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Abstract

The development of automotive technology has become increasingly important for preventing car
accidents. Hence, as a basic research of driver assistance systems, we propose a novel control method for
steering support in this paper. In particular, we investigate the stability and limitation of such a system for
the safe and comfortable drive. First, we use the particle swarm optimization (PSO) based algorithm to
search the optimal feedback gain under practical constraints for achieving tracking control. Moreover,
to reduce the convergence time further, the particle swarm optimization algorithm is combined with
the technique of quantum computing. Simulation results indicate that the proposed feedback controller
based on quantum particle swarm optimization (QPSO) has the ability to provide efficient computational

performance for trajectory tracking and stabilization.
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I. INTRODUCTION

An ultimate goal of automatic vehicle control is the ability of being automatically driven by
machines in order to reduce accidents caused by human errors and to improve safety as well as
drive comfort. In recent years, there has been considerable progress in developing such Automatic
Vehicle Control System (AVCS) [1]-[4]. Particularly, these researches focused on how to design
the AVCS in different ways as well as showing the efficiency of their methods. Moreover, upon
implementing these methods in practice, a large number of sensors is required to establish the
systems. Unfortunately, even with these sensors, there still exist some critical problems necessary
to be considered for these systems. For example, when sensors detect some obstacles in the blind
spot of the driver, the car turns suddenly without noticing the driver first, or drivers find obstacles
but sensors do not detect anything. Both foregoing scenarios may incur accidents such that drivers
tend be panic due to lack of confidence on the AVCS.

For the above reasons, the driving support system where part of control depends on the driver
has been extensively studied in the literature [5]-[9]. More specifically, these systems do not
directly control the vehicle, but just try to assist the driver to control the vehicle. For instance,
by monitoring the health of the driver, the system can realize whether the driver is suitable for
driving. Among these systems, the most important one is the semi-autonomous driver assistance
system. Such a system will automatically control the steering wheel to follow the designed path
while the driver steps on the accelerator [5], [6]. Now that the velocity cannot be influenced by
any feedback controller, the traditional kinematic vehicle model cannot be applied to achieving
tracking control here. Thus to solve the aforementioned problem, the authors in [6] proposed
a new differentially flat model accompanied with the time-scaling input. However, the optimal
feedback gain becomes difficult to decide in this model. Furthermore, because information of the
velocity cannot be obtained in advance and there are some physical constraints in a real system,
the Linear Quadratic Regular (LQR) optimization method introduced in [10] is also unsuitable
for dealing with the problem.

In this paper, to solve the above problem, we use the Particle Swarm Optimization (PSO)
based method to search the optimal feedback gain under real constraints. By doing so, tracking
control of the vehicle with the time-scaling input becomes able to be realized at any velocity of

the car and any constraint of the steering angle. Moreover, to reduce the convergence time further,
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our algorithm is combined with the technique of quantum computing. Simulation results show
that our semi-autonomous driver assistance system equipped with the QPSO-based feedback gain
controller can issue instructions to control the steering wheel autonomously when the driver steps
on the accelerator. Also, our system can reduce the tracking error along the path exponentially.

This paper is structured as follows. Section II describes the preliminary knowledge about the
semi-autonomous driver assistance system. In Section III, we introduce how to utilize the PSO
and QPSO methods to design the feedback gain controller for our system, and the simulation
results for evaluating our methods are presented in Section IV. At last, we make a conclusion

for our work as well as presenting some possible future work in Section V.

II. THEORY AND APPLICATIONS
A. Flatness and Time-Scaling

A notable approach for designing the controller of a nonlinear system is the input-output
linearization algorithm [11]. First, to extend the notion of controllability from linear systems to
nonlinear dynamical systems, the flatness theory has been introduced by using the formalism of
differential algebraic methods [12], [13]. A system is said to be flat if it has a flat output that
can be used to explicitly express all states, all inputs and a finite number of its derivatives [14].
On the other hand, time-scaling is widely used in the control theory due to its convenience for
system analysis. Particularly, a new time scale 7 depending on the state x is introduced and the
state equation of the system is rewritten in this time scale such that the relation between the
time ¢ and 7 is defined as the continuous function shown below:

dt

E = S(‘T7M)7 (1)

where (1 is the time-scaling input and the function s(z, i) is called the time-scaling function.

