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A copper-catalyzed C-S bond formation between aldehydes and thiols in the presence of TBHP as an 

oxidant is described. Functional groups including chloro, trifluoromethyl, bromo, iodo, nitrile, ester and 

thiophene are all tolerated by the reaction conditions employed. This reaction is performed in water 

without the use of a surfactant. Both aryl and alkyl aldehydes couple suitably with aryl- and alkyl thiols, 

affording the corresponding thioesters in moderate to good yields.     10 

Introduction 

Thioesters are important building blocks for organic synthesis,1 

and they have been utilized in acyl transfer reactions as the 

intermediates. Thioesters are also play an important role in 

biology.2 The traditional preparation of thioesters relied on the 15 

condensation reaction of carboxylic acids with thiols or metal 

thiolates in the presence of an activating reagent.3 However, some 

limitations remain using this protocol. First, some starting 

materials such as acyl chlorides are moisture-sensitive and need 

to be prepared in situ. Second, this method sometimes produces 20 

an equal amount of halide anion when acyl chlorides were used. 

As a result, the direct coupling of aldehydes with thiol surrogates 

serves as an attractive route to access thioesters. Since the 

discovery of this approach in 1976 by Takagi et al., through a 

photo-induced reductive acylation of disulfides with aldehydes,4 25 

several synthetic limitations have been observed using this 

approach. First, the reaction is not applicable to substituted 

aromatic aldehydes. Second, the reaction needs a specific photo-

reactor. Third, a diluted reaction concentration is required. 

Recently, Takemoto et al. reported the carbene-catalyzed 30 

coupling of aldehydes with thiols in THF,5 however, some 

drawbacks are observed in this method, as well. First, the 

carbenes used in this work are expensive. Second, alkyl 

aldehydes are less reactive than aromatic aldehydes, and more 

electron-rich carbenes are required. Bandgar and co-workers 35 

described the Dess-Martin periodinane-promoted synthesis of 

thioesters, however, 6 equiv of Dess-Martin periodinane in 

combination with 6 equiv of NaN3 are required to give the 

desired thioesters. Moreover, the substrates are limited to aryl 

thiols.6 Water is one of the most attractive medium for chemical  40 
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transformations.7 Interestingly, Kita et al. reported the preparation 

of thioesters from aldehydes and dipentafluorophenyl disulfide in 

water through a radical pathway.8 However, many limitations 50 

remained in this work. First, 1 equiv of water soluble initiator is 

necessary. Second, the scope of the substrate is limited to 

dipentafluorophenyl disulfide and low yields were observed when 

simple phenyl disulfides were used; moreover, no alkyldisulfides 

were presented in this system. Third, cetyltrimethyl-ammonium 55 

bromide was required as a surfactant. Therefore, the development 

of a general method for preparing thioesters from aldehydes and 

thiols in water is highly desirable. Transition-metal-catalyzed C-

H functionalization has emerged as an efficient strategy for 

introducing carbon-carbon and carbon-heteroatom bonds.9 Herein 60 

we report that the catalytic amount of CuCl is an active catalyst 

for the coupling of aldehydes with thiols in the presence of TBHP 

as an oxidant in water without the need for surfactant.   

Results and discussion  

Initially, benzaldehyde and 1-dodecanethiol were selected as the 65 

model substrates to determine the optimized reaction conditions 

and the results are summarized in Table 1. We first examined the 

source of oxidant (Table 1, entries 1-5), and TBHP was found to 

be superior to the others (Table 1, entry 1). The effect of solvent 

was then studied (Table 1, entries 6-9), and to our delight, water 70 

afforded the target in a 50% isolated yield (Table 1, entry 9). A 

61% yield was obtained when the reaction was performed at 100 
oC (Table 1, entry 10), however, a lower yield was determined at 

110 oC (Table 1, entry 11). Interestingly, a similar result was 

obtained when the copper salt was reduced to 2.5 mol% (Table 1, 75 

entry 12). However, a low yield (51%) was observed when 1.0 

mol% of copper salt was used (Table 1, entry 13). Notably, a 

75% yield was obtained when TBHP was decreased to 1 mmol 

(Table 1, entry 13). We then examined the influence of copper 

sources (Table 1, entries 15-20), and found that CuCl was 80 

superior to Cu(OTf)2, CuO, Cu2O, CuBr and CuI. The control 

experiment showed that the product was obtained with only a 

13% yield when the reaction was carried out in the absence of a 
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copper salt (Table 1, entry 21). When the aldehyde was reduced 

to 1.5 mmol, only 76% yield was obtained (Table 1, entry 22). A 

72% yield resulted when the reaction was performed under an air 

atmosphere (Table 1, entry 23). Shorter reaction times reduced 

the product yield to 76% yield (Table 1, entry 24).  5 

  

Table 1 Optimize the reaction conditionsa 

 

 

 10 

 

 
Entry “Cu“ (mol%) Oxidant (mmol) Temp. Solvent Yield(%)b 

1 Cu(OAc)2 (14) TBHP (2.5) 80 toluene 22 

2  Cu(OAc)2 (14) BPO (2.5) 80 toluene 12 

3  Cu(OAc)2 (14) AcOOH (2.5) 80 toluene 3 

4  Cu(OAc)2 (14) DTBP (2.5) 80 toluene - 

5  Cu(OAc)2 (14) H2O2 (2.5) 80 toluene - 

6  Cu(OAc)2 (14) TBHP (2.5) 80 CH3CN 29 

7  Cu(OAc)2 (14) TBHP (2.5) 80 THF 20 

8  Cu(OAc)2 (14) TBHP (2.5) 80 DCE 25 

9  Cu(OAc)2 (14) TBHP (2.5) 80 H2O 50 

10  Cu(OAc)2 (14) TBHP (2.5) 100 H2O 61 

11  Cu(OAc)2 (14) TBHP (2.5) 110 H2O 43 

12  Cu(OAc)2 (2.5) TBHP (2.5) 100 H2O 60 

13  Cu(OAc)2 (1) TBHP (2.5) 100 H2O 51 

14 Cu(OAc)2 (2.5) TBHP (1.0) 100 H2O 75 

15 Cu(OTf)2 (2.5) TBHP (1.0) 100 H2O 69 

16 CuO (2.5) TBHP (1.0) 100 H2O 73 

17 Cu2O (2.5)  TBHP (1.0) 100 H2O 76 

18 CuCl (2.5) TBHP (1.0) 100 H2O 89 

19 CuBr (2.5) TBHP (1.0) 100 H2O 60 

20 CuI (2.5) TBHP (1.0) 100 H2O 69 

21 - TBHP (1.0) 100 H2O 13 

22c CuCl (2.5) TBHP (1.0) 100 H2O 76 

23d CuCl (2.5) TBHP (1.0) 100 H2O 72 

25e CuCl (2.5) TBHP (1.0) 100 H2O 76 

a Reaction conditions: Cu source (0.0125 mmol, 2.5 mol%), oxidant (1.0 

mmol), thiol (0.5 mmol), benzaldehyde (2.5 mmol) under a nitrogen 

atmosphere in solvent (1.5 mL)  for 1 h. b Isolated yield. c Benzaldehyde 15 

(1.5 mmol). d Under air atmosphere. e 30 min. TBHP = tert-butyl 

hydroperoxide. BPO = benzoyl peroxide. AcOOH = peracetic acid.  

DTBP = di-tert-butyl peroxide. 

