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Abstract

Ejike Einstein CHUKU

Security and Performance Engineering of Scalable Cognitive Radio Networks.

Sensing, Performance and Security Modelling and Analysis of ’Optimal’ Trade-

offs forDetection ofAttacksandCongestionControl in ScalableCognitiveRadio

Networks.

K eywords: Security, performance, scalability, sensing, congestion, trade-offs.

A Cognitive Radio Network (CRN) is a technology that allows unlicensed

users to utilise licensed spectrum by detecting an idle band through sensing. How-

ever, most research studies on CRNs have been carried out without considering

the impact of sensing on the performance and security of CRNs.

Sensing is essential for secondary users (SUs) to get hold of free band without

interferingwith thesignalgeneratedbyprimaryusers (PUs).However,excessive

sensing time for the detection of free spectrum for SUs as well as extended

periods of CRNs in an insecure state have adverse effects on network performance.

Moreover, aCRNisveryvulnerable toattacksasaresult of itswirelessnatureand

otherunique characteristics such as spectrumsensing and sharing. These attacks

may attempt to eavesdrop or modify the contents of packets being transmitted

andtheycouldalsodenylegitimateusers theopportunitytousetheband, leading

to underutilization of the spectrum space. In this context, it is often challenging

to differentiate between networks under Denial of Service (DoS) attacks from

those networks experiencing congestion.

This thesis employs a novel Stochastic Activity Network (SAN) model as an



effective analytic tool to represent and study sensing vs performance vs security

trade-offs in CRNs. Specifically, an investigation is carried out focusing on

sensing vs security vs performance trade-offs, leading to the optimization of the

spectrum band’s usage. Moreover, consideration is given either when a CRN

experiencingcongestionandor it isunderattack. Consequently,thedatadelivery

ratio (PDR) is employed to determine if the network is under DoS attack or

experiencing congestion. In this context, packet loss probability, queue length

and throughput of the transmitter are often used to measure the PDR with

reference to interarrival times of PUs.

Furthermore, this thesis takes into consideration the impact of scalability on

the performance of the CRN. Due to the unpredictable nature of PUsactivities

on the spectrum, it is imperative for SUs to swiftly utilize the band as soon

as it becomes available. Unfortunately, the CRN models proposed in literature

are static and unable to respond effectively to changes in service demands. To

this end, a numerical simulation experiment is carried out to determine the

impact of scalability towards the enhancement of nodal CRN sensing, security

andperformance. At the instant the band becomes idle and there are requests by

SUs waiting for encryption and transmission, additional resources are dynamically

released in order to largely utilize the spectrum space before the reappearance

of PUs. These additional resources make the same service provision, such as

encryption and intrusion detection, as the initial resources.

Tothisend,SANmodelisproposedinordertoinvestigatetheimpactofscalability

on the performance of CRN. Typical numerical simulation experiments are carried

out, based on the application of the Mobius Petri Net Package to determine the

performance of scalable CRNs (SCRNs) in comparison with unscalable CRNs

(UCRNs) and associated interpretations are made.
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1
Introduction

Research have shown that over 50 billion wireless devices will be connected to the internet

by 2020 [1].These devices will be competing for available spectrum space. The traditional

methodofspectrumassignmentassignsspectrumtoonly licensedusers. Thisstaticspectrum

assignment policy leads to under-utilization of the spectrum space in the face of spectrum

demand [2]. To cope with the competing demand for spectrum by existing and emerging

applications, regulatory bodies such as Office of Communication (Ofcom) and Federal

Communication Commission (FCC) have allowed secondary users (SU) to share licensed

spectrumwithprimaryusers (PU)onnon-interferencebasis [2] - [7]. In sharing the spectrum

bandwithPUs, theyare twobasicaccess scenarios: spectrumunderlayandspectrumoverlay.

In spectrum underlay, SUs and PUs simultaneously transmit in the same band as long as

the interference temperature is below a set level. However, in the overlay concept, the SUs

are required to search for available spectrum space for the transmission of their requests.

In this thesis, the spectrum overlay is assumed. This context requires SUs to sense the band

in effort to detect the status and decide to transmit or vacate if already transmitting. Sensing

is carried out by cognitive radio network (CRN). CRN is a technology that probes through

the band to detect its status and transmit the result of the sensing to SUs. Sensing introduces

delays as CRN spend time searching and deciding the status of the band. Unfortunately,

due to the wireless nature, CRN is very vulnerable to attacks. The two major forms of

attacks identified in this work are the attacks that eavesdrops on or modify the content of

packets on transmission and denial of service (DoS) attacks. The former eavesdrops and

falsify data on transmission for its selfish objectives. In CRN, it involves the falsification

of sensing data. Example of such attack is Byzantine attacks [8]. Jamming is an obvious
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example of DoS attack [9]. The both forms of attacks lead to performance degradation. The

rate at which attackers eavesdrop or falsify data on transmission depend on the strength of

the security. One of the ways of protecting the data on transmission is by encryption. The

data is first encrypted before it is transmitted. Research in [10] stated that the longer the

encryption key length the stronger the security and vice-versa. However, long key lengths

have performance implications. It consumes resources and degrade the network performance.

It is therefore imperative to consider a tradeoff between sensing, security and performance.

In tradeoffs, either security is compromised a bit for better performance or vice versa. Since

the focus of this work is on CRN, the tradeoff in this context compromises sensing, security

andperformance. Therefore, either sensing is compromised for security andperformanceor

security is compromised a bit for better spectrum detection and performance.

1.0.1 Motivation

While the existing works considered the pair of either sensing and throughput or performance

and security in isolation, no reference was made to all the parameters together. For

instance, [11] studied sensing-throughput tradeoff in CRN with no reference to security.

[10] illustrates the modelling and analysis of the performance and security tradeoff using a

combined performance and security model. However, this was not tailored to any specific

network, as such, the effect of sensing was not considered. Similarly, [12] determines the

optimal transmission power policy that maximizes the effect of security while considering

the performance gain. Unfortunately, no reference wasmade to the effect of sensing in this

context. Chapter 4 of this thesis considers the combined sensing, security and performance

in CRN. The chapter aim to determine the sensing time at which the combined metrics of

sensing, security and performance is optimum.

In practice, the three processes must exist together for a complete network functions. This

implies that sensing, security or transmission processes cannot work in isolation. These

functions are in tandem. The CRNmust first sense the spectrum in search of idle spectrum

space, followed by security checks and finally transmission.

Frequent security incidents as a result of short keys or long sensing time degrades network

performance, leading to increase in queue length and packet loss. If the band become idle,
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waiting SU requests would be forwarded for encryption and thereafter, transmission. Though

the data rate of the bandmay be high (for example 5Mbps), however, the encryption rate of

the security node may be the bottle-neck (say 2Mbps) as shown in Fig. 1.1

Figure 1.1: Data size illustrations

In this case, the band is underutilized. In order to manage the bursty traffic caused by

prolongedwait for idle spectrumspaceandensureoptimalutilizationof theband, scalability

of the encryption resources is introduced. This involves creating additional resources and

releasing same in any indication of heavy traffic measured by the queue length threshold.

These resources are withdrawn when the traffic is back to normal. Chapter 5 explore the

scalabilityfeaturesofcloudcomputingtomanagethesurge inservicedemand. Itassesses the

impact of scalability on the performance of CRN and compares the performance of scalable

CRN (SCRN) with unscalable CRN (UCRN). The chapter also determines the sensing time

at which the combinedmetrics for sensing, security and performance of Scalable Cognitive

Radio Network (SCRN) is optimum.

Whenthere is an increase inqueue lengthorpacket loss, it becomeschallenging todetermine

if the network is under attack or experiencing congestion. This is mostly because the

both processes induce similar effects in the network. These cases could lead to decline in

throughput of SU. Though some researches mentioned congestion and the similar effects it

has on the performance as jamming, no actual performance threshold is in place to predict

a network experiencing congestion and distinguish it from one under attack. Chapter 5

proposesapacketdeliveryratio(PDR)withnumericalexperimentaltodetect jammingattack



4

and differentiate it from network experiencing congestion. It also measures the PDR and

depending on the result infer if the network is without attack, under attack or experiencing

congestion.

1.0.2 Aims and Objectives

The aim of this research is to design a model-based simulation approach to:

Determine the tradeoff that offer no extremes but optimumvalue to the combined sensing,

security and performance in a scalable and unscalable CRN

Introduce scalability in an attempt to improve the performance of CRN

Carryout network simulation and analysis to determine a network under DoS attack and

differentiate from a network experiencing congestion. The objectives are as follows:

i) To translate the real system intomodelling formalism for effective investigation of the

behaviour.

ii) TouseSANquantitativeanalysistooltodeterminethesensingtimeatwhichthecombined

metrics for sensing, security and performance are optimum.

iii) Topropose a DoS attack detection mechanism that detects DoS attacks in CRN using

SAN model.

iv) Todetermine the input values for effective management of priorities and likely pre-

emptions that is expected in CRN.

v) To introduce into CRN, a sub-model that detects SU interference to PU signal.

vi) Toadd a redundant service channel tomanage surge in service demand in theproposed

SCRN.

1.0.3 Contributions

This work develops formalism for the analysis of SAN model and the extension of the

application to the determination of sensing, security and performance tradeoff in a scalable

andunscalableCRN. In this case, aCRNmodel is proposedwith twoclasses of requests and

priorities in a random selection discipline to abstract the behaviour of CRNwith respect to

sensing,securityandperformance. Thesensingoperationismodelledbyenablingandfiring
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of a transition. This transition is connected to an output place of the arrival transition node

and to the input place of the encryption transition node. The security control mechanism

is modelled as suggested in [10]. The performance is determined by the interplay between

sensing and security.

Scalability is introduced with experiments as contribution to assess the improvement in

performance in comparison with unscalable CRN. In this context, a redundant service channel

isproposedwhosefunctiondependsonthechangeinservicedemandofSUs. Thisredundant

channel comes into operation as the service demand increases and withdrawn otherwise.

Replication and service migration is adopted to clone and transfer service to the redundant

channel.

The work is also extended to include the use of SAN model for the abstraction of the

network behaviour and to identify a CRN under attack and differentiate it from a network

experiencing congestion. The model extends to include a sub-model with DoS detection

mechanism. This mechanism involves attack detection and repairs represented by the rotation

of tokens in different places.

1.0.4 Thesis Organisation

Chapter 2 presents the review of spectrum sensing, scalability and performance of CRN.

Chapter 3 introduces the methodology and network modelling tool used to determine the

tradeoff between sensing, security and performance of CRN

Chapter 4 presents the simulation and analysis of combined sensing, security and performance

tradeoff in CRN.

