on the desired aspects to analyse. One of the most widely
used templates in legged locomotion is the spring loaded inverted pendulum model (SLIP),
first introduced in [12]. Locomotion is modelled with a point mass and a massless spring
representing the leg. Several properties of animal locomotion could be explained with
SLIP For example the leg-adjustment strategy during flight phase of human running [114].
Scientists soon realised that using curved feet in templates, as opposed to pin pointed feet,
can have beneficial influences on stability of the dynamical hopping motion [40]. When
extending the SLIP model with a curved foot, stability regions can be widened [115]. A
hybrid robot that uses a wheeled configuration with an off-centred mass was presented in
[116]. The design promises stable locomotion and the robot is capable of traversing obstacles
and ditches. Another demonstration of how a simple design can generate stable and efficient
hopping locomotion using a rigid curved foot was also demonstrated in [36]. The authors
used a numerical model to define hopping behaviour of a two body system with a curved foot
and joint actuation and predicted stable and efficient locomotion, which was demonstrated to
hold in a realisation of the model.

The template presented here is modelled using rigid body dynamics with collisions and
impulsive actuation forces. There are no joints, springs or dampers in the system. The
template focuses on the physical interaction of the foot with the rigid ground, as opposed
to the compliance of the leg as is analysed in the SLIP model. Furthermore, due to the
dissipation of energy at ground collision, energy needs to be injected into the system. Rather
than adding energy evenly during the stance phase, the template reduces the energy injection
time to an instant and alters the energy at take-off by applying an impulse.

The model is reduced to the described level of abstraction as locomotion is assumed
to be influenced by three main factors: The shape of the system and the environment,
the collisional forces, and the forces applied at the switching point from stance to flight
phase. The implications of these assumptions are that the stance and flight phase becomes
completely passive and the sequence of motion is predetermined by the mechanical shape,
requiring no control. The downside is that stability can only be influenced by the impulse
parameters at transition between stance and flight phase, and needs to rely on the self-
stabilising mechanics of the system to reach a stable limit cycle. Nevertheless, this template
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aims at understanding the interplay between mechanical stability and minimalistic control to
achieve stable locomotion, rather than using high bandwidth feedback control.

The chapter is structured as follows. In the next section, the mathematics needed for
the modelling of the template are introduced. Section III presents the simulation set-up for
the analysis and comparison with the real world systems. Section IV shows the results, and
finally Section V concludes the chapter.

3.2 Template

The hopping template is described as a planar rigid body with mass m and moment of inertia
around the centre of mass I that is interacting with a flat and rigid ground. The foot of the
rigid body is circular with radius R and the mass is lumped inside the foot and rigidly attached
to it with a radial leg distance of l, as illustrated in Figure 3.1. Note that the eccentricity a is
related to this parameter by a = R− l. The state of the lumped mass is completely described
by the generalised coordinates

qqqT = [x,y,φ ]

and the generalised velocity
uuuT = [ẋ, ẏ, φ̇ ].

𝜙
𝑙

𝑅

𝑚, 𝐼𝑦

𝑥

𝜙𝑇𝑂

𝑔

𝜁

𝜏

Fig. 3.1 Sketch of template. The left hand side illustrates the template at touchdown with
system states qqqT = [x,y,φ ] and design parameters R, l,m, and I, and the right hand side shows
the control parameter take-off angle φTO, the force tilt angle τ , gravity g, and the impulse ζζζ .
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Gravity is acting upon the rigid body with gravitational acceleration g. The energy input
to the system comes from an impulse ζζζ acting at the contact point between the border and
the ground. The force direction is parallel to the connecting bit with length l from the border
to the lumped mass, deviating by an angular tilt of τ . This force can be thought of as a very
stiff spring connecting the foot and the lumped mass, that is preloaded and released in an
instant and extending infinitesimally. The magnitude of ζζζ is chosen such that the kinetic
energy of the rigid body is altered from its take-off state qqqTO by ∆E.

The ground contact forces are defined by a Newtonian kinematic impact law with coef-
ficient of restitution of ε = 0 and a no slip condition for the foot when in contact with the
ground, which guarantees that pure rolling is achieved.

3.2.1 Derivation of Template Equations

The impulse is applied when the system reaches a predefined state qqqTO with angle φTO during
stance phase. There are four main events that map a take-off state to the next one, namely
impulse, flight phase, touchdown, and rolling.

As briefly mentioned above, the impulse is applied such that the kinetic energy of the
body is increased by a defined energy ∆E. This can be formulated mathematically

∆E =
1
2
(uuu+TO)

T Muuu+TO − 1
2
(uuu−TO)

T Muuu−TO, (3.1)

where uuu+TO is the derivative of the take-off state after, and uuu−TO before the impulse is applied,
and M is the mass matrix of the system. The dynamics over the impulsive event are stated as
in Section 2.4.

M(uuu+TO −uuu−TO) = JT
c ζζζ , (3.2)

with Jc the contact Jacobian of the body with respect to the ground contact point on the foot,
as also defined in Section 2.1. Solving for the post-impulse velocity one obtains

uuu+TO = M−1 (JT
c ζζζ
)
+uuu−TO. (3.3)

Combining Equations (3.1) and (3.3) one can see that

∆E =
1
2

ζζζ
T JcM−1JT

c ζζζ +ζζζ
T Jcuuu−TO. (3.4)
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Since we know the take-off angle φTO and the force direction of ζζζ we can define

ζζζ = ||ζζζ ||

(
−sin(φTO + τ)

cos(φTO + τ)

)
=: ||ζζζ ||ρρρ, (3.5)

with τ the tilt angle of the impulse direction from the leg angle. Equations (3.4) and (3.5)
provide the magnitude for the impulse

||ζζζ ||=
−ρρρT Jcuuu−TO +

√(
ρρρT Jcuuu−TO

)2
+2K∆E

K
, (3.6)

with K = ρρρT JGM−1JT
Gρρρ . The mapping from the state before the impact to the take-off state

is now defined by
uuu+TO = M−1JT

c ρρρ||ζζζ ||+uuu−TO. (3.7)

The mapping from flight phase to touchdown can easily be derived from the take-off state,
once the flight time is known. To define the distance between the foot and the ground a gap
function gN is introduced

gN = y+(R− l)cosφ −R (3.8)

The kinematic motion of the flight phase is simply defined by(
yF

φF

)
=

(
yTO + ẏTOtF − 1

2gt2
F

φTO + φ̇ tF

)
(3.9)

where tF ∈ [0, tT D] is the flight time from take-off to touchdown and g is the gravitational
acceleration. As soon as the gap function becomes equal to zero after take-off, the touchdown
state has been reached. Combining Equations (3.8) and (3.9) yields

yTO + ẏTOtT D − 1
2

gt2
T D +(R− l)cos

(
φTO + φ̇ tT D

)
−R = 0. (3.10)

After solving this implicit equation for tT D, one can simply find the pre-impact state where
the body touches the ground

uuuT D = uuuTO −

 0
gtT D

0

 (3.11)

qqqT D = qqqTO +uuuTOtT D −

 0
1
2gt2

T D

0

 . (3.12)
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To calculate the post impact state we need to take into account the impact event, which is
modelled by a Newtonian kinematic impact law with a coefficient of restitution of ε = 0.
Analogously to the impulse equations (3.3), we have that

uuu+T D = M−1 (JT
c ΛΛΛ
)
+uuu−T D. (3.13)

where ΛΛΛ is the impact at touchdown. The impact condition requires that Jcuuu+T D = 0, which
together with Equation (3.13) and after some manipulation (see Section 2.3) leads to the
mapping

uuu+T D =
(

I−M−1JT
c
(
JcM−1JT

c
)−1 Jc

)
uuu−T D. (3.14)

The final step is to derive a mapping from the post-impact state to the pre-take-off state which
happens during stance phase. Since pure rolling is assumed, no energy is lost during the
stance phase and the sum of the kinetic and potential energies of the touchdown and take-off
postures will be equivalent.

1
2
(uuu−TO)

T Muuu−TO +mgyTO =
1
2
(uuu+T D)

T Muuu+T D +mgyT D. (3.15)

The rolling condition also provides a fixed relation between the lumped mass velocity vector
and the angular velocity, namely that (ẋS ẏS 0)T = φ̇φφ S × rrr, where the subscript S tags
the stance phase, φ̇φφ S = (0 0 φ̇S)

T , and rrr is the vector pointing from the current ground
contact point to the lumped mass. Hence we have for the generalised velocity state

uuuS = φ̇S

(R− l)cosφS −R
(R− l)sinφS

1

=: φ̇Sξξξ . (3.16)

Equations (3.15) and (3.16) can then be combined to read

φ̇ 2
S
2

ξξξ
T Mξξξ = E+

T D −mgyTO, (3.17)

with E+
T D := 1

2(uuu
+
T D)

T Muuu+T D +mgyT D.
Therefore, the take-off angular velocity of the predefined take-off angle φTO is

|φ̇−
TO|=

√
2(E+

T D −mgyTO)

ξξξ
T Mξξξ

, (3.18)
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and hence the take-off velocity state

uuu−TO = sign(φ̇−
TO)|φ̇

−
TO|ξξξ . (3.19)

Note that the sign of φ̇
−
TO can be retrieved by checking the touchdown angle and the touch-

down angular velocity. Since no energy is added during stance phase, once the predefined
take-off angle is reached, the system switches to the impulse event. Also, it may happen that
the dissipative impact causes the system energy to drop below the potential energy required
to reach the take-off angle. In this case, the system configuration needs to be considered
unstable.

3.3 Simulation Set-Up

The template was tested and examined with various parameter settings. In the first simulation,
a parameter search was conducted using properties of the hopping robot Cargo [38]. A
range of take-off angles and foot radii were chosen to examine the template’s response to
locomotion speed and efficiency. The parameter settings can be found in Table 5.1. Two
motion tracking measurements of Cargo were used to compare the centre of mass position of
the template with the robot. Finally, data from two hopping animals were used to investigate
the predictability of locomotion features by the template.

As Table 5.1 indicates, it is sufficient for the template to adapt to a new type of setting
by changing seven parameters, namely foot radius R, leg length l, mass m, take-off angle
φTO, energy input per hop ∆E, impulse tilt τ , and moment of inertia I. The hopping states
are then derived by using the equations presented in the previous section. Initial conditions
were set to a resting state during stance phase just before take-off at position φTO, with
uuu = 0. The simulation is then expected to converge to a steady state hopping behaviour
after 100 iterations per case. Once initialised, the post take-off state is derived by (7). The
flight time given by the implicit Equation (10) is computed by numerical methods using
Matlab’s root search fzero. Pre-touchdown states are then determined using (11) and (12).
The post touchdown conditions are defined by (14), and finally, the pre take-off state of the
next iteration is given by (19), which concludes a hopping cycle. Note that the energy inputs
for the template as shown in Table 5.1 do not correspond to the energy inputs of the real
robot. The values are higher than in the robot, as the payload suspension with springs enables
the robot to restore energy which is not the case in the template.
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Fig. 3.2 Cargo robot as first presented in [38].

3.4 Results

The results generated according to the set-up described in the last section are presented here.
First, the template results over a range of the parameter space are presented and we later
apply the Cargo robot parameters to the template to predict two real-world trajectories of the
robot. Data from tammar wallaby and kangaroo rats presented in [64] are then analysed and
compared with the template predictions.

3.4.1 Template behaviour

To illustrate the template behaviour, we assign parameter values of the robot Cargo as per
Table 5.1 to the template and vary the foot radius and take-off angle in a defined parameter
space. The result for the simulation is shown in Figure 3.3. Figure 3.3 (a) shows the
prediction of the template of the energetic cost of transport (CoT), which is defined as the
energy used per body weight and distance travelled as defined in [117]. As can be seen, the
cost of transport varies gradually with changing leg length to foot radius ratio. A large foot
radius compared to the leg length results in more efficient locomotion and a smaller foot
radius shows a higher cost of transport. Areas where no colour is plotted (white spaces)
indicate that the template did not converge to a fixed point in the simulation. This means on
the other hand, that all the coloured spaces demonstrated self-stable properties, or in other
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Fig. 3.3 Coloured efficiency and velocity plots of parameter search of the template with
parameter settings derived from the robot Cargo. The abscissa shows the leg length to radius
ratio l/R and the ordinate shows the defined take-off angle φTO.

words, converge to a constant touchdown angle. Furthermore, stable hopping regions are
found for larger take-off angles in the region of l/R = 0.25. In the top left region of the figure,
a small area with large cost of transport appears abruptly. This motion varies from the other
stable parameter choices in its gait by changing direction of locomotion after every iteration
and rolling over a long portion of the foot. For the other more efficient stable solutions, the
gait looks as illustrated in Figure 3.4. The course of motion of this particular pattern is as
follows. First, the robot experiences an impulse and lifts off. Due to the offset of the point of
attack of the force the robot or template is forced into a turning motion as the impulse occurs,
and the foot is therefore moving ahead of the centre of mass during flight phase. After the
flight phase an impact slows the system down and cause a moment into the opposite direction
as the impulsive take-off force. Therefore and with the friction of the ground, the system
rolls over the foot until the next take-off position is reached.

Figure 3.3 (b) shows the average hopping velocity over the last 10 hops of the simulation
of the same parameter conditions as in Figure 3.3 (a). The velocity tends to increase with
smaller ratio of leg length to foot radius l/R, which corresponds to the cost of transport
values as the velocity is inversely proportional to the cost of transport for constant locomotion
power. For the smallest stable take-off angles, the locomotion speed increases and reaches
similar values at l/R = 0.25 as it does at l/R = 0.05. This indicates that the energy loss due
to impact is larger at smaller take-off angles that reach the same locomotion speed. In the top
left part of the figure, the small area with a different locomotion gait as described in the CoT



42 The Impulsive Eccentric Wheel Model

𝑡 = 0

𝑡 = 𝑇

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time t/T

V
el

oc
ity

 v
/|v

m
ax

|

 

 

v
x

v
y

Impact

Impulse

Impulse

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

Time t/T

A
ng

ul
ar

 v
el

oc
ity

 ω
/|ω

m
ax

|

Flight Stance

Fig. 3.4 Template time series of a hopping cycle of a Cargo like motion with take-off, flight
phase, touchdown and rolling during stance phase. State velocities of motion are shown in
the lower two figures with [vx,vy,ω] = [ẋ, ẏ, φ̇ ].
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Table 3.1 Parameter ranges of template for simulated cases.

Parameter Symbol Value

Cargo

Foot radius R [0.3,5.8]m

Param. Search

Leg length l 0.288 m
Mass m 130 kg

Takeoff angle φTO [−0.01,−0.2] rad
Energy input ∆E 35 J
Impulse tilt τ −0.2 rad

Moment of inertia I 4.1 kgm2

Cargo

Foot radius R 0.42 m

Trajectory 1

Leg length l 0.288 m
Mass m 130 kg

Takeoff angle φTO −0.07 rad
Energy input ∆E 33.6 J
Impulse tilt τ −0.15 rad

Moment of inertia I 4.1 kgm2

Cargo

Foot radius R 0.42 m

Trajectory 2

Leg length l 0.288 m
Mass m 130 kg

Takeoff angle φTO −0.1 rad
Energy input ∆E 37.6 J
Impulse tilt τ −0.22 rad

Moment of inertia I 4.1 kgm2

Tammar

Foot radius R 1.39 m

wallaby

Leg length l 0.305 m
Mass m 6.6 kg

Takeoff angle φTO [−0.01,−0.24] rad
Energy input ∆E [5.66,10.3] J
Impulse tilt τ 0 rad

Moment of inertia I 0.19 kgm2

Kangaroo

Foot radius R 0.35 m

rat

Leg length l 0.063 m
Mass m 0.11 kg

Takeoff angle φTO [−0.09,−0.12] rad
Energy input ∆E [3.1,4.3]mJ
Impulse tilt τ 0 rad

Moment of inertia I 1.35 ·10−5 kgm2
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case is visible. Although the velocity seems to be high, the effective travelled distance is low,
as the absolute value of the velocity per hop is illustrated.

3.4.2 Cargo Trajectory Comparison

As described in the simulation set-up section, two real world trajectories of the hopping
robot Cargo were stored and compared to the template centre of mass trajectory. Figure 3.5a
presents the results for a motor torque amplitude of TM = 20.1Nm and a hopping frequency
of f = 2.58Hz. The figure shows the template trajectory of the centre of mass and the motion
of the lower leg of Cargo projected to the average centre of mass position of Cargo. The
experimental results were shifted in the horizontal direction to maximally match the pattern
of the predicted template trajectory. Although the transient phase to a stable hopping pattern
is not matching, the average hopping height and stride length are overlapping well. The
deviations can be explained by the large oscillating hopping mass of Cargo, which is absent
in the template. Furthermore, the stance phase in the experimental data is not as clearly
visible as in the template. The deviation may arise due to the strong springs that are acting on
the lower body of Cargo. The trajectories of Cargo also seem skewed towards the left which
is not visible in the template results and may also be due to the springs and the fact that the
centre of mass and the moment of inertia in Cargo is constantly oscillating.

For the second case shown in Figure 3.5b where TM = 29.5Nm and the hopping frequency
of f = 2.52Hz, similar observations can be made. The template is capable of predicting the
resulting hopping speed of 0.27m/s, the stride length, and the hopping height. There is again
an oscillation of the robot trajectory around the predicted value, which we attribute to the
oscillating mass on Cargo.

