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The rise in the demand for animal products due to demographic and dietary changes

has exacerbated difficulties in addressing societal concerns related to the environment,

human health, and animal welfare. As a response to this challenge, Precision Livestock

Farming (PLF) technologies are being developed to monitor animal health and welfare

parameters in a continuous and automated way, offering the opportunity to improve

productivity and detect health issues at an early stage. However, ethical concerns have

been raised regarding their potential to facilitate the management of production systems

that are potentially harmful to animal welfare, or to impact the human-animal relationship

and farmers’ duty of care. Using the Five Domains Model (FDM) as a framework, the aim

is to explore the potential of PLF to help address animal welfare and to discuss potential

welfare benefits and risks of using such technology. A variety of technologies are identified

and classified according to their type [sensors, bolus, image or sound based, Radio

Frequency Identification (RFID)], their development stage, the species they apply to, and

their potential impact on welfare. While PLF technologies have promising potential to

reduce the occurrence of diseases and injuries in livestock farming systems, their current

ability to help promote positive welfare states remains limited, as technologies with such

potential generally remain at earlier development stages. This is likely due to the lack

of evidence related to the validity of positive welfare indicators as well as challenges

in technology adoption and development. Finally, the extent to which welfare can be

improved will also strongly depend on whether management practices will be adapted

to minimize negative consequences and maximize benefits to welfare.

Keywords: affective states, human-animal relationship, livestock production, sensors, smart farming, precision

livestock farming, animal welfare

INTRODUCTION

One of the biggest challenges our society is facing is the ability to feed a growing population,
which is expected to reach around 9.7 billion people by 2050, while minimizing environmental
impacts, ensuring human health (FAO, 2018), and addressing the public’s rising concern over
animal welfare (European Commission, 2016). In the UK, animal welfare standards have been a
key subject of public concern, particularly with proposed changes to trade and agricultural policies
in light of Brexit (Main and Mullan, 2017). In addition, there have been government commitments
to achieving net zero and other environmental improvements in the Agriculture Act, Environment
Bill and 25-years Environment Plan. The National Farmers’ Union, e.g., has set a 2040 target for
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net zero emissions in the agriculture sector, and the Agriculture
Act and associated plan to improve farm productivity indicates
that English farmers can receive financial support to produce
“public goods” such as environmental or animal welfare
improvements (DEFRA, 2021).

However, meeting these commitments is challenging, not
least because global meat production is expected to double
by 20501. This increase in production may be achieved by a
combination of expansion in animal numbers and increased
productivity, which will be particularly important in the poultry
and pig sector (Gilbert et al., 2015). While it is not possible to
predict precisely what agriculture will look like in 2050 (factors
such as income distribution, dietary choices and technological
innovations will have an important influence), the FAO suggests
that in a “business-as-usual” scenario, animal herds are likely
to increase by 46% globally compared to 2012, with poultry
numbers increasing over five-fold, three-fold for pigs, and
two-fold for small and large ruminants (FAO, 2018). This
increase in animal numbers could make their management
more challenging, especially if, as was observed in the EU, the
number of farmers continues to decrease (Eurostat, 2020). In
the UK, while livestock numbers remained stable between 2018
and 2019, the labor force on commercial holdings decreased by
0.3% (DEFRA, 2019). Having fewer farmers to look after larger
numbers of animals may make it more difficult to address animal
health and welfare challenges.

As a response to these challenges, the development of new
technologies has gained momentum. Among these developments
are Precision Livestock Farming (PLF) technologies, which
are designed to support farmers in livestock management by
monitoring and controlling animal productivity, environmental
impacts, as well as health and welfare parameters in a continuous,
real-time and automated manner (Berckmans, 2014). A variety
of systems using technologies such as sensors, cameras or
microphones can directly alert farmers via connected devices
(e.g., phones, computers, or tablets) about detected anomalies,
thus allowing farmers to intervene at an early stage. Research is
pointing toward the great potential for these “smart technologies”
to help livestock farmers in monitoring the welfare of their
animals and several countries are already investing in their
development, reflecting their potential to be part of strategies to
move toward sustainable agriculture (Rose and Chilvers, 2018;
Norton et al., 2019).

While their potential is promising, the use of these new
technologies also raises ethical concerns, such as their potential
impact on the human-animal relationship, the objectification
of animals, the notion of care and farmers’ identity as animal
keepers (Bos et al., 2018; Werkheiser, 2018, 2020). The human-
animal relationship is an important aspect which can influence
both animal welfare and productivity. The behavior of stock
people, which is influenced by their attitudes toward farm
animals, has an influence on animals’ fearfulness toward humans,
with positive behaviors leading to decreased levels of avoidance

1Food and Agriculture Organization. (2019). Meat & Meat Products. Available
online at: http://www.fao.org/ag/againfo/themes/en/meat/home.html (accessed
December 7, 2020).

and negative handling increasing fearfulness toward humans
(Hemsworth and Barnett, 1991; Waiblinger et al., 2002; Probst
et al., 2012). In addition, it also influences productivity. For
example, reduced milk yields were found on dairy farms where
farmers had more negative attitudes toward interactions with
cows during milking (Waiblinger et al., 2002). Aversive handling
was also shown to impact the growth performance of pigs and
negative relationships were found between level of fearfulness
toward humans and egg production (Hemsworth and Barnett,
1991; Cransberg et al., 2000). On the other hand, habituation,
early positive contact and genetic dispositions can be important
factors to influence the quality of the HAR (Mota-Rojas et al.,
2020). For example, studies found that young broiler chickens
exposed to positive human contact had greater growth rates, and
that positive attitudes were associated with more use of positive
behaviors (Gross and Siegel, 1979; Lensink et al., 2000). If PLF
technologies are used to facilitate and/or replace certain tasks
involving human-animal interactions and to reduce time spent
on observing individual animals by ‘replacing farmers eyes and
ears’ (Berckmans, 2014), it could be questioned whether PLF
could impact the HAR by reducing the frequency of human-
animal interactions and impacting farmers’ attitudes toward
their animals and hence their behavior. Animals may have less
opportunity to become habituated to people and farmers if the
frequency of neutral or positive interactions is reduced (this
may be particularly true on larger farms where opportunities
for human-animal contacts are usually reduced) (Rushen et al.,
1999; Cornou, 2009; Mota-Rojas et al., 2020). Similarly, concerns
were also raised in regards to the extent to which PLF could
redefine the notion of care, and whether farmers attitudes may
shift further toward reducing animals to “tracking devices” and
focus primarily on productivity (e.g., disease prevalence or costs
of medical treatments) while overlooking the animal’s qualitative
experiences (Bos et al., 2018).

