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Robust Independent Component Analysis via
Minimum -Divergence Estimation

Pengwen Chen, Hung Hung, Osamu Komori, Su-Yun Huang, and Shinto Eguchi

Abstract—Independent component analysis (ICA) has been
shown to be useful in many applications. However, most ICA
methods are sensitive to data contamination. In this article we
introduce a general minimum -divergence framework for ICA,
which covers some standard ICA methods as special cases. Within
the -family we further focus on the -divergence due to its
desirable property of super robustness for outliers, which gives
the proposed method -ICA. Statistical properties and technical
conditions for recovery consistency of -ICA are studied. In the
limiting case, it improves the recovery condition of MLE-ICA
known in the literature by giving necessary and sufficient condi-
tion. Since the parameter of interest in -ICA is an orthogonal
matrix, a geometrical algorithm based on gradient flows on special
orthogonal group is introduced. Furthermore, a data-driven
selection for the value, which is critical to the achievement of
-ICA, is developed. The performance, especially the robustness,
of -ICA is demonstrated through experimental studies using
simulated data and image data.

Index Terms— -divergence, -divergence, geodesic, minimum
divergence estimation, robust statistics, special orthogonal group.

I. INTRODUCTION

C ONSIDER the following generative model for indepen-
dent component analysis (ICA)

(1)

where the elements of the non-Gaussian source vector
are mutually independent with zero mean,

is an unknown nonsingular mixing matrix,
is the observable signal, and is a shift param-
eter. Let be the whitened data of , where

. An equivalent expression of (1) is

(2)
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where is the mixing matrix in -scale. It is re-
ported in literature that prewhitening the data usually makes the
ICA inference procedure more stable [1]. In the rest of discus-
sion, we will work on model (2) to estimating the mixing matrix
based on the prewhitened . It is easy to transform back

to the original -scale via . Note that both
and are unknown, and there exists the problem of non-identi-
fiability [2]. This can be seen from the fact that

for any nonsingular diagonal matrix . To
make identifiable (up to permutation and sign ambiguities),
we assume the following conditions for :

(3)

where is the identity matrix. It then implies that
and

(4)

whichmeans that themixingmatrix in -scale is orthogonal.
Let be the space of orthogonal matrices in . Note that,
if is a parameter of model (2), so is . Thus,
to fix one direction, we restrict , where
consists of orthogonal matrices with determinant one. The set

is called the special orthogonal group. Themain purpose of
ICA can thus be formulated as estimating the orthogonal

based on the whitened data , the random copies of
, or equivalently, looking for a recovering matrix
so that components in

have the maximum degree of independence, where is the
-th column of . In the latter case, provides an estimate of
, and provides an estimate of .
We first briefly review some existing methods for ICA.

One idea is to estimate via minimizing the mutual infor-
mation. Let be the joint probability density function of

, and be the marginal probability
density function of . The mutual information of random
variables , denoted by , is

(5)

where and are
the Shannon entropy. Ideally, if is properly chosen so that
has independent components, then and, hence,
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. Thus, via minimizing with
respect to , it leads to an estimate of . Another method is to
estimate via maximizing the negentropy, which is equivalent
to minimizing the mutual information as described below. The
negentropy of is defined to be

(6)

where is a Gaussian random vector having the same covari-
ance matrix as [3]. Firstly, it can be deduced that

(7)

where the equality holds since due to
. Moreover, as with

, we have , which does not depend
on . That is, the negentropy is invariant under orthogonal
transformation. It concludes that minimizing is
equivalent to maximizing the negentropy . The ne-
gentropy , however, involves the unknown density .
To avoid nonparametric estimation of , one can use the ap-
proximation [4] via a non-quadratic contrast function ,

(8)

where is a random variable having the standard normal distri-
bution. Here can be treated as a measure of non-Gaussianity,
and minimizing the sample analogue of to search
corresponds to fast-ICA [5].
Another widely used estimation criterion for is via maxi-

mizing the likelihood. Consider the model

(9)

where ’s are parametric density functions. Possible choices
for include for sub-Gaussian model, and

for super-Gaussian model. Define

(10)