Chapter 5 introduces the impact of scalability on theperformance of scalable andunscalable

CRN

Chapter 6 presents the detection of network congestion and DoS attacks in CRN

Chapter 7 presents the conclusions and recommendations for future works
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2
Background and Literature Review

The advancements in the development of smart communication devices have exerted pressure

on the limited spectrum resources [13]. In order to conserve the spectrum and ensure

availability for new smart devices, regulatory bodies approved the use of Cognitive Radio

(CR) in detection of idle bands. It is an emerging solution to sustain the availability of

spectrum to aid the introduction of new technologies. Study in [8], [14] - [17] shows that

large portions of spectrum allocated to PUs are not utilized in a wide range of locations as

demonstrated in Fig.2.1.

The CRN is employed to enable SUs use the idle bands [18] and vacate on arrival of PUs

request.This is as shown in 2.2,

6
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Figure 2.1: Illustration of spectrum occupancy [20]
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Figure 2.2: Illustration of spectrum idle space[20]

Since SU is required to relinquish the spectrum on appearance of PU, it implies that it must

sense the environment to detect PU signal. Forefficient protection of PUs, regulatory bodies

recommend that the CR must sense the spectrum to about 0.9 probability of detecting

the correct status of PU signal [19] [21]. CRN has four basic functions: spectrum sensing,

spectrum decision, spectrum mobility and spectrum sharing.
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2.0.1 Spectrum Sensing

Sensing is the method through which CRN determines the status of the spectrum band.

CRNsenses the spectrum independentlyor in cooperationwhere theoutcomeof the sensing

is reported to a central database in an infrastructure-based network. Cooperative spectrum

sensing is the collaboration of multiple CR in spectrum sensing in order to minimize total

probability of errors [22]. In CR where there is no infrastructure, the ad hoc network is

enabled to use the spectrum in a dynamic manner. It uses two or more wireless hops to

convey information from source to destination. On finding an idle spectrum after sensing,

CRNwill immediately utilize it for data transmission. If SU is already transmitting during

the arrival of PU request, it will suspend and vacate or locate another band and continue its

transmission. Sometimes,malicioususersmaymimic thebehaviourof PUandconsequently

prompt SU to give up the band. [23] proposed the use of AES-encrypted reference signal to

identify legitimate PU signal. It allows key sharing between transmitter and receiver and

the reference signal can be regenerated at the receiver and used to identify legitimate PU.

The effect of this AES-encryption on the network is discussed in subsequent section. The

key objective of spectrum sensing is to reliably detect PU signal with acceptable trade-offs.

In the spectrum sensing process, CRN uses some sensing techniques to detect idle bands.

The sensing techniques can be categorized into two: narrowband and wideband. The

former senses and analyses one frequency at a time and has the likes of energy detection,

cyclostationary detection, covariance-based detection andmachine learning in its category.

In wideband, the spectrum is split into sub-bands and then sensed either sequentially or

simultaneously using narrowband techniques. Wideband is further classified into Nyquist

wideband and sub-Nyquist or compressed wideband sensing. In Nyquist-based sensing

class, analogue-to-digital converter (ADC) is used to sample the wideband signal. This

case results in high power consumption and sampling. Sensing technique in this category

are wavelength detection, multi-band joint detection and filter bank based sensing. The

approach in compressed wideband sensing technique can be classified into two: blind and

non-blind compressive wideband sensing. This is as represented in the 2.3.



10

Figure 2.3: Classification of spectrum sensing techniques [24]

2.0.2 Narrowband Sensing Techniques

Narrowband is a category of sensing that analyses one frequency channel at a time over a

channel of interest. This category permits SU to make decisions about the status of the

band. It indicates the presence or absence of PU in the channel. The receive signal is passed

through a filter and thereafter compare with a predetermined threshold. If the received

signal is greater than the threshold then it is assumed there is PU and absence otherwise.

Below are the sensing techniques under this category.
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Energy Detection

This is themost commonmethod for detecting PU signal in the environment [24]. The prior

knowledgeofthePUsignalisnotrequire[2],[24] . Thetechniquehaslowcostimplementation

and less computational complexity which is its advantage over other sensing techniques

though, it cannot distinguish between noise and signal sample. Thismakes spectrum space

detection subject to high uncertainty. The detection process can be carried out in both time

and frequency domain. Toestimate the signal power in a particular frequency band in time

domain, a bandpass filter is applied to the target signal. The signal is detected bycomparing

the output of the detector with a threshold as shown in Fig.2.4.

Figure 2.4: Energy detection technique [2]

wherex(t) isthesignalreceivedbySUwhensensingthechannel. Theresultofthecomparison

is used to decide the presence or absence of PU signal [4] [11] [23]. The computation of this

technique is efficient buthas avery commondisadvantagewhich iswhen thevarianceof the

signal is unknown to the sensing node.

Cyclostationary Feature Detection

In wireless communication, identification of the properties of a particular radio signal for a

given wireless access system can be used to detect the signal. In CRN, such method could

be applied for detecting PU signal. The received signal in CR are modulated signal which

exhibit built-in-periodicity within the training sequence. This is by extracting the features

of the received signal and performing the detection based on the extracted feature. This

implies that the knowledge of the source of the signal maybe required. This technique may

perform better than energy detection if enough simple is used. The technique is able to

distinguishbetween signal andnoise sample sincenoise is stationaryandhasnocorrelation.
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This technique is demonstrated in Fig. 2.5. In the figure, an analogue-to-digital converter is

used to digitize the signal. The fast Fourier Transform is thereafter used to compute the

frequency in the signal. This is performed by the use of of N-point FFT.

Figure 2.5: Cyclostationary feature based detection technique [2]

The value of N-point FFT block are correlated and then the mean value taken over the

number of samplesN. The outcome is then compared to a threshold to determine the status

of the band. The complexity and the requirement for a large sample for better estimation

and the precision of the features in frequency domain makes it difficult to use [3].

Matched filter Detection

Thismethodmaximizes the received signal-to-noise ratio. It requires a complete knowledge

of the PU signal. The knowledge could be modulation format, data rate, carrier frequency,

pulse etc. The information is pre-stored in CR memory. In the technique, the received

signal samples are compared with sample signal obtained as a test sample from the same

transmitter as shown in Fig. 2.6

Figure 2.6:Matched filter detection technique [2]

The test statistics are computed from the sample signal and then used to compare with the

threshold. In this case, if the test statistics is greater than the threshold, then the signal

is assumed present and absent otherwise. The test statistics for matched-filter detection

technique is expressed as:
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1
TM =

N

N

y(n)x∗
p

n=1
(2.1)

where N is the number of samples

y represents the sample vector and xp is the sample signal.

The test statistics TM is compare to the threshold in order to decide the status of the band.

If λm denotes the threshold then

TM < λm : implies absence of PU signal and

TM > λm : implies presence PU signal

This technique isoptimalas itdoesnot requiremuchsample foreffective spectrumdetection.

The major challenge is obtaining a prior information about PU signal as it is not always

readily available. This technique is not always recommended unless the complete signal

information of the PU signal is known [3] [25]

Covariance Based Spectrum Sensing

In this sensing technique, multiple antennas are deployed for spectrum sensing. It uses

sample covariance matrix of the signal received and singular value decomposition (SVD)

to detect the status of the band. This scheme uses the correlation of the received signal

from these antennas at different times for decision making. The eigenvalues of the signals

received from PU are determined using the singular value decomposition method. This is

after correlation and differentiation from the noise. The minimum and maximum eigenvalues

are calculated and compare with a threshold to determine the status of the band as shown

in Fig.2.7.

Figure 2.7: Covariance based sensing technique [2]
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Machine Learning Based Spectrum Sensing

In this sensing technique, the detection of spectrum space is by conceiving the process as

classification problem in which two states (free or occupied) of each frequency channel are

determined by the classifier, supervised or unsupervised. Some authors proposedK-means

andsupportvectormachineasasensingmodelforCR.WhileK-meansismainlytodetermine

the PUs pattern of transmission and statistics, the support vector machine (SVM) is used to

determine the status of the band. The knowledge of machine learning has been deployed to

carry out spectrum sensing in CRN. This is mostly used in cooperative spectrum sensing.

This can be classified into two steps. The first step in which unsupervisedmachine learning

technique are used for data analysis and to determine the patterns of PU signal. In the

second step, models are trained with data obtained in the first step. The first step uses K-

means algorithm to identify the status of the band [2].

SpectrumDecision

Once a white space is identified, CR will decide on the appropriate band that will satisfy

its quality of service requirements in terms of data rate, service time etc [25]. When an

SU sends a request to access the spectrum opportunity, the spectrum server will narrow

down the search space by comparing the demanded data rate with a threshold. In [26], the

maximumdata rate for IEEE 802.11b (operating in 2.4GHz) and IEEE 802.11g (operating in

5GHz) standards are 11Mbps and 54Mbps respectively. The third generation (3G) wireless

systems offer data rate of less than 1.0 Mbps. When requesting for spectrum space for data

rate greater than 1Mbps, the 3G cellular system is excluded from the search.

2.0.3 C. Spectrum Sharing

Sometimesmore thanone SUmaybe competing for a spectrumspace. Their transmission is

coordinated in order to avoid collision. Admission control is applied and may be based on

the effective benefit offered by SUwhile fulfilling the quality of service requirements. This

may be in terms of the SU that exert less interference to the PU signal.
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2.0.4 Spectrum Mobility

This is the ability of CRN to relinquish its channel and continue its transmission on another

channel on detecting the PU signal. In this case, a new band is either selected or the

communicationwill cease. Spectrummobility necessitate the search for a new link in order

to continue communication on detecting PU signal. Spectrum sensing and spectrum mobility

function together to select the next available channel when there is need for it.

2.0.5 D. Cooperative Spectrum Sensing

In cooperative spectrum sensing, more than one CR participate in sensing and report the

result of the sensing to a common geological database or decision centre (DC) as shown in

the Fig. 2.8.
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Figure 2.8: Coperative spectrum sensing model [27]

The geological database stores spectrum opportunity as central coordinate instead of multiple

geological coordinates [26]. SUwithin same location can access the bandwithout interfering

with PU signal. To further avoid interference, cognitive radio using machine learning can

estimate the idle time. The idle time is similar to Time-to-live in conventional network. The

idle timedecreases ifunoccupieduntil itgets tozerowhich iswhenit isagainoccupiedbyPU.