  

With these optimized reaction conditions in hand, the 20 

scope of the substrates was then studied. The results are 

summarized in Table 2. A variety of alkyl thiols were conducted 

with aromatic- and alkyl aldehydes, to afford the corresponding 

thioesters in moderate to good yields. Aromatic aldehydes 

bearing electron-donating and electron-withdrawing substituents 25 

are all suitable for catalysis. It is important to note that this 

system shows good functional group tolerance; ester (Table 2, 

products 3b, 3e, 3m and 3r), chloro (Table 2, products 3c, 3d and 

3e), bromo (Table 2, products 3l and 3m), nitrile (Table 2, 

product 3n), iodo (Table 2, product 3t) and trifluoromethyl 30 

(Table 2, product 3s) are all tolerated by the reaction conditions 

employed. Furthermore, sterically demanding substituted aryl 

aldehydes also underwent the cross-coupling with thiols to afford 

the desired products in 55-70% yields (Table 2, products 3i, 3j 

and 3k). Alkyl thiols were also reacted with alkyl aldehydes to 35 

give the corresponding thioesters ((Table 2, products 3u and 3v).  

    

Table 2 Copper-catalyzed coupling reaction of aldehydes with alkyl 

thiols
a 

 40 

   

  
 

   

   

 
  

   

 

 

 

 

  

a Reaction conditions unless otherwise stated: CuCl (0.0125 mmol, 2.5 

mol%), TBHP (1.0 mmol), thiol (0.5 mmol), aldehyde (2.5 mmol) under a 

nitrogen atmosphere in H2O (1.5 mL) for 1 h. b 5 mol% of CuCl was used. 

 

Based on the promising results for alkyl thiols, we next 45 

turned our attention to aryl thiols. Aryl thiols bearing electron-

donating and electron-withdrawing substituents underwent cross-

coupling with aryl- and alkyl ((Table 3, products 4o, 4p and 4q) 

aldehydes to provide the corresponding thioesters in 31-90% 

yields. Functional groups including chloro (Table 3, products 4a, 50 

4f, 4g, 4h, 4k and 4q), trifluoromethyl (Table 3, product 4b), 

fluoro (Table 3, product 4c), bromo (Table 3, products 4d, 4e, 4i 

and 4l), nitrile (Table 3, products 4l and 4m), ester (Table 3, 

product 4r) and thiophene (Table 3, product 4s) are tolerated by 

the reaction conditions. 55 
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Table 3 Copper-catalyzed synthesis of thioesters through coupling of 

aldehydes with aryl thiols
a 

 

 

 
5 

 

 

   

   

   

   

 
 

 

   

 
  

a Reaction conditions unless otherwise stated: CuCl (0.0125 mmol, 2.5 

mol%), TBHP (1.0 mmol), thiol (0.5 mmol), aldehyde (2.5 mmol) under a 

nitrogen atmosphere in H2O (1.5 mL) for 1 h. b 5 mol% of CuCl was used. 10 

 

Conclusions 

In conclusion, we have developed a general method for preparing 

thioesters by using 2.5 mol% of CuCl as a catalyst and TBHP as 

an oxidant. It is important to note that the reactions were carried 15 

out in water without any surfactant. Aryl- and alkyl aldehydes 

were coupled with aryl- and alkyl thiols, giving the corresponding 

thioesters in 31-94% yields. This system shows good functional 

group tolerance. Additionally, sterically demanding substrates 

were also shown good activity for catalysis. Mechanistic studies 20 

and applications of this catalytic system are currently underway 

in our laboratory 

 

Experimental 

General information 25 

All chemicals were purchased from commercial suppliers and used 

without further purification. NMR spectra were recorded on a Varian 

Unity Inova-600 or a Varian Mercury-400 instrument using CDCl3 as 

solvent. Chemical shifts are reported in parts per million (ppm) and 

referenced to the residual solvent resonance. Coupling constant (J) are 30 

reported in hertz (Hz). Standard abbreviations indicating multiplicity were 

used as follows: s = singlet, d = doublet, t = triplet, dd = double doublet, tt 

= triplet triplet, td = triplet doublet, dt = doublet triplet, q = quartet, m = 

multiplet, b = broad. Melting points (m.p.) were determined using a Büchi 

535 apparatus and are reported uncorrected. High resolution mass spectra 35 

(HRMS) were performed on an electron ionization time-of-flight (EI-TOF) 

mass spectrometer or LCMS with an APCI source by the  services at the 

National Chung Hsing University. 

 

General procedure for Table 1 40 

A Schlenk tube equipped with a magnetic stirrer bar was charged with 

copper salt (0.0125 mmol) in a nitrogen-filled glove box. The Schlenk 

tube was then covered with a rubber septum and removed from the glove 

box. Under a nitrogen atmosphere, 1-dodecanethiol (0.5 mmole), 

benzaldehyde (2.5 mmol), oxidant (1.0 mmol), solvent (1.5 mL) was 45 

added via syringe, and the Schlenk tube was connected to a nitrogen-filled 

balloon and heated at 100 °C in an oil bath. After stirring at this 

temperature for 1 h, the heterogeneous mixture was cooled to room 

temperature and diluted with ethyl acetate (20 mL). The resulting solution 

was directly filtered through a pad of silica gel then washed with ethyl 50 

acetate (20 mL) and concentrated to give the crude material which was 

then purified by column chromatography (SiO2, hexane) to yield 3a. 

 

Representative example of Table 1. S-Dodecyl benzothioate (entry 18, 

3a).10 Following the general procedure for Table 1, using CuCl (1.3 mg, 55 

0.0125 mmol), benzaldehyde (0.26 mL, 2.5 mmol), 1-dodecanethiol 

(0.125 mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), 

then purified by column chromatography (SiO2, hexane) to provide 3a as 

a yellow oil (136 mg, 89% yield). 1H NMR (400 MHz, CDCl3) δ 0.88 (t, J 

= 6.6 Hz, 3 H), 1.26-1.44 (m, 18 H), 1.63-1.71 (m, 2H), 3.06 (t, J = 7.4 60 

Hz, 2 H), 7.43 (t, J = 7.8 Hz, 2 H), 7.55 (t, J = 7.4 Hz, 1 H), 7.97 (d, J = 

4.0 Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 14.1, 22.7, 28.9, 29.0, 29.1, 

29.3, 29.5, 29.5, 29.6, 29.6, 29.6, 31.9, 127.1, 128.5, 133.1, 137.2, 192.1. 

 

General procedure for Table 2 65 

A Schlenk tube equipped with a magnetic stirrer bar was charged with 

CuCl (1.3 mg, 0.0125 mmol) in a nitrogen-filled glove box. The Schlenk 

tube was then covered with a rubber septum and removed from the glove 

box. Under a nitrogen atmosphere, thiol (0.5 mmole), aldehyde (2.5 

mmol), TBHP (0.14 mL, 1.0 mmol), H2O (1.5 mL) was added via syringe, 70 

and the Schlenk tube was connected to a nitrogen-filled balloon and 

heated at 100 °C in an oil bath. After stirring at this temperature for 1 h, 

the heterogeneous mixture was cooled to room temperature and diluted 

with ethyl acetate (20 mL). The resulting solution was directly filtered 

through a pad of silica gel then washed with ethyl acetate (20 mL) and 75 

concentrated to give the crude material which was then purified by 

column chromatography (SiO2, hexane) to yield 3. 