Then, under model (9) and when recovers all inde-
pendent sources, the density function of takes the form

(11)

Let be the Kullback-Leibler diver-
gence (KL-divergence). The MLE-ICA then searches via

(12)

where is the true probability density function of . The
sample analogue is then obtained by replacing by , the
empirical distribution of .
There exist other ICA procedures that are not covered in the

above review. The joint approximate diagonalization of eigen-
matrices (JADE) is a cumulant-based ICA method [6]. Instead
of considering the modeling (9), approximation of the density

function for MLE-ICA is proposed [7]. We also refer to
[8] and the references therein for the ICA problem from an in-
formation geometry perspective and the corresponding learning
algorithms.
As will become clear later that the above reviewed methods

are related tominimizing the KL-divergence, which is not robust
in the presence of outliers. Outliers, however, frequently ap-
pear in real data analysis, and a robust ICA procedure becomes
urgent. For the purpose of robustness, instead of using KL-di-
vergence, Minami and Eguchi [9] propose -ICA by consid-
ering the minimum -divergence estimation. On the other hand,
the -divergence is shown to be super robust against data con-
tamination [10]. We are therefore motivated to focus on min-
imum -divergence estimation to propose a robust ICA proce-
dure, called -ICA. It is also important to investigate the con-
sistency property of the proposed -ICA. Hyvärinen, Karhnen
and Oja (page 206 in [11]) have provided a sufficient condition
for the modeling (9) to ensure the validity of MLE-ICA when

, in the sense of being able to recover all indepen-
dent components. Amari, Chen, and Cichocki [12] studied nec-
essary and sufficient conditions for recovery consistency under
a different constraint on , and this consistency result is further
extended to the case of -ICA [9]. In this work, we derive neces-
sary and sufficient conditions regarding the modeling (9) for the
recovery consistency of -ICA. In the limiting case , our
necessary and sufficient condition improves the result of [11]
(page 206) for MLE-ICA. To the best of our knowledge, this re-
sult is not explored in existing literature.
Some notations are defined here for reference. For any

, let be the commutation matrix
such that , where stacks
the columns of into a long vector; (resp. )
means is strictly positive (resp. negative) definite; and

is the matrix exponential. Note
that for any nonsingular . For
a lower triangular matrix with 0 diagonals, stacks
the nonzero elements of the columns of into a vector with
length . There exist matrices
and such that and

. Each column vector of is of the form
, , where is a vector with a one in the -th

position and 0 elsewhere, and is the Kronecker product.
is the -vector of ones. For a function , is the differential of
. Matrices and vectors are in bold letters.
The rest of this paper is organized below. A unified frame-

work for ICA problem by minimum divergence estimation is
introduced in Section II. A robust -ICA procedure is devel-
oped in Section III, wherein the related statistical properties are
studied. A geometrical implementation algorithm for -ICA is
illustrated in Section IV. In Section V, the issue of selecting
the value is discussed. Numerical studies are conducted in
Section VI to show the robustness of -ICA. The paper ends
with a conclusion in Section VII. All the proofs are placed in
Appendix.

II. MINIMUM -DIVERGENCE ESTIMATION FOR ICA

The aim of ICA is understood to search a matrix
so that the joint probability density function of is as close
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to the marginal product as possible. It motivates esti-
mating by minimizing a divergence between and .
A general estimation scheme for can then be formulated as
the minimization problem

(13)

where denotes a divergence function. Starting from (13),
different choices of will lead to different estimation criteria
for ICA. Here we will consider the class of -divergence ([13],
[14]) as described below.
The -divergence is a general class of divergence functions.

Consider a strictly convex function defined on , or on
some interval of where is well-defined. Let .
The -divergence is defined to be

which defines a mapping from to , where
. Define the -cross en-

tropy by and the -entropy
by . Then the -divergence can be written
as . In the subsequent sec-
tions, we introduce some special cases of -divergence that cor-
respond to different ICA methods.

