
An Indirubin Derivative, Indirubin-39-Monoxime
Suppresses Oral Cancer Tumorigenesis through the
Downregulation of Survivin
Wan-Yu Lo1,2,3*, Nai-Wen Chang4

1 Graduate Institute Integrated Medicine, China Medical University, Taichung, Taiwan, 2 Department of Medical Research, China Medical University Hospital, Taichung,

Taiwan, 3 Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan, 4 Department of Biochemistry, College of Medicine, China Medical University,

Taichung, Taiwan

Abstract

Oral cancer is the fourth most common cause of death from cancer in Taiwanese men. Indirubin-39-monoxime (I3M), a
potent cyclin-dependent kinase inhibitor, has therapeutic effects in other cancer cells. In this study, we carried out in vitro
assays to test cell viability, cell cycle progression, apoptosis, cell migration and invasion in this cancer type. In addition, using
an oral tumorigenic animal model, we examined target gene and protein expression using real time qPCR, immunoblotting
and immunohistochemical staining. Our results demonstrate that I3M has an anti-proliferative effect in both Cal-27 and
HSC-3 oral cancer cell lines and that treatment of Cal-27 and HSC-3 cells with I3M results in apoptosis through the activation
of cytochrome c. In addition, I3M interrupts the cell cycle in Cal-27 cells in a dose-dependent manner by arresting cells in the
G2/M phase. We also found that I3M suppresses migration and invasion in Cal-27 cells by inhibiting the expression of focal
adhesion kinase, urokinase-type plasminogen inhibitor, and matrix metalloproteinase 9. Moreover, we identified survivin as
a target protein in I3M-treated oral cancer cells. Using an oral cancer mouse model, we demonstrate that topical application
of an adhesive gel composed of I3M and poly(vinyl alcohol) (I3M/PVA) has dose-dependent anti-tumorigenic effects.
Following treatment, the expression of survivin protein and mRNA was downregulated in cancerous tissues. Furthermore,
plasma survivin levels were also reduced in the I3M-treated mice. These results suggest that topical application of I3M, a
drug synthesized from indirubin, which is found in Qing-Dai – has therapeutic potential for treating oral cancer.
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Introduction

Oral squamous cell carcinoma (OSCC) accounts for approxi-

mately 90% of oral malignancies. Approximately 274,000 new

cases are diagnosed annually worldwide, and despite improved

diagnostic and therapeutic methods, patients only have a 50%

survival rate over 5 years [1]. Smoking, betel-quid chewing,

alcohol use, and smokeless tobacco products constitute the major

risk factors for oral cancer. Current treatment options for oral

cancer include surgery, radiotherapy, and chemotherapy, al-

though the 5-year survival rate for oral cancer remains one of the

lowest among common malignant neoplasms [2]. Oral cancer is

the sixth most common cancer in Taiwan and the fourth most

common cause of death from cancer among Taiwanese men since

2006 [3]. Therefore, the identification of new agents and novel

targets for the treatment of oral cancer needed to improve clinical

management of this disease.

Danggui Long Hui Wan is a compound from traditional

Chinese medicine that is used to treat chronic myelocytic leukemia

[4], and the active ingredient appears to be Qing Dai (Indigo

naturalis), which contains high levels of indigo dye. Furthermore,

the anti-leukemic activity of this ingredient has been attributed to

the red-colored indigo isomer indirubin. Indirubin and its

derivatives strongly inhibit the growth of various human cancer

cells, mainly through cell cycle arrest (at G2/M or G1 phase)

followed by apoptosis [5,6]. It has been determined that indirubin

derivatives are strong inhibitors of cyclin-dependent kinases

(CDKs), glycogen synthase kinase-3b [7], c-Src kinase and STAT3

signaling [8,9]. Whereas indirubin itself has poor solubility, a low

absorption rate, and significant gastrointestinal toxicity, synthetic

indirubin-39-monoxime (I3M) has better pharmacological proper-

ties and reduced toxicity. Furthermore, compared with indirubin,

I3M inhibits many additional protein kinases as well as STAT3

signaling, and it has been shown to have anti-proliferative effects in

vascular smooth muscle cells [10–12]. Recently, Indirubin-39-

oxime also have been reported induces mitochondrial dysfunction

and triggers growth inhibition and cell cycle arrest in human

neuroblastoma cells [13]. Therefore, I3M is considered one of the

most potent indirubin derivatives for the treatment of cancer.

Survivin is a critical determinant of cell survival, and it functions

both by regulating cell division and inhibiting apoptosis [14]. As a

member of the inhibitor of apoptosis (IAP) family of proteins,

survivin was originally characterized as a physical caspase

inhibitor, providing a cytoprotective step downstream of the death
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receptor and mitochondrial apoptosis [15]. However, it is now

known that X-linked inhibitor of apoptosis protein (XIAP) is the

only true physiological inhibitor of caspases 3, 7, and 9 [16].

