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    Abstract     Cancer chemoprevention is employed to block or reverse the progression 
of malignancies. To date, several thousand agents have been found to possess 
 chemopreventive activity. One such compound is capsaicin, a component of chili 
peppers that exhibits anti-growth activity against various cancer cell lines. Capsaicin 
exerts its cytotoxic action by activating an array of signaling mechanisms, including 
generation of reactive oxygen species (ROS) as messengers to initiate apoptosis, a 
type I programmed cell death. However, numerous in vitro and in vivo studies have 
suggested that capsaicin also possesses tumor-promoting activity; possibly in part, 
refl ecting activation of autophagy, an alternative (type II) programmed death 
 process. This article reviews the recent literature on the paradoxical effects of 
 capsaicin on cancer growth and the diverse capsaicin-induced signaling pathways 
that lead to cell death or tumorigenesis   . Some of the most common cellular targets 
of capsaicin are also discussed.  

  Keywords     Apoptosis   •   Autophagy   •   Cancer   •   Capsaicin   •   Cell death   •   Oxidative 
stress   •   Proliferation   •   Transient receptor potential vanilloid type 1 (TRPV1)   
•   Tumor-associated NADH oxidase (tNOX; ENOX2)  

  Abbreviations 

   ATM    Ataxia telangiectasia mutated   
  C/EBP    CCAAT/enhancer-binding protein   
  DHC    Dihydrocapsaicin   
  DISC    Death-inducing signaling complex   

    Chapter 7   
 The Cancer-Suppressing and -Promoting 
Actions of Capsaicin 

             Pin     Ju     Chueh    

        P.  J.   Chueh (*)     
  Graduate Institute of Biomedical Sciences ,  National Chung Hsing University , 
  No. 250 Kuo-Kung Rd. ,  Taichung ,  40227   Taiwan, Republic of China   
 e-mail: pjchueh@dragon.nchu.edu.tw  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Chung Hsing University Institutional Repository

https://core.ac.uk/display/41700371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


132

  EGFR    Epidermal growth factor receptor   
  EMT    Epithelial-mesenchymal transition   
  ER    Endoplasmic reticulum   
  ERK    Extracellular signal-regulation kinase   
  G153ADD153/CHOP    Growth arrest and DNA damage inducible gene   
  GFP    Green fl uorescent protein   
  IL    Interleukin   
  JNK1    c-Jun N-terminal kinase 1   
  MAPKs    Mitogen-activated protein kinases   
  MEFs    Mouse embryo fi broblasts   
  NF-κB    Nuclear transcription factor κB   
  NO    Nitric oxide   
  PI3K    Phosphoinositide 3-kinase   
  PKCα    Protein kinase Cα   
  ROS    Reactive oxygen species   
  shRNA    Small interfering (hairpin) RNA   
  STAT    Signal transducer and activator of transcription   
  TNFα    Tumor necrosis factor-α   
  tNOX; ENOX2    Tumor-associated NADH oxidase   
  TPA    Tetradecanoylphorbol-13-acetate   
  TRAIL    Tumor necrosis factor-related apoptosis-inducing ligand   
  TRPV1    Transient receptor potential vanilloid type 1   
  VEGF    Vascular endothelial growth factor   

1           Introduction 

 Chili is commonly used in Mexican foods and now has become an indispensable 
element in a variety of cuisines. Capsaicin (8-methyl- N -vanillyl-6-nonenamide), a 
pungent component of chili peppers, is consumed by humans all over the world for 
its fl avor and spice taste (Dorai et al.  2004 ). Capsaicin has long been used as a pain 
reliever recognized for its ability to reduce infl ammatory heat and noxious chemical 
hyperalgesia (Agakichiev et al.  2004 ). However, recent progress has focused on the 
chemopreventive effects of capsaicin, refl ecting its anti-growth activity against vari-
ous cancer cell systems, including human leukemic (Ito et al.  2004 ; Lawen et al. 
 1994 ; Wolvetang et al.  1996 ), prostate (Mori et al.  2006 ; Sanchez et al.  2006 ,  2007 ), 
colon (Kim et al.  2004 ,  2007 ), hepatoma (Baek et al.  2008 ; Lee et al.  2004 ), breast 
(Kang et al.  2003 ; Morré et al.  1995 ), and gastric cancer (Kim et al.  1997 ; Wang 
et al.  2009 ,  2011 ). 