A. KL-Divergence

By taking the pair to be

the corresponding -divergence is equivalent to the KL-diver-
gence . In this case, it can be deduced that

where is the mutual information defined in
(5). As described in Section I that, up to a constant term,

, we con-
clude that the following criteria, minimum mutual information,
maximum negentropy, and fast-ICA, are all special cases of
(13). On the other hand, observe that

(14)
If we consider the model (9) and , and if we estimate
by , minimizing (14) is equivalent to MLE-ICA in (12).

B. -Divergence

Define which is
convex. Take the pair to be

The resulting -divergence defined on is

(15)

which is called -divergence [9], or density power divergence
[15]. Note that if and only if for some

. In the limiting case , which gives
the KL-divergence. Without considering the orthogonality con-
straint on , replacing in (14) by and using the model
(9) give (up to a constant term) the quasi -likelihood

(16)

where is a constant, and
is defined in (10). The -ICA [9] searches via maxi-

mizing the sample analogue of (16) by replacing with .

C. -Divergence

The -divergence can be obtained from -divergence through
a -volume normalization as

where is defined the same way as (15) with the plug-in
, and where is some normalizing constant. Here we adopt
the volume-mass-one normalization

It leads to , where
. Then, we have

(17)

It can be seen that -divergence is scale invariant. Moreover,
if and only if for some . The -di-

vergence, indexed by a power parameter , is a generalization of
KL-divergence. In the limiting case , it gives
the KL-divergence.
Due to its super robustness for outliers, we adopt the -diver-

gence to propose -ICA by replacing in (14) with . Sim-
ilar to the derivation of (16), under model (9) and without con-
sidering the orthogonality constraint on , the objective func-
tion of -ICA being maximized is

(18)

which is different from (16), but is similar when is small.
This confirms the observation of [9] that setting does
not affect the performance of -ICA. It should be emphasized
that the quasi -likelihood (16) is not guaranteed to be positive,
and we found in our simulation studies that -ICA maximizing
(16) suffers the problem of numerical instability. On the other
hand, the quasi -likelihood (18) is always positive for any
value. Interestingly, -ICA and -ICA are equivalent if we con-
sider the orthogonality constraint. Obviously, when ,

and maximizing (16) is equivalent to maximizing
(18). Note that the constraint is a consequence of
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prewhitening, and it is reported in literature that prewhitening
usually makes the ICA learning process more stable [1]. We are
therefore motivated to consider -ICA with based
on the prewhitened . Detailed inference procedure and statis-
tical properties of -ICA are investigated in next section.

III. THE -ICA INFERENCE PROCEDURE

The considered ICA problem is a two-stage process con-
sisting of prewhitening and estimation stages. Since our aim
is to develop a robust ICA procedure, the robustness for both
stages should be guaranteed. Here we utilize the -divergence
to introduce a robust -prewhitening, followed by illustrating
-ICA based on the -prewhitened data. In practice, the value
for -divergence should be determined. We assume is given
in this section, and leave its selection to Section V.

A. -Prewhitening

Although prewhitening is always possible by a straightfor-
ward standardization of , there exists the issue of robustness
of such a whitening procedure. It is known that empirical mo-
ment estimates of are not robust. In [1], the authors pro-
posed a robust -prewhitening procedure. In particular, let
be the probability density function of -variate normal distribu-
tion with mean and covariance , and let be the empir-
ical distribution of . With a given , Mollah et al. [1]
considered

(19)

and then suggested to use for whitening the data, which is
called -prewhitening. Interestingly, from (19) can also
be derived from the minimum -divergence as

(20)

when . At the stationarity of (20), will satisfy

where . The ro-
bustness property of can be found in [1]. We call the
prewhitening procedure

(21)

the -prewhitening. The whitened data then enter the
-ICA estimation procedure.

B. Estimation of -ICA

We are now in the position to develop our -ICA based on
the -prewhitened data . As discussed in Section II-C,
under the modeling (9), -ICA aims to estimate via

where is defined in (11). Equivalently, paralleling to
the derivation of (18) and using , can also be
obtained via

(22)

where is defined in (10). We remind the readers that
is just the sample analogue of (18) by replacing with ,
under the constraint . With , the mixing matrix

is then estimated by . Let

with . We have the following proposition.

