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Abstract

In this paper, two novel high order numerical algorithms are proposed for solving

fractional differential equations where the fractional derivative is considered in the Ca-

puto sense. The total domain is discretized into a set of small subdomains and then the

unknown functions are approximated using the piecewise Lagrange interpolation poly-

nomial of degree three and degree four. The detailed error analysis is presented, and it

is analytically proven that the proposed algorithms are of orders 4 and 5. The stabil-

ity of the algorithms is rigorously established and the stability region is also achieved.

Numerical examples are provided to check the theoretical results and illustrate the ef-

ficiency and applicability of the novel algorithms.

Keywords: Fractional differential equation, Caputo fractional derivative, Stability

analysis, Error estimates
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1. Introduction

The subject of fractional calculus (theory of integration and differentiation of ar-

bitrary order) can be considered as an old yet novel topic. It is an ongoing topic for

more than 300 years, however since the 1970s, it has been gaining increasing attention

[1]. Firstly, there were almost no practical applications of fractional calculus (FC),5

∗Corresponding author
Email addresses: mshahbazia@yahoo.com (Mohammad Shahbazi Asl ),

mo_javidi@tabrizu.ac.ir (Mohammad Javidi ), y.yan@chester.ac.uk (Yubin Yan)

Preprint submitted to Elsevier April 16, 2021



and it was considered by many as an abstract area containing only mathematical ma-

nipulations of little or no use [2, 3, 4]. Recently, FC has been widely used in various

applications in almost every field of science, engineering, and mathematics and it have

gained considerable importance due to their frequent appearance applications in fluid

flow, polymer rheology, economics, biophysics, control theory, psychology and so on10

[5, 6, 7].

The main reason that fractional differential equations (FDEs) are being used to

modeling real phenomena is that they are nonlocal in nature, that is, a realistic model of

a physical phenomenon depends not only on the time instant but also the previous time

history [8]. In other words, fractional derivative provides a perfect tool when it is used15

to describe the memory and hereditary properties of various materials and processes

[9, 10]. Some of the other main differences between fractional calculus and classical

calculus are: (1) FDEs are, at least, as stable as their integer order counterpart [11, 12];

(2) Using FDEs can help to reduce the errors arising from the neglected parameters

in modeling real-life phenomena [13, 14]; (3) In some situations, FDEs models seem20

more consistent with the real phenomena than the integer-order models [15, 16]; (4)

Fractional order models are more general [17] and in the limit results obtained from

FC coincide with those obtained from classical calculus [18] and so on.

The wide applicability of FC in the field of science and engineering motivates re-

searchers to try to find out the analytical or numerical solutions for the FDEs. It is well25

known that the analytical and closed solutions of FDEs cannot generally be obtained

and if luckily obtained always contain some infinite series (such as Mittag-Leffler func-

tion) which make evaluation very expensive [19? , 20]. For this reason, necessarily,

one may need an efficient approximate and numerical technique for the solution of

FDEs [21].30

Odibat et al. constructed a numerical scheme for the numerical solution of FDEs

based on the modified trapezoidal rule and the fractional Euler’s method [22]. To ob-

tain a numerical solution scheme for the fractional differential equations, authors of

[23] divided the time interval into a set of small subintervals, and utilized quadratic

interpolation polynomial between two successive intervals to approximate unknown35

functions. Cao and Xu applied quadratic interpolation polynomial to construct a high
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order scheme based on the so-called block-by-block approach, for the fractional ordi-

nary differential equations [24]. The convergence order of this scheme is 3+α for

0 < α ≤ 1, and 4 for α > 1. Diethelm proposed an implicit numerical algorithm for

solving FDEs by using piecewise linear interpolation polynomials to approximated the40

Hadamard finite-part integral [25]. Yan et al. designed a high order numerical scheme

for solving a linear fractional differential equation by approximating the Hadamard

finite-part integral with the quadratic interpolation polynomials [26]. This method is

based on a direct discretisation of the fractional differential operator and the order of

convergence of the method is O(h3−α). A high order fractional Adams-type method45

for solving a nonlinear FDEs is also obtained in this paper. Pal et al. designed an ex-

trapolation algorithm for solving linear FDEs based on the direct discretization of the

fractional differential operator [27].

In this paper, we will introduce two new numerical algorithms for solving the non-

linear FDEs, which are expressed in terms of Caputo type fractional derivatives. In50

these algorithms properties of the Caputo derivative are used to reduce the FDE into a

Volterra type integral equation of the second kind. We then use the Lagrange interpola-

tion polynomials of degree three and four to approximate the integral and the proposed

numerical algorithms has the truncation error O(h4) and O(h5) for all α > 0. The sta-

bility of the numerical method is proved based on the properties of the weights in the55

numerical algorithm under the assumption that the time T > 0 is sufficiently small.

Such properties are used in the first time to prove the stability of the numerical meth-

ods for solving fractional differential equations. To our best knowledge, there is no

numerical algorithm for solving nonlinear fractional differential equation with the con-

vergence order greater than 4 in the literature. We also introduce a new way to analyze60

the stability of the numerical methods for solving fractional differential equations.

The outline of the paper is as follows. Numerical algorithms are presented in Sec-

tion 2 by using the piecewise Lagrange interpolation polynomial of degree three and

degree four. Section 3 deals with the error analysis of the presented algorithms and

stability analysis of these algorithms is given in Section 4. Linear stability analysis of65

the proposed schemes is given in Section 5 to achieve stability region of these meth-

ods. To demonstrate the effectiveness and high accuracy of the proposed methods some
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numerical examples are provided in Section 6. Finally, Some concluding remarks are

given in Section 7.

2. Numerical algorithms70

Consider the nonlinear fractional differential equation, with α > 0,
C
0 Dα

t y(t) = f (t,y(t)), 0≤ t ≤ T,

y(k)(t0) = y(k)0 , k = 0,1, ...,dαe−1
(1)

where C
0 Dα

t denotes the Caputo fractional derivative and f (t,u) satisfies the Lipschitz

condition with respect to the second variable, i.e., there exists a constant L > 0 such

that

| f (t,u1)− f (t,u2)| ≤ L|u1−u2|, ∀u1,u2 ∈ R. (2)

It is well known that the initial value problem (1) is equivalent to the Volterra integral

equation

y(t) = h(t)+
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ,y(τ))dτ, (3)

where h(t) =
dαe−1

∑
j=0

t j

j! y( j)(0), in the sense that a continuous function solves (3) if and

only if it solves (1). The piecewise Lagrange interpolation polynomial of degree three

and degree four are used to approximate the integral in (3). For an integer N and the

given time T , the interval [0,T ] is divided into t j = jh, j = 0, . . . ,N where h = T/N is

the step length. The numerical solution of Eq. (1) at the point t j is denoted by y j. For75

notational convenience, let F(τ) = f (τ,y(τ)) and Fj = f (t j,y j).

