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A Perfect Match Condition for Point-Set Matching Problems Using the Optimal
Mass Transport Approach∗
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Abstract. We study the performance of optimal mass transport–based methods applied to point-set matching
problems. The present study, which is based on the L2 mass transport cost, states that perfect
matches always occur when the product of the point-set cardinality and the norm of the curl of
the nonrigid deformation field does not exceed some constant. This analytic result is justified by
a numerical study of matching two sets of pulmonary vascular tree branch points whose displace-
ment is caused by the lung volume changes in the same human subject. The nearly perfect match
performance verifies the effectiveness of this mass transport–based approach.
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1. Introduction.

1.1. Literature reviews. Registration concerns matching two or more sets of image data
taken at different times or from different sensors. Depending on the type of image data,
registration methods can be classified into two groups: intensity-based methods and feature-
based methods. Comprehensive surveys of general registration methods can be found, for
instance, in [29], [60]. Here, we are concerned only with the feature-based methods, where
the features are special points in images, such as corners or salient boundary points. The
associated point-set matching (registration) problem is to establish a consistent point-to-point
correspondence between two point-sets. The most well known approach is the iterative closest
point (ICP) algorithm [4], [58]. The advantage of ICP is the simplicity of its implementation.
One limitation of ICP is its local convergence restriction (sufficient overlap between the point-
sets is required for initialization). Another drawback is the algorithm’s sensitivity to outliers.
To alleviate these challenges, a variety of robust methods have been developed [15], [48]. For
instance, in [15], Chui and Rangarajan proposed a robust point-matching method (TPS-RPM)
that simultaneously estimates nonrigid transformations using splines and correspondence. A
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type of matrix balancing technique called soft assignment is employed to establish symmetric
correspondence and detect outliers.

The classic Monge–Kantorovich (MK) mass transport problem1 [24] is to move piles of
soil at a minimal cost; the solution is called the optimal mass transport. This approach has
been applied to intensity-based image registration, retrieval, and morphing [52], [23], [40],
[59], [20], [35], [33]. The optimal cost function is the Wasserstein distance, which measures
the dissimilarity of two distributions. One advantage of the MK mass transport approach
is that the global minimizer can always be reached because of the inherent convexity of the
problem. However, intensity-based methods are sensitive to intensity changes, which can be
caused by noise or variations in illumination [60]. Experiments demonstrate that the morphing
effect of mass transport approaches seems unavoidable and may lead to misregistration of
medical images [33]. Recently, the mass transport approach has also been incorporated with
kernel correlation [48] into feature-based methods [12]. When a finite kernel scale is used, the
estimated correspondence is robust against distant outliers. Notice that the proposed model
is an approximation of the MK problem when the kernel scale tends to infinity.

1.2. The present study. We apply two mass transport–based methods to register two
large sets (hundreds of point-pairs) of landmark data acquired from a pair of lung CT images
(acquired during breath-holds) and establish their correspondence. These methods are tested
on the lung CT datasets of several human subjects measured at total lung capacity (TLC) and
functional residual capacity (FRC); see Figure 1. Nearly perfect match results are obtained,
which demonstrates the effectiveness of the mass transport methods. The results motivate
us to further investigate under what conditions the optimal scheme transporting these points
coincides with the ground truth correspondence.

Below are our analytic findings:

(a) We establish one sufficient condition (see Proposition 2.3 and Corollary 2.4) for perfect
matches, which states that perfect matches always occur when the product of the point-
set cardinality and the norm of the curl2 of the nonrigid deformation field does not
exceed some constant.

(b) We find that using the L2 mass transport cost yields a better performance than using
other mass transport costs because of the existence of some correspondence invariants
for the L2 mass transport cost (section 2.2).

(c) In lung experiments, perfect matches are likely to occur at landmarks at lower gen-
erations (Figure 9). This result supports the proposed sufficient condition when the
linear elastic theory predicts the large curls occurring near the lung periphery (in
Appendix B).

(d) We demonstrate that the Hellinger distances–based point-set matching model [12]
possesses cyclical monotonicity in the optimal transport (Remark 3.4). Experiments
(section 4.3) demonstrate that (1) mass transport–based methods outperform TPS-

1A survey of theoretical studies of this problem can be found in [16] or [49].
2Using the Helmholtz decomposition, a vector field on Rd can be expressed as a sum of a divergence-free

vector field and a curl-free vector field. Additionally, according to Brenier’s polar factorization theorem [8],
[49, Theorem 3.8], an L2 vector-valued mapping can be expressed as a composition of the gradient of a convex
function and a measure-preserving mapping.
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Figure 1. Three-dimensional (3D) CT images of lungs. Left: (a) TLC (total lung capacity) and (b) FRC
(functional residual capacity). Branch points are marked by green dots. The lungs, the airway tree, and the
vessel tree are marked by cyan, red, and purple, respectively. Right: Two point-sets selected from CT images.
The unit of the coordinates is mm. The direction z is along the lung height; i.e., a small z corresponds to the
apex, and a large z corresponds to the base. TLC is shown by markers × and FRC is shown by markers •.

RPM, which does not possess cyclical monotonicity; (2) the HD model is more robust
against outliers than the mass transport model.

To the best of our knowledge, this is the first study demonstrating the outstanding matching
performance of mass transport methods.

This paper is organized as follows. In sections 2 and 3, we present several theoretical
studies of the mass transport–based point-matching models, including the curl-cardinality
relation and the cyclical monotonicity property. In section 4, we present various matching
experiments performed on lung branch points to support the theoretical analysis. Lengthy
proofs, including those for the curl-cardinality relations, the curl distribution of lung defor-
mations, the asymptotic behavior of the rigid motion estimator, and the kernel scale selection
in the HD model, are listed in the appendices.

2. Mass transport–based point-set matching models. In this paper, we let δ be the
Dirac delta function and ‖ · ‖2 = ‖ · ‖ be the 2-norm. We denote the trace and the transpose
of a matrix X by Tr(X) and X�, respectively. The notation used throughout the paper is
summarized in Table 1.

2.1. Mass transport problems and point-set matching problems. One central problem
in elasticity theory concerns the determination of the deformation T on a bounded open
connected subset Ω of R3 subjected to some applied force. The deformation T must be
injective and orientation-preserving (i.e., the deformation gradient det(∇T ) is positive) to be
physically acceptable.

The primary focus of this paper is the inverse problem, which is to determine the corre-
spondence between two unlabeled point-sets {xi}ni=1, {yi}ni=1 sampled from Ω and T (Ω). Here,
the correspondence is described by a permutation τ on {1, . . . , n} such that yi = T (xτ(i)). To
proceed, we require a stronger assumption about the transforms: T is twice continuously dif-
ferentiable and has the Helmholtz decomposition T (x) = ∇φ + ∇ × ψ, where φ is strongly
convex and ∇ · ψ = 0. Note that φ,ψ can be determined by solving Poisson’s equation (see



A PERFECT MATCH CONDITION 733

Table 1
A summary of mathematical symbols.

T , S general deformations (vector-valued functions)
TA, TS symmetric and skew symmetric parts of the ∇T matrices

φ,ψ (except in section 3) functions in the Helmholtz decomposition of T
φ, ψ (in section 3) dual variables in the HD model

Q,R rotations (orthogonal matrices)
A affine transforms (nonsingular matrices)
t translations (vectors)
σ kernel scales

K,Ki,j the Gaussian kernel function and its entries in matrix form
X,Y, xi, yj point-sets and points in the point-set
μ, μi,j correspondence matrices in mass transport and their entries

Γ+,Γ−, γ+
i,j , γ

−
i,j correspondence matrices in the HD model and their entries

τ permutation maps
Λ(B; k) the kth largest singular value of the matrix B
ωmax the magnitude of the “curl” of T defined in (2.3) and (2.4)

pages 238–242 in [41]):

∇ · T = ∇2φ, ∇× T = −∇2ψ.

Suppose that the corresponding point-pairs {xi, yτ(i)} are nearby. Then, τ can be esti-
mated by solving the following minimization problem:

(2.1) min
τ

n∑
i=1

‖xi − yτ(i)‖α, α ≥ 1.

This is a combinatorial optimization problem because n! possibilities must be evaluated. This
difficulty can be alleviated if we instead consider a relaxed problem,

(2.2) min
μi,j

n∑
i=1

‖xi − yj‖αμi,j,

subject to the unit mass constraint,
∑n

i=1 μi,j = 1 =
∑n

j=1 μi,j, μi,j ≥ 0. This problem is
known as the Lα MK mass transport problem. Here, the original permutation τ is relaxed to
a correspondence matrix characterized by the doubly stochastic matrix {μi,j : i, j = 1, . . . , n}
or the measure μ :=

∑n
i,j=1 μi,jδ(x − xi, y − yj). More precisely, τ(i) = j if μi,j = 1.

The relaxed problem described by (2.2) is a convex (in fact, linear) minimization problem,
which has an optimal permutation matrix (the existence of this is guaranteed by Birkhoff’s
theorem) and can be solved by interior point methods [7] or primal-dual algorithms [23]
(see also Chapter 4 in [9]). Finally, we say that a perfect match occurs if the underlying
correspondence between two point-sets coincides with a minimizer {μi,j}ni,j=1 of (2.2).

2.2. Two special properties of the L2 cost. In this paper, the MK method is defined by
correspondence estimation using (2.2) with α = 2. This method has two special properties.

The first special property is the optimality condition, called cyclical monotonicity. A
nonempty subset {(xi, yi)}ni=1 in Rd, d ≥ 1, is said to be cyclically monotone (see page 79 in
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[49]) if for all m ≥ 2 and for all subsets {(xi, yi)}mi=1,

m∑
i=1

‖xi − yi‖2 ≤
m∑
i=1

‖xi − yi−1‖2, with the convention y0 = ym.

In this context, μ =
∑n

i=1 δ(x − xi, y − yi) is optimal in the L2 mass transport problem
when the correspondence {(xi, yi)}ni=1 is cyclically monotone. One key characterization of
the optimality condition is that if the support of μ satisfies cyclical monotonicity, then μ
is supported in the subdifferential of a proper lower semicontinuous convex function φ (see
Theorem 2.27 in [49]), i.e., yi ∈ ∂φ(xi), where ∂ refers to subgradients [37].3

Consider a transform T : Rd → Rd between two point-sets {xi}mi=1, {yi}ni=1 in Rd with
yi = T (xi). When T is the gradient of some convex function, then the correspondence can be
recovered correctly by solving mass transport problems. This special class of transforms includes
scalings, translations, positive definite affine transforms (T (x) := Ax+ t, where A is positive
definite), and other curl-free maps. Note that when φ is strongly convex and differentiable, the
Hessian of φ is positive definite, which implies that ∇φ is orientation-preserving and injective.

