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Abstract

Complex lanthanide oxide systems are known to host novel phases of matter, while also
providing functionality for practical applications. In this dissertation, the structural, magnetic
and magnetocaloric properties of three families of lanthanide oxides have been studied with
the dual aims of investigating the magnetic behaviour and identifying promising magnetic
refrigerants for cooling to temperatures currently accessible using non-renewable liquid He.

The thesis presents a two-part study of the magnetic and magnetocaloric properties of the
geometrically frustrated lanthanide garnets, where the magnetic Ln3+ form corner-sharing
triangles. First, the family of garnets Ln3A2X3O12, Ln = Gd, Tb, Dy, Ho, A = Ga, Sc, In,
Te, X = Ga, Al, Li are investigated. Changes to the single-ion anisotropy of the magnetic
ion as well as variations in the chemical pressure radically alters the nature of magnetic
ordering, the degree of frustration and the magnetocaloric performance. In the second
part, the garnets Ln3AGa4O12, Ln = Gd, Tb, Dy, Ho, A = Cr, Mn, are studied. Introducing
additional spins significantly reduces the frustration in the garnet lattice. Low temperature
powder neutron diffraction of Ho3MnGa4O12 reveals concomitant ordering of Ho3+ and Mn3+

moments below the ordering temperature, TN = 5.8 K. The magnetocaloric performance of
Ln3CrGa4O12, Ln = Gd, Dy, Ho, greatly surpasses that of the parent Ln3Ga5O12 at T = 2 K.

The final results chapters in the thesis describe the magnetism and magnetocaloric
effect in the lanthanide orthoborates, LnBO3, Ln = Eu, Gd, Tb, Dy, Ho, Er, Yb and the
lanthanide metaborates, Ln(BO2)3, Ln = Pr, Nd, Gd, Tb. The magnetic Ln3+ form slightly
distorted edge-sharing triangular layers in LnBO3. Unique magnetic features are observed,
including short-range ordering and spin reorientation transitions depending on the single-ion
anisotropy of the Ln3+. The LnBO3 are also efficient magnetocalorics in the liquid helium
temperature range. The lanthanide metaborates contain one-dimensional chains of magnetic
lanthanide ions. Bulk magnetic measurements show features consistent with low-dimensional
magnetism, such as magnetisation plateaux at one-third of the saturation magnetisation for
Nd(BO2)3 and Tb(BO2)3 in a field of 14 T.

This thesis provides insight into the fundamental magnetic properties of complex lan-
thanide oxide systems and also demonstrates strategies for identifying new magnetocaloric
materials: both through chemical control of the structure of well-known magnetocalorics
and by studying materials that have not been explored previously. The results pave the way
for further in-depth investigations and finding new magnetic coolants based on complex
lanthanide oxide systems.
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Chapter 1

Introduction

The history of magnetism begins in ancient times, when people found that lodestones
attracted iron. Rapid advancements were made in the 1800s when the relationship between
electricity and magnetism was explored in depth. This finally culminated in Maxwell’s
equations that unified electricity, magnetism and optics giving the first unified theory of
physics: that of electromagnetism. Another ground-breaking achievement came with the
advancement of relativistic quantum mechanics in the early 1900s and the discovery of spin,
a property intrinsic to every elementary particle. Magnetism continues to be an active field
of fundamental research while also finding widespread practical applications, from existing
technologies like motors and hard disk drives to technologies of the future such as spintronics
and skyrmionic memory storage devices. A more in-depth review of the history and advances
in magnetism can be found in [1].

This thesis explores the fundamental magnetic properties of three families of complex
lanthanide oxides, where the connectivity of the magnetic lanthanide (Ln3+) ions is geomet-
rically frustrated. In geometrically frustrated magnetic materials, the underlying geometry
of the structure prevents all the pairwise interactions between magnetic spins from being
satisfied simultaneously. The system fluctuates between degenerate ground states, leading
to emergent states of matter with exotic behaviour such as the magnetic analogues of ice
and liquids [2]. The ground state selected by a geometrically frustrated system is fragile
and sensitive to the slightest structural perturbations. Thus, the system may be driven to a
different ground state through chemical substitution. In this thesis, a comprehensive study of
the impact of chemical substitution on a known family of frustrated lanthanide oxides, the
lanthanide garnets, is presented for the first time. The magnetic properties of two families of
lanthanide borates with frustrated lattices, which had not been explored previously, is also
discussed.



2 Introduction

Another key research theme explored in this thesis is examining the performance of these
complex lanthanide oxides as solid state magnetic refrigerants at low temperatures, T ≥ 2 K.
Due to the increasing scarcity and cost of liquid helium, sustainable alternatives for cooling
to low temperatures need to be explored: one such technique is magnetic refrigeration. The
materials studied in this thesis have very low transition temperatures (which determines
the cooling limit) and high magnetic moments (which determines the efficiency of the
refrigeration cycle) and so, are ideal candidates for magnetic refrigeration in the liquid
helium temperature regime.

This chapter presents a general introduction to the thesis; the materials are introduced in
the respective results chapters. The chapter begins with an introduction to the fundamentals
of magnetism; a more complete description can be found elsewhere, such as in [3, 4].
This is followed by discussions on geometrical frustration and low temperature magnetic
refrigeration, which are concepts key to the materials discussed in this thesis. The chapter
concludes with a brief overview of the subsequent chapters in this dissertation.

1.1 Magnetic moments in atoms

In classical electromagnetism, a quantity called magnetic moment can be defined as follows:
For a loop of infinitesmally small area dA carrying current I, the magnetic moment, µ is
given by

µ =
∫

dµ =
∫

IdA (1.1)

This entity is equivalent to a magnetic dipole [5].
A current loop and the corresponding magnetic moment is due to the motion of one or

more electrically charged particles. In atoms, the orbital motion of electrons is associated
with an orbital magnetic moment, µL, and an orbital angular momentum, L. In the quantum
mechanical description, µ̂L and L̂ are defined as operators and are related as follows:

µ̂L =
−e
2me

L̂ (1.2)

where e is the magnitude of electronic charge and me is the mass of an electron. In the
quantum mechanical theory of angular momentum, L̂2 and one of the three components of
the angular momentum operator, conventionally the z component, L̂z, commute and provide a
complete description of the angular momentum of a particle [6]. L̂2 has an eigenvalue given
by:

L̂2 = l(l +1)h̄2 (1.3)
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where l is the angular momentum quantum number. L̂z has an eigenvalue given by:

L̂z = ml h̄ (1.4)

where ml is the magnetic quantum number ranging from −l to +l. The unit of magnetic
moment for atoms is named the Bohr magneton, µB, and is defined as:

µB =
eh̄

2me
(1.5)

Therefore the magnitude of the orbital magnetic moment, µL, is given by:

µL = gLL = gL
√

l(l +1)µB (1.6)

where gL = 1 for an infinitely massive nucleus and is defined as the orbital g factor for an
electron. For a finite mass nucleus, gL = 1− 1

M , where M is the ratio of the nuclear mass to
the electron mass [7].

There is another source of magnetic moment for all elementary particles: the spin S.
Contrary to the classical picture for a current loop for the orbital angular momentum, spin
has a purely quantum mechanical description and is intrinsic to all elementary particles, like
mass. Analogous to L̂ , Ŝ is given by

Ŝ2 = s(s+1)h̄2 (1.7)

where s is the spin quantum number. For an electron, s = 1
2 . The z component of Ŝ, Ŝz, has

an eigenvalue:
Ŝz = msh̄ (1.8)

where ms has values ranging from −s to +s. For an electron, the magnitude of the spin
magnetic moment, µS, is related to the spin angular momentum, S, by the following equation:

µS = gSS = gS
√

s(s+1)µB (1.9)

where gS is the spin g factor for an electron. From Dirac’s theory of relativistic quantum
mechanics, gS = 2. However, from later developments in quantum electrodynamics, it was
shown that gS can be expressed as a power series in α (where α = e2

4πε0h̄c = 1
137.04 is the

fine structure constant) and the actual value is 2.0023.... This is owing to the fact that
electromagnetic interactions originate from the action of virtual photons that are emitted and
reabsorbed by electrons: the successive terms in the power series indicate the contributions
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of increasing number of formation and annihilation of virtual photons. In this thesis, the
approximation gS = 2 is used for simplicity.

For a many-electron atom with no spin-orbit coupling, the total orbital angular momentum
L is the vector sum of the individual orbital angular momenta (here the bold type indicates a
vector operator):

L = ∑
i

l(i) (1.10)

The magnitude of L is given by

|L|=
√

L(L+1)h̄ (1.11)

The z component, Lz, has the magnitude MLh̄ where ML, the auxiliary or magnetic quantum
number, is given by:

ML = ∑
i

ml(i) (1.12)

ML ranges from −L to +L, that is, each L state has a degeneracy of (2L+1). Similarly in
the absence of spin-orbit coupling, the total spin angular momentum, S, is defined as:

S = ∑
i

s(i) (1.13)

and has the magnitude:
|S|=

√
S(S+1)h̄ (1.14)

Sz has the magnitude MSh̄ where MS is given by:

MS = ∑
i

ms(i) (1.15)

MS ranges from −S to +S, with each S state having (2S+1) degeneracy. Now in a many-
electron atom, the spin-orbit interaction, which is the interaction between the spin and orbital
components of the electronic wavefunction must also be considered. Then, L and S are no
longer conserved and instead the total angular momentum, J, is conserved. J is given by:

J = L+S (1.16)

and has the magnitude:
|J|=

√
J(J+1)h̄ (1.17)
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J has allowed values in the range |L−S| to L+S. The z component, JZ , has magnitude MJ h̄
where

MJ = ML +MS = ∑
i

m j(i) (1.18)

MJ ranges from −J to +J; thus each J state is (2J +1) degenerate. Therefore the relation

∑J(2J+1) = (2L+1)(2S+1) is always valid.
The general expression for the magnitude of µµµ , µe f f , can be written in a manner analogous

to the orbital magnetic moment and spin magnetic moment as:

µe f f = gJ
√

J(J+1)µB (1.19)

The Landé g factor for the total angular momentum, gJ , is given by the expression:

gJ =
3
2
+

S(S+1)−L(L+1)
2J(J+1)

(1.20)

The values of L, S and J are obtained following Pauli’s exclusion principle and Hund’s
rules. Pauli’s exclusion principle for electrons in atoms can be stated as ‘No two electrons in
a multi-electron atom can have the same values for all four quantum numbers’. Here, the four
quantum numbers referred to are: n, the principal quantum number, l, the angular momentum
quantum number, ml , the magnetic quantum number, and ms, the spin quantum number.
Pauli’s exclusion principle implies that electrons in an atom occupy distinct quantised orbitals
with at most two electrons per orbital.

Hund’s rules can be stated as [3]:

(a) The lowest energy state for an atom is that for which the total spin quantum number, S
is maximised. This minimises the Coulomb repulsion energy in accordance with the
Pauli exclusion principle.

(b) For the energy state determined by the first rule, maximise L. Once again, this
minimises the Coulomb repulsion energy since electrons rotating in orbits in the same
direction may ‘avoid’ each other more effectively.

(c) J is given by |L−S| for less than half-filled shells and by L+S for shells that are more
than half-filled. This minimises the spin-orbit energy.

The values of L, S and J can also be used to summarise the ground state using a term symbol
2S+1LJ . Here, 2S+1 denotes the spin multiplicity and L is represented by a letter according
to the sequence given in Table 1.1. It must be noted that Hund’s rules only lead to a prediction
of the ground state J manifold and do not yield any information about the excited states or
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Table 1.1 L values and corresponding letters in the term symbol 2S+1LJ .

L 0 1 2 3 4 5 6 ...

S P D F G H I ...

Table 1.2 Magnetic ground states for some Ln3+ ions using Hund’s rules. The values of S, L,
J, gJ , µe f f /µB = gJ

√
J(J+1) and ∆Smax = R ln(2J+1) are listed for the ground state.

Ion Shell S L J gJ µe f f (µB) ∆Smax (JK−1 mol−1)

Pr3+ 4 f 2 1 5 4 0.80 3.58 18.27
Nd3+ 4 f 3 1.5 6 4.5 0.73 3.62 19.14
Eu3+ 4 f 6 3 3 0 0.00 0.00 0.00
Gd3+ 4 f 7 3.5 0 3.5 2.00 7.94 17.29
Tb3+ 4 f 8 3 3 6 1.50 9.72 21.32
Dy3+ 4 f 9 2.5 5 7.5 1.33 10.65 23.05
Ho3+ 4 f 10 2 6 8 1.25 10.61 23.56
Er3+ 4 f 11 1.5 6 7.5 1.20 9.58 23.05
Yb3+ 4 f 13 0.5 3 3.5 1.14 4.54 17.29

how close they are to the ground state. This thesis focuses on magnetism arising from rare
earth ions, Ln3+, which obey Hund’s rules very well. However, Hund’s third rule is violated
for certain transition metal ions, as will be explained in a later section.

The values of orbital angular momentum L, spin angular momentum S and total angular
momentum J for the Ln3+ ions can be used to calculate the g factor and the theoretical
magnetic moment. These values are compiled in Table 1.2 for some magnetic Ln3+ [3].

1.2 Bulk magnetism: isolated moments

Having defined the different aspects of magnetic moments in atoms, an overview of commonly
observed magnetic behaviour in bulk magnetic materials is presented. It will be noted here
that although the discussion is for atoms, these considerations apply equally well to ions,
such as the magnetic lanthanide ions that are the focus of this thesis [3, 4]. In this section the
phenomena involving isolated, non-interacting magnetic moments are discussed.

1.2.1 Magnetic susceptibility

A bulk magnetic material contains of a large number of atoms with magnetic moments. The
magnetisation, M, is defined as the magnetic moment per unit volume. In free space, when
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the magnetisation is zero, the magnetic field is defined by B and H which are related by
B = µ0H where µ0 = 4π × 10−7 Hm−1 is the permeability of free space. The magnetic
susceptibility, χ , is defined by the relation:

χ =
dM
dH

(1.21)

Typically the isothermal magnetisation, M(H), curves are linear in very low magnetic fields
and the susceptibility χ can be approximated by the formula:

χ =
M
H

(1.22)

1.2.2 Diamagnetism

This phenomenon is seen in all materials and is characterised by a negative value of the
magnetisation and the magnetic susceptibility. It can be qualitatively explained by Lenz’s law
of electromagnetic induction, although the origins are purely quantum mechanical. When an
external magnetic field is applied, the electronic orbits cross the field and hence experience
an electromotive force associated with the change in flux. As per Lenz’s law, the resulting
current (and hence magnetisation) opposes the cause, that is, the direction of the initial
applied field. The diamagnetic susceptibility is usually independent of temperature and
decreases linearly with increase in applied magnetic field. The diamagnetic susceptibility,
χdia can be calculated using Pascal’s constants [8] for a specific material. However, usually
it is several orders of magnitude smaller than the paramagnetic susceptibility and can be
neglected. It is the dominant contribution to the susceptibility for closed-shell species which
have no paramagnetic moment.

1.2.3 Paramagnetism

Paramagnetism is observed in materials that contain atoms having net magnetic moments due
to unpaired electrons. For an ideal paramagnet, in the absence of an applied magnetic field,
the magnetic moments are oriented randomly due to thermal fluctuations. When an external
magnetic field is applied, the magnetic moments attempt to align parallel to the direction
of the magnetic field. This gives rise to a positive magnetic susceptibility. An increase
in magnetic field will align the spins whereas an increase in temperature will increase the
random fluctuations. Therefore the magnetisation is expected to be a function of the ratio of
B/T where B is the magnetic field and T is the temperature. In a semiclassical treatment,
the quantisation of magnetic moments is neglected and the angular momentum levels are
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assumed to be continuous (J = ∞). In this case, the magnetisation is given by:

M = MsatL(y) (1.23)

where L(y) = cothy−1/y is the Langevin function, Msat = NAµe f f is the saturation magneti-
sation, when all the magnetic moments are aligned parallel to the field, and y = µe f f B/kBT .
The susceptibility, χpara, obeys Curie’s law and is given by:

χpara =
C
T

(1.24)

where C is the Curie constant given by

C =
NAµ2

e f f

3kB
(1.25)

The magnetic moment can be determined from the Curie constant as:

µe f f =

√
3kBC
NA

(1.26)

In the quantum mechanical description, J can only take discrete values (integer or a half-
integer). Then the magnetisation is given as:

M = MsatBJ(y) (1.27)

where the saturation magnetisation, Msat , is given by:

Msat = gJJµB (1.28)

y is defined as:

y =
gJJµBB

kBT
(1.29)

and BJ(y) is the Brillouin function defined as:

BJ(y) =
2J+1

2J
coth

2J+1
2J

y− 1
2J

coth
y

2J
(1.30)

For small y (high temperatures and/or low magnetic fields), BJ(y) can be approximated as:

BJ(y) =
(J+1)y

3J
+O(y3) (1.31)
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Neglecting the second term, the magnetic susceptibility is given by

χpara =
NAg2

JJ(J+1)µ2
B

3kBT
=

NAµ2
e f f

3kBT
(1.32)

and hence is same as the classical Curie law. Experimentally the paramagnetic susceptibility
can be determined as:

χpara = χexpt −χdia (1.33)

where χdia is the diamagnetic susceptibility and χexpt is the experimentally measured mag-
netic susceptibility. The experimental measurement of χ(T ) would yield a magnetic moment
value, equation (1.26), which can be compared with the theoretical magnetic moment defined
by equation (1.19).

From the Curie law, χ ∝ 1/T and hence the graph of 1/χ vs. T is a straight line.
A weak form of paramagnetism called Pauli paramagnetism is observed in metals. This

is temperature independent to a first approximation. It arises due to the itinerant electrons
that are responsible for conduction in metals. This is not observed for the materials discussed
in this thesis.

1.2.4 van Vleck paramagnetism

If the electronic ground state has J = 0, there is no paramagnetic effect and hence no
paramagnetic susceptibility because the ground state of the system does not change on
application of an external magnetic field. However this statement is only valid in the limit
of first order perturbation theory. In second order perturbation theory, admixture of excited
states is considered for which J ̸= 0. In this case the magnetic susceptibility is given by:

χ = 2NA ∑
n

|< 0|(Lz +gSz)|n > |2

En −E0
µ

2
B +χdia (1.34)

where En and E0 are the energies of the nth excited state and ground state respectively. The
first term in equation (1.34) is positive and is referred to as the van Vleck paramagnetic
susceptibility while the second term is the diamagnetic susceptibility which is negative. van
Vleck paramagnetism is similar to diamagnetism in that it is a small effect and is temperature
independent. It is important for rare-earth ions like Sm3+ and Eu3+ where the theoretical
magnetic moment is close to or exactly zero and admixture of ground state and excited states
need to be considered to model the magnetic susceptibility effectively [3].
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1.2.5 Magnetic entropy

For an ideal paramagnet containing NA independent magnetic moments per mole, in the
absence of a magnetic field, the magnetic moments are subject to thermal fluctuations and
have random orientations. This is a state of complete disorder and the resultant magnetisation
is zero. In an applied magnetic field, the magnetic moments would align, resulting in a net
magnetisation and this would reduce the random fluctuations of the moments. This can be
quantified in terms of entropy. The general definition of entropy, S, which is a measure of
‘disorder’, is given by:

S = kB lnω (1.35)

where ω is the number of microstates of the system. At very high temperatures, in the
absence of magnetic field, the thermal energy kBT is sufficiently large that the system is
totally disordered. mJ can take (2J+1) values and so the total possible number of microstates
are ω = (2J+1)NA . Hence, the entropy becomes:

S = NAkB ln(2J+1) = R ln(2J+1) (1.36)

The magnetisation is a function of B/T so that on applying a magnetic field and at low
temperatures, the moments align with the field. At sufficiently low temperatures, all the
magnetic moments align parallel with the field and there is only one possible microstate
such that ω = 1 and S = 0. Thus the maximum change in magnetic entropy that can be
theoretically extracted, ∆Smax, in units of JK−1 mol−1, is given by:

∆Smax = R ln(2J+1) (1.37)

For the case with effective J = 1/2 (as is observed in many complex lanthanide oxides at
low temperatures), ∆Smax is given by:

∆Smax = R ln2 (1.38)

The ∆Smax values for some magnetic Ln3+ according to equation (1.37) are given in Table
1.2.

1.3 Crystal fields and magnetic interactions

The impact of the local crystal environment and interactions between magnetic moments is
described in this section.
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1.3.1 Crystal fields

In an actual crystal, the magnetic ions are not isolated but are coordinated via ligands. The
crystal field can be defined as an electric field due to the neighbouring ions in a crystal. The
neighbouring orbitals are modelled as negative point charges; in a more sophisticated analysis,
the overlap between the orbitals of the central magnetic ion and the orbitals of neighbouring
ions is considered. The nature of the crystal field for a magnetic ion is completely dependent
on the symmetry of the local environment as the electrostatic repulsion between the electrons
of the ligand and magnetic ion is dependent on the spatial distribution of the electrons and
hence the orbitals. With the exception of s orbitals, the local environment is not spherically
symmetric so different orbitals behave differently. The charge of the magnetic ion, the nature
of the ligand and the coordination geometry all play an important role in determining the
crystal field levels. For example, octahedral or tetrahedral environments for 3d transition
metal ions produce different crystal field splittings.

For 3d transition metal ions, the crystal field effect is much stronger than the spin-orbit
interaction and so Hund’s third rule is not obeyed. In such systems, a ground state usually
has L = 0 and so J = S and gJ = 2. Therefore the magnetic moment is usually given by:

µe f f ,T M = 2
√

S(S+1)µB (1.39)

This effect is known as orbital quenching because the orbital moment is effectively quenched.
For higher transition metal ions, (4d and 5d) the situation is complex because the spin-orbit
interaction and the crystal field effects are of comparable magnitude. For the 4 f rare earth
ions, the delocalisation of the orbitals from the nucleus is much less as they lie beneath the
5s and 5p shells and so crystal field interactions are weaker than the spin-orbit interactions.
Therefore Hund’s third rule is obeyed.

Another consequence of the crystal field is that if it causes a sufficiently large splitting
of the energy levels, the pairing energy of spins might be lower than the energy separation
between the crystal field levels. In such a case, it is energetically favourable to violate Hund’s
first rule and pair up spins in the lower crystal field levels, known as a ‘low spin’ state. If
the energy separation between crystal field levels is lower than the pairing energy, a ‘high
spin’ state is favoured. This is observed in materials containing 3d transition metal ions.
For example, both ‘high spin’ and ‘low spin’ states are possible for Mn2+, Fe3+ or Co2+ in
octahedral environments [3, 9]

The final important consequence of crystal field effects is to generate a single-ion
anisotropy for the magnetic ion such that the spins locally prefer to orient along specific
directions. In axial environments, the effect of the crystal electric field on the orientations of
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the spins may be modelled using a term in the Hamiltonian given by:

HCF =−∆∑
i
(Si · zi)

2 (1.40)

where zi is a local axis along which the spins Si may align and ∆ is defined as the single-ion
anisotropy constant. If ∆ > 0, spins prefer to align along zi: this is referred to as ‘easy-axis’
anisotropy. On the other hand, if ∆ < 0, spins prefer to align perpendicular to zi: this is
referred to as ‘easy-plane’ anisotropy.

For the complex lanthanide oxides considered in this thesis, the magnetic ions are the
4 f rare-earth ions and therefore Hund’s rules are obeyed. The crystal field arises from the
interactions between the 4 f orbitals of the magnetic Ln3+ and the 2p orbitals of O2 – . The
4 f orbitals have highly anisotropic distributions and so the crystal field will cause splitting
of the J multiplet energies into (2J + 1) levels. A priori calculations of the crystal field
levels for 4 f rare earth ions can be extremely complex and they are mainly determined from
experiments such as inelastic neutron scattering for a specific sample. However, some general
comments can be made. Firstly, the interactions of the f orbital distribution with the crystal
field can give rise to substantial single-ion anisotropies of the magnetic Ln3+. Secondly,
Kramers’ degeneracy theorem states that for all systems with time-reversal symmetry and
half-integer total spin, every energy level is at least doubly degenerate [10]. This implies that
for magnetic Ln3+ with half-integral values of J (such as Dy3+, Er3+), known as Kramers ions,
all crystal field levels are at least doubly degenerate irrespective of the point symmetry of the
crystallographic site where the magnetic ion is situated. On the contrary, for non-Kramers
ions (such as Tb3+, Ho3+), there is no such constraint and the ground state is determined by
the point symmetry of the crystallographic site.

1.3.2 Dipolar interactions

As already discussed, a magnetic moment µµµ behaves like a magnetic dipole. Thus a collection
of magnetic moments in a solid can be considered to be a system of interacting magnetic
dipoles. The energy of interaction between two such magnetic dipoles µµµ1 and µµµ2 separated
by a distance rrr is given by:

E =
µ0

4πr3 [µµµ1 ·µµµ2 −
3
r2 (µµµ1 · rrr)(µµµ2 · rrr)] (1.41)

The dipolar interaction energy depends on the magnitude, separation and the relative align-
ment of the magnetic moments. However, in order to obtain an order of magnitude approxi-
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mation, the magnetic dipolar interaction energy, D can be estimated as:

D =
µ0µ2

e f f

4πR3
nn

(1.42)

where Rnn is the nearest neighbour distance between the magnetic ions and µe f f is determined
from the Curie constant, equation (1.26).

1.3.3 Exchange interactions

Exchange interactions have a purely quantum mechanical origin. They can be thought
of as a manifestation of the fact that the wave functions of identical particles are subject
to exchange symmetry, that is, they remain unchanged when two particles are exchanged
(symmetric wave function) or change sign when two particles are exchanged (antisymmetric
wave function). The former case is true for bosons obeying Bose-Einstein statistics and
the latter is true for fermions obeying Fermi-Dirac statistics (a consequence of which is the
Pauli exclusion principle). Electrons fall in the latter category and the overall wave function
must be antisymmetric. Thus for a symmetric spatial wave function, the spin wave function
must be antisymmetric, that is, a singlet state with S = 0, while for an antisymmetric spatial
wave function, the spin part must be a symmetric triplet state with S = 1. The effective
Hamiltonian can be written as:

Ĥ =
1
4
(ES +3ET )− (ES −ET )S1 ·S2 (1.43)

where ES and ET are the energies for the singlet and triplet states. The Hamiltonian is the
sum of a constant term, and a spin-dependent term. The exchange constant or exchange
integral, J, which indicates the preference for a singlet or a triplet state, is defined by:

J =
ES −ET

2
(1.44)

So the spin-dependent term in the effective Hamiltonian can be written as:

Ĥspin =−2JS1 ·S2 (1.45)

Generalising to a many-electron system, the Hamiltonian for the Heisenberg model is given
by:

Ĥspin =−∑
i j

Ji jSi ·S j (1.46)
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where Ji j is the exchange constant between the ith and jth spins and the factor 2 is removed
because each pair of spins is included in the sum twice. It is common to take Ji j = J, a
constant for nearest neighbour spins and to be equal to zero otherwise.

Direct exchange

Direct exchange refers to electrons on neighbouring atoms interacting directly via the ex-
change interaction. However this may not be the true mechanism for exchange interactions
in many materials. For example, in the 4 f rare earth ions, the 4 f electrons are very strongly
localised and are situated close to the nucleus and so there is insufficient direct overlap
between the neighbouring orbitals of the magnetic ions. Even in 3d transition metals like
Fe, Co, Ni, direct exchange cannot explain the observed magnetic properties completely. In
most magnetic materials, some indirect exchange interaction mechanism such as superex-
change, double exchange or anisotropic exchange (also known as the Dzyaloshinsky-Moriya
interaction) must be considered [3].

Superexchange

The exchange mechanism operating in many ionic solids, such as transition metal oxides as
well as complex lanthanide oxides (discussed in this thesis) is the superexchange interaction,
first proposed by Kramer [11] and later refined by Anderson [12]. Superexchange is defined
as the indirect exchange interaction between non-neighbouring magnetic ions that is mediated
by a non-magnetic ion situated in between those magnetic ions. Superexchange strongly
depends on the degree of overlap of the orbitals and hence on the M-O-M bond angle, where
M is the magnetic ion and O is oxygen.

The exchange integral consists of a potential exchange term due to electron repulsion
that favours a ferromagnetic ground state, and a kinetic exchange term which favours an
antiferromagnetic ground state. In most cases of superexchange, the kinetic term dominates.
The antiferromagnetic coupling reduces the energy of the system by allowing electrons to
become fully or partially delocalised over the entire structure and subsequently lowering the
kinetic energy. In some cases, superexchange can be ferromagnetic but this is typically weaker
than the antiferromagnetic superexchange. The nature of the superexchange coupling between
d orbitals can usually be explained by a set of empirical rules known as the Goodenough-
Kanamori rules [13–15] although there are exceptions such as when spin-orbit coupling
becomes significant. It is not possible to directly construct such a simple scheme to rationalise
the sign of exchange interactions for 4 f orbitals, such as the magnetic Ln3+ considered in
this thesis.
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1.3.4 Relative magnitude of dipolar and exchange interactions

Dipolar interactions, D, are determined by the magnitude of magnetic moments and distance
between the magnetic moments. Typically D has an order of magnitude of 0.1 - 1 K for
magnetic materials. The magnitude of exchange interactions, J, is usually determined by
the degree of overlap between orbitals. For 3d magnetic ions, J can range between 10 - few
100 K, whereas for more localised 4 f orbitals, the typical range of J is 1 - 10 K. Therefore,
for 3d ions, usually J >> D and it is sufficient to consider only exchange interactions for
understanding the magnetic properties. However, for 4 f ions, such as the complex lanthanide
oxides discussed in this thesis, J and D are of the same order of magnitude and both need to
be considered for understanding the magnetic properties.

1.3.5 Heisenberg, Ising and XY models

In order to understand the magnetic behaviour of bulk solids, one has to also consider the
microscopic models of the magnetic interactions. A common general model is the nearest
neighbour classical Heisenberg model for which the Hamiltonian is given by:

Ĥ =− ∑
<i j>

JSi ·S j (1.47)

where J is the constant denoting the exchange integral and < i j > represents a sum over
nearest neighbours. In a classical model, the spins Si are considered to be three-dimensional
vectors and the sum can be taken over a lattice of 1, 2 or 3 dimensions. It is important to note
the distinction between d, the dimensionality of the lattice where the spins are located, and
D, the dimensionality of the spins themselves. For the Heisenberg model, D = 3 and d can
be 1, 2 or 3. The maximum magnetic entropy associated with Heisenberg spins is given by
equation (1.37). In the XY model, the Hamiltonian is the same as equation (1.47) except
D = 2 so the spins are two-dimensional vectors, confined to a plane. In the Ising model,
D = 1 and spins are only allowed to point up or down; that is, only the z component of the
spin is considered (the choice of z is not unique but this is the convention). The Hamiltonian
is given by:

Ĥ =− ∑
<i j>

JSz
i S

z
j (1.48)

These spins could be arranged on a lattice with d = 1,2 or 3. The maximum magnetic entropy
associated with Ising spins with effective S = 1/2 is given by equation (1.38).
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1.4 Bulk magnetism: interacting moments

Having discussed the importance of the local environment and the main kinds of magnetic
interactions, the resultant phenomena in bulk magnetic materials are discussed in this section.

1.4.1 Ferromagnetism

Ferromagnetism refers to the existence of spontaneous magnetisation in the absence of
magnetic field, due to exchange interactions. For a ferromagnet in an applied magnetic field,
the Hamiltonian is given by:

Ĥ =−∑
i j

Ji jSi ·S j +gµB ∑
j

S j ·B (1.49)

In the Weiss model of ferromagnetism, a molecular field simulating the effect of magnetic
ordering in the system, Bm f = λM is considered where M is the magnetisation and λ is the
parameter denoting the strength of the molecular field. It can be shown that below a certain
temperature Tc, non-zero magnetisation occurs even in the absence of applied magnetic
field and this increases with decrease in temperature. The magnetisation is zero for T ≥ TC

and non-zero for T < TC. The magnetisation is continuous at T = TC but the gradient is
discontinuous; thus the phase transition from a paramagnetic to ferromagnetic phase is a
second order phase transition. The transition temperature, Tc, is called the Curie temperature
and is given by:

TC =
gJµB(J+1)λMsat

3kB
=

NAλ µ2
e f f

3kB
(1.50)

and the molecular field is given by:

Bm f = λMs =
3kBTC

gJµB(J+1)
(1.51)

The origin of the molecular field is the exchange interaction, which is an electrostatic effect.
The molecular field is a way of simulating the effect of the exchange interaction and the
parameter λ can be related to the exchange interaction J1. If it is assumed that the exchange
interaction is only effective over z nearest neighbours of a magnetic ion with a constant value
J1, then:

λ =
2zJ1

NAg2
Jµ2

B
(1.52)
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and the Curie-temperature is written as:

TC =
2zJ1J(J+1)

3kB
(1.53)

This equation is valid for most 3d ions where the orbital moment is quenched, that is, L = 0
so J = S. However, for 4 f ions, which are the main focus of this thesis, S is not a good
quantum number but J is a good quantum number. Hence the component of S parallel to J,
(gJ −1)J, is conserved. Therefore λ is given by:

λ =
2zJ1(gJ −1)2

NAg2
Jµ2

B
(1.54)

and the Curie temperature is given by:

TC =
2zJ1(gJ −1)2

3kB
J(J+1) (1.55)

When a small magnetic field is applied at T ≥ TC, a small magnetisation will be generated.
The magnetic susceptibility is then given by:

χ =
C

T −TC
(1.56)

where C is the Curie constant as defined previously. This is known as the Curie-Weiss law.

1.4.2 Antiferromagnetism

If the exchange interaction Ji j in equation (1.49) is negative, the molecular field favours
antiparallel alignment of nearest neighbour magnetic moments. In the Weiss model, such
antiferromagnetic systems can be modelled as two interpenetrating sublattices, where the
moments on one sublattice are antiparallel to the other. The molecular fields are given by
B+(−) =−|λ |M−(+) where λ is now negative. In the absence of a magnetic field, there is
a transition temperature above which the molecular field on each sublattice will disappear.
This is the Néel temperature, TN , defined by:

TN =
gJµB(J+1)|λ |Msat

3kB
=

NA|λ |µ2
e f f

3kB
(1.57)

The two magnetisations of the sublattices will be in opposite directions and hence the net
magnetisation, M++M−, would be zero.
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Application of a small magnetic field at T ≥ TN results in a magnetic susceptibility:

χ =
C

T +θ
(1.58)

If only nearest neighbour interactions are considered, θ = TN , the Néel temperature but
usually TN < θ as further neighbour interactions also play a role. For an antiferromagnet, TN

can usually vary between θ/2 to θ/4.

1.4.3 General form of magnetic susceptibility

The results of the previous sections are generalised as follows: A Curie-Weiss temperature,
θCW , denoting the temperature scale of the magnetic ordering is defined. In the paramagnetic
regime, when T >> θCW , thermal fluctuations dominate and the reciprocal molar suscepti-
bility obeys the Curie-Weiss law. From the 1

χ
vs T curve, a fit to the Curie-Weiss law can be

carried out at high temperatures:
1
χ
=

T −θCW

C
(1.59)

The magnetic moment and the dipolar interactions can be calculated from C using equation
(1.26) and equation (1.42). If θCW is negative, it denotes antiferromagnetic exchange interac-
tions whereas if it is positive, it denotes ferromagnetic exchange interactions. A schematic
of the susceptibility and reciprocal susceptibility for a typical paramagnet, ferromagnet and
antiferromagnet is shown in Figure 1.1.

For the complex lanthanide oxides discussed in this thesis, nearest neighbour interactions
between the Ln3+ ions are expected to be superexchange interactions mediated by oxygen
ligands. An order of magnitude approximation for the nearest neighbour exchange interaction
energy, J1, for the Ln3+ can be obtained from the Curie-Weiss temperature using the mean-
field theory approximation (this assumes that further neighbour interactions can be neglected
compared to nearest neighbour interactions) [17]:

J1 = JnnS(S+1) =
3kBθCW

2n
(1.60)

where n is the number of nearest neighbour Ln3+ surrounding one Ln3+ ion and Jnn is the
scale of the interaction.
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Figure 1.1 Magnetic susceptibility, χ , and the reciprocal susceptibility, χ−1, as a function
of temperature for different kinds of magnetic materials. The y intercept for the χ−1(T )
graph is T = 0 for a paramagnet, T = θW > 0 for a ferromagnet and T = θN < 0 for an
antiferromagnetic material. Image taken from [16].

1.4.4 Ferrimagnetism

In the Weiss model for an antiferromagnet, the magnetisation of the two sublattices are
assumed to be equal and opposite in sign. However there may be cases where although the
magnetisation is of opposite sign, the two sublattices are not equivalent and so the magnetisa-
tions will not cancel out. This means the material will have a net spontaneous magnetisation,
although weaker than a ferromagnet. This phenomenon is known as ferrimagnetism.

As the molecular field on the two sublattices is different, the spontaneous magnetisa-
tion has a complicated temperature dependence. Sometimes one sublattice magnetisation
dominates at lower temperatures whereas the other takes precedence at higher temperatures;
in such cases the magnetisation can be zero and change sign at an intermediate temper-
ature known as the compensation temperature, Tcomp. The magnetic susceptibility of a
ferrimagnet also has a more complex temperature dependence than the Curie-Weiss law. The
ferrimagnetic Curie temperature, TC, f erri is given by:

Tc, f erri = µ
√

CACB (1.61)

where CA and CB are the individual Curie constants for the ions on the two magnetic sub-
lattices, denoted by A and B respectively and µ is the strength of antiparallel interaction
between A and B sites. The material is ferrimagnetic for T < TC, f erri and paramagnetic for
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T >> TC, f erri. The magnetic susceptibility for T > TC, f erri is given by [4]:

χ =
(CA +CB)T −2µCACB

T 2 −T 2
C, f erri

(1.62)

The curvature in the plot of the inverse susceptibility as a function of temperature is a
characteristic feature of a ferrimagnet.

1.4.5 Field-induced magnetic transitions

In an antiferromagnet, as the field is gradually increased, the nature of the field-induced
transitions depends on the direction of the applied field relative to the initial direction of
the magnetisation of the sublattice. Such transitions are generally known as metamagnetic
transitions and can be first or second-order depending on the magnetocrystalline anisotropy.
Bulk magnetic materials exhibiting field-induced transitions can be classified as isotropic
or weakly anisotropic and highly anisotropic. Field-induced transitions in the first class of
materials typically involve rotations of spins whereas in the highly anisotropic materials, they
involve simple reversal of spin directions.

The first kind are often referred to as spin-flop transitions. When the applied magnetic
field is parallel to the initial sublattice magnetisations, the system remains in the antifer-
romagnetic phase at low fields but at a critical field, Bspin− f lop, the spins suddenly rotate
into a different configuration, with the moments canted away from the easy axis. This is
a first-order transition to the spin-flop phase. After this , as the field is increased further,
there is a second-order transition where the canting of the spins goes continuously to zero
until the magnetic moments all align with the field [3, 18]. However for strongly anisotropic
materials, the anisotropy prevents any rotation of the spins. The field-induced transitions in
such cases are called spin-flip transitions, where the magnetisation of one sublattice abruptly
reverses for a critical value of the magnetic field, Bspin− f lip, and the system transitions into
a ferromagnetic state. It is characterised by a first-order transition from a state with low
magnetisation to a state with high magnetisation on application of a small magnetic field at
low temperatures [3, 18].

1.4.6 Spin glasses

A spin glass is a disordered magnetic system, usually with competing magnetic interactions
(e.g. ferromagnetic and antiferromagnetic), where there is random but cooperative freezing
of spins at a particular temperature, Tf . A spin glass is paramagnetic well above Tf . However,
below Tf , it exists in a metastable state with the spins frozen into a random arrangement,
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distinct from usual long-range order. It is metastable because the stable configuration that the
spins are frozen into is distinct from the minimum energy state. Spin glasses are often found
in systems where there is random site dilution or other forms of site disorder (such as CuMn
[19] or AuFe alloys [20]) as well as systems in which there is bond randomness (such as
URh2Ge2 [21] and Fe1 – xMnxTiO3 [22]). Key experimental signatures of a spin glass include
a) deviation in the zero-field cooled (ZFC) and field-cooled (FC) DC magnetic susceptibility
below the freezing temperature and b) slow dynamics at temperatures below Tf , manifested
as long relaxation times in the measurement of the AC susceptibility. More comprehensive
reviews of examples and properties of spin glasses can be found in [23–26]. Recent studies
have proposed different categories of magnetic glassy materials based on non-equilibrium
relaxation dynamics [27, 28]. One such state is a spin jam, where the glassy state is induced
by quantum fluctuations in a frustrated magnet like SrCr9pGa12 – 9pO19 [29, 30] (the concept
of geometrical frustration will be elaborated in the next section).

1.5 Geometrically frustrated magnets (GFMs)

The concept of frustration was first used for spin glasses [31–33] to denote competing in-
teractions that cannot be minimised simultaneously; for example, in a system with bond
randomness, the nearest neighbour interactions vary between −J1 and +J1, leading to frus-
tration. In spin glasses, disorder and frustration exist simultaneously because the disordering
in the lattice gives rise to frustrated interactions. However, it is possible to have ‘clean’ and
periodic systems where the structure alone can ‘frustrate’ the competing interactions. Such
materials are said to exhibit geometrical frustration [17]. Figure 1.2 shows the different
classes of magnetic materials based on the interplay between disorder and frustration.

Geometrically frustrated lattices are those in which the underlying geometry of the
magnetic lattice prevents all the pairwise magnetic interactions from being satisfied simulta-
neously. The canonical example of geometrical frustration is that of Ising spins coupled by
nearest neighbour antiferromagnetic exchange on a triangular lattice, first studied by Wannier
in 1950 [34]. Two spin configurations are considered: A square and an equilateral triangular
plaquette, both with Ising spins at the vertices coupled by nearest neighbour antiferromag-
netic exchange interactions, Figure 1.3. For the square plaquette, each spin can be aligned
antiparallel with all its neighbours and hence it is unfrustrated. On a triangular lattice, this is
not possible as all the pairwise antiferromagnetic interactions among the three spins cannot
be satisfied. Hence this system is frustrated purely because of the incompatibility of the
magnetic interactions with the geometry of the magnetic lattice [2].
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Figure 1.2 Different classes of magnetic materials arising from the interplay between disorder
and frustration. Image taken from [17].

Figure 1.3 Ising spins coupled by antiferromagnetic exchange on a) a square b) an equilateral
triangle. Spins are denoted by blue arrows.

Two consequences of this inability to satisfy all the pairwise interactions are a large
degeneracy in the number of possible ground states (there is no unique ground state) and a
suppression of the magnetic ordering temperature or, in ideal cases, complete absence of
long-range ordering. The frustration index, f , for a material is defined as [17]:

f =
∣∣∣∣θCW

T0

∣∣∣∣ (1.63)

where θCW is the Curie-Weiss temperature and T0 is the temperature at which any kind of
cooperative magnetic ordering sets in. A material is said to be a strongly geometrically
frustrated magnet when f ≥ 10 [17].

Frustrated geometries are not limited to two dimensions or triangular plaquettes. In
three dimensions, the tetrahedron consisting of four edge-sharing equilateral triangles is
frustrated as only two of the four nearest neighbour antiferromagnetic interactions can
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Figure 1.4 Common frustrated lattice geometries.

be satisfied simultaneously. The most commonly frustrated lattices consist of triangular
or tetrahedral geometries. In two dimensions, frustrated lattices include planes of edge-
sharing or corner-sharing equilateral triangles and are referred to as ‘triangular’ and ‘kagome’
lattices respectively. Examples of three-dimensionally frustrated lattices are the fcc lattice
(three-dimensional analogue of the triangular lattice) consisting of edge-sharing tetrahedra
and the pyrochlore lattice (three-dimensional analogue of the kagome lattice) consisting of
corner-sharing tetrahedra. These commonly known frustrated plaquettes are shown in Figure
1.4.

In frustrated systems, a delicate balance among competing interactions determines the ul-
timate magnetic ground state. Even slight perturbations may cause instabilities and drastically
alter the properties of such systems [2]. Depending on the relative magnitude of competing
interactions (symmetric and antisymmetric exchange interactions, dipolar interactions, crystal
electric field (CEF) effects, lattice distortions), the system may be driven into a long range
ordered state, thus relieving the frustration, or remain in a disordered, but dynamical, strongly
correlated regime. It is the latter case which leads to exotic states of matter like spin ice or
spin liquids [2, 35]. It is interesting to note that the lifting of degeneracy may also proceed
through thermal or quantum fluctuations instead of external perturbations, through a process
known as ‘order by disorder’ [36–38]. Over the years, the study of frustrated magnetism has
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Figure 1.5 The Ln (green) and B (blue) sublattices forming interpenetrating networks of
corner-sharing tetrahedra in the lanthanide pyrochlores. Image taken from [46].

evolved into a vast and rapidly developing field of condensed matter physics with discovery
of new frustrated materials, observation of exotic magnetic phenomena and development of
novel experimental techniques and theoretical models to study the fundamental magnetic
behaviour of these materials. Discussion of such a vast field is beyond the scope of this thesis,
and, for a more complete review of frustrated systems, one can refer to [17, 39–43]. Instead,
since lanthanide oxides are the subject of investigation in this thesis, the magnetic properties
of some frustrated lanthanide oxide families will be discussed briefly.

