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ABSTRACT

Gene expression profiling has been extensively used
in the past decades, resulting in an enormous amount
of expression data available in public databases.
These data sets are informative in elucidating tran-
scriptional regulation of genes underlying various
biological and clinical conditions. However, it is
usually difficult to identify transcription factors (TFs)
responsible for gene expression changes directly
from their own expression, as TF activity is often
regulated at the posttranscriptional level. In recent
years, technical advances have made it possible to
systematically determine the target genes of TFs by
ChIP-seq experiments. To identify the regulatory
programs underlying gene expression profiles, we
constructed a database of phenotype-specific regu-
latory programs (DPRP, http://syslab.nchu.edu.tw/
DPRP/) derived from the integrative analysis of TF
binding data and gene expression data. DPRP
provides three methods: the Fisher’s Exact Test, the
Kolmogorov–Smirnov test and the BASE algorithm to
facilitate the application of gene expression data for
generating new hypotheses on transcriptional regu-
latory programs in biological and clinical studies.

INTRODUCTION

In the past decade, gene expression profiling by micro-
array and more recently by RNA-seq experiments has

been extensively used to study transcriptional regulation,
resulting in a plethora of expression data available in
public databases such as the Gene Expression Omnibus
(1). These data sets are informative in elucidating tran-
scriptional regulation under various biological and
clinical conditions. For example, a comparison of gene
expression between breast cancer and normal breast
tissues identifies differentially expressed genes (DEGs)
that are presumably critical for carcinogenesis.
Such gene expression alterations in response to condi-
tional changes are programmed by a set of transcription
factors (TFs). Unfortunately, TF activity is often
regulated by phosphorylation/dephosphorylation and
other posttranscriptional mechanisms and can be
modified by mutation. Thus, it is usually difficult to
identify TFs responsible for gene expression changes
solely based on the expression of TFs (2–4).

In principle, the activity of TFs can be reflected by the
expression changes of their target genes: on TF activation,
the expression of a TF’s target genes are more likely to be
upregulated in the case of a transcriptional activator, and
downregulated in the case of a transcriptional repressor;
the opposite would be expected if a TF is deactivated. For
example, we cannot consistently detect the expression
change of the malfunctional p53 with a point mutation
that abolishes the tumor suppressor’s transcriptional regu-
latory activity in tumor samples. However, the p53 gene
targets are more likely to be differentially expressed in the
tumor sample with respect to a normal sample. Based on
this rationale, several methods have been proposed to
infer the regulatory activity of TFs based on the expres-
sion change of their target genes (5–7). These methods
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have achieved substantial success in yeast because the
target genes for most yeast TFs have been determined
by ChIP-chip experiments (8). Regardless, the application
of these methods in human is limited by incomplete know-
ledge of TF–gene interactions. In fact, to systematically
identify human TF–gene interactions, previous studies
have attempted to predict TF targets based on the
existing TF binding motifs in DNA regions upstream of
genes, albeit with a high false-positive rate (5,9).

In recent years, technical advances have made it
possible to systematically determine the target genes of
TFs by ChIP-chip and ChIP-seq experiments (10,11). In
fact, a large number of ChIP-chip and ChIP-seq data have
been generated by large-scale projects or individual
laboratories. For instance, the ENCODE consortium
(Encyclopedia of DNA Elements) has generated 424
ChIP-seq profiles, including >120 human TFs with
various cell lines (12). Additionally, enormous amounts
of gene expression data have accumulated over the past
decade from studies addressing biological and clinical
questions. The increasing availability of ChIP-seq data
sets provides us with an unprecedented opportunity to
reanalyze these gene expression data to further understand
and dissect the regulatory networks underlying these ex-
pression profiles. In previous reports, the ChEA databases
collected large-scale ChIP-seq data and provided the inte-
grative analysis of both ChIP-seq and gene expression
data (13); the ChIP-array web server can integrate ChIP-
seq data and gene expression profiles to construct regula-
tory networks (14). Both databases only support Fisher’s
Exact test but database of phenotype-specific regulatory
program (DPRP) provided three algorithms, suggesting
better functionality and flexibility.