 Capsaicin exerts its cytotoxic action by activating an array of signaling mecha-
nisms, including generation of reactive oxygen species (ROS) (Ito et al.  2004 ; 
Macho et al.  2003 ; Zhang et al.  2008 ), up-regulation or activation of p53 (Ito et al. 
 2004 ; Mori et al.  2006 ), suppression of the signal transducer and activator of tran-
scription (STAT) family of proteins (Bhutani et al.  2007 ), and NF-κB pathways 
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(Mori et al.  2006 ; Singh et al.  1996 ; Kim et al.  2003 ). The cytotoxicity of capsaicin 
is mainly associated with induction of type I programmed cell death—apoptosis—
leading to inhibition of cancer growth. Accumulating evidence supports the idea 
that capsaicin also mediates autophagy, a type II programmed cell death. However, 
capsaicin-mediated autophagy may play a role in sustained cell survival (Choi et al. 
 2010a ; Oh and Lim  2009 ; Yoon et al.  2011 ). Moreover, despite being commonly 
considered a chemopreventive agent, capsaicin has demonstrated mutagenic proper-
ties (Nagabhushan and Bhide  1985 ) as well as an ability to enhance prostate cancer 
cells proliferation (Malagarie-Cazenave et al.  2009 ). Furthermore, a tumor- 
promoting effect of capsaicin has been shown in animal and human studies (Toth 
and Gannett  1992 ; Agrawal et al.  1986 ; Serra et al.  2002 ; Archer and Jones  2002 ; 
Bode and Dong  2011 ), suggesting paradoxical actions of capsaicin in tumorigene-
sis. This article briefl y reviews the recent literature on the suppressive and promot-
ing effects of capsaicin on cancer growth as well as the signaling pathways that 
mediate its actions. In addition, some of the most common cellular targets of capsa-
icin are also discussed in light of their potential to account for the paradoxical 
effects of capsaicin on cancer growth.  

2     Cellular Targets of Capsaicin 

 Capsaicin acts on an array of cellular targets, several of which have been identifi ed, 
and initiates a number of signaling pathways. Numerous reports have demonstrated 
that capsaicin is differentially cytotoxic toward cancer cells and non-cancerous cells 
(Lo et al.  2005 ; Morré et al.  1995 ; Sánchez et al.  2006 ; Zhang et al.  2003 ); however, 
the specifi c target(s) of capsaicin and the resulting mechanisms that underlie this 
differential cytotoxicity are not yet fully understood. In this section, the focus is on 
the two most-often mentioned protein targets of capsaicin—transient receptor 
potential vanilloid type 1 (TRPV1) and tumor-associated NADH oxidase (tNOX; 
ENOX2) — and their role in capsaicin-induced cellular responses. 

2.1     Transient Receptor Potential Vanilloid Type 1 

 TRPV1, a member of the TRP family of non-selective cation channels, is activated 
by several noxious stimuli, including hear and voltage, as well as by vanilloid 
ligands. Notable in the current context, TRPV1 has been identifi ed as a capsaicin 
receptor (Nagy et al.  2004 ). TRPV1 is mainly expressed in the spinal cord and tri-
geminal ganglia and plays a role in the sensation of pain (Julius and Basbaum  2001 ). 
Because capsaicin functions as an agonist that transiently activates and then desen-
sitizes TRPV1, it is commonly used as pain reliever. However, TRPV1 is also 
expressed in diverse tissues, suggesting that a broader context for its functions, and 
the actions of capsaicin, beyond pain perception. 
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 Several studies provide support for the idea that capsaicin exerts its anticancer 
actions through interaction with the TRPV1 (Amantini et al.  2009 ; Kim et al.  2006 ). 
For example, capsaicin elicits apoptosis in U373 glioma cells, which express  relative 
high levels of TRPV1, but not in U87 glioma cells, which express low levels of 
TRPV1, suggesting TRPV1-dependent apoptosis (Amantini et al.  2007 ). Moreover, 
capsaicin induces up-regulation of the death receptors Fas/CD95 and promotes Fas/
CD95-TRPV1 co-clustering, which leads to both extrinsic and intrinsic apoptotic 
pathways (Amantini et al.  2009 ). Capsaicin also activates ataxia telangiectasia 
mutated (ATM) kinase, which, in turn, phosphorylates serine residues of p53, 
 resulting in enhanced transcription of Fas/CD95, establishing a novel connection 
between the ATM/DNA-damage-response pathway and Fas/CD95-mediated 
 pathways  triggered by TRPV1 (Amantini et al.  2009 ). TRPV1 is also involved in 
capsaicin- induced calcium entry, ROS generation, mitochondrial membrane 
 depolarization and, ultimately, cell death in rat synovial fi broblasts (Hu et al.  2008 ). 
Interestingly, capsaicin-induced TRPV1-mediated apoptosis was recently reported 
to cause  calcium release from the endoplasmic reticulum (ER) and increase 
 transcriptional activation of growth arrest and DNA damage inducible gene 
(GADD153/CHOP), leading to ER-stress-mediated cell death (Thomas et al.  2007 ). 
However, TRPV1- independent mechanisms have also been documented (Mori et al. 
 2006 ; Morré et al.  1995 ), indicating that multiple molecular targets are involved in 
capsaicin-induced apoptosis. 

