
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXX-XXX (20XX)

1

Fault-Tolerance Implementation in Typical Distributed
Stream Processing Systems *

WUHONG CHEN1 AND JICHIANG TSAI1

1Department of Electrical Engineering
National Chung Hsing University

Taichung, Taiwan, ROC

Typical training simulation systems adopt distributed network architecture designs

composed of personal computers because of cost, extensibility, and maintenance consid-
erations. In this design, the functions of the entire system are easily affected by failures
or errors from any computer during operation. Thus, adopting appropriate fault-tolerance
processing mechanisms to ensure that the normal operation and functions of the entire
system can be maintained when irregularities occur in a subsystem computer is an im-
portant consideration for typical training simulation system design. Since firearms train-
ing simulation system operations involve the transmission and processing of substantial
amounts of streaming data, these can be considered typical distributed stream processing
systems. In this paper, we examined typical distributed stream processing fault-tolerance
mechanism designs and technique. We applied this technique to a typical firearms train-
ing simulation system to increase the operation reliability and availability. We used the
transparent checkpoint method to implement the fault-tolerance mechanism processing
program. The results of single-machine fault-tolerance mechanism tests and mul-
ti-machine synchronized fault-tolerance mechanism tests indicate that the performance of
the checkpoint establishment and rollback recovery time can satisfy the system operation
requirements.

Keywords: distributed stream processing, fault-tolerance, checkpoint, rollback recovery,
high availability

1. INTRODUCTION

Following the evolution of training simulator technology, functional design for fire-
arms training simulation systems [1] has gradually expanded from single-gun simulation
to multiple weapons (including various types of guns and mortars) and multiple targets to
cover all user training needs. Typical firearms training simulation systems often undergo
simultaneous operation by numerous users within short periods. Thus, the system must
be able to ensure normal operations even when processing and transmitting substantial
amounts of audio, video, and input and output data to avoid influencing the training.
When firearms training simulation is performed, the system must act in concert with the
training operation to execute various parameter computations as well as audiovisual and
sensor signal processing. Coordination and cooperation between each participating sub-
system host is necessary to execute each function specified by the system. Thus, during
the computing process, the status of each host is correlated with that of the other hosts.
During execution, if a host fails after encountering an unexpected situation, such as a
power outage or a temporary hardware or software error, the operational functions of the
entire system are affected. To avoid this scenario, incorporating fault-tolerance pro-
cessing mechanisms into firearms training simulation systems must be considered to en-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Chung Hsing University Institutional Repository

https://core.ac.uk/display/41701237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WUHONG CHEN AND JICHIANG TSAI

2

sure the systems’ continued normal operation.
Typical training simulation systems adopt distributed network architecture designs

composed of personal computers because of cost, extensibility, and maintenance consid-
erations. In this design, the functions of the entire system are easily affected by failures
or errors from any computer during operation. Thus, adopting appropriate fault-tolerance
processing mechanisms to ensure that the normal operation and functions of the entire
system can be maintained when irregularities occur in a subsystem computer is an im-
portant consideration for typical training simulation system design. In fault-tolerance
processing technique for traditional distributed computing, the rollback-recovery mecha-
nism is simple and has lower system overheads. Thus, this method is currently widely
used [2, 3]. However, firearms training simulation system operations involve the trans-
mission and processing of substantial amounts of streaming data. Therefore, checkpoint
mechanisms for traditional distributed systems cannot be used to resolve related prob-
lems effectively. These should be considered as typical distributed stream processing
systems (SPSs). In recent years, enhancing the reliability and availability of distributed
stream systems has become a popular research topic, with numerous results published [4,
5, 6, 7]. These results have mainly been implemented by storing checkpoints and record-
ing and passing messages to complement each other. Although distributed stream sys-
tems generally also adopt the rollback-recovery mechanisms of distributed systems to
increase system stability, the behavior of the system in continuing to send substantial
amounts of data must be further considered to make corrections. Additionally, the trans-
mission of messages between computers must be recorded for correct system roll-
back-recovery.

In this paper, we examine technique for fault-tolerance mechanisms in typical dis-
tributed SPSs. We applied the technique to a firearms training simulation system to pre-
vent system downtime caused by sudden crashes or failures in sub-computers during op-
eration. We used the transparent checkpoint method to implement the fault-tolerance
mechanism processing program without modifying the source program of the firearms
training simulation system. This checkpoint method can also recover complete data and
is more capable of satisfying the demands of practical application. The experimental re-
sults of single-machine fault-tolerance mechanism tests and multi-machine synchronized
fault-tolerance mechanism tests indicate that the performance of the checkpoint estab-
lishment and rollback recovery time can satisfy the system operation requirements. The
major contribution of this paper is that the design and implementation method is also
applicable to other distributed stream processing systems without affecting their original
functions.

The rest of this paper is organized as follows: Section 2 reviews the related literature
on high availability for SPSs. Section 3 analyzes and compares fault-tolerance mecha-
nisms and the establishment of checkpoints. Section 4 describes functional design and
implementation for the fault-tolerance mechanism. Section 5 describes experimental re-
sults of the fault-tolerance mechanism tests. Finally, Section 6 concludes our work.

2. RELATED WORKS

High availability (HA) for SPSs has been actively researched. In the papers [5], [6],

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

3

[8], and [9], the authors had studied active standby (AS) or passive standby (PS) using
the Borealis stream-processing engine. Balazinska et al. [5] achieved a flexible trade-off
between availability and consistency by introducing the tentative data concept; Hwang et
al. [8] produced the highest availability by paying for multiple upstream copies to send
data to multiple downstream copies; Brito et al. [9] allowed replicas to execute without
coordination and produce consistent results; and Hwang et al. [6] examined optimal
checkpoint scheduling and backup machine assignment when multiple subjobs require
checkpointing and many state storage machines are available.