The second special property of the L2 cost is that the correspondence is invariant under
an additional transform S. Here, we discuss two correspondence invariants: (i) between
{S(xi)}ni=1 and {S(yi)}ni=1 and (ii) between {S(xi)}ni=1 and {yi}ni=1.

In R1, for one-dimensional (1D) point-sets, a cyclically monotone correspondence μ is a
monotone rearrangement (in which the spatial ordering of points is preserved); see page 75 in
[49]. Thus, cyclical monotonicity of {(xi, yi)}ni=1 implies that {S(xi), S(yi)}ni=1 and {S(xi), yi}ni=1

are cyclically monotonic if S is an increasing function. We have both invariants (i) and (ii).
In Rd, d > 1, a cyclically monotone correspondence {(xi, yi)}ni=1 does not imply cycli-

cal monotonicity of (i) {(S(xi), S(yi))}ni=1 or (ii) {(S(xi), yi)}ni=1. Instead, for type (i), the
correspondence in Lα cost is invariant under rigid motions and scalings (S(x) = Qx + t,
S(x) = ax+ t, with a > 0, t ∈ Rd, and Q an orthogonal matrix).4 For invariant (ii), we will
first demonstrate that the L2 cost possesses one additional (forward-backward) invariant.

Proposition 2.1 (forward-backward). Suppose that a matrix μ minimizes the L2 mass trans-
port cost between {xi}ni=1 and {yi}ni=1. Let S(x) = Ax+ t be an affine transform with a non-
singular symmetric matrix A and a vector t. Then, the matrix μ also minimizes the L2 mass
transport cost between {S(xi)} and {S−1(yj)}:

argmin
μ

n∑
i,j=1

μi,j‖xi − yj‖2 = argmin
μ

n∑
i,j=1

μi,j‖(Axi + t)−A−1(yj − t)‖2.

3Regard two point-sets as finite realizations of two random variables. According to Theorem 2.32 in [49] or
[30], for two probability measures μ, ν, where μ is absolutely continuous with respect to the Lebesgue measure,
there exists a unique measurable map T such that the push-forward measure T#μ = ν and T = ∇φ for some
convex function φ.

4In general, the correspondence in the mass transport cost ‖x−y‖α is not invariant under affine transforms.
Here is one example: Let {xi}4i=1 = {(1, 1), (0, 1), (0, 0), (−1, 0)} and {yi}4i=1 = {(−1, 1), (0, 1), (0, 0), (1, 0)}.
Consider two affinely transformed point-sets {Axi}, {Ayi}, where A is a diagonal matrix with diagonal entries
[a, 1]. For a ∈ (0, 1) and close to zero, x1 is matched with y2 (consider {xi}4i=1 and {yi}4i=1 as {x1, x2}∪{x3, x4}
and {y1, y2} ∪ {y3, y4}). However, x1 is matched with y4 for a sufficiently greater than 1 (consider {xi}4i=1 and
{yi}4i=1 as {x1} ∪ {x2, x3} ∪ {x4} and {y1} ∪ {y2, y3} ∪ {y4}).
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In particular, the result holds for positive definite matrices A.

Proof. Because
∑n

i=1 μi,j = 1 =
∑n

j=1 μi,j, any minimizer μi,j for the cost

∑
i,j

μi,j‖(Axi + t)−A−1(yj − t)‖2 =
∑
i,j

(−2)μi,jy�j xi + constant terms w.r.t. μi,j

also minimizes
∑n

i,j=1 μi,j‖xi − yj‖2.
Combining the first invariant with the optimal correspondence {(xi, yi)}ni=1 yields the

optimal correspondence {(axi + t, yi)}ni=1, where a is a positive scalar, which is invariant (ii).
In practical applications, the invariant of the L2 cost eliminates the difficulty of estimating
the parameters a, t.

2.3. Curl-cardinality relations. Typically, the match error of the mass transport approach
is caused by two factors, nonzero curls and outliers. We first examine the effect of curl on
the occurrence of mismatch. A discussion regarding outliers will be presented in the following
section.

According to the Helmholtz decompositions, a 3D smooth vector field can be expressed as
a sum of a gradient function and a curl function. Regarding mass transport methods, point
correspondence can be estimated correctly if the transform is the gradient of some convex
function. However, these special transforms form a very small class, and they rarely occur
in practical applications. Consider any point-set with finite cardinality n sampled from Ω.
The following analysis demonstrates that if the curl magnitude ωmax (Definition 2.1) of the
transform T is less than some upper bound C/n, then a perfect match can still be obtained;
here, C is a positive constant that is related to the constant in the isoperimetric inequality
[10]. Empirical experiments demonstrate that the upper bound can be significantly improved
if the point-set is scattered uniformly over some region of a high-dimensional space rather
than concentrated in a circle.

Definition 2.1. For each d × d matrix B, let Λ(B, k) be the kth largest singular value of
B. Let T be a transform on Rd, d ≥ 2. Let TS and TA be the symmetric and skew symmetric
parts of ∇T at each x in the domain Ω, i.e., ∇T (x) = TS(x) + TA(x). Define the maximum
curl ωmax of T on Ω as

(2.3) ωmax(T ; Ω) = 2 tan−1

(
maxx Λ(TA(x), 1)

minx Λ(TS(x), d)

)
.

In the case where Ω ⊂ R3 and T = ∇φ+∇× ψ with φ strongly convex, we obtain

Λ(TA, 2) = 0 and Λ(TA, 1) = −Λ(TA, 3) = 2−1‖∇ × T‖ = 2−1‖∇2ψ‖2.

Thus, tan(ωmax/2) is proportional to the maximum curl, maxx ‖∇ × T (x)‖.
To better understand ωmax, we first examine the upper bound on rotation angles for

perfect matches.

Example 2.2. Consider one point-set consisting of n points {xi ∈ R2 : i = 1, . . . , n ≥ 2} in
a circle (centered at the origin) with radius r and with polar angle {θi = 2iπ/n : i = 1, . . . , n}
and another point-set consisting of {yi : i = 1, . . . , n} in the circle with polar angle θi + ω.
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Use the conventions xn+1 = x1 and x0 = xn. The perfect match condition is forfeited under
ω if

n∑
i=1

xi · yi = nr2 cosω ≤ max

(
n∑
i=1

xi+1 · yi,
n∑
i=1

xi−1 · yi
)
,

which implies tan |ω| ≥ (1− cos(2π/n))/ sin(2π/n) = tan(π/n),

i.e., |ω| ≥ π/n. One can easily verify that Λ(TA; 1)/Λ(TS , 2) = tan |ω| and ωmax in Defini-
tion 2.1 is exactly 2|ω|. Hence, a perfect match can be obtained if the rotation angle ω lies
in (ω−, ω+) := (−π/n, π/n) or ωmax ≤ 2π/n. Here, we term the range (ω−, ω+) the perfect
match range. Note that this upper bound (which does not depend on the spatial size 2r) can
be regarded as the angular resolution of the point-set (i.e., the average angle between points
for n points {xi}ni=1 evenly spaced in the angular range 2π).

In the following proposition and corollary, we present the curl-cardinality relation for
rotations and general transforms. Consider a point-set {xi}ni=1 in Rd, and generate another
point-set {yi}ni=1 by rotating {xi}ni=1 by angle ω. A rotation can be described by an orthogonal
matrix R, so let T (x) = Rx. Perform the decomposition ∇T = R = RS +RA, where RS , RA
are the symmetric and skew symmetric parts of R. The magnitude of the rotation can then
be measured by the ratio Λ(RA, 1)/Λ(RS , d).

Proposition 2.3 (curl-cardinality for rotations). Suppose that the transform T is a rotation:

(i) A perfect match can be obtained for a set of n points in Rd if ωmax(T,R
d) ≤ 2π/n.

(ii) Among all of the possible point-sets consisting of n points, the point-set that consists
of the vertices of the n-sided regular polygon has the smallest perfect match range,
(ω−, ω+) := (−π/n, π/n).

The proof can be found in Appendix A.

Corollary 2.4 (curl-cardinality for general deformations). Decompose the gradient of a gen-
eral transform T as a sum of the symmetric and skew symmetric parts,

∇T = TS + TA on Rd, d ≥ 2.

(i) For a general transform T on Rd, the above curl-cardinality relation still holds with
the constant C not necessarily equal to 2π (the difference is due to the Riemann sum
approximation).

(ii) Suppose that TS is constant and positive definite and can be factored as T
1/2
S T

1/2
S . The

curl-cardinality relation can be improved, i.e., perfect matches occur if ωmax ≤ 2π/n,
where

(2.4) ωmax := 2 tan−1
(
max
x

Λ(T
−1/2
S TA(x)T

−1/2
S , 1)

)
.

The proof can be found in Appendix A. From the proof of Corollary 2.4, according to the
isoperimetric inequality and Lemma A.1, one can easily verify that the upper bounds occur
only when the points are exactly the vertices of the regular polygon.5

5In (ii), points {xi}ni=1 are the vertices {yi}ni=1 of the regular polygon under affine transforms, xi = T
−1/2
S yi.
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2.4. Curl-cardinality relations ωmax ≤ C/n−1/d. At first glance, Proposition 2.3 (or
Corollary 2.4) might make one pessimistic about the occurrence of perfect matches. However,
usually the value ω+ − ω− for rotating a high-dimensional point-set is far greater than 2π/n
(when the points are not concentrated in a planar circle). In fact, from the proof of the
proposition, n can be reduced to a maximum length of disjoint cycles of the corresponding
permutation τ . Let us examine one special case: In two dimensions, suppose the points are
located at rectangular grid points xi,j = (i/

√
n, j/

√
n) for i, j = 1, . . . ,

√
n ∈ N. Along

the rectangular boundary, there are 4
√
n points. The angular resolution is approximately

2π/4
√
n = π/2

√
n. Thus, ω+ − ω− ≈ 1.57n−1/2.6 Similar arguments demonstrate that

ω+ − ω− ≈ 1.57n−1/3 for the cases of 3D rectangular grids.

Here, one simulation of the curl-cardinality relation in which the coefficient is greater
than π/2 ≈ 1.57 is presented. Consider a point-set randomly generated from the unit square
[0, 1]×[0, 1] uniformly. Rotate the point-set along the z-axis by an angle ω. Each perfect match
range (ω−, ω+) is measured under various point cardinalities, n = 50, . . . , 200. The result is
reported in Table 2 and Figure 2. In the figure, the green solid line reveals a linear relationship
between n−1/2 and ω+ − ω−, where (approximately) ω+ − ω− = C2n

−1/2, with C2 = 2.90.
Similarly, we measure the perfect match range for 3D point-sets (randomly generated from
[0, 1]× [0, 1]× [0, 1]) with different point cardinalities. The result is shown by the red dashed
line, which is (approximately) ω+ − ω− = C3n

−1/3, with C3 = 2.86.