B. Semi-Autonomous Driver Assistance System

Like the works in [5], [6], for our system, we suppose the longitudinal velocity v, denoted
by veqr, 1 generated by the driver in the Ackermann steering geometry. Since there is only one
input from the controller, i.e. the steering angle ¢ of the front wheel, we have an affine system

with no drift term. However, such a system is flat only when there are more than two inputs.
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Fig. 1. The scheme of the closed loop with time-scaling.

Therefore, one way to obtain a differentially flat model is using time-scaling to add an extra
input variable. More specifically, doing so can lead to the following time-scaling function:

dt u,

dr Vegr

2)

Then we can derive the following equations for the kinematic vehicle model by using the previous

time-scaling function:

2’ = ug cosb. (3)
Yy = u,sin 6. 4)
0 = % tan Q. (5)

[

Here, we use Figure 1 to illustrate our semi-autonomous driver assistance system. In particular,
such a system is derived from three major components: Motion planning, Time-scaling of the
reference trajectory and Tracking feedback, for tracking the trajectory that has been planned
in advance while the driver generates the longitudinal velocity v, to the car. Note that the
task of motion planning is to define the geometry of the reference path. There are several ways
for realizing the motion planning scheme [6], [15]. Although a higher degree polynomial can
represent a more complicated path, a seventh degree polynomial is sufficient for most paths in

practice. Hence, just like the work proposed in [6], the trajectories are defined as:
7 7
Lrref = Z ax,iTza Yrref = Z a’y,iTZ~ (6)
=0 =0
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According to [6], we can get the resultant scaling for the x-direction of the reference path:

Tyef (1) = Trper(T(1)), (7

Tref(t) = a7 pop (T(E))7, (8)

Fref(t) = @7 pep (T(0)T2 + 2o (T(1))F, ©)

Trep(t) = @ p (T()T° 4 327, (T(0)TF + a7 oy (7(1)) T, (10)

The other y-direction can be obtained in a similar manner. Finally, also according to [6], if we

choose the control inputs u; and us to be the following form:

-1

2 .
__#isin 0 .
ur | _ | cos 0 —7is - vy — fi (an
.y 22 cos 6 . f ’
U2 S1n Tcos2 2n 7 Uy 2

we can get a linear relationship between the outputs and the new inputs v, and v, as below:
.Z‘/N — U$7 y/// — Uy- (12)

As a result, the design of the tracking controller becomes simple in light of existing linear control
techniques. Here, let e, = x — @, and e, = y — y, . be the tracking errors. Then we define

the two new inputs v, and v, as:

" " / /

Ve = Lrpef — kﬂ%?ez - kyvlez - kﬂ%oem (13)
o " / /

Uy = Yrref — k%?ey - ky716y - kyaoey’ (14)

where k, ;, for a € {z,y} and i =0, 1,2, is the feedback gain. By choosing these gains such that
the corresponding characteristic polynomials have all their roots in the left part of the complex

plane, the tracking errors of the close loop system are given as follows:

e + kpoelh + kypaiel, + kyoer =0, (15)
" " / -
e, + kyae, + ky1e, + ke, = 0. (16)
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ITI. QPSO-BASED FEEDBACK GAIN CONTROLLER
A. Determination of Feedback Gains

First, we explain how to determine the feedback gains by using Routh-Hurwitz stability
criterion [16], [17]. Particularly, this criterion states that the necessary and sufficient condition
for stability is that all elements in the first column of the Routh array must be positive. Here,
with the operation of Laplace transformation to transform equation (15), we obtain the following

characteristics equation for z:
§% + kpos® + kp1s + koo =0, (17)

where s is the Laplace operator. Then we continue to construct the Routh array:

83 1 ka
2.
S7 km72 km’() (]8)
31 . _kz,O_kz,lkz,Q
' ka:,2
%0 ke

After applying the same procedure to (16) as well, we can obtain the conditions on the feedback

gains for a system to be stable below:
kz,ﬂ > 07 kaz,l > 07 kx,Q > 07 kw,lkI,Q > kx,Oa (19)

]{Zy70 > 0, ky71 > 0, ky,Z > 0, ky,lk'y,2 > ]{Jy,g. (20)

B. Particle Swarm Optimization

PSO is an optimization technique based on the movement and intelligence of swarms [18],
[19], [20], [21]. Its concept is in light of the simulation on the behavior of bird flocking. In the
particle swarm algorithm, the trajectory of each individual in the search space is adjusted by
dynamically altering the velocity of each particle, according to its own flying experience and
the flying experience of other particles in the search space. In the algorithm, each particle keeps
track of its coordinates in the hyperspace that are associated with the best solution (pbest), and
the global particle swarm optimizer keeps track of the overall best value obtained by any particle
(gbest) [21]. Particularly, some researches suggested that dynamic parameters can achieve better
control on the search space [22], [23]. For example, in [22], the authors have observed that the

optimal solution can be improved by varying the value of the inertia weight factor w from 0.9 at
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the beginning of the search to 0.4 at the end of the search for most problems. Moreover, in [23],
for PSO with time-varying acceleration coefficients, by changing c1 from 2.5 to 0.5 and ¢2 from
0.5 to 2.5, the algorithm can control the local search more efficiently and thus can converge
more quickly. Here, the position vector z and the velocity vector v of the whole n particles in

the D dimensional search space are represented as:

=[xl 2, ad 2l ie{l,2,--- n}, de{l,2,---,D}, 21
U:[Uf7v(2i?"'7vzda'”7vg]a 2.6{1,2,"‘,71}, d€{1a277D}7 (22)

Furthermore, according to a user-defined fitness function, the best position pbest of each particle

and the fittest particle gbest found so far are denoted below:
pbest = pbest?, i€ {1,2,---,n}, de{l1,2,---,D}, (23)
gbest:pbest;l, ge{1,2,--- n}, de{1,2,---,D}, (24)

Then, the new velocities and new positions of the particles for the next fitness evaluation are

calculated from the following two equations:
vt +1) = wul(t) + errand, (pbestd(t) — (1)) + corand, (pbestj(t) —24(t)), (25)
it +1) = (1) +vi(t + 1) 5 T, (26)

where the inertia weight factor w and the acceleration coefficients ¢; and ¢y are given by the
designer, rand, and rands uniformly distributed random numbers in the range [0, 1] to represent
the stochastic behaviors, and 7}, the time interval, which equals 1 in Equation (26).
In summary, the steps of our particle swarm optimization algorithm are stated as follows:
1) Initialize each of n particles with a random position z; and a velocity v; on D dimensions
in the search space, Vi € [1,n].
2) For every particle, evaluate the desired optimization fitness function in D variables.

3) Compare the current evaluation with the previous best value (pbest;) of each particle:
If the current value < pbest;, then

pbest; = the current value, and

pbest? = the current position in D dimensions.

4) Compare the current evaluation with the previous best value (pbest,) of the group:
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If the current value < pbest,, then
g = the array index of each particle.
5) Change the velocity and position of the particle according to equations (25) and (26).
6) Change the inertia weight factor w and the acceleration coefficients ¢; and cs.

7) Repeat from Step 2 until satisfying the terminative condition.