Taking these benefits and ethical challenges into
consideration, it seems important to evaluate the extent to
which these technologies can actually address the issue of animal
welfare. The notion of animal welfare is complex to define
and, while the focus has long revolved around minimizing
negative experiences such as pain and suffering, studies in
animal behavior and neuroscience have led scientists to highlight
the importance of positive affects in animal welfare (Boissy
et al., 2007; Yeates and Main, 2008). Affective states relate to
feelings or emotions which can vary in intensity, duration,
level of arousal and how pleasant or unpleasant they are. While
survival-related affects reflect the animal’s internal physiological
state (e.g., thirst or hunger), situation-related affects reflect the
animal’s perception of its external circumstances (e.g., comfort,
playfulness, depression, loneliness) (Mellor, 2015a). Positive
animal welfare cannot be achieved with a sole emphasis on
minimizing negative experiences; opportunities to experience
positive affects (e.g., by allowing animals to engage in rewarding
goal-directed behaviors such as through affiliative interactions,
exploring, or play) must also be provided (Mellor and Beausoleil,
2015). Taking these aspects into account, the “Five Domains
Model” (FDM) has been developed to facilitate the assessment of
animal welfare and considers both negative and positive affective
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states (Mellor and Beausoleil, 2015). The first three domains
(labeled “nutrition,” “physical environment,” and “health”)
include survival-related factors, while the fourth (labeled
“behavioral interactions”) includes situation-related factors.
Based on these four domains it is then possible to evaluate the
associated affective consequences within a fifth domain, “mental
state” (Mellor et al., 2020). The method can be updated using the
latest scientific evidence in animal welfare and can be used in
different animal-related sectors (Mellor, 2017).

Using the FDM as a framework, this study thus aims to
understand better the potential of PLF technologies to help
address the notion of animal welfare by looking at a non-
exhaustive, yet wide range of technologies. To this end, PLF
developments in a variety of farmed species were identified
along with their development stages to distinguish better between
commercially available technologies and technologies that are
further away from being fully developed. Secondly, the potential
welfare benefits and risks of PLF are explored along with their
potential ability to promote/address affective states.

METHODS

Identification of PLF Technologies
A combination of methods was used to identify PLF technologies.
These include searches on scientific papers databases, visiting
technology exhibitions, input from colleagues as well as during
a workshop organized by the author. These methods are further
described below.

Research Papers

Search Criteria
The databases Scopus (Elsevier) and Web of Science were used
to search for papers relevant to this study. The search was
conducted between February and April 2020. Only research
articles were selected, with no limits on date of publication.
Each search included: a keyword related to Precision Livestock
Farming, a species, and either the words “welfare,” “health,” or
“behavior” (see Table 1). Considering the variety of methods
that could relate to PLF technologies, the selection of PLF-
related keywords was based on categories that were commonly
being referred to in related literature reviews (Benjamin and
Yik, 2019; Halachmi et al., 2019; Li et al., 2019; Norton et al.,
2019; Astill et al., 2020). These include the use of image-based
technology (e.g., using 2D or 3D cameras, computer vision,
optical flow, thermal cameras), sound (e.g., using microphones
or sonars), sensors [e.g., using accelerometers, pressure or
infrared sensors (IR)], Radio-Frequency Identification (RFID)
and wireless technologies. It is acknowledged that by using these
specific keywords and databases, other types of technologies may
have been omitted. It was not the goal of this paper to review
all possible PLF technologies for all species, but rather to obtain
a general view of current developments and discuss how these
apply to animal health and welfare monitoring. The species were
selected on the basis of being the main species farmed in the
UK. To complete our search, relevant papers referenced in review
articles and not present in the databases were also considered.

TABLE 1 | List of the keywords used in the search.

Technology Species Parameter

Precision livestock farming Cattle, cow, beef, calf Welfare

PLF Pig, swine, sow Health

Smart farming Poultry, laying hen, chick*, broiler Behavi*r

Automat* AND sound Fish, salmon, trout

Automat* AND image Goat, turkey, sheep

Automat* AND sensor

Automat* AND vision

Automat* AND wireless

Automat* AND RFID

Precision fish farming

Each search consisted of one “technology”, one “species,” and one “parameter,” except

for “Precision Fish Farming” which was only associated with fish, salmon and trout. An

example of search in Web of Science was: “TS = [‘Precision Livestock Farming’ AND

(cattle OR cow OR beef OR calf) AND (welfare OR health OR behav*r)]”. The asterisk (*)

is a wildcard: it represents any group of characters, including no character.

Selection of Papers
Only accessible papers written in English were considered.
From the author’s understanding based on the literature and
the workshop organized by the author (of which more details
can be found in Section Workshop), the definition of PLF
technologies can be understood differently by different people.
In this study, PLF refers to technologies that are, or have the
potential to be, automated, and allowing to monitor animal
health, welfare, and environmental parameters continuously
and in real-time. Technologies such as virtual fencing or
milking robots were, e.g., not considered in our study. Papers
were selected when the aim of the study was to present a
method to automatically monitor farm animal health, welfare, or
behavior parameters. These included, e.g., monitoring lameness,
respiratory diseases, heat, body temperature, or environmental
conditions. Methods at various stages of development were
considered, from proof-of-concepts to validated, fully automated
systems. Papers were not selected when the purpose was mainly
to refine existing models or algorithms such as to improve image
resolution or the detection of certain parts of the body (as they
were not about PLF systems in themselves). Papers were also
not selected when they addressed transport or post-slaughter
issues, when they applied to other contexts than farming
(e.g., monitoring of wild animals or applications for laboratory
studies), or when authors concluded that the proposed methods
did not present satisfying enough results for the purpose of
their study.

Commercialized Technologies
Commercially available PLF technologies were found in several
ways, including visiting technology exhibitions, findingmentions
in research or news articles, getting recommendations from
colleagues, as well as during a workshop organized by the author
of this paper (see next section). When mentions of particular
technologies were found, the websites of the relevant companies
were visited, and technologies were selected when they allowed
to automatically monitor health and welfare parameters of
farm animals.
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Workshop
The workshop, called “Current developments in Precision
Livestock Farming (PLF) technologies: What can we measure and
what are the welfare benefits and challenges’ was funded by the
Animal Welfare Research Network (AWRN) and organized by
the first author. Over 150 international participants registered
to the online workshop, however, places were limited to 100
participants due to the video conferencing software used (Zoom
5.4). Participants were selected on a “first come, first served”
basis with the condition of participants having to be members
of the AWRN (or currently applying to become a member).
Approximately 90 participants logged in at the start of the
workshop, which included researchers and students (59 and
15%, respectively), industry workers (8%), NGOs (4%), vets
(4%), civil servants (4%), assurance schemes workers (4%),
and farmers (2%). Most attended the workshop activities,
and ∼70 participants remained until the end. Four 30min
keynote presentations (including questions and answers) and
two, 1-h activities (including presentations of the outcomes by
the participants) allowed the participants to discuss current
developments in PLF for several species (from proof-of-concepts
to commercially available technologies), their benefits, potential
challenges (to animal welfare and beyond) and solutions. An
outline of the workshop is presented in Annex 1. Participants
were split into eight different groups during the activities, each
focusing on one or two livestock sectors. During the first activity,
participants were asked to discuss up to five commercially
available and up to five “promising” PLF technologies that have
the most potential to improve animal welfare for their selected
species, and to qualitatively discuss the chosen technologies’
potential benefits to welfare. Volunteers in each group presented
the outcomes of their discussion to the rest of the participants
in 3min each, sometimes using visual support showing notes
taken during the discussions (e.g., whiteboard from the Zoom
software or via a Microsoft PowerPoint slide). In a second
activity, participants (divided into the same groups) were asked
to qualitatively discuss the risks and challenges of using PLF
technologies (to their species and beyond), and how these
could be minimized. Results were presented in the same way
as for the first activity. The first author took notes during
these presentations and collected copies of the whiteboards
or PowerPoint slides where available. The outputs of these
discussions, as well as technologies and welfare benefits and
risks mentioned during the keynote presentations, were used to
complement the findings of this study (e.g., if the author had
omitted specific technologies or benefits and risks that were not
initially identified). As the outcomes of the workshop related
to animal welfare, but also to aspects beyond the scope of this
study (since they are closely related with other aspects such as
impacts on farmers, consumers and other stakeholders), only the
outcomes directly related to animal welfare (PLF technologies,
benefits and risks to welfare) were used to complement the
findings of this review.

