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FeSeTe nanobridges of different widths have been fabricated on MgO substrates using focused ion

beams. These nanobridges exhibit the Josephson effects. The current-voltage curves of junctions

with 248–564 nm wide follow the resistively and capacitatively shunted junction model. Shapiro

steps under microwave radiation were clearly observed in these nanobridges. The products of the

critical current and normal state resistance (IcRn) are remarkably high. The temperature dependence

of IcRn product followed the Ambegaokar-Baratoff (A-B) relation. The value of energy gap of

FeSeTe calculated from the A-B relation is 3.5kBTc. The nanobridge junctions have a strong

potential for high frequency applications. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4809920]

The iron-based superconductors have been extensively

investigated since their discovery became a surprise to the

superconductivity research community.1–8 Josephson effects

and their applications in iron-based superconductors were

also reported.1,2 However, certain properties of various iron-

based superconductors have yet to be elucidated, such as the

coupling mechanisms of Cooper pairs in iron-based super-

conductors. Planar Josephson junctions of iron-based super-

conductors have also not been widely investigated. To date,

only two types of Josephson junctions of Fe-based super-

conductor thin films have been studied. One was fabricated

with a bicrystal grain boundary,3 and the other used an

superconductor–normal metal–superconductor (SNS) struc-

ture of BaFe2As2:Co thin film.4 Shapiro steps were clearly

observed with those junctions, indicating the possible appli-

cation of such materials in Josephson devices. The magnetic

field and temperature-dependence of Jc have been measured,

and the structures of junctions have been observed with

high-resolution transmission electron microscopy (HR-

TEM), showing that the Josephson junctions of iron-based

superconductors behave like the SNS junctions.

In this study, the transport properties, Josephson effects,

and energy gaps of FeSeTe nanobridges made by focused

ion beams (FIB) are investigated.

The properties of bulk FeSexTe1�x have been studied.5–8

The superconductivity in FeSexTe1�x (FeSeTe) varies with

x, and the critical temperature is highest when x equals 0.5.

High quality FeSeTe thin films are typically deposited by

Pulsed Laser Deposition (PLD). The critical temperature

depends on the film thickness and the substrate material.9 In

this work, the FeSeTe thin film with a thickness of 100 nm

on a MgO substrate is also prepared by PLD. The grown

FeSeTe thin film has favorable superconducting properties

with a critical temperature Tc of 14.6 K. To protect the thin

films and to increase the accuracy in dimensions of junc-

tions, a gold layer is deposited by a DC sputtering system on

top of the FeTeSe thin film before the FIB process. The Au

layer also provides low contact resistance and high conduc-

tivity on the surface of the FeSeTe thin film. To form the

junction, FeSeTe bridges with a width of 8 lm are con-

structed by standard photolithography and Ar ion milling,

and the nanobridges of a width less than 1 lm are subse-

quently formed via FIB etching. The electrical properties are

measured using a four-probe technique.

Figure 1 presents a scanning electron microscopic

(SEM) image of the nanobridges with a width of 564 nm. To

reduce the damage caused by containment of gallium ions,

the dwell time and passes of ion beam were optimized during

the FIB machining process.

Figure 2 shows the voltage-current (V–I) characteristic

and the fit curve to the resistively and capacitatively

shunted-junction (RCSJ) model for the nanobridge of

FIG. 1. SEM images of a FeSeTe nanobridge fabricated by FIB.
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564 nm width. By using the RCSJ model, the current passing

through the junction is10

I ¼ C
dV

dt
þ GV þ Ic sin u; (1)

where C denotes the capacitance, G is the conductance, and

Ic is the Josephson supercurrent. The McCumber parameter,

bc¼ 2pIc
2R2C/U0,10 is found to be less than 0.65, where R

and C are, respectively, the normal resistance and equivalent

capacitance of the junction, while U0 is the flux quantum.

All of the V–I characteristics of nanobridges with different

widths were found to agree closely with the RSCJ-model.