Despite a lack of structural motifs that mediate caspase binding,

survivin can inhibit active caspase 9 through cooperation with the

hepatitis B virus X-interacting protein [17]. Moreover, the

association of survivin with XIAP leads to a synergistic inhibition

of caspase 9 activation [18]. Many studies have shown that

survivin is overexpressed in various human cancers and is

associated with poor overall prognosis [19]. More specifically,

survivin expression is correlated with poor prognosis and

chemoresistance in oral cancer [20–22]. Furthermore, inhibition

of survivin in different head and neck cancers significantly

increases the anti-tumorigenic activities of several cytotoxic and

targeted therapies [23].

Building upon previous studies, we aimed to study the role of

survivin with respect to I3M treatment in oral cancer. In this

study, we demonstrate that I3M has multiple anti-tumorigenic

activities and that it can inhibit cell proliferation, migration and

invasion, while at the same time promoting apoptosis, in oral

cancer cells. Using immunoblotting and real-time qPCR analysis,

we found that survivin expression was downregulated in the cancer

cell line Cal-27 following I3M treatment, identifying survivin as a

potential mediator of the anti-tumorigenic activities of I3M.

Finally, we verified that I3M inhibits survivin expression and

displays anti-tumorigenic activity in an oral tumorigenesis mouse

model. Our results suggest that I3M suppresses oral cancer

tumorigenesis by mediating the activity of survivin.

Materials and Methods

Ethics Statement
The protocol used for the experimental mice was reviewed and

approved by the Institutional Animal Care and Use Committee of

the China Medical University (IACUC approval no. CMU-99-26-

N). All animal studies were conducted according to institutional

guidelines (Affidavit of Approval of Animal Use Protocol, No. 98-

33-N) approved by the Institutional Animal Care and Use

Committee (IACUC) of China Medical University (Taichung,

Taiwan).

Reagents and cell culture
Indirubin, I3M, dimethyl sulfoxide (DMSO), thiazolyl blue

tetrazolium bromide (MTT), trypan blue, triton X-100, and

penicillin/streptomycin were purchased from Sigma Chemical (St.

Louis, MO, USA).

The human oral cancer cell line Cal-27 and the cell line HSC-3

were purchased from the Bioresource Collection and Research

Center (BCRC), Food Industry Research and Development

Institute (FIRDI) (Hsinchu, Taiwan). Cells were plated in

Dulbecco’s modified Eagle medium (DMEM; Gibco) and DME/

F-12 (Gibco) supplemented with 10% FBS, 100 units/mL

penicillin, 100 ng/mL streptomycin, and 1% glutamine at 37uC
[24,25].

MTT assay
Cell proliferation was assessed using an MTT assay. Cells were

seeded into 96-well plates at a concentration of 1,000 cells/well.

Six wells were assayed for each experimental treatment. After the

cells were treated with 0, 5, or 10 mM indirubin or I3M (dissolved

in 0.1% DMSO) for 0, 24, or 48 h, 20 mL of MTT reagent (5 mg/

mL; Sigma) was added to each well, and the cells were then

incubated for 3 h. The reaction was stop by removing the MTT

reagent. DMSO (150 mL) was then added to each well to dissolve

the formazan crystals. The absorbance was measured at 570 nm.

The effects were also assessed by cell counting using a

hemocytometer. All measurements were carried out in triplicate.

Preparation of subcellular fractions and immunoblotting
of cytochrome c

Cells were plated into 10-cm dishes and treated with variable

dose I3M for 24 h. After the incubation, the cells were harvested,

resuspended in cell extract buffer (20 mM HEPES (pH 7.5),

10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, and

1 mM dithiothreitol) that containing 250 mM sucrose and

protease inhibitor mixture (Roche Molecular Biochemicals,

Mannheim, Germany) and homogenized. The homogenates were

centrifuged twice at 1,0006g for 10 min at 4uC to remove nuclei

and unbroken cells. The supernatants were then centrifuged at

10,0006g for 15 min at 4uC. The supernatants from the 10,0006g

spin are referred to as the ‘‘cytosolic fraction.’’ The cytosolic

protein samples (30 g) were separated on 12% SDS–PAGE gels

and immunolabeled with anti-cytochrome c (1:1000) and anti-b-

actin (1:1000) primary antibodies overnight at 4uC. The second

horseradish peroxidase-labeled antibody was incubated with the

blots, followed by washing. Chemiluminescent signals were

detected using SuperSignal West Femto- Chemiluminescent

substrates (Pierce) according to the manufacturer’s instructions.