In this study, we established a second-level database,
named the Database of Phenotype-specific Regulatory
Programs, to facilitate the search and application of
gene expression data for generating new hypotheses on
transcriptional regulatory programs under diverse biolo-
gical and clinical contexts. In the database, we have col-
lected 984 gene expression data sets, which include 29 744
samples. Each data set has several phenotype-specific
subsets, and each subset is a group of samples. To study
DEGs between two subsets, we defined the subset pair as
two subsets within a data set. In the database, we have
collected 984 gene expression data sets, which include
29 744 samples and 3754 subset pairs. It contains a wide
range of phenotypes such as disease, drug treatment and
tissue type. Meanwhile, we have defined a collection TF–
gene regulatory relationships containing 424 TF binding
profiles derived from the ENCODE ChIP-seq data. We
applied three different methods, the Fisher’s exact test,
the Kolmogorov–Smirnov test (KS test) and the Binding
Association with Sorted Expression (BASE) algorithm we
previously developed (7), to integrate gene expression
profiles and the TF–gene interaction data to infer regula-
tory networks underlying each expression data set. DPRP
provides a user-friendly interface for generating testable
hypotheses on transcriptional regulation underlying a
wide range of biological and clinical phenomena. DPRP
is freely available at http://syslab.nchu.edu.tw/DPRP/.

MATERIALS AND METHODS

Database construction

Gene expression data
We collected 984 gene expression data sets, which include
29 744 samples. These data sets were originally generated
to explore differential gene expressions under various con-
ditions or treatments, e.g. gene expression changes during
development; differential gene expression between differ-
ent subtypes of breast cancer. Thus, each data set has
several phenotype-specific subsets and each subset has a
group of samples. To identify DEGs for each data set, we
selected the subsets with at least three samples, and then
performed t-test between each pair of subsets without
overlapping samples. We obtained the DEGs (significantly
upregulated or downregulated genes) for 3754 subset pairs
representing a wide range of biological contexts
(Supplementary Table S1).

Phenotype annotation of gene expression data
To systematically annotate gene expression data and
address synonymous issues, we used the Unified Medical
Language System (UMLS) technology that provides a
comprehensive catalog of medical concepts (15). The
UMLS includes Metathesaurus, semantic network and
lexical resources. To concentrate on human disease
study, we limited the UMLS concepts to three disease-
related semantic types: ‘Pathologic Function’, ‘Injury or
Poisoning’ and ‘Anatomical Abnormality’. To obtain the
UMLS concepts for each data set, we used the UMLS
natural language processing tool, MetaMap program
(15), to process the summary description and the
Medical Subject Headings of the PubMed record of the
data set. It resulted in 4162 data set-concept relations
including 757 distinct UMLS concepts (Supplementary
Table S2). The phenotype annotation facilitates users to
search specific biological or clinical concepts in enormous
gene expression data.

ChIP-seq data
We downloaded 424 ChIP-seq track files from the
ENCODE project (16), which represent the binding
profiles of >120 human TFs in different cell lines. Based
on ChIP-seq data, we applied a method called Target iden-
tification from profiles (TIP) algorithm (17) to calculate the
binding affinity of each TF with all human RefSeq genes
(18), resulting in a matrix containing binding affinities for
all TF–gene pairs. TIP is a probabilistic model for the iden-
tification of TF target genes. Moreover, TIP calculated the
P value and the Q value for each TF–gene pair, allowing us
to define the target gene set for each TF profile (a TF under
a specific cell line).

Inference of phenotype-specific regulatory programs

We applied three different methods to integrate gene
expression data with TF binding data to infer the regula-
tory programs underlying expression profiles. Given a
subset pair (e.g. estrogen treated versus untreated MCF7
cell lines), we inferred the regulatory programs responsible
for the DEGs. We connected the significant TFs based on
ChIP-seq data to construct a regulatory network, in which
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the TF!TF interactions were identified by the TIP algo-
rithm (P< 0.01) and indicated that one regulates the tran-
scription of the other. A brief description of these methods
is as follows:

Fisher’s exact test
Given a subset pair, we select the upregulated and the
downregulated DEGs with P< 0.01. In case that the
number of DEGs with P< 0.01 is <500, we instead
select the top 500 significant genes to ensure enough
genes are included for stable results in subsequent statis-
tical analyses. To estimate the significance of differential
TF activity, we performed Fisher’s exact tests to examine
the overlap between the up-/downregulated gene set and
TF target genes. This method requires two cutoff values:
one is used to define the up- and the downregulated genes,
and the other is used to define the TF target genes. A more
detailed description of applying Fisher’s exact test for TF
activity inference can be found in previous studies (5,19).

KS test
Given a subset pair, we calculated the t-scores for all genes
by comparing their expression levels between the two
subsets. For each TF we performed KS test to compare
the distributions of the t-scores between target genes and
nontarget genes. To define the target gene set of a TF, we
set the cutoff value as P< 0.01. If the number of target
genes with P< 0.01 is <500, we select the top 500 signifi-
cant target genes for the regulatory program analysis.
For each TF, the KS test resulted in a P value, indicating
the significance of its activity change, and a D value,
indicating the direction of its activity change. A positive
D value indicates that target genes of a TF have signifi-
cantly higher expression levels than nontarget genes, and a
negative D-value indicates the reverse. A similar KS test-
based method has been proposed by Tsai et al. (6) to
identify cell cycle–related TFs in yeast.

