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Abstract 16 

Peroxiredoxins (Prxs) play important roles in antioxidant defense and redox signaling pathways. A 17 

novel Prx isozyme cDNA (TcPrx2, 745 bp, EF552425) was cloned from Taiwanofungus camphorata 18 

and its recombinant protein was overexpressed. The purified protein was shown to exist 19 

predominantly as a dimer by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrolysis) in 20 

the absence of a reducing agent. The protein in its dimeric form showed no detectable Prx activity. 21 

However, the protein showed increased Prx activity with increasing DTT (dithiothreitol) 22 

concentration which correlates with dissociation of the dimer into monomer. The TcPrx2 contains 23 

two Cys residues. The Cys60 located in the conserved active site is the putative active peroxidatic Cys. 24 

The role of Cys31 was investigated by site-directed mutagenesis. The C31S mutant (C31→S31) exists 25 

predominately as a monomer with noticeable Prx activity. The Prx activity of the mutant was higher 26 

than that of the corresponding amount of the wild-type protein nearly 2 fold at 12 µg/mL. The 27 

substrate preference of the mutant was H2O2 > cumene peroxide > t-butyl peroxide. The Michaelis 28 

constant (KM) value for H2O2 of the mutant was 0.11 mM. The mutant enzyme’s half-life of 29 

deactivation at 48 C was 5 min, and its thermal inactivation rate constant Kd was 0.14 min-1. The 30 

mutant enzyme was active under a broad pH range from 6 to 10. The results suggest a role of Cys31 31 

in dimerization of the TcPrx2, a role which, at least in part, may be involved in determining the 32 

activity of Prx. The C31 residue does not function as a resolving Cys and therefore the TcPrx2 must 33 

follow the reaction mechanism of 1-Cys Prxs. This TcPrx2 represents a new, novel isoform of Prx 34 
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family. 35 

 Keywords Taiwanofungus camphorata．Peroxiredoxin．Peroxide．Three-dimension (3-D) structural 36 
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Introduction 39 

Peroxiredoxins (Prxs) are a family of thiol-dependent peroxidases found in all known organisms [1]. 40 

The enzymes play important roles in antioxidant defense systems and cellular redox signaling 41 

pathways [2-4]. Prxs perform the protective antioxidant roles by reducing hydrogen peroxide and 42 

alkyl hydroperoxides to water and alcohol, respectively using thiols as reductants [5]. Prxs use the 43 

conserved redox active peroxidatic cysteine (CP) to reduce peroxide substrates [6]. During peroxidase 44 

reaction, the CP residue in the active site is first oxidized to sulfenic acid (CP-SOH), and then the 45 

substrate hydrogen peroxide or alkyl hydroperoxides are reduced to water or the corresponding 46 

alcohol in resolving stage [7, 8]. Finally thiols reductants such as thioredoxin, glutaredoxin, 47 

glutathione, cyclophilins or ascorbate play as electron donors to regenerate the active form of Prxs 48 

[8]. Prxs are classified into six groups, A to F, based on sequence and structural homology as well as 49 

location of the conserved Cys residues [8]. Among them, the E-type Prx is found in bacteria and 50 

F-type in archaea, while A to D types are common in higher plants. The A-type Prx corresponds to 51 

typical 2-Cys peroxiredoxin (2-Cys Prx), contains a second conserved resolving Cys (CR) residue at 52 

the C-terminal portion of the molecule. The B-type Prx corresponds to typical 1-Cys peroxiredoxin 53 

(1-Cys Prx) [9]. The C-type Prx corresponds to peroxiredoxin Q (PrxQ), and the D-type Prx to type 54 

II peroxiredoxin (PrxII), both are also termed atypical 2-Cys Prx [8, 10]. In typical 2-Cys Prxs, the 55 

CP-SOH reacts with the CR-SH residue located in the C-terminal portion of the second subunit of the 56 

enzyme homodimer to form an intermolecular disulfide [11]. In atypical 2-Cys Prxs, the CP-SOH 57 

reacts with the CR-SH residue within the same subunit forming intramolecular disulfide. The 58 

disulfide is then reduced by thioredoxin or glutathione [12] completing the catalytic cycle. 59 

Taiwanofungus camphorata is a medicinal mushroom found only in the forests of Taiwan which 60 

has traditionally been used in the treatment of liver cancer, drug intoxication, among others [13]. T. 61 

camphorata was named Antrodia cinnamomea in 1995 [14] and renamed as Antrodia camphorata in 62 