Classification
The different technologies found using the above methods
were classified by the first author of this paper with the help

of the co-authors and a colleague (expert in the fields of
agricultural technologies and animal welfare) in tables according
to their type (e.g., image, sensors, sound, RFID, bolus), their
application (e.g., detection of lameness or estrus) and their
development stage categories. Each table was associated to
a Physical/Functional Domain of the Five Domains Model
(“nutrition,” “physical environment,” “health,” or “behavioral
interactions”). The technologies’ potential welfare benefits and
risks and their potential to address affective experiences based on
the fifth domain (“mental state”) were also discussed.

Technology Types and Applications
To simplify the tables, the “technology type” category was
kept broad. For example, although technically different,
accelerometers and infrared sensors were both classified into
a broader “sensor” category. Similarly, some applications were
grouped within categories. For example, the applications related
to “feed intake,” “grazing,” “jaw movements,” “rumination,” or
“bites” were all grouped into the “feeding behavior” category.
Similarly, “ammonia concentrations” or “particle matter
concentrations” were classified into the “air/water quality”
category. The category “disease/parasites monitoring” includes
technologies aiming to detect ill animals with diseases/parasites
such as Bovine Respiratory Disease (BRD) or sea lice in salmon.
“Activity” included behavior monitoring such as walking,
standing, lying or swimming. The technologies were classified
according to the specific aims of the papers. For example, when
the aim was to determine whether a technology could accurately
detect walking and lying patterns, the technology was placed
into the “activity” category within the “behavioral interactions”
domain. Similarly, when the specific aim was to accurately detect
estrus in cattle, the technology was placed into the “estrus”
category within the “health” domain, even if the technology was
based on activity data.

Development Stages
The development stage categories were inspired by the
Technology Readiness Levels (TRLs) developed by the
National Aeronautics and Space Administration (NASA).
The technologies were assigned within three categories which
are broadly comparable with TRLs: “proof-of-concept phase”
(P1), “validation phase” (P2) and “commercialization phase”
(P3). Technologies were assigned into the P3 category when the
systems were commercially available. Papers which included
steps to validate specific technologies or where further papers
were published to validate the method were assigned into the
P2 category, while those which did not were classified into
the P1 category. When several papers addressed a similar
application with a similar type of technology, only the highest
category was shown. It is acknowledged that the grouping into
wider categories may not allow to precisely reflect the state of
development of each different type of technologies, especially as
developments and further validation may have occurred between
the initial search and the writing of the paper or may have been
omitted due to the restricted number of keywords. Instead, it
allows to obtain an overview of current developments and to
discuss their potential to address animal welfare.
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Welfare Implications
The classification into the different domains was based on the
updated Five Domains Model (FDM) table developed by Mellor
et al. (2020). Classification under the first four physical domains
was based on the parameters monitored by the technologies
(e.g., technologies monitoring feeding behaviors were classified
into the “nutrition” domain, while technologies monitoring
lameness were classified under the “health” domain). Discussions
on affective states were based on the FDM table which provides
examples of positive and negative factors with their associated
inferred negative or positive affective experiences from the
fifth domain. For example, under the “physical environmental
conditions” section of the table, “air pollutants: NH3, CO2,
dust, smoke” is associated with the negative affects “respiratory
discomfort” (e.g., breathlessness, air passage irritation/pain). For
this reason, if a technology was designed to help farmers monitor
air pollutants such as NH3, the author suggested that the use of
such technology could have an impact on respiratory discomfort.
Similarly, a technology monitoring water intake would have
been suggested to have a possible impact on the associated
negative affect “thirst.” Where there were many affects associated
with specific factors, only a few examples were suggested to
avoid lengthy paragraphs. For example, the FDM indicates that
the presence of injuries or diseases may be associated to the
following negative affects: pain (many types), breathlessness,
debility, weakness, sickness, malaise, nausea, and dizziness. To
avoid listing all possible affects, the authors selected either those
related to a specific condition (such as breathlessness related
to respiratory diseases) or those that were most likely to be
understood by a wider audience (such as feelings of sickness
resulting from diseases). Finally, welfare benefits and risks were
discussed both in relation to the specific domains and across
domains in a separate section (SectionWelfare Benefits and Risks
Across Domains). These were identified in the research papers
found in this study, technology company websites, within the
wider PLF literature and during the workshop.

RESULTS

Research Paper Selection
The search revealed 793 research articles in total. After manual
selection of papers which we considered relevant to our study, we
retained 247 papers. Excluded papers included those that did not
focus on specific PLF technologies, papers related to technologies
other than PLF, papers that were not accessible or that were in
a language other than English. Excluded papers also included
duplicates, papers that did not relate to farming or to the species
of interest (such as wild or laboratory animals) or that addressed
stages of production which we did not consider in this review
(e.g., slaughter). A number of excluded papers also included those
that were not related to animals (e.g., human medicine). Selected
papers included 101 papers related to cattle, 68 to pigs, 37 to
poultry, 15 to fish, and 26 to other species (including turkeys,
goats, and sheep).

In the following sections, technologies relating to the
physical/functional domains of the Five Domains Model

are described along with a discussion on their domain-
specific welfare implications based on the fifth domain.
These are followed by a section (Welfare Benefits and
Risks Across Domains) on welfare benefits and risks
across domains.

Nutrition
The monitoring of drinking and feeding behaviors (which
includes grazing, ruminating, jaw movements, chewing, or feed
intake), and gastrointestinal health were the main applications
related to the “nutrition” domain (Table 2). The cattle sector
appears to benefit from a wider variety of PLF technologies
at later development stages in comparison to other species,
although commercially available technologies can also be found
for pigs, poultry and fish. For small ruminants, technologies
mainly range from the proof-of-concept phase “P1” to the
validation phase “P2.”

