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Abstract: Semiconductor-based photocatalysis has been identified as an encouraging approach for
solving the two main challenging problems, viz., remedying our polluted environment and the
generation of sustainable chemical energy. Stoichiometric and non-stoichiometric bismuth oxyhalides
(BiOX and BixOyXz where X = Cl, Br, and I) are a relatively new class of semiconductors that have
attracted considerable interest for photocatalysis applications due to attributes, viz., high stability,
suitable band structure, modifiable energy bandgap and two-dimensional layered structure capable
of generating an internal electric field. Recently, the construction of heterojunction photocatalysts,
especially 2D/2D systems, has convincingly drawn momentous attention practicably owing to
the productive influence of having two dissimilar layered semiconductors in face-to-face contact
with each other. This review has systematically summarized the recent progress on the 2D/2D
heterojunction constructed between BiOX/BixOyXz with graphitic carbon nitride (g-C3N4). The
band structure of individual components, various fabrication methods, different strategies developed
for improving the photocatalytic performance and their applications in the degradation of various
organic contaminants, hydrogen (H2) evolution, carbon dioxide (CO2) reduction, nitrogen (N2)
fixation and the organic synthesis of clean chemicals are summarized. The perspectives and plausible
opportunities for developing high performance BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts
are also discussed.

Keywords: 2D materials; photocatalysis; heterojunction; bismuth oxyhalides; graphitic carbon nitride

1. Introduction

Excessive demand for pharmaceutical, personal care, agricultural and industrial prod-
ucts driven by the continued growth of the world population has inevitably escalated the
discharge of organic contaminants into the environment [1]. The steadily increasing concen-
tration of organic contaminants primarily originating from pharmaceutical and personal
care products in municipal wastewaters of many urban cities globally is making microor-
ganisms resistant to drugs [2]. Undoubtedly, these organic contaminants pose a huge threat
to the environment and human health as they have demonstrated severe ecological risk
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for mutagenesis, teratogenesis and carcinogenicity [3]. Therefore, in addition to finding
sustainable solutions to our global energy crisis and eliminating the steadily increasing
CO2 concentration from the environment, the removal of these organic contaminants with
high chemical stability is another highly challenging task [4]. Several methods based on
chemical [5] and biological [6] techniques and advanced oxidation processes [7] have been
employed for the complete removal of organic contaminants from wastewater. However,
almost all strategies failed to achieve complete degradation, and the search for a green,
efficient and economically viable technology continued. In 1972, pioneering work reported
by Fujishima and Honda revealed that UV light irradiated on the surface of a TiO2 electrode
generated free radicals for the decomposition of water into hydrogen and oxygen. Later
on, it was revealed that the photogenerated free radicals emanating from semiconductors
under UV/Visible light excitation could also cleavage the chemical bonds in the molecular
organic contaminants adsorbed on their surfaces [8]. In this regard, heterogeneous semicon-
ductor photocatalysis—categorized as another form of advanced oxidation process—has
received an overwhelming research interest as a “one-step solution” for addressing the
energy and environmental issues, viz., the generation of hydrogen gas through light-water
splitting reaction, the reduction of CO2 into hydrocarbons and to completely break down
organic contaminants through redox reactions involving the radical species [9]. Despite
nanostructured TiO2 being a robust and chemically stable semiconductor, its wide bandgap
energy (3.2 eV) demands UV light for its excitation. Since the visible light is predominant
in the solar spectrum and with UV light being insignificant (just ~4%), researchers swiftly
moved to utilize nanostructured semiconductors with a narrower bandgap energy (such as
CdS, Fe2O3, WO3, etc.) for efficiently utilizing the inexhaustible sunlight energy [10,11].

Since the discovery of graphene, semiconductors with 2D layered structures have
greatly influenced the researchers to study them for applications in photocatalysis due
to their unique sheet-like morphology with one-dimensionally confined electrons pro-
ducing exceptional physio-chemical, optical and electronic properties [12]. In addition
to the ease of fabrication, other interesting features of 2D semiconductors exclusively for
photocatalytic applications are their large specific surface area with many photoactive sites
and customizable thickness leading to easy adjustments to the bandgap energy and light
absorption efficiency. Further, the atomically thin 2D layered morphology enables strong
in-plane bond formation, facilitating easy heterostructure construction (on substrates or
with other 2D semiconductors through weak van der Waals interaction) and enhancing the
rate of the photocatalytic reactions due to the shortened transport path [13].

Among the various 2D semiconductors for photocatalysis applications, bismuth oxy-
halides (referred to hereafter as BiOX, where X = Cl, Br and I)—a group of V-VI-VII ternary
compounds with stoichiometric form—have become the prime choice for researchers owing
to their nontoxicity, layered morphology, unique crystal structure, suitable band structure,
variable bandgap energy and excellent chemical stability ensuring corrosion resistance in
the solution medium for long term operations [14]. The stoichiometric BiOX possessing
tetragonal matlockite polymorph (PbFCl-type; space group—P4/nmm) crystallize into
layered structures consisting of patterned [X-Bi-O-Bi-X] slices stacked together by the
nonbonding van der Waals interaction through the halogen atoms along the c-axis, as
depicted in Figure 1. In each [X-Bi-O-Bi-X] layer, the central Bi atom is surrounded by
four oxygen and four halogen atoms, generating an asymmetric decahedral geometry [15].
The open crystalline structure, indirect bandgap, strong covalent bonding combined with
weak interlayer van der Waals interaction, and excellent electrical, optical and mechanical
properties are the features that endow BiOX as a promising candidate for light induced
redox reactions [16]. However, poor light absorption, restricted utilization and limited
chemical stability are some of the shortcomings of BiOX.
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Figure 1. Crystal structure of the BiOX systems (space group P4/nmm, D4h symmetry) with stoichi-
ometric X-Bi-O-Bi-X Bi-layers stacked along the c axis. Bismuth, oxygen, and halide ions are de-
noted by purple, red and blue spheres, respectively. 

On the other hand, bismuth rich-bismuth oxyhalides (referred to hereafter as BixOyXz) 
with non-stoichiometric form also have a layered structure similar to BiOX, with strong 
covalent bonding and weak interlayer van der Walls interactions. Generally, the band 
structure of a semiconductor is governed by its chemical components to a great extent. In 
non-stoichiometric BixOyXz, the replacement of the halogen atoms in its lattice correspond-
ingly led to modified band structure and subsequently the optical absorption edge and 
band redox potentials [17]. Most importantly, the negative conduction band positions of 
BixOyXz facilitate its widespread utilization for photocatalytic applications [18]. 

Graphitic carbon nitride (g-C3N4) is another exquisite 2D semiconductor that has 
been flourishing in the recent years for applications in photocatalysis due to its tri-s-tria-
zine ring structure, appealing electronic band structure, medium bandgap (2.7 eV), and 
excellent chemical and thermal stability [19]. In addition, the earth-abundant carbon and 
nitrogen elements in g-C3N4 can be easily prepared via one-step polymerization of abun-
dantly available inexpensive nitrogen-rich precursors, such as urea, thiourea, melamine, 
cyanamide and dicyandiamide [20,21]. Nevertheless, pristine g-C3N4 also suffers from 
shortcomings such as high excitation energy, low charge carrier mobility, the rapid re-
combination of photogenerated charge carriers, and narrow visible light absorption effi-
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Thus, integrating BiOX/BixOyXz with g-C3N4 would be an ideal strategy to overcome 
many of the demerits associated with individual components. The 2D layered structures 
of both BiOX/BixOyXz and g-C3N4 conveniently promote the construction of a heterojunc-
tion and, furthermore, the favourable band energy between them can facilitate enhanced 
photocatalytic performance [23–29]. Several review articles on single component 2D sem-
iconductor photocatalysts concentrating primarily on BiOX, BixOyXz and g-C3N4 have been 
published [15,30–58]. Nonetheless, a review article accounting the progress of heterojunc-
tion photocatalysts based on BiOX and BixOyXz with g-C3N4 is rarely reported. Since there 
is a consistent upsurge in the research trend on BiOX based photocatalysts as evidenced 
from the literature survey presented in Figure 2, a review article is needed to fill the gaps 
and to account the recent progress. Therefore, in this review, we have presented a sum-
mary on the band structure of BixOyXz and have furnished information on the various 
methods of coupling BiOX/BixOyX and g-C3N4 to fabricate heterojunction photocatalysts 
for organic contaminant degradation, H2 generation, CO2 reduction, N2 fixation and or-
ganic synthesis applications. Further, the various strategies for improving the perfor-
mance of g-C3N4-BiOX/BixOyXz heterojunction photocatalysts, viz., the creation of defects, 
the role of facets, integration with other semiconductors, metals and carbon materials are 

Figure 1. Crystal structure of the BiOX systems (space group P4/nmm, D4h symmetry) with stoichio-
metric X-Bi-O-Bi-X Bi-layers stacked along the c axis. Bismuth, oxygen, and halide ions are denoted
by purple, red and blue spheres, respectively.

On the other hand, bismuth rich-bismuth oxyhalides (referred to hereafter as BixOyXz)
with non-stoichiometric form also have a layered structure similar to BiOX, with strong
covalent bonding and weak interlayer van der Walls interactions. Generally, the band
structure of a semiconductor is governed by its chemical components to a great extent. In
non-stoichiometric BixOyXz, the replacement of the halogen atoms in its lattice correspond-
ingly led to modified band structure and subsequently the optical absorption edge and
band redox potentials [17]. Most importantly, the negative conduction band positions of
BixOyXz facilitate its widespread utilization for photocatalytic applications [18].

Graphitic carbon nitride (g-C3N4) is another exquisite 2D semiconductor that has
been flourishing in the recent years for applications in photocatalysis due to its tri-s-
triazine ring structure, appealing electronic band structure, medium bandgap (2.7 eV),
and excellent chemical and thermal stability [19]. In addition, the earth-abundant carbon
and nitrogen elements in g-C3N4 can be easily prepared via one-step polymerization
of abundantly available inexpensive nitrogen-rich precursors, such as urea, thiourea,
melamine, cyanamide and dicyandiamide [20,21]. Nevertheless, pristine g-C3N4 also
suffers from shortcomings such as high excitation energy, low charge carrier mobility, the
rapid recombination of photogenerated charge carriers, and narrow visible light absorption
efficiency [22].

Thus, integrating BiOX/BixOyXz with g-C3N4 would be an ideal strategy to overcome
many of the demerits associated with individual components. The 2D layered structures of
both BiOX/BixOyXz and g-C3N4 conveniently promote the construction of a heterojunc-
tion and, furthermore, the favourable band energy between them can facilitate enhanced
photocatalytic performance [23–29]. Several review articles on single component 2D semi-
conductor photocatalysts concentrating primarily on BiOX, BixOyXz and g-C3N4 have been
published [15,30–58]. Nonetheless, a review article accounting the progress of heterojunc-
tion photocatalysts based on BiOX and BixOyXz with g-C3N4 is rarely reported. Since there
is a consistent upsurge in the research trend on BiOX based photocatalysts as evidenced
from the literature survey presented in Figure 2, a review article is needed to fill the gaps
and to account the recent progress. Therefore, in this review, we have presented a summary
on the band structure of BixOyXz and have furnished information on the various methods
of coupling BiOX/BixOyX and g-C3N4 to fabricate heterojunction photocatalysts for or-
ganic contaminant degradation, H2 generation, CO2 reduction, N2 fixation and organic
synthesis applications. Further, the various strategies for improving the performance of
g-C3N4-BiOX/BixOyXz heterojunction photocatalysts, viz., the creation of defects, the role
of facets, integration with other semiconductors, metals and carbon materials are discussed.
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Additionally, the future prospects of BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts
for broader energy and environmental applications are deliberated.
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“photocatal*” adapted from the Web of Science, dated 17 November 2020.

2. Electronic Band Structure of BiOX, BixOyXz and g-C3N4

The band structure of the material is the crucial parameter that dictates the light
absorption capacity, charge carrier dynamics and generation of free radicals. In the case of
BiOX, O 2p and X np states (n = 3, 4 and 5 for X = Cl, Br, and I, respectively) constitute the
valance band minimum (VBM), while the conduction band maximum (CBM) is derived
from Bi 6s and the Bi 6p states. The largely dispersed Bi 6s orbital facilitates the mobility of
photoinduced holes in the VB (valence band) and is beneficial for the oxidation reaction.
The energy bandgap values and the redox potentials of BiOX are vastly related to the atomic
numbers of X and the composition of the layered structure [59]. Therefore, the optical
absorption in BiOX can be tailored via varying the halogen species or Bi/X ratios. Increasing
the atomic number of X leads to a change in the colour and bandgap energy of BiOX from
white (BiOCl, 3.2 eV) to yellow (BiOBr, 2.7 eV) and red (BiOI, 1.7 eV), thus maximizing
their light absorption capacities [60]. The open crystalline structure has a layered Sillen–
Aurivillius related oxide structure composed of [Bi2O2] layers sandwiched between two
slabs of [X] ions, and the electrostatic potential difference between the slabs generates a
static internal electric field (IEF). The static IEF in BiOX can effectively split and transit the
photogenerated electrons and holes [61–63]. However, BiOX as a photocatalyst could be
employed for the degradation of organic pollutants alone as its positive CB (conduction
band) potential restricts it from being used for other photocatalytic applications such as H2
generation, CO2 reduction, N2 fixation and organic synthesis.

On the other hand, non-stoichiometric BixOyXz with increased Bi content are reported
to promote the reduction power of photogenerated electrons and increase the thermody-
namic force for initiating many reduction reactions that were impossible to be carried out
using BiOX [64,65]. For instance, compared with BiOX, the changes in the Bi, O, and X
proportions result in the variation of orbital hybridization and uplifting of the bottom
of the CB, leading to the water splitting for H2 generation as was reported in Bi4O5 × 2
(X = Br and I) [66,67]. In addition to H2 generation, the increased CB also promoted photo-
catalytic molecular oxygen activation in Bi24O31Cl10. Further, the Bi-rich BixOyXz possesses
enhanced light-harvesting ability that is attributed to the modulated band structure, thus
breaking the bottleneck of limited photoabsorption caused from the wide bandgap energy
of BiOCl and BiOBr [68]. The higher photon absorption efficiency of BixOyXz in comparison
to BiOX induces greater electric field intensity, which in turn leads to large dipole moment.
The larger dipole moment and wider interlayer spacing in BixOyXz boosted by the large
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polarization force and polarization space lead to increased IEF, which in turn enhances the
separation efficiency of the photogenerated charge carriers.

Electronic band structure, redox levels of the CB and VB and the bandgap energy
of g-C3N4 were studied both theoretically and experimentally. Theoretical calculations
estimated the bandgap energy of the melem molecule, polymeric melon and fully con-
densed g-C3N4 to be 3.5, 2.6 and 2.1 eV, respectively [69–71]. The bandgap energy value of
2.6 eV calculated for polymeric melon was consistent with the experimentally measured
value of 2.7 eV for defect containing bulk g-C3N4 [70]. The CBM and VBM positions
for g-C3N4 estimated through the density functional theory were −1.12 and +1.57 eV,
respectively. Interestingly, the experimental investigations through the valence band X-ray
photoelectron spectroscopy confirmed the VBM position of g-C3N4 at +1.53 eV, which was
almost consistent with the theoretical calculations [72]. Therefore, the position of the CBM
(−1.12 eV) is predicted to be satisfactory for H2 generation, while that of the VBM provides
a thermodynamic driving force for O2 evolution reaction. Wavefunction studies revealed
that the VB and CB of g-C3N4 serving as independent sites for the oxidation and reduction
reactions during water splitting are mainly driven by the nitrogen Pz orbitals and carbon
Pz orbitals, respectively. Further, the redox potential levels of water calculated by ab initio
thermodynamics indicated that both the reduction and oxidation level of water splitting are
located within the bandgap of g-C3N4 [69]. Another theory using the many-body Green’s
function reported that lone pair electrons of nitrogen atoms are mainly responsible for the
formation of the VB and electronic structure [20,73]. Additionally, it was proposed that the
N 2p orbital overlapping the C 2p orbital mainly contributes to the VB and CB of g-C3N4,
respectively [74]. As observed from Figure 3, the CB position of g-C3N4 and many of the
BixOyXz are suitable for photocatalytic H2 generation, CO2 reduction, N2 fixation and
molecular oxygen activation in addition to their potential to be utilized in the degradation
of organic pollutants. Further, it is evident from Figure 3 that the VB and CB levels of
g-C3N4 match well with those of BiOX and BixOyXz for the fabrication of efficient 2D/2D
heterojunction photocatalysts.

Catalysts 2021, 11, x FOR PEER REVIEW 5 of 55 
 

 

larger dipole moment and wider interlayer spacing in BixOyXz boosted by the large polar-
ization force and polarization space lead to increased IEF, which in turn enhances the sep-
aration efficiency of the photogenerated charge carriers. 

Electronic band structure, redox levels of the CB and VB and the bandgap energy of 
g-C3N4 were studied both theoretically and experimentally. Theoretical calculations esti-
mated the bandgap energy of the melem molecule, polymeric melon and fully condensed 
g-C3N4 to be 3.5, 2.6 and 2.1 eV, respectively [69–71]. The bandgap energy value of 2.6 eV 
calculated for polymeric melon was consistent with the experimentally measured value 
of 2.7 eV for defect containing bulk g-C3N4 [70]. The CBM and VBM positions for g-C3N4 
estimated through the density functional theory were −1.12 and +1.57 eV, respectively. 
Interestingly, the experimental investigations through the valence band X-ray photoelec-
tron spectroscopy confirmed the VBM position of g-C3N4 at +1.53 eV, which was almost 
consistent with the theoretical calculations [72]. Therefore, the position of the CBM (−1.12 
eV) is predicted to be satisfactory for H2 generation, while that of the VBM provides a 
thermodynamic driving force for O2 evolution reaction. Wavefunction studies revealed 
that the VB and CB of g-C3N4 serving as independent sites for the oxidation and reduction 
reactions during water splitting are mainly driven by the nitrogen Pz orbitals and carbon 
Pz orbitals, respectively. Further, the redox potential levels of water calculated by ab initio 
thermodynamics indicated that both the reduction and oxidation level of water splitting 
are located within the bandgap of g-C3N4 [69]. Another theory using the many-body 
Green’s function reported that lone pair electrons of nitrogen atoms are mainly responsi-
ble for the formation of the VB and electronic structure [20,73]. Additionally, it was pro-
posed that the N 2p orbital overlapping the C 2p orbital mainly contributes to the VB and 
CB of g-C3N4, respectively [74]. As observed from Figure 3, the CB position of g-C3N4 and 
many of the BixOyXz are suitable for photocatalytic H2 generation, CO2 reduction, N2 fixa-
tion and molecular oxygen activation in addition to their potential to be utilized in the 
degradation of organic pollutants. Further, it is evident from Figure 3 that the VB and CB 
levels of g-C3N4 match well with those of BiOX and BixOyXz for the fabrication of efficient 
2D/2D heterojunction photocatalysts. 

