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A general procedure for the syntheses of aryl thioethers and aryl 

selenides in one-pot through the sequential iridium-catalyzed meta 

C-H borylation and copper-promoted C-S and C-Se bond 

formations in one-pot is described. Functional groups including 

chloro, nitro, fluoro, trifluoromethyl and nitrogen-containing  

heterocycles are all tolerated by the described reaction 

conditions. Importantly, not only aryl thiols and selenides but 

also alkyl analogs are all suitable coupling partners, giving the 

products with high meta-regioselectivity and good yields. 

Introduction 

Transition-metal-catalyzed direct C-H functionalization is an 

important strategy for constructing C-C,[1] C-N,[2] and other C-

heteroatom bonds[3] from the atom economy point of view.[4] Many 

elegant studies have reported the synthesis of a C-C bond through 

C-H activation. Aryl thioethers are important skeletons found in 

biology,[5] and many methods have been achieved for preparing such 

molecules,[6-12] Among the reactions leading to carbon-heteroatom 

bond formation, investigation of C-S bond formation through C-H 

activation is less studied.[13-17] 2-Phenylpyridine has been reported to 

couple with thiophenols and methyl disulfide in the presence of 

copper catalyst to provide the products with high ortho selectivity.[13] 

Dong et al. demonstrated the palladium-catalyzed ortho-

sulfonylation of 2-phenylpyridine with ArSO2Cl.[14] Although a 

highly regioselective for ortho-C-S bond formation has achieved by 

these two protocols, pyridine is required as a directing group for this 

transformation. Recently, Cheng et al. reported the copper-catalyzed 

direct C-H thioetherification of arenes; however, the starting 

material is limited to very electron-rich arenes such as 1,3,5-

trimethoxybenzene and 1,2,4-trimethoxybenzene, resulting in the 

corresponding aryl thioethers in low to moderate yields.[15] Very 

recently, Beller et al. reported the palladium-catalyzed coupling of 

arylsulfonyl cyanides with simple arenes, giving the diaryl 

thioethers in moderate yields.[16] However, some drawbacks remain 

with this system and need to be addressed. First, this system 

employs trifluoroacetic acid as a solvent and acid sensitive 

functional groups may not survive under these conditions. Second, 

the mixtures of ortho- and para-arythiolated products were observed 

in most cases. Third, the substrates are limited to electron-rich 

arenes. Notably, the above-mentioned protocols prefer the ortho and 

para rather than meta C-S formation. In 2011, Frost reported the  
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first meta sulfonation of 2-phenylpyridines with sulfonyl chlorides 

through ruthenium catalysis. However, this catalytic system again 

requires pyridine as a directing group.[17] Recently, we 

communicated the one-pot meta C-H thioetherification of simple 

arenes in the absence of a directing group through iridium-catalyzed 

C-H borylation[18] followed by copper-catalyzed C-S bond 

formation.[19] Although good results are obtained by the reactions of 

aryl disulfides, the alkyl disulfides are not suitable as the coupling 

partners for the synthesis of aryl alkyl thioethers under these 

reaction conditions.[19] Therefore, it is necessary to develop a 

general method to overcome this difficulty. Here we report that the 

combination of Cu(OAc)2 and pyridine could be applied to promote 

the step of C-S and C-Se cross-coupling reactions. Thus, the aryl 

alkyl thioethers and selenides could be prepared through the 

sequential iridium-catalyzed meta C-H borylation and copper-

promoted C-S and C-Se bond formations in one-pot. 

Results and Discussion 

Initially, 3,5-dimethylphenyl boronic ester and 1-

dodecanethiol were chosen as substrates to examine in order to 

determine the optimal reaction conditions. When the reaction was 

carried out by using DMF as a solvent in the presence of Cu(OAc)2 

and three equiv of pyridine at 155 oC for 3 h[20] only trace amounts 

of product was detected by GC-MS (Table 1, entry 1). The product 

yield was raised to 45% when the reaction time was extended to 24 

h (Table 1, entry 2). A better result was obtained when the reaction 

was performed without molecular sieves (Table 1, entry 3). To our 

surprise, a 91% yield was achieved for 24 h at 120 oC (Table 1, 

entry 4). However, only 27% of product was formed at 110 oC 

(Table 1, entry 5).  

With the optimized reaction conditions for copper-promoted 

C-S bond formation in hand; we then examined the scope of the 

tandem iridium-catalyzed borylation and copper-promoted C-S bond 

coupling reaction through one-pot procedure. 1,3-Disubstituted 

arenes are reacted smoothly with B2Pin2 in the presence of an 

iridium catalyst to afford the arylboronates. After removing the 

volatile residues by vacuum, the resulting arylboronates were 
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conducted with alkyl thiols including dodecanethiol (Table 2, entries 

1, 3, 6, 9 and 14), 2-methy-1-butanethiol (Table 2, entries 2, 4, 7, 10, 

12 and 15), cyclohexanethiol (Table 2, entries 5, 11 and 13), benzyl 

mercaptan (Table 2, entry 8) in the presence of Cu(OAc)2, giving 

the corresponding aryl alkyl thioethers in moderate to good yields 

(Table 2, entries 1-15). Meanwhile, this methodology is also 

applicable to the formation of diaryl thioethers (Table 2, entries 16-

26). Functional groups including chloro (Table 2, entries 3-5, 9-13, 

18-26), trifluoromethyl (Table 2, entries 6-8, 16 and 17), pyridine 

(Table 2, entries 14 and 15), fluoro (Table 2, entry 25) and nitro 

(Table 2, entry 26) are all tolerated by the reaction conditions 

employed. 

 

Table 1. Optimization of the Reaction Conditions.[a]  

 

Entry                    Solvent Temp. (C) Time (h) Yield(%)[b] 

1 DMF 155 3 trace[c] 

2 DMF 155 24 45[c] 

3 DMF 155 24 53 

4 DMF 120 24 91 

5 DMF 110 24 27 
 
[a] Reaction conditions: Cu(OAc)2 (0.75 mmol), pyridine (1.5 mmol), 3,5-
dimethylphenyl boronic ester (1 mmol) and 1-dodecanethiol (0.5 mmol) in 
2 mL DMF under argon atmosphere. [b] Isolated yield. [c] 3 Å  molecular 
sieves were added.  

 

Table 2. Tandem Iridium-Catalyzed Borylation and Copper-Promoted C-S 

Bond Formation.[a] 

 

Entry 1 3 
Yield 
(%) 

1 

  

66[b] 

2  

 

67[b] 

3 

  

78 

4  

 

82 

5  

 

80 

6 

  

59[c] 

7  

 

53[c] 

8  

 

47[c] 

9 

  

90 

10  

 

76 

11  

 

71 

12 

  

57 

13  

 

52 
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53[d] 

15  

 

72[d] 

16  

 

55[c,e] 

17  

 

55[c,e] 

18 

  

62[e] 

19  

 

56[e] 

20  

 

60[e] 

21  

 

67[e] 

22  

 

56[e] 

23  

 

65[e] 

24  

 

71[e] 

25  

 

51[e] 

26  

 

46[e] 

[a] Reaction conditions unless otherwise stated: arene (1.0 mmol), 
[Ir(cod)OMe]2 (0.0015 mol, 0.15 mol-%), dtbpy (0.003 mmol, 0.3 mol-%) in 
1.5 mL THF for the first step; Cu(OAc)2 (0.75 mmol, 1.5 equiv), pyridine 
(1.5 mmol, 3 equiv), thiol (0.5 mmol) in 2 mL under argon atmosphere for 
the second step. [b] Borylation with 1.5 mol-% [Ir(cod)OMe]2 and 3.0 mol-
% dtbpy. [c] Borylation with 0.1 mol-% [Ir(cod)OMe]2 and 0.2 mol-% dtbpy. 
[d] Borylation with 3.0 mol-% [Ir(cod)OMe]2 and 6.0 mol-% dtbpy. [e] 135 
oC. 