2.1. Numerical algorithm I

We start with computing the value of y(t) at t1, t2 and t3, simultaneously. Consider

the following integral for the first three steps (k = 0,1,2)

Ik+1 =
∫ tk+1

0
(tk+1− τ)α−1F(τ)dτ =

k

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1F(τ)dτ

≈
k

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1F̃(τ)dτ =
3

∑
j=0

dk+1
j F(t j) (4)
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where F̃(τ) is chosen to be the piecewise Lagrange cubic interpolation polynomial of

F(τ) associated with the nodes t0, t1, t2 and t3. In this way, we have

d̂1
j =



6α3 +25α2 +23α, j = 0

6(3α2 +10α +6), j = 1

−9α2−21α, j = 2

−2α2−4α, j = 3

, d̂2
j =



2α+1α(α +2)(3α +1), j = 0

3×2α+2
(
3α2 +5α

)
, j = 1

3×2α+1
(
−3α2 +α +6

)
, j = 2

2α+2α2−α j = 3

d̂3
j =



3α+1(2α3 +α2 +3α), j = 0

2×3α+3α2, j = 1

−3α+3(α2−3α), j = 2

2×3α+1(α2−4α +6) j = 3

, dk+1
j =

hα

6α(α +1)(α +2)(α +3)
d̂k+1

j .

(5)

For this reason, after some elementary calculations yk+1 for the first three steps k =

0,1,2 can be approximated as follows:

yk+1 =h(tk+1)+
1

Γ(α)

3

∑
j=0

dk+1
j f (t j,y j), k = 0,1,2. (6)

As it is mentioned above, the first three step solutions y1, y2 and y3 are coupled in (6),

thus need to be solved simultaneously. An explicit solution of these three equations is

given in Appendix A section.80

To construct the scheme for the next steps, Ik+1, k ≥ 3 is descritized as follows

Ik+1 ≈

[
2

∑
j=0

∫ t j+1

t j

F̃(τ)+
k

∑
j=3

∫ t j+1

t j

F̃j+1(τ)

]
(tk+1− τ)α−1dτ =

k+1

∑
j=0

dk+1
j F(t j), (7)

in which like as (4), for the first three integrals ( j = 0,1,2,3), F̃ is the piecewise La-

grange cubic interpolation polynomial of F(τ) associated with the nodes t0, t1, t2 and

t3. For the reminder integrals ( j = 3,4, . . . ,k+ 1), F̃j+1 is chosen to be the piecewise

Lagrange cubic interpolation polynomial of F(τ) associated with the nodes t j−2, t j−1,

t j and t j+1. In this way, for k ≥ 3 we have

d̂k+1
0 =(k+1)α

[
6α

3 +25α
2 +23α +12αk2− k

(
11α

2 +31α +6(k−2)(k−1)
)]

+2P(1)(k−2)α+1,
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d̂k+1
1 =6(k+1)α+1[3k(k−3)−5kα +3α

2 +10α +6
]
+

6
3

P(2)(k−3)α+1

− 24
3

P(1)(k−2)α+1,

d̂k+1
2 =−3(k+1)α+1[6k(k−2)−8kα +3α

2 +7α
]
+2P(3)(k−4)α+1

− 24
3

P(2)(k−3)α+1 +12P(1)(k−2)α+1,

d̂k+1
3 =2(k+1)α+1[

α
2 +2α +3k2−3αk−3k

]
+2P(4)(k−5)α+1−8P(3)(k−4)α+1

+12P(2)(k−3)α+1−8P(1)(k−2)α+1,

d̂k+1
j =2P( j−3)(k− j+2)α+1−8P( j−2)(k− j+1)α+1 +12P( j−1)(k− j)α+1

−8P( j)(k− j−1)α+1 +2P( j+1)(k− j−2)α+1, 4≤ j ≤ k−2,

d̂k+1
k−1 =6d̂k+1

k+1 −2α+4
ϕ +2×3α+1[

α
2 +14α +60

]
, d̂k+1

k = 2α+2
ϕ−4d̂k+1

k+1 ,

d̂k+1
k+1 =2α

2 +16α +36,

in which dk+1
j = hα

6α(α+1)(α+2)(α+3) d̂k+1
j and

ϕ = α
2 +11α +36, P( j) = α(α +2)+3 j2−3 j(α +2k+1)+3k2 +3(α +1)k.

The following special cases should be excluded:d̂4
2 =−3

[
4α+1(3α2−17α +18)−2d̂k+1

k+1

]
,

d̂4
3 = 2

[
4α+1(α2−7α +18)−2d̂k+1

k+1

]
,

(8)

d̂5
3 = 2

[
5α+1(α2−10α +36)−2α+3

ϕ +3d̂k+1
k+1

]
. (9)

For this reason, after some explicit calculations yk+1 for k≥ 3 can be approximated

as follows:

yk+1 =h(tk+1)+
1

Γ(α)

k+1

∑
j=0

dk+1
j f (t j,y j), k ≥ 3. (10)

To summarize, we obtain the following novel scheme:

yk+1 =h(tk+1)+
1

Γ(α)

k+1

∑
j=0

dk+1
j f (t j,y j), k ≥ 1, (11)

where dk+1
j are defined as above.
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2.2. Numerical algorithm II

Consider the following integral for the first four steps (k = 0,1,2,3)

Ik+1 =
∫ tk+1

0
(tk+1− τ)α−1F(τ)dτ =

k

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1F(τ)dτ

=
k

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1F̃(τ)dτ =
4

∑
j=0

bk+1
j F(t j) (12)

where F̃(τ) is the piecewise Lagrange interpolation polynomial of degree four asso-

ciated with the nodes t0, t1, t2, , t3 and t4. Therefore, one can achieve the following

weights

b̂1
0 = α

[
12α3 +95α2 +230α +165

]
,

b̂1
1 = 4

[
12α3 +82α2 +157α +72

]
,

b̂1
2 =−6α

[
6α2 +35α +47

]
,

b̂1
3 = 4α

[
4α2 +22α +27

]
,

b̂1
4 =−α

[
3α2 +16α +19

]
,



b̂2
0 = 2α+1α

[
6α3 +35α2 +55α +20

]
,

b̂2
1 = 2α+5α

[
3α2 +14α +14

]
,

b̂2
2 = 3×2α+3(α +1)(α +3)(4−3α),

b̂2
3 = 2α+5α

[
α2 +2α−2

]
,

b̂2
4 = 2α+1α

[
−3α2−5α +4

]
,

b̂3
0 = 3α+1α

[
4α3 +15α2 +20α +15

]
,

b̂3
1 = 4×3α+2α

[
4α2 +10α +3

]
,

b̂3
2 = 2×3α+3α

[
−2α2 +α +9

]
,

b̂3
3 = 4×3α+1

[
4α3−6α2−α +24

]
,

b̂3
4 =−3α+2α

[
α2−2α +3

]
,



b̂4
0 = 4α+1α2

[
3α2 +5α +20

]
,

b̂4
1 = 4α+3α

[
3α2 +α +4

]
,

b̂4
2 = 3×4α+2α

[
−3α2 +11α−4

]
,

b̂4
3 = 4α+3α

[
α2−5α +12

]
,

b̂4
4 =−4α+1(α−2)(3α2−11α +36),

(13)

here bk+1
j = hα

12α(α+1)(α+2)(α+3)(α+4) b̂k+1
j . Hence yk+1 for the first four steps k=0,1,2,3

can be determined as follows:

yk+1 =h(tk+1)+
1

Γ(α)