 
Figure 3. Conduction and valence band (CB and VB) positions of g-C3N4, BiOX, and some of the BixOyXz photocatalysts 
vs. Normal Hydrogen Electrode (NHE) at pH = 7. The redox potentials of different chemical reactions are compared in this 
figure. 

3. Fabrication of BiOX/BixOyXz-g-C3N4 Heterojunction Photocatalysts 
Fabrication is a significant step involved in tailoring the band structure of photocata-

lysts due to its dependence on the chemical composition. Morphology, shape, size and 
surface area are some of the critical parameters that play a determinant role in the adsorp-
tion properties and photocatalytic activity. Benefiting from the large specific surface area, 
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vs. Normal Hydrogen Electrode (NHE) at pH = 7. The redox potentials of different chemical reactions are compared in
this figure.

3. Fabrication of BiOX/BixOyXz-g-C3N4 Heterojunction Photocatalysts

Fabrication is a significant step involved in tailoring the band structure of photo-
catalysts due to its dependence on the chemical composition. Morphology, shape, size
and surface area are some of the critical parameters that play a determinant role in the
adsorption properties and photocatalytic activity. Benefiting from the large specific surface
area, 2D semiconductors can provide abundant surface active sites. More importantly, the
greatly reduced thickness of 2D semiconductors relative to bulk counterparts shortens the
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bulk carrier diffusion distance and improves the charge separation. Further, the surface
charge separation efficiency is enhanced by the creation of surface defects such as oxygen
vacancies during the fabrication of the 2D semiconductors.

The typical bismuth metal precursors utilized for synthesizing BiOX and BixOyXz are
Bi(NO3)3·5H2O, NaBiO3·2H2O, Bi2O3, BiCl3 and BiI3, while the halogen precursors include
KX, NaX, HX, CTAX (X = Cl, Br or I) and ionic liquids containing halogen elements. Various
solution based fabrication techniques such as the electrostatic self-assembly approach, the
hydrothermal method, the ionic liquid-assisted method, the impregnation method, the
solid-phase calcination step, the solvothermal method, precipitation, the reflux process
and the ultrasound-assisted water bath technique are used in the synthesis of BiOX and
BixOyXz. On the other hand, the precursors used for synthesizing g-C3N4 through the
most typical thermal polycondensation method are urea, thiourea, melamine and dicyandi-
amide. The fabrication of g-C3N4-BiOX/BixOyXz as 2D-2D heterojunction photocatalysts
is usually achieved by growing BiOX/BixOyXz on the surface of pre-synthesized g-C3N4.
An overview of the various synthetic methods and the corresponding growth mechanism
is presented in detail.

3.1. In Situ Self-Assembly

The effective use of electrostatic forces in the self-assembly and fabrication of nanos-
tructures is gaining significance owing to their flexibility to work at room temperature and
also due to their ability to offer rigid interface among the integrated components. For ex-
ample, Yang et al. synthesized BiOBr/g-C3N4 composite through the in situ self-assembly
process based on electrostatic interaction between the precursors followed by their precip-
itation. In a typical process, pre-synthesized g-C3N4 was protonated by treating it with
HCl solution for converting its surface charge from negative to positive. The protonated
g-C3N4 was then added to KBr solution such that the Br− gets attracted to its surface
and subsequently undergoes a precipitation reaction to form BiOBr with the addition of
Bi(NO3)3•5H2O solution [62]. Therefore, the BiOBr layer was favourably formed on the
positively charged surface of g-C3N4 and led to the formation of a tightly bound 2D-2D
semiconductor heterojunction. Similarly, a p-n heterojunction between flower-like BiOI
sheets and g-C3N4 nanoparticles was constructed through an electrostatic self-assembly of
g-C3N4 nanoparticles, wherein the zeta potential of BiOI sheets was −11.1 mV and that
of the g-C3N4 nanoparticles was +21.5 mV [75]. The measured values of zeta potential
clearly indicated that the heterojunction formed between them was via the electrostatic
self-assembly process.

3.2. Hydrothermal and Solvothermal Synthesis

Hydrothermal synthesis refers to process of heating water above its boiling point in a
sealed reaction vessel to create supercritical fluid that in turn facilitates the precipitation or
crystallization of inorganic materials under auto-generated pressure. The hydrothermal
synthesis of nanostructured materials is similar to the processes governing the formation
of minerals under the earth’s crust that have been experimentally studied by geologists.
The hydrothermal process can be used for dissolving and recrystallizing a substance that
is poorly soluble or insoluble under normal conditions. Typically, an aqueous mixture of
precursors sealed in a stainless steel autoclave heated above the boiling point of water
results in the single-step production of highly crystalline materials due to the synergistic
effect of high temperature and pressure [76]. The merits of hydrothermal synthesis are the
enhanced crystallinity of synthesized materials without the need for further calcination,
and easy control of the morphology and phase composition by controlling the temperature
and reaction time. Under hydrothermal conditions, reactants enter the solution in the
form of ions and are adsorbed, decomposed and desorbed at the growth interface before
crystallizing. Solvothermal synthesis is analogous to the hydrothermal synthesis process,
except for the fact that water is replaced by an organic solvent such as ethanol, ethylene
glycol, etc. Adjusting the thermodynamic and kinetic parameters of the solvothermal



Catalysts 2021, 11, 426 7 of 53

synthesis reaction such as the concentration of the reactant precursors, reaction time, pH
and temperature aids in controlling the size, shape, uniformity, dimensionality, phase
and facets of the inorganic materials [77]. Therefore, the hydrothermal and solvothermal
reactions can possibly ensure the intimate interface contact between BiOX/BixOyXz and
g-C3N4 for promoting the rapid transport of photogenerated charge carriers across the
interface.

Xiao et al. reported the synthesis of thirteen kinds of BiOX and BixOyXz, viz.,
BiOI, Bi4O5I2, Bi7O9I3, Bi5O7I, BiOBr, Bi4O5Br2, Bi24O31Br10, Bi3O4Br, BiOCl, Bi12O15Cl6,
Bi24O31Cl10, Bi3O4Cl, and Bi12O17Cl2 through a general one-pot hydrothermal route by
reacting different compositions of Bi2O3 and KX (X = Cl, Br and I) with nitric acid, and
it was the first of its kind [78]. Since then, hydrothermal synthesis for the fabrication
of BiOX and BixOyXz with various morphologies such as microspheres, microflowers,
and microdisks (3D hierarchical structures) was achieved and comprised of three main
growth steps: (i) the creation of BiOX nuclei, (ii) the growth of 2D nanosheets through the
dissolution-renucleation process, and (iii) the formation of 3D nanostructures from the
oriented attachment of 2D nanosheets under the influence of an electrostatic multipole
field [79,80]. The hydrothermal method with L-lysine as a bio-template was employed in
the fabrication of BiOBr/g-C3N4 semiconductor heterojunction. Flake-like g-C3N4 was
pre-synthesized by the thermal polycondensation of melamine followed by sonochemical
treatment in NH4Cl solution and subsequent sintering at 550 ◦C. BiOBr microspheres with
various mass ratios (5, 10, 15, 20 and 25%) were grown in situ on flake-like g-C3N4 under
hydrothermal conditions with Bi(NO3)3•5H2O, NaBr as precursors and L-lysine as the
bio-template. Experimental investigation using TEM revealed that BiOBr microspheres
synthesized with L-lysine as the template exhibited a loose structure with a larger percent-
age of exposed nanosheets that enhanced the amount of active sites for the degradation
of organic pollutants in comparison to those synthesized without L-lysine [81]. Similarly,
the hierarchical nanostructures of BixOyXz synthesized hydro/solvothermally with inter-
connected porous networks were reported to accelerate molecular diffusion/transport,
enhance the overall light utilization efficiency, possess a large accessible surface area and
provide better permeability, which could not only furnish adequate active adsorption
sites and photocatalytic reaction sites, but also contributed to uniformly distributing the
active sites in the fabricated photocatalysts [82]. The solvothermal method employed for
synthesizing Bi5O7Br nanotubes using oleylamine as the solvent exhibited good visible
light absorption and created oxygen vacancies on the surface that were beneficial for the
stable photoreduction process [83]. Liu et al. reported the solvothermal synthesis of a 3D hi-
erarchical structure of g-C3N4@Bi/BiOBr with ternary heterojunction employing ethylene
glycol as the solvent and reducing agent, which exhibited notably high photocatalytic activ-
ity for degrading organic pollutants [84]. Similarly, ethylene glycol assisted solvothermal
synthesis reported by Ji et al. for the fabrication of ultrathin Bi4O5Br2 nanosheets dispersed
over layered g-C3N4 also exhibited higher photocatalytic activity for ciprofloxacin decom-
position under visible light irradiation [85]. Another report on solvothermal synthesis
was reported for the synthesis of g-C3N4/I3−-BiOI heterojunction semiconductor using
self-stabilized I3

−/I− as a redox mediator that efficiently strengthened the interaction
between porous g-C3N4 and ultrathin BiOI, thereby enhancing their photocatalytic activity
in CH3SH oxidation [63].

3.3. Ionic Liquid-Assited Method

Solvent plays a prominent role in controlling the morphology of the nanostructured
materials synthesized through the liquid phase synthesis techniques. Though organic
solvents employed in various synthetic techniques are immensely useful in the shape
and size controlled synthesis of nanostructured materials, some of their drawbacks such
as poor solubility of inorganic precursors, low boiling point, high vapor pressure, high
toxicity and flammable/explosive nature make them unpopular. Therefore, ionic liquids
are gaining significant attention as a green medium for the synthesis of inorganic materials
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due to the growing environmental awareness. Low melting point, high chemical and
thermal stability, high polarity for solubilizing a wide range of compounds, and ability
to act as an ionic halide source are the attractive properties of ionic liquids. Various semi-
conductor photocatalysts have been synthesized using ionic liquid as solvent, and since
they possess halogens in their functional groups, they are more suited to the prepara-
tion of BiOX/BixOyXz [86]. For example, Xia et al. reported the synthesis of ultrathin
g-C3N4/Bi4O5I2 layered nanojunctions using [Hmim]I (1-hexyl-3-methylimidazolium io-
dide) ionic liquid. Highly reactive ionic liquid acted as the iodine source, also served as
the capping agent for the formation of ultrasmall Bi4O5I2 nanosheets and facilitated the
wide distribution over ultrathin g-C3N4. The growth of ultrasmall Bi4O5I2 and their wide
distribution over the ultrathin g-C3N4 promoted the construction of a tight heterojunction
under hydrothermal conditions [87].

Similarly, g-C3N4/BiOBr microspheres were synthesized by the dispersion of g-C3N4
to a solution made by dissolving Bi(NO3)3•5H2O in ethanol containing a stoichiometric
amount of ionic liquid [C16mim]Br (1-hexadecyl-3-methylimidazolium bromide). During
the reaction, the ionic liquid [C16mim]Br acted as the solvent, reactant, template and most
importantly as a dispersing agent, which ensured the better dispersion of g-C3N4 in the
aqueous solution due to electrostatic attraction. As observed from Figure 4, the FESEM and
TEM micrographs of the solvothermally synthesized g-C3N4/BiOBr composites exhibited
relatively uniform 3D flower-like microspheres with self-assembled nanosheets on their
surface, indicating the wide distribution of g-C3N4 on the surface of BiOBr [88,89].
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3.4. Precipitation Technique

Precipitation is a simple, cost-effective and rapid process of synthesizing semiconduc-
tor photocatalysts that can be easily replicated on a larger scale for industrial applications.
Further, it is an eco-friendly route that hardly requires any hazardous organic solvents and
treatments under high pressure or temperature [90]. The precipitation synthesis of BiOX
typically involves the dropwise addition of halide (KX or NaX, where X = Cl, Br and I) solu-
tion into a solution of bismuth salt (BiCl3, Bi(NO3)3 or Bi2O3) under acidic conditions. For
instance, Ren et al. reported the preparation of three series of BiOMxR1−x (M, R = Cl, Br, I)
solid solutions with 3D nanostructured morphology and adjustable bandgap energy
through a low-temperature precipitation technique [59]. Appropriately, adjusting the
amount of solute and the solvent in the solid solutions led to the formation of BiOMxR1−x
photocatalysts that could absorb visible light in the range 359–675 nm with a bandgap
energy ranging from 3.3–1.7 eV. Composite heterojunctions of g-C3N4/Bi12O17Cl2 were pre-
pared by dispersing pre-synthesized g-C3N4 into an ethanol solution of BiCl3 at pH 2. The
dropwise addition of freshly prepared aqueous NaOH solution into the ethanol solution
containing the mixture led to the formation of g-C3N4/Bi12O17Cl2 while the pH reached
14 [60]. Chen et al. reported the synthesis of hierarchical hexagonal plates of Bi24O31Br10
through co-precipitation and subsequent solvothermal treatment in ethylene glycol, which
produced a hierarchical structure by the process of dissolution-recrystallization of 1D
Bi24O31Br10 nanobelts [61]. In another study, a BiOI-BiOCl/g-C3N4 ternary composite was
synthesized by a template-free precipitation method using NH3 solution as the precipi-
tating agent, wherein thin layers of g-C3N4 acted as a bed for anchoring BiOI and BiOCl
nanosheets for the formation of an efficient heterojunction semiconductor [91].

3.5. Reflux Process

Reflux based synthesis is based on the thermal energy supplied for the progress of
the reaction over long periods of time. The phase and morphology of the synthesized
nanostructured materials are directly dependent on parameters, viz., the order in which
the precursors are added, reflux time and cooling rate [47]. Mousavi et al. employed the
reflux technique for the fabrication of g-C3N4/Fe3O4/BiOI nanocomposites. As the first
step, Fe3O4 nanoparticles were deposited on the surface of pre-synthesized g-C3N4 to
form g-C3N4/Fe3O4. Next, BiOI was synthesized over the surface of g-C3N4/Fe3O4 by a
precipitation reaction between Bi(NO3)3•5H2O and NaI, followed by refluxing for 30 min
at 96 ◦C [92]. Similarly, the fabrication of g-C3N4/carbon dots/BiOCl and g-C3N4/carbon
dots/BiOBr heterojunction photocatalysts was also reported by employing the reflux
process [93,94].

3.6. Solid-State Calcination

Solid-state calcination is a viable method for the preparation of materials without
the utilization of water. Weak van der Waals interaction existing between halogen atoms
results in the phase transition from BiOX to BixOyXz during the process of calcination
due to the removal of unstable halogen. Therefore, BixOyXz materials are prepared by the
high temperature treatment of the precursors mixed with appropriate stoichiometric ratio.
For example, Di et al. reported the preparation of Bi12O17Cl2 by calcining a mixture of
Bi2O3 and BiOCl in stoichiometric proportions at 650 ◦C for 10 h [65]. A similar process
was reported for synthesizing Bi3O4Br by the calcination of Bi2O3 and BiOBr mixture at
650 ◦C for 10 h [95]. Additionally, the solid-state calcination method was employed in the
fabrication of Bi3O4Cl/g-C3N4 heterojunction that was reported to have a tight face-to-face
connection between the semiconductors for improved photocatalytic activity [96].

3.7. Sonochemical Synthesis

Sonochemical (also known as ultrasound-assisted) synthesis is a versatile approach
that utilizes the high intensity ultrasound for the production of nanostructured inorganic
materials in a controllable fashion, which are often unattainable through the conventional
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methods [97]. Water and ionic liquids are typically used as replacements for volatile and
toxic organic solvents [98]. In comparison to the chemical reactions progressing through the
supply of common energy sources (such as heat, light, electric potential, radiation, etc.), the
ultrasonic irradiation provides an unusual reaction condition that leads to acoustic cavita-
tion (i.e., the formation, growth and implosive collapse of bubbles in liquids), which drives
the rapid nucleation and growth of the inorganic materials. For example, Liu et al. reported
the synthesis of a g-C3N4/BiOBr heterojunction photocatalyst through the sonochemical
synthesis technique [99]. A solution of Bi(NO3)3•5H2O dissolved in ethylene glycol was
mixed with DI water containing pre-synthesized g-C3N4 under ultrasound irradiation
at 40 ◦C for 2 h to form a uniform suspension, to which a stoichiometric proportion of
NaBr and PVP were added dropwise and heated to 80 ◦C for 3 h. TEM micrographs of the
pristine g-C3N4, pristine BiOBr and sonochemically synthesized g-C3N4/BiOBr are shown
in Figure 5. A schematic representation of the 2D-2D heterojunction (Figure 5g) and the
elemental maps (Figure 5h) confirming the deposition of BiOBr over g-C3N4 is also shown
in Figure 5.
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4. Photocatalytic Activity
4.1. Photocatalytic Degradation of Organic and Inorganic Contaminats

BiOX/BixOyXz photocatalysts have demonstrated admirable performance in the
degradation of various organic and inorganic contaminants such as methyl orange, rho-
damine B, methylene blue, acid orange, microcystin-LR, 2,4 dichlorophenol, bisphenol-A,
tetracycline hydrochloride, phenol, carbamazepine, levofloxacin, metronidazole, fuchsine,
methyl mercapton, sulfamethoxazole, mercury, chromium, etc. In general, the photocat-
alytic reaction for the degradation of organic contaminants involves three simultaneous
steps, viz., photoexcitation for the generation of charge carriers (e− and h+) at the CB and
VB, the separation of charges and their transfer to the active sites on the semiconductor
surface, the formation of radical species by the ionization of water, i.e., reaction of the holes
(h+) with hydroxyl ions (OH−) to produce hydroxyl radicals (•OH) and reaction of the
electrons (e−) with the superoxide anion radicals (•O2

−), which subsequently react with
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the organic contaminants adsorbed on the photocatalyst surface [100,101]. Di et al. syn-
thesized ultrathin Bi4O5Br2 and BiOBr nanosheets and studied their capability to degrade
ciprofloxacin under visible light. Lower energy bandgap (2.33 eV) and a more negative CB
position of ultrathin Bi4O5Br2 nanosheets facilitated the improved electronic transition, the
generation of extra charge carriers and the formation of more •O2