Table 2
(ω+ − ω−)× 100 based on 10 random samples.

n 50 75 100 125 150 175 200

Two dimensions 46± 4.4 34.8 ± 1.6 28.8 ± 1.6 25.2 ± 1.88 23.3± 1.88 21± 0.89 19.2± 1.4
Three dimensions 84.8± 6.9 68.8 ± 4.4 62.8 ± 3.4 57.2± 3.9 51.6 ± 2.6 49.2 ± 2.4 46.8± 1.6

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

Figure 2. Robustness of the extra curl for randomly sampled point-sets. The graph is generated using
Table 2. The y-axis is ω+−ω−, and the x-axis shows n−1/2(the green solid line) and n−1/3(the red dashed line)
for two and three dimensions, respectively.

6To see the origin of the factor n1/2, consider a polygon {xi}mi=1 with constant side lengths ‖xi −xi−1‖ = h
for i = 1, . . . ,m and x0 = xm. Fix Area (the area of the enclosed region). Since Tr(S) = mh2, an upper
bound for tan |θ| is mh2/4Area (see (A.5)). Hence, the tightest bound for ωmax is given by the polygon with
the minimum cardinality m.
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Consequently, under the same magnitude of curls, the difficulty matching 1000 (randomly
sampled) 3D points in mass transport models is similar to the difficulty of matching 100 2D
points and the difficulty of matching 40 points on the four sides of a square. Hence, it is
not surprising that perfect matches occur when matching 3D lung point-sets containing 1000
points. See the experimental results for details.

3. Outliers in matching problems. In this section, we impose the same (small curl)
assumption on transforms as in the previous section. Hence, the mass transport method
yields the correct correspondence in this ideal case. We will study the outlier effect in mass
transport models. In our experiment, outliers refer to the points that appear in one point-set
but that are missing correspondences in the other point-set. From a mathematical viewpoint,
because the points are unlabeled, it is impossible to distinguish outliers from the “inliers.”
Hence, perfect matches are unattainable when outliers exist. In fact, the matching result
can be much worse. Sometimes, even a small number of distant outliers can cause large
mismatches in the aforementioned mass transport model (see the experimental results).7

One possible solution is the HD model [12] in which correspondences are estimated by
maximizing

(3.1)

m,n∑
i,j=1

√
γ+i,jγ

−
i,j exp(−‖xi − yj‖2/2σ2),

with respect to nonnegative unknowns γ+i,j , γ
−
i,j, subject to the unit mass constraint,

∑m
i=1 γ

+
i,j =

1 =
∑n

j=1 γ
−
i,j for all i, j. Here, the correspondence is characterized by two matrices γ+i,j, γ

−
i,j .

This model yields the same correspondence result as the mass transport model when σ tends
to infinity (section B.3 in [12]).

In this section, we will demonstrate that the optimal correspondence in the HD model
is indeed cyclically monotone (see Remark 3.4). Hence, the HD model can be viewed as
a reweighted mass transport model in which the weight function is related to the spatial
distance of each corresponding point-pair. When a finite kernel scale σ is used, this model
is robust to distant outliers (see the experimental results presented in section 4). Indeed,
for some sufficiently large σ, the correspondence determined by the majority rule (see (4.2))
is identical to the correspondence generated using the MK mass transport model. Thus,
robustness against outliers is obtained from the use of finite kernel scales.

3.1. Duality. We will examine the optimality condition in the HD model by analyzing
the duality structure between the maximization problem (3.1) and its dual problem (3.3).
Let S = {(Γ+,Γ−) : Γ+,Γ− are m × n matrices with entries γ+i,j ≥ 0, γ−i,j ≥ 0 satisfying∑n

j=1 γ
+
i,j = γ+i ,

∑m
i=1 γ

−
i,j = γ−j }. Let

(3.2) E(Γ+,Γ−) =

{ ∑m,n
i=1,j=1 2

√
γ+i,jγ

−
i.jK(xi, yj) if (Γ+,Γ−) ∈ S,

−∞ else.

7For example, consider 1D point-sets {xi}, {yi} on the x-axis with perfect matches. Add one outlier x to
{xi} and add one outlier y to {yi}, where x > xi and y < yi for all i. Then, we obtain a 100% mismatch rate.
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Let T = {(φ,ψ) : vectors φ,ψ have positive entries φi, ψj with φiψj ≥ K(xi, yj)
2}. Here, the

dual problem maxE is presented:

(3.3) min
(φ,ψ)∈T

J(φ,ψ), where J(φ,ψ) :=
m∑
i=1

φiγ
+
i +

n∑
j=1

ψjγ
−
j .

Indeed, these two problems are connected by the weak duality:

max
(Γ+,Γ−)∈S

E(Γ+,Γ−) ≤ min
(φ,ψ)∈T

J(φ,ψ).(3.4)

We say that (Γ+,Γ−, φ, ψ) is a saddle point if

E(Γ+,Γ−) = J(φ,ψ).(3.5)

The weak and strong dualities have been studied in [12], and the strong duality can be
established using the strong duality theorem (see Proposition 5.2.1 in [3]). The following
proposition summarizes the optimality conditions.

Proposition 3.1. Assume Ki,j > 0 for all i, j. Then

max
(Γ+,Γ−)∈S

E(Γ+,Γ−) = min
(φ,ψ)∈T

J(φ,ψ).

This result indicates the absence of the duality gap. That is, if the matrices (Γ+,Γ−) and the
vectors (φ,ψ) are optimal, then from (3.4), the following conditions hold:

1. For all i, j, γ+i,jγ
−
i,j(φiψj − K2

i,j) = 0. Then, γ+i,j = 0 = γ−i,j for each pair (i, j) with

φiψj > K2
i,j.

2. φiγ
+
i,j = ψjγ

−
i,j for all i, j.

Conversely, when these two conditions are fulfilled, (Γ+,Γ−, φ, ψ) is a saddle point.
From Proposition 3.1, the (i, j) entries K2

i,j should coincide with those in the product of

the two vectors φ,ψ if γ+i,jγ
−
i,j > 0. Thus, given a matrix {Ki,j : i = 1, . . . ,m, j = 1, . . . , n}

with nonzero minors,8 the correspondence matrices (Γ+,Γ−) are highly sparse. Here, a block
coordinate descent method to compute Γ+,Γ− is presented.

Algorithm 3.2 (correspondence estimation [12]).
1. Initialize matrix Γ− with entries γ−i,j = 1/n and matrix K with entries Ki,j = exp(−‖yj−
xi‖α/2σα). Let σ be some kernel scale.

2. Repeat the iterations until they converge:

(3.6) γ+i,j ←
γ−i,jK

2
i,j∑n

j=1 γ
−
i,jK

2
i,j

, γ−i,j ←
γ+i,jK

2
i,j∑m

i=1 γ
+
i,jK

2
i,j

.

In Theorem 4.5 of [13], any limit of the sequences is a global maximizer independent of the
initial positive matrices Γ+ and Γ−. Empirically, the convergence speed is typically acceptable
for point-sets with hundreds of points and small kernel scales.

8All square submatrices have a nonzero determinant.



740 PENGWEN CHEN, CHING-LONG LIN, AND I-LIANG CHERN

3.2. Cyclical monotonicity in the HD model. Rearrange and partition each pair of dis-
crete masses ν+, ν− properly such that the matching is “bijective,” i.e.,

ν+ =

n∑
i=1

γ+i δ(x− xi), ν− =

n∑
i=1

γ−i δ(y − yi).

Then, the maximizer (Γ+,Γ−) of E can be expressed as a pair of square diagonal matrices
with diagonal entries {γ+i }ni=1 and {γ−i }ni=1. The next proposition characterizes the optimal
bijective matching described by {(γ+i , γ−i ) : i = 1, . . . , n}.

Proposition 3.3. The above bijective matching is optimal if and only if

(3.7)
Ki,iKj,j

K2
i,j

≥
√√√√γ+i γ

−
j

γ+j γ
−
i

≥ K2
j,i

Ki,iKj,j
for all i, j.

Note that for either yi = yj or xi = xj we have

(3.8)
γ−i
γ−j

=
γ+i K

2
i,i

γ+j K
2
j,i

or
γ+i
γ+j

=
γ−i K

2
i,i

γ−j K
2
i,j

, respectively.

Proof. (The only-if part) Let (φ,ψ) be a minimizer of the dual problem J . Then, we have
K2
i,i = φiψi, K

2
j,j = φjψj , and K

2
i,j ≤ φiψj, which implies

Ki,iKj,j

K2
i,j

≥
√
φiφjψiψj
φ2iψ

2
j

=

√
ψi
φi

φj
ψj

=

√√√√γ+i γ
−
j

γ−i γ
+
j

,

where we also used γ+i φi = γ−i ψi. Thus, we proved the first inequality. The second inequality
is obtained by exchanging i and j.

(The if part) Suppose that Γ+,Γ−, and Ki,j satisfy the inequality. Let

φi = Ki,i

√
γ−i /γ

+
i , ψi = Ki,i

√
γ+i /γ

−
i .

One can then easily verify φiγ
+
i = ψiγ

−
i , φiψj ≥ K2

i,j . From Proposition 3.1, (Γ+,Γ−, φ, ψ) is
a saddle point. Thus, the diagonal matrices (Γ+,Γ−) are an optimal pair.

This proposition yields two consequences.
Remark 3.4 (cyclical monotonicity). The inequality in (3.7) yields the following “c”-cyclical

monotonicity [50], where the cost function “c” is defined as − logK. For any natural number
N and any subset {(x1, y1), . . . , (xN , yN )} of two point-sets, the following inequality holds:

K1,1(
∏N−1
i=2 K2

i,i)KN,N∏N−1
i=1 K2

i,i+1

≥
N−1∏
i=1

√
γ+i γ

−
i+1

γ−i γ
+
i+1

=

√
γ+1 γ

−
N

γ−1 γ
+
N

≥ K2
N,1

K1,1KN,N
;

i.e., we obtain the c-cyclical monotonicity

N∑
i=1

logKi,i ≥
N∑
i=1

logKi,i+1, where KN,N+1 := KN,1.
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Figure 3. Illustration of closest point pairs. xi, yi are a pair of closest points.

WhenK(x, y) = exp(−‖x−y‖2/σ2), cyclical monotonicity implies that {(xi, yi) : i = 1, . . . , N}
is included in the subdifferential of a proper lower semicontinuous convex function. From (3.8),
both the upper and lower bounds of the ratio γ+i γ

−
i+1/γ

−
i γ

+
i+1 tend to 1 as σ2 → ∞. Hence,

the pair of limit correspondences in the HD model converge to the same limit, which is exactly
the correspondence matrix in the mass transport model.