Cooperation in spectrum sensing enhances the optimization of spectrum resources because

themore the number of cognitive radio involved in sensing, the more accuracy in detecting

idle band. The challenges of multipath fading is also solve using cooperative spectrum

sensing. Multipath fading is a fluctuation of signal experience as a result of constructive and

destructive interference resulting from territorial objects such asmountains, trees, buildings

etc. However, cooperative spectrumsensing has its drawbackwhich is that all participating
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cognitive radiomust report the result of thesensingbefore adecision is taken. Thisenhances

the protection of the incumbent but diminishes the opportunity available for SU to use the

spectrum. A research in [3] proposedmodel to determine the number of CR in cooperation

that will give minimum error probability and maximizes the throughput. The results of

the experiment show that the optimal number of CRs increases as the number of CRs in

cooperation increase but the maximum throughput decreases as the optimum number of CRs

increases.Thenext subsection consideredseveralvulnerabilities and threats in the contextof

CRN.

2.0.6 Threats in CRN

Security is an important issue for consideration in CRN. Several vulnerabilities of CRN

can be exploited by adversaries to cause severe performance degradation [29]. For instance,

attackers can introduce DoS attack that could deny SU the opportunity to use the spectrum.

This is classified as malicious. This kind of attack only aim to cause hindrance for others

and may not necessary be to maximize its own benefit [30]. Some attacks may particularly

aim to eavesdrop ormodify the content of packets on transmission. The ease at which these

attacks gain access to the data on transmission depends on the encryption algorithm. These

attacks cause performance degradation as it will result in SU not able to use the channel

when not occupied by PU. Below are some of the attacks common to CRN.

Spectrum Sensing Data Falsification (SSDF) Attacks: This attack specialises in transmission

of false sensing data to SUs. It is mostly carried out by malicious SUs. In the attack,

malicious user induce CR to send false sensing data to the SUs [8] [30] [28] [29]. This form

of attack induces increase in false alarm and miss spectrum detection because the decision

about the status of the band depends on the sensed data. When the attack leads to false

alarm, the idle space iswasted since SUwill assume theband is occupiedwhen actually idle.

Conversely, in amiss spectrumdetection scenario, SUwill assume theband idle and forward

its request resulting in regulatory violations.

Primary User Emulation Attacks (PUEA): it has been observed by researchers that one

of the biggest challenges to spectrum utilization by SUs is PEUA. This attack takes to

mimicking PUs signal characteristics in order towardoff prospective SUs and selfishly use
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the channel. This research area has attracted a lot of research interest with many works

solution such as localization and encryption being proposed to tackle it. Localization in this

case is the estimation or verification of the origin of the signal. This was proposed in [26] to

track malicious SUs in effort to secure radio resource allocation in in CRN.

Objective Function Attacks (OFA): This is the type of attack in which CR are prevented

from receiving the signal it requires in order to adapt to change. There exist in CRN a

cognitive engine consisting of several radio parameters under its control. These parameters

are computed by the engine by solving one or more objective functions. This objective

functions could be manipulated by adversary, forcing the radio to send false data to SU [8]

which may lead to SUs delaying its transmission even though the channel is idle.

Jamming Disruption Attack: This is one of the most common form of attack to CRN. It

involves creating attacks through interferences [29]. Jamming is carried out by transmitting

signal to the receiving antenna on the same frequency as legitimate transmitter, thereby

limiting legitimate receptionbythereceivingantenna [30]. This is similar toPUEA,however,

PUEA emits primary like signal just to manipulate the sensors [30]. The network is liable to

CRN-specific sensor-jamming attacks if an energy detection technique is used for spectrum

sensing.

Eavesdropping: One of the security threats common to both wireless network and CRN is

eavesdropping. Eavesdroppers maliciously seek access to the content of data overwireless

links such as CRN and exploit the information against the end user.

2.0.7 Impacts of Attacks on CRN

Themain impactofattacks toCRNis thedenialof serviceandmodificationoreavesdropping

on data on transmission. In DoS attack, adversaries may alter the sensing information

transmitted by the sensing node of CRN leading to miss detection or false alarm. In this

context, SU in the case of false alarmwithholds its transmission on the assumption that PUs

are transmitting on the spectrum. This way, SU misses the opportunities to use the band.

Inmissdetection scenario, adversariesmake radiobelieve that there arenoPUpresentwhen

actually there are PUs in the channel. This leads to regulation violations.
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2.0.8 Protection of information on transmission

In order to ensure the integrityand confidentiality of information, it is important not to send

data into the network without ensuring its protection against unauthorisedmodifications.

One of theways of ensuring the protection of data is by encryption. Encryption is one of the

means through which an attack can be mitigated. It involves encoding the plain text such

thatunauthorisedusers donot gainaccess to it. However, encrypting themessage consumes

resources and degrade the network performance. Encryptingwith long keys result in better

security but have performance implications. It degrades the performance of the network.

Similarly, encryptingwith short keys improves the network performance but the network is

more vulnerable to an attack. Attackers can easily compute the algorithm and use same to

access thedata.

2.0.9 Performance Cost of Encryption in CRN

Security application and its impact inCRN is similar to its application in traditionalwireless

network. In both networks, requests are encrypted and transmitted in a similar manner.

For general security application, [10] proposed an encryption and freezing mechanism to

deal with the security issues in a system. It quantified the effect of security in the form

of throughput. Throughput increases or decreases as the encryption key length changes.

In [31], different algorithms for encrypting messages were studied. The study shows that

processing time depends on the used algorithm, the size of input and the length of key. The

time required for each algorithm to encrypt a message was measured. Long key length as

stated in [31] guarantee adequate security. However, the performance implication may be

readily high due to security processing.

Encrypting with long key lengths requires high computational power and high energy

consumption. In this case, [32] proposed cloud computing integrationwithCRN in order to

allow CRN to perform the computation in the cloud and outside its own energy.
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2.0.10 Cognitive Radio Network (CRN) and Cloud Computing

They have been ongoing research efforts to integrate CRN in the cloud platform. This is

due to the numerous advantages that can be achieved from such integration. Cognitive

radio communicationshavebeen limitedbyenergy consumption and computationalpower.

However, integrating CRN and cloud allows CRN to carry out its computation inside the

cloud and outside its own power supply [32]. Integrating these two diverse fields helps in

resource pooling. Resource pooling as a feature of cloud computing is combining the resources

together and releasing them on demand. The resource pooling provides solution to channel

uncertainty. Channel uncertainty is as a result of fading or shadowing of signal generated

by PU. In this case, SUs could be influenced to operate on a seemly occupied channel.

To overcome this, [33] proposed cognitive cloud network in conjunction with cooperative

spectrum sensing algorithm to improve spectrum sensing performance. In this case the

received signal from the sensing nodes are sent to the cloud. Where decisions about the

status of the band are made.

2.0.11 Cloud Service Delivery

Cloud computing has been a trending topic in industry and academia due to its IT service

deliveryplatformwhichcanbeappliedinin thecontextofCRNforoperational improvement

[3]. It emanates as a result of factors ranging from change in traditional computing and

communication technology tobusinessprocesses. The cloud serviceproviders can integrate

the features of cloud computing andCRN topredict the real timeavailabilityof idle band for

cognitive use. This certainly improves the performance of CRN. Using the concept of cloud

computing, CRN can achieve elastic service in the form of on-demand resources whenever

they need them. The challenges of over stretching of on-premise infrastructure gave rise

to the introduction of on-demand and elastic service delivery made possible by scalability

feature of cloud computing. It was developed to overcome the challenges of unpredictable

service demands of users [34]. Cloud computing model evolved by observing the concept

of utility computing, automatic computing and software as a service (SaaS). In [35], utility

computing pools outsourced computing resources and infrastructure and deliver them as
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on-demand services with usage-based payment structure. In CRN, different bands are pooled

together incooperativespectrumsensing techniqueandidle spectrumbandsare reported to

a central database located in the cloud. Due to the unpredictable nature of service demand

as shown inFig. 2.9,maintainingsufficient infrastructure tomeet theunexpectedhigh surge

in service demand can be very costly.

Figure 2.9: Illustration of scalability

Alternatively,underprovisioningof resources alwaysresults in significant impact in termsof

quality of service [36] as there may not be enough resources to cope with the peak periods.

InCRN,On-premiseinfrastructureswithonespectrumbandmaynothaveenoughidlespace

to service all the users. It poses problem to businesses where the demand for their services

may suddenly become busty. Traditional IT infrastructures have different ways of dealing

with situation like this but it could be cumbersome. One of the ways adopted by traditional

IT specialist is to purchase additional and more powerful infrastructure to cope with the

increasing service demand. This could disrupt an ongoing process leading to significant

impact in quality of service. However, cloud computing delivers better platform which is

automatic provisioning of another service channel, storage and networking on-demand to

cope with the increasing users demand. This is good for business development.

Scalability is one of the most important features of cloud computing and CRN that allows
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resources to be scaled up or down according to the operational needs of an organization.

The resources are scaled up when there is an increase in service demand and are scaled

downas the demanddeclines. Thus, scalability is used, subject to service rates and channels

operational parameters to improve systemperformance and avoid service degradation. The

evaluation of the impact of scalability on the performance of service channel over a typical

cloud platform is based on different performance measures. Research in [37] shows that

scalable systems offer better performance and reduce costs. In particular, a scalable system

is able to sustain a good level of performance upon sudden busty traffic flows and ensure

that servers do not breakdowndue to overload. The usage-basedpayment structure ensures

that there is charge for provisioning of additional service infrastructure. Some features of

cloud computing which could also be applicable in CRN are presented below.

2.0.12 Virtualization

This is a feature of cloud computing that can be applied in CRN to achieve scalability.

It was introduced to overcome the challenges of physical hardware by allowing multiple

pseudo-servers to run on a single physical device [39]. Virtualization is used to achieve

scalability in CRN. They are many forms of virtualization: server or system virtualization,

storage virtualization andnetworkvisualization [40]. In this chapter, wewill be considering

servervisualization, the is server is able tohostandrundifferent systemsonasinglephysical

machine. Inservervirtualization,acontrolprogramisrunonahardwareplatformandcloned

on other virtual machines. Each of the virtual machines operates and run its individual

program as if it is on a different hardware platform. It is not only for efficiency but also

savespower, space, andcoolingsinceall thepseudo servers are still runningononemachine.

Research has shown that cloud applications consumes 90% less energy compare to on-premise

ones.

2.0.13 Scalability and Fast provisioning

This is the ability of the server to be scaled up or down according to the demands of the

organization [41]. In an organizationwith erratic workload, one of the following scenarios
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must apply:

1. An over provisioning of servers leading to unused server capacity, as such, resulting in

significantly higher cost per process than desirable.