In order to explore the scope of this method to the synthesis of 

aryl selenides, we then investigated diaryl diselendies as the 

coupling partners. The results are summarized in Table 3. Aryl alkyl 

selenides (Table 3, entries 1-5) and diaryl selenides (Table 3, entries 

6-10) are formed with moderate to good yields. The functional 

groups such as chloro (Table 3, entries 1, 3, 4, 6, 8 and 9), 

trifluoromethyl (Table 3, entries 2 and 7) and pyridine (Table 3, 

entries 5 and 10) are also tolerated by these reaction conditions. 

Table 3. Synthesis of Aryl Alkyl- and Diaryl Selenides Through Tandem 
Iridium-Catalyzed Borylation and Copper-Promoted C-Se Bond Formation.[a] 

 
 

Entry 1 4 
Yield 

(%) 

1  

 

61 

2  

 

52[b] 

3  

 

64 

4  

 

52 

5  

 

53[c] 
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6  

 

65 

7  

 

63[b] 

8  

 

66 

9  

 

75 

10  

 

66[c] 

 
[a] Reaction conditions unless otherwise stated: arene (1.0 mmol), 
[Ir(cod)OMe]2 (0.0015 mol, 0.15 mol-%), dtbpy (0.003 mmol, 0.3 mol-%) in 
1.5 mL THF for the first step; Cu(OAc)2 (0.75 mmol, 1.25 equiv), pyridine 
(1.5 mmol, 2.5 equiv), diselenide (0.6 mmol) in 2 mL under argon 
atmosphere for the second step. [b] Borylation with 0.1 mol-% 
[Ir(cod)OMe]2 and 0.2 mol-% dtbpy. [c]  Borylation with 3.0 mol-% 
[Ir(cod)OMe]2 and 6.0 mol-% dtbpy. 

Conclusions 

In conclusion, we have reported a general and convenient 

procedure for the syntheses of aryl alkyl- and diaryl thioethers and 

selenides through iridium-catalyzed meta borylation followed by 

copper-promoted C-S and C-Se bond cross-coupling reactions from 

simple arenes in one-pot. Functional groups including chloro, 

trifluoromethyl, pyridine, fluoro and nitro are all tolerated by the 

reaction conditions employed. Screening the biological activities of 

these molecules is under progress in our laboratory.  

Experimental Section 

General information: All chemicals were purchased from commercial 

suppliers and used without further purification. DMF was dried over CaH2 

and stored in the presence of activated molecular sieves. All reactions were 
carried out under an inert atmosphere. Flash chromatography was performed 

on silica gel 60 (230-400 mesh). 

Analysis: NMR spectra were recorded using CDCl3 as solvent. Chemical 
shifts are reported in parts per million (ppm) and referenced to the residual 

solvent resonance. Coupling constant (J) are reported in hertz (Hz). Standard 

abbreviations indicating multiplicity were used as follows: s = singlet, d = 
doublet, t = triplet, dd = double doublet, q = quartet, m = multiplet, b = broad. 

Melting points (m.p.) were determined using an apparatus and are reported 

uncorrected. High resolution mass spectra (HRMS) were performed on an 
electron ionization time-of-flight (EI-TOF) mass spectrometer. 

General procedure for Table 1: A Schlenk tube equipped with a magnetic 

stirrer bar was charged with 3,5-dimethylphenyl boronic ester (1.0 mmol), 

copper salt (0.75 mmol), thiol (0.5 mmole) in a nitrogen-filled glove box. 

The Schlenk tube was then covered with a rubber septum and removed from 

the glove box. Under an argon atmosphere, solvent (2.0 mL) was added via 

syringe, and the Schlenk tube was connected to an argon-filled balloon and 
heated at 120 °C in an oil bath. After stirring at this temperature for 24 h, the 

heterogeneous mixture was cooled to room temperature and diluted with 

ethyl acetate (20 mL). The resulting solution was directly filtered through a 
pad of silica gel then washed with ethyl acetate (20 mL) and concentrated to 

give the crude material which was then purified by column chromatography 

(SiO2, hexane) to yield 3a. 

Representative example of Table 1: 3,5-Dimethylphenyl dodecyl sulfide 

3a (Table 1, entry 4): Following the general procedure for Table 1, using 

Cu(OAc)2 (0.136 g, 0.75 mmol) and 1-dodecanethiol (0.123 mL, 0.5 mmol) 
in DMF (2.0 mL), then purified by column chromatography (SiO2, hexane) 

to provide 3a as a colorless oil (0.139 g, 91% yield). 1H NMR (400 MHz, 

CDCl3): 0.88 (t, J = 6.6 Hz, 3 H), 1.26-1.43 (m, 18 H), 1.60-1.67 (m, J = 
7.5 Hz, 2 H), 2.28 (s, 6 H), 2.89 (t, J = 7.4 Hz, 2 H), 6.78 (s, 1 H), 6.94 (s, 2 

H) ppm. 13C NMR (100 MHz, CDCl3): 14.1, 21.2, 22.7, 28.8, 29.1, 29.3, 

29.5, 29.6, 29.6, 29.6, 31.9, 33.5, 126.4, 127.5, 136.5, 138.3 ppm. HREI-MS 
calcd. for C20H34S: 306.2381, found: 306.2391. 

General procedure for Table 2: A Schlenk tube equipped with a magnetic 

stirrer bar was charged with [Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 mmol), 4,4′-
di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol) and B2pin2 (0.189 g, 0.73 

mmol) in a nitrogen-filled glove box. The Schlenk tube was then covered 

with a rubber septum and removed from the glove box. Under a nitrogen 
atmosphere, arene (1.0 mmol) and THF (1.5 mL) were added via syringe, 

and the Schlenk tube was heated at 80 °C in an oil bath. After stirring at this 

temperature for 24 h, the heterogeneous mixture was cooled to room 
temperature, after removed the volatile components under vacuum. This 

Schlenk tube was returned to the glove box, Cu(OAc)2 (0.136 g, 0.75 mmol) 

was added, the Schlenk tube was then covered with a rubber septum and 
removed from the glove box. Under an argon atmosphere, thiol (0.5 mmol), 

pyridine (0.123 mL, 1.5 mmol) and DMF (2.0 mL) were added via syringe, 

and the Schlenk tube was connected to an argon-filled balloon and heated at 
120 °C in an oil bath. After stirring at this temperature for 24 h, the 

heterogeneous mixture was cooled to room temperature and diluted with 

ethyl acetate (20 mL). The resulting solution was directly filtered through a 
pad of silica gel then washed with ethyl acetate (20 mL) and concentrated to 

give the crude material which was then purified by column chromatography 

(SiO2, hexane) to yield 3. 