 Surprisingly, TRPV1 has been demonstrated to interact with the epidermal 
growth factor receptor (EGFR), a receptor tyrosine kinase that is up-regulated in 
many human epithelial cancers; this interaction leads to EGFR degradation and 
accounts for the anti-cancer effects attributed to TRPV1 (Bode et al.  2009 ). 
Additionally, TRPV1-knockout mice develop a striking increase in skin carcinogen-
esis following exposure to the phorbol ester, tetradecanoylphorbol-13-acetate 
(TPA), further supporting the suppressive role of TRPV1 in tumorigenesis (Bode 
et al.  2009 ). In contrast, recent evidence suggests that TRPV1 mRNA and protein 
expression are markedly down-regulated in poorly differentiated and undifferenti-
ated urothelial cancer cell lines (Amantini et al.  2009 ), and TRPV1 is also reported 
to contribute to invasiveness and malignancy progression (Prevarskaya et al.  2007 ). 
Collectively, these fi ndings provide a basic framework for understanding the TRPV1 
protein and its association with capsaicin-induced inhibition of cancer.  

2.2     Tumor-Associated NADH Oxidase 

 Capsaicin is one of several anticancer compounds that inhibit activity of tumor- 
associated NADH oxidase (tNOX; ENOX2) in association with a reduction in can-
cer cell growth (Hedges et al.  2003 ; Morré et al.  1995 ,  1997b ,  2000 ,  2007 ). tNOX 
belongs a member of a family of growth-related NADH (or hydroquinone) oxidases 
(Bruno et al.  1992 ; Chueh  2000 ; Chueh et al.  2002a ). Unlike the NADH oxidase 
activity identifi ed in normal rat liver plasma membranes (CNOX; ENOX1), which 
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is responsive to growth factors and hormones, tNOX isolated from rat hepatoma 
cells is constitutively active (Bruno et al.  1992 ). Further studies have revealed that 
tNOX is present in numerous cancer cell lines, including those derived from breast, 
cervix, colon, lung, and stomach cancers, as well as leukemias (Morré et al.  1995 ; 
Chen et al.  2006 ; Liu et al.  2008 ; Mao et al.  2008 ; Wang et al.  2009 ,  2011 ); it is also 
detected in the sera of cancer patients but not in those of healthy volunteers, sug-
gesting its clinical relevance (Chueh et al.  1997 ; Morré et al.  1997a ; Morré and 
Reust  1997 ). tNOX cDNA has been cloned (Chueh et al.  2002a ), and functional 
motifs of tNOX have been identifi ed, including a quinone-binding site, an adenine- 
nucleotide-binding site, and a CXXXC cysteine pair that is important for tNOX 
activity (Chueh et al.  2002b ). 