1.5.1 Ln2B2O7

The lanthanide pyrochlores are the most widely investigated family of frustrated lanthanide
oxides. They have the general formula Ln2B2O7 where Ln is a trivalent lanthanide ion and
B generally is a tetravalent ion which can be magnetic or non-magnetic. The pyrochlores
crystallise in a cubic structure where the magnetic Ln3+ and the B4+ ions lie on two distinct
interpenetrating lattices of corner-sharing tetrahedra, Figure 1.5. There are many tetravalent
ions that can occupy the B site for a particular Ln3+: a more complete review of the possible
structural combinations can be found in [44]. There is a wide variety in the observed
magnetic properties of the lanthanide pyrochlores depending on the interplay of the exchange
interaction, dipolar interaction and single-ion anisotropy of the magnetic Ln3+ ion as well as
the nature of the ion on the B site; an extensive review is presented in [45]. Here some key
advances in the field of frustrated magnetism in lanthanide pyrochlores will be mentioned.
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Figure 1.6 Comparison of the local spin constraints obeyed in spin ice and the Bernal-Fowler
ice rules: a) Magnetic Ln3+ spins on a tetrahedron locally obey the 2-in 2-out rule (spins are
denoted by arrows). b) This maps exactly onto the arrangement of hydrogen ions in water
ice forming 2 long 2 short O-H bonds (hydrogen ions are denoted by small black spheres and
oxygen ions are shown by large white spheres). Image taken from [46].

The Ising antiferromagnet on a pyrochlore lattice was first considered by Anderson
[47]. Later Villain showed that the pyrochlore lattice shows strong geometrical frustration
for nearest neighbour antiferromagnetic exchange between Heisenberg spins [48]. He also
defined the term ‘collective paramagnet’ which is a disordered strongly correlated state of
fluctuating spins. Nowadays this is also referred to as a ‘classical spin liquid’. Thus Anderson
[47] and Villain [48] predicted the absence of long-range order at non-zero temperatures for
Ising and Heisenberg pyrochlore antiferromagnets respectively but experimental realisations
of such spin liquid states proved elusive. For Ising systems, due to the cubic symmetry,
there is no energetic reason for a global Ising direction being physically meaningful whereas
in Heisenberg pyrochlore antiferromagnets such as Gd2Ti2O7 and Gd2Sn2O7, the dipolar
interactions compete with the exchange interactions, driving the system to a long-range
ordered state [45, 49, 50]. Perhaps the most significant experimental breakthrough in the
study of frustrated pyrochlores came with the discovery of spin ice. In 1997, Harris et. al
[51] showed that geometrical frustration was possible for ferromagnetic interactions on a
pyrochlore lattice for the material Ho2Ti2O7. Neutron scattering experiments showed no
long range order down to 0.35 K but short-range ferromagnetic correlations were observed.
More remarkably, the spin configurations on individual tetrahedra was shown to exactly map
on to the O-H bonds in the hexagonal phase of water ice at ambient pressure. Later Ramirez
et. al [52] showed that the value of zero point entropy in another spin ice material Dy2Ti2O7

was identical to that obtained by Pauling for water ice [53]. A more comprehensive review
of the development of spin ice can be found in [45, 54–56].
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Ln2B2O7 (Ln = Dy, Ho; B = Ti, Sn, Ge) are known as the classical dipolar spin ices
[52, 54, 56–59]. They have large magnetic moments ≈ 10µB and the crystalline electric field
(CEF) is such that the ground state is an effective S = 1/2 doublet at low temperatures. The
nearest neighbour interactions are antiferromagnetic but the competing dipolar interactions
play a significant role, giving rise to net ferromagnetic interactions. The CEF gives rise to a
strong ⟨111⟩ Ising anisotropy which frustrates the ferromagnetic interactions such that in each
tetrahedra, the spins locally obey a ‘2 in 2 out’ constraint (analogous to the Bernal-Fowler
ice rules [55]), Figure 1.6, giving rise to a residual entropy at absolute zero. The classical
spin ices are examples of the cooperative paramagnet (or classical spin liquid) state proposed
by Villain [48] as the spins have short-range correlations (the local constraint being the ‘2 in
2 out’ ice rule) but experience strong fluctuations driven by thermal energy. At sufficiently
low temperatures (≈ 1 K), the spins freeze due to the activation barrier between the different
ice-rule satisfying ground states [35, 56].

In the spin ices, the net magnetic charge at the centre of each ‘tetrahedron’ is zero. This
local constraint can be mapped to a divergence-free condition of an emergent gauge field;
this belongs to a wider class of Coulomb phases [60, 61]. The novelty lies in the fact that
if one of the spins flip on a tetrahedra (called a defect), this results in ‘3 in 1 out’ or ‘1 in 3
out’ spin configurations giving rise to a net magnetic charge at the centre of the tetrahedron.
Thus the classical dipolar spin ices host magnetic monopole excitations. This was predicted
theoretically by Castelnovo et. al [62] and shown experimentally by Fennell et. al [63] and
Morris et. al [64]. Bramwell et. al [65] subsequently demonstrated the phenomenon of
magnetricity in Dy2Ti2O7: they showed that the magnetic charges propagated in this material
and generated actual measurable currents. Study of the classical dipolar spin ices have also
led to the development of ‘artificial spin ice’, which has greater implications for practical
applications based on these materials [66–68].

If the spin ice state exhibits quantum fluctuations, it could lead to an experimental
realisation of a quantum spin liquid state. The term quantum spin liquid was first used by
Anderson for describing the ground state of an S = 1/2 Heisenberg antiferromagnet on a
triangular lattice, which he called a resonating valence bond state [69]. Although Anderson’s
proposition was not completely correct (the Heisenberg spins can align at 120◦ leading to
Néel order), the search for experimental realisations of quantum spin liquids and resonating
valence bond (RVB) states has continued unabated. This is because in quantum spin liquids,
the quantum fluctuations of spins (which prevent long-range order) can be phase coherent
leading to highly entangled spin states. These can host exotic ground states and non-local
fractionalised excitations. More complete reviews of quantum spin liquids can be found in
[35, 70–72] but here the discussion will be restricted to quantum spin ice. This is a quantum
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spin liquid state with gapless photon-like excitations, arising from quantum fluctuations
acting on the spin ice states [56, 73]. A detailed review of quantum spin ice can be found in
[56] but here the discussion will focus on three candidate materials: Tb2Ti2O7, Yb2Ti2O7

and Pr2Zr2O7.
Tb2Ti2O7, which shows dynamic spin fluctuations down to 0.05 K without any magnetic

ordering, was the first material for which the term quantum spin ice was used [74]. Since
then, the magnetic properties have been studied extensively but the exact nature of the low
temperature ground state has remained a matter of debate [75–81]. The complexity has
been compounded by the fact that the magnetic properties are highly sample dependent
and minute variations in the stoichiometry can drive the system to a long-range ordered
state [82]. Similar sample dependence of the properties is observed for Yb2Ti2O7 for which
several studies have reported features consistent with a quantum spin ice state [83–87] but
the magnetic ground state and nature of interactions remains contentious [88–92]. Pr2Zr2O7

also shows evidence of quantum spin ice behaviour [93] but further studies of the magnetic
ground state and interactions have only recently begun gaining momentum [94–96]. Overall,
the presence of a quantum spin ice state in Tb2Ti2O7, Yb2Ti2O7 and Pr2Zr2O7 cannot be
ruled out at this stage.

The discussion of the exotic magnetic behaviour in lanthanide pyrochlores will be
concluded with two final examples. The first is the appearance of quantum order-by-disorder
in the XY pyrochlore Er2Ti2O7 [97–101]. In this material, the XY anisotropy and exchange
interactions result in an ‘accidental’ degeneracy. Quantum mechanical spin fluctuations
break this degeneracy, resulting in a ground state selection by entropic and not energetic
considerations and magnetic ordering at T = 1.2 K. This is the only known experimental
realisation of order by disorder in frustrated pyrochlores. The second example is one that has
only recently been reported: the phenomenon of magnetic fragmentation in spin ice. In 2014,
Brooks-Bartlett et. al [102] theoretically proposed that in presence of dipolar interactions
and for sufficiently high monopole densities, the magnetic moment field in spin ice could
fragment into two parts: a divergence-free Coulomb spin liquid and a magnetic monopole
crystal with a non-zero divergence. This was experimentally observed for Nd2Zr2O7 [61].
Lefrancois et. al demonstrated an alternative route to achieving fragmentation in Ho2Ir2O7

where the staggered field from the Ir4+ spins competes with the spin ice state resulting in
fragmentation at T ≤ 2 K [103].

1.5.2 Ln3A2Sb3O14

The frustrated kagome lattice, consisting of corner-sharing triangles in two dimensions, has
been theoretically predicted to host exotic magnetic phases such as the quantum spin liquid
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state [104–106]. However, for a long time, there were no candidate materials containing
magnetic rare-earth ions. One exception were the langasites Ln3Ga5SiO14, Ln = Pr, Nd,
consisting of ‘pinched’ kagome planes [107, 108] where the absence of long-range order
down to the lowest temperatures has been interpreted as a spin liquid state or a non-magnetic
ground state for Ln = Pr [109, 110] and as a spin liquid or paramagnetic ground state for
Ln = Nd [111–113]. However, these materials did not possess structurally perfect kagome
lattices.

The breakthrough came with the discovery of the Ln3A2Sb3O14 family of materials where
A = Mg, Zn, Co, Mn [114–118]. These materials crystallise in a rhombohedral structure
which is closely related to the Ln2B2O7 pyrochlore structure. The pyrochlore structure can be
viewed along [111] as Ln3B and B3Ln layers consisting of kagome planes of Ln and B with
B and Ln in non-kagome positions respectively, Figure 1.7a. In contrast to the pyrochlore
structure which has magnetic ions connecting its kagome layers, substitution of non-magnetic
A cations (e.g. A = Mg, Zn) in Ln3A2Sb3O14 gives rise to fully ordered kagome planes of Ln3+

separated by non-magnetic cations, Figure 1.7b. The rare-earth ions lie on an ideal kagome
lattice, Figure 1.7c, with A : Ln on the pyrochlore Ln site and A : Sb on the pyrochlore B site
in a ratio 1:3. Ln3A2Sb3O14 (Ln = Mg, Zn) are the first experimental realisation of an ideal
two-dimensional kagome system containing magnetic Ln3+ [116, 118]. There is very low
Ln/A site disorder (≈ 1 - 5%) in Ln3Mg2Sb3O14 for all Ln. The site disorder is low for most
Ln3Zn2Sb3O14 except for Ln = Ho, Er, Yb where there are indications of significant Ln/Zn
site disorder (≈ 40 - 60%) [119]. Such extreme site disorder destroys the well-separated Ln
kagome layers, leading to the formation of a three-dimensional cation disordered pyrochlore
where Ln/Zn are disordered over each cation site [119].

Extensive research into the magnetic properties of Ln3Mg2Sb3O14 and Ln3Zn2Sb3O14

has begun only recently [118, 119] but already several interesting results have been reported.
Two specific cases will be discussed here. The first is the appearance of an all-in all-out
order in Nd3Mg2Sb3O14 [120]. Heat capacity measurements on this material reported a
sharp λ type anomaly at 0.56 K, consistent with a peak in the AC susceptibility [119, 120].
Neutron diffraction measurements below the magnetic transition revealed three-dimensional
antiferromagnetic ordering with the moments pointing ‘all-in’ or ‘all-out’ in the kagome
triangles. This structure could be visualised as the two-dimensional kagome analogue of the
all-in all-out ordering observed in the pyrochlore Nd2Sn2O7 [119, 121]. The second case is
emergent charge order observed for Dy3Mg2Sb3O14 [122]. Heat capacity measurements on
Dy3Mg2Sb3O14 report a sharp transition at ≈ 0.3 K [116, 122] with a zero-point entropy of
1
3 ln 9

2R mol−1
Dy while neutron scattering experiments show coexistence of strong magnetic

diffuse scattering with Bragg peaks down to the lowest temperatures (≈ 0.05 K). These are
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Figure 1.7 Comparison of the cubic pyrochlore Ln2B2O7 structure with the rhombohedral
kagome Ln3A2Sb3O14 structure. a) In Ln2B2O7, networks of Ln (cyan) and B (pink) tetrahe-
dra constitute the pyrochlore structure. b) In Ln3A2Sb3O14, substitution of A ions (purple,
green) leads to the formation of well-separated kagome layers. Oxygens are not shown in
both structures for clarity. Image taken from [118]. c) The Ln magnetic kagome lattice.
Image adopted from [118].

both signatures of an emergent charge ordered state which can be understood as follows: The
Dy3+ Ising spins point towards or away from the centre of the triangle in the kagome planes.
The spins can be considered as two separated + and - magnetic charges and the emergent
charge in a triangle is the the algebraic sum over the three charges it contains, Figure 1.8a. In
the emergent charge ordered state, the net magnetic charge in a triangle alternates between
+1 and -1, Figure 1.8b. However, the three-fold degeneracy of the spin states for each charge
remains, meaning that that there is ordering of the emergent charges in the triangle, but not
the individual spins. The spins continuously fluctuate between the possible emergent charge
ordered microstates, resulting in an average all-in all-out Bragg structure with an effective
moment of µavg =

1
3 µnet , Figure 1.8c [122]. The partial spin order in the emergent charge

ordered state can also be conceptualised in terms of fragmentation (discussed in the previous
section) [102], as the sum of two independent components: the average Bragg structure with
non-zero divergence and the divergence-free spin fluctuations [122]. Such fragmentation
was reported in artifical kagome spin ice [123] but the observation in a bulk material like
Dy3Mg2Sb3O14 is quite unique and opens a promising new field of research.

1.5.3 SrLn2O4

The SrLn2O4 family of materials crystallise in a orthorhombic structure where the connectiv-
ity of the magnetic Ln3+ can be visualised as a network of hexagons and triangles [108, 124],
Figure 1.9. The frustration arises from the ziglag ladders along the c axis that link the
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Figure 1.8 Emergent charge order in Dy3Mg2Sb3O14: a) The relationship between spin
vectors (arrows), magnetic dipoles (connected red and blue spheres) and emergent charge of
a triangle (labelled ± or ±3). b) Example of a possible microstate showing emergent charge
order. c) Average of the possible microstates results in an all-in all-out Bragg structure with
an effective moment of µavg =

1
3 µnet . Image taken from [122].

honeycomb layers, analogous to β -CaCr2O4 [125, 126]. A brief overview of the magnetic
properties will be presented here but a more complete review can be found in [127].

SrGd2O4 has two magnetic ordering transitions at 0.48 K and 2.73 K; this has been
postulated to arise from the interplay between exchange and dipolar interactions [128].
Neutron diffraction experiments on SrTb2O4 report an incommensurate antiferromagnetic
ordering below TN = 4.28 K with partially ordered moments arising from one of the two
inequivalent Tb sites [129]. SrDy2O4 shows no long range magnetic ordering down to 0.02
K and only broad diffuse scattering is observed in neutron diffraction experiments [130, 131].
Muon spectroscopy measurements on SrDy2O4 have reported features consistent with a spin
liquid state [132] but it shows long-range order in applied magnetic field [131, 133]. In
SrEr2O4, long range antiferromagnetic order with k = (0, 0, 0) and moments pointing along
the c axis coexists with short-range order in an incommensurate structure below TN =0.75 K
[134, 135]. Long and short range magnetic order are also found to coexist in SrYb2O4 [136]
below TN =0.9 K. However, the long-range ordered structure is a k = (0, 0, 0) non-collinear
antiferromagnet with moments in the a−b plane while the short-range ordering has not been
analysed in further detail. The case for SrHo2O4 is rather interesting. Initial studies had
reported the coexistence of k = (0, 0, 0) long range antiferromagnetic order and short range
magnetic correlations below TN =0.68 K [137, 138], similar to that reported for SrEr2O4 and
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Figure 1.9 Connectivity of Ln3+ in SrLn2O4 with the two crystallographically inequivalent
Ln sites shown in red and green: a) Honeycomb-like arrangement of Ln3+ along the c axis. b)
Zigzag ladders along c axis giving rise to geometrical frustration. Image taken from [127].

SrYb2O4. However later more detailed investigations using neutron scattering experiments
on single crystals revealed the unique coexistence of two types of short-range magnetic
ordering below 0.7 K: the first type of diffuse magnetic scattering has propagation vector k =
(0, 0, 0) and the second appears as planes of scatttering intensity at (h k ±1

2 ) [139].
The SrLn2O4 family exhibits a wide variety of magnetic behaviour, similar to the lan-

thanide pyrochlore and kagome families. Modelling of the magnetic interactions is highly
challenging due to the complex three-dimensional frustrated geometry. Determining the
precise crystal electric field scheme poses another challenging problem due to the low sym-
metry of the Ln3+ site [127]. Further in-depth investigations of the SrLn2O4 family is another
continuously evolving field of exploration in research on frustrated magnetism in complex
lanthanide oxides.

1.5.4 Gd3Ga5O12

Gadolinium gallium garnet (GGG), Gd3Ga5O12, was established as a geometrically frustrated
magnet as early as the 1980s with a Weiss temperature θCW ≈−2 K and no magnetic long
range ordering down to 0.025 K [140, 141]. In Gd3Ga5O12, the magnetic Gd3+ lie at the
vertices of corner-sharing triangles, forming a highly frustrated lattice in three dimensions,
Figure 1.10. Gd3Ga5O12 is a part of a larger family of materials called the lanthanide garnets.



32 Introduction

Figure 1.10 Connectivity of Gd3+ in Gd3Ga5O12 forming interpenetrating ten-membered
rings of corner-sharing triangles: a) seen along [010]. b) seen along [111]. The Gd3+ in the
two rings are shown in blue and red. Image taken from [142].

The discussion of the structure and magnetic properties of these materials forms a key
component of the results chapters in this thesis and so an in-depth discussion is reserved for
Chapters 3 and 4. Here, only the properties of Gd3Ga5O12 will be discussed.

In Gd3Ga5O12, a spin liquid state with short range spin fluctuations is observed from 5 K
down to ≈ 0.14 K below which the spins freeze into a ‘glassy state’ [143, 144]. However
neutron diffraction experiments have shown that although the state below ≈ 0.14 K has
a longer correlation length, it is more consistent with a mixed spin liquid/solid state, also
referred to as a ‘spin slush’ state [145]. Muon spectroscopy measurements have shown
persistent spin fluctuations down to the lowest temperatures, showing absence of static
order, although the studies do not agree on the nature of slowing of the spin fluctuations
[146, 147]. However, AC susceptibility measurements have reported unconventional glassy
behaviour that is more consistent with an ordering transition [148]. Inelastic neutron scatter-
ing measurements have reported three gapped dispersionless excitations and coexistence of
different timescales corresponding to dimerised short-range antiferromagnetic correlations
and cooperative paramagnetism [149]. A recent neutron scattering study on Gd3Ga5O12 has
revealed a hidden non-dipolar order in the spin liquid state. The order is long-ranged with
a diverging correlation length, forming multipoles from ten-membered loops of spins and
results from the subtle interplay between nearest neighbour antiferromagnetic correlations
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and local XY anisotropy [150]. Another recent study has shown that doping with ≈ 1% Nd3+

in Gd3Ga5O12 increases the frustration in the lattice [142].
Just as the exact nature of the magnetic ground state of Gd3Ga5O12 remains elusive, the

in-field behaviour poses an equal challenge. An early study of the magnetic phase diagram
revealed a strongly anisotropic antiferromagnetic dome with the transition temperature
and field range varying with direction of applied field [141]. This was corroborated by
a later study which showed that in an applied magnetic field of ≈ 1 T, antiferromagnetic
ordering was observed below ≈ 0.38 K [151]. On further investigation, it was reported that
in addition to the ‘glassy’ phase in 0 T and antiferromagnetic ‘dome’ in fields 0.7 - 1.4 T,
there is an intermediate field phase which has characteristics of a spin liquid. The phase
boundary between the intermediate field and antiferromagnetic phases was reported to have
a distinct minimum at 0.18 K, analogous to the minimum in the melting curve of 4He [152].
Recent studies have revealed a more complex phase diagram with multiple phase boundaries,
competing interactions among spins and emergent loops of trimers and decagons [153].
Another recent investigation has reported the existence of dispersionless spin waves on the
ten-membered rings in high magnetic fields above 1.8 T and coexistence of antiferromagnetic
and incommensurate order in fields below 1.8 T [154].

It is clear that much remains to be explored about the magnetic ground state and magnetic
phase diagram of Gd3Ga5O12. Very recent studies have begun using alternative experimental
techniques to understand the magnetic behaviour. One study has used sound velocity measure-
ments to show that the magnetic field response in Gd3Ga5O12 is highly anisotropic with two
field-induced antiferromagnetic phases in fields parallel to [110] and only one field-induced
antiferromagnetic phase in fields parallel to [100]. Additionally they have observed evidence
for a spin gap in the excitation spectrum in the spin liquid phase [155]. Another study has
investigated the short-range magnetic order in Gd3Ga5O12 using the spin Seebeck effect,
which has been shown to give rise to spin currents. In smaller fields, modulations in the spin
Seebeck effect have been shown to be consistent with the field-induced antiferromagnetic
ordering while additional modulations are observed in high magnetic fields ≈ 9 T, paving the
way for further investigations in the high-field regime of the magnetic phase diagram [156].

1.5.5 YbMgGaO4

In 2015 Li et. al reported the discovery of a quantum spin liquid candidate, YbMgGaO4,
which contains perfect triangular layers of magnetic Yb3+, Figure 1.11, with effective
S = 1/2 and antiferromagnetic exchange between nearest neighbour spins (θCW ≈−4 K).
The compound showed no magnetic long-range ordering or evidence of spin freezing down to
60 mK and zero residual spin entropy, indicating that a possible quantum spin liquid ground
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Figure 1.11 Connectivity of Yb3+ (red spheres) in YbMgGaO4 forming a triangular lattice in
the a−b plane. Image taken from [158].

state had been achieved [157]. Since then, a number of efforts have been made to establish
the exact nature of the ground state and the relevant magnetic interactions that play a role in
determining the ground state.

Shen et. al [159] reported the presence of diffusive magnetic excitations in inelastic
neutron scattering measurements with an upper excitation edge, consistent with a spinon
Fermi surface and a U(1) quantum spin liquid state. Muon spin relaxation experiments
[160] and theoretical investigations [161, 162] provided further evidence for a gapless
U(1) quantum spin liquid ground state in YbMgGaO4. However, a thermal conductivity
study reported the absence of any contribution from magnetic excitations and a magnon
gap of the fully polarised state in field, which was inconsistent with the spinon Fermi
surface hypothesis [163]. Measurements on single crystals of YbMgGaO4 and preliminary
theoretical investigations reported highly anisotropic magnetic interactions, dependent on the
bond orientations due to the spin-orbit entanglement [164, 165].

Paddison et. al [166] noted that there were other mechanisms for stabilising the quantum
spin liquid state such as further neighbour-interactions, entanglement induced by disorder
and multiple spin excitations. Inelastic neutron scattering measurements by Paddison et. al
showed a continuum of excitations consistent with a quantum spin liquid state. Modelling of
the interactions showed that the quantum spin liquid state was stabilised by further neighbour
interactions, spin anistropy and the disorder between Mg2+/Ga3+ [166]. Separate theoretical
studies proposed that chemical disorder in YbMgGaO4 can induce stripe superposition
domains that mimic a quantum spin liquid state [167, 168]. Another single crystal inelastic
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neutron scattering study confirmed the presence of nearest neighbour resonating valence bond
correlations [158], consistent with Anderson’s initial proposition for a quantum spin liquid
state [69]. A very recent investigation has attempted to resolve the exchange interactions
in YbMgGaO4 using complementary information from time-domain THz spectroscopy and
inelastic neutron scattering measurements in the field polarised state [169]. The study
places strong constraints on the ratio of interactions required for a quantum spin liquid
state and concludes that alternative mechanisms such as spin liquid mimicry could be
possible explanations for the ground state magnetic behaviour of YbMgGaO4. The study of
YbMgGaO4 is thus a rapidly evolving field and the question of whether the ground state is a
true quantum spin liquid or not remains open to further investigation.

1.6 Low temperature magnetic refrigeration

Having discussed the fundamental magnetic properties of some geometrically frustrated
lanthanide oxides, this section will focus on a key practical application of such materials
being explored in this thesis: solid state magnetic refrigeration at temperatures close to
absolute zero, which is currently achieved using non-renewable liquid heium.

Many areas of fundamental and applied scientific research including spintronics and
quantum computing as well as devices such as magnetic resonance imaging (MRI) or
computed tomography (CT) scanners and cryogenic sensors (such as those in space detectors)
require cooling to low temperatures. This is usually achieved using liquid cryogens such
as liquid nitrogen for T > 80 K, liquid helium (4He) for T > 2 K or a mixture of 3He and
4He for cooling down to 20 mK [170]. However, helium, a by-product obtained during the
extraction of natural gas, is a non-renewable source which is gradually becoming scarce
and increasingly expensive (the 3He isotope is even less abundant) [171]. This means that
sustainable alternatives to cooling using liquid helium must be explored. One such alternative
is solid state magnetic cooling using adiabatic demagnetisation refrigerators (ADRs) which
are based on the principle of the magnetocaloric effect (MCE) in magnetic materials [172].

The magnetocaloric effect (MCE) is the adiabatic change in temperature of a material
on application or removal of an external magnetic field. It is due to the coupling of the
magnetic sublattice with the magnetic field, changing the magnetic entropy in the solid.
Thus it can be characterised by the isothermal change in magnetic entropy ∆Sm [173]. The
MCE was discovered by Weiss and Pickard and later Giaque and MacDougall reached
temperatures below 1 K using adiabatic demagnetisation of Gd2(SO4)2 · 8H2O [174]. Figure
1.12 shows a schematic of a magnetic refrigeration cycle using the MCE. During adiabatic
demagnetisation, the magnetic entropy of the material increases but as the total entropy
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Figure 1.12 Schematic of a magnetic refrigeration cycle using the magnetocaloric effect
(MCE). Image adopted from [175].

remains constant, the lattice entropy and hence the temperature decreases. In the final stage,
the magnetic refrigerant absorbs heat from the load in a constant magnetic field to reach its
original temperature and hence cools the system.

The MCE is measured in terms of the isothermal change in magnetic entropy ∆Sm given
by [176]:

∆Sm =
∫

µ0Hmax

0

(
dM
dT

)
H

dH (1.64)

As seen from equation (1.64) the MCE will increase when M and (dM/dT ) are large. dM/dT
would have a maximum at the magnetic ordering temperature when there is a phase transition.
Therefore, materials utilised for magnetic refrigeration in the liquid helium temperature
range should have a large magnetic moment and order at low temperatures (since the cooling
limit is determined by the magnetic ordering temperature, T0, of the material). A more
in-depth review of the magnetocaloric effect can be found in [173]. Reviews of efficient
magnetic refrigerant materials in various temperature regimes from room temperature down
to temperatures close to absolute zero can be found in [175, 177, 178].

ADRs using dilute paramagnetic salts were used to cool down to temperatures of few
mK as early as the 1930s [179–181]. Nowadays, paramagnetic salts commonly used for
cooling are cerium magnesium nitrate (CMN), chromium potassium alum (CPA) and ferric
ammonium alum (FAA). In these salts, the presence of non-polar water molecules isolates
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the magnetic ions and suppresses the ordering temperature to the order of a few mK [178].
However, the poor chemical stability of these materials make them less viable for widespread
practical applications. A different approach is to use ceramic materials which have geometri-
cally frustrated magnetic lattices [182]. As discussed in a previous section, geometrically
frustrated magnets typically show ordering features at T0 ≈ θCW/10 where θCW is the Curie-
Weiss temperature, thereby suppressing the ordering temperature [17]. In complex lanthanide
oxides, the highly localised 4 f orbitals have weak magnetic interactions, i.e. θCW is small and
so when the magnetic lattice is frustrated, ordering is suppressed to even lower temperatures
or completely absent in certain cases. Further, the theoretical magnetic entropy that can
be extracted is much higher than in transition metal compounds. Geometrically frustrated
materials with Ln3+ ions are therefore ideal magnetocaloric materials (MCMs) for cooling to
liquid helium temperatures. Another advantage is that the lanthanides are chemically very
similar but their magnetic properties vary widely. This leads to the possibility of tuning the
chemical composition for optimisation of the MCE [183–185].

The frustrated magnet gadolinium gallium garnet (GGG) (discussed in a previous section)
is a well-known MCM for magnetic refrigeration in the liquid helium temperature regime
[178]. The absence of long range ordering, high density of magnetic ions, chemical stability
and lack of single-ion anisotropy (L = 0 for Gd3+) allowing for the full magnetic entropy
(Rln(2J+1) = 17.29 JK−1 mol−1

Gd) to be extracted in high magnetic fields makes it an ideal
magnetic refrigerant for cooling to temperatures below 20 K [141, 183, 186–188]. An
early compilation of possible Gd3+ based MCMs is given in [183]. In recent years, several
Gd3+ containing MCMs with better magnetocaloric performance than GGG at T = 2 K
have been reported such as Gd(HCOO)3 [189], Gd(OH)CO3 [190], GdPO4 [191], Gd(OH)3

[192], GdF3 [193] and recently K3Li3Gd7(BO3)9 [194]. Of these materials, GdF3 has been
reported to have the maximum MCE in a field of 7 T at T = 2 K, Table 1.3. In addition
to the weak exchange and dipolar interactions that suppress magnetic ordering to very low
temperatures, the light mass and relatively high densities of the polyanion frameworks lead
to high MCE in gravimetric or volumetric units. This opens the possibility of obtaining
efficient magnetocaloric materials in other Gd3+ containing polyanion frameworks, which
will be explored in this thesis.

For all the Gd3+ based magnetocaloric materials, the change in magnetic entropy is
maximized in fields of 5 T or higher. Such high magnetic fields can only be produced using
a superconducting magnet which again requires cooling using liquid helium. In order to
eliminate the need for cryogens altogether, one needs to develop materials with high MCE
in fields ≤ 2 T, attainable using more commonly available permanent magnets. In 1986,
Li et. al showed that dysprosium aluminium garnet (DAG), Dy3Al5O12, isostructural with
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Table 1.3 Changes in magnetic entropy at 2 K, 7 T for selected Gd3+ based MCMs, data
taken from [193] and [194].

Compound −∆Sm

Jkg−1 K−1 mJcc−1 K−1

Gd3Ga5O12 38.4 272
Gd(HCOO)3 55.9 216
Gd(OH)CO3 66.4 355

GdPO4 62.0 376
Gd(OH)3 62.0 346

GdF3 71.6 506
K3Li3Gd7(BO3)9 56.6 279.2

GGG, was a promising magnetic refrigerant in the temperature range 4.2 - 20 K and had a
higher magnetocaloric efficiency than Gd3Ga5O12 in magnetic fields below 2 T [195]. The
higher magnetocaloric effect was attributed to the strongly anisotropic g factor in Dy3Al5O12

leading to Ising Dy3+ spins, which experience larger changes in the magnetic entropy at low
fields as compared to Gd3Ga5O12 which contains isotropic Gd3+ spins [178, 184, 195]. In
larger magnetic fields, the use of Gd3Ga5O12 was found to be more advantageous. This is
because the crystal electric field in Dy3Al5O12 leads to an effective S = 1/2 doublet, limiting
the maximum magnetic entropy that can be extracted to Rln2 (= 5.76 JK−1 mol−1

Dy) whereas
for Gd3Ga5O12, negligible crystal electric field effects mean that the full magnetic entropy
(= 17.29 JK−1 mol−1

Gd) can be extracted in higher magnetic fields [178, 184]. However,
Dy3Al5O12 undergoes a sharp antiferromagnetic transition at T = 2.49 K [196], limiting its
use in cooling below 2 K. Dysprosium gallium garnet (DGG), isostructural with GGG and
DAG, undergoes magnetic ordering at T = 0.373 K [197] and like DAG, the ground state
is an effective S = 1/2 doublet with ∆Smag,max = Rln2. Crystal electric field investigations
of DGG have indicated quasi-planar nature of Dy3+ spins [198]. Therefore DGG offers the
same advantage of higher magnetocaloric efficiency in fields below 2 T as DAG due to the
substantial single-ion anisotropy of the Dy3+ spins with the additional benefit of cooling
down to much lower temperatures [199]. Numazawa et. al showed that DGG is a better
MCM than GGG in fields below 2 T [200]. A more recent investigation by Saines et. al [201]
on the magnetocaloric properties of Ln(HCOO)3 has also shown that the MCE in Tb(HCO2)3

is significantly higher than Gd(HCO2)3 at higher temperatures and lower fields as the Tb3+

have Ising-like spins in contrast to the Heisenberg nature of the Gd3+ spins. Another key
focus of this thesis will be exploring the impact of changing the single-ion anisotropy of the
magnetic lanthanide ion on the magnetocaloric properties of complex lanthanide oxides.
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Although this thesis focuses entirely on ceramic oxide materials, the discussion on
low temperature magnetic refrigeration would remain incomplete without the mention of
lanthanide intermetallics. All the dilute paramagnetic salts as well as ceramic oxide magnetic
refrigerants discussed so far are thermally insulating which poses a great challenge for the
ADR design. Usually the magnetocaloric material has to be enclosed in a mesh of thermally
conducting silver wire or metallic canister to enhance the thermal conductivity and allow for
good thermal contact and proper thermalisation [170, 202, 203]. In contrast, intermetallics
have good thermal conductivities and can be directly used in ADRs without the need for
silver [204]. Therefore if one could develop lanthanide intermetallics with magnetocaloric
efficiencies comparable to ceramics, it would offer significant advantages in terms of ADR
design, efficiency and cost. Two recent advances in this field for cooling to temperatures
below 2 K are discussed here.

Jang et. al reported a large magnetocaloric effect in the intermetallic compound YbPt2Sn
for cooling from 2 K down to 0.25 K [204]. Although the MCE in volumetric units (127
mJcc−1 K−1) was lower than GGG (363 mJcc−1 K−1), it was significantly higher than the di-
lute paramagnetic salts CPA (42 mJcc−1 K−1) and FAA (52 mJcc−1 K−1). The cooling limit,
0.25 K, was higher than the temperatures of a few mK reached using dilute paramagnetic
salts but lower than GGG (0.8 K) and DGG (0.4 K). This was attributed to the unique weak
magnetic coupling between Yb atoms which inhibited ordering at higher temperatures. There-
fore YbPt2Sn offered a balanced tradeoff between simultaneously attaining low temperatures
and achieving high magnetocaloric efficiency. Further, being a good metal, it was thermally
conducting and could be cast into different shapes, allowing for direct implementation in an
ADR as an alternative to a 3He cryostat.

Another intermetallic, YbCo2Zn20, was shown to be an efficient magnetic refrigerant for
cooling from 2.5 K to ≈ 0.2 K [205]. More remarkably, the study demonstrated optimisation
of the cooling power by altering the chemical pressure in the material Yb1 – xScxCo2Zn20

through partial Sc substitution. The magnetocaloric effect was further enhanced in the Sc sub-
stituted materials allowing cooling well below 0.1 K. In particular, a minimum temperature of
0.04 K could be achieved for x = 0.19. The study highlighted the importance of intermetallics
as viable alternatives to refrigeration without cryogens at ultra-low temperatures, T < 1 K
and altering the chemical pressure to optimise the cooling limit. The impact of chemical
pressure on the magnetocaloric effect of a specific class of lanthanide oxide ceramics will be
explored in this thesis.
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1.7 Overview of thesis

In this thesis, two main research themes have been followed. The first is a systematic study
of a known geometrically frustrated system: the lanthanide garnets with the general formula
Ln3A2X3O12, a family of three-dimensionally frustrated materials where the magnetic Ln3+

ions are located at the vertices of corner-sharing triangles which form two interpenetrating
networks of bifurcated ten membered rings. Previous investigations have mainly focussed on
one member of this family: the canonical spin liquid candidate gadolinium gallium garnet
(GGG) [149, 150], which is also an efficient magnetocaloric in fields above 5 T [183]. In
this thesis, the magnetic properties of other lanthanide garnets with substantial single-ion
anistropy have been studied to explore the possibility of observing unique magnetic ground
states as well as developing efficient magnetocalorics in fields below 2 T. Further, other
Gd based garnets have been studied as they could show different magnetic behaviour and
improved magnetocaloric efficiencies as compared to GGG. A variety of approaches have
been adopted to study the magnetic properties through chemical control of the structure,
including changing the magnetic lanthanide ion, variation of the non-magnetic cations in
the lattice (defined as changing the chemical pressure) and introduction of additional spins
through partial substitution on the non-magnetic cation sites. The crystal structure, bulk
magnetic properties and the magnetocaloric efficiency of the materials so prepared have been
investigated.

The second theme has been exploring new complex lanthanide oxide systems both
for their novel magnetic properties as well as for magnetic refrigeration purposes. The
magnetism and magnetocaloric performance of two families of lanthanide borates have been
studied for the first time: the lanthanide orthoborates, LnBO3, and the lanthanide metaborates,
Ln(BO2)3. In LnBO3, the magnetic Ln3+ form a slightly distorted edge-sharing triangular
lattice, a prototype for two-dimensional frustration. Recent reports point to unique physics
associated with such two-dimensional frustrated geometries of lanthanide spins, such as
a possible quantum spin liquid state and emergent charge order [122, 159]. Therefore the
lanthanide orthoborates are promising candidates for exhibiting novel magnetic phases. The
other family studied, lanthanide metaborates, contain one-dimensional chains of magnetic
lanthanide ions, leading to the possibility of observing exotic properties associated with quasi-
one-dimensional magnetism such as spin liquid states, quantum phase transitions and multiple
magnetisation plateaux associated with quantum tunnelling of the magnetisation [206, 207].
Additionally, the possibility of using the lanthanide borates as efficient magnetocalorics for
refrigeration in the liquid helium temperature regime has been explored.

The thesis is organised as follows: The current chapter, Chapter 1, contains a general
introduction while Chapter 2 describes the experimental methods used in this thesis. Chapters
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3 - 6 contain results of the research undertaken. The results of tuning the fundamental
magnetic properties and magnetocaloric performance in the lanthanide garnets through
changes in the single-ion anisotropy and chemical pressure are discussed in Chapter 3 while
the impact of partially introducing other magnetic ions on the non-magnetic cation sites are
elaborated in Chapter 4. Chapters 5 and 6 contain results on the magnetic and magnetocaloric
properties of the lanthanide orthoborates and lanthanide metaborates respectively. Finally, a
summary of the key results and future outlook is presented in Chapter 7.



Chapter 2

Experimental methods

This chapter describes the experimental techniques used for the research presented in this
thesis. Details specific to the materials will be discussed in subsequent chapters.

2.1 Solid state synthesis

Materials were synthesised by ceramic (solid state) methods [208] where two or more (usually
non-volatile) solid reactants are heated together at high temperatures to form the final product.
Stoichiometric amounts of the reactants are weighed out, ground in a mortar and pestle
to get a homogeneous mixture and finally heated in a furnace for a prolonged period of
time in alumina crucibles to complete the reaction. Typically ≈ 1 g of the desired material
was prepared. However, for neutron scattering experiments, larger batches of ≈ 3 - 5 g of
products were synthesised.

Solid state reactions occur at the interface of the reactant solids. After the surface layer
has reacted, the reactants diffuse from the bulk to the interface. Therefore it is extremely
important to grind the starting materials properly and mix them well to increase the surface
area in contact and reduce the distance that the particles need to diffuse. Direct contact
between the crystallite faces can be increased by pressing the mixed powders into pellets
using a hydraulic press.

The reaction time is usually measured in hours but a particular reaction may take several
days. During this time, the mixture may be reground to bring new surfaces in contact and
reheated several times. Intermediate grindings as well as increasing the temperature can
reduce the diffusion pathways and aid the solid state reaction. This is continued until a
phase-pure product is formed as determined from powder X-ray diffraction.

The optimal conditions for a solid state reaction such as time taken, number of intermedi-
ate grindings, temperature steps and % of excess starting material needed (if any) depend
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on the material. They are adapted from references for synthesis of similar materials and
modified accordingly.

A slightly different mechanism was implemented for the synthesis of the lanthanide
orthoborates and lanthanide metaborates discussed in this thesis. The starting materials
namely boric acid and lanthanide oxide powders were weighed out, mixed, and a pre-reaction
was carried out by heating to 350◦C and holding for 2 hours. Boric acid melts during the
heating and forms B2O3 on dehydration. This acts like a ‘self-flux’ with the lanthanide
oxide dissolving in the B2O3 melt, forming a Ln2O3·xB2O3 glass. This glassy intermediate
product is ground and mixed again prior to the final heat treatment at temperatures between
≈ 900−1050◦C. During the final heating, the reaction proceeds via usual solid state diffusion
of the powders.

2.2 Structural characterisation

2.2.1 Crystal systems

Crystals can be classified using symmetry operations. A crystal is a solid containing a
repeating array of atoms, ions, or molecules in three-dimensions with translational symmetry.
Symmetry operations are those that leave an object invariant with respect to a clearly defined
transformation. Symmetry operations include the identity, translation, proper rotation,
inversion, reflection from a plane and improper rotation ( which is a combination of proper
rotation and inversion). In order to introduce a classification of crystal structures, the concept
of lattice and unit cell is required. A lattice is an infinite array of points in three dimensions,
generated using translational invariance. It is a purely mathematical construct but serves as
the fundamental way of quantitatively describing crystal structures containing actual atoms
or molecules or ions. The primitive translation vector T is defined as [4, 209]:

T = n1a+n2b+n3c (2.1)

Here ni is an integer and a, b, c are vectors from a common origin such that a, b are non-
collinear and c does not lie in the same plane as a, b. The lattice points are given by the end
points of T. The crystal can be represented using a unit cell which is the smallest repeating
entity used to generate the entire crystal structure in three-dimensions. The unit cell is the
parallelopiped formed by the vectors a, b, c that encloses a volume a ·b× c. If a unit cell
contains only one lattice point, it is a primitive unit cell. However, sometimes it is more
convenient to describe a unit cell with more than one lattice point. This is due to ease of
visualising stacking of cubes or cuboids as opposed to arbitrary geometries as well as to
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respect the underlying symmetry of a crystal structure. When a unit cell contains more than
one lattice point, it is said to be a non-primitive unit cell. In the unit cell, the position of a
point is expressed in terms of coordinates as fractions of the lengths of the unit cell. Thus a
point (x, y, z) has the position vector (xa, yb, zc) from the origin. Such fractional coordinates
are also called atomic positions because they are used to denote the positions of the atoms in
the crystal structure.

The concept of a reciprocal lattice in momentum space or reciprocal space can be defined;
this is crucial in developing the formalism of scattering theory, crystal structures and magnetic
structures. The term ‘reciprocal’ comes from the fact that the dimensions of the vectors in
reciprocal space are inverse of length, that is ‘reciprocal’ of the dimensions of vectors in real
space. The reciprocal lattice is the Fourier transform of a lattice in real space; the reciprocal
lattice unit vectors a∗, b∗, c∗ are related to the real space unit vectors a, b, c as [4]:

a∗ = 2π
b× c

V0
b∗ = 2π

c×a
V0

c∗ = 2π
a×b

V0
(2.2)

where V0 = a ·b× c is the volume of the parallelepiped enclosed by the unit cell vectors
in real space. Hence the relation xi ·x∗j = 2πδi j is satisfied where x = a,b,c and δi j is the
Kronecker delta symbol. One can define the reciprocal lattice vector G as:

G = m1a∗+m2b∗+m3c∗ (2.3)

where mi is an integer. Therefore the translation vector T and the reciprocal lattice vector G
satisfy the relation exp(iG ·T) = 1.

Lattice directions or planes can be uniquely represented by three integers h, k and l,
known as Miller indices [4]. The notation (hkl) denotes the family of planes orthogonal to
the reciprocal lattice vector ghkl = ha∗+ kb∗+ lc∗ where a∗, b∗, c∗ are the reciprocal lattice
unit vectors. The related notation [hkl] denotes the directions thkl = ha+ kb+ lc where a, b,
c are the unit cell lattice vectors in real space. [hkl] and (hkl) are orthogonal to each other for
a cubic lattice but this is not true for lattices with lower symmetry. Additionally, the notation
{hkl} denotes the family of planes equivalent to (hkl) by the lattice symmetry and ⟨hkl⟩
denotes the family of directions equivalent to [hkl] by symmetry of the lattice. The integers
Miller indices h, k, l usually have a greatest common divisor of 1 and negative integers are
denoted by a bar.