3,5-Dimethylphenyl dodecyl sulfide 3a (Table 2, entry 1): Following the 

general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (9.9 mg, 0.015 

mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (8.2 mg, 0.03 mmol), B2pin2 (0.189 g, 
0.73 mmol) and 1,3-dimethylbenzene (0.125 mL, 1.0 mmol) in THF (1.5 mL) 

for the first step. After removed the volatile components under vacuum, 

Cu(OAc)2 (0.1362 g, 0.75 mmol), 1-dodecanethiol (0.123 mL, 0.5 mmol), 
pyridine (0.123 mL, 1.5 mmol) and DMF (2.0 mL) were used, then purified 

by column chromatography (SiO2, hexane) to provide 3a as a colorless oil 

(0.101 g, 66% yield). 1H NMR (400 MHz, CDCl3): 0.88 (t, J = 6.6 Hz, 3 
H), 1.26-1.43 (m, 18 H), 1.60-1.67 (m, J = 7.5 Hz, 2 H), 2.28 (s, 6 H), 2.89 (t, 

J = 7.4 Hz, 2 H), 6.78 (s, 1 H), 6.94 (s, 2 H) ppm. 13C NMR (100 MHz, 

CDCl3): 14.1, 21.2, 22.7, 28.8, 29.1, 29.3, 29.5, 29.6, 29.6, 29.6, 31.9, 33.5, 
126.4, 127.5, 136.5, 138.3 ppm. HREI-MS calcd. for C20H34S: 306.2381, 

found: 306.2391. 

3,5-Dimethylphenyl 2-methyl-1-butyl sulfide 3b (Table 2, entry 2): 
Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (9.9 

mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (8.2 mg, 0.03 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 1,3-dimethylbenzene (0.125 mL, 1.0 mmol) 
in THF (1.5 mL) for the first step. After removed the volatile components 

under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 2-methyl-1-butanethiol 
(0.065 mL, 0.5 mmol), DMF (2.0 mL) were used, then purified by column 

chromatography (SiO2, hexane) to provide 3b as a colorless oil (0.070 g, 

67% yield). 1H NMR (400 MHz, CDCl3): 0.91 (t, J = 7.4 Hz, 3 H), 1.02 
(d, J = 6.8 Hz, 3 H), 1.23-1.30 (m, 1 H), 1.50-1.57 (m, 1 H), 1.63-1.68 (m, 1 

H), 2.27 (s, 6 H), 2.73 (dd, J = 7.2, 12.4 Hz, 1 H), 2.93 (dd, J = 5.8, 12.2 Hz, 

1 H), 6.78 (s, 1 H), 6.94 (s, 2 H) ppm. 13C NMR (100 MHz, CDCl3): 11.2, 
19.0, 21.2, 28.8, 34.5, 40.6, 126.3, 127.4, 137.0, 138.3 ppm. HREI-MS calcd. 

for C13H20S: 208.1286, found: 208.1288. 

http://tw.wrs.yahoo.com/_ylt=A3eg.8sObodPjB8A0VfhbB4J/SIG=12cqrn7n6/EXP=1334304398/**http%3a/tw.dictionary.yahoo.com/dictionary%3fp=components
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3-Chloro-5-methylphenyl dodecyl sulfide 3c (Table 2, entry 3): Following 

the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 

mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), B2pin2 (0.189 

g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in THF (1.5 mL) 

for the first step. After removed the volatile components under vacuum, 

Cu(OAc)2 (0.136 g, 0.75 mmol), 1-dodecanethiol (0.123 mL, 0.5 mmol), 
DMF (2.0 mL) were used, then purified by column chromatography (SiO2, 

hexane) to provide 3c as a colorless oil (0.128 g, 78% yield). 1H NMR (400 

MHz, CDCl3): 0.88 (t, J = 6.8 Hz, 3 H), 1.26-1.43 (m, 18 H), 1.60-1.67 
(m, J = 7.3 Hz, 2 H), 2.28 (s, 3 H), 2.89 (t, J = 7.2 Hz, 2 H), 6.94 (s, 1 H), 

6.97 (s, 1 H), 7.07 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): 14.1, 21.1, 

22.7, 28.8, 28.9, 29.1, 29.3, 29.5, 29.6, 29.6, 29.6, 31.9, 33.2, 124.8, 126.3, 
127.1, 134.3, 138.9, 140.0 ppm. HREI-MS calcd. for C19H31ClS: 326.1835, 

found: 326.1843. 

3-Chloro-5-methylphenyl 2-methyl-1-butyl sulfide 3d (Table 2, entry 4): 

Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in 
THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 2-methyl-1-butanethiol (0.065 mL, 

0.5 mmol), DMF (2.0 mL) were used, then purified by column 
chromatography (SiO2, hexane) to provide 3d as a colorless oil (0.094 g, 

82% yield). 1H NMR (400 MHz, CDCl3): 0.91 (t, J = 7.4 Hz, 3 H), 1.02 

(d, J = 6.8 Hz, 3 H), 1.24-1.31 (m, 1 H), 1.49-1.56 (m, 1 H), 1.64-1.69 (m, 1 
H), 2.28 (s, 3 H), 2.73 (dd, J = 7.6, 12.4 Hz, 1 H), 2.92 (dd, J = 6.0, 12.4 Hz, 

1 H), 6.93 (s, 1 H), 6.98 (s, 1 H), 7.07 (s, 1 H) ppm. 13C NMR (100 MHz, 

CDCl3): 11.2, 18.9, 21.1, 28.8, 34.4, 40.2, 124.8, 126.2, 127.1, 134.2, 
139.4, 135.0 ppm. HREI-MS calcd. for C12H17ClS: 228.0739, found: 

228.0735. 

3-Chloro-5-methylphenyl cyclohexyl sulfide 3e (Table 2, entry 5): 

Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in 
THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), cyclohexanethiol (0.065 mL, 0.5 

mmol), DMF (2.0 mL) were used, then purified by column chromatography 
(SiO2, hexane) to provide 3e as a colorless oil (0.096 g, 80% yield). 1H NMR 

(400 MHz, CDCl3):1.24-1.38 (m, 5 H), 1.60-1.63 (m, 1 H), 1.76-1.79 (m, 

2 H), 1.96-1.99 (m, 2 H), 2.29 (s, 3 H), 3.09-3.14 (m, 1 H), 6.99 (s, 1 H), 

7.06 (s, 1 H), 7.16 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): 21.1, 25.7, 

25.9, 33.2, 46.4, 127.3, 127.8, 130.1, 134.1, 137.0, 140.0 ppm. HREI-MS 

calcd. for C13H17ClS: 240.0739, found: 240.0737. 

3,5-Bis(trifluoromethyl)phenyl dodecyl sulfide 3f (Table 2, entry 6): 
Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (0.7 

mg, 0.001 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.5 mg, 0.002 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 1,3-bis(trifluoromethyl)benzene (0.160 mL, 

1.0 mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 1-dodecanethiol 
(0.123 mL, 0.5 mmol), DMF (2.0 mL) were used, then purified by column 

chromatography (SiO2, hexane) to provide 3f as a colorless oil (0.1224 g, 

59% yield). 1H NMR (600 MHz, CDCl3):0.88 (t, J = 6.9 Hz, 3 H), 1.26-
1.48 (m, 18 H), 1.67-1.72 (m, 2 H), 3.00 (t, J = 7.2 Hz, 2 H), 7.61 (s, 1 H), 

7.65 (s, 2 H) ppm. 13C NMR (125 MHz, CDCl3):14.1, 22.7, 28.5, 28.8, 

29.1, 29.3, 29.4, 29.5, 29.6, 31.9, 32.8, 118.7, 123.1 (q, J = 226.0 Hz), 127.1, 

132.0 (q, J = 27.5 Hz), 141.4 ppm. 19F NMR (376 MHz, CDCl3):-64.7 (s) 

ppm. HREI-MS calcd. for C20H28F6S: 414.1816, found: 414.1812. 