 

Ethyl 2-(benzoylthio)acetate (3b).3b Following the general procedure for 
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Table 2, using CuCl (1.3 mg, 0.0125 mmol), benzaldehyde (0.26 mL, 2.5 

mmol), ethyl 2-mercaptoacetate (0.056 mL, 0.5 mmol) and TBHP (0.14 

mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 

chromatography (SiO2, hexane/EtOAc, 100:1) to provide 3b as a colorless 

oil (99 mg, 88% yield). 1H NMR (400 MHz, CDCl3) δ 1.29 (t, J = 7.2 Hz, 5 

3 H), 3.88 (s, 2 H), 4.23 (q, J = 7.2 Hz, 3 H), 7.46 (t, J = 7.8 Hz, 2 H), 

7.59 (t, J = 7.4 Hz, 1 H), 7.97 (d, J = 4.2 Hz, 2 H); 13C NMR (100 MHz, 

CDCl3) δ 14.0, 31.3, 61.8, 127.3, 128.6, 133.7, 136.0, 168.7, 190.0. 

 

S-Dodecyl 4-chlorobezothioate (3c).10 Following the general procedure 10 

for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-chlorobenzaldehyde 

(359 mg, 2.5 mmol), 1-dodecanethiol (0.125 mL, 0.5 mmol) and TBHP 

(0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 

chromatography (SiO2, hexane) to provide 3c as a yellow oil (130 mg, 

76% yield). 1H NMR (400 MHz, CDCl3) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.26-15 

1.43 (m, 18 H), 1.63-1.70 (m, 2 H), 3.06 (t, J = 7.4 Hz, 2 H), 7.40-7.43 (m, 

2 H), 7.89-7.92 (m, 2 H); 13C NMR (100 MHz, CDCl3) δ 14.1, 22.7, 28.9, 

29.1, 29.2, 29.3, 29.5, 29.5, 29.6, 29.6, 29.6, 31.9, 128.5, 128.8, 135.6, 

139.5, 191.0. 

 20 

S-(2-Methyl-1-butyl) 4-chlorobenzothioate (3d). Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-

chlorobenzaldehyde (359 mg, 2.5 mmol), 2-methyl-1-butanethiol (0.065 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane) to afford 3d as a 25 

yellow oil (105 mg, 86% yield). 1H NMR (400 MHz, CDCl3) δ 0.94 (t, J 

= 7.4 Hz, 3 H), 1.00 (d, J = 6.8 Hz, 3 H), 1.24-1.31 (m, 1 H), 1.47-1.54 

(m, 1 H), 1.67-1.72 (m, 1 H), 2.95 (dd, J = 7.2, 12.8 Hz, 1 H), 3.13 (dd, J 

= 5.6, 12.8 Hz, 1 H), 7.40-7.44 (m, 2 H), 7.91-7.94 (m, 2 H); 13C NMR 

(100 MHz, CDCl3) δ 11.4, 18.8, 28.7, 34.9, 35.7, 128.5, 128.8, 135.6, 30 

139.5, 190.9; HRMS-EI calcd. for C12H15ClOS: 242.0532, found: 

242.0541. 

 

Ethyl 2-((4-chlorobenzoyl)thio)acetate (3e). Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-35 

chlorobenzaldehyde (359 mg, 2.5 mmol), ethyl 2-mercaptoacetate (0.056 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 

provide 3e as a white solid (90 mg, 70% yield). M.p.: 55-56 °C. 1H NMR 

(400 MHz, CDCl3) δ 1.30 (t, J = 7.0 Hz, 3 H), 3.89 (s, 2 H), 4.23 (q, J = 40 

7.1 Hz, 2 H), 7.44 (dd, J = 2.0, 6.8 Hz, 2 H), 7.92 (dd, J = 2.0, 6.8 Hz, 2 

H); 13C NMR (100 MHz, CDCl3) δ 14.1, 31.4, 61.9, 128.7, 129.0, 134.4, 

140.1, 168.5, 188.9; HRMS-EI calcd. for C11H11ClO3S: 258.0117, found: 

258.0115. 

 45 

S-Dodecyl 4-methoxybenzothioate (3f).10 Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-

methoxybenzaldehyde (0.31 mL, 2.5 mmol), 1-dodecanethiol (0.125 mL, 

0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified 

by column chromatography (SiO2, hexane/EtOAc, 100:1) to provide 3f as 50 

a yellow oil (147 mg, 87% yield). 1H NMR (400 MHz, CDCl3) δ 0.88 (t, J 

= 7.0 Hz, 3 H), 1.26-1.43 (m, 18 H), 1.64-1.67 (m, 2 H), 3.04 (t, J = 7.4 

Hz, 2 H), 3.85 (s, 3 H), 6.9 (dd, J = 2.0, 6.8 Hz, 2 H), 7.95 (dd, J = 2.0, 

6.8 Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 14.1, 22.7, 28.9, 28.9, 29.1, 

29.3, 29.5, 29.6, 29.6, 29.6, 29.7, 31.9, 55.4, 113.6, 129.3, 130.1, 163.5, 55 

190.6. 

 

S-(2-Methyl-1-butyl) 4-methoxybenzothioate (3g). Following the 

general procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-

methoxybenzaldehyde (0.31 mL, 2.5 mmol), 2-methyl-1-butanethiol 60 

(0.065 mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), 

then purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 

provide 3g as a yellow oil (112 mg, 94% yield). 1H NMR (400 MHz, 

CDCl3) δ 0.93 (t, J = 7.4 Hz, 3 H), 1.00 (d, J = 6.8 Hz, 3 H), 1.23-1.30 (m, 

1 H), 1.47-1.54 (m, 1 H), 1.64- 1.69 (m, 1 H), 2.93 (dd, J = 7.2, 12.8 Hz, 65 

1 H), 3.11 (dd, J = 6.0, 13.2 Hz, 1 H), 3.86 (s, 3 H), 6.90-6.94 (m, 2 H), 

7.95-7.99 (m, 2 H); 13C NMR (100 MHz, CDCl3) δ 11.4, 18.8, 28.7, 35.1, 

35.4, 55.5, 113.6, 129.3, 130.1, 163.6, 190.6; HRMS-EI calcd. for 

C13H18O2S: 238.1028, found: 238.1035. 

 70 

S-Benzyl 4-methoxybenzothioate (3h).5 Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-

methoxybenzaldehyde (0.31 mL, 2.5 mmol), phenylmethanethiol (0.060 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 75 

provide 3h as a yellow solid (86 mg, 66% yield). M.p.: 50-51 °C (lit.5 

m.p.: 51-52 °C). 1H NMR (400 MHz, CDCl3) δ 3.83 (s, 3 H), 4.29 (s, 2 H), 

6.90 (dd, J = 2.0, 6.8 Hz, 2 H), 7.23-7.38 (m, 5 H), 7.94 (dd, J = 2.0, 6.8 

Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 33.1, 55.4, 113.7, 127.2, 128.6, 

128.9, 129.4, 129.5, 137.7, 163.7, 189.7. 80 

 

S-Dodecyl 2-methylbenzothioate (3i).10 Following the general procedure 

for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 2-methylbenzaldehyde 

(0.30 mL, 2.5 mmol), 1-dodecanethiol (0.125 mL, 0.5 mmol) and TBHP 

(0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 85 

chromatography (SiO2, hexane) to provide 3i as a colorless oil (107 mg, 

67% yield). 1H NMR (400 MHz, CDCl3) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.26-

1.44 (m, 18 H), 1.63-1.70 (m, 2 H), 2.48 (s, 3 H), 3.03 (t, J = 7.2 Hz, 2 H), 

7.22-7.26 (m, 2 H), 7.35-7.39 (m, 1 H), 7.76 (dd, J = 1.6, 8.4 Hz, 1 H); 

13C NMR (100 MHz, CDCl3) δ 14.1, 20.5, 22.7, 28.9, 29.2, 29.3, 29.5, 90 

29.6, 29.6, 29.6, 29.6, 31.9, 125.7, 128.3, 131.4, 131.5, 136.6, 137.8, 

194.6. 