Remark 3.5 (closest point property [12]). Consider K(x, y) = exp(−‖x− y‖α/2σα), α ≥ 1.
Consider two point-sets {xi : i = 1, . . . , n}, {yi : i = 1, . . . , n} with |xi − yi| < minj{‖xj −
yi‖, ‖xi − yj‖ : j = i} for all i; i.e., xi is the closest point to yi among the first point-sets and
vice versa (see Figure 3). Ki,iKj,j/K

2
i,j has a lower bound 1. Then, the bijective matching

{(xi, yi) : i = 1, . . . , n} is optimal if γ+i /γ
−
i is constant for each i. Hence in this case, the HD

model produces the same result as the ICP method [58]. The conclusion does not depend on
σ.

Remark 3.4 demonstrates that in the case of no outliers, there exists a minimum kernel
scale σmin such that the correspondence produced by the HD model with the kernel scale
σ ≥ σmin is the same as the correspondence μ produced by the MK method and modified by
the majority rule, (4.2). To suppress the outlier effect, we should use small kernel scales if
possible. According to one example in Appendix D, the value of the minimum kernel scale σmin
is approximately proportional to the spatial size of the point-set, the largest displacement,
and the point cardinality (see (D.4)). In practice, because the displacement is unknown, we
simply select σ to be a value between |Δ|/2 and 2|Δ|, where |Δ| is the spatial size of point-sets.

3.3. Preprocessing for HD methods. One can use the moment method [44] to shorten
the distance between the corresponding point pairs: Let x̂i = xi − tx and ŷi = yi − ty, where
tx := n−1

1

∑n1
i=1 xi, ty := n−1

2

∑n2
i=1 yi. Let MX := n−1

1

∑n1
i=1 x̂ix̂

�
i ,MY := n−1

2

∑n2
i=1 ŷiŷ

�
i with

singular value decompositions MX = UXDXU
�
X and MY = UYDY U

�
Y . Let

(3.9) A = UYD
1/2
Y D

−1/2
X U�

X .

Then, {Ax̂i}n1
i=1 and {ŷi}n2

i=1 have the same first two moments. Here, tx,MX are called the
first and second (central) moments of {xi}n1

i=1.
One naive approach is the following: Employ the HD model on the point-sets {Ax̂i}n1

i=1

and {ŷi}n2
i=1 instead of the original point-sets. However, in some cases, this approach could

lead to poor performance because of the instability of the orthogonal matrices (in particular,
the second moment has close eigenvalues.9)

Instead, we consider the positive definite affine transform T1(x) = Ax+t as the preprocess-

ing transform, where A = UXD
1/2
Y D

−1/2
X U�

X , and t refers to a translation vector. Point-sets

9For instance, one point-set is a set of rectangular grid points. See the experimental results presented in
Table 3.
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are preprocessed in the manner {A(xi− tx)}, {yi− ty}, where tx, ty ∈ Rd are chosen to match
their first moments of the point-sets. We have empirically found that this preprocessing can
shorten the distance between each desired point-pair and thus decrease the kernel scale re-
quirement in the HD model. Hereafter, the HD method refers to the HD model applied to the
preprocessed point-sets.

Two sets of experimental results are provided to demonstrate the method’s performance
(see Figures 4 and 5): (i) Figure 4 shows a comparison of the performance of the HD method
with and without the preprocessing at matching two shapes. (ii) Figure 5 shows the matching
result for the lung (TLC/FRC) branch points (shown in the left of Figure 6) obtained using the
mass transport–based methods (the MK and HD methods). The details of the experimental
setup can be found in section 4.4. Clearly, the use of preprocessing improves both matching
results.
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Figure 4. Top row: Point-set X, point-set Y , and the matching between T1(X), Y , where an affine trans-
form T1 is estimated from the first two moments. Second row: The left subfigure shows the matching performance
between X,Y ; the right subfigure shows the matching performance between T1(X), Y .

3.4. General transforms. In applications, we often must take on the task of matching
point-sets with large curl and large cardinality. To overcome the restriction of the curl-
cardinality relation, we can incorporate other methods into the mass transport methods.

In the following, we consider the following smoothness assumption about T : Express T as
the composition of two smooth transforms, T = T2 ◦T1. We assume T1 and T ∈ NΦ(Ω), where
NΦ is the reproducing kernel Hilbert space generated by a positive semidefinite kernel Φ with
norm ‖ · ‖Φ(Ω). For simplicity, let Φ be a Gaussian kernel with kernel scales σS and let the
domain Ω be a ball.10

10The domain Ω is required to satisfy an interior cone condition (see Definition 3.6 in [51]). Every ball
satisfies the condition (see Lemma 3.10 in [51]).
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Figure 5. Mismatches of the mass transport–based methods applied to lobe 1 under the existence of outliers.
Left: The x-axis is the cardinality of outliers. The results from the MK method and the HD model are depicted
as a blue dashed line and solid lines. Here, no positive definite affine transform is used. Middle: Another
viewpoint of the left subfigure. The x-axis is the kernel scale σ. σ = inf refers to the MK method. Right: The
mismatches of the MK and HD methods are presented. A positive definite affine transform is used in the HD
method to match the moments of the two point-sets.
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Figure 6. Left: 25 outliers (red •) are added to the TLC point-set of the first lobe (shown in blue +). Right:
25 outliers (red •) are added to the TLC point-set with subject ID H6972 (shown in blue +).

Here, we discuss two approaches for estimating T1 (note that the transform T2 is handled
by the correspondence in the HD models).

3.4.1. HD-RBF. In section 3.3 of [12], the following model is proposed to estimate the
point-to-point correspondence and the transform T1:

(3.10) min
T1

min
Γ+,Γ−

⎛
⎝−∑

i,j

√
γ+i,jγ

−
i,j exp(−‖T1(xi)− yj‖2/σ2K) + λ‖T1‖2NΦ(Ω)

⎞
⎠ ,

where λ is some positive parameter and the basis functions for T1 consist of Gaussian kernels
and affine transforms. We will call this the HD–RBF model (Hellinger distances–radial basis
functions). Our experimental results indicate that this model performs well at matching the
lung point-sets even though the model is a nonconvex minimization problem. The introduction
of the transform T1 has two advantages. First, it provides one possible method for handling
large curls. In fact, when T1 is restricted to rigid motions, the optimal rigid motion will match
the first two moments of the two point-sets (see Appendix C). Second, the displacement
between each desired point pair can be greatly reduced. Because the optimal selection σ
depends on the largest displacement, a smaller kernel scale can be used, and we can obtain
more robustness against outliers.
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3.4.2. Hierarchical approaches. The second approach is a hierarchical method (coarse-
fine) approach for reducing the curl of deformations. The matching challenge in mass transport
models is caused by the curl of the displacement and the point cardinality. Reducing one of
these factors can improve the matching performance. The hierarchical approach attempts
to split the original matching problem with large cardinality and large curl into two (or
more) subproblems, each of which has either small cardinality or small curl. When the curl-
cardinality relation is fulfilled, perfect matches can be obtained for both subproblems.

Point-sets are selected from prominent geometric image features in images using differential
operators (edge and corner operators, for instance [39]) or local descriptors (for instance, SIFT
[28]). Several pairs of point-sets with different point cardinalities can be generated from one
pair of images. Here, we demonstrate a coarse-fine approach to computing the correspondence
between (fine) point-sets X2 and Y2:

• Select a pair of coarse point-sets X1, Y1 and a pair of fine point-sets X2, Y2 from a pair
of images. The fine point-sets have larger point cardinalities than the coarse point-sets.

• Use the mass transport methods to obtain the correspondence τ from X1, Y1.
• Estimate the transform T1 from the problem

min |T1|NΦ
subject to T1(xi) = yτ(i) for xi ∈ X1, yi ∈ Y1.

• Compute the correspondence via the mass transport methods on the pair of point-sets
T1(X2), Y2. Then, the transform T2 can be estimated in a similar manner, if necessary.

Because of the following approximation theorem, the deformation between {yi}i and
{T1(xi)}i usually has a smaller curl than the deformation between {yi}i and {xi}i. According
to the curl-cardinality relation, the matching performance between two updated point-sets
{yi}, {T1(xi)} can be greatly improved compared with the one between the point-sets {yi}
and {xi}.

Theorem 3.1 (see Theorem 11.14 in [51]). Let NΦ be the reproducing-kernel Hilbert space
generated by a positive semidefinite kernel Φ with norm ‖ · ‖Φ(Ω). For simplicity, let Φ be a
Gaussian and let the domain Ω be a ball. Let sT,X be the radial basis function interpolant to
T ∈ NΦ(Ω) based on T and X = {x1, x2, . . . , xn}. Then, for every l ≥ 2, l ∈ N, there exist
constants hl, Cl > 0 such that

|DT (x)−DsT,X(x)| ≤ Clhl−1
X,Ω|T |NΦ(Ω)

for all x ∈ Ω, provided that hX,Ω := supx∈Ωminxj∈X ‖x − xj‖2 ≤ hl. Here, DT and DsT,X
refer to the first derivatives of T and sT,X , respectively.

Hence, the curl magnitude of the difference T − sT,X is bounded by the norm of T and
the fill distance hX,Ω. In the hierarchical approach, sT,X is the transform T1. Suppose that
the rate of increase of the point cardinality does not exceed the rate of decrease of the curl
magnitude. As a consequence of the curl-cardinality relation, a perfect match can still occur
in matching the fine point-sets.

Here, one simulation result is presented. Let X be the uniform grid points in the square
and Y be the deformed point-set

yi = xi + exp(−‖xi‖2)
(

0.5 0
0 1

)
xi.
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Figure 7. Matching results for hierarchical approaches. The left-1 and left-2 subfigures show the finer
point-sets X2 and Y2, and the middle subfigure shows the point-sets T1(X2) and Y2, where the transform T1 is
estimated from the coarser point-sets X1 and Y1 in the left-4 and left-5 subfigures.

Because the deformation is not curl-free, some mismatches are expected. We generate two
pairs of point-sets, (X1, Y1) with cardinality n = 52 and (X2, Y2) with cardinality n =
102, . . . , 302. The transform T1 is approximated by a linear combination of Gaussian basis
functions exp(−‖x − y‖2/0.12) and affine transforms. The experimental result is shown in
Figure 7 and Table 3. Note that perfect matches occur when the hierarchical approach is
used. Another simulation experiment can be found in Figure 9.

Table 3
Matching results for hierarchical approaches, as shown in the third column. The transform T1 is estimated

by matching the coarser point-set with cardinality 52. The second column shows the mismatches between X2

and Y2 that occur when using the HD model directly. The fourth and fifth columns show a comparison of the
results obtained using the HD-RBF model with different λ values. The poor performance of the HD-RBF model
is partially caused by the identical eigenvalues for the second moment of X2.