3.4.3 Hopping Animal Comparison

Next to the comparison of the robot Cargo, locomotion data from hopping animals have
been applied to the template and the characteristics of both template and animals were
compared. In particular, data from tammar wallabies and kangaroo rats presented in [64] are
used for analysis. Using the energy input and take-off angle the animal uses to achieve a
certain hopping speed, and a leg length to foot radius ratio of l/R = 0.22 and l/R = 0.18 for
the tammar wallaby and kangaroo rat case, respectively, certain characteristic locomotion
properties could be reproduced with the template. Figure 3.6 shows the comparison of
stride length for both animals with the template predictions for various dimensionless animal
velocities. The dimensionless velocity is the square root of the froude number ŝ =

√
Fr =

v̄/
√

g/l, where v̄ is the average forward velocity and l is the leg length of the animal. It is
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Fig. 3.5 Centre of mass trajectory comparison of two parameter sets between Cargo and the
template. The first case a) is at a locomotion speed of roughly 0.2m/s and case b) 0.27m/s.
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important to note that the dimensionless velocity is only assigned for the animal curves, and
the template was run with the animal parameters (energy input and take-off angle) at these
particular velocities. The template velocities tend to be significantly slower than observed in
both kangaroo rat and tammar wallaby, which may arise due to unmodelled adaptability of
legs like energy saving mechanisms and leg angle of attack at touchdown.

y

y

Fig. 3.6 Comparison of stride length between the template predicions and data from tammar
wallabies and kangaroo rats for various dimensionless velocities v/l.

3.5 Conclusion

The template presented in this chapter shows that it is capable of imitating locomotion traits
found in a real hopping robot such as locomotion speed, hopping height, hopping frequency,
and stride length. Template results are not yet at the level of correspondence with animal
data such that confident conclusions can be drawn. However, the template reproduces some
locomotion characteristics found in tammar wallabies and kangaroo rats that seem promising
and are encouraging to elaborate the presented template. In the next chapter, the results of
the impulsive eccentric wheel are presented in a broader context. By studying the energetics
of locomotion as predicted by the model, we will aim to find principles for locomotion in
general as opposed to focusing on individual representation of animal and robot trajectories.



Chapter 4

Energetics of Surpassing Obstacles1

The last chapter introduced the impulsive eccentric wheel model with which hopping trajec-
tories can be generated based on discrete actuation. In this chapter, we neglect the dynamics
of periodic locomotion and focus on a single hop to study the theory of energetics in the
framework of discrete actuation. Again, we examine the case of hopping locomotion but
add an obstacle as an additional element to the system. The obstacle allows for an energetic
analysis as energy has to be expended to overcome it, and this allows locomotion strategies
like rolling to be compared energetically to hopping.

4.1 Introduction

Rolling wheels are designed to operate in flat environments and are optimised for this specific
domain. The economic costs for transportation drive the design of wheeled vehicles towards
ever less fuel consumption, defining energy expenditure as one of the main objectives to be
minimised. While a rolling strategy is undoubtedly dominating flat terrains in terms of energy
expenditure, the strategy should be reconsidered in more complex environments. Wheeled
locomotion in natural terrain has been extensively studied in the field of terramechanics
[118], which employs empirical and computational tools to model and predict the soil-
vehicle interaction. Terramechanics has aided the design of off-road vehicles ever since
cars left roads, and with the advent of planetary exploration rovers which need to operate

1This chapter presents the collaborative work with my supervisor F. Iida. I have initiated the problem
statement, derived the theoretical equations, made the allometric model, conducted, planned and prepared the
experiments, and wrote the paper. F. Iida helped discussing and revising the paper. The manuscript which is
published in PLOS ONE and which forms the basis of this chapter is

• Fabio Giardina and Fumiya Iida. Collision-based energetic analysis of rolling and hopping over obstacles.
PLOS ONE, 13(3): e0194375, 2018.
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in surroundings with loose soil and variable terrain conditions [119], more challenging
terrain-wheel interactions are being analysed.

Alternatives to rolling are readily displayed by nature’s crawling, hopping and running
animals, but can these gaits compete with the energy effective rolling motion? In a study
where cyclists compete against runners in an off-road track, it was found that their energy
expenditure is comparable [120], but cyclists finished significantly faster. This implies that
even when rolling and running strategies are compared on an equal footing, the rolling
strategy still outperforms the running one in terms of its speed. This comparison, however,
is commonly done in environments which lack an important element of natural terrain:
obstacles. The energetic cost of a wheel colliding with obstacles is a classical problem in
mechanics [121], yet it is generally only studied for rolling collisions.

The study of the rimless wheel [13], [122] calls attention to the similarities of rolling
and walking collisions, and links wheeled locomotion to legged locomotion. Collision
mechanics is a commonly used tool for analysis of legged locomotion, as repetitive leg-
ground interactions are typical in this form of locomotion. The simplest models reduce the
analysed system to a single body with point mass, and look at the momentum balance of the
collision such as in [51], where the authors explain observed locomotion behaviour in the
walk to run transition, and the elastic behaviour in stance phase during running. An analogous
approach studies collisional behaviour of quadrupedal animals [123] and shows that walk and
gallop provide collision reduction strategies in stance phase. Collisional analysis of gaits is
not confined to legged locomotion, but has also been used to study arboreal locomotion, such
as brachiation in gibbons, to explain the observed overshoot during swinging motion [124].
Other collision-based models study two-bodied locomotion, such as in [10] where toe-off
impulses acting on a two-legged system are investigated. A similar system is introduced
in [44], where the concept of passive dynamic walking is studied in a collisional context.
Extensions of the two-legged models also investigate the effect of mass distribution on
stability as described in [47] and [52]. Collision-based models have not only led to the
advancement of our theoretical understanding of locomotion, but also facilitated the creation
of dynamic walking robots [125]. Even though collision-based models have been studied
extensively in the past, the effect of mass distribution on the energetic cost of actuation
and collision have not been investigated in depth, which we deem crucial for the study of a
rotating and hopping wheel.

In this work, we make use of the collision-based modelling approach to analyse energy
expenditure of three strategies in a wheeled system in the task of overcoming an obstacle,
and explicitly emphasise the role of mass distribution in the energetic analysis of actuation
and collision. We quantify mass distribution by the wheel’s moment of inertia around the
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centre of mass, which uniquely defines the inertial properties of the rigid body. We find
a new way of overcoming the obstacle which is associated with low energetic costs in the
case of a small moment of inertia. The model thus underscores the importance of moment
of inertia and centre of mass position in locomotion with collisional events and suggests a
new perspective to understand and induce hopping. Other than the quantitative analysis of
energetic advantage of hopping and rolling, this model can provide useful insights to the
study of moment of inertia-dependent dynamics in locomotion such as in swing-leg retraction
[92], posture control during flight phase [126], and balance during stance phase [127].

We test and compare the energetic cost of three distinct strategies for a rigid wheel to
overcome an acute and rigid obstacle of given height, as illustrated in Figure 1. We use the
result of this comparison to find conditions for which hopping is energetically advantageous to
rolling. We then take the theoretical result and use it to study its prediction on animal-related
locomotion conditions. The three strategies we analyse are governed by different physical
effects to overcome the obstacle. The rolling strategy shown in Figure 1c is characterised by
a wheel with centred mass colliding with the obstacle and subsequently rolling over it. In the
trivial hopping strategy as shown in Figure 1b, the kinetic energy of the system is increased in
vertical direction by the potential energy required to overcome the obstacle (∆ET H = mgh).
We introduce a third strategy with the rotational hopping strategy as shown in Figure 1a. This
strategy exploits rotation to overcome the obstacle and–as we will see–not only surpasses
the trivial hopping strategy in terms of energy effectiveness, but also displays characteristics
of legged hopping locomotion. The wheel’s mass distribution in this strategy is such that
the centre of mass is off-centred, due to which the centre of mass velocity will eventually
have a component in vertical direction as the wheel rolls over the ground. At a point where
the velocity is directed away from the ground, an induced rotation causes the wheel to revert
its angular velocity. This forces the boundary of the wheel to move away from the ground,
which thus leads to a change from rolling to a ballistic flight phase. The cost of this strategy
is composed of the energetic cost of reverting the rotation at take-off and the energetic cost
of collision at touchdown.

The model for all strategies is completely described with its wheel radius R, its eccentricity
a (for the rotational hopping strategy), the mass located in the centre of mass m, the moment
of inertia around the centre of mass I, the obstacle height h, and the approach velocity ux.
We will first analyse locomotion strategies without specifying mass-size relationships before
we apply an allometric scaling law derived from hopping, running and trotting animals. This
relates mass, radius and moment of inertia to animal properties, and invokes the question of
whether animals would prefer to roll or hop in given environmental conditions.
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Fig. 4.1 Locomotion strategies. The motion progression of the three studied strategies to
overcome an obstacle. Energetic cost of collision is derived and completely defined for
each strategy by wheel radius R, eccentricity a of the wheel, the mass located in the centre
of mass m, the moment of inertia around the centre of mass I, the obstacle height h, and
the approach velocity ux. a, Motion progression of the rotational hopping strategy using
an off-centred wheel. Hopping is induced by reverting the rotation during stance phase. b,
Motion progression of the trivial hopping strategy using a wheel with centred mass. Hopping
is induced by an increase of the kinetic energy in vertical direction. c, Motion progression of
the rolling strategy. The obstacle is overcome by a wheel with centred mass colliding and
rolling over it.

The next section gives a detailed description of the used model and methods, followed by
the results of the strategy comparison and the study of the theoretical model for allometric
(animal related) scaling laws. We then verify the energetic collision losses of rolling and
hopping in an experimental setup of a wheel-obstacle test platform, before we discuss the
results of the strategy comparison.
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4.2 Methods

4.2.1 Model Assumptions

The subsequent theoretical analysis uses standard assumptions of planar rigid body mechanics.
The body inertia is given by the centre of mass with the point mass m, and the mass
distribution represented by the moment of inertia I around the centre of mass. Collision of
the rigid body with the environment takes place at its boundary, which is a circular shape in
all cases. Note that forces acting on the boundary not only accelerate the centre of mass, but,
depending on their direction and point of attack, also induce a moment around the centre
of mass according to the moment of inertia I. We model environment interactions with
a Newtonian kinematic impact law with inelastic collisions. This relates the pre-collision
generalized velocity uuu− to the post-collision velocity uuu+ by

uuu+ =
(

I−M−1JT
c
(
JcM−1JT

c
)−1 Jc

)
uuu−, (4.1)

with I the identity matrix, M the generalised mass matrix, and Jc the contact Jacobian (see
also Chapter 2). Note that Equation (4.1) does not allow for slippage between the wheel and
the environment, meaning that we do not have to model energetic losses due to friction. We
will make extensive use of the collision matrix Mc, which is used to map the pre-collision
generalised velocities to the dissipated energy by

∆E =
1
2
(uuu−)T Mcuuu−, (4.2)

with
Mc =−JT

c
(
JcM−1JT

c
)−1 Jc. (4.3)

4.2.2 Rotational Hopping Strategy

Figure 4.2 shows the off-centred wheel model for the rotational hopping strategy with the
generalized coordinates qqq = [x,y,φ ]T with respect to an inertial frame of reference, with x
the horizontal position of the centre of mass, y the vertical position of the centre of mass, and
φ the angular position of the body. The radius of the wheel is denoted by the parameter R
and its eccentricity by a. Note that for all the calculations in this work, the eccentricity was
set to half the radius a = 0.5R. The ground contact Jacobian is then

Jc =

[
1 0 R−acosφ

0 1 −asinφ

]
, (4.4)
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and the generalized mass matrix

.M =

m 0 0
0 m 0
0 0 I

 (4.5)

 
   

 
 

  
 

 

            

  

     

    

    

 

   
 

    
 

     
 

 

    

 

Fig. 4.2 Rotational hopping model. Generalised coordinates qqq = [x,y,φ ]T with x the
horizontal displacement from origin O, y vertical displacement from origin O, angular
position φ , and system parameters mass m, moment of inertia I, wheel radius R, eccentricity
a, and obstacle height h. (I) State just before impulsive actuation. The angular velocity of the
system is reverted in a collisional event with angular impulse ζR from φ̇

−
I to φ̇II . The velocity

vCoM dictated by the rolling motion then leads to a ballistic flight phase. (II) Ballistic flight
phase. (III) State just before impulsive energy loss due to impact ζ . Note that φ̇II = φ̇

−
III

We now describe the mode of locomotion of this system as also shown in Figure 4.2.
Given a forward speed ux of our system at an angle φ , the generalized pre-take-off velocity is

uuu−TO = k

acosφ −R
asinφ

1

 , (4.6)

where k = ux/(acosφ −R). Figure 4.2 (I) indicates that the centre of mass velocity vvvCoM

during rolling can point away from the ground, which we exploit for a ballistic flight phase.
A flight phase is induced if the angular velocity is reverted in its direction in an instant, as
this interrupts the rolling motion and causes the boundary of the robot to move away from
the ground rather than staying on it. We induce this change by in impulsive angular event,
gauged such that the wheel reaches the angle φ = 0 at apex point. This condition is fulfilled,
if the angular speed after impulse is exactly φ̇+ =−φ∗/tA, where tA is the flight time to apex
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and φ∗ is the take-off angle. The angular impulse does not influence the translational speed
of the centre of mass at take-off, which means that a ballistic motion of the centre of mass
with initial velocity as given in (4.6) provides tA = u−TO,y/g. We now find an expression for
the energetic cost to change the angular speed from pre-take-off to post-take-off speed by

∆ER =
I
2

((
φ̇
+
)2

+
(
φ̇
−)2
)
=

I
2

( φ∗g
u−TO,y

)2

+ k2

 . (4.7)

The first term in the above equation is the cost to induce the required angular speed during
flight phase, while the second term accounts for the braking energy required to stop the
rolling motion. The impulsive actuation causes the wheel to hop over the obstacle without
colliding with it. The only dissipative collision is the ground collision at touchdown. Since
the ground is assumed to be flat and the flight phase symmetric, we have for the touchdown
angle φT D =−φ∗, and the generalised velocity at touchdown

uuu−T D =


k(acosφ −R)
−kasinφ

− φ∗g
u−TO,y

 . (4.8)

The energy loss at ground collision ∆EC is then calculated using (4.2), where Jc(φ =−φ∗)

is used for the Jacobian in (4.3) and uuu−T D for the generalised velocity. The total energy
consumed to overcome the obstacle is the sum of energy required to induce the backward
rotation at take-off plus any energy deficit of the final energy after touchdown as compared to
the initial energy. We therefore write for the total energy consumed to overcome the obstacle
with the rotational hopping strategy

∆EH = r(E0 −E1)+∆ER, (4.9)

with r(.) the ramp function, E0 = 1/2(u−
T D)

T Mu−
T D, and

∆E1 =
1
2
(uuu−T D)

T Muuu−T D +
1
2
(uuu−T D)

T Mc(−φ
∗)uuu−T D, (4.10)

In our analysis, we will require the wheel to overcome an obstacle of height h. This will
influence the required take-off angle of the rotational hopping strategy. The obstacle will
be surpassed if the ballistic motion of the wheel is such that the wheel rim won’t touch the
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obstacle, which is formulated with the following implicit equation

0 = 2g(1−a)cosφ +(kasinφ)2 −2gh. (4.11)

The solution will lead to the minimal take-off angle φ∗ leading to a symmetric hopping
strategy which surpasses the obstacle.

Note that we assume the wheel is horizontally placed at take-off such that it is exactly
above the obstacle at apex point. This placement can lead to cases where the boundary of the
wheel overlaps with the obstacle at take-off in the case of slow locomotion speeds. For the
sake of simplicity, we do not model these interactions, and we assume that the obstacle has
no effect on the hopping process.

4.2.3 Rolling Strategy

The collision of a rigid wheel with an obstacle is a classic problem in collision mechanics. We
use the generalised rolling velocity before impact uuuR = ux[1,0,−1/R]T which corresponds
to a wheel with centred mass rolling on flat ground. The energy loss at collision can simply
be obtained from the collision matrix with the Jacobian of the collision point

Jc =

[
1 0 R−h
0 1 −

√
2Rh−h2

]
, (4.12)

We assume the coefficient of restitution to be negligible, thus allowing for inelastic collisions.
This gives the collision loss

∆ERC1 =
1
2

uuuT
RMcuuuR =−mu2

x
2

h(2mR2 −Rhm+2I)
R(mR2 + I)

. (4.13)

The impact on the flat ground after rolling over the obstacle is also considered in the
theoretical prediction. Theoretical energy loss is easily obtained with the post-obstacle
collision velocity uuup as

∆ERC2 =
1
2

uuuT
p M∗

cuuup, (4.14)

With uuup given by (4.1) using Jc as defined in this section and uuuR, and M∗
c is formed by using

a contact Jacobian for flat ground. This leads to the total energy loss of the rolling collision

∆ER = ∆ERC1 +∆ERC2. (4.15)
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4.2.4 Trivial Hopping Strategy

For the trivial hopping strategy of the centred wheel, we apply a vertical impulse just before
the obstacle, such that the wheel hops over it. The energy required for this strategy is equal
to the potential energy to lift the wheel onto the obstacle

∆EHW = mgh. (4.16)

This energy is exactly lost during ground collision, so that the post-obstacle speed is identical
to the initial speed. As in the case of the rotational hopping strategy, the wheel is horizontally
placed at take-off such that it will hop over the obstacle at apex point. We do not model
obstacle overlap due to this placement in the case of slow locomotion speeds.