 

S-(2-Methyl-1-butyl) 2-methylbenzothioate (3j). Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 2-95 

methylbenzaldehyde (0.30 mL, 2.5 mmol), 2-methyl-1-butanethiol (0.065 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane) to provide 3j as a 
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yellow oil (77 mg, 70% yield). 1H NMR (400 MHz, CDCl3) δ 0.94 (t, J = 

7.6 Hz, 3 H), 1.01 (d, J = 6.4 Hz, 3 H), 1.24-1.31 (m, 1 H), 1.48-1.55 (m, 

1 H), 1.67-1.72 (m, 1 H), 2.47 (s, 3 H), 2.93 (dd, J = 7.2, 13.2 Hz, 1 H), 

3.09 (dd, J = 6.0, 13.2 Hz, 1 H), 7.23 (t, J = 7.4 Hz, 2 H), 7.33-7.39 (m, 1 

H), 7.78 (dd, J = 1.6, 7.6 Hz, 1 H); 13C NMR (100 MHz, CDCl3) δ 11.4, 5 

18.8, 20.5, 28.7, 35.0, 36.0, 125.6, 128.3, 131.4, 131.4, 136.5, 137.9, 

194.6; HRMS-EI calcd. for C13H18OS: 222.1078, found: 222.1072. 

 

S-Benzyl 2-methylbenzothioate (3k).3b Following the general procedure 

for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 2-methylbenzaldehyde 10 

(0.30 mL, 2.5 mmol), phenylmethanethiol (0.060 mL, 0.5 mmol) and 

TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 

chromatography (SiO2, hexane) to give 3k as a yellow oil (67 mg, 55% 

yield). 1H NMR (400 MHz, CDCl3) δ 2.50 (s, 3 H), 4.28 (s, 2 H), 7.22-

7.27 (m, 3 H), 7.30-7.39 (m, 5 H), 7.76 (d, J = 8.0 Hz, 1 H); 13C NMR 15 

(100 MHz, CDCl3) δ 20.6, 33.9, 125.7, 127.2, 128.5, 128.6, 128.9, 131.6, 

131.7, 136.9, 137.1, 137.6, 193.5. 

 

S-Dodecyl 4-bromobenzothioate (3l). Following the general procedure 

for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-bromobenzaldehyde 20 

(467 mg, 2.5 mmol), 1-dodecanethiol (0.125 mL, 0.5 mmol) and TBHP 

(0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 

chromatography (SiO2, hexane) to obtain 3l as a white solid (152 mg, 

79% yield). M.p.: 31-32 °C. 1H NMR (400 MHz, CDCl3) δ 0.88 (t, J = 6.8 

Hz, 3 H), 1.25-1.43 (m, 18 H), 1.64-1.68 (m, 2 H), 3.06 (t, J = 7.4 Hz, 2 25 

H), 7.57 (d, J = 8.4 Hz, 2 H), 7.82 (d, J = 8.4 Hz, 2 H); 13C NMR (100 

MHz, CDCl3) δ 14.1, 22.7, 28.9, 29.1, 29.1, 29.3, 29.4, 29.5, 29.5, 29.6, 

29.6, 31.9, 128.2, 128.6, 131.8, 135.9, 191.0; HRMS-EI calcd. for 

C19H29BrOS: 384.1122, found: 384.1115. 
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Ethyl 2-((4-bromobenzoyl)thio)acetate (3m). Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-

bromobenzaldehyde (467 mg, 2.5 mmol), ethyl 2-mercaptoacetate (0.056 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 35 

afford 3m as a yellow solid (135 mg, 89% yield). M.p.: 41-42 °C. 1H 

NMR (400 MHz, CDCl3) δ 1.21 (t, J = 7.2 Hz, 3 H), 3.80 (s, 2 H), 4.14 (q, 

J = 7.1 Hz, 2 H), 7.51 (dd, J = 1.6, 6.8 Hz, 2 H), 7.74 (dd, J = 1.6, 6.8 Hz, 

2 H); 13C NMR (100 MHz, CDCl3) δ 14.0, 31.4, 61.9, 128.7, 128.8, 131.9, 

134.7, 168.4, 189.0; HRMS-EI calcd. for C11H11BrO3S: 301.9612, found: 40 

301.9604. 

 

S-(2-Methyl-1-butyl) 3-cyanobenzothioate (3n). Following the general 

procedure for Table 2, using CuCl (2.5 mg, 0.025 mmol), 3-

formylbenzonitrile (331 mg, 2.5 mmol), 2-methyl-1-butanethiol (0.065 45 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 

provide 3n as a yellow oil (52 mg, 44% yield). 1H NMR (400 MHz, 

CDCl3) δ 0.95 (t, J = 7.4 Hz, 3 H), 1.01 (t, J = 6.4 Hz, 3 H), 1.24-1.35 (m, 

1 H), 1.47-1.69 (m, 1 H), 1.70-1.74 (m, 1 H), 3.00 (dd, J = 7.2, 13.2 Hz, 1 50 

H), 3.17 (dd, J = 6.0, 13.6 Hz, 1 H), 7.58-7.62 (m, 1 H), 7.83-7.86 (m, 1 

H), 8.18-8.21 (m, 1 H), 8.26-8.27 (m, 1 H); 13C NMR (100 MHz, CDCl3) 

δ 11.3, 18.8, 28.7, 34.8, 35.9, 113.0, 117.8, 129.6, 130.8, 131.1, 136.0, 

138.0, 190.2; HRMS-EI calcd. for C13H15NOS: 233.0874, found: 

233.0879. 55 

 

S-Hexyl 4-methylbenzothioate (3o). Following the general procedure for 

Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-methylbenzaldehyde (0.30 

mL, 2.5 mmol), 1-hexanethiol (0.0725 mL, 0.5 mmol) and TBHP (0.14 

mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 60 

chromatography (SiO2, hexane) to give 3o as a yellow oil (105 mg, 89% 

yield). 1H NMR (400 MHz, CDCl3) δ 0.89 (t, J = 7.0 Hz, 3 H), 1.25-1.44 

(m, 6 H), 1.62-1.68 (m, 2 H), 2.40 (s, 3 H), 3.05 (t, J = 7.4 Hz, 2 H), 7.23 

(d, J = 8.0 Hz, 2 H), 7.87 (dd, J = 1.6, 6.4 Hz, 2 H); 13C NMR (100 MHz, 

CDCl3) δ 14.0, 21.6, 22.5, 28.6, 28.9, 29.5, 31.3, 127.2, 129.2, 134.7, 65 

144.0, 191.7; HRMS-EI calcd. for C14H20OS: 236.1235, found: 236.1228. 