2. Under provision of server resulting in significant impact in terms of quality of service.

None of the above is good as they both result in direct business impact; either through high

costs or throughdecrease outputs causedby service degradation. Thepresent day business

such as Twitter and Facebook has shownhigh level volatility in their computing needs. The

growth ismuchthat theapplicationof traditionalapproach isno longer asolution toprocess

the volume of information required to keepupwith the scaling demand. Cloud computing

enables resources to be used when required and at the required scale. Though per unit

charge by service providers may seem high but may be cheaper compared to owningand

maintaining the resources.

2.0.14 Scalability Features of Cloud Computing

Scalabilityistheabilityofthecloudresourcestogroworshrinktocopewiththeorganizational

workload [49]without suffering degradation of the quality of service. One of the key factors

of concern when considering a move to the cloud is the trust for resources availability,

scalability, and cloud performance [50]. Scalability is always proportional to the cost of

additionof resources. Details of scalabilitymeasuresarehidden fromtheusers. Forinstance,

users do not have to know the location of their data or how to save or access them in

the cloud. Scalability has been considered hard to achieve due to unpredictable volume

of service demand from the consumers. Services with poor scalability measures will either

experience servicedegradationdue tounderprovisionof resources or incurmore cost due to

over provisioning of resources.

2.0.15 Scaling Indicator

Indicators are the set performance parameters that show the status of each service channel.

In order to scale the channels to cope with the service demand, it is necessary to use the

scaling indicator tomonitor and track the performance of the service channels [35]. Typical
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scaling indicators could be:

Average number of request to the service channel per unit time.

Average queue length of the service channel

The average response time.

Once the indicator has been set, it is used to determine when additional service channel

is needed or when to withdraw an already added channel. There is a tendency for the set

indicator to go positive as the request per unit time increases. This is as explained in the

next section. In this work we uses the queue length, as scaling indicator.

2.0.16 Scalability of Servers

This is the addition or removal of virtual servers due to increase or decrease of computing

demands. This happens when there is surge or decline of consumer’s service demand [51].

However, when the average service demands increases, inevitably leading to unwanted delay

or possibly request lost, additional virtual server is automatically provided to avoid service

degradation. For instance, if the average inter arrival time of a request to a dedicated server

is 20 secondsand theaverage service timeof the server is 10 seconds, it implies that the server

will be busy only half of the time. The server is only 50% utilized, the delay and average

queue lengthwill be minimal. However, if the average inter-arrival time decreases to say, 15

seconds, with the same service rate, the server will be busy 75% of the time. The average

delay andaverage queue lengthwill still be minimal and tolerated. If the inter-arrival time is

furtherdecreasedto10 seconds, theymayberise indelayandqueue lengthasserver is always

busy and any new arrival may have to wait on the queue. Decreasing the inter-arrival time

furtherwill lead to unstable system. Itwill result to high increase in delay and queue length.

When the queue length of the dedicated server gets to a certain threshold, a new server is

automatically provided to avoid loss. For system to be stable λ < µ [52], where λ is the

arrival rate and µ is the service rate. This is used to explain what happens when a company

experiencesapeakflow. Identificationofpeakperiodsandprovisionofneededconditions to

deal with it is an important way of handling worst case scenario in an organization.



25

2.0.17 Scalable Service Structure

The scalable service systems consist of multiple server service nodes as shown in Fig. 2.10.

Clientsdonothavetoknowthephysical locationof theservicenodesproviding themservice.

Scalable service system has management components that monitor the real-time status of

the nodes and allocate jobs to them. In [19], two key components were proposed to manage

the service scalability: Global Scalability Manager (GSM) and Regional ScalabilityManager

(RSM) [37].

Figure 2.10: Scalability model

The GSM controls the service scalability. It balances the load [53] [54] among the channels

andprovides quality service delivery.However,RSM is amanagement component installed

on each service node. It always checks the status of the service channels and allocates jobs

appropriately to them.With this scalability servicemechanism, our service systemprovides

functions toaddorremovenewchannelsat runtimerefer toasnodemanagement.Whenever

the average request from users goes to normal, the added service channel is immediately

withdrawn to avoid extra charges.
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2.0.18 Service Migration

This is the transfer of users from the dedicated service channel to a new service channel

[55]. It is assumed that the new service channel has already been cloned to deliver the same

service as thededicated channel but can only bemade available to userswhen theworkload

is too much for dedicated service channel to handle. After the migration, the new service

channel is expected to deliver the same service obtainable from the first. Servicemigrations

onlyoccurwhen there is surge indemand that results to increase in response timeandqueue

length. The server is withdrawn immediately the service demand goes back to normal.

2.0.19 Cost of Scalability

The additional server service demand is not without a cost. Cloud service providers introduce

more charges for additional service delivery. The additional service could be rendered in

the form of added computing resources or storage facility. Service providers can apply any

measure to meter the extra service rendered to customers. Quality, volume and cost of

service should be as agreed on SLA [55] [56] [60].

2.0.20 Performance Implications of Scalability

Anunexpected surge of request fromusers alwaysresults in service degradation. This is due

tooverstretchingof the storage andservice facility [37]. Provisionofnewstorageand service

facilitywhich could be in the formofmobile cloudhelps reduce the load on the service node.

The improvement in the performance of the system as a result of the introduction of another

service station is seen in the form of reduced queue length and reduced response time. The

result of our analysis is as demonstrated in the subsequent session.

2.0.21 Cognitive Radio Cloud Network (CRCN)

One of the challenges in CRN is the real time storage and data processing. This is due to

the limited storage and processing ability of the CR devices resulting in the need for added

capabilities as demonstrated in [57]. In this context, the main function of the Cognitive
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RadioCloudNetwork (CRCN) is to keepup-to-date information about the availabilityof the

spectrumspaceforcognitiveuse. This informationismaintainedinthecloudandupdatedby

thesensingnodes. In [58], itwassuggested that thatCRCNshouldhavedatabases for storing

the previous information about the spectrum occupancy. CR uses the existing information

about the use of spectrum to understand the environment and plan strategies to use the

bandwithout harmful interference to PU. Cognitive Radio and Internet of Things Research

in recent time are moving towards IoT and CRNs. With the advent of machine-to-machine

communication, IoT in conjunction with CRN will transform human activities through

connectivity, resulting in internet of mobile things [59]. The new IoT paradigm will have

significant impact on the everyday life in the nearest future such as assist living, improved

learning, automation, industrial manufacturing, processes management, e-health facilities

etc. Objects in IoT will be interconnected through both wired and wireless technology. IoT

objects in this context are connections of different objects such as sensors, actuators, Radio

Frequency Identification (RFID) tags, mobile phones etc. [59] highlighted how IoT can be

supported by cognitive radio functionalities such as spectrum sensing. Motives behind IoT

in CRN It is expected that due to the advancement of CRN in IoT that the CRN-based

IoT framework may become a necessary requirement in the near future. In this case, the

IoT objects will be able to think, learn, and possibly make decisions due to the ability to

discern social and physicalworlds. Therefore, the standardization anduse of CR-based IoT

objects are expected to increase in the nearest future. Because the traditional spectrum

allocation do not support sharing of spectrum band, it will be impossible to introduce new

smart devices since the available spectrum space may not accommodate them. In order to

overcome the challenges, the future CR-based IoT devices will be equipped with sensors

making it possible for them to sense, learn their environment and determinewhen the band

is unoccupied by PU and use it. This will certainly paveway for the development of smart

cities.

2.0.22 Previous works on Cloud and Scalability

Jae et al proposed a system to avoid service degradation when a service channel develop

problem[37].Heusedreplicationandservicemigrationtoexplainhowserviceofadedicated
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server is cloned and transferred to a new service channel whenever there is server failure.

Prasadetaluseddifferentscalabilitymetricstomeasuretheeffectsofscalabilityofasystem[6]

[50]. Different scalability examples were used to explain his view. System architecture and

behaviour which handles traffic arriving to it at a steady state were considered. Non

scalable systemwithsinglebottleneckwhichcannotbe speededupwasexplained. Trieuet al

Presented scalability and performance of web application in a compute cloud. They illustrated

the powerful scaling capabilities of cloud environment and also presented different scaling

indicators [35]. To explore their key scaling indicators, they carried out the performance

measurements on an online collaboration application which aim to maximize resource

utilization of the system.
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3
Methodology

3.0.1 Research Design

This research design outlines the procedure and requirements for the implementation of

solutions in this work.This as shown in Fig. 3.1.

Figure 3.1: Research design

It involves the following:

29

Chapter
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Problem specification: The problem was identified through reading of contemporary literature

in CRN to identify the state of the art.

Translation of the problems into formalism: The problem was translated into formalism.

The formalism in this case is Stochastic Activity Network (SAN).

Identification of simulation tools: A test of different simulation was carried out to identify

themost suitable tool that supports the formalism. In this case, Mobius simulation package

was identified. Find in table 3.1 some of the tools that were tried.

Simulation tool

Limitations Remark

Stochastic Petri Net Package (SPNP) No user support Rejected

Java Modelling Tool (JMT) Stand-alone software which cannot be edited to support complex modelling formalism Rejected

Telnet Not suitable for complex solutions Rejected

Mobius Petri Net Package Suitable for complex solutions, user support available and can be reprogrammed to support different modelling formalism. Accepted

Table 3.1: Identification of tool

Implementations of solution: The simulationwas implementedusing the identifiedMobius

Petri Net tool

Analysis of data: The data was analysed and the results presented

Generation of report: The report was generated using latex text editor

3.0.2 Network modelling Tools

Toachieve the desired aims and objectives, specific network modelling tool as mentioned

above would be required. This tool is used to generate the required traffic to mimic the

behaviourofarealsystem.Goodunderstandingof themodellingprocess isessential inorder

to fully harness the strength of the tool. This include the ability to translate the model

into a formalismwith knowledge of the real system. Examples of modelling formalism are

petri nets, SPN (stochastic petri net) and GSPN (generalized stochastic petri net). SAN
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(stochasticactivitynetwork) is ageneralisationofSPNs[61]whichhassomesimilaritieswith

GSPNs. SANs as a formalism supports mobius tool.

Petri Nets

Petrinet isa formalismthat isdevelopedandused toabstract complexmethodsforanalysing

andinterpreting theflowof information[61]. Theformalismhasbeenproposedforanalysing

systemswith concurrency and conflicts. It possesses a number of properties. Through these

properties, system designers are able to identify if the specific functional properties of a

system under design have beenmet. These properties can be grouped into behavioural and

structural properties. While behavioural properties depends on the initial marking of the

petri net, the structural properties is associated to the topology or net structure of the petri

net. Petri nets are graphically represented byadirected bipartite graphwith circles as places

and bars or boxes as transitions. The arcs associated to this model can be classified as input,

output and inhibitor arcs. The input arcs are arrow-headed arcs from places to transitions.