 5

1997 [15]. A phylogenetic analysis based on sequence data of ribosomal RNA genes of large 63 

ribosomal subunit indicated that T. camphorata is distantly related to other species in Antrodia. The 64 

fungus was subsequently classified in the new genus Taiwanofungus [16]. T. camphorata has been 65 

shown to exhibit anticancer properties, anti-inflammatory effects, anti-hepatitis B virus replication, 66 

anti-oxidant activities, hepatoprotective activity, neuroprotective effect, and antihypertensive effect 67 

[17, 18]. Majority of the research that aim at finding bioactive compounds in T. camphorata have 68 

been focused on the extracts of fruit body [19]. It is strongly believed that regular consumption of T. 69 

camphorata in the form of extract or mushroom powder will preserve human vitality and promote 70 

longevity. The rarity of T. camphorata fruit body has limited its use in scientific research, health food 71 

and medical applications. One approach to overcome such limitation is to use recombinant DNA 72 

technology. Recently, we established ESTs (expressed sequence tags) from the fruiting bodies of T. 73 

camphorata in order to search physiologically active components, including antioxidant enzymes. 74 

We have cloned and characterized several antioxidant enzymes including a 1-Cys peroxiredoxin [20], 75 

a 2-Cys peroxiredoxin [21], a superoxide dismutase [22], a catalase [23], a phospholipid 76 

hydroperoxide glutathione peroxidase [24], and a 2-Cys peroxiredoxin isozyme [25] based on the 77 

established ESTs from T. camphorata. This motivated us further to search more active components 78 

from T. camphorata for potential health food and medical applications.  79 

   Here, we report the cloning of a novel peroxiredoxin isozyme from T. camphorata, named 80 

TcPrx2. The TcPrx2 contains two Cys residues, one is a putative conserved peroxidatic Cys60, 81 

whereas the other Cys31 locates closer to the N-terminal end unlike most known CR-SH residue 82 

locates in the C-terminal portion of a 2-Cys peroxiredoxin. This nonperoxidatic Cys31 is conserved 83 

only in yeast and fungal Prxs [26]. In order to understand the role of Cys31, we constructed a C31S 84 

mutant. Both the coding regions of the TcPrx2 cDNA and C31S mutant were introduced into an E. 85 

coli C41(DE3) expression system. The enzymes were purified and characterized. The Prx activity of 86 

the C31S is capable of reducing hydrogen peroxide and alkyl hydroperoxides suggesting a potential 87 
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application of the enzyme in food industry as a food antioxidant [27, 28]. 88 

 89 

Materials and methods 90 

Materials  91 

Fruiting bodies of T. camphorata grew in the hay of Cinnamomum kanehirai were obtained from 92 

Asian company, Taiwan (http://www.asian-bio.com/).  93 

Identification of TcPrx2 cDNA  94 

We have established an expressed sequence tag database from fruiting bodies of T. camphorata and 95 

sequenced all clones with insert size greater than 0.4 kb (data not shown). A Prx2 cDNA clone was 96 

identified by comparing the inferred amino acid sequence with homologous sequences in the 97 

nonredundant database (NRDB) at the National Center for Biotechnology Information, National 98 

Institutes of Health (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequence analysis revealed that the Prx2 99 

cDNA covered an open reading frame of a putative peroxiredoxin isozyme (TcPrx2, 745 bp, EMBL 100 

no. EF552425).  101 

Bioinformatics analysis of TcPrx2  102 

Several homologous protein sequences retrieved by the BLASTP program were aligned using 103 

ClustalW2 program. The secondary structure of the TcPrx2 protein was predicted by 104 

SWISS-MODEL program and represented as α helices and β strands. A 3-D structural model of 105 

TcPrx2 was created by SWISS-MODEL [29] (http://swissmodel.expasy.org/SWISS-MODEL.html) 106 

based on the known crystal structure and solution nuclear magnetic resonance (NMR) of PtPrx 107 

(Populus tremula x Populus tremuloides, PDB code 1tp9) [30]. The model superimposed with this 108 
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PtPrx via the SPDBV_4 program was shown by using protein solid ribbons.  109 