The mitochondrial pellets from the first 10,0006g spin were

resuspended in cell extract buffer containing 250 mM sucrose to

protect mitochondria by 20 strokes using a homogenizer.

Homogenates were centrifuged at 7506 g for 3610 min at 4uC
to remove debris and nuclei. The supernatant was then

centrifuged at 15,0006 g for 20 min; the pellet, which contained

‘‘mitochondria fraction’’, was lysed in SDS lysis buffer; and 30 mg

of mitochondrial proteins was subjected to immunoblot analysis as

the above descriptions.

Annexin V/PI staining
Cal-27 cells (105) were seeded into each well of a 6-well plate

and treated with either DMSO or 10 mM I3M for 24 h. The

Annexin V-FITC Apoptosis Detection kit (Strong Biotech

Corporation, Taiwan) was used to determine the percentage of

apoptotic cells. Briefly, the harvested cells were washed with PBS

and centrifuged at 2006g for 5 min. The cell pellets were

resuspended in staining buffer and stained with annexin V-FITC

and PI for 15 min at 25uC according to the manufacturer’s

instructions. The cell samples stained using these reagents could be

divided into three populations: apoptotic cells (marked by green

fluorescence), dead cells (marked by red or yellow fluorescence

resulting from a combination of red and green fluorescence), and

live cells (showing little to no fluorescence). The cells were

analyzed using a TaliTM Image Cytometer (Invitrogen). The

TaliTM Image Cytometer captures 20 images of a stained sample,

automatically analyzes the images using digital image-based cell

counting and fluorescence-detection algorithms, and displays an

accurate quantitative analysis of live, dead, and apoptotic cell

populations. All measurements were performed in triplicate.

Cell cycle analysis
Cal-27 cells were treated with 0, 2.5, 5, or 10 mM I3M, and

after 24 h, the cells were washed twice with phosphate-buffered

saline (PBS). The cells were fixed overnight with cold 70% ethanol

and then stained with a Cycle PI solution consisting of 2 mg/

100 mL PBS CAT PI, 16 PBS, 10 mg/mL RNase A, and 5%

Triton X-100. Following incubation for 30 min at room temper-

ature in the dark, a FACScan Flow Cytometer was used to detect
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fluorescence-activated cells. All measurements were made in

triplicate.

Migration determination
Cal-27 cells (106 cells/well) were plated into 6-well plates and

incubated for 24 h. The cells were then ‘‘wounded’’ by scratching

individual wells using a pipette tip. The cells were incubated with

DMEM medium (without FBS) either with or without indirubin

and I3M (10 mM). Cells were photographed using phase-contrast

microscopy (1006 magnification). The migratory ability of the

cells was evaluated by measuring the width of the wounds. The

migration distances of the cells were derived from the differences

between the widths of the wounds at 0, 24, and 48 h.

Transwell culture system for invasion assays
The invasive abilities of the cancer cells treated with or

without I3M were examined using the membrane Transwell

culture system. Briefly, we used Transwell membranes (8-mm

pore size, 6.5-mm diameter; Corning Costar Corporation)

coated with Matrigel for the assays. Cells (16104 cells) were

seeded into the upper wells of the precoated Transwells with

I3M (0, 2.5, 5, or 10 mM). The lower Transwells contained the

same medium. Following 24 or 48 h incubations, cells from the

upper wells and the Matrigel-coated membranes were swabbed

with a Q-tip, fixed with methanol, and stained with a 20%

Giemsa solution (Sigma). The cells were counted using light

microscopy (2006 magnification). Three independent experi-

ments were performed in triplicate.

Immunoblotting
In vitro studies: Following each treatment, the cells were

isolated to determine the proteins associated with migratory

and invasive functions, including P21 (20 kDa) and P53

(53 kDa) (Cell Signaling Technology), survivin (human,

16 kDa), matrix metalloproteinase 9 (MMP-9, 92 kDa)

(Thermo Scientific), focal adhesion kinase (FAK, 125 kDa), u-

PA(34 KDa), and p-p38 (Santa Cruz Biotechnology). Samples

were extracted from the isolated cells (with or without I3M

treatment), separated on 12–15% SDS–PAGE gels, and

transferred onto PVDF membranes. Chemiluminescent signals

were detected as described above for cytochrome c. The signals

were captured and quantified using the ChemiGenius Bio

Imaging System (Syngene).

In vivo studies: Plasma samples (40 mg protein) were used to

determine the levels of survivin secreted by the tumors using

immunoblotting and a survivin (mouse) monoclonal antibody as

described above. We used the SwellGelH Blue Albumin Removal

Kit (Pierce) to enrich the plasma samples.