4

∑
j=0

bk+1
j f (t j,y j), 0≤ k ≤ 3. (14)

It is obvious that, the first four step solutions y1, y2, y3 and y4 are coupled in (14), thus

need to be solved simultaneously. An explicit solution of these four equations is given

in Appendix B section.85
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To design the schema for the next steps, Ik+1, k ≥ 4 is descritized as follows

Ik+1 =

[
3

∑
j=0

∫ t j+1

t j

F̃(τ)+
k

∑
j=4

∫ t j+1

t j

F̃j+1(τ)

]
(tk+1− τ)α−1dτ =

k+1

∑
j=0

bk+1
j F(t j), (15)

in which like as (12), for the first four integrals ( j = 0,1,2,3), F̃ is the piecewise

Lagrange interpolation polynomial of degree four associated with the nodes t0, t1, t2, ,

t3 and t4. For the reminder integrals ( j = 4,5, . . . ,k+1), F̃j+1 is the piecewise Lagrange

interpolation polynomial of degree four associated with the nodes t j−3, t j−2, t j−1, t j and

t j+1. In this way, for k ≥ 4 we have the following weights

b̃k+1
0 =(k+1)α

[
12α

4 +5α
2 (7k2−31k+46

)
−5α(k−3)

(
6k2−13k+11

)
+5α

3(19−5k)+12k(k−3)(k−2)(k−1)
]
−P(2)(k−3)α+1,

b̃k+1
1 =−4(k+1)α+1[h2(−2)−15(α +4)

(
α

2 +4α +3k2−αk+3k+6
)]

−P(3)(k−4)α+1 +5P(2)(k−3)α+1,

b̃k+1
2 =6(k+1)α+1[h2(−2)− (α +4)

(
9α

2 +37α +42k2−8αk+60k+72
)]

−P(4)(k−5)α+1 +5P(3)(k−4)α+1−10P(2)(k−3)α+1,

b̃k+1
3 =−4(k+1)α+1[h2(−2)− (α +4)

(
7α

2 +32α +39k2−3αk+69k+72
)]

−P(5)(k−6)α+1 +5P(4)(k−5)α+1−10P(3)(k−4)α+1 +10P(2)(k−3)α+1,

b̃k+1
4 =(k+1)α+1[h2(−2)−6(α +4)

(
α

2 +5α +6k2 +12k+12
)]
−P(6)(k−7)α+1

+5P(5)(k−6)α+1−10P(4)(k−5)α+1 +10P(3)(k−4)α+1−5P(2)(k−3)α+1,

b̃k+1
j =−P( j+2)(− j+ k−3)α+1 +P( j−3)(− j+ k+2)α+1−5P( j−2)(− j+ k+1)α+1

+10P( j−1)(k− j)α+1 +5P( j+1)(− j+ k−2)α+1−10P( j)(− j+ k−1)α+1,

5≤ j ≤ k−3,

b̃k+1
k−2 = 2α+2 [5ψ2 +2α

(
3α

3 +71α
2 +674α +2520

)]
−5×3α+2

ψ1−10b̃k+1
k+1,
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b̃k+1
k−1 = 10

[
b̃k+1

k+1−2α
ψ2
]
+3α+2

ψ1, b̃k+1
k = 2α+1

ψ2−5b̃k+1
k+1,

b̃k+1
k+1 = 3α

3 +38α
2 +173α +288,

where bk+1
j = hα

12α(α+1)(α+2)(α+3)(α+4) b̃k+1
j and

P( j) =3α
3 +α

(
18 j2−36 jk−41 j+18k2 +41k+19

)
+α

2(−11 j+11k+16)

−12( j− k−2)( j− k−1)( j− k),

ψ1 = α
3 +20α

2 +157α +480, ψ2 = 3α
3 +49α

2 +304α +720.

The following special cases should be excluded:
b̂5

2 =−10
[
3×5α

(
6α3−41α2 +91α−96

)
+ b̃k+1

k+1

]
,

b̂5
3 = 10

[
5α
(
8α3−68α2 +278α−288

)
+ b̃k+1

k+1

]
,

b̂5
4 =−5

[
5α
(
3α3−28α2 +143α−288

)
+ b̃k+1

k+1

]
,

(16)

b̂6
3 = 10(2α+1ψ2− b̃k+1

k+1)+2α+53α+1
(
α3−12α2 +68α−120

)
,

b̂6
4 = 10

(
−2α ψ2 + b̃k+1

k+1

)
−2α+13α+2

(
α3−13α2 +88α−240

)
,

(17)

b̂7
4 =7α+1 (−3α

3 +50α
2−421α +1440

)
−5×3α+2

ψ1 +5×2α+2
ψ2−10b̃k+1

k+1.

(18)

Therefore yk+1 for k ≥ 4 can be approximated as follows:

yk+1 =h(tk+1)+
1

Γ(α)

k+1

∑
j=0

bk+1
j f (t j,y j), k ≥ 4. (19)

Thus a new numerical algorithm II is described by (14) and (19) with the weights bk+1
j

defined as above.