An output arcs are arcs from transitions to places while inhibitor arcs are circle-headed arcs

from places to transitions.

Places: these are used to represent queue or buffer for incoming request when the server is

busy [62] [63]. It is graphically symbolised as circle as shown below. Places contain tokens

and are representedwith dots which are referred to as requests in ourmodel. It can contain

finite or infinite number of requests (tokens). Firing of transition removes a token from the

input place and deposit in the output place which changes the state of the system. Places

contains tokens which are drawn as dot inside the places. Fig. 3.2

is the circle and bars representing places in simulations. Places can be a buffer or queue for

installing incoming jobs when the server is busy.

Transitions: These represents actions that changes the state of the system. The actions

abstracts various characteristics that is obtainable in many formalism. The state change

behaviour of atomic model formalism is a result of the functionality provided by the transitions.

The dynamic change in behaviour of amodel is determined by the number of tokens and its

distribution. Changing the distribution of tokens in places demonstrates the occurrence of
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Figure 3.2: Place and Tokens in Petri Net Model

events or execution of operations. Transitions are graphically represented as a vertical bar

as shown in 3.3.

Figure 3.3: Transitions

A transition is enabled if the input place contain a number of token greater than or equal to

the given threshold defined by the multiplicity of the arc. A transition without an input

place is referred to as source transition whereas one without output place is called a sink

transition. A transition without an input place is always enabled. For in instance transition

t1 in Fig. 3.4 is always enabled. Note that only enabled transitions can fire.

In the model in view, it is used to generate arrival and service time required in the network.
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Figure 3.4: Places and Transitions

Firing depends on the exponential delay associated to the transition. Firing of a transition

deposits a token in the output place. They are two types of transitions: immediate and

time transitions. Immediate transition as the name implies is used to represent activities

that fires once the enabling condition are fulfilled. In time transition, exponential delay is

associated to its firing. When the transition is enabled, it will wait until the time associated

to its transition elapse before firing [61].

Tokens: Tokensare used to represent requests going into the network. It is representedwith

dots inside places. In our model, tokens are generated by both PU and SU as requests to be

transmitted.

Arcs: These are used to connect an input place to transition and from transition to output

place [63]. The enabling rule involves only input arc while the firing depends on the input

and output arcs. As shown in figure below, an arc directed from a place pj to a transition

Tj indicates that pj is the input place of Ti and is denoted by I(Ti, pj)=1. Also, the arc

from Ti to pj defines the pj as the input place of Ti and is represented as O(Ti,pj)=1. The

initial marking of the petri net in the figure is M0 = (2 0 0 0). In this marking, only the T1

is enabled and firing of the T1 will result in change in marking. Fig.3.5.

Figure 3.5: Enabling and firing of transitions
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Inhibitor arc: This is used to enable firing of a transition when a place contain a token less

than the multiplicity required to enable the transition. It is represented by circle-headed

arcs andcanbe used tomodel priority and systemfreezingaswouldbe demonstrated in our

model.

Stochastic Petri Nets (SPN)

This is used to represent a petri netwith exponential firing delay. This firing delays are asso-

ciated to random variables that results in probabilistic models. In this case, each transition

ti has a firingdelaywithprobability firingdensity functionwithnegative exponential pdf. It

is assumed that each transition has a timer. The value of the timer is is sampled from the

negative exponential associated to each transition. When a transition is enabled, the timer

is decremented and the transition fires when the transition records zero. It is then obvious

that the timed transition can be used to model the execution of activities in a distributed

environment.

Generalised Stochastic Petri Nets (GSPN)

This is introduced as an extension to SPNs. It is aimed at improving themodelling power of

SPNs. The extension includes an immediate transition that fires as soon as being enabled. It

isusedtoconveythenotionof independencyon timespecification. The immediate transition

fires first when simultaneously enabled with timed transition. This therefore suggests that

some events completion does not correspond to time consuming activities.

Stochastic Activity Networks(SAN)

SAN is one of the formalism supported by Mobius. It is a generalisation of the basic SPN

formalism. High level modelling formalism can be enabled using graphical primitives in SAN.

The four primitives objects of SAN are places, activities, input gates and output gates [62].

Places are represented graphically by circles and denotes the state of the modelled system.

Activities are used to define the actions that changes the state of the systemwhile the input
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gate controls the enabling of the activities. The input gate is symbolised graphically by a

triangle with the flat side connected to a transition. The output gate defines the changes

in marking that occur on completion of activities and it is represented graphically by a

triangle connected from the transition to the flat side. A place can be connected directly to

a transition. This is equivalent to a connection with an input gate with a predicate that

enables theactivity.

3.0.3 Analysis of Petri Nets

Modelling alone is of little importance without corresponding analysis of the modelled system.

Theanalysis of the system is expected to lead to important insight into the systembehaviour.

Thethreemainapproaches intheanalysisofpetrinetmodelsaresimulation,matrix-equation

and reachability analysis. However, in consideration to the networkunderstudy, simulation

is considered for further explanation.

3.0.4 Simulation

Though this simulation is inexpensive and time consuming, however, undesirable properties

of themodel can be revealed through the simulation technique. Despite that it is convenient

andstraightforwardapproachusedbyEngineers invalidatingthepropertiesof thedesigned

model, however, it may not prove the correctness of the model in general case. Simulation

has been used when other techniques could not provide the needed result. More formal

languages (formalism) were developed due to the advancement in techniques for solving

models. In this case, each formalism presents its advantages. For instance, some formalism

have very efficient solution methods. Stochastic activity networks formalism were developed

for complex model behaviours. Tools have been developed along this formalism. A tool

is introduced around one or more solution techniques. Simulation is one of the solutions

that could be used to evaluate the system behaviour. Some of the tools listed by [62] are

GreatSPNwhich is based onGSPNs, UltraSAN resulting from SANs, SPNP from stochastic

reward network. Though these tools are useful in the context of what they were developed

for, however, there are some limitations. The limitations in this case is that all aspect of the
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intended model must be in a single formalism. In this context, it is challenging to solve a

systemmodel facets requiringmultiplemodelling techniques. Mobiushas advantage in this

case as it has built integrated multiple formalism which each model can be solved. With

Mobius, several components can be designed and connected together in order tomaximize

the potential interaction. Having a modelling tool that can simulate multiple formalism

allows innovative combination of modelling techniques.

3.0.5 Overview of Mobius Simulation Package

Mobius tool is a modelling tool that supports multiple formalism. The compatibility of a

formalismwithMobius depends on the ability of the developer to represent the formalism

in an equivalentmodel that uses Mobius components. The merits of specific formalism are

peculiar to the model in which it is constructed. This is because models are constructed in

specific formalisms.

3.0.6 Background Components

In order to define the framework of a model, it is required to ascertain and abstract the idea

present in a formalism. It is also essential to take broad view of the process of constructing

and classifying the models. The process of model construction has been divided into steps

with each step being associated to a newmodel type. In consideration to the steps, the first

step in the construction process is model generation using formalism. The basic model in

the framework is known as atomic model which comprises of state variables and actions.

Example of state variables are places which holds state information about model and the

actions that changes the state of the system. The next step is to compose the model if it

is part of a larger model. The advantage of the composed model is to make it modular

and easier to construct leading to efficiencies in the solution process. The next step is to

determine some required metrics using some reward functions. This matrices are used to

predict sensing, security and performance tradeoff value for CRN. This can be captured in

Mobius by executing it as a separatemodel type called rewardmodels. This is followed by a

solver which is applied in order to compute a solution to reward model. Anymethod that
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computes a solution to reward variable is refer to as a solver. The solution computed to a

reward variable is called result.

3.0.7 Mobius PackageDescription

Formalisms are translated into model framework components. This is done using abstract

functional interface (AFI). The AFI presents an interface linking formalisms and solvers

which allow interactions between formalism-to-formalism and formalism-to-solver. The

components of model formalism are implemented as classes resulting from AFI classes before

it can be applied in the mobius tool. In mobius, models can be solved numerically or by

simulations. C++codeisgeneratedfromeachmodel, the implementedtogetherwithmobius

basic libraries to obtain the executables for the solver. This executable then generate the

results after run. The mobius modelling architecture is as presented in Fig. 3.6 .

Figure 3.6:Mobius modelling architecture

It is certain that most modelling techniques can be supported within the context of mobius

tool. The number of interactions between different process can be maximized by making

modelling processes modular. In this case, reward formalism, composed and connection
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formalism may be added freely.

Atomic Formalism

Models consist of one ormore atomicmodels. Atomicmodels canbe createdor editedusing

editors such as SAN editor (Atomic model editor), the PEPAeditor, Bucket and Balls editor

and Fault Tree editor. As earlier stated, multiple formalism including SANs are supported

bymobius tool. SANs uses graphic primitives to introduce high level modelling formalism

with the aim to achieve detailed performance anddependability. Theprimitives in this case

are places, activities, input gates, and output gates.

Atomic Model Editor

This considers theatomic formalismwithemphasis oncreation, editingandmanipulationof

atomic models using mobius SAN editor. In SAN editor, the designer is allowed to undo

recent operations on the model with the aid of the undo name. Example of operation that

can be undone is the change of graphical location, renaming of components, text editing,

and lines.

3.0.8 Composed Model

This as the name suggest consists of sub models which can be presented as a single model

with own state space. The sub models preserves their formalism-specific characteristics in

such that individual structured properties of the sub models are not destroyed. Building a

composed model is necessary technique required to improve the efficiency in the solution

process.

Reward Model

This is used to provide specifications for performancemeasures. Performance variable (PV)

is the reward model that is implementable in Mobius. The PV based its measurement on

the state of themodelwith respect to the rate rewardor action completions in consideration
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to the impulse reward. A rate reward in this context is used to describe the function of the

state of the system at a time instant. The impulse reward takes into account the identity of

the action that completes and also determines the state of the system. This measurement

can be carried at an instant of time, at a steady state or be time-averaged over a time period.

3.0.9 Sensing, Security and Performance Metrics

Matrices are used to evaluate the sensing, security andperformance viability of the network

under study. In the context of CRN, in order to evaluate the performance of a real system, it

is imperative to consider the followingmatrices. Throughput This is ametric thatmeasures

the volume of completed jobs per unit time. Throughput can be affected by factors such as

security incident, arrival rate, data encryption key length and transmission rate [10]. The

throughput of a network without security is expected to be greater than that with security

protection. The arrival rate of requests have performance impact on the network. Though

the transmission ratemaybe high, however, if the arrival rate decreases, the throughputwill

also decrease. Similarly, if the encryption key length is long, the network, though is secured

but will have decrease throughput.