3,5-Bis(trifluoromethyl)phenyl 2-methyl-l-butyl sulfide 3g (Table 2, 

entry 7): Following the general procedure for Table 2, using 

[Ir(OCH3)(C8H12)]2 (0.7 mg, 0.001 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl 

(0.5 mg, 0.002 mmol), B2pin2 (0.189 g, 0.73 mmol) and 1,3-
bis(trifluoromethyl)benzene (0.160 mL, 1.0 mmol) in THF (1.5 mL) for the 

first step. After removed the volatile components under vacuum, Cu(OAc)2 

(0.136 g, 0.75 mmol), 2-methyl-1-butanethiol (0.065 mL, 0.5 mmol), DMF 
(2.0 mL) were used, then purified by column chromatography (SiO2, hexane) 

to provide 3g as a colorless oil (0.083 g, 53% yield). 1H NMR (600 MHz, 

CDCl3):0.95 (t, J = 7.5 Hz, 3 H), 1.06 (d, J = 6.6 Hz, 3 H), 1.31-1.35 (m, 
1 H), 1.53-1.57 (m, 1 H), 1.70-1.73 (m, 1 H), 2.83 (dd, J = 7.8, 12.6 Hz, 1 H), 

3.04 (dd, J = 5.7, 12.3 Hz, 1 H), 7.60 (s, 1 H), 7.66 (s, 2 H) ppm. 13C NMR 

(125 MHz, CDCl3):11.2, 19.0, 28.8, 34.3, 39.7, 118.6, 123.1 (q, J = 
226.0 Hz), 127.0, 132.0 (q, J = 27.7 Hz), 141.8 ppm. 19F NMR (376 MHz, 

CDCl3):-64.7 (s) ppm. HREI-MS calcd. for C13H14F6S: 316.0720, found: 

316.0725. 

3,5-Bis(trifluoromethyl)phenyl benzyl sulfide 3h (Table 2, entry 8): 
Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (0.7 

mg, 0.001 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.5 mg, 0.002 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 1,3-bis(trifluoromethyl)benzene (0.160 mL, 
1.0 mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 

phenylmethanethiol (0.060 mL, 0.5 mmol), DMF (2.0 mL) were used, then 
purified by column chromatography (SiO2, hexane) to provide 3h as a 

colorless oil (0.079 g, 47% yield). 1H NMR (600 MHz, CDCl3):4.19 (s, 2 

H), 7.27-2.31 (m, 5 H), 7.63-7.64 (m, 3 H) ppm. 13C NMR (125 MHz, 

CDCl3):38.3, 119.6, 119.6, 119.6, 123.0 (q, J = 226.3 Hz), 127.8, 128.6, 

128.8, 128.8, 131.9 (q, J = 27.6 Hz),135.6, 140.1 ppm. 19F NMR (376 MHz, 

CDCl3):-64.6 (s) ppm. HREI-MS calcd. for C15H10F6S: 336.0407, found: 
336.0414. 

3-Chloro-5-methoxyphenyl dodecyl sulfide 3i (Table 2, entry 9): 

Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 
mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 3-chloroanisole (0.125 mL, 1.0 mmol) in 

THF (1.5 mL) for the first step. After removed the volatile components under 
vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 1-dodecanethiol (0.123 mL, 0.5 

mmol), DMF (2.0 mL) were used, then purified by column chromatography 

(SiO2, hexane) to provide 3i as a colorless oil (0.154 g, 90% yield). 1H NMR 

(400 MHz, CDCl3):0.88 (t, J = 6.8 Hz, 3 H), 1.25-1.44 (m, 18 H), 1.57-

1.67 (m, 2 H), 2.90 (t, J = 7.4 Hz, 2 H), 3.77 (s, 3 H), 6.67 (t, J = 2.0 Hz, 1 

H), 6.71 (t, J = 2.0 Hz, 1 H), 6.85 (t, J = 1.6 Hz, 1 H) ppm. 13C NMR (100 

MHz, CDCl3): 14.1, 22.7, 28.8, 28.8, 29.1, 29.3, 29.5, 29.6, 29.6, 29.6, 

31.9, 33.0, 111.4, 112.1, 119.9, 135.0, 140.2, 160.2 ppm. HREI-MS calcd. 

for C19H31ClOS: 342.1784, found: 342.1780. 

3-Chloro-5-methoxyphenyl 2-methyl-1-butyl sulfide 3j (Table 2, entry 

10): Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 

(1.0 mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 
mmol), B2pin2 (0.189 g, 0.73 mmol) and 3-chloroanisole (0.125 mL, 1.0 

mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 2-methyl-1-
butanethiol (0.065 mL, 0.5 mmol), DMF (2.0 mL) were used, then purified 

by column chromatography (SiO2, hexane) to provide 3j as a colorless oil 

(0.093 g, 76% yield). 1H NMR (400 MHz, CDCl3):0.91 (t, J = 7.4 Hz, 3 
H), 1.02 (d, J = 6.8 Hz, 3 H), 1.23-1.31 (m, 1 H), 1.49-1.57 (m, 1 H), 1.64-

1.70 (m, 1 H), 2.73 (dd, J = 7.2, 12.4 Hz, 1 H), 2.93 (dd, J = 6.0, 12.4 Hz, 1 

H), 3.77 (s, 3 H), 6.66 (t, J = 2.0 Hz, 1 H), 6.71 (t, J = 1.0 Hz, 1 H), 6.85 (t, J 

= 1.8 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3):11.2, 18.9, 28.8 34.4, 

40.0, 55.5, 111.3, 112.0, 119.9, 135.0, 140.6, 160.2 ppm. HREI-MS calcd. 

for C12H17ClOS: 244.0689, found: 244.0684. 

3-Chloro-5-methoxyphenyl cyclohexyl sulfide 3k (Table 2, entry 11): 
Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 3-chloroanisole (0.125 mL, 1.0 mmol) in 

THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), cyclohexanethiol (0.065 mL, 0.5 
mmol), DMF (2.0 mL) were used, then purified by column chromatography 

(SiO2, hexane) to provide 3k as a colorless oil (0.091 g, 71% yield). 1H NMR 

(400 MHz, CDCl3): 1.23-1.25 (m, 5 H), 1.60-1.64 (m, 1 H), 1.76-1.79 (m, 
2 H), 1.98-2.01 (m, 2 H), 3.13-3.17 (m, 1 H), 3.77 (s, 3 H), 6.72 (t, J = 2.0 

Hz, 1 H), 6.79 (t, J = 1.8 Hz, 1 H), 6.94 (t, J = 1.6 Hz, 1 H) ppm. 13C NMR 

(100 MHz, CDCl3):25.6, 25.9, 33.1, 46.2, 55.5, 112.2, 114.8, 122.6, 

134.8, 138.3, 160.1 ppmHREI-MS salcd. for C13H17ClOS: 256.0689, found: 

256.0681. 