Proposition 1: At the stationarity, in (22) will satisfy

with .
From Proposition 1, it can be seen the robustness nature

of -ICA: the stationary equation is a weighted sum with the
weight function . When , an outlier with extreme value
will contribute less to the stationary equation. In the limiting
case of , which corresponds to MLE-ICA, the weight
becomes uniform and, hence, is not robust.

C. Consistency of -ICA

A critical step to the likelihood-based ICAmethod is themod-
eling (9) for , and it is important to investigate conditions
of under which ICA procedure is consistent. Here the ICA
consistency means recovery consistency. An ICA procedure is
said to be recovery consistent if it is able to recover all inde-
pendent components, that is, the separation solutions are the
(local) maximum of the objective function. A sufficient con-
dition for the consistency of MLE-ICA can be found in [11]
(page 206). Notably, the consistency of MLE-ICA does not rely
on the correct specification of , but only on the positivity
of . This subsection investigates the re-
covery consistency of -ICA defined in (22). The main result
is summarized below. We refer to the end of Section I for the
definitions of and .
Theorem 1: Assume the ICA model (2) and the modeling (9).

Assume the existence of for some such that
(A) , , .
Then, for , the associated -ICA is recovery consistent if
and only if , where
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,
with ,
with , and

.
Condition (A) of Theorem 1 can be treated as a weighted

version of . It is satisfied when is symmetrically
distributed about zero, and when the model probability density
function is an even function. We believe condition (A) is not
restrictive and should be approximately valid in practice. Notice
that . Thus, to ensure , we must require that

, and the effect of can be exceeded by
. Fortunately, due to the coefficient , when is

small, the effect of will eventually outnumber the effect of
. In this situation, the negative definiteness of mainly

relies on the structure of . Moreover, a direct calculation
gives to be a diagonal matrix
with diagonal elements . We
thus have the following corollary.
Corollary 2: Assume the ICA model (2) and the modeling (9).

Assume the existence of for some such that
(A) , , .
(B) For all pairs ,

Then, for small enough, the associated -ICA is recovery
consistent.
To understand the meaning of condition (B), we first consider

an implication of Corollary 2 in the limiting case , which
corresponds to MLE-ICA. In this case, condition (A) becomes

, which is automatically true by (3). Moreover, since
, condition (B) becomes

(23)

A sufficient condition to ensure the validity of (23) is

(24)

which is also the condition given in Theorem 9.1 of [11] (page
206) for the consistency of MLE-ICA. We should note that (23)
is a weaker condition than (24). In fact, from the proof of The-
orem 1, (23) is also a necessary condition. One implication of
(23) is that, we can have at most one to be wrongly specified
or at most one Gaussian component involved, and MLE-ICA is
still able to recover all independent components. See [16] for
more explications. This can also be intuitively understood that
once we have determined directions in , the last direc-
tion is automatically determined. However, this fact cannot be
observed from (24). We note that condition (23) is also explored
to be the stability condition of the equivariant adaptive separa-
tion via independence (EASI) algorithm [17], and of Amari’s
gradient algorithm [18] for the ICA problem.We summarize the
result for MLE-ICA below.
Corollary 3: Assume the ICA model (2) and the modeling

(9). Then, MLE-ICA is recovery consistent if and only if

for all
pairs , .
Turning to the case of -ICA, condition (B) of Corollary 2 is

the weighted version of (23) with the weight function . How-
ever, one should notice that the validity of -ICA has nothing
to do with that of MLE-ICA, since there is no direct relation-
ship between condition (B) and its limiting case (23). For ex-
ample, even if (23) is violated (i.e., MLE-ICA fails), with a
proper choice of , it is still possible that condition (B) holds
and, hence, the recovery consistency of -ICA can be guaran-
teed. Finally, we remind the readers that the recovery consis-
tency discussed in this section should be understood locally at
the separation solution (see Remark 5). Moreover, the devel-
oped conditions for recovery consistency is with respect to the
objective function of -ICA in (22) itself, but not for any spe-
cific learning algorithm. A gradient algorithm constrained on

for -ICA is introduced in Section IV.
Remark 4: By Theorem 1, a valid -ICA must correspond