3. Error analysis

For the numerical algorithm I the truncation error at the step k + 1 is defined by

[24]

rk+1(h) := y(tk+1)− ỹk+1 (20)
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where ỹk+1 is an approximation to y(tk+1), evaluated by using the algorithm I (11) with

exact previous solutions, i.e. for k ≥ 3,

ỹk+1 = h(tk+1)+
1

Γ(α)

k+1

∑
j=0

dk+1
j F(t j). (21)

For the numerical algorithm II (19), the definition of truncation error is the same as

(20), where ỹk+1 for k ≥ 4 is as follows:

ỹk+1 = h(tk+1)+
1

Γ(α)

k+1

∑
j=0

bk+1
j F(t j) (22)

Theorem 1. Let rk+1(h) be the truncation error defined in (20). If F(τ) ∈C4[0,T ] for

some suitable chosen T , then for the numerical algorithm I (11) there exist a positive

constant C > 0, independent of h, such that

|rk+1(h)| ≤Ch4

Proof. We have, by Eqs. (3), (7) and (21),

|rk+1(h)|= |y(tk+1)− ỹk+1|=
∣∣∣∣h(tk+1)+

1
Γ(α)

∫ tk+1

0
(tk+1− τ)α−1F(τ)dτ

−h(tk+1)−
1

Γ(α)

k+1

∑
j=0

bk+1
j F(t j)

∣∣∣∣≤ 1
Γ(α)

∣∣∣∣∣ 2

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1F(τ)dτ

+
k

∑
j=3

∫ t j+1

t j

(tk+1− τ)α−1F(τ)dτ−
2

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1F̃(τ)dτ

−
k

∑
j=3

∫ t j+1

t j

(tk+1− τ)α−1F̃j+1(τ)dτ

∣∣∣∣∣
≤ 1

Γ(α)

[
2

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1 ∣∣F(τ)− F̃(τ)
∣∣dτ

+
k

∑
j=3

∫ t j+1

t j

(tk+1− τ)α−1 ∣∣F(τ)− F̃j+1(τ)
∣∣dτ

]
,

10



where F̃(τ) and F̃j+1 are defined by (7). Thus we have

|rk+1(h)| ≤
1

Γ(α)

[
2

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1

∣∣∣∣∣F(4)(ξ1(τ))

4!
(τ− t0)(τ− t1)(τ− t2)

(τ− t3)

∣∣∣∣∣dτ +
k

∑
j=3

∫ t j+1

t j

(tk+1− τ)α−1

∣∣∣∣∣F(4)(ξ j(τ))

4!
(τ− t j−2)(τ− t j−1)

(τ− t j)(τ− t j+1)

∣∣∣∣∣dτ

]
,

where ξ1(τ) ∈ [t0, t3] and ξ j(τ) ∈ [t j−2, t j+1].

|rk+1(h)| ≤
1

Γ(α)

[
2

∑
j=0

‖F(4)‖∞

4!

∣∣(τ̃ j− t0)(τ̃ j− t1)(τ̃ j− t2)(τ̃ j− t3)
∣∣∫ t j+1

t j

(tk+1− τ)α−1dτ

+
k

∑
j=3

‖F(4)‖∞

4!

∣∣(τ̃ j− t j−2)(τ̃ j− t j−1)(τ̃ j− t j)(τ̃ j− t j+1)
∣∣

∫ t j+1

t j

(tk+1− τ)α−1dτ

]
,

here τ̃ j ∈ [t j, t j+1] and the second integral mean value theorem is used.

|rk+1(h)| ≤
1

Γ(α)

[
‖F(4)‖∞

4!
(3h)4

2

∑
j=0

1
α

[
(tk+1− t j)

α − (tk+1− t j+1)
α
]

+
‖F(4)‖∞

4!
(3h)4

k

∑
j=3

1
α

[
(tk+1− t j)

α − (tk+1− t j+1)
α
]]

=
33‖F(4)‖∞

8Γ(α +1)
h4(tk+1− t0)α =

(
33‖F(4)‖∞T α

8Γ(α +1)

)
h4.

Theorem 2. Let rk+1(h) be the truncation error defined in (20). If F(τ) ∈C5[0,T ] for

some suitable chosen T , then for the numerical algorithm II (14) and (19) there exists

a positive constant C > 0, independent of h, such that

|rk+1(h)| ≤Ch5

Proof. The details of the proof is similar to that of Theorem 1 so are neglected. We

11



have, by Eqs. (3), (15) and (21),

|rk+1(h)|= |y(tk+1)− ỹk+1|=
∣∣∣∣h(tk+1)+

1
Γ(α)

∫ tk+1

0
(tk+1− τ)α−1F(τ)dτ

−h(tk+1)−
1

Γ(α)

k+1

∑
j=0

Pk+1
j F(t j)

∣∣∣∣
≤ 1

Γ(α)

[
3

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1 ∣∣F(τ)− F̃(τ)
∣∣dτ

+
k

∑
j=4

∫ t j+1

t j

(tk+1− τ)α−1 ∣∣F(τ)− F̃j+1(τ)
∣∣dτ

]
,

where F̃(τ) and F̃j+1 are defined by (15).

|rk+1(h)| ≤
1

Γ(α)

[
3

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1

∣∣∣∣∣F(5)(ξ1(τ))

5!
(τ− t0)(τ− t1)(τ− t2)

(τ− t3)(τ− t4)

∣∣∣∣∣dτ +
k

∑
j=4

∫ t j+1

t j

(tk+1− τ)α−1

∣∣∣∣∣F(5)(ξ j(τ))

5!
(τ− t j−3)

(τ− t j−2)(τ− t j−1)(τ− t j)(τ− t j+1)

∣∣∣∣∣dτ

]
,

where ξ1(τ) ∈ [t0, t4] and ξ j(τ) ∈ [t j−3, t j+1].

|rk+1(h)| ≤
1

Γ(α)

[
3

∑
j=0

‖F(5)‖∞

5!

∣∣(τ̃ j− t0)(τ̃ j− t1)(τ̃ j− t2)(τ̃ j− t3)(τ̃ j− t4)
∣∣∫ t j+1

t j

(tk+1− τ)α−1dτ

+
k

∑
j=4

‖F(5)‖∞

5!

∣∣(τ̃ j− t j−3)(τ̃ j− t j−2)(τ̃ j− t j−1)(τ̃ j− t j)(τ̃ j− t j+1)
∣∣

∫ t j+1

t j

(tk+1− τ)α−1dτ

]
,

in which τ̃ j ∈ [t j, t j+1].

|rk+1(h)| ≤
1

Γ(α)

[
‖F(5)‖∞

5!
(4h)5

3

∑
j=0

1
α

[
(tk+1− t j)

α − (tk+1− t j+1)
α
]

+
‖F(5)‖∞

5!
(4h)5

k

∑
j=4

1
α

[
(tk+1− t j)

α − (tk+1− t j+1)
α
]]

=
45‖F(5)‖∞

5!Γ(α +1)
h5(tk+1− t0)α =

(
45‖F(5)‖∞

5!Γ(α +1)

)
h5.