C. Quantum Particle Swam Optimization

To further reduce the convergence time and obtain better feedback gains, we incorporate
the technique of quantum computing into our PSO algorithm. Particularly, in a quantum PSO
algorithm, a particle has to be defined based on a quantum bit [24]. Therefore, we define the
quantum particle vector P = [Py, Py, - , Py,], where m is the particle size, with the coding

based on the probability amplitude. Here, we have:

cos 0;1 cos 6,9 cos 6,
_Pi _ 7 (2 m 7 (27)
sin 0,4 sin ;9 e sin 6;,,
where n is the degree of dimensions and 6;; = 27 * rand, Vi € [1,m] and Vj € [1,n], where
rand is a random number generator that generates a uniformly distributed random number in the

range [0, 1]. Since every particle has two positions separately corresponding to quantum states

|0 > and |1 > in the search space, a particle can be expressed as follows:
Pi. = (cosb;1,co80;9, -+ ,cosby,), (28)
B = (sin 91'1, sin 01'2, R sin 02n>7 (29)

where P, is the cosine position vector and P, is the sine position vector. Besides, each particle
size in the search space is [—1, 1] in QPSO. Hence, to obtain a fitness value from the designed
fitness function, we have to do a transformation for the solution space such that the positions of

P;. and P;; can be confined to the search space of the real problem:

Xie = 51+ 0f) + (1 — )], (30)
X, = %[m(wﬂf)mxl—ﬁf)], (31)

where o is the probability amplitude of quantum state |0 > and (7 is that of state |1 >.
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Next, the movement of a particle position is implemented by the quantum rotation gate.

Specifically, we assume that the best position searched from the particle P; is the cosine position:
Py = (cos By, co8 02, -+, cosbiy,), (32)
and the global best position is:
P, = (cosby1,cos8g9, -+, cosby,). (33)

Furthermore, the updating rules of the quantum state are described as follows:

1) The update of the quantum argument:

AQH(t + ].) = WAQZJ(t) + clrl(AQZ) + 1T (A‘gg), (34)
where )
21 + 67;[]' — Gij, 9”]- — Gij < =T
A91 = «911]- — 01']', - < eilj — 91-]- <7
Gilj — eij — 2m, ‘91‘[]‘ — eij > T
‘ (35)

.
2m + ng — 92-]-, 99]' — 92']' < -7

Aeg = ng — Hijv - < ng — Gij <T

ng—ﬁij—Qﬂ, ng—@;j>7r.

2) The update of the quantum probability amplitude based on the quantum rotation gate:

cos(0;(t +1)) | | cos(Aby(t+1)) —sin(A;;(t+1)) cos(6;;(t))
sin(6;;(t + 1)) N sin(Ag,;(t + 1)) cos(Ab;;(t+1)) sin(0;;(t))
- (36)
As a result, the new positions of particle P; become:
f)ic = (COS(@H (t) + Aﬁﬂ(t + 1)), s ,COS(@in(t) + Agzn(t + 1))), (37)

Moreover, a lack of particle diversity in a search process is often the reason of making PSO
converge at a local minimum. So we add a mutation operator in our QPSO algorithm and then

decide whether to change according to a mutation probability to avoid premature convergence:
01 cos(6;;) sin(6;;) cos(5 — 0y5)

= = . (39)
10 Sin(&z‘j> COS(@ij) sin(g — 02])
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10

Last but not least, the steps of the proposed QPSO algorithm are summarized below:

1) Initialize the quantum particle vector for particles according to (27).

2) Do a transformation of the solution space based on (28) and (29) for calculating the
fitness value from the defined fitness function, and then update the previous best value of
the particle along with the previous best value of the group.

3) Update the particle states according to (35) and (36).

4) With a mutation probability, perform a mutation based on (39).

5) Repeat from Step 2 until satisfying the terminative condition.

D. Fitness Function

To solve an optimization task with given constrained conditions, one of the approaches to
handle this problem has been developed in [25]. However, such an approach is under the
assumption that the fitness function is differentiable. Also, the algorithm is complex due to the
augmented Lagrangian. Therefore, the authors in [26] proposed another simple way to handle
PSO algorithms under various constraints. More specifically, the fitness function with multiple
constraint conditions is mathematically formulated as follows:

minimize f(z), F ={z € R"| h(z) < 0}, (40)

zeF

where I denotes the feasible region and h(z) is the constraint function. Note that if F' is not
empty, the minimum value of the fitness function is the optimal solution under the constrained
conditions. Hence, to achieve this end, it is necessary to find the virtual objective function f,(x)

that satisfies the two properties below:
1) fu(x) <0,VzeF.
2) folza) < fo(mp) for z, < my,.