Replication is typically used for general fault-tolerance methods to protect against
failures. Sebepou et al. [7] described three major replication mechanisms—state ma-
chines, process pairs, and rollback recovery—that are applicable for HA in distributed
systems. In the state machine approach, the state of a processing node is replicated on
some independent nodes. All replicas process data in parallel and coordinate with each
other by sending the same input to all replicas in the same order. The process-pairs model
is a related approach that coordinates replicas using a primary−secondary relationship. A
primary node acts as a leader to forward its input to a secondary node that maintains or-
der and operates in lock-step with the primary node. In rollback recovery, processing
nodes periodically send snapshots or checkpoints of their state to other backup nodes or
stable storage devices. During recovery time, the state is reconstructed from the most
recent checkpoint, and upstream nodes replay logged input tuples to reach a pre-failure
state. These replication mechanisms have been adapted for use in most distributed SPSs.

An active replica [5] is a typical example of the state machine approach adapted for
stream-processing applications. This type of system replicates producer and consumer
operators symmetrically in a stream dataflow graph. Each consumer replica receives tu-
ples from a producer replica and switches to another functioning producer replica when
its producer fails. Strict coordination is unnecessary because the replicas simultaneously
processing the same input and forwarding the same output eventually maintain con-
sistency. All operators preserve their output queues and trim them based on acknowl-
edgments periodically sent by consumers. In case of failure, all upstream replica nodes
begin serving their downstream nodes once failure is detected to minimize recovery time.

Hwang et al. [8] extended the active-replica approach, allowing all upstream repli-
cas to send their output to all downstream replicas. Because the downstream nodes re-
ceive data from many upstream nodes, the input stream of any downstream node may be
unordered or contain duplicate tuples. Enhancing the operators with extra non-blocking
filters to eliminate duplicates based on periodically exchanged timestamp messages
overcomes these complications.

AS is a fault-tolerance method that combines the active-replica and process-pair ap-
proaches [4]. In AS, secondary nodes work in parallel with primary nodes and receive
tuples directly from upstream operators. Secondary nodes also log result tuples in their
output queues, but they do not forward tuples to secondary downstream neighbors as in
the active-replica approach. Drawbacks to this approach include output preservation be-
cause of the non-deterministic nature of operators and log bounding each secondary.

Passive-replica approaches use a rollback recovery (also known as a check-
point-rollback) mechanism consisting of PS and upstream-backup [4][5]. In PS, the pri-
mary replica periodically produces state checkpoints and copies them to the backup rep-
lica. The state includes data located inside operators and input and output queues. The

WUHONG CHEN AND JICHIANG TSAI

4

secondary node acknowledges the received state with the primary upstream node to drop
tuples from the primary upstream node output queue. In case of failure, the backup node
takes over by loading the most recent checkpoint to its current state. A variant of PS that
allows independent checkpointing of fragments (sub-graphs) of the entire query graph [6]
reduces the latency introduced by checkpointing. However, checkpoint granularity is at
the entire operator level, and stream processing freezes when storing a checkpoint frag-
ment to remote server memory.

The upstream-backup [4] model was proposed for operators whose internal state
depends on low inputs. The upstream nodes act as backups for the downstream nodes by
logging tuples in their output queues until all downstream nodes process their tuples
completely. The upstream log is trimmed periodically using acknowledgments sent by
downstream primaries. In case of failure, the upstream primaries replay their logs, and
the secondary nodes rebuild the missing state before serving other downstream nodes.
Compared to PS, upstream backup requires longer recovery, but has lower runtime over-
heads.

Repantis et al. [10] first identified the design principles for an HA replica placement
algorithm by accounting for the particular characteristics of stream-processing applica-
tions. HA is based on the concept that by replicating components and distributing them
across different nodes, replica failure does not interrupt application execution because
other replicas continue to provide the service. Repantis et al. [10] incorporated these
principles into a decentralized replica placement protocol that maximizes availability,
respects resource constraints, and makes performance-aware placement decisions.

Shiokawa et al. [11] proposed a new HA scheme called adaptive semi-active
standby (A-SAS) that adaptively adjusts costs between bandwidth use and recovery time.
The scheme uses batch-based scheme concepts and cost models to estimate current costs.
A-SAS behaves as an upstream backup until the size of the output queue reaches the pre-
viously set batch size; all data in the output queue are then sent to the downstream sec-
ondary. If A-SAS is set to a smaller batch, A-SAS allows larger bandwidth usage and
shorter recovery time. Setting larger batches results in smaller bandwidth usage and
longer recovery time. A-SAS periodically optimizes batch size using the bandwidth cost
model and recovery time cost model.

Zhang et al. [19] proposed a hybrid HA method that combines the advantages of AS
and PS approaches. The system behaves similarly to PS during normal conditions and
uses fewer computing and bandwidth resources. When a transient failure is detected, it
quickly switches to AS mode by activating a pre-deployed secondary copy in suspension.
Once the primary copy becomes responsive again (e.g., after a load spike ends), the sys-
tem returns to PS mode. Thus, the system mostly incurs small overheads, but provides
fast recovery during failures and unavailability.

3. FAULT TOLERANCE MECHANISMS AND CHECKPOINTING
METHODS

3.1 Comparison of Fault-Tolerance Mechanisms

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

5

“Fault tolerance” refers to the use of appropriate processing mechanisms when a
system encounters errors to prevent the system from crashing. Operation is maintained at
a lower performance. Thus, it can also be called “graceful degradation.”