Subcloning of TcPrx2 cDNA into an expression vector  110 

The coding region of the TcPrx2 cDNA was amplified using gene specific flanking primers. The 5’ 111 

upstream primer contains EcoRI recognition site (5’ GAATTCG ATG GCC CCT TCC ATC AAA 3’) 112 

and the 3’ downstream primer contains XhoI recognition site (5’ CTCGAG GAG GTG AGC CAA 113 

AAC GGC 3’). The restriction enzyme sites were indicated as underline. Using 0.2 g of TcPrx2 114 

cDNA as a template, and 10 pmole of each 5’ upstream and 3’ downstream primers, a 0.5 kb 115 

fragment was amplified by PCR. The fragment was ligated into pCR®4-TOPO® (Invitrogen, Grand 116 

Island, NY) and transformed into E. coli. The recombinant plasmid was isolated and digested with 117 

EcoRI and XhoI. The digestion products were separated on a 1% agarose gel. The 0.5 kb insert DNA 118 

was gel purified and subcloned into EcoRI and XhoI site of pET-20b(+) expression vector (Novagen, 119 

Darmstadt, Germany). The recombinant DNA was then transformed into E. coli C41(DE3). The 120 

recombinant protein was overexpressed in E. coli and its function identified by activity assay as 121 

described below.  122 

Site-directed mutagenesis (C31→S31)  123 

The recombinant TcPrx2 DNA prepared above was used as a template for site-directed mutagenesis 124 

using the QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). The C31S mutant 125 

was created by replacing the TGT codon with TCT. The sequence of the mutant DNA was verified by 126 

nucleotide sequencing.  127 

Expression and purification of the recombinant wild-type TcPrx2 and its C31S mutant  128 

The transformed E. coli C41(DE3) containing the recombinant TcPrx2 DNA or its C31S mutant was 129 
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grown at 37 C in 20 mL of Luria-Bertani containing 50 μg/mL ampicillin until A600 reached 0.8. 130 

Protein expression was induced by the addition of isopropyl β-D-thiogalactopyranoside to a final 131 

concentration of 1 mM. The culture was incubated at 80 rpm for an additional 16 h at 37 C. The 132 

cells were harvested and soluble proteins were extracted in phosphate buffered saline (PBS, 137 mM 133 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4) with glass beads as described before [31]. 134 

Both recombinant proteins were purified by Ni-NTA affinity chromatography (elution buffer: 30% 135 

PBS containing 100 mM imidazole) according to the manufacture’s instruction (Qiagen). The 136 

purified proteins were checked by a 10% SDS-PAGE. Each purified protein was dialyzed against 200 137 

mL of 30% PBS containing 2% glycerol and 1 mM DTT for 4 h at 4 C (3 changes). The dialyzed 138 

sample was either used directly for analysis or stored at –65 C until use. Protein concentration was 139 

determined by a Bio-Rad Protein Assay Kit (Richmond, CA) using bovine serum albumin as a 140 

reference standard. 141 

Molecular mass analysis via Electrospray Ionization Quadrupole-Time-of-Flight (ESI Q-TOF)  142 

The purified TcPrx2 (0.5 mg/mL) was prepared in 0.3% PBS containing 0.05 mM imidazole and 143 

0.05% glycerol. The sample (5 μL) was used for molecular mass determination using an ESI Q-TOF 144 

mass spectrometer (Micromass, Manchester, England). 145 

Prx activity assay  146 

The recombinant TcPrx2 or its C31S mutant (1.0 μg) was incubated in 47-48 µL buffer (30% 147 

PBS/2% glycerol/1 mM DTT) for 10 min at room temperature. The reaction was initiated by addition 148 

of 2-3 µL of 1 mM H 2O2 (or t-butyl peroxide, or cumene peroxide). At the reaction intervals, 20 µL 149 

of 26% trichloroacetic acid was added to the 50 µL reaction mixture to stop the reaction. The 150 
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peroxidase activity was determined by following the disappearance of the peroxide substrate (the 151 

total peroxide, 2-3 nmol at the beginning of the reaction minus the remaining amount at the end of 10 152 

min). The remaining peroxide content was determined as a red-colored ferrithiocyanate complex 153 

formed by addition 20 µL of 10 mM Fe(II)(NH4)(SO4)2 and 10 µL of 2.5 M KSCN to the 70 µL of 154 

reaction mixture. The color intensity was quantified by absorbance measurement at 475 nm [32]. 155 