− radicals that collectively
enabled it to display a maximum rate constant of 0.0113 min−1, which was 1.9 times higher
than ultrathin BiOBr nanosheets [102]. Wang et al. synthesized Bi24O31Br10 nanosheets
with thicknesses of 40, 85 and 130 nm through the solvothermal method and utilized
them for the photodegradation of tetracycline hydrochloride under visible light irradiation.
The three Bi24O31Br10 nanosheets with 40 nm thickness demonstrated 95% degradation
of tetracycline hydrochloride within 90 min, in comparison to the thicker counterparts.
The enhanced photocatalytic activity of Bi24O31Br10 nanosheets with 40 nm thickness was
attributed to lattice defects formed by bromine vacancies that subsequently improved the
charge carrier density, charge separation and transportation [103]. A BiOBr-g-C3N4 hetero-
junction photocatalyst synthesized through a single-step chemical bath method exhibited
enhanced photodegradation of 10 ppm rhodamine B under visible light in comparison
to pristine g-C3N4, pristine BiOBr and a composite formed by mixing g-C3N4 and BiOBr
in 1:1 weight ratio. The enhanced performance of the BiOBr-g-C3N4 photocatalyst was
attributed to the perfect coupling between the BiOBr-{001} and g-C3N4-{002} facets, which
facilitated the unhindered transport of the photogenerated charges while curbing their
recombination [104]. Sphere-like g-C3N4/BiOI composite photocatalysts synthesized using
ionic liquids exhibited excellent photocatalytic activity in the degradation of rhodamine
B, methylene blue, methyl orange, bisphenol A and 4-chlorophenol under visible light
irradiation. Among the various composite photocatalysts, the 15 wt% g-C3N4/BiOI ex-
hibited optimal performance in comparison to pristine BiOI, which was attributed to the
heterojunction formed between g-C3N4 and BiOI that effectively separated the photogen-
erated charge carriers and enhanced the interfacial charge transfer as evidenced through
its photocurrent response [105]. Liu et al. reported the fabrication of g-C3N4/Bi5O7I com-
posite photocatalysts by the thermolysis of melamine with pre-synthesized BiOI at 520
◦C for 4 h [106]. Interestingly, during thermolysis BiOI was transformed to Bi5O7I and
a strong interfacial contact was established with g-C3N4 due to in situ co-crystallization,
which enabled it to exhibit excellent performance in the photodegradation of rhodamine B
and phenol under visible light irradiation due to faster charge migration and separation
over the heterojunction. The results revealed that h+ and •O2

− were the primary active
species, and the rate of photodegradation of rhodamine B using 30 wt% g-C3N4/Bi5O7I at
1.12 h−1 was ~15 and 3 times higher than that of pristine g-C3N4 and Bi5O7I, respectively.
In another study, microspheres of g-C3N4/Bi5O7I synthesized through the hydrothermal
method using ethylene glycol as the solvent exhibited enhanced photodegradation of
methyl orange and rhodamine B with rate constants 0.084 min−1 and 0.197 min−1, respec-
tively. The results of scavenger studies and electron spin resonance spectroscopy confirmed
that •O2

− was the primary active species, which could only have been generated if the
transfer mechanism was based on the Z-scheme heterojunction [107]. The visible light
photocatalytic oxidation of hazardous gas-phase mercury (Hg0) to divalent mercury (Hg2+)
for its easy removal was reported using g-C3N4/Bi5O7I nanosheets doped with Yb3+ [108].
As observed from Figure 6a, the mercury removal efficiency of g-C3N4/Bi5O7I doped with
Yb3+ was 79.01% and 42.02%, respectively, under visible and near infrared light radia-
tion, while the efficiency under near infrared light was just 13.3% without Yb3+ doping.
Scavenger studies and electron spin resonance spectroscopy revealed that •O2

− and •OH
were the primary active species responsible for the oxidation of gas phase Hg0, while the
mechanism of charge transfer was based on the Z-scheme heterojunction with enhanced
separation of electrons due to the formation of a new energy band below the CB of Bi5O7I
as a result of doping Yb3+, as depicted in Figure 6b.
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Zhang et al. reported the fabrication of a heterojunction photocatalyst by the in
situ hydrothermal growth of Bi7O9I3 on ultrathin g-C3N4 for the degradation of doxy-
cycline hydrochloride under visible light. Microspheres of Bi7O9I3/g-C3N4 exhibited
a photodegradation efficiency of ~80% that was ~2 and 5.4 times greater than pristine
Bi7O9I3 and g-C3N4, respectively, which could be attributed to their large surface area
(68.55 m2 g−1) and enhanced charge generation/separation in the heterojunction. Scav-
enger studies and electron spin resonance spectroscopy revealed that •O2

− and •OH were
the primary active species that were predominantly involved in breaking the stable struc-
ture of doxycycline hydrochloride, while all the experimental data and characterization
evidence confirmed that the mechanism of photodegradation followed direct Z-scheme
heterojunction [109]. In another study, a g-C3N4 modified Bi4O5I2 composite prepared in
situ by the thermal treatment of a g-C3N4/Bi4O5I2 precursor at 400 ◦C for 3 h exhibited
enhanced photocatalytic performance in the degradation of methyl orange under visible
light with a degradation rate of 0.164 min−1, which was 3.2 and 82 times enhanced in
comparison to pristine Bi4O5I2 and g-C3N4, respectively [110]. A summary of the typical
synthesis methods and photocatalytic performance of BiOX/BixOyXz-g-C3N4 heterojunc-
tion photocatalysts involved in the degradation of various organic pollutants is presented
in Table 1. Further, the details corresponding to the mechanism of photogenerated charge
transfer during the degradation of organic pollutants are briefly explained in Section 5.5.

Table 1. Summary of the degradation of organic contaminants in the presence of BiOX/BixOyXz-g-C3N4 heterojunction
photocatalysts reported in the literature.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

BiOX-g-C3N4

BiOI-g-C3N4

Solid-phase
calcination

Bi(NO3)3·5H2O, KI
and C3H6N6

Layers of g-C3N4
grown on the

surface of BiOI
microspheres

Microcystin-
LR (5
ppm)

350 W Xe lamp
(λ > 420 nm)

Direct
solid-state
Z-scheme

Optimized content
of g-C3N4 over
BiOI for high

activity was found
to be 4 wt%

[111]

Electrostatic
self-

assembly

Bi(NO3)3·5H2O, KI,
C3H6N6, H2SO4,

HNO3, and
C2H6O2

g-C3N4
nanoparticles on
flower-like BiOI

nanosheets

Methyl orange
(10 ppm)

300 W Xe lamp
(λ > 420 nm) p-n

Surficial dispersive
heterojunctions

were beneficial for
degradation of MO

[75]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

Simple
precipitation

Bi(NO3)3·5H2O, KI,
C3H6N6, C2H6O2

and CTAB

Thin nanosheets of
BiOI lie on the

surface of g-C3N4

2,4-
dichlorophenol

(10 ppm)
Bisphenol A

(10 ppm)
Rhodamine B

(100 ppm)
Tetracycline

hydrochloride
(10 ppm)

300 W Xe lamp
(λ > 420 nm) p-n

Top-top facets of
BiOI (001)/g-C3N4

(002) promoted
generation of 1O2

and •O2
−

accounting for
excellent

photocatalytic
activity

[112]

In situ
precursor

transforma-
tion

CO(NH2)2,
Bi(NO3)3·5H2O, KI

and C2H6O2

Numerous
quantum-sized

nanoparticles are
uniformly

dispersed across
the g-C3N4
nanosheets

Phenol (100
ppm)

60 W LED
lamp

(λ > 420 nm)

Direct
Z-scheme

Increase in the
electron density on
BiOI led to internal

electric field
formation
favouring
Z-scheme

configuration

[113]

Solvothermal
Bi(NO3)3·5H2O, KI,

C3H6N6 and
C2H6O2

BiOI nanoplates
are irregularly

dispersed over the
surface of g-C3N4

nanosheets

Rhodamine B
(20 ppm) 300 W Xe lamp

(λ > 420 nm) p-n

Charge transfer
mode in the

BiOI/g-C3N4
followed the

double-transfer
mechanism

[114]

Solvothermal
Bi(NO3)3·5H2O, KI,

HNO3, C3H6N6
and CH4N2S

Thin nanosheets of
BiOI composited

with wrinkled
nanosheets of

g-C3N4

Methylene
blue (20 ppm)

50 W, 410 nm
LED light

arrays

Direct
Z-scheme

Strong IEF at
interface occurred

due to difference in
their Fermi

energies was
proved by DFT

calculations

[115]

Ultrasonication-
assisted

C3H6N6,
Bi(NO3)3·5H2O, KI,

C2H5OH

BiOI particles are
grown over the

surface of g-C3N4
sheets

Cr (VI) (10
ppm) 500 W Xe lamp Z-scheme

The non-radiative
recombination

process of
photoinduced
carriers at the
interface was

confirmed by pho-
toluminescence

and ESR

[116]

BiOCl-g-C3N4

Simple
calcination

Bi(NO3)3·5H2O,
CH4N2O, C6H14O6

and NaCl

g-C3N4 nanosheets
acted as substrate

for compactly
anchoring BiOCl

nanoplates

Methyl orange
(10 ppm) 300 W Xe lamp Binary

heterojunction

Large contact
surface of 2D

hybrid structure
was efficient in

solving detrimental
photoinduced

carrier
recombination

[117]

Solvothermal

Bi(NO3)3·5H2O,
NaCl, PVP, K-30,

CH4N2O and
C3H8O3

Ultrathin
nanosheets of

BiOCl are covered
by 2D g-C3N4

layers stacked in
the form of
multi-slice
structure

4-chlorophenol
(10 ppm)

300 W
short-arc Xe

lamp

Binary
heterojunction

Introduction of
oxygen vacancies

brings a new defect
level for increased
photoabsorption

[118]

Hydrothermal
C3H6N6, NH4Cl,
Bi(NO3)3·5H2O

and KCl

Smooth surface of
BiOCl nanodiscs

turned rough after
loading ultrathin

g-C3N4 nanosheets

Rhodamine B
(10 ppm) 300 W Xe lamp p-n

Photosensitization
of RhB played
critical role in
degradation

process over BiOCl
under visible light

[119]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

Ionic liquid-
assisted

C2H4N4, C2H6O2,
Bi(NO3)3·5H2O
and [C16mim]Cl

Spherical
microstructures

with large number
of smaller

nanosheets of
BiOCl and g-C3N4

Rhodamine B
(10 ppm) 300 W Xe lamp p-n

[C16mim]Cl having
positive polarity

improved the
dispersity of

g-C3N4

[89]

In situ
surfactant-

free

C3H6N6,
Bi(NO3)3·5H2O,

HCl and C2H5OH

Irregular elliptical
BiOCl nanosheets

are grown over the
surface of g-C3N4

sheets

Rhodamine B
(10 ppm) 300 W Xe lamp Binary

heterojunction

The appropriate
proportion of

BiOCl in
heterojunction and
large surface area

with higher
adsorption

capacity provided
larger photoactive

sites for
photodegradation

of RhB

[120]

Microwave-
assited

Bi(NO3)3·5H2O,
KCl, C2H6O2,

C2H4N4

Microspheres
assembled by

nanosheets

Carbamazepine
(2.5 ppm)

LED lamp (λ >
420 nm) n-p

Oxygen vacancies
can be assessed by

reactions using
ethylene glycol as a

solvent at a high
temperature

[121]

Microwave-
assisted

C3H6N6,
Bi(NO3)3·5H2O,

KCl, HNO3

BiOCl microplates
were grown over

the surface of
g-C3N4 nanosheets

Nizatidine (5
ppm) Mic-LED-365 Binary

heterojunction

pH of the solution
was adjusted to

match the
isoelectric point of

the complex
materials for

enhancing the
photocatalytic

activity

[122]

BiOBr-g-C3N4

Reflux
process in oil

bath

CH4N2O, C2H6O2,
Bi(NO3)3·5H2O,

KBr and C2H5OH

BiOBr nanoplates
are deposited on

the surface of
larger g-C3N4

nanosheets

Rhodamine B
(10 ppm)

Bisphenol A (5
ppm)

300 W Xe lamp Z-scheme

More reactive sites
and enhanced mass
transfer resulting

from larger specific
surface area and
mesoporosity led
to higher activity

[123]

Hydrothermal
C3H6N6, C2H6O2,

Bi(NO3)3·5H2O
and CTAB

Nanoflakes of
g-C3N4 and BiOBr

are observed

Bisphenol A
(10 ppm)

Methyl orange
(10 ppm)

Rhodamine B
(10 ppm)

300 W Xe lamp Binary
heterojunction

Surface functional
groups of g-C3N4

provided
nucleation sites for

reaction by
inhibiting the

formation of BiOBr
assembly

[124]

Electrostatic
self-

assembly

Bi(NO3)3·5H2O,
KBr, C3H6N6, HCl,

CH3COOH and
C2H3NaO2

3D hierarchical
flower-like

structures of BiOBr
are attached to

surface of pg-C3N4
consisting of

nanostructures and
plicate shapes.

Carbamazepine
(5 ppm) 500 W Xe lamp Binary

heterojunction

Presence of low
concentration of

bicarbonate
accelerated the
carbamazepine

degradation while
nitrate and

chloride inhibited
its efficiency

[62]

Solvothermal
Bi(NO3)3·5H2O,
CTAB, C3H8O3,

PVP and C3H6N6

Flower-like
microspheres of
BiOBr are grown

over g-C3N4
nanosheets

Methyl orange
(10 ppm)

Rhodamine B
(10 ppm)

500 W Xe lamp Z-scheme

Optimum content
of g-C3N4 was

found to be 5 wt%
over the BiOBr

nanosheets

[125]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

Ultrasound-
assisted

water-bath
deposition

Bi(NO3)3·5H2O,
PVP, C2H6O2,

NaBr, C2H5OH
and CH4N2O

BiOBr nanoflakes
are dispersed over

the surface of
g-C3N4 nanosheets

Rhodamine B
(20 ppm)

E. coli (1.0 ×
106 CFU mL−1)

Visible light Z-scheme

Z-scheme
photocatalytic

mechanism was
evidenced from

Tafel curve analysis

[99]

Solvothermal
Bi(NO3)3·5H2O,
C3H6N6, CTAB

and C2H6O2

g-C3N4 nanosheets
are compactly

combined with
BiOBr nanosheets

Rhodamine B
(10 ppm) 500 W Xe lamp Binary

heterojunction

Holes and
superoxide radicals
played dominant

role in the RhB
removal

[126]

Template-
assisted

hydrother-
mal

Bi(NO3)3·5H2O,
NaBr, C2H6O2,

NaOH, C2H5OH
and NH4Cl

BiOBr
microspheres are

randomly
dispersed on the

surface of g-C3N4

Tetracycline
(20 ppm)

Rhodamine B
(15 ppm)

500 W Xe lamp Direct
Z-scheme

L-lysine with polar
functional groups

of amino and
hydroxyl, served as

bio-template for
controlling the

crystal growth and
self-assembly

process of BiOBr

[81]

Hydrothermal

C3H6N6,
Bi(NO3)3·5H2O,

HCl, NaOH,
CH4N2O, CH4N2S

and KBr

BiOBr nanolayers
are distributed on

the surface of
porous g-C3N4

nanosheets

Methylene
blue (10 ppm)

50 W 410 nm
LED light

Binary
heterojunction

Optimized content
of Pg-C3N4 in the
binary composite
for high activity

was found to be 20
wt%

[127]

Polycondensation
and

precipitation

C3H6N6,
Bi(NO3)3·5H2O

and CTAB

Mesoporous
flower-like BiOBr

are grown over
porous sheets of

g-C3N4

Reactive blue
198 (50 ppm)

Reactive black
5 (50 ppm)
Reactive

yellow 145 (50
ppm)

500 W
tungsten lamp Z-scheme

Degradation
pathways were

proposed to follow
pseudo-first-order
kinetics with 30%

pGCN-BiOBr

[128]

Reflux
process

TEOS, C2H5OH,
NH4OH, C2H4N4,

NH4HF2,
Bi(NO3)3·5H2O,

CH4N2O and KBr

BiOBr
nanoparticles are
uniformly loaded

on the surface of IO
CN

Levofloxacin
(10 ppm)

Rhodamine B
(20 ppm)

300 W Xe lamp Z-scheme

Combination of
Z-scheme and
inverse opal

structure
influenced the

visible light
absorption ability
and photocatalytic

performance

[129]

BixOyXz-g-C3N4

Bi7O9I3-g-C3N4

Hydrothermal

Bi(NO3)3·5H2O,
C3H6N6, NaI,
CN2H4S and
CH3COONa

Flower-like
nanospheres of

Bi7O9I3 are grown
over the surface of
g-C3N4 nanosheets

Doxycycline
hydrochloride Xe lamp Z-scheme

In situ growth of
Bi7O9I3 on

ultrathin g-C3N4
via mild and

simple
hydrothermal

means without any
toxic reagents

[109]

Bi5O7I-g-C3N4

Hydrothermal

NH3, C2H5OH,
TEOS, C18TMOS,
CH2N2, NH4HF2,
Bi(NO3)3·5H2O,
C2H6O2 and KI

Bi5O7I
nanoparticles are

grown over surface
of porous g-C3N4

Phenol (10
ppm) CEL-HXF300 p-n

Silica templates
were used to obtain

lamellar and
porous g-C3N4 in

GCN-Bi5O7I
composite

[130]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

Hydrothermal
Bi(NO3)3·5H2O, KI,

C2H6O2 and
C3H6N6

Irregular shaped
layers of g-C3N4

are covered on the
surface of

microspheres
consisting of

self-assembled thin
platelets of Bi5O7I

Methyl orange
(10 ppm)

Rhodamine B
(10 ppm)

300 W Xe lamp Z-scheme
Heterojunction

g-C3N4-Bi5O7I-10
showed better
performance
towards dye

degradation in
acidic conditions

[107]

Hydrolysis
and thermal

condensa-
tion

C2H4N4
Bi(NO3)3·4H2O,
C2H6O2, NaOH,

HCl, C6H15N,
KH2PO4 and KI

Rod-like patterns
of Bi5O7I are
embedded on

D-g-C3N4

Metronidazole
(15 ppm) 300 W Xe lamp Binary

heterojunction

Charge carrier
separation in the
composite was
evidenced from

photocurrent
response

measurements

[131]

Bi4O5I2-g-C3N4

Mixed
calcination

C3H6N6
Bi(NO3)3·4H2O,
NaOH and KI

Bi4O5I2 nanoflakes
are grown on

g-C3N4 nanosheets

Rhodamine B
(1 × 10−5 M)
NO removal

300 W
tungsten

halogen lamp
n-n

Super oxide
radicals and holes
are active species

during the
degradation

[132]

Ionic liquid-
assisted

solvother-
mal

C6H14O6,
C10H19IN2,

Bi(NO3)3·4H2O,
NaOH and KI

Bi4O5I2 nanosheets
are dispersed on

g-C3N4 nanosheets

Rhodamine B
(10 ppm)

Bisphenol A
(10 ppm)

300 W Xe lamp Binary
hetrojunction

[Hmim]I played
multiple roles

during the
synthesis which

was propitious for
heterojunction

formation

[87]

Hydrothermal
and heating

C3H6N6,
Bi(NO3)3·4H2O,
C2H6O2 and KI

Hierarchical
microspheres of

Bi4O5I2 are grown
on the surface of

g-C3N4

Methyl orange
(20 ppm) 350 W Xe lamp Type-II

The in situ
transformation
endowed the

composite with
good contact
between the

semiconductors in
construction of

tight
heterojunction

[110]