90
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4. Stability analysis

The stability of a numerical scheme mainly refers to that if there is a perturbation in

the initial condition, then the small change cause small errors in the numerical solution

[28, 29]. Suppose that yk+1 and ỹk+1 are numerical solutions in (11), and the initial

conditions are given by y(i)0 and ỹ(i)0 respectively. If there exists a positive constant C

independent of h, such that

|yk+1− ỹk+1| ≤Cα,T ‖y0− ỹ0‖∞
, (23)

then it concluded that the scheme (11) is stable [30]. It is similar to define the nu-

merical stability for the numerical algorithm II (14) and (19). Assume that F(τ) is

sufficiently smooth and Cα > 0 is independent of all discretization parameters. Firstly,

we introduce two lemmas which will be used in stability analysis.95

Lemma 1. For the weights of the novel scheme (11) we have

k+1

∑
j=0

∣∣∣dk+1
j

∣∣∣≤Cα T α , (24)

where Cα only depends on α .

Proof. For dk+1
0 , we have

∣∣∣dk+1
0

∣∣∣=∣∣∣∣ 2

∑
j=0

∫ t j+1

t j

(tk+1− τ)α−1 τ− t1
t0− t1

τ− t2
t0− t2

τ− t3
t0− t3

dτ

∣∣∣∣
≤

2

∑
j=0

∫ t j+1

t j

∣∣(tk+1− τ)α−1∣∣ ∣∣∣∣ τ− t1
t0− t1

τ− t2
t0− t2

τ− t3
t0− t3

∣∣∣∣dτ

≤
2

∑
j=0

∣∣∣∣ τ̃ j− t1
t0− t1

τ̃ j− t2
t0− t2

τ̃ j− t3
t0− t3

∣∣∣∣∫ t j+1

t j

(tk+1− τ)α−1dτ, τ̃ j ∈ [t j, t j +1]

∣∣∣dk+1
0

∣∣∣≤ 1
6h3 |(ξ1h−h)(ξ1h−2h)(ξ1h−3h)| 1

α
[(tk+1)

α − (tk+1− t1)α ]

+
1

6h3 |(ξ2h−h)(ξ2h−2h)(ξ2h−3h)| 1
α
[(tk+1− t1)α − (tk+1− t2)α ]

+
1

6h3 |(ξ3h−h)(ξ3h−2h)(ξ3h−3h)| 1
α
[(tk+1− t2)α − (tk+1− t3)α ] ,

13



where j−1≤ ξ j ≤ j, j = 1,2,3. Therefore we have∣∣∣dk+1
0

∣∣∣≤ 1
6h3

1
α

tα
k+1
(
6h3 +2h3 +2h3)≤ 5

3α
T α .

Using similar analysis it can be shown that for j = 1,2,3,k−1,k,k+1 there exist Cα ,

which is dissimilar values at each cases, such that the following inequality is holds.∣∣∣dk+1
j

∣∣∣≤Cα T α , j = 1,2,3,k−1,k,k+1. (25)

For j = 4,5, . . . ,k−2 we have

k−2

∑
j=4

∣∣∣dk+1
j

∣∣∣≤ k−2

∑
j=4

[∫ t j

t j−1

∣∣(tk+1− τ)α−1∣∣ ∣∣∣∣ τ− t j−3

t j− t j−3

τ− t j−2

t j− t j−2

τ− t j−1

t j− t j−1

∣∣∣∣dτ

+
∫ t j+1

t j

∣∣(tk+1− τ)α−1∣∣ ∣∣∣∣ τ− t j−2

t j− t j−2

τ− t j−1

t j− t j−1

τ− t j+1

t j− t j+1

∣∣∣∣dτ

+
∫ t j+2

t j+1

∣∣(tk+1− τ)α−1∣∣ ∣∣∣∣ τ− t j−1

t j− t j−1

τ− t j+1

t j− t j+1

τ− t j+2

t j− t j+2

∣∣∣∣dτ

+
∫ t j+3

t j+2

∣∣(tk+1− τ)α−1∣∣ ∣∣∣∣ τ− t j+1

t j− t j+1

τ− t j+2

t j− t j+2

τ− t j+3

t j− t j+3

∣∣∣∣dτ

]
,

k−2

∑
j=4

∣∣∣dk+1
j

∣∣∣≤ k−2

∑
j=4

[∣∣∣∣ τ̃1− t j−3

3h
τ̃1− t j−2

2h
τ̃1− t j−1

h

∣∣∣∣∫ t j

t j−1

(tk+1− τ)α−1dτ

+

∣∣∣∣ τ̃2− t j−2

2h
τ̃2− t j−1

h
τ̃2− t j+1

−h

∣∣∣∣∫ t j+1

t j

(tk+1− τ)α−1dτ

+

∣∣∣∣ τ̃3− t j−1

h
τ̃3− t j+1

−h
τ̃3− t j+2

−2h

∣∣∣∣∫ t j+2

t j+1

(tk+1− τ)α−1dτ

+

∣∣∣∣ τ̃4− t j+1

−h
τ̃4− t j+2

−2h
τ̃4− t j+3

−3h

∣∣∣∣∫ t j+3

t j+2

(tk+1− τ)α−1dτ

]
,

where τ̃1 ∈ [t j−1, t j], τ̃2 ∈ [t j, t j+1], τ̃3 ∈ [t j+1, t j+2], and τ̃4 ∈ [t j+2, t j+3]. Hence, above

equation has the simplify form,

k−2

∑
j=4

∣∣∣dk+1
j

∣∣∣≤ ∣∣∣∣6h3

6h3

∣∣∣∣ 1
α

k−2

∑
j=4

[
(tk+1− t j−1)

α − (tk+1− t j)
α
]
+

k−2

∑
j=4

[
(tk+1− t j)

α − (tk+1− t j+1)
α
]

+
k−2

∑
j=4

[
(tk+1− t j+1)

α − (tk+1− t j+2)
α
]
+

k−2

∑
j=4

[
(tk+1− t j+2)

α − (tk+1− t j+3)
α
]

=
1
α

[
[(tk+1− t3)α − (tk+1− tk−2)

α ]+ [(tk+1− t4)α − (tk+1− tk−1)
α ]

+ [(tk+1− t5)α − (tk+1− tk)α ]+ (tk+1− t6)α

]
,

14



k−2

∑
j=4

∣∣∣dk+1
j

∣∣∣≤ 1
α
(tk+1− t3)α +(tk+1− t4)α +(tk+1− t5)α +(tk+1− t6)α − [tα

3 + tα
2 + tα

1 ]

≤ 4
α

tα
k+1

Combining all above results, by choosing sufficiently large Cα , and also sufficiently

small T one can get (24) to complete the proof of the Lemma.

Lemma 2. For the weights of the novel scheme (19) we have

k+1

∑
j=0

∣∣∣dk+1
j

∣∣∣≤Cα T α , (26)

where Cα only depends on α .

Proof. The idea of the proof is similar to that of Lemma 1, so is omitted.100

Theorem 3. Assume that y j ( j = 1,2, . . . ,k) are the solutions of the scheme (11). Then

for sufficiently small T > 0, the scheme (11) is stable.