Enzyme characterization  156 

The C31S mutant enzyme was characterized under various conditions as described below. Aliquots 157 

of the C31S mutant samples (5 µL, 0.2 µg/µL, 10 µM) were treated as follows: (1) Buffer effect. 158 

Enzyme activity was tested after C31S mutant was purified and dialyzed against 30% PBS, pH 7, 159 

containing 2% glycerol or 10 mM Tris-HCl, pH 7, containing 5 mM NaCl and 2% glycerol. (2) pH 160 

effect. Each 5 µL sample (0.2 µg/µL, 10 µM) was adjusted to desired pH by adding a volume of 161 

buffer with different pHs: 0.2 M citrate buffer (pH 2.5, or 4), 0.2 M Tris-HCl buffer (pH 6, 7 or 8) or 162 

0.2 M glycine-NaOH buffer (pH 10, or 11). Each 10 µL sample (0.1 µg/ µL, 5 µM) was incubated at 163 

37 C for 1 h. (3) Thermal effect. Each 10 µL enzyme sample (0.1 µg/µL, 5 µM) was heated at 48 C 164 

for 2, 4, 8 or 16 min. Each treated sample was tested for Prx activity using H2O2 as substrate and/or 165 

analyzed by SDS-PAGE.  166 

Kinetic studies  167 

The kinetic properties of the C31S mutant (1.0 µg, 1 μM) was determined by varying the 168 

concentrations of H2O2 (0.02 to 0.16 mM) with fixed amount of 1 mM DTT in 30% PBS/2% glycerol. 169 

The change in absorbance at 475 nm was recorded between 0 and 2 min. The KM, Vmax and kcat were 170 

calculated from the Lineweaver-Burk plots. 171 
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Results   172 

Cloning and characterization of a cDNAencoding TcPrx2  173 

A putative TcPrx2 cDNA clone was identified on the basis of the consensus pattern and sequence 174 

homology to the published Prxs in the NCBI data bank. The coding region of TcPrx cDNA was 513 175 

bp that encodes a protein of 171 amino acid residues with a calculated molecular mass of 18.2 kDa 176 

(EMBL accession no. EF552425). Fig. 1 shows the optimal alignment of the amino acid sequences of 177 

TcPrx2 with 6 selected Prx sequences. This TcPrx2 shares 47% identity with LkPrx (Lipomyces 178 

kononenkoae, Q01116), 46% identity with MfPrx (Malassezia furfur, P56578), 40% identity with 179 

AtTPX1 (Arabidopsis thaliana, NP_176773), 38% identity with PtPrx (Populus tremula x P. 180 

tremuloides, AAL90751), 36% identity with VpPrx (Vibrio parahaemolyticus RIMD 2210633, 181 

BAC62636) and 35% identity with HsPrx5 (Homo sapiens, CAB62210) using ClustalW2 multiple 182 

sequence alignment program. The secondary structure was predicted by SWISS-MODEL program 183 

and represented as α helices and β strands (Fig. 1A). Four key Prx catalytic residues totally 184 

conserved in all known Prxs active site [3] are the CP at C60 surrounded by P53, T57, and R138. This 185 

Prx belongs to the D-type as it contains all eleven conserved residues reported in the D-type prxs 186 

[26]. These conserved residues correspond to K45, P53, F56, T57, C60, H61, H64, W97, D112, R138 and E154 187 

in the TcPrx2 protein. The second Cys residue, C31 is located closer to N-terminus unlike other 188 

known resolving Cys (CR) residue which is located at the C-terminal portion of the protein. The C31 189 

is only conserved in yeast and fungal Prxs (Fig. 1A) [26]. This C31 residue does not function as a 190 

resolving Cys, instead it is responsible for dimerization and inactivation of the TcPrx2. Therefore, it 191 

is concluded that the TcPrx2 follows the reaction mechanism of 1-Cys Prxs as only one Cys residue, 192 

the CP at the C60 appears to involve in the peroxidase activity.   193 
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A 3-D structural model of TcPrx2 was created based on the known crystal structure and solution 194 

NMR structures of PtPrx (P. tremula x P. tremuloides, PDB code 1tp9). The model superimposed 195 

with PtPrx (green) via the SPDBV_4 program was shown using protein solid ribbons (Fig. 1B).  196 