4.2.5 Allometric Scaling Laws

The relation between hip height in running and hopping mammals and birds has been
established using biological data [15],[111],[128]. The relation for radius to mass was found
using linear regression in the logarithmic scales of mass and hip height. The residual least
squares solution is

R = 0.2063m0.3720, (4.17)

with a coefficient of determination r2 = 0.821. The result closely corresponds to findings for
quadrupeds in [129]. We therefore employ the radius of gyration and leg mass found in [129]
to deduce the moment of inertia of the leg around the hip joint. The radius of gyration is

Rgy = 0.047m0.33, (4.18)

and the leg mass
mL = 0.107m1.03, (4.19)

which leads to a moment of inertia of one leg with respect to pivot point

I = 2mLR2
gy = 0.0004726m1.69, (4.20)

The factor 2 accounts for two legs swinging in the same direction as in the case of quadrupedal
animals, from which the data was retrieved.
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4.2.6 Experimental Set-Up

The model was tested using a simple experimental setup as is illustrated in Figure 4.3. The
wheel consists of two wooden discs with a radius of R = 0.2m and 5mm thickness which
were rigidly connected with an 230×13mm aluminium rod in the centre of the wheel. A
payload was added on the centre of the rod to improve the mass to moment of inertia ratio,
resulting in a mass of m = 1.417kg and a moment of inertia of I = 0.008kgm2. To realize the
off-centred mass, the payload was transferred to a second rod placed at a distance of R/

√
2

from the centre of the wheel. This shifted the overall centre of mass roughly to R/
√

8 from
the centre of the wheel. The modification led to a change in mass and inertia of ml = 1.495kg
and Il = 0.01kgm2, respectively. Four reflective markers were placed on the outer face of one
disc for the purposes of tracking the wheel motion. The wheel was then placed on one of four
different heights on an aluminium ramp and released, which would accelerate the wheel to
four pre-impact velocities before reaching a flat wooden track leading to the obstacle. Rubber
sheets were fixed to the wooden flat track and metal ramp to guarantee the no-slip condition.
The obstacle consisted of wood of 6mm thickness and was covered with a thin rubber sheet
to reduce slip between the wheel and obstacle. Two obstacle heights (3.6cm = 0.2R and
7.8cm = 0.4R) were investigated as shown in Figure 4.8. After the obstacle, the flat wooden
track covered with rubber strips continued to provide space for the collision after the obstacle
was surpassed. For the hopping strategy, an impulse generator was installed, which consisted
of a lever under the wooden track before the obstacle which would push against the track
from below and lift a part of the track. To activate the lever, a weight of 1.5kg was dropped
on the far end from a height no higher than the initial ramp position of the system. The
dropping height was optimised manually until the required energy was achieved to overcome
the obstacle at the tested speed. To track the motion of the wheel and to get an indication of
the obstacle position an OptiTrack motion capturing system was used with 12 cameras placed
around the testbed. Position data was tracked at a rate of 250Hz with a precision of around
1.5mm and velocities were derived numerically from position data. Pre-collision, flight phase,
and post-collision states were obtained from the raw data to retrieve energy conditions and
losses. Each pre-collision velocity – obstacle height combination was repeated until five
successful samples were recorded.

In the experimental validation of the rotational hopping strategy, we only verify the
ground impact energy loss, not the impulsive event at take-off. This is because the ground
impact energy loss may be distorted by effects of ground-wheel interactions such as friction,
which is not the case in the impulsive take-off event. We test the ground collision loss by
throwing the wheel by hand and induce a retracting motion to overcome the obstacle. The
energy loss over the impulsive event is then compared to the theoretical prediction according
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to Equation (4.2), given the pre-touchdown velocity and touchdown angle. The position
during flight phase, collision, and rollout phase were again tracked using the motion capturing
cameras. The results are shown in Figure 4.9, where the prediction error is normalised with
the total energy at touchdown and plotted as a function of the total energy at touchdown.

Fig. 4.3 Experimental set-up. Sketch of the experimental conditions. A wooden and rigid
wheel-axle system is placed on top of a ramp, released, and guided towards an obstacle.
Depending on the locomotion strategy, the system is either passively negotiating the obstacle
or hopping over it by an impulse. The motion is recorded with a motion capturing system
using four trackable markers placed on one face of the wheel.

4.3 Results

4.3.1 Theoretical Results of the Rotational Hopping Strategy

As shown in the methods section, hopping with the rotational hopping strategy as per Figure
4.2 comes with two energetic costs of different nature. The first cost is associated with the
energy required to induce a retracting motion of the wheel according to eq. (4.7). This
cost increases for short flight phases, as the required rotation velocity scales with the flight
phase time. The second cost is due to the collision with the ground, which depends on the
posture of the off-centred wheel and its velocity at touchdown. Figure 4.4 shows the two
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Fig. 4.4 Costs for rotational hopping strategy. The two terms of the energetic collision
loss in Equation (4.9) as a function of forward speed. The blue line corresponds to the cost of
retraction or rotation at take-off, and the yellow line corresponds to the cost associated with
the collision at touchdown. The black dashed line indicates the trivial hopping strategy’s
collision loss, equal to mgh. The parameters are: mass m = 80kg, obstacle height of h = 0.3R,
Radius R = 1.05m, moment of inertia I = 0.78kgm2, and the take-off angle φ∗ =−0.43rad.

energetic costs of the hopping locomotion of an off-centred wheel as a function of locomotion
speed. The wheel properties are defined for a mass of m = 80kg and an obstacle height of
h = 0.3R, Radius R = 1.05m, moment of inertia I = 0.78kgm2, and the take-off angle which
was found to be φ∗ = −0.43rad by solving the implicit Equation (4.11). The parameters
roughly correspond to a human subject and serve as an example. We see for the cost of
retraction that a high cost occurs for low locomotion speeds, which is explained by the short
flight phase time and take-off angle, increasing the first term of Equation (4.7). For higher
speeds, this term becomes smaller, but the second term which accounts for the energy loss
due to the required rolling-deceleration increases quadratically with locomotion speed. The
presence of these two terms causes a minimum for the cost of retraction, slightly above 3m/s.
For the cost of collision, we see an increase towards higher locomotion speeds, which is
explained by the dependency of collision loss with the quadratic form ∆E = uuu−Mcuuu/2 in
Equation (4.2). The collision loss is significantly lower in the displayed range than for the
case of a wheel with centred mass which requires the potential energy mgh to overcome the
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obstacle. This is due to the off-centred position of the wheel, and can be comprehended as
follows: If the moment of inertia around the centre of mass was zero in the off-centred wheel,
we could find a landing angle which causes no energy loss during collision. This angle is
such that the touchdown velocity of the centre of mass is perpendicular to the vector pointing
from centre of mass to ground contact point. In the case of systems with smaller moments of
inertia as compared to their masses, this effect can reduce the collision losses as compared to
a wheel with centred mass.

Figure 4.4 shows that for speeds higher than 3m/s, the rotational hopping strategy predicts
a cost of retraction of roughly 1/3 of the energetic cost of collision, and collisional energy
loss is 2/3. In accordance with these findings, studies of running guinea fowls report swing
leg costs of 26% of the total energy used for locomotion irrespective of locomotion speed
[130], and a study for walking in humans predicts a cost of roughly 30% [131].

4.3.2 Mass-Independent Theoretical Results

The rotational hopping strategy depends on a low moment of inertia to exploit its advantages
over other strategies. Surprisingly, we find that only if the moment of inertia scales with
I = αmR2, i.e. the square of the radius, where we refer to the mass independent quantity
α ̸= α(m) as the moment of inertia factor, the ratio of energy loss of rolling and hopping
is independent of the mass, and solely depending on the Froude number Fr = u2

x/(gR) for
legged locomotion (which is the square of the Froude number used in continuum mechanics)
and the obstacle height h. Figure 4.5 shows regions of optimality as a function of the factor
α , the Froude number, and obstacle heights between h = 0.1R and h = 0.5R. We see that
hopping is more efficient for higher Froude numbers and low values of α , while rolling
dominates at low Froude numbers and a larger moment of inertia. The relative improvement
of rotational hopping for higher Froude numbers and low moment of inertia factors is
explained by the different costs associated with overcoming the obstacle. While the rolling
strategy loses kinetic energy when colliding with the obstacle, the rotational hopping strategy
has no costs associated with obstacle collisions. On the other hand, while the rotational
hopping strategy requires the rotation of the wheel to be reversed to hop over the obstacle, the
rolling strategy passively rolls over it. The energetic costs in the strategies scale differently
as a function of Froude number and moment of inertia factor, which results in the depicted
transition lines. These lines represent the section at which rolling and rotational hopping
strategy have an equal energetic cost to overcome the obstacle. The effect of obstacle height
on the optimal Froude number is more prominent for larger values of α , and appears to lose
significance for lower values. The optimality transitions as a function of h also change their
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shape first in favour of the rotational hopping strategies for h = 0.1R to 0.2R, and then in
favour of the rolling strategy from h = 0.3R to 0.5R.

Fig. 4.5 Comparison of rotational hopping strategy and rolling strategy. Regions of
strategies with least energy loss to overcome an obstacle of height h as a function of the
moment of inertia factor α = I/mR2, and the Froude number Fr = u2

x/(gR). The results
shown are independent of the mass of the wheel.

Note that Figure 4.5 provides results independent of wheel mass. It thus defines, depend-
ing on the wheel properties, whether it is better to roll or to hop over an obstacle of height h
with locomotion velocity ux.

4.3.3 Animal-Related Theoretical Results

Before we present the animal-related results in this section, the similarities of our model and
legged animal locomotion need to be explained as they are not obvious. Legged locomotion
is characterised by repetitive stance and possibly flight phases. The transition from one stride
to the next is often accomplished over an impulsive event, in which energy is dissipated in
the leg-ground collision. The leg is doing work to compensate for the collisional energy
loss (and other losses) during the stance phase. The legs need to be swung back during the
gait cycle to allow for a repetitive motion. Our rotational hopping model accounts for all
the above as follows: flight and stance phase are both modelled; collisional energy loss is
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modelled at flight-stance transition through inelastic collisions; energy deficit at the end of
the cycle accounts for the work that needs to be done to reaccelerate to the initial wheel state;
rotational motion is induced during flight to reset wheel posture. For the rolling strategy, the
wheel-obstacle collision is identical to collisions as in the rimless wheel model for walking,
which becomes obvious by drawing spikes from centre of mass to ground contact and obstacle
contact in the rolling strategy obstacle collision. There are, of course, limitations of our
simple collisional models to capture the complex energetics of legged locomotion. Many
effects add to the complexity of legged locomotion, e.g. terrain properties, leg morphology
and compliance, friction with the ground, etc., which are not captured by our simple model.
The results presented in this section assume that legged animals are underlying the same
physical laws of overcoming an obstacle as our wheel model and need to be interpreted with
the above limitations in mind.

We now study the energetic costs for the three strategies to overcome an obstacle between
h = 0.1R and h = 0.5R. We assign animal properties to the wheel, by setting R to the animal
leg length, m to its body mass, and I to the leg moment of inertia around the hip. The exact
scaling laws are presented in the methods section. As the moment of inertia does not scale
proportionally to the square of the radius as follows from Equation (4.20) (radius of gyration
scales differently from leg length), the results now depend not only on the locomotion speed,
but also on the mass. The energetics of the respective strategies are computed as described in
the method section, with Equation (4.15) for rolling, (4.16) for trivial hopping, and (4.9) for
rotational hopping. Figure 4.6a shows regions of optimal strategy as a function of body mass,
locomotion speed, and obstacle height for the trivial hopping and rolling in terms of energy
required to overcome an obstacle. We see that rolling dominates lower speeds and performs
better at higher body masses. The lower the obstacle height, the better the hopping strategy
performs. Indeed, we can study the limit case for which the obstacle height vanishes, and
find that optimality transition from rolling to hopping occurs at a Froude number of 1, with
Fr = u2

x/(gR). A simulation study of gait transitions with energy optimality objective [11]
reached a similar conclusion, stating that running is preferred over walking for vanishing
step lengths at a Froude number larger than one. Vanishing step lengths would correspond to
infinitesimal obstacle heights in our model.

Figure 4.6b shows the rotational hopping strategy and its optimality transitions from
rolling to hopping for the same obstacle heights and mass/locomotion speed as in 4.6a.
We see that even though rolling is still superior to hopping for low locomotion speeds, the
rotational hopping strategy takes over optimality at lower speeds than in the trivial hopping
case. Figure 4.4 already hinted toward this observation, by the rotational strategy’s lower
energetic losses. We would like to point out that the improved performance is dependent
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(a)

(b)

Fig. 4.6 Strategy comparison for animal related parameters. Regions of optimal strate-
gies as a function of body mass m, locomotion speed ux, and obstacle height h. Parameters
are set using the allometric relations (4.17)-(4.20), which scale the wheel radius R such
that it corresponds to the animal leg length, the point mass m corresponds to animal body
mass, and the moment of inertia around the centre of mass I corresponds to leg moment
of inertia around the hip. a, Rolling strategy compared to trivial hopping strategy and their
optimal regions. b, Rolling and rotational hopping strategy and their optimal regions. Walk
to hop/run/trot gait transitions for various animals are indicated [132], [133], [134] [135].
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on our allometric scaling law of moment of inertia with body mass m. As we have seen in
Figure 4.5, the optimality transitions are independent of mass if the moment of inertia factor
α is of the form I/mR2. Since this is not the case in the allometric relations (4.17)-(4.20),
this is not exactly true. We find, however, that for the allometric scaling law of leg moment
of inertia (4.20), the optimality transition happens above a Froude number of Fr = 0.3, only
slightly varying with body mass. This is in close correspondence with experimental findings
in quadrupedal animals [136]. As we scaled the moment of inertia of the wheel with the
moment of inertia of animal’s legs, we indicated transition speeds from walking gaits to
hopping, running, or trotting for various animals, and we observed that they seem to follow
the optimality transition.

4.3.4 Experimental Results

For validation of our model assumptions, we constructed an experimental test platform as
shown in Figure 4.3 and explained in detail in the methods section. Figure 4.7 shows the
motion progression for the three locomotion strategies in experiment. In the simple case of

Fig. 4.7 Motion progression of experimentally tested strategies. a, motion progression of
the rolling experiment at an approach speed of 1.8m/s. b, motion progression of the trivial
hopping experiment at an approach speed of 1.9m/s. c, motion progression of the rotational
hopping experiment by throwing the wheel. Approach speed corresponds to 2m/s.

the centred wheel, we performed a controlled set of experiments to assess the collisional
energy losses as explained in detail in the methods section. The results for two different
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obstacle heights as a function of the kinetic and potential energy before the obstacle collision
are shown in Figure 4.8, along with the theoretical predictions of the model. The variance
arises mainly due to noise in the measurements and the numerical derivative to obtain system
velocity, but may also stem from ignored effects such as damping, friction, and the omitted
lateral dimension. The impulse generator created variations in hopping heights, which was
accounted for in post-processing by subtracting the gap potential energy arising due to the
distance between wheel apex height in flight phase and obstacle height. Measurement noise
and possible elastic restitution at touchdown may have caused the energy loss to fall under
the predicted value in some cases. The results show that optimality transition of both theory
and experiment occur at around the same initial energy, i.e. approach speed, which validates
our model assumption that collisions are the dominant energetic loss during the process of
overcoming the obstacle. For the case of the off-centred wheel, we assessed the accuracy

Fig. 4.8 Experimental collision loss for rolling and trivial hopping strategies. a, Energy
loss of rolling strategy and trivial hopping strategy as a function of pre-collision energy for
an obstacle height of 0.18R. Error bars indicate one standard deviation over five experiments.
b, Energy loss of rolling strategy and trivial hopping strategy as a function of pre-collision
energy for an obstacle height of 0.39R. Error bars indicate one standard deviation over five
experiments.

of the energy saving mechanism at collision as predicted by the quadratic form (4.2). The
simplest validation is to throw the wheel to land at different touchdown angles and speeds,
and comparing the experimental losses with the theoretical prediction. Figure 4.9 shows
the relative error of the predicted energy loss at collision divided by the total energy at
touchdown, as a function of the total energy at touchdown. The total energy is the sum of
kinetic and potential energy, and the relative error is the theoretical predicted energy loss
minus the experimental energy loss. As shown by the results, the experimental losses tend to
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be larger than the theoretical prediction, which we explain by non-modelled internal losses in
the system and friction. The results show that the collisional model of the off-centred wheel
can provide accurate predictions of energy loss in experimental conditions. This ensures that
the predictions in Figure 4.4, where we claimed that the off-centred wheel can significantly
reduce energetic collision losses as compared to the case of the centred wheel, are valid.
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Fig. 4.9 Prediction error of energetic collision loss for rotational hopping strategy. The
off-centred mass wheel was thrown over the obstacle, and the touchdown position and velocity
state was used to predict theoretical loss ∆ET heor, which was compared to the experimental
loss ∆EExp to give the prediction error ∆EPred . The value is normalized with the total energy
at touchdown ETotal = EKin +EPot .

4.4 Discussion

In this work, we have studied the task of a wheel overcoming an obstacle. Because wheels
are generally studied in the context of rolling, we aimed to find out if strategies like hopping
can be energetically advantageous in this context. Based on collisional mechanics, we have
analysed three strategies, namely the rolling strategy, the trivial hopping strategy, and the
rotational hopping strategy. Collision based models which study impulsive transitions of
the centre of mass [51], [123], [124], [10], are powerful tools to understand the underlying
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physical principles of locomotion, but more complex models might explain effects which
are not covered by the simple representation [113]. In this spirit, the inclusion of mass
distribution represented by the moment of inertia around the centre of mass, as presented
here, was a necessary model extension to find the rotational hopping strategy. Due to this
enhancement of the model, we found that the trivial hopping strategy (which is unaffected by
the moment of inertia) is not necessarily the most energy-effective in the task of overcoming
an obstacle, but, as shown in Figures 4.4 and 4.6, that the rotational hopping strategy is
superior over a wide range of parameter values.

We provided quantitative results that show at which point a wheel better hops than rolls
over an obstacle as a function of the Froude number, of the ratio α = I/(mR2), and of the
obstacle height. The three tested locomotion strategies underlie different sources of energetic
cost. The passive rolling strategy collides with the obstacle, the trivial hopping strategy
requires the fixed energy mgh to be lifted over the obstacle, and the rotational hopping
strategy uses a backward rotation to retract its boundary to clear the obstacle and has a
reduced collision at touchdown due to the eccentricity of the wheel. Although the strategies
are different, a comparison of the collisional losses reveals that the advantage of hopping over
rolling as shown in Figure 4.5 is independent of mass m, and can distinctly be determined by
only the Froude number and moment of inertia factor α for a given obstacle height h. The
energetics of the three strategies therefore uniquely determine the best way to overcome an
obstacle given wheel size, speed, mass distribution, and obstacle height.