3,5-Dichlorophenyl 2-methyl-1-butyl sulfide 3l (Table 2, entry 12): 
Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 1,3-dichlorobenzene (0.115 mL, 1.0 mmol) 
in THF (1.5 mL) for the first step. After removed the volatile components 

under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 2-methyl-1-butanethiol 

(0.065 mL, 0.5 mmol), DMF (2.0 mL) were used, then purified by column 
chromatography (SiO2, hexane) to provide 3l as a colorless oil (0.071 g, 57% 

yield). 1H NMR (400 MHz, CDCl3):0.92 (t, J = 7.4 Hz, 3 H), 1.01 (d, J = 
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4.4 Hz, 3 H), 1.24-1.32 (m, 1 H), 1.47-1.56 (m, 1 H), 1.63-1.70 (m, 1 H), 

2.74 (dd, J = 7.6, 12.4 Hz, 1 H), 2.93 (dd, J = 5.8, 12.4 Hz, 1 H), 7.09-7.13 

(m, 3 H) ppm. 13C NMR (100 MHz, CDCl3):11.2, 18.9, 28.8, 34.3, 40.0, 

125.2, 125.6, 135.1, 141.7 ppm. HREI-MS salcd. for C11H14Cl2S: 248.0193, 

found: 248.0186. 

3,5-Dichlorophenyl cyclohexyl sulfide 3m (Table 2, entry 13): Following 
the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 

mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), B2pin2 (0.189 

g, 0.73 mmol) and 1,3-dichlorobenzene (0.115 mL, 1.0 mmol) in THF (1.5 
mL) for the first step. After removed the volatile components under vacuum, 

Cu(OAc)2 (0.136 g, 0.75 mmol), cyclohexanethiol (0.065 mL, 0.5 mmol), 

DMF (2.0 mL) were used, then purified by column chromatography (SiO2, 
hexane) to provide 3m as a colorless oil (0.068 g, 52% yield). 1H NMR (400 

MHz, CDCl3): 1.20-1.43 (m, 5 H), 1.59-1.64 (m, 1 H), 1.74-1.86 (m, 2 

H), 1.92-2.04 (m, 2 H), 3.10-3.22 (m, 1 H), 7.17 (t, J = 2.0 Hz, 1 H), 7.21 (d, 

J = 2.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3):25.6, 25.9, 33.1, 

46.3, 126.3, 128.4, 134.9, 139.4 ppm. HREI-MS salcd. for C12H14Cl2S: 

260.0193, found: 260.0190. 

2,6-Di-tert-butyl-4-pyridyl dodecyl sulfide 3n (Table 2, entry 14): 
Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (19.9 

mg, 0.03 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (16.4 mg, 0.06 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 2,6-di-tert-butylpyridine (0.232 mL, 1.0 

mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.1362 g, 0.75 mmol), 1-
dodecanethiol (0.123 mL, 0.5 mmol), DMF (2.0 mL) were used, then 

purified by column chromatography (SiO2, hexane) to provide 3n as a 

colorless oil (0.103 g, 53% yield). 1H NMR (400 MHz, CDCl3): 0.87 (t, J 
= 6.0 Hz, 3 H), 1.26-1.32 (m, 34 H), 1.42-1.47 (m, 2 H), 1.69-1.72 (m, 2 H), 

2.95 (t, J = 7.2 Hz, 2 H), 6.93 (s, 2 H) ppm. 13C NMR (100 MHz, 

CDCl3):14.1, 22.7, 28.8, 29.0, 29.2, 29.3, 29.5, 29.6, 29.6, 30.0, 30.8, 
31.9, 37.6, 112.7, 148.1, 167.4 ppm. HREI-MS salcd. for C25H45NS: 

391.3273, found: 391.3279. 

2,6-Di-tert-butyl-4-pyridyl 2-methyl-1-butyl sulfide 3o (Table 2, entry 

15): Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 

(19.9 mg, 0.03 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (16.4 mg, 0.06 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 2,6-di-tert-butylpyridine (0.232 mL, 1.0 
mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 2-methyl-1-

butanethiol (0.065 mL, 0.5 mmol), DMF (2.0 mL) were used, then purified 
by column chromatography (SiO2, hexane) to provide 3o as a colorless oil 

(0.106 g, 72% yield). 1H NMR (400 MHz, CDCl3):0.95 (t, J = 67.4 Hz, 3 

H), 1.05 (d, J = 6.8 Hz , 3 H), 1.26-1.37 (m, 19 H), 1.48-1.58 (m, 1 H), 1.71-
1.76 (m, 1 H), 2.75 (dd, J = 7.6, 12.4 Hz, 1 H), 3.01 (dd, J = 5.8, 12.6 Hz, 1 

H), 6.93 (s, 2 H) ppm. 13C NMR (100 MHz, CDCl3):11.4, 19.1, 29.0, 

30.3, 34.5, 37.7, 37.7, 112.7, 148.4, 167.4 ppm. HREI-MS salcd. for 
C18H31NS: 293.2177, found: 293.2170. 

3,5-Bis(trifluoromethyl)phenyl 4-methoxyphenyl sulfide 3p (Table 2, 

entry 16):[19] Following the general procedure for Table 2, using 
[Ir(OCH3)(C8H12)]2 (0.7 mg, 0.001 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl 

(0.5 mg, 0.002 mmol), B2pin2 (0.189 g, 0.73 mmol) and 1,3-

bis(trifluoromethyl)benzene (0.160 mL, 1.0 mmol) in THF (1.5 mL) for the 
first step. After removed the volatile components under vacuum, Cu(OAc)2 

(0.136 g, 0.75 mmol), 4-methoxythiophenol (0.063 mL, 0.5 mmol), DMF 

(2.0 mL) were used, then purified by column chromatography (SiO2, hexane) 
to provide 3p as a white solid (0.097 g, 55% yield). m.p. 54-55 oC (lit.[19] 54-

55 oC). 1H NMR (600 MHz, CDCl3):3.76 (s, 3 H), 6.88 (dd, J = 1.8, 6.6 

Hz, 2 H) , 7.36 (s, 2 H), 7.38 (dd, J = 2.4, 6.6 Hz, 2 H), 7.47 (s, 1 H) ppm. 
13C NMR (125 MHz, CDCl3):55.4, 115.7, 118.7, 118.7, 118.7, 118.8, 

118.8, 120.3, 123.1 (q, J = 226.1 Hz), 126.1, 126.1, 132.0 (q, J = 27.6 Hz), 

136.8, 143.6, 161.0 ppm. 19F NMR (376 MHz, CDCl3):-64.6 (s) ppm. 

3,5-Bis(trifluoromethyl)phenyl 2-naphthyl sulfide 3q (Table 2, entry 17): 
Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (0.7 

mg, 0.001 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.5 mg, 0.002 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 1,3-bis(trifluoromethyl)benzene (0.160 mL, 

1.0 mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 2-
naphthalenethiol (0.081 g, 0.5 mmol), DMF (2.0 mL) were used, then 

purified by column chromatography (SiO2, hexane) to provide 3q as a 

colorless oil (0.101 g, 55% yield). 1H NMR (600 MHz, CDCl3):7.44 (dd, 

J = 1.8, 8.4 Hz, 1 H), 7.52-7.55 (m, 2 H), 7.62 (s, 2 H), 7.65 (s, 1 H), 7.80-

7.81 (m, 1 H), 7.84-7.86 (m, 2 H), 8.04 (s, 1 H) ppm. 13C NMR (125 MHz, 

CDCl3):119.7, 119.7, 119.7, 123.0 (q, J = 226.3 Hz), 127.1, 127.3, 128.0, 

128.0, 128.0, 128.3, 129.8, 129.9, 132.3 (q, J = 27.8 Hz), 133.2, 133.5, 133.9, 

141.6 ppm. 19F NMR (376 MHz, CDCl3):-64.6 (s) ppm. HREI-MS calcd. 
for C18H10F6S: 372.0407, found: 372.0399. 