When the basic symmetry operations are applied to a lattice, these impose certain
constraints on the lattice parameters (denoted by a, b, c ) and the interaxial angles (denoted
by α , β , γ). Applying proper and improper rotations to the translation vectors generates
seven crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, cubic, hexagonal and
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Table 2.1 The seven crystal systems and 14 Bravais lattices in three dimensions; note that
here ̸= has to be taken to mean ’not necessarily equal to’ since accidental equalities can
always occur for crystal structures in actual materials [4, 209].

Crystal System Unit cell dimensions and angles Bravais lattices

Triclinic a ̸= b ̸= c, α ̸= β ̸= γ ̸= 90◦ P
Monoclinic a ̸= b ̸= c, α = γ = 90◦, β ̸= 90◦ P, C

Orthorhombic a ̸= b ̸= c, α = β = γ = 90◦ P, I, F , C
Tetragonal a = b ̸= c, α = β = γ = 90◦ P, I

Cubic a = b = c, α = β = γ = 90◦ P, I, F
Hexagonal a = b ̸= c, α = β = 90◦, γ = 120◦ P

Rhombohedral a = b = c, α = β = γ ̸= 90◦ P

rhombohedral. In order to generate all the possible Bravais (distinct) lattices, in addition
to the primitive unit cells (denoted by P), centering must be considered: these are body-
centering (denoted by I), face-centering (denoted by F) and base-centering (denoted by C).
If both the primitive unit cells and centering for the seven crystal systems are considered, it
gives rise to 14 Bravais lattices in three dimensions; these are compiled in Table 2.1.

2.2.2 Crystallographic point groups and space groups

The formalism of crystallographic point groups and space groups is one of the most important
concepts for classifying and understanding crystal structures. A group is defined as a set of
mathematical operations carried out on elements subject to the following conditions:

(a) Closure: The product (here product refers to any general operation) of any two elements,
X and Y belonging to the group, XY = Z, is also a member of the group.

(b) Existence of Identity: An element E exists in the group such that for any element X
belonging to the group, the relation EX = XE = X is obeyed.

(c) Existence of Inverse: For each and every element X in the group, there exists an
element X−1 belonging to the group such that the relation XX−1 = X−1X = E is
obeyed where E denotes the identity.

(d) Associativity: The product (again product refers to any general operation) is associative,
that is, for any elements, X , Y and Z belonging to the group, (XY )Z = X(Y Z).

The number of elements in a group is known as its order. The set of symmetry operations
described in the previous section satisfy all these conditions and form a group. There are 32
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crystallographic point groups which can be generated using symmetry operations (’point’
means that all the symmetry operations are carried out about one common fixed point, defined
as the origin) [209]:

(a) 11 crystallographic point groups corresponding to proper rotations.

(b) Additional 11 centrosymmetric point groups obtained by adding inversion to each of
the 11 pure rotation point groups.

(c) 10 distinct non-centrosymmetric subgroups.

Point groups describe the symmetry with respect to a specific point in the crystal and the
Bravais lattices describe the symmetry of the unit cells. However, in order to completely
describe the entire crystal structure in three dimensions, one needs to define a space group. A
crystallographic space group is a complete set of symmetry operations that takes an entity
periodic in three-dimensions into itself. In order to generate space groups, two new spatial
symmetry operations must be defined in addition to point groups and Bravais lattices. These
are screw rotations (proper rotation along with a non-primitive translation parallel to the
rotation axis) and glide operations (reflection and translation). Crystallographic space groups
can be classified as follows [209]:

(a) Symmorphic space group: Can be completely specified by the symmetry operations
related to point groups and does not involve translation.

(b) Non-symmorphic space group: Requires at least one non-primitive translation opera-
tion.

In total, there are 230 space groups in three dimensions. 73 distinct symmorphic space
groups can be obtained by combining the 32 point groups with the 14 Bravais lattices. If in
addition non-symmorphic operations (screw rotations and glide reflections) are considered,
the remaining 157 non-symmorphic space groups are generated.

2.2.3 Scattering experiments on crystals

Scattering experiments have emerged as one of the powerful probes to investigate the structure
and magnetism in crystalline solids. In a scattering experiment, a beam of incident radiation
(or equivalently particles, considering the wave-particle duality) impinge upon the sample
and the proportion of incident radiation (or particles) that are scattered with a specified energy
and momentum transfer are measured. Figure 2.1 shows the schematic of a particle being
scattered by the sample. If the incident particle has a wavevector ki and angular frequency
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Figure 2.1 Schematic showing a basic scattering process. Image adopted from [210].

ωi and the scattered radiation/particle has a wavevector k f and angular frequency ω f , the
momentum transfer, Q, is given by ki −k f and the energy transfer to the sample, E, is given
by h̄ω = h̄(ωi−ω f ). The quantity measured in a scattering experiment is a function S(Q,ω)

with four components, three for Q and one for ω . In general, a sample will undergo both
elastic and inelastic scattering processes:

(a) Elastic scattering: No energy loss, E = 0. This implies that the magnitude of the wave
vector remains constant on scattering and the magnitude of the momentum transfer Q
is defined by the relation:

Q =
4π sinθ

λ
(2.4)

where 2θ is the angle between the incident and scattered wave vectors.

(b) Inelastic scattering: Involve a finite loss in energy, E ̸= 0.

In this thesis, only diffraction experiments, which are elastic scattering processes have been
carried out and so, inelastic scattering will not be discussed in further detail. It is worth
noting that diffraction measurements do not only measure purely elastic scattering (for which
E = 0), but instead integrate over energy transfer (up to a maximum energy dictated by the
energy of the incoming particle/wave). This assumes importance in the context of diffuse
scattering, because it means that diffraction measurements can be used to study liquids or
paramagnets, where the scattering has a finite energy width.

The nature of interactions of the incident radiation/particles with the sample also need to
examined. The mechanism depends on the charge, spin, energy, etc of the incoming particles.
Typical scattering experiments include electrons, X-rays or neutrons as incident probes [210].
Electrons are repelled by electrostatic forces of the orbital electrons of the atoms and therefore
cannot penetrate beyond the surface of the material. Hence electron scattering is mainly a
surface probe. Orbital electrons interact with X-ray photons via electromagnetic interactions:
this effect is weaker than electrostatic repulsion and so, X-rays can be used to investigate
the structure of bulk materials. Neutrons are not affected by the charge of orbital electrons
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Figure 2.2 Schematic showing the basic interactions of incident particles with matter. Image
taken from [211].

and are able to penetrate deeply, thus serving as an effective probe for the bulk properties.
However, as they only interact with the atomic nuclei via the short-ranged strong nuclear
force, the scattering signal is weaker as compared to X-rays. Neutrons also interact with the
unpaired orbital electrons of paramagnetic atoms via the dipole-dipole spin interaction; this
effect is negligible for electrons and X-rays as compared to electromagnetic or electrostatic
interactions. Neutrons have thus emerged as one of the most effective probes for studying
magnetic materials via scattering experiments. A schematic of these basic interactions of
incoming particles with matter are shown in Figure 2.2. In this thesis, X-ray and neutron
diffraction experiments have been carried out. The principles of diffraction with reference to
X-rays and neutrons as well as details of structural and magnetic refinement procedures are
described in the following sections.

2.2.4 Diffraction

Crystalline solids have a periodic array of atoms or ions or molecules with interatomic
spacings of the order of magnitude of ≈ 1 Å. Due to the periodic arrangement of the structure,
crystalline solids can act as three-dimensional diffraction grating to incident beam of radiation
(X-rays or neutrons). Diffraction occurs when conditions for constructive interference are



2.2 Structural characterisation 49

Figure 2.3 Schematic showing Bragg’s law.

satisfied. When a crystal sample is placed in front of a monochromatic radiation beam,
diffraction occurs for crystallite planes satisfying the Bragg condition, equation (2.5) [4].

2d sinθ = nλ (2.5)

where θ is the angle at which the planes are oriented, d is the distance between the planes,
λ is the wavelength of the incident radiation and n is an integer. The angle between the
diffracted and incident beam is 2θ . This is shown in Figure 2.3.

One can also define Bragg’s law in reciprocal space more concisely as Q = G where Q
and G are the scattering vector and reciprocal lattice vector respectively, defined in previous
sections of this chapter. This reduces to equation (2.5) when the magnitudes of Q and G are
substituted.

The structure factor Fhkl mathematically describes the amplitude and phase of a wave
diffracted from crystal lattice planes with Miller indices (hkl) and is given by [4, 212]:

Fhkl =
n

∑
j=1

f j(θ)exp[2πi(hx j + ky j + lz j)] (2.6)

where (x j,y j,z j) are the coordinates for the jth atom respectively and the summation is
carried out over all the n atoms in the unit cell. The amplitude f j(θ) is the atomic scattering
factor or form factor for the jth atom that takes account of the number of electrons in the
atom and the distribution of the electrons around the point (x j,y j,z j). In general, f j(θ) varies
as a function of θ . The atomic scattering factor is different for X-rays and neutrons as shall
be discussed in a later section.

The structure factor defined in equation (2.6) assumes that all the atoms present in the unit
cell are stationary and that they are all located at their crystallographic (average) positions.
However, when the temperature increases, the vibrations of the atoms from their mean
positions increases. A thermal factor is introduced to include contributions from both thermal
and static disorder. In the first approximation, the atomic displacements are assumed to be
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harmonic and the atomic scattering factor f (θ) for each atom is altered to incorporate the
effect of broadening of the surrounding electron cloud according to the following equation:

fthermal = f (θ)exp(
−Biso sinθ

λ 2 ) (2.7)

where λ is the wavelength of the incident radiation and Biso is known as the Debye-Waller
factor or B factor, defined by the equation:

Biso = 8π
2 <U2

iso > (2.8)

where <U2
iso > is the root mean-squared deviation of the jth atom from its mean position

(x j,y j,z j). Biso has units of Å2 and typically has values in the range 0.2 - 0.8 Å2; this value
increases with temperature. Equation (2.7) assumes isotropic Biso values, that is, the thermal
motion of the atom is same in all directions. It is also possible to model anisotropic Debye-
Waller factors and generate thermal ellipsoids modelling the thermal motion of each atom.
This analysis is much more challenging and typically requires single crystal samples to obtain
unambiguous values though it is also possible to obtain anisotropic Debye-Waller factors
for powders from high quality powder neutron diffraction data. All the results discussed in
this thesis are for polycrystalline samples with no evident anisotropy and so the structural
analysis has been carried out using isotropic Biso values only.

One final point to consider while modelling the structure factor is that crystallographic
sites in the structure may be partially occupied or there may be atomic disorder on a particular
site. This can be included in the structure factor by defining N j, a multiplier for the occupancy
of the atomic site. The modified structure factor, incorporating the Debye-Waller factor and
atomic disorder then becomes:

Fhkl =
n

∑
j=1

f j(θ)N j exp[2πi(hx j + ky j + lz j)]exp(
−Biso sinθ

λ 2 ) (2.9)

where all the symbols have their previously defined meanings.
As mentioned before, any atom in a unit cell is related to other atoms through symmetry

operations. It is possible to express simplified relations for the structure factors for such
groups of symmetry related atoms by considering the relations between their coordinates.
For example, whenever the crystal structure has a centre of symmetry, the resultant structure
factor is always entirely real and so the phase angles are always either 0 or π . This is because
for every atom at x,y,z, there is another at −x,−y,−z and hence the imaginary component of
the structure factor cancels out. The lattice centering, screw axis and glide plane symmetry
operations generate reflection conditions, giving rise to certain missing reflections in the
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diffraction pattern known as systematic absences. Conversely for an experimental diffraction
pattern, if the unit cell geometry is known, quantitative information about the lattice type and
symmetry elements (that is, the space group) can be obtained by studying these systematic
absences. This can lead towards an ab initio ’unique’ crystal structure solution for single
crystals. For polycrystalline samples, collapsing of the three-dimensional data onto one
dimension results in loss of information and so, one it is most common to ’solve’ the structure
by fitting to a pre-existing structural model. Ab initio structural solution from PXRD data is
much more complex and will not be discussed here.

2.2.5 Powder X-ray diffraction (PXRD)

Powder X-ray diffraction is one of the most commonly used techniques for structural charac-
terisation in solid state chemistry [212]. It is used as a tool for checking phase purity during
initial stages of sample preparation as well as for refining the crystal structure of a solid when
the desired final product is finally obtained.

X-rays are produced when an electrically heated tungsten filament emits electrons that
are accelerated by a high potential difference (20-50 kV) and allowed to strike a metal target
or anode which is water cooled. The anode emits a continuous spectrum of white X-ray
radiation but there are sharp intense characteristic X-ray peaks, Kα and Kβ , superimposed
on this continuous spectrum. The frequencies of the Kα and Kβ lines are unique to the anode
metal under consideration (usually Cu or Mo). The accelerated electrons knock out electrons
from the innermost K shell and the vacancies are filled by electrons from outer shells; the
decrease in energy appears as the characteristic radiation. So Kα line appears when electrons
descend from L shell to K shell and Kβ lines are seen when electrons descend from M shell
to K shell. Usually for PXRD experiments monochromatic radiation is desired so the Kβ line
is filtered out using a thin metal foil of the adjacent (Z-1) element in the periodic table; thus
Ni for Cu and Nb for Mo. A monochromatic X-ray beam can also be obtained by reflecting
the beam from the plane of a single crystal like graphite. The Kα lines are very closely
spaced doublets because of the slightly different energies depending on spin-orbit interaction
energy between the electron spin and the orbital momentum of the 2p orbital. A schematic of
the electronic energy levels and the characteristic transitions for Cu is shown in Figure 2.4.

Usually a Cu Kα source (λKα1 = 1.54056 Å, λKα2 = 1.54439 Å) is used because the
atomic spacings dhkl are comparable with the wavelength. PXRD patterns are collected
using automatic diffractometers by varying θ and hence 2θ over a predefined range using
a scintillator or CCD detector. The diffracted beams are represented as intensity versus 2θ

plots. A polycrystalline sample contains a large number of randomly oriented crystallites.
The diffracted beams make an angle of 2θ to the incident beam. Thus in a measurement, the
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Figure 2.4 Electronic energy levels and characteristic lines for a Cu atom. Image taken from
[213].

crystallites satisfying the Bragg condition are randomly oriented so the reflections lie on the
surface of a cone of semi-vertical angle 2θ , Figure 2.5.

The experimentally measured intensity of the diffracted beam, Ihkl , can be expressed as:

Ihkl = j ·P ·L ·A ·
∣∣F2

hkl
∣∣ (2.10)

where Fhkl is the structure factor as defined previously and j, P, L and A are ’correction’
factors relating to the actual collection of an experimental diffraction pattern. The intensity
also depends on the temperature but this effect is ingrained in the structure factor itself,
equation (2.9). j is the multiplicity of a reflection hkl and accounts for the fact that depending
on the crystal symmetry, different lattice planes may have the same dhkl and so, for a
polycrystalline sample with randomly oriented crystallites, the intensity at a particular 2θ

will be the sum of the diffracted beams from all these planes. P is the polarisation factor
accounting for the change in direction of polarisation of X-ray photons on diffraction. Three
main cases can be considered:

(a) X-rays are polarised in the plane of diffraction, P = cos2 2θ : Undesirable as it leads to
a huge loss in intensity of the diffracted beam
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Figure 2.5 PXRD arrangement.

(b) X-rays are polarised perpendicular to the plane of diffraction, P = 1: Ideal case as
there is no reduction of intensity. This is the typical setting for synchrotron sources at
large-scale facilities where extremely high diffracted intensities are required

(c) X-rays are unpolarised (that is, equal probability of polarisation in all directions),
P = (1+ cos2 2θ)/2: This is the usual setting for a laboratory diffractometer.

The Lorentz factor, L, corrects for the fact that diffraction in the crystallites does not occur
from a single point, but has a finite spread such that the Bragg condition, equation (2.5), is
satisfied for a certain spread of angles around the mean 2θ value. The expression for the
Lorentz factor for a polycrystalline sample is given by:

L =
C

sinθ sin2θ
=

C
2sin2

θ cosθ
(2.11)

where C is a constant. The final ’correction’ factor, A, accounts for the fact that as X-rays
pass through a material, they are absorbed according to the general equation I = I0 exp(−µt)
where I is the reduced intensity, I0 is the initial intensity, t is the thickness and µ is the
absorption coefficient which increases with atomic number and X-ray wavelength. For a
powder sample under Bragg-Brentano geometry, the effect of absorption is negligible as it
almost remains constant with 2θ .

For this project, PXRD patterns were collected using a PANalytical EMPYREAN X-ray
diffractometer (Cu Kα radiation, Bragg-Brentano geometry, 40mA and 40kV beam) at the
Department of Chemistry, University of Cambridge or a Bruker D8 X-ray diffractometer with
similar configuration at the Maxwell Centre, Department of Physics, University of Cambridge.
The Bragg-Brentano geometry is a flat-plate reflection geometry where the divergent and
diffracted beams are focussed at a fixed radius from the sample position. This can be achieved
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by fixing the source and rotating the sample and detector by θ and 2θ or by keeping the
sample fixed in a horizontal position and rotating the source and the detector by −θ and θ

respectively. For certain samples, high resolution XRD scans were measured on a Bruker
D8 Advance diffractometer (Cu Kα radiation, 1.540598 Å, Ge monochromator and Sol-XE
energy dispersive detector) at the Department of Earth Sciences, University of Cambridge. In
all cases, minute quantities of powder, < 2-3 mg were uniformly smeared over a glass slide
using Dow corning grease which was then mounted onto plastic or alumina sample holders.
Sample spinning was carried out to reduce the effects of preferential orientation which may
arise on the surface due to flattening of the sample. Short scans of 10 minutes were collected
(5◦ ≤ 2θ ≤ 60◦) to determine the progress of the solid state reaction and finally confirm
the formation of a phase-pure product. With successive intermediate grindings and heating,
the PXRD patterns became sharper indicating the improved crystallinity of the sample and
the impurity phases gradually disappeared. For phase-pure materials, a long scan for 2
hours (10◦ ≤ 2θ ≤ 90◦) was collected to give high quality data for further analysis. The
Bruker D8 X-ray Diffractometer at the Department of Physics was also equipped with an
Oxford Cryosystems PheniX stage allowing PXRD measurements down to 12 K, enabling
investigation of any low-temperature structural transitions for the samples being measured.

2.2.6 Powder neutron diffraction (PND)

Powder neutron diffraction (PND) can be used to obtain structural information [214]. Just as
Cu Kα radiation with wavelength 1.54 Å is generally used for PXRD, the velocity of the
neutrons should be such that the resultant wavelength is of comparable order of magnitude to
the interatomic spacings. The wavelength of neutrons is given by:

λ =
h

mnvn
(2.12)

where h is Planck’s constant and mn and vn are the mass and velocities of the neutrons. When
neutrons have made a large number of collisions with atoms in a reactor at temperature T .
they will have a root-mean square velocity v given by:

1
2

mnv2 =
3
2

kBT (2.13)

where kB is Boltzmann’s constant. Combining the two results we get

λ
2 =

h2

3mnkBT
(2.14)
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and the wavelengths corresponding to the root-mean square velocities of neutrons in equilib-
rium at temperatures of 0 ◦C and 100 ◦C are 1.55 Å and 1.33 Å. The neutrons are slowed
down by collisions with a moderator like heavy water and come into thermal equilibrium
with the temperature T of the reactor. They will follow the Maxwellian distribution for
velocities at that temperature. The neutron radiation spectrum is thus ’white’ and contains no
characteristic lines as found in the spectrum of an X-ray tube. A monochromatic beam of
neutrons can be obtained by using a collimator and impinging on a large monochromating
crystal. At any particular angle, neutrons are reflected if they lie within a small wavelength
range centred about λ obeying equation (2.5). By suitable choice of the angle θ , a beam
of neutrons of any wavelength can be separated out by the crystal and could be used for
diffraction experiments on a sample. This is how a monochromatic beam of neutrons is
produced from a nuclear reactor source such as at the Institut Laue-Langevin (ILL), Grenoble,
France. Neutron spallation sources also exist such as at ISIS, Oxfordshire, United Kingdom.
Here the neutrons are produced by bombarding metal targets with high energy protons.
The X-ray and constant wavelength neutron diffraction experiments are set up at a single
wavelength λ and the Bragg angle θ is varied to collect the entire diffraction pattern. In
contrast, at a spallation source, the entire beam with all the wavelengths can be used at a
particular angle. The diffraction pattern is recorded as a function of time of flight the time
(delay from the start of a neutron burst at the source), t, of the neutrons. The time of flight is
related to the wavelength of incident radiation as:

t =
mnLλ

h
(2.15)

The frequency of the source is usually fixed for a particular spallation source facility and the
diffractometer is located at a fixed flight path L: these determine the range of dhkl accessible
to the detectors located at fixed scattering angles, according to the following relation:

dhkl =
ht

2mnLsinθ
(2.16)

where θ is the scattering angle for a particular detector.
In this thesis, most of the PND measurements for samples have been carried out on the

D2B powder diffractometer at ILL, Grenoble, France for structural characterisation. The
D2B diffractometer [215, 216] is a two-axis powder diffractometer with very high resolution
(∆d/d ≈ 10−4) and relatively high flux, where in principle, the resolution is only limited
by the size of the powder particles. It is mainly used for structural analysis of powders.
However, it can also be used for determination of magnetic structures. D2B is characterised
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by a very high take-off angle (the angle between the monochromator and the neutron beam
direction) of 135◦ to obtain high resolution. A Ge [115] monochromator is used. However,
the wavelength can be easily changed by a simple rotation of the Ge crystal in the [hhl] plane.
Larger wavelengths can be accessed using graphite and cold-Be filters for magnetic studies.
The sample to be measured is usually in the form of a cylindrical vanadium can containing
the powder. A range of sample environments (cryostats, dilution fridges, furnaces, magnets,
pressure cells) can be accommodated on D2B and it can be used for structural and magnetic
studies of polycrystalline samples as a function of temperature, field and pressure. Data is
collected by a bank of 128 3He detectors spaced at ∆2θ = 1.25◦ , which move so that the
average over several detectors is taken in each scan. A scan spanning the entire angular range
would take typically 30 minutes and then can be repeated to improve the statistics. D2B has
an automated sample changer, including a slot for an external sample environment such as a
cryostat such that multiple samples can be loaded and set to measure consecutively.

Some measurements in this thesis were also carried out on the D1B and D20 powder
diffractometers at ILL and on the WISH powder diffractometer at ISIS, Oxfordshire, UK.
D1B [217] and D20 [218] are constant wavelength powder diffractometers with very high
flux (flux on D20 is higher than D1B) at large wavelengths (typically 2.5 Å) and dedicated
low temperature orange cryostats (Tmin = 1.5 K) which make them ideal for low temperature
magnetic scattering studies. They are equipped with a large bank of position-sensitive
detectors which enable rapid data collection. Due to the extremely high flux, it is possible to
measure very small quantities of samples on these instruments and to collect high-quality
statistics in a very short period of time. For both D1B and D20, a complete scan can be
obtained within 1-5 minutes and complete temperature dependence or reaction kinetics for
a sample can be obtained within 3-5 hours. D1B and D20 can also accommodate a range
of external sample environments for studies as a function of external parameters such as
ultra-low temperatures (< 1.5 K), magnetic field or pressure, though a sample changer is not
available. It is possible to change the wavelength on D1B or D20 using a Ge monochromator
but the resolution is not as good as D2B. Therefore, ideally, structural characterisation of
the sample has to be carried out using a high resolution diffractometer like D2B and then,
the magnetic scattering can be measured on D1B and D20 which have high flux at higher
wavelengths.

The WISH (wide angle in a single histogram) diffractometer [219] is a high flux, very
high resolution time-of-flight powder diffractometer located in Target Station 2 at ISIS. As
the data is collected across different banks, both structural and magnetic characterisation can
be carried out. However, the main applicability of WISH is cold powder neutron diffraction
for the investigation of complex magnetic structures. The combination of high flux at low
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Q with high resolution in Q offered by WISH (Q = momentum transfer in elastic scattering
= 4π sinθ/λ ) makes it the ideal instrument for combined magnetic Bragg and diffuse
scattering measurements to study long range ordering and short-range magnetic correlations
respectively. The coverage in d spacing is from 0.7 - 17 Å. enabling analysis of structures
with very large unit cells. The large bank of position sensitive detectors (pixellated 3He
detectors) covering the scattering angles in the range 10 - 170◦ enables rapid data collection
with a quick scan taking ≈ 5 minutes and a complete temperature dependence measurement
taking a few hours. Very small volume of samples, samples with small moments as well as
absorbing samples can be measured in a reasonable amount of time (< 1 day). Apart from a
dedicated cryostat (Tmin = 1.5 K) and a sample changer, WISH can accommodate a variety of
sample environments simultaneously (such as dilution fridge, magnet, pressure cell) to study
magnetism under extreme conditions (ultra-low temperatures, high fields and high pressures).

For most neutron scattering measurements in this thesis, the powders were loaded into
cylindrical cans made of thin vanadium metal (to minimise background scattering) with a
diameter of 6 mm or 8 mm depending on the quantity of powder available. The cans were
screwed onto the sample changer or to the end of the cryostat depending on the measurement
being carried out. Vanadium has a very low coherent neutron scattering length (b = -0.38
fm) and therefore the contribution to the PND Bragg pattern is almost negligible. In case of
ultra-low temperature measurements (T < 1.5 K) on WISH to study the nature of magnetic
ordering for Tb(BO2)3, a copper can had to be used to ensure cooling and thermalisation.
The powder-filled copper can was made airtight with an indium seal and filled with helium
exchange gas to facilitate cooling. Bragg peaks corresponding to Cu were observed in the
PND data and a difference plot was taken to analyse the magnetic scattering from the sample
only.

2.2.7 Comparison of PXRD and PND techniques

The production of neutrons is both expensive and carries higher risks and so PND can only
be carried out at large-scale facilities. It also requires use of much larger volume of sample as
compared to PXRD because of the relatively weaker flux of neutrons produced as compared
to X-rays. Therefore, PND is not a substitute for PXRD and all structural characterisation of
polycrystalline solids must initially be carried out using PXRD. However, PND can be used
as a non-routine technique to obtain complementary structural information to PXRD.

There is a difference in the scattering intensity of X-rays and neutrons because X-rays are
scattered by the electrons around the nucleus via the long-ranged electromagnetic interaction
whereas the neutrons are scattered by the nucleus itself via the short-range strong force
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(except for magnetic scattering which shall be taken up separately in a later section). The
atomic scattering factor for X-rays, fX :

(a) falls off as sinθ/λ and so as θ increases, the structure factor, equation (2.9), and hence
the intensity, equation (2.10), also falls off.

(b) has the same sign for all elements.

(c) increases linearly with the number of electrons in the atom (atomic number Z) so heavy
atoms scatter X-rays more than lighter atoms. Scattering lengths for different isotopes
of the same element are identical for X-rays.

For neutrons the scattering lengths:

(a) are distinct for different isotopes.

(b) can have different values for nuclei which have a non-zero value of spin. The usual
formalism splits the scattering length into coherent (average) and incoherent (variance)
parts.

(c) do not have a simple functional dependence on atomic number: most atoms scatter
neutrons similarly to within a factor of two or three.

(d) can be positive or negative.

The neutron scattering amplitude is independent of θ due to the negligible dimensions of the
nucleus compared to the wavelength (typically of the order of 1 Å). Hence the form factor
for neutrons plotted as a function of sinθ/λ is a flat line parallel to the x axis. The coherent
scattering length used in the structure factor calculation, equation (2.9), for neutrons, denoted
by br, is the value of the scattering length b averaged over all isotopes (assuming natural
abundance) as well as over parallel and antiparallel spin states for isotopes with finite nuclear
spin for that element [220].

There is also no angular dependent polarisation factor P for neutrons in equation (2.10)
unlike X-rays; however polarized neutrons (incident beam in a specific spin state with S = 1

2
or S=−1

2 ) may be generated in magnetic scattering experiments to unambiguously determine
the direction of magnetisation of the samples. However, this technique is beyond the scope of
this thesis. Another important point of difference between PXRD and PND is that apart from
a few exceptions (Gd, Cd, B and some other elements), the neutron absorption coefficients
are about two or three orders of magnitude smaller than X-rays, meaning that in most cases,
the effect of absorption may be neglected for neutrons. For carrying out PND experiments
on samples containing elements with high absorption coefficients, strategies include:
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(a) Isotopic enrichment: : This is used but it can be prohibitively expensive, especially as
a large number of absorbing elements are rare-earths. Isotopic enrichment, specifically
deuteration, is also used for all samples containing hydrogen because it has a very high
incoherent scattering cross-section for neutrons such that the background completely
dominates the PND pattern.

In this thesis, isotopic enrichment has been used for preparing lanthanide orthoborates,
LnBO3, and lanthanide metaborates, Ln(BO2)3, for neutron diffraction experiments in
order to reduce the absorption from naturally occurring 10B.

(b) Measuring very small amounts of samples and using very long counting times or using
high-flux diffractometers (like WISH, D20, D1B).

(c) Using ’hot’ neutrons with wavelengths λ ≈ 0.5 Å as neutron absorption is lowered at
small wavelengths.

The main applications of PXRD include:

(a) It can be used to uniquely identify the presence of a crystalline phase in the product.
Thus it can be used to track the progress of solid-state reactions, examine the phase
stability of the product(s), check the purity of samples and identify the impurity phases,
if present.

(b) It can be used to determine crystallite size. As the crystallite size decreases, the width
of the diffraction peak would increase. The crystallite size can be calculated from the
peak width using the Debye Scherrer formula:

T =
Cλ

Bcosθ
=

Cλ

(B2
M −B2

S)
1
2 cosθ

(2.17)

where T is the thickness of the crystallite, λ is the wavelength of the X-rays, θ is the
Bragg angle and B is the full-width at half-maximum (FWHM) of the peak in radians,
corrected for instrumental broadening. BM and BS are the FWHMs of the sample
and of a standard respectively. A highly crystalline sample is chosen to give BS, the
measure of broadening due to the instrumental effects. For solid-state reactions, the
product becomes more and more crystalline on heating and this is manifested as the
PXRD pattern becoming sharper.

Some important uses of PND are:
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(a) Neutron diffraction can be used to determine the positions and occupancies of lighter
atoms in the crystal structure even in the presence of other heavier atoms because the
neutron scattering factors would be similar.

For example, in this thesis, neutron diffraction has been used to determine the positions
of B and O in lanthanide metaborates, Ln(BO2)3.

(b) Atoms that lie near each other in the periodic table have very similar X-ray scattering
factors and one may not be able to distinguish among them using PXRD. PND can
yield useful structural information in this case. One of the most canonical examples is
Fe and Co (bFe = 9.45 fm, bCo = 2.49 fm) [221].

In this thesis, PND has been used to distinguish between Cr and Ga or Mn and Ga in
the lanthanide garnets (bCr = 3.635 fm, bGa = 7.288 fm, bMn = - 3.73 fm) [221].

(c) Neutrons can be used to distinguish among isotopes of a single atom because the
neutron scattering lengths are different.

(d) Neutrons have spin and hence magnetic moment and can interact with the magnetic
moment of magnetic materials. They are sensitive to local spin-spin correlations and
serve as a powerful tool for magnetic structure determination.

For example, in this thesis, low temperature PND measurements have been carried out
to determine the magnetic structure of Mn3+ substituted holmium gallium garnet.

2.2.8 Rietveld refinement

Rietveld analysis [222] is a least squares method of determining (or more precisely refining)
crystal structures from powder diffraction data. It requires a prexisting trial structure, either
for an isostructural material or a hypothetical model. The method involves calculating a
powder diffraction profile for the trial structure and comparing it to the experimental data. A
PXRD or PND pattern has two characteristic features:

(a) Positions of the lines 2θhkl or equivalently spacings of the lines dhkl (Bragg’s law)
which represents the lattice parameters and space group symmetry of the unit cell

(b) Intensities of the lines which represent the atoms, their positions, occupancies and
thermal vibration parameters within the unit cell

The Rietveld method involves analysing both the position and the intensity of the line profile.
The trial structure is modified by altering the refinable parameters, including lattice constants,
atomic positions, thermal parameters, site occupancies until a best-fit match is obtained with
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the experimental diffraction pattern. The fit can be measured numerically in terms of R
values [223]. The weighted-profile R value, Rwp, is given by:

Rwp =

√
∑i wi[yi(obs)− yi(calc)]2

∑i wi[yi(obs)]2
(2.18)

where yi(obs) is the experimentally observed intensity at step i, yi(calc) is the calculated
intensity at step i and wi is the weight. The quantity in the numerator is minimised during
Rietveld refinement by the least squares method. Rwp should ideally approach Rexp, the
statistically expected value, which is given by:

Rexp =

√
N −P

∑
N
i=1 wi[yi(obs)]2

(2.19)

where N is the number of observed values and P is the number of parameters. The refinement
can be characterised by the value of χ2 and a difference plot of the modelled and experimental
patterns where χ2 is given by:

χ
2 =

R2
w

R2
exp

(2.20)

χ2 is also minimised during refinement.
In order to carry out a Rietveld refinement, the background contribution to the diffraction

pattern is estimated using linear interpolation between data points or pre-defined mathematical
functions. In this thesis, linear interpolation was used to model the background in all cases.
Each peak is assigned an analytical shape function to model the peak shape. The peak shapes
observed depend on both the instrument parameters (geometry, radiation source, etc) and the
sample (size or strain effects). For PXRD and constant wavelength PND data, a pseudo-Voigt
function, which is the convolution of a Gaussian and a Lorentzian function, was used to
model the peak shape. The full-width at half maximum (FWHM) for the Gaussian component
was modelled by the Caglioti function:

FWHM =U tan2
θ +V tanθ +W (2.21)

and that for the Lorentzian component was modelled by:

FWHM = X tanθ +
Y

cosθ
(2.22)

The initial values of U , V , W , X and Y were obtained from an instrument resolution function
(IRF) file, generated by collecting the diffraction pattern for a well-characterised highly



62 Experimental methods

crystalline sample on the instrument ( for example LaB6 or Si or Al2O3). The assumption
made is that for a highly crystalline sample, any peak broadening would arise from the
instrument configuration only. This was usually sufficient to model the peak shape well
except for some important exceptions:

(a) Due to the high crystallinity and high cubic symmetry of the garnets, the effect of
asymmetry arising from axial divergence of the diffracted beam at low angles [224]
was particularly prominent in the constant wavelength PXRD and PND patterns and
it was necessary to use additional asymmetry parameters to model the peak shape
accurately.

(b) The functions describing the FWHM could not be used to model (hkl) dependent line-
broadening arising from size or strain effects. In such cases, the FWHM parameters
were set to the IRF values and additional spherical harmonic functions [225] were
used to model the peak shape. In case of both size and shape broadening, these were
phenomenological models constrained to the symmetry of the unit cell.

The peaks in time-of flight PND patterns contained additional asymmetric broadening arising
from the pulsed nature of the neutron source. Hence a convolution of an Ikeda-Carpenter
function and a pseudo-Voigt function is used to model the peak shape. The Ikeda-Carpenter
function is itself the convolution of two functions: the first represents the slowing of the
neutrons by a moderator and the second is a combination of a delta function and a decaying
exponential. In general, it was much more difficult to model the peak shape satisfactorily for
time-of flight PND data as compared to PXRD or constant wavelength PND data.

Finally, a model structure is taken to calculate a PXRD or PND pattern, compared with
the experimental data and refined until χ2 is minimised. Values of χ2 close to 1 (which
indicates perfect fitting) and a flat line difference pattern indicates that the model structure
is valid. This method works best if the initial model structure is close to the actual crystal
structure. However, in several cases, it is found that the modelled intensities in the diffraction
pattern deviate significantly from the actual data or only a partial structural model is available.
In such cases, it is possible to carry out a ‘structure-free’ LeBail refinement [226], also known
as the diffraction pattern profile matching technique. Here the intensities of the reflections are
modified to fit the experimentally observed intensities in order to obtain initial values of the
profile parameters (unit cell parameters, peak shape, etc). The parameters thus obtained from
the LeBail refinement can serve as initial values to be refined when a complete structural
Rietveld refinement is carried out.

For this thesis, the initial crystal structures were taken from the Inorganic Crystal Structure
Database (ICSD). Specific references for the materials are given in subsequent chapters.
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Rietveld analysis was carried out using the FullProf Suite of programmes [227] and the
refined patterns were plotted using the WinPLOTR program [228]. The Rietveld analysis
also gives the weight percentages of the different phases present at intermediate steps. This
made it possible to determine strategies for facilitating the desired solid state reaction by
changing the reaction conditions (such as increasing temperature or time or percentage of
excess starting material to be added). When a phase-pure product was synthesised, Rietveld
analysis was carried out more carefully on the long PXRD scan and detailed quantitative
structural information could be obtained. For select samples, PND scans were collected
to obtain complementary information about the crystal structure. In such cases combined
structural PXRD and PND Rietveld refinements were carried out to utilise the full potential
of obtaining complementary structural information from these diffraction techniques, leading
to a precise determination of the crystal structure. Specific examples are mentioned in the
relevant results chapters.

2.2.9 Magnetic neutron scattering

The neutron has spin S = 1
2 and a moment = -1.9 µN (1 µN (nuclear magneton) ≈ 1

2000 1 µB).
An interesting fact is that the non-zero moment of the neutron was one of the first indications
that it is not an elementary particle, but has substructure composed of quarks [229, 230]. The
scattering of neutrons by atoms is a nuclear process. However, for paramagnetic atoms, there
is additional scattering due to the dipole-dipole interaction between the neutron magnetic
moment and the magnetic moment of the atom. Since the scattering occurs due to interaction
between the neutrons and the unpaired electrons in the outer shell of the atom, the magnetic
scattering is [210]:

(a) specific to the magnetic ion under consideration.

(b) governed by a form factor: However the decay as a function of (sinθ/λ ) is much faster
than X-rays because it only involves the electrons in the outermost shell of the atom.

(c) does not increase linearly with atomic number unlike X-rays.

Another important point is that a neutron only experiences the component of magnetisation
M perpendicular to the direction of momentum transfer Q. This arises from the fundamental
nature of the magnetic force: the effect of a magnetic field is only experienced in the direction
perpendicular to the magnetic field.

An ideal paramagnet has a disordered arrangement of magnetic moments and so, the
magnetic scattering will be completely diffuse in nature and will only contribute to the
background in the PND pattern. However, for a magnetically ordered material (such as a
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ferromagnetic or antiferromagnetic material below the Curie or Néel temperature respec-
tively), the magnetic moments are oriented in a specific direction . This gives rise to coherent
magnetic scattering for the neutrons and hence the PND pattern consists of magnetic Bragg
peaks in addition to the nuclear Bragg peaks. Thus if PND measurements are carried out
below the temperature at which the sample is magnetically ordered, the diffraction pattern
provides information on both orientation and magnitude of the atomic magnetic moments,that
is, the magnetic structure of the crystal, in addition to the position of the atoms in the crystal
lattice.

The equivalent of the scattering length for a magnetic ion is given by [231]:

F2 = b2 +2bpq ·λλλ + p2q2 (2.23)

Here b denotes the nuclear scattering amplitude, p is the magnetic scattering amplitude and
λλλ is a unit vector denoting the direction of polarisation of the scattered neutron. q is defined
according to the relation:

q = εεε(εεε ·κκκ)−κκκ (2.24)

where εεε is a unit vector along the scattering direction and κκκ is a unit vector parallel to
the direction of magnetic moment of the magnetic ion under consideration. The magnetic
scattering amplitude p is given by the expression:

p =
e2γ

mec2 S f (2.25)

where e, me are the electron charge and mass, c is the velocity of light, γ is the neutron
magnetic moment in nuclear Bohr magneton, S is the spin quantum number of the magnetic
atom and f is the magnetic form factor specific to the electrons generating the magnetic
moment. p can be rewritten as:

p =
e2γ

2mec2 2S f =
e2γ

2mec2 gSS f (2.26)

where gSS is the magnetisation along the perpendicular direction of momentum transfer
for atoms where the orbital angular momentum is completely quenched. For atoms where
both orbital and spin angular momenta contribute to the total angular momentum J, (as for
lanthanide ions which are being studied in this thesis), the equivalent expression is:

p =
e2γ

2mec2 gJJ f (2.27)
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In case of unpolarised neutrons, the average value of (q ·λλλ ) in equation (2.23) is zero and
hence, the nuclear and magnetic Bragg scattering intensities are additive. In order to analyse
the magnetic structure, the nuclear Bragg scattering has to be determined accurately. This is
achieved by collecting PND data at a temperature well above the magnetic ordering tempera-
ture where the material is fully paramagnetic and carrying out a structural Rietveld refinement
of the nuclear Bragg peaks. Then the sample is cooled below the magnetic ordering transition
(usually to the minimum temperature of the cryogenic environment available) and the struc-
tural refinement is repeated to account for variations in lattice parameters, atomic positions
and thermal vibration parameters with temperature. Once a satisfactory fit is obtained, the
parameters for the structural refinement are kept fixed and the magnetic scattering is analysed
to determine the magnetic structure.

2.2.10 Magnetic structure determination

As the magnetic moments are vectors (more precisely, axial vectors), it is possible to form
long-range periodic magnetic structures that do not have the same periodicity as the unit
cell for the crystal structure corresponding to the nuclear Bragg scattering. However, as the
magnetic structures are also periodic, the propagation of magnetic structures in a crystalline
solid can be defined using Bloch waves, which are plane waves with a propagation vector or
wave vector k relating the magnetic moments of equivalent atoms located in different unit
cells:

m j = mi exp(ik ·T) (2.28)

where mi = (mai,mbi,mci) is the magnetic moment of the ith atom with components mai, mbi,
mci along the crystallographic axes and m j = (ma j,mb j,mc j) is the magnetic moment of an
equivalent jth atom with components ma j, mb j, mc j along the crystallographic axes. m j and
mi are related by the lattice translation vector T, defined in equation (2.1), as m j = mi +T.
Here k is restricted to the first Brillouin zone (set of points in reciprocal space that can be
reached from the origin without crossing any Bragg plane) of the nuclear unit cell [232].

Just as the condition for nuclear Bragg scattering was Q = G, the condition for magnetic
Bragg scattering becomes: Q = G+k where Q is the scattering vector, G is the reciprocal
lattice vector and k is the magnetic propagation vector. While most magnetic structures
can be described by a single propagation vector, multi-k structures are also possible. When
the vector k can be defined in terms of rational part of a principal reciprocal lattice vector,
the associate magnetic structure is said to be commensurate. Physically this means that the
magnetic unit cell can be defined as a ‘simple multiple’ of the nuclear unit cell. This is true
for most of the common forms of bulk magnetism such as ferromagnets and antiferromagnets.
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When the vector k cannot be expressed in terms of rational parts of principal reciprocal lattice
vectors, it results in an incommensurate magnetic structure. The first step for determination
of the magnetic structure is indexing the k propagation vector from the magnetic reflections.

For commensurate magnetic structures with k = (0, 0, 0), the magnetic unit cell is the
same size as the nuclear unit cell and the magnetic Bragg peaks occur at points in the
reciprocal lattice satisying the relation Q = G. If a primitive unit cell with a single magnetic
atom is considered (magnetic Bravais lattice), the propagation vector k = (0, 0, 0) would
correspond to a simple ferromagnet, with all the magnetic moments aligned parallel to one
another and the magnetic intensity appears on the nuclear reflections. Another special case
is k = G/2; this represents specific high symmetry points in the Brillouin zone for all 14
Bravais lattices and results in an antiferromagnetic structure. The magnetic scattering occurs
at points in the reciprocal space where nuclear Bragg scattering is completely absent [233].
For a unit cell with multiple magnetic atoms, k = (0, 0, 0) no longer definitively implies a
ferromagnetic structure and can result in ferromagnetic, antiferromagnetic or ferrimagnetic
alignment of the magnetic moments, depending on the space group. More generally, if the
crystallographic unit cell contains more than one magnetic atom site, complex non-collinear
magnetic structures can be stabilised for k = (0, 0, 0) depending on the magnetic interactions
and the single-ion anisotropy of the magnetic ion. It is only the intensities of the different
magnetic peaks that enables one to differentiate between the different configurations of
magnetic moments. Irrational values of k give rise to incommensurate magnetic structures
such as a spin density wave or sine-wave modulated structure (where the magnetic structure
is represented by a sine-wave modulation of the moment value propagating along the k
direction) or a helical structure (magnetic moments rotate in a plane when propagating along
the k direction).