The errors caused by fault-tolerance events can be generally divided into the fol-
lowing categories [12]:

1. Performance: hardware or software components cannot satisfy the user’s de-
mands.

2. Omission: components cannot execute the actions of a number of special in-
structions or commands.

3. Timing: components cannot execute the actions of instructions or commands at
the correct time.

4. Crash: certain components crash with no response and cannot be repaired.
5. Fail-stop: when the software detects errors, it terminates the process or action.
Additionally, three situations can be distinguished based on the timing of the error.

The first are permanent errors. When these occur, they damage the software components,
causing permanent harm and preventing the program from continuing to run. Programs
typically must be restarted. Crashes are an example of this. The second are temporary
errors. These cause only temporary damage to the software. After a period, the software
can continue operating normally. The third are periodic errors. Components are occa-
sionally damaged when these errors occur. Errors of this type are resolved within a short
period. For example, two types of software conflict with each other and errors occur
when they are opened simultaneously. This can be avoided by simply closing one of the
programs.

Fault-tolerance mechanism design can develop more complete system architectures
in anticipation of system errors, enhancing the fault tolerance. However, the costs and
time that must be expended are considerable. Fault-tolerance mechanisms can be divided
into three levels, that is, hardware, software, and system fault tolerance [13]. Hardware
fault tolerance, as the name suggests, involves preparing additional backup hardware,
such as central processing units, memory, hard disks, or power supply units. However,
hardware fault tolerance can provide only the most basic hardware backups; it cannot
prevent users from carelessly or accidentally tampering with programs or stop errors
caused by the actual system design. Therefore, software fault tolerance must also be con-
sidered.

The main mechanisms of software fault tolerance are checkpoint storage and roll-
back recovery since they are simple and have lower system overheads. A checkpoint is a
snapshot of the entire state of the process at the moment it was taken. It represents all the
information that we would need to restart the process from that point. The implementa-
tion of software fault tolerance is to develop a utility program to store checkpoints of
target system regularly. When errors occur, this utility program is used for rollback re-
covery. The system described in this study is a type of software fault tolerance.

The final fault-tolerance method is called system fault tolerance. A complete system
architecture that can automatically store program checkpoints, memory blocks, and
memory ranges is built. This system can detect errors occurring in the applications itself.
When errors occur, the system can also provide corresponding processing, thereby cor-
recting the errors. Table 1 shows a comparison of the three fault-tolerance mechanisms.

WUHONG CHEN AND JICHIANG TSAI

6

Table 1. Comparison of Fault-Tolerance Mechanisms

 Mechanism Hardware
Fault-Tolerance

Software
Fault-Tolerance

System
Fault-Tolerance

Major technique Hardware backup Checkpoint storage
Rollback recovery

Architecture with error
detecting & correcting

Design complexity Low Medium High
Time/cost expendi-
ture

Low Medium High

Fault-tolerance Level Low Medium High

Based on the functional features of firearms training simulation systems, we adopted

in-site passive standby to implement the required fault-tolerance mechanism and sub-
stantially reduce hardware costs. This method is similar to the conventional passive
standby method [4]. The primary host also stores checkpoints based on its working status
(including input and output queue information and the internal state) on a regular basis.
These checkpoints are stored directly on the local side. The use of additional secondary
hosts is unnecessary. When the primary host fails, it restarts execution based on the
checkpoint data most recently established. It then requests that the upstream host resend
relevant information to recover the correct state before the error. This method is used
considering the substantial increases in software and hardware stability currently exhib-
ited by general computers. Crashes in the overall host rarely occur. Instead, problems are
typically temporary shutdowns caused by excessive load from one or two processes
within the system. Thus, preparing a secondary host to reach the fault tolerance goal is
unnecessary. Specifically, when the number of system hosts increases, the costs for the
necessary additional secondary hosts are considerable. Additionally, general computer
operating performance has increased substantially compared to that of the past. Thus,
regardless of whether checkpoint storage and rollback-recovery operations are required,
this does not seriously affect the original tasks being executed.

3.2 The Establishment of Checkpoints

The application of checkpoints is primarily divided into two methods. The first is to
establish a checkpoint library in advance to include checkpoint functions during program
development. This is also called the nontransparent method. The second adopts a tech-
nique to intercept the application programming interface (API) to integrate or inject
checkpoint computing capabilities directly into the program during execution. This is a
transparent method [14, 15, 16]. Although the techniques adopted differ, the final goal of
each is to be used for collecting and storing thread data in processes. This assists in the
provision of correct messages when errors occur and facilitates additional recovery and
correction.

Table 2 shows a comparison of the two checkpoint application methods. The table
indicates that the library is a more efficient method. The only defect is that a source code
is necessary for implementation. The injection or integration checkpoints do not require
modification of the source program code. This method can also recover complete data
and is more capable of satisfying the demands of practical application. However, because

Comparison

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

7

injection adopts logical operations or computations for collecting data, a clear under-
standing of the program’s operating state is required. If not, incomplete data is collected,
substantially reducing the rollback recovery efficiency.