BASE algorithm
The cutoff values for defining TF target genes and DEGs
are usually arbitrary and hard to determine in advance.
Comparing with the Fisher’s exact test and the KS-test,
BASE is a nonparametric algorithm that requires no
cutoff setting for TF target genes or DEGs (20). First, we
calculated the t-scores for all genes by comparing their ex-
pression levels between a pair of subsets, and sorted them in
the decreasing order to obtain a ranked gene list. Each gene
in the list is associated with a ti, the t-score for this gene,
and a bi, the binding affinity of a TF to this gene calculated
by TIP algorithm (17). Then we calculated a cumulative
distribution function by aggregating ti � bij j and a reference
function by aggregating tij j. Finally, we calculated the
maximum deviation between the functions and applied a
permutation-based method to normalize the score and to
estimate its significance. The normalized score is called
regulatory activity score (RAS), which indicates the direc-
tion of the activity change of a TF. For a transcriptional
activator, a positive/negative RAS indicates enhanced/
reduced activity of the TF, while for a transcriptional re-
pressor, the reverse is true. A more detailed description
about BASE can be found in (20).

WEB INTERFACES

We integrated gene expression data sets, phenotype infor-
mation and ChIP-seq data sets to construct the DPRP
database with a user-friendly web interface (Figure 1).
Users can search a disease concept to discover all related
gene expression data sets, choose the interested data set
and then select a subset pair within the data set for TF
regulatory program analysis. For example, a user can type
in ‘Breast Carcinoma’ as a keyword to obtain a list of data
sets related to breast cancer. To facilitate user-friendly text
search, we adopted the jQuery AutoComplete technique
to guide the user for keyword selection (http://jqueryui.
com/autocomplete/). When a specific data set is selected,
the database will list a number of subset pairs (e.g. breast
cancer versus normal) for investigating regulatory activity
of TFs.

Given a subset pair, DPRP will generate a list of TFs
with significant activity changes. To visualize the TF regu-
latory program, the web server draws a regulatory TF
network consisting of all significant TFs, in which the
TF!TF interaction indicates that one regulates the tran-
scription of the other, which is identified by the TIP algo-
rithm (P< 0.01) from ChIP-seq data. The ChIP-seq data
support TF-gene regulations in different cell lines. Users
can select a specific cell line to display a cell line–specific
network or use all cell lines to display an integrated
network. Some cell lines only have a few ChIP-seq experi-
ments, which is not sufficient for TF network construc-
tion. Thus, the web interface only allows users to select cell
lines with at least 12 ChIP-seq experiments. Moreover,
users can upload their own gene expression data onto
the database, and then DPRP will perform Fisher’s
Exact test, KS test and BASE algorithm in the data.

EXAMPLE APPLICATIONS

To demonstrate the biological importance of DPRP,
we used GDS3283 and GDS3044 as examples to show
the cell-specific regulatory TF networks (Figure 2).
GDS3283 is a gene expression data set with estradiol treat-
ment using MCF7 breast epithelial cancer cells (21). The
BASE algorithm identifies 74 TFs with significantly differ-
ential activity (Q< 0.001), in which the most significant
TF is estrogen receptor alpha (ESR1) based on ChIP-seq
experiments carried out in T47D cells (Figure 2A).
Obviously, this result is consistent with our knowledge
that the estradiol treatment significantly induces the
activity of ESR1 in breast cancer cells. Interestingly,
when the expression levels of ESR1 are compared
between estradiol treatment and control samples, we
cannot detect significant expression change of ESR1 in
GDS3283. Thus, the BASE algorithm identified the key
regulator that cannot be discovered by differential expres-
sion analysis.

Since the GDS3283 is a breast cancer data set, we
selected the ChIP-seq experiments from breast cancer
cell lines (T47D and MCF7 cells) to generate the regula-
tory TF network with Q< 0.001 (Figure 2B), which con-
tained five significant TFs: ESR1, GATA3, FOXA1,
MYC and E2F1. In this regulatory network, ESR1,
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FOXA1 and GATA3 formed a tight regulatory module.
These results are consistent with the finding by Kong et al.
(22) that FOXA1 and GATA3 are essential co-regulators
in estrogen response pathway and that ESR1, FOXA1
and GATA3 formed an enhanceosome in breast cancer
cells. Activation of MYC and E2F1 may indicate that

estrogen treatment can promote cell proliferation of
MCF7 cells.
DPRP also provides insights into drug mechanisms.