Having determined the propagation vector, the next step is to find the magnitude and
directions of the magnetic moments by fitting the intensities of the magnetic reflections to a
model. A magnetic structure can be represented by defining an axial vector function S(r)
for each magnetic atom in the crystal structure. S(r) may remain invariant or transform into
another axial vector function S

′
(r) under symmetry operations of a group. Two approaches

are possible for describing magnetic structures:

(a) Magnetic symmetry approach: Defining the set of operations that leave S(r) invariant.

(b) Representation analysis approach: Defining S
′
(r) from a given S(r) under all symmetry

operations.

The representation analysis approach, which has been used in this thesis, is more general and
can be used to solve commensurate and incommensurate structures. It involves decomposition
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of the magnetic configurations into basis functions that transform according to various
irreducible representations (IRs) of the wave vector group Gk. The subset of symmetry
operations g of the crystallographic space group G0 that leave the k vector invariant are
known as the wave vector group Gk or the ‘little group’.

There are two independent effects of the symmetry operations:

(a) The permutation of labels of equivalent atoms under action of all symmetry operations
can be represented using a permutation representation, ΓΓΓperm.

(b) The transformations of the components of the axial moment vectors under the symmetry
operations are defined by the axial vector representation, ΓΓΓaxial .

The entire magnetic representation, ΓΓΓmag describes the results of the symmetry operations on
both the atomic positions and the axial vectors representing the magnetic moments. Being
independent effects, the overall magnetic representation is given by the direct product:

ΓΓΓmag = ΓΓΓperm ×ΓΓΓaxial (2.29)

ΓΓΓmag is reducible and can be written in terms of the irreducible representations (IRs) of the
group Gk. IRs are the smallest unique blocks out of which other representations for a group
can be generated. Therefore ΓΓΓmag can be written as:

ΓΓΓmag = ∑
ν

nνΓν (2.30)

where nν is the number of times the IR Γν appears in ΓΓΓmag. The decomposition of ΓΓΓmag

into the IRs of Gk also gives the number of basis vectors ψν contributing to ΓΓΓmag from
each IR. The basis vectors ψν for each IR Γν have the same symmetry as the IR and are
obtained by using a projection operator technique (taking axial unit vectors as test functions
and projecting it from the part that transforms according to each of the IRs). The magnetic
moments can be represented as a linear combination of these basis vectors.

In summary, the determination of the magnetic structure of a crystalline solid by PND
involves two main steps [234]:

(a) Determination of the magnetic propagation vector (wave vector) from the observed
magnetic reflections. This has been carried out using the k-search program included in
the FullProf suite of programs [227].

(b) Determination of magnitude and directions of all the atomic magnetic moments by
comparison of the observed intensities of the magnetic Bragg peaks with the theoreti-
cally predicted intensities. This is carried out using a magnetic Rietveld refinement and
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just like a structural Rietveld refinement, requires a ‘trial magnetic structure’ against
which a least squares fitting is carried out. In this thesis, the ‘trial magnetic structures’
have been generated using the SARAh software [235] which generates the IRs and
basis vectors using representation analysis. The FullProf suite of programs [227] has
been used to carry out Rietveld refinement of low temperature PND data by adding the
magnetic structure as an additional ‘phase’ along with the structural phase.

2.3 Magnetic measurements

The theory of magnetism and the various quantities measured such as magnetic susceptibility
and magnetisation have already been described in the introduction. Here, the techniques for
the measurement of these physical quantities are discussed.

2.3.1 Sample preparation for measurement

The samples of complex lanthanide oxides being measured have very large magnetic moments
and so, care had to be taken to ensure that the moment signal did not exceed the capability
of the measurement system. 10-20 mg of powders were weighed out and wrapped in cling
film. These were encased in between two plastic powder capsules or in an agar capsule.
This setup was placed in a brass rod or plastic drinking straw and used for measurement.
The contribution from the cling film, capsule and brass rod or drinking straw was measured
separately and found to be diamagnetic and four orders of magnitude lower than the typical
sample moments at all temperatures (2 - 300 K) and magnetic fields (0 - 14 T) being
measured.

2.3.2 Measurements using a Magnetic Properties Measurement Sys-
tem (MPMS)

Magnetic measurements were carried out using a Quantum Design MPMS. The MPMS
system utilises different superconducting components (these have the advantage of being
able to withstand large amounts of current without any dissipation as heat) [236]:

(a) Superconducting magnet: Generates large magnetic fields. For the MPMS used to
carry out measurements in this thesis, the field range was -7 T < µ0H < 7 T.

(b) Superconducting detection coil: This provides inductive coupling to the sample.
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(c) SQUID (Superconducting QUantum Interference Device): This is the most important
component and is linked to the detection coil.

(d) Superconducting magnetic shield: Surrounds the SQUID.

The dc SQUID consists of two Josephson junctions arranged on a superconducting ring. A
constant biasing current applied to the SQUID causes Cooper pairs (of electrons) to tunnel
through the junctions. If this current is greater than the critical current for the Josephson
junction, a voltage is produced across the SQUID. Changes in the magnetic flux (as a result
of altering the magnetic field, inserting a magnetic sample) causes the voltage to oscillate
between a minimum and maximum value. So the wave functions for the two Josephson
junctions interfere to produce the voltage swings which can be detected by conventional
electronics. Thus the SQUID serves as a highly sensitive linear current-to-voltage converter
[237].

During MPMS measurements, the sample moves through the detection coils which are
placed at the centre of the magnet, outside the sample chamber. As per Faraday’s law, this
induces an electric current in the detection coils. The detection coils, connecting wires
and SQUID input coil are arranged to form a closed superconducting loop and so, the
change in magnetic flux associated with the detection coil produces a proportional change in
the persistent current. The functionality of the SQUID as an ultra-sensitive linear current-
to-voltage converter means that the resultant variations in the SQUID output voltage are
proportional to the changes in current in the detection coils, and hence proportional to the
moment of the sample. The system is pre-calibrated in units of emu using a magnetic
material with known mass and magnetic susceptibility (in this case Er:YAG). Hence, the
SQUID detector provides an extremely precise measurement of a sample’s magnetic moment
(sensitivity of the MPMS used for this thesis is 10−8 emu).

For this thesis, the MPMS has been used to measure the magnetisation (M) of the sample
as a function of applied magnetic field (µ0H) and temperature (T ). Initially for all samples,
the Zero Field Cooled (ZFC) scan of magnetisation as a function of temperature (2-300 K) for
an applied field of 100 Oe was measured. In a low applied field of 100 Oe, the magnetisation
varies linearly and so the linear approximation for susceptibility is valid. Thus the molar
susceptibility as a function of temperature, χ(T ), was plotted for all samples. While the
χ(T ) curve would indicate any magnetic ordering transition in the temperature range of
the measurement, subtle changes in the gradient, indicative of a change in the nature of
short-range magnetic correlations, can be studied using the dχ

dT vs T curve. The reciprocal
susceptibility was also plotted and the Curie-Weiss law was fit to the linear region of the
χ−1(T ) curve (typically in the temperature range 100 - 300 K).
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2.3.3 Measurements using a AC Measurement System (ACMS) on the
Physical Properties Measurement System (PPMS)

Isothermal magnetisation measurements for selected samples were carried out using the
ACMS option on the PPMS in the field range 0-9 T or 0-14 T at selected temperatures
between 2 K and 100 K. The DC magnetisation measurement mode was used.

The basic operating principle for the DC magnetization measurement is similar to a
vibrating sample magnetometer (VSM). Due to the vibration of the sample concentrically
within a coil set, there is a change in the associated magnetic flux which induces a voltage in
the pickup coils. The pickup coil set consists of two counterwound coils connected in series
and located just above and below the sample. The time-dependent induced voltage is given
by [238]:

Vcoil =
dΦ

dt
=

dΦ

dz
dz
dt

(2.31)

where Φ is the magnetic flux through the pickup coils, z is the vertical position of the sample
with respect to the coil and t is the time. For a sinusoidally oscillating sample position, the
voltage is given by the equation:

Vcoil = 2π fCmAsin(2π f t) (2.32)

where C is the coupling constant, m is the DC magnetic moment of the sample and A and f
are the amplitude and frequency of oscillation respectively.

The magnetisation was converted to units of Bohr magneton per formula unit and M(H)
curves were plotted at different temperatures to study the variation in isothermal magnetisa-
tion as a function of field. The presence of any single-ion anisotropy can be inferred from the
M(H) curves, as the magnetisation would saturate or tend to saturate at a value less than the
theoretical saturation magnetisation.

2.3.4 Quantification of the magnetocaloric effect from the isothermal
magnetisation data

The MCE was quantified by calculating the change in magnetic entropy, ∆Sm. In order to
calculate ∆Sm from the M(H) curves, the following steps were followed:

(a) Interpolation of M(H) data in uniform field steps of µ0H = 0.2 T.

(b) Calculation of dM
dT for interpolated values of µ0H.

(c) Calculation of the integral in equation (1.64) for different values of T .
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(d) Calculation of ∆Sm in units of JK−1 mol−1
Ln , JK−1 kg−1, mJK−1 cc−1.

The value of ∆Sm in units of JK−1mol−1
Ln can be compared with that in Table 1.2. ∆Sm

values calculated per unit mass or per unit volume are more relevant for practical applications
where a fixed mass or fixed volume of the magnetic refrigerant is used and so these values
were also calculated.

2.4 Heat capacity measurements

2.4.1 Heat capacity

The heat capacity of material is the quantity of heat required to raise the temperature of the
substance by a specific amount. Mathematically it can be defined as:

Cp =

(
dQ
dT

)
P

(2.33)

From the second law of thermodynamics:

dQ = T dS (2.34)

Hence the entropy is related to the heat capacity as:

S =
∫ Tmax

0

(
C(T )

T

)
dT (2.35)

where Tmax is the maximum temperature up to which the heat capacity has been measured
as a function of temperature. The total heat capacity is the sum of several terms. For the
materials discussed in this thesis the main contributions are:

Ctot =Clat +Cmag +Cel +Cnuc (2.36)

where Clat is the lattice heat capacity, Cmag is the magnetic contribution, Cel is the electronic
Schottky term and Cnuc is the hyperfine contribution. The lattice contribution arises due to
vibration of lattice modes called phonons, as the temperature increases and is modelled using
the Debye equation for molar specific heat [239]:

Clat =
9nRT 3

θ 3
D

∫
θ/T

0

x4ex

(ex −1)2 dx (2.37)
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where n is the number of atoms per molecule of the solid, R is the universal gas constant
and θD is the Debye temperature which typically lies in the range 250 - 500 K for complex
lanthanide oxides. The exact value is estimated by fitting the high temperature heat capacity
data to equation (2.37).

When a material contains closely spaced electronic or nuclear energy states, a broad
anomalous peak in the specific heat appears at a temperature where the thermal excitations
match the energy spacing between these states. This is called a Schottky anomaly. This is
not a phase transition but rather, a cusp appears because there is an abrupt change in entropy
associated with the population of electronic or nuclear states, as the case may be [240]. The
expression for the electronic Schottky anomaly for a two level system is given by:

Cel = R(
E

kBT
)

2 e
E

kBT

(e
E

kBT +1)
2 (2.38)

where E is the energy separation between the two levels. This expression can be used to
model the electronic specific heat by using E as a fitting parameter, however in some cases, a
more involved analysis considering N energy levels may be required. In this case, information
about the energy levels has to be obtained by a complementary technique; this is beyond
the scope of discussion of this thesis. Typically, it is quite difficult to separate the effects of
lattice and Schottky contributions from the total heat capacity. One can attempt to subtract
the Schottky contribution correctly from the total specific heat by comparing the theoretical
and experimental values of the entropy.

The nuclear Schottky contribution for rare-earths becomes important at very low tempera-
tures T ≤ 1−2 K. An atomic nucleus with magnetic moment µN may have a series of energy
levels in an internal field He f f arising from orbital and conduction electrons. The interaction
of the quadrupolar moment of the nucleus, if non-zero (as for Ho), with neighbouring fields
of atoms would also lead to hyperfine splitting. Among the samples being investigated in this
thesis, an appreciable hyperfine contribution was only observed in Tb, Ho and Mn containing
samples; the nuclear Schottky anomaly for other rare-earths occurs at temperatures below
the experimental measurement limit of the He3 heat capacity option (0.4 K) and so did not
contribute significantly to the heat capacity. The nuclear Schottky anomaly for Ho samples
(which has a peak at ≈ 0.3 K) has a particularly dominant contribution, masking the effect of
any magnetic ordering transition, if present, at T ≤ 1 K. Complete modelling of the nuclear
Schottky anomaly is not possible from the heat capacity data as it would require estimation of
the nuclear energy levels using an external probe. However, for all the samples measured, the
‘high-temperature tail’ of the hyperfine contribution to the heat capacity can be approximated
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as:
Cnuc =

A
T 2 (2.39)

where A is a constant that can be fitted to the data.

2.4.2 Sample preparation for measurement

All the samples discussed in this thesis are insulators and have very poor thermal conductivity
[241, 242]. Therefore in order to obtain a proper heat capacity measurement, the sample
has to be mixed with a good thermal conductor. Silver was chosen for this purpose. Equal
amounts of the sample and silver powder were mixed and pressed into a pellet. A small
portion of the pellet was sliced off and used for the heat capacity measurement. The heat
capacity values for silver in the temperature range of measurement (usually 0.4 - 30 K) are
well documented in the literature [243]; this was scaled by mass and subtracted to obtain the
contribution from the sample heat capacity only.

In some instances, it was observed that mixing equal amounts of silver and the sample
still did not provide sufficient thermal conductivity. In such cases, the measurement was
repeated with a higher weight of silver powder mixed with the sample.

2.4.3 Measurements using a PPMS

Heat capacity measurements were carried out using a Quantum Design PPMS [244] using the
two-tau model relaxation technique. The standard heat capacity option enables measurements
in the temperature range 1.8 - 400 K in the magnetic field range 0 - 9 T. The He3 option
enables heat capacity measurements down to a minimum temperature of 0.4 K in the same
field range. The sample to be measured is placed on a calorimeter puck, which is calibrated
over the entire temperature and field range in which measurements are to be carried out.
A small quantity of Apiezon N grease or H grease is used for providing thermal contact
between the sample and the wires depending on the temperature range of the measurement.
Prior to measuring the sample, the contribution from the stage, puck and grease are measured
separately as the addenda. This is then subtracted from the total heat capacity to give the
contribution from the sample only.

2.4.4 Thermal models

The raw numbers obtained during measurement are converted into heat capacity values using
the following mathematical models [245]:
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(a) Simple model: This model assumes that the sample platform and the sample are in
good thermal contact with each other and are at the same temperature, T , during
measurement. T as a function of time, t, is given by:

Ctot
dT
dt

=−Kw(T −Tb)+P(t) (2.40)

where Ctot is the total heat capacity, Kw is the thermal conductance of the supporting
wires , Tb is the temperature of the puck frame and P(t) is the power applied by the
heater. The software uses the simple model to measure the addenda.

Figure 2.6 Thermal contacts to the sample and the sample platform in the Quantum Design
PPMS Heat Capacity option. Image taken from [245].

(b) Two-tau model: This model assumes that the sample platform and the sample are not in
good thermal contact with each other. This is the case for all the sample measurements
described in this thesis because the samples are thermal insulators. The two-tau model
simulates both the effect of heat flowing between the sample platform and sample and
the effect of heat flowing between the sample platform and puck frame as shown in
Figure 2.6. This is expressed by the following equations:

Cplat
dTp

dt
= P(t)−Kw(Tp(t)−Tb)+Kg(Ts(t)−Tp(t)) (2.41)

Csample
dTs

dt
=−Kg(Ts(t)−Tp(t)) (2.42)

where Cplat is the heat capacity of the sample platform, Csample is the heat capacity of
the sample, and Kg is the thermal conductance between the two from the grease. The
sample platform and sample temperatures are given by Tp(t) and Ts(t).
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Data fitting is carried out using a non-linear least square algorithm. The goodness of fit is
given by a χ2 value and the degree of thermal contact can be ascertained from the sample
coupling. For reliable measurements, a sample coupling of >90% is desirable. However a
sample coupling of 100% indicates an error as it implies that the sample is poorly attached or
the heat capacity of the sample is not large compared to the platform.

In this thesis, heat capacity measurements were primarily carried out to probe the exis-
tence of any magnetic ordering transitions in the temperature range 0.4 ≤ T ≤ 2 K as the
minimum temperature for the susceptibility and magnetisation measurements was 2 K. A
sharp λ type anomaly in the Cmag(T ) or Cmag/T vs T curve is indicative of a second order
magnetic phase transition, corresponding to three-dimensional magnetic ordering. For an
antiferromagnet, any such anomaly in the specific heat would be accompanied by a similar
peak in d(χT )

dT , where χ is the magnetic susceptibility [246]. More subtle magnetic features
are apparent in the Cmag/T vs T plots, such as broader peaks, implying short-range magnetic
ordering or van Vleck paramagnetism corresponding to a non-magnetic ground state. In-
stances of such magnetic features will be presented in subsequent chapters while discussing
the results for different families of complex lanthanide oxides.



Chapter 3

Magnetic properties of lanthanide
garnets, Ln3A2X3O12: Part I

This chapter discusses the effect of varying the single-ion anisotropy (by changing the
magnetic ion) and chemical pressure (by varying the non-magnetic cations) on the magnetic
and magnetocaloric properties of a well-known family of geometrically frustrated lanthanide
oxides: the lanthanide garnets, Ln3A2X3O12. Results are presented for garnets with Ln = Gd,
Tb, Dy, Ho. Inclusion of magnetic cations on the non-magnetic cation sites will be discussed
in the next chapter.

3.1 Background

The magnetic properties of geometrically frustrated lanthanide oxides can vary dramatically
with the magnetic Ln3+ due to changes in the magnitude of spin interactions, the crystal
electric field scheme and the associated single-ion anisotropy [45]. As discussed in the
introduction, this has been observed for families of materials like Ln2B2O7 [45],
Ln3A2Sb3O14 [119] and SrLn2O4 [127]. Even for a particular frustrated geometry and
magnetic Ln3+, the magnetic properties can vary radically with small changes in the
structure [2]. One way of systematically studying such variations is by exploring the effect
of chemical pressure, that is, changing the size of the non-magnetic cation in the lattice. The
effect of doing so is twofold [59, 247]: Firstly, it alters the lattice parameter and hence the
distances between the magnetic Ln3+, which changes the dipolar and exchange interactions.
Secondly, it causes subtle changes to the Ln-O environment, which affects the crystal electric
field (CEF) and hence the single-ion anisotropy of the magnetic Ln3+ and the superexchange
interactions. Such studies have been carried out for the highly frustrated lanthanide
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pyrochlores, Ln2B2O7 (B = non-magnetic cation), where the dominant interactions are the
nearest-neighbour exchange, the dipolar interaction and CEF effects. The classical spin ice
state in pyrochlores with Ln = Dy, Ho is remarkably robust to chemical pressure for different
B cations [59]. On the other hand, varying the chemical pressure radically changes the
fragile magnetic ground state in quantum spin ice candidates with Ln = Tb, Yb.
[45, 248, 249]. The chemical pressure also changes the nature of magnetic ordering in
Heisenberg pyrochlores with Ln = Gd [49, 247, 250]. This indicates that the impact of
chemical pressure is highly dependent on the magnetic Ln3+ and the exact nature of the
magnetic ground state.

The lanthanide garnets, having the general formula Ln3A2X3O12, are a well-known
three-dimensionally frustrated system. They crystallise in a cubic structure and contain
three distinct cation sites based on the coordination with oxygen: dodecahedral occupied by
Ln, octahedral occupied by A and tetrahedral occupied by X [251, 252], Figure 3.1a. The
magnetic Ln3+ ions are located at the vertices of corner-sharing triangles which form two
interpenetrating networks of bifurcated ten membered rings, giving rise to a high degree
of three-dimensional geometrical frustration [108], Figure 3.1b. Since there are two non-
magnetic cation sites, there is a lot of potential for exploring the magnetic phase diagram in
the lanthanide garnets by varying the non-magnetic cations and hence the chemical pressure
on either or both A and X sites. Changing the chemical pressure allows tuning of the
magnetic interactions as well as subtle changes to the CEF and single-ion anisotropy, offering
an opportunity to study the physics of frustration in these materials. Any changes in the
magnetic properties will also impact the magnetocaloric effect (MCE). This is significant
because as discussed in the introduction, gadolinium gallium garnet (GGG), Gd3Ga5O12,
and dysprosium gallium garnet (DGG), Dy3Ga5O12, are standard magnetocaloric materials
(MCMs) for solid state magnetic refrigeration in the liquid helium temperature regime
[183, 187, 199, 200]. Therefore, it may be possible to optimise the MCE further by varying
the cations on the A and X sites. While this has been reported for Al3+ substituted GGG
[185], the impact on the MCE for the other Ln3+ as well as for other combinations of A and
X have not been explored.

Prior to discussing the results, the current state of knowledge regarding the magnetic
properties of the lanthanide garnets with non-magnetic cations on the A and X sites are
reviewed for the magnetic lanthanide ions studied in this chapter, Ln = Gd, Tb, Dy, Ho.

3.1.1 Gd3A2X3O12

Most of the experimental work on lanthanide garnets has focused on Gd3Ga5O12 (GGG),
where both the octahedral and tetrahedral sites are occupied by Ga3+. A detailed review has
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Figure 3.1 a) Crystal structure of lanthanide garnets Ln3A2X3O12: Ln occupy the
dodecahedral sites, A occupy the octahedral sites while the tetrahedral sites are occupied
by X . b) Connectivity of magnetic Ln3+ ions: The Ln3+ lie at the vertices of corner-sharing
equilateral triangles forming two interpenetrating ten-membered rings. This results in a
highly frustrated three-dimensional network.

already been presented in the introduction but the salient points will be summarised here for
clarity. GGG is a canonical spin liquid candidate with no long-range ordering down to 0.025
K and a glassy transition at Tg ≈ 0.14 K below the spin liquid state [141, 143, 145, 149, 153].
Recent experiments have pointed to the existence of a hidden multipolar order on the ten-
membered loops in the spin liquid state [150], as well as existence of dispersionless spin
waves on the ten-membered loops in applied magnetic fields [154].

Quilliam et. al [253] carried out a study comparing the magnetic properties of
Gd3Ga5O12, Gd3Al5O12 (with both octahedral and tetrahedral sites occupied by Al3+) and
Gd3Te2Li3O12 (with octahedral sites occupied by Te6+ and tetrahedral sites occupied by
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Li+). Heat capacity measurements showed the onset of short-range magnetic correlations at
≈ 0.8 K for Gd3Ga5O12 and ≈ 1 K for Gd3Te2Li3O12 and Gd3Al5O12. A sharp transition
was observed at 0.243 K for Gd3Te2Li3O12 in contrast to the absence of order for
Gd3Ga5O12. Gd3Al5O12 was reported to behave like a ‘material bridge’ between
Gd3Ga5O12 and Gd3Te2Li3O12 with a smaller and broader transition at an intermediate
temperature, 0.175 K. Calculations from the Curie-Weiss fit parameters showed that the
dipolar interaction (D) was almost identical for all three materials and the nearest-neighbour
exchange interaction (J1) gradually increased from Gd3Ga5O12 to Gd3Te2Li3O12 to
Gd3Al5O12. The onset of short-range magnetic correlations at higher temperatures in
Gd3Te2Li3O12 and Gd3Al5O12 as compared to Gd3Ga5O12 was attributed to the stronger J1

interactions. The fact that Gd3Ga5O12 showed no conventional ordering while
Gd3Te2Li3O12 and Gd3Al5O12 showed long-range ordering features was attributed to one of
two possibilities: a) finely-tuned D and J1 interactions in Gd3Ga5O12 which led to a
disordered state while Gd3Te2Li3O12 and Gd3Al5O12 appeared to resemble conventional
dipolar antiferromagnets, with the increasing ratio of D/J1 from Gd3Al5O12 to
Gd3Te2Li3O12 relieving the frustration. b) extreme sensitivity of Gd3Ga5O12 to
off-stoichiometry (random excess of Gd3+ on the octahedral Ga3+ sites) as compared to
Gd3Te2Li3O12 and Gd3Al5O12. The sharp magnetic ordering transition in Gd3Te2Li3O12

was shown to be robust to random site dilution, providing stronger support for hypothesis b).
More recently, Florea et. al reported a spin-freezing transition at ≈ 0.3 K in Gd3Al5O12

and absence of any long-range ordering down to 0.06 K, indicating the presence of a
spin-liquid phase similar to Gd3Ga5O12 [254]. The higher spin-freezing temperature in
Gd3Al5O12 (≈ 0.3 K) as compared to Gd3Ga5O12 (≈ 0.15 K [143]) was attributed to the
stronger J1 interactions in Gd3Al5O12. Magnetisation measurements at ultra-low
temperatures in magnetic field showed a magnetic phase diagram similar to Gd3Ga5O12. It
was proposed that the magnetic phase diagram of Gd3Ga5O12, including the zero field spin
liquid behaviour, was robust to variations in the D and J1 interactions, in contrast to the
pyrochlores Gd2B2O7 (B = Ti, Sn) which have different magnetic structures [45]. These
results are in contrast to the long-range ordering proposed by Quilliam et. al and the exact
nature as well as the robustness of the magnetic ground state in Gd garnets remains an open
question.

3.1.2 Ln3A2X3O12, Ln = Tb, Dy, Ho

The lanthanide gallium garnets with Ln = Tb, Dy, Ho have been studied less extensively.
Tb3Ga5O12 and Ho3Ga5O12 undergo antiferromagnetic ordering below TN = 0.25 K and
0.19 K respectively [255, 256]. They have local Ising anisotropy and order in a six sublattice
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antiferromagnetic type A (AFA) structure, where moments of equal magnitude are aligned
along [100], [1̄00], [010], [01̄0], [001], [001̄] [257–259]. Heat capacity measurements on
Dy3Ga5O12 reported broad short-range ordering at 0.6 - 0.7 K and a sharp transition at TN

= 0.373 K [260]. Crystal field studies suggested a quasi-planar anisotropy for Dy3Ga5O12

[198] while neutron diffraction measurements at 0.07 K reported antiferromagnetic ordering
below TN although the exact magnetic structure was not elucidated [197]. A later neutron
scattering experiment on Ho3Ga5O12 reported the onset of short-range order below 0.6 K and
coexistence of long and short-range order below 0.3 K down to 0.05 K [261]. This behaviour
is similar to that reported in the bulk measurements for Dy3Ga5O12 [260], however in both
cases, the exact nature of the short-range order is yet to be determined. Dy3Al5O12 has
strong Ising anisotropy and undergoes antiferromagnetic ordering at TN = 2.49 K in the same
AFA structure as reported for Tb3Ga5O12 and Ho3Ga5O12 [196, 259, 262]. Tb3Al5O12 and
Ho3Al5O12 also order in the AFA structure at TN = 1.35 K and 0.95 K respectively [263, 264].
The lanthanide aluminium garnets Ln3Al5O12 (Ln = Tb, Dy, Ho) undergo transitions at much
higher temperatures as compared to the corresponding Ln3Ga5O12, and thus, much like their
Gd counterparts, are less frustrated. The increased transition temperatures in Ln3Al5O12

(Ln = Tb, Dy, Ho) have been attributed to increased dipolar interactions and stronger Ising
anisotropy [265]. A previous study on the lanthanide tellurate lithium garnets, Ln3Te2Li3O12,
with aliovalent (differently charged) A (Te6+) and X (Li+), reported a transition at 2 K for Ln
= Dy; no transition was reported for Ln = Tb and Ho at T ≥ 2 K [266].

In this chapter, a comprehensive study on the synthesis, structural characterisation
and bulk magnetic properties of polycrystalline samples of Ln3Ga5O12, Ln3Sc2Ga3O12,
Ln3Sc2Al3O12, Ln3In2Ga3O12 and Ln3Te2Li3O12 for Ln = Gd, Tb, Dy, Ho is presented
for the first time. Magnetic susceptibility and isothermal magnetisation measurements
have been carried out to study the magnetic behaviour for T ≥ 2 K, while zero field heat
capacity measurements have been carried out to investigate the existence of magnetic ordering
transitions for T ≥ 0.4 K. The change in magnetic entropy has been evaluated to characterise
the MCE. The magnetic properties and the degree of magnetic frustration are discussed in
relation to the previously reported literature for Ln3Ga5O12 and Ln3Al5O12, which has been
summarised above.

3.2 Sample preparation

Powder samples of Ln3A2X3O12 (Ln = Gd, Tb, Dy, Ho; A = Ga, Sc, In, Te; X = Ga, Al, Li)
were prepared using a solid-state synthesis. Samples of Ln3Ga5O12 were prepared by mixing
stoichiometric amounts of Ln2O3 (Ln = Gd, Dy, Ho) or Tb4O7 and Ga2O3. To ensure the
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correct stoichiometry, Gd2O3 and Ga2O3 were pre-dried at 800 ◦C and 500 ◦C respectively
prior to weighing out. The powders were pressed into pellets and heated between 1200 -
1300 ◦C for 24 - 72 hours with intermediate re-grindings, until a pure phase was obtained.
The sample of Gd3Ga5O12 was prepared by Alice Sackville Hamilton [185]. Samples
of Ln3Sc2Ga3O12 and Ln3In2Ga3O12 were prepared by mixing stoichiometric amounts of
Ln2O3 (Ln = Gd, Dy, Ho) or Tb4O7, Ga2O3 and Sc2O3 or In2O3. Pellets were heated at
increasingly higher temperatures between 1200 – 1350 ◦C for 48-72 hours with intermittent
re-grindings. An alternative synthesis route was followed for Ln3Sc2Al3O12 to prevent the
formation of a LnAlO3 perovskite impurity phase. The starting materials Ln(NO3)3 (Ln
= Gd, Tb, Dy, Ho) and Al(NO3)3 were dried overnight at 80 ◦C and 60 ◦C respectively
to remove any excess water of crystallisation. Stoichiometric amounts of Ln(NO3)3 (Ln =
Gd, Tb, Dy, Ho), Al(NO3)3 and Sc2O3 were mixed well. Following a pre-reaction at 1000
◦C, pellets were heated at increasingly higher temperatures between 1200 – 1400 ◦C for
48-72 hours with intermittent re-grindings. Samples of Ln3Te2Li3O12 were prepared by
mixing stoichiometric amounts of Ln2O3 (Ln = Gd, Dy, Ho) or Tb4O7, TeO2 and Li2CO3

and pressing into pellets. Li2CO3 was dried at 180 ◦C prior to weighing out to prevent
hydration. Pellets were heated at 850 ◦C for 20 hours with one intermediate regrinding
after 10 hours. Attempts to substitute Sc3+ and In3+ on the X site resulted in the formation
of LnScO3 and LnInO3 impurities. It is postulated that Sc3+ and In3+ are not stable in the
tetrahedral coordination. Attempts to synthesise Ln3ScGa4O12 yielded a mixed phase of
Ln3Sc2Ga3O12 and Ln3Ga5O12. Synthesis of Ln3InGa4O12 was not attempted. Attempts to
synthesise Ln3In2Al3O12 by solid state as well as sol-gel methods resulted in the formation
of LnAlO3, LnInO3 and In2O3 impurities and it was concluded that this synthesis was not
possible due to the large difference in the size of In3+ and Al3+ ions [267].

3.3 Structural characterisation

In order to track the progress of the reaction, initial structural characterisation was carried
out using PXRD. Short scans were collected over the angular range 5◦ ≤ 2θ ≤ 60◦ using a
Panalytical Empyrean X-ray diffractometer (Cu Kα radiation, λ = 1.540 Å). Once a phase
pure product was obtained, longer PXRD scans for 2 hours over a wider angular range
5◦ ≤ 2θ ≤ 90◦ were collected on the same instrument for quantitative structural analysis.
For garnets with Ln = Ho, room temperature (RT) PND experiments were carried out on the
D2B diffractometer, ILL, Grenoble (λ = 1.595 Å) at 300 K except Ho3Ga5O12, for which
only PXRD scans were performed. Rietveld refinement was carried out using the Fullprof
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Figure 3.2 RT PXRD (upper panel) + PND (lower panel) pattern for Ho3Sc2Al3O12: Red
dots - Experimental data, Black line - Modelled data, Blue line - Difference pattern, Blue
ticks - Bragg positions).

suite of programs. Backgrounds were fitted using linear interpolation and the peak shape
was modelled using a pseudo-Voigt function.

RT structural refinements for garnets with Ln = Gd, Tb, Dy were carried out using
PXRD only. Combined RT PXRD + PND structural refinements were carried out for garnets
with Ln = Ho, except Ho3Ga5O12. Figure 3.2 shows a representative combined PXRD
+ PND refinement for Ho3Sc2Al3O12. The combined RT PXRD + PND refinements for
Ho3Sc2Ga3O12, Ho3In2Ga3O12, Ho3Te2Li3O12 and PXRD refinement for Ho3Ga5O12 can
be found in Appendix A. All the garnets crystallise in the same cubic structure with space
group Ia3̄d. The magnetic Ln3+ (Ln = Gd, Tb, Dy, Ho) occupy the dodecahedral 24c (0,
0.25, 0.125) site. Ga3+, Sc3+, In3+ or Te6+ occupy the octahedral 16a (0, 0, 0) site while the
tetrahedral 24d (0, 0.25, 0.375) site is occupied by Ga3+, Al3+ or Li+ in the respective garnets.
O2 – occupies the 96h (x,y,z) site. Structural parameters for all the lanthanide garnets are
summarised in Table 3.1. Rietveld analysis shows that the lattice volume varies linearly with
the ionic radius of the Ln3+ ion for a given combination of A and X ions, Figure 3.3a. A
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similar relationship was expected between the lattice volume and the weighted ionic radii of
the A and X ions for each Ln3+, rav =

2rA+3rX
5 . However, as is seen in Figure 3.3b, this is not

the case for all combinations of A and X . While the Ln3A2Ga3O12 families (A = Ga, Sc, In)
follow a linear trend for all Ln, the Ln3Sc2Al3O12 and Ln3Te2Li3O12 families deviate from a
straight line implying that there are other effects to be considered such as the difference in
sizes or charges of the A and X sites.

Table 3.1 Structural parameters for Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12,
Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Gd, Tb, Dy, Ho. PXRD refinements were carried
out for all garnets with Ln = Gd, Tb, Dy and Ho3Ga5O12 while combined PXRD + PND
refinements were carried out for all other garnets with Ln = Ho. All refinements were carried
out in the space group Ia3̄d, with Ln on the 24c sites (0, 0.25, 0.125), Gaoct/Sc/In/Te on the
16a sites (0, 0, 0), Gatetr/Al/Li on the 24d sites (0, 0.25, 0.375) and O on the 96h (x,y,z) sites.

Ln Gd Tb Dy Ho

Ln3Ga5O12

a (Å) 12.38348(2) 12.34191(4) 12.31057(5) 12.28157(5)
Ln Biso (Å2) 0.5 0.5 0.5 0.5

Gaoct Biso (Å2) 0.5 0.5 0.5 0.5
Gatetr Biso (Å2) 0.5 0.5 0.5 0.5

O x -0.0327(2) -0.0307(3) -0.0299(3) -0.02976(2)
y 0.0542(2) 0.0541(3) 0.0539(3) 0.05150(3)
z 0.1490(2) 0.1499(4) 0.1495(4) 0.1494(3)

Biso (Å2) 0.5 0.5 0.5 0.5
Rwp 10.2 9.98 10.1 9.74
χ2 2.86 2.92 2.59 4.32

Ln3Sc2Ga3O12

a (Å) 12.57321(7) 12.53907(6) 12.50241(6) 12.47517(3)
Ln Biso (Å2) 0.5 0.5 0.5 0.08(2)
Sc Biso (Å2) 0.5 0.5 0.5 0.19(2)
Ga Biso (Å2) 0.5 0.5 0.5 0.30(2)
O x -0.0299(5) -0.0310(3) -0.3035(3) -0.0283(8)

y 0.0571(5) 0.0574(3) 0.0567(3) 0.0582(9)
z 0.1521(5) 0.1552(3) 0.1581(3) 0.1545(8)

Biso (Å2) 0.5 0.5 0.5 0.422(15)
Rwp 15.6 10.7 10.9 10.6
χ2 1.57 1.87 1.68 2.96
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Ln3Sc2Al3O12

a (Å) 12.43448(6) 12.39878(5) 12.35927(6) 12.32972(3)
Ln Biso (Å2) 0.5 0.5 0.5 0.13(2)
Sc Biso (Å2) 0.5 0.5 0.5 0.17(2)
Al Biso (Å2) 0.5 0.5 0.5 0.32(4)
O x -0.0328(3) -0.3120(3) -0.0328(3) -0.03155(10)

y 0.5335(4) 0.5483(4) 0.5402(3) 0.56744(11)
z 0.1561(4) 0.6559(4) 0.1562(4) 0.1566(9)

Biso (Å2) 0.5 0.5 0.5 0.43 (2)
Rwp 13.2 14.7 12.8 12.4
χ2 2.27 3.18 2.06 2.88

Ln3In2Ga3O12

a (Å) 12.66112(6) 12.62654(5) 12.59268(6) 12.55859(9)
Ln Biso (Å2) 0.5 0.5 0.5 0.11(2)
In Biso (Å2) 0.5 0.5 0.5 0.03(3)
Ga Biso (Å2) 0.5 0.5 0.5 0.37(2)
O x -0.0318(3) -0.0319(3) -0.0330(6) -0.0283(7)

y 0.0583(3) 0.0598(3) 0.0608(4) 0.0599(8)
z 0.1573(4) 0.1565(4) 0.1571(5) 0.1567(8)

Biso (Å2) 0.5 0.5 0.5 0.476(15)
Rwp 10.1 10.0 11.7 11.5
χ2 1.80 2.38 2.75 2.15

Ln3Te2Li3O12

a (Å) 12.39402(2) 12.34898(2) 12.31050(2) 12.27401(7)
Ln Biso (Å2) 0.5 0.5 0.5 0.545(19)
Te Biso (Å2) 0.5 0.5 0.5 0.222(24)
Li Biso (Å2) 0.5 0.5 0.5 0.52(7)
O x -0.0274 (3) -0.0255(4) -0.0274(3) -0.0264(7)

y 0.0501 (4) 0.0504(4) 0.0512(4) 0.0527(8)
z 0.1450(4) 0.1432(4) 0.1457(3) 0.1453(8)

Biso (Å2) 0.5 0.5 0.5 0.330(15)
Rwp 12.5 13.1 14.3 12.0
χ2 1.89 2.96 2.21 2.75
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Figure 3.3 Variation of lattice volume with: a) ionic radii of Ln b) weighted ionic radii of A
and X . Lines are a guide to the eye. Error bars are smaller than size of symbols.

Selected bond lengths are given in Table 3.2. As expected for the cubic symmetry, the
changes in Ln-Ln bond lengths follow the same trend as the changes in the lattice parameters.
For a particular Ln, there are subtle changes in the Ln-O bond lengths which may impact the
local CEF and hence the single-ion anisotropy of the magnetic Ln3+.
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Table 3.2 Selected bond lengths for Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12,
Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Gd, Tb, Dy, Ho.

Ln Gd Tb Dy Ho

Ln3Ga5O12
Ln-Ln (Å) 3.79169(5) × 4 3.77892(3) × 4 3.76933(3) × 4 3.76045(3) × 4
Ln-O (Å) 2.413(2) × 4 2.380(5) × 4 2.368(5) × 4 2.354(4) × 4

2.476(2) × 4 2.467(4) × 4 2.461(4) × 4 2.483(3) × 4
<Ln-O>(Å) 2.444 2.424 2.414 2.418
Gaoct–O (Å) 2.005(2) × 6 2.003(4) × 6 1.991(4) × 6 1.975(3) × 6
Gatetr-O (Å) 1.820(3) × 4 1.824(4) × 4 1.828(4) × 4 1.815(4) × 4

Ln3Sc2Ga3O12
Ln-Ln (Å) 3.84974(3) × 4 3.83929(3) × 4 3.82807(3) × 4 3.81964(3) × 4
Ln-O (Å) 2.414(7) × 4 2.422(4) × 4 2.405(4) × 4 2.372(4) × 4

2.477(7) × 4 2.469(4) × 4 2.468(4) × 4 2.495(3) × 4
<Ln-O>(Å) 2.446 2.446 2.436 2.434
Sc –O (Å) 2.077(7) × 6 2.069(4) × 6 2.063(4) × 6 2.074(4) × 6
Ga-O (Å) 1.861(7) × 4 1.852(4) × 4 1.846(4) × 4 1.815(4) × 4

Ln3Sc2Al3O12
Ln-Ln (Å) 3.80727(3) × 4 3.79634(3) × 4 3.78424(3) × 4 3.77464(3) × 4
Ln-O (Å) 2.378(5) × 4 2.361(5) × 4 2.365(5) × 4 2.313(5) × 4

2.508(4) × 4 2.481(4) × 4 2.486(4) × 4 2.460(4) × 4
<Ln-O>(Å) 2.443 2.421 2.426 2.386
Sc –O (Å 2.092(5) × 6 2.085(5) × 6 2.082(4) × 6 2.075(4) × 6
Al-O (Å) 1.766(5) × 4 1.782(5) × 4 1.757(5) × 4 1.792(5) × 4

Ln3In2Ga3O12
Ln-Ln (Å) 3.87666(3) × 4 3.86608(3) × 4 3.85571(3) × 4 3.84282 (3) × 4
Ln-O (Å) 2.423(5) × 4 2.427(5) × 4 2.432(6) × 4 2.394 (5) × 4

2.494(4) × 4 2.467(4) × 4 2.452(6) × 4 2.477 (4) × 4
<Ln-O>(Å) 2.458 2.447 2.442 2.436
In –O (Å) 2.162(4) × 6 2.153(5) × 6 2.162(6) × 6 2.154 (4) × 6
Ga-O (Å) 1.820(5) × 4 1.829(5) × 4 1.816(6) × 4 1.796(5) × 4

Ln3Te2Li3O12
Ln-Ln (Å) 3.79488(3) × 4 3.78109(3) × 4 3.76930(3) × 4 3.75812(3) × 4
Ln-O (Å) 2.376(5) × 4 2.363(5) × 4 2.360(5) × 4 2.374(4) × 4

2.513(5) × 4 2.495(5) × 4 2.484(4) × 4 2.484(3) × 4
<Ln-O>(Å) 2.444 2.429 2.422 2.429
Te –O (Å) 1.931(5) × 6 1.901(5) × 6 1.931(5) × 6 1.892(4) × 6
Li-O (Å) 1.882(5) × 4 1.906(5) × 4 1.867(5) × 4 1.877(4) × 4
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Figure 3.4 a) ZFC χ(T ) and b) χ−1(T ) from 2- 300 K in a field of 100 Oe for Ln3Ga5O12,
Ln3Sc2Ga3O12, Ln3Sc2Al3O12, Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Gd, Tb, Dy, Ho.
Inset in third panel of a) shows a sharp ordering transition at TN = 2.2 K for Dy3Sc2Al3O12.

3.4 Bulk magnetic measurements

3.4.1 Magnetic susceptibility

The ZFC magnetic susceptibility, χ(T ), measured in a field of 100 Oe in the temperature
range 2 - 300 K is shown in Figure 3.4a. An ordering transition is observed for Dy3Sc2Al3O12

at T = 2.2(1) K. None of the other garnets show any magnetic ordering at T ≥ 2 K.
The inverse susceptibility, Figure 3.4b, can be fit to the Curie-Weiss law, equation

(1.59). The magnetic moment, µe f f , is determined from the Curie constant according to
equation (1.26). For garnets with Ln = Gd, the fit to the Curie-Weiss law is carried out in the
temperature range 100 - 300 K to calculate θCW and µe f f . However, for the lanthanide ions
with strong single-ion anisotropy, Ln = Tb, Dy, Ho, the presence of low-lying crystal electric
field states [198, 258, 268] impact the values of θCW . Therefore the fit was carried out at low
temperatures, between 2 - 10 K. Parameters determined from the fits are summarised in Table
3.3. The negative values of the Curie-Weiss temperature, θCW , indicate net antiferromagnetic
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Table 3.3 Curie-Weiss fit parameters for Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12,
Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Gd, Tb, Dy, Ho. The theoretical value quoted
is the free-ion moment, gJ

√
J(J+1), gJ is given by equation (1.20).