Hierarchy HD-RBF HDRBF
n X2, Y2 T1(X2), Y2 λ = 1 λ = 100

102 0 0 0 0
152 0 0 0 0
202 140 0 144 0
252 390 0 395 370
302 688 0 693 657

4. Experiments.

4.1. Experimental setup. Points located at the bifurcations of the major vascular trees
are manually selected and assigned correspondences from a pair of 3D CT images. First, the
vascular trees from both images are automatically extracted using the segmentation software
package PW2:VIDA Diagnostics (Coralville, IA). The major vessel trees are then obtained
by applying a morphology opening with a structure element of 3 × 3 × 3 voxels, and then
a connected component process is performed on the segmented vessel trees to remove small
branches. A set of points located at the major vascular trees in one image is then generated by
3D skeletonization and postanalysis. Next, a semiautomatic system [32] is adopted to guide
the observer in finding the corresponding points in the other image. With the semiautomatic
tool, each point pair manually annotated by the observer is added to a thin-plate spline as
a warping function for the two images. The warping function is then utilized to predict its
location when a new landmark point is presented to the observer. As more matching points
are added to the system, the warping function becomes more accurate, and the task of the
observer becomes easier, provided that there are increasingly accurate starting points.
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Remark 4.1. There are several research studies related to lung registration. The intensity-
based lung registration method matches the intensity patterns of the images retrieved at
different lung volumes by minimizing a similarity measure [42], [14], [36], [55], [56]. The
sum of the squared tissue volume difference (SSTVD) is a new similarity criterion based on
preserving tissue mass of the lung at different volumes [56]. SSTVD has been demonstrated
to yield an improved registration for large deformations in the lower lobes. However, such
methods incur high computational costs,11 and a possible mismatch of important anatomical
landmarks may occur when registration optimization falls into a local minima. In addition
to intensity data, anatomical features have also been used to derive the transformation from
one lung dataset to another [17], [5], [26], [11]. To further improve the accuracy of registering
intrasubject datasets across large lung volume changes, hybrid methods that utilize both
anatomical landmark and intensity information have been proposed [34], [27], [54], [21]. The
correspondences between anatomical points, such as the bifurcation points of airways and/or
vascular trees and vertebrae, were manually designated by experts.12

In this work, we use two types of point-sets: (i) Six pairs of CT images are used; they have
subject IDs 5972, 5974, 5978, 5983, 6012, and 6019. Approximately 100–200 landmark pairs
extracted from the branch points of the vessel trees are generated for each image pair. Figure 1
shows an example of the landmark locations; segmentations of the lungs and the vascular and
airway trees are also shown for reference. (ii) One large lung point-set (subject ID H8756)
consists of approximately 62500 points, which are the branch points of approximately 20
generations of airway trees in the five lung lobes generated by the volume filling technique
[47], [46] (see Figure 8).

Consider two sets of branch points {xi}mi=1 and {yj}nj=1. Because the correspondence
matrices Γ+ and Γ− are generally different matrices, we assign the correspondence by the
following majority rule:13

(4.2) yj is assigned to xi if γ
+
i,j ≥ γ+i,k for all k.

That is, j = argminj{γ+i,j : j = 1, . . . , n}. The matching performance of each method is
evaluated using the match error, i.e., the total number of mismatched pairs from the second
point-set not including outliers.14

11Computational time varies from several minutes to several hours depending on the input image size and
the implementation method (e.g., sampling points, GPU, multithreading).

12Some recently published work has shown that it is possible to generate large numbers of corresponding
landmarks (more than 1000) from a pair of lung CT datasets with semiautomatic tools [32], [11]. Although
semiautomatic tools [32], [11] were developed to accelerate the process, the task of designating the correspon-
dences between the points remains a labor-intensive task.

13If one is concerned about the symmetry, the following majority rule is suggested:

(4.1) yj is assigned to xi if γ
+
i,jγ

−
i,j ≥ γ+

i,kγ
−
i,k for all k.

14Because points have no label, we generally cannot distinguish between outliers (the points with missing
correspondence) and inliers. Hence, for all experimental results, we do not consider the cases in which outliers
are accidentally detected.
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Figure 8. A 3D view of five lung lobes marked with five different colors.

4.2. Lung point-sets without outliers.

4.2.1. Lα mass transport costs. The following two experiments demonstrate that the
correspondence of lung point-sets (under volume change) can be estimated using the mass
transport model, specifically the L2 mass transport model (the MK method). Here, the lung
point-set is extracted from subject ID H8756.

First, experiments are conducted on six pairs of point-sets (TLC/FRC), each of which
contains 1000 points. In the first five experiments, a pair of point-sets is selected from one
of the five lung lobes with a point ID from 1 to 1000, i.e., 1000 point-pairs at the lowest
generation. The datasets of data 1, data 2, . . . , data 5 refer to the ith lobe, where i =
1, 2, . . . , 5. Their spatial location is shown in Figure 8. In the sixth experiment, a collection
of 1000 point pairs is assembled from these five lobes (we take the first 200 point-pairs from
each lobe). The correspondence is obtained by minimizing the Lα mass transport cost

n∑
i,j=1

μi,j‖xi − yj‖α, where {μi,j} is a doubly stochastic matrix.

The computation is performed using the MATLAB function linprog, which is based on
the standard interior point method [57], [7].15 Several different powers α are used, and their
corresponding match errors are reported in Table 4. The cost with α = 2 yields the lowest
match error. Hence in the following experiments, we will focus on the L2 mass transport cost.

When α = 2, the correspondence is not translationally invariant. One question arises: Can
the match result be improved if an extra translation t is applied to one point-set? Typically
it can, but not for all cases. Consider the translation t that matches the mass center of two
point-sets, t = n−1(

∑n
i=1 xi −

∑n
i=1 yi). The result is reported in Table 5. By comparing this

15The MATLAB code to set up the input arguments of linprog will be available online from http://web.
nchu.edu.tw/∼pengwen, and other source code will be provided upon request.

http://web.nchu.edu.tw/~pengwen
http://web.nchu.edu.tw/~pengwen
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Table 4
Mismatches of the mass transport model to match 1000 points under different α values. Indices 1 to 5 refer

to the point-sets from the first lobe to the fifth lobe. Index 6 refers to a pair of point-sets assembled by five sets
of 200 point-pairs from each lobe.

Index α = 0.9 α = 1 α = 1.01 α = 1.05 α = 1.2 α = 1.5 α = 2 α = 3 α = 4

1 526 196 121 29 0 0 0 0 7
2 900 508 404 209 53 0 0 0 18
3 414 19 0 0 0 0 0 0 0
4 910 490 349 146 0 0 0 78 144
5 867 362 266 148 0 0 0 0 60
6 416 13 5 0 0 0 0 0 36

Table 5
Mismatches of the mass transport model with their mass centers matched.

Index α = 1 α = 1.01 α = 2 α = 3 α = 4

1 8 2 0 0 0
2 88 70 0 38 40
3 2 0 0 0 0
4 86 79 0 0 28
5 166 154 0 0 0
6 4 2 0 0 0

table with Table 4, we see that the results are better than the results for the case without
translations.

Next, the mass transport model is tested on all of the 62500 point-pairs for subject H8756.
Unfortunately, this is a very difficult linear programming problem because of dense constraints.
The total number of (primal and dual) unknowns is at least 62500 + 625002. Because of the
significant computation cost, we will match a small subset of all of the point-pairs each time
(we use 500 point-pairs per trial and a total of 125 matching trials).16 In the ith experiment, we
match a pair of point-sets consisting of 500 point pairs with ID numbers from 500(i−1)+1 to
500i, where i ranges from 1 to 125. The number of mismatches is reported in the left subfigure
of Figure 9. Note that perfect matches occur in the first 20 pairs of point-sets, as shown in
the stars with an x-coordinate not exceeding 10000. Mismatches occur for the branch points
with higher point IDs, i.e., those located at higher generations (generations greater than 12;
see the right subfigure of Figure 9). This result is consistent with our theoretical analysis: a
large curl exists on the branch points close to the boundary (see Appendix B). For a fixed
point cardinality, a mismatch error is more likely to occur when the applied deformation has
a larger curl (this follows from the curl-cardinality relation).

Finally, we report results of an experiment in which a hierarchical approach is used. We
estimate the transform T using a pair of coarse point-sets, which are each composed of 50
points selected from each 500-point point-set. The total number of mismatches in the above

16The experiment with 500 × 125 point-pairs took approximately 4 hours (to complete the 125 matching
trials; each trial required approximately 2 minutes) using the interior point method on a server with 60 GB of
memory. We also conducted several experiments where we matched a point-set with a size of 1000. However,
it converged too slowly. For matching 2000 point-pairs, 60 GB of memory is also not sufficient to execute the
interior point method.
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Figure 9. Mismatch errors for matching point-sets consisting of 500 point pairs consecutively selected from
the 62500 point-pairs. The left and middle subfigures show the mismatches without (left) and with (middle)
transforms that were estimated using a pair of coarse point-sets with a cardinality of 50 points. The x-axis
shows the last point ID for each point-set. For instance, x = 10000 refers to the point-set with IDs from 99501
to 10000. Right: The y-axis shows the corresponding generation information for each point pair. For example,
the first 104 branch points have generation IDs less than 13.

experiment is 2671 out of 62500, which is 4.3%. When a coarse point set (50 points selected
from each set of 500 points) is used, the number of mismatches reduces to 282, which is
0.45%. See the right subfigure of Figure 9. (The mismatch error is zero for each pair of coarse
point-sets with a cardinality of 50.)

4.3. Comparisons to other methods. Matching lung point-sets is not an easy task for
other methods. Here, we provide several comparisons to other methods. One naive approach
is to simply assign the correspondence of each point as the closest point in the other point-
set; this approach is known as the closest point (CP) method. In general, the result is not
symmetric; i.e., when x1 is assigned to y1, the assignment can change if the roles of the
two point-sets are exchanged. To fix this inconsistency, the Sinkhorn matrix balancing [43]
is introduced in the well-known TPS-RPM method. This method assigns a unit mass to
each point, and a doubly stochastic matrix is generated to represent the matching result
symmetrically. In the TPS-RPM method, one extra row and one extra column are added to
address the outliers (this is called the soft assignment). Moreover, the TPS-RPM method
includes the following appealing procedure: A sequence of transforms T can be estimated
when the kernel scale σ is gradually decreased from a large value to a small positive value.
The TPS-RPM method is a state-of-the-art method for medical imaging analysis (see [19],
[6]). To clarify the performance, no outliers are added to the point-sets.