3-Chloro-5-methoxyphenyl phenyl sulfide 3r (Table 2, entry 18):[19] 

Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 
mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 3-chloroanisole (0.125 mL, 1.0 mmol) in 

THF (1.5 mL) for the first step. After removed the volatile components under 
vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), thiophenol (0.053 mL, 0.5 mmol), 

DMF (2.0 mL) were used, then purified by column chromatography (SiO2, 

hexane) to provide 3r as a colorless oil (0.078 g, 62% yield). 1H NMR (400 

MHz, CDCl3):3.73 (s, 3 H), 6.68 (t, J = 2 Hz, 1 H), 6.72 (t, J = 2.2 Hz, 1 

H), 6.81 (t, J = 1.6 Hz, 1 H), 7.30-7.39 (m, 3 H), 7.40-7.46 (m, 2 H) ppm. 13C 

NMR (100 MHz, CDCl3):55.5, 112.5, 113.4, 121.4, 128.1, 129.5, 132.6, 
133.4, 135.3, 139.7, 160.4 ppm. 

3-Chloro-5-methoxyphenyl 4-methoxyphenyl sulfide 3s (Table 2, entry 

19): Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 
(1.0 mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 

mmol), B2pin2 (0.189 g, 0.73 mmol) and 3-chloroanisole (0.125 mL, 1.0 

mmol) in THF (1.5 mL) for the first step. After removed the volatile 
components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 4-

methoxythiophenol (0.063 mL, 0.5 mmol), DMF (2.0 mL) were used, then 

purified by column chromatography (SiO2, hexane) to provide 3s as a yellow 

oil (0.079 g, 56% yield). 1H NMR (400 MHz, CDCl3): 3.72 (s, 3 H), 3.84 

(s, 3 H), 6.53 (t, J = 1.8 Hz, 1 H), 6.64 (t, J = 1.4 Hz, 2 H), 6.92 (dd, J = 2.2, 

6.6 Hz, 2 H), 7.44 (dd, J = 2.2, 7.0 Hz, 2 H) ppm. 13C NMR (100 MHz, 

CDCl3):55.4, 55.5, 111.2, 111.4, 115.2, 119.2, 122.3, 135.2, 136.3, 

142.2, 160.3, 160.4 ppm. HREI-MS calcd. for C14H13ClO2S: 280.0325, found: 

280.0335. 

3-Chloro-5-methoxyphenyl 4-chlorophenyl sulfide 3t (Table 2, entry 

20):[19] Following the general procedure for Table 2, using 

[Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl 
(0.8 mg, 0.003 mmol), B2pin2 (0.189 g, 0.73 mmol) and 3-chloroanisole 

(0.125 mL, 1.0 mmol) in THF (1.5 mL) for the first step. After removed the 

volatile components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 4-
chlorothiophenol (0.074 g, 0.5 mmol), DMF (2.0 mL) were used, then 

purified by column chromatography (SiO2, hexane) to provide 3t as a 

colorless oil (0.086 g, 60% yield). 1H NMR (400 MHz, CDCl3):3.73 (s, 3 
H), 6.67 (t, J = 1.8 Hz, 1 H), 6.73 (t, J = 2.0 Hz, 1 H), 6.80 (t, J = 1.6 Hz, 1 

H), 7.30-7.32 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3):55.6, 112.9, 

113.8, 121.7, 129.6, 132.3, 133.6, 134.2, 135.4, 138.9, 160.5 ppm. 

3-Chloro-5-methylphenyl phenyl sulfide 3u (Table 2, entry 21):[19] 

Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in 

THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), thiophenol (0.053 mL, 0.5 mmol), 
DMF (2.0 mL) were used, then purified by column chromatography (SiO2, 

hexane) to provide 3u as a colorless oil (0.078 g, 67% yield). 1H NMR (400 

MHz, CDCl3):2.26 (s, 3 H), 6.99 (s, 2 H), 7.04 (s, 1 H), 7,28-7.39 (m, 5 

H) ppm. 13C NMR (100 MHz, CDCl3):21.0, 126.8, 127.6, 127.7, 128.8, 

129.4, 132.0, 134.2, 134.5, 138.1, 140.4 ppm. 

3-Chloro-5-methylphenyl 4-methoxyphenyl sulfide 3v (Table 2, entry 

22):[19\  Following the general procedure for Table 2, using 

[Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl 

(0.8 mg, 0.003 mmol), B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene 
(0.123 mL, 1.0 mmol) in THF (1.5 mL) for the first step. After removed the 

volatile components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 4-

methoxythiophenol (0.063 mL, 0.5 mmol), DMF (2.0 mL) were used, then 
purified by column chromatography (SiO2, hexane) to provide 4h as a 

colorless oil (0.075 g, 56% yield). 1H NMR (400 MHz, CDCl3): 2.23 (s, 3 

H), 3.82 (s, 3 H), 6.85 (d, J = 7.6 Hz, 2 H), 6.91 (dd, J = 2.0, 6.8 Hz, 3 H), 

7.42 (dd, J = 2.0, 6.8 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3):21.1, 
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55.3, 115.1, 122.9, 124.3, 126.3, 126.4, 134.4, 135.9, 140.2, 140.7, 160.2 

ppm. 

3-Chloro-5-methylphenyl 4-chlorophenyl sulfide 3w (Table 2, entry 

23):[19] Following the general procedure for Table 2, using 

[Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl 

(0.8 mg, 0.003 mmol), B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene 
(0.123 mL, 1.0 mmol) in THF (1.5 mL) for the first step. After removed the 

volatile components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 4-

chlorothiophenol (0.074 g, 0.5 mmol), DMF (2.0 mL) were used, then 
purified by column chromatography (SiO2, hexane) to provide 3w as a 

colorless oil (0.087 g, 65% yield). 1H NMR (400 MHz, CDCl3):2.27 (s, 3 

H), 6.98 (s, 1 H), 7.03 (s, 1 H), 7.05 (s, 1 H), 7.29 (s, 4 H) ppm. 13C NMR 

(100 MHz, CDCl3):21.1, 127.0, 128.0, 129.1, 129.5, 133.0, 133.1, 133.8, 

134.6, 137.3, 140.7 ppm. 

3-Chloro-5-methylphenyl 2-naphthyl sulfide 3x (Table 2, entry 24):[19] 

Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in 
THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.1362 g, 0.75 mmol), 2-naphthalenethiol (0.081 g, 0.5 

mmol), DMF (2.0 mL) were used, then purified by column chromatography 
(SiO2, hexane) to provide 3x as a colorless oil (0.101 g, 71% yield). 1H NMR 

(400 MHz, CDCl3):2.23 (s, 3 H), 7.0-7.01 (m, 2 H), 7.08 (s, 1 H), 7.39 

(d, J = 2.0 Hz, 1 H), 7.41-7.48 (m, 2 H), 7.73-7.81 (m, 3 H), 7.89 (s, 1 H) 

ppm. 13C NMR (100 MHz, CDCl3):21.0, 126.5, 126.7, 126.7, 127.5, 

127.6, 127.7, 128.7, 129.1, 129.3, 131.2, 131.4, 132.5, 133.7, 134.6, 138.1, 

140.5 ppm. 