Proof. Suppose that yk+1 and ỹk+1 are numerical solutions in (11), and the initial con-

ditions are given by y(i)0 and ỹ(i)0 respectively. We shall use mathematical induction.

Assume that ∣∣y j− ỹ j
∣∣≤Cα,T ‖y0− ỹ0‖∞

, (27)

is true for ( j = 0,1, . . . ,k). We must prove that this also holds for j = k+1. Note that,

by assumptions of the given initial conditions, the induction basis ( j = 0) is true. We

have, using the Lipschitz condition assumption (2),

|yk+1− ỹk+1| ≤
dαe−1

∑
i=0

t i
k+1

i!
|y(i)0 − ỹ(i)0 |+

1
Γ(α)

( k

∑
j=0
|dk+1

j |
∣∣ f (t j,y j)− f (t j, ỹ j)

∣∣
+ |dk+1

k+1 | | f (tk+1,yk+1)− f (tk+1, ỹk+1)|
)

≤C1‖y0− ỹ0‖∞ +L
|µ|

Γ(α)

( k

∑
j=0
|dk+1

j |
∣∣y j− ỹ j

∣∣+ |dk+1
k+1 | |yk+1− ỹk+1|

)
.

By Lemma 1 one can get

|yk+1− ỹk+1| ≤C1‖y0− ỹ0‖∞ +L
|µ|

Γ(α)

(
C1,α T α max

0≤ j≤k

∣∣y j− ỹ j
∣∣+C2,α T α |yk+1− ỹk+1|

)
,
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which implies that

|yk+1− ỹk+1| ≤
1

1− (|µ|C2,α T α)/Γ(α)

(
C1‖y0− ỹ0‖∞ +

|µ|
Γ(α)

C1,α T α max
0≤ j≤k

∣∣y j− ỹ j
∣∣).

Now for sufficiently small T , one can complete the proof by using the mathematical

induction (27) and by choosing constant Cα,T sufficiently large.

Theorem 4. Assume that y j ( j = 1,2, . . . ,k) are the solutions of the algorithm II (14)105

and (19). Then, for sufficiently small T > 0, the algorithm II is stable.

Proof. The proof is similar to the proof of Theorem 3.

5. Linear stability analysis

Consider the following test problem to investigate stability region of the presented

methods:

C
0 Dα

t y(t) = λy(t), y(t0) =y0, 0 < α < 1. (28)

The new method (11) gives the following iteration formula for solving (28):

yk+1 = y0 +
1

Γ(α)

k+1

∑
i=0

hα

12α(α +1)(α +2)(α +3)(α +4)
b̃k+1

j λy j (29)

Denoting z = λhα , we get

z = 12Γ(α +5)
yk+1− y0
k+1
∑

i=0
b̃k+1

j y j

. (30)

Let y j = ξ j, then by assuming ξ = eiθ with 0≤ θ ≤ 2π we get the following stability

region for the scheme (11)

S =

z : z = 12Γ(α +5)
ξ k+1−ξ 0

k+1
∑
j=0

d̃k+1
k+1− jξ

j

 . (31)

The stability region of the algorithm II (14) and (19) can be achieved in a quite similar

way. The stability region of the numerical algorithm I is obtained in Figs. (1) and (2)110

by choosing k=2000 and of the numerical algorithm II are shown in Figs. (3) and (4)

by choosing k=500. The stability region in Figs. (1) and (3) are inside of the boundary

and it is outside of the boundary in Figs. (2) and (4).
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6. Numerical results

To check the numerical errors between the exact and the numerical solution, nu-115

merical experiments are carried out in this section. The presented examples have exact

solutions and also have been solved by other numerical methods from literature. This

allows one to compare the numerical results obtained by the presented schemes with

the analytical solutions or those obtained by other methods.

Example 1. Consider the following fractional differential equation

C
0 Dα

t y(t) = µy(t)+g(t), y(0) = 0, y′(0) = 0. (32)

where

µ =−1, g(t) =
Γ(5)

Γ(5−α)
t4−α + t4.

The exact solution is y(t) = t4. At the time t = 1 for different step sizes h and different120

α , the approximate solutions for the given equation are obtained by using presented

algorithms and the method reported in Ref. [31]. The absolute error of presented

algorithms and of the method reported in Ref. [31] are shown in Tables 1–3. These

Tables show that the proposed novel schemes are valid methods in solving fractional

differential equation.125

Example 2. Consider the differential equation of fractional order

C
0 Dα

t y(t) =
2

Γ(3−α)
t2−α − 1

Γ(2−α)
t1−α − y(t)+ t2− t, y(0) = 0. (33)

The exact solution to this initial value problem is y(t) = t2− t. The absolute errors

of schemes given in Diethelm et el. [32], Deng and Li [31], Li et al. [30] and the

presented new schemes are shown in Tables (4)–(6) and they are compared for different

values of h and α at the time t = 1. For brevity, we use E1 to denote improved algorithm

I and E2 denotes improved algorithm II of [30]. Tables 4–6 show that the absolute130

errors of the new presented methods are improved significantly in compared with the

literature.
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Example 3. Consider the following fractional differential equation

C
0 Dα

t y(t) =
24

Γ(5−α)
t4−α − 3

Γ(4−α)
t3−α − 1

2
t3− y(t)+ t4, y(0) = 0. (34)

The exact solution is y(t) = t4− 1
2 t3. Table 7 shows the absolute errors of the presented

schemes and the method reported in Ref. [27] at the time t = 1. From this Table it is

observed that the error of presented method is decreased significantly.135

7. Conclusion

This paper provides two high order numerical schemes with theoretically proved

convergence order of 4 and 5 for solving FDEs. The properties of the Caputo deriva-

tive are used to reduce the FDEs into a Volterra integral equation. After dividing total

domain into a set of grid points, the piecewise Lagrange interpolation polynomial of140

degree three and degree four are utilized to approximate unknown functions. The sta-

bility and error estimate of the methods are investigated. Moreover, graphical illustra-

tions for stability region of the schemes are derived. The obtained solutions with the

presented schemes demonstrate that the schemes give a more accurate approximation

and superior than the numerical results obtained using other schemes. In the future,145

we shall try to follow this idea to construct higher order schemes for solving nonlinear

FDEs.