Table 2. Comparison of Transparent and Non-transparent methods

 Method Non-transparent
(Checkpoint library)

Transparent
(Checkpoint injection)

Necessity to modify source
code

Yes No

Implementation of the
checkpoint operation time

Can be selected in the
original process

Fixed time interval for
computing

Collection of data reliability According to the needs of
source codes for control

Requiring adequate compu-
ting logic to achieve

Recoverable data Part of the critical infor-
mation

Complete information

Using injection checkpoints, or transparent checkpoints, does not intrude on users’

programs. Users running program operations or computations or establishing checkpoint
storage do not influence the program’s source code. This method can be used for pro-
gram error recovery, allowing the program to return to the position of the last stored
checkpoint before continuing execution. Thus, a state with normal processes must be
saved or preserved to enable recovery if an error occurs. The primary problem is effec-
tively copying and returning the thread state without influencing the program operation
status.

4. DESIGN AND IMPLEMENTATION

4.1 Functional Design and Allocation for the Fault-Tolerance Mechanism

The first step for the checkpoint computation program flow of the firearms training
simulation system described in this study was to run the subsystem to be detected. Next,
times were set for establishing checkpoints. Rollback recovery was performed when er-
rors occurred in the system. The implementation method can be divided into multiple
modules. Figure 1 shows a flowchart for each module. The basic process was as follows:
First, each module was controlled by the central control module, such as checkpoint es-
tablishment time intervals and other information. Next, periodic checkpoint establish-
ment was performed. The program can select establishment time periods or cycles itself
while performing regular crash checking. If crashes do not occur, checkpoint establish-
ment is performed again. The task execution repeats in this way. When the system crash-
es, the crash checking module detects and diagnoses any errors, which are passed to the
rollback-recovery module for error recovery. Descriptions of the detailed functions of
each module are provided below.

App. conditions

WUHONG CHEN AND JICHIANG TSAI

8

Fig.1. Flowchart for each module

4.1.1 Checkpoint Establishment and Management Module

Numerous types of transparent interception API techniques exist [16, 17]. The ma-
jority of these can be divided into user level and kernel level. Based on the feasibility
consideration, we adopted one kind of the user level interception method to modify the
external function import table of PE for this study. The main idea is to modify the pro-
gram’s flow or process, allowing it to jump to the interception function before returning
to the original function. Thus, the original API function can still be implemented. If not,
the interceptor loses its relevance. More specifically, the interceptor system API method
adopts the interceptor dynamic linker library (DLL) method. That is, it uses the process
external function import table (IMPORT) for function entry point redirection behavior.
Therefore, in addition to considering the external DLL module for the process, the exter-
nal function import table in the process itself must also be considered.

A number of functions related to LoadLibrary() are in the Win32 API. These
can load or write in external DLLs during execution. As these are executed, new external
modules are loaded. At this time, intercept actions must be performed on these modules,
and redirection intercept repair actions must be performed on the external function im-
port tables of the loaded modules. An additional problem encountered when satisfying
the API interceptor is a special condition of the external function import table, that is, the

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

9

majority of general DLL import tables use function names as references for import func-
tions. At this time, we must only compare string data from the import name table that
corresponds to the function import table to determine whether it is the function that
should be intercepted. Regarding certain DLLs, their import tables do not use function
names for correspondence. Instead, they adopt the function ordinal of the import function
in the function output table of the original DLL for correspondence. In this situation, the
function to be intercepted has no name strings for comparison; instead, it has only the
output function ordinal of the item in the original DLL. At this time, the header infor-
mation of the DLL module must be found in the memory, and the output function table
and output function name table for the module must be sought in this header information.
Finally, the output function name must be found in the output function ordinal, and string
comparison judgment must be performed with the name of the function to be intercepted.

To complete the periodic checkpoints, a timer must be set for dynamic applications.
The time intervals can also be set based on the user operations. In this study, we used the
Windows system timer. This is provided by the 8254 chip and INT 08H hardware in-
terrupt in the PC. The method used was CWnd::SetTimer. This allows one message
to be sent at fixed intervals within the program. After receiving the message, corre-
sponding processing must be performed. The processing is implemented within the
CWnd::OnTimer function. When performing rollback recovery, the timer must be
stopped and returned to the system. At this time, the CWnd::KillTimer function must
be employed.

4.1.2 Output Message Storage and Management Module

Considering the demands of firearms training simulation systems, we adopted the
precise recovery method in this study. Therefore, the messages sent and received by
hosts must be recorded to assist in repeating these actions after rollback-recovery. The
programs in the Windows system transmit messages to programs on other hosts using the
Winsock mechanism. This is also implemented by calling on specific APIs. Thus, the
construction method for this module is identical to that for establishing checkpoints and
the management module discussed previously. The interceptor API method is also em-
ployed for storing relevant messages. Here, the Detour tool supplied by Microsoft is
adopted for process completion [18].

The main objectives are as follows:
1. In addition to using transparent methods for injection, must be capable of with-

drawing entirely.
2. Does not require special permissions during operations performed at the user

level.
3. Can arbitrarily choose APIs for interception, including DLLs for Kernel, User,

and Winsock.
4. Must be able to establish connections with the central control module to transmit

and receive control messages.
The required three implementation techniques comprise the following:
1. Uses the Detour Library to inject the interceptor program code in the running

application.
2. The interceptor execution program calls on the DLL function.

WUHONG CHEN AND JICHIANG TSAI

10

3. Determines what type of processing should be performed for the intercepted
function.

In this section, interception of only the application output data is necessary. Obso-
lete messages are disposed based on responses from the downstream host.

4.1.3 Process Crash Checking Module

Each host requires a process crash checking module to enable error and crashing
detection. This module usually uses ping/timeout to detect whether any crashes or net-
work errors have occurred in processes. In detail, this module uses the two system func-
tions of OpenProcess() and WaitForMultipleObjects() to list information
from all processes currently operating in the host environment to investigate process
problems. First, all messages from the processes currently running in the system are
stored. A process identification code is then used to seek comparison methods and locate
all relevant information for the process monitoring the application. Additionally, a timer
must also be set. After a fixed period, these messages are updated to determine the status
of the processes again. If the monitored applications are in a stopped process state and
unable to respond, the central control module is notified immediately. Subsequently, the
rollback recovery mechanism is initiated, and the execution of the processes is restarted.