Bioluminescent assays of aaspase-3/7 and -9
A time-dependent study of caspase-3/7 and -9 activities was

performed in triplicates using assay kits Caspase-Glo 3/7 and 9

(Promega Corp., Madison, WI, USA) on white 96-well microplate.

10,000 cells per well was seeded and treated with 10 mM of I3M

for 12, 24 and 48 hours. Then, caspase activity was investigated

according to manufacturer’s protocol. Briefly, 100 mL of the

caspase-Glo reagent was added and incubated at room temper-

ature for 30 minutes. The presences of active caspases from

apoptotic cells will cleave the synthetic tetrapeptide, labeled with

aminoluciferin in the reagent. The released aminoluciferin acts as

a substrate for the luciferase enzyme, which is measured using

SynergyTM 2 Multi-Mode Microplate Reader (Biotek, Winooski,

Vermont).

Preparation of indirubin-39-oxime/poly(vinyl alcohol)
(I3M/PVA) adhesive drug

PVA (10 g; Sigma) was suspended in hot distilled water

(100 mL, 90uC) and stirred until completely dissolved. After the

polymer appeared to be completely dissolved, the temperature and

stirring was maintained for another 4 h to ensure that aggregate

were no longer present. The solution was cooled to room

temperature, and I3M was added to obtain 10 and 20 mM

I3M/PVA adhesive drug mixes.

Development of the 4-Nitroquinoline 1-oxide (4-NQO)
induced oral tumorigenic mouse model

We evaluated the anti-tumorigenic activity of I3M using an oral

tumorigenic model in Six-week-old male C57BL/6JNarl mice

(body weight: 21.661.2 g). To induce the optimal formation of

oral SCCs, we included0.2 mg/mL 4-NQO and 0.5 mg/mL

arecoline in the animals’ drinking water for 8 weeks as our

previously published [26]. Mice (n = 240) were randomized into

one of four groups: blank group (n = 60) received only drinking

water; Carrier group (n = 60), 10 mM I3M (n = 60) and 20 mM

I3M (n = 60) groups received both 4-NQO (200 mg/mL) and

arecoline (500 mg/mL) to develop the OSCC animal models.

Following the previous study, their drinking water was changed

every week, and the mice were allowed access to the water at all

times during arecoline/4-NQO treatment, prior to the com-

mencement of the I3M treatments. Following the tumor-

induction protocol, which lasted for 8 weeks [24], the tongues

and buccal areas of the mice were smeared with PVA alone

(carrier group) or with either 10 or 20 mM I3M/PVA every 2

days for 20 weeks (0.1 mg/g mouse body weight), which was

initiated after week8 (Figure S1, Figure 1 and 2). Topical

treatments were initiated at 8 A.M. and were completed within

one hour. The treated mice were prohibited from accessing

drinking water and food until 12 A.M. All mice were weighed

every 4 weeks. The mice (n = 10) were sacrificed every month

from each group after week 8; following CO2 treatment, an

average of 0.9–1.3 mL of heart blood was collected from each

mouse, and their tongues were excised whole (with tumors),

fixed, embedded, and sectioned for hematoxylin and eosin

staining.

Real-time quantitative polymerase chain reaction (real
time qPCR)

Total RNA was extracted from cells using the RNeasy Mini Kit

(QIAGEN). The RNA was reverse-transcribed using the Super-

Script III First Strand Synthesis System (Invitrogen) according to

the manufacturer’s instructions. Real-time quantitative PCR was

performed using a LightCycler 480 machine and the SYBR Green

I Master Kit (Roche Diagnostics) [27]. The primer sequences are

listed in Table S1.

Immunohistochemical analysis
Tissue samples were fixed in 4% paraformaldehyde (Merck) at

4uC. Following a brief wash with PBS, the samples were

transferred to 30% sucrose in 0.01 M PBS for cryoprotection.

We pre-incubated (2 h, 25uC) 8-mm sections with 10% horse

serum and 0.3% Triton X-100 in PBS to prevent non-specific

binding. The sections were incubated with specific primary

antibodies, including rabbit polyclonal anti-COX2 (1:200; Ab-

cam), rabbit polyclonal anti-survivin (1:50, Novus Biologicals), and

TUNEL (1:100; QIA33 Calbiochem, Merck) for 1 h at 37uC
followed by overnight incubation at 4uC. The sections were