Commercially Available Technologies
In cattle, smart camera systems using computer vision
combined with deep learning can monitor eating time and
feed availability at group level, while neck collars equipped
with 3D accelerometers continuously monitor rumination and
eating time in individual animals. Gastrointestinal health can
also be monitored using boluses sitting in cattle reticulum which
measure pH and temperature. In pigs, RFID ear tags are used
as part of electronic feeding systems, while in the aquaculture
sector, hydroacoustic-based technologies and cameras combined
with machine learning allow to monitor fish pellet consumption
and appetite. Finally, water consumption can be monitored with
commercially available boluses in cattle and with sensors in
cattle, pigs, and poultry.

Technologies in Development
Other systems which are currently in the development stages
(categories P1 to P2) can monitor ingestive behaviors in free-
ranging cattle, goats and sheep using acoustic monitoring (Navon
et al., 2013; Chelotti et al., 2016). In poultry, Aydin (2016)
developed a sound-based monitoring system to detect short-
term feeding behaviors of broiler chickens by recording pecking
sounds. RFID systems have been used to monitor feeding
patterns in pigs (Maselyne et al., 2016b; Adrion et al., 2018),
turkeys (Tu et al., 2011) and laying hens (Li et al., 2017). Image
analysis and binocular vision techniques have been developed
to monitor feeding in pigs (Yang et al., 2020) and poultry (Xiao
et al., 2019), while sensor-based systems can monitor feed intake
in goats (Campos et al., 2019) and turkeys (Chagneau et al.,
2006). Technologies at phase P2 also introduced the possibility to
use 3D-vision to automatically assess reticulo-ruminal motility
in cattle (Song et al., 2019). Finally, drinking behavior can be
monitored using RFID in pigs (Maselyne et al., 2016a) and
a combination of sensors and RFID have been used in cattle
(Williams et al., 2020). Accelerometers have been used tomonitor
drinking in calves (Roland et al., 2018), while camera-based
systems have been developed to monitor drinking behavior in
pigs (Kashiha et al., 2013a) and chickens (Xiao et al., 2019).
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TABLE 2 | Development stages of PLF technologies related to the “nutrition” domain of the Five Domains Model for different species (expressed in phases—P1, proof-of

concept stages; P2, validation stages; P3, commercialization phases).

Application Species Technology developments

Bolus Image RFID Sensors Sound

Drinking behavior Cattle P3 - P2 P3 -

Pigs - P1 P2 P3 -

Poultry - P1 - P3 -

Turkeys - - - P3

Feeding behavior Cattle - P3 - P3 P2

Fish - P3 - - P3

Goats - - - P2 P1

Pigs - P2 P3 - -

Poultry - P1 P2 - P2

Sheep - - - P2 P1

Turkeys - - P1 P1 -

Gastrointestinal health Cattle P3 P2 - - -

Welfare Implications
Using PLF to monitor drinking and feeding behaviors and
gastrointestinal health could help provide additional support to
minimize the experience of survival-related negative affects such
as thirst, hunger or gastrointestinal pain. As changes in drinking
or feeding patterns can be indicative of health compromises such
as diseases (Nicol, 2011), we suggest that feelings of sickness
could be minimized provided that farmers are taking adequate
management decisions based on the data (e.g., providing animals
with appropriate resources or treatment). In parallel, positive
affects such as comfort of good health, gastrointestinal comfort
and pleasures associated with drinking and eating could be
promoted. However, studies suggest that positive affective states
relating to most survival-related factors are usually short-lived
(Mellor and Beausoleil, 2015), hence these technologies may
mainly have an impact on the negative-to-neutral valence range.

Physical Environment
Table 3 shows that air or water quality, animal crowding and
distribution and heating/ventilation are the main applications
related to the “physical environment” domain. The monitoring
of environmental factors is generally based on image and sensor
technologies in the fish, poultry and pig sectors, most of them
being commercially available.

Technology Developments
The monitoring of air/water quality includes the detection of a
variety of parameters such as toxic molecules concentrations, pH,
CO2, temperature, or oxygen levels which can have important
impacts on animal health and welfare. Sensors are commercially
available to measure these environmental variables in the
aquaculture, poultry and pig sectors. They are also available to
monitor heating and ventilation in pig and poultry barns, while
image-based systems using animal postures or distribution are
still in early development stages (P1 to P2) (Shao et al., 1997; Xin,
1999; Kashiha et al., 2013b). Finally, animal distribution can be

detected with commercially available cameras in the aquaculture
and poultry sector.

Welfare Implications
Monitoring environmental parameters could help address
negative affective experiences by minimizing thermal, physical,
respiratory and olfactory discomfort due to inappropriate
temperatures or, e.g., inappropriate levels of ammonia. Ensuring
optimal environmental conditions could benefit welfare by
minimizing risks of infectious and respiratory diseases and
heat stress, as well as promoting feelings of comfort. In
addition, monitoring animal distribution can also indicate
welfare compromises or equipment malfunctions (e.g., heating
or ventilation systems) (Kashiha et al., 2013b). The potential
impacts on survival-related affective experiences remain within
the negative-to-neutral valence range.

Health
A variety of technologies at different development stages monitor
parameters related to the “health” domain, from specific diseases
to foot health and stress, as well as physiological parameters
such as heart rate or temperature. Most commercially available
technologies appear to apply to cattle, but they can also be found
for pigs, poultry, as well as for sheep and fish (Table 4).

Commercially Available Technologies
In cattle, body-mounted accelerometers can be used to detect
calving, estrus and lameness based on activity data, while cameras
combined with machine learning can help determine standing
heat, body condition scores (BCS), assess lameness, and estimate
weight. Boluses placed in the reticulum can also be used to
monitor estrus, calving and physiological factors such as body
temperature or pH, and ear sensors can monitor temperature.
In the pig sector, camera-based systems can determine BCS,
estrus and weight, while microphones placed in barns can detect
coughing sounds and monitor respiratory health. In aquaculture,
image-based systems can allow the detection of sea lice, and
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TABLE 3 | Development stages of PLF technologies related to the “physical environment” domain of the Five Domains Model for different species (expressed in

phases—P1, proof-of concept stages; P2, validation stages; P3, commercialization phases).

Application Species Technology developments

Bolus Image RFID Sensors Sound

Air/Water quality Fish - - - P3 -

Pigs - - - P3 -

Poultry - - - P3 -

Crowding/Distribution Fish - P3 - - -

Poultry - P3 - - -

Heating/Ventilation Pigs - P1 - P3 -

Poultry - P2 - P3 -

TABLE 4 | Development stages of PLF technologies related to the “health” domain of the Five Domains Model for different species (expressed in phases—P1, proof-of

concept stages; P2, validation stages; P3, commercialization phases).