4.1.4 Rollback-Recovery Module

The application principle for checkpoint technique is to establish a checkpoint when
programs execute up to a certain point. The state of the program’s execution (for exam-
ple, memory location, memory block size, thread content, and data in the register) is
saved. If errors occur in the system, this information can be used to recover from the er-
ror and allow the progress to continue. Thus, rollback recovery is extremely important to
the checkpoint application. This process can be roughly divided into the following steps:

1. Detection: errors can be detected in this stage.
2. Diagnosis: error causes and the damaged created by the error can be determined

in this stage.
3. Isolate and Block: the process in which the error occurred is isolated to prevent

the error from spreading.
4. Recovery: in this stage, the correct data stored in an earlier checkpoint are used

to replace the data where the error occurred.
When the program executes to a checkpoint position, key data is first stored to es-

tablish a checkpoint. The program then continues running. Before reaching the next
checkpoint establishment position, the system performs rollback-recovery if an error oc-
curs. The correct information stored in an earlier checkpoint is used to cover or overlay
the part where the error occurred. The program can then return to the state when the error
had not occurred and continue execution. In other words, after completing checkpoint
storage, the application can continue running. These steps are repeated each time a
checkpoint is established. Additionally, checkpoint rollback recovery must be performed
when errors occur. The data in the checkpoint file must be separately written back to the
virtual address space and execution content of the application. This confirms that the
application can return to the state attained after the establishment of the checkpoint.

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

11

When performing rollback recovery, the thread processes must be stopped temporarily to
prevent new information from covering the recovered thread content.

4.1.5 Central Control Module

The most important task of the central control module is to coordinate the check-
point establishment times for each subsystem. In this study, we used an efficient check-
point storage method called the sweeping checkpoint method [19]. This method stores
checkpoints rapidly and does not incur high additional costs. Checkpoint establishment
using this method is driven primarily by the downstream hosts rather than a counter. The
central control module receives an acknowledgment from the downstream hosts indicat-
ing that all information from a checkpoint has been stored successfully. The hosts can
then remove the messages from their output buffers to reduce the data they must store
themselves when establishing checkpoints. In other words, because the relevant output
messages must also be stored in the checkpoint and the output buffer size can be de-
creased substantially following reduction processes, this is an excellent time for check-
point establishment. All hosts in the system must use this method to establish check-
points for storage. Because the most downstream hosts have no driving acknowledg-
ments further downstream, they must rely on timers to drive checkpoint storage. That is,
the downstream hosts send regular acknowledgments to the upstream hosts to trigger
checkpoint establishment. Using this method, triggering travels upstream layer by layer;
thus, this is known as the sweeping checkpoint method.

The advantage of the sweeping checkpoint method is that it can substantially reduce
additional costs. Hosts first reduce messages stored in their output buffers when imple-
menting checkpoint storage, which increases the checkpoint storage speed. Additionally,
because this method does not require all hosts to stop temporarily for checkpoint storage,
it provides excellent operational efficiency and speed.

4.2 Fault-Tolerance Mechanism Implementation

When designing fault-tolerance mechanisms for firearms training simulation sys-
tems, how to store checkpoint information and application messages from each subsys-
tem should be considered carefully. Usable, correct information is sought from the sub-
systems for rollback recovery. These important messages are then stored. The main stor-
age objects are memory addresses and relevant application contexts used by each sub-
system. In this study, we developed a checkpoint application that can store checkpoints
from each subsystem a synchronized manner. When errors occur in a system, the
fault-tolerance mechanism can be used for rollback recovery of the entire system. This
allows the system to return to a state with no errors and continue running.

The checkpoint computing program of the firearms training simulation system im-
plemented in this study inputs process names from each subsystem to capture process
information and begin checkpoint storage on the target processes. Figure 2 shows the
program flowchart.

WUHONG CHEN AND JICHIANG TSAI

12

Fig. 2. Fault-tolerance program flowchart.

4.2.1 Checkpoint Establishment

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

13

Checkpoint establishment is first performed for each subsystem in the firearms
training simulation system. This enables important information from each subsystem to
be stored. When errors occur, rollback recovery can be performed. Figure 3 shows the
checkpoint establishment flowchart; a detailed explanation is provided below.

Fig. 3. Checkpoint establishment flowchart
Checkpoint establishment first stores thread content. Thread content is defined as

the CPU register state when the program executes to a certain memory address. When
rollback recovery is to be performed, execution must begin from the correct program
code, not from the code where the error occurred. Thus, correct thread content should be
stored in the CONTEXT structure announced previously. This structure is then written
into the file. This can be considered the completion of one checkpoint storage, which
ensures that execution can begin from correct thread content during rollback recovery.

Concerning memory states and content in the system, the virtual address space of
the system must be investigated, because virtual address space contains all the execution
information and dynamic configuration memory blocks of the system (such as thread
stacks and heaps). Stacks in the memory are the parameters or local variables used by the
application and are stored in the stack area. The majority of the heaps are used to store
the small-scale memory configured by the application. Thus, if the memory ranges and
content used in the virtual address space can be stored correctly, unexpected situations

Scan 2G memory

Write into
record files

Checkpoint has been
established

Access to
memory pages?

Stop checkpoint
computing program

Are there any
 memory block?