3-Chloro-5-methylphenyl 4-fluorophenyl sulfide 3y (Table 2, entry 25): 

Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in 

THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.1362 g, 0.75 mmol), 4-fluorothiophenol (0.055 mL, 
0.5 mmol), DMF (2.0 mL) were used, then purified by column 

chromatography (SiO2, hexane) to provide 3y as a colorless oil (0.064 g, 

51% yield). 1H NMR (600 MHz, CDCl3):2.26 (s, 3 H), 6.91 (s, 1 H), 
6.95 (s, 1 H), 6.98 (s, 1 H), 7.04-7.07 (m, 2 H), 7.40- 7.42 (m, 2 H) ppm. 13C 

NMR (125 MHz, CDCl3):21.1, 116.6, 116.7, 125.7, 127.3, 127.8, 128.7, 

128.7, 134.6, 135.0, 135.0, 138.8, 140.5, 161.9, 163.6 ppm. 19F NMR (376 

MHz, CDCl3):-114.3 (s) ppm. HREI-MS calcd. for C13H10ClFS: 

252.0176, found: 252.0171. 

3-Chloro-5-methylphenyl 4-nitrophenyl sulfide 3z (Table 2, entry 26): 

Following the general procedure for Table 2, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.1891 g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in 
THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), 4-nitrothiophenol (0.097 g, 0.5 

mmol), DMF (2.0 mL) were used, then purified by column chromatography 
(SiO2, hexane) to provide 3z as a yellow oil (0.064 g, 46% yield). 1H NMR 

(400 MHz, CDCl3):2.36 (s, 3 H), 7.22-7.24 (m, 4 H), 7.32 (s, 1 H), 8.10 

(d, J = 9.2 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3):21.1, 124.1, 
127.4, 130.4, 130.8, 132.3, 132.9, 135.2, 141.6, 145.7, 147.1 ppm. HREI-MS 

calcd. for C13H10ClNO2S: 279.0121, found: 279.0114. 

General procedure for Table 3: A Schlenk tube equipped with a magnetic 

stirrer bar was charged with [Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 mmol), 4,4′-

di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol) and B2pin2 (0.189 g, 0.73 

mmol) in a nitrogen-filled glove box. The Schlenk tube was then covered 
with a rubber septum and removed from the glove box. Under a nitrogen 

atmosphere, arene (1.0 mmol) and THF (1.5 mL) were added via syringe, 

and the Schlenk tube was heated at 80 °C in an oil bath. After stirring at this 
temperature for 24 h, the heterogeneous mixture was cooled to room 

temperature, after removed the volatile components under vacuum. This 

Schlenk tube was returned to the glove box, Cu(OAc)2 (0.136 g, 0.75 mmol) 
was added, the Schlenk tube was then covered with a rubber septum and 

removed from the glove box. Under an argon atmosphere, diselenide (0.6 

mmol), pyridine (0.123 mL, 1.5 mmol) and DMF (2.0 mL) were added via 
syringe, and the Schlenk tube was connected to an argon-filled balloon and 

heated at 120 °C in an oil bath. After stirring at this temperature for 24 h, the 

heterogeneous mixture was cooled to room temperature and diluted with 

ethyl acetate (20 mL). The resulting solution was directly filtered through a 

pad of silica gel then washed with ethyl acetate (20 mL) and concentrated to 

give the crude material which was then purified by column chromatography 

(SiO2, hexane) to yield 4. 

3-Chloro-5-methylphenyl methyl selenide 4a (Table 3, entry 1): 

Following the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in 
THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), dimethyl diselenide (0.060 mL, 

0.6 mmol), DMF (2.0 mL) were used, then purified by column 
chromatography (SiO2, hexane) to provide 4a as a yellow oil (0.135 g, 61% 

yield). 1H NMR (400 MHz, CDCl3):2.29 (s, 3 H), 2.34 (s, 3 H), 6.98 (s, 

1 H), 7.09 (s, 1 H), 7.17 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3):7.1, 
21.0, 126.5, 126.9, 128.8, 133.3, 134.4, 140.2 ppm. HREI-MS calcd. for 

C8H9ClSe: 219.9558, found: 219.9563. 

3,5-Bis(trifluoromethyl)phenyl methyl selenide 4b (Table 3, entry 2): 
Following the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (0.7 

mg, 0.001 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.5 mg, 0.002 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 1,3-bis(trifluoromethyl)benzene (0.160 mL, 
1.0 mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), dimethyl 

diselenide (0.060 mL, 0.6 mmol), DMF (2.0 mL) were used, then purified by 
column chromatography (SiO2, hexane) to provide 4b as a colorless oil 

(0.161 g, 52% yield). 1H NMR (600 MHz, CDCl3): 2.44 (s, 3 H), 7.65 (s, 

1 H), 7.77 (s, 2 H) ppm. 13C NMR (125 MHz, CDCl3): 7.2, 119.6, 119.7, 
119.7, 123.0 (q, J = 226.3 Hz), 129.3, 132.0 (q, J = 27.6 Hz), 135.3 ppm. 19F 

NMR (376 MHz, CDCl3):-64.7 (s) ppm. HREI-MS calcd. for C9H6F6Se: 

307.9539, found: 307.9544. 

3-Chloro-5-methoxyphenyl methyl selenide 4c (Table 3, entry 3): 
Following the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 3-chloroanisole (0.125 mL, 1.0 mmol) in 

THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), dimethyl diselenide (0.060 mL, 
0.6 mmol), DMF (2.0 mL) were used, then purified by column 

chromatography (SiO2, hexane) to provide 4c as a colorless oil (0.151 g, 64% 

yield). 1H NMR (400 MHz, CDCl3):2.35 (s, 3 H), 3.78 (s, 3 H), 6.72 (s, 

1 H), 6.82 (s, 1 H), 6.95 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3):7.1, 

55.5, 112.0, 114.0, 121.7, 134.3, 135.1, 160.2 ppm. HREI-MS calcd. for 

C8H9ClOSe: 235.9507, found: 235.9500. 

3,5-Dichlorophenyl methyl selenide 4d (Table 3, entry 4 ): Following the 

general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 

mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), B2pin2 (0.189 
g, 0.73 mmol) and 1,3-dichlorobenzene (0.115 mL, 1.0 mmol) in THF (1.5 

mL) for the first step. After removed the volatile components under vacuum, 

Cu(OAc)2 (0.136 g, 0.75 mmol), dimethyl diselenide (0.060 mL, 0.6 mmol), 
DMF (2.0 mL) were used, then purified by column chromatography (SiO2, 

hexane) to provide 4d as a colorless oil (0.123 g, 52% yield). 1H NMR (400 

MHz, CDCl3):2.37 (s, 3 H), 7.17 (s, 1 H), 7.24 (s, 2 H) ppm. 13C NMR 

(100 MHz, CDCl3):7.2, 126.0, 127.6, 135.2 ppm. HREI-MS calcd. for 

C7H6Cl2Se: 239.9012, found: 239.9014. 