Probability of System in a Secured State

This is used to determine the chances that the network is in a secured state. Themajor factor

affecting this probability is the encryption key length [10]. Encrypting with long key leads

to a well secure network, therefore high probability of network being secured. Conversely,

encrypting with short keys results in a frequent security incident and therefore decrease in

probability of network in a secured state.

Probability of Spectrum Detection

This is probability of detecting when the band is free and could be used by SUs. This

probability decreases with increase in PU arrival rate. It also decrease with increase in

probabilityof falsealarm. This isbecauseCRNcoulddetect thebandoccupiedwhenactually
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free.

Probability of Loss

In packet loss, jobs arrivingwhen the server is busy and the queue is filled are dropped. The

packet loss probability (PLP) depends on the capacity of the queue. It also depends on the

correlation between arrival rate and service rate. For instance, if the service rate is less than

the arrival rate then the packet loss probability will be high. However, if the service rate is

greater than the arrival rate the probability of loss will be less.

Probability of False Alarm

This is the probability that the band is detected occupied by CRN when it is actually free.

This probability of detection increases with increase sensing frequency. It also decreases

with increase in false alarm. This is because CRN could detect the band as occupied when

actually free, leading to unused spectrum space.
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4
Combined Sensing, Performance and Security

Trade-offs in Cognitive Radio Networks

4.1 Introduction

The introduction of CRN becomes necessary due to proliferation of smart communication

devices which add more pressure to the available spectrum resources. Research in [3] [11]

revealed that some spectrumresources licensed toPUare not alwaysutilized in a number of

locations. To this end, regulatory bodies such as Ofcom and FCCapproved the use of CRNs

in the spectrumwhile it is idle. This implies that SUs are required to sense and detect when

the spectrum band is not occupied.

41
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Figure 4.1: Spectrum sensing (c.f., [[15]])

SUs must search for idle spectrum space through CRN by sensing as demonstrated inFig.

4.1 [15].

Sensing is carried out periodically and only when there is request to transmit. During

sensing, if an idle band is detected, the request is first encrypted and then transmitted.

If the spectrum is occupied, it senses again after an interval of time. To ensure efficient

protection of PUs, [26] considered the estimation of the idle time of the band. This is similar

to Time-to-Live(TTL) in conventional network. It starts decreasing as soon as the band

becomes idle and set to zero if again occupied byPU.When the idle time is set to zero, SUs
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are not allowed to use the band to avoid interfering with PU.

Due to its wireless nature, CRNs are very vulnerable to malicious attacks from eavesdroppers.

In order to enhance the security, studies such as those in [64] [65] proposed an encryption

algorithminconjunctionwithother securitymeasures to shield the transmitted request from

potential attacks. Thesemultiple securitymeasures introduce additional delays and further

performance degradation. Unfortunately, the existing CRN has no means of quantifying

the performance degradation caused by such security mechanisms as studied in [10] and

therefore did not consider the associated trade-offs. It also has no means of detecting when

the encryption keyhas been compromised thus, the encryption continueswith the same key.

Anovel Stochastic ActivityNetwork (SAN)model of a node of aCRNwith focus on sensing,

encryption and intrusion detection mechanism is proposed. The sensing detects idle spectrum

space, encryption process is used to encrypt an incoming request prior to its transmission

while intrusion detection is a blocking mechanism that will eventually cease the network

operation on detectingmalicious behaviour. This freezing operation is necessary to prevent

the system from encrypting with a compromised key. The SAN is evaluated in terms of

sensing, security and performance. Specifically, for spectrum sensing of SUs, the metric of

interest is the probability of spectrum detection. For security, the probability of CRN being

in secure state is taken into accountwhilst the SU throughput is adopted as the performance

metric. Tothis end, an additive combinedmetric is proposed todetermine ’optimal’ sensing,

performance and security trade-offs.

4.2 Review of Related Works

Many studies havebeen proposed to improve the efficiency of CRNwith respect to security,

sensing and performance. In particular, an investigation was carried out in [64] on the

security efficiency of AES and frequency modulation method of data protection in chaotic

cognitive radio (CCR) system. The analysis of the simulation results show that it offers a

high system security. A study was undertaken in [11] relating to sensing-throughput trade-off

for cognitive radio networks. The focuswas to determine the sensing duration tomaximize

the achievable throughputwith sufficient protection of PUs. The analysis of the simulation
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results shows that there exist an optimal sensing timewhich yields the highest throughput.

An investigationwas carried out in [22] to determine the number of sensing nodes required

to cooperate in order to improve the accuracy of spectrumdetection. The optimal number of

cooperating radios needed to minimize detection error probability and maximize throughput

inCRN forWi-Fi networkswere derived. Each of the research above independently studied

either security or sensing and performance in CRN. None of these studies considered the

combinedmetric of sensing, security and performance with the aim to quantify the effect of

encryption and security control and consequently predict a trade-off that offers no extremes

but optimum with respect to sensing, security and performance.

4.3 Sensing- A Review

Sensing is performedbyCRNtodetect thepresenceor absence of PUsignal in order to avoid

SUs interfering with it [66]. It is carried out at intervals of time. If Xn is the signal received

by SU during sensing, then the signal can be divide into N segments. Binary hypothesis

testing is applied as in [6] - [19] in order to determine the signal energy in each of the

segments inN, where T(X), the energy available to SU, which is used to decide the presence

or absence of PU at time t, is given by

1
T(X) =

N

n

|Xn
t=1

| (4.1)

where Xn are sets of signal segments x1, x2, ...,xn i.e., Xn = [x1, x2 , · · · , xn]. Todecide

the presence or absence of PU signal in the band, the received signal energy is compared

withapredeterminedthreshold [11]. This thresholdvariesaccordingto thenoisevariancein

energy detection σ2 and can be determined by equation (4.2)[11] [6]

(! = σ2 +
Q−1(Pf a).σ2√

N
(4.2)

where Q is the complementary cumulative distribution function of the standard Gaussian

variable. LetH0 represent noise only and H1 denote noise and signal. If the signal energy



45

s

w

w

w

w w

w w

1 x− σw

w 2 w
N

w 2

w

w w

T(X) available to SU is greater than the threshold (! then PU is assumed to be active on

the band, otherwise, the band is unoccupied and can be used by SU [17]. Let σ2 be the

transmittedsignalpowerbyPUandσ2 thenoisepower, thenwecandefinethesignal-to-noise

ratio (SNR) Υ as σ2/σ2 . From central limit theorem, considering T(X) under hypothesiss w

H0, T(X) can be approximated as a real Gaussian variable with mean σ2 and variance

σ4 /N . T(X) under hypothesis H1 can be approximated as a real Gaussian variable with

mean (1+Υ)σ2 and variance (1+2Υ) σ2 /N . From the analysis presented in [67] and [6], it

follows that

σ2 , σ4 /N H0
T(X) =

(1+Υ)σ2 , (1+2Υ) σ2 /N H1

If we assume fH 0(x) as given in equation (4.3) to be density function of T(X) when H0 is

true i.e.
1 2

fH0(x) = ✓
2πσ2

exp− [ σ4 (4.3)

and fH 1(x) as shown in equation (4.4) to be density function of T(X) when H1 is true

1 1 x − (1 + Υ)σ2 (4.4)
f H1(x) = ✓

2πσ2
exp[− (

(1+2Υ)σ2 ) ]

then we can decide the presence or absence of PU signal by comparing the T(X) with the

threshold as given in equation (4.2).

4.4 Spectrum Detection and False Alarm- A Review

Spectrumdetection relates to the correct detection of the status of the spectrum band. From

SU perspective, high probability of detection provides more chances for SU to utilize the

spectrum band leading to rise in throughput. As stated earlier, if T(X) is greater than the

threshold (! and there is PU active on the spectrum then there is correct detection of the

status of the spectrum band. This is as given in equation (3.5) [11]

prob(T (x) > (!|H1true) =
r

(2

∞
fH1(L(x))dL (4.5)

]

w 2 N
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where L(x) is the probability density function (PDF) of the test statistics T(X). The equation

(4.5) is the probability that the received signal is greater than the threshold given that PU

is active on the band. The probability of spectrumdetection in the simulation is the number

of successful spectrum space detection to the number of sensing attempts. Conversely, false

alarm is falsely detecting the spectrum band to be occupied when actually it is idle [3]. It is

mostly attributed tomultipath fading, which is the attenuation affecting a signal as it travels

through the space (c.f., [68]).In contrast to spectrum detection, if T(x) is greater than the

threshold (! but there is no PU active on the spectrum then there is incorrect detection of

PU status (false alarm) on the spectrum. This is as given in equation (4.6)

prob(T(x)> (!H0true) =
∞
fH0(L(x))dL (4.6)

(2

where L(x) is the PDF of the test statistics T(X). This is the probability that the received

signal T(X) is greater than the threshold given that the PU is not active on the band.

4.5 Proposed Model

In this section, the proposed SANmodel of a node of a cognitive is presented. It is an open

network that consist of security control and performance model with sensing, encryption

and transmission nodes. The security control is connected to performance model through

inhibitor arc as shown in Fig. 4.2. The vertical bars represent the transition that generate

the actions that changes the state of the system. For clarity, the set of places which represent

buffers in the performance model are replaced with queues to differentiate it from set of

places in the security model which are not buffers. Tokens are the requests (PUs and SUs)

being transmitted through the network. The arcs connect input place to transition and from

transition to output place. There is also an inhibitor arc that can inhibit the actions of

transitions as appropriate.

The security control model serves to cease the operation of the network when an attack is

detected. A token in the place ’secure’ indicates undetected attack on the the network. This

tokenmovesround themodel according to the rate of security incidents. Firingof transition
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’Sec Inc’ denote a system under attack but not detected. The attack is detected when the

transition ’detect’ fires, depositing the token in the place ’restore’ implying that the system

is being restored from security incident. The cycling of the token in the security control unit

of the model affects the throughput of SU.

It is assumed that PUs have unrestricted access to the spectrum. It is also assumed that

thearrivalprocess ispoissonwhile thecorrespondingencryptionandtransmission timesare

exponential. When an SU detects an idle band, it sends its request to encryption node. The

encrypted data is then sent to the next node for onward transmission.This is as illustrated

in the proposed SAN model of Fig. 4.2.

Figure 4.2: Proposed CRN model

PU and SU requests are generated by PU and SU transitions respectively. SU arrival

activates the sensor indicating search for available spectrum space. If no PU is detected,

then theband is assumed to be unoccupied, theSU request is forwarded to encryptionnode.
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Conversely, if there exist at least one PU request in the transmission node then the spectrum

is assumed to be occupied by PU and SU is expected not to interfere with its transmission.