 

S-(2-Methyl-1-butyl) 4-methylbenzothioate (3p). Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 4-

methylbenzaldehyde (0.30 mL, 2.5 mmol), 2-methyl-1-butanethiol (0.065 70 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane) to provide 3p as a 

yellow oil (86 mg, 78% yield). 1H NMR (400 MHz, CDCl3) δ 0.94 (t, J = 

7.4 Hz, 3 H), 1.00 (d, J = 6.8 Hz, 3 H), 1.24-1.31 (m, 1 H), 1.48-1.54 (m, 

1 H), 1.66-1.71 (m, 1 H), 2.41 (s, 3 H), 2.94 (dd, J = 7.2, 13.6 Hz, 1 H), 75 

3.11 (dd, J = 5.6, 13.2 Hz, 1 H), 7.22-7.26 (m, 2 H), 7.87-7.90 (m, 2 H); 

13C NMR (100 MHz, CDCl3) δ 11.4, 18.8, 21.6, 28.8, 35.0, 35.4, 127.2, 

129.2, 134.7, 144.0, 191.8; HRMS-EI calcd. for C13H18OS: 222.1078, 

found: 222.1085. 
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S-(2-Methyl-1-butyl) 3-methylbenzothioate (3q). Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 3-

methylbenzaldehyde (0.30 mL, 2.5 mmol), 2-methyl-1-butanethiol (0.065 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane) to provide 3q as a 85 

yellow oil (99 mg, 89% yield). 1H NMR (400 MHz, CDCl3) δ 0.94 (t, J = 

7.4 Hz, 3 H), 1.00 (d, J = 6.8 Hz, 3 H), 1.24-1.31 (m, 1 H), 1.44-1.54 (m, 

1 H), 1.68-1.70 (m, 1 H), 2.94 (dd, J = 7.6, 13.6 Hz, 1 H), 3.13 (dd, J = 

6.0, 13.6 Hz, 1 H), 7.30-7.38 (m, 2 H), 7.78-7.79 (m, 2 H); 13C NMR (100 

MHz, CDCl3) δ 11.4, 18.8, 21.3, 28.7, 35.0, 35.5, 124.4, 127.6, 128.4, 90 

133.9, 137.3, 138.4, 192.2; HRMS-EI calcd. for C13H18OS: 222.1078, 

found: 222.1072. 

 

Ethyl 2-((3-methylbenzoyl)thio)acetate (3r).3b Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), 3-95 

methylbenzaldehyde (0.30 mL, 2.5 mmol), ethyl 2-mercaptoacetate 

(0.056 mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), 

then purified by column chromatography (SiO2, hexane) to provide 3r as 
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a yellow oil (101 mg, 85% yield). 1H NMR (400 MHz, CDCl3) δ 1.29 (t, J 

= 7.2 Hz, 3 H), 2.40 (s, 3 H), 3.87 (s, 2 H), 4.22 (q, J = 7.2 Hz, 2 H), 7.31-

7.40 (m, 2 H), 7.76-7.78 (m, 2 H); 13C NMR (100 MHz, CDCl3) δ 14.0, 

21.1, 31.3, 61.7, 124.5, 127.7, 128.5, 134.4, 136.0, 138.5, 168.7, 190.1. 

 5 

S-Hexyl 4-(trifluoromethyl)benzothioate (3s). Following the general 

procedure for Table 2, using CuCl (2.5 mg, 0.025 mmol), 4-

(trifluoromethyl)benzaldehyde (0.35 mL, 2.5 mmol), 1-hexanethiol 

(0.0725 mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), 

then purified by column chromatography (SiO2, hexane) to provide 3s as 10 

a colorless oil (72 mg, 49% yield). 1H NMR (600 MHz, CDCl3) δ 0.90 (t, 

J = 6.9 Hz, 3 H), 1.31-1.34 (m, 4 H), 1.41-1.46 (m, 2 H), 1.66-1.71 (m, 2 

H), 3.10 (t, J = 7.2 Hz, 2 H), 7.72 (d, J = 8.4 Hz, 2 H), 8.07 (d, J = 8.4 Hz, 

2 H); 13C NMR (150 MHz, CDCl3) δ 14.0, 22.5, 28.6, 29.3, 29.7, 31.3, 

123.5 (q, J = 271.1 Hz), 125.6, 125.6, 127.5, 134.5 (q, J = 32.4 Hz), 139.9, 15 

191.2; 19F NMR (376 MHz, CDCl3) δ -64.7 (s); HRMS-EI calcd. for 

C14H17F3OS: 290.0952, found: 290.0954. 

 

S-Decyl 3-iodobenzothioate (3t). Following the general procedure for 

Table 2, using CuCl (1.3 mg, 0.0125 mmol), 3-iodobenzaldehyde (592 mg, 20 

2.5 mmol), 1-decanethiol (0.1075 mL, 0.5 mmol) and TBHP (0.14 mL, 

1.0 mmol) in H2O (1.5 mL), then purified by column chromatography 

(SiO2, hexane) to provide 3t as a white solid (99 mg, 49% yield). M.p.: 

44-45 °C. 1H NMR (400 MHz, CDCl3) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.26-

1.43 (m, 14 H), 1.62-1.70 (m, 2 H), 3.06 (t, J = 7.4 Hz, 2 H), 7.17 (t, J = 25 

7.8 Hz, 1 H), 7.86-7.93 (m, 2 H), 8.27 (t, J = 1.8 Hz, 1 H); 13C NMR (100 

MHz, CDCl3) δ 14.1, 22.6, 28.9, 29.1, 29.2, 29.3, 29.4, 29.5, 29.5, 31.8, 

94.2, 126.3, 130.1, 135.9, 138.8, 141.8, 190.6; HRMS-APCI calcd. for 

C17H26OIS[M + H]+: 405.07436, found: 405.07428. 
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S-Dodecyl heptanethioate (3u). Following the general procedure for 

Table 2, using CuCl (1.3 mg, 0.0125 mmol), heptaldehyde 0.37 mL, 2.5 

mmol), 1-dodecanethiol (0.125 mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 

mmol) in H2O (1.5 mL), then purified by column chromatography (SiO2, 

hexane) to provide 3u as a colorless oil (116 mg, 74% yield). 1H NMR 35 

(400 MHz, CDCl3) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.26-1.34 (m, 24 H), 1.54-

1.57 (m, 2 H), 1.63-1.67 (m, 2 H), 2.53 (t, J = 7.6 Hz, 2 H), 2.86 (t, J = 

7.4 Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 14.0, 14.1, 22.4, 22.7, 25.7, 

28.6, 28.8, 28.8, 29.1, 29.3, 29.5, 29.6, 29.6, 29.6, 29.6, 31.4, 31.9, 44.1, 

199.8; HRMS-APCI calcd. for C19H39OS[M + H]+: 315.2716, found: 40 

315.2724. 

 

S-(2-Methyl-1-butyl) heptanethioate (3v). Following the general 

procedure for Table 2, using CuCl (1.3 mg, 0.0125 mmol), heptaldehyde 

0.37 mL, 2.5 mmol), 2-methyl-1-butanethiol (0.065 mL, 0.5 mmol) and 45 

TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 

chromatography (SiO2, hexane) to provide 3v as a colorless oil (84 mg, 

78% yield). 1H NMR (400 MHz, CDCl3) δ 0.86-0.94 (m, 9 H), 1.17-1.34 

(m, 7 H), 1.39-1.46 (m, 1 H), 1.55-1.67 (m, 3 H), 2.55 (t, J = 7.4 Hz, 2 H), 

2.75 (dd, J = 7.2, 12.4 Hz, 1 H), 2.92 (dd, J = 6.0, 12.8 Hz, 1 H); 13C 50 

NMR (100 MHz, CDCl3) δ 11.3, 14.0, 18.7, 22.4, 25.7, 28.6, 28.6, 31.4, 

35.0, 35.3, 44.2, 199.8; HRMS-APCI calcd. for C12H25OS[M + H]+: 

217.16206, found: 217.16198. 