 Interestingly, capsaicin preferentially inhibits tNOX activity in cancer cells, 
resulting in apoptosis induction and reduced growth, while having little effect in 
non-cancerous cells (Morré et al.  1995 ). Chueh et al. used antisense oligonucle-
otides to down-regulate tNOX and found that tNOX defi ciency decreases HeLa cell 
colony formation (Chueh et al.  2004 ). A subsequent study utilizing a small interfer-
ing (hairpin) RNA (shRNA) technique that effectively reduced tNOX protein 
expression showed that tNOX knockdown attenuates cell proliferation in HeLa cells 
(Liu et al.  2008 ). A key role for tNOX in regulating cell growth is further supported 
by the observation that the growth rate of mouse embryo fi broblasts (MEFs) from 
tNOX-overexpressing transgenic mice is approximately twice that of wild-type 
cells (Yagiz et al.  2007 ). Interestingly, Mao et al. suggested that tNOX protein is 
suppressed during capsaicin exposure and that tNOX down-regulation sensitizes 
cancer cells to stress-induced apoptosis, confi rming that tNOX is required for trans-
formed cell survival (Mao et al.  2008 ). Similarly, another report demonstrated that 
capsaicin induces a cytotoxic effect and tNOX down-regulation in SCM-1 gastric 
cancer cells through an apoptotic mechanism (Wang et al.  2009 ). However, the cyto-
toxic effects of capsaicin on other gastric cancer cell lines appear somewhat more 
complicated. As reported recently, capsaicin enhances oxidative stress and tNOX 
down-regulation in association with mitochondria-dependent apoptosis, leading to 
growth inhibition of SNU-1 cells, derived from a poorly differentiated human gas-
tric carcinoma. In contrast, capsaicin is largely ineffective in inducing oxidative 
stress and tNOX protein repression in TMC-1 cells, a metastatic gastric carcinoma 
line; as a consequence, apoptosis induction is largely nonexistent and cell survival 
is augmented (Wang et al.  2011 ). Moreover, forced tNOX down-regulation restores 
capsaicin-induced apoptosis in TMC-1 cells, strongly supporting an essential role 
for tNOX in cancer cell growth (Wang et al.  2011 ). These results suggest that the 
paradoxical effects of capsaicin on cell growth are also refl ected in its effects on 
tNOX protein expression. 

 Using shRNA, Liu and colleagues demonstrated that knockdown of tNOX 
expression attenuates HeLa cell migration by inhibiting membrane association 
of Rac protein (Liu et al.  2008 ). Conversely, tNOX overexpression in non-can-
cerous MCF-10A cells was shown to result in the acquisition of invasivity, an 
aggressive characteristic of cancer cells, confi rming a key role for tNOX in cell 
migration (Chueh et al.  2004 ). These various lines of evidence suggest that tNOX 
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acts as a critical regulator of physiological and pathological outcomes in response 
to  biological cues involved in redox signaling, cell proliferation, survival, and 
tumor progression.   

3     Capsaicin-Induced Signaling Pathways 

 Capsaicin owes its reputation as a remarkable chemopreventive compound to its 
selective cytotoxicity toward malignant cells (Lo et al.  2005 ; Morré et al.  1995 ; 
Sanchez et al.  2006 ; Zhang et al.  2003 ). The differential susceptibility of cancer 
cells to capsaicin may result from modulation of diverse signaling pathways that 
contribute to cell death or sustained cell survival. Moreover, complicated cross-talk 
among such signaling pathways modulates cellular outcomes. In this section, the 
focus is on the signaling pathways stimulated by capsaicin. 

3.1     Reactive Oxygen Species 

 Of the diverse array of cellular mechanisms involved in capsaicin-induced 
responses, one that is often highlighted is oxidative stress, which can lead to the 
subsequent loss of cell function and, ultimately, apoptosis (Ito et al.  2004 ; Sánchez 
et al.  2007 ; Lee et al.  2004 ; Zhang et al.  2008 ). The main contributor to cellular 
oxidative stress is the ROS, including hydrogen peroxide (H 

2
 O 

2
 ), hypochlorous 

acid (HOCl), and free radicals such as the hydroxyl radical (·OH) and the superox-
ide anion (O 

2
  − ). Short-lived free radicals do not penetrate the plasma membrane 

easily and react rapidly with other molecules, consequently leaving little possibil-
ity for specifi c identifi cation. On the other hand, hydrogen peroxide readily dif-
fuses across the membrane and can function as a second messenger in redox 
signaling, mediating diverse cellular responses including cell proliferation, differ-
entiation, and migration (Lambeth  2004 ). Capsaicin-induced hydrogen peroxide 
generation has also been shown to be an upstream event in capsaicin-induced 
apoptosis—specifi cally, mitochondria- dependent apoptosis—in gastric cancer 
SNU-1 cells (but not in TMC-1 cells), leading to decreased viability and increased 
apoptosis (Wang et al.  2011 ). As notes above, these divergent effects of capsaicin 
on the growth of gastric cancer cells parallel its effects on tNOX expression; the 
functional importance of tNOX in this context is highlighted by the demonstration 
that forced tNOX down- regulation restores capsaicin-induced growth inhibition in 
TMC-1 cells (Wang et al.  2011 ). 