Bi3O4Cl-g-C3N4

Mixing and
heating

Bi(NO3)3·5H2O,
HCl, Bi2O3 and

C3H6N6

Irregular blocks
consisting of a lot
of nanoflakes of

Bi3O4Cl attached
onto the surface of

g-C3N4

Rhodamine B
(10 ppm) 350 W Xe lamp Binary

heterojunction

Coupling Bi3O4Cl
on g-C3N4

improved the
specific surface
area and charge

carrier separation

[133]

Solid phase
calcination

Bi(NO3)3·5H2O,
CH4N2O, NH4Cl

and C2H6O2

Bi3O4Cl nanoflakes
are grown on

g-C3N4 nanosheets

Rhodamine B
(10 ppm)

Tetracycline
(10 ppm)

Hexavalent
chromium (10

ppm)

250 W Xe lamp Z-scheme

Shorter fluorescent
lifetime (0.952 ns)

attributed to
additional

nonradioactive
decay channel for
electron transfer
from Bi3O4Cl to

g-C3N4

[96]

Bi12O17Cl2-g-C3N4

Chemical
precipitation

CH4N2O, BiCl3,
C2H5OH and

NaOH

Bi12O17Cl2
nanosheets are

grown on surface
of g-C3N4

Rhodamine B
(5 ppm)

Methyl orange
(10 ppm)

300 W Xe lamp Binary
heterojunction

Hydroxyl radicals
and holes main
active species

during the reaction
as evidenced from

electron spin
resonance
technique

[60]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

Bi4O5Br2-g-C3N4

Ionic liquid-
assisted

solvother-
mal

[C16mim]Br,
C3N3(NH2)3,

C2H3N, C3N3Cl3,
Bi(NO3)3·5H2O,

C6H14O6 and
NaOH

Rod-like g-C3N4
has closely

combined with
sheet-like Bi4O5Br2

Ciprofloxacin
(10 ppm)

Rhodamine B
(10 ppm)

300 W Xe lamp Binary
heterojunction

Ionic liquid
[C16mim]Br served

as solvent,
dispersing agent

and reactant for the
distribution of
Bi4O5Br2 over

g-C3N4

[134]

Precipitation C3H6N6, C2H5OH,
BiBr3 and NaOH

Irregular
nanosheets of
Bi4O5Br2 were
stacked with

g-C3N4 sheets

Rhodamine B
(10 ppm)

Tetracycline
(10 ppm)

72 W LED
lamp

Binary
heterojunction

Improved
adsorptive nature
in BBO/CN-75 is
due to generation

of more Lewis base
sites as confirmed

by
Zeta potential

studies

[135]

Solvothermal

C3H6N6,
Bi(NO3)3·5H2O,

[C16mim]Br,
C6H14O6, NaOH

and C2H5OH

Ultrathin Bi4O5Br2
nanosheets are

dispersed on the
graphene-like

g-C3N4 nanosheets

Ciprofloxacin
(10 ppm)

Rhodamine B
(10 ppm)

300 W Xe lamp Binary
heterojunction

Red shift in the
bandgap

absorption was
observed with
introduction of
graphene-like

g-C3N4

[85]

Noble metal coupled BiOX-g-C3N4

BiOI/Pt/g-C3N4

Two-step
(reduction

and stirring)

CH4N2O, NaBH4,
H2PtCl6·6H2O,

C2H6O2,
Bi(NO3)3·5H2O

and KI

Pt nanoparticles
and BiOI

hierarchical
structure grew on
the g-C3N4 sheets

Phenol (25
ppm)

Tetracycline
hydrochloride

(20 ppm)

Visible light Solid-state
Z-scheme

Unobstructed
Z-scheme charge
carrier transfer

pathways in
BiOI/Pt/g-C3N4

composite are
discussed in

relevance to phenol
and tetracycline

oxidation

[136]

g-C3N4/Eu/Bi24O31Cl10 (BOC)

Impregnation-
calcination

Bi(NO3)3·5H2O,
C3H6N6, NH4Cl,
C6H8O7, HNO3,
NH3·H2O and

Eu(NO3)3.6H2O

g-C3N4 nanosheets
were coated on the
surface of irregular

shaped smaller
sized crystal
particles of

Eu-doped BOC

Rhodamine B
(10 ppm) 250 W Xe lamp Binary

heterojunction

CN/Eu-BOC
exhibited higher

performance than
CN/BOC

suggesting that
Eu (III) could be

used as cocatalyst

[137]

g-C3N4/Au/BiOBr

Hydrothermal
and in situ
reduction

C3H6N6,
Bi(NO3)3·5H2O,
KBr, C2H5OH,
C8H11NO2 and
HAuCl4·4H2O

Au nanoparticles
are decorated over

the surface of
lamellar structure

of g-C3N4 and
BiOBr sheets

Phenol (10
ppm) 300 W Xe lamp Plasmonic

Z-scheme

Strong surface
plasmon resonance
caused by Au NPs

contributed to
extension of visible
light absorption in

the ternary
composite

[138]

Chemical
reduction

Bi(NO3)3·5H2O,
KBr, CH4N2S,

CTAB, Na3C6H5O7,
AuCl3 and
C2H5OH

Au nanoparticles
were uniformly
distributed over

the surface of
g-C3N4/BiOBr

Rhodamine B
(10 ppm)

CO2 reduction
300 W Xe lamp

Surface
plasmon

resonance and
Z-scheme

Correlation
between size of Au

NPs and
wavelength
dependent

photocatalytic
activity associated

with
Au-GCN-BiOBr

composite is
described

[139]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

Carbon material coupled BiOX-g-C3N4

g-C3N4/CDs/BiOI

Precipitation

CN2H2, C3H6N6,
C6H8O7,

Bi(NO3)3·4H2O
and NaI

CDs and BiOI
nanoparticles are
grown in intimate
contact with gCN

nanosheets

Rhodamine B
(2.5 × 10−5 M)

Methylene
blue (2.5 ×

10−5 M)
Methyl orange
(2.5 × 10−5 M)
Fuchsine (9.20
× 10−6 M)

50 W LED
lamp

Ternary
heterojunction

Co-operative
effects of CQDs

and g-C3N4
promoted the

activity of BiOI
towards the

degradation of
organic dyes

[140]

GO/g-C3N4/BiOI

In situ
generation

CH4N2O,
Bi(NO3)3·4H2O,
C2H6O2, KI and

GO

Flower-like BiOI
nanosheets are

overlapped with
lamellar structure

of CN and
sheet-like GO.

Methyl orange
(10 ppm)

Tetracycline
(20 ppm)

E. coli (50 ppm)
S. aureus (50

ppm)

LED lamp Ternary
heterojunction

Loading GO over
CN/BiOI resulted
in double-charge-

transfer at the
interface

[141]

g-C3N4/MCNTs/BiOI

Solvothermal
CN2H2, KI,

Bi(NO3)3·4H2O
and C2H6O2

BiOI nanoparticles
are uniformly

loaded on surface
of g-C3N4- MCNTs.

Methylene
blue (10 ppm) 300 W Xe lamp Z-scheme

MCNTs facilitated
the electron

transfer from BiOI
to g-C3N4 resulting
in Z-scheme charge
transfer pathway

[142]

g-C3N4/BiOI/rGO immobilized on Ni foam

Hydrothermal
and

reduction

CH4N2O, C2H4N4,
NaSO4,

Bi(NO3)3·5H2O,
C2H6O2, C2H6O,
NH3, H4N2·H2O,
Ni foam, GO and

NaI

Laminar structures
of g-C3N4, BiOI

and sheet-like rGO
form the ternary

sheet-like hybrids
and are

immobilized on the
surface of Ni foam.

Methyl orange
(5 ppm)

CO2

300 W Xe lamp Hybrid
Z-scheme

rGO functioned as
both electron
mediator and

binder while Ni
foam improved the

reusability of the
composite

[143]

g-C3N4/CDs/BiOCl

Refluxing

C3H6N6,
Bi(NO3)3·5H2O,
NaCl, CH4N2O

and C6H8O7

Smaller spherical
particles of CDs

and rod-like
particles of BiOCl
are grown on the
surface of g-C3N4

nanosheets

Rhodamine B
(1 × 10−5 M)
Methylene

blue (1 × 10−5

M)
Methyl orange
(1 × 10−5 M)

Fuchsine (0.77
× 10−5 M)

Phenol (5 ×
10−5 M)

50 W LED
lamp

Ternary
heterojunction

Formation of g-
C3N4/CDs/BiOCl

composite
influenced the

optical properties
and photocatalytic

performance

[93]

BiOBr/rGO/pg-C3N4

Solvothermal

CH4N2O, HCl,
rGO, C2H6O2,

Bi(NO3)3·5H2O
and CTAB

BiOBr and rGO
nanosheets are

dispersed
simultaneously on

the surface of
pg-C3N4

Rhodamine B
(10 ppm)

Tetracycline
(10 ppm)

300 W Xe lamp Ternary
Z-scheme

Optimized content
of BiOBr in ternary
composite for high
activity was found

to be 10 wt%

[144]



Catalysts 2021, 11, 426 19 of 53

Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

BiOBr/CDs/g-C3N4

Hydrothermal

Bi(NO3)3·5H2O,
KBr, HNO3,

CH4N2O, NH4Cl,
C6H8O7 and

C2H4N4

Ultrathin
nanosheets

Ciprofloxacin
(10 ppm)

Tetracycline
(20 ppm)

300 W Xe lamp Z-scheme

Up-converted PL
character and short

charge transport
distance of CDs
were beneficial

towards broadened
light absorption
and remarkable

interfacial charge
transfer

[145]

CNNs/CDs/BiOBr

Refluxing

C3H6N6, C6H8O7,
CH4N2O,

Bi(NO3)3·5H2O
and NaBr

CDs and BiOBr
nanoparticles are
accumulated on

the surface of
carbon nitride

nanosheets (CNNs)

Rhodamine B
(1 × 10−5 M)
Methylene

blue (1 × 10−5

M)
Methyl orange
(1 × 10−5 M)
Cr(VI) (100

ppm)

50 W LED
lamp

Ternary
Z-scheme

CNNs/CDs/BiOBr
was stable even

after five
consecutive cycles

towards the
degradation of
pollutants with

fresh dye solution
each time

[94]

g-C3N4/BiOBr-rGO

Two-step hy-
drothermal
assembly

route

Graphite powder,
C8H11NO2, H2SO4,

HNO3, KMnO4,
H2O2,

Bi(NO3)3·5H2O,
KBr and C3H6N6

Flake-like BiOBr
are covered by thin

layer of g-C3N4
film

Rhodamine B
(10 ppm) 300 W Xe lamp p-n

Immobilization of
the powder catalyst
on 3D RGO aerogel
surface collectively

contributed to
excellent recycling

process of the
catalyst

[146]

Carbon Fibers/g-C3N4/BiOBr

Chemical
bath

deposition

Carbon fibres,
CH4N2O,

Bi(NO3)3·5H2O,
C4H9NO and KBr

Growth of g-C3N4
nanosheets and

BiOBr nanoplates
on carbon fibers

(CFs)

Tetracycline
(20 ppm) 300 W Xe lamp Ternary

heterojunction

Recyclable
cloth-shaped

CFs/g-
C3N4/BiOBr

bundles had great
mechanical

strength

[147]

BiOBr/CS/g-C3N4

Solvothermal
C3H6N6, C6H12O6,

Bi(NO3)3·5H2O,
KBr and C2H6O2

Spherical carbon
spheres are

wrapped uniformly
with g-C3N4 and

BiOBr matrix

Rhodamine B
(10 ppm)

300 W W
halogen lamp

Ternary
heterojunction

Carbon spheres
were used as
interlinking

network between
g-C3N4 and BiOBr
matrix for effective

electron transfer

[148]

BiOI/porous g-C3N4/graphene hydrogel

Hydrothermal Bi(NO3)3·5H2O, KI,
CH4N2O, C2H6O2,

BiOI and porous
g-C3N4 were

loaded onto 3D
cross-linking

graphene hydrogel

Methylene
blue (40 ppm)
Levofloxacin

(20 ppm)

300 W Xe lamp Ternary
heterojunction

3D graphene
hydrogel played

multiple roles:
enhanced

adsorption ability,
provided bulk

electron transfer
channels, rendered

easy separation
and recycling

[149]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

Semiconductor coupled BiOX-g-C3N4

Polyacrylonitrile/g-C3N4/BiOI nanofibres

Impregnation

Bi(NO3)3·5H2O, KI,
C3H6N6, N,N-

dimethylformamide
(C3H7NO) and

polyacrylonitrile
(C3H3N)n

BiOI
nanostructures are

uniformly
dispersed over
PAN/g-C3N4

nanofibres

Rhodamine B
(10 ppm)

Cr (VI) (20
ppm)

300 W Xe lamp -

Ultralong 1D
macroscopic

flexible
self-supporting

floating structures
prevented

agglomeration and
loss of catalyst

during recycling

[150]

SiO2@g-C3N4/BiOI nanofibres

Impregnation

Polyvinylpyrrolidone
(C6H9NO)n, TEOS

(SiC8H20O4),
ethanol, C3H6N6,
Bi(NO3)3·5H2O

and KI

BiOI nanosheets
are loaded on the

surface of ultrathin
g-C3N4@SiO2

nanofibres.

Rhodamine B
(10 ppm) 150 W Xe lamp Direct

Z-scheme

Depositing SiO2
NFs at

BiOI/g-C3N4
interface improved
Z-scheme charge
carrier separation
and recyclability

[151]

BiOI/AgI/g-C3N4

In situ crys-
tallization

Bi(NO3)3·5H2O, KI,
AgNO3 and

C3H6N6

Irregular
nanoparticles of

AgI are grown on
the surface of

g-C3N4 covered
with BiOI

nanoflakes.

Methyl orange
(10 ppm)
Cr(VI) (50

ppm)

300 W Xe lamp Ternary
heterojunction

Visible light
response was

tailored from 460 to
560 nm by

increasing the
content of AgI in

the composite

[152]

BiOI/g-C3N4/CeO2

Calcination
and hy-

drothermal

Bi(NO3)3·5H2O, KI,
Ce(NO3)3.6H2O

and C3H6N6

BiOI microspheres
and CeO2

nanoparticles are
randomly adhered

to the surface of
g-C3N4

Tetracycline
(20 ppm) 300 W Xe lamp Ternary

heterojunction

Optimum content
of CeO2 in the

ternary hybrid was
found to be 3 wt%
towards efficient
TC degradation

[153]

BiOI@MIL-88A(Fe)@g-C3N4

Hydrothermal

Bi(NO3)3·5H2O, KI,
C2H6O2, C3H6N6,
FeCl3·6H2O and

C4H4O4

BiOI flower-like
hierarchical

microspheres are
loaded on the

surface of MIL-
88A(Fe)@g-C3N4
with core@shell

structure

Acid blue 92
(10 ppm)

Rhodamine B
(10 ppm)

Phenol (10
ppm)

300 W Xe lamp Ternary
heterojunction

g-C3N4 deposited
over

BiOI@MIL-88A(Fe)
via hydrothermal
method facilitated
carrier separation
in the composite

[154]

g-C3N4/Fe3O4/BiOI

Reflux and
precipitation

Bi(NO3)3·4H2O,
NaI, C3H6N6,
FeCl3·6H2O,

FeCl2·4H2O and
NH3

Fe3O4 particles and
BiOI are grown on

the surface of
g-C3N4 sheets

Rhodamine B
(1 × 10−5 M)
Methylene
blue (1.3 ×

10−5 M)
Methyl orange
(1.05 × 10−5

M)

50 W LED
source

Ternary
heterojunction

g-
C3N4/Fe3O4/BiOI
was magnetically

separated from the
aqueous medium

within a short span
of time

[92]

g-C3N4/I3−-BiOI

Solvothermal

C3H6N6,
Bi(NO3)3·4H2O,

C4H6O6, C4H10O,
EDTA-2Na,

C6H8O6, K2Cr2O7,
NaN3, DMPO and

DMSO

Flower-like
microspheres

containing
ultrathin

nanosheets of BiOI
are loaded g-C3N4

Methyl
mercaptan

(CH3SH) (70
ppm)

8 W LED Z-scheme

CH3SH removal
monitored via in
situ DRIFTS and
the intermediate
and conversion
pathways were

elucidated

[63]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

MoS2/g-C3N4/Bi24O31Cl10

Impregnation-
calcination

Bi(NO3)3·5H2O,
C3H6N6, NH4Cl,
C6H8O7, HNO3,

NH3·H2O,
(NH4)6Mo7O24.4H2O

and DMF

Numerous g-C3N4
nanosheets and

flower-like MoS2
are grown and
combined with

irregular block-like
shapes of BOC

Tetracycline
(20 ppm) 300 W Xe lamp

Dual Z-scheme
ternary

heterojunction

Carrier lifetime
was higher in
CN/MS/BOC

(3.9782 ns)
compared to BOC

(1.0163 ns)

[155]

BiOCl/Bi2MoO6/g-C3N4

Refluxing
Bi(NO3)3·5H2O,
Na2MoO4·2H2,
HCl and NaOH

Combination of
irregular rodlike,
platelet-shaped

and sheet-shaped
morphologies

Rhodamine B
(0.5 mM) 350 W Xe lamp Ternary

heterojunction

BiOCl/Bi2MoO6
immobilized on
g-C3N4 surface
exhibited dual
functionality as

photocatalysts and
optical limiters

[156]

BiOCl/CdS/g-C3N4

Solvothermal
cum co-

precipitation

C3H6N6, HCl,
C4H6CdO4, DMSO,

Bi(NO3)3·5H2O,
C3H8O and NaOH

Growth of
hierarchical BiOCl
nanoflowers with
embedded CdS

nanoparticles on
g-C3N4 nanosheets

Rhodamine B
(20 ppm)
Phenol

400 W
Ne-illuminator

Ternary
heterojunction

Presence of two
visible light active
components led to

highly efficient
electron transfer in
multicomponent
heterojunction

[157]

BiOCl/g-C3N4/kaolinite

Two-step
layer-by-

layer
self-

assembly

C2H4N4, CTAC,
Bi(NO3)3·5H2O,

CH3COOH,
HCHO and

kaolinite

g-C3N4 and BiOCl
ultrathin

nanosheets are
covered on the

surface of kaolinite
lamellar with
single layer

Rhodamine B
(10 ppm) 500 W Xe lamp Ternary

heterojunction

Holes dominated
the degradation

pathways for
BiOCl/g-

C3N4/kaolinite

[158]

g-C3N4/g-C3N4/BiOBr

Thermal de-
composition

and
solvother-

mal

CH4N2O, CH4N2S,
Bi(NO3)3·5H2O,

KBr, NaC12H25SO4
and C2H6O2

g-C3N4 prepared
using thiourea-urea

complex was
uniformly

dispersed on the
nanosheets of the
flower-like BiOBr

Rhodamine B
(20 ppm)