YESYESYESYES

NONONONO

Displays
error messages

YES

NO

WUHONG CHEN AND JICHIANG TSAI

14

that occur in the system can be recovered correctly.
Regarding how to store virtual memory information to the CONTEXT structure, be-

fore storing memory information, thread execution in the system must be stopped tem-
porarily. Otherwise, the CPU continues scheduling, causing inconsistent storage results.
At this time, SuspendThread() can be used to stop the application temporarily. Next,
the GetThreadContext()function is used to complete the memory information
storage. Before employing the GetThreadContext()function, the CONTEXT struc-
ture announcement must be completed, and the flags of the ContextFlags members
in the CONTEXT structure must be set. Because the ContextFlags flags are primarily
used to specify the register content to be obtained, and transmit the position or address of
the CONTEXT structure to the GetThreadContext()function, this method can also
be used to write the register content into this structure. Figure 4 shows a code snippet of
the CONTEXT structure.

CONTEXT tcontext
SuspendThread(appthread);
Tcontext.ContextFlags = CONTEXT_FULL;
GetThreadContext(appthread, &tcontext);
Fwrite(&tcontext, sizeof (CONTEXT), 1, contextlog);

Fig. 4. CONTEXT structure code snippet
In the CONTEXT code snippet, the ContextFlags values are set to CON-

TEXT_FULL, indicating important registers to be obtained in the thread. CON-
TEXT_FULL is defined in WinNT.h. In this code snippet, it is defined before
GetThreadContext(), indicating the CPU control register, integer register, and ad-
justment register to be obtained.

Storage of the virtual memory begins with scanning each block from 0x00010000
in the virtual address space of each subsystem. After this block scanning is finished,
scanning automatically continues toward blocks with higher addresses. At this time, the
states and content contained in the memory blocks used by each subsystem in the fire-
arms training simulation system are stored. These scanning and storage steps are repeated
until the memory address space 0x7FFEFFFF is scanned.

During scanning of 2G user memory space, when the memory blocks used by the
subsystem are scanned, the MEMORY_BASIC_INFORMATION structure must be con-
figured to store the memory information. First, whether the memory range to be stored is
larger than the set buffer size is determined. If it is too large, a warning window appears
to avoid direct access causing a memory overflow and thereby producing errors and
crashes. Next, the VirtualQueryEx()function is used to examine the usage situation
of the memory blocks in the virtual address space. If this is committed, the
VirtualQueryEx()function is used to write the memory information into the
MEMORY_BASIC_INFORMATION structure. The memory information stored in this
structure is then used for data storage. This facilitates understanding of the range to be
stored, from which memory address reading should begin, and the size of the range to be
read. Next, the ReadProcessMemory()function is used to read the memory content
of each block, which is first written to the buffer. If no errors occur, it is then written to
the file. Thus, the steps for checkpoint storage in a firearms training simulation system
are complete.

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

15

4.2.2 Rollback Recovery

If rollback recovery is required in the system because of poor human operation or
errors in program execution, the checkpoint information stored previously should be used
for rollback recovery. Figure 5 shows a checkpoint rollback recovery flowchart. To en-
sure that the system can be correctly recovered to the checkpoint state stored previously,
threads must be recovered to their earlier states and the correct data in the checkpoint file
must be written back to the virtual memory address space in the firearms training simula-
tion system.

Fig. 5. Checkpoint rollback-recovery flowchart

During the rollback recovery process, the checkpoint file content must be copied to
the register before being transmitted to the virtual memory location or address space. A

Write into
buffer

rollback recovery has
been succeeded

If memory status
changes

Any
 information in the

record file?

YES

NONONONO

NONONONO

Allocate
 memory status

YES

YES

Start
rollback recovery

Can read information
in the record file?

Stop checkpoint
computing program

Displays
error messages

NO

WUHONG CHEN AND JICHIANG TSAI

16

detailed explanation of this process follows.
First, the checkpoint data file stored previously is copied to the

MEMORY_BASIC_INFORMATION structure. The SetThreadContext()function is
then used to write the structure thread content back to the thread in the firearms training
simulation system. The recovery process for the virtual memory region is as follows: at
the beginning, the stored checkpoint memory information log file must be read to under-
stand the application’s memory usage and the initial position and block size of this
memory region during checkpoint execution. After these data are obtained, where cov-
erage should start and the range of coverage is known, facilitating the completion of
rollback recovery. Additionally, current information regarding the usage conditions of
the address in the address space of the application processes must be sought. This is
compared with the state during checkpoint storage to determine whether the two states
are identical. Differences between the two indicate that an interval exists from the most
recently stored checkpoint. Memory state modification is necessary at this point. Next,
the stored memory information must be read. At this stage, the memory protection status
must first be judged to be readable. That is, Protect must be PAGE_READWRITE. If it is
readable and writable, the memory content in the file is read, a base position or address is
set, and the memory state is modified. Subsequently, the memory content in the file is
written to the process memory. If it is unreadable, the VirtualQueryEx()function
must be used to configure memory block categories with relative physical memory. That
is, the memory category must be MEM_COMMIT. Ultimately, these two situations both
use the WriteProcessMemory()function to write data to memory.