to , i.e., the maximum eigenvalue of , denoted by
, must be negative. This suggests a rule of thumb

to pick a -interval for . Let be the empirical estimator

of based on the estimated source . The plot
then provides a guide to determine , over

which should be far away below zero. With the -in-
terval, a further selection procedure (see Section V) can be ap-
plied to select an optimal value. It is confirmed in our numer-
ical study in Section VI that the range for is quite
wide, and the suggested rule does provide adequate choice of .
It also implies that the choice of in Corollary 2 is not critical,
as is allowed to vary in a wide range. It is the condition (B)
that plays the most important role to ensure the consistency of
-ICA.
Remark 5: Let be the set of local maximizers of

from (22). If , we have shown in the proof of The-
orem 1 that . Generally, contains more than one
element. Consider the simple case of (9) with for a
common . In this situation, the same argument for Theorem 1
shows that any column permutation of is also an element of
. See [17] for further discussion on this issue. On the other

hand, under regularity conditions of , it can be shown that
. Consequently,

in (22) is proven to be statistically consistent in the sense that
goes to unity as .

IV. GRADIENT METHOD FOR -ICA ON

In this section, we introduce an algorithm for estimating
constrained to the special orthogonal group , which is a Lie
group and is endowed with a manifold structure.1 The Lie group

, which is a path-connected subgroup of , consists of
all orthogonal matrices in with determinant one.2 Recall
in (22) being the objective function of -ICA. A desirable

algorithm is to generate an increasing sequence
with , such that converges to a local

1 is a Lie group if the group operations defined by
and defined by are both mappings [19].
2The reason to consider is that is not connected. When the desired

orthogonal matrix has determinant , our algorithm in fact searches for
for some permutation matrix with .
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maximizer of . Various approaches can be used to gen-
erate such a sequence in , for instance, geodesic
flows and quasi-geodesic flows [20]. Here we focus on geodesic
flows on . In particular, starting with the current , the
update is selected from one geodesic path of along
the steepest ascent direction such that . In
fact, this approach has been applied to the general Stiefel man-
ifold [20]. Below we briefly review the idea and then introduce
our implementation algorithm for -ICA. We note that the pro-
posed algorithm is also applicable to MLE-ICA by using the
corresponding objective function.
Let be the tangent space of at . Consider a

smooth path on with . Differentiating
yields the tangent space at

Clearly, is the set of all skew-symmetric matrices. Each
geodesic path starting from has an intimate relation with the
matrix exponential function. In fact, if and only
if is skew-symmetric (see [19, page 148]; Proposition 9.2.5
in [21]). Moreover, for any , there exists (not unique)
a skew-symmetric such that . If we consider
the Killing metric [20],

the geodesic path starting from in the direction is

(25)

Since the Lie group is homogeneous, we can compute the gra-
dient and geodesic at by pulling them back to the
identity and then transform back to . In the implementa-
tion algorithm, to ensure all the iterations lying on the manifold

, we update through

(26)

where the skew-symmetric matrix and the step size
are chosen properly to meet the ascending condition

. Since, from (25), lies
on the geodesic path of , then
must lie on the geodesic path of . Moreover, since

by , the
sequence in (26) satisfies for all . The deter-
mination of the gradient direction and the step size is
discussed below.
To compute the gradient and geodesic at by pulling them

back to , define

(27)

We then determine from one geodesic
at in the direction of the projected gradient of . Specifi-
cally, to ensure the ascending condition, we choose each skew-

symmetric to be , the projected gradient of at
, defined to be

(28)

where and is defined in Propo-
sition 1. This particular choice of ensures the existence of
the step size for the ascending condition. Note that in the case
of imposed with the Killing metric, the projected gradient
coincides with the natural gradient introduced by [22]. See also
Fact 5 in [20] for further details.
As to the selection of the step size at each iteration with
and , we propose to select such that

is the “first improved rotation”. In particular,
we consider for some and , where
is a nonnegative integer. To proceed, we search such that