Over the past few decades, FIB-milled nanobridge

junctions made of various superconductors, e.g., YBCO,

Nb, and MgB2, have been reported. However, with our de-

vice, Shapiro steps are observed when 248–564 nm wide

nanobridges are irradiated with microwaves. Figure 3 shows

that the microwave irradiation suppresses Ic, and Shapiro

steps are observed when a 564 nm wide nanobridge is irra-

diated with microwaves at 7.8 GHz. The step height is

found to be 16 lV, in agreement with the relation V¼ hf/2 e,

where h is the Plank’s constant and e is the elementary

charge. The V–I characteristics of the FeSeTe nanobridges

herein are similar to those of the Fe-based bicrystal junc-

tions,3 the magnitude of the critical current is approximately

1 mA with a small excess current, and V-I characteristics

have minor or no hysteresis. We believe that some grain

boundaries in the nanobridges are responsible for the weak

link behavior. The nanobridges of 150 nm width have been

fabricated, but the critical currents are very small, and

Shapiro steps cannot be observed.

Table I presents the values of Ic, Rn, and bc obtained

from the V–I characteristics of nanobridges fitted by the

RCSJ model. The values of Ic and Iex increase with the width

of the nanobridge. The Rn, which ranges from 5.2 to 7.0 X,

and bc also depends on the width. The bc of 672 nm wide

nanobridge is 0.65. A capacitance of 2.9 pF was derived

using the McCumber equation. This is larger than the capaci-

tances of the other nanobridges (with widths 564 nm,

384 nm, and 248 nm).

The value of bc for the 564 nm wide nanobridge is 0.3,

and the V–I curve exhibits slight hysteresis. At T¼ 4.2 K, the

critical current Ic is 880 lA with an excess current of�40 lA,

and the normal resistance is 6.8 X. The IcRn product is

approximately 6.0 mV. The value of IcRn is quite large, as it

is for other superconducting materials, such as the MgB2

break junction.11 The bc values of nanobridges with widths of

less than 564 nm are small, and the nanobridge with a width

of 384 nm is negligibly small and not observable.

Figure 4 plots the V–I and dV/dI-versus-I characteristics

of the 564 nm wide FeSeTe nanobridge at temperatures from

12.3 K to 4.2 K. The critical temperature and the critical cur-

rent are, respectively, 12.3 K and 100 lA. The critical cur-

rents of 835 lA and 880 lA correspond to temperatures of

FIG. 2. V–I characteristics of 564 nm wide nanobridges at T¼ 4.2 K and fit-

ted by RCSJ-model.

FIG. 3. The V–I characteristics of 564 nm wide nanobridges at T¼ 11 K.

The Shapiro steps irradiated by the microwave of frequency 7.8 GHz. The

microwave power ranges from �15 to 14 dB.

TABLE I. The parameter of RCSJ-model.

Width of nanobridges Ic
a (lA) Rn

b Iex
c (lA) bc

d Ce (pF)

248 nm, T¼ 4.2 K 380 7.0

384 nm, T¼ 4.2 K 660 5.4

564 nm, T¼ 4.2 K 880 6.8 40 0.3 2.7

672 nm, T¼ 4.2 K 1380 6.2 130 0.65 2.9

aIc is the critical current of nanobridges.
bRn is the normal resistance of nanobridges.
cIex is the excess current of nanobridges.
dbc is the McCumber bc of nanobridges.
eC is the capacitance of nanobridges.

FIG. 4. V–I characteristic of 564 nm nanobridges at different temperatures.

The inset shows the dV/dI-I curves. The small change in critical current of

the nanobridges observed when T<Tc/2.
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6.5 K and 4.2 K, and the critical current at 3.9 K is close to

880 lA. The small change in critical current of the nano-

bridge was observed when the temperature is below 6.5 K,

which is about half of the critical temperature (Tc¼ 12.6 K).