Table 6 shows a comparison of the results obtained using the CP method, the Sinkhorn
balancing (SB) method, the TPS-RPM method, the MK method, and the HD-RBF method
(σK = 100, σS = 50). Clearly, the HD-RBF method gives the best correspondence result.17

17In fact, in subject ID H6012, the points with ID 6 and ID 8 in one point-set are incorrectly assigned to
the points with ID 8 and ID 6 in the other point-set. The points are quite close to each other (they are at
approximately a 1.9mm apart). Here, the results of using the HD-RBF method with different λ values are
presented:

• For the cases where λ = 1 and 10, in the six subjects, the errors were 0, 0, 0, 0, 2 (H6012), 2 (H6019);
in the five lobes, there were zero errors.

• For the case where λ = 0.02, in the six subjects, the errors were 0, 3, 8, 0, 2 (H6012), 15 (H6019); in
the five lobes, the errors were 0, 0, 0, 0, 2, 2.
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Table 6
Mismatches of various methods. The parameter λ = 1 is used in both the TPS-RPM and the HD-RBF

methods. In the TPS-RPM method, we use the deterministic appealing rule, σ = 100× 0.9k, k = 0, 1, 2, . . . .

Subject ID H5972 H5974 H5978 H5983 H6012 H6019
Cardinality of point-pairs 171 188 181 128 254 243

CP 127 147 130 128 199 189
SB (σ = 100) 167 179 178 126 250 237
TPS-RPM 160 179 177 119 248 241

MK 0 0 0 0 0 25
HD-RBF (σ = 100) 0 0 0 0 2 2

In comparison with the MK method, T1 (H6019) with a nonzero curl is estimated in the
HD-RBF model such that the transform from {T1(xi)}ni=1 to {yi}ni=1 has a smaller curl. When
the HD method was applied to the six subjects preprocessed by affine transforms given by
(3.9), the same matching result was generated. Finally, note that there is little difference
between the matching performance of the SB and TPS-RPM methods, even though the latter
method makes some effort to estimate the transformations.18

To illustrate the differences between the TPS-RPM and the mass transport methods (MK
and HD), we select two small point-sets from the two point-sets (see Figure 10(e)). The two
point-sets are separately matched by the SB method, the CP method, the HD model, and
the MK method.19 Each correspondence is represented by a matrix, in which the (i, j) entry
is some “likelihood” of assigning the ith point in the first point-set to the jth point in the
second point-set (see Figure 10). Clearly, the mass transport methods (HD, MK) outperform
the other two methods. The HD model in Figure 10(c) provides an approximate solution for
the mass transport problem (see Figure 10(d)). Moreover, the performance of the SB method
is worse than that of the CP method.

Last, we would like to highlight that the correspondence generated using the TPS-RPM
method is essentially different from that from the mass transport method, despite their similar
appearance. In TPS-RPM, the kernel matrix {Ki,j := exp(−‖xi−yj‖2/σ2)}i,j is always dense
because the Sinkhorn matrix balancing does not change the ratioKi1,j1Ki2,j2/Ki1,j2Ki2,j1 . The
dense stochastic matrix is irrelevant to the permutation matrix obtained in the mass transport
methods (except for the case in which these points are the closest point pairs). Determination
of the correct correspondence using the TPS-RPM method relies on the correct estimation of
the transforms. However, even for two 1D point-sets without outliers, the doubly stochastic
matrix produced by SB is generally not the permutation that places both point-sets in order.
In these cases, the TPS-RPM method could fail to produce a transform T based on thin-plate
splines such that the desired point-pairs form the closest point pairs. The soft assignment is
forced to remove several “extra” points and label them as “outliers” to generate a permutation
matrix at the end of the deterministic appealing.

18The computational cost of matching a pair of two point-sets is very high. For subject H6012, the time
spent was 235 seconds (200 inner iterations for SB and 20 outer iterations for the spline estimation) for the
TPS-RPM method; in comparison, the time required for the HD method was less than 2 seconds.

19The kernel scale is σ = 100 for both the SB and HD methods.
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Figure 10. Matching 10 points. The ground truth correspondence is the identity matrix. (a)–(d) show
the correspondence of each method. Each diagonal entry is expected to be the maximal entry of each column,
which is marked in yellow. The match errors are 3 (a), 7 (b), 0 (c), and 0 (d), respectively. (a) The matrix
Ki,j = exp(−‖xi − yj‖2/1002). (b) The doubly stochastic matrix {μi,j : i, j = 1, . . . , 10} after performing
Sinkhorn matrix balancing on Ki,j. (c) {γ+

i,jγ
−
i,j}10i,j=1 by the HD model. (d) {μi,j}10i,j=1 is the minimizer

of the MK method. (e) Illustration of two point-sets with 10 points each. The lines show the ground truth
correspondence.

4.4. Lung point-sets with outliers.

4.4.1. Five lung lobes of subject H8756. In the following section, we compare the MK
method with the HD method for a pair of point-sets, selected from among the five lung lobes
and to which randomly generated outliers have been added. The spatial size of the point-sets
is approximately 200 mm, and thus we choose multiples of 100 for kernel scales.

Two point-sets X,Y with the same cardinality are assembled from two parts: (i) 200 point
pairs of one lung lobe in the TLC and FRC phases and (ii) outliers with the same cardinality.
Both the point-sets X,Y include outliers (with the same cardinality) generated using a normal

distribution Normal(μi,Σ), with means μ1 = (2/n)
∑n/2

i=1 xi and μ2 = (2/n)
∑n

i=n/2+1 yi.
20

We choose multiples of the identity matrices s2I for covariances Σ, with s2 = 302, 602, 1202,
and 1802. Figure 5 shows the point-set (TLC) of the first lobe with a set of 25 outliers added.

We perform matching experiments with the outlier cardinality from 0 to 25 (chosen from

20Choosing a nonzero mean shift yields a stronger outlier effect. Empirically, the MK method and the
HD method with proper kernel scales both work quite well for the case where μ1 = n−1 ∑n

i=1 xi and μ2 =
n−1 ∑n

i=1 yi.
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Figure 11. Mismatches for the MK (σK = inf) and HD methods applied to data from five lobes to which
outliers have been added. The x-axis shows the kernel scale σK . The first row shows the results from the first,
second, and third lobes (left to right). The second row shows the results from the fourth and fifth lobes.

the aforementioned 25 outliers). The HD method is applied on the point-sets preprocessed by
the positive definite affine transforms. The result of each lung lobe is reported separately in
the five figures (Figure 11). For visual clarification, we report only the average mismatches of
the four s2 values. The y-axis represents the number of mismatches (not including outliers).
The HD method, with σK ranging from 12.5 to 400, outperforms the MK method.

4.4.2. Six subjects. We repeat the same outlier generation rule and experimental proce-
dure on the vessel branch points of six subjects (see the right subfigure of Figure 5). The result
is reported in Figure 12. The HD method with σK = 100, 200 outperforms the MK method
(σK = inf). Hence, the HD method with the proper kernel scale is more robust against the
existence of outliers than the MK method.

4.5. Conclusion. In this work, we consider the lung deformation between TLC and FRC
as one example. Nearly perfect matching results validate the effectiveness of the mass trans-
port model, especially when the L2 mass transport cost is used. This result motivates our
theoretical analysis. Generally, the performance of a point-set matching method depends on
the assumed transforms. In this work, the deformation is assumed to be a vector field with
a small curl (with respect to the point cardinality). The mechanics of perfect matches are
studied from the viewpoints of the curl-cardinality relation and an L2-invariant property. The
theoretical analysis and experimental results suggest that the mass transport method is a
suitable tool for handling point-set registration problems subject to elastic deformations. One
potential application is to cluster analysis of both airway and vessel tree branching patterns
and classification of normal and abnormal lungs based on lung deformation.

Remark 4.2. The correspondence estimation problem also arises in shape analysis (see,
e.g., [1], [38]), where shapes are modeled as compact smooth Riemannian manifolds equipped
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Figure 12. Mismatches for the MK and HD methods applied to six subjects to which outliers have been
added. The first row (left to right) shows the results of the following subjects: ID H5972 (171 point-pairs), H5974
(188 point-pairs), and H5978 (181 point-pairs). The second row shows the results of the following subjects: ID
H5983 (128 point-pairs), H6012 (254 point-pairs), and H6019 (243 point-pairs).

with an intrinsic metric. One stable intrinsic metric is the diffusion metric, which is based
on the solution of the heat equation. Gromov–Wasserstein distances are introduced for shape
matching [31], [38]. These distances are also defined based on the idea of optimal mass trans-
port and the heat kernel signature [45]. In [38], the authors propose a game-theoretic ap-
proach to recovering sparse correspondences between shapes. Gromov–Wasserstein distances
measure the overall distortion of the pairwise distances within point-sets, whereas Wasser-
stein distances measure the transporting cost between correspondences. One advantage of
Gromov–Wasserstein distances is that they are invariant under rigid transforms. An interest-
ing question (which is beyond the scope of this paper) arises: Do similar conditions to ensure
perfect matches (under certain classes of deformations) exist?

Appendix A. Proofs of curl-cardinality relations. To prove these relations, we need the
following lemma.

Lemma A.1. Fix a skew symmetric d×d matrix B. Let A be the set of all skew symmetric
d× d matrices A of the form vw� − wv� with v,w in Rd. We have

Tr(BA) ≤ Λ(B; 1)Tr(2AA�)1/2.

Also the maximum of Tr(2AA�)−1/2|Tr(BA)| is obtained if and only if the vectors v,w corre-
sponding to the maximizer A lie in the subspace spanned by singular vectors of B corresponding
to Λ(B; 1).

Proof. According to the matrix theory (page 107 in [22]), a skew symmetric matrix B can
be expressed as

B =
k∑
j=1

βj(u2j−1u
�
2j − u2ju�2j−1),
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where {β1 ≥ β2 ≥ · · · ≥ βk > 0} are singular values and {uj}2kj=1 are orthonormal singular

vectors of B. Observe that for v,w ∈ Rd,

Tr(B(wv� − vw�))

= 2

k∑
i=1

βi det

(
v · u2i−1 v · u2i
w · u2i−1 w · u2i

)
≤ 2β1

k∑
i=1

∣∣∣∣det
(
v · u2i−1 v · u2i
w · u2i−1 w · u2i

)∣∣∣∣
≤ 2β1(‖v‖2‖w‖2 − (v · w)2)1/2 = β1Tr(2AA

�)1/2, A := vw� − wv�.
The second and third equalities hold only when the above determinant is positive and v,w
are a pair of vectors lying in the subspace spanned by u1, u2.

21

A.1. Proofs of Proposition 2.3. The case n = 2 is obvious. Here, we focus on the case for
n ≥ 3. Let R be a rotation matrix with a minimum of Λ(RA; 1), which leads to the occurrence
of a mismatch. Then, there exist some m ∈ N, m ≤ n and some relabeling on {Rxi}ni=1 such
that

m∑
i=1

‖Rxi − xi‖2 ≥
m∑
i=1

‖Rxi − xi+1‖2, i.e.,
m∑
i=1

x�i R(xi − xi+1) ≤ 0.