There are several ways to choose f,(z), one possible candidate is:
fo(z) =tan™! f(x) — /2. (41)

With the above virtual objective function, the fitness function with multiple constraint conditions

shown in (40) is accordingly modified as:

hmaa:<x)7 if hmaﬂc(x) >0

minimize f,,(x), fn(z) = = “2)
cRn s fo(2), otherwise
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where A4, () is the maximum value among all entries of h(z) in (40).

In light of the foregoing technique, we begin to design the required fitness function for our
algorithm. First, according to the discussion in subsection II.B, we know that we need the position
vector x, which contains six feedback gains. Second, we incorporate such six feedback gains
into the semi-autonomous driver assistance system to obtain values of the steering angles and
tracking errors between the reference path and tracking path by simulation. Third, we define the

constraint function as:

W) = |e(@)] = iim, (43)

where ¢(z) denotes the value of the steering angle gotten by simulation and y;,,, is the limit
of the steering angle of the real car. Therefore, the original fitness function f(z) modulated by

the tracking errors becomes:

fz) = sum((ex(x))* + (e, (x))?), (44)

where function sum() is used to calculate the sum, and e,(x) and e,(x) denote values of the
tracking errors between the reference path and tracking path in the z and y directions gotten by
simulation, respectively. Then we can calculate by (42) the best fitness value for changing the
velocity and position of the particle. Below, the steps of the designed fitness function are listed:

1) Set the limit of the steering angle.

2) Obtain values of the steering angles and the tracking errors by simulation.

3) Calculate the maximum value of the constrain function h(z) in (43).

If hppae(z) > 0, then
The fitness value = h,,0. ().

Else
Calculate the value of the original fitness function f(z) by (44), and
Calculate the value of the virtual objective function f,(x) by (41), and
The fitness value = f,(x).
4) Return the fitness value to the PSO algorithm.
Although we have not added the constraint function on feedback gains yet here, the fitness
values can be obtained in a situation that the corresponding feedback gains almost satisfy the

conditions of (19) and (20). The reason is that the PSO algorithm will search the feedback
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gains where f(z) has the minimum value. However, the previous situation does not hold all the
time. This means that if there does not exist any solution under the constraint condition, the
fitness values will not be calculated from f(x). Therefore, the feedback gain may not satisfy the
stable conditions at this case. To guarantee the system stability, it is necessary to incorporate the
constraint function of feedback gains into the fitness function. Moreover, the feedback gains are
sometimes unstable in the beginning because the range of the position vector x is not limited.
Since in simulation an error will occur when the system is unstable, we have to identify whether
the feedback gains satisfy the stable conditions of (19) and (20) to avoid such a situation at first.

According to the previous discussions, we modify the foregoing fitness function. In particular,
if the feedback gains make the system unstable, we do not feed it to the simulation. Instead, we

use the worse fitness values from the stability fitness function f,(z) below:
fs(x) =90 — @i + |min(x)|. (45)

For example, if we set the limit value of the steering angle to 30 degrees, the maximum value
of hyae(z) will be 60 degrees because the maximum value of ¢(x) is smaller than 90 degrees.
In the previous equation, the term |min(z)| means that the smaller the minimum value of the
minus feedback gain is, the worse the fitness value becomes. Subsequently, we add the stability

conditions to the fitness function with multiple constraint conditions presented in (42):

o fs(x),if x does not satisfy stability conditions
minimize f,,s(z), r e R", fms(z) =
fm(x), otherwise

(46)
As a result, the steps of the final fitness function are summarized as follows:

1) Set the limit value of the steering angle.
2) Identify whether the feedback gain satisfies conditions of (19) and (20) or not.
If not, then
Calculate values of the stability fitness function f,(x) by (45), and
The fitness value = f,(x), and jump to Step 5.

3) Obtain values of the steering angles and the tracking errors by simulation.