Fluorescein
isothiocyanate

(20 ppm)
Tetracycline

hydrochloride
(20 ppm)

High pressure
Xe lamp

Ternary direct
Z-scheme +

isotype
heterojunction

Combined effect of
Z-scheme + isotype

heterojunction
charge transfer
pathways was

observed in
g-C3N4/g-

C3N4/BiOBr

[159]

AgBr/g-C3N4/BiOBr

Hydrothermal
and in situ

ion-
exchange

CH4N2O, KBr,
Bi(NO3)3·5H2O,

AgNO3 and
C2H6O2

AgBr nanoparticles
are dispersed on

the surface of
g-C3N4/BiOBr

nanosheets

Rhodamine B
(10 ppm)

Tetracycline
(10 ppm)

300 W Xe lamp Ternary
heterojunction

Influence of AgBr
loading on
GCN/BOB

composite towards
the photocatalytic

activity is
discussed in detail

[160]

Brookite/g-C3N4/BiOBr

Hydrothermal

TiCl4,
Bi(NO3)3·5H2O,
C3H6N6, CTAB,
NH4Cl, KBr and

NaOH

Spindle shaped
brookite are

wrapped by the
layer structure of
BiOBr which are
further wrapped

by lamellar g-C3N4

Rhodamine B
(10 ppm)

70 W metal
halide lamp

Ternary
heterojunction

Ternary composite
had ability to

destroy the oxygen
heteroanthracene

ring and
chromogenic group

of RhB

[161]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

BiOCl/g-C3N4@UiO-66

Solvothermal

Bi(NO3)3·5H2O,
KCl, CH3COOH,
C3H6N6, ZrCl4,

C8H6O4, C3H7NO

BiOCl nanoplates
and g-C3N4

nanosheets were
decorated over the
surface of UiO-66

Rhodamine B
(10 ppm) 250 W Xe lamp Ternary

heterojunction

UiO-66 was proved
beneficial to the
photocatalytic

reaction by
enlarging the

photoadsorption
and preventing the

electron-hole
recombination

[121]

g-C3N4/BiOI/Bi2O2CO3

Simple reflux
and in situ

ion exchange

Bi(NO3)3·5H2O,
C3H6N6, KI,

NaHCO3, Na2SO4,
CH3CH2OH,

Kr2Cr2O7, H2SO4,
H3PO4

Thin nanosheets of
BiOI are

distributed over
g-C3N4 layers

Rhodamine B
(10 ppm) 250 W Xe lamp Ternary

heterojunction

Based on the
matched energy

levels, BiOI acted
as the charge
transmission

bridge

[162]

BiOX and BiOY coupled g-C3N4

Bi7O9I3/Bi5O7I/g-C3N4

Hydrothermal
C3H6N6,

Bi(NO3)3·4H2O,
C2H6O2 and KI

Irregular rods
consisting of thin

irregular
nanosheets

Crystal violet
(10 ppm) 150 W Xe lamp Binary

heterojunction

Controlled
synthesis of series
of BiOxIy/g-C3N4

composites is
reported

[163]

g-C3N4/BiOI/BiOBr

Chemical
precipitation

CH4N2O, C2H6O2,
Bi(NO3)3·5H2O,

KBr and KI

Curved g-C3N4
nanosheets are
attached to the

surface of
BiOI/BiOBr
exhibiting
sphere-like
structures

containing thin
nanosheets of BiOI
on large plates of

BiOBr

Methyl orange
(10 ppm)

Escherichia
coli (ATCC

15597)

300 W Xe lamp Ternary
heterojunction

Presence of BiOI
shifted the

bandgap to longer
wavelength and

also suppressed the
carrier

recombination

[164]

g-C3N4@BiOCl/Bi12O17Cl2

In situ self-
assembly

CH4N2O, BiCl3,
C2H5OH and

NaOH

Combination of
layered and

irregular
microstructures
having smooth
nanosheets of

different sizes are
grown over g-C3N4

NO removal (1
× 10−9 ppb)

100 W
commercial

tungsten
halogen lamp

Ternary
heterojuncton

Electron spin
resonance proved
that both hydroxyl

and superoxide
radicals are active
species towards

NO removal

[165]

BiOI/BiOCl/g-C3N4

Precipitation
Bi(NO3)3·5H2O,

CH4N2O, KI, KCl
and NH3

Nanosheets are
stacked densely to

form irregular
microstructures

over thin layers of
g-C3N4

Acid orange
(10 ppm)

400 W Halogen
lamp

Ternary
heterojuncton

The optimal ratio
of ternary hybrid
was found to be

5:3:2

[91]
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Table 1. Cont.

Synthesis
Method Precursors Morphology Contaminant

Parameters Light Source Heterojunction
Type

Significance of the
Result Ref.

Quaternary heterojunction

BiOCl/g-C3N4/Cu2O/Fe3O4

Co-
precipitation

Bi(NO3)3·5H2O,
KCl, NaOH, HNO3,

CuSO4·5H2O,
C2H5OH, FeCl3,

FeCl2 CH4N2S and
C2H6O2

Flower shaped
BiOCl, spherical

Fe3O4 and cubical
Cu2O

nanoparticles are
connected with
porous sheets of

g-C3N4

Sulfamethoxazole
(100 µM)

800 W Xe lamp
Natural
sunlight

Quaternary
nano-

heterojunction

p-n-p junction
functioned well

under both
artificial visible

light and solar light
towards

sulfamethoxazole
degradation

[166]

g-C3N4/BiOI/BiOBr

Solvothermal
C2H4N4, C2H6O2,

Bi(NO3)3·5H2O, KI
and CTAB

g-C3N4 was
attached to the

surface of quadrate
BiOBr substrates
overlapped with

rounded thin
pieces of the BiOI

Methylene
blue (20 ppm) 500 W Xe lamp Ternary

Z-scheme

Charge carrier
dynamics in

ternary composite
is reviewed based

on transient
photocurrent

response

[167]

Doped BiOX-g-C3N4

K-doped g-C3N4/BiOBr

In situ
synthesis

CH4N2O, CTAB,
KOH and

Bi(NO3)3·5H2O,
2D nanosheets

Rhodamine B
(20 ppm)

Tetracycline
(10 ppm)

500 W Xe lamp Binary
heterojunction

K was interfaced
with

g-C3N4/BiOBr for
improved

migration and
transportation of

photogenic carriers

[168]

g-C3N4@Bi/BiOBr

Solvothermal

C3H6N6,
Bi(NO3)3·5H2O,

C2H6O2, KBr and
C2H5OH

3D fluffy and
hierarchical

structure where
Bi/BiOBr

nanoplates are
embedded on the

surface of the
layered g-C3N4

Rhodamine B
(20 ppm)

Tetracycline
(12 ppm)

Simulated
sunlight

Ternary
indirect

Z-scheme

Ethylene glycol
functioned as
solvent and a
reductant for

tuning the
morphology and

boosting the
photocatalytic
performance

[84]

g-C3N4@Polydopamine/BiOBr

Solvothermal

C3H6N6, HCl,
Da.HCl, NaOH,
Bi(NO3)3·5H2O,

PVP, C2H6O2 and
KBr

Flower-like BiOBr
are deposited on

the surface of
sheet-like

g-C3N4@PDA

Sulfamethoxazole
(2.5 ppm) 300 W Xe lamp Z-scheme

Biomimetic PDA as
electron transfer

mediator bridging
g-C3N4-BiOBr was

reported for the
first time

[169]

4.2. Carbon Dioxide Reduction

The rapid increase in the concentration of atmospheric CO2 as a green-house gas
has drawn significant concerns over its huge impact on the global climate. Therefore, the
photocatalytic reduction of CO2 to value-added chemicals such as CO, CH3OH, HCOOH,
CH4, etc., under direct solar irradiation is pivotal for not only reducing the level of atmo-
spheric CO2, but also for partly fulfilling the renewable fuel demand that may increase in
the future, partly owing to the steadily depleting fossil fuel reserves and also due to our
environmental policy on curbing the usage of fossil fuels for inhibiting CO2 emission. As
mentioned earlier, BiOX photocatalysts are mainly employed for the photocatalytic degra-
dation of organic pollutants and are seldom effective in the reduction of CO2 conversion at
neutral condition due to its positive CB position [170]. Therefore, only a few photocatalytic
reduction reactions of pristine BiOX for photocatalytic CO2 conversion have been reported
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to date [90,171–179]. On the other hand, theoretical studies indicated that the increase in
the Bi-content in BiOX could promote the reduction power of photogenerated electrons and
increase the thermodynamic force for initiating many reduction reactions that were not pos-
sible to be carried out with BiOX. In this regard, non-stoichiometric BixOyXz photocatalysts
were found to exhibit promising potential in the photoreduction of CO2 to solar fuels and
exhibited good stability and possessed suitable band structures for extended visible light
absorption with negative CB positions [180]. For instance, Ye et al. reported an enhanced
rate of CO and CH4 generation by the photocatalytic reduction of CO2 using Bi4O5Br2
microspheres assembled with ultrathin nanosheets in comparison to BiOBr with ultrathin
nanosheets and bulk BiOBr. It was proved that Bi-rich Bi4O5Br2 with a more negative CB
position exhibited enhanced photoreduction of CO2 in comparison to BiOBr. Further, it was
revealed that the ultrathin nanosheet morphology of both Bi4O5Br2 and BiOBr considerably
reduced the recombination due to IEF generation and supported the generation of CO
in comparison to bulk BiOBr [181]. Similarly, ultrathin Bi4O5Br2 nanosheets synthesized
through the molecular precursor method exhibited enhanced performance towards CO2
reduction under visible light irradiation in comparison to bulk Bi4O5Br2. The amount of
CO2 converted to CO was 63.13 µmol g−1 using Bi4O5Br2 ultrathin nanosheets, which was
~2.3 times greater than that of bulk of Bi4O5Br2 (27.56 µmol g−1) [182]. The reason for
the enhanced CO2 reduction ability using Bi4O5Br2 ultrathin nanosheets in comparison to
its bulk counterpart was attributed to porous architecture with larger surface area, more
negative CB position (−1.19 V), lower rate of recombination of the photogenerated charge
carriers and higher photocurrent response. In another study, Bi4O5I2 and Bi5O7I photocata-
lysts were successfully synthesized via hydrolyzation and calcination, respectively, using
the molecular precursor method. Both Bi4O5I2 and Bi5O7I exhibited the photocatalytic
reduction of CO2 to selectively generate CO, but the higher CB edge and lower bandgap
energy (2.18 eV) of Bi4O5I2 enabled it to exhibit enhanced photocatalytic performance
that was ~11.5 and ~28.3 times greater than that of Bi5O7I and BiOI, respectively [183].
In addition to Bi-rich strategy, the hybridization of Bi4O5I2 with g-C3N4 was employed
for enhancing the photoreduction of CO2 by the formation of a heterojunction with an
I3
−/I− redox mediator synthesized through the complex precursor method. The composite

exhibited higher photocatalytic activity for CO2 conversion than pure g-C3N4 and Bi4O5I2
owing to the I3

−/I− redox mediator formed in situ, which assisted the transfer of the
photogenerated charge carriers through the Z-scheme heterojunction and suppressed their
recombination [184]. The amount of CO generated by the photocatalytic reduction of CO2
in the presence of g-C3N4/Bi4O5I2 (20 wt%) with 45.6 µmol g−1 h−1 was ~7.9 and ~2.3
times greater than pristine g-C3N4 and pristine Bi4O5I2, respectively. The performance of
various BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts for the reduction of CO2 is
summarized in Table 2.

Table 2. Reduction of CO2 in the presence of BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts reported in the literature.

Photocatalyst Light Source Result Significance Ref.

g-C3N4/Bi4O5I2
300 W Xe lamp

(λ > 420 nm)
Photoreduction of CO2
CO—45.6 µmol g−1 h−1

I3
−/I− redox mediator assisted Z-scheme

mechanism enhanced the photocatalytic CO2
conversion

[184]

g-C3N4/BiOI 300 W Xe lamp
(λ > 420 nm)

Photoreduction of CO2,
CO—17.9 µmol g−1 h−1

O2—9.8 µmol g−1 h−1

Reduction in I content in the composite is
unfavourable for the reduction of CO2, implying

I3
− intermediate plays an important role in

charge transfer process

[185]

g-C3N4/BiOBr/Au 300 W Xe lamp
(λ > 420 nm)

Photoreduction of CO2,
CO—6.67 µmol g−1 h−1

CH4—0.92 µmol g−1 h−1

The size of Au nanoparticles acted as the
Z-scheme bridge and SPR centre during the

photocatalytic process.
[139]

g-C3N4/BiOCl-defect
rich

300 W Xe lamp
(λ > 420 nm)

Photoreduction of CO2,
CO—28.4 µmol g−1 h−1

CH4—4.6 µmol g−1 h−1

Interfacial oxygen vacancies provide a transport
channel for the interfacial carriers, leading to a

built-in electric field promoting enhanced carrier
transfer efficiency.

[186]
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4.3. Hydrogen Generation

Hydrogen as a fuel is considered a promising alternative for future energy sustainabil-
ity owing to its high specific energy and eco-friendly combustion products. The positive
CB position of BiOX photocatalysts restricts their ability to generate H2, but precise control
of their thickness during fabrication and the addition of defects such as oxygen vacancies
were reported to simultaneously enhance the visible light absorption and intensity of the
self-generated IEF [187–190]. For instance, Ye et al. synthesized black coloured ultrathin
BiOCl nanosheets enriched with oxygen vacancies while glycerol reacted with the oxygen
exposed on the (001) surface under hydrothermal conditions. The amount of H2 generated
using the black coloured ultrathin BiOCl (~2.51 µmol h−1) under visible light irradiation
was about 21 and 15 times higher than bulk BiOCl (0.12 µmol h−1) and TiO2 (0.16 µmol
h−1), respectively [191].

Li et al. reported the growth of BiOCl crystal with 18 facets, 24 vertices and 40 edges
through a one-pot hydrothermal method for a longer reaction time of 100 h and, as observed
from Figure 7, the amount of photocatalytic H2 generated was 2.1 times greater than that
obtained with BiOCl synthesized with a shorter time span of 10 h (5.99 µmol g−1 h−1) [192].
Conventionally, the square plates of BiOCl with exposed {001} top facets correspond to
the most positive CB position, while the lateral {110} facets form the most negative VB
position, facilitating charge separation between in the binary {001}/{110} facet junction.
On the other hand, the eighteen-faceted BiOCl were composed of {001} top facets and
unusual {102} and {112} oblique facets owing to which the CB position was in the order
(001) facet > (102) facet > (112) facet, while the VB position order was (001) facet < (102)
facet < (112) facet. Therefore, the well-matched {001}/{102}/{112} ternary facet junction in
the eighteen-faceted BiOCl facilitated the efficient cascade charge flow, ensuring enhanced
photocatalytic H2 generation. In another report, hierarchical BiOI microspheres synthesized
through a microwave-assisted solvothermal method with ethylene glycol and ethanol as
solvents were reported to exhibit visible light mediated photocatalytic water splitting
to generate H2 with maximum (1316.9 µmol g−1) at pH 7 with a dosage of 0.2 gL−1.
The narrow bandgap of BiOI (2.04 eV) microspheres, the surprisingly sufficient over-
potential due to negative CB position and the higher separation of the photogenerated
charges aided H2 generation [193]. Bai et al. synthesized non-stoichiometric Bi4O5X2
(X = Br, I) nanosheets through the molecular precursor method, which generated H2 under
a 300 W lamp emitting simulated solar light irradiation [67]. Using 10% methanol as the
sacrificial agent, the amount of H2 generated with 40 mg of Bi4O5Br2 and Bi4O5I2 was
4.21 and 2.79 µmol g−1 h−1, respectively. The enhanced photocatalytic performance of
Bi4O5Br2 nanosheets with a quantum efficiency of 0.93% at 420 nm in comparison to Bi4O5I2
(just 0.52%) was attributed to the greater separation of photogenerated charge carriers.
Bi24O31Br10 nanoplates synthesized through the chemical precipitation method generated
H2 by the photocatalytic reduction of water at a rate of 3.3 µmol h−1 with 50 mg catalyst
loading, while pristine BiOBr and Bi2O3 displayed no activity. The uplifting of the CB of
Bi24O31Br10 due to the presence of Bi 6p and Br 4s orbitals fulfilled the electric potential
requirements for splitting water to H2 in comparison to pristine BiOBr and Bi2O3 with
positive CB positions [68]. Di et al. reported the synthesis of a defect-rich single-unit-cell of
Bi3O4Br with a thickness of ~1.7 nm that displayed superior photocatalytic H2 generation of
up to 380 µmol g−1 h−1, which was ~2 and 4.9 times greater than defect-deficient Bi3O4Br
and bulk Bi3O4Br, respectively [97]. The enhanced photocatalytic activity of defect-rich
single-unit-cell Bi3O4Br was immensely facilitated by the generation of oxygen defects due
to bismuth vacancy in addition to their atomically thin architecture that favourably tuned
the electronic band structure. In another study, a bilayer junction formed by the selectively
assembly of metallic phase enriched MoS2 and oxygen-deficient Bi12O17Cl2 monolayers
exhibited photocatalytic H2 evolution at a rate of 33 mmol h−1 g−1 under visible light,
with a superior quantum efficiency of 36% at 420 nm that was superior to the pristine
monolayers of MoS2 and BixOyXz-based systems [194]. The enhanced performance of the
bilayer MoS2/Bi12O17Cl2 junction can be attributed to the enhanced charge separation
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in oxygen-deficient Bi12O17Cl2 monolayers ensured by the IEF and the collective role of
both IEF and Bi-S bonds for pushing the electrons to catalyse the H2 evolution. However,
surprisingly, to date no reports have been found on photocatalytic H2 generation using a
BiOX/BixOyXz-g-C3N4 heterojunction photocatalyst, given the fact that pristine g-C3N4 is
an excellent H2 evolution photocatalyst that has been studied extensively.

1 
 

 

Figure 7. Rate constants for generation of (a) H2 and (b) hydroxyl ions over different BiOCl photocatalysts under simulated
solar light irradiation. (c) Surface photovoltage spectra of BiOCl synthesized with time span of 10 h (BiOCl-10) and 100 h
(BiOCl-100) indicating the degree of charge separation. (d) Surface charge transfer efficiency of BiOCl-10 and BiOCl-100.
Reprinted from Ref. [192] with permission from John Wiley & Sons.