subsequently incubated (2 h, 25uC) with a biotin-conjugated
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Figure 1. I3M inhibits oral cancer cell proliferation and induces apoptosis. (A) The inhibitory effects of indirubin and I3M on Cal-27 and
HSC-3 cell proliferation. Cells were treated for 24 or 48 h with various concentrations of indirubin or I3M. Cell proliferation was analyzed by MTT assay
(top) and cell counting using a hemocytometer (bottom). The data are presented as the mean 6 S. D. values; asterisks denote a statistically significant
difference (P,0.05). (B) Cal-27 cells (105) were treated with 10 mM I3M for 24 h, and the percentage of apoptotic cells was determined using the
Annexin V-FITC Apoptosis Detection kit. The data are presented as the mean 6 S.D. values (n = 3); asterisks denote a statistically significant difference
(P,0.05) between the I3M treatment and control groups. (C) Immunoblots of protein extracts (30 mg) isolated from the cytosolic and mitochondria
fractions of Cal-27 cells treated with 0, 2.5, 5, or 10 mM I3M for 24 h. The results shown are representative of six independent experiments.
doi:10.1371/journal.pone.0070198.g001
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secondary antibody (1:200; Vector), followed by incubation with

an avidin-horseradish peroxidase complex (ABC-Elite).

Statistical analysis
All experiments were repeated at least three times. All data are

presented as the mean 6 S.D. values. Student’s t-test was used to

analyze differences between treated and untreated groups. The

data were analyzed using the SPSS 12.0 software program. P-

values,0.05 were considered to be significant.

Results

I3M inhibits oral cancer cell proliferation and induces
apoptosis

Indigo, indirubin, and I3M were first tested for growth-

inhibition activity using the oral cancer cell lines Cal-27 and

HSC-3, and the 50% inhibitory concentration (IC50) values for

these three substances were determined following 24 h drug

treatment (Table S2). I3M was clearly more active compared with

indigo or indirubin in both cell lines. We then examined the anti-

proliferative effects of different concentrations of indirubin and

I3M on HSC-3 and Cal-27 cells (Fig. 1A). The MTT assays

showed that both 5 and 10 mM indirubin had no obvious anti-

proliferative effects on either cell lines after 48 h of treatment. In

contrast, 10 mM I3M elicited significant anti-proliferative effects

on HSC-3 cells after 48 h, and both 5 and 10 mM I3M exerted

anti-proliferative effects on Cal-27 cells. The early stages of

apoptosis were quantified using FITC-conjugated annexin V and

analyzed with a TaliTM Image Cytometer. In Cal-27 cells, 38.5%

of cells were positive for annexin V following 24 hours of

treatment with I3M (10 mM) compared with only 5% of cells in

the control group (Fig. 1B). After 24 h I3M treatment, the dose-

dependent increasing of immunoblotting was evident in the

cytosolic fractions of cytochrome c (Fig. 1B).

I3M induces cell cycle arrest largely at the G2/M phase
and increases p53 and p21WAF1 expression

To determine whether I3M induces Cal-27 cell cycle arrest, we

used flow cytometry to analyze how increasing concentrations of

I3M affect progression of the cell cycle. Treatment with I3M over

24 h increased the proportion of Cal-27 cells remaining in G2/M

phase in a dose-dependent manner. Specifically, the percentage of

G2/M-phase cells increased from 36.6% to 53.9% in response to

10 mM I3M. In addition, we noted an increase in the percentage

of G0/G1-phase cells from 11.4% to 21.4% (Fig. 2A). It is known

that p53 suppresses tumor growth via cell cycle arrest or triggering

apoptosis. Therefore, we used immunoblotting to determine

whether I3M treatment modulates the expression levels of p53.

Following 24-h treatment with different concentrations of I3M,

Cal-27 cells exhibited dose-dependent increases in p53 expression,

with concurrent increases in p21WAF1 protein expression as well,

suggesting that one of the mechanisms by which I3M exerts its

anti-proliferative effects could be mediated by p53 (Fig. 2B).

I3M inhibits cancer cell migration and invasion
To examine whether I3M inhibits Cal-27 cell invasion, we

performed a wound healing assay. As shown in Fig. 3A, migration

distances were significantly decreased in cells treated with 10 mM

I3M compared with the control and indirubin groups. Next, we

carried out a Matrigel Transwell Assay to determine whether I3M

also affects cell invasion. We found that a 10-mM dose of I3M

significantly inhibited cell invasion at both 24 and 48 h. We also

observed similar results at a lower I3M dosage (5 mM) following

48 h of treatment (Fig. 3B). To identify the specific molecules

affected by I3M, we performed immunoblotting analysis to

determine the expression levels of several proteins involved in

invasion and migration. The levels of FAK, MMP-9, and

urokinase-type plasminogen activator (uPA) were significantly

reduced after I3M treatment for 6 h. However, I3M induced a

persistent activation of phosphor-p38 (Fig. 3C). These results

suggest that changes in the expression levels of FAK, MMP-9, and

uPA play a role in the inhibition of invasion and migration

observed in I3M-treated Cal-27 cells.

Identification of survivin as a target of I3M
An immunoblotting analysis demonstrated both time- and dose-

dependent downregulation of survivin by I3M (Fig. 4A and 4B).