, where , and
then update . In our implementa-
tion, and are used. For the convergence issue,
one can instead consider the Armijo rule for (given in (29)).
Our experiments show that the above “first improved rotation”
rule works quite well. Lastly, in the implementation, to save the
storage for , we “rotate directly” instead of manipulating
, where is the data matrix whose columns are ,

. That is, we use the update . To re-
trieve the matrix , we simply do a matrix right division of the
final and the initial . The algorithm for -ICA based on gra-
dient ascend on is summarized below.
1) Initialization: , , whitened data .
2) For each iteration ,

(i) Compute the skew-symmetric matrix in (28).
(ii) For , if

, then break the loop.
(iii) Update . If the con-

vergence criterion is not met, go back to (i).

3) Output .
Finally, we mention the convergence issue. The statement is

similar to Proposition 1.2.1 of [23].
Theorem 6: Let be continuously differentiable on , and
be defined in (27). Let be a sequence gen-

erated by , where is a projected
gradient related (see (30) below) and is a properly chosen
step size by the Armijo rule: reduce the step size ,

, until the inequality holds for the first nonneg-
ative ,

(29)

where is a constant. Then, every limit point of
is a stationary point, i.e., for

all , or equivalently, .
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The statement that is a projected gradient related corre-
sponds to the condition

(30)

This condition is true when is the projected gradient
itself or some natural gradient (The-

orem 1 in [22]), where is a Riemannian metric tensor, which
is positive definite.

V. SELECTION OF

The estimation process of -ICA consists of two steps:
-prewhitening and the geometry-based estimation for , in
which the values of are essential to have robust estimators.
Hence, we carefully select the value of based on the adaptive
selection procedures proposed by [24] and [1]. We first intro-
duce a general idea and then apply the idea to the selection of
in both -prewhitening and -ICA. Define the measurement

of generalization performance as

where is the underlying true joint probability density func-
tion of the data, is the considered model for fitting,

is the minimum -divergence estimator of
, and is the empirical estimate of . The is called the an-
chor parameter and is fixed at throughout this paper. This
value is empirically shown to be insensitive to the resultant esti-
mators [24]. Let be the sample analogue of . We
propose to select the value of over a predefined set through

For -prewhitening, and with .
For -ICA, and with .
The above selection criterion requires the estimation of

. To avoid overfitting, we apply the -fold cross-vali-
dation. Let be the whole data, and let partitions of be

, that is, if and . The
whole selection procedure is summarized below.
1) For ,

(i) Obtain for
, where is the empirical estimate of based
on .

(ii) Compute , where is the em-

pirical estimate of based on .
2) Obtain , and ob-

tain .
Eventually, we have two optimal values of : for
-prewhitening, and for -ICA.

VI. NUMERICAL EXPERIMENTS

We conduct two numerical studies to demonstrate the robust-
ness of -ICA procedure. In the first study, the data is generated
with known distributions. In the second study, we use transfor-
mations of Lena images to form mixed images.

A. Simulated Data

We independently generate two sources , , 2, from a
non-Gaussian distribution with sample size . The
observable is then given by , where

Among the observations, we add to each of the last ob-
servations a random noise . The data thus contains 150 uncon-
taminated i.i.d. observations from the ICAmodel, , and
contaminated i.i.d. observations from , where

with and . We consider two
situations for :
(i) UNIFORM SOURCE: Each , , 2, is generated from

.
(ii) STUDENT- SOURCE: Each , , 2, is generated from

-distribution with 3 degrees of freedom.
For uniform source, we use sub-Gaussian model

, while it is super-Gaussian model
for the case of source, so that the variance

under is close to unity. To determine the value for
-prewhitening, the selection criterion in Section V with

and is considered. For comparison, we also use
the same -prewhitened data to implement MLE-ICA (using
the geometrical algorithm introduced in Section IV), fast-ICA
(using the code available atwww.cis.hut.fi/projects/ica/fastica/),
and JADE (using the code available at perso.telecom-paris-
tech.fr/~cardoso/Algo/Jade/jadeR.m), and use the original data
to implement -ICA [9]. To evaluate the performance of

each method, we modify from the performance index of [25]
by a rescaling and by replacing the 2-norm with 1-norm and
define the performance index