Figure 5 plots the temperature-dependence of the IcRn

product. The relationship between temperature and IcRn is

found to follow the Ambegaokar-Baratoff relation12

IcRn ¼
p
2

DðTÞ
e

tanh
DðTÞ
2kBT

� �
; (2)

where e is the elementary electric charge, DðTÞ is the

temperature-dependent superconducting energy gap, and kB

is the Boltzmann constant. Generally, the A-B relation is

used to describe tunneling Josephson junctions exhibiting sta-

ble superconducting properties at temperatures below Tc/2

with a large Rn and IcRn product, which is promising for

SQUID and high frequency applications. Since the magnitude

of the peak-to-peak (Vpp) voltage of SQUID is positively cor-

related with the normal resistance (Rn), it is interesting to ver-

ify the properties of the SQUID comprising such junctions.

The high frequency sensor can be fabricated using Josephson

junctions with large IcRn products, when a junction is irradi-

ated with microwaves at 0.1 THz, the Shapiro step height is

207 lV, in agreement with the relation V¼ hf/2 e.

From past experience, the temperature-dependence of

the critical current in YBCO, MgB2, and BaFeAs:Co nano-

bridges fabricated by FIB is similar to that of the bicrystal

junction, and it reveals SNS behavior. For the SNS and

bicrystal junctions, the critical current increases as the tem-

perature decreases in proportion to 1-(T/Tc)
a, where a¼ 1 or

2 (at high temperatures). However, the data obtained in the

current study differ from those obtained for a bicrystal and

SNS junction.

The solid line in Fig. 5 shows the superconducting

energy gap of the FeSeTe nanobridge that was calculated

from the A-B relation. The curve of the fitted energy gap as

a function of temperature is consistent with the energy gap

of the BCS-type temperature dependence.13 However, this

superconducting energy gap, which did not match the experi-

mental, was calculated using the formula of the SNS-long

junction and the IcRn product at various temperatures

IcðT; LÞ ¼ 2

peRn

jDðTÞj2

kBTc

L=n
sinhðL=nÞ ; (3)

where L is the barrier thickness of the junction and n is co-

herence length of the thin film. The value of Dð0Þ for the

FeSe0.5Te0.5 nanobridges of 564 nm width is 3.5 kBTc.

Superconducting energy gaps of FeSexTe1�x can be

determined using various methods. For example, the energy

gap of the heterojunction is estimated to be 2.06 meV,14

but an energy gap of 2.3 meV is measured by STM.15

Accordingly, the calculated 2�/kBTc is 3.8, which is close to

the value based on BCS theory. The point-contact Andreev

reflection (PCAR) method, in which the energy gap is calcu-

lated from dI/dV, reveals strong coupling superconductivity

in the FeTe0.55Se0.45 thin film. The energy gap is 3.8 meV at

1.7 K. The superconducting energy gaps that were calculated

with the IcRn products agree with that calculated using the

PCAR method.16 Our data are similar to that of FeSeTe

break junctions, which were investigated by Park.16

In summary, FeSeTe nanobridges were fabricated with

widths from 248 to 672 nm on MgO substrates using a FIB.

The current-voltage characteristics reveal that the critical

currents of the nanobridges increase as the temperatures

decreases, but the variation in the critical current is small

and below 0.5Tc. The V-I characteristics can be fitted by the

RCSJ-model with a small excess current and a slight hystere-

sis, whereas the temperature-dependence of critical current

can be fitted by the Ambegaokar-Baratoff relation. The

superconducting energy gap of the FeSeTe nanobridges is

3.5kBTc. The effect of microwave irradiation on the junctions

is clearly observed. Further work to investigate the techni-

ques for trimming the parameters of FIB FeSeTe junctions

would be valuable for device applications.
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FIG. 5. The temperature dependence of IcRn product (triangle) and super-

conducting energy gap (rectangle) of the 564 nm wide nanobridge.
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