Expression and purification of the recombinant TcPrx2 and its C31S mutant  197 

The coding region of TcPrx2 was amplified by PCR and subcloned into an expression vector, 198 

pET-20b(+) as described in the Materials and methods. Positive clones were verified by DNA 199 

sequence analysis. The C31S mutant was created via QuikChange Site-Directed Mutagenesis. Both 200 

the wild-type recombinant TcPrx2 and its C31S mutant were expressed and the proteins analyzed by 201 

a 10% non-reducing SDS-PAGE without boiling (Fig. 2). The recombinant TcPrx2 was expressed as 202 

a His6-tagged fusion protein and was purified by affinity chromatography with nickel chelating 203 

Sepharose. A major and a minor band with molecular mass of approximately 41 kDa (expected size 204 

of TcPrx2 dimer) were seen in Ni-NTA eluted fractions by a SDS-PAGE (Fig. 2A, lanes 3-8). The 205 

presence of the two bands may due to different disulfide bond patterns in the dimers that lead to 206 

different conformations. The dimers may be linked by two disulfide bonds between Cys31-Cys60 and 207 

Cys60-Cys31, or between Cys31-Cys31 and Cys60-Cys60. Alternatively, the dimers may be linked by 208 

only one disulfide bond between Cys31-Cys60, or Cys31-Cys31, or Cys60-Cys60 [11]. The purified C31S 209 

mutant showed multiple bands with approximate molecular mass of 20 kDa, expected size of 210 

monomers (Fig. 2B, lanes 3-8). These multiple monomeric bands presumably with different 211 

conformations may be due to formation of intramolecule epoxidation between the –OH of Ser31 212 

and –SH of Cys60. The epoxidation conformation should be more compact, therefore migrated faster 213 

in the SDS-PAGE. In Fig. 2B (lanes 3-6), near 41 kDa, 3 minor dimeric bands of different 214 

conformations were visible. These dimers might be linked by a disulfide bond between Cys60-Cys60 215 

or epoxidation formed between –OH of Ser31 and –SH of Cys60 or –OH of Ser31and –OH of Ser31. 216 
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The Ni-NTA eluted protein fractions were pooled, dialyzed, and characterized further. Analysis of the 217 

TcPrx2 by ESI Q-TOF confirms the presence of one major protein band with molecular mass of 218 

40,620 Da. This indicates that recombinant wild-type TcPrx2 is predominantly dimeric in nature and 219 

recombinant C31S mutant exists predominantly as monomer. The yield of the purified His6-tagged 220 

TcPrx2 was 650 µg from 20 mL of culture. The yield of C31S mutant was 400 µg from 20 mL of 221 

culture. 222 

Reductive dissociation of TcPrx2 dimer and enzyme activity depends on reducing agent (DTT)  223 

To examine the effect of DTT on reductive dissociation of TcPrx2 dimers and enzyme activity, 224 

aliquots of the TcPrx2 were incubated with increasing concentrations of DTT (0-50 mM) for 10 min 225 

at room temperature. The samples were analyzed by SDS-PAGE and Prx activity. As shown in Fig. 226 

3A, progressive dissociation of the TcPrx2 dimer was observed with increasing DTT. In the absence 227 

of DTT, the TcPrx2 was in dimeric form (Fig. 3, lane 1). As the DTT concentration increased from 2 228 

to 50 mM, the dimeric band decreased gradually with a concomitant increase in the monomeric form. 229 

The results indicate that formation of intermolecular disulfide bond(s) is responsible for TcPrx2 230 

dimerization. Prx activity of the DTT-treated samples was determined by the enzyme’s ability to 231 

eliminate t-butyl peroxide (Fig. 3B). The increase in Prx activity was proportional to the increase in 232 

DTT concentration from 2 to 50 mM (Fig. 3B) which correlated with the increase in levels of 233 

monomer. In other words, the enzyme is active in its monomic form. However, the activity was 234 

unaffected by GSH up to 50 mM (Fig. 3B). The data shown in Fig. 3B and Fig. 4B were subjected to 235 

analysis of variance (ANOVA)  and Scheffe’s test [ref n1]. 236 

Enzymatic activity of TcPrx and C31S mutant   237 

The recombinant TcPrx2 activity was tested in the absence or in the presence of 50 mM DTT using 238 
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H2O2 or t-butyl peroxide or cumene as the substrate (Fig. 4A). Our results showed a linear 239 

relationship between elimination of peroxide substrate (H2O2, t-butyl peroxide, or cumene) with 240 

increasing TcPrx2 levels from 2-20 µg/mL in the presence of 50 mM DTT (Fig. 4A, closed symbols).  241 