 ROS are highly reactive molecules that are produced primarily throughout the 
mitochondrial electron transport chain (Finkel  2003 ; Balaban et al.  2005 ). Capsaicin 
has been shown to induce apoptosis in pancreatic cancer cells in association with 
ROS generation and mitochondrial disruption (Zhang et al.  2008 ). More specifi -
cally, capsaicin obstructs mitochondrial electron transfer at complex I, possibly by 
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acting at or close to coenzyme Q binding (Hail  2003 ; Degli Esposti  1998 ). This 
disruption in electron transfer generates non-enzymatic ROS (Hail and Lotan  2009 ). 
Furthermore, Pramanik et al. demonstrated that capsaicin inhibits mitochondrial 
complex I and complex III activity and reduces ATP levels concurrently with 
decreased catalase and glutathione peroxidase, resulting in ROS production and 
apoptosis in pancreatic cancer cells, but not in normal HPDE-6 cells (Pramanik 
et al.  2011 ). Both in vitro and in vivo studies support a role for ROS generation, 
dissipation of the mitochondrial inner transmembrane potential, and caspase-3 acti-
vation in the action of capsaicin against androgen-independent prostate cancer PC-3 
cells (Sanchez et al.  2006 ). 

 In addition to mitochondria, various cellular compartments and numerous 
enzymes also produce ROS, including peroxisomes (Schrader and Fahimi  2006 ) 
and cyclooxygenases (Pathak et al.  2005 ). Cyclooxygenase, a ROS-generating 
enzyme, has been shown to be involved in capsaicin-induced apoptosis in human 
neuroblastoma cells (Lee et al.  2002 ). Redox reactions at the membrane also play 
an important role in the control of many mechanisms that regulate cellular 
responses, such as cell proliferation, differentiation, and migration. The plasma 
membrane oxidoreductase system is proposed to act as a redox sensor that, in 
combination with growth factors, regulates cell proliferation and apoptosis; inhi-
bition of this system by capsaicin can trigger Bcl-2-mediated apoptosis 
(Wolvetang et al.  1996 ). Moreover, capsaicin-induced apoptosis is mediated by 
the NADPH oxidase- modulated ROS production in HepG2 human hepatoblas-
toma cells (Lee et al.  2004 ).  

3.2     Other Signaling Pathways 

 Capsaicin has been shown to enhance p53 gene expression in SNU-1 stomach can-
cer cells (Kim et al.  1997 ). It also triggers G1-phase arrest and apoptosis, leading to 
suppression of the growth of leukemic cells, but not normal bone marrow mono-
nuclear cells. The signaling involved with this capsaicin-induced apoptosis is asso-
ciated with intracellular ROS production (Ito et al.  2004 ). Alternatively, capsaicin 
induces elevation nitric oxide (NO) production, subsequent Mdm2 down-regulation 
and p53 activation, leading to Bax up-regulation and mitochondrial-dependent 
apoptosis (Kim et al.  2009 ). Capsaicin also inhibits constitutive activation of STAT3 
in multiple myeloma cells in a dose- and time-dependent manner. This block of 
STAT3 activation by capsaicin subsequently alters protein expression of cyclin D1, 
Bcl-2, Bcl-xL, survivin, and vascular endothelial growth factor, resulting in G1 cell- 
cycle arrest and apoptosis (Bhutani et al.  2007 ). 

 The transcription factor, nuclear transcription factor κB (NF-κB), has drawn 
considerable attention for its importance in the mechanism of capsaicin action 
because the expression of many genes associating with the suppression of apop-
tosis and induction of cellular transformation, proliferation, invasion, metastasis, 
chemoresistance, and infl ammation (Garg and Aggarwal  2002 ; Kumar et al. 