4.4. Oxygen Evolution

In addition to H2 generation, sunlight-driven photocatalytic water splitting allows the
generation of oxygen (O2). However, the water oxidation for O2 evolution is more difficult
due to the multistep transfer of four h+ in comparison to the transfer of two e− for H2
generation. The oxygen evolution reaction demands the accumulation of cationic h+ on
the surface (i.e., surface-trapped holes), which is absolutely essential to be utilized for the
reduction of adsorbed water via H2Oad + 2h+→ 1/2 O2 + 2H+ [195]. The basic requirement
for photocatalytic O2 evolution is ensuring that the VB edge of the photocatalyst is located
at a more positive position than the oxidation potential of H2O (1.23 V vs. normal hydrogen
electrode at pH = 0). Further, a significant overpotential is required for overcoming the
activation energies in the charge-transfer process between the photocatalyst and water
molecules. Due to the stringent demands, only very few materials are capable of directly
oxidizing water into O2 under light irradiation. Di et al. reported the fabrication of atomi-
cally thin defect-rich BiOCl nanosheets through the hydrothermal approach by treating
pre-synthesized BiOCl nanosheets in ethylene glycol and studied their performance to-
wards the photooxidation of H2O [196]. The amount of O2 generated with defect-rich
BiOCl nanosheets (56.85 µmol g−1 h−1) was nearly 3 and 8 times greater than that gen-
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erated with defect-free BiOCl nanosheets and bulk BiOCl. The enhanced performance of
defect-rich BiOCl in the photooxidation of water can be attributed to the synergetic effect
of an atomically thin thickness of ~2 nm, defects on BiOCl basal planes shortening the
migration distance of holes for promoting charge separation and hole utilization, and the
presence of abundant coordination-unsaturated active atoms. In another study, Ag and
PdOx nanocubes selectively deposited on the (001) and (110) facets of BiOCl nanoplates
formed a ternary hybrid Ag-BiOCl-PdOx photocatalyst that was employed in the photo-
catalytic O2 evolution under visible light with NaIO3 as the electron sacrificial agent [197].
Interestingly, Ag-(110)BiOCl(110)-PdOx exhibited a highest average O2 rate of 68.2 µmol
g−1 h−1, which was almost 5.9, 1.9 and 1.6 times higher than Ag-(001)BiOCl(001)-PdOx,
Ag-(001)BiOCl(110)-PdOx and Ag-(110)BiOCl(001)-PdOx, respectively. The schematic in
Figure 8 illustrates the reasons for the enhanced photocatalytic O2 generation, which can
be attributed to stronger electronic coupling at the BiOCl(110)-based interfaces as a result
of the thinner contact barrier between Ag and PdOx and the shortest average hole diffusion
distance realized by Ag and PdOx on the BiOCl(110) plane.
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Cui et al. reported the solvothermal synthesis of BiOCl nanosheets with abundant
oxygen vacancies using ethylene glycol as the solvent and studied their photooxidation
ability [198]. The rate of O2 evolved under visible light with oxygen vacancy-rich BiOCl
nanosheets in the presence of AgNO3 as the electron acceptor was 1.72 mmol g−1 after
5 h, which was 3.3 times higher than oxygen vacancy-poor BiOCl nanosheets despite the
fact that their surface area was almost identical. Abundant oxygen vacancies in BiOCl
nanosheets were reported to create many electron donor levels and allowed the excitation
of electrons, which subsequently formed holes in the VB for the O2 evolution reaction.
Similarly, Ji et al. reported the synthesis of oxygen vacancy-rich and oxygen vacancy-less
Bi7O9I3 microspheres through the ionic liquid assisted solvothermal method and studied
their performance in the photocatalytic O2 evolution. As expected, the O2 evolution
rate of oxygen vacancy-rich Bi7O9I3 microspheres at 199.2 µmol g−1 h−1 was ~1.5 times
greater than that of oxygen vacancy-less Bi7O9I3 microspheres, despite the fact that their
surface area was comparable [199]. In another study, Bi3O4Br nanorings were synthesized
through the solvothermal method using cetyltrimethylammonium bromide and polyvinyl
pyrrolidone as surfactants, and their performance was assessed through photocatalytic O2
evolution.

Interestingly, Bi3O4Br exhibited O2 efficient oxygen evolution at a rate of 72.54 µmol
g−1 h−1 that was attributed primarily to its single-crystalline nature, (001) facets exposure,
ring structure, appropriate light response range and band potential, which facilitated the
migration of charge carriers [200]. Ning et al. constructed a 2D-2D heterostructure pho-
tocatalyst by coupling Bi3O4Cl and BiOCl nanosheets through alkaline chemical etching
and solvent exfoliation for O2 evolution under visible light [201]. The rate of O2 evolved
with ultrathin Bi3O4Cl/BiOCl in the presence of FeCl3 as the electron scavenger reached
58.6 µmol g−1 h−1, which was about 3 times higher than that of nanocrystal Bi3O4Cl/BiOCl.
Electron spin resonance spectroscopy detected •O2

− as the primary active species, which
strongly suggested the mechanism of charge transfer during the photocatalytic oxidation
reaction to be the Z-scheme heterojunction. In the Bi3O4Cl/BiOCl Z-scheme heterojunction,
photogenerated electron-hole pairs generated by the built-in electric field under visible
light irradiation enabled the rapid transfer of photogenerated electrons to the {001}-BiOCl
facets that were partly trapped by Fe3+, while the holes gathered on the {001}-Bi3O4Cl facets
accommodated plenty of active sites for the photocatalytic O2 evolution [201]. Though
g-C3N4 has been extensively studied for its ability to oxidize water under light irradia-
tion [202–204], it is unfortunate that no work on photocatalytic water oxidation has been
carried out by designing suitable BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts.
However, there is enough scope for constructing efficient heterojunction photocatalysts
using BiOX/BixOyXz with exposed facets and functionalized g-C3N4 that could achieve
enhanced quantum efficiencies.

4.5. Nitrogen Reduction

The photoreduction of nitrogen (N2) to produce ammonia (NH3), commonly re-
ferred to as nitrogen fixation, is a green alternative to the standard Haber–Bosch process,
which consumes large amounts of fossil fuels and releases CO2 into the atmosphere.
Li et al. reported the solvothermal synthesis of {001} facet exposed BiOBr nanosheets with
and without oxygen vacancies for studying their photocatalytic performance in reducing
N2 under visible light irradiation with water as the solvent and proton source. Inter-
estingly, {001}-BiOBr without oxygen vacancies did not exhibit photocatalytic activity,
while {001}-BiOBr with oxygen vacancies generated a significant amount of NH3 at rate of
104.2 and 223.3 µmol g−1 h−1 under visible light and UV-vis light irradiation, respectively,
with an external quantum efficiency of 0.23% at 420 nm [205]. N2 was adsorbed on the
oxygen vacancies by combining with the two nearest Bi atoms in the sublayer to form
a terminal end-on bound structure, and the reduction capacity of N2 over {001}-BiOBr
was directly dependent on the amount of oxygen vacancies as they acted as catalytic
centres capable of adsorbing and activating N2 by inhibiting electron-hole recombination
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and promoting the interfacial charge transfer. Similarly, the Zhang group also studied
photocatalytic N2 fixation using oxygen vacancy-rich BiOCl nanosheets with {001} and
{010} exposed facets and, interestingly, it was found that the rate of NH3 generation with
{010}-BiOCl (0.95 µmol g−1 h−1) was only half of {001}-BiOCl (1.89 µmol g−1 h−1), but after
30 min the rate of NH3 generation with {010}-BiOCl at 2.29 µmol g−1 h−1 was 1.21 times
greater than {001}-BiOCl. The reason for the slower rate of NH3 generation during the
initial 30 min was attributed to the different chemistry of N2 fixation on {001} and {010}
facets, while the enhanced NH3 generation was attributed to the more stable side-on
bridging of N2 by combining with the two nearest Bi atoms in the outer layer and the
nearest Bi atom in the sublayer on the (010) surface [206]. Bai et al. synthesized bismuth-
rich Bi5O7I with {001} and {100} exposed facets through the solvothermal treatment of
molecular precursors in glycerol, and studied their photocatalytic activity for N2 fixation.
The NH3 generation rate using {001}-Bi5O7I (111.5 µmol g−1 h−1) was ~2.3 times greater
than {100}-Bi5O7I (47.6 µmol g−1 h−1), and the apparent quantum efficiency was 5.1% at
365 nm. Band structure studies through VB X-ray photoelectron spectroscopy revealed
the more negative CB position of {001}-Bi5O7I nanosheets that enhanced their reduction
power, while the photocurrent response and electrochemical impedance spectroscopy
results indicated their enhanced separation of photogenerated charge carriers and lower
resistance for electron-transfer. Therefore, it was concluded that the enhanced photocat-
alytic N2 fixation in Bi-rich BixOyXz was due to the facet effect in comparison to BiOX,
wherein oxygen vacancies play a dominant role [207]. Another study on Bi-rich BixOyXz
reported by Wang et al. demonstrated that engineering oxygen vacancies into Bi5O7Br
nanotubes with a uniform diameter of ~5 nm could generate NH3 up to 1.38 mmol h−1

g−1 under visible light with pure water without any organic scavengers or cocatalysts with
an apparent quantum efficiency of over 2.3% at 420 nm [83]. Interestingly, the Bi5O7Br
nanotube dispersion in water exhibited a colour change from light yellow to dark grey
under light irradiation that induced oxygen vacancies by seizing O atoms from water.
In addition to the more negative CB position, the enhanced chemisorption of N2 on the
oxygen vacancy sites due to the large surface area of Bi5O7Br nanotubes (96.56 m2 g−1),
forming a bond with Bi-metal (sideward transition metal), enabled it to donate electrons
from its bonding orbitals and accept electrons to its antibonding p-orbitals, which gradually
wakened the N-N triple bond due to electron exchange and led to the enhanced generation
of NH3. Zhang et al. reported photocatalytic N2 fixation by simultaneously introducing
oxygen vacancy and doping Fe into BiOCl nanosheets that generated NH3 at a rate of
1.02 mmol g−1 h−1 under light irradiation using a 300 W Xe lamp [208]. The mechanism of
N2 fixation was similar to the report on Bi5O7Br nanotubes, and the dispersion of Fe-doped
BiOCl also exhibited a colour change from white to dark grey under light irradiation for
the generation of oxygen vacancies. Typically, the N2 fixation involved four main steps,
viz., (i) the generation of oxygen vacancies on the catalyst surface during light irradiation,
(ii) the chemisorption of N2 on the catalyst surface activated by oxygen vacancies, (iii) the
injection of photogenerated electrons into the orbitals of activated N2 for their reduction,
and (iv) the refilling of oxygen vacancies by adjacent O atoms from H2O or O2. Similarly,
Fe-doped BiOBr microspheres composed of nanosheets were synthesized through the
solvothermal method with polyethylene glycol for the photocatalytic conversion of N2
to NH3 at a rate of 382.68 µmol−1 g−1 h−1, which was eight times greater than pristine
BiOBr (51.6 µmol−1 g−1 h−1), under visible light radiation obtained from a 300 W xenon
lamp equipped with a 420 nm cutoff filter [209]. The charge density map of Fe-doped
BiOBr nanosheets shown in Figure 9a indicated that Fe withdrew electrons from nearby
atoms to form electron-rich Fe(II) that injected localized electrons to the p N-N antibonding
orbital of the adsorbed N2 via electron donation for obtaining enhanced NH3 generation,
as observed from Figure 9b. Further, the more negative CB position of Fe-doped BiOBr
nanosheets (Figure 9c) in comparison to pristine BiOBr and enhanced visible light absorp-
tion demonstrated the vital role played by Fe atoms. Similar to defect-rich nanostructures
of BiOX and BixOyXz, defect-rich g-C3N4 has demonstrated excellent performance in the
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photocatalytic N2 fixation under visible light [210,211]. However, to date no work has been
reported on photocatalytic N2 fixation with suitable BiOX/BixOyXz-g-C3N4 heterojunction
photocatalysts, which allows room for significant research to be conducted in this direction.
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4.6. Organic Synthesis

Semiconductor-based photocatalysis to achieve highly efficient organic reaction has
gained significant research attention. The oxidation of alcohols to their corresponding
aldehydes is the major area of organic synthesis. Xiao et al. hydrothermally synthesized
nanobelt-like structures of Bi12O17Cl2 and evaluated their performance towards the photo-
catalytic oxidation of benzyl alcohol in acetonitrile to benzaldehyde under visible light at
50 ◦C. The bandgap energy of the Bi12O17Cl2 photocatalyst was found to be 2.43 eV, and
the conversion rate to benzaldehyde was 44% under oxygen atmosphere via direct hole
oxidation. When Bi12O17Cl2 nanobelts were subjected to visible light irradiation, the e−

excited to the CB would be trapped by electrophilic O2, while the h+ in the VB reacted
with alkoxide anions to form carbon radicals through deprotonation, and, subsequently,
benzaldehyde was formed by the reaction of these carbon radicals with h+ [212]. Han et al.
reported the synthesis of BiOBr photocatalysts with three different exposed facets, viz.,
{001}, {010} and {110} for the selective aerobic photooxidation of benzylamine in acetonitrile
solution to N-benzylidenebenzylamine at room temperature and atmospheric air as the
oxidizing agent. Although BiOCl and BiOI were found to exhibit almost 100% selectivity
for the photooxidation of benzylamine, only BiOBr exhibited 100% conversion and selec-
tivity. Results indicated that the orientation of the exposed planes played a significant
role as BiOBr-{001} exhibited the highest activity based on unit surface area. However,
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solvothermally synthesized BiOBr-{110} microspheres achieved 100% selectivity and con-
version efficiency in the oxidation of benzylamine due to their high surface area [213].
BiOBr nanoplates with (001) exposed facets synthesized through the modified hydrother-
mal approach were treated in O2 and inert atmosphere for fabricating defect-free and
defect-rich BiOBr. Interestingly, the defect-rich BiOBr nanoplates exhibited high efficiency
and selectivity for the oxidation of benzylamine to N-benzylidenebenzylamine, while the
yield of corresponding imine was much lower with defect-free BiOBr. Photoluminescence
spectroscopy and photoelectrochemical studies confirmed that oxygen-vacancy mediated
exciton dissociation resulted in promoted charge-carrier generation in the system that led
to a selective oxidative-coupling reaction through •O2

− generation [214]. Similarly, BiOCl
colloidal ultrathin nanosheets with hydrophobic surface properties fabricated with abun-
dant oxygen vacancies by the hydrolysis of BiCl3 in octadecylene solution enabled them to
display superior photocatalytic activity for the aerobic oxidation of secondary amines to
corresponding imines under visible light irradiation [215]. Bi24O31Br10(OH)δ microspheres
containing porous nanosheet substructures with a surface area of 45 m2g−1 and abundant
active lattice oxygen sites were reported to exhibit the selective photooxidation of various
alcohols in air under visible light irradiation [216]. Mott–Schottky analysis suggested
the thermodynamically feasible band structure of Bi24O31Br10(OH)δ, while its loose and
porous architecture allowed the easy diffusion of bulky alcohols for accessing the abundant
active surface sites. Therefore, a remarkably high quantum efficiency of 71% was achieved
under visible light irradiation for isopropanol oxidation. A BiOBr/g-C3N4 heterojunction
photocatalyst synthesized through a two-step combustion-coprecipitation method was
reported to exhibit excellent photooxidation of benzylamine to N-benzylidenebenzylamine
with a conversion rate of 94% and a yield of 82% within 4 h of visible light irradiation
obtained from white LED under atmospheric air [217]. The enhanced performance of the
BiOBr/g-C3N4 photocatalyst was ascribed to the improved charge transfer and separation
driven by its apt band structure. Interestingly, bezylamine oxidation happened under both
aerobic and anaerobic conditions driven by the •O2

− radicals (produced by the reaction
of CB e−) with amine cations and the reaction of VB h+ with nitrogen-centred radicals,
respectively, to form N- benzylidenebenzylamine.

5. Strategies for Improving the Performance of BiOX/BixOyXz-g-C3N4 Heterojunction
Photocatalysts

The photocatalytic performance of BiOX/BixOyXz nanomaterials has received sub-
stantial research interest owing to their suitable band structure for absorbing sunlight
to start the photocatalytic reaction. Unfortunately, their practical applications are still
confined by a few drawbacks, including a mismatch between the band edge position and
light harvesting, ineffective charge separation and transportation, fewer active sites, and
poor selectivity of the desired reaction. In this context, numerous strategies have been
developed to engineer the layered structure and overcome the aforementioned drawbacks.
The following sections emphasize each strategy accordingly.

5.1. Microstructure Modulation

Due to the strong connection between the physical and chemical properties and
the microstructure (shape, size, surface area, and dimensionality) of the materials, the
rational synthesis of the nano- or microstructure has constantly received great significance
from the prospect of both scientific research and industrial applications. Further, the
inherent nature of nanoscale materials to exhibit higher surface-to-volume ratio and provide
abundant active sites enables the effective separation of the photoinduced carriers, thereby
enhancing their photocatalytic efficiency. Table 1 provides the summary of various methods
for fabricating BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts which were briefly
introduced in Section 4.1. Since many articles have already reviewed the importance
of microstructure modulation, our discussions in this section are confined to just a few
articles mainly focusing on the fabrication of the heterojunction between BiOX/BixOyXz



Catalysts 2021, 11, 426 32 of 53

and g-C3N4. In addition to the conjunction 2D-2D heterojunction, the embedment of 3D
hierarchical structures on 2D structures has also sparked interest owing to the distinctive
3D architecture formed by the self-assembly of 1D and 2D sub-structures.

For example, a Bi5O7I/g-C3N4 heterojunction photocatalyst was synthesized by two
different approaches, adopting in situ co-thermolysis [106] and the one-pot ethylene glycol
assisted hydrothermal approach [107]. In the in situ co-thermolysis method, BiOI pre-
cursor (pre-synthesized through the coprecipitation method) was mixed with melamine
and ground with an agate mortar, and the powdered material taken in a crucible was
heated in a muffle furnace at 520 ◦C for 4 h for obtaining Bi5O7I/g-C3N4. On the other
hand, in the one-pot ethylene glycol assisted hydrothermal approach, a final solution of
ethylene glycol made by the dropwise addition of KI solution to a solution containing
Bi(NO3)3•5H2O with pre-synthesized g-C3N4 was treated hydrothermally at 150 ◦C for
12 h. Interestingly, the morphology of the final structure of Bi5O7I/g-C3N4 resembled
microspheres with nanosheet substructures of the individual components. Additionally,
interestingly, the estimated values of the VB and CB potentials for g-C3N4 (1.54 eV and
−1.19 eV) and Bi5O7I (3.17 eV and 0.29 eV) were identical. However, the mechanism of
charge transfer described for the Bi5O7I/g-C3N4 heterojunction photocatalyst synthesized
through in situ co-theromolysis was ascribed to the type-II heterojunction, while the charge
transfer mechanism in hydrothermally synthesized Bi5O7I/g-C3N4 was ascribed to the
Z-scheme. In another study, BiOBr/g-C3N4 heterojunction photocatalysts were fabricated
by dispersing pre-synthesized BiOBr nanoflowers enriched with oxygen vacancies synthe-
sized by the solvothermal treatment of precursors (Bi(NO3)3•5H2O, polyvinylpyrrolidone
and KBr) dispersed in mixed solvent (ethylene glycol and water) at 160 ◦C for 3 h, in
g-C3N4 dispersion and stirring at room temperature for 6 h, followed by washing and
drying [218].