The results shown in Figure 4.6 presented velocity regions of advantages for hopping
over rolling strategies for a wheel with the same size, mass, and mass distribution as hopping
and trotting animals have. The results show that animal gait transitions from walking to
hopping locomotion occur around the boundary from advantages in hopping to rolling. These
results point to similarities between the wheel roll-hop transition and gait transitions in legged
animals. One aspect which relates to both systems is the cost to retract the wheel or leg.
During flight phase of the wheel model, as seen in Figure 4.4, the cost to induce the retracting
motion at higher locomotion speeds is around 30%. Similar findings were presented for
the energetic cost of swing leg retraction in animals [137],[138], and results obtained with
mechanical models as in [92],[126] further highlight the importance of modelling swing leg
retraction in legged locomotion energetics. Furthermore, the rotational hopping strategy also
allows for a redirection of centre of mass after touchdown, which costs no energy due to
the smooth rolling transition of the wheel. This effectively results in a trajectory like that in
spring-mass models for locomotion [12].

As indicated in [13] and [122], walking energetics can be modelled with a rimless spoked
wheel, where the legs are interpreted as spokes. The rolling collision loss studied here is
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indeed identical to the spoked wheel collision, as revealed by a simple rotation of the system
(the effect of gravity is negligible over a collisional event). If walking therefore is associated
with the same collisional energy loss as rolling, Figure 4.6b may explain why animals change
their gaits at the transition where hopping becomes more advantageous than rolling. Note
that this is only true, however, if the rotational hopping strategy presented in this work does
capture the correct energetic costs as found in legged animals. If so, the leg, through walking,
may incorporate advantages of rolling at slow speeds, and of hopping at faster speeds. Based
on the premise of environments with obstacles and the objective to minimise energy, the
wide use of legged hopping rather than rolling in nature seems reasonable.

Our results need to be interpreted with consideration of the model assumptions. A simple
obstacle may not completely represent the complexity of natural environments, and legs
can certainly exploit more subtle effects than a rigid wheel. Nevertheless, we showed the
conditions at which hopping outperforms rolling strategies to overcome an obstacle in a
wheel, and we largely verified the energetic loss predictions in experiments. The results
state that if the moment of inertia of the body is small, the superiority of hopping becomes
apparent even at low locomotion speeds. The slender legs of animals hint toward a design
in nature to reduce leg moment of inertia, possibly to exploit the same physical effects as
studied in the wheel model. In the next chapter, we explore if the rotational impulses to
induce the rotational hopping strategy can be implemented in robotic systems to define a
novel mode of locomotion.





Chapter 5

Rotational Impulses for Robot
Locomotion1

The theoretical predictions for hopping locomotion based on discrete actuation were studied
in Chapters 3 and 4. In this chapter, we further investigate the locomotion dynamics by
focusing on stability, the shape of the system, and a particular impulse which acts in the
angular degree of freedom. The proposed mode of locomotion suggests a novel locomotion
system, which we analyse in this chapter. In addition, this chapter presents the first robot
implementation of discrete actuation and we show how the framework can lead to novel
locomotion mechanisms for robotics.

5.1 Introduction

Actuation in hopping and jumping robots presents one of the major challenges to build
efficient and robust hopping machines. Raibert introduced hopping and running robots using
hydraulics, compressed air [86], and combustion engines to supply the required forces for
high-speed and robust locomotion [139]. These methods however require heavy actuators
or need to be remotely supplied with energy. Animals appear to avoid this disadvantage by
employing spring-like behaviour in muscles and tendons [140], [141], which has inspired

1This chapter presents the collaborative work with my supervisor F. Iida. I have initiated the problem
statement, derived the theoretical equations, designed and built the robot Robbit, conducted, planned and
prepared the experiments, and wrote the paper. F. Iida helped discussing and revising the paper. The manuscript
which is published in the IEEE Transactions on Robotics and which forms the basis of this chapter is

• Fabio Giardina and Fumiya Iida. Efficient and stable locomotion for impulse-actuated robots using
strictly convex foot shapes. Transactions on Robotics, doi: 10.1109/TRO.2018.2813359, 2018.
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engineers to develop smarter actuation mechanisms such as series [142] or parallel elastic
actuation [36].

Recently, there has appeared a trend of research that studies hopping and jumping robots
with impulsive actuation. Elasticity-stored impulses (ESI) are used in robots like the EPFL
jumper [77] where a rapid change from standing to ballistic motion is realised with a 4 bar
linkage and a torsion spring. Based on a similar design, the robot Salto [78] is furthermore
capable of redirecting its posture during flight phase for a controlled second jump, easily
timed due to the impulsive nature of the actuation. These types of jumping robots are
considered beneficial for celestial exploration [143].

Based on a different mechanism, momentum-stored impulse (MSI) actuators store impul-
sive energy in a rotating flywheel. The robot Cubli [144] uses the MSI to lift a cube lying on
its face onto one of its edges or vertices, using the flywheel thereafter to balance the cube.
Space roboticists have exploited this actuation method for exploratory ventures in unknown
environments [145], using impulses for locomotion in low-gravity environments. Similarly,
the 3D M-blocks [146] make use of angular impulses to overcome the magnetic potential of
their locking mechanism and reconfigure themselves into new structures.

The obvious advantage of impulses is their ability to propel a system over great obstacles
as demonstrated for instance by the sand flea robot [147]. Exploiting the accuracy of
impulsive actuation furthermore helps to plan a precise landing point. Space robots exploit
this property to reach targets in complex and unknown environments by planning a sequence
of jumps. A more subtle but no less important advantage of impulsive actuation is its
intuitive effect: an impulse applied at a specific point in time changes a system’s velocity
instantaneously. No integration of the system dynamics needs to be performed to know
the outcome of an actuation. This property enables fast trajectory prediction and therefore
control decisions to be made, which is shown in the agile motion of Salto [78].

Despite the importance of impulsive actuation, the approach was explored neither for
periodic locomotion nor for economical use of impulses. To maintain or improve locomotion
speed given an impulse, it is important to control the stance phase dynamics. The simple
and intuitive actuation with impulses should, however, not be tainted with complex sensory
feedback. Ringrose [40] argues that a robot with a curved foot can be self-stabilised, meaning
that no active feedback control is necessary for stable locomotion. Based on this principle,
we have been exploring the influence of strictly convex foot shapes on hopping locomotion
in robots like Cargo [39]. We found not only that stable and periodic locomotion can be
achieved without any feedback control, but also that we can greatly decrease the energetic
cost of locomotion. The intuitive stabilising properties of strictly convex shapes therefore
lend themselves as an ideal match for impulsive actuation.
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In this chapter, we explore the effect of strictly convex foot shapes on the locomotion
performance of impulse-actuated systems in terms of speed and economic use of impulses,
and compare the results to the theoretical performance of an MSI actuated cube. We first
present tools to understand the effect of shape on the dynamics in a theoretical model, and
then study the predictions in the case of a disc with an off-centred mass actuated by MSI in
simulation. We further present a real world implementation with the robot Robbit to validate
our findings.

The remaining chapter is structured as follows: Section 2 introduces the modelling
approach and the control for locomotion with impulsive actuation and strictly convex shapes.
Section 3 presents methods used to find limit cycles, proof of stability, and the results of the
system’s locomotion performance. Section 4 introduces the robot Robbit, designed using
MSI actuation and a strictly convex shape of a disc with an off-centred mass. Experimental
results and comparison with the simulation model are presented in Section 5. Section 6
discusses the results, and Section 7 concludes the chapter.

5.2 Locomotion Model

The locomotion model presented here is defined using standard planar rigid body dynamics.
That is, the rigid body considered is completely defined by its total mass, moment of inertia
with respect to the centre of mass, the centre of mass, and its boundary or strictly convex
shape sss(ϕ), which defines the set of points of interaction with the environment as a function
of the angular parameter ϕ as shown in Figure 5.1. Strict convexity, which is a property of
the shape sss if sssT d2sss

dϕ2 < 0 ∀ϕ ∈ [−π,π], is required to distinguish the studied systems from
polygons, which cannot roll without impacts. We furthermore assume a planar model, as the
presented locomotion mode does not depend on the lateral dimension.

5.2.1 Constrained Equations of Motion

We would like to point out that we assume a no-slip condition at this point to simplify analysis.
As explained in more detail later, the results presented in Section 5.3.3 will consider friction
of the Coulomb type for the prediction of robot performance. We implement interactions
by specifying kinematic constraints a priori, and solve the resulting equations to find the
enabling forces. We will denote with qqq = (x,y,φ)T the generalised coordinates with x and y
the coordinates of the centre of mass with respect to the inertial frame of reference I located
at origin O and φ the angular rotation of the body fixed frame of reference S with respect to I.
We enforce the rolling constraint by requiring that the relative velocity between the ground
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Fig. 5.1 Definition of shape sss as a function of the parameter ϕ , and contact function σσσ as
a function of the system state φ . I is the inertial frame of reference, and S is the chosen
body-fixed frame of reference.

contact point on the robot and the ground vanishes, i.e.

Jc q̇qq =

(
ẋ−σy(φ)φ̇

ẏ+σx(φ)φ̇

)
= 000, (5.1)

with Jc the Jacobian of the ground contact and q̇qq the generalised velocity. We will refer to the
vector function σσσ = (σx,σy)

T as contact function, as it represents the vector pointing from
the centre of mass to the current contact point. After defining the kinematic constraints on
acceleration level, we can use Gauss’s principle to enforce the constraints via Lagrangian
multipliers in the equations of motion. The equations of motion of the constrained system
with possible external force hhh, that includes also the gravitational force, read

M u̇uu = hhh+JT
c λλλ , (5.2)

where M is the generalised mass matrix, and uuu = q̇qq the generalised velocity. The Lagrange
multipliers are found by combining (5.2) and the derivative of (5.1)

λλλ =−
(
JcM−1JT

c
)−1 (JcM−1hhh+ξξξ

)
, (5.3)
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with ξξξ the gyroscopic terms which arise due to the kinematic constraints.

5.2.2 Impulsive transitions

We employ a Newtonian kinematic impact law in normal direction with coefficient of
restitution ε = 0 to model inelastic impacts. We model tangential impacts also with a
coefficient of restitution ε = 0 and assume a no-slip condition. This avoids the effects of
friction and tangential compliance and simplifies the governing dynamics of the locomotion
mode presented in the next subsection. More specifically, we require during this impulsive
event

ġgg++Eġgg− = 0, (5.4)

where E = 0 is the diagonal matrix of coefficients of restitution, ġgg = Jc q̇qq is the contact
point velocity, and we use the superscripts + and − to indicate post-contact and pre-contact
conditions, respectively. The requirement (5.4) then leads to a post-contact velocity

uuu+ =
(

I−M−1JT
c
(
JcM−1JT

c
)−1 Jc

)
uuu−, (5.5)

which defines the transition behaviour from unconstrained to constrained equations of motion
in terms of velocity. Note that the transition of generalised coordinates qqq is smooth and does
not change over the impulsive event.

To transition from constrained to unconstrained equations of motion we do not require
any kinematic conditions, except that the impulsive force applied to the system is causing the
ground contact point to have a velocity component which is pointing away from the ground.
In other words, if we apply an impulse ζζζ , we only need to satisfy the condition

IeeeT
y Jcuuu+ = IeeeT

y JcM−1
ζζζ + IeeeT

y Jcuuu− > 0, (5.6)

where Ieeey is the unit vector in vertical direction of the inertial frame of reference I, as
indicated by the left subscript.

5.2.3 Locomotion with Strictly Convex Shapes

We now describe the method for locomotion using strictly convex shapes. Inertial properties
of the system are mass mS and moment of inertia IS with respect to the centre of mass.
The position of the centre of mass is indicated by the generalised coordinates x and y, in
horizontal and vertical direction, respectively. We apply a torque T in an arbitrary point
P, as indicated in Figure 5.2 (I), causing an accelerated motion in form of rolling around
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Fig. 5.2 Locomotion of arbitrary strictly convex shape through momentum-stored impulse.
(I) Rigid body with centre of mass S and generalised coordinates qqq = (x,y,φ)T is actuated
with a constant torque T around arbitrary point P. The current angular velocity φ̇− is such
that the system rolls instantaneously around contact point C, causing a centre of mass velocity
vvv−CoM. (II) An angular impulse ζ = T × tS, with tS the stance phase time, instantaneously
changes the angular velocity to φ̇+ and induces a flight phase. Note that the centre of mass
translational velocity is not affected directly by the angular impulse. (III) During flight phase,
no torque is applied. The system with mass mS and moment of inertia around the centre of
mass IS is only influenced by gravitational acceleration g.

contact point C. The centre of mass trajectory of the system is constrained by the shape and
is always perpendicular to the contact function σσσ during stance phase. Note that due to the
strict convexity of the shape, the body rolls over the ground without any collisions.

To induce flight phase, we need to apply an impulsive force as defined by (5.6). Here we
come to the central property of this mode of locomotion. The torque T which has accelerated
the system must have generated the angular momentum L = T tS as a result of the reaction
torque in point P, ts being the time for which the constant torque T was applied to the body.
We exploit this angular momentum and assume that we can transfer it in an inelastic collision
to the main structure. A possible outcome of such an event is indicated in Figure 5.2 (II).
The impulse causes an angular velocity which is opposite in direction to the stance phase,
hence causing a backward rotation which leads to a flight phase (III).

We assume the reaction torque has acted on a flywheel located in point P with moment of
inertia IR with respect to P. The angular velocity of the flywheel after time tS under constant
torque T is then

φ̇
−
R = φ̇R,0 +

T tS
IR

, (5.7)

With φ̇R,0 its initial angular speed. For the transfer of impulse, we exploit conservation of
angular momentum which results in an expression for the post-impact angular velocity of the
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Fig. 5.3 Diversity of hopping behaviour for different shape functions in simulation. The blue
trajectory corresponds to the off-centred disc with radius R = 0.2m and eccentricity a = R/2,
the green trajectory to an ellipse with semi-major axis 0.75R and semi-minor axis 0.25R, and
the red one for an ellipse with semi-major axis 0.5R and semi-minor axis 0.25R. Actuation
for all three cases is T = 0.38Nm and impulse limit ζ0 = 0.052Nms.

main body

φ̇
+ =

φ̇−IS + φ̇
−
R IR

IS + IR
. (5.8)

The transferred impulse is then simply derived by

ζ = IS
(
φ̇
+− φ̇

−) . (5.9)

We can now define a control method to induce hopping in strictly convex shapes with
momentum-stored impulse actuation. We define the control parameters constant torque T and
impulse limit ζ0, and start in stance phase, i.e. with the constrained equations of motion (5.2)
and a system state qqq0 which comply with the ground contact conditions. First, the constant
torque is applied onto the system, accelerating both the main body and the flywheel, until the
impulse (5.9) reaches the impulse limit ζ0. Subsequently, momentum between the flywheel
and the main body is exchanged, causing a backward rotation and inducing flight phase.
No torque is applied during flight phase. Once any shape point coincides with the ground,
an impact forces the transition from flight to stance, initiating a new cycle by applying the
constant torque T .

We have tested this control method for various shape function in simulation as shown in
Figure 5.3, highlighting how this simple control law generates stable locomotion trajectories
for randomly chosen strictly convex shapes. Note that the three illustrated cases are controlled
with exactly the same control law and inertial parameter values.
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Table 5.1 Parameter ranges for simulation and robot.

Parameter Symbol Value

Generalized
Horizontal position x [−∞,∞]m

coordinates
Vertical position y [0,∞]m

Angular position main body φS [−π,π] rad
Angular position flywheel φR [−π,π] rad

Experiment & simulation

Foot radius R 0.2 m

fixed parameters

Eccentricity a 0.1 m
Mass main body mS 0.974 kg
Mass flywheel mR 0.431 kg

Moment of inertia main body IS 3.004 ·10−3 kgm2

Moment of inertia flywheel IR 1.543 ·10−3 kgm2

Gravitational acceleration g 9.81 m
s2

Coefficient of restitution ε 0 [−]

Experiment Torque T [0.1,0.3]Nm
control β = {T,ζ0} Impulse limit ζ0 [0.04,0.07]Nms

5.3 Stability of Locomotion

The subsequent analysis is applied to a shape defined by a disc with an off-centred mass,
where R denotes the radius of the disc, and a stands for the eccentricity of the centre of mass,
measured from the midpoint of the disc. This description simplifies the contact function to

σσσ(qqq) =

(
−asin(φ)

acos(φ)−R

)
. (5.10)

The numerical parameters of the system are given in Table 5.1. The applied control sequence
is as described in the previous section.

In the next step, we investigate if this control strategy, together with the defined contact
function (5.10), can lead to periodic solutions corresponding to continuous locomotion.