Ln Gd Tb Dy Ho

Theoretical µe f f (µB) 7.94 9.72 10.65 10.61
Ln3Ga5O12 Experimental µe f f (µB) 7.814(3) 8.34(10) 8.34(14) 10.3(3)

θCW (K) -1.4(2) -1.16(4) -1.00(6) -3.29(10)
Ln3Sc2Ga3O12 Experimental µe f f (µB) 7.837(9) 8.50(10) 9.37(10) 9.87(15)

θCW (K) -2.2(3) -1.2(3) -0.8(3) -2.9(5)
Ln3Sc2Al3O12 Experimental µe f f (µB) 7.952(7) 8.5(3) 9.1(3) 10.5(2)

θCW (K) -1.3(3) -0.84(10) -1.2(2) -2.91(6)
Ln3In2Ga3O12 Experimental µe f f (µB) 8.019(8) 8.5(3) 9.48(15) 10.44(13)

θCW (K) -0.6(3) -0.57(11) -0.66(5) -2.09(4)
Ln3Te2Li3O12 Experimental µe f f (µB) 8.233(4) 9.43(13) 9.7(2) 8.98(13)

θCW (K) -2.7(2) -0.63(4) -1.52(7) -1.60(5)

interactions. For Ln = Gd, the experimentally determined magnetic moments derived from the
Curie-Weiss fit are consistent with the theoretical free-ion values given by µth = gJ

√
J(J+1).

However, for Ln = Tb, Dy, Ho they are slightly underestimated compared to the free ion
values. This can be attributed to partial quenching of the angular momentum due to the
crystal field; similar results have been previously reported for Ln3Ga5O12, Ln = Tb, Dy, Ho
[198, 255, 258, 265].

Table 3.4 Dipolar interaction energy, D, and nearest-neighbour exchange interaction energy,
J1, for Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12, Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln =
Gd, Tb, Dy, Ho.

Ln Gd Tb Dy Ho

Ln3Ga5O12 D (K) 0.69 0.80 0.81 1.23
J1 (K) 0.51 0.43 0.38 1.23

Ln3Sc2Ga3O12 D (K) 0.67 0.80 0.98 1.09
J1 (K) 0.83 0.46 0.30 1.10

Ln3Sc2Al3O12 D (K) 0.71 0.83 0.96 1.29
J1 (K) 0.48 0.32 0.44 1.09

Ln3In2Ga3O12 D (K) 0.69 0.78 0.98 1.20
J1 (K) 0.23 0.21 0.25 0.78

Ln3Te2Li3O12 D (K) 0.77 1.02 1.11 0.95
J1 (K) 1.02 0.24 0.57 0.6
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The dipolar interaction energy, D , can be estimated from equation (1.42) and the nearest-
neighbour exchange interaction energy, J1, can be approximated from equation (1.60). Here
n = the number of nearest neighbour Ln3+ surrounding one Ln3+ ion = 4. For Gd, S = 7

2 and
for Ln = Tb, Dy, Ho an effective S = 1

2 state has been assumed. Effective spin 1
2 states have

been observed in Ln3Ga5O12 and Ln3Al5O12 for Ln = Tb, Dy, Ho [198, 258, 263, 264, 268].
However the origin of the effective S = 1

2 state differs. For Ln = Dy, it is due to the ground
state being an isolated Kramer’s doublet at low temperatures whereas for Ln = Tb, Ho, it is
an admixture of two low-lying singlet states [259, 264]. The values of D and J1 are given in
Table 3.4.

3.4.2 Isothermal magnetisation

Isothermal magnetisation measurements were carried out at select temperatures in the field
range 0 – 9 T using the ACMS option on a Quantum Design PPMS. The M(H) at 2 K for all
the garnets is shown in Figure 3.5 and the maximum values of magnetisation per formula unit
Ln (f.u.Ln), Mmax, at 2 K, 9T are given in Table 3.5. The isothermal magnetisation is non-
linear at low T for all samples. The magnetisation of the Gd garnets saturates in a field of 9
T, with the saturation value close to 7 µB/f.u.Gd as expected for Heisenberg type spins (gJJ =

2× 7
2 = 7µB/f.u.Gd). Care has to be taken when considering the isothermal magnetisation

of polycrystalline samples for magnetic ions with substantial single-ion anisotropy (Ln =
Tb, Dy, Ho) due to the powder averaging. However, these measurements have been used to
remark on the nature of the spins in other frustrated lanthanide oxide systems [269]. In the
limiting field of 9 T, none of the M(H) curves for the garnets with Ln = Tb, Dy, Ho reach
complete saturation. All of the observed Mmax are significantly lower than the saturation
magnetisation of a Heisenberg system, Msat = gJJ, possibly due to partical quenching of the
angular momentum by the CEF, but are consistent with the magnetisation values reported for
Ln3Ga5O12 [198, 258, 268]. It is therefore postulated that the garnets with Ln = Tb, Dy, Ho
retain strong single-ion anisotropy. However, further analysis of the CEF scheme is required
to determine the exact nature of the spins. In addition, there are some subtle differences:

(a) the magnetisation for Tb3Te2Li3O12 is significantly higher than the other Tb garnets,
possibly indicating a deviation in the single-ion anisotropy.

(b) among the Dy garnets, Dy3Sc2Al3O12 exhibits a greater tendency to saturate whereas
a gradual increase in magnetisation with field is observed for the others. Again, this
could possibly indicate a difference in single-ion anisotropy or be due to the higher
Néel temperature, TN = 2.2(1) K, as compared to the other Dy garnets.
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Figure 3.5 M(H) curves at 2 K from 0 – 9 T for Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12,
Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Gd, Tb, Dy, Ho.

Table 3.5 Maximum magnetisation per f.u.Ln for Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12,
Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Gd, Tb, Dy, Ho.

Ln Gd Tb Dy Ho

Theoretical Msat (µB/f.u.Ln) 7 9 10 10
M at T = 2 K, µ0H = 9 T (µB/f.u.Ln)

Ln3Ga5O12 6.56(2) 5.21(2) 6.39(2) 5.74(2)
Ln3Sc2Ga3O12 6.92(3) 5.08(2) 5.91(2) 6.27(2)
Ln3Sc2Al3O12 6.77(3) 4.87(2) 5.09(2) 6.04(2)
Ln3In2Ga3O12 6.82(3) 5.25(2) 6.01(2) 6.38(2)
Ln3Te2Li3O12 6.73(3) 6.99(3) 6.07(2) 5.60(2)
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3.4.3 Heat capacity

Heat capacity measurements were performed in zero field from 0.4 to 10 K using the He3
option on a Quantum Design PPMS. Equal amounts of the sample and silver powder
(99.99% Alfa Aesar) were mixed and pressed into a pellet which was then used for
measurement. The contribution from silver was subtracted using values from the literature
[243] in order to obtain the sample heat capacity. The magnetic heat capacity, Cmag, was
obtained by subtracting the lattice contribution using a Debye model (equation 2.37), with
Debye temperatures ranging between 285 to 420 K.

The zero field heat capacities for Gd3Sc2Ga3O12, Gd3Sc2Al3O12 and Gd3In2Ga3O12

show no discernible ordering features down to 0.4 K (Figure 3.6). The zero field heat
capacities for Gd3Ga5O12 and Gd3Te2Li3O12 have been reported previously [253] and were
not measured. Figure 3.7 shows the zero-field magnetic heat capacity from 0.4 – 10 K for the
garnets with Ln = Tb, Dy, Ho. The zero field heat capacities for Ln3Ga5O12, Ln = Tb, Dy,
Ho, were not measured as they are known to order below 0.4 K, the limiting temperature of
the heat capacity measurements. Ordering temperatures, T0, and estimates of the frustration
index, f , given by equation (1.63), are given in Table 3.6.

Figure 3.6 Zero field heat capacity from 0.4 – 10 K for Gd3Sc2Ga3O12, Gd3Sc2Al3O12 and
Gd3In2Ga3O12.

Sharp λ type anomalies indicative of three-dimensional antiferromagnetic ordering
are observed for Tb3Sc2Ga3O12, Tb3Sc2Al3O12 and Tb3In2Ga3O12. Tb3Te2Li3O12 shows a
cusp at 1.04(3) K, which is more reminiscent of short-range ordering or glassy behaviour. The
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Figure 3.7 Zero field heat capacity from 0.4 – 10 K for Ln3Sc2Ga3O12, Ln3Sc2Al3O12,
Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Tb, Dy, Ho.

Table 3.6 Comparison of ordering temperature, T0, and frustration index, f , as determined
from zero field heat capacity data, for Ln3Sc2Ga3O12, Ln3Sc2Al3O12, Ln3In2Ga3O12 and
Ln3Te2Li3O12 with values in the literature reported for Ln3Ga5O12; Ln = Tb, Dy, Ho [197,
255]. In case of three-dimensional antiferromagnetic ordering, T0 is the Néel temperature,
TN .

Ln Tb Dy Ho

T0 (K) f T0 (K) f T0 (K) f

Ln3Ga5O12 0.25 4.6 0.373 2.7 0.19 17.3
Ln3Sc2Ga3O12 0.7(1) 1.7 1.11(5) 0.7 2.4(2) 1.4
Ln3Sc2Al3O12 1.3(1) 0.6 2.17(5) 0.5 2.0(2) 1.4
Ln3In2Ga3O12 0.91(5) 0.6 1.11(5) 0.6 1.5(1) 1.4
Ln3Te2Li3O12 1.04(3) 0.6 1.97(5) 0.8 1.4(1) 1.1

upturn seen below 0.6-0.8 K for all the Tb garnets is due to the onset of the nuclear Schottky
anomaly for Tb3+ [255]. All the Dy garnets show sharp λ type anomalies, indicative of three-
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dimensional antiferromagnetic ordering. The transition for Dy3Te2Li3O12 is at 1.97(5) K,
consistent with previous reports of a transition around 2 K. Ho3Sc2Ga3O12, Ho3Sc2Al3O12

and Ho3In2Ga3O12 show broad features in the heat capacity at T ≈ 2.4(2), 2.0(2) and 1.5(1)
K respectively, indicative of short range magnetic correlations. It is not possible to determine
if there is any transition below 1 K due to the sharp increase in the heat capacity from
the nuclear Schottky contribution for Ho3+ [255, 270], which would mask any transition,
if present. Ho3Te2Li3O12 shows a sharp λ type transition at 1.4(1) K, which points to
long-range antiferromagnetic order.

3.5 Discussion

Polycrystalline samples of lanthanide garnets Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12,
Ln3In2Ga3O12 and Ln3Te2Li3O12 have been prepared for Ln = Gd, Tb, Dy, Ho and their
structure has been evaluated using PXRD and PND. The synthesis of Ln3Ga5O12,
Ln3Te2Li3O12, Ln = Gd, Tb, Dy, Ho, and Gd3Sc2Ga3O12, Gd3Sc2Al3O12, Gd3In2Ga3O12

has been reported previously but this is the first time that samples of Ln3Sc2Ga3O12,
Ln3Sc2Al3O12 and Ln3In2Ga3O12 have been prepared for Ln = Tb, Dy, Ho. Structural
refinements show that all the lanthanide garnets crystallise in a cubic structure with space
group Ia3̄d with Ln (Ln = Gd, Tb, Dy, Ho) occupying the dodecahedral site, A (A = Ga, Sc,
In, Te) occupying the octahedral site) and X (X = Ga, Al, Li) occupying the tetrahedral site.

The bulk magnetic properties, including magnetic susceptibility, isothermal magnetisation
and zero field heat capacity have been measured for all samples. While the properties of
Ln3Ga5O12 and Ln3Te2Li3O12, Ln = Gd, Tb, Dy, Ho, have been studied previously, this is the
first study on the magnetic properties of Ln3Sc2Ga3O12, Ln3Sc2Al3O12 and Ln3In2Ga3O12,
Ln = Gd, Tb, Dy, Ho. Heat capacity measurements on Ln3Te2Li3O12, Ln = Tb, Dy, Ho, to
study the magnetic properties below 2 K are also reported for the first time.

Approximations for the dipolar and exchange interactions have been calculated for all
samples, Table 3.4. When considering the magnetic interactions, it is important to consider
the impact of changes in the crystal structure. In the case of the lanthanide garnets, it is seen
that the variation in D for a particular Ln for different combinations of A and X is small while
J1 varies more significantly (Table 3.4). However, these values of D and J1 are only an order
of magnitude approximation for the respective interactions, the true values are expected to
vary considerably. The dipolar interaction is a long-ranged interaction, decaying as 1

r3 , and so
further neighbour contributions could be significant [140, 264, 271, 272]. The value of J1 is
highly dependent on the temperature range of the fit; further neighbour exchange interactions
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are also likely to play a role [140, 154, 272]. Despite these limitations, some qualitative
conclusions may be drawn. The results for each Ln are discussed separately below.

3.5.1 Gd3A2X3O12

Gd3Te2Li3O12 and Gd3Al5O12 have been previously reported to order at 0.243 K and 0.175
K respectively while Gd3Ga5O12 shows no conventional magnetic ordering [253]. However,
a very recent study has reported absence of conventional magnetic ordering in Gd3Al5O12

as well [254]. The remaining Gd garnets are expected to show magnetic ordering, if any, at
T < 0.4 K, below the temperature limit of the measurements. The physics of the garnets
with Ln = Gd should be well approximated by a microscopic Hamiltonian with D and J1

interaction terms; crystal field effects are expected to be less important for the isotropic Gd3+

spins (L = 0,J = S = 7
2) [253]. D and J1 are comparable for the Gd garnets (Table 3.4) and

the magnetic ground state would be determined mainly by the interplay of these interactions.
However for Gd3Ga5O12, it has been reported that higher order exchange interactions may
play an important role [272]. Also, there may be a small single-ion anisotropy. In fact
for Gd3Ga5O12, it has been recently reported that the presence of both nearest neighbour
antiferromagnetic correlations and a subtle XY anisotropy leads to hidden multipolar order
[150]. Thus, further neighbour contributions and subtle changes to the single-ion anisotropy
caused by variation in A and X (especially in the case where A and X are aliovalent) could
also impact the magnetic properties. Ultra-low temperature experimental investigations at
T < 0.4 K as well as a more accurate modelling of the interactions is required to understand
the magnetic behaviour of the Gd garnets. It remains to be seen whether the spin liquid state
is unique to Gd3Ga5O12 or if it is a robust feature of Gd garnets.

3.5.2 Ln3A2X3O12, Ln = Tb, Dy, Ho

As seen in Table 3.4, the dipolar and exchange interaction energies for the garnets with Ln
= Tb, Dy, Ho are found to be comparable. However, unlike the Gd containing garnets, Ln
= Tb, Dy, Ho have non-zero value of orbital angular momentum L and CEF effects play
an important role in addition to the dipolar and exchange interactions in determining the
magnetic properties [259]. Precise determination of the CEF requires a detailed study of
the crystal field levels from inelastic neutron scattering experiments, and so only qualitative
statements regarding the CEF levels and the single-ion anisotropy will be discussed here.

Tb3Sc2Ga3O12, Tb3Sc2Al3O12, Tb3In2Ga3O12 all show signatures of long-range
antiferromagnetic ordering in the zero-field heat capacity with transition temperatures in
between that of Tb3Ga5O12 (0.25 K) and Tb3Al5O12 (1.35 K) [258, 263]. It is proposed that



3.5 Discussion 95

the ordering is still driven by interactions between the two lowest singlet states. However,
the frustration is relieved as compared to Tb3Ga5O12. This could be due to variations in D
and J1 or changes in the CEF resulting in subtle changes to the single-ion anisotropy. The
nature of ordering for Tb3Te2Li3O12 is very different. The transition resembles a feature
observed at 0.8 K in the heat capacity for Gd3Ga5O12 which was reported to indicate the
onset of short range magnetic correlations [253]. Neutron scattering experiments below the
transition temperature are required to elucidate the nature of the transition. Changes in D and
J1 alone are not sufficient to explain the difference in the behaviour of Tb3Te2Li3O12. Tb3+

is a non-Kramer’s ion consisting of singlet levels and the energy separation between the two
lowest singlet states competes with the magnetic interactions to determine the magnetic
ground state. It is postulated that the aliovalent A and X environments in Tb3Te2Li3O12 (all
the other Tb garnets under consideration have trivalent A and X) dramatically changes the
single-ion anisotropy, as is also indicated from the M(H) data at T = 2 K, causing it to
behave differently to the other Tb garnets.

Dy3Sc2Ga3O12, Dy3Sc2Al3O12, Dy3In2Ga3O12 and Dy3Te2Li3O12 also show signatures
of long-range antiferromagnetic ordering, with transition temperatures in between that of
Dy3Ga5O12 (0.373 K) and Dy3Al5O12 (2.49 K) [196, 197]. Dy3+ is a Kramer’s ion and so
the ground state doublet is protected by symmetry for all the Dy garnets. The variation
in transition temperatures and the reduction of frustration compared to Dy3Ga5O12 can
once again be explained by subtle changes in the magnetic interactions and the single-ion
anisotropy. Dy3Sc2Al3O12, with the maximum transition temperature, shows the greatest
tendency for saturation in the M(H) curves: this is also consistent with the strongly Ising
behaviour reported for Dy3Al5O12 [262].

The Ho garnets show magnetic ordering that is very different from the Tb and Dy garnets.
Since the magnitude of the D and J1 interactions are very similar for the garnets with Ln = Tb,
Dy, Ho for a particular combination of A and X , it is postulated that the changes in CEF causes
the difference in magnetic properties. The behaviour of Ho3Sc2Ga3O12, Ho3Sc2Al3O12 and
Ho3In2Ga3O12 shows similarities with Ho3Ga5O12, where short range order is reported to
set in below 0.6 K and long and short-range order coexist below 0.3 K [261]. Therefore,
it seems, the changes in CEF for Ln = Ho shift the onset of short-range order to higher
temperatures in the absence of long-range order at T ≥ 1 K. However, although the heat
capacity for Ho3Sc2Ga3O12 shows an ordering feature at 2.4 K, Figure 3.7, no signatures of
ordering are observed in the magnetic susceptibility down to 2 K, Figure 3.4a. This could
be due to a mismatch in the calibration of the thermometer for the SQUID MPMS and the
PPMS He3 heat capacity option or the feature at 2.4 K could be due to an electronic Schottky
anomaly and not short-range magnetic ordering. Measurements of the field dependence of
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the heat capacity as well as neutron diffraction experiments below 2.4 K would help resolve
the disparity in susceptibility and heat capacity measurements for Ho3Sc2Ga3O12. Much like
in the case of the Tb garnets, Ho3Te2Li3O12 behaves differently to the other Ho garnets. It
exhibits a sharp λ type anomaly, indicative of three-dimensional antiferromagnetic ordering.
It is proposed that like Tb3Te2Li3O12, the CEF is changed dramatically for Ho3Te2Li3O12

due to the different charged environments of Te6+ and Li+.

Figure 3.8 The six sublattice antiferromagnetic structure predicted by Capel [259] for
lanthanide gallium and aluminium garnets with strong Ising anisotropy: Ln3+ spins of
equal magnitude are aligned along the three crystallographic axes [100], [1̄00], [010], [01̄0],
[001], [001̄].

Now, some speculation on the possible magnetic ground states for the garnets with Ln
= Tb, Dy, Ho is presented. Capel has predicted three possible kinds of magnetic ordering
depending on the single-ion anisotropy (Ising, XY or Heisenberg) of the magnetic Ln3+ ion
[259]: a) Type A antiferromagnetic ordering (AFA) where moments of equal magnitude are
aligned parallel to the crystallographic axes [100], [1̄00], [010], [01̄0], [001], [001̄] resulting
in a six sublattice antiferromagnetic structure, Figure 3.8. b) Type B antiferromagnetic
ordering (AFB) where the moments are aligned along the directions perpendicular to one of
the crystallographic axes, that is, perpendicular to the directions of the spins in Figure 3.8.
The magnetisation of sublattices (110) and (11̄0) may not be equal and antiparallel, however
the net sublattice magnetisation is zero. c) Type C ferrimagnetic ordering (FC) where there
is a net magnetisation parallel to one of the three crystallographic axes, that is, the resultant
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spins point along one of the three possible directions in Figure 3.8. For the Type A magnetic
structure, there is only one possible orientation for all the magnetic moments. However, there
are multiple ways in which the moments can align to form the Type B or Type C magnetic
structure.

For 4 f ions with a strong Ising anisotropy, type A antiferromagnetic ordering is predicted
while type B antiferromagnetic ordering (AFB) or type C ferrimagnetic (FC) ordering is
predicted for 4 f ions with XY or Heisenberg anisotropy [259]. This theory is directly
applicable for 4 f ions with an odd number of electrons, like Dy3+, where the ground state is
a S = 1

2 Kramer’s doublet, well-separated from excited states at sufficiently low temperatures.
For non-Kramer’s ions, like Tb3+ and Ho3+, the degeneracy is entirely lifted due to the
orthorhombic point symmetry of the Ln3+ site and thus the ground state is a singlet. Here, the
energy separation between the ground state and first excited state singlet, ∆, is also a factor. If
∆ is much greater than the magnetic interactions, the ground state would be a non-magnetic
singlet showing temperature-independent paramagnetism. However if the energy separation,
∆, is small compared to the magnetic interactions, any of the three types of magnetic ordering
predicted by Capel would be possible depending on the single-ion anisotropy of the Ln3+ ion
[259, 265]. The sharp λ type anomalies observed in the heat capacities for the Dy garnets
and majority of the Tb garnets are consistent with AFA type ordering that has also been
reported for Ln3Ga5O12, Ln3Al5O12 (Ln = Tb, Ho) and Dy3Al5O12 below TN [257, 262, 263].
However the short range ordering observed for most of the Ho garnets and the differences in
magnetic behaviour in the aliovalent Ln3Te2Li3O12 (Ln = Tb, Ho) remain to be accounted
for. Capel’s analysis was carried out considering dipolar and exchange interactions up to a
limit, further analysis of the interactions may lead to different predictions. Also, this theory
does not take into account aliovalent environments (as present in Ln3Te2Li3O12) which could
lead to different magnetic ground states. Neutron scattering experiments would be the ideal
tool to elucidate the exact nature of the magnetic ground state below the ordering transition
in these garnets.

3.6 Magnetocaloric effect

The MCE for the lanthanide garnets is characterised by the change in magnetic entropy,
∆Sm per mole Ln, which is calculated from the M(H) curves using equation (1.64). As
discussed in the introduction, previous studies have shown that at lower fields, µ0H ≤ 2 T,
Dy3Ga5O12 (DGG) is a better MCM whereas at higher fields, µ0H > 2 T, the change in
magnetic entropy for Gd3Ga5O12 (GGG) is maximised [200]. This is shown explicitly in
Figure 3.9. Therefore, here the MCE for the garnets with substantial single-ion anisotropy
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Figure 3.9 ∆Sm per mole Ln as a function of external magnetic field from 0 - 5 T at T = 2
K for Ln3Ga5O12, Ln = Gd, Tb, Dy, Ho; the MCE for Dy3Ga5O12 is maximised up to 2 T
whereas at fields above this, the MCE of Gd3Ga5O12 is much higher than Ln3Ga5O12; Ln =
Tb, Dy, Ho.

(Ln = Tb, Dy, Ho) are compared in a field of 2 T and the MCE for the Gd based garnets are
compared in the experimentally limiting field of 9 T. The variation in ∆Sm per mole Ln as
a function of temperature for all the garnets is shown in Figure 3.10; the inset shows the
variation of ∆Sm per mole Ln as a function of magnetic field. Quantitative comparisons of
the MCE with the parent gallium garnets using the values of ∆Sm per mole Ln are given in
Table 3.7.

For Ln = Gd, at 2 K, 9 T, a 4 - 10% increase in ∆Sm is seen compared to GGG (14.12
JK−1 mol−1

Gd) on changing the A and X site ions except for Gd3Te2Li3O12, for which a
decrease is seen. DGG has the maximum ∆Sm (3.77 JK−1 mol−1

Dy) compared to all the
other Dy garnets and so, varying the A and X site ions does not improve the MCE at 2 K.
Among the Tb garnets, an increase in the MCE is observed for all compared to Tb3Ga5O12

(2.88 JK−1 mol−1
Tb ), with a maximum of 22.2 % increase in ∆Sm for Tb3In2Ga3O12 (3.52

JK−1 mol−1
Tb ). However, the ∆Sm values are less than that for DGG. The most dramatic

increase in ∆Sm values are observed for Ln = Ho, where the MCE in Ho3Te2Li3O12 (3.03
JK−1 mol−1

Ho) is more than doubled compared to Ho3Ga5O12 (1.41 JK−1 mol−1
Ho). Again, the

absolute values of ∆Sm for the Ho garnets are less than DGG. Overall the conclusion is
that DGG remains the best MCM in the low field (≤ 2 T) regime while in a field of 9 T,
the performance of GGG can be improved by changing the A and X site cations (≈ 10%).
If the calculations are carried out in gravimetric units that are more relevant for practical
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Figure 3.10 ∆Sm per mole Ln vs temperature; inset: ∆Sm per mole Ln as a function of external
magnetic field at T = 2 K for lanthanide garnets Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12,
Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Gd, Tb, Dy, Ho.

applications, a 15% and 26% increase in ∆Sm at 2 K, 9 T is observed for Gd3Sc2Ga3O12 and
Gd3Sc2Al3O12 respectively as compared to Gd3Ga5O12.

3.7 Conclusion

Polycrystalline samples of Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12, Ln3In2Ga3O12 and
Ln3Te2Li3O12 for Ln = Gd, Tb, Dy, Ho have been prepared and the structure and bulk
magnetic properties have been studied. The magnetic susceptibility shows no long-range
ordering down to 2 K for any of the samples except Dy3Sc2Al3O12 which undergoes
antiferromagnetic ordering at 2.2(1) K. Isothermal magnetisation measurements are
consistent with the Heisenberg nature of the Gd3+ spins and the substantial single-ion
anisotropy reported for Tb3+, Dy3+, Ho3+ in Ln3Ga5O12 and Ln3Al5O12. Gd garnets do not
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Table 3.7 Comparison of ∆Sm per mole Ln at T = 2 K for Ln3Ga5O12, Ln3Sc2Ga3O12,
Ln3Sc2Al3O12, Ln3In2Ga3O12 and Ln3Te2Li3O12; Ln = Gd, Tb, Dy, Ho. % changes are
calculated with respect to the ∆Sm values for the parent gallium garnets Ln3Ga5O12.

Ln Gd Tb Dy Ho

Field 9 T 2 T 2 T 2 T

Ln3Ga5O12 ∆Sm (JK−1 mol−1
Ln ) 14.12 2.88 3.77 1.41

Ln3Sc2Ga3O12 ∆Sm (JK−1 mol−1
Ln ) 15.45 3.13 3.53 1.55

% change 9.4 8.7 -6.4 9.9
Ln3Sc2Al3O12 ∆Sm (JK−1 mol−1

Ln ) 14.68 3.21 3.09 1.9
% change 4.0 11.4 -18 35.5

Ln3In2Ga3O12 ∆Sm (JK−1 mol−1
Ln ) 15.29 3.52 3.55 2.08

% change 8.3 22.2 -5.8 47.5
Ln3Te2Li3O12 ∆Sm (JK−1 mol−1

Ln ) 13.02 3.07 3.68 3.03
% change -7.8 6.6 -2.4 114.9

show any magnetic ordering features down to 0.4 K, the temperature limit of the heat
capacity measurements. However, garnets with Ln = Tb, Dy, Ho (except Ln3Ga5O12) show
magnetic ordering features at 0.4 < T < 2.5 K, the nature of which varies for the different
Ln and combinations of A and X . The ordering transitions for the magnetic ground states for
the lanthanide garnets with Ln = Tb, Dy, Ho have been summarised in Table 3.6. For
Ho3Sc2Ga3O12, there is a disparity between the magnetic susceptibility and heat capacity
measurements: while no ordering is seen in the former down to 2 K, the latter shows a broad
feature at 2.4 K . It remains to be seen whether this is due to a mismatch in temperature
calibration of the two measurement systems or if the feature is not magnetic in nature. The
majority of the changes in the ordering temperature for garnets with Ln = Tb, Dy, Ho can be
explained by tuning of the CEF and magnetic interactions, however for non-Kramer’s ions
Tb3+ and Ho3+, in the case of A and X being aliovalent, other effects associated with the
difference in charge must be considered. Evaluation of the MCE shows that the
magnetocaloric performance of the Gd based garnets can be improved by varying the A and
X cations, with a 10% increase observed for Gd3Sc2Ga3O12 compared to GGG in a field of
9 T. For the garnets with Ln = Tb, Dy, Ho, DGG remains the best MCM in lower fields,
µ0H ≤ 2 T. Neutron scattering experiments to determine the magnetic ground states and
CEF scheme as well as a more accurate modelling of the relevant magnetic interactions and
single-ion anisotropy is required to enable a detailed comparison of the magnetic behaviour
of the different garnets. It is hoped that this work will motivate further investigations into the
magnetic properties of the frustrated lanthanide garnets.



Chapter 4

Magnetic properties of lanthanide
garnets, Ln3A2X3O12: Part II

The previous chapter has discussed how the magnetic properties of lanthanide garnets are
impacted by altering the non-magnetic cations on the A and X sites. It has been shown that
subtle variations in the magnetic interactions and CEF effects can cause dramatic changes
in the magnetic ground state. This chapter discusses the effect of introducing additional
spins (specifically Cr3+ and Mn3+) in the lanthanide garnet lattice on the magnetic and
magnetocaloric properties of these materials. As in the previous chapter, results are discussed
for magnetic Ln3+ with different single-ion anisotropies, Ln = Gd, Tb, Dy, Ho.

4.1 Background

The magnetic properties of geometrically frustrated magnetic materials can be dramatically
altered by chemical substitution due to the fragility of the magnetic ground state [2]. In
particular, the frustration can be partially or completely relieved through site dilution or
site disorder of spins. This has been reported for several frustrated materials such as the
spin liquid kagome system SrCr8Ga4O19 (SCGO), the ACr2O4 spinels (A = Zn, Mg) and the
classical spin ice pyrochlores Ln2Ti2O7 (Ln = Dy Ho). Cu2+ substitution in SCGO shifts
the spin-glass transition, Tf , to higher temperatures [273]. Introduction of Cu2+ on the Zn2+

site in the ZnCr2O4 spinel causes a structural transition accompanied by increase in ‘cluster
glass’ behaviour [274] while Cu2+ substitution on the Mg2+ site also increases the ordering
temperature in the spinel MgCr2O4 [275]. Ln2CrSbO7 (Ln = Dy, Ho), isostructural with
the geometrically frustrated classical spin ice pyrochlores, Ln2Ti2O7 and Ln2GaSbO7, show
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ferromagnetic ordering transitions at 16 K and 10 K as opposed to the complete absence of
long range order in the latter two sets of compounds [46].

Previous studies on magnetic ion substitution in the geometrically frustrated lanthanide
garnets have focussed on Ln3Fe5O12 where the Ln3+ occupy the dodecahedral sites and the
Fe3+ occupy both octahedral and tetrahedral sites. The magnetic Fe3+ order in a ferrimagnetic
structure at temperatures of 130 - 160 K while for most Ln3+, the rare earth spins order at
temperatures of a few K in a double umbrella structure with spins canted away from the
[111] direction on either side [276–279]. Studies have shown that Fe3+ substitution increases
the magnetocaloric performance, however the temperature at which maximum change in
magnetic entropy is obtained is also increased making it less effective for cooling in the
liquid helium temperature regime [280–282].

A recent neutron diffraction study on the garnet CaY2Co2Ge3O12, which contains
magnetic Co2+ on the A sites, has revealed a unique magnetic ground state as well as a
field-induced magnetic transition around 6 T [283]. Room temperature PND showed that the
Co2+ ions exclusively occupy the octahedral sites and have local ⟨111⟩ Ising anisotropy. The
garnet orders at TN = 6 K in a magnetic structure with antiferromagnetically coupled spin
chains along the body diagonals. This indicates that if additional 3d spins are introduced in
the lanthanide gallium garnets by means of chemical substitution, they may show novel
magnetic ordering as well as field-induced transitions.

In this chapter, substitution of a number of 3d magnetic ions in the lanthanide gallium
garnets Ln3Ga5O12 was attempted for the first time for Ln = Gd, Tb, Dy, Ho: these are V3+,
Cr3+, Mn3+ and Co3+. These transition metal ions were chosen because they have reported
stable 3+ oxidation states which is required in order to maintain the balance of electrical
charge in the garnet. Substitution of V3+ and Co3+ for Ga3+ was unsuccessful while Cr3+

and Mn3+ could be partially incorporated into the Ln3Ga5O12 structure. The impact on
the structure, bulk magnetic properties and MCE is discussed. Results on the magnetic
structure of Ho3MnGa4O12 from neutron diffraction are also presented. The background
literature, sample preparation, structural characterisation, bulk magnetic properties and MCE
in Ln3Ga5O12, Ln = Gd, Tb, Dy, Ho have already been discussed in the previous chapter and
here, the results will be used for comparison.

4.2 Sample preparation

All sample preparation was carried out using solid state synthesis. Samples of Ln3Ga5O12

(Ln = Gd, Tb, Dy, Ho) were prepared as described in the previous chapter. The common
starting materials for preparation of the samples discussed in this chapter were Ln2O3, Ln
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= Gd, Dy, Ho (99.999% purity, Alfa Aesar) or Tb4O7 (99.999% purity, Alfa Aesar) and
Ga2O3 (99.99% purity, Alfa Aesar). Gd2O3 and Ga2O3 were pre-dried at 800 ◦C and 500
◦C respectively prior to weighing out to ensure accurate chemical composition. The starting
material for Cr3+, Mn3+ V3+ and Co3+ substitution in Ln3Ga5O12 were Cr2O3 (99.99% purity,
Alfa Aesar), MnO2 (99.999%, Alfa Aesar), VO2 (99.99% purity, Alfa Aesar) and Co3O4

(99.99% purity, Alfa Aesar) respectively. Stoichiometric amounts of the starting materials
were weighed out, mixed well and pressed into pellets in all cases.

Powder samples of Ln3CrGa4O12 (Ln = Gd, Tb, Dy, Ho) were prepared by heating the
pellets between 1200 – 1400 ◦C for 48-72 hours with intermittent regrindings. A reaction
was deemed completed when PXRD indicated the formation of a phase-pure product.
Powder samples of Ln3MnGa4O12 (Ln = Gd, Tb, Ho, Dy) and Y3MnGa4O12 were prepared
by heating the pellets at 1200 ◦C repeatedly for 48-72 hours with intermittent regrindings.
For preparing Y3MnGa4O12, Y2O3 (99.999% purity, Alfa Aesar) was used as a starting
material instead of the rare earth oxide. Attempts to synthesise Ln3CrxGa5 – xO12 and
Ln3MnxGa5 – xO12 (Ln = Gd, Tb, Dy, Ho) with x > 1, resulted in the formation of LnCrO3

and LnMnO3 (Ln = Gd, Tb, Dy, Cr) perovskite phases respectively. The perovskite phase
did not reduce on increasing the temperature for the heat treatments. Thus it was concluded
that only partial substitution of Ga on the octahedral site with Cr or Mn is possible using this
synthetic route. Synthesis of Ln3MnxAl5 – xO12 (Ln = Gd, Tb, Dy, Ho), x = 1,2, was
attempted by Freya Johnson during her summer project. Only LnMnO3 and LnAlO3

perovskite phases were observed and so, the synthesis was discontinued.
For attempts to prepare Ln3VGa4O12 and Ln3V2Ga3O12, Ln = Gd, Tb, Dy, Ho, the

pellets were heated at 1200 ◦C under flowing argon to create a reducing atmosphere in order
to stabilise the V3+ oxidation state. PXRD after heat treatment showed only perovskite
impurities, LnVO3 and LnGaO3, and no garnet peaks were observed. Further heat treatments
showed no change in the PXRD pattern. It was concluded that although the V3+ state
was successfully stabilised, it could not be incorporated into the Ln3Ga5O12 structure and
the synthesis attempts were stopped. Synthesis of Ln3CoGa4O12 and Ln3Co2Ga3O12 was
attempted by carrying out heat treatments at 1200 ◦C. This yielded a PXRD pattern with
Ln3GaO6 and CoO impurity phases along with the main Ln3Ga5O12 phase. Next, the heat
treatments were carried out under flowing oxygen to see if the Co2+ could be oxidised to
Co3+ but this was not successful. Finally a slow cooling at 1◦ C per minute in air successfully
eliminated the CoO phase, however the PXRD pattern contained the LnCoO3 phase along
with a garnet phase. Further heat treatments did not reduce the weight percentage of the
LnCoO3 impurity phase. Also, there was no change in the lattice parameter of the garnet
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phase obtained as compared to Ln3Ga5O12, meaning that there was no indication of Co3+

being substituted for Ga3+ in the garnet structure. Thus this synthesis was discontinued.

Figure 4.1 a) General crystal structure of lanthanide garnets Ln3A2X3O12 with the three
cations occupying distinct crystallographic sites– here Ln = Gd/Tb/Dy/Ho, A = Cr/Mn/Ga,
X = Ga. b) The Ln3+ lie at the vertices of corner-sharing equilateral triangles forming two
interpenetrating ten-membered rings. c) Relative position of Cr3+ or Mn3+ relative to Ln3+

- each Ln3 triangle with Ln3+ at the vertices has a Cr3+ or Mn3+ ion above and below the
centroid of the triangle. Each octahedral site is occupied by Cr3+ or Mn3+ 50% of the time
for Ln3CrGa4O12 and Ln3MnGa4O12 respectively.

4.3 Structural characterisation

PXRD was used to confirm the formation of phase pure products, Ln3CrGa4O12 and
Ln3MnGa4O12, Ln = Gd, Tb, Dy, Ho. Initially short scans were collected over
10◦ ≤ 2θ ≤ 60◦ (∆2θ = 0.015◦) using a Panalytical Empyrean X-ray diffractometer (Cu
Kα radiation, λ = 1.540 Å) to track the progress of the reaction. Longer scans over a wider
angular range 10◦ ≤ 2θ ≤ 90◦ (∆2θ = 0.008◦) were collected for quantitative structural
analysis. Room temperature (RT) PND experiments for structural characterisation were
carried out on the D2B diffractometer, ILL, Grenoble (λ= 1.595 Å) at 300 K for
Ln3CrGa4O12 (Ln = Tb, Ho) and Ho3MnGa4O12.

Combined RT PXRD + PND structural refinements were carried out for Ln3CrGa4O12

(Ln = Tb, Ho) and Ho3MnGa4O12. For all other samples, the crystal structure was determined
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from RT PXRD alone. The crystallographic parameters obtained from the structural Rietveld
refinements for Ln3CrGa4O12 (Ln = Gd, Tb, Dy, Ho) and Ln3MnGa4O12 are given in Table
4.1. The cubic Ia3̄d structure of Ln3Ga5O12 (Ln = Gd, Tb, Dy, Ho) is preserved on Cr3+

substitution. The crystal structure and the connectivity of magnetic Ln3+ ions are shown
in Figure 4.1a and Figure 4.1b respectively. The combined RT PXRD + PND Rietveld
refinements for Ho3CrGa4O12 and Ho3MnGa4O12 are shown in Figure 4.2.

Very little change in lattice parameter is observed on Cr3+ substitution (≈ 0.05% for all
Ln). This is expected given the similar size of Cr3+ and Ga3+ ions. On substitution with
Mn3+, the lattice parameter is observed to increase slightly as expected (≈ 0.2% for all Ln).
The difference in the neutron scattering factors for Cr (bCr = 3.635 fm), Mn (bMn = -3.73
fm) and Ga (bGa= 7.288 fm) [221] allowed for the position and amount of Cr/Mn to be
determined in Ln3CrGa4O12, Ln = Tb, Ho, and Ho3MnGa4O12. Cr3+ and Mn3+ are found
to exclusively occupy the octahedral site, as would be expected from CEF considerations.
The refined composition for Ln = Tb, Ho was determined to be the same as the nominal
composition within error. The fractional occupancy of the octahedral site was refined for
Ho3MnGa4O12 and the actual composition was found to be Ho3Mn1.12(2)Ga3.88(2)O12. It was
assumed that Cr3+ exclusively occupies the octahedral site in Ln3CrGa4O12, Ln = Gd and Dy
and the composition was fixed at the nominal composition as PXRD is not sensitive enough
to refine the Cr/Ga occupancy. Similarly, the position and amount of Mn in Ln3MnGa4O12,
Ln = Gd, Tb, Dy, for which only PXRD data were available, were fixed to the nominal values.
The large neutron scattering length of oxygen, bO = 5.80 fm, also enabled the possibility of
oxygen vacancies in the Ho3MnGa4O12 lattice to be explored. The oxygen vacancies were
only explored for Ho3MnGa4O12 and not Ln3CrGa4O12 (Ln = Tb, Ho) because the Mn2+

oxidation state in a garnet was possible whereas the Cr2+ oxidation state is unlikely. However,
no oxygen vacancies were observed in Ho3MnGa4O12. Therefore the nominal composition
will be used in all further discussions for simplicity. For Ln3CrGa4O12 or Ln3MnGa4O12,
the relative position of a Cr3+ or Mn3+ ion with respect to a Ln3 triangle is shown in Figure
4.1c: each Ln3 triangle has a Cr3+ or Mn3+ ion above and below the centroid of the triangle
50% of the time.

On Cr3+ substitution, the changes in the Ln-O, Ln-Ln, Cr/Gaoct-O and Gatetr-O bond
lengths are negligibly small and almost constant within error, Table 4.2. Therefore no
significant change in Ln3+ single-ion anisotropy is expected in Ln3CrGa4O12, Ln = Gd,
Tb, Dy, Ho as compared to Ln3Ga5O12. There is no evidence for Jahn-Teller distortion, as
expected for d3 Cr3+ ions. The resultant change in the dipolar interaction (D ∝ 1/r3

Ln−Ln)
between adjacent Ln3+ ions on Cr3+ substitution is also small, less than 0.1% for all samples.
For Ln3MnGa4O12, the increase in the lattice parameter as Mn3+ is substituted into the
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Table 4.1 Crystallographic parameters for Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Gd, Tb,
Dy, Ho. The structural Rietveld refinements were carried out in the Ia3̄d space group, with
Ln (Ln = Gd, Tb, Dy, Ho) on the dodecahedral 24c (0, 0.25, 0.125) site, Cr/Mn/Gaoct on
the octahedral 16a (0, 0, 0) site, Gatetr on the tetrahedral 24d (0, 0.25, 0.375) site and O
on the 96h (x,y,z) site. Combined PXRD + PND refinements have been carried out for
Ln3CrGa4O12, Ln = Tb, Ho, and Ho3MnGa4O12 while the structural parameters for all other
samples have been determined using PXRD only.

Ln3CrGa4O12 Ln Gd Tb Dy Ho

a (Å) 12.3776(4) 12.34563(6) 12.3014(2) 12.28390(7)
Ln Biso (Å2) 0.5 0.18(2) 0.5 0.04(2)

Cr/Gaoct Frac Cr 0.5 0.51(1) 0.5 0.50(1)
Biso (Å2) 0.5 0.21(4) 0.5 0.16(4)

Gatetr Biso (Å2) 0.5 0.28(2) 0.5 0.27(2)
O x -0.0314(4) -0.02845(6) -0.0287(3) -0.02784(6)

y 0.0536(3) 0.05477(8) 0.0534(3) 0.05559(7)
z 0.1482(4) 0.14987(7) 0.1501(4) 0.15006(7)

Biso (Å2) 0.5 0.349(13) 0.5 0.347(12)
Rwp 13.6 10.60 14.7 9.72
χ2 2.05 2.84 2.33 3.02

Ln3MnGa4O12 Ln Gd Tb Dy Ho

a (Å) 12.3948(6) 12.35938(4) 12.32703(4) 12.3049(3)
Ln Biso (Å2) 0.5 0.5 0.5 0.14(2)

Mn/Gaoct Frac Mn 0.5 0.5 0.5 0.56(2)
Biso (Å2) 0.5 0.5 0.5 0.20(9)

Gatetr Biso (Å2) 0.5 0.5 0.5 0.42(2)
O x -0.0298(4) -0.0300(4) -0.0288(4) -0.02796(7)

y 0.0540(4) 0.0532(5) 0.0545(4) 0.05579(8)
z 0.1498(5) 0.1501(5) 0.1497(5) 0.15044(8)

Biso (Å2) 0.5 0.5 0.5 0.515(14)
Rwp 12.5 17.8 11.2 10.7
χ2 1.67 3.38 3.37 2.55
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Figure 4.2 RT PXRD and PND pattern for a) Ho3CrGa4O12 b) Ho3MnGa4O12: Red dots -
Experimental data, Black line - Modelled data, Blue line - Difference pattern, Blue ticks -
Bragg positions.

structure results in an increase in the Ln-Ln bond lengths (Table 4.2). Despite the change
in the lattice parameter, there are no significant changes in the Ln-O interactions on Mn3+

substitution or in the Mn/Gaoct-O and Gatetr-O bond lengths. No evidence for Jahn-Teller
distortion due to the Mn3+ (d4) ions is detected, however the possibility of local disordered
Jahn-Teller distortions such as that observed in NaMnO2 [284] cannot be ruled out. The
changes in the crystal structure would be expected to lead to a small decrease (<1%) in the
dipolar interactions (D ∝ 1/r3

Ln−Ln) between adjacent Ln3+ ions, but no significant change
in the Ln3+ single-ion anisotropy is expected. The structural parameters of Y3MnGa4O12

with non-magnetic Y3+ and Ho3MnGa4O12 with magnetic Ho3+ are found to be analogous,
as shown in Table 4.3. Hence Y3MnGa4O12 is an appropriate non-magnetic analogue for
Ho3MnGa4O12 and the interactions between the Mn3+ spins in the absence of magnetic Ln3+

in the garnet structure can be studied using Y3MnGa4O12.
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Table 4.3 Comparison of structural parameters for Ho3MnGa4O12 and Y3MnGa4O12.