4.6 Analysis and Simulation

In the analysis, there are two possible scenarios: the spectrum band is idle and correctly

detected to be idle and the throughput is denoted by Th0 and when the band is falsely

detected to be busy and actually it is idle and the throughput is Th1. In the proposed

model, sensing is carried out simultaneouslywith encryption and transmission. Tothis end,

as reported in [11] [19], the average throughput of a CRN is determined by

g = g0+ g1 (4.7)

where g0 is

and g1 is

g0 =P(H0)(1−Pfa(τ))Th0 +P(H0)(1−Pfa(ε))Th0 (4.8)

g1 = P (H1)(1− Pd(τ ))Th1 + P (H1)(1− Pd(ε))Th1 (4.9)

τ is the sensing time, ε is encryption time, Pf a is probability of false alarm and Pd is

probability of spectrum detection. Pf a and Pd are determined as given in equations (4.5)

and (4.6).

Equation (4.8) shows the sum of the throughput for the probability that the band is idle

and detected to be idle while sensing and the throughput for the probability that the band

is idle and detected to be idle within the encryption time. Similarly, equation (4.9) shows

the throughput for the probability that the band is occupied and detected to be occupied

within the sensing time and the throughput that the band is occupied and detected to be

occupiedwithin the encryption time. The addition of the twogives the average throughput

as stated in equation (4.7). However, when the time between sensing is small, there is a

higher detection of idle band though PUs are less protected from interference from SU. This

may lead to rise in SU throughput. But high sensing time may reduce encryption time
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and invariably leads to less secured systemandmore frequent security incident anddrop in

throughput.

In the experiment, rate of service request for PUs and SUs is 0.5. The sensing time is varied

from 0.1ms to 3.4ms and the encryption time from 3.4ms to 0.1ms. This implies that each

participating secondary user is assigned a frame size of 3.4. The frame is divided into3parts

as shown in Fig. 4.3.

Figure 4.3: A typical frame for CRN

the first part is sensing, the second part is for data encryption and the last part is for data

transmission. Each part is divided into slots [19]. The higher the number of slots in each

part the more the number of activities in that part is carried out. The time to security

incident at its very secure state is 15100ms and decreases in steps of 1000ms until it gets

to 1100ms, then it decreases further in steps of 100ms until to 100ms and further decreases

to (time–time/2)s in each progression until it gets to 12.5ms. In the analysis, when the

sensing time is short, the remaining frame time after sensing is used for encryption. The

strength of the security of the system is determined by the length of encryption key which

also determines the encryption time [10]. The longer it takes to encrypt, the more secure

the system become. This implies that short sensing time leads to a secured and less frequent

security incident and more throughput of unlicensed users. As shown in 4.3, when the

sensing time is 0.1ms, 3.2ms of the time frame is used for encryption and 0.1ms is used

for transmission. This is demonstrated more clearly in Fig 4.4. As shown, it takes shorter

sensing time and more frequent sensing to detect spectrum space. In this case, x < x1 < x2.

This indicates increase in sensing time from x to x2 and subsequent decrease in probability

of spectrum detection. In (i), the sensing time is short indicating more detection of idle

spectrum space. However, it takes longer encryption key time to encrypt the requests. This

leads to increase in throughput. This increase is sustained until the sensing time is greater

than the encryption key time. At the point, there is also increase in the rate of security

incident and leading to decrease in SU throughput.
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Figure 4.4: Illustration of interplay between sensing, encryption and transmission in CRN

However, longer sensing time increases theprobabilityof falsealarm. Foreffective spectrum

detection algorithm, the probability of detection should be as high as possible while the

probability of false alarm should be as low as possible.

Figure4.5:Combinedprobabilityofdetection,probabilityofbeingsecureandandnormal-
ized throughput



51

Given that the average inter-arrival time of SU request time is 2ms while the sensing and

encryption times varies as explained earlier, the throughput of SU is expected to continue

to increase until the sensing time is greater than the average inter-arrival time. Reasoning

naively, one would expect sharp drop in throughput at that point, but that is slightly not

the case since before then, the network would have experienced severe security incidents

leading to fall in throughput much earlier than expected as shown in throughput of SU in

Fig. 4.5. The probability of detection is high initially due to frequent sensing but decreases

as the sensing time increases. Similarly, the probability of system being in secure state is

highat thebeginningdue to smaller sensing timebutdecreases as the sensing time increases

as evident in Fig.4.5. The combined performance, sensing and securitymeasure (CPSSM) is

the additive sumof theprobability of spectrumdetection, probability of the systembeing in

secure state and normalized throughput calculated as shown in equation (10)

CPSSM = P (SD) +P (Sec) +NormT (4.10)

where P(SD) is the probability of spectrum detection, P(Sec) is the probability that the

network is secure and Norm T is the normalized throughput of SU. CPSSM is a straight

forward measure for sensing, performance and security tradeoff. Fig. 4.5 shows that it has

a clear maximum at sensing time corresponding to 1.4ms. Similarly, an experiment was

carried out to determine the minimum point for the combined metrics of probability of

false alarm, probability of loss and probability of the network in an insecure state. The

probability of loss in this context is the probability of the number of requests that is dropped

due to false alarm or PU occupying the channel. In the experiment, the queue limit is set

to 5. This implies that any job transmitted after the queue if filled will be dropped. As

stated earlier, probability of false is the probability that the spectrum band is idle but CRN

declares it occupied. Theprobability of false alarm in this experimentwasdeterminedusing

the following simple equation.

P (SD) + P (FNIB) = 1 (4.11)
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but

P (FNIB) = P (PUOB) + P (FA) (4.12)

Therefore,

P (SD) + P (PUOB) + P (FA) = 1 (4.13)

P (FA) = 1− (P (SD) + P (PUOB)) (4.14)

Where P(FNIB) is the probability of not finding idle band, P(PUOB) is the probability

of PU occupying the band and the P(FA) is the probability of false alarm. P(PUOB) is

represented in themodel as the probability that the transmission queue in Fig. 4.2 is greater

than zero. As shown in Fig. 4.7, the probability of loss decreases because though there

is initial frequent spectrum sensing and subsequent detection of idle band, it takes longer

encryption time to encrypt the request before transmission. The encryption node in this

context is the bottleneck. This probability raises again when the rate at which the CRN

detects and forward requests is less than the encryption rate. Similar to themaximumvalue

for the combined metrics, the minimum point can also be determined by straightforward

addition of these metrics as shown in Fig. 4.6.
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Figure 4.6:Max and Min for the CPSSM

Fig. 4.6 compares theminimumandmaximumpoint for theCPSSM.Asshown in the figure,

the minimum and maximum point for the CPSSM occur at same sensing time of 1.4ms.
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Figure 4.7: Metrics for probability of false alarm, probability of network in insecure state
and probability of loss

Inpractice, this is theaveragesensing timeatwhichCRNisexpected to findan idlespectrum

band and if no idle band is detected after this time, then it will sense again after an interval

of time.

4.7 Summary

ACRNisproposedwiththecapabilityofsensingandencryptingrequestsinconjunctionwith

security control mechanism. In this context, an ’optimal’ impact of sensing, encryption and

intrusion detection mechanism on the performance was studied and a tradeoff for optimization

of parameters for sensing, security and performance, ensuring good and usable cognitive

radioswasdetermined. Theresultofthesimulationshowsthatthereexistanoptimalsensing
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time that maximizes the combined probabilities of ’spectrum detection’, ’CRN being in

secure state’, and ’normalized throughput.’ Simulation results are alsopresented to validate

the analysis. In the next chapter, the proposed SAN model for investigating the impact of

scalability on the performance of secured CRN will be presented.
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5
Impact of Scalability on the Performance of Secure

Cognitive Radio Networks

5.1 Introduction

The use of CRN has become necessary due to underutilization of licensed spectrum bands.

Study shows that about 75% of allocated spectrum are not being utilized in a number of

locations [14] [69]. Regulatory bodies approvedCR for SUs to access the idle spectrumband

without interfering with the PU signal. The main bands of interest for the CR are very high

frequency (VHF) and ultra high frequency (UHF) due to their excellent propagation [70].

The licensedowners of thesebands are television,mobile andsatelliteoperators. Signal from

theseoperators canbe very lowandrequirehighdetection rate. Sensing is therefore required

to identify an idle spectrumband. Sensing in this context is probing through spectrumband

to detect when it is idle [3]. It is carried out periodically and only when there are requests

to transmit. If an idle band is detected, SU will use the space for the transmission of its

requests based on the SLA. CRN sensors are powered by battery [71]. A combination of

sleeping and censoring is assumed as in [72] in order to conserve energy. Sleeping implies

that the radio device switches off its power when not sensing to save power. Censoring in

contrast denotes sensing and making decisions about the status of the band.

It was stated in [26] that PUs may not allow SUs to access their band without benefit.

Usually, SUs are admitted to the band based on the benefits offered by the competing SU

entities.SUs with more benefits to PUs are admitted first. For instance, SUs with history

of less interference to PU signal are considered a priority over those likely to cause more
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interference.

Though idle bandmaybe identified byCRN, however, SUsmay experiencedenied access to

the spectrum due to attacks on CRN or insufficient resources for security processing and

transmission, leading to drop in SU throughput. To enhance the throughput and maintain

optimal security, [73] [11] proposed sensing, security and throughput trade-off. The aimwas

todetermine the sensing time thatmaximizes the combinedmetrics for sensing, security and

performance. Unfortunately, the above studies only considered static resources. In this case,

though the idle bandmay be identified, the available static SU resourcesmay be inadequate

to fully utilize the idle spectrum band before the reappearance of PU. Additionally, there

was no emphasis on the detection of SU interference to PU signal.

This chapter proposes scalability as an approach to fully utilize the idle spectrum band and

at same time propose a sub-model to detect SU interference to PU signal. Scalability in this

context is the ability of the CRN to dynamically add or remove resources according to the

service requests [73] [74].Very often, PU activities on spectrum band may lead to delay in

transmission of SU requests. However, error in detection of PU signal (miss detection) may

result in an additional increase in SU throughput as would be explained in the subsequent

Section. In this case SU and PU will be transmitting simultaneously on the band. Thiscan

be used to predict SU interference level to PU signal. Security incidents also obstruct SU

from using the idle spectrum band. These scenarios result in increase in SU requests in the

queue. To increase requests transmission, if an idle band is detected, considering that there

isabuild-upofSUrequests, additional resourcesaredynamically released ineffort to largely

utilize the idle band for the transmission of waiting SU requests before the reappearance of

PU. This way, much of the SU requests are transmitted within the given idle time of the

spectrum. The main objectives of this chapter are:

1)To introduce scalability as a means of increasing the performance of CRN.