5.3.1 Finding Periodic Solutions

Periodic and continuous motion, i.e. a motion which maps the take-off state back to itself
after one cycle of stance and flight phase, improves the performance of impulse-actuated
systems. If we look at the Poincaré section at the pre-take-off position, the system (without
the flywheel) can be completely defined by its angular velocity φ̇ and its posture φ due
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to the fact that the centre of mass follows a trajectory predefined by the contact function.
Given angle and angular velocity at take-off, the trajectory until the next take-off point is
completely defined by the control β = {T,ζlim}, which describes the set torque and impulse
limit. The impulse limit is defined as ζζζ lim = [0,0,ζlim]

T pointing in the direction of unit
vector eeeφ . We ask the question whether there is a control configuration β ∗ = {T ∗,ζζζ ∗

lim},
i.e. a torque-impulse limit combination, which maps the system state just before take-off
zzz−∗

TO = (φ−∗
TO, φ̇

−∗
TO)

T to itself. The subscripts TO and T D indicate take-off and touchdown
states, respectively. The state of the flywheel has no influence on the dynamics except at the
impulsive event, but we need to make sure that the angular velocity of the flywheel φ̇

−
R,TO is

being mapped back to itself to truly guarantee periodic behaviour.
We describe next the forward dynamics of one cycle to search for fixed points. Every

new iteration starts with the computation of the post-take-off state

uuu+TO = M−1
ζζζ 0 +uuu−TO, (5.11)

followed by a mapping of the post-take-off state to the pre-touchdown state through the
body’s ballistic motion given by the implicit equation for the flight time tF

y+ ẏtF − 1
2

gt2
F +acos

(
φTO + φ̇TOtF

)
−R = 0. (5.12)

The pre-touchdown velocities can then be calculated with

uuu−T D = uuu+TO −gtF Ieeey, (5.13)

which can be mapped to the post-touchdown velocities using (5.5). The touchdown position
in generalized coordinates is then given by the ballistic equations

qqqT D = qqq+TO +uuu+TO tF −1/2gt2
F Ieeey. (5.14)

As pointed out in Section 5.2.1, the stance phase is modelled through the kinematic constraints
defined by the ground. The case of the off-centred disc is defined by the contact function
(5.10), which renders the constrained equations solely dependent on the quantities φ and φ̇ ,
i.e. the angular position and its temporal derivative. The constrained equations of motion
arising from (5.2), can be written in a concise ODE in the case of the off-centred disc by
replacing z1 = φ and z2 = φ̇ to yield[

ż1

ż2

]
=

[
z2

− T+mgasinz1+maRz2
2 sinz1

mR2+ma2+IS−2mRacosz1

]
. (5.15)
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Fig. 5.4 Fixed point actuation β ∗ found in nonlinear optimization as a function of take-off
angle and total energy before take-off. The control is defined by torque (a) T [Nm] and
angular impulse limit (b) ζ0 [Nms]. Note that the results are computed for a 150x150 grid on
the shown angle-energy space.

To search for solutions, we use a single-objective constrained nonlinear program imple-
mented in Matlab® using fmincon. We provide initial values of the actuation for the nonlinear
solver by assuming the flight phase is symmetric, i.e. φ TO

S =−φ T D
S , where the superscripts

TO and T D indicate take-off and touchdown conditions, respectively.
As a constraint to the nonlinear solver, we force the objective function to return its value

once the initial condition φTO is reached. The objective function then solely depends on the
other two recurring quantities, and we define the cost as

C =

√(
φ̇0 − φ̇1

φ̇0

)2

+

(
ζ0 −ζ1

ζ0

)2

, (5.16)

where the subscript 1 indicates the state after going through the forward dynamics (5.11) to
(5.15).

The fixed point actuations found in the nonlinear optimization are shown in Figure 5.4.
The colour indicates the value of obtained torque in Figure 5.4a, and impulse limit in Figure
5.4b, as a function of the fixed point’s take-off angle and locomotion energy. We defined the
locomotion energy as the system energy just before take-off, which is proportional to the
state φ̇0. White areas indicate that no fixed point was found. This arose mainly due to the
fact that the take-off energy was lower than the potential energy required to reach posture φ0.
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Figure 5.4 conveys an important message, which is that fixed points exist for the described
control method. It means that there exists periodic locomotion for which the torque not only
accelerates the flywheel back to its initial speed at the take-off angle, but also makes up
for the energy lost during collision, by re-accelerating the main body during stance phase
as governed by the ODE (5.15). In other words, for any point in the state space above the
white area there exists a fixed point control configuration β ∗. The fixed point torques and
impulses transition smoothly in the state space, suggesting that neighbouring fixed points
have a similar behaviour. As we will see in the next section, stability is not guaranteed by
this smooth transition. An interpretation of the locomotion behaviour is also possible by
looking at the fixed point actuations: a high torque in combination with a low impulse, as in
the bottom right region of the state space, corresponds to a short stance phase, while a high
impulse with a low torque, as in the bottom left region, means that stance phase is long. The
proposed control strategy therefore leads to a variety of periodic motions in our proposed
locomotion method.

5.3.2 Stability of Fixed Points

We have shown that fixed points exist for the disc with off-centred mass, but the periodic
trajectory of the robot is only maintained if it is also stable in the face of disturbances.
To study the stability of the found fixed points, we can look at the linearisation of the
concatenation of (5.11) to (5.15)

zzz1 = ΓΓΓ(zzz0,θ), (5.17)

where θ represents all fixed parameters such as mass and actuation torque. The linearised
map is

A =
∂ΓΓΓ

∂ zzz

∣∣∣
zzz∗,θ∗

=

[
∂Γ1
∂φ

∂Γ1
∂ φ̇

∂Γ2
∂φ

∂Γ2
∂ φ̇

]∣∣∣
φ∗

0 ,φ̇
∗
0 ,θ

∗
, (5.18)

and we make use of the fact that this term dominates the dynamics in a Taylor series expansion
for infinitesimally small disturbances δ zzz. If therefore the magnitude of disturbance decreases
for all possible directions over one stance iteration, the nonlinear fixed point is locally
asymptotically stable. This is the same as saying that the absolute value of the eigenvalues
of A has to be smaller than 1, i.e. | λi |< 1∀ i ∈ {1,2}. It is obvious that (5.17) cannot be
represented in a closed expression as it contains differential and implicit equations. We show
in Appendix B how to overcome these impediments and still be able to obtain an accurate
linearisation of (5.17) around a fixed point. We computed the stability for all the found fixed
point actuations (see Figure 5.4). The coloured points in Figure 5.5a refer to the absolute
value of the maximal eigenvalue of the linearised map in Equation (5.18), as a function
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Fig. 5.5 Stability of the off-centred wheel model as a function of take-off postures and total
energy before take-off. Control parameters for the corresponding fixed points are given in
Figure 5.4. (a) Eigenvalues of the linearized return map of (5.17). Unstable fixed points for
which |λ |max > 1 are marked with a black dot. (b) Centre of mass trajectories for various
stable and unstable fixed points. Velocity on the right hand side is derived by the time taken
to reach the 1m mark.

of take-off angle and locomotion energy. We highlight unstable regions, i.e. regions for
which | λ |max> 1, by small black dots. We observe that a large area of the state space is
stable, meaning that the fixed point control method in these points is rejecting small state
disturbances. As we will see in Section 5.3.2, the system controlled by a stable fixed point
control β ∗ not only rejects small disturbances, but converges to the fixed point even from
resting position. We further note that even though the fixed point control varies smoothly
within the state space as seen in Figure 5.4, there are abrupt stability changes in Figure
5.5a, as seen in the transition from the coloured stable to the black dotted unstable area. We
analysed the instability and found that the unstable fixed point actuations converge to a stable
period-2 cycle when perturbed. This means that even if a fixed point is deemed to be unstable,
the fixed point control β ∗ still converges to periodic hopping locomotion. The performance
of these points has to be questioned, however, as we find that every second impulse reduces
rather than increases locomotion speed.

The locomotion trajectories of centre of mass of the disc for some regions are illustrated
in Figure 5.5b together with their locomotion velocity. The motion of trajectory type 1
is operating at high frequency and disappearing hopping height, looking as if the system
was sliding on the ground. Bearing in mind that it has set out with the highest locomotion
energy, it is also the fastest gait. Motion of type 2 and type 3 are both unstable, yet different
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in behaviour. While type 2 looks like a sinusoidal trajectory with symmetric flight and
stance phase behaviour, type 3 shows more impulsive stance phase properties. The latter
particularly looks like running and hopping centre of mass trajectories of animals at higher
speeds. Motion type 4 is the most stable trajectory and shows the least smooth behaviour. It
is characterised by a slow final phase during stance, almost halting at the take-off position,
followed by a flight phase with vanishing take-off speed in translation, but quick retraction
of the shape structure until it hits the ground. The large region of stability characterised by
motion type 5 shares smooth and symmetric locomotion trajectories, similar to type 2.

5.3.3 Performance of Control

To study the performance of the fixed-point actuation as per Figure 5.4, we initialised the off-
centred disc from resting position. We employ a numerical multibody-dynamics simulation
specialised for ground contact modelling with unilateral constraints as presented in Section
2.5. We cannot use the analytical approach as we used for the stability analysis because we
assumed bilateral constraints of the forward-dynamics, which is only admissible while the
constraint forces in normal direction to the ground are larger than zero, i.e. λN > 0. This
condition is violated, when the centrifugal acceleration is larger than the gravitational one,
which leads in the bilateral constraint case to the ground pulling the system down, while in a
unilateral constraint case, a flight phase is induced. There is a second advantage of using the
detailed model, which is that we can simulate a more realistic scenario with friction. Friction
is modelled with a Coulomb friction law

λT = µλNSgn(γT ), (5.19)

where λT is the tangential friction force at the contact point, µ is the friction coefficient, λN

is the normal force at the ground contact point, Sgn is the sign function with Sgn(−|x|) =
−1,Sgn(|x|) = 1, and Sgn(0) = {−1,1},x ∈ IR, and γT is the tangential velocity of the
ground contact point. The same model has been used and is described in more detail in [36]
for another hopping robot. It is largely based on the LCP formulation of dynamics with
unilateral constraints presented in [109].

The system is modelled with two rigid bodies, namely the flywheel and the main body,
with properties as described in Table 5.1. The equations of motion of the multibody system
are derived using the projected-Newton-Euler approach, and we assumed gravity was the sole
constant external force. We assume no damping at this stage in the internal angular degree of
freedom and choose a friction coefficient of µ = 1. As implied, we start the simulation from
a resting position and apply the torque and impulse limit as found by the fixed point search
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Fig. 5.6 Simplified hopping model of non-strictly convex shapes. The impulse ζ induces
the take-off velocity vvv+TO, perpendicular to the diagonal l. The shape of the body is only
considered at take-off and touchdown, and flight phase is modelled via a ballistic motion of a
point mass.

(see Figure 5.4) for 30 different fixed point positions φ and energies ETO. The torque is only
being applied during stance phase and only until the flywheel is ready to transfer the impulse
ζ0. The simulation runs for 20 seconds with a time step of dt = 2×10−4 s using an Euler
integration method.

We compare our results to the theoretical case of a cube actuated with a flywheel as has
been studied in [148]. We set the inertial parameters of the cube in accordance with the
off-centred disc parameters given in Table 5.1. In terms of size, we set the diagonal of the
face of the cube to be l = 2(R−a), as shown in Figure 5.6. The cube lies on one of its faces
and we apply an impulse and write the resulting velocity after impulse

uuu+TO = uuu−TO +
ζ

ml2 + IS

l cosα

l sinα

−1

 , (5.20)

with α the take-off angle with respect to the horizontal axis. We assume a ballistic flight
phase, according to the translational initial velocity vvv+TO, during which we ignore the shape
of the cube and its rotation. At touchdown, we require for simplicity that the cube lands on
its face. Next, we find the impulse required per travelled distance using (5.20) together with
the restitution law for translational velocities vvv−TO = εvvv+TO

ζ

x
=

g(ml2 + IS)(1− ε)

2l u+x sinα
, (5.21)
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with ε the coefficient of restitution, and u+x the locomotion speed. This equation defines a
cost of travel in terms of required impulse over a certain distance as a function of locomotion
speed. If energy is restored during the stance phase, the coefficient of restitution becomes
greater than zero, hence reducing the cost. For the case of an inelastic cube, we set ε = 0,
and α to π/4. Note that this simple model is not confined to a cube shape. Any polygonal
shape can be studied by adapting the centre of mass to contact point distance l, and its
corresponding angle α .

Figure 5.7 shows the performance of 900 fixed point actuations sampled from a uniform
30x30 grid in Figure 5.4. The simulation ran for a total of 20 seconds. The vertical axis
corresponds to the average velocity over the last 10 seconds, and the horizontal axis is the
sum of the transferred impulses over the last 10 seconds divided by the distance travelled
during the last 10 seconds. The off-centred disc was initialised from resting position. The
brightness of each dot indicates its maximum absolute eigenvalue, taken from the results
displayed in Figure 5.5. The results show that for fixed velocities, the least demanding
locomotion actuation in terms of impulse per travelled distance correlates with stability of the
theoretical return map. This is understood for the case of white dots, as the instability forces
the system to use two impulses per stance for locomotion, as discussed in Section 5.3.2. For
stable fixed points, the performance tends to improve the smaller the maximal eigenvalue
of the linearised fixed point. This behaviour is desirable, as it shows that the most efficient
modes of locomotion are also the most stable ones. We find that stability increases with the
take-off angle, meaning that a long stance phase improves stability. Indeed, we find that the
most stable trajectories are of the type 4 and 5 as in Figure 5.5b. Trajectories with short
stance phases as compared to their flight phase as in type 3, tend to be unstable. Furthermore,
the figure opposes the theoretical findings of the inelastic cube performance to the off-centred
disc. We observe that the strictly convex shape of the disc for the most stable actuation can
lead to a requirement of impulse per travelled distance ten times lower than for the cube.
This dominance of the disc can be explained by its dynamic motion, i.e. by the fact that a
part of the kinetic energy from the previous cycle is conserved in the next one. In fact, if we
assign a coefficient of restitution of ε = 0.87 to the cube equation in (5.21), we find that the
impulse per travelled distance closely matches the most stable disc performances as shown
by the blue dashed line. We can therefore claim that the cube would have to conserve 87% of
its velocity at every collision in order to keep up with the off-centred disc performance. In a
next step we will examine if this observation can be replicated in a real-life experiment.
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Fig. 5.7 Locomotion speed as a function of impulse per travelled distance after 20 seconds
of simulation starting from resting position of the off-centred disc model. The system is
controlled with the found fixed point actuations in a uniform 30×30 grid based in the same
state space as shown in Figure 5.4. Brightness indicates the absolute maximal eigenvalue
of the fixed point return map. The solid line indicates the theoretical impulse per travelled
distance of a cube shape with inelastic collisions ε = 0, and the dashed line for a cube with
coefficient of restitution ε = 0.87 as per Equation (5.21).
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Servo motor
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Fig. 5.8 Mechanism of the brake for impulse transmission. The rotation of the flywheel
is stopped by an aluminium brake block which is moved by the servo motor to close the
connection between flywheel pins and the main robot structure.

5.4 Robot Design

We designed and built a robot named Robbit specifically to operate close to the theoretical
ideal. There are three main design challenges, namely the impulsive actuation, the reduction
of moment of inertia of the main structure, and the extension of the planar model assumption
in the real, three dimensional world. Parameter values are in accordance with Table 5.1 for
inertial and geometrical parameters.

Our main actuation on the robot is a 100W Maxon® EC 60 flat motor, torque controlled
with a Maxon® EPOS2 controller which is not on the robot but placed away from it and
connected with wires. The braking mechanism is operated with a standard Parallax® servo
motor. The design of the impulsive angular actuation uses a similar mechanism as presented
in [144]. As shown in Figure 5.8, our main actuator is fixed on the main body of the robot
and is transmitting its torque with a gear reduction of 2.4 to the flywheel which is rotating
around the main steel shaft of the robot. The rotation velocity of the main motor relative to
the robot is registered by the motor controller with hall-sensors and a rotary encoder. Once
the desired rotation speed of the flywheel is reached, the braking mechanism is activated.
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Fig. 5.9 The off-centred disc robot Robbit.

Three steel pins firmly attached to the flywheel are passing through a gap in the main robot
structure each once per revolution. A small aluminium plate is attached to the servo motor,
which can be moved across the gap upon servo motor activation. This blocks the pins from
moving through the gap and causes the angular momentum to be exchanged between the
flywheel and the gap structure. Another aluminium structure then transfers the impulse to
the main steel shaft, inducing a rotation of the whole robot.

For reduction of the moment of inertia, we chose a carbon fibre sheet of 2mm thickness
with a spoked wheel-like structure. To mimic the planar dynamics in the physical model, we
designed the robot symmetrically in its transversal dimension, connecting the two carbon
fibre semi-discs with an aluminium rod of 200mm length.

5.5 Experimental Results

To test Robbit, we prepared a locomotion track with an OptiTrack® motion capturing system
which recorded four trackable markers rigidly fixed on the robot with a framerate of 250Hz.
The system is controlled centrally with a desktop PC running Matlab® from which the torque
targets are sent to the motor controller, encoder signals are being evaluated for a braking
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Fig. 5.10 Series of pictures of Robbit over one gait cycle TC from slow motion recordings
(300Hz).

decision, and the braking signal is being sent via a COM-port to an Arduino® micro-controller
which operates the servo motor. The robot starts at rest and a constant torque is applied until
the defined impulse-limit is reached, which caused the braking mechanism to be activated.
The motor torque is then set to zero for 100ms during flight phase, before it is again set to
the nominal torque. We ran the experiment for 6s and recorded the trajectory of the trackable
markers.

Figure 5.10 illustrates the robot’s motion with a series of pictures taken over one period
of the locomotion gait. The period time TC is around 0.3s. During 0.4TC of the cycle, the
main motor is accelerating the flywheel, which causes the main structure to roll over its
carbon fibre feet. Once the predefined impulse limit is reached, the servo motor engages
the brake, which induces a momentum transfer between the flywheel and the main robot
body. The picture at 0.5T shows the robot in mid-flight phase, where the main motor torque
is set to zero and the brake is disengaged by the servo motor. The cycle then ends with the
beginning of the next stance phase. As can be seen from the series of pictures, this cycle
results in a net forward motion of Robbit.