4) Calculate the maximum value of the constraint function h(z) in (43).
If Appaz(x) > 0, then

The fitness value = h,,0. ().
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Else
Calculate the value of the original fitness function f(z) by (44), and
Calculate the value of the virtual objective function f,(z) by (41), and
The fitness value = f,(z).

5) Return the fitness value to PSO algorithm.

IV. SIMULATION STUDY

In the beginning, we describe the settings of our simulation experiments below:
1) The initial conditions of the vehicle:

a) The speed v, is set at 2.8m/s.

b) Three cases about the distance [ between the front and rear axles are considered:
0.256m, 2.56m and 5.12m.

c) Three cases about the limit of the steering angle are considered: 7/2, /3 and 7/6.

d) The initial positions are z(0) = —1.5m, y(0) = 2m, and 6(0) = 7 /4.

2) The parameters of PSO:

a) The particle size is 20 and each particle contains 6 feedback gain values with z; =
kz0s kus ku2y kyos by, kyo| and @ = [z1, 29, -+, T90].

b) The inertia weight w 1s 0.9 at the beginning of the search and then down to 0.4.

c) The acceleration coefficient c; is 2.5 at the beginning of the search and then down
to 0.5.

d) The acceleration coefficient ¢, is 0.5 at the beginning of the search and then up to
2.5.

e) The iteration step is 60.

3) The reference trajectories:

a) The simple straight line: * = 7m, y = 1m.

b) The quadratic curve: x = 7m, y = °m.

c) The polynomial curve, as shown in (6), with a9 =0, a1 =1, a2 =0, ay3 = 0,
aza = 0, azs = 0, az6 = 0, ay7 = 0, ay0 = 0.000411483579975819, a, =
—0.0239451269963952, a, » = 0.0686056335377441, a, 3 = —0.0339753187056231,
ay4 = 0.0184493748597237, a, 5 = —0.00337671401022544, a, ¢ = 0.000249281347661342
and a, 7, = —6.52498884905689 x 10~.
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Now we present the simulation results for different kinds of reference trajectories. First, the
simulation results for tracking the simple straight line with different limits on the steering angle
are shown in Figure 2. In particular, the reference trajectory starts from the point (2, ,.¢(0) =
0,Yrrer(0) = 1) and arrives at the point (z,,.f(T) = 10,y,.f(T) = 1), where T' = 10s is the
total driving time. Next, the simulation results for tracking the quadratic curve with different
limits on the steering angle are shown in Figure 3. Here, the reference trajectory starts from the
point (2 ,¢£(0) = 0,y ,er(0) = 0) and arrives at the point (2, ef(1) = 10, Yrrer(T) = 100).
Finally, the simulation results for tracking the polynomial curve with different limits on the
steering angle are shown in Figure 4. For this curve, the reference trajectory starts from the point
(Zrref(0) = 0, Y7 rer(0) = 0) and arrives at the point (2, ,.¢(1) = 10, y, (1) = 3.5). Note that
in our system, after the vehicle has caught the reference trajectory, the errors produced by our
system will soon become nearly zero. Hence, by imposing deviation between the reference and
the track trajectories on the simulation at the beginning, we can show the ability of our system
that can help the vehicle catch the reference trajectory quickly. As expected, we can find that
all the tracking actions along the considered three reference trajectories are achieved for each
limit of the steering angle, with similar geometries to the corresponding real paths. Particularly,
in these simulations, the time that the vehicle needs to catch the reference trajectories is about
one second when the limit of the steering angle is 7/2. Even with the strictest steering angle
limit 7 /6, the time required to catch the reference trajectories is only about three seconds. In
summary, the larger the limit of the steering angle is, the better the performance is. Still, for a
smaller steering angle limit, the tracking trajectory is smooth. On the other hand, we also show
the convergence times of the PSO and QPSO algorithms for the foregoing three cases in Figure
5. We can see that all results demonstrate that the QPSO algorithm has better performance than
the PSO one. In other words, the QPSO method can find the optimal feedback gain in a more
efficient manner than the PSO one.