Application Species Technology developments

Bolus Image RFID Sensors Sound

Birth (farrowing, calving) Cattle P3 - - P3 -

Pigs - - - P2 -

Body condition Cattle - P3 - - -

Pigs - P3 - - -

Disease/parasites monitoring Cattle - P1 - P2 P1

Fish - P3 - - -

Poultry - P2 - P2 P1

Estrus Cattle P3 P3 P1 P3 P2

Pig - P3 - P1 -

Sheep - - P2 - -

Feather damage Poultry - P1 - - -

Foot health Cattle - P3 - P3 P1

Pigs - P2 - P1 -

Poultry - P2 - P1 -

Sheep - - - P2 P2

Physiology Cattle P3 P1 - P3 -

Fish - - - P1 -

Pig - - P1 - -

Poultry - P1 - P1 -

Sheep - - - P2 -

Sneezing/Coughing Cattle - - - - P1

Pigs - - - - P3

Poultry - - - - P1

Stress/Pain Fish - P1 - - -

Pigs - P1 - - P1

Poultry - - - - P1

Sheep - P1 - - -

Weight Cattle - P3 - - -

Fish - P3 - P3 -

Pigs - P3 - P3 -

Poultry - P1 - P3 P1

sensors and cameras can estimate fish growth. Finally, automatic
weighing systems are available to detect the average weight of
poultry flocks.

Technologies in Development
Growth rate can be measured in broiler chickens using
technologies at development stages ranging from P1 to P2,
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using sound analysis (Fontana et al., 2015, 2017) or 3D cameras
(Mortensen et al., 2016).

Estrus in cattle can be monitored based on individual
vocalizations and caller identification (Röttgen et al., 2020) or
with proximity loggers (Corbet et al., 2018). This can also be
monitored using RFID technology in sheep (Alhamada et al.,
2016), while sensor-based systems can detect pig farrowing
(Manteuffel et al., 2015; Pastell et al., 2016; Liu et al., 2018).

Diseases such as mastitis in cattle or campylobacter infection
in chickens can be monitored using sensor, sound and image-
based technologies at phases P1 and P2 both in poultry (Okada
et al., 2014; Banakar et al., 2016; Colles et al., 2016; Grilli et al.,
2018) and cattle (Steensels et al., 2016; Vandermeulen et al., 2016;
Yazdanbakhsh et al., 2017; Zaninelli et al., 2018;Watz et al., 2019).

Physiological parameters such as respiration rate, temperature
or heart rate can be monitored in cattle using image or sensor-
based technologies at development stages P1 to P2 (Nogami et al.,
2013; Stewart et al., 2017; Strutzke et al., 2019) as well as in poultry
(Hyun et al., 2007; Xiong et al., 2019), fish (Martos-Sitcha et al.,
2019), and sheep (Dos et al., 2018; Fuchs et al., 2019).

Lameness can be detected in pigs using images and sensors
(Pluym et al., 2013; Stavrakakis et al., 2015), while gait scores
can be evaluated in poultry using optical flow and sensors
(De Alencar Nääs et al., 2010; Dawkins et al., 2017; Van
Hertem et al., 2018). Sensors can be used to detect lameness
in sheep (Shrestha et al., 2018; Kaler et al., 2020) and sound-
based systems to monitor lameness and foot lesions in cattle
(Volkmann et al., 2019).

Technologies in the P1 and P2 phases can monitor coughs
in cattle (Carpentier et al., 2018) and sneezing in poultry using
sound-based technologies (Carpentier et al., 2019). Similarly,
stress or signs of pain can be monitored in pigs (Schön et al.,
2004) and poultry (Lee et al., 2015), as well as by using camera-
based technologies in fish (Israeli, 1996), pigs (da Fonseca
et al., 2020) or sheep using facial recognition (McLennan and
Mahmoud, 2019). Finally, image processing can be used to detect
asphyxia in sows during parturition (Okinda et al., 2018) or to
predict feather damage in poultry (Lee et al., 2011).

Welfare Implications
The identified technologies could help address animal affective
experiences such as pain, weakness or sickness emanating from
diseases or physical injuries. For example, the early detection
of coughing can indicate the onset of respiratory diseases
which, if treated adequately, have the potential to prevent
the experience of breathlessness which can cause significant
threats to welfare (Beausoleil and Mellor, 2015). Similarly,
monitoring foot health or predicting feather pecking outbreaks
in poultry could help minimize painful experiences provided
that appropriate management decisions are taken. This in turn
could promote feelings of comfort linked to good health and
functional capacity. In some cases, the automatic detection of
estrus, whilst mostly beneficial for productivity, could reduce
the need for stressful handling (e.g., in pigs), hence potentially
addressing negative affective states such as anxiety or fearfulness.
As for the “nutrition” and “physical environment” domains, the

impacts on affective experiences remain within the negative-
to-neutral valence range. As highlighted during the workshop,
the early detection of diseases could help reduce their spread
and support management decisions such as early interventions,
better colostrum management, reducing the use of antibiotics,
reducing stressful handling or preventing injurious events such
as feather pecking.

Behavioral Interactions
Many PLF technologies are based on animal activity patterns,
such as lying, walking/swimming or standing. As shown in
Table 5, commercially available systems to monitor activity
have been developed for most farmed species, particularly
using image- and sensor-based technologies. Other technologies
have been developed to detect agonistic behaviors, as well as
social interactions and maternal behaviors in pigs, cattle and
poultry. However, those generally remain at earlier development
stages (P1 to P2).

Commercially Available Technologies
Accelerometers are mostly available for ruminants and are
usually attached to the animals’ bodies and allow to monitor
behavior, location, or postures of individual animals such as
lying, standing or walking. Image-based systems can be found in
the aquaculture, pig and poultry sectors, whilst hydroacoustic-
based systems allow to monitor fish movements. In sheep,
pedigree match makers using RFID tags can be used to identify
the maternal pedigree of lambs and to monitor behavior traits
of lambs and ewes in extensive systems, which could provide
information on potential changes in relationships (Brown et al.,
2011; Morris et al., 2012).

Technologies in Development
Other technologies at earlier development stages can help
monitor activity, such as drones in goats (Vayssade et al.,
2019), RFID in poultry (Zhang et al., 2016) and sensors in
fish (Martos-Sitcha et al., 2019), pigs (Mainau et al., 2009;
Thompson et al., 2016), and poultry (Quwaider et al., 2010;
Van Der Sluis et al., 2019). In pigs, tail biting or fighting
can be monitored using depth sensors (Lee et al., 2016;
Chen et al., 2019), 3D cameras and computer vision (Viazzi
et al., 2014; D’eath et al., 2018). Excessive mounting can
be detected using image analysis (Nasirahmadi et al., 2016),
while nest building can be detected using accelerometer data
(Oczak et al., 2015). Nursing behavior can also be monitored
using video analysis (Yang et al., 2019). In cattle, systems
have been developed to monitor agonistic behaviors based on
sensors (Foris et al., 2019), while image-based technologies
can monitor mounting behaviors (Chung et al., 2015; Guo
et al., 2019) and social interactions (Guzhva et al., 2016),
and accelerometers can estimate locomotor play in calves
(Luu et al., 2013). Proximity interactions of individual dairy
cows within large herds can also be monitored using local
positioning sensor network (Chopra et al., 2020). Image-
and RFID-based technologies in the poultry sector allow
to monitor human-animal interactions (HAI) (Lian et al.,
2019), nesting (Li et al., 2017), and perching behaviors
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TABLE 5 | Development stages of PLF technologies related to the “behavioral interactions” domain of the Five Domains Model for different species (expressed in

phases—P1, proof-of concept stages; P2, validation stages; P3, commercialization phases).