The result of the centre of mass trajectories for the generalised coordinates qqq are shown
in Figure 5.11, excluding the transient phase. The control corresponds to a torque of 0.16Nm
and an impulse limit that is reached at a relative angular velocity of the flywheel and main
structure of 58 rad

s . The figure shows the centre of mass trajectories for seven consecutive
hops as a function of the cycle progress in percent. We compare the experimental result
to the prediction of the simulation framework described in Section 5.3.3. We see that the
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Fig. 5.11 Centre of mass trajectories of generalised coordinates qqq = [x,y,φ ] of experiment
and simulation excluding the transient phase. The horizontal axis captures one full control
cycle. The black lines correspond to seven consecutive hops in experiment, and the red
line shows the simulation result with the same actuation parameters as in the experiment
(T = 0.16Nm and ζ0 = 0.059Nms).
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simulation predicts the magnitude of displacement over the full gait cycle, as well as the
observed double hump in the vertical position coordinate. The second hump is due to the
backward rotation after touchdown, lifting the centre of mass first before the rolling direction
changes, which can be observed in both simulation and real-world experiment.

We controlled the robot with a range of control parameters, as shown in Table 5.1 under
Experiment control. The velocities of these experiments as a function of the impulse per
travelled distance (derived from impulse limit and the measured hopping frequency) are
shown in Figure 5.12, together with the theoretical cube performance. The results show,
in accordance with the theoretical predictions, that the impulse per distance is roughly ten
times lower than the cube’s theoretical prediction. Almost all of the experimentally recorded
trajectories correspond to trajectory type 4 in Figure 5.5b, which are stable, efficient, and
characterised by a long stance phase followed by a rather short flight phase. The experiments
further show that any configuration of control parameters β leads to bounded and almost
periodic locomotion after a few transient hops. The system therefore not only outperforms
a cube in its economical use of impulses, but also converges to periodic and continuous
locomotion without precisely defined control parameters. The system finds its fixed point
autonomously for the given control, a behaviour which we ascribe to the self-stabilising
properties of the strictly convex shape.

5.6 Discussion

The results showed, based on the cases of a disc with off-centred mass and a cube, that strictly
convex shapes outperform theoretical performance of non-strictly convex shapes in terms
of their locomotion speed as a function of impulse per travelled distance. By comparing
systems in terms of their impulse per travelled distance at constant speeds, we essentially
compare their energetic costs of transport. The dimensionless cost of transport as defined
by [149] for locomotion in animals, is the ratio of metabolic rate to the product of speed
and body weight. This definition has been adopted by the robotics community, such as in
[150], by replacing metabolic cost with energy used. Animals reduce their energy use with
mechanisms to efficiently redirect their centre of mass velocity [151]. Among others, two
important mechanisms have been thoroughly studied in biomechanics and robotics, namely
spring-mass models [12] and inverted pendulum models [152]. Both mechanisms conserve
a fraction of the kinetic energy from the previous step to the next. In the case of strictly
convex shapes, energy is conserved by smoothly redirecting the centre of mass through a
rolling motion. Loss-less redirection of centre of mass is necessary to minimise the cost of
transport, but it is not sufficient. A significant source of energy loss in terrestrial locomotion
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Fig. 5.12 Experimental converged hopping speeds as a function of impulse per travelled
distance. Each circle indicates a robot experiment with fixed actuation parameters. We set the
parameter range for the series of experiments for torque between 0.1 and 0.3Nm and impulse
limit between 0.04 and 0.07Nms. Experiment duration was 6 seconds and the data plotted
corresponds to the average speed as a function of the average impulses over the travelled
distance. The dashed line corresponds to the theoretical speed of an impulsively actuated
cube with face diagonal l = 2(R−a) and coefficient of restitution ε = 0.
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occurs due to interactions with the ground. As we showed in Figure 5.7, a cube would have
to restore 87% of its velocity at touchdown to perform with the same cost of transport as
the off-centred disc for a given locomotion speed, which indicates a low collisional cost at
touchdown in the strictly convex shape case. This observation agrees well with studies of
bipedal walking with curved feet, as the authors describe a reduction in energy loss in the
step-to-step transition compared to point feet [54], [55].

In this work, we have also demonstrated how strictly convex shapes can lead to sta-
ble hopping locomotion without any state feedback except the flywheel speed. The self-
stabilising properties of curved feet have been studied for locomotion in monopods, bipeds,
and quadrupeds [40]. Many other examples of self-stabilising locomotion exist [36], [39],
but the applications move beyond locomotion; related work in the stabilisation of juggling
through a convex shape [43] showed how apex and paddle position can be self-stabilised,
meaning no sensory feedback is required to juggle a ball with a paddle. This relates to our
hopping system given a fixed point actuation β ∗, as no feedback from the environment is
necessary to stabilise the motion, not even to transition from resting position to the final
locomotion speed. An extension of this work could include temporal change of shape to
further improve the cost of transport or locomotion speed. The potential of active external
shape is abundant in robotics. There are examples of robots that use their strictly convex
shape to actively propel themselves, as shown in the modular loop robot presented in [153],
or in the spherical robot with inflatable pouches that induce a rolling motion, as studied
in [154]. We have recently shown that a shape change during locomotion which does no
positive work on the system can indeed increase locomotion speed [79].

Our proposed locomotion method can help to improve energy use for locomotion with
momentum stored impulse actuation. This is especially useful in exploratory ventures
where energy is scarce, as is the case in space robotics, such as in [148]. Furthermore, our
locomotion method can provide a new mode of locomotion for the vast number of spherical
robots [155] which have been built and studied in recent years. For instance, a spherical
robot with internal momentum-stored impulse actuation and off-centred mass can generate
the described hopping motion, which would enhance its locomotion capabilities.

Our findings, shown in Figure 5.7, indicate that stability and efficiency are coupled such
that the fixed points associated with the smallest maximal eigenvalue of their return map are
also the ones which demand the smallest impulse per travelled distance. We have presented
similar findings of the coupling between stability and efficiency in [36], and also for the
case of a hopping robot with a strictly convex foot shape. It is a striking feature of these
locomotive systems that they are both efficient and robust.
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5.7 Conclusion

In this chapter, we studied the locomotion of strictly convex shapes actuated by momentum-
stored impulses. We proved for the simple case of a disc with an off-centred mass, that
fixed points to this locomotion methods exist, and that a large number of them are stable. A
simulation of the system from resting position reveals the superiority in terms of required
impulse per travelled distance, as compared to the case of an impulse-actuated cube. We
validated our findings in a real world platform with the robot Robbit, showing that ten times
lower impulses are required to travel a certain distance compared to the theoretical case of
a cube. The results demonstrate the significance of shape in the dynamical behaviour of
hopping, and how it can be used to improve stability and efficiency of locomotion in robots.
In the next chapter, we further study the effect of shape on locomotion performance but other
than in this chapter we allow for discrete foot shape changes during locomotion.



Chapter 6

Improving Hopping Dynamics with
Inelastic Impacts1

Discrete actuation can be used to increase the system energy, but it can also be used to
reconfigure the robot and thus change its shape and environmental interaction. In this last
technical chapter, we show one of the simplest reconfigurations which consists of switching
between two discrete foot shapes. The different foot shapes are associated with different
energetic impact collision losses, and we show that the right timing of foot shape changes
can improve locomotion speed, despite the fact that no positive energy is added to the system.
Discrete actuation thus not only emphasises impulses which increase the kinetic energy
of the system, but also impulsive shape changes in locomotion systems which alter the
system-environment interaction passively.

6.1 Introduction

In legged locomotion, impacts of a moving body with the ground are well approximated with
impulses, especially after McGeer discovered passive dynamic walking in rigid machines
[13]. Since then, researchers have found simple models to explain various behaviours in
animal locomotion using impact inducing collision models, e.g. in walking [44] or hopping
[41]. Impacts are usually considered unavoidable, yet undesirable as they are inherently

1This chapter presents the collaborative work with my supervisor F. Iida. I have initiated the problem
statement, designed and built the robot CaneBot, conducted, planned and prepared experiments, and wrote the
paper. F. Iida helped discussing and revising the paper. The peer-reviewed publication which forms the basis of
this chapter is

• Fabio Giardina and Fumiya Iida. Discrete foot shape changes improve dynamics of a hopping robot. In
International Symposium on Experimental Robotics, pages 113–122. Springer, 2016.
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Parameter Value

Mass upper body 1.34 kg

Mass lower body 1.43 kg

Foot radius 0.4 m

Spring constant 2.52 N/mm

Gear ratio 10:1

Joint to foot attach-

ment point length

0.16 m

Joint to upper body 

CoM length

0.17 m

Foot attachment point 

to cane length

0.33 m

Fig. 6.1 The robot used to investigate influence of shape changes in hopping on locomotion
speed and table with main mechanical parameter values.

coupled to mechanical energy loss. Although there are theoretical studies that show cases
of legged locomotion without collisional energy loss [65], every legged animal and robot
undergoes some loss due to impact in real systems. In fact, it was found that the energetic cost
for human like walking is mainly due to the impulsive impacts in the step-to-step transition
[67]. Minimising the impact losses can then be achieved by applying toe-off impulses just
before the step transition [10], [156]. A detailed collisional analysis of a simple model by
Ruina et al. suggests that multiple impacts during the stance phase reduces the energetic
loss, due to a sequenced redirection of the centre of mass [51]. Stability considerations in a
simple double pendulum model revealed that impacts provide essential stabilising effects
which cannot be induced otherwise, e.g. impulsive and instantaneous velocity transitions
[63], [157]. Even though mathematical tools exist to analyse the influence of impulses in
mechanical systems, e.g. by means of the impulse extended Lyapunov function [158], it is
hard to define design rules for legged systems due to the convoluted dependency of dynamics
and morphology. Nevertheless, a simple analysis of a bipedal model shows that a flat or
round foot shape improves energy efficiency over a point foot model [49], which was also
concluded in a study with human subjects [54], where the authors point out that the rolling
like behaviour of the centre of pressure progression in human walking is beneficial for the
centre of mass redirection in terms of energy efficiency. From this perspective, it is important
to carefully design the morphology as a function of impact losses, for which a mathematical
method is presented in [159]. Furthermore, it might also be beneficial to change the foot
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shape during the locomotion gait to adapt to impacts to which the pronation of the human
foot just before touchdown might hint [160]. Shape changing locomotive robots have been
studied in the past, such as the contour changing wheel [161], yet we had to acknowledged
that the role of shape induced impacts in robotics is an understudied topic.

In this chapter we are investigating how discrete and controlled shape changes in a
hopping robot can alter locomotion properties, and use forward speed as the main measure
for evaluation. The next section presents the used system and methods to study the influence
of shape induced impacts on locomotion, results are illustrated in Section 3, Section 4
contains an analysis of the main findings, and the last Section 5 concludes the chapter.

6.2 Methods

To analyse the influence of shape change during locomotion, a curved foot hopping robot
with two linked rigid bodies was built, as is shown in Figure 6.1. This system is driven by a
motor torque in the joint between the rigid bodies, generated by a motor on the upper body
tip. Two linear extension springs are placed between the upper and lower body to achieve
parallel elastic actuation. The robot is equipped with a curved foot shape, which has proven
to show good performance in both stability and efficiency [36]. The foot is made out of
plywood and is operating on a wooden floor. The main geometrical properties of the robot
can be found in the table depicted in Figure 6.1. In order to induce a foot shape change during
locomotion, a small mechanical structure, from now on referred to as cane, is placed in the
front tip of the foot which can be either extended or retracted, and hence switch between two
discrete shape states. When extended, the front part of the curved foot is bypassed during
rolling due to the blocking cane, altering the dynamics and therefore locomotion behaviour.
When the cane is retracted the robot moves as if no cane was there to influence locomotion.

The main motor is controlled by an open-loop signal which induces a motor torque in the
robot joint approximated by a bi-directional pulse as shown in Figure 6.2. For a curved foot
hopping robot, this type of signal has shown to be better in terms of stability and efficiency
as compared to a sinusoidal signal [37]. The motor torque is applied first in positive direction
for 100ms and then in negative direction for another 100ms with respect to the lower body
(causing the robot to contract first and then extend) with a torque amplitude of ±0.4Nm. The
period time T is given by the applied control frequency. The cane is being extended according
to the cane duty cycle CDC in synchronisation with the motor torque frequency for CDC ·T
seconds and after a delay of CD ·T seconds. The influence of the cane at various times
is tested by varying CDC and CD for constant open-loop control parameters of the motor.
The progression of the robot for two extreme cases with the cane being either permanently
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Fig. 6.2 Main motor and cane open-loop control as a function of time. T is the period of the
assigned main motor control frequency, CD is the delay as a fraction of the period, and CDC
is the cane duty cycle within the period.

retracted or extended is shown in a series of pictures in Figure 6.3. It is important to note
that the cane is designed not to do any positive work on the robot when in contact with the
ground, but to induce only inelastic collisions. The only energy needed to operate the cane
is for retraction and extension during non-ground contact phase, which is assumed to be
negligible.

The robot is driven by a 70W Maxon EC 45 flat motor and is controlled via a Roboteq
SBL 1360 motor controller. The cane is being retracted with a Parallax 6V standard servo and
a linear spring is pulling it back to the extended position if the servo motor is disabled. The
robot is untethered and powered by three lithium polymer batteries, providing 24 volts. Radio
modules are installed to establish communication with the host pc, and an Arduino Mega
2560 micro controller coordinates the operation. The motion is tracked using 6 reflective
markers placed on the robot which are being recorded by an OptiTrack motion capturing
system. Trajectories are also being evaluated from video analysis using the software Kinovea.

6.3 Results

The following results are shown for a main motor control frequency of 2.8Hz, and a pulsed
motor torque of ±0.4Nm for a 10 second run per experiment. It is important to note that the
only difference in the remaining report is induced by the timing of the passive cane, not the
main motor control.
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Fig. 6.3 Robot progression over one period T of the main motor control for the case with
retracted cane and extended cane.

Figure 6.4 shows the trajectory of the uppermost tracked marker on the upper body of
the robot for different cane control. Figure 6.4a shows the behaviour with retracted cane
throughout the run, and Figure 6.4b the behaviour with permanently extended cane. The
grey circles in both plots indicate the start of a new pulse cycle of the main motor. For the
retracted cane case, the dynamics suggest a period-1 behaviour, meaning that the trajectory
reaches the initial state after T seconds with respect to the main motor actuation period. For
the extended cane, another regular pattern emerges, although the system state returns to
identical values only after 2T . This period-2 behaviour was found to be slightly slower than
the cane-less period-1 motion, which might be explained by the "looping" of the trajectory,
i.e. the backward motion of the tracked marker.

Figure 6.5 illustrates the locomotion distance covered as a function of the cane timing.
The abscissa shows the cane duty cycle CDC and cane delay per period CD in the format
CDC/CD that was applied to the run. A value of 0.5/0.2 for example indicates a duty cycle
of 0.5 and a cane delay of 0.2T . Figure 6.5a shows the cane timing for duty cycles of 0.5 and
delays between 0 and 0.5T , whereas Figure 6.5b illustrates cane duty cycles of 1 with delays
ranging from 0 to T . The ordinate shows the average travelled distance per hop, which is
proportional to the average hopping speed. The performance of the cane being permanently
on or off is indicated with a solid grey or black line, respectively. Note that the robot was
initiated from a resting position, and the average hopping distance includes also the initial
transient phase. The series of experiments was repeated five times, and the figure shows error
bars of one standard deviation around the average.
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Fig. 6.4 Trajectories of upper body top marker for a retracted cane (a), and extended cane
(b) for the same main motor control. The grey circles indicate the main motor timing with
period T .
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Fig. 6.5 Averaged travelled distance per hop over a 10s run for different cane timings for
open-loop control with ±0.4Nm motor torque, and 2.8Hz actuation frequency. The cane
timing on the abscissa is indicated by cane duty cycle CDC over cane delay per period CD
in the format CDC/CD. The error bar indicates one standard deviation for the five sets of
experiments that were conducted.

The results show how for constant main motor control, the travelled distance can be
altered significantly by the timing of the cane. If the cane has a duty cycle of 0.5, the hopping
distance is increased for almost any cane delay. The peak velocity is reached when the cane is
turned on after a delay of 0.1T , covering a distance of around 8.4cm per hop, which is around
1
4 body length per hop. This corresponds to a speed increase of roughly 40% compared to
the cases of the cane being permanently on or off. If the cane is operated only every second
period, which is for duty cycles and delays per period of CDC+CD ≥ 1, the performance
decreases generally compared to the 0.5CDC case and is most of the time even lower than
cases of the cane being permanently on or off.
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Fig. 6.6 Trajectory of the upper body top marker and cane ground contact times for the fastest
case with duty cycle of 0.5 and delay of 0.1T .

6.4 Analysis

The apparent increase of hopping speeds as a function of the cane timing may seem surprising
given that there is no positive work being done by the cane, but only passive and energy
consuming impacts are induced through the discrete foot shape change. In order to understand
what is happening in the collisional process one needs to consider the actual cane contact.
Figure 6.6 shows the trajectory without the initial transient phase of the upper body top marker
for the fastest cane control with CDC 0.5 and CD0.1. The parts of the plotted trajectories
which are grey indicate contact of the cane with the ground which was extracted visually.
It is interesting to note that the "looping" of the upper body trajectory is somehow being
avoided by the cane timing of the fast cane control. This is even more surprising, as the
motion seems to be rather chaotic and no distinct periodicity can be observed. One might
expect the looping to occur at least once, but it was not observed in any of the five trials.