Last but not least, we utilize two simulation results to show two more critical properties of
our system. First, the simulation results presented in Figure 6 demonstrate that our system can
tolerate finite disturbances very well. Specifically, in each of these experiments, the vehicle starts
at the beginning point of the reference trajectory. Then we add a disturbance on the vehicle,
causing it to turn 90 degrees from the current direction suddenly. Note that that if the vehicle is

with a larger steering angle limit, the deviation between the reference and track trajectories can be
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Fig. 2.
straight line for ¢yim = 7/3; (¢) The tracking performance of the simple straight line for i = 7/6.

Fig. 3.

curve for viim = 7/3; (c) The tracking performance of the quadratic curve for ;;m = /6.
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(a) The tracking performance of the simple straight line for ;. = m/2; (b) The tracking performance of the simple

path (reference )| | |
ath ( track ) [ R

(a) The tracking performance of the quadratic curve for y;m = 7/2; (b) The tracking performance of the quadratic

Fig. 4. (a) The tracking performance of the polynomial curve for ¢i;m = 7/2; (b) The tracking performance of the polynomial

curve for ¢y;m = 7/3; (c) The tracking performance of the polynomial curve for @i, = /6.
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Fig. 5. (a) Convergence times for the simple straight line; (b) Convergence times for the quadratic curve; (c) Convergence

times for the polynomial curve.

adjusted much sooner. Hence, we only consider here that the vehicle is with the strictest steering
angle limit, i.e. 7/6. Based on the simulation results, we can know that after the vehicle deviates
from the reference trajectory due to a disturbance, our algorithm can direct the vehicle back to
the reference trajectory efficiently, even with the strictest steering angle limit. On the other hand,
the simulation results shown in Figure 7 demonstrate that our system can be applied to vehicles
of different sizes. Normally, the distance [ between the front and rear axles of most sedans is
between 2.4m and 3m. Therefore, beside the original scenario [ = 0.256m, we further consider
two more scenarios: the ten times and the twenty times of the original scenario. Obviously, such
a range can cover most real vehicles. Also, we only consider here that the vehicle is with the
strictest steering angle limit 7/6. Based on the simulation results, we can see that under these
three different values of the distance [ between the front and rear axles, our algorithm can direct

the vehicle to catch the reference trajectory efficiently, even with the strictest steering angle limit.

V. CONCLUSIONS

In the paper, based on the techniques of flatness and particle swarm optimization, we have
introduced a steering support controller for the semi-autonomous driver assistance system that
can help drivers improve safety and drive comfort. With our controller, the vehicle can catch the
designed trajectory quickly, even upon a deviation from the designed trajectory. Furthermore,
after the vehicle has caught the designed trajectory, our system will not deviate from it nearly.

This means that our controller can guarantee the system stability as well as achieving tracking
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Fig. 6. (a) The tracking performance of the simple straight line with the disturbance for ¢i;m = 7/6; (b) The tracking
performance of the quadratic curve with the disturbance for ;. = 7/6; (c) The tracking performance of the polynomial curve

with the disturbance for y;m = /6.
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Fig. 7. (a) The tracking performance of the simple straight line for | = 0.256m and ¢;;,m, = 7/6; (b) The tracking performance
of the simple straight line for [ = 2.56m and ¢;;m = 7/6; (c) The tracking performance of the simple straight line for I = 5.12m
and @yim = /6.

control for the system. Particularly, from the simulation experiments, we can see that even with
the strictest steering angle limit, the time required by the vehicle to catch the reference trajectory
is still small and the tracking trajectory is also smooth. Besides, our system can tolerate finite
disturbances very well and can also be applied to vehicles of different sizes. More importantly,
according to the simulation results, the QPSO algorithm has better performance than the classical
PSO one in finding the optimal feedback gains for the controller. As for the future work, since
our current control system can work only when the driver is independent from the system, it is
interesting to develop a driver assistance system that can estimate the behavior of the driver to

handle conflicts between both sides.
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