Ho3MnGa4O12 Y3MnGa4O12

a (Å) 12.3049(3) 12.29337(4)
Ln Biso (Å2) 0.14(2) 0.5

Mn/Gaoct Frac Mn 0.56(2) 0.5
Biso (Å2) 0.20(9) 0.5

Gatetr Biso (Å2) 0.42(2) 0.5
O x -0.02796(7) -0.0272(3)

y 0.05579(8) 0.0550(3)
z 0.15044(8) 0.1510(3)

Biso (Å2) 0.515(14) 0.5
Rwp 10.7 10.5
χ2 2.55 5.56

Ln-Ln (Å) 3.76692(3) × 4 3.76406(4) × 4
Ln-O (Å) 2.346(4) × 4 2.332(4) × 4

2.474(3) × 4 2.441(4) × 4
< Ln-O> (Å) 2.410 2.386

Mn/Gaoct-O (Å) 1.987(3) × 4 2.004(4) × 4
Gatetr-O (Å) 1.827(4) × 4 1.840(4) × 4

4.4 Bulk magnetic measurements

4.4.1 Magnetic susceptibility

The ZFC magnetic susceptibility, χ(T ), of Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Gd, Tb,
Dy, Ho, measured in a field of 100 Oe from 2- 300 K using a Quantum Design MPMS with a
SQUID magnetometer is shown in Figure 4.3. No long-range magnetic ordering is observed
down to 2 K for Ln3CrGa4O12, Ln = Gd, Tb, Dy, Ho and Gd3MnGa4O12. Magnetic ordering
transitions are observed at TN = 4.6 K, 5.6 K and 5.8 K for Tb3MnGa4O12, Dy3MnGa4O12

and Ho3MnGa4O12 respectively. Above T > 100 K, the inverse susceptibility χ−1 is linear
for all samples. Fits to the Curie-Weiss law were carried out in in the temperature range
100 - 300 K in order to calculate the experimental magnetic moment, µe f f , and the Curie-
Weiss temperature, θCW . Parameters for fits to the Curie-Weiss law for Ln3CrGa4O12 and
Ln3MnGa4O12, Ln = Gd, Tb, Dy, Ho are summarised in Table 4.4. The values of θCW and
µe f f for Ln3Ga5O12, Ln = Gd, Tb, Dy, Ho from carrying out the Curie-Weiss fit in the same
temperature range (100 - 300 K) are given for comparison. The negative values of θCW

for all compositions indicate net antiferromagnetic correlations. However, these values do
not account for low-lying crystal-field effects which are known to significantly impact the
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Curie-Weiss parameters in Ln3Ga5O12, Ln = Tb, Dy, Ho [198, 255, 258]. The experimental
values of magnetic moments obtained from fitting to the Curie-Weiss law are consistent with
the theoretical values, µ2

e f f = 3µ2
Ln +µ2

A for Ln3AGa4O12, A = Cr, Mn.

Figure 4.3 ZFC molar susceptibility χ(T ) for a) Ln3CrGa4O12 b) Ln3MnGa4O12,Ln = Gd,
Tb, Dy, Ho, measured from 2 - 300 K in a field of 100 Oe. Inset: inverse molar susceptibility
χ−1(T ).

For Y3MnGa4O12, where Mn3+ is the only magnetic ion, the ZFC-FC χ(T ) shows a
deviation at T0 = 18 K (Figure 4.4). This is indicative of spin glass-like behaviour. Given the
site disorder, formation of a spin-glass state is not unexpected and has been observed in other
systems with dilute spins along the [111] direction [285]. The Curie-Weiss fit between 100 -
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Table 4.4 Bulk magnetisation parameters for Ln3Ga5O12, Ln3CrGa4O12 and Ln3MnGa4O12,
Ln = Gd, Tb, Dy, Ho. T0 for Ln = Tb, Dy, Ho is determined from previous literature
reports for Ln3Ga5O12 [197, 255], from zero field heat capacity data for Ln3CrGa4O12
and from magnetic susceptibility data for Ln3MnGa4O12. The magnetic susceptibility data
for Ln3Ga5O12 has been taken from the previous chapter. In case of three-dimensional
antiferromagnetic ordering, T0 is the Néel temperature, TN .

Compound
T0
(K)

θCW
(K) f

Th.
µe f f (µB)

Exptl.
µe f f (µB)

Th. Msat
(µB/f.u.)

M2K,9T
(µB/f.u.)

Gd3Ga5O12 <0.025 -1.36(15) > 54.4 13.75 13.536(6) 21 19.7
Gd3CrGa4O12 <0.4 -1.0(4) > 2.5 14.29 14.03(3) 24 23.4
Gd3MnGa4O12 < 0.4 -1.6(1.3) > 4.0 14.6 1424(8) 25 23

Tb3Ga5O12 0.25 -9.2(5) 36.8 16.84 17.0(2) 27 15.6
Tb3CrGa4O12 1.72(5) -10(2) 5.6 17.27 16.77(8) 30 18.7
Tb3MnGa4O12 4.6(2) -14(5) 3.0 17.53 16.0(2) 31 18.8

Dy3Ga5O12 0.373 -6.8(4) 18.2 18.45 16.32(2) 30 19.2
Dy3CrGa4O12 1.75(5) -4.1(1.5) 2.3 18.85 18.50(7) 33 22.7
Dy3MnGa4O12 5.6(2) -4.1(9) 0.7 19.08 16.14(5) 34 20.1

Ho3Ga5O12 0.19 -12(2) 63.2 18.38 18.43(10) 30 17.2
Ho3CrGa4O12 1.55(5) -9(3) 5.8 18.78 18.80(19) 33 21.2
Ho3MnGa4O12 5.8(2) -6(3) 1.0 19.02 16.1(2) 34 21.1

300 K gives µe f f = 4.83µB consistent with the theoretical value of 4.89µB for Mn3+ spins
and θCW =−9(4)K, indicating net antiferromagnetic interactions between Mn3+ spins.

Figure 4.4 ZFC-FC molar susceptibility χ(T ) for Y3MnGa4O12 measured from 2 - 300 K in
a field of 100 Oe; inset: inverse ZFC molar susceptibility χ−1(T ).
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4.4.2 Isothermal magnetisation

The isothermal magnetisation M(H) was measured from 0 - 9 T at select temperatures using
the ACMS option on a Quantum Design PPMS. The M(H) curves at 2 K for Ln3CrGa4O12

and Ln3MnGa4O12 compared to Ln3Ga5O12, Ln = Gd, Tb, Dy, Ho, are shown in Figure
4.5. The maximum values of magnetisation/f.u., Mmax, are compiled in Table 4.4. The
isothermal magnetisation is increased on both Cr3+ and Mn3+ substitution in Ln3Ga5O12. The
magnetisation for Gd3CrGa4O12 and Gd3MnGa4O12 saturates at 2 K, 9 T. For Gd3CrGa4O12,
the maximum magnetisation value is consistent with that expected for a Heisenberg system,
Msat = 3gJJ + gSS = (3× 2× 7

2)+ (2× 3
2) = 24 µB/f.u. However, for Gd3MnGa4O12, the

saturation value is below the theoretical saturation value for a Heisenberg system, Msat =

3gJJ +gSS = (3×2× 7
2)+(2×2) = 25µB/f.u. This may be due to the Mn3+ spins having

some single-ion anisotropy or due to the actual Mn3+ content being less than the nominal
composition.

The M(H) for Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Tb, Dy, Ho increases rapidly
at fields µ0H < 2 T, and much more gradually in higher fields, µ0H > 2 T. None of the
M(H) curves attain saturation in the experimentally limiting field of 9 T. The observed Mmax

for Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Tb, Dy, Ho, is much lower than the theoretical
saturation value for a Heisenberg system. However, for Tb3+, Dy3+ and Ho3+ spins that
have substantial single-ion anisotropy in Ln3Ga5O12 [198, 258, 268], the powder-averaged
saturation magnetisation value is expected to be close to 3gJJ/2. The Mmax values are
in agreement with this and so it is proposed that the single-ion anisotropy of the Ln3+

spins (Ln = Tb, Dy, Ho) is retained on Cr3+ or Mn3+ substitution in Ln3Ga5O12. The
contribution of Cr3+ and Mn3+ spins to the net magnetisation is small compared to Ln3+ and
so one cannot definitively comment on their nature. However, Cr3+ (d3) spins are likely
to have Heisenberg nature [286] and the Mmax values are consistent with this. Similarly,
the isothermal magnetisation for Y3MnGa4O12 at 2 K, Figure 4.6, hints at the presence of
single-ion anisotropy for the Mn3+ (d4) spins.

As shown in Figure 4.7, field-induced transitions are observed for Tb3MnGa4O12,
Dy3MnGa4O12 and Ho3MnGa4O12 at T = 2 K, at 0.4 T, 0.3 T and 0.46 T respectively. No
field-induced transitions are observed for Ln3Ga5O12, Ln3CrGa4O12 (Ln = Gd, Tb, Dy, Ho)
and Gd3MnGa4O12 at T = 2 K. Previously, field-induced transitions have been reported for
Gd3Ga5O12 [154], Tb3Ga5O12 [256] and Ho3Ga5O12 [261] at temperatures well below 2 K,
the temperature limit of the magnetisation measurements. It is likely that field-induced
transitions for Ln3CrGa4O12 (Ln = Gd, Tb, Dy, Ho) and Gd3MnGa4O12, if any, also occur
below 2 K. Further measurements using a dilution refrigerator are required to explore this.
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Figure 4.5 M(H) curves from 0 – 9 T at T = 2 K for a) Ln3CrGa4O12 b) Ln3MnGa4O12
compared to Ln3Ga5O12 (Ln = Gd, Tb, Dy, Ho). M(H) data for Ln3Ga5O12 has been taken
from the previous chapter.

Figure 4.6 M(H) curve from 0 – 9 T at T = 2 K for Y3MnGa4O12.
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Figure 4.7 dM
dH curves at T = 2 K for Ln3MnGa4O12, Ln = Tb, Dy, Ho, showing the onset of

field-induced transitions at 0.4 T, 0.3 T and 0.46 T for Ln = Tb, Dy and Ho respectively.

4.4.3 Heat capacity

The zero field magnetic heat capacity, Cmag, from 0.4 - 20 K for Ln3CrGa4O12, Ln = Gd, Tb,
Dy, Ho, and Gd3MnGa4O12 was measured using the He3 option on a Quantum Design PPMS
to investigate the existence of magnetic ordering for 0.4 ≤ T ≤ 2 K. Equal amounts of sample
and silver powder were mixed to increase the thermal conductivity and pressed into pellets
which were then used for measurement. The contribution from silver was subtracted using
values from the literature [243] to obtain the sample heat capacity. The lattice contribution
was subtracted using a Debye model (equation 2.37) with θD in the range of 330 - 360 K. The
nuclear Schottky anomaly for Ho3CrGa4O12 was subtracted using a model for the hyperfine
interactions for HoCrO3 [287].

Figure 4.8 shows the plot of Cmag/T as a function of temperature in zero field for
Ln3CrGa4O12, Ln = Gd, Tb, Dy, Ho, where Cmag is the magnetic heat capacity. No magnetic
ordering is seen down to 0.4 K for Gd3CrGa4O12. Tb3CrGa4O12, Dy3CrGa4O12 and
Ho3CrGa4O12 show magnetic ordering features at 1.72 K, 1.75 K and 1.55 K respectively.
The zero field magnetic heat capacity for Gd3MnGa4O12, Figure 4.9, shows a feature at 0.45
K. However, as the temperature limit of the measurement is 0.4 K, sufficient data points are
not available to comment on whether this is a real feature or an artifact of the measurement.
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Figure 4.8 Zero field heat capacity from 0.4 - 20 K for Ln3CrGa4O12, Ln = Gd, Tb, Dy, Ho.

Figure 4.9 Zero field heat capacity from 0.4 - 20 K for Gd3MnGa4O12.
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4.5 Low temperature powder neutron diffraction

4.5.1 Ln3CrGa4O12, Ln = Tb, Dy, Ho

PND measurements, T ≥ 2 K, were carried out on Tb3CrGa4O12 and Ho3CrGa4O12 on the
D20 diffractometer at ILL, Grenoble (λ = 1.542 Å). Magnetic Bragg peaks were absent and
only subtle changes in the magnetic diffuse scattering were observed. This is expected as the
minimum temperature for the experiments, Tmin = 2 K, was above the ordering transition
for both Tb3CrGa4O12 (1.72 K) and Ho3CrGa4O12 (1.55 K). No quantitative analysis of the
magnetic diffuse scattering could be carried out as the background from the empty can in
the cryostat had not been measured separately and the maximum temperature at which data
was collected on D20, Tmax = 15 K, was not sufficiently high enough to serve as a ’high
temperature’ background since the presence of magnetic correlations was still possible. For
Dy3CrGa4O12, PND measurements were carried out on the WISH diffractometer at ISIS,
Oxfordshire by Dr Pascal Manuel. Scans were collected at 1.5 K and 100 K. An absorption
correction could not be carried out as the dimensions of the sample can and sample mass
had not been recorded prior to measurement. Weak magnetic Bragg peaks are observed
at 1.5 K, below the transition temperature T0 = 1.75(5) K, as shown in Figure 4.10. No
magnetic diffuse scattering is observed at 1.5 K. The magnetic Bragg peaks can be indexed
with the propagation vector k = (0, 0, 0) and are consistent with AFA type ordering reported
for Dy3Al5O12 [262]. However, due to the limited number of magnetic Bragg peaks (two)
and the weak intensity (due to the high absorption from naturally occurring Dy), it was not
possible to carry out further analysis and determine the magnetic structure definitively or
ascertain whether the Cr3+ spins contribute to the magnetic ordering.

4.5.2 Ho3MnGa4O12

In order to explore the magnetic ordering of Ho3MnGa4O12, PND experiments, T ≥ 1.5 K
were carried out on the D1B (λ = 2.525 Å) and D20 (λ = 1.542 Å) diffractometers at ILL,
Grenoble. Strong magnetic Bragg peaks were observed below the transition temperature,
TN = 5.8 K. No magnetic diffuse scattering was observed for T ≥ 1.5 K suggesting that unlike
in Ho3Ga5O12 [261], long and short-range magnetic order do not coexist in Ho3MnGa4O12.
Indexing for Ho3MnGa4O12 was carried out using the k-search program in the Fullprof suite
and found to have a k = (0, 0, 0) magnetic propagation vector.. Different combinations of
irreducible representations for Ho3+ and Mn3+ were tested using the SARAH program and
used to generate a single magnetic phase for the magnetic Rietveld refinement in Fullprof.
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Figure 4.10 PND Rietveld refinement at 1.5 K for Dy3CrGa4O12: Red dots - Experimental
data, Black line - Modelled data, Blue line - Difference pattern, Blue ticks - nuclear Bragg
positions, Red ticks - magnetic Bragg positions. The two magnetic Bragg peaks observed are
circled in black.

Table 4.5 The basis vectors Ψ1 for Ho (24c) and Mn(16a) in nonzero IR Γ1
3.

Atoms in non-primitive
basis for Ho Components

of Ψ1

Atoms in non-primitive
basis for Mn Components

of Ψ1
Atom label Coordinates Atom label Coordinates

Ho1 (0, 1/4, 1/8) (0 0 1) Mn1 (0, 0, 0) (1 1 1)
Ho2 (0, 3/4, 3/8) (0 0 -1) Mn2 (1/2, 0, 1/2) (-1 -1 1)
Ho3 (1/8, 0, 1/4) (1 0 0) Mn3 (0, 1/2, 1/2) (-1 1 -1)
Ho4 (3/8, 0, 3/4) (-1 0 0) Mn4 (1/2, 1/2, 0) (1 -1 -1)
Ho5 (1/4, 1/8, 0) (0 1 0) Mn5 (3/4, 1/4, 1/4) (-1 -1 1)
Ho6 (3/4, 3/8, 0) (0 -1 0) Mn6 (3/4, 3/4, 3/4) (1 1 1)
Ho7 (0, −1/4, −1/8) (0 0 1) Mn7 (1/4, 1/4, 3/4) (-1 1 -1)
Ho8 (0, 1/4, 5/8) (0 0 -1) Mn8 (1/4, 3/4, 1/4) (1 -1 -1)
Ho9 (−1/8, 0, −1/4) (1 0 0)

Ho10 (5/8, 0, 1/4) (-1 0 0)
Ho11 (−1/4, −1/8, 0) (0 1 0)
Ho12 (1/4, 5/8, 0) (0 -1 0)
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Symmetry analysis for the propagation vector k = (0, 0, 0) and space group Ia3̄d gave
eight nonzero irreducible representations (IRs) for the magnetic Ho (24c) site: 2
one-dimensional (Γ1

3, Γ1
4) and 2 two-dimensional representations (Γ2

5, Γ2
6) all occurring once,

2 three-dimensional (Γ3
7, Γ3

8) occurring twice and 2 three-dimensional representations (Γ3
9,

Γ3
10) that are repeated thrice. According to Kovalev’s notation [288], the magnetic

representation ΓmagHo is given by:

ΓmagHo = 1Γ
1
3 +1Γ

1
4 +1Γ

2
5 +1Γ

2
6 +2Γ

3
7 +2Γ

3
8 +3Γ

3
9 +3Γ

3
10 (4.1)

Of these, only Γ2
5 and Γ2

6 have both real and imaginary components while the others only
have real components. Similar representational analysis for the magnetic Mn (16a) site gave
five nonzero IRs: 2 one-dimensional (Γ1

1, Γ1
3) repeated once, 1 two-dimensional (Γ2

6) repeated
twice and 2 three-dimensional IRs (Γ3

8, Γ103) repeated thrice in the decomposition. Then in
the same notation ΓmagMn is given by:

ΓmagMn = 1Γ
1
1 +1Γ

1
3 +2Γ

2
6 +3Γ

3
8 +3Γ

3
10 (4.2)

Of these, only Γ2
6 has both real and imaginary components and all the others have real

components only. All combinations of irreducible representations for Ho3+ and Mn3+ ions
were tested in turn including allowing for magnetic ordering in a single magnetic sublattice,
only a model with both ions having the Γ1

3 irreducible representation (Table 4.5) allowed for
a good fit to the data, Figure 4.11a.

The magnitude of the ordered Ho3+ and Mn3+ moments increase on cooling (Figure
4.11a inset), though the values are smaller than the theoretical moments (10.61 µB for Ho3+

and 4.89 µB for Mn3+ respectively). This may be due to low-lying CEF effects or screening
of the moments. Previous neutron diffraction studies of Ho3Ga5O12 and Ho3Al5O12 have
also reported reduced moments [257, 263] in close agreement with the results for
Ho3MnGa4O12. Reduced magnetic moments for Mn3+ determined from neutron diffraction
have also previously been observed [289].

The magnetic structure (Figure 4.11b) has the same long range ordered arrangement of
the Ho3+ spins as that reported for Ho3Ga5O12 and Ho3Al5O12 [257, 263]. The 24 Ho3+

spins in each unit cell are arranged into six sublattices with the Ho3+ spins aligned along the
crystallographic axes [100], [1̄00], [010], [01̄0], [001] and [001̄] such that the net moment
is zero. The Mn3+ spins in each unit cell are aligned along the body diagonals, as reported
for the Ising garnet CaY2Co2Ge3O12 [283]. However, their relative orientation is completely
different. The Mn3+ spins are oriented along [111], [1̄1̄1], [1̄11̄] and [11̄1̄] such that there is
a resultant moment from the Mn3+ spins along [111].
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4.6 Discussion

Polycrystalline samples of Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Gd, Tb, Dy, Ho have
been prepared for the first time. Their structure has been evaluated using PXRD and PND and
the bulk magnetic properties have been studied. Ln3CrGa4O12 and Ln3MnGa4O12 (Ln = Gd,
Tb, Dy, Ho) crystallise in the same cubic garnet structure as Ln3Ga5O12 with the magnetic
Cr3+ and Mn3+ occupying the octahedral cation sites, consistent with CEF considerations.
It was not possible to synthesise Ln3AxGa5 – xO12, Ln = Gd, Tb, Dy, Ho, A = Cr, Mn, with
x > 1; the cause for this limited solubility is unclear. It was also not possible to substitute
Mn3+ into Ln3Al5O12; this could be due to the mismatch in radii between Mn3+ and Al3+

or the fact that the perovskite phases LnAlO3 and LnMnO3 are more stable than the garnet
phase. Whilst there is very little change in the crystallographic parameters on Cr3+ and Mn3+

substitution in Ln3Ga5O12, there is a dramatic change in the magnetic properties.
Cr3+ or Mn3+ substitution significantly enhances the transition temperature for lanthanide

gallium garnets with Ln = Tb, Dy, Ho, Table 4.4, although the transition temperature is
enhanced by a much greater extent on Mn3+ substitution. The frustration index f of the
Ln3Ga5O12 magnetic lattice, defined by equation (1.63), is reduced on Cr3+ as well as Mn3+

substitution. As seen in Table 4.4, the frustration is relieved to a much greater extent for
Ln3MnGa4O12 than Ln3CrGa4O12 for Ln = Tb, Dy, Ho.

The results for Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Tb, Dy, Ho are now discussed
separately. No further remarks can be made for Ln = Gd because Gd3CrGa4O12 and
Gd3MnGa4O12 do not order magnetically down to 0.4 K. Further measurements below 0.4 K
are required to investigate the existence of any ordering features in Gd3CrGa4O12 and
Gd3MnGa4O12 and to compare with Gd3Ga5O12, which shows no long range ordering
down to 0.025 K [141].

4.6.1 Ln3CrGa4O12, Ln = Tb, Dy, Ho

On Cr3+ substitution in Ln3Ga5O12, T0 is increased from 0.25 K to 1.72 K for Ln = Tb, from
0.373 K to 1.75 K for Ln = Dy and from 0.19 K to 1.55 K for Ln = Ho. In the most extreme
case, for Dy3CrGa4O12, the frustration index f = 2.3 is only slightly higher than would be
expected for an antiferromagnet and is significantly reduced from f ≈ 18 for Dy3Ga5O12.
The origin of the changes in the magnetic frustration is not clear from the bulk magnetic
data alone. It has been reported that increased single-ion anisotropy and strength of dipolar
interactions in Ln3Al5O12 garnets increases T0 [259, 264, 265]. However, the lack of any
significant changes in the Ln-O environment and the Ln-Ln bond lengths would suggest that
this is not the case here and other effects such as the impact of the Ln – Cr interactions
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need to be considered. The low temperature PND data collected is inconclusive and further
neutron scattering studies well below the transition temperature are required to determine the
nature of magnetic ordering in Ln3CrGa4O12, Ln = Tb, Dy, Ho.

4.6.2 Ln3MnGa4O12, Ln = Tb, Dy, Ho

A comparison of the transition temperatures of Ln3Ga5O12 and Ln3MnGa4O12 shows that T0

is increased from 0.25 K to 4.6 K for Ln = Tb, from 0.373 K to 5.6 K for Ln = Dy and from
0.19 K to 5.8 K for Ln = Ho. The frustration is almost completely relieved for Ln = Dy and
Ho with f = 0.7 for Dy3MnGa4O12 and 1.0 for Ho3MnGa4O12 as compared to f ≈ 18 and
≈ 60 for Dy3Ga5O12 and Ho3Ga5O12 respectively. The origin of the magnetic frustration
being relieved in Ho3MnGa4O12 will now be discussed by considering the magnetic ground
state.

Magnetic ground state for Ho3MnGa4O12

When the magnetic ground state of Ho3MnGa4O12 (as discussed in Section 4.5.2) is
considered in terms of the two interpenetrating networks of ten-membered rings of Ho3

triangles, Figure 4.11c, the relative orientations of the Ho3+ and Mn3+ spins assume special
significance. For each ten-membered ring, the net magnetic moment is zero, however there is
a net ferromagnetic interaction between the Ho3+ and Mn3+ moments. When these
interactions are summed over a Ho3 triangle then the resultant Ho3+ quasi-spin is orientated
in or out of the centroid of the triangle, that is, along [111] (Figure 4.11d), and is located
directly above or below the site partially occupied by Mn3+. The Mn3+ spin aligns
co-parallel with the Ho3+ quasi-spin (Figure 4.11e). Whilst the construct of the Ho3+

quasi-spins allows for the magnetic structure to be rationalised it should be noted that in the
parent material, Ho3Ga5O12, exchange coupling between any two of the Ho3+ spins on an
individual triangle (∝ SSS111 ·SSS222) results in no net interaction as they are orthogonal. However,
in the case of Ho3MnGa4O12, each individual Ho3+-Mn3+ interaction is non-zero enabling
the formation of resultant Ho3+ quasi-spins.

The concurrent magnetic ordering of both Ho3+ and Mn3+ observed in Ho3MnGa4O12 is
unique when compared to other rare-earth – transition metal oxides with complex magnetic
structures. Studies on magnetic substituents in lanthanide garnets have been restricted to
Ln3Fe5O12 where the two Fe3+ sublattices order in a ferrimagnetic structure at ≈ 130 – 140
K while the Ln3+ ions order in a double umbrella structure around few K with spins canted
away from the [111] direction on both sides. [276–279]. In HoMnO3, the Mn3+ spins order
at ≈ 72 K while onset of ordering of the Ho3+ spins is seen at the spin-rotation transition
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for the Mn3+ spins ≈ 33 K followed by an increase in the ordered Ho3+ moments below 5 K
[290–292]. However, in Ho3MnGa4O12, no features are observed in the neutron diffraction
data corresponding to individual ordering of the Mn3+ spins at T > TN . In the pyrochlore
Ho2Mn2O7, complex short-range order is observed at T0 ≈ 33 K with coexistence of random
spin-canted domains (leading to glassy behaviour) and smaller ferromagnetic domains [293,
294]. In contrast, no magnetic diffuse scattering is observed for Ho3MnGa4O12 implying
that the structure is fully long-range ordered. The ordering mechanism is also distinct from
the ‘ordered spin-ice’ structure reported for Ho2CrSbO7, where the frustration is proposed to
be relieved through local ferromagnetic correlations between the Cr3+ spins, as is evidenced
by a positive Curie-Weiss constant for the isostructural Y2CrSbO7 [46, 295]. However,
in Ho3MnGa4O12, the Mn-Mn and Ho-Ho exchange interactions are antiferromagnetic
suggesting that the ordering is driven by a different mechanism, the origin of which is
discussed below.

The partial substitution of Ga3+ for Mn3+ in Ho3MnGa4O12 significantly changes the
magnetic interactions which need to be considered. In addition to Ho-Ho interactions present
in Ho3Ga5O12, Mn-Mn and Ho-Mn interactions also need to be considered. First, the dipolar
and exchange interactions between the magnetic Ho3+ are considered. As the Ho-Ho bond
lengths are not significantly changed on Mn3+ substitution, there is no significant change in
the Ho-Ho dipolar interaction energy, calculated using equation (1.42), D ≈ 0.9 K. A priori
calculation of the Ho-Ho exchange interactions is complex, as the Curie-Weiss constant for
Ho3MnGa4O12 contains contributions from multiple interactions. An order of magnitude
approximation for the nearest-neighbour exchange energy, J1 in unsubstituted Ho3Ga5O12

can be obtained using equation (1.60) where n = number of nearest-neighbour Ho3+ = 4. This
gives J1 = - 4.5 K and an order of magnitude estimation of J1 for Ho3MnGa4O12. The Mn-
Mn exchange interactions can be approximated by considering isostructural Y3MnGa4O12,
where the only magnetic contribution is from the Mn3+ spins and which has analogous
lattice parameter and bond lengths as Ho3MnGa4O12. The Curie-constant, θCW = -9(4) K
corresponds to J1 ≈ - 6.8 K if each Mn3+ spin is assumed to have two nearest neighbours.
Determination of the Ho-Mn exchange interactions is nontrivial and further inelastic neutron
scattering experiments are required for quantitative analysis. However, the resultant spin
structure, although constrained by the CEF, has a ferromagnetic component between adjacent
Ho3+ and Mn3+ spins, suggesting the resulting moment is not minimised. Finally, the Ho-Mn
dipolar interactions are considered. The local internal dipolar fields due to the Mn3+ spins

above and below the Ho3 triangles can be approximated as µ0H ≈ µ0µe f f
2πr3 =

µ0gS
√

S(S+1)
2πr3

where gS = 2, S = 2 for Mn3+ and r is the distance between the centroid of the Ho3 triangle
and the Mn3+ spin = 2.65 Å. This gives a value of ≈ 0.5 T which corresponds to an energy ≈
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Table 4.6 Comparison of ∆Sm per mole Ln at T = 2 K for Ln3Ga5O12 and Ln3CrGa4O12; Ln
= Gd, Tb, Dy, Ho. % changes are calculated with respect to the ∆Sm values for the parent
gallium garnets Ln3Ga5O12.

Field 9 T 2 T 2 T 2 T

Ln Gd Tb Dy Ho

Ln3Ga5O12 ∆Sm (JK−1 mol−1) 40.79 8.66 11.32 4.24
Ln3CrGa4O12 ∆Sm (JK−1 mol−1) 51.37 8.49 13.25 9.29

% change 25.9 -1.9 17.0 119.1

3.2 K. In Ho3Ga5O12, the formation of a long range ordered state is observed on application
of a 2 T field along [111] [261]. Whilst the exact nature of field-induced long-range ordering
in Ho3Ga5O12 is unknown, this highlights the role of an applied field in the magnetic ordering
in the lanthanide gallium garnets with strong single-ion anisotropy. Thus, the local internal
dipolar field may play a role in the magnetic ordering in Ho3MnGa4O12.

4.7 Magnetocaloric effect

The magnetocaloric effect (MCE) of Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Gd, Tb, Dy,
Ho, has been characterised by the change in magnetic entropy, ∆Sm per mole, calculated
from the isothermal magnetisation curves according to equation (1.64). As has already
been discussed in Chapter 3, the garnets with Ln = Tb, Dy, Ho having substantial single-ion
anisotropy have optimum MCE in fields ≤ 2 T whereas the MCE of Gd3Ga5O12 is maximised
in fields > 2 T. It was also shown in Chapter 3 that among Tb3Ga5O12, Dy3Ga5O12 and
Ho3Ga5O12, Dy3Ga5O12 has the highest MCE. The isothermal magnetisation data indicates
that the single-ion anisotropy is retained in Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Tb, Dy,
Ho. Therefore, the MCE for the garnets with Ln = Tb, Dy, Ho are compared in a field
of 2 T and the MCE for Gd3CrGa4O12, Gd3MnGa4O12 and Gd3Ga5O12 are compared in
the experimental limiting field of 9 T. Figure 4.12 shows the comparison of the MCE for
Ln3CrGa4O12, Ln3MnGa4O12 and Ln3Ga5O12, Ln = Gd, Tb, Dy, Ho in the relevant field
regimes. The insets show the variation of ∆Sm per mole as a function of magnetic field at
T = 2 K. The results for Ln3CrGa4O12 and Ln3MnGa4O12 are discussed separately.

For Ln = Gd, there is a ≈ 25% increase in the value of ∆Sm over 2 - 20 K for
Gd3CrGa4O12 as compared to Gd3Ga5O12. Therefore the MCE is significantly enhanced on
Cr3+ substitution in Gd3Ga5O12. Dy3CrGa4O12 has the largest change in magnetic entropy
over the entire temperature and field range among Tb3CrGa4O12, Dy3CrGa4O12 and
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Figure 4.12 ∆Sm per mole as a function of temperature for Ln3CrGa4O12 and Ln3MnGa4O12
compared to Ln3Ga5O12 in a field of 9 T for Ln = Gd and 2 T for Ln = Tb, Dy, Ho; insets
show field dependence of ∆Sm per mole at T = 2 K. Data for Ln3Ga5O12 has been taken from
the previous chapter.

Ho3CrGa4O12. The differences in the effect of Cr3+ substitution on the MCE for Ln = Tb,
Dy, Ho is striking. For Ln = Tb, the difference in the MCE on Cr3+ substitution is minimal in
low fields. However, an increase in ∆Sm is observed at fields above 2.5 T. There is a ≈ 20%
increase in ∆Sm at 2 K, 2 T for Dy3CrGa4O12. The most dramatic increase is seen for Ln =
Ho where ∆Sm shows ≈ 120% increase for Ho3CrGa4O12 compared to Ho3Ga5O12 at 2 K,
2 T. Selected ∆Sm values are given in Table 4.6.

The origin of the impact of Cr3+ substitution on ∆Sm is likely due to changes in the
magnetic ordering and nature of the magnetic ground state, indicated by the dramatic change
in the magnetic frustration and enhancement of the ordering temperature for Ln3CrGa4O12,
Ln = Tb, Dy, Ho. For a magnetocaloric material, the maximum change in the magnetic
entropy is obtained around the ordering temperature, T0. The minimum temperature for
the ∆Sm(T ) calculations, 2 K, is very close to T0 for Ln3CrGa4O12 (Table 4.4) and so,
an enhancement in T0 is observed. The values of T0 for Ln3CrGa4O12 (Ln = Dy, Ho)
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in gravimetric units are comparable to the maximum values reported for other rare-earth
transition metal systems like LnCrO4, LnVO4 (Ln = Dy, Ho) [296–298] and Er2Mn2O7

[299]. However for these systems, ∆Sm is maximized at higher temperatures, T > 20 K,
restricting their use for cooling in the liquid helium temperature regime. On the other
hand, Ln3CrGa4O12 (Ln = Dy, Ho) can be used as effective MCMs for T ≥ 2 K in fields
up to 2 T. Further Ln3CrGa4O12 and Ln3Ga5O12 (Ln = Dy, Ho) could be used to develop
graded magnetocalorics so that the cooling limit is further reduced to T ≥ 0.4 K (≈ T0 for
Ln3Ga5O12, Ln = Dy, Ho).

The changes in the MCE for Ln3MnGa4O12 are very different to Ln3CrGa4O12 (Ln =
Tb, Dy, Ho). There is almost no difference in the MCE for Gd3MnGa4O12 as compared to
Gd3Ga5O12; whereas a ≈ 25% increase was observed for Gd3CrGa4O12. An enhancement
in the ∆Sm values for Ln3MnGa4O12 (Ln = Tb, Dy, Ho) is observed for T > 6 K as compared
to Ln3Ga5O12, however the ∆Sm values decrease below this temperature restricting their
use for cooling down to 2 K. The T0 values for Ln3MnGa4O12 (Table 4.4) are consistent
with the temperature at which the peak in the ∆Sm(T ) curves is obtained. The maximum
magnetic entropy is extracted around this temperature leading to a decrease in ∆Sm on
further cooling. Dy3MnGa4O12 has the maximum value of ∆Sm at T = 6 K, 2 T (6.93
JK−1 mol−1) among the Mn3+ substituted garnets with Ln = Tb, Dy, Ho. However, this value
is only marginally higher than Dy3Ga5O12 (6.74 JK−1 mol−1) and significantly lower than
Dy3CrGa4O12 (10.18 JK−1 mol−1). Therefore, Mn3+ substitution in Ln3Ga5O12 (Ln = Tb,
Dy, Ho) does not offer any significant advantages in solid state magnetic refrigeration whereas
the MCE is significantly enhanced for Ln3CrGa4O12 (Ln = Dy, Ho) at T ≥ 2 K. It is unclear
why the magnetic and magnetocaloric properties of Ln3CrGa4O12 and Ln3MnGa4O12 are so
different and further experiments are required to explain this.

4.8 Conclusion

The impact of introducing additional Cr3+ and Mn3+ spins on the magnetic properties and
magnetocaloric performance in lanthanide gallium garnets, Ln = Gd, Tb, Dy, Ho, has been
studied for the first time. Polycrystalline samples of Ln3CrGa4O12 and Ln3MnGa4O12,
Ln = Gd, Tb, Dy, Ho, have been prepared and the crystal structure has been determined
from powder X-ray and neutron diffraction. No magnetic ordering is observed down to
0.4 K for Gd3CrGa4O12 and Gd3MnGa4O12. Magnetic susceptibility and heat capacity
measurements reveal ordering transitions for Ln3CrGa4O12 and Ln3MnGa4O12, Ln = Tb, Dy,
Ho, at temperatures much greater than that reported for the corresponding Ln3Ga5O12. This
indicates that the frustration in the Ln3Ga5O12 lattice is relieved on magnetic ion substitution.
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The ordering transitions for the magnetic ground states of Ln3CrGa4O12 and Ln3MnGa4O12,
Ln = Gd, Tb, Dy, Ho, are summarised in Table 4.4. Calculation of the frustration index, Table
4.4, shows that the frustration is relieved by a greater extent in Ln3MnGa4O12 as compared
to Ln3CrGa4O12 for Ln = Tb, Dy, Ho. Isothermal magnetisation measurements indicate that
the isotropic nature of the Gd3+ spins and the single-ion anisotropy of Ln3+ (Ln = Tb, Dy,
Ho) in Ln3Ga5O12 is retained on Cr3+ or Mn3+ substitution, although subtle changes to the
CEF cannot be ruled out.

Powder neutron diffraction measurements on Ho3MnGa4O12 below TN show that the
Mn3+ moments, disordered on the octahedral site, couple ferromagnetically with the Ho3+

quasi-spins and lift the degeneracy associated with magnetic ordering in the garnet lattice.
The elevation of the ordering temperature almost completely relieves the magnetic frustration
– f ≈ 1 for Ho3MnGa4O12 compared to f ≈ 63 for Ho3Ga5O12. The similar results obtained
for Ln3MnGa4O12 (Ln = Tb, Dy) and Ln3CrGa4O12 (Ln = Tb, Dy, Ho) from the bulk
magnetic measurements hint at a universal mechanism for relieving the magnetic frustration
in lanthanide garnets with strong single-ion anisotropy that is tuneable through control of
the extent and type of magnetic ion substitution. Further neutron scattering experiments are
required to determine the nature of the magnetic ground state in Ln3Ga5O12, Ln3CrGa4O12,
Ln = Gd, Tb, Dy, Ho, and Ln3MnGa4O12, Ln = Gd, Tb, Dy, in order to model the relevant
magnetic interactions and examine whether there are any differences in the magnetic ground
state for the different Ln and the the different magnetic substituents on the octahedral site.

Calculation of the change in magnetic entropy showed that Mn3+ substitution does not
show any significant improvement of the MCE in Ln3Ga5O12 for Ln = Gd, Tb, Dy, Ho. In
contrast, Cr3+ substitution leads to a large enhancement in the magnetocaloric performance
for Ln = Gd, Dy, Ho. For T ≥ 2 K, Gd3CrGa4O12 can be used as an improvement to
Gd3Ga5O12 in magnetic fields µ0H ≥ 5 T while the magnetic refrigeration performance of
Ln3CrGa4O12, Ln = Dy, Ho, is significantly improved as compared to the corresponding
Ln3Ga5O12, in fields µ0H ≤ 2 T.

This work provides a path to understanding the nature of frustration in lanthanide
gallium garnets with additional spins on the non-magnetic cation sites and optimising their
performance as functional magnetocaloric materials in the liquid helium temperature regime.
It is hoped that this will motivate more detailed studies on the magnetic properties of these
lanthanide garnets.



Chapter 5

Magnetic properties of lanthanide
orthoborates, LnBO3

This chapter discusses the magnetic and magnetocaloric properties of the lanthanide
orthoborates, LnBO3 for Ln = Eu, Gd, Tb, Dy, Ho, Er, Yb, where the magnetic Ln3+ form
layers of edge-sharing triangles, a prototype of two -dimensional geometrical frustration.

5.1 Background

A two-dimensional geometrically frustrated triangular lattice ( edge-sharing or kagome)
can host exotic states of matter [108], such as the much sought after quantum spin liquid
state [35, 69]. Work on such lattices containing magnetic Ln3+ has recently started gaining
momentum, including investigation of the Ln3X2Sb3O14 (X = Mg, Zn) family containing
two-dimensional kagome planes of magnetic Ln3+ and the quantum spin liquid candidate
YbMgGaO4 where the magnetic Yb3+ form edge-sharing triangles. The current state of
research in these materials has been reviewed in Chapter 1. The bulk magnetic properties,
T ≥ 2 K, of the KBaLn(BO3)2 family with two-dimensional edge-sharing triangular lattices
of Ln3+ have also been investigated recently [300]. There is a continuing search for more
candidate rare-earth materials with two-dimensionally frustrated lattices that can exhibit
novel magnetic properties. Such frustrated systems could also be competitive low temperature
magnetocaloric materials in the liquid helium temperature regime.

Lanthanide orthoborates, LnBO3, Ln = La – Lu, have been reported to crystallise in
different structures depending on the size of the lanthanide ion. Levin et. al proposed that
the orthoborates crystallise in the same three structures as CaCO3: aragonite for the larger
Ln3+ (La - Nd), vaterite for the smaller Ln3+ (Eu - Yb) and calcite for the smallest Ln3+ ion,
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Lu [301]. SmBO3 was reported to crystallise in the vaterite phase between 1100 and 1300
◦C and in a different triclinic structure at other temperatures [302, 303]. High-temperature
polymorphs were reported for the aragonite type LnBO3 which was corroborated by a later
study [301, 302]. No polymorphism was reported for the vaterite-type borates, referred to
as π-LnBO3 in the literature. The optical properties of the orthoborates have been actively
researched because they have several features that make them ideal candidates for applications
as phosphors in vacuum discharge lamps and screens such as high ultraviolet transparency
and high optical damage threshold [304–306]. However, the magnetic properties of these
materials have not been explored in any detail, except for some early studies on magnetic
susceptibility [307, 308].

Table 5.1 Summary of different crystal structures proposed for π-LnBO3, Ln = Eu - Yb.

No. Description of structure proposed for π-LnBO3 Reference

1. Structure reported to be pseudo-vaterite type based
on similarity of PXRD pattern with CaCO3; a phase
transition into µ-LnBO3 reported.

Levin et. al, Am.
Mineral 46 (1961)
1030 [301]

2. First structural model: distorted hexagonal structure
with BO3

3 – triangles shown in Figure 5.1a.
Newnham et. al, J. Am.
Ceram. Soc. 46 (1963)
253 [309]

3. Hexagonal structure based on Newnham’s model; both
BO3

3 – triangles similar to vaterite or 3 membered rings
of B3O9

9 – tetrahedra said to be possible.

Bradley et. al, Act.
Cryst. 20 (1966) 283
[310]

4. Single crystal data, hexagonal structure with partial
occupation of B and O sites; BO4

5 – tetrahedra identified
as main structural unit.

Chadeyron et. al, J.
Solid State Chem. 128
(1997) 261 [311]

5. Monoclinic structure with B3O9
9 – units, Figure 5.1b

; also reported a reversible phase transition to a high
temperature monoclinic phase with BO3

3 – triangles,
Figure 5.1c.

Lin. et. al, Chem.
Mater. 16 (2004) 2418
[312]

6. Single crystal data, monoclinic structure as reported by
Lin et. al.

Pitscheider et. al, J.
Solid State Chem. 184
(2011) 149 [313]

There has been much controversy about the crystal structure of the π-LnBO3, Ln = Eu –
Yb, summarised in Table 5.1. However, for all the reported crystal structures, the magnetic
Ln3+ link to form layers of edge-sharing triangles. This is the exact prototype of the two-
dimensional frustrated triangular lattice and hence these materials could exhibit geometrical
frustration. Also, the lower molar mass of the π-LnBO3 could result in higher changes in
magnetic entropy in gravimetric units as compared to the lanthanide garnets discussed in the
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previous chapters. Thus they have the potential to serve as more efficient magnetocaloric
materials in the liquid helium temperature regime. This chapter presents a systematic study
of the crystal structure, bulk magnetic properties and magnetocaloric effect for the π-LnBO3,
Ln = Eu, Gd, Tb, Dy, Ho, Er, Yb, for the first time.

5.2 Sample preparation

Samples of LnBO3 (Ln = Eu, Gd, Tb, Dy, Ho, Er and Yb) were prepared using a solid
state synthesis method. The starting materials Ln2O3 (Ln = Eu, Gd) were pre-dried at
800 ◦C overnight prior to being weighed out in order to ensure the correct stoichiometry.
Stoichiometric amounts of Ln2O3 (Ln = Eu, Gd, Dy, Ho, Er, Yb) or Tb4O7 and H3BO3 (5%
excess added to compensate for the loss of B due to volatilisation during heating) were mixed
well. A pre-reaction was carried out at 350 ◦C for 2 hours to allow for the decomposition of
H3BO3. After regrinding, the samples were heated to 1000 ◦C for either 24 or 48 hours to
obtain the final product.