Application Species Technology developments

Bolus Image RFID Sensors Sound

Activity Cattle - P2 - P3 -

Fish - P3 - P1 P3

Goat - P1 - P3 -

Pigs - P3 - P2 -

Poultry - P3 P2 P2 -

Sheep - - - P3 -

Agonistic behavior Cattle - - - P2 -

Pigs - P1 - P2 -

HAI Poultry - P1 - - -

Excessive mounting Pigs - P2 - - -

Nest building Pigs - - - P1 -

Nesting Poultry - - P2 - -

Nursing Pigs - P1 - - -

Social interactions/ Cattle - P1 P2 P1 -

relationship Sheep - - P3 - -

Perching Poultry - - P2 - -

(Nakarmi et al., 2014; Wang et al., 2019). Finally, RFID can used
to explore social behavior in cattle such as cow-calf affiliations
(Swain and Bishop-Hurley, 2007; Boyland et al., 2013).

Welfare Implications
Themonitoring of specific behaviors and situation-related factors
could help to obtain a better understanding of levels of welfare
and help evaluate animals’ responses to their environment as
well as supporting management decisions that may promote the
experience of positive affects and minimize negative ones, hence
having an impact on the negative-to-positive valence range.
Ensuring that animals can engage in natural and rewarding
behaviors which are important for their welfare such as nest
building or nursing in pigs, social interactions in cows and
sheep or nesting and perching in poultry, could indeed help
minimize feelings of frustration and promote affects such as
feeling maternally rewarded, protected or socially engaged.
In pigs e.g., monitoring nest building behaviors can help
decrease the time sows are kept in farrowing crates without
increasing piglet mortality, while monitoring nesting or perching
behaviors in poultry can help in housing system design and
management. In addition, being able to monitor agonistic
behaviors can provide a better understanding of how social
relationships (e.g., dominance) are influenced by the animals’
environment and to encourage measures that will help minimize
fearfulness or anxiety by reducing risks of aggression and
injuries, while promoting feelings of security. Finally, monitoring
the HAR could have important impacts on animal welfare if
adequate measures are put in place to reduce the occurrence
of negative interactions and promote positive ones (e.g., gentle
as opposed to rough handling, or talking softly as opposed
to shouting).

Welfare Benefits and Risks Across
Domains
In addition to the domain-specific welfare impacts suggested
above, more general welfare benefits of the identified
technologies include the potential to help support management
decisions such as early intervention to ensure good health,
reduce the use of antibiotics and prevent disease outbreaks,
sometimes in systems where monitoring can be difficult (e.g., in
extensive systems or where large numbers of animals are kept
together). In addition, monitoring animals at individual level
(e.g., using body-mounted devices or boluses) could help better
understand the animals’ specific needs.

During the workshop, questions were raised as to whether
the use of wearable sensors (or those placed inside the animals)
could cause discomfort or potential injuries to the animals.
Ear tags e.g., which are often required for identification and
traceability purposes can be a potential source of damage to
the animals’ ears, with severity depending on the type of tag
(Edwards and Johnston, 1999). Although sensors in the form
of neck collars do not require the same type of interventions,
their potential impacts on animal behavior and welfare should
be further studied. In addition, some of the technologies do not
yet allow the monitoring of individuals, but do so at group level
(in particular on farms with high number of animals e.g., poultry
or fish). While these technologies could be beneficial for the
detection of welfare compromises, the interpretation of the data
must be done carefully, as management decisions made at group
level could be detrimental for the welfare of those individuals
whose needs differ from others (e.g., different nutrition or
treatment requirements). For example, group monitoring of
feed or water intake may not reflect social competition, which
may hence be overlooked. Although studies have looked at
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possibilities to identify competitive interactions at the feedbunk,
those were considered not practical due to high costs and labor
(Huzzey et al., 2014).

Other concerns relate to the potential to reduce the
frequency of visual or physical examination which could
impact stockpeople’s attitudes and behavior toward their
animals, hence having a potential effect on the human-
animal relationship (HAR) and animal welfare. This could
be particularly problematic on systems with larger numbers
of animals (e.g., poultry or aquaculture), where opportunities
to become habituated to people are already limited. Finally,
over-reliance on PLF technologies, which was also a concern
raised during the workshop, could increase risks of harm if
system failures were to occur, in particular where systems are
fully automated.

DISCUSSION

The results from this study indicate that while PLF technologies
can have a variety of benefits and may have a good potential
to help minimize negative experiences, their current ability
to contribute to promoting positive welfare remains limited.
In addition, there are welfare risks associated with their use
which must be considered, such as their potential impact on
the human-animal relationship or to animal management. As
Buller et al. (2020, p. 5) argue, “If it is to make a substantive
contribution to addressing genuine animal welfare concerns, PLF
technology must therefore address [. . . ] the effective monitoring
and identification of systemic welfare failures and the active
enhancement of opportunities for positive welfare experiences.”

A wide range of commercially available technologies aim to
reduce the occurrence and impact of health issues, such as sensors
detecting lameness in cattle, microphonesmonitoring respiratory
health in pigs, or cameras monitoring the presence of parasites
in fish. They are also widely available to monitor and improve
productivity such as growth in poultry or estrus in dairy cattle
to increase pregnancy rate and optimize insemination. Most
technologies monitoring parameters related to the “nutrition,”
“physical environment,” and “behavioral interactions” domains
such as feeding or drinking behavior, air/water quality or activity
are also designed with the aim to optimize productivity and to
minimize the impacts of diseases. Indeed, changes in feeding
or drinking behaviors can indicate signs of illnesses (Nicol,
2011), while inappropriate environmental conditions can be
detrimental to animal health and lead to increased mortality
(Zhang et al., 2011; Segner et al., 2012). Finally, a variety of
technologies that are still in early development stages have
focused on preventing the occurrence of undesired behaviors
which can cause significant injuries such as tail biting in pigs
or feather pecking in poultry (Bilcik and Keeling, 1999; Di
Giminiani et al., 2017).