Survivin expression was significantly reduced following treatment

with 10 mM I3M from 12 to 48 h. Real-time qPCR also showed

downregulation of survivin mRNA levels in I3M-treated cells,

suggesting that I3M suppresses survivin expression at the

transcriptional level (Fig. 4C). To examine the downregulation

of survivin by I3M have any effect on caspase-3/7 and -9 activities.

We measured the caspase-3/7, and -9 activities of 10 mM I3M

treatment at 12, 24 and 48 h time-point. The result show the very

significant increased in caspase-3/7 and -9 activities were detected

after 12 (94 fold and 131 fold), 24 (388 fold and 282 fold) and 48 h

(462 fold and 314 fold) of I3M exposure. Thus, these data suggest

Figure 2. I3M induces cell cycle arrest. (A) Cal-27 cells were treated
with I3M (0, 2.5, 5, or 10 mM) for 24 h. Following treatment, the cells
were collected, fixed with methanol, stained with propidium iodide, and
analyzed using flowcytometry. The data for each sample represent the
percentage of cells found in G0/G1, S, and G2/M phases of the cell cycle.
(C) Immunoblots showing the expression of cell cycle-related proteins
in I3M-treated Cal-27 cells. Total cell lysates were prepared after 24 h
treatment with I3M (0, 2.5, 5, or 10 mM). The expression of p53 and p21
was determined using immunoblotting. b-actin was used as the loading
control in this study. Experiments were repeated three times with
similar results.
doi:10.1371/journal.pone.0070198.g002

I3M Suppresses Tumorigenesis in Oral Cancer

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e70198



that I3M not only suppresses survivin in Cal-27 cells, also affects

the intrinsic (mitochondrial-caspase-9) pathway.

I3M suppresses 4-NQO/arecoline-induced oral cancer in mice
Water consumptions were reported weekly in each group over

the 28-week, the time course (4weeks/time point) were shown in

Figure S1. The consumptions were observed among the experi-

mental groups. Mice offered water with 4-NQO (200 mg/mL) and

arecoline(500 mg/mL) consumed the less amount of water before

week 8 (carrier, 10 mM, and 20M groups) than the blank group.

However, the least amount of water at 20, 24 and 28 week is the

carrier group. At 8 weeks, the body weight was lower in the carrier

group mice (Fig. 5A). When 4-NQO and arecoline administrations

were discontinued and mice were given tap water at week 9, both

water intake and body weight of mice increased. By week 12, 16,

20 and 24, there were no significant differences in body weight

among the four groups. At week 28, the body weight was

significant lower in carrier group than in any other group. Mice

treated with carrier alone exhibited a time-dependent increase in

both the number and size of their tongue tumors. Strikingly, local

treatment consisting of 10 or 20 mM I3M/PVA gel smeared on the

tongues of the mice suppressed tumorigenesis, with higher

concentrations showing greater effectiveness (Fig. 5B).

I3M decreases survivin and COX-2 expression while
increasing the percentage of TUNEL-positive cells in vivo

H&E staining at different time points showed that 4-NOQ/

arecoline exposure increased SCC formation in carrier-treated

Figure 3. I3M inhibits cancer cell migration and invasion. (A) Incubation of cells in the absence or presence of 10 mM indirubin or I3M was
carried out for 0, 24, or 48 h. The cells were photographed under phase-contrast microscopy (1006 magnification). The data are shown as the
percentage of inhibition; asterisks indicate a statistically significant difference (P,0.05) between treatment and control groups. (B) Cells (104) were
plated in the upper chamber with I3M (0, 2.5, 5, or 10 mM) and allowed to undergo migration for 24 or 48 h. Quantification of cells in the lower
chamber was carried out by counting cells under 6200 magnification. The percentage of inhibition and column mean values were derived from 3
independent experiments. The asterisks indicate a statistically significant difference (P,0.05) between treatment and control groups. (C)
Immunoblots showing changes in the levels pp38, FAK, MMP-9 and uPA proteins associated with migration and invasion in Cal-27 cells following 10-
mM I3M treatment (n = 3).
doi:10.1371/journal.pone.0070198.g003
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mice. In contrast, I3M decreased SCC formation after 28 weeks in