 

General procedure for Table 3 55 

A Schlenk tube equipped with a magnetic stirrer bar was charged with 

CuCl (1.3 mg, 0.0125 mmol) in a nitrogen-filled glove box. The Schlenk 

tube was then covered with a rubber septum and removed from the glove 

box. Under a nitrogen atmosphere, thiol (0.5 mmole), aldehyde (2.5 

mmol), TBHP (0.14 mL, 1.0 mmol), H2O (1.5 mL) was added via syringe, 60 

and the Schlenk tube was connected to a nitrogen-filled balloon and 

heated at 100 °C in an oil bath. After stirring at this temperature for 1 h, 

the heterogeneous mixture was cooled to room temperature and diluted 

with ethyl acetate (20 mL). The resulting solution was directly filtered 

through a pad of silica gel then washed with ethyl acetate (20 mL) and 65 

concentrated to give the crude material which was then purified by 

column chromatography (SiO2, hexane) to yield 4. 

 

S-(4-Chlorophenyl) 4-methoxybenzothioate (4a).11 Following the 

general procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 4-70 

methoxybenzaldehyde (0.31 mL, 2.5 mmol), 4-chlorobenzenethiol (0.074 

g, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 

provide 4a as a white solid (93 mg, 67% yield). M.p.: 96-97 °C (lit.11 m.p.: 

98-101 °C). 1H NMR (400 MHz, CDCl3) δ 3.86 (s, 3 H), 6.94 (d, J = 9.2 75 

Hz, 2 H), 7.41 (t, J = 1.0 Hz, 4 H), 7.98 (d, J = 8.8 Hz, 2 H); 13C NMR 

(100 MHz, CDCl3) δ 55.5, 113.9, 126.1, 128.9, 129.3, 129.7, 135.7, 136.3, 

164.0, 187.9. 

 

S-(4-(Trifluoromethyl)phenyl) 4-methoxybenzothioate (4b). Following 80 

the general procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 4-

methoxybenzaldehyde (0.31 mL, 2.5 mmol), 4-

(trifluoromethyl)benzenethiol (0.071 mL, 0.5 mmol) and TBHP (0.14 mL, 

1.0 mmol) in H2O (1.5 mL), then purified by column chromatography 

(SiO2, hexane/EtOAc, 100:1) to provide 4b as a white solid (134 mg, 86% 85 

yield). M.p.: 105-106 °C. 1H NMR (600 MHz, CDCl3) δ 3.86 (s, 3 H), 

6.95 (dd, J = 2.4, 7.2 Hz, 2 H), 7.63 (d, J = 7.8 Hz, 2 H), 7.68 (d, J = 8.4 

Hz, 2 H), 7.99 (dd, J = 2.4, 7.2 Hz, 2 H); 13C NMR (150 MHz, CDCl3) δ 

55.5, 114.0, 123.8 (q, J = 270.9 Hz), 125.8, 125.8, 128.8, 129.8, 131.1 (q, 

J = 32.6 Hz), 132.5, 135.2, 164.2, 187.2; 19F NMR (376 MHz, CDCl3) δ -90 

64.3 (s); HRMS-APCI calcd. for C15H12O2F3S[M + H]+: 313.0505, found: 

313.0513. 

 

S-(4-Fluorophenyl) 4-methoxybenzothioate (4c). Following the general 

procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 4-95 

methoxybenzaldehyde (0.31 mL, 2.5 mmol), 4-fluorobenzenethiol (0.054 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 



 

This journal is ©  The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |7 

purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 

provide 4c as a white solid (81 mg, 62% yield). M.p.: 89-90 °C. 1H NMR 

(600 MHz, CDCl3) δ 3.86 (s, 3 H), 6.95 (dd, J = 2.4, 7.2 Hz, 2 H), 7.12-

7.15 (m, 2 H), 7.46-7.48 (m, 2 H), 7.99 (dd, J = 2.4, 7.2 Hz, 2 H); 13C 

NMR (150 MHz, CDCl3) δ 55.5, 113.9, 116.3, 116.4, 122.8, 122.8, 129.0, 5 

129.6, 137.1, 137.2, 162.6, 164.0, 164.3, 188.5; 19F NMR (376 MHz, 

CDCl3) δ -112.9 (s); HRMS-APCI calcd. for C14H12O2FS[M + H]+: 

263.0537, found: 263.0544. 

 

S-(4-Bromophenyl) 4-methoxybenzothioate (4d). Following the general 10 

procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 4-

methoxybenzaldehyde (0.31 mL, 2.5 mmol), 4-bromobenzenethiol (0.099 

g, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 

provide 4d as a white solid (107 mg, 66% yield). M.p.: 103-104 °C. 1H 15 

NMR (400 MHz, CDCl3) δ 3.85 (s, 3 H), 6.94 (d, J = 9.2 Hz, 2 H), 7.35 

(d, J = 8.4 Hz, 2 H), 7.55 (d, J = 8.4 Hz, 2 H), 7.97 (d, J = 8.4 Hz, 2 H); 

13C NMR (100 MHz, CDCl3) δ 55.5, 113.9, 124.0, 126.7, 128.9, 129.7, 

132.2, 136.5, 164.0, 187.7; HRMS-APCI calcd. for C14H12O2BrS[M + H]+: 

322.9736, found: 322.9748. 20 

 

S-(2-Bromophenyl) 4-methoxybenzothioate (4e). Following the general 

procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 4-

methoxybenzaldehyde (0.31 mL, 2.5 mmol), 2-bromobenzenethiol 

(0.062mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), 25 

then purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 

provide 4e as a white solid (120 mg, 74% yield). M.p.: 79-80 °C. 1H 

NMR (400 MHz, CDCl3) δ 3.86 (s, 3 H), 6.95 (dd, J = 2.0, 6.8 Hz, 2 H), 

7.29 (td, J = 1.6, 8.0 Hz, 1 H), 7.37 (td, J = 1.6, 7.6 Hz, 1 H), 7.61 (dd, J 

= 2.0, 7.6 Hz, 1 H), 7.72 (dd, J = 1.6, 8.0 Hz, 1 H), 8.01 (dd, J = 2.0, 6.8 30 

Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 55.5, 113.9, 127.9, 129.0, 129.4, 

129.8, 130.0, 131.1, 133.5, 137.6, 164.1, 186.7; HRMS-APCI calcd. for 

C14H12O2BrS[M + H]+: 322.9736, found: 322.9750. 

 

S-(4-Chlorophenyl) 4-chlorobenzothioate (4f).12 Following the general 35 

procedure for Table 3, using CuCl (2.5 mg, 0.025 mmol), 4-

chlorobenzaldehyde (359 mg, 2.5 mmol), 4-chlorobenzenethiol (74 mg, 

0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified 

by column chromatography (SiO2, hexane) to provide 4f as a white solid 

(72 mg, 51% yield). M.p.: 136-137 °C (lit.12 m.p.: 136-138 °C). 1H NMR 40 

(400 MHz, CDCl3) δ 7.43 (s, 4 H), 7.46 (d, J = 8.4 Hz, 2 H), 7.94 (d, J = 

8.4 Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 125.3, 128.8, 129.1, 129.6, 

134.6, 136.1, 136.2, 140.3, 188.5. 