If the virtual memory does not correspond to the physical memory, that is, the
memory status may be MEM_RESERVE or MEM_FREE, the memory configuration must
be changed. When the memory status is MEM_RESERVE, the configured memory block
must be transmitted to VirtualAllocEx(). The memory status is then changed to
MEM_COMMIT. If the memory status is MEM_FREE, the configured memory block must
be transmitted to VirtualAllocEx(). The status is then set to MEM_RESERVE. This
is then corresponded to the MEM_COMMIT status with actual storage. After modifying
memory protection, the data stored in the earlier checkpoint can be written to memory
successfully. After completing this process, thread execution is recovered. If memory
properties have not changed, the memory properties do not have to be modified; instead,
they can be directly covered. After all the memory properties have been checked, the
memory content stored previously can be read from the stored checkpoint file. The
memory content is then recovered based on each region. Thus, the application’s virtual
location and memory content can be recovered to the status stored in the earlier check-
point. This indicates successful completion of checkpoint rollback recovery.

5. EXPERIMENTAL RESULTS

The firearms training simulation system described in this study comprises four sub-

systems. These are the host computer subsystem, the visual effects subsystem, the audio
effects subsystem, and the image capture subsystem. When users execute each functional
operation, the host computer subsystem is responsible for transmitting and processing
messages and communicating with the other subsystems. Although in practice any sub-
system can be chosen to perform checkpoint storage and rollback recovery, because in-

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

17

formation transmission and processing is primarily performed by the host computer sub-
system, using this subsystem for checkpoint establishment and rollback recovery is more
appropriate. Figure 6 shows the test environment and stream processing model of our
firearms training simulation system.

Fig.6. Test environment and stream processing model

5.1 Stand-Alone Fault-Tolerance Mechanism Implementation Test

Single-machine or stand-alone fault tolerance tests were performed first. They were
conducted to examine the individual execution fault-tolerance programs in the host
computer, visual effects, audio effects, and image capture subsystems and to assess their
performance. The program record intervals were extended for the convenience of testing.
Additionally, checkpoint establishment and rollback recovery was performed manually.
The audio effects subsystem data was excessive, leading to a buffer overflow. After the

WUHONG CHEN AND JICHIANG TSAI

18

buffer capacity was modified, it was able to operate normally. Comparatively, the image
capture subsystem is complex because it contains an infrared capture device and scans at
a frequency of 150 Hz to identify the gun sources during aimed shooting. Because fre-
quency changes are excessively rapid, access to the checkpoints of the six hosts in the
image capture subsystem is often inconsistent, resulting in system crashes. Thus, during
fault-tolerance mechanism computation of the image capture subsystem, the infrared
capture device must be stopped manually to establish checkpoints and perform rollback
recovery successfully. Table 3 shows a comparison of the computation time for each
subsystem. The values in the table indicate that the host computer subsystem and the
visual effects subsystem have the fastest checkpoint establishment and recovery times.
The audio effects subsystem expends more time on checkpoint establishment because it
includes numerous messages. The checkpoint information in the image capture subsys-
tem is also substantial at only slightly less than that of the audio effects subsystem. Thus,
it also requires additional time for rollback recovery. By calculating the computation
times for each subsystem, we found that the longest checkpoint establishment time did
not exceed 3 s, whereas the longest rollback recovery time did not reach 0.5 s. In com-
parison to the crashes caused by errors in the system, this performance is remarkable.

Table 3. Comparison of the computation time for each subsystem

 Host
computer

Visual
effects

Audio
effects

Image
capture

The longest checkpoint
set-up time (ms)

20 19 2813 161

The shortest checkpoint
set-up time (ms)

9 10 1346 153

The maximum error
recovery time (ms)

107 114 340 316

The minimum error
recovery time (ms)

105 110 316 114

5.2 Synchronized Fault-Tolerance Mechanism Implementation Test

Synchronized tests were implemented in the second part of testing. First, the
checkpoint computation program of the firearms training simulation system was installed
on each subsystem. These programs contained six visual effects subsystem hosts and six
image capture subsystem hosts. Thus, any host can perform checkpoint establishment
and rollback recovery. However, the host computer transmits messages to the visual ef-
fects and audio effects subsystems after performing rollback recovery. Thus, the host
computer should perform rollback recovery. This avoids the occurrence of unanticipated
errors, making program execution more stable.

Observing recovery information from each subsystem indicates that even with syn-
chronized computation, the implemented computation results did not differ greatly from
the single-machine or stand-alone results. The slight delays were determined to be caused
by differences in recovery times for the subsystems and the influence of network cable

Subsystem
Time

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

19

transmissions. Recovery of each subsystem can be completed within a maximum of 5 s,
with the audio effects subsystem requiring the most time. The other, faster subsystems
can be recovered within 1 s.

6. CONCLUSION AND FUTURE WORK

In this study, we examined typical distributed stream processing fault-tolerance
mechanism designs and technique. We applied this technique to a typical firearms train-
ing simulation system to increase the operation reliability and availability. We used in-
jected (transparent) checkpoint methods to implement the fault-tolerance mechanism
processing program. This program comprised a checkpoint establishment and manage-
ment module, an output message storage and management module, process crash check-
ing module, a rollback-recovery module, and a central control module. Each module was
controlled by the central control module. Periodic checkpoint establishment was per-
formed (the establishment time period can be self-selected). Regular crashing tests are
also performed simultaneously. If crashes do not occur, checkpoint establishment is per-
formed again. Task execution is repeated in this manner until a system crash occurs.
When the system crashes, the crash test module detects and diagnoses the errors, which
are then returned to the rollback-recovery module for error recovery. The results of
stand-alone or single-machine fault-tolerance mechanism tests and multi-machine syn-
chronized fault-tolerance mechanism tests indicate that the performance of the check-
point establishment and rollback recovery time can satisfy the system operation require-
ments. The experiment results of this paper focus on the comparison of stand-alone and
synchronized tests to evaluate the feasibility of fault-tolerance mechanism implementa-
tion. We suggest that further comparison against any existing solutions be explored in the
future work.