a dose-dependent manner. Immunohistochemical staining showed

high levels of both COX-2 and survivin in SCCs in carrier-treated

mice at 28 weeks. Notably, I3M caused dose-dependent decreases

in survivin and COX-2 expression. A TUNEL assay was carried

out to assess the levels of apoptosis occurring in vivo. As anticipated,

the proportion of TUNEL-positive cells was markedly increased in

the 10- and 20-mM I3M treatment groups compared with the

carrier group (Fig. 6A). Relative expression of survivin mRNA

levels began to increase at 16 weeks in the carrier group, consistent

with the initiation of tumor formation at that time. In contrast,

both the 10 and 20 mM I3M treatments suppressed survivin

mRNA expression (Fig. 6B). To test the effect of I3M treatment on

plasma survivin protein levels, a Western blotting analysis was

performed at different time points (Fig. 6C). We determined that

survivin levels had increased 2.5-fold by 20 weeks and 4.6-fold by

Figure 4. Identification of survivin is a target of I3M treatment and associate with Caspase-3/7 and -9 activity. (A) A demonstration of
time-dependent survivin downregulation following 10-mM I3M treatment for various durations. Data are presented as the mean 6 S. D. values (n = 3);
asterisks indicate a statistically significant difference (P,0.05) between the treatment and control groups. (B) The dose-dependent of downregulation
of survivin following I3M treatment for 12 h. The data are presented as the mean 6 S. D. values (n = 3); asterisks indicate a statistically significant
difference (P,0.05) between treatment and control groups. (C) Cal-27 cells were incubated with I3M (10 mM) for 0, 6, 12, 24, or 48 h. Shown are the
relative gene expression levels for each sample in the treatment group (n = 6). The bold lines denote the mean related percentage of the individual
treatment groups. T/C: Treated group (6, 12, 24, or 48 h)/control group (0 h). (D) A demonstration of time-dependent Caspase-3/7 and -9
upregulations following 10-mM I3M treatment for 12, 24, and 48 h.
doi:10.1371/journal.pone.0070198.g004
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28 weeks in the carrier group, consistent with the mRNA

expression levels shown in Figure 6B. In contrast, in both the

10- and 20-mM I3M treatment groups, the plasma levels of

survivin protein had decreased significantly.

Discussion

I3M has been shown to have a broad spectrum of anti-

tumorigenic activities in many human cancer cells [12]. In this

study, we confirmed that I3M possesses a number of anti-

tumorigenic activities in vitro, and we identified a novel anti-

tumorigenic role for I3M in vivo. Importantly, our data suggest that

I3M inhibits survivin expression in oral cancer.

Initially identified as a potent CDK inhibitor that interacts with

the ATP-binding site of the kinase, I3M causes cell cycle arrest at

G2/M phase (at higher I3M concentrations) or at G1 phase (at

lower I3M concentrations) in several cancer cell lines, events

which are often followed by apoptosis [5,6]. Our data show that

10 mM I3M treatment predominantly caused the arrest of Cal-27

cells at the G2/M phase. Shi et al. have shown evidence that I3M

mainly elicits apoptosis through an extrinsic pathway with a type II

response mediated by the pro-apoptotic Bid and Bax proteins [28].

In their study, it was shown that I3M induced both p53 and

p21WAF1 expression in HeLa cells, which is consistent with our

findings.

Migration and invasion are key aspects of cancer metastasis.

The misregulation of several protease enzymes is responsible for

invasive cell migration [29]. One of the key proteases, uPA, can

cleave the extracellular matrix and mediate the conversion of

plasminogen to plasmin. In turn, plasmin mediates invasion

directly by degrading matrix proteins and activating MMP [30]. In

addition, uPA exerts non-proteolytic effects by interacting with the

uPA receptor (uPAR) to regulate cellular/extracellular interactions

as an adhesion molecule for vitronectin [31]. The expression of

uPA/uPAR is correlated with invasive cancer phenotypes and

poor prognosis [32]. Our data show that I3M also inhibits the

expression of uPA and MMP-9, which is well correlated with the

ability of I3M to inhibit migration and invasion in Cal-27 cells.

FAK is a non-receptor tyrosine kinase important for tumor

initiation and progression. Epithelial cells are capable of trans-

forming in the absence of FAK, but they do not undergo

malignant conversion to invasive carcinomas [33]. In this study,

we show that FAK expression was abolished in the presence of

I3M, which is consistent with the ability of I3M to inhibit

tumorigenesis. Recently, Kim et al. [34] also reported inhibition of

MMP-9 expression and FAK activation by an indirubin derivative

in head and neck cancer cells. We found that I3M activates p38

mitogen-activated protein kinase (MAPK), consistent with the

findings of Zhen et al. [35]. Although p38 MAPK activation is

required for the expression of uPA/uPAR during breast cancer

[36], the ability of I3M to stimulate persistent p38 phosphorylation

appears to be distinct from the downregulation of uPA in Cal-27

cells. Recently, Mehrotra S et al. reported that the survivin-XIAP

complex could activate NFkB, leading to increased fibronectin

Figure 5. I3M suppresses 4-NQO/arecoline-induced oral cancer in mice. (A) In the mice experiments, the body weight were not shown the
significant different among the four groups until 8 th week. After the I3M experiments, the body weight of the carrier group was significantly lower
than any other groups at 28 th week (p = 0.031, n = 10). (B) Oral cancer lesions were induced on the tongues of the mice with 0.5 mg/mL arecoline
and 0.2 mg/mL 4-NQO. The table shows tumor numbers and sizes from four groups (10 mice/group/sampling).
doi:10.1371/journal.pone.0070198.g005
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gene expression via b1 integrin signaling and the activation of