 

S-(3-(Trifluoromethyl)phenyl) 4-chlorobenzothioate (4g). Following 45 

the general procedure for Table 3, using CuCl (2.5 mg, 0.025 mmol), 4-

chlorobenzaldehyde (359 mg, 2.5 mmol), 3-(trifluoromethyl)benzenethiol 

(0.070mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), 

then purified by column chromatography (SiO2, hexane) to provide 4g as 

a yellow solid (114 mg, 72% yield). M.p.: 51-52 °C. 1H NMR (600 MHz, 50 

CDCl3) δ 7.48 (dt, J = 2.4, 9.0 Hz, 2 H), 7.59 (t, J = 7.8 Hz, 1 H), 7.70 (dd, 

J = 7.8, 13.8 Hz, 2 H), 7.78 (s, 1 H), 7.96 (dt, J = 2.4, 8.4 Hz, 2 H); 13C 

NMR (150 MHz, CDCl3) δ 123.5 (q, J = 271.1 Hz), 126.4 (q, J = 3.6 Hz), 

128.3, 128.8, 128.9, 129.0, 129.1, 129.2, 129.7, 131.7 (q, J = 32.6 Hz), 

131.7 (q, J = 3.9 Hz), 134.4, 138.4, 140.5, 187.9; 19F NMR (376 MHz, 55 

CDCl3) δ -64.2 (s); HRMS-APCI calcd. for C14H9OClF3S[M + H]+: 

317.00092, found: 317.00103. 

 

S-(4-Chlorophenyl) 2-methylbenzothioate (4h). Following the general 

procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 2-60 

methylbenzaldehyde (0.30 mL, 2.5 mmol), 4-chlorobenzenethiol (74 mg, 

0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified 

by column chromatography (SiO2, hexane) to provide 4h as a white solid 

(94 mg, 71% yield). M.p.: 90-91 °C. 1H NMR (400 MHz, CDCl3) δ 2.48 

(s, 3 H), 7.25-7.31 (m, 2 H), 7.40-7.44 (m, 5 H), 7.92 (dd, J = 1.6, 8.0 Hz, 65 

1 H); 13C NMR (100 MHz, CDCl3) δ 20.8, 125.9, 126.6, 128.6, 129.4, 

131.8, 132.2, 135.8, 136.1, 136.2, 137.5, 191.4; HRMS-APCI calcd. for 

C14H12OClS[M + H]+: 263.0292, found: 263.0294. 

 

S-(4-Bromophenyl) 3-methylbenzothioate (4i). Following the general 70 

procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 3-

methylbenzaldehyde (0.30 mL, 2.5 mmol), 4-bromobenzenethiol (99 mg, 

0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified 

by column chromatography (SiO2, hexane) to provide 4i as a yellow solid 

(103 mg, 67% yield). M.p.: 66-67 °C. 1H NMR (400 MHz, CDCl3) δ 2.42 75 

(s, 3 H), 7.34-7.42 (m, 4 H), 7.55-7.58 (m, 2 H), 7.79-7.82 (m, 2 H); 13C 

NMR (100 MHz, CDCl3) δ 21.3, 124.1, 124.7, 126.5, 127.9, 128.6, 132.4, 

134.6, 136.3, 136.5, 138.7, 189.5; HRMS-APCI calcd. for C14H12OBrS[M 

+ H]+: 306.9787, found: 306.9795. 
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S-(3-(Trifluoromethyl)phenyl) 4-methylbenzothioate (4j). Following 

the general procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 4-

methylbenzaldehyde (0.30 mL, 2.5 mmol),3-

(trifluoromethyl)benzenethiol (0.070 mL, 0.5 mmol) and TBHP (0.14 mL, 

1.0 mmol) in H2O (1.5 mL), then purified by column chromatography 85 

(SiO2, hexane) to provide 4j as a yellow solid (134 mg, 90% yield). M.p.: 

62-63 °C. 1H NMR (600 MHz, CDCl3) δ 2.42 (s, 3 H), 7.28 (d, J = 7.8 Hz, 

2 H), 7.56 (t, J = 9.6 Hz, 1 H), 7.69 (d, J = 7.8 Hz, 2 H), 7.78 (s, 1 H), 

7.91 (d, J = 7.8 Hz, 2 H); 13C NMR (150 MHz, CDCl3) δ 21.7, 123.6 (q, 

J= 271.1 Hz), 126.1 (q, J = 3.5 Hz), 127.6, 129.0, 129.3, 129.3, 129.5, 90 

129.7, 131.5 (q, J = 32.4 Hz), 131.7 (q, J = 3.9 Hz), 133.5, 138.5, 145.1, 

188.6; 19F NMR (376 MHz, CDCl3) δ -64.2 (s); HRMS-APCI calcd. for 

C15H12OF3S[M + H]+: 297.0555, found: 297.0563. 

 

S-(4-Chlorophenyl) 4-bromobenzothioate (4k).13 Following the general 95 

procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 4-

bromobenzaldehyde (467 mg, 2.5 mmol), 4-chlorobenzenethiol (74 mg, 

0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified 
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by column chromatography (SiO2, hexane) to provide 4k as a white solid 

(106 mg, 64% yield). M.p.: 144-145 °C (lit.13 m.p.: 145-146 °C). 1H NMR 

(400 MHz, CDCl3) δ 7.42 (s, 4 H), 7.62 (d, J = 8.4 Hz, 2 H), 7.86 (d, J = 

8.4 Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 125.2, 128.9, 128.9, 129.5, 

132.1, 135.0, 136.1, 136.2, 188.7. 5 

 

S-(4-Bromophenyl) 3-cyanobenzothioate (4l). Following the general 

procedure for Table 3, using CuCl (2.5 mg, 0.025 mmol), 3-

formylbenzonitrile (331 mg, 2.5 mmol), 4-bromobenzenethiol (99 mg, 0.5 

mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified by 10 

column chromatography (SiO2, hexane/EtOAc, 100:1) to provide 4l as a 

white solid (108 mg, 68% yield). M.p.: 150-151 °C. 1H NMR (400 MHz, 

CDCl3) δ 7.37 (d, J = 8.4 Hz, 2 H), 7.60-7.67 (m, 3 H), 7.90 (d, J = 7.6 Hz, 

1 H), 8.22 (d, J = 8.0 Hz, 1 H), 8.28 (s, 1 H); 13C NMR (100 MHz, CDCl3) 

δ 113.3, 117.5, 124.7, 125.1, 129.8, 131.0, 131.3, 132.6, 136.3, 136.6, 15 

137.1, 187.8; HRMS-EI calcd. for C14H8BrNOS: 316.9510, found: 

316.9518. 