GDS3044 is a gene expression data set in K562 (the
leukemia cell line) cells treated with imatinib. Figure 2C
shows that the imatinib treatment significantly increases

Figure 1. An overview of the DPRP web interface. (A) Users can perform a query by the following procedures: (i) Users can input a disease name in
the auto-completed keyword field, which provides a list of partially matched UMLS concepts for selection. Alternatively, users can also input a data
set ID in the keyword field to select a specific data set. (ii) After UMLS concept selection, the data sets associated with the selected concept will be
shown in a data set list, from which the user can select the data set of interest. (iii) Given a specific data set, the subset pairs from the selected data
set will be displayed in a subset list, and then the user can select the subset pair to search TF regulatory programs. DPRP provides three different
methods to rank the potential TFs, in which users can determine which ranking guidelines to use. In addition, users can upload their own gene
expression data with gene list and t-value of t-test or log ratios between two subsets. (B) The database integrated gene expression data and ChIP-seq
TF binding data to identify the regulatory programs underlying a selected phenotype pair. (C) The output web pages: DPRP generates a list of the
TFs and ranks them by their P values or Q values. In TF table view, users can export the table of candidate TFs as a text file. Based on the ranked
TF list, DPRP generates a regulatory network consisting of all significant TFs, in which users can export the TF network as a png, svg or xml file.
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the activity of three TFs: GATA1, GATA2 and TAL1
in K562 cells. It is known that imatinib inhibits the
kinase activity of BCR-ABL protein, which is the
pathophysiologic cause of chronic myelogenous
leukemia. Previous studies have shown that BCR-ABL
suppresses the GATA1 activity, and thus explains why
we observed an increased activity of GATA1 in response
to imatinib treatment (16,23). In addition, TAL1, the
T-cell acute lymphocytic leukemia protein 1, is specifically
expressed in early erythroid cells and interacts with
GATA1 (24), which also supports our result.

DISCUSSION

In this study, we applied three different methods to infer
the regulatory programs underlying given gene expression
profiles. To apply the Fisher’s exact test, DEGs have to be
defined based on the gene expression data. At the same
significance level, the numbers of DEGs vary substantially
in different gene expression data sets, depending on the
quality of the data and the sample size. As a consequence,
we expect variability in statistical power and robustness of
Fisher’s exact test. Similarly, the effectiveness of this

Figure 2. Example applications. (A) The complete regulatory TF network associated with estradiol treatment in MCF7 cells from the GDS3283 data
set. The network contains 74 significant TFs identified from ChIP-seq data in all cell lines, in which the most significant TF is ESR1. This is the
regulatory network output by the BASE method with Q< 0.001, when users select the GDS3283 data set and subset pair ‘estradiol treatment versus
control’. (B) The regulatory TF network specific for T47D+MCF7 cell lines. In the network, only the significant TFs with ChIP-seq data from T47D
and MCF7 are displayed. (C) The regulatory TF network associated with imatinib treatment in K562 cells from the GDS3044 data set. This is the
output by the BASE method (Q< 0.001), when users select the GDS3044 data set with subset pair ‘imatinib treatment versus control’, and then select
the K562-specific TF network. The network contains 43 significant TFs, in which the most significant TF is TAL1.
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method is also influenced by the number of TF target
genes. TFs with more target genes are more likely to be
identified as significant TFs. The KS-test does not require
the up-/downregulated gene sets, but it still requires the
predefined TF target genes. The BASE method requires
neither a differential gene set nor a target gene set, and
thus is more convenient in practice and does not have the
bias issue. However, it estimates the significance of the TF
RAS using the permutation of gene expression profiles
(shuffle all genes in the profile), which often overestimates
their significance. Because none of these methods is
perfect, we provide the results from all three methods in
the DPRP database. This allows users to determine the
stringency level and make decisions according to their
own requirements, e.g. selecting the significant TFs
identified by all methods to obtain a TF list of high
confidence.

Currently, we have included the ChIP-seq data
generated by the ENCODE project in our database.
There are many ChIP-seq and ChIP-chip data sets that
have been generated by other large-scale projects or by in-
dividual laboratories that will be included in the database.
Moreover, we anticipate that an increasing number of TF
ChIP-seq data will be generated in the near future. We will
maintain our database with routine updates to ensure that
we maintain a comprehensive list of TFs. We believe
DPRP will be a useful database and resource for biolo-
gical and clinical studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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