After analysing the resulting motion of the robot in the captured trajectories, we identified
three occurring cases just before take-off which seem to distinctly define the subsequent
dynamics. In order to simplify understanding, we are making use of the impulsive eccentric
wheel model as is presented in [41] and illustrations of the three cases are depicted in Figure
6.7. The first case (a) is naturally emerging in the stable cane-less hopping motion and is
characterised by a leading ground contact point to the centre of mass with respect to the
direction of travel just before take-off. The impulsive motor torque then causes a backward
rotation during flight phase and the robot lands with a leading centre of mass position
relative to the ground contact point. This causes the robot to roll in forward direction after
touchdown. Interestingly, the point of touchdown is naturally adjusted such that the same
take-off posture is achieved after the rolling phase in every hopping iteration, hinting to
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self-stable characteristics of the system. Case (b) occurs with an extended cane and a forward
rolling angular velocity φ̇ which is negligible. The ground contact point and centre of mass
of the robot are roughly aligned with respect to the travelling direction. The take-off pulse
causes a strong backward rotation, shifting the point of touchdown further back than in case
(a) and hence inducing accelerated rolling in the next hopping iteration. Lastly, case (c) is
observed with an extended cane and a forward rolling angular velocity φ̇ ≫ 0. In this case,
the impulsive impact of the cane with the ground induces a rotation of the centre of mass
around the point of cane contact, which promotes a ballistic trajectory that is favourable for a
long jump. This behaviour is similar to pole vaulting, where the athlete is using the pole’s
contact point as a centre of rotation to surpass a raised bar. Due to the ballistic effect, the
pulsed actuation torque can only cause a slight backward rotation, leading to a small distance
of point of touchdown and centre of mass in travelling direction. This means that the gained
rolling speed during stance phase is the smallest of the three presented cases.

Induced 

rotation

Point of 

touchdown

Cane off

(a)

Induced 

rotation
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ሶ𝜙 ≈ 0
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(b)
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Fig. 6.7 Three cases of observed take-off positions using a wheel with eccentric point mass
model presented in [41]. The grey filled circles indicate the centre of mass of the robot
model, and the black arrows show the main take-off motion after the pulsed motor torque
was applied.

The three shown cases can be used to explain the observed discrepancies in locomotion
trajectories. As was already explained, case (a) causes the cane-less period-1 motion, which
naturally emerges after a few transient hops. The period-2 motion, as shown for example in
Figure 6.4(b) with the cane being permanently engaged, is explained by a switching between
cases (b) and (c). The high rolling velocity φ̇ ≫ 0 in case (b) after touchdown causes the
pole vaulting effect seen in case (c), and the small rotational retraction in case (c) then causes
a small angular rolling velocity φ̇ ≈ 0, which in turn gives rise to case (b) in the next hopping
iteration. Now, how can this simple model explain the trajectories observed in 6.6(b) for
the CDC/CD = 0.5/0.1? We observed that this cane control causes the robot to operate
mostly in case (c), the pole vaulting mode. Whenever the decelerating case (b) is about to be
induced by a previous case (c), the cane is being blocked by the ground and can not extend
due to the body posture and previous retraction of cane, which really induces the faster
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Fig. 6.8 Transient trajectories of the upper body top marker for the case with the cane being
permanently on, and the case with duty cycle of 0.5 and delay of 0.1T .

cane-less case (a) instead of (b). The robot naturally chooses the best option for increased
locomotion speed with this control and avoids case (b) completely, only operating in (c) and
switching to (a) in some extreme cases. No period-2 motion is observed as the cane extends
not always quite to its full extent before ground contact occurs, leading to a slightly different
and chaotic behaviour. Figure 6.8 compares the transient phase of the best control case
CDC/CD = 0.5/0.1 and the case with permanently engaged cane. The first appearance of
the blocking cane, inducing the state (a) instead of (b) and avoiding the decelerating looping
trajectory, is indicated as well.

6.5 Conclusion

In this chapter we presented that a discrete change in foot shape during locomotion of an
open-loop controlled hopping robot can induce a variety of locomotion gaits and increase
the travelling speed. The foot shape is passive and does not do any positive work on the
robot, but influences the time and direction of dissipative impacts. With a simple model,
three distinct cases were identified just before take-off, which define how the pulsed torque
influences the touchdown posture. The fastest locomotion speed can only be achieved by
switching between the accelerating cases and avoiding the decelerating case, which can be
realised by the right timing of shape change. The presented insights may provide a new
perspective for the development of control laws for increased locomotion stability, efficiency
and speed through foot shape changes.



Chapter 7

Conclusions

In this thesis, the concept of discrete actuation was described and its benefits for the under-
standing and control of hopping locomotion were presented. The discretisation is such that
the dynamical system becomes piecewise passive, meaning that actuation is only allowed
at a finite number of instants in time. To this end, the dynamics of hopping locomotion
were translated to a discretised system with the eccentric wheel model which is subject to
impulses and passive flight and stance phase. The theoretical model was used for the study of
locomotion trajectories in robots and animals in Chapter 3 and for energetics of locomotion
strategies in environments with obstacles in Chapter 4. The practical benefit of impulsive
actuation in real-world robots was subject of Chapters 5 and 6, where rotational impulses
were used to induce hopping locomotion in the robot Robbit, and where the timing of im-
pacts in the robot CaneBot was identified to be strongly influencing locomotion dynamics,
respectively.

The presented work in this thesis is only a small step in the endeavour of building
autonomous, stable, and energy effective robots. This chapter therefore aims to relate the
findings presented in the various chapters to the greater picture, and discusses future work
which aims to navigate this research in the direction of the end goal. The next section will
discuss the achievements in the context of the contributions stated in Section 1.4.

7.1 Discussion of Contribution

The discretised actuation approach was applied to the case of hopping locomotion with the
goal of understanding locomotion physics and of predicting locomotion characteristics of
robots and animals while revealing a clear causality of actuation to behaviour. The eccentric
wheel model introduced in Chapter 3 suggested how such a discretisation can be done and
how it can be used to predict locomotion dynamics of robots and animals. The dynamics of
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one full gait cycle was reduced to 4 nonlinear maps in closed form, two for the impulsive
events occurring at touchdown and take-off, and two for the energy-conservative maps of
flight and stance phase. The concatenation of those four maps provided a prediction of
the system’s state from each hopping iteration to the next, without the need for integration.
However, this only applies for the case where the take-off impulse is synchronised with the
take-off angle, and thus the system becomes autonomous. In the open-loop case, the stance
phase must be integrated in order to find the correct state at the time of impulse. The arising
stance phase dynamics is governed by the differential equations of the form (5.15) (dropping
the torque term T ) and are easily integrated numerically. In fact, we know that the solution
is periodic and energy-conservative and it therefore suffices to solve only half the period to
reconstruct the full solution of the stance phase dynamics.

We would like to point out that other discretised models commonly do not study hopping
or running locomotion, but mostly focus on walking as for instance in [44] and [10]. On the
other hand, spring-mass models such as in [12] predominantly study hopping and running
locomotion, presumably due to the elastic energy storage of the spring which is intuitively
associated with hopping (there are, of course, important contributions of spring-based models
to explain walking rather than running/hopping such as in [20]). The eccentric wheel model
showed that hopping locomotion can well be studied with the discretised approach due to the
energy-conserving property of the rigid strictly-convex shape in the model. Other than storing
elastic energy in a spring, the model stores potential energy due to gravity and redirects the
centre of mass velocity over the stance phase–in analogy with the spring-mass model. The
stance phase trajectory in the eccentric wheel model is predefined through the mechanical
shape, which means that once the stance phase energy is known, the resulting trajectory
and any velocity state can simply be computed through an algebraic relation. This stands
in contrast to the spring-mass model, where knowing the energy at a given state requires an
integration of the non-linear differential equations over the full path - uncertain if the system
actually ends up in the point of query. The spring-mass model thus requires an integration
of a second-order nonlinear differential equation as described in [12]. The advantages of a
rigid shape which predefines a locomotion trajectory is that it provides a constant path of the
centre of mass during stance phase. This opposes the spring, which has an infinite number of
possible stance phase paths, which makes it much more flexible, yet less robust.

The self-stabilising properties of rigid and curved feet has been suggested by Ringrose in
[40], where he showed how locomotion can be achieved without feedback control. Ringrose
demonstrated the self-stabilising properties in his robot Robop for hopping in place, and
a similar design was developed in [36] for forward hopping. The analysis of the forward
hopping case, where the robot is solely controlled with an open-loop actuation, shows the
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remarkable self-stabilising properties of the system: forward hopping is easily achieved from
resting position without controlling the transition phase. Appendix C explains how open-loop
stability is achieved in the impulsive wheel model with centred mass. Concrete results are
given for actuation, timing, size and inertia properties of the system and how they relate to
self-stability.

Discrete actuation was used to study the physics of hopping locomotion and to understand
the energetic cost of overcoming an acute obstacle with different locomotion strategies. The
idea was initiated through the question why are there no wheels in nature, and what are the
conditions for which legs are better than wheels? Although there are examples of animals
passively rolling by exploiting the natural environment [162], [163], [164] or even actively
pushing spherical objects [165], few species in the animal kingdom propel themselves
forward using a rolling locomotion strategy [166], [167]. The reasons for the missing wheel
in nature is obviously a difficult question to ask given the complexity of animals. We therefore
asked the question slightly differently and in the well-defined context of discrete actuation:
given the morphology of a wheel, is it energetically better to roll or to hop over obstacles?
As elaborated in Chapter 4, the Froude number and the moment of inertia of the wheel were
identified to be the determinant properties for energy optimality of either hopping or rolling.
The analysis revealed that in the limit case of infinitely small obstacle heights, as derived in
Appendix A, rolling is outperformed above a Froude number of 1. This seems at first sight
surprising, as rolling is commonly associated with no energetic loss for vanishing obstacle
heights, but so is hopping in the case of vanishing obstacle heights. The Froude number
implies that rolling loss is proportional to the centripetal acceleration of the wheel mass
around the obstacle tip, while the hopping loss is proportional to gravitational acceleration.
This argument has previously been made to interpret limiting factors of walking [168], and
optimality transition from walking to running was also reported in [11]. The Froude number
appears to define the transition speeds even for non-limit cases, and we show in Appendix A
that above a value of Fr = 2, hopping is always the better strategy to overcome the obstacle.

We have shown with the rotational hopping strategy, as presented in Chapter 4, that the
modelling of mass distribution can lead to a novel way to overcome the obstacle, which is
energetically beneficial for low moment of inertia. "Low moment of inertia" can be made
precise, as we show in Appendix A. The energy saving mechanism at ground collision of the
rotational hopping strategy compared to the trivial hopping strategy vanishes as the numerical
value of the moment of inertia becomes equal to the mass I = m. Large legged animals which
have a moment of inertia greater than their body mass do not exist any more, but dinosaurs
like Tyrannosaurus rex might have been close to satisfying this condition. Interestingly,
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scientists are still debating whether Tyrannosaurus rex was capable of running or merely
walking [169].

The nature of the impulses discussed in this section so far, assumes that they are transla-
tional, that is, they change the translational velocity of system’s centre of mass directly to
increase momentum in the direction of locomotion. Translational impulses stand in contrast
to rotational impulses, where a change in the body’s rotation around its centre of mass is
induced and there is no direct contribution in the direction of locomotion. There is a way,
however, to convert the rotational momentum into translational motion through the shape of
the body and the interaction with the environment, which was discussed in detail in Chapter
5. Not only did the rotational impulse in the robot Robbit induce flight phase through the
strictly convex foot shape, but the charging of the flywheel to generate the next impulse also
accelerated the system during stance phase. It is due to these two mechanism that forward
hopping locomotion can be achieved through rotational momentum transfer in a single rigid
body. The body of the robot therefore facilitates purposeful behaviour and reduces the control
effort to an impulse in a single point in time. Such systems where the morphology facilitates
control is studied under the umbrella of morphological computation [6]. Its meaning was
described as a "task distribution" between the controller, the morphology, and the environ-
ment. Based on this premise, the body can take up tasks of the controller to simplify or
replace control. The ability of the body to fulfil control tasks was addressed in Blickhan et
al.’s paper "Intelligence by mechanics" [8], where the spring-mass model was analysed for
its self-stabilising property.

Self-stability was found in Robbit, as it robustly converges to a steady forward hopping
behaviour from standstill. The precise mechanism behind the self-stabilising property is not
understood, although Appendix C hints towards a self-stabilising principle in the open-loop
control case. Understanding the effects of self-stabilty is not always straightforward as the
analysis of bicycle stability shows: a bicycle can roll by itself when given an initial speed, but,
other than previously assumed, gyroscopic or caster effects are not required to self-stabilise
the bike, although they might be contributing to overall stability [170]. The mass distribution
and the front axis tilt in the bike were found to cause self-stability in a complex interaction.
It might be that the eccentric wheel hopping mode also is, despite of its simplicity, caused by
a complex interaction of various dynamical effects. It is surprising how mechanical systems
designed to exploit mechanical self-stability are highly energy effective. The robot Ranger
[71] based on the passive dynamic walkers uses the inverted pendulum gait and surpasses
humanoid robots such as Honda’s Asimo [171] by a cost of transport roughly 10 times lower.
The observation is further supported with the energy efficient hopping robot Cargo [39], and
in the curved foot hopping robot CHIARO [36], where energy effectiveness and stability were
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found to be correlated. This thesis reports on a comparable phenomenon, where the robot
performance of Robbit shows that the stablest gaits, i.e. the ones with the lowest eigenvalue
of the return map, are also the most effective ones. The coupling of energy effectiveness
and stability might be explained by the eigenvector decomposition of the collision matrix in
Appendix A, which provides the collisional energy losses and thus the energy sinks in the
system. The most efficient hopping patterns will converge to the least collision loss, which
is in this case the proposed locomotion mode. The coupling of efficiency and stability in
discretely actuated systems is a recurring phenomenon and might promote understanding the
process of self-organisation and self-stability by defining causal relations.

Chapter 6 discussed the benefits of impacts on the locomotion dynamics. Not only was
it possible to change the gait of the hopping robot due to the discrete foot shape changes,
but additional impacts did not reduce the locomotion speed, but increased it by 40% when
the impacts were applied with the right timing. It is not easily understood how the impact
improves locomotion speed, as it is a combination of main motor control and environmental
interactions which determine the forward hopping locomotion behaviour. What the study
clearly underscores is the importance of foot contact point in the process of locomotion,
which is what the discrete foot shape change essentially controls. The importance of contact
points for control and locomotion stability has been understood since the introduction of zero
moment point control [89], where the centre of pressure on the foot, i.e. the current contact
point, is defining the stability and control scheme.

7.2 Related Work

The idea of discrete actuation has his roots in the hopping robot CHIARO, which I developed
as a result of my master’s thesis [172]. The motivation behind developing the new robot was
the reduction of degrees of freedom in the ankle joint of a previous version, and replacing
the torsion spring in the ankle by a curved foot. This was the first step in discretising
the behaviour enabled by an element of high complexity (in this case the torsion spring)
by pre-programming the behaviour in a rigid shape. Both stability and energetic cost of
locomotion were improved by the discretisation through shape [36]. The idea opened up
novel possibilities for design and robust locomotion. The robot Cargo is based on the design
of CHIARO and uses the discretised property to achieve one of the lowest cost of transport in
a robotic system and highest resilience to changes in payload [38], [39].

The robot platform CHIARO has further been used for the study of control input towards
the energetic cost of transport. The robot is by default controlled with a sinusoidal control
input, but the question arose to what extent this is an optimal solution in terms of the energetic
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cost of transport. As discussed in Section 1.1, energy optimality in legged locomotion is
often found to approach a discretely actuated system in the limit, with impulses being the
most energy effective control input. Indeed, the same observation was obtained in two studies
with the hopping robot CHIARO [37], [173], where impulsive control inputs lead to most
energy effective hopping locomotion.

The complex interaction of morphological parameters and control is difficult to grasp for
us humans, especially in higher dimensional morphology and actuation space. The objective
function for optimisation of the energetic cost of transport, locomotion speed, or stability
is only obtained through the dynamics which are influenced by the intricate interaction
between morphology, control, and the environment. In an attempt to study the state of
human understanding of causality in morphology and control parameters on the objective,
we generated a probabilistic model based on the Bayesian theory to see if a computer can
"understand" the physics of a plant as well as a human can [174]. To this end, we applied
the developed optimization algorithm on the CHIARO platform and asked it to improve
locomotion speed by both changing morphology and control iteratively. We phrased the
control problem in such a way, that the system is a discretely actuated system, meaning that
we only allowed for impulse-like actuation. We found that the optimisation algorithm worked
surprisingly well in the context of discrete actuation, and we found that it even outperforms a
human engineer in higher-dimensional parameter spaces.

7.3 Future Work

The purpose of discrete actuation is not only to facilitate understanding of stability and
energetics on a fundamental physical level, but also to provoke the question how should
robots perceive and plan their actions in a natural or man made world? That is, how is the
outcome of an action computed efficiently such that it can be used for motion planning? The
segmentation of the real world into shapes is an important milestone in making sense of the
world. The success of recent computer vision algorithms for image classification supports this
view, as it employs deep convolutional neural networks, which essentially separate features
in the image which are detected in different layers of the network [175]. These networks are,
at least partially, bio inspired [176], but to what extent and how the brain plans its actions
is not known. Given the capacity of the brain to understand shapes and its interaction, the
solution to efficient motion planning for robots might be in the discretisation of forces and
shapes - a dynamic version of deep convolutional neural networks. Such a controller could
help to make efficient decisions by providing the minimum necessary information.
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One issue in motion planning is the freedom of actuation over time, which renders
the problem of finding a solution for the locomotion problem difficult. As we showed in
the discretised modelling approach, changes in velocities can be reduced to few instances
in time at the impulsive events, thus simplifying the possibilities of control enormously.
This is not only more intuitive to think about dynamics, but it also drastically reduces
control dimensionality due to the discrete actuation possibilities, which could bolster learning
algorithms like reinforcement learning [177] to be applicable to locomotion problems.

A good benchmark for the discretised modelling approach is its use for motion planning
in rough terrain. Reinforcement learning has recently shown to be capable of generating loco-
motion over complex terrain for bipedal and octapedal locomotion [178], and the discretised
modelling approach could be tested in a similar approach. At the same time, optimisation
methods could be used to compute real-time optimal control in the rough environment with
the simplified system. We will use the results to plan locomotion in more complex systems.