We focus on the case of m = n, corresponding to the smallest Λ(RA; 1) for mismatches.
Reformulating the inequality yields

(A.1)

n∑
i=1

Tr(R[(xi − xi+1)(xi − xi+1)
� − (xi+1x

�
i − xix�i+1)]

�) ≤ 0.

Equivalently,

(A.2) Tr(RS�) ≤ Tr(RA�), i.e., Tr(RSS�) ≤ Tr(RAA
�),

where the following notations are used: S :=
∑n

i=1 Si with Si := (xi − xi+1)(xi − xi+1)
� and

A :=
∑n

i=1Ai =
∑n

i=1 Âi with

Âi := xi+1x
�
i − xix�i+1, Ai := (xi+1 − x1)(xi − x1)� − (xi − x1)(xi+1 − x1)�.

Note that

(A.3) min
RS

Tr(RSS
�) ≤ Tr(RSS

�) ≤ Tr(RAA
�) ≤ max

A
Tr(RAA

�).

Examine the left- and right-hand sides of (A.3): (i) For the left-hand side of (A.3), let a
be the smallest eigenvalue of RS and L be the length L =

∑n
i=1 ‖xi − xi+1‖. Then,

min
RS

Tr(SR�
S ) = min

RS

n∑
i=1

(xi+1 − xi)�RS(xi+1 − xi) ≥ aTr(S) ≥ an−1L2,

21The second inequality comes from the following fact. Let x = [v · u1, v · u2, . . . , v · u2k−1, v · u2k], y =
[w ·u1, w ·u2, . . . , w ·u2k−1, w ·u2k]/‖w‖, and z = [w ·u2,−w ·u1, . . . , w ·u2k,−w ·u2k−1]/‖w‖. Then, x ·y = v ·w,
y · z = 0 and ‖x‖ = ‖v‖, ‖y‖ = ‖z‖ = 1. Since x · y, x · z are the scalar projections of x onto orthogonal vectors
y, z, then ‖x‖2 ≥ (x · y)2 + (x · z)2, i.e., (x · z‖w‖)2 ≤ ‖v‖2‖w‖2 − (v · w)2, which yields the second inequality.
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where the second inequality is derived from Cauchy–Schwarz inequalities and equality holds if
and only if ‖xi−xi+1‖ is constant for each i. (ii) For the the right-hand side of (A.3), observe
that

(A.4) max
A

Tr(AR�
A) =

n∑
i=1

max
Ai

Tr(AiR
�
A) ≤ Λ(RA, 1) max

Ai

n∑
i=1

Tr(2AiA
�
i )

1/2,

where equality holds only if {xi − x1}ni=2 lie in the subspace spanned by the singular vectors
of RA corresponding to Λ(RA, 1) (Lemma A.1); i.e., the set {xi}ni=1 is coplanar. Note that

4−1
n∑
i=1

Tr(2AiA
�
i )

1/2 =

n∑
i=1

2−1[‖xi − x1‖2‖xi+1 − x1‖2 − ((xi − x1) · (xi+1 − x1))2]1/2

is the area of a polygon assembled from n triangles with vertices {xi, xi+1, x1}ni=1. Hence,
(A.4) implies that

max
A

Tr(AR�
A)/4Λ(RA, 1)

is bounded above by the maximum area of the closed polygon with given side lengths. From
[25], the maximum area occurs when the polygon is inscribed in a circle. Let Area be the
area of the polygon.

In summary, (A.3) yields

an−1L2 ≤ 4Λ(RA, 1)Area, then Λ(RA, 1)/a ≥ L2/(4nArea) ≥ π/n,

where the isoperimetric inequality L2/Area ≥ 4π (page 33 in [10]) is used. In fact, the
isoperimetric inequality for polygons [25] (L2/Area ≥ 4n tan(π/n)) shows that

(A.5) Λ(RA, 1)/a = Λ(RA, 1)/Λ(RS , d) ≥ L2/(4nArea) ≥ tan(π/n).

The above arguments also show that the lower bound of Λ(RA, 1)/Λ(RS , d) is reached only
when {xi}ni=1 are vertices of a regular polygon. On the other hand, according to Example 2.2,
the lower bound can be obtained by choosing {xi}ni=1 as vertices of a regular polygon, which
completes the proof of the perfect match condition ωmax ≤ 2π/n.

A.2. Proof of Corollary 2.4. Define L and Area as in section A.1.
Proof of Corollary 2.4(i). For simplicity, we consider only d = 3 here and present the

proof in the following. The occurrence of mismatches implies the existence of n ∈ N and
some subset {xi}ni=1 with convention xn+1 := x1 such that

n∑
i=1

(xi − xi+1) · T (xi) =
n∑
i=1

xi+1 · (T (xi+1)− T (xi)) ≤ 0 for some n.

Then,

(A.6)
n∑
i=1

(xi − xi+1) · (T (xi)− T (xi+1)) ≤ −
n∑
i=1

(xi − xi+1) · (T (xi) + T (xi+1)).
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The left-hand side of (A.6) has a lower bound,

(A.7)
n∑
i=1

((xi+1 − xi)�TS(ξi)(xi+1 − xi)) ≥ n−1
(
min
x

Λ(TS(x), 3)
)( n∑

i=1

|xi+1 − xi|
)2

,

which is an approximation of n−1(minx Λ(TS(x), 3))L(∂Ω)
2 (the existence of ξi is ensured by

the mean value theorem). On the other hand, the right-hand side of (A.6) can be regarded as
the Riemann sum of one line integral,

n∑
i=1

(xi − xi+1) · (T (xi) + T (xi+1)) ≈ 2

∫
∂Ω
T (x) · dx

= 2

∫
Ω
(∇× T (x)) · nda,

which is bounded above by 2(maxx∈Ω |∇ × T (x)|)Area, where da is the area element.
If the above two approximation errors can be neglected, then together with the inequality

L(∂Ω)2 ≥ 4πArea(Ω), we have

4πn−1Area(Ω) ≤ n−1L(∂Ω)2 ≤ 2maxx∈Ω |∇ × T (x)|
minx Λ(TS(x), 3)

Area(Ω).

Hence,
maxx∈Ω |∇ × T (x)|
minx Λ(TS(x), 3)

≥ 2π

n
,

which verifies the curl-cardinality relation ωmax ≤ C/n for perfect matches, where C might
be different from 2π due to the approximation difference of the Riemann sums.

Proof of Corollary 2.4(ii). Obviously, the left-hand side of (A.6) has a lower bound:

n∑
i=1

a‖xi − xi+1‖2 ≥ aL2/n, where a = Λ(TS(ξi); 1)

and ξi is some point between xi, xi+1 (the mean value theorem). However, when TS is constant,

we can derive a tighter bound. Let xi = T
−1/2
S yi for i = 1, . . . , n. Then the mean value theorem

indicates the existence of ξi such that the left-hand side becomes

n∑
i=1

(xi − xi+1) · (TS(ξi)(xi − xi+1)) =

n∑
i=1

‖yi − yi+1‖2.

The right-hand side of (A.6) can be reformulated as

n∑
i=1

(xi + xi+1) · (T (xi)− T (xi+1)) =

n∑
i=1

(xi − x1 + xi+1 − x1) · (T (xi)− T (xi+1))

=

n∑
i=1

(x̂i + x̂i+1) · ((TS + TA(ηi))(x̂i − x̂i+1)) =

n∑
i=1

Tr(TA(ηi)(x̂ix̂
�
i+1 − x̂i+1x̂

�
i )),

=
n∑
i=1

Tr(T
−1/2
S TA(ηi)T

−1/2
S (ŷiŷ

�
i+1 − ŷi+1ŷ

�
i )),
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where ηi is some point lying on the segment between xi and xi+1 (by the mean value theorem),
and x̂i = xi − x1, ŷi = yi − y1. Divide the skew polygon with vertices {yi}ni=1 into n − 2
triangles, each of which has vertices {y1, yi, yi+1}n−1

i=2 . By Lemma A.1, the right-hand side can
be regarded as

n−1∑
i=2

Tr(T
−1/2
S TA(ηi)T

−1/2
S Ai) ≤

n∑
i=1

β1(ηi)Tr(2AiA
�
i )

1/2,

where Ai = ŷiŷ
�
i+1 − ŷi+1ŷ

�
i and β1(ηi) is the largest singular value of the skew symmetric

matrix {T−1/2
S TA(ηi)T

−1/2
S }ni=1. Note that the equality holds only when {yi}ni=1 are coplanar.

Following this procedure, the same arguments in the proof of Proposition 2.3 yield

tan
ωmax(T ; Ω)

2
≥ L2

4nArea
,

where ωmax(T ; Ω) is the largest singular value of T
−1/2
S TA(x)T

−1/2
S among all x in Ω. Hence,

we have the curl-cardinality relation for perfect matches: ωmax ≤ 2π/n according to the
isoperimetric inequality.

Appendix B. Large curls near the lung periphery. We will provide one explanation for the
occurrence of large curls near the boundary of the domain, namely the lung periphery. First,
we briefly describe the mechanics of breathing. The repeated inflation and deflation of the
lungs are controlled by the respiratory muscles, the diaphragm, and the intercostal muscles.
During inhalation, the diaphragm and the intercostal muscles contract and create negative
pressure (relative to atmospheric pressure) surrounding the lungs. The expansion decreases
the pressure in the chest cavity and allows air flow in, which inflates millions of alveoli. The
region around the lungs in which this negative pressure acts is called the pleural space and is
filled with a very thin layer of lubricating fluid that separates the outer surface of the lungs
from the inner surface of the rib cage (see [2, page 4]).

The lungs, which are made of spongy and elastic tissue, are commonly modeled as a
linear, isotropic, and homogeneous medium [53]. In this situation, the displacement field
u(x) := T (x) − x on the domain Ω (lungs) satisfies the Lamé equilibrium equations in the
linear elasticity theory:

μ∇2u+∇((μ + λ)∇ · u) = f, subject to several boundary conditions on u,

where μ > 0 and λ > 0 are called the Lamé constants and the vector function f is the body
force.

We will study the spatial distribution of the curl ∇×T = ∇×u. According to the classic
uniqueness result of the Lamé equations, u is unique up to some rigid body displacement if
traction is prescribed over the entire surface. Based on the superposition principle, the solution
u can be constructed as the sum of a particular solution of the inhomogeneous equilibrium
equations and a solution of the homogeneous equilibrium equations subject to the desired
boundary condition.
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To proceed, we assume that the body forces are derived from a scalar potential, i.e.,
f = ∇ξ. This assumption is valid in many cases, i.e., for the gravity forces. Consider a
particular solution of the gradient form u = ∇φ. Then,

∇((λ+ 2μ)∇2φ− ξ) = 0.