TEM analysis indicates the layered g-C3N4 structure with ultrathin nanosheets (Figure
10a), the nanoflower-like morphology of BiOBr enriched with oxygen vacancies (Figure 10c)
and their perfect heterojunction, indicating the embedment of the oxygen vacancy enriched
nanoflowers on g-C3N4 nanosheets (Figure 10d). Comparatively, the morphology of defect-
free BiOBr/g-C3N4 indicates the formation of nanoplates, as observed from Figure 10b.
HRTEM micrographs (Figure 10e,f) of oxygen vacancy enriched BiOBr/g-C3N4 depict the
lattice spacing of d = 0.28 and 0.352 nm corresponding to the (102) and (101) crystal planes
of the tetragonal phase of BiOBr, respectively. Further, the purity and co-existence of all
the elements in BiOBr/g-C3N4 were confirmed from EDS elemental mapping, as shown
in Figure 10g. The photocatalytic activity of oxygen vacancy enriched BiOBr/g-C3N4 in
the removal of NO under visible light irradiation at 63% was 1.8, 1.6, 1.6 and 1.5 times
greater than pristine g-C3N4, pristine oxygen vacancy enriched BiOBr, defect-free BiOBr/g-
C3N4 and a physical mixture of g-C3N4 with oxygen vacancy enriched BiOBr. Similarly,
photocatalytic CO2 reduction using oxygen vacancy enriched BiOBr/g-C3N4 generated
CO and CH4 at a rate of 61.8 and 27.1 µmolh−1g−1, respectively, which was greater than
the control samples. Abundant oxygen vacancies in BiOBr and the heterojunction with
ultrathin g-C3N4 nanosheets were attributed to the enhanced photocatalytic activity, while
the •OH and •O2

− radicals were reported to be the main active species involved in the
removal of NO and the reduction of CO2, respectively.



Catalysts 2021, 11, 426 33 of 53
Catalysts 2021, 11, x FOR PEER REVIEW 35 of 55 
 

 

 
Figure 10. TEM micrographs of (a) pristine g-C3N4, (b) defect free-BiOBr/g-C3N4, (c) pristine BiOBr 
enriched with oxygen vacancies, (d) oxygen vacancy enriched BiOBr/g-C3N4, (e,f) HRTEM micro-
graphs of oxygen vacancy enriched BiOBr/g-C3N4 depicting the lattice spacing and (g) the corre-
sponding elemental maps of C, N, O, Br and Bi. Reprinted from Ref. [218] with permission from 
Wiley-VCH. 

5.2. Facet and Defect Control 
Crystal facets are an important feature of crystalline materials, and different crystal 

facets have different geometric and electronic structures, exhibiting intrinsic reactivity 
and surface physical and chemical properties associated with the crystallographic orien-
tation. As a basic feature of crystalline materials, the exposed crystal facets play an im-
portant role in photocatalytic efficiency since photocatalysis occurs on the surface of BiOX 
photocatalysts. BiOCl nanosheets with tunable {001} facet percentages were synthesized 
by hydrolyzing molecular precursors Bin(Tu)xCl3n (Tu = thiourea). Exposed {001} facets of 
BiOCl exhibited high oxygen atom density, and under UV light irradiation, plenty of ox-
ygen vacancy sites were created [219]. These oxygen vacancies formed a defect state near 
the bottom of the CB of BiOCl and played a significant role in capturing the photogener-
ated electrons for enhancing the photocatalytic activity of BiOCl due to the improved sep-
aration of photogenerated charge carriers. Jiang et al. reported the hydrothermal synthesis 
of BiOCl single-crystalline nanosheets with exposed {001} facets, which exhibited higher 
activity for direct semiconductor photoexcitation pollutant degradation under UV light, 
while the counterpart with exposed {010} facets possessed superior activity for indirect 
dye photosensitization degradation under visible light [220]. Zhao et al. obtained rose-like 
BiOBr nanostructures with exposed {111} facets using sodium dodecyl sulphate as the 
surfactant, which exhibited better photocatalytic activity than exposed {001} facets under 
both visible light and monochromatic light [221]. Although high-energy facets exhibited 

Figure 10. TEM micrographs of (a) pristine g-C3N4, (b) defect free-BiOBr/g-C3N4, (c) pristine
BiOBr enriched with oxygen vacancies, (d) oxygen vacancy enriched BiOBr/g-C3N4, (e,f) HRTEM
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corresponding elemental maps of C, N, O, Br and Bi. Reprinted from Ref. [218] with permission from
Wiley-VCH.

5.2. Facet and Defect Control

Crystal facets are an important feature of crystalline materials, and different crystal
facets have different geometric and electronic structures, exhibiting intrinsic reactivity and
surface physical and chemical properties associated with the crystallographic orientation.
As a basic feature of crystalline materials, the exposed crystal facets play an important
role in photocatalytic efficiency since photocatalysis occurs on the surface of BiOX pho-
tocatalysts. BiOCl nanosheets with tunable {001} facet percentages were synthesized by
hydrolyzing molecular precursors Bin(Tu)xCl3n (Tu = thiourea). Exposed {001} facets of
BiOCl exhibited high oxygen atom density, and under UV light irradiation, plenty of oxy-
gen vacancy sites were created [219]. These oxygen vacancies formed a defect state near the
bottom of the CB of BiOCl and played a significant role in capturing the photogenerated
electrons for enhancing the photocatalytic activity of BiOCl due to the improved separation
of photogenerated charge carriers. Jiang et al. reported the hydrothermal synthesis of
BiOCl single-crystalline nanosheets with exposed {001} facets, which exhibited higher
activity for direct semiconductor photoexcitation pollutant degradation under UV light,
while the counterpart with exposed {010} facets possessed superior activity for indirect
dye photosensitization degradation under visible light [220]. Zhao et al. obtained rose-like
BiOBr nanostructures with exposed {111} facets using sodium dodecyl sulphate as the sur-
factant, which exhibited better photocatalytic activity than exposed {001} facets under both
visible light and monochromatic light [221]. Although high-energy facets exhibited higher
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activity than low-energy facets, they are easily eliminated because the fastest crystal growth
would occur in the direction perpendicular to the high-energy facet. Therefore, glucose as
the capping and structure-directing agent was employed in synthesizing 1D rod-like BiOBr
with exposed {110} facets, and it was revealed that glucose not only suppressed the growth
of {001} facets of BiOBr nanosheets but also induced these nanosheets to self-assemble along
the [1] orientation, displaying better photocatalytic activity towards the photodegradation
of rhodamine B and methyl orange [222]. Defects in the exposed facets of semiconductors
can significantly enhance the photocatalytic activity by changing their electronic structures,
the recombination efficiency of charge carriers, and surface properties [223]. As a typical
defect, oxygen vacancies are reported to enhance the photo-absorption and photocatalytic
performance of the photocatalysts. Li et al. reported the fabrication of BiOBr nanosheets
with oxygen vacancies via a hydrothermal-reduction route. Their study revealed that only
those oxygen vacancies created on the surface of the photocatalyst could inhibit the charge
carrier recombination by trapping the photogenerated electrons, while the bulk oxygen va-
cancies which can also trap photogenerated charges act as recombination centres, resulting
in a decrease in photoactivity [205]. Wang et al. reported the introduction of surface oxygen
vacancies over the BiOBr nanosheets exposed with {001} facets by surface modification
using polybasic carboxylic acids. These surface oxygen vacancies on BiOBr intensified the
separation efficiency of photogenerated carriers and promoted the dioxygen reduction
towards the degradation of MO dye [224]. Further, density functional theory calculations
revealed that the presence of oxygen vacancies can ensure the increased density of states at
the conduction band edge relative to the BiOBr atomic layers and bulk counterpart, which
helps in enhancing the electron transport pathways.

Additionally, the introduced oxygen vacancies created new defect levels which al-
lowed a narrower bandgap, hence giving the possibility for realizing visible light CO2
reduction. Wu et al. reported that oxygen-deficient BiOBr atomic layers triggered visible-
light-driven CO2 reduction into CO with a rate of 87.4 µmol g−1 h−1, which was 20 times
and 24 times higher than that of BiOBr atomic layers and bulk BiOBr. Thus, defect engineer-
ing was proved to promote CO2 photoreduction efficiency through fully addressing the
poor photo-absorption, sluggish electron-hole separation, and high CO2 activation barrier,
giving new possibilities for achieving high performance in solar CO2 reduction [225].

Li et al. reported the synthesis of a BiOCl single crystal with eighteen-facets by
prolonging the hydrothermal reaction time (10–200 h), which exhibited enhanced H2
generation that was higher than previously reported BiOCl with a [1] top facet and [121]
lateral facets. SEM micrographs of BiOCl crystals synthesized at different time intervals are
represented in Figure 11a–d. Both TEM and HRTEM micrographs confirmed the formation
of well-shaped oblique facets at an angle of ~45◦ from the top facets, as observed from
Figure 11e–h. The schematic illustration of eighteen-faceted BiOCl and the {001}, {102}
and {112} facets in BiOCl is represented in Figure 11i,j. The well-indexed XRD patterns
indicated the formation of a pure phase of BiOCl (Figure 11k). Therefore, with the help
of the ternary facet junction, the electron-hole pairs in the eighteen-faceted BiOCl single
crystal were effectively separated and displayed outstanding photocatalytic activity in the
generation of H2 [192].



Catalysts 2021, 11, 426 35 of 53Catalysts 2021, 11, x FOR PEER REVIEW 37 of 55 
 

 

 
Figure 11. SEM images and the corresponding schematic representation for BiOCl treated at different time intervals (a) 10 
h, (b) 50 h, (c) 100 h, and (d) 200h; (e) TEM image and (f) HRTEM image of BiOCl treated for 10 h; (g) spherical aberration 
correction TEM image and (h) HRTEM image of BiOCl treated for 100 h; (i) crystal structure and facets of BiOCl; (j) Sche-
matic representation of the different facets of eighteen-faceted BiOCl; (k) XRD patterns of BiOCl series samples; (l) Fourier 
transformed profiles for Bi coordination environments in normalized Bi L3-edge XAFS spectra of BiOCl treated at 10 and 
100 h. Reprinted from Ref. [192] with permission from John Wiley & Sons. 

5.3. Integration with Noble Metal Nanostructures 
Depositing the noble metal over the surface of the semiconductor surface is an effec-

tive approach for modifying the photon harvesting capacity and for increasing the charge 
carrier separation kinetics. Noble metals coupled with semiconductor photocatalysts 
could form a high-speed charge-transfer channel for accelerated transport. Further, in 
many semiconductor systems, the noble metal nanoparticles have been usually used as 
charge-transfer mediators owing to their excellent electron conductivity, thereby offering 
a new approach to overcome the limit of traditional heterojunction photocatalysts. Addi-

Figure 11. SEM images and the corresponding schematic representation for BiOCl treated at different time intervals
(a) 10 h, (b) 50 h, (c) 100 h, and (d) 200 h; (e) TEM image and (f) HRTEM image of BiOCl treated for 10 h; (g) spherical
aberration correction TEM image and (h) HRTEM image of BiOCl treated for 100 h; (i) crystal structure and facets of BiOCl;
(j) Schematic representation of the different facets of eighteen-faceted BiOCl; (k) XRD patterns of BiOCl series samples;
(l) Fourier transformed profiles for Bi coordination environments in normalized Bi L3-edge XAFS spectra of BiOCl treated
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5.3. Integration with Noble Metal Nanostructures

Depositing the noble metal over the surface of the semiconductor surface is an effec-
tive approach for modifying the photon harvesting capacity and for increasing the charge
carrier separation kinetics. Noble metals coupled with semiconductor photocatalysts could
form a high-speed charge-transfer channel for accelerated transport. Further, in many semi-
conductor systems, the noble metal nanoparticles have been usually used as charge-transfer
mediators owing to their excellent electron conductivity, thereby offering a new approach
to overcome the limit of traditional heterojunction photocatalysts. Additionally, due to the
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unique phenomenon of surface plasmon resonance (SPR) and its induced local electric field,
the noble metal nanoparticles bridged with semiconductor photocatalysts can strengthen
the photon absorption range and boost the photoinduced electron transfer [226,227]. Jiang
et al. coupled Pt nanoparticles as the apt co-catalyst in the ternary Z-scheme photocatalytic
system with BiOI (5.65 eV) and g-C3N4 (4.52 eV), since the work function of Pt (5.20 eV)
was in between that of the individual semiconductors. Interestingly, the efficiency of the
BiOI/Pt/g-C3N4 system was much higher than that of pristine g-C3N4, Pt/g-C3N4, and
BiOI/g-C3N4 in the photodegradation of phenol and tetracycline hydrochloride, which
was attributed to the efficient separation and transfer of charge carriers in an unobstructed
Z-scheme route. The electric fields in the opposite direction for Pt/BiOI and Pt/g-C3N4
interfaces were formed due to the difference in the work function. The higher work func-
tion of Pt in contact with g-C3N4 formed a Schottky barrier and forced the transfer of
electrons accumulated in the space charge region, resulting in the upward band bending
in the Pt/g-C3N4 interface. Similarly, the depletion layer at Pt/BiOI was formed due to
the higher work function of BiOI in comparison to Pt. Under visible light irradiation, the
inverse electric field at Pt/g-C3N4 and Pt/BiOI would induce the e− in BiOI and h+ in
g-C3N4 to combine at the Pt metal. Since this charge transfer process occurred without
overcoming the Schottky barrier, it was termed as an unobstructed Z-scheme heterojunction
and enabled the photogenerated e− in the CB of g-C3N4 and h+ in the VB of BiOI to form
•O2

− and •OH radicals that efficiently degraded the organic contaminants [136].

5.4. Carbonaceous Materials Compounding

Carbonaceous materials, such as graphene, carbon nanotubes (CNTs), carbon quantum
dots (CQDs), carbon fibres, multi-walled carbon nanotubes (MWCNTs), carbon spheres,
etc., are reported to play a vital role in enhancing the photocatalytic performance of
BiOX/BixOyXz nanomaterials [94,145,147,148]. Graphene or reduced graphene oxide (rGO)
has been considered a good electron collector and charge transport medium in photocataly-
sis owing to its high conductivity, excellent electron mobility, and large specific surface area.
BiOCl/carbon-based photocatalysts have gained enormous interest due to their enhanced
performance, which was attributed to their strong adsorption, excellent light absorption,
and rapid transfer of photogenerated charges [228,229]. A BiOCl/CQDs/rGO ternary het-
erojunction photocatalyst driven by visible light exhibited enhanced ciprofloxacin removal
efficiency, which was attributed to the excellent adsorption, enhanced charge separation
and charge injection induced by the presence of CQDs and rGO. The photocatalytic effi-
ciency of BiOCl/CQDs/rGO was 3.8 and 10.4 times greater in comparison to BiOCl/CQDs
and BiOCl, respectively, while the removal efficiency was ~87% [230]. Yu et al. hydrother-
mally synthesized 3D BiOBr/rGO heterostructured aerogel using dopamine as both a
reducing agent and cross-linker. The rate of the photodegradation of MO (80%) using 3D
BiOBr/rGO was much higher compared to RhB (50%) and phenol (35%) under 60 min of
visible light irradiation. Strong π-π interaction through the conjugative aromatic structure
was attributed to the highly efficient selective adsorption of anionic MO [231]. Similarly, the
addition of 1 wt% rGO relative to BiOBr sheets with exposed {001} facets with a core/shell
structure exhibited the highest activity for the photodegradation of orange II dye (97% in
90 min) and the removal of acetaminophen (93% in 105 min). The enhanced photocatalytic
activity of (1 wt%) rGO/BiOBr was attributed to increased visible light absorption, effective
separation, the transportation of photogenerated charge carriers and the formation of a
Schottky barrier at the interface between BiOBr and rGO, which enabled the transfer of
e− from the CB of BiOBr to rGO (due to its higher work function) and the internal electric
field at the interface. The capability of rGO to store and shuttle e− enabled the formation of
•O2

− radicals by reacting with adsorbed O2 molecules, while allowing the h+ to react with
OH to form •OH, the two main species responsible for the oxidation of organic contami-
nants [232]. Z-scheme heterojunction photocatalysts with solid-state electron mediators
bridging two semiconductors were proposed for enhancing the performance through the
efficient transport and separation of the photogenerated charge carriers. For instance, a
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2D/2D Z-scheme heterojunction was constructed between BiOBr and g-C3N4 using carbon
dots as the solid-state electron mediator, and it exhibited enhanced photocatalytic perfor-
mance in the degradation of ciprofloxacin (~84% in 105 min) and tetracycline (~83% in
60 min) under visible light degradation. Under visible light irradiation, the photogenerated
e− in the CB of BiOBr with low reduction ability and photogenerated h+ in the VB of
g-C3N4 with low oxidation ability are transferred to the carbon dots, while the e− and h+

with high reduction and oxidation ability produce •O2
− and •OH active species that react

with the organic contaminants for their mineralization into CO2 and H2O [145]. Similarly,
the unique electron mediating feature of carbon dots coupled with BiOBr (20 wt%) and
g-C3N4 nanosheets facilitated the improved separation of photogenerated charge carriers
for superior performance towards the degradation of organic contaminants (rhodamine B,
methylene blue and methyl orange) and the photoreduction of Cr(VI) to Cr(III) under visi-
ble light, with •O2

− and •OH being the active species [94]. Likewise, rGO was employed
as an electron transfer mediator in the heterojunction formed between BiOBr (10 wt%) with
protonated g-C3N4 for the photodegradation of tetracycline (59% mineralized) and BiOCl
with protonated g-C3N4 for the photodegradation of tetracycline (96% in 180 min) and
the selective oxidation of benzyl alcohol (conversation rate 76% and selectivity 99%). In
both cases, the mechanism of photocatalysis followed the Z-scheme heterojunction, with
•O2

− and •OH being the primary active species [144,233]. On the other hand, MWCNTs
were also reported to have been employed as electron mediators in the heterojunction
between g-C3N4 and BiOI (20 wt%). The heterojunction exhibited improved visible light
photocatalytic activity towards the degradation of methylene blue (10 ppm, 70% in 3 h)
under visible light (>420 nm) through the Z-scheme mediated charge transfer [142]. A
p-n junction formed by coupling g-C3N4 and BiOBr with rGO as the conductive support
exhibited enhanced photocatalytic activity in the degradation of rhodamine B (10 ppm,
66% in 60 min) under visible light. The sp2-hybridized carbon atoms in graphene capable
of storing and shuttling electrons enabled the photogenerated electrons from the CB of
BiOBr to flow into it and formed a Schottky barrier at the interface for preventing their
backflow. Meanwhile, the electrons with high reduction potential and holes with high
oxidation potential reacted with dissolved O2 and OH− to form •O2

− and •OH radicals,
which were actively involved in the photodegradation of rhodamine B [146]. In comparison
to CNTs, carbon dots and rGO, mussel-inspired biometric carbon material polydopamine,
also possessing a conjugated p structure and good electron transport ability, has attracted
significant interest owing to its excellent adhesion ability, strong light-harvesting capac-
ity, photoconductivity and biocompatibility. The Z-scheme heterojunction photocatalyst
g-C3N4@polydopamine/BiOBr showed high activity in the photocatalytic degradation
of sulfamethoxazole under visible light. Polydopamine was reported to promote the
efficient separation of the photogenerated charge carriers for ensuring efficient redox ca-
pability of the photocatalyst, while the mechanism studied through radical quenching
experiments confirmed that the h+ and •O2

− were the major reactive species for oxidizing
sulfamethoxazole [169].