with being the -th element of . Note that
. We will expect to be a permutation matrix when

themethod performswell. In this situation, the value of should
be very close to 0, and attains 0 if is indeed a permutation
matrix. Simulation results with 100 replications are reported in
Fig. 1.
For the case of no outliers ( ), all methods perform

well as expected. When data is contaminated ( ), it is
detected that the performance of -prewhitening followed by
-ICA is not heavily affected by the presence of outliers, while
MLE-ICA, fast-ICA, and JADE are not able to recover the la-
tent sources. Comparing with -ICA, -ICA does have a better
performance. Obviously, -ICA is applicable for a wider range
of values, while -ICA tends to perform worse at small
values. This is an appealing property for -ICA since in prac-
tice, should also be determined from the data. A wider range
for then implies that -ICA is more reliable. One can see that
the performance of -ICA becomes worse when is small. This
is reasonable since in the limiting case , -ICA reduces
to the non-robust MLE-ICA. We note that both -prewhitening
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Fig. 1. The medians of the performance index under different settings.
(a) Uniform Source ( ). (b) Source ( ). (c) Uniform Source
( ). (d) Source ( ).

and -ICA are critical. This can be seen from the poor perfor-
mance ofMLE-ICA, fast-ICA, and JADE in the presence of out-
liers, even they use the same -prewhitened data as the input.
Indeed, -prewhitening only ensures that we shift and rotate the
data in a robust manner, while the outliers will still enter into the
subsequent estimation process and, hence, produce non-robust
results.

B. Lena Image

We use the Lena picture (512 512 pixels) to evaluate the
performance of -ICA. We construct four types of Lena as the
latent independent sources as shown in Fig. 2. We randomly
generate the mixing matrix to be , where
the elements of are independently generated from

. The observed mixed pictures are also
placed in Fig. 2, wherein about 30% of the pixels are added with
random noise generated from for contamination.
The aim of this data analysis is to recover the original Lena
pictures based on the observed contaminated mixed pictures. In
this analysis, the pixels are treated as the random sample, each
with dimension 4. We randomly select 1000 pixels to estimate
the demixing matrix, and then apply it to reconstruct the whole
source pictures. We conduct two scenarios to evaluate the
robustness of each method:
1) Using the mixed image as the input (see Fig. 2).
2) Using the filtered image as the input (see Fig. 2).
The filtering process in Scenario-2 replaces the mixed pixel
value by the median of the pixel values over its neighbor-
hood. In both scenarios, the estimated demixing matrix is
applied to the mixed images to recover . We apply -ICA,
MLE-ICA, and fast-ICA, all with the sub-Gaussian modeling,
to the same -prewhitened data for fair comparisons. The
plot introduced in Remark 4 is placed in
Fig. 3, which suggests that is a good candidate for

Fig. 2. Four images of Lena (the first row), the mixed images with contamina-
tion (the second row), and the filtered images (the third row).

Fig. 3. The maximum eigenvalue of at different values.

Fig. 4. The cross-validation estimates with for
(a) -prewhitening and (b) -ICA. The dot indicates the minimum value.

possible values. We then apply the cross-validation method
in Section V to determine the optimal . The estimated
values of are plotted in Fig. 4, from which we select

for -prewhitening and for -ICA. The
recovered pictures are placed in Figs. 5–7.
It can be seen that -ICA is the best performer under both sce-

narios, while MLE-ICA and fast-ICA cannot recover the source
images well when data is contaminated. It also demonstrates
the applicability of the proposed -selection procedure. We de-
tect that MLE-ICA and fast-ICA perform better when using fil-
tered images , but can still not reconstruct images as good as
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Fig. 5. Recovered Lena images from -ICA based on the mixed images (the
first row) and the filtered images (the second row).

Fig. 6. Recovered Lena images from MLE-ICA based on the mixed images
(the first row) and the filtered images (the second row).

Fig. 7. Recovered Lena images from fast-ICA based on the mixed images (the
first row) and the filtered images (the second row).