LnBO3 samples, Ln = Tb, Ho, Er, Yb, for PND experiments were prepared by the same
process except enriched boric acid (11B) (99% purity, Sigma Aldrich) was used as starting
material to reduce the absorption of neutrons from 10B [221] during the experiment.

5.3 Structural characterisation

The progress of the reaction was tracked using PXRD. Initially, short scans were collected
over the angular range 5◦ ≤ 2θ ≤ 60◦ (∆ 2θ = 0.015◦) using a Panalytical Empyrean X-ray
diffractometer (Cu Kα radiation, λ = 1.541 Å). For more detailed structural analysis, high
resolution scans were collected using a Bruker D8 Advance diffractometer (Cu Kα radiation,
λ = 1.541 Å, Ge monochromator and Sol-XE energy dispersive detector). Measurements
were carried out for one day per sample over an angular range 10◦ ≤ 2θ ≤ 120◦ (∆ 2θ =
0.01◦). The latter measurements were carried out by Dr Giulio Lampronti, Department of
Earth Sciences, University of Cambridge. Rietveld refinements were carried out using the
Fullprof suite of programs.

Phase pure polycrystalline samples of LnBO3, Ln = Eu, Gd, Tb, Dy, Ho, Er and Yb were
synthesised. The PXRD pattern for HoBO3 is shown in Figure 5.2. The PXRD refinements
for the other LnBO3 can be found in Appendix A. As previously discussed, there has been
much debate as to whether the crystal structure of these materials should be described by
a hexagonal or monoclinic unit cell. When the Rietveld refinement was carried out, it
was found that the intensities of the peaks were not correctly modelled by the hexagonal
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phase whereas the monoclinic phase could model the PXRD peak intensities correctly. The
monoclinic structure can also be verified by a comparison of the peak shape for selected peaks
as follows: Figure 5.2 inset for HoBO3 shows two peaks at 20.1◦ and 34.1◦. The former
corresponds to a single reflection in both the hexagonal setting, (002)hex, and monoclinic
setting, (002)mon, while the latter corresponds to a single reflection in hexagonal setting,
(102)hex, but two reflections in monoclinic setting, (311)mon and (022)mon. The peak shape
for the latter is consistent with a lower symmetry monoclinic structure. Thus according to the
Rietveld refinement of the PXRD data, the structure for the π-LnBO3 samples synthesised is
definitely monoclinic, with space group C2/c.

Figure 5.2 PXRD pattern for HoBO3: Red dots - Experimental data, Black line - Modelled
data, Blue line - Difference pattern, Blue ticks - Bragg positions; Inset: Peaks at 20.1◦ and
34.1◦ with different asymmetry. The peak at ≈ 20.1◦ corresponds to a single reflection in
both hexagonal setting, (002)hex, and monoclinic setting, (002)mon. The peak at ≈ 34.1◦

corresponds to a single reflection in hexagonal setting, (102)hex, but two reflections in
monoclinic setting, (311)mon and (022)mon. When the peak shape parameters are set to the
instrumental resolution file values, the peak at ≈ 20.1◦ can be fitted to a single peak with the
reflection (002)mon while the peak at ≈ 34.1◦ can only be fitted to two peaks with reflections
(311)mon and (022)mon, confirming the monoclinic phase.



132 Magnetic properties of lanthanide orthoborates, LnBO3

Parameters from the structural Rieveld refinements are given in Table 5.2. In the PXRD
Rietveld refinement, the Ln positions were refined but the B and O positions were kept fixed
to the values reported in the literature [306, 312, 313] for the monoclinic structure. This is
because PXRD is not sensitive to B and O in the presence of Ln with significantly higher
atomic numbers. There are two Ln sites: Ln1 occupies the 4c site (0.25, 0.25, 0) while Ln2
occupies the general 8 f (x,y,z) position. There are also two B sites: B1 at the general 8 f
(x,y,z) site and B2 at the 4e site (0, y, 0.25). There are 5 possible O positions: O1, O2,
O3, O4 all occupy the general 8 f (x,y,z) position while O5 occupies the 4e site (0, y, 0.25).
The B and O positions were kept fixed to the following values: B1 = (0.12011, 0.03790,
0.24691), B2 = (0, 0.67520, 0.25), O1 = (0.12550, 0.09200, 0.10199), O2 = (0.22293,
0.09316, 0.38870), O3 = (0.04837, 0.56643, 0.39233), O4 = (0.39142, 0.30823, 0.25174)
and O5 = (0, 0.135, 0.25). The values of thermal parameters were kept fixed at Biso = 0.8 Å2

for all atoms. The lattice parameters a, b, c, the in-plane area and the lattice volume for the
monoclinic LnBO3 all follow a linear relationship with the ionic radii of the lanthanide ions.
This is shown in Figure 5.3.

The crystal structure for the π-LnBO3 is shown in Figure 5.4. The structural model used
for Rietveld refinement assumes that the triangular Ln3+ layers are separated by sheets of
three membered-rings of corner sharing BO4

5 – tetrahedra forming isolated B3O9
9 – units.

The Ln3+ layers are found to be eclipsed meaning that they stack directly on top of one
another [108].

The bond-lengths of the Ln3+ triangles are now considered. For a hexagonal structure, the
magnetic Ln3+ would have formed flat layers of edge-sharing equilateral triangles, forming
an ideal two-dimensional frustrated lattice. However, the structure has monoclinic symmetry
and the triangles have unequal bond lengths, Table 5.2, resulting in a distorted triangular
lattice. There are three different sets of triangles comprising six different bond lengths as
is shown in Figure 5.5. The triangular layers also have a slight pucker resulting in two
different interlayer Ln-Ln distances, Ln1-Ln2 and Ln2-Ln2. The distortion compared to the
ideal triangular lattice can be quantified in terms of the deviation in bond angles compared to
an ideal equilateral triangle. Figure 5.6 shows the deviation for a particular triangle for the
different π-LnBO3. The deviation is identical for all three sets of triangles as shown in Figure
5.7. All the deviations are < 1.5%. However, in other materials with frustrated triangular
lattices, even very small distortions in the two-dimensional triangular lattice have been shown
to radically impact the magnetic properties such as in KFe(MoO4)2 [314], CuFeO2 [315],
α-CaCr2O4 [316] and α-SrCr2O4 [317].
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Figure 5.3 Lattice parameters as a function of ionic radii for monoclinic LnBO3; Ln = Eu,
Gd, Tb, Dy, Ho, Er, Yb. The different plots show lattice parameters a, b, c, β , planar area =
acsinβ and cell volume = abcsinβ . Lines are a guide to the eye. Error bars are smaller than
size of symbols.
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Figure 5.4 Crystal structure for monoclinic LnBO3 with triangular sheets of Ln3+ separated
by layers of B3O9

9 – units.

Figure 5.5 Connectivity of magnetic Ln3+ in monoclinic LnBO3 showing three different
kinds of edge-sharing triangles. The different colours represent different bond lengths.
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Figure 5.6 Bond angles for a triangle in monoclinic LnBO3; Ln = Eu, Gd, Tb, Dy, Ho, Er,
Yb. For all the samples, the bond angles show deviations from an ideal equilateral triangle;
the maximum % distortion is less than 1.5%.

Figure 5.7 Bond angles for the three triangles for monoclinic LnBO3; Ln = Eu, Gd, Tb, Dy,
Ho, Er, Yb. The deviations for the three sets of triangles are identical.
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Figure 5.8 PND pattern for HoBO3: Red dots - Experimental data, Black line - Modelled
data, Blue line - Difference pattern, Blue ticks - Bragg positions; inset shows a zoomed-in
plot highlighting the significant peak broadening observed in the PND data.

Although the monoclinic unit cell could be confirmed, the B and O positions could not be
determined accurately from PXRD alone in presence of the Ln3+ with high atomic numbers.
Room temperature PND experiments were carried out on the D2B instrument (λ = 1.595 Å)
at ILL, Grenoble for LnBO3, Ln = Tb, Ho, Er, Yb, with the aim of determining the crystal
structure more accurately.

An attempt at a PND Rietveld refinement for HoBO3 is shown in Figure 5.8. The
refinement is consistent with the monoclinic unit cell. However, significant peak broadening
is observed which cannot be captured by the standard size or strain models available in the
Fullprof suite of programs. As this is a layered structure, the peak broadening may be caused
by disorder or stacking faults in the layers. Significant peak broadening in PND (Figure 5.8)
combined with the absence of the same in PXRD (Figure 5.2) implies that such disorder is
present only in the borate framework for the π-LnBO3 and there is no significant disorder
in the registry of the magnetic Ln3+. In the previous PND study by Lin.et. al [312], no
such peak broadening was reported. This could be due to the difference in resolution of the
neutron diffractometers used to collect the PND data or variations in sample preparation
methods.
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The disorder in the borate framework is possibly due to the breaking of some of the
3-membered rings of B3O9

9 – tetrahedra either completely into isolated BO3
3 – triangles, as

reported for the high temperature structure by Lin. et. al [312], or partially into a trigonal
BO3

3 – group and a unit comprising two BO4
5 – tetrahedra, as reported for the high pressure

phase, χ-LnBO3 [318]. Modelling either of these disordered structures has proved to be very
complex because the disorder is restricted to the borate layers and the arrangement of the
magnetic Ln3+ layers has to be kept unchanged to be consistent with the PXRD. An attempt
was made to refine the PND data using a structural model where the monoclinic unit cell was
kept unchanged and both the B3O9

9 – and BO3
3 – groups were incorporated by varying the

occupancies. This did not give any improvement in the Rietveld refinement, indicating that
the rings of B3O9

9 – tetrahedra may not be disintegrating completely into trigonal BO3
3 –

groups and the situation is most likely the one described for χ-LnBO3. However, developing
a structural model poses a challenge because the χ-LnBO3 structure is triclinic and so the B
positions are different. Triclinic subgroups of the monoclinic structure were examined to see
if this was more appropriate to describe the structure but no improvement in the Rietveld fit
was observed. An ongoing collaboration with Dr. Jared Allred, Department of Chemistry and
Biochemistry, University of Alabama, to resolve the structural distortion using the existing
PXRD and PND data has yet to realise a satisfactory structural model. Further work including
measurements on single crystals is required to resolve the structural model for the π-LnBO3.

5.4 Bulk magnetic measurements

5.4.1 Magnetic susceptibility

The zero-field cooled (ZFC) susceptibility for all the monoclinic LnBO3 was measured in a
field of 100 Oe in the temperature range 2 - 300 K using a Quantum Design MPMS. This is
shown in Figure 5.9a. χ(T ) is approximated by the linear relation, equation (1.22), because
in a low field of 100 Oe, the M(H) curve is linear at all temperatures. HoBO3 shows a
feature at T = 6 K; no ordering is observed down to 2 K for the other LnBO3. EuBO3 shows
van-Vleck paramagnetism due to thermal population of low-lying excited states, consistent
with earlier reports [319]. The reciprocal susceptibility, Figure 5.9b, is linear at temperatures
> 100 K except for EuBO3 which shows van Vleck paramagnetism. Fits to the Curie-Weiss
law, equation (1.59), were carried out in different temperature regimes from 100 - 300 K. The
average values were taken to calculate the experimental magnetic moment, µe f f and the Curie-
Weiss temperature, θCW . YbBO3 shows significant temperature-independent paramagnetism
χ0 and so the Curie-Weiss fit was carried out in the low temperature range, 2 – 30 K, as has
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Figure 5.9 a) ZFC χ(T ) from 2 - 300 K and b) Reciprocal of the molar susceptibility, χ−1(T )
for monoclinic LnBO3; Ln = Eu, Gd, Tb, Dy, Ho, Er, Yb.

been reported for other frustrated Yb3+ oxide systems [159, 269, 300, 320]. The Curie-Weiss
parameters are summarised in Table 5.3. The values of µe f f are found to be consistent with
the theoretical values. The negative values of θCW indicate net antiferromagnetic interactions
in the monoclinic LnBO3.

5.4.2 Isothermal magnetisation

Isothermal magnetisation measurements at selected temperatures in the field range, µ0H = 0
– 9 T were carried out for all samples using the ACMS option on a Quantum Design PPMS.
The M(H) curves for the monoclinic LnBO3 are shown in Figure 5.10. EuBO3 shows a
completely linear M(H) curve at all temperatures from 2 - 100 K, consistent with previous
reports for Eu3+ systems [117, 118, 300]. GdBO3 saturates in a field of 9 T at 2 K and
the maximum value = 6.6 µB/f.u is consistent with the theoretical saturation magnetisation
for Gd3+ Heisenberg spins given by gJJ = 2 · 7

2 = 7 µB/f.u. LnBO3, Ln = Tb, Dy, Ho, Er,
do not show any signs of saturation in a field of 9 T. However the values of maximum
magnetisation at 2K, 9T, Mmax, given in Table 5.3, are consistent with previous reports for
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Table 5.3 Parameters from bulk magnetic measurements for monoclinic LnBO3; Ln = Gd,
Tb, Dy, Ho, Er, Yb. In case of three-dimensional antiferromagnetic ordering, T0 is the Néel
temperature, TN .

Compound
Theor.
µe f f
(µB)

Expt.
µe f f
(µB)

θCW
(K)

T0
(K) f

Theor.
Msat

(µB/f.u.)

Mmax
2 K, 9T
(µB/f.u.)

GdBO3 7.94 7.904(4) -5.4(2)
0.61,
1.72 3.1 7.0 6.6

TbBO3 9.72 9.35(2) -11.0(7) 2.02 5.5 9.0 4.6

DyBO3 10.65 10.19(2) -11.8(6)
0.56,
1.01 11.7 10.0 5.2

HoBO3 10.61 9.73(5) -14(2) - - 10.0 4.8
ErBO3 9.58 9.12(3) -18(1) 0.88 20.4 9.0 4.1
YbBO3 4.54 3.058(8) -0.28(9) < 0.4 > 0.7 4.0 1.7

other geometrically frustrated oxides containing these magnetic ions that show substantial
single-ion anisotropy [269].

5.4.3 Heat capacity

Zero field heat capacity (HC) measurements for LnBO3, Ln = Gd, Tb, Dy, Ho, Er, Yb,
were carried out using the He3 heat capacity option on a Quantum Design PPMS in the
temperature range 0.4 – 20 K to investigate the existence of any magnetic ordering transitions
for T > 0.4 K, which could not be determined from the standard MPMS measurements. In
order to improve the thermal conductivity at low temperatures, the powders were mixed with
approximately equal amounts of silver powder (99.99%, Alfa Aesar). The contribution of the
silver powder to the heat capacity was then deducted using values published in the literature
[243] to obtain the contribution to the heat capacity from the sample only. The lattice
contribution was subtracted using a Debye model (equation 2.37) with Debye temperatures
in the range 260 - 360 K to get the magnetic contribution Cmag. Figure 5.11 shows the plot of
Cmag/T vs T in zero field from 0.4 – 20 K for LnBO3, Ln = Gd, Tb, Dy, Ho, Er, Yb.

GdBO3 shows two sharp ordering transitions at 0.61 K and 1.72 K; so does DyBO3 at
0.56 and 1.01 K. ErBO3 shows a single λ type transition at 0.88 K. No ordering for YbBO3

is seen down to 0.4 K, however the sharp increase in the magnetic heat capacity at 0.4 K
indicates onset of a magnetic ordering transition. Measurements at T < 0.4 K are required
to determine the nature of the transition. A single broad feature is seen for TbBO3 at 2.02
K while for HoBO3, a very broad feature is seen at 6 K, consistent with the susceptibility
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Figure 5.10 Isothermal magnetisation for monoclinic LnBO3; Ln = Eu, Gd, Tb, Dy, Ho, Er
and Yb, at selected temperatures in the magnetic field range 0 - 9 T.

measurements. As has been reported for other Ho3+ compounds [270, 321, 322], the upturn
in the heat capacity for HoBO3 can be attributed to the nuclear Schottky anomaly for Ho3+

which dominates the heat capacity at temperatures below 1 K .

5.5 Low temperature powder neutron diffraction

5.5.1 HoBO3

Low temperature powder neutron diffraction measurements, T ≥ 1.5 K, were carried out for
HoBO3 on the D1B diffractometer, ILL, Grenoble to see if the feature observed at 6 K in the
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Figure 5.11 Magnetic heat capacity Cmag/T vs T in zero field from 0.4 – 20 K for LnBO3;
Ln = Gd, Tb, Dy, Ho, Er, Yb.

magnetic susceptibility and heat capacity was due to any kind of magnetic ordering. As shown
in Figure 5.12, there is no evidence for any long range or short range magnetic order down to
1.5 K. A similar result was obtained for the frustrated double perovskite Ba2HoSbO6, where
the Ho3+ ions lie on a fcc lattice: No magnetic Bragg or diffuse scattering was observed down
to 0.06 K in neutron scattering data. Inelastic neutron scattering revealed a non-magnetic
doublet ground state with the magnetic moment having an expectation value of zero. The
magnetic susceptibility had a significant van Vleck contribution due to thermal population of
excited states [323]. Therefore it is proposed that HoBO3 also has a non-magnetic ground
state and the broad feature in the magnetic susceptibility and heat capacity is due to van
Vleck paramagnetism. However, inelastic neutron spectroscopy and crystal electric field
calculations are required to explicitly confirm this hypothesis.
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Figure 5.12 PND pattern for HoBO3 on D1B, ILL at 1.5 K and 30 K and the difference
plot; inset shows a zoomed-in plot of the same data in the high d spacing range; there is a
complete absence of magnetic Bragg or diffuse scattering.

5.5.2 TbBO3

For TbBO3, low temperature powder neutron diffraction measurements, T ≥ 1.5 K, were
carried out on the WISH diffractometer, ISIS, Oxfordshire by Dr Pascal Manuel. A broad
feature is observed at high d spacing indicative of short-range magnetic ordering, Figure
5.13, consistent with the broad feature in the zero field heat capacity at 2.02 K, Figure 5.11.
The dimensions of the sample can and mass of the sample had not been recorded and so, a
proper absorption correction could not be carried out. Hence it was not possible to perform
further quantitative analysis of the short range ordering.

5.6 Discussion

Polycrystalline samples of π-LnBO3, Ln = Eu, Gd, Tb, Dy, Ho, Er, Yb, have been prepared
and their structure has been evaluated using PXRD and PND. They crystallise in a monoclinic
structure with the Ln3+ forming layers of edge-sharing triangles separated by the borate layers.
The PND data (sensitive to Ln, B, O) shows substantial peak broadening while the PXRD
measurements (sensitive to Ln) show none, indicating a disordered structure. The PND
structural refinements are not consistent with any of the previously reported structures from
PXRD [309], single crystal XRD [311, 313] or PND [312] described in Table 5.1. While
PXRD is not sensitive to B and O, the difference with the previously reported PND data could
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Figure 5.13 PND pattern for TbBO3 on WISH, ISIS at 1.5 K and 100 K and the difference
plot; strong magnetic diffuse scattering is seen at higher d spacing.

be due to difference in the resolution of the instruments used to collect the data or differences
in sample preparation methods. The Ln3+ triangular lattice is also slightly distorted which
indicates that the Ln-Ln intra-layer interactions may be disordered. Given the small distortion,
this is likely to be a weak effect but it still may have a significant impact on the magnetic
properties.

The bulk magnetic properties of the π-LnBO3 are reported for the first time. The nature
of magnetic ordering and the degree of frustration are different for the various LnBO3. As
has been reported for other frustrated lanthanide oxide systems like the tripod kagome lattices
[119] and pyrochlores [45], it is proposed that the variations in magnetic ordering are due
to differences in the magnetic interactions and crystal electric field effects. Further, lattice
distortions could also be an important factor contributing to the differences in magnetic
properties.

The frustration index f has been calculated according to the criterion proposed by
Ramirez, equation (1.63), for LnBO3, Ln = Gd, Tb, Dy, Er. f is not calculated for HoBO3 as
it has a non-magnetic ground state while a lower limit, f > 0.7, is determined for YbBO3.
As seen from Table 5.3, LnBO3, Ln = Tb, Dy, Er can be considered to be geometrically
frustrated.

The M(H) curves indicate Heisenberg spins for GdBO3 and substantial single-ion
anisotropy for LnBO3, Ln = Tb, Dy, Ho, Er, Yb. Of these, YbBO3 saturates at 2K, 9T: the
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maximum value, 1.7 µB/f.u is close to Msat/2. This value is consistent with that observed for
other triangular lattice systems like YbMgGaO4 [157] and KBaYb(BO3)2) [300] and may
indicate Ising nature of Yb3+ spins. The M(H) curves for LnBO3, Ln = Tb, Dy, Ho, Er do
not saturate in the limiting field of 9 T. However, the Mmax values at 2 K, 9 T are close to
Msat/2, the value expected for powder averaged Ising spins [269].

The observation of two magnetic ordering features, as in GdBO3 and DyBO3, has been
observed in other frustrated Heisenberg systems like SrGd2O4 [128], Gd2Ti2O7 [49] as well
as for Ising systems including Ca3Co2O6 [324], CoNb2O6 [325] and SrHo2O4 [139]. In
these systems, the transition at lower temperature is usually due to reorientation of spins,
but further experiments are required to determine the origin of the magnetic ordering in
GdBO3 and DyBO3. The sharp λ type anomaly in ErBO3 points to three-dimensional
antiferromagnetic ordering, as has been reported for SrEr2O4 [134] while the short-range
ordering in TbBO3 is reminiscent of short-range magnetic correlations reported for members
of the SrLn2O4 family [127, 131, 139].

Further neutron diffraction experiments and theoretical modelling of the relevant
interactions are needed to understand the fundamental magnetic behaviour of the monoclinic
LnBO3. Inelastic neutron scattering experiments are required to determine the CEF and
ascertain the nature of the single-ion anisotropy for LnBO3, Ln = Tb, Dy, Ho, Er, Yb.

5.7 Magnetocaloric effect

The magnetocaloric performance of the monoclinic LnBO3 (except Ln = Eu) is analysed
in the liquid helium temperature regime, T ≥ 2 K. EuBO3 exhibits negligible change in
magnetic entropy (the isothermal magnetisation curves at different temperatures coincide) and
hence is excluded from this discussion. The change in magnetic entropy ∆Sm per mole was
calculated from the M(H) curves using Maxwell’s thermodynamic relation, equation (1.64).
As discussed in the previous chapters, Heisenberg systems perform better as magnetocaloric
materials in high fields, µ0H ≥ 5 T, while materials with substantial single-ion anisotropy are
better suited for use in lower fields, µ0H ≤ 2 T. Similar behaviour is observed here (Figure
5.14) and so, the MCE of GdBO3 is considered in the experimentally limiting field of 9 T
and the MCE of LnBO3, Ln = Tb, Dy, Ho, Er, Yb are considered in a field of 2 T. In addition
to ∆Sm per mole, ∆Sm per unit mass and per unit volume has also been calculated as this
is more relevant for practical applications. The ∆Sm values at 2 K are given in Table 5.4
and compared to the standard MCMs, GGG and DGG, discussed in previous chapters for
fields of 9 T and 2 T respectively. At 2 K, 9 T the ∆Sm value of GdBO3 in gravimetric units
(57.8 JK−1 kg−1) shows an increase of 38.1% as compared to Gd3Ga5O12 (41.8 JK−1 kg−1)
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Figure 5.14 ∆Sm (JK−1 mol−1
Ln ) for the monoclinic LnBO3, Ln = Gd, Tb, Dy, Ho, Er, Yb in

the field range µ0H = 0 – 5 T at T = 2 K. It is seen that in fields µ0H ≤ 2 T, attainable by a
permanent magnet, DyBO3 has the highest magnetocaloric performance whereas in fields
µ0H > 3.5 T, GdBO3 surpasses all the other LnBO3 as a magnetocaloric material.

while at 2 K, 2 T, the ∆Sm value for DyBO3 (13.9 JK−1 kg−1) is 26.4% greater than that
of Dy3Ga5O12 (11.0 JK−1 kg−1). In Figure 5.15, the MCE of DyBO3 and Dy3Ga5O12 are
shown in low fields ≤ 2 T, while the MCE of GdBO3 and Gd3Ga5O12 are compared in high
fields ≥ 5 T.

Table 5.4 MCE in monoclinic LnBO3, Ln = Gd, Tb, Dy, Ho, Er, Yb at T = 2 K.

Compound Field (T)
∆Sm

(JK−1 mol−1
Ln )

∆Sm
(JK−1 kg−1)

∆Sm
(mJK−1 cc−1)

GdBO3 9 12.5 57.8 366.3
Gd3Ga5O12

(GGG) 9 14.1 41.8 296.4

TbBO3 2 0.7 3.2 20.8
DyBO3 2 3.1 13.9 92.5
HoBO3 2 0.2 0.9 6.1
ErBO3 2 2.6 11.5 80.0
YbBO3 2 2.1 9.1 66.0

Dy3Ga5O12
(DGG) 2 3.8 11.0 80.6
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Figure 5.15 Change in magnetic entropy ∆Sm per unit mass for a) DyBO3 compared to DGG
in magnetic fields of 1 T and 2 T. b) GdBO3 compared to GGG in magnetic fields of 5 T and
9 T.

The magnetocaloric performance of LnBO3 is now compared to other low temperature
magnetocaloric materials. In recent years, several other Gd3+ MCMs have been reported
which have high MCE in high magnetic fields [185, 189–191, 193, 194]. However, for
practical applications, different Ln3+ containing compounds can be viable low temperature
MCMs in lower fields, up to 2 T [201, 297, 298] (also see Chapters 3 and 4). The MCE
in GdBO3 and DyBO3 in gravimetric units, Table 5.4, are comparable to or greater than
these materials. The origin of the competitive MCE per unit mass can be explained by
considering the low mass per mole Ln ion in LnBO3 (≈ 218 g/molLn) compared to other
MCMs Ln3Ga5O12 (≈ 340 g/molLn), LnPO4 (≈ 255 g/molLn), LnCrO4 (≈ 273 g/molLn),
LnVO4 (≈ 276 g/molLn) and Ln(HCOO)3 (≈ 295 g/molLn). Also, LnBO3 possess the
advantage of a low temperature scalable synthesis; this is significant for practical usage.
Most importantly, the existence of magnetic ordering transitions for both GdBO3 and DyBO3
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below 2 K implies that they would suitable for cooling to temperatures below 2 K as further
magnetic entropy can be extracted. Moreover mixed lanthanide orthoborates, LnxLn′(1 – x)BO3

could be developed in order to tune the MCE in different temperature and field regimes, as
has been reported for other lanthanide oxide systems [201]. GdBO3 and DyBO3 are therefore
competitive magnetocaloric materials in the liquid helium temperature regime.

5.8 Conclusion

Powder samples of a series of lanthanide orthoborates LnBO3, Ln = Eu, Gd, Tb, Dy, Ho, Er
and Yb, have been synthesised. PXRD and PND measurements have been carried out to
resolve the crystal structure which has been the subject of much debate. PXRD shows that
they crystallise in a monoclinic structure where the magnetic Ln3+ form a two-dimensional
triangular lattice with slight deviations from ideal equilateral triangles (< 1.5%) while
PND shows the presence of significant disorder in the borate layers which has not been
reported previously. While the arrangement of the Ln3+ layers could be determined, the exact
arrangement of the borate layers remains an open question.

The bulk magnetic properties of LnBO3, Ln = Eu, Gd, Tb, Dy, Ho, Er and Yb, are
reported for the first time. Zero field heat capacity measurements reveal different magnetic
transitions at T ≤ 2 K for LnBO3, Ln = Gd, Tb, Dy, Er, while the onset of magnetic ordering
can be seen for YbBO3 at 0.4 K. HoBO3 is postulated to have a non-magnetic ground
state. Isothermal magnetisation measurements have revealed different single-ion anisotropies
for the various Ln3+. Evaluation of the MCE shows that DyBO3 and GdBO3, are viable
magnetocaloric materials in the liquid helium temperature regime in fields ≤ 2 T achievable
using a permanent magnet and higher magnetic fields > 5 T respectively.

The monoclinic lanthanide orthoborates, Ln = Eu, Gd, Tb, Dy, Ho, Er, Yb, serve as
a prototype of a slightly distorted frustrated rare-earth triangular lattice and exhibit many
interesting magnetic properties. A more detailed investigation of the magnetic ground states
in these materials will provide insight into the physics of two-dimensionally frustrated
triangular lattices containing magnetic Ln3+.



Chapter 6

Magnetic properties of lanthanide
metaborates, Ln(BO2)3

The previous chapter had discussed the lanthanide borates, LnBO3, with a slightly distorted
edge-sharing triangular lattice of magnetic Ln3+ in two dimensions. This chapter discusses
the magnetic and magnetocaloric properties of the lanthanide metaborates, Ln(BO2)3, Ln = Pr,
Nd, Gd, Tb where the magnetic Ln3+ form one-dimensional chains, leading to the possibility
of observing exotic magnetic properties associated with low-dimensional magnetism and
frustrated interactions.

6.1 Background

Ideal one-dimensional magnetic materials do not show any long-range ordering [326] but in
most real materials, there is some inter-chain coupling which leads to magnetic ordering in
three dimensions. Such quasi one-dimensional magnetic materials can also exhibit
frustration due to competition between nearest-neighbour and next nearest-neighbour
interactions or the stacking arrangement of the magnetic chains in the lattice, giving rise to
exotic magnetic behaviour such as field-induced transitions, multiple magnetisation plateaux
and incommensurate magnetic structures [39]. A well-known example of such exotic
behaviour is a spin-Peierls transition in CuGeO3 where the linear Heisenberg Cu2+ spin
chains transform to a system of dimerised (alternating) chains due to spin-phonon coupling
[327]. Another example is a unique quantum critical point in the quasi one-dimensional
Ising ferromagnet CoNb2O6 [207] with the underlying symmetry described by the E8 Lie
group, the highest order symmetry group known in mathematics. Other examples include
incommensurate spin correlations in quantum spin liquid LiCuSbO4 [328], soliton
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excitations in CoV2O6 [329] and an order-order transition from a spin density wave (SDW)
structure to commensurate antiferromagnetic (CAFM) structure in Ca3Co2O6 [324].

Quasi one-dimensional systems containing magnetic lanthanide ions have not been
explored in detail. However, recent studies on the magnetic properties of the lanthanide
formates, Ln(HCOO)3, have revealed one-dimensional chains of magnetic Ln3+ stacked
to form a triangular lattice [201, 330]. Neutron scattering experiments carried out on
Tb(HCOO)3 reported the onset of magnetic ordering at 1.6 K, ascribed to one-dimensional
ferromagnetic order along the chains, analogous to the triangular Ising antiferromagnet [330].
The lanthanide formates were also reported to be viable magnetocalorics in the temperature
range 4 - 10 K, as an alternative to cooling using liquid helium [189, 201].

From the example of lanthanide formates, it would be reasonable to anticipate that other
materials containing one dimensional chains of magnetic lanthanide ions could exhibit exotic
magnetic properties and also show enhanced magnetocaloric performance in the liquid
helium temperature regime. Lanthanide metaborates, Ln(BO2)3 are a family of materials that
have been studied for their applications in phosphors [331–333]. They have been reported
to crystallise in two structures depending on the size of the Ln3+ ion: an ambient pressure
monoclinic phase for Ln = La – Tb and a high pressure orthorhombic phase for Ln = Tb –
Er [303, 334–336]. When the arrangement of the magnetic Ln3+ in the reported monoclinic
crystal structure for the Ln(BO2)3 is considered, it is found that the magnetic Ln3+ form
chains in the structure (Figure 6.1). Thus the lanthanide metaborates, Ln(BO2)3, could be a
rare example of a Ln3+ quasi-one-dimensional magnetic system but their magnetic properties
have not been investigated previously. This chapter presents a study of the structure, magnetic
and magnetocaloric properties of Ln(BO2)3, Ln = Pr, Nd, Gd, Tb.

6.2 Sample preparation

Samples of Ln(BO2)3 (Ln = Pr, Nd, Gd, Tb) were synthesised using a ceramic method by
weighing out and mixing stoichiometric amounts of Ln2O3 (Ln = Nd, Gd) (99.999% Alfa
Aesar), Pr6O11 (99.999% Alfa Aesar), or Tb4O7 (99.999% Alfa Aesar) and H3BO3 (99.99%
Alfa Aesar) A 50% excess of H3BO3 was added to compensate for the loss of B due to
volatilisation during heating. Ln2O3 (Ln = Nd, Gd) and Pr6O11 were pre-dried at 800 ◦C
prior to being weighed out. The initial heating was carried out at 350 ◦C for 2 hours to enable
decomposition of H3BO3. After regrinding, the samples were heated between 800 ◦C and
900 ◦C in air for 48 to 192 hours with intermediate regrindings. The reaction was considered
to be complete when the impurity peaks in the PXRD did not change on heating.



6.3 Structural characterisation 151

The samples of Ln(BO2)3 (Ln = Pr, Nd, Tb) for PND experiments were prepared by the
same synthesis method. In place of H3BO3, enriched boric acid (11B) (99% purity, Sigma
Aldrich) was used as starting material in order to reduce the absorption from 10B [221] in the
neutron beam.

Preparation of Ln(BO2)3 (Ln = Dy, Ho, Er) by the same method was unsuccessful. For
Ln = Dy, a mixture of Ln(BO2)3 and LnBO3 was obtained and for Ln = Ho and Er, only
the LnBO3 phase was obtained. The synthesis attempts were discontinued because it was
concluded that the monoclinic phase cannot be obtained for Ln(BO2)3 (Ln = Dy, Ho, Er) by
this method. A successful synthesis of the orthorhombic phase of Ln(BO2)3, Ln = Dy - Er,
has been reported in the literature using high pressure methods [336]. This indicates that the
monoclinic phase is not stable under ambient pressure conditions for Ln(BO2)3, Ln = Dy -
Er.

6.3 Structural characterisation

PXRD was used to confirm formation of the desired products. Initially, in order to track the
progress of the reaction, short scans were collected over 10◦ ≤ 2θ ≤ 60◦ (∆ 2θ = 0.015◦)
using a Bruker D8 X-ray diffractometer (Cu Kα radiation, λ = 1.540 Å). Once a sufficiently
pure sample was obtained, longer scans for 2 hours over a wide angular range 10◦ ≤ 2θ ≤ 90◦

(∆ 2θ = 0.01◦) were collected on the same diffractometer for more detailed structural analysis.
Room temperature (RT) PND measurements were carried out on the D2B diffractometer,
ILL, Grenoble (λ = 1.595 Å) for Ln(BO2)3 (Ln = Pr, Nd, Tb) for more precise structural
determination.

Using previous structural reports as a starting point [335, 337, 338], a combined Rietveld
refinement of the RT PND and PXRD data for Ln(BO2)3, Ln = Pr, Nd, Tb was used to refine
the crystal structure. Gd has a very high absorption cross-section [221], due to which it was
not possible to carry out RT PND and so, the structure was refined using only the PXRD
data for Gd(BO2)3. The appropriate scattering length for enriched boron [221] was used
for the PND Rietveld refinement. The primary motivation for collecting the high resolution
D2B PND data was the sensitivity of PND to the B and O positions. Thus, very accurate
information about the crystal structure was obtained from the combined Rietveld refinements.
The thermal parameters, Biso, and B and O positions were kept fixed to the values reported
in the literature for Gd(BO2)3 as the refinement was only carried out using PXRD. Figure
6.2 shows the combined PXRD + PND refinement for Pr(BO2)3 and the crystal structure
parameters for all the monoclinic Ln(BO2)3 are given in Table 6.1. The combined RT PXRD
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Figure 6.1 General crystal structure for monoclinic Ln(BO2)3: a) Ribbons of borate groups
consisting of BO4

5 – tetrahedra and BO3
3 – triangles propagate along c axis. b) Magnetic

Ln3+ form one-dimensional chains between these ribbons. c) Considering inter-chain dipolar
interactions along with intra-chain interactions, the magnetic Ln3+ form a distorted three
dimensional honeycomb lattice.
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Figure 6.2 Room temperature PXRD and PND pattern for Pr(BO2)3: Red dots - Experimental
data, Black line - Modelled data, Blue line - Difference pattern, Blue ticks - Bragg positions;
for Pr(BO2)3, Red ticks - Bragg positions for PrBO3, Green ticks - Bragg positions for
H3BO3.

+ PND refinements for Nd(BO2)3 and Tb(BO2)3 and RT PXRD refinement for Gd(BO2)3

can be found in Appendix A.
The Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, crystallise in a monoclinic unit cell with the space

group C2/c. The structure consists of ribbons of borate units with alternating corner sharing
BO3

3 – triangles and BO4
5 – tetrahedra that propagate along the c axis, shown in Figure 6.1a.

The magnetic Ln3+ ions form one-dimensional chains between the ribbons, shown in Figure
6.1b. If the interactions between chains are considered, the arrangement of the Ln3+ ions is
more complicated: they form a distorted three-dimensional honeycomb lattice, this is shown
in Figure 6.1c.
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Table 6.1 Crystal structure parameters for monoclinic Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, space
group C2/c. Structural parameters have been determined from combined PXRD + PND
refinements for Ln = Pr, Nd, Tb and PXRD for Ln = Gd.

Ln Pr Nd Gd Tb

a (Å) 6.41249 (3) 6.37043 (6) 6.25159 (5) 6.21781 (5)
b (Å) 8.09827 (6) 8.07975 (9) 8.02602 (9) 8.02564 (6)
c (Å) 7.90730 (5) 7.88632 (9) 7.82649 (8) 7.80659 (4)
β (◦) 93.7129 (5) 93.6935 (7) 93.6292 (8) 93.3723 (4)

Volume (Å3) 409.765 (5) 405.078 (7) 391.909 (7) 388.889 (6)
χ2 5.71 5.00 4.05 3.51

Rwp 3.58 3.32 5.72 2.66
Ln: 4e (0, y, ¼) y 0.0501 (2) 0.0499 (2) 0.0464 (2) 0.04500 (13)

Biso (Å2) 0.61 (5) 1.55 (3) 0.5 0.76 (5)
B1: 4e(0, y, ¼) y 0.4714 (4) 0.4699 (5) 0.4590 0.4728 (4)

Biso (Å2) 0.41 (4) 0.53 (8) 0.5 1.37 (8)
B2: 8 f (x,y,z) x 0.1074 (2) 0.1066 (5) 0.09800 0.1095 (2)

y 0.31665 (18) 0.3164 (3) 0.32600 0.3137 (2)
z 0.5249 (2) 0.5256 (4) 0.52100 0.5248 (2)

Biso (Å2) 0.183 (23) 0.23 (5) 0.5 0.135 (21)
O1: 8 f (x,y,z) x 0.1414 (2) 0.1430 (5) 0.15045 0.1493 (3)

y 0.3629 (2) 0.3605 (4) 0.36671 0.3621 (2)
z 0.3578 (2) 0.3571 (4) 0.35116 0.3553 (2)

Biso (Å2) 0.52 (3) 0.58 (5) 0.5 0.97 (3)
O2: 8 f (x,y,z) x 0.1395 (3) 0.1407 (5) 0.14316 0.1455 (2)

y 0.4366 (2) 0.4362 (4) 0.43845 0.4351 (3)
z 0.6480 (3) 0.6480 (4) 0.64816 0.6508 (3)

Biso (Å2) 0.70 (3) 0.47 (5) 0.5 0.75 (5)
O3: 8 f (x,y,z) x 0.0479 (3) 0.0491 (5) 0.05526 0.0522 (4)

y 0.1617 (3) 0.1601 (5) 0.17006 0.1582 (4)
z 0.5472 (3) 0.5476 (5) 0.55122 0.5434 (4)

Biso (Å2) 0.18 (2) 0.93 (7) 0.5 1.30 (7)
LnBO3 wt % 1.3 (4) 1.8 (4) 0.4 (5) 1.8 (3)
H3BO3 wt % 0.56 (14) 1.8 (2) - 0.90 (14)

Ln−Ln
(intra-chain) (Å)

4.0347 (4) 4.0241 (5) 3.9838 (5) 3.9696 (4)

Ln−Ln
(inter-chain) (Å)

4.5565 (14) 4.537 (2) 4.521 (2) 4.5269 (15)

Ln –O1 (Å) 2.602(3) × 2 2.580(4) × 2 2.472(9) × 2 2.489(4) × 2
2.801(3) × 2 2.781(4) × 2 2.832(9) × 2 2.815(4) × 2

Ln–O2 (Å) 2.568(3) × 2 2.548(4) × 2 2.477 (9) × 2 2.457(6) × 2
Ln –O3 (Å) 2.383(4) × 2 2.364(5) × 2 2.373(10) × 2 2.330(4) × 2

2.520(4) × 2 2.510(4) × 2 2.561(10) × 2 2.467(4) × 2
< Ln-O> (Å) 2.575 2.557 2.543 2.512
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Figure 6.3 Lattice parameters for Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, as a function of Ln3+ ionic
radii. Lines are given as a guide to the eye. Error bars are smaller than size of symbols.

The structural parameters for Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, are consistent with previous
reports. The lattice parameters a and c vary linearly with the Ln3+ ionic radii while small
deviations in the linear trend are observed for b and β , Figure 6.3. However the deviations in
b and β compensate for each other and overall, the lattice volume given by V = abcsinβ

shows a linear variation with the Ln3+ ionic radii.
In order to investigate the existence of any structural transition for Pr(BO2)3,

measurements were carried out at 3.5 K and 12 K using a cryocooler on D2B, ILL, Grenoble.
Low temperature PXRD measurements were carried out for Pr(BO2)3 at 12 K using an
Oxford Cryosystems PheniX stage. This was so that a combined (PXRD+PND) structural
Rietveld refinement at 12 K could be carried out. The PND patterns showed no changes in
peak positions or intensities between 3.5 K and 12 K. Hence only the structural refinements
at room temperature and 12 K were compared. A decrease in the lattice parameters and
slight shifts in the atomic positions (Table 6.2) were observed but the monoclinic crystal
structure was found to be retained on cooling. The changes in the Pr-Pr and Pr-O bond
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lengths were negligible within error and so these are not tabulated separately. It can be
concluded that there is no structural transition below room temperature in Pr(BO2)3,
consistent with previous literature, where no structural transition has been reported for
Ln(BO2)3, Ln = Pr, Nd, Gd at low temperatures [303].

According to previous reports, Tb(BO2)3 undergoes a structural transition around 150 K
to a different monoclinic phase [303, 339]. In order to investigate this possibility, low
temperature PND data for Tb(BO2)3 was collected on the WISH diffractometer, ISIS,
Oxfordshire using a standard cryostat at 2, 3, 5, 10, 50, 100 and 150 K and low temperature
PXRD scans at 12, 50, 100, 150, 200 and 300 K were collected using the Oxford
Cryosystems PheniX stage on a Bruker D8 diffractometer. On cooling below 150 K, clear
changes in intensities and additional peaks are observed which can be indexed with the
reported low temperature structure for Tb(BO2)3. The additional peaks are more clearly
distinguishable in the PXRD pattern. However, contrary to previous structural reports where
a complete structural transition is reported [303, 339], the PXRD data collected shows
coexistence of the room temperature and low temperature phase at temperatures below 150
K in a ratio of approximately 3.75:1 by weight. No structural model could account for all the
structural peaks and both phases needed to be considered. The ratio of the two structural
phases remains unchanged as the sample is cooled. No additional structural changes were
noted between 2 K and 150 K and only slight changes in lattice parameters and positions on
cooling were observed. The structural parameters for the combined PXRD + PND
refinements at 100 K and 300 K for the room temperature (RT) monoclinic phase are
compared in Table 6.3 while the parameters for the low temperature (LT) monoclinic crystal
structure are given in Table 6.4.

Figure 6.4 shows the RT and LT structural modifications of Tb(BO2)3. The LT structure
can be visualised as resulting from a spontaneous shear of the RT phase in the ac plane [339].
Comparisons between the phases are seen more clearly by viewing the RT structure along c
and LT structure along a directions respectively (the LT structure is in a different monoclinic
setting and so the convention for the crystallographic axes is different). The B-O coordination
and connectivity of the borate groups in the two structures is similar, Figures 6.4a and 6.4b,
but the coordination of the Tb ions is different, Figures 6.4c and 6.4d. In the RT phase there
is an (8+2) coordination with oxygen with eight Tb-O distances less than 2.5 Å and two
longer Tb-O bonds while in the LT phase, the coordination is 8 with all bond lengths shorter
than 2.5 Å. The Tb3+ chains are also oriented differently in the two structures, Figures 6.4e
and 6.4f, although the one-dimensional nature of the Ln3+ chains is retained in the LT phase.
The ratio of intra-chain and inter-chain distances is smaller in the LT phase than the RT phase
(Table 6.4) and this will have impact the dipolar interactions since D ∝ 1/r3

Ln−Ln.
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Table 6.2 Comparison of structural information for Pr(BO2)3 from combined PXRD + PND
refinements at 12 K and 300 K (RT).