2,6-Di-tert-butyl-4-pyridyl methyl selenide 3e (Table 3, entry 5): 
Following the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (19.9 

mg, 0.03 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (16.4 mg, 0.06 mmol), 

B2pin2 (0.1891 g, 0.73 mmol) and 2,6-di-tert-butylpyridine (0.232 mL, 1.0 
mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), dimethyl 

diselenide (0.060 mL, 0.6 mmol), DMF (2.0 mL) were used, then purified by 
column chromatography (SiO2, hexane) to provide 3e as a yellow oil (0.150 

g, 53% yield). 1H NMR (400 MHz, CDCl3):1.33 (s, 18 H), 2.37 (s, 3 H), 

7.07 (s, 2 H) ppm. 13C NMR (100 MHz, CDCl3):5.5, 30.0, 37.7, 115.4, 
143.2, 167.5 ppm. HREI-MS calcd. for C14H23NSe: 285.0996, found: 

285.1001. 
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3-Chloro-5-methylphenyl phenyl selenide 4f (Table 3, entry 6 ):[19] 

Following the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (1.0 

mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 3-chlorotoluene (0.123 mL, 1.0 mmol) in 

THF (1.5 mL) for the first step. After removed the volatile components under 

vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), diphenyl diselenide (0.189 g, 0.6 
mmol), DMF (2.0 mL) were used, then purified by column chromatography 

(SiO2, hexane) to provide 4f as a colorless oil (0.183 g, 65% yield). 1H NMR 

(400 MHz, CDCl3):2.26 (s, 3 H), 7.03 (s, 1 H), 7.13 (s, 1 H), 7.19 (s, 1 
H), 7.28-7.30 (m, 3 H), 7.48-7.50 (m, 2 H) ppm. 13C NMR (100 MHz, 

CDCl3):21.0, 127.8, 128.0, 129.0, 129.5, 130.0, 131.1, 132.8, 133.6, 

134.5, 140.6 ppm. 

3,5-Bis(trifluoromethyl)phenyl pheyl selenide 4g (Table 3, entry 7):[19] 

Following the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (0.7 

mg, 0.001 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.5 mg, 0.002 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 1,3-bis(trifluoromethyl)benzene (0.160 mL, 

1.0 mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.1362 g, 0.75 mmol), diphenyl 
diselenide (0.1893 g, 0.6 mmol), DMF (2.0 mL) were used, then purified by 

column chromatography (SiO2, hexane) to provide 4g as a yellow oil (0.232 

g, 63% yield). 1H NMR (600 MHz, CDCl3): 7.40-7.44 (m, 3 H), 7.59-
7.61 (m, 2 H), 7.69 (s, 1 H), 7.74 (s, 2 H) ppm. 13C NMR (125 MHz, 

CDCl3):120.4, 120.4, 120.4, 122.9 (q, J = 227.9 Hz), 129.2, 130.0, 130.6, 

130.6, 132.2 (q, J = 27.7 Hz), 135.0, 135.9 ppm. 19F NMR (376 MHz, 

CDCl3):-64.6 (s) ppm. 

3-Chloro-5-methoxyphenyl phenyl selenide 4h (Table 3, entry 8):[19] 

Following the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (1.0 
mg, 0.0015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), 

B2pin2 (0.189 g, 0.73 mmol) and 3-chloroanisole (0.125 mL, 1.0 mmol) in 

THF (1.5 mL) for the first step. After removed the volatile components under 
vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), diphenyl diselenide (0.189 g, 0.6 

mmol), DMF (2.0 mL) were used, then purified by column chromatography 

(SiO2, hexane) to provide 4h as a yellow oil (0.195 g, 66% yield). 1H NMR 

(400 MHz, CDCl3):3.73 (s, 3 H), 6.76 (t, J = 2.2 Hz, 1 H), 6.82 (dd, J = 

1.4, 2.2 Hz, 1 H), 6.96 (t, J = 1.4 Hz, 1 H), 7.31-7.33 (m, 3 H), 7.52-7.54 (m, 

2 H) ppm. 13C NMR (100 MHz, CDCl3):55.5, 113.1, 115.8, 123.7, 128.1, 
129.4, 129.5, 134.0, 134.1, 135.3, 160.4 ppm. 

3,5-Dichlorophenyl phenyl selenide 4i (Table 3, entry 9 ):[19] Following 

the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (1.0 mg, 0.0015 
mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.8 mg, 0.003 mmol), B2pin2 (0.189 

g, 0.73 mmol) and 1,3-dichlorobenzene (0.115 mL, 1.0 mmol) in THF (1.5 

mL) for the first step. After removed the volatile components under vacuum, 
Cu(OAc)2 (0.136 g, 0.75 mmol), diphenyl diselenide (0.1893 g, 0.6 mmol), 

DMF (2.0 mL) were used, then purified by column chromatography (SiO2, 

hexane) to provide 4i as a yellow oil (0.227 g, 75% yield). 1H NMR (400 

MHz, CDCl3):7.18-7.21 (m, 3 H), 7.33-7.38 (m, 3 H), 7.54-7.56 (m, 2 H) 

ppm. 13C NMR (100 MHz, CDCl3):126.9, 128.4, 128.7, 129.1, 129.8, 

134.7, 135.4 ppm. 

2,6-Di-tert-butyl-4-pyridyl phenyl selenide 4j (Table 3, entry 10): 
Following the general procedure for Table 3, using [Ir(OCH3)(C8H12)]2 (19.9 

mg, 0.03 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (16.4 mg, 0.06 mmol), 
B2pin2 (0.189 g, 0.73 mmol) and 2,6-di-tert-butylpyridine (0.232 mL, 1.0 

mmol) in THF (1.5 mL) for the first step. After removed the volatile 

components under vacuum, Cu(OAc)2 (0.136 g, 0.75 mmol), diphenyl 
diselenide (0.189 g, 0.6 mmol), DMF (2.0 mL) were used, then purified by 

column chromatography (SiO2, hexane) to provide 4j as a yellow oil (0.230 g, 

66% yield). 1H NMR (400 MHz, CDCl3):1.26 (s, 18 H), 6.97 (s, 2 H), 
7.36-7.38 (m, 3 H), 7.60-7.62 (m, 2 H) ppm. 13C NMR (100 MHz, 

CDCl3):30.0, 37.6, 116.3, 127.5, 128.6, 129.6, 135.5, 143.9, 167.8 ppm. 

HREI-MS calcd. for C19H25NSe: 347.1152, found: 347.1144. 

Supporting Information (see footnote on the first page of this 

article): NMR spectra for products. 
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A General Procedure for 

Regioselective Synthesis of Aryl 

Thioethers and Aryl Selenides 

Through C-H Activation of 

Arenes 

 
 A general procedure for the 

syntheses of aryl thioethers and aryl 

selenides in one-pot through the 

sequential iridium-catalyzed meta C-

H borylation and copper-promoted 

C-S and C-Se bond formations in 

one-pot is described. Functional 

groups including chloro, nitro, 

fluoro, trifluoromethyl and nitrogen- 

 

containing heterocycles are all 

tolerated by the described reaction 

conditions. Importantly, not only aryl 

thiols and selenides but also alkyl 

analogs are all suitable coupling 

partners, giving the products with 

high meta-regioselectivity and good 

yields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