Appendix A

The idea of solving y1, y2 and y3 form (6) is as follows. For simplicity, we assume

that f (t,y) = µy+ g(t) for understanding the idea of the numerical method. We have

the following linear system of equations, from (6),

y1 =
1
γ1

[
h(t1)+

1
Γ(α)

3

∑
j=0
j 6=1

d1
j (µy j +g(t j))+

1
Γ(α)

d1
1g(t1)

]
,

y2 =
1
γ2

[
h(t2)+

1
Γ(α)

3

∑
j=0
j 6=2

d2
j (µy j +g(t j))+

1
Γ(α)

d2
2g(t2)

]
,

y3 =
1
γ3

[
h(t3)+

1
Γ(α)

2

∑
j=0

d3
j (µy j +g(t j))+

1
Γ(α)

d3
3g(t3)

]
,

(35)

(36)

(37)
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in which γ j = 1− µdk+1
k+1

Γ(α) , ( j = 1,2,3). Putting Eq. (35) into Eq. (36) yields

y2 =
1

H2
1

[
1
γ2

[
Y 2

01h(t1)+h(t2)
]
+

1
H2

2

[
Y 2

0 F(0)+Y 2
1 g(t1)+Y 2

2 g(t2)+Y 2
3 (µy3 +g(t3))

]]
,

(38)

in which

H2
1 = 1− µBd1

2

H2
2

, H2
2 =Cγ2 Γ(α), B = µd2

1 , C = γ1Γ(α), Y 2
01 =

B
C
,

Y 2
0 = Bd1

0 +Cd2
0 , Y 2

1 = Bd1
1 +Cd2

1 , Y 2
2 = Bd1

2 +Cd2
2 , Y 2

3 = Bd1
3 +Cd2

3

Substituting (35) and (38) to (37) leads to

y3 =
1

H3
1

[
1
γ3

(
Y 3

01

CH3
2

h(t1)+
D3

H3
2

h(t2)+h(t3)
)
+

1
H3

3

[
Y 3

0 F(0)+Y 3
1 g(t1)+Y 3

2 g(t2)

+Y 3
3 g(t3)

]]
, (39)

in which

D1 = H2
1 H2

2 , D2 = µd3
1 , D3 = µ

(
D2d1

2 +d3
2C
)
, H3

1 = 1−
µ
(
D1D2d1

3 +µD3Y 2
3
)

H3
3

,

H3
2 =CH2

1 γ2Γ(α), H3
3 = Γ(α)D1γ3C, Y 3

01 = Γ(α)H2
1 γ2CD2 +D3B,

Y 3
0 = D1

(
D2d1

0 +Cd3
0
)
+D3Y 2

0 , Y 3
1 = D1

(
D2d1

1 +Cd3
1
)
+D3Y 2

1 ,

Y 3
2 = (D1 +µY 2

2 )(D3/µ), Y 3
3 = D1

(
D2d1

3 +Cd3
3
)
+D3Y 2

3 ,

Now, firstly one can calculate y3 from given initial conditions and known function g(t).

Then y2 and y1 can be calculated by (38) and (35), respectively.150
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Appendix B

We have the following linear system of equations, from (14),

y1 =
1
γ1

[
h(t1)+

1
Γ(α)

4

∑
j=0
j 6=1

b1
j (Ay j +g(t j))+

1
Γ(α)

b1
1g(t1)

]
,

y2 =
1
γ2

[
h(t2)+

1
Γ(α)

4

∑
j=0
j 6=2

b2
j (Ay j +g(t j))+

1
Γ(α)

b2
2g(t2)

]
,

y3 =
1
γ3

[
h(t3)+

1
Γ(α)

4

∑
j=0
j 6=3

b3
j (Ay j +g(t j))+

1
Γ(α)

b3
3g(t3)

]
,

y4 =
1
γ4

[
h(t4)+

1
Γ(α)

3

∑
j=0

b4
j (Ay j +g(t j))+

1
Γ(α)

b4
4g(t4)

]
,

(40)

(41)

(42)

(43)

in which γ j = 1− µdk+1
k+1

Γ(α) , ( j = 1,2,3,4). Putting Eq. (43) into Eq. (42) gives

y3 =
1

H3
1

[
1
γ3

(
h(t3)+Y 3

01h(t4)
)
+

1
H3

2

[
Y 3

0 F(0)+Y 3
1 (µy1 +g(t1))+Y 3

2 (µy2 +g(t2))

+Y 3
3 g(t3)+Y 3

4 g(t4)
]]
, (44)

in which

H3
1 = 1−

µB3b4
3

H3
2

, H2
2 =Cγ3 Γ(α), B3 = µb3

4, C = γ4 Γ(α), Y 3
01 =

B3

C
,

Y 3
0 = B3b4

0 +Cb3
0, Y 3

1 = B3b4
1 +Cb3

1, Y 3
2 = B3b4

2 +Cb3
2, Y 3

3 = B3b4
3 +Cb3

3,

Y 3
4 = B3b4

4 +Cb3
4

Inserting (43) and (44) into (41) gives

y2 =
1

H2
1

[
1
γ2

(
h(t2)+

D2

H2
2

h(t3)+
Y 2

01

H2
2

h(t4)
)
+

1
H2

3

[
Y 2

0 F(0)+Y 2
1 (µy1 +g(t1))+Y 2

2 g(t2)

+Y 2
3 g(t3)+Y 2

4 g(t4)
]]
, (45)

in which

D1 = H3
1 H3

2 , D2 = µ
(
Cb2

3 +B2b4
3
)
, B2 = µb2

4, H2
2 =CH3

1 γ3Γ(α),

H2
1 = 1−

µ
(
D1B2b4

2 +µD2Y 3
2
)

H2
3

, H2
3 = Γ(α)CD1γ2, Y 2

01 = Γ(α)B2H3
1 γ3 +D2Y 3

01,

20



Y 2
0 = D1

(
B2b4

0 +Cb2
0
)
+D2Y 3

0 , Y 2
1 = D1

(
B2b4

1 +Cb2
1
)
+D2Y 3

1 ,

Y 2
2 = D1

(
B2b4

2 +Cb2
2
)
+D2Y 3

2 , Y 2
3 =

D2

µ
(D1 +µY 3

3 ), Y 2
4 = D1

(
B2b4

4 +Cb2
4
)
+D2Y 3

4 .