As mentioned in the previous section, the coupling of self-stability and energy effective
locomotion can be observed in various cases. The discretised modelling approach, and, in
particular, the eccentric wheel model can be used as a simple tool to analyse the relationship
between the two aspects of locomotion. To this end, the self-stability analysis as presented in
Appendix C can be extended to the case where the energy is not mapped back to its initial
state over the flight phase. The coupling of energy-effectiveness and stability in discretely
actuated systems may be key to understanding certain classes of self-organising systems.
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Appendix A

Energetic Analysis of the Eccentric
Wheel Collision

A.1 Eigenvalues and Eigenvectors of the Collision Matrix

The eigenvectors and eigenvalues of the collision matrix are crucial for analysis and compari-
son of the three strategies given in Chapter 4. The collision matrix is defined as in Chapter 2
with

Mc =−JT
c
(
JcM−1JT

c
)−1 Jc. (A.1)

The eigenvalues of the collision matrix for a collision with flat ground are

λR = 0, λT H = m, λRH =
mI(k+1)

mk+ I
, (A.2)

and the corresponding eigenvectors are

vvvR =
1√

1+ k

−k1

−k2

1

 , vvvT H =
k1√

k

−k1/k2

1
0

 , vvvRH =

√
k

1+ k

k1/k
k2/k

1

 , (A.3)

where the subscript R stands for rolling, T H for trivial hopping, and RH for rotational
hopping. The k- values are defined as k1 = R−acosφ , k2 =−asinφ , and k = k2

1 + k2
2. Pure

rolling is described for λR,vvvR which explains the vanishing eigenvalue and therefore energy
loss. When no eccentricity is modelled (a = 0), the pair λT H ,vvvT H describes the trivial
hopping strategy loss factor and pre-touchdown velocity, respectively. When an eccentricity
is modelled (0 < a < R), the pair λRH ,vvvRH corresponds to the rotational hopping strategy
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TH RH

Fig. A.1 Interpretation of eigenvectors. Qualitative ground approach velocities for (a)
rolling strategy, (b) trivial hopping strategy (with off-centred mass) and (c) rotational hopping
strategy.

loss factor and pre-touchdown velocity, respectively. The eigenvectors can be interpreted as
touchdown conditions for the corresponding cases, as illustrated in Figure A.1.

A.2 Wheel-Obstacle Energy Loss due to Collision

For the rolling strategy, we use the generalised rolling velocity before impact

uuuR =∥uuuR∥
√

R2 +1 [R,0,−1]T

which corresponds to a wheel rolling on flat ground. The energy loss at collision can simply
be obtained from the collision matrix. We assume the coefficient of restitution to be negligible,
thus allowing for inelastic collisions. We obtain the energetic loss at collision

∆ER =
1
2

uuuT
RMcuuuR =

m∥uuuR∥2

2
hR
(
2mR2 −Rhm+2I

)
(mR2 + I)(R2 +1)

. (A.4)

A.3 Limit Case of Hopping vs. Rolling

For the trivial hopping strategy, we assume the energy needed to hop over the obstacle is
simply proportional to the potential energy required to lift the system onto the obstacle. The
energy is added before the collision to avoid the obstacle. Therefore

∆ET H = mgh. (A.5)
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If the obstacle height is decreased until its limit is reached, a clear distinction can be made
for which regions the hopping or rolling strategy become optimal. We take the collision loss
of rolling and divide it by the collision loss for hopping as the obstacle height h goes to zero

lim
h→0

∆ER

∆ET H
= lim

h→0

∥uuuR∥2

g

(
R

R2 +1
− hmR2

2(mR2 + I)(R2 +1)

)
=

∥uuuR∥2

g
R

R2 +1
(A.6)

We take the definition of the rolling velocity uuuR =∥uuuR∥
√

R2 +1 [R,0,−1]T and get for the
forward velocity ux = uuuR∥R/

√
R2 +1. Substitution into Equation (A.6) gives

lim
h→0

∆ER

∆ET H
= u2

x

√
R2 +1

2

gR2
R

R2 +1
=

u2
x

gR
= Fr, (A.7)

with Fr the Froude number of the system. Hence, for negligible obstacle heights, the Froude
number gives an indication for the superiority of locomotion strategy, i.e. for Fr > 1 hopping
is optimal, and for Fr<1 rolling is optimal.

For the non-limit case, we obtain

∆ER

∆ET H
= Fr

(
1− hmR

2(mR2 + I)

)
= Fr

(
1− h/R

2(1+α)

)
, (A.8)

with α = I/mR2. Worst efficiency ratio for hopping occurs when h = R and α → 0, which
results in ∆ER/∆ET H = Fr/2. A Froude number of 2 therefore defines the lower optimality
limit for hopping over rolling.

A.4 Eigenvalue Ratio

The eigenvalues of the collision matrix determine the energy loss of the collision according
to the generalised velocity vector. The conditions for which the rotational hopping strategy
is superior to the hopping strategy can be investigated by comparing their eigenvalues, as
both pre-collision velocities correspond to a distinct eigenvector for these two cases. The
eigenvalue corresponding to the hopping strategy is λH = m and Equation (A.2) for the
rotational hopping strategy.

λH

λL
=

mk+ I
I(k+1)

(A.9)

We are interested in the case that λH/λL > 1, i.e. the rotational hopping strategy superior to
the hopping strategy. Hence

mk+ I > I(k+1) (A.10)
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m > I (A.11)

for k > 0.



Appendix B

Extension to Chapter 5

The four derivatives in (5.18) have to be computed with care, as some of the occurring partial
derivatives do not address quantities that are given in an analytic explicit expression, but
rather by a differential equation or an implicit equation. To dissect the expressions we can
rewrite (5.18) to

A =

 dΓ1
dφT D

dΓ1
dφ̇

+
T D

dΓ2
dφT D

dΓ2
dφ̇

+
T D

[K1φ K2φ̇

K1φ K2φ̇

]∣∣∣
φ0,φ̇0

. (B.1)

with the suffix TD indicating the touchdown state and with

K1φ :=
[

∂φT D

∂φ
+

dφT D

dφ̇
+
TO

(
∂ φ̇

+
TO

∂φ
+

dφ̇
+
TO

dφ̇
−
TO

dφ̇
−
TO

dφ

)]∣∣∣
φ0,φ̇0

, (B.2)

K1φ̇
:=
[

∂ φ̇
+
T D

∂φ
+

dφ̇
+
T D

dφ̇
−
T D

(
∂ φ̇

−
T D

∂φ
+

dφ̇
−
T D

dφ̇
+
TO

(
∂ φ̇

+
TO

∂φ
+

dφ̇
+
TO

dφ̇
−
TO

dφ̇
−
TO

dφ

))]∣∣∣
φ0,φ̇0

, (B.3)

K2φ :=
[

∂φT D

∂ φ̇
+

dφT D

dφ̇
+
TO

(
∂ φ̇

+
TO

∂ φ̇
+

dφ̇
+
TO

dφ̇
−
TO

dφ̇
−
TO

dφ̇

)]∣∣∣
φ0,φ̇0

, (B.4)

and

K2φ̇
:=
[

∂ φ̇
+
T D

∂ φ̇
+

dφ̇
+
T D

dφ̇
−
T D

(
∂ φ̇

−
T D

∂ φ̇
+

dφ̇
−
T D

dφ̇
+
TO

(
∂ φ̇

+
TO

∂ φ̇
+

dφ̇
+
TO

dφ̇
−
TO

dφ̇
−
TO

dφ̇

))]∣∣∣
φ0,φ̇0

. (B.5)

Computation of most of the terms in (B.1) are straight forward to calculate through (5.11)
to (5.15). Special attention however is required for the left-hand side matrix in (B.1), as
these derivatives are effectively influencing the result of an integration rather than a closed
form expression. To calculate the derivatives, we define the sensitivity with respect to our
parameters of interest p1 = φT D and p2 = φ̇T D as rrri =

dzzz
d pi

. Through differentiation of (5.15)



130 Extension to Chapter 5

by pi, we obtain

ṙrri =
d fff
dzzz

rrri +
d fff
d pi

, i ∈ {1,2}, (B.6)

where fff is the right-hand side of (5.15) and the last term drops out since fff does not depend
on the post-touchdown states. Solving this ODE with initial conditions rrr1(zzz0) = (1,0)T and
rrr2(zzz0) = (0,1)T until z1 = φ0, will provide all entries in the left-hand side matrix in (B.1)
for the case of an open-loop controlled system. However, our controller is stopping not as a
function of time, but as a function of the impulse ζ . In other words, in the shown sensitivity
analysis, we did not account for the effect that a disturbance has on the stance phase time
ts. To include this, we first express (5.15) as a function of ζ rather than t. This requires a
change of variable with

dzzz
dt

=
dzzz
dζ

dζ

dt
, (B.7)

and therefore get
dzzz
dζ

=
żzz

ζ̇
=

fff

ζ̇
. (B.8)

The derivative of the impulse can be derived from (5.8) to (5.9)

ζ̇ =
IS IR

IS + IR

(
T
ts
− ż2

)
. (B.9)

It remains to change the coordinates in (B.6) in terms of impulse instead of time

drrri

dζ
=

(
1

ζ̇

d fff
dzzz

− fff

ζ̇ 2

ζ̇

dzzz

)
rrri. (B.10)

The solution of Equation (B.10) now truly leads to the entries of the left-hand side of (B.1)
for our control method, as we can simply integrate to the impulse limit ζ0. Note that in
(B.10) we assume knowledge of z(ζ ). If this is not given, the system has to be augmented to
a system of four rather than two ODEs, where the additional ODEs are given by (B.8).

The derivatives which derive post-flight phase states require attention, as the equations of
the flight time are only given implicitly. More specifically the terms ∂φT D

∂φ0
and ∂φT D

∂ φ̇
+
TO

are

∂φT D

∂φ0
=

∂

∂φ0

(
φ0 + φ̇

+
TO tF(φ0, φ̇

+
TO)
)

= 1+ φ̇
+
TO

dtF
dφ0

(B.11)
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and accordingly
∂φT D

∂ φ̇
+
TO

= tF + φ̇
+
TO

dtF
dφ̇

+
TO

. (B.12)

To find the derivatives of the flight time tF , we simply take the derivative of the implicit
Equation (5.12) and solve for dtF

dφ0
and dtF

dφ̇
+
TO

, which yields

dtF
dφ0

=
−a sinφ0 − φ̇

+
TO atF cosφ0 +a sin(φ0 + φ̇

+
TO tF)

φ̇
+
TO a sinφ0 −gtF −a φ̇

+
TO sin(φ0 + φ̇

+
TO tF)

, (B.13)

and
dtF

dφ̇
+
TO

=
−atF sinφ0 +atF sin(φ0 + φ̇

+
TO tF)

φ̇
+
TO a sinφ0 −gtF −a φ̇

+
TO sin(φ0 + φ̇

+
TO tF)

. (B.14)

We used the relation y = R−acosφ0 and ẏ = φ̇
+
TO acosφ0 to replace the vertical position and

velocity components in (5.12). The remaining terms of (B.1) are easily calculated.





Appendix C

Self-Stability of the Impulsive Wheel

The example given in this appendix is to demonstrate the power of self-stabilising principles
using discrete actuation. The following calculations can help to understand open-loop
stability of robots like [36] and [39], where a curved foot facilitates energy effective and
stable forward hopping through simple control. The example presented here is introducing
the impulsive wheel model, which, in analogy to the model presented in Chapter 3, uses
translational impulses as a source of actuation. The resulting dynamics can be described by a
simple return map, and analysis can be done using common tools from nonlinear dynamics.

The model used here assumes that the mass is located at the centre of the wheel, which
renders its stance phase energy independent of the impulse. This simplifies the analysis
enormously while still keeping the self-stabilising property. As we will see, when the right
impulse magnitude is applied, the wheel angular position will be stabilised around a fixed
point, hinting to the fundamental self-stability property of such systems.

C.1 The impulsive Wheel Model

The impulsive wheel model is depicted in Figure C.1. The wheel has a mass m, a moment of
inertia around the centre of mass I, and a radius R. We are given a rolling velocity φ̇S and an
impulse ζζζ = [ζx,ζy]

T which is applied to the wheel every TC seconds at the wheel-ground
contact point. We would like to answer the question if the take-off angle φ i

TO can be stabilised,
that is, as time goes to infinity, the angle at the impulsive events is constant and the average
rotation over one gait cycle is zero (as opposed to perpetually rotating in one direction). The
wheel exploits the backward rotation which is induced by the impulse to do so. The direction
of the impulse is with respect to a body-fixed direction measured with the angle φ from the
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𝜙𝑇𝑂
𝑖

𝜻

𝑚, 𝐽

𝑅

𝑂 𝒆𝑥

𝒆𝑦

Fig. C.1 Impulsive wheel model subject to impulse ζζζ with mass m, moment of inertia around
the centre of mass I, and radius R. The take-off angle at iteration i measured in the inertial
frame of reference O to a body-fixed reference is described with the angle φ i

TO.

vertical axis of an inertial coordinate frame O. The impulse is thus

ζζζ = ∥ζζζ∥

(
−sinφ

cosφ

)
. (C.1)

The impulse will cause a transition from rolling to a ballistic motion, which is governed by
the momentum balance uuu+ = M−1JT

c ζζζ +uuu−, with uuu the generalised velocity of the system,
M the mass matrix, Jc the contact Jacobian for the ground, and the superscripts + and −
indicate post and pre impulse states, respectively. In the case of a wheel with centred mass,
the rolling condition for the pre impuse velocity, and the impulsive force as per Equation
(C.1), this yields ẋ+

ẏ+

φ̇+

=


1
m 0 0
0 1

m 0
0 0 1

J


1 0

0 1
R 0

(−sinφ

cosφ

)
∥ζζζ∥+

−Rφ̇−

0
φ̇−

 . (C.2)

We are interested in the stabilisation of the angular position. The relevant flight phase speed
is thus

φ̇F =−R
I
∥ζζζ∥sinφ + φ̇S, (C.3)

where φ̇F stands for the flight phase angular velocity, and φ̇S for the stance phase angular
velocity. The impulsive transition is followed by a flight phase of the wheel, which has a
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flight phase time

tF =
2ẏ
g

=
2∥ζζζ∥cosφ

mg
, (C.4)

where g is the gravitational acceleration. We can now map the current take-off angle to the
next one, given the system parameters and impulsive actuation, with

φ
i+1
TO = φ

i
TO + tF φ̇F + φ̇S (TC − tF) , (C.5)

where the subscript TO indicates the take-off state, and the superscript i stands for the
iteration number. The equation simply states that the next take-off angle is current take-off
angle plus the angular displacements during flight and stance, with the stance phase time
being simply the difference between the actuation period and the flight phase time TC − tF .
Note that we are only interested in cases where the flight phase is smaller than the actuation
period and will not include other cases in the subsequent analysis. By using definitions (C.3)
and (C.4), we obtain

φ
i+1
TO = φ

i
TO − 2R∥ζζζ∥2

mIg
sinφ

i
TO cosφ

i
TO + φ̇STC. (C.6)

We slightly change the notation of this expression and write

φ
i+1
TO = φ

i
TO − csin2φ

i
TO + φ̇STC, (C.7)

where c = R∥ζζζ∥2

mIg .
Next, we want to find fixed points of this discrete map, meaning that we want to find

take-off angles φ∗ for which φ
i+1
TO = φ i

TO. The solution is easily obtained from Equation
(C.7) and reads

φ
∗ =

1
2

sin−1 φ̇STC

c
. (C.8)

This equation shows that there are initial conditions for which the impulsive actuation maps
the angle back to itself. We are interested in stability of the hopping motion and therefore
need to check whether perturbations in the angle will cause the dynamics to diverge or
converge to the equilibrium point. To that end, we calculate the eigenvalue of the return map
(C.7) by

∂φ
i+1
TO

∂φ i
TO

∣∣∣
φ∗

= 1−2
√

c2 − φ̇ 2
S T 2

C . (C.9)
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the requirement for locally asymptotic stability is that the absolute value of the eigenvalue of
the return map is smaller than one, thus

λ = |1−2
√

c2 − φ̇ 2
S T 2

C |< 1. (C.10)

This equation defines bounds on the magnitude of the impulse, which are

∥ζζζ∥min =

√
φ̇STC

c0
(C.11)

and

∥ζζζ∥max =

√
1
c0

√
1+ φ̇ 2

S T 2
C , (C.12)

where c0 =
R

mIg . The analysis is therefore concluded and we showed that there exists an
impulse interval for which the fixed points φ∗ are locally asymptotically stable, as clearly
∥ζζζ∥min < ∥ζζζ∥max.

C.2 Discrete-Time Dynamics of the Impulsive Wheel

Through a numerical simulation, we find that for λ > 1 we find period doubling bifurcations
and the system stays stable in the sense of Lyapunov due to higher-order terms. Figure C.2
shows the bifurcation diagram for the hopping wheel with increasing impulse magnitude
and fixed parameters mass m = 1, Radius R = 1, moment of inertia I = 1, gravitational
acceleration g = 9.81, actuator period TC = 1, and kinetic energy during rolling E0 = 1.

The iteration-series shown in Figure C.3 displays the behaviour for increasing impulse
with the same system parameters as in the bifurcation diagram. The system shows asymptotic
stability for impulses 3.3kgm

s , 3.7kgm
s , and 3.74kgm

s , before the behaviour switches to stability
in the sense of Lyapunov with 4kgm

s and 4.2kgm
s . At an impulse of 4.3kgm

s , the take-off angle
clearly diverges over the hopping iterations.
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Fig. C.2 Bifurcation diagram of impulsive wheel. Parameters are parameters mass m = 1,
Radius R = 1, moment of inertia I = 1, gravitational acceleration g = 9.81, actuator period
TC = 1, and kinetic energy during rolling E0 = 1.
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Fig. C.3 Iteration-series of impulsive wheel for various impulse magnitudes. Fixed parameters
are mass m = 1, Radius R = 1, moment of inertia I = 1, gravitational acceleration g = 9.81,
actuator period TC = 1, and kinetic energy during rolling E0 = 1.
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