7 The Cancer-Suppressing and -Promoting Actions of Capsaicin



138

 2004 ; Shishodia and Aggarwal  2004 ). Capsaicin enhances the protein stability of 
IκB, an inhibitor of NF-κB, thereby repressing NF-κB activation (Singh et al. 
 1996 ). Similarly, capsaicin inhibited TPA-induced activation of NF-κB by 
 blocking degradation of IκB and preventing the subsequent nuclear translocation 
of NF-κB/p65 in mouse epidermis cells. The repression of NF-κB by capsaicin 
leads to a reduction in neoplastic transformation and progression (Han et al. 
 2001 ). TPA-stimulated activation of NF-κB is also reduced by capsaicin in 
human promyelocytic leukemia cells (Han et al.  2002 ). Moreover, capsaicin 
inhibits tumor necrosis factor-α (TNFα)- and TPA-induced binding of AP-1 and 
NF-κB to their specifi c DNA binding sites in human chronic myelogenous 
 leukemia cells (Duvoix et al.  2004 ). 

 Capsaicin selectively induced apoptosis in H- ras -transformed human breast 
 epithelial cells, an action accompanied by marked activation of the  mitogen-activated 
protein kinases (MAPKs), c-Jun N-terminal kinase 1 (JNK1) and p38, and 
 deactivation of extracellular signal-regulation kinase (ERK) (Kang et al.  2003 ). 
Furthermore, experiments utilizing an animal model have demonstrated that 
 capsaicin is involved in the reduced proliferation and suppressed activation of ERK 
and c-Jun in pancreatic carcinogenesis (Bai et al.  2011 ). However, studies  employing 
specifi c inhibitors have shown that capsaicin induces activation of ERK, 
 phosphoinositide 3-kinase (PI3K)/Akt and protein kinase Cα (PKCα) cascades, 
subsequently, triggering secretion of the pro-infl ammatory cytokines, TNFα and 
interleukin (IL)-6, which synergize to decrease the cell viability of PC-13 prostate 
cancer cells (Malagarie-Cazenave et al.  2011 ). Another signaling pathway that 
might account for the anticancer effect of capsaicin is activation of phase I and 
phase II enzymes, which effectively detoxify carcinogens during experimental lung 
cancer (Anandakumar et al.  2009 ). 

 Capsaicin also impacts cell migration. In B16F10 melanoma cells, capsaicin was 
shown to signifi cantly inhibit migratory activities without showing apparent cyto-
toxicity. This capsaicin-induced reduction in cell migration was correlated with 
PI3-K/Akt/Rac1 signaling (Shin et al.  2008 ). A recent study indicated that capsaicin 
inhibits vascular endothelial growth factor (VEGF)-induced p38 MAPK and Akt 
activation in human vascular endothelial cells, thus inhibiting VEGF-stimulated 
angiogenesis (Min et al.  2004 ).   

4     Capsaicin in Programmed Cell Death 

 Physiological or programmed cell death is a closed regulated process, as opposed 
to necrosis, also known as uncontrolled cell death. Programmed cell death, 
including apoptosis (type I) and autophagy (type II), has attracted considerable 
attention as an important therapeutic target for many diseases, including cancer. 
Capsaicin has been shown to induce both apoptosis and autophagy; whether the 
net effect of these actions is decreased cell growth or enhanced cell survival is a 
central theme in this review. 
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4.1     Apoptosis 

 Much attention has focused on apoptosis as an important cell-death pathway, especially 
for its prominent role in cancer suppression. Apoptosis is a complex process that 
occurs in response to a variety of stress stimuli. The extrinsic pathway of apoptosis 
is dependent on binding of ligands to death receptors followed by formation of a 
death-inducing signaling complex (DISC), which subsequently activates initiator 
caspase-8 and effector caspases (Wajant  2002 ). An alternative intrinsic pathway has 
also been identifi ed. This mitochondria-dependent mechanism is characterized by 
translocation of Bax/Bak to mitochondria and release of cytochrome c from mito-
chondria into the cytoplasm. These mitochondrial alterations subsequently activate 
a caspase cascade that induces an ordered series of events, culminating in degrada-
tion of the cell (Er et al.  2006 ; Kuwana et al.  2002 ; Lee et al.  2005 ; Jiang and Wang 
 2004 ; Vander Heiden and Thompson  1999 ). Capsaicin has been shown to potentiate 
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant human 
hepatocellular carcinoma cells to apoptosis through up-regulation of the cell surface 
TRAIL receptor DR5 by calmodulin-dependent protein kinase (Moon et al.  2011 ). 
Similar results were also reported in multiple malignant glioma cells, demonstrating 
that subtoxic doses of capsaicin effectively sensitize these cells to TRAIL-induced 
apoptosis via GADD153-mediated up-regulation of DR5 and down-regulation of 
the caspase inhibitor survivin (Kim et al.  2010 ). Capsaicin induces up-regulation of 
the death receptors Fas/CD95, but more importantly Fas/CD95 ligand independent, 
and triggers Fas/CD95-TRPV1 co-clustering, which results in both extrinsic and 
intrinsic apoptotic pathways (Amantini et al.  2009 ). 