Hence, one particular solution can be obtained by solving Poisson’s equation:

∇2φ =
ξ

2μ + λ
.

Note that u is curl-free, and thus the body force does not contribute any curl on the displace-
ment field u (However, the nonzero f does affect the boundary condition for u.)

According to Helmholtz’s theorem, a vector field u on a bounded domain Ω in R3 can be
decomposed into a sum, u = ∇φ̃+∇×ψ with ∇·ψ = 0. Substituting the decomposition into
the homogeneous Lamé equations leads to

(B.1) μ∇×∇2ψ + (λ+ 2μ)∇(∇2φ̃) = 0.

The desired displacement field is that satisfying the boundary condition.
Note that ∇ × u = −∇2ψ. By applying the divergence and curl operator on (B.1), we

have ∇2∇2φ̃ = ∇2∇2ψ = 0. Thus, for each unit vector v ∈ R3, v · ∇2ψ is harmonic, which
implies that the extreme values of v · ∇2ψ occur at the boundary ∂Ω (see [18, Theorem 2.3,
page 15]). Hence, regardless of the boundary condition, the maximum magnitude of the curl
∇× u occurs at the boundary of the elastic object. This theoretical result is consistent with
our lung experiments: Mismatches occur at the branch points of higher generations.22

Appendix C. Rotations. Here, we study one asymptotic property in the kernel correlation
method [48] and (3.10) about the rigid motions, T (x) = Qx+ t.

Denote two point-sets by X := {xi : i = 1, . . . , n1} and Y := {yj : j = 1, . . . , n2} in Rd.
The transformation T is estimated through

(C.1) min
T
{K(Y, Y )− 2K(Y, T (X)) +K(T (X), T (X))},

where σ is the kernel scale and

K(X,Y ) = (n1n2)
−1

n1,n2∑
i,j=1

exp(−‖xi − yj‖2/σ2).

A minimizer T depends on the size σ. To avoid local optimal solutions, the kernel scale σ
should not be too small. Experiments show that the number of local optimal solutions is
reduced when σ is large [48].

Observe that a minimizer (Q, t) in (C.1) maximizes the second term in (C.1),

max
Q,t

n1,n2∑
i=1,j=1

exp(−‖yj −Qxi − t‖2/σ2),

22Note that T (x) = x + u. Here, we ignore the variation of ωmax contributed from the denominator
1 + Λ(∇2φ̃).
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since the remaining terms are constant. Denote the first moment and the second (central)
moment of X by tX ,MX ;

(C.2) tX = n−1
1

n1∑
j=1

xj , MX = n−1
1

n1∑
j=1

(xj − tX)(xj − tX)�.

Likewise, let tY ,MY be the first moment and the second moment of Y .
The following proposition shows that in the asymptotic case σ → ∞, the rigid motion

“matches” both the first moments and the eigenvectors of the second moments of two point-
sets. This asymptotic result also holds for the rigid motion in the HD-RBF model, the first
term of (3.10).23 This study shows that the transforms T1 with nonzero curl can be estimated
via optimizing the cost function with kernel scales sufficiently large.

Proposition C.1 (rigid motions). Consider two point-sets {yi : i = 1, . . . , n2} and {Qxi+ t :
i = 1, . . . , n1} with

∑n1
i=1 xi = 0. Let T (x;σ) = Q(σ)x + t(σ) be a maximizer of the function

in (C.1), with Q(σ) ∈ Rd×d being an orthogonal matrix and t(σ) ∈ Rd. Let (Q, t) be a limit
of (Q(σ), t(σ)) as σ →∞:

• Then the first moments of these two point-sets are identical, n−1
2

∑n2
j=1(yj − t) =

n−1
1

∑n1
i=1Qxi.

• Assume that the second (central) moments MX ,MY both have distinct eigenvalues with
SVD

(C.3) MX = U�
XDXUX , MY = U�

Y DY UY .

Then Q = U�
Y UX , and thus the eigenvectors of QMXQ

� and MY are parallelized.
Note that QMXQ

� is the second moment of the rotated first point-set, QMXQ
� =

n−1
1

∑n1
i=1(Qxi)(Qxi)

�.
Proof. As σ2 approaches infinity, 1/σ2 → 0, the Taylor expansion shows that

max
Q,t

(n1n2)
−1

n1,n2∑
i=1,j=1

(1− ‖yj −Qxi − t‖2/σ2 + ‖yj −Qxi − t‖4/2σ4) +O(1/σ6).

Since
∑n1

i=1 xi = 0, the leading term is
∑n1,n2

i=1,j=1 ‖yj −Qxi− t‖2 =
∑

i,j(‖yj − t‖2+ ‖xi‖2). As
σ →∞, the optimal translation vector t tends to n−1

2

∑n2
j=1 yj , which implies that

∑n2
j=1(yj −

t) = 0.
For notational simplicity, we replace (yj− t) by yj, and then

∑n2
j=1 yj = 0. The asymptotic

behavior of Q depends on the next leading term

(2σ4n1n2)
−1

n1,n2∑
i=1,j=1

‖yj −Qxi‖4 = (2σ4n1n2)
−1

n1,n2∑
i=1,j=1

4(y�j Qxi)
2 + some constants.

Hence, Q is a maximizer of the function
n1,n2∑
i=1,j=1

(n1n2)
−1(y�j Qxi)

2 =

n1,n2∑
i=1,j=1

(n1n2)
−1Tr(Qxix

�
i Q

�yjy�j )(C.4)

= Tr(QMXQ
�MY ) = Tr(DX

︷ ︸︸ ︷
UXQ

�U�
Y DY

︷ ︸︸ ︷
UYQU

�
X ),(C.5)

23We use the initialization γ+
i,j = 1/n1, γ

−
i,j = 1/n2 to estimate T1 in the nonconvex minimization problem.
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•  γ
i

α
i
−1γ

i
+(1−α

i
−1γ

i
)

α
i+1
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i
)+γ

i+1

•• ••
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Figure 13. Illustration of the bijective structure. Unit masses are divided into α−1
i γi, 1 − α−1

i γi, and
αi+1(1− α−1

i γi), γi+1, respectively.

which can be expressed as Tr (DXQ1DYQ
�
1 ) with Q1 := UXQ

�U�
Y . Note that Q1Q

�
1 = I.

By the matrix theory,24

max
Q1

{Tr(DXQ1DYQ
�
1 ) : Q1 orthogonal}(C.6)

≤ max
U,V
{Re Tr(DXUDY V ) : U, V unitary} ≤

d∑
i=1

σi(DX)σi(DY ),(C.7)

with the singular values σi of DX ,DY both arranged in decreasing order. On the other hand,
clearly when Q1 is the identity matrix, the maximal value is attained. Therefore, from the
definition of Q1, the optimal matrix Q is given by U�

Y UX , which implies that QMXQ
� =

U�
Y DXUY . Compared with MY = U�

Y DY UY , in the asymptotical case the eigenvectors of
QMXQ

� and MY are parallelized.

Appendix D. Finite kernel scales. Generally, the correspondence in the HD model with
finite kernel scales is not a permutation matrix. Here is one example to illustrate the recovery
of the binary correspondence by the majority rule, provided that the kernel scales σ are large
enough. Besides, as the number of points increases, the requirement on σ becomes harsh.

Consider one point-set consisting of 2n + 1 points, {xi = (i − 1)a}2n+1
i=1 , with spatial

resolution a ∈ Rd and its translated point-set {yi = (i− 1)a+ b}2n+1
i=1 with translation b ∈ Rd

and b · a > 0. Let Δ = na; then the spatial size of the point-set is |Δ|. The following
computation provides a lower bound σ, approximately |Δ|√2na · b/|a|, such that (i) γ+i,j =

0 = γ−i,j for all j = i, i+ 1 and (ii) both γ+i,i and γ
−
i,i are greater than 1/2.

Let us adopt the notation in section 3.2 and assume the bijective matching structure
{(γi, α−1

i γi), (αi+1(1 − α−1
i γi), 1 − α−1

i γi) : i = 0, 1, . . . , 2n} ∪ {(γ2n+1, α
−1
2n+1γ2n+1)}, where

{αi}2n+1
i=0 will be determined later (see Figure 13). Clearly,

(D.1) αi(1− α−1
i−1γi−1) + γi = 1, i.e., (αi − 1) + γi = γi−1αi/αi−1.

24Given two m× n matrices B1, B2, consider the problem

min
U,V

‖B1 − UB2V ‖2, equivalently, max
U,V

Re trB∗
1UB2V,

where two “rotations” U, V are m × m and n × n unitary matrices, respectively. The maximum value is∑q
j=1 σj(B1)σj(B2), where the singular values {σj(B1)}qj=1, {σj(B2)}qj=1 of B1 and B2 are both arranged in

decreasing order (see page 435 in [22]).
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Claim. For i = 0, 1, . . . , 2n,

αi+1/αi =: G = (K−1
i+1,iKi,i)

2 = exp(−(2b + a) · a/σ2).

For even indices i, the optimal condition in (3.8) of the partition α−1
i γi, 1 − α−1

i γi yields

α−1
i γi

1− α−1
i γi

=
K2
i,iγi

K2
i+1,i(αi+1(1− α−1

i γi))
,

i.e., αi+1α
−1
i = K2

i,i/K
2
i+1,i. Similar arguments show that αi+1α

−1
i = K2

i,i/K
2
i+1,i for odd

indices i. Hence, the claim is verified.

Hence, αiα
−1
k = Gi−k. Note that γ0 = 1. By eliminating γ1, . . . , γk−1, the recursive

relation (see (D.1)) leads to

(D.2) γk + kαk = αk

k∑
i=0

α−1
i = (Gk +Gk−1 + · · ·+ 1).

By symmetry, αi = α−1
2n−i, and then αn = 1. Thus,

(D.3) γn = (Gn +Gn−1 + · · · + 1)− n = (1−G)−1(1−Gn+1)− n.

From (D.2), αk = Gk−n, and the expression for Gn+1 in (D.3),

γk − γk+1 = Gk−n((k + 1)G− k −Gn+1) = Gk−n(1−G)(γn + n− k − 1),

which implies that γk > γk+1 for k < n, and γn is the minimum. Hence, the success of the
majority rule relies on γn > 1/2. By convexity, (1−G)−1(1−Gn+1) ≥ n+1−n(n+1)(1−G)/2.
Then, γn ≥ 1 − n(n + 1)(1 − G)/2. Along with (D.3), we obtain one sufficient condition,
1 > n(n+ 1)(1 −G). Let Δ := na. By the linear expansion of G, the minimal kernel scale is
approximately a multiple of the spatial size of the point-set,

(D.4) σ ≥
√
n(n+ 1)(2b + a) · a =

√
(1 + 1/n)(2nb ·Δ/|Δ|+ 1)|Δ|.

This result explains our selection σ.
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