The enzyme worked well with all three substrates, but slightly better with H2O2 in the range of 4-10 242 

µg/mL of TcPrx2. In the absence of DTT, no activity was detected with t-butyl peroxide or cumene 243 

as substrate, and very little activity (20-30%) was detected with H2O2 as substrate at high levels of 244 

TcPrx2 from 12-20 µg/mL (Fig. 4A, open symbols).  245 

Prx activity of the C31S mutant also showed an increase as the amount of the protein increased 246 

from 4-12 µg/mL in the presence of 1 mM DTT and H2O2 (Fig. 4B, white bar). The Prx activity of 247 

the mutant was higher than that of the corresponding amount of the wild-type protein under the same 248 

assay conditions; nearly 2 fold at 12 µg/mL (Fig. 4B). The substrate preference of the C31S mutant 249 

was H2O2 > cumene > t-butyl peroxide (Fig. 4B).  250 

The effect of DTT on Prx activity of the wild-type TcPrx2 and C31S mutant was compared (Fig. 5). 251 

As the concentration of DTT increased, enzyme activity of TcPrx2 increased and peaked at 40 mM 252 

(Fig. 3B and Fig. 5). The activity of C31S was unaffected by DTT. The results suggest that C31 is 253 

responsible for dimerization of the TcPrx2.  254 

The wild-type TcPrx2 has a long shelf life; it maintained high enzymatic activity in presence of 50 255 

mM DTT after storage at -20 C for 2 years. In contrast, C31S was inactive under the same storage 256 

conditions (data not showed). The results suggest that the enzyme was well protected and preserved 257 

as an inactive dimer.  258 

Characterization and kinetic properties of the purified C31S mutant  259 

As shown in Fig. 6A-C, the C31S enzyme had higher activity in PBS than in Tris-HCl buffer at the 260 

same pH 7. The enzyme was active in a broad pH range with optimal pH 6-8. The half-life of 261 
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deactivation at 48 C was 5 min, and its thermal inactivation rate constant Kd was 0.14 min-1.  262 

As shown in Fig. 6D, the Lineweaver-Burk plot of the velocity (1/V) against 1/[H2O2] gave the KM 263 

= 0.11 mM, Vmax = 0.04 mM/min, and kcat = 41.0 min-1. The enzyme appears to have low efficiency in 264 

contrast to most Prxs which have fast catalytic rates with H2O2 on the order of 1x105 to 1x107 M-1S-1 265 

[3, 4]. 266 

 267 

Discussion 268 

This study reported the first cloning and expression of a novel redox enzyme, TcPrx2, from T. 269 

camphorata. The enzyme contains two Cys residues Cys31 and Cys60; Cys60 is the conserved 270 

peroxidatic cysteine at the active site. The nonperoxidatic Cys31 located closer to the N-terminal end 271 

is conserved only in yeast and fungal Prxs [26]. Our results suggested that the Cys31 is responsible 272 

for dimerization and inactivation of TcPrx2 (Fig. 2, 4). The enzyme is active in its monomeric form: 273 

in the presence of enough DTT that dissociated the dimers or in the C31S mutant form that prevents 274 

the formation of dimer (Figs. 3-5). The C31 residue does not function as a resolving Cys and therefore 275 

the TcPrx2 must follow the reaction mechanism of 1-Cys Prxs. Diverse isoforms of Prx, 276 

characterized by different catalytic mechanisms and associated with various thiol-containing agents, 277 

are known to exist [3, 4]. This TcPrx2 represents a new, novel isoform of Prx family. Although the 278 

physical role of the TcPrx2 in T. camphorata is unclear, its activity is likely to be regulated by the 279 

level of yet to be determined thiol-containing agent(s). Further investigations are needed to establish 280 

the functions of the TcPrx2. The antioxidant activity of the enzyme suggests a potential use in food 281 

industry as food antioxidative agent in preventing lipid peroxidation [27, 28].   282 
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Legends 363 

Fig. 1 Alignment of the amino acid sequences of TcPrx2 with Prxs from other sources and a 3-D 364 

structural model. (A) Sequence alignment: TcPrx2 was identified from this study, LkPrx isolated 365 

from Lipomyces kononenkoae, MfPrx from Malassezia furfur, AtTPX1 from Arabidopsis thaliana, 366 