 

S-p-Tolyl 3-cyanobenzothioate (4m). Following the general procedure 

for Table 3, using CuCl (2.5 mg, 0.025 mmol), 3-formylbenzonitrile (331 20 

mg, 2.5 mmol), 4-methylbenzenethiol (63 mg, 0.5 mmol) and TBHP (0.14 

mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 

chromatography (SiO2, hexane/EtOAc, 100:1) to provide 4m as a white 

solid (65 mg, 51% yield). M.p.: 100-101 °C. 1H NMR (400 MHz, CDCl3) 

δ 2.41 (s, 3 H), 7.28 (d, J = 8.4 Hz, 2 H), 7.38 (d, J = 8.0 Hz, 2 H), 7.62 (t, 25 

J = 8.0 Hz, 1 H), 7.86 (d, J = 7.6 Hz, 1 H), 8.22 (d, J = 8.0 Hz, 1 H), 8.28 

(s, 1 H); 13C NMR (100 MHz, CDCl3) δ 21.3, 113.2, 117.6, 122.4, 129.7, 

130.2, 130.9, 131.3, 134.8, 136.3, 137.4, 140.3, 188.9; HRMS-EI calcd. 

for C15H11NOS: 253.0561, found: 253.0566. 
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S-(4-Methoxyphenyl) 4-(tert-butyl)benzothioate (4n). Following the 

general procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 4-(tert-

butyl)benzaldehyde (0.44 mL, 2.5 mmol),4-methoxylbenzenethiol (0.063 

mL, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane/EtOAc, 100:1) to 35 

provide 4n as a white solid (85 mg, 57% yield). M.p.: 88-89 °C. 1H NMR 

(400 MHz, CDCl3) δ 1.34 (s, 9 H), 3.82 (s, 3 H), 6.97 (d, J = 8.8 Hz, 2 H), 

7.41 (d, J = 9.2 Hz, 2 H), 7.48 (d, J = 8.4 Hz, 2 H), 7.96 (d, J = 8.4 Hz, 2 

H); 13C NMR (100 MHz, CDCl3) δ 31.0, 35.1, 55.3, 114.8, 118.0, 125.6, 

127.3, 133.9, 136.6, 157.3, 160.6, 190.5; HRMS-EI calcd. for C18H20O2S: 40 

300.1184, found: 300.1177. 

 

S-p-Tolyl heptanethioate (4o). Following the general procedure for Table 

3, using CuCl (1.3 mg, 0.0125 mmol), heptaldehyde (0.37 mL, 2.5 

mmol),4-methylbenzenethiol (63 mg, 0.5 mmol) and TBHP (0.14 mL, 1.0 45 

mmol) in H2O (1.5 mL), then purified by column chromatography (SiO2, 

hexane) to provide 4o as a yellow oil (84 mg, 71% yield). 1H NMR (400 

MHz, CDCl3) δ 0.89 (t, J = 6.8 Hz, 3 H), 1.26-1.37 (m, 6 H), 1.67-1.71 

(m, 2 H), 2.35 (s, 3 H), 2.62 (t, J = 7.6 Hz, 2 H), 7.20 (d, J = 8.4 Hz, 2 H), 

7.28 (dd, J = 2.0, 6.4 Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 13.9, 21.2, 50 

22.4, 25.5, 28.5, 31.4, 43.5, 124.3, 129.9, 134.3, 139.4, 197.9; HRMS-

APCI calcd. for C14H21OS [M + H]+: 237.1308, found: 237.1313. 

 

S-o-Tolyl heptanethioate (4p). Following the general procedure for 

Table 3, using CuCl (1.3 mg, 0.0125 mmol), heptaldehyde (0.37 mL, 2.5 55 

mmol), 2-methylbenzenethiol (0.06 mL, 0.5 mmol) and TBHP (0.14 mL, 

1.0 mmol) in H2O (1.5 mL), then purified by column chromatography 

(SiO2, hexane) to provide 4p as a yellow oil (85 mg, 72% yield). 1H NMR 

(400 MHz, CDCl3) δ 0.89 (t, J = 6.8 Hz, 3 H), 1.26-1.40 (m, 6 H), 1.67-

1.74 (m, 2 H), 2.33 (s, 3 H), 2.64 (t, J = 7.4 Hz, 2 H), 7.17-7.21 (m, 1 H), 60 

7.28-7.30 (m, 2 H), 7.38 (d, J = 8.0 Hz, 1 H); 13C NMR (100 MHz, CDCl3) 

δ 13.9, 20.6, 22.4, 25.6, 28.5, 31,4, 43.6, 126.4, 127.3, 129.9, 130.6, 135.8, 

141.8, 197.1; HRMS-EI calcd. for C14H20OS: 236.1235, found: 236.1239. 

 

S-(4-Chlorophenyl) heptanethioate (4q). Following the general 65 

procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), heptaldehyde 

(0.37 mL, 2.5 mmol), 4-chlorobenzenethiol (74 mg, 0.5 mmol) and TBHP 

(0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified by column 

chromatography (SiO2, hexane) to provide 4q as a colorless oil (87 mg, 

67% yield). 1H NMR (400 MHz, CDCl3) δ 0.89 (t, J = 6.2 Hz, 3 H), 1.26-70 

1.38 (m, 6 H), 1.68-1.72 (m, 2 H), 2.65 (t, J = 7.6 Hz, 2 H), 7.32 (d, J = 

8.0 Hz, 2 H), 7.28 (d, J = 7.6 Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 

14.0, 22.4, 25.5, 28.6, 31.4, 43.7, 126.3, 129.4, 135.7, 197.0; HRMS-EI 

calcd. for C13H17ClOS: 256.0689, found: 256.0688. 
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Methyl 4-((p-tolylthio)carbonyl)benzoate (4r). Following the general 

procedure for Table 3, using CuCl (2.5 mg, 0.025 mmol), methyl 4-

formylbenzoate (415 mg, 2.5 mmol), 4-methylbenzenethiol (63 mg, 0.5 

mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then purified by 

column chromatography (SiO2, hexane/EtOAc, 100:1) to provide 4r as a 80 

white solid (45 mg, 32% yield). M.p.: 113-114 °C. 1H NMR (400 MHz, 

CDCl3)δ 2.41 (s, 3 H), 3.95 (s, 3 H), 7.28 (d, J = 8.0 Hz, 2 H), 7.39 (d, J = 

8.0 Hz, 2 H), 8.06 (d, J = 8.4 Hz, 2 H), 8.14 (d, J = 8.4 Hz, 2 H); 13C 

NMR (100 MHz, CDCl3) δ 21.3, 52.5, 123.1, 127.3, 129.9, 130.2, 134.2, 

134.8, 139.9, 140.0, 166.0, 190.1; HRMS-EI calcd. for C16H14O3S: 85 

286.0664, found: 286.0667. 

 

S-p-Tolyl thiophene-2-carbothioate (4s). Following the general 

procedure for Table 3, using CuCl (1.3 mg, 0.0125 mmol), 2-

thiophenecarboxaldehyde (0.24 mL, 2.5 mmol), 4-methylbenzenethiol (63 90 

mg, 0.5 mmol) and TBHP (0.14 mL, 1.0 mmol) in H2O (1.5 mL), then 

purified by column chromatography (SiO2, hexane) to provide 4s as a 

yellow oil (37 mg, 31% yield). 1H NMR (400 MHz, CDCl3) δ 2.39 (s, 3 

H), 7.14 (t, J = 4.4 Hz, 1 H), 7.25 (d, J = 8.0 Hz, 2 H), 7.40 (d, J = 8.0 Hz, 

2 H), 7.64 (d, J = 4.8 Hz, 1 H), 7.89 (d, J = 3.6 Hz, 1 H); 13C NMR (100 95 

MHz, CDCl3) δ 21.3, 123.3, 127.9, 130.1, 131.5, 133.1, 135.0, 139.9, 

141.4, 182.5; HRMS-EI calcd. for C12H10OS2: 234.0173, found: 234.0165. 
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