 Recent fi ndings have shed light on the importance of other organelles in integrat-
ing apoptotic signaling and initiating caspase activation and apoptosis; in particular 
ER stress, characterized by the unfolded-protein response and abnormal calcium 
homeostasis, has been implied (Kaufman  1999 ; Patil and Walter  2001 ; Ferri and 
Kroemer  2001 ). One of the many proteins induced as part of the adaptive ER stress 
response is GADD153/CHOP (growth arrest and DNA damage inducible gene 
153). This member of the CCAAT/enhancer-binding protein (C/EBP) family of 
transcription factors has an essential role in regulating apoptosis (Zinszner et al. 
 1998 ; Oyadomari and Mori  2004 ; Friedman  1996 ). GADD153 functions as a tran-
scription factor that regulates the expression of a panel of genes, including the anti- 
and pro-apoptotic Bcl-2 family members, Bcl-2 and Bim, respectively, resulting in 
mitochondrial cell death (McCullough et al.  2001 ; Puthalakath et al.  2007 ). To date, 
few studies have described the relationship between GADD153 elevation and 
capsaicin- induced apoptosis (Huang et al.  2009 ; Sánchez et al.  2008 ). In the studies 
of Ip et al., capsaicin was found to induce caspase-independent pathways through 
increases in the levels of GADD153 and calcium, resulting in ER stress and apop-
tosis in human tongue cancer cells and human nasopharyngeal carcinoma cells (Ip 
et al.  2010 ,  2011 ). Moreover, capsaicin triggers ER stress, in turn, activating 
GADD153 and calpain and leading to mitochondria-dependent apoptosis in human 
breast MCF-10A cells (Lee et al.  2009 ). Theses capsaicin-induced apoptosis pro-
cesses are presumably major contributors to the anticancer properties of capsaicin.  
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4.2     Autophagy 

 Autophagy, often called type II programmed cell death to distinguish it from 
type I apoptosis processes, is a self-digestion and bulk-degradation process with 
adaptive catabolic and energy-generating features that promotes cellular sur-
vival in response to various forms of stress (Klionsky  2008 ; Yang and Klionsky 
 2010 ; Yorimitsu and Klionsky  2005 ). However, accumulating data now support 
the view that autophagy defi ciencies enhance tumorigenesis, suggesting a tumor-
suppressive function of autophagy (Liang et al.  1999 ; Mathew et al.  2009 ; 
Takamura et al.  2011 ). The fact that autophagy is induced when apoptosis is 
compromised further highlights its importance in cancer inhibition (Shimizu 
et al.  2004 ; Yu et al.  2004 ). During autophagy, cytosolic components are seques-
tered by a portion of isolated, membrane- forming autophagosomes, followed by 
fusion with lysosomes into autophagolysosomes. The contents of the autopha-
golysosomes are eventually degraded by digestive enzymes in lysosomes 
(Klionsky and Emr  2000 ). 

 To dates, only a very few studies have focused on the induction of autophagy by 
capsaicin or its derivatives. In  2008 , Oh et al. reported that a saturated structural 
analog of capsaicin, dihydrocapsaicin (DHC), induces autophagy in human colon 
and breast cancer cells, as evidenced by the presence of punctuate structures of 
green fl uorescent protein (GFP)-conjugated LC3, a marker of autophagosomes (Oh 
et al.  2008 ). These authors further suggested that catalase-regulated ROS generation 
functions as a key regulator of DHC-induced autophagy. Interestingly, blocking 
autophagy with inhibitors or using RNA interference sensitized cancer cells to 
DHC-induced apoptosis; conversely, blocking DHC-mediated apoptosis resulted in 
enhanced autophagy. Additionally, DHC-mediated autophagy is clearly associated 
with protection against apoptosis and necrosis in lung cells (Choi et al.  2010b ). 
These various lines of evidence suggest a multifaceted role of capsaicin in cell- 
death regulation. 