The use of these technologies could have important benefits
for welfare if the data are used to support farmers in making
effective management decisions. Indeed, PLF could allow the
early detection of health issues and reduce the occurrence
of negative affective experiences, such as pain resulting from

lameness or breathlessness caused by respiratory diseases. In
their study e.g., Taneja et al. (2020) developed a system which
allowed to detect lameness 3 days before it was visually captured
by farmers, with an accuracy of 87%. Berckmans et al. (2015)
showed that respiratory problems in pigs were detected up to
2 weeks earlier compared to farmers’ and veterinarians’ routine
observations, thanks to a sound based PLF system. In addition,
Kashiha et al. (2013b) developed a system which allowed to
detect issues in broiler houses based on animal distribution index,
which enables early intervention to minimize impacts on bird
welfare. Timely detection of diseases could help reduce the need
for antibiotics hence responding to the major global issue which
is antimicrobial resistance resulting from the excessive use of
antibiotics affecting both animals and humans (Trevisi et al.,
2014; McEwen and Collignon, 2018). In addition, PLF could also
allow monitoring larger numbers of animals more easily (e.g.,
using wearable sensors to monitor health status or smart cameras
to monitor larger groups), including on extensive systems where
the detection of sick or injured animals is often difficult (Rutter,
2014), as well as reducing potential stress resulting from repeated
handling and moving of animals (e.g., manual weight detection
in pigs) (Kashiha et al., 2014). Furthermore, the use of PLF
technologies could also help other actors (e.g., veterinarians
or farm advisors) support more efficient and farm-specific
management decisions based on the data collected, although this
may require improvements in relation to the sharing of data
(Rojo-Gimeno et al., 2019).

While health is undeniably an integral part of animal
welfare, it does not in itself guarantee “good” welfare. Studies
in neuroscience indicate that negative affective states relating
to most survival-related factors, such as thirst or hunger,
can at best be neutralized and do not necessarily lead to
anything more than short-lived positive welfare states (Mellor
and Beausoleil, 2015). Minimizing these negative experiences
can therefore shift a negative welfare state toward a more
neutral one. However, moving toward a positive welfare state
requires opportunities to live positive experiences. These include,
e.g., affiliative interactions, play, or autogrooming, which are
believed to have rewarding properties, and have the potential
to indicate positive affective states (Boissy et al., 2007). Mellor
(2015b, p.21) hence suggested that “welfare reference standards
should now be chosen to more strongly reflect a need for such
[welfare-enhancing exploratory, foraging and affiliative behaviors]
opportunities to be provided.” Some of the technologies identified
in this studymonitor these types of behaviors (e.g., play and social
interactions in cattle, nest building behaviors in pigs or perching
in poultry), however, at present, they appear to be mostly at early
development stages.

The use of such technologies could help getting a better
understanding of aspects of welfare that have often received less
attention and help support management decisions that could
improve animal welfare by promoting positive affects such as
feeling engaged, confident or being maternally rewarded, and
by minimizing negative ones such as fearfulness or frustration
from not being able to express natural behaviors. In pig
production e.g., sows are often kept in farrowing crates during
parturition to restrain their movements and avoid piglets from
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being crushed. In those conditions, pre-partum sows are not
able to perform nest-building behaviors, which they are highly
motivated to perform to provide shelter and comfort to their
young (Wischner et al., 2009). Predicting the onset of farrowing
using automated monitoring systems could therefore help in
management decisions such as restricting the time sows are kept
in farrowing crates only to the critical period where piglets are
most vulnerable, hence providing the sows with opportunities
to perform those highly motivated behaviors (Oczak et al.,
2015), and potentially having an effect on the negative-to-positive
valence range.

It could be argued that, while positive animal welfare has
gained increased attention in animal welfare science, further
research is still required regarding the feasibility, validity and
reliability of positive welfare indicators, making their current
applicability within welfare assessment protocols difficult. For
example, while play behavior appears to be a valid indicator
of positive welfare as it only occurs when all other needs
are met (Held and Špinka, 2011), the low incidence of this
behavior in farming conditions makes it difficult to use as
part of current welfare assessments (Jensen and Kyhn, 2000;
Napolitano et al., 2016). Similarly, while social licking can have
positive effects on individual cows, the behavior might also reflect
social tension within a herd (Napolitano et al., 2016). As raised
by participants of the workshop, one particular challenge to
technology development and implementation in the aquaculture
sector may also be related to the existing debate around whether
fish can feel pain or experience particular emotions despite
growing evidence suggesting that they do (Sneddon, 2019). This
limitation in terms of validity and feasibility could explain why
technologies with a potential to monitor and promote positive
welfare are still in early development stages. Progress is however
made in this area: a recent study reviewed promising valid and
reliable positive welfare indicators that could be used in welfare
assessments of ruminants (Mattiello et al., 2019). These indicators
were mostly related to the physical environment, behavioral
interactions and mental state domains of the FDM and included,
e.g., ear or tail posture, half-closed eyes, low-frequency calls or
ruminating. From a technical point of view, it would appear that
developing technologies monitoring these types of indicators is
possible, as a variety of systems identified in the present study
have been developed to monitor specific postures, vocalizations
or behaviors such as rumination.

Another important aspect to consider in addition to technical
feasibility is whether these particular types of technologies would
likely be adopted by farmers since the widespread uptake of
precision technologies thus far has been rather slow, including in
dairy farming as a result of “innovation uncertainty” (Eastwood
and Renwick, 2020). In their study, Vigors and Lawrence (2019)
interviewed farmers on their perception of positive animal
welfare and found that as a whole, farmers prioritized the
reduction of negative experiences, and mostly considered that
by doing so, positive welfare would arise as a result. Most of
the interviewed farmers considered that different positive welfare
indicators such as social interaction or play did not require
farmers’ direct input or management (except from preventing
negative interactions to occur, for example) but that those would

happen as a result of other management-based inputs. For
this reason, the adoption potential of technologies aimed at
monitoring such indicators could be challenging, as they may
not be perceived as being a priority. Highlighting the benefits
of promoting positive welfare such as the effect on productivity
and also on farmers’ well-being [see Vigors and Lawrence
(2019)], could help enhance the acceptability of those indicators
and therefore the technology adoption potential. Indeed, Lima
et al. (2018) found that farmers’ beliefs (including usefulness
and practicality) played an important role in the adoption of
Electronic Identification (EID) technology. They suggested that
communicating the positive effects of such tools, including on
performance, was likely to help enhance technology adoption.

More generally and as raised during the workshop, another
potential limitation to PLF technologies adoption may relate to
a lack of validation of some technologies which could result in
a lack of trust by farmers but also the possibility for welfare-
compromising issues to be missed by the technologies. The
validation of technologies is usually required to predict how a
system would perform under realistic operating conditions, and
in the case of PLF, developments must take into account the
complexity of living organisms, which are “individually different,
time-varying and dynamic” (Norton and Berckmans, 2017). This
complexity may explain why a wide range of PLF technologies
still require further validation. In their study, Larsen et al. (2021)
found that only 23% of publications related to PLF in pigs were
properly validated, and a recent review indicated that only 14%
of commercially available sensors in dairy cattle were externally
validated (Stygar et al., 2021).

Technology adoption does not, however, guarantee that the
technologies will be used in an optimal way in relation to
welfare. Firstly, covering the many different ways welfare can
be affected would require farmers to invest in multiple systems,
as most technologies can only monitor a few parameters at a
time and systems are often not connected to each other, adding
a difficulty to data interpretation (Knight, 2020). Indeed, there
is still a lack of integration of PLF technologies making it more
challenging to determine effective mechanisms for intervention
(Buller et al., 2020). It is also important to stress that most PLF
technologies are monitoring systems, meaning that while they
can alert farmers to detected issues, the decision to act on the
data provided ultimately lies in the farmers’ hands. The extent
to which welfare can be improved therefore depends on how the
technologies and resulting data are used, and especially whether
management decisions are restricted to “curing” symptoms once
they have appeared or whether those decisions would be adapted
to prevent issues arising in the first place. Indeed, participants at
the workshop believed that there could be a risk thatmanagement
would be adapted to fit the use of technologies rather than
focusing on welfare improvements, such as adapting light hours
and levels to fit cameras or having more barren environments to
minimize background noises.