-ICA does. Notably, -ICA has a reverse performance, where
the best reconstructed images are estimated from the mixed im-
ages instead of the filtered ones. Reasonably, it is still possible
to lose useful information during the filtering process. For in-
stance, a pixel without being contaminated will still be replaced
with a median value during the filtering process. -ICA, how-
ever, is able to work on the mixed data that possesses all the
information available, and then weights each pixel according to
its observed value to achieve robustness. Hence, a better per-
formance for -ICA based on the mixed images is reasonably
expected.

VII. CONCLUSIONS

In this paper, we introduce a unified framework for the ICA
problem by means of minimum -divergence estimation. For

the sake of robustness, we further focus on -divergence to pro-
pose -ICA. Statistical properties are rigorously investigated.
A geometrical algorithm based on gradient flows on is
introduced to implement -ICA. The performance of -ICA is
evaluated through synthetic and real data examples. Notably, the
proposed -ICA procedure is equivalent to -prewhitening [1]
pluses -ICA [9]. However, the performance of the combination
of -prewhitening and -ICA has not been clarified so far. See
[1], wherein the authors apply fast-ICA after -prewhitening.
One aim of this paper is to emphasize the importance of the com-
bination. Simulation studies also demonstrate the superiority of
-ICA over -ICA.
There are still many important issues that are not covered by

this work. For example, we only consider full ICA problem,
i.e., simultaneous extraction of all independent components,
which is unpractical when is large. It is of interest to ex-
tend our current -ICA to partial -ICA. In this work, data
have to be prewhitened before entering the -ICA procedure.
Prewhitening can be very unstable especially when is large.
How to avoid such a difficulty is an interesting and challenging
issue. One approach is to follow the idea of [9] to consider
-ICA under the original data directly. Though the idea is
simple, there are many issues needed to be investigated, such as
the study of stability condition and the problem of non-identifia-
bility. Tensor data analysis is now becoming popular and attracts
the attention of many researchers. Many statistical methods in-
clude ICA have been extended to deal with such a data structure
by means of multilinear algebra techniques. Extension of -ICA
to a multilinear setting to adapt to tensor data is also of great in-
terest for the future study.

APPENDIX
PROOFS OF THEOREMS

For any symmetric matrix , takes
the unique elements of the columns of as a vector with
length . There exist matrices
and [26] such that
and . Moreover, and

.
Proof of Proposition 1: Since the objective function

is defined on , by [27, equation (2.53)], the natural gradient
of with respect to on is

(31)

The proof is completed by equating (31) to .
Proof of Theorem 1: By , the population objec-

tive function of -ICA in (22) can be expressed as

where . Considering the orthogonality of
gives the objective function

(32)
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where is a symmetric matrix containing the Lagrange multi-
pliers. Let and . To see if -ICA
is able to recover , we first show that (which implies

) attains the stationarity of (32) for some symmetric .
The gradient is

(33)
Solving gives the solution of to be

or equivalently, gives to be

by . Substituting into (33), we have

By condition (A) and the independence of , it is deduced that
, i.e., attains the stationarity.

Secondly, we will give condition so that indeed at-
tains the maximum value and, hence, the recovery consistency
of -ICA is guaranteed. Using at , the Hes-
sian matrix of (32) with respect to evaluated at
and is calculated to be

(34)

Note also that each can be expressed as
, where is a lower triangular matrix with zero

diagonal and . By chain rule and the fact that
, the tangent vector of

at (which corresponds to ) must lie in
the span of . Thus, together with (34), at-
tains the maximum value of over if and only
if .

Proof of Theorem 6: Similar to the proof of Proposition
1.2.1 of [23], the theorem will be proved by a contradiction.
Suppose that is a limit point of with . Since
is continuous on the compact set , we have
and . According to the Armijo

rule, we have . Since is the pro-
jected gradient related, a subsequence of converges to 0.
Then, for this subsequence the Armijo rule fails with step size

, i.e.,

(35)
where the right hand side in fact equals to

(36)
for some by the Mean Value Theorem. Since the
set of the tangent vectors is bounded, taking a further

subsequence , we have . Taking limits
with on (35)–(36), we have

where the equality comes from . Since
, then the above inequality contradicts to

the assumption .
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