12 K 300 K

a (Å) 6.40092 (6) 6.41249 (3)
b (Å) 8.08400 (4) 8.09827 (6)
c (Å) 7.90419 (7) 7.90730 (5)
β (◦) 93.9367 (7) 93.7129 (5)

Volume (Å3) 408.038 (6) 409.765 (5)
χ2 5.90 5.71

Rwp 3.61 3.58
Ln: 4e (0, y, ¼) y 0.0509 (5) 0.0501 (2)

Biso (Å2) 0.38 (6) 0.61 (5)
B1: 4e (0, y, ¼) y 0.4712 (3) 0.4714 (4)

Biso (Å2) 0.21 (5) 0.41 (4)
B2: 8 f (x,y,z) x 0.1072 (3) 0.1074 (2)

y 0.3163 (2) 0.3166 (2)
z 0.5248 (2) 0.5249 (2)

Biso (Å2) 0.16 (3) 0.18 (2)
O1: 8 f (x,y,z) x 0.1423 (3) 0.1414 (2)

y 0.3628 (3) 0.3629 (2)
z 0.3560 (3) 0.3578 (2)

Biso (Å2) 0.27 (4) 0.52 (3)
O2: 8 f (x,y,z) x 0.1397 (3) 0.1395 (3)

y 0.4364 (3) 0.4368 (2)
z 0.6481 (3) 0.6480 (3)

Biso (Å2) 0.36 (4) 0.70 (3)
O3: 8 f (x,y,z) x 0.0467 (3) 0.0479 (3)

y 0.1609 (3) 0.1617 (3)
z 0.5477 (3) 0.5472 (3)

Biso (Å2) 0.41 (4) 0.18 (2)
Ln−Ln

(intra-chain) (Å)
4.0369 (12) 4.0347 (4)

Ln−Ln
(inter-chain) (Å)

4.539 (5) 4.5565 (14)

Ln - O1 (Å) 2.587 (3) × 2 2.602 (3) × 2
2.790 (5) × 2 2.801 (3) × 2

Ln - O2 (Å) 2.563 (3) × 2 2.568 (3) × 2
Ln - O3 (Å) 2.376 (4) × 2 2.383 (4) × 2

2.514 (3) × 2 2.520 (4) × 2
< Ln-O> (Å) 2.566 2.575
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Table 6.3 Comparison of structural parameters for Tb(BO2)3 from combined PXRD + PND
refinements at 100 K and 300 K (RT) for the room temperature phase, space group C2/c.

RT phase - space group C2/c 100 K 300 K

a (Å) 6.2078 (4) 6.21781 (5)
b (Å) 8.0322 (4) 8.02564 (6)
c (Å) 7.8026 (4) 7.80659 (4)
β (◦) 93.278 (6) 93.3723 (4)

Volume (Å3) 388.42 (4) 388.889 (6)
χ2 6.31 3.51

Rwp 26.5 2.66
Ln: 4e (0, y, ¼) y 0.0447 (7) 0.04500 (13)

Biso (Å2) 0.5 0.76 (5)
B1: 4e (0, y, ¼) y 0.4799 (13) 0.4728 (4)

Biso (Å2) 0.5 1.37 (8)
B2: 8 f (x,y,z) x 0.1089 (9) 0.1095 (2)

y 0.3052 (9) 0.3137 (2)
z 0.5233 (9) 0.5247 (2)

Biso (Å2) 0.5 0.14 (21)
O1: 8 f (x,y,z) x 0.1519 (9) 0.1493 (3)

y 0.3606 (10) 0.3621 (2)
z 0.3583 (11) 0.3553 (2)

Biso (Å2) 0.5 0.97 (3)
O2: 8 f (x,y,z) x 0.1640 (11) 0.1455 (2)

y 0.4300 (9) 0.4351 (3)
z 0.6470 (9) 0.6508 (3)

Biso (Å2) 0.5 0.75 (5)
O3: 8 f (x,y,z) x 0.0399 (9) 0.0522 (4)

y 0.1491 (7) 0.1582 (4)
z 0.5468 (9) 0.5434 (4)

Biso (Å2) 0.5 1.30 (7)
Weight % of total Ln(BO2)3 phase 75 (2) 100

Ln−Ln
(intra-chain) (Å)

3.9674 (15) 3.9696 (4)

Ln−Ln
(inter-chain) (Å)

4.527 (6) 4.5269 (15)

Ln - O1 (Å) 2.482 (7) × 2 2.489 (4) × 2
2.821 (10) × 2 2.815 (4) × 2

Ln - O2 (Å) 2.379 (8) × 2 2.457 (6) × 2
Ln - O3 (Å) 2.247 (8) × 2 2.330 (4) × 2

2.460 (8) × 2 2.467 (4) × 2
< Ln-O> (Å) 2.478 2.512
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Table 6.4 Structural parameters for low temperature phase of Tb(BO2)3 from a combined
PXRD + PND refinement at 100 K.

LT phase - space group P21/c 100 K

a (Å) 7.7917 (10)
b (Å) 8.1862 (10)
c (Å) 6.1557 (5)
β (◦) 90.669 (9)

Volume (Å3) 392.61 (8)
χ2 6.31

Rwp 26.5
Ln: 4e (x, y, z) x 0.752 (6)

y 0.991 (3)
z 0.050 (2)

Biso (Å2) 0.5
B1: 4e (x, y, z) x 0.014 (6)

y 0.710 (6)
z 0.100 (8)

Biso (Å2) 0.5
B2: 4e (x,y,z) x 0.518 (6)

y 0.841 (5)
z 0.423 (8)

Biso (Å2) 0.5
B3: 4e (x,y,z) x 0.268 (9)

y -0.989 (5)
z 0.516 (9)

Biso (Å2) 0.5
O1: 4e (x,y,z) x 0.055 (7)

y 0.885 (5)
z 0.088 (7)

Biso (Å2) 0.5
O2: 4e (x,y,z) x 0.880 (8)

y 0.666 (6)
z 0.182 (8)

Biso (Å2) 0.5
O3: 4e (x,y,z) x 0.153 (8)
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y 0.584 (6)
z 0.138 (7)

Biso (Å2) 0.5
O4: 4e (x,y,z) x 0.641 (9)

y 0.899 (6)
z 0.351 (9)

Biso (Å2) 0.5
O5: 4e (x,y,z) x 0.505 (6)

y 0.671 (5)
z 0.463 (7)

Biso (Å2) 0.5
O6: 4e (x,y,z) x 0.270 (7)

y 0.884 (5)
z 0.343 (9)

Biso (Å2) 0.5
Weight % of total Ln(BO2)3 phase 22.0 (1.0)

Ln−Ln
(intra-chain) (Å)

3.90 (7)

Ln−Ln
(inter-chain) (Å)

5.00 (3)

<Ln-O>(Å) 2.392
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Figure 6.4 Comparison of RT and LT structural modifications for Tb(BO2)3: The connectivity
of the borate groups in the a) RT b) LT phase and Tb-O coordination polyhedra in the c) RT
d) LT phase. The connectivity of the magnetic Ln3+ chains in the e) RT f) LT phase.
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6.4 Bulk magnetic measurements

Figure 6.5 Zero field cooled (ZFC) magnetic susceptibility χ(T ) measured in 100 Oe for
Ln(BO2)3; Ln = Pr, Nd, Gd, Tb. Inset shows the inverse susceptibility, χ−1(T ).

6.4.1 Magnetic susceptibility

Magnetic susceptibility measurements for all Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, were carried
out on a Quantum Design MPMS with a SQUID magnetometer. The ZFC susceptibility,
χ(T ), was measured in a field of 100 Oe in the temperature range 2-300 K. The applied field
of 100 Oe is sufficiently low such that the isothermal magnetisation M(H) curve is linear
at all temperatures, Therefore, the linear approximation for χ(T ), equation (1.22), can be
used. Figure 6.5 shows the ZFC magnetic susceptibility for the Ln(BO2)3. A broad feature
is seen at T = 5 K for Pr(BO2)3; none of the other samples show any magnetic ordering
features down to 2 K. The reciprocal susceptibility χ−1 is linear above 100 K and was fit
to the Curie-Weiss law, equation (1.59), the parameters for which are given in Table 6.5.
The negative values of the Curie-Weiss temperatures for all samples indicate the presence of
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Table 6.5 Bulk magnetic properties of monoclinic Ln(BO2)3; Ln = Pr, Nd, Gd, Tb. In case of
three-dimensional antiferromagnetic ordering, T0 is the Néel temperature, TN .

Ln TN (K) θCW (K) Theoretical Experimental

µe f f
(µB)

Msat
(µB/f.u.)

µe f f
(µB)

Mmax2K,9T
(µB/f.u.)

Pr - -14 (3) 3.58 3.2 3.38 (3) 1.3
Nd <0.4 TIP 3.62 3.3 3.15 (7) 1.0
Gd 1.1 -0.4 (2) 7.94 7.0 7.032 (5) 6.0
Tb 1.05, 1.95 -12 (3) 9.72 9.0 8.11 (7) 2.9

antiferromagnetic interactions. Significant temperature-independent paramagnetism (TIP) is
seen for Nd(BO2)3 due to which the high T fit to the Curie-Weiss law gives an unphysical
value for θCW . This is not reported. Instead, as has been reported for other Nd3+ systems
[119, 120, 247, 340, 341], a fit in the low T regime from 2 – 30 K was carried out. This gives
µe f f = 2.14 µB and θCW = -0.20 K. In general, the magnetic moments calculated from the
Curie-Weiss fits agree well with the theoretical values.

6.4.2 Isothermal magnetisation

M(H) measurements in the field range, µ0H = 0 – 9 T were carried out at selected
temperatures between 2 - 100 K using the ACMS II option on a Quantum Design PPMS.
Figure 6.6 shows the M(H) curves for Ln(BO2)3, Ln = Pr, Nd, Gd, Tb. Pr(BO2)3 shows no
signs of saturation in a field of 9 T. Gd(BO2)3 saturates at 6 µB/f.u at 2 K in a field of 9 T,
this is close to the theoretical Msat for Gd3+ Heisenberg spins, gJJ = 7 µB/f.u. A
magnetisation plateau at ≈ 3µB/f.u. is seen for Tb(BO2)3 at 2 K. This corresponds to Msat /3.
A Msat /3 plateau at 2 K is also seen for Nd(BO2)3. The magnetisation plateaux persists in a
field of 14 T at 2 K for both Tb(BO2)3 and Nd(BO2)3 (Figure 6.7).

6.4.3 Heat capacity

Heat capacity measurements for Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, were carried out using a
Quantum Design PPMS in the temperature range 0.4 – 20 K in zero field using the He3
option. As all the samples are poor thermal conductors, they were mixed with approximately
equal mass of silver powder (99.99%, Alfa Aesar) and pressed into pellets to enhance the
thermal conductivity at low temperatures. The contribution of the silver powder to the heat
capacity was then deducted by scaling the values from the literature [243] by mass in order
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Figure 6.6 Isothermal magnetisation M(H) curves at selected temperatures for Ln(BO2)3; Ln
= Pr, Nd, Gd, Tb.

to obtain the heat capacity of the sample. The lattice contribution was subtracted using a
Debye model (equation 2.37) with Debye temperatures in the range 250 - 325 K.

Figure 6.8 shows the magnetic component of the zero field heat capacity for Ln(BO2)3,
Ln = Pr, Nd, Gd, Tb. A very broad feature is observed for Pr(BO2)3 at 5 K, consistent with
the susceptibility measurements. There is no further ordering feature observed below 2 K. No
ordering is seen for Nd(BO2)3 but the onset of a sharp transition is seen at 0.4 K. A sharp λ

type transition at 1.1 K is seen for Gd(BO2)3. Tb(BO2)3 exhibits two sharp ordering features
at 1.05 K and 1.95 K.
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Figure 6.7 Isothermal magnetisation in a field of 14 T at 2 K for Nd(BO2)3 and Tb(BO2)3;
in both cases the Msat/3 plateau is found to persist.

6.5 Low temperature powder neutron diffraction

6.5.1 Pr(BO2)3

Low temperature PND measurements, T ≥ 1.5 K, on Pr(BO2)3 were carried out on the D1B
diffractometer at ILL, Grenoble (λ = 2.525 Å) using an Orange cryostat to investigate the
existence of any magnetic ordering. Long scans were collected at 1.5 K and 30 K, below and
above the feature at 5 K observed in the magnetic susceptibility and zero field heat capacity.
The PND data shows no magnetic Bragg peaks or diffuse scattering down to 1.5 K, Figure
6.9. This leads to the conclusion that Pr(BO2)3 has a non-magnetic ground state as has
been reported for complex Pr3+ oxides like Pr3Ga5SiO14 [110] and Pr3A2Sb3O14 [119]. As
reported elsewhere [110], the features in the bulk measurements for Pr(BO2)3 are consistent
with van Vleck paramagnetism expected for such a ground state due to thermal population of
low-lying excited states.

6.5.2 Tb(BO2)3

Ultra-low temperature PND measurements, T ≥ 0.4 K, on Tb(BO2)3 were carried out on
the WISH diffractometer at ISIS, Oxfordshire to investigate the nature of the two magnetic
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Figure 6.8 Magnetic heat capacity, Cmag(T ), in zero field for Ln(BO2)3; Ln = Pr, Nd, Gd, Tb.

ordering transitions at 1.05 K and 1.95 K respectively. Scans were collected in 0.1 K steps
between 0.4 K and 2.0 K using a Heliox. Structural Bragg peaks corresponding to the copper
can were observed at all temperatures and so, the data was analysed by taking a difference
pattern of a scan at a particular temperature with the data at 2 K, where there are no magnetic
Bragg peaks. Below 2 K, several magnetic Bragg peaks were observed. A constant term was
added to all the data to remove the negative intensities. The intensity of the magnetic Bragg
peaks evolves as a function of temperature on cooling. However, no changes in intensities
are observed between 0.4 K and 0.9 K. The temperature dependence of the magnetic Bragg
peaks for Tb(BO2)3 is shown in Figure 6.10 and the intensity of the most intense magnetic
Bragg peak at ≈ d = 4.90 Å is plotted as a function of temperature in Figure 6.11. It is seen
that the intensity of all the magnetic Bragg peaks gradually increases as the sample is cooled
from 1.9 K to 1.5 K, consistent with the onset of the magnetic ordering transition at 1.95 K
in the zero field heat capacity data. On further cooling, the magnetic Bragg peak intensities
decrease at 1.4 K and then again increase gradually until 0.9 K after which there is no change
down to 0.4 K. It is likely that the increase in intensity corresponds to the magnetic ordering
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Figure 6.9 PND pattern for Pr(BO2)3 on D1B, ILL at 1.5 K and 30 K and the difference
plot. Inset: a zoom-in of the same plot at low 2θ highlighting the complete absence of any
magnetic Bragg peaks or diffuse scattering.

transition at 1.05 K but the exact nature of the magnetic ordering for either transition is
unclear as shall be discussed below.

As discussed in Section 6.3, structural refinements at 100 K have shown the coexistence
of the RT monoclinic phase along with a LT monoclinic structure in a ratio of approximately
3.75:1 by weight. Therefore one possible explanation for the two magnetic ordering
transitions is that the two structural polymorphs order magnetically at two different
temperatures. However it is unlikely that this is the case here because while additional Bragg
peaks were observed for the LT phase in the structural refinements, specific magnetic Bragg
peaks do not appear on cooling through the two transitions. Rather the intensities of all the
magnetic Bragg peaks vary in a similar manner as a function of temperature. So, on the basis
of the current data, it has to be assumed that both the structural phases contribute to the
magnetic ordering.

Indexing of the magnetic propagation vector k from a difference pattern of the 1.5 K - 2 K
data was attempted using the k search program in the Fullprof suite. The k vector was found to
be incommensurate (δ , δ

′
, δ

′′
) for both structural phases. A Lebail refinement was attempted

with the RT phase only as well as with both RT and LT phases (with different incommensurate
propagation vectors). However, the modelling of the peaks was unsatisfactory. The accuracy
of the indexed k vector so obtained is highly uncertain because it cannot be determined
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Figure 6.10 PND difference patterns between 0.4 and 2 K for Tb(BO2)3 on WISH, ISIS on
Banks 2 + 9 with intensities offset for clarity; differences are taken with the 2 K data where
no magnetic Bragg peaks are observed.

Figure 6.11 Intensity of the most intense magnetic Bragg peak at ≈ d = 4.90 Å as a function
of temperature for Tb(BO2)3 on WISH, ISIS on Banks 2 + 9; the two magnetic ordering
transition temperatures are indicated in the same plot.
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with absolute certainty whether magnetic peaks are observed from both structural phases
or whether only one structural phase contributes to the magnetic ordering. Due to the low
monoclinic symmetry, the incommensurate nature of the magnetic propagation vector and the
coexistence of two structural phases, determination of the magnetic structure of Tb(BO2)3

has proven extremely challenging. Further analysis is required to resolve the low temperature
PND data for Tb(BO2)3.

6.6 Discussion

Powder samples of Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, have been synthesised. RT PXRD
and PND refinements show that they crystallise in a monoclinic structure, consistent with
previous reports. Tb(BO2)3 shows a structural transition at 150 K but contrary to previous
reports, both the RT and LT structural phases coexist down to the lowest temperature. The
bulk magnetic properties of Ln(BO2)3, Ln = Pr, Nd, Gd, Tb have been investigated for the
first time.

The connectivity of the magnetic Ln3+ and the competition among different magnetic
interactions play an important role in determining the magnetic behaviour of the monoclinic
lanthanide metaborates. For complex lanthanide oxide systems, both exchange interactions
(J1) and dipolar interactions (D) need to be considered at low temperatures [45]. CEF effects
also have a profound impact on the single-ion anisotropy and the magnetic properties for
Ln3+ with non-zero values of orbital angular momentum [45]; in this case, Pr3+, Nd3+ and
Tb3+. Nd3+ is a Kramer’s ion and so, as reported for Nd3Mg2Sb3O14 [120] and Nd2Zr2O7

[342], the single-ion ground state in Nd(BO2)3 is proposed to be a well-isolated doublet at
low temperatures with effective S = 1

2 . Pr3+ and Tb3+ are non-Kramer’s ions but the bulk
magnetic measurements and neutron diffraction data indicate that the ground state is different.
As reported for Pr3Ga5SiO14 [110] and Pr3A2Sb3O14, A = Mg, Zn [119], in Pr(BO2)3, CEF
effects lead to a non-magnetic ground state. In Tb(BO2)3, the low temperature physics is
likely to be described by a ground state with with effective S = 1

2 , as proposed for Tb2Hf2O7

[343] and Tb3A2Sb3O14, A = Mg, Zn [119].
Accurate modelling of all the relevant interactions require further inelastic neutron

scattering experiments. However, an order of magnitude approximation can be obtained from
the bulk magnetic measurements. The dipolar interaction energy can be estimated from the
values of the effective magnetic moment and the nearest-neighbour Ln−Ln distances using
equation (1.42). The Curie-Weiss constant contains contributions from the nearest -neighbour
exchange as well as other terms but an approximate value for the nearest-neighbour isotropic
exchange energy can be obtained from the Curie-Weiss constant using equation (1.60) where
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the number of nearest-neighbour Ln3+ in Ln(BO2)3 is n = 2. For Tb(BO2)3, the dipolar
interactions are calculated for both RT and LT phases as they coexist at temperatures T ≤ 150
K. These values are given in Table 6.6. Pr(BO2)3 is excluded from this discussion as it has a
non-magnetic ground state.

Table 6.6 Dipolar (D) and nearest-neighbour exchange (J1) interactions for monoclinic
Ln(BO2)3, Ln = Nd, Gd, Tb.

Ln Nd Gd
Tb

RT phase
Tb

LT phase

Dintra−chain (K) 0.04 0.49 0.66 0.69
Dinter−chain (K) 0.03 0.33 0.44 0.33

J1 (K) 0.15 0.32 9.38 9.38

In highly anisotropic structures where the exchange interactions are primarily
one-dimensional, the relative magnitudes of the J1 and D interactions would determine
whether the materials exhibit quasi one-dimensional behaviour. If the dipolar interactions
dominate over J1 and the inter-chain and intra-chain dipolar interactions are comparable,
three-dimensional magnetic ordering is expected. If the intra-chain dipolar interactions are
much greater than the inter-chain dipolar interactions or the J1 interactions dominate over the
dipolar interactions, quasi one-dimensional magnetic behaviour may still be observed. In
case of Ln(BO2)3, the inter (Dinter−chain) and intra-chain (Dintra−chain) dipolar interactions
are of comparable magnitude(Dinter−chain/Dintra−chain ≈ 0.5−0.7. Hence, considering only
dipolar interactions, the magnetic Ln3+ would form a distorted hyper honeycomb lattice
(Figure 6.1c) and be expected to show magnetic ordering in three-dimensions. On the other
hand if J1 >> D the one-dimensional nature of the Ln3+ chains could be retained.

For Gd(BO2)3 the dipolar interactions are marginally greater than the J1 exchange
interactions. The ordering transition (TN = 1.1 K) is very close to the Curie-Weiss
temperature and the calculated frustration index is f = 0.4. This is typical for an
antiferromagnet with no geometric frustration. The isothermal magnetisation indicates
Heisenberg type Gd3+ spins. Thus it is proposed that the sharp λ type transition at 1.1 K in
Figure 6.8 for Gd(BO2)3 corresponds to three-dimensional ordering of a Heisenberg
antiferromagnet.

For Ln = Nd and Tb, the J1 interactions are much greater than both Dintra−chain and
Dinter−chain (for both RT and LT phases for Tb(BO2)3); hence the magnetic behaviour would
expected to be quasi one-dimensional in nature. This is consistent with the bulk magnetic
measurements; specifically the observation of a plateau at 1/3 of the saturation magnetisation
at 2 K, for both Nd(BO2)3 and Tb(BO2)3 (Figure 6.6). It is proposed that this corresponds to
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a field-induced transition similar to that in other quasi one-dimensional Ising compounds
like CoV2O6 [329] and CoNb2O6 [344]. However, unlike those systems, the plateau persists
in a field of 14 T (Figure 6.7). Also unusually, the magnetisation plateaux are observed
above the magnetic ordering transitions for both Ln = Nd and Tb. It is postulated that this
is due to the existence of short-range magnetic correlations above the long-range ordering
transitions. Tb(BO2)3 has two sharp transitions at 1.05 K and 1.95 K in zero field. This is
reminiscent of another sign of the behaviour observed in quasi one-dimensional CoNb2O6

which has two transitions at 1.97 K and 2.97 K, corresponding to a superposition of two
commensurate phases and an incommensurate magnetic structure respectively [325]. The
existing PND data for Tb(BO2)3 shows that the two magnetic ordering transitions do not
correspond to separate magnetic ordering of the structural phases. However, in order to draw
further conclusions, the magnetic structure needs to be resolved. The ordering transitions lie
well below the Curie-Weiss temperature, implying possible frustration in Tb(BO2)3.

For Nd(BO2)3 no magnetic ordering is seen down to 0.4 K although the sharp increase in
Cmag/T below 0.45 K can be attributed to the onset of an ordering transition; measurements
below 0.4 K are required to confirm this. The low temperature Curie-Weiss fit at lower
temperatures for Nd(BO2)3 gives θCW = -0.2 K and no conclusions can be drawn regarding
the frustration as the ordering transition is beyond the temperature limit of the heat capacity
measurements. The weaker D and J1 interactions are postulated to lead to magnetic ordering
at lower temperatures as compared to Tb(BO2)3.

6.7 Magnetocaloric effect

The change in magnetic entropy, ∆Sm per mole, for the monoclinic Ln(BO2)3, is calculated
from equation (1.64). From the isothermal magnetisation curves, it can be seen that Ln(BO2)3,
Ln = Pr, Nd, Tb, exhibit substantial single-ion anisotropy and so would only be competitive
magnetocalorics in the low field regime, µ0H ≤ 2 T, whereas in higher fields, Gd(BO2)3 will
be a better magnetocaloric material. The ∆Sm values for Ln(BO2)3 at 2 K are compiled in
Table 6.7 in magnetic fields where their performance as magnetocalorics is optimised. The
values for the standard magnetocalorics, GGG and DGG, ass well as GdBO3 and DyBO3

from Chapter 5 are also tabulated for comparison in the relevant field regime.
It is seen that DGG and DyBO3 surpass Pr(BO2)3, Nd(BO2)3 and Tb(BO2)3 as

magnetocaloric materials. Hence these compounds do not offer any improvement for low
temperature solid state magnetic refrigeration. In a field of 9 T, the change in magnetic
entropy per mole for Gd(BO2)3 is comparable to GGG; however the borate framework being
lighter, the change in magnetic entropy per unit mass is higher than GGG. Figure 6.12 shows
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Table 6.7 MCE in monoclinic Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, at T = 2 K.

Compound Field (T)
∆Sm

(JK−1 mol−1
Ln )

∆Sm
(JK−1 kg−1)

∆Sm
(mJK−1 cc−1)

Gd(BO2)3 9 13.4 46.9 227.1
GdBO3 9 12.5 57.8 366.3

Gd3Ga5O12 (GGG) 9 14.1 41.8 296.4

Pr(BO2)3 2 0.2 0.7 3.24
Nd(BO2)3 2 1.2 4.4 19.7
Tb(BO2)3 2.4 8.4 41.0
DyBO3 2 3.1 13.9 92.5

Dy3Ga5O12 (DGG) 2 3.8 11.0 80.6

∆Sm per unit mass as a function of temperature in fields of 5 T and 9 T for Gd(BO2)3 and
GGG; inset shows the variation in ∆Sm per unit mass as a function of magnetic field at T = 2
K. Therefore, it can be seen that Gd(BO2)3 can serve as an alternative to GGG in the liquid
helium temperature regime. However the magnetocaloric performance of Gd(BO2)3 is
inferior to that of Gd(HCOO)3, the other quasi one-dimensional Ln3+ system, which has
been reported to have a much higher MCE than GGG with a value of 49.4 JK−1 mol−1

Ln at 2
K, 5 T [189, 201]. The MCE of Gd(BO2)3 is also inferior to that of GdBO3 at 2 K, 9T, as
seen from Table 6.7. One possible method for optimising the magnetocaloric efficiency in
low magnetic fields could be the use of mixed lanthanide metaborates such as
TbxGd1 – x(BO2)3. This approach has been used successfully in the case of the lanthanide
formates [201].

6.8 Conclusion

Polycrystalline samples of Ln(BO2)3, Ln = Pr, Nd, Gd, Tb, have been prepared and the
structure has been characterised using RT PXRD and PND. Structural Rietveld refinements
show that they crystallise in a monoclinic structure containing one-dimensional chains of
magnetic Ln3+, consistent with previous reports. Tb(BO2)3 undergoes a structural transition
at around 150 K and the room temperature monoclinic structure coexists with a low
temperature monoclinic phase down to the lowest temperatures.

Bulk magnetic measurements have been carried out for the first time. The monoclinic
Ln(BO2)3, Ln = Pr, Nd, Gd, Tb exhibit many interesting magnetic properties. Pr(BO2)3 has
a non-magnetic ground state. Gd(BO2)3 undergoes antiferomagnetic ordering at 1.1 K and
the magnetisation saturates at 6 µB/f.u, consistent with isotropic Gd3+ spins. The onset of
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Figure 6.12 Change in magnetic entropy ∆Sm per unit mass for Gd(BO2)3 compared to
GGG in magnetic fields of 5 T (closed symbols) and 9 T (open symbols); the ∆Sm value
for Gd(HCOO)3 at 2 K, 5 T is indicated on the same figure [189, 201]. The inset shows the
variation in ∆Sm per unit mass as a function of magnetic field at T = 2 K.

magnetic ordering is seen in Nd(BO2)3 at 0.4 K while Tb(BO2)3 shows two sharp magnetic
ordering features at 1.05 K and 1.95 K. The exact nature of the magnetic transitions and the
contribution of the structural phases to the magnetic ordering in Tb(BO2)3 remains unknown.
However, it can be concluded that the two transitions are not due to the two structural phases
ordering separately. Both Nd(BO2)3 and Tb(BO2)3 show a Msat /3 magnetisation plateau in
fields up to 14 T at 2 K, consistent with quasi one-dimensional behaviour seen in other Ising
compounds like CoV2O6 and CoNb2O6 [329, 344]. Calculation of the magnetocaloric effects
shows that Gd(BO2)3 is an efficient magnetic refrigerant for T ≥ 2 K. Further experiments
such as more detailed PND measurements at T < T0, inelastic neutron scattering and PND
in field are required to precisely model the magnetic interactions, single-ion anisotropy and
field-induced transitions in Ln(BO2)3. This would provide a fuller understanding of the
magnetic behaviour of these materials.



Chapter 7

Conclusion

This thesis has explored the crystal structure and bulk magnetic properties of three families
of complex lanthanide oxides: the lanthanide garnets, Ln3A2X3O12, the lanthanide
orthoborates, LnBO3, and the lanthanide metaborates, Ln(BO2)3. Polycrystalline samples of
all the materials have been synthesised and the structure has been analysed using X-ray
diffraction. In some cases, both X-ray and neutron diffraction have been used to obtain
complementary structural information. The bulk magnetic properties have been characterised
using magnetic susceptibility, isothermal magnetisation and heat capacity measurements:
these have revealed a gamut of features such as long-range and short range ordering in zero
field, field-induced transitions and magnetisation plateaux. For some materials, the magnetic
ground state has been determined from low temperature neutron diffraction experiments.

Additionally, the magnetocaloric performance of all materials in the liquid helium
temperature regime, T ≥ 2 K, has been evaluated by calculating the change in magnetic
entropy from the isothermal magnetisation curves. It has been shown that the magnetocaloric
performance is related to the single-ion anisotropy of the magnetic Ln3+: while the
magnetocaloric performance of Heisenberg systems is optimised in high magnetic fields ≥ 5
T attainable using a superconducting magnet, materials with substantial single-ion
anisotropy are more efficient magnetocalorics in fields ≤ 2 T, attainable using a commonly
available permanent magnet. .

7.1 Lanthanide garnets

The lanthanide garnets, Ln3A2X3O12, crystallise in a cubic structure and contain three
cation sites based on the coordination with oxygen: the dodecahedral magnetic Ln site, the
octahedral A site and the tetrahedral X site. Their magnetic properties are of fundamental
scientific interest because the magnetic Ln3+ form a highly frustrated three-dimensional
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network of corner-sharing triangles. Previous literature had mainly focused on lanthanide
gallium garnets, Ln3Ga5O12, and lanthanide aluminium garnets, Ln3Al5O12, where the A and
X sites were occupied by non-magnetic Ga3+ and Al3+ respectively. Most of the studies had
been carried out on Gd3Ga5O12, a spin liquid candidate whose magnetic ground state has
been the subject of much debate. Gd3Ga5O12 and Dy3Ga5O12 also served as the benchmark
materials for magnetic refrigeration in the liquid helium temperature regime in the high field
(> 5 T) and low field (< 2 T) regimes respectively.

In this thesis, a two part study has been carried out on a large family of lanthanide garnets
with the dual aim of exploring the magnetic phase diagram and identifying more efficient
magnetocaloric materials among the garnets.

The first part presents a systematic study of the structural and magnetic properties of the
lanthanide garnets Ln3Ga5O12, Ln3Sc2Ga3O12, Ln3Sc2Al3O12, Ln3In2Ga3O12,
Ln3Te2Li3O12 for Ln = Gd, Tb, Dy, Ho. It is observed that garnets with Ln = Gd show
magnetic behaviour consistent with isotropic Gd3+ spins and no magnetic ordering is
observed for T ≥ 0.4 K. Magnetic ordering features are seen for garnets with Ln = Tb, Dy,
Ho in the temperature range 0.4 < T < 2.5 K, however the nature of the magnetic ordering
varies for the different Ln as well as for different combinations of A and X . The changes in
magnetic behaviour can be explained by tuning of the magnetic interactions and changes in
the single-ion anisotropy. Among the Gd garnets, the maximum change in magnetic entropy
per mole (15.45 JK−1 mol−1

Gd) is observed for Gd3Sc2Ga3O12 at 2 K, in a field of 9 T. The
performance of Dy3Ga5O12 as a magnetocaloric material is found to surpass the other
garnets with Ln = Tb, Dy, Ho.

In the second part, the crystal structure and magnetic properties of Cr3+ and Mn3+

substituted lanthanide gallium garnets, Ln3CrGa4O12 and Ln3MnGa4O12, is presented for
Ln = Gd, Tb, Dy, Ho. Both Cr3+ and Mn3+ substitution significantly reduce the frustration in
Ln3Ga5O12 for Ln = Tb, Dy, Ho; the frustration is found to be relieved by a greater extent for
Ln3MnGa4O12 as compared to Ln3CrGa4O12. The isothermal magnetisation measurements
reveal that the substantial single-ion anisotropy in Ln3Ga5O12, Ln = Tb, Dy, Ho, as well as the
isotropic nature of Gd3+ in Gd3Ga5O12 is retained on Cr3+ or Mn3+ substitution. The MCE
of Gd3CrGa4O12 is 25% greater than Gd3Ga5O12 at 2 K, 9 T while the MCE of Ln3CrGaO12

is enhanced by 20% for Ln = Dy and 120% for Ln = Ho compared to the unsubstituted
Ln3Ga5O12 at 2 K, 2 T. Powder neutron diffraction on Ho3MnGa4O12 below the ordering
transition at TN = 5.6 K shows the formation of a long range ordered ordered state with k
= (0,0,0) with concomitant ordering of Ho3+ and Mn3+ spins. The Ho3+ spins are aligned
antiferromagnetically along the six crystallographic axes with no resultant moment while the
Mn3+ spins are oriented along the body diagonals, such that there is a net moment along [111].
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The magnetic structure can be visualised as ten-membered rings of corner-sharing triangles
of Ho3+ spins with the Mn3+ spins ferromagnetically coupled to each individual Ho3+ spin
in the triangle. The increase in the magnetic ordering temperature for both Ln3CrGaO12 and
Ln3MnGaO12 indicates a possible universal mechanism for relieving the magnetic frustration
in lanthanide garnets through selective chemical substitution.

7.2 Lanthanide orthoborates

Previous studies on lanthanide orthoborates, LnBO3, had focused on their optical properties
for their applications in phosphors as well as on resolving the crystal structure of the π-
LnBO3. In this thesis, the structural problem has been studied again and the magnetic
properties of the π-LnBO3 are presented for the first time. It is found that the π-LnBO3, Ln
= Eu, Gd, Tb, Dy, Ho, Er, Yb, crystallise in a layered monoclinic structure with the magnetic
Ln3+ forming an edge-sharing triangular lattice, a prototype for two-dimensional frustration.
The triangles are scalene, however all deviations from the ideal equilateral geometry are less
than 1.5%. There is no evidence of disorder in the Ln3+ layers but significant peak broadening
in neutron diffraction indicates that the borate layers are disordered. Such disorder had not
been reported previously and development of a structural model incorporating this disorder
remains an open problem.

Heat capacity measurements show ordering features at T ≤ 2 K for LnBO3, Ln = Gd,
Tb, Dy, Er. No ordering is observed for YbBO3 at T ≥ 0.4 K while HoBO3 is seen to have
a non-magnetic state. EuBO3 shows van Vleck paramagnetism. Isothermal magnetisation
measurements indicate isotropic Gd3+ spins and strong single-ion anisotropy for Ln3+, Ln
= Tb, Dy, Ho, Er, Yb. For T ≥ 2 K, GdBO3 is found to be a competitive magnetocaloric
material in fields ≥ 5 T while DyBO3 is an efficient magnetocaloric in fields ≤ 2 T.

7.3 Lanthanide metaborates

Similar to the lanthanide orthoborates, the lanthanide metaborates, Ln(BO2)3, Ln = Pr, Nd,
Gd, Tb had been studied for their optical properties. In this thesis, their magnetic properties
have been investigated for the first time. They are found to crystallise in a monoclinic
structure, consistent with previous reports, containing chains of magnetic Ln3+. Of the
metaborates studied, only Tb(BO2)3 undergoes a structural transition: below 150 K, the
room temperature and low temperature monoclinic structures coexist down to the lowest
measured temperatures.
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Pr(BO2)3 is found to have a non-magnetic ground state. No magnetic ordering is observed
down to 0.4 K for Nd(BO2)3. Gd(BO2)3 exhibits a sharp magnetic transition at 1.1 K,
corresponding to three-dimensional magnetic ordering. The most interesting behaviour is
shown by Tb(BO2)3 which shows two magnetic ordering features at 1.05 K and 1.95 K.
However, resolving the magnetic structure from low temperature powder neutron diffraction
data remains an open problem due to the coexistence of two structural phases and the
incommensurate nature of the propagation vector(s). A magnetisation plateau at a third of the
saturation magnetisation is seen at 2 K for both Nd(BO2)3 and Tb(BO2)3 which persists in an
applied field of 14 T; this is proposed to be a signature of quasi one-dimensional behaviour.

7.4 Future outlook

The synthesis, structure, magnetic and magnetocaloric properties of the complex lanthanide
oxides reported in this thesis opens up several areas of future research. The nature of the
magnetic ground state, field-induced transitions as well as the underlying magnetic
interactions and crystal electric fields (CEF) merit further investigation. This would enable
one to map out the magnetic phase diagram for these materials for insight into their
fundamental magnetic behaviour as well as for optimising their performance as
magnetocaloric materials.

The impact of varying the single-ion anisotropy and chemical pressure on the magnetic
ground state in the lanthanide garnets (Chapter 3) as well as introducing additional spins in
the lattice (Chapter 4) can be investigated in more detail using neutron diffraction experiments
at temperatures below the transition temperature. Determination of the crystal electric field
levels using inelastic neutron scattering in the paramagnetic phase is essential to determine
the nature of the spin anisotropy for each sample. The magnetic interactions can be studied
by measuring the magnetic excitations (spin waves) using inelastic neutron scattering in
the ordered phase. For garnets with Ln = Gd, bulk magnetic measurements below 0.4
K are required to determine the presence of any ordering transition. Neutron scattering
experiments on Gd garnets are extremely challenging but use of ’hot’ neutrons to limit the
effect of absorption as well as complementary techniques like muon spectroscopy can lead
to a greater understanding of the magnetic properties. In order to evaluate the magnetic
interactions between the rare earth and transition metal spins in the chromium and manganese
substituted lanthanide gallium garnets (Chapter 4), it is essential to understand the interactions
between the Cr3+ or Mn3+ spins separately. This can be achieved using neutron scattering
experiments on Y3CrGa4O12 and Y3MnGa4O12, where the only magnetic ions are Cr3+ and
Mn3+ respectively.
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Table 7.1 MCE at T = 2 K for the best magnetocaloric materials as determined in this thesis.

Compound Field (T)
∆Sm

(JK−1 kg−1)
∆Sm

(mJK−1 cc−1)

Gd3Ga5O12 (GGG) 9 41.8 296.4
Gd3Sc2Ga3O12 9 48.1 309.5
Gd3Sc2Al3O12 9 52.8 304.5
Gd3CrGa4O12 9 51.6 360.1

GdBO3 9 57.8 366.3
Gd(BO2)3 9 46.9 227.1

Dy3Ga5O12 (DGG) 2 11.0 80.6
Dy3CrGa4O12 2 13.1 94.3

DyBO3 2 13.9 92.5

The disorder in the borate layers of the lanthanide orthoborates needs to be modelled
before in-depth neutron scattering studies can be carried out to study the magnetism. This
could be resolved using single crystal XRD and ND total scattering experiments using
pairwise distribution function (PDF) analysis to model the short-range correlations in the
borate layers more accurately. The possibility of disorder arising from variations in sample
preparation methods should also be tested by carrying out structural PND experiments on
samples prepared through different synthetic routes, for example, quenching after heating
during a solid-state reaction as well as sol-gel or hydrothermal synthesis. In case of the
lanthanide metaborates, measurements below 0.4 K are required to determine the ordering
transition for Ln = Nd while inelastic neutron scattering experiments are needed to estimate
the crystal electric field levels and the single-ion anistropy. Magnetic PND in field would
allow analysis of the one-third magnetisation plateau. The coexistence of the two structural
phases for Tb(BO2)3, including the possibility of sample dependence, needs to be examined
in further detail in order to resolve the nature of the magnetic ordering.

Investigation of the magnetocaloric effect of the complex lanthanide oxides reveals that in
all cases, the Gd3+ based magnetocalorics (with isotropic spins) perform better in high fields
≥ 5 T, generated using a superconducting magnet, whereas Dy3+ based magnetocalorics
(with strong single-ion anisotropy) are more efficient in fields ≤ 2 T, attainable using a
permanent magnet. Therefore, in cases where cryogen-free operation is essential, Dy3+

magnetic refrigerants have to be used whereas a Gd3+ magnetic refrigerant is the material of
choice where magnetocaloric performance (characterised by a high value of ∆Sm) needs to
be maximised.
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Table 7.1 shows the changes in magnetic entropy at T = 2 K (in the relevant field regimes)
for the best magnetocaloric materials as determined from this thesis. Values are given in
gravimetric and volumetric units as this is more relevant for practical applications. The MCE
of the lanthanide orthoborates, GdBO3 and DyBO3 are highest in gravimetric units in 9 T and
2 T respectively, highlighting the importance of exploring polyanion frameworks containing
Ln3+ as magnetic refrigerants. However, in volumetric units, the MCE of the chromium
substituted gallium garnets, Gd3CrGa4O12 and Dy3CrGa4O12 are comparable to GdBO3

and DyBO3 respectively. Thus, introducing different chemical substituents into well-known
magnetocaloric materials is also an effective strategy for enhancing the magnetocaloric
performance. For future applications, the magnetocaloric performance of these materials
should be assessed by designing salt pills and testing them in actual adiabatic demagnetisation
refrigerators. This will help determine the actual cooling power, the minimum attainable
temperature and establish them as competitive solid state magnetic refrigerants at low
temperatures.

It is hoped that the results presented in this thesis will lead to further research on the
properties and applications of these complex lanthanide oxides.
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Appendix A

Figure A.1 Room temperature PXRD pattern for Ho3Ga5O12: Red dots - Experimental data,
Black line - Modelled data, Blue line - Difference pattern, Blue ticks - Bragg positions.
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Figure A.2 Room temperature PXRD and PND pattern for Ho3Sc2Ga3O12: Red dots -
Experimental data, Black line - Modelled data, Blue line - Difference pattern, Blue ticks -
Bragg positions.
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Figure A.3 Room temperature PXRD and PND pattern for Ho3In2Ga3O12: Red dots -
Experimental data, Black line - Modelled data, Blue line - Difference pattern, Blue ticks -
Bragg positions.
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Figure A.4 Room temperature PXRD and PND pattern for Ho3Te2Li3O12: Red dots -
Experimental data, Black line - Modelled data, Blue line - Difference pattern, Blue ticks -
Bragg positions.

Figure A.5 Room temperature PXRD pattern for GdBO3: Red dots - Experimental data,
Black line - Modelled data, Blue line - Difference pattern, Blue ticks - Bragg positions.
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Figure A.6 Room temperature PXRD pattern for TbBO3: Red dots - Experimental data,
Black line - Modelled data, Blue line - Difference pattern, Blue ticks - Bragg positions.

Figure A.7 Room temperature PXRD pattern for DyBO3: Red dots - Experimental data,
Black line - Modelled data, Blue line - Difference pattern, Blue ticks - Bragg positions.

Figure A.8 Room temperature PXRD pattern for ErBO3: Red dots - Experimental data, Black
line - Modelled data, Blue line - Difference pattern, Blue ticks - Bragg positions.
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Figure A.9 Room temperature PXRD pattern for YbBO3: Red dots - Experimental data,
Black line - Modelled data, Blue line - Difference pattern, Blue ticks - Bragg positions.

Figure A.10 Room temperature PXRD and PND pattern for Nd(BO2)3: Red dots -
Experimental data, Black line - Modelled data, Blue line - Difference pattern, Blue ticks -
Bragg positions; for Nd(BO2)3, Red ticks - Bragg positions for NdBO3, Green ticks - Bragg
positions for H3BO3.
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Figure A.11 Room temperature PXRD and PND pattern for Tb(BO2)3: Red dots -
Experimental data, Black line - Modelled data, Blue line - Difference pattern, Blue ticks -
Bragg positions; for Tb(BO2)3, Red ticks - Bragg positions for TbBO3, Green ticks - Bragg
positions for H3BO3.

Figure A.12 Room temperature PXRD pattern for Gd(BO2)3: Red dots - Experimental data,
Black line - Modelled data, Blue line - Difference pattern, Blue ticks - Bragg positions; for
Gd(BO2)3, Red ticks - Bragg positions for GdBO3.
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