In addition, there could be a risk that a greater recognition of
issues among livestock keepers would result in greater acceptance
of those issues rather than act as a call to action. In the case of
lameness in dairy herds e.g., which is considered one of the most
important welfare issue in dairy farming, a study found that a
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majority of farmers (90%) did not perceive lameness as being
a major issue on their farm, even though the average lameness
prevalence was high (36%) (Leach et al., 2010). According to
Horseman et al. (2014), this may not necessarily be exclusively
attributed to farmers not being able to detect lame cows, but
could rather be linked to how farmers perceive lameness, as
well as their understanding of the benefits of promptly treating
lame cows. Indeed, it appears that farmers are more likely to
treat severely lame cows more rapidly, leaving simply impaired
cows untreated for longer, even though research suggests that
it may be more beneficial to treat cows that are less severely
lame early (Leach et al., 2010 as cited in Horseman et al.,
2014). The extent to which welfare can be improved using PLF
thus depends on whether the day-to-day management of animal
health and welfare will be adapted with the implementation of
those technologies.

It is also noted that most technologies monitoring at the
individual level appear to be available for dairy cattle, while
technologies monitoring smaller animals often kept in highly
populated units such as poultry or fishmostly do so at group level
(e.g., using cameras) hence ensuring that the “average” animal
receives adequate food, water and environmental conditions
(Smaldon, 2020). This is explained by higher numbers of animals
with lower financial value per farm, making individual body-
mounted devices costly and difficult to implement. On farms
where welfare would be assessed automatically at group level,
there is a risk that the individual nature of animal welfare might
not be sufficiently taken into account if the interpretation of the
data is not done carefully. Indeed, assessing welfare parameters
at group level does not allow evaluation of whether the measure
applies equally to the whole group or to some individuals only,
potentially neglecting animals in much lower welfare states
(Winckler, 2019). In addition, concerns raised at the workshop
related to the design of the technologies which could have an
impact on welfare if it is not “wearer-driven” (e.g., such as taking
into account genetic variability or rearing environment). It was
also questioned whether facilitatingmanagement of larger groups
could lead to further intensification.

Another important welfare risk, which was also mentioned
at the workshop, relate to the potential impact on the human-
animal relationship (HAR). Indeed, most of the technologies
identified in this study can be used to replace the need for visual
but also physical examination, such as monitoring lameness,
environmental conditions or feeding behaviors. Depending on
how the time saved in performing these tasks is used by
farmers, the potential decrease in human presence and human-
animal interactions could have an effect on the HAR. Research
indeed suggests that the frequency, intensity and intimacy of
human-animal interactions influence the level of attachment
or detachment of farmers toward their animals (Bock et al.,
2007). This loss of interactions and therefore further detached
relationship with animals (which may be more and more
perceived as production tools) could result in a decrease in
empathy and reduced concerns toward animal suffering. In
addition, while some potentially stressful tasks could be avoided
using PLF, others which have the potential to strengthen the

HAR and that allow animals to be habituated to the presence
of humans to some extent may also be decreased. This could
reduce human-animal interactions to tasks which cannot be
replaced by PLF such as mutilations, hence impacting the HAR
negatively (Boivin et al., 1994; Hemsworth and Boivin, 2011).
Indeed, Tallet et al. (2019) showed that piglets which were tail
docked with a cautery iron interacted with unfamiliar humans
later than piglets that were not tail docked, and Lürzel et al.
(2015) observed that calves avoidance distances were higher
after disbudding. In their study, Kling-Eveillard et al. (2020)
found that following the implementation of PLF, some farmers
perceived the HAR as having improved, while others believed
it deteriorated. They also mentioned concerns that having to
manage an increased amount of datamay reduce the time farmers
spend with animals and impact farmers’ observational skills.
Concerns relating to the de-skilling of farm staff were also raised
during the workshop.While the social impacts of PLF on farmer’s
work are not detailed here, it is ultimately closely linked to animal
welfare, since knowledge and husbandry skills and the ability to
identify deviations in behaviors and health compromises are key
characteristics of animal care (Hemsworth et al., 2009). Farm
management supported by the use of PLF should therefore take
these potential impacts into consideration, as a negative HAR can
be detrimental to animal welfare, but also to farm productivity
and job satisfaction (Waiblinger et al., 2006).

While the study aimed at exploring the potential of PLF to
help improve animal welfare and the potential risks associated
with their use, there are limitations in this study which must
be taken into account. As mentioned in the methods section,
the identification of PLF technologies was limited to a restricted
number of keywords, making it possible to have omitted a
variety of technologies. In addition, the different technologies
and applications were classified into wider categories with only
the latest development stages of all technologies within those
categories shown. For this reason, the classification may not
reflect the stage of development of all the different types of
technologies (although as emphasized in the methods, it was not
the goal of the study to determine each existing technology).
Finally, it must be re-emphasized that animal welfare is complex,
with many variables having a potential impact, whether positive
or negative. Using the FDM as a framework helped to capture
both positive and negative aspects of welfare, however it remains
challenging to predict how the use of technologies will impact
on welfare. In addition, the affective states and welfare benefits
and risks mentioned in this paper were based on qualitative
discussions and evaluation by the authors. Thus, further research
aimed at evaluating those positive and negative impacts using
quantitative and qualitative methods would be useful to help in
technology design, both to maximize potential welfare benefits
and minimize the risks. As mentioned by participants of the
workshop, further validation of PLF technologies and research
on positive welfare indicators as well as a better collaboration
between industry, researchers and farmers should also be
encouraged, as well as increasing awareness and training of all
relevant stakeholders (including training to improve attitudes
and behavior of stock people toward animals).
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CONCLUSION

The potential of PLF to help reduce the duration and/or severity
of diseases and injuries in livestock farming systems is promising:
technologies can detect health issues at an early stage and help
ensure optimal environmental conditions. However, the extent
to which current PLF systems can help improve welfare appears
to be limited to reducing the occurrence of negative affective
states. Some technology developments related to the “behavioral
interactions” domain of the FDM have the potential to help
in promoting positive affective states, however, these generally
remain at early development stages. This is potentially explained
by a lack of evidence regarding the validity of potential positive
welfare indicators and the difficulties in measuring them, as well
as doubts regarding the adoption potential of such technologies.
In addition, the extent to which welfare could be improved
depends on whether the data obtained using PLF would be
used to adapt management practices while minimizing negative
consequences (such as the impact on the HAR), and whether
actions would be taken to address the root cause of the issues
rather than solely focusing on treating the symptoms.
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