Finally we have, by substituting (43), (44) and (45) into (40)

y1 =
1

H1
1

[
h(t1)

γ1
+

1
H1

2

(
Y 1

01h(t2)+Y 1
11h(t3)+Y 1

21h(t4)
)
+

1
H1

3

[
Y 1

0 F(0)+Y 1
1 g(t1)+Y 1

2 g(t2)

+Y 1
3 g(t3)+Y 1

4 g(t4)
]]
, (46)

in which

B1 = µb1
4, E1 = µ

(
E7b4

2 +µb4
3Y 3

2
)
, E2 = E7b1

2 +µb1
3Y 3

2 , E3 = E5
b4

3

b1
3
,

E4 = E6
H2

3 H3
1

H2
2

, E5 = µH2
1 H2

3 b1
3, E6 = H2

1 H2
2 H3

2 , E7 = H3
1 H3

2 , E8 = H2
1 H2

3 ,

H1
1 =

µ

H1
3

[
B1E4b4

1 +µE8Y 3
1
(
Cb1

3 +B1b4
3
)
+Y 2

1
(
µCE2 +B1E1

)]
H1

2 = H1
3

γ2γ3H2
2

H2
3

, H1
3 = Γ(α)CE7E8γ1,

Y 1
01 = γ3H2

2
(
µCE2 +B1E1

)
, Y 1

11 = µ
[
E6γ2

(
Cb1

3 +B1b4
3
)
+D3γ3

(
CE2 +E1b1

4
)]
,

Y 1
21 =E6γ2

[
Γ(α)B1

γ3H3
1 +µY 3

01
(
Cb1

3 +B1b4
3
)]

+µγ3Y 2
01
[
E7
(
Cb1

2 +B1b4
2
)

+µY 3
2
(
Cb1

3 +B1b4
3
)]
, Y 1

2 =
(
E8 +µY 2

2
)(

E2C+E1b1
4
)

Y 1
0 =C

(
E4b1

0 +E5Y 3
0 +µE2Y 2

0
)
+B1 (E4b4

0 +E3Y 3
0 +E1Y 2

0
)
,

Y 1
1 =C

(
E4b1

1 +E5Y 3
1 +µE2Y 2

1
)
+B1 (E4b4

1 +E3Y 3
1 +E1Y 2

1
)
,

Y 1
3 =C

(
E4b1

3 +E5Y 3
3 +µE2Y 2

3
)
+B1 (E4b4

3 +E3Y 3
3 +E1Y 2

3
)
,

Y 1
4 =C

(
E4b1

4 +E5Y 3
4 +µE2Y 2

4
)
+B1 (E4b4

4 +E3Y 3
4 +E1Y 2

4
)
,

Now, firstly from (46) one can calculate y1 by given initial conditions and known func-

tion g(t). Then y2, y3 and y4 can be calculated by (45), (44) and (43), respectively.
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Figure 1: Stability region of the numerical algorithm I.
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Figure 2: Stability region of the numerical algorithm I.

Table 1: The absolute errors of the presented algorithm I (EI ), algorithm II (EII ) and numerical method of

[31] for (32).

α = 0.1 α = 0.5

h EII EI [31] EII EI [31]

1/10 1.3548e-07 1.38e-05 3.64e-01 1.2028e-06 2.42e-05 3.55e-02

1/20 4.7060e-09 9.46e-07 1.70e-01 4.4641e-08 1.57e-06 8.79e-03

1/40 1.9210e-10 6.35e-08 7.13e-02 1.7177e-09 1.00e-07 2.16e-03

1/80 3.3420e-11 4.18e-09 2.88e-02 6.6297e-11 6.37e-09 5.31e-04
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Figure 3: Stability region of the numerical algorithm II.
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Table 2: The absolute errors of the presented algorithm I (EI ), algorithm II (EII ) and numerical method of

[31] for (32).

α = 0.9 α = 1.25

h EII EI [31] EII EI [31]

1/10 5.5858e-07 7.95e-06 1.07e-02 3.8819e-07 2.97e-05 8.48e-03

1/20 2.7279e-08 5.70e-07 2.31e-03 3.8522e-08 2.56e-06 2.03e-03

1/40 1.3292e-09 3.96e-08 5.21e-04 2.2108e-09 2.10e-07 5.00e-04

1/80 6.0469e-11 2.70e-09 1.22e-04 1.3614e-10 1.67e-08 1.24e-04

Table 3: The absolute errors of the presented algorithm I (EI ), algorithm II (EII ) and numerical method of

[31] for (32).

α = 1.5 α = 1.85

h EII EI [31] EII EI [31]

1/10 5.4931e-06 6.86e-05 8.58e-03 1.6634e-05 6.80e-05 9.04e-03

1/20 3.5763e-07 6.93e-06 2.12e-03 1.5899e-06 8.64e-06 2.25e-03

1/40 2.9070e-08 6.60e-07 5.28e-04 1.6571e-07 1.04e-06 5.63e-04

1/80 2.5398e-09 6.11e-08 1.32e-04 1.7950e-08 1.21e-07 1.41e-04

Table 4: Absolute errors of the present presented algorithm I (EI ), algorithm II (EII ) and the numerical

methods of Deng and Li [31] and Diethelm et el. [32], with α = 0.1 for (33).

h EII EI [31] [32]

1/10 3.4944e-06 8.19e-06 0.104 0.103

1/20 9.9500e-07 1.90e-06 4.66e-02 4.95e-02

1/40 2.6402e-07 4.73e-07 1.87e-02 2.09e-02

1/80 6.9544e-08 1.21e-07 7.39e-03 8.65e-03
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Table 5: Absolute errors of the presented algorithm I (EI ), algorithm II (EII ) and numerical methods of

Diethelm et el. [32] and Li et al. [30] with α = 0.3 for (33).

h EII EI [32] [30]
E1

[30]

E2

[30]
1/10 6.0368e-05 1.19e-04 3.14e-02 2.25e-02 2.1e-03 1.61e-02

1/20 1.9179e-05 3.23e-05 1.10e-02 1.24e-02 4.53e-04 5.9e-03

1/40 5.7565e-06 9.26e-06 3.91e-03 6.1e-03 8.61e-05 2.1e-03

1/80 1.7261e-06 2.72e-06 1.42e-03 2.9e-03 1.19e-05 7.52e-04

Table 6: Absolute errors of the presented algorithm I (EI ), algorithm II (EII ) and numerical methods of Deng

and Li [31], Diethelm et el. [32] and Li et al. [30]. with α = 0.5 for (33).

h EII EI [31] [32] [30]
E1

[30]

E2

[30]
1/10 3.6057e-04 6.08e-04 9.27e-03 1.44e-02 4.1e-03 1.8e-03 3.6e-03

1/20 1.2875e-04 1.96e-04 2.29e-03 4.52e-03 3.1e-03 7.2e-04 1.1e-03

1/40 4.4935e-05 6.60e-05 5.87e-04 1.46e-03 1.8e-03 2.8e-04 3.4e-04

1/80 1.5699e-05 2.27e-05 1.56e-04 4.81e-04 1.0e-03 1.0e-04 1.07e-04

Table 7: Absolute errors of the present presented algorithm I (EI ), algorithm II (EII ) and the numerical

methods of [27], with α = 0.3 for (34).

h EII EI [27]

1/10 8.8773e-07 2.6193e-05 1.4571e-04

1/20 3.0045e-08 1.7205e-06 2.3118e-05

1/40 1.0533e-09 1.1167e-07 3.6127e-06

1/80 1.2938e-10 7.2496e-09 5.6030e-07
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