FAK and Src [37]; furthermore, they concluded that IAPs are

direct metastasis genes that act independently of IAP inhibition of

cell death. Our study notes that I3M can inhibit survivin

expression in oral cancer cells, a finding that could explain the

ability of I3M to inhibit Cal-27 migration and invasion.

The in vivo OSCC tumorigenesis model used in this study

utilized two carcinogens: 4-NQO and arecoline. Several reports

Figure 6. I3M downregulates expression of survivin and COX-2 and increases the number of TUNEL-positive cells in vivo. (A)
Immunohistochemical staining of COX-2 and survivin expression at 28 weeks. (B) Relative gene expression levels of survivin, as determined by real-
time quantitative PCR. Carrier-treated mice exhibited an increase in survivin mRNA expression from week 20 onwards. T/C: Treated group/Control
group (n = 10). (C) Plasma was collected from mice, and the plasma survivin levels were determined by Immunoblotting. The densitometry data
presented below the bands are fold-change values relative to a tumor-progressive control (week 4) (n = 10).
doi:10.1371/journal.pone.0070198.g006
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have suggested that 4-NQO treatment can induce all the stages of

oral carcinogenesis and that it causes similar histological and

molecular changes in mouse and human oral cancers [38]. The

other carcinogen, arecoline, is one of the major alkaloids found in

the areca nut. Co-administration of both carcinogens was intended

to mimic certain human behaviors and was 100% effective at

inducing tongue tumors in mice [26]. Interestingly, in the rat, 4-

NQO can induce survivin expression in certain tongue tumor cells

[39], which we also observed in our 4-NQO/arecoline-treated

mice. Our data suggest that survivin expression and oral

tumorigenesis be inhibited by topical application of I3M. Using

an in vivo apoptotic assay, we show increased numbers of TUNEL-

positive cells in I3M-treated tumors, an exciting finding that

reflects the potential for use of I3M as a survivin inhibitor. In

addition, we noted that COX-2 induction was sometimes observed

in the tumors of our in vivo model and that I3M was able to inhibit

this induction. Because COX-2 is involved in tumorigenesis and its

inhibition suppresses oral cancer invasiveness [40,41], the

mechanisms by which I3M inhibit tumorigenesis are manifold.

Oral cancer is frequently a locally advanced disease with very

high recurrence and mortality rates [2]. Attempts to use survivin-

based vaccine therapies to treat advanced or recurrent oral cancers

have not been successful [42]. However, using local treatment, we

were able to apply very high concentrations of I3M to the tumor

sites in order to take advantage of its anti-survivin and anti-

tumorigenic activities while avoiding systemic toxicity. This type of

oral cancer therapy is particularly appealing in cases where

anatomic limitations or poor patient performance make surgery

impossible. In addition, oral dysplasia, also known as a pre-

cancerous lesion, may benefit in particular from topical treatment.

One previous study has suggested that survivin, MMP-9, loss of

heterozygosity, and altered DNA content are all potential markers

for the progression from dysplasia to cancer [43]. In our study, the

expression of both MMP-9 and survivin were downregulated by

I3M and tumorigenesis was potently suppressed by higher doses of

I3M (20 mM). Therefore, it may be more effective to treat patients

at the dysplasia stage. Our encouraging in vivo results provide

strong evidence for the design of a clinical trial that would

administer local therapy to suitable patients. Similarly, local

application of the anti-survivin agent terameprocol (EM-1421) has

been used to treat HPV-linked cervical intraepithelial neoplasia

[44]. Plasma survivin levels are a prognostic biomarker for several

cancers. Higher plasma survivin levels are associated with

increased metastasis in ovarian cancer, increased nodal involve-

ments in breast cancer, and increased aggressive behaviors in

prostate cancer [45–47].

An important implication from this study is that plasma survivin

levels can be used as a biomarker to evaluate the response to I3M

treatment, as I3M clearly downregulated plasma surviving in our

model. Taken together, the results of our study provide both in vitro

and in vivo evidence that I3M has the potential to become a multi-

target drug in anticancer therapy due to its ability to target diverse

mechanisms involved in proliferation, the cell cycle, apoptosis,

migration, invasion, and tumorigenesis. Furthermore, this study

suggests that topical I3M treatment may be a useful tool in future

clinical trials aimed at oral cancer.
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