PtPrx from Populus tremula x Populus tremuloides, VpPrx from Vibrio parahaemolyticus RIMD 367 

2210633 and HsPrx5 from Homo sapiens. Identical amino acids in all sequences are shaded black, 368 

conservative replacements are shaded gray. Protein secondary structure was predicted by 369 

SWISS-MODEL program and represented as α helices and β strands. (B) A 3-D structural model of 370 

TcPrx2. The 3-D structural model of the TcPrx2 was created based on the known crystal structure 371 

and solution NMR of PtPrx (Populus tremula x Populus tremuloides, PDB code 1tp9) via 372 

SWISS-MODEL program and was superimposed to obtain structure alignment via SPDBV_4 373 

program. Superimposition of TcPrx2 (green) and PtPrx (white) was shown using protein solid 374 

ribbons. * denotes Cys31 and Cys60. 375 

Fig. 2 Expression and purification of recombinant TcPrx2 (A) and its C31S mutant (B) in E. coli. 376 

Fifteen µL (loading buffer without β-mercaptoethanol and without boiling) of each fraction was 377 

loaded into separated lanes of a 10% SDS-PAGE followed by Coomassie Brilliant Blue R-250 378 

staining. Lane 1, crude extract from E. coli expressing TcPrx2 or mutant; 2, flow-through proteins 379 

from the Ni-NTA column; 3-8, enzymes eluted from the Ni-NTA column. Molecular masses (in kDa) 380 

of standards are shown at left. The target protein bands were indicated as d (dimer) and m 381 

(monomer). 382 

Fig. 3 Reductive dissociation of TcPrx2 dimer and enzyme activity depends on reducing agent (DTT). 383 
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(A) Progressive reduction of TcPrx2 as the DTT concentration increased: the amounts of dimers 384 

decreased with a concomitant increase of monomers. (B) Reaction velocities of TcPrx2 against 385 

elimination of t-BOOH were proportional to the increase in concentration of DTT from 2 to 50 mM. 386 

The rates were unaffected by GSH.  387 

Fig. 4 (A) TcPrx2 catalyzed reduction of peroxides (H2O2, t-butyl peroxide, cumene) is proportional 388 

to the amount of TcPrx2 in the presence of 50 mM DTT. In the absence of DTT, no activity was 389 

observed against t-butyl peroxide or cumene; little activity was observed against H2O2 only at high 390 

TcPrx2 concentration (12-20 µg/mL). Prx activity was measured as described in the Materials and 391 

methods. (B) TcPrx2 or C31S catalyzed reduction of peroxides (H2O2, t-butyl peroxide, cumene) is 392 

proportional to the amount of TcPrx2 in the presence of 1 mM DTT. C31S mutant has higher 393 

catalysis efficiency to H2O2 than to t-butyl peroxide and cumene. Data are means of three 394 

experiments. The data shown in B were analyzed by ANOVA and Scheffe’s test. Star indicates 395 

significant difference. t-butyl peroxide (t-BOOH), cumene peroxide (C6H5C(CH3)2OOH). 396 

Fig. 5 Comparison of Prx activity of the wild-type TcPrx2 and C31S mutant in the presence of 5 to 397 

50 mM DTT. Prx activity was measured as described in the Materials and methods. C31S mutant 398 

exhibited Prx activity independent of DTT. 399 

Fig. 6 Effect of buffer, pH, and temperature on the purified C31S mutant and its kinetic property 400 

using H2O2 as the substrate. (A) The enzyme samples were assayed in 30% PBS containing 2% 401 

glycerol or 10 mM Tris-HCl containing 5 mM NaCl and 2% glycerol. (B) The enzyme samples were 402 

incubated with different pH buffers at 37 oC for 1 h and then assayed for Prx activity. (C) The 403 

enzyme samples were heated at 48 oC for various time intervals. Aliquots of the sample were taken at 404 

0, 2, 4, 8 or 16 min and assayed for Prx activity. Thermal inactivation of the activity was plotted. E0 405 

and Et represent original activity and residual activity after being heated, respectively. (D) 406 

Double-reciprocal plot of varying H2O2 versus the enzyme activity. The initial rate of the enzymatic 407 

reaction was measured at 1 mM DTT with the H2O2 concentration varied from 0.02 to 0.16 mM. The 408 
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KM, Vmax and kcat were calculated from the Lineweaver-Burk plots. Data are means of three 409 

experiments. 410 