5.5. Integration of Other Semiconductor Nanostructures

Single component photocatalysts fail to exhibit higher photocatalytic efficiency due
to the rapid recombination of the photogenerated charge carriers. In order to achieve
enhanced photocatalytic efficiency, one of the most common strategies is to construct
a heterojunction photocatalytic system by coupling two or more semiconductors [234].
Typically, in a heterojunction photocatalytic system, the photogenerated electrons in the
CB of photocatalyst A migrate to the CB of photocatalyst B, while the photogenerated
holes in the VB of photocatalyst B move to the VB of photocatalyst A, curbing their
recombination due to spatial isolation. However, after the charge transfer, the redox ability
of the photogenerated charges becomes weakened since the top of the VB potential of
photocatalyst A is less positive than that of photocatalyst B, and the bottom of the CB
potential of photocatalyst B is less negative than that of photocatalyst A. Due to this
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drawback, the heterojunction photocatalytic system (referred to as type-II heterojunction)
fails to simultaneously possess high charge-separation efficiency and strong redox ability.
Therefore, a Z-scheme photocatalytic process was proposed by carefully studying the
natural photosynthesis reaction in plants, which also features the spatial isolation of the
photogenerated charges to hinder their recombination. Although the structure of direct
Z-scheme photocatalyst is similar to that of a type-II heterojunction photocatalyst, its
charge-carrier migration mechanism is different and the pathway resembles the letter “Z”.
During the photocatalytic reaction, the photogenerated electrons in photocatalyst B with
lower reduction ability recombine with the photogenerated holes in photocatalyst A with
lower oxidation ability. Therefore, the photogenerated electrons in photocatalyst A with
high reduction ability and the photogenerated holes in photocatalyst B with high oxidation
ability can perform the redox reactions without any hindrance, and the performance of the
resulting Z-scheme photocatalytic system can be optimized. Further, the large number of
defects aggregated at the contact interface exhibits properties similar to that of conductors
with low electrical resistance owing to the fact that energy levels at the interface become
quasi-continuous [235,236].

Since 2D nanostructures can offer an apt platform for establishing surface contact with
other species, the idea of constructing a heterojunction by the hybridization of two types of
2D photocatalysts is an appropriate strategy for increasing the interface area. Recently, the
combination of g-C3N4 with BiOX/BixOyXz for the construction of 2D/2D heterojunction
photocatalysts has attracted considerable research attention [237–240]. Liu et al. reported
the fabrication of a BiOBr/g-C3N4 heterojunction through a simple reflux process, and its
photocatalytic performance was studied by the degradation of rhodamine B and bisphe-
nol A under visible light irradiation. The enhanced photocatalytic performance of the
heterojunction composite was obviously attributed to the efficient charge generation and
separation, while the active species involved during the photodegradation of rhodamine
B and bisphenol A were found to be in the order •OH > h+ > •O2

−. For determining
whether the photocatalytic mechanism followed the type-II heterojunction or Z-scheme
system, the migration channel of the photogenerated electron-hole pairs was analysed
through UV-Vis diffused reflectance spectroscopy and X-ray photoelectron spectroscopy.
The results revealed that the values of CB and VB potentials of pristine BiOBr nanoplates
were 0.30 eV and 3.07 eV, while those of pristine g-C3N4 nanosheets were −1.12 eV and
1.58 eV, respectively. After the hybridization of g-C3N4 with BiOBr, the VB edge of the
BiOBr/g-C3N4 heterojunction was found to be shifted to 1.32 eV due to the alignment
of the Fermi levels at the interface. Under visible light irradiation, the photogenerated
electrons moved from the CB of g-C3N4 to that of BiOBr, while the photogenerated holes
moved from the VB of BiOBr to that of g-C3N4 across the intimate well-aligned band
structure due to the potential difference. As observed from Figure 12a, if BiOBr/g-C3N4
had formed a type-II heterojunction, the formation of •O2

− and •OH would not have been
possible due to the insufficient reduction and oxidation potential of BiOBr and g-C3N4.
Therefore, the Z-scheme photocatalytic system was found to be constructed as shown in
Figure 12b, wherein the electrons accumulated in the CB of g-C3N4 (−1.12 eV vs. NHE)
reacted with oxygen molecules to form •O2

−, and the holes in the VB of BiOBr (3.07 eV vs.
NHE) reacted with OH− to generate •OH radicals [123].

A direct solid-state Z-scheme heterojunction photocatalyst was constructed by cou-
pling nanosheets of BiOI and g-C3N4 for the photodegradation of toxic microcystin-LR
under visible light irradiation. The rate constant of the best performing g-C3N4/BiOI
heterojunction photocatalyst (0.4357 h−1) was three and five times greater than pristine
BiOI and g-C3N4, respectively, and radical scavenger studies revealed that •O2

− played
the major role in the degradation of microcystin-LR. If BiOI/g-C3N4 had formed a type-II
heterojunction, the formation of •OH and •O2

− would not have been possible due to the
insufficient reduction and oxidation potential of BiOI and g-C3N4. Therefore, the direct Z-
scheme charge transfer mechanism occurred, wherein the photogenerated charges formed
in the CB of g-C3N4 and the VB of BiOI with high reduction and oxidation ability reacted
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with O2 and OH− to generate •O2
− and •OH, respectively, while the photogenerated

charges with low reduction and oxidation ability recombined at the interface [111]. Tian
et al. reported the fabrication of two p-n junction photocatalysts by coupling different facets
of BiOI with g-C3N4 through a simple precipitation method, and studied their feasibility
for the photodegradation of various organic contaminants such as 2,4-dichlorophenol,
bisphenol A, rhodamine B and tetracycline hydrochloride [112]. Typically, the {001} facet
of BiOI was coupled with the {002} facet of g-C3N4 to form a (001)-BiOI/(002)-g-C3N4
photocatalyst through parallel assembly, and (110)-BiOI/(002)+-g-C3N4 was fabricated
by the vertical assembly of the {110} facet of BiOI on the positively charged {002} facet of
g-C3N4. The results indicated that the top-top facets coupled (001)-BiOI/(002)-g-C3N4 pho-
tocatalyst exhibited more than four times enhanced performance in the photodegradation
of bisphenol A and tetracycline hydrochloride in comparison to the laterally assembled
(110)-BiOI-(002)+-g-C3N4.
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As shown in Figure 13a, the fermi energy level of BiOI as a p-type semiconductor
is located close to the VB, while in the case of g-C3N4, it is located close to the CB and
the energy levels of both the semiconductors achieve an equilibrium to form a (001)-
BiOI/(002)-g-C3N4 p-n heterojunction photocatalyst. The formation of the p-n junction
effectively separates the photogenerated electron-hole pairs in both the heterojunction
photocatalysts, but the transfer rate of the photogenerated electrons was found to be
distinctly different in the two heterojunctions. In the case of the (001)-BiOI/(002)-g-C3N4 p-
n heterojunction photocatalyst shown in Figure 13b, the IEF of BiOI along the [1] direction
lying perpendicular to the g-C3N4 nanosheets results in the rapid enrichment of the
electrons on g-C3N4 that benefitted the subsequent reduction reactions for the generation
of 1O2 and •O2

− radical species. On the other hand, in the case of the (110)-BiOI/(002)+-g-
C3N4 p-n heterojunction photocatalyst shown in Figure 13c, the charge transfer direction
was parallel, and due to the long diffusion distance, some of the electrons recombined with
the holes, leading to inefficient charge transfer in the heterojunction.
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Figure 13. (a) Schematic depicting the formation of p-n junction and the proposed charge separation process in a het-
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(110)-BiOI/(002)+-g-C3N4 (positively charged g-C3N4). Reprinted from Ref. [112] with permission from Elsevier.

The development of ternary or multicomponent heterojunction systems was con-
sidered owing to the possibility of enhancing the charge separation and transfer ability
and extending the scope of light absorption as compared to binary systems. For instance,
the AgBr@g-C3N4/BiOBr ternary composite was fabricated through hydrothermal pro-
cessing and an in situ ion-exchange route for dispersing AgBr nanoparticles between the
g-C3N4/BiOBr (2D/2D) heterojunction. Interestingly, BiOBr played a central role between
g-C3N4 and AgBr for providing a high-speed charge transfer channel and isolating the pho-
togenerated charge carriers, resulting in high photocatalytic efficiency for the degradation
of rhodamine B (10 ppm, 94% in 30 min) and tetracycline hydrochloride (10 ppm, 78% in 2
h) [160]. The ternary heterojunction between Bi24O31Cl10, MoS2 and g-C3N4 was synthe-
sized through the impregnation-calcination method. The higher photocatalytic efficiency of
the g-C3N4/MoS2/Bi24O31Cl10 ternary heterojunction photocatalyst in the degradation of
tetracycline hydrochloride (20 ppm, ~97% in 50 min) under visible light was attributed to
its enhanced light absorption capacity, the rapid separation of the photogenerated charges
and the strong redox ability. The mechanism of charge transfer was reported to follow a
dual Z-scheme pathway as depicted in Figure 14, wherein the photogenerated e− with
less reduction ability from the CB of g-C3N4 and MoS2 jump to the VB of Bi24O31Cl10 for
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recombining with the holes, while the e− with strong reduction ability and h+ with strong
oxidation stability are spared. Scavenger studies and electron spin resonance spectroscopy
confirmed the involvement of •O2

− and •OH radical species, which also confirms the
transfer of the photogenerated charge carriers through the dual Z-scheme pathway for
ensuring enhanced photocatalytic efficiency [155].
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Recent reports on nanostructured heterojunctions of g-C3N4/BiOI show their poor
dispersion in water, and they easily aggregate because of their higher surface energy. This
leads to a remarkable reduction in their photocatalytic activity. In contrast, 1D nanofibres
with a high surface area and high aspect ratios have potential in overcoming these problems.
In particular, the 3D macroscopic structure of electrospun polyacrylonitrile nanofibres with
excellent hydrophobicity can minimize agglomeration and improve the separation of the
nanostructured heterojunctions of g-C3N4/BiOI in water for practical applications [150].
The fabrication of sandwich-like BiOI/AgI/g-C3N4 through the in situ crystallization
approach showed good photocatalytic performance in degrading MO and the reduction of
Cr(VI) ions under visible light irradiation. The AgI in the composite served as a charge
transmission bridge between BiOI and g-C3N4 that resulted in more efficient charge transfer
and better separation of charge carriers [152]. Jiang et al. developed a novel ternary
BiOI/g-C3N4/CeO2 photocatalyst through calcination and hydrothermal treatment. This
composite exhibited superior photocatalytic performance, which was far higher than
that of either the single component or two component systems. For this photocatalytic
BiOI/g-C3N4/CeO2 heterojunction system, 91.6% of tetracycline was degraded in 120 min,
owing to the double charge transfer process between the g-C3N4 and the other catalysts
in the ternary heterojunction and the enhanced separation efficiency of photogenerated
electron-hole pairs [153].

5.6. Coupling BiOX and BiOY with g-C3N4

The approach of coupling two semiconductors to form a layered structure with an
interfacial electric field is particularly promising since this enhances the possibility of
satisfying the band alignment requirements for water splitting through the band structure,
and subsequently boosts the separation between the photogenerated electron-hole pairs.
In this context, heterolayers of BiOX1/BiOX2 (with X1 and X2 being different halides) are
plausibly superior in comparison to homogeneous BiOX bilayers owing to the possibility of
heterojunction induced separation of photogenerated electron-hole pairs [241]. For instance,
a ternary heterojunction between BiOI, BiOCl and g-C3N4 with different weight ratios
was fabricated through the precipitation technique, among which BiOI(50)-BiOCl(30)/g-
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C3N4(20) exhibited enhanced photodegradation of acid orange 7 (10 ppm, 97% in 140 min)
under visible light irradiation in comparison to pristine and other binary/ternary hetero-
junction counterparts. Under visible light exposure, the photogenerated e− in the CB of
g-C3N4 with low reduction ability were transferred to the CB of BiOCl and BiOI, while the
h+ with low oxidation ability were transferred from the VB of BiOI to the VB of g-C3N4,
resulting in efficient charge separation and enabling the e− and h+ with higher reduction
and oxidation capabilities to participate in the photodegradation of acid orange 7 [91].
Similarly, a ternary composite of g-C3N4/BiOI/BiOBr synthesized through the hydrother-
mal approach exhibited enhanced performance in the photodegradation of methylene
blue (20 ppm, 80% in 150 min) under visible light irradiation. Matching band positions of
g-C3N4, BiOI and BiOBr allowed the transfer of charge carriers through a direct Z-scheme
that favoured the efficient separation and transfer of the photogenerated charge carriers
for the effective generation of reactive oxygen species [167]. The deposition-precipitation
process was reported for synthesizing 2D g-C3N4@BiOCl/Bi12O17Cl2 composites that were
employed in the removal of nitric oxide with fixed concentration mixed with air stream
under ambient temperature in a continuous flow reactor. The nitric oxide removal efficiency
using the g-C3N4@BiOCl/Bi12O17Cl2 heterojunction photocatalyst (46.8% in 30 min) was
found to be greater than pristine BiOCl/Bi12O17Cl2 (36.2%) and g-C3N4 (14.6%) under
visible light irradiation, and was attributed to the intimate contact interface, suitable band
structure, larger pore volume and improved visible light absorption [165]. Chou et al.
reported the fabrication of various types of BiOxIy/g-C3N4 heterojunction composites
through the hydrothermal method towards the photodegradation of crystal violet. Interest-
ingly, Bi7O9I3/Bi5O7I/g-C3N4 was found to exhibit superior performance in comparison to
BiOI/g-C3N4, Bi7O9I3/g-C3N4 and Bi5O7I/g-C3N4 under visible light irradiation, which
was ascribed primarily to the formation of a synergistic ternary heterojunction that ensured
the separation of photogenerated charge carriers [163].

6. Conclusions and Future Perspectives

Recent years have witnessed significant progress in visible light driven photocataly-
sis aided by the comprehensive understanding of the structure-to-property relationship
of nanostructured materials. Progress on molecularly thin 2D nanosheets has been phe-
nomenal since the discovery of graphene, and studies in the past decade explored their
customizable ultrathin architecture, composition and functionality driven by the excep-
tional physical, chemical, optical and electronic properties arising due to the unique ability
of the nanosheets to confine electrons. Advancement towards 2D/2D heterojunction photo-
catalysts originated as a solution for tackling the rapid recombination of the photogenerated
charge carriers in single component systems. However, many interesting studies pertain-
ing to various 2D nanostructured photocatalysts are being pursued, and herein we have
presented a comprehensive overview on the recent advances in the design, preparation,
and photocatalytic applications of BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts.
The band structure of the individual components, the resulting properties and plausible
outcomes during heterojunction formation were summarized. Then, various methods
for fabricating BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts were thoroughly dis-
cussed, emphasizing the dimensional anisotropy and morphological evolution that led to
enhanced performance. Applications of the BiOX/BixOyXz-g-C3N4 photocatalysts in the
degradation of various organic contaminants, H2 generation, CO2 reduction, N2 fixation
and organic synthesis were summarized. Further, the improvement in the performance
of BiOX/BixOyXz-g-C3N4 due to defects, facets and by the integration of metals, semicon-
ductors and carbon materials is emphasized. The formation of the type-II heterojunction
and Z-scheme bridge complimented with their structural stability is specified at relevant
sections, and several salient studies are featured to stimulate the desire of the researchers
to find a breakthrough.

Several studies were reported on the usage of BiOX/BixOyXz-g-C3N4 heterojunction
photocatalysts for organic contaminant degradation, and some reports were available on the
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photocatalytic reduction of CO2 as summarized in Tables 1 and 2. Despite the encouraging
results on photocatalytic H2 generation, O2 evolution and N2 fixation using BixOyXz
and g-C3N4, it was surprising that no studies were reported to date on BiOX/BixOyXz-g-
C3N4 heterojunction photocatalysts. Therefore, plenty of opportunity exists for designing
efficient heterojunction photocatalysts by strategically coupling engineered BixOyXz and
g-C3N4, as detailed below.

(1) Many recent studies reported the synthesis of defect-rich g-C3N4 for realizing
enhanced activity for H2 generation [242–245]. The introduction of defects in the form of
nitrogen vacancies in g-C3N4 induced the formation of midgap states under the CB that
resulted in the extension of the visible light absorption, and trapped the photogenerated
e− to minimize recombination loss while facilitating its rapid transfer. Forming a hetero-
junction by combining defect-rich g-C3N4 with defect-rich BiOX/BixOyXz can enhance H2
generation.

(2) The inherent drawback of g-C3N4 has been its poor mass diffusion and charge
separation efficiency for achieving enhanced photocatalytic O2 evolution efficiency. Modu-
lating the band structures of g-C3N4 (by protonation or the addition of defects and dopants)
was reported to enhance its efficiency [246], and therefore a heterojunction photocatalyst
constructed between BixOyXz with exposed facets and band structure modulated g-C3N4
could achieve enhanced quantum efficiencies.

(3) Despite the CB of g-C3N4 being more negative than N2/NH3 reduction poten-
tial, its low conductivity and high recombination rate are some of the impediments that
deter its potential for photocatalytic N2 fixation. The concurrent addition of dopants
and defects (carbon/nitrogen vacancies) was reported to improve its photocatalytic N2
fixation efficiency [247,248]. Heterojunction photocatalysts constructed between doped
BiOX/BixOyXz with exposed facets and doped/defect-rich g-C3N4 are expected to exhibit
enhanced photocatalytic N2 fixation efficiency.

(4) Another interesting opportunity is the construction of a heterojunction between an
atomically thin layer of BixOyXz and g-C3N4, which can be very challenging. However,
the unique physical and chemical properties in addition to the easy formation of surface
defects could pave the way towards enhanced quantum efficiencies.
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