 Recent progress also has shed light on ER-stress-mediated autophagy, indicating 
a new pathway for autophagy induction (Ogata et al.  2006 ; Yorimitsu and Klionsky 
 2005 ). Capsaicin and DHC have been shown to induce ER stress in human lung 
epithelial fi broblast WI-38 cells; this leads to autophagy, which, in turn, plays a role 
in cell survival (Oh and Lim  2009 ). Not surprisingly, blocking DHC-mediated 
autophagy enhances apoptosis in these non-cancerous WI-38 cells (Oh and Lim 
 2009 ). In another system, capsaicin increases autophagy in MCF-7 and 
MDA-MB-231 breast cancer cell lines and is less cytotoxic toward these cells than 
toward non-transformed MCF10A cells, where it shown greater apoptotic activity, 
indicating a protective role of capsaicin-induced autophagy (Choi et al.  2010a ). A 
recent study, also the fi rst to demonstrate that capsaicin triggers genotoxicity- 
induced autophagy through ATM–mediated DNA repair, showed that the resulting 
autophagy led to chemoresistance and sustained survival of breast cancer cells 
(Yoon et al.  2011 ). In cases of capsaicin-induced autophagy, the results almost 
invariably imply that autophagy is involved in cell protection rather than cell death, 
especially in cancer cells.   
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5     Capsaicin in Tumorigenesis 

 Capsaicin is one of the most commonly used anticancer drugs owing to its  inhibitory 
effects on cell proliferation. However, data from epidemiologic studies suggest that 
capsaicin may exert dual effects—anti-tumor or tumor-promoting—depending on 
the dose (Lopez-Carrillo et al.  2003 ). Capsaicin has also been shown to act via 
EGFR signaling to function as a co-carcinogen in the TPA-induced skin cancer 
model (Hwang et al.  2010 ). Moreover, Erin et al. reported that capsaicin promotes a 
more aggressive gene-expression phenotype and represses expression of pro- 
apoptotic proteins in breast cancer cells (Erin et al.  2006 ), supporting the idea that 
capsaicin acts on other targets to activate unanticipated pathways, subsequently 
leading to tumorigenesis. 

 Tumor cell migration, which is a requirement for cancer metastasis and  invasion, 
is often associated with epithelial-mesenchymal transition (EMT), a trans- 
differentiation process in which epithelial cells lose their characteristics morphology 
and adhesive properties and acquire a mesenchymal phenotype (Cannito et al.  2010 ). 
The work of Waning et al. provides a precedent for the reinforcing effect of capsaicin 
on cell migration. These researchers demonstrated a stimulatory effect of capsaicin 
on TRPV1 channels in hepatoma cells that enhances calcium infl ux, which is impor-
tant for cell migration (Waning et al.  2007 ). Capsaicin has also been shown to stimu-
late calcium entry via TRPV4 channels, leading to a migratory  phenotype (Vriens 
et al.  2004 ). However, capsaicin induces an invasive gene- expression phenotype in 
TRPV1-null urothelial cancer cells, and TRPV1 over-expression restores the sensi-
tivity of cells to capsaicin-induced apoptosis and inhibition of capsaicin-enhanced 
invasion (Caprodossi et al.  2011 ). Seemingly, the expression and function of TRPV1 
in different types of cells affects cellular  outcome in response to capsaicin.  

6     Conclusions 

 Changes in intracellular redox homeostasis—a major signaling mechanism initiated 
by capsaicin—appear to regulate variety signaling pathways that lead to important 
cellular responses. Capsaicin, long considered a chemopreventive agent, may mod-
ulate redox signaling and subsequently produce divergent cellular outcome, from 
cell death to sustained cell survival. Much remains to be learned regarding the cel-
lular targets of capsaicin and the molecular mechanisms initiated by capsaicin that 
mediate its apoptotic/tumor-promoting effects. The fi ndings of future studies will 
assist us in understanding the biological function of capsaicin, and will possibly 
provide a rational framework for the further development of improved chemopre-
ventive strategies based on capsaicin.     
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