The level of the fault-tolerance mechanism described in this study is “software fault
tolerance”. In other words, we designed a fault-tolerance processing tool program to store
checkpoints in a firearms training simulation system. When errors occur, this program is
used for rollback recovery. Future studies can use designs at the “system fault tolerance”
level in various training simulation systems by constructing a complete fault-tolerance
architecture during the design phase of the training simulation system. This type of
fault-tolerance mechanism can automatically store checkpoints, memory blocks, and
memory ranges for the program, and even detect errors that occur within the applications
itself. When errors occur, this mechanism can also provide corresponding processing,
thereby correcting errors and substantially increasing the reliability and availability of the
operations of training simulation systems or other typical distributed stream processing
systems.

REFERENCES

1. E. Danielsen, “An introduction to firearms simulation technology,”
http://www.aic.gov.au/media_library/publications/proceedings/18/danielsen.pdf

2. E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A survey of roll-
back-recovery protocols in message-passing systems,” ACM Computing Surveys, vol.

WUHONG CHEN AND JICHIANG TSAI

20

34, issue 3, Sep. 2002, pp. 375-408.
3. R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed system,”

IEEE Trans. Software Eng., vol. 13, no. 1, Jan. 1987, pp. 23-31.
4. J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik,

“High-availability algorithms for distributed stream processing,” in Proceedings of
the 21st International Conference on Data Engineering, 2005, pp.779-790.

5. M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. “Fault-tolerance in
the Borealis distributed stream processing system,” ACM Transactions on Database
Systems, Vol. 33, No 1, Article 3, 2008, pp.1-44.

6. J. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik, “A cooperative, self-configuring
high-availability solution for Stream Processing,” IEEE 23rd International Confer-
ence on Data Engineering, 2007, pp. 176-185.

7. Z. Sebepou, and K. Magoutis, “CEC: Continuous eventual checkpointing for data
stream processing operators,” IEEE/IFIP 41st International Conference on Depend-
able Systems & Networks, 2011, pp. 145-156.

8. J. Hwang, U. Cetintemel, and S. Zdonik, “Fast and high-available stream processing
over wide area networks,” in Proceedings of the 23rd International Conference on
Data Engineering, 2008, pp. 604-613.

9. A. Brito, C. Fetzer, and P. Felber, “Minimizing latency in fault-tolerant distributed
stream processing systems,” IEEE 29th International Conference on Distributed
Computing Systems, 2009, pp. 173-182.

10. T. Repantis, and V. Kalogeraki, “Replica placement for high availability in distribut-
ed stream processing systems,” in Proceedings of the 2nd ACM international con-
ference on Distributed event-based systems, 2008, pp. 181-192.

11. H. Shiokawa, H. Kitagawa, and H. Kawashima, “A-SAS: An adaptive
high-availability scheme for distributed stream processing systems,” IEEE 11th In-
ternational Conference on Mobile Data Management , 2010, pp. 413-418.

12. Ali Ebnenasir, “Software fault-tolerance,” Computer Science and Engineering De-
partment Michigan State University U.S.A
http://www.cse.msu.edu/~cse870/Lectures/SS2005/ft1.pdf.

13. Israel Koren and C. Mani Krishna. “Fault-Tolerance Systems,” Elsevier Inc. 2007.
14. J. Plank, M. Beck and G. Kingsley, “Libckpt: transparent checkpointing under

UNIX,” Usenix Conference, 1995.
15. Johny Srouji, Paul Schuster, Maury Bach, and Yulik Kuzmin. “A transparent check-

point facility on NT,” 2nd USENIX Windows NT Symposium, August 1998.
16. P. Emerald Chung, Woei-Jyh Lee, Yennun Huang, Deron Liang, and Chung-Yih

Wang. “Winckp: a transparent checkpointing and rollback recovery tool for Win-
dows NT applications,” Fault-Tolerant Computing, 1999. Digest of Papers. Twen-
ty-Ninth Annual International Symposium, June 1999, pp. 220-223.

17. P. Emerald Chung, Yennun Huang, Chandra Kintala, Woei-Jyh Lee, Deron Liang,
Timothy K. Tsai, and Chung-Yih Wang. “NT-SwiFT: software implemented fault
tolerance on Windows NT,” 2nd USENIX Windows NT Symposium, August 1998.

18. Galen Hunt and Doug Brubacher, “Detours: binary interception of Win32 functions,”
3rd USENIX Windows NT Symposium, July 1999.

19. Z. Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu. “A hybrid approach to
high availability in stream processing systems,” IEEE 30th International Conference

FAULT-TOLERANCE IMPLEMENTATION IN TYPICAL DISTRIBUTED STREAM
PROCESSING SYSTEMS

21

on Distributed Computing Systems, 2010, pp. 138-14.

Wu-Hong Chen (陳戊鋐) received the master degree in In-
formation Engineering and Computer Science from Feng Chia
University in 2001. He is now a Ph.D. candidate in Electrical En-
gineering, National Chung Hsing University, Taichung, Taiwan
R.O.C. His research interest includes distributed system, fault tol-
erance and stream processing.

 Jichiang Tsai (蔡智強) received the Doctor degree in Elec-
trical Engineering from National Taiwan University in 2000. He is
now a Professor in Electrical Engineering, National Chung Hsing
University, Taichung, Taiwan R.O.C. He has published more than
30 papers in international conferences and journals. His research
interest includes dependable computing, parallel and distributed
system, embedded system, stream processing, clouding compu-
ting.