2) Tocompare SCRN and UCRN

3) To propose a model and quantify the interference level of SU to PU signal;

4) Toproduce an architectural design of CRN for optimal performance upon sudden surge

in SU service requests.
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5.2 Brief overview

CRN allows SUs to sense licensed spectrum in order to transmit if an idle band is detected.

Due to the unpredictable nature of PU activities on the spectrum, it is imperative that SU

swiftlyuse thebandas soonas it becomesavailable.However,duringsensing, theCRNcould

falselydetect theband idlewhenactually occupiedbyPU, leading to harmful interference to

PU signal. CRN could also detect the band to be occupiedwhen idle. These scenarios create

harmful interference to PU, packet loss or underutilization of spectrum band for SUs. This

workproposes SCRN in SANformalismwith SU interferencedetectionmechanism to study

the impact of scalability on the performance of single node of CRN towards an effective

optimization of an idle band by SUs. In this context, the instant the band becomes idle

and there are SUs requestwaiting for encryption and transmission, additional resources are

dynamically released in order to largely utilize the spectrum space before the reappearance

of PUs. These extra resources make the same service provision, such as encryption and

intrusion detection as the dedicated resources. Typical numerical simulation experiments

are carried out ’with’ and ’without’ scalability in consideration to miss detection and false

alarm. This is based on the application of Mobius Petri Net package, in order to determine

the impact of scalability towards the enhancement of nodal CRN sensing, security and

performance trade-offs. The results indicate sustained performance of SUs at the CRN

node due to scalability of resources during heavy traffic periods.The results also shows an

unexpected increase in SU throughput when there is an interference to PU signal.

5.3 Review of Related Works

It has been proposed in the literature that the efficiency of CRN should be improved in

terms of sensing, security and performance. An experiment was carried out in [75] [76] to

improve the performance of service channel by applying scalability approach. The result

of the simulation shows an increase in the throughput as a result of this approach. An

investigationwascarriedout in [74] to study scalability andperformanceofwebapplication

on cloud platform. The work presented novel dynamic scaling architecture with load balancer
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for routing user requests to web application deployed on a virtual machine. The work

demonstratedan increase sustenanceofperformanceuponsuddensurge in servicedemand.

A study was undertaken in [11] relating to sensing-throughput trade-off in cognitive radio

networks. The focus was to determine the sensing duration for the maximization of the

achievable throughput with sufficient protection of PUs requests. The analysis of the

simulation results revealed that there exist an optimal sensing time that yields the highest

throughput. An experiment was carried out in [22] to determine the number of sensing

nodes required in cooperation in order to improve the accuracy of spectrum detection. The

optimal number of cooperating radios needed to minimize detection error probability and

maximize throughput in CRN for Wi-Fi networks were derived. One of the studies above

considered dynamic infrastructure but not in the context of CRN.The study also did not

reflect on security and its performance implications. The rest of studies did not take into

consideration the unpredictable nature of service demand and the application of scalability

as appropriate to improve the performance of CRN.

5.4 CRN andCLOUD

Cloud computing is used to define an applicationdelivered as a service through the internet

and system software that provide the service [77]. It has been found to provide some

advantages to CRN. In [26], cloud computing infrastructure was used to store spectrum

opportunities. This way, it was easy for SUs to access and securely use idle spectrum band.

Sensors of each of the multiple spectrum reports the idle spectrum space to a geolocation

database located in cloud. In this work, scalability feature of cloud computing has been

exploited to improve the utilization of idle spectrum and largely transmit waiting requests.

In this case, a load balancer is used to add resources when needed or withdraw it when it is

no longer required.
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5.4.1 Scalability of CRN Resources

Scalability is a feature of cloud computing that allows its resources to be scaled according to

service demand [78]. It is difficult to achieve due to unpredictable nature of service demand

and unknown nature of service invocations. In order to achieve scalability, [75] introduced

twoeffective scalability approaches: service replicationandmigration. Service replication is

amethod of making a replica of service already running on amain server without affecting

theoperationof the service inprogress. This is awayof securingadditional resources tobear

up against large volume of service requests. Service migration is an approach that places

a service on another node when a node cannot provide high Quality of Service (QoS) as a

result of problems. In the model under study, it is a means of transferring service to a new

serverwhen there is servicedegradationresulting fromunpredictable servicedemand. This

transfer occurwhen thenumberof requests in queue is of a certain thresholdpredetermined

by SLA.The flowchart for the scalability of CR resources is as shown in Fig. 5.1.



61

Figure 5.1: Flowchart for the scalability of CR resources

Scalability is highly needed in a long term ’ON’ and short term ’OFF’ PU activities. This

is further explained in Section 5.7. Long term ’ON’ is used to describe a period during

which the band is mostly occupied by PUs. In a long term ’ON’, PUs utilize the band for

an extended period of time while SUs are in queue waiting for PUs to vacate. When the

band becomes idle, SUswill swiftly transmit all their waiting request within the given time

by releasing additional resources since thewaiting requestsmayhave already exceeded the

threshold. However, the utilization of the idle spectrum band depends on the sensing time

of CRN sensor. If it takes longer time to sense, then SU will be denied the opportunity to

transmit all its requests. In this case, the average number of requests required to cause the



62

release of additional resources will remain below the threshold and no additional resources is

released.

5.5 Predetermine threshold for performance measurement

Inqueuenetworkmodel suchasGE/GE/1/N, lengthof queue is an importantperformance

metrics to determine the quality of service of a CRN. It is the average number of requests

waiting to be served in queue. This can be expressed as [79].

L=ρ/2(1+(Ca2+ρCs2)/(1−ρ)) (5.1)

Lq = L− ρ (5.2)

where L is the number of requests in the system

Ca2 is the square coefficient of arrival

Cs2 is the square coefficient of service

Lq is the number of requests in the queue

The server utilization is given by

ρ = λ/µ (5.3)

where λ is the request arrival rate and µ is the service rate. It is assumed that to have a

stable system, λ < µ must hold. This in words implies that to have stable network without

much volume of requests in the queue, the mean arrival rate must be less than the mean

service rate [26] [79]. Queue discipline such as FIFOcommonly obtainable in queue network

model is complex to represent in SANmodel. However, SANmodel is preferred because it

is a graphical tool for the representation of systems whose dynamics are characterized by

conflict, concurrency, synchronization, mutual exclusion and other systems which cannot

be described by a queuing network model. SANs just like GSPNs comprises of places,

transitions, arcs and inhibitor arcs which defines the structural components. While places

areused torepresentqueueorbuffer for incomingrequests, transitionsareused to represent
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actions that changes the state of the system. Arcs connect input place to transition and

from transition to output place. Also, inhibitor arcs are used to enable firing of transition

when a place contain a token less than the multiplicity required to enable the transition.

These have been explained in detail in Chapter 3.

Thenetworkunder study is representedbya single server connected toa redundant one that

only come to operation if ri >k, i=1,... where r is the number of requests in queue and k is

the queue capacity. The admission of requests to the dedicated service station is a function

of the capacity of the queue. If requests arrive and find the queue full, i.e. ri=k, i=1,2,..., a

complementary channel would be provided.

In theproposed SANmodel, the number of requests in a queue is represented as the average

number of tokens in the place ’Enc queue’ as shown in Fig. 5.4. It is used as a indicator to

determinewhenanadditional resources is required. If theaveragenumberof requests in the

place is greater than a predetermined threshold, then a complementary channel is released,

but withdrawn otherwise.

5.6 Determining the Detection Threshold

Most existing works in CRN assume that noise power is constant in the licensed spectrum

over a period of time. However, [66] presented an adaptive dynamic energy detection strategy

withadjustable thresholdwhichdependson thenoisepower. This is because in reality,noise

power varies over time due to temperature change and depending on the radio frequency

hardware characteristics. In some applications, it appears simpler to identify signal-free

sample due to infrequent occupation of the channel. In CRN, it is more challenging to

identify samples with only noise. In order to ensure the availability of noise onlysamples,

[66] introduced the idea of specifying a fixed frequency bandwith no transmission allowed.

In theproposed idea, thededicated frequencyband fornoisepower estimation isdenotedby

BR and the part to be monitored for dynamic access by Bc as shown in Fig. 5.2.
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Figure 5.2: Proposed structure for determination of detection threshold [66]

Since the noise is assumed to be white, therefore, the noise power in BR is proportional to

thenoise in Bc. Therefore, the proposed estimation threshold is obtained bymultiplying the

noise powermeasurement in BRwith a factor µ representing thedesired level of false alarm

probability.This is then used as a threshold for detection of PU signal.

5.7 CRN and PU activity model

It was stated in [26] [81] that PU uses the spectrum in on-and-off manner. It occupies the

band for a period of time and then vacate. CRN employs spectrum sensing to detect the

off period and allow SU to use it. The Fig. 5.3 demonstrates the idle and busy time of the

spectrum band.

If the PU occupies the spectrum band more frequently, it will only allow short interleave



65

dt 0 1

dt 1 0

dt

Figure 5.3: Transition diagram for the spectrum going from idle to busy state

spectrum space for cognitive use [81]. This will result in decrease output of SU. The

throughput can be improved within each interleaved spectrum space by automatically

releasing additional resources if the number of SU requests is greater than thepredetermine

threshold. For instance, the probability of spectrum band being in idle state (interleave

space) for cognitive use can be estimated using Kolmogorov equations [82] as shown in

equation (5.4)-(5.10). The symbolic solution to this Kolmogorov equation can be obtained

usingmaxima. Maxima is a software package that canmanipulate symbolic and numerical

expressions, including differentiation, integration, Taylor series etc.

dp0 = −p λ(t) +p µ(t) (5.4)

dp1 = p µ(t) − p λ(t) (5.5)

where dpi(t) is the rate of flow of probability to i. Solving the equation using Maxima, the

following symbolic equations can be obtained [82]

P0(t) =
µ

+
λ + µ

λe−(λ +µ)t
λ + µ

(5.6)

λP1(t) = λ + µ −
λe−(λ+µ)t (5.7)

λ +µ

where µ is the rate at which PU reoccupy the band and λ is the rate at which the spectrum

band becomes idle. The equation (5.7) shows that the long term availability of the spectrum

for cognitive use is defined as [82]
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λ

µ

0 µ

P0(∞) = λ + µ (5.8)

and the long term unavailability of the band is

P1(∞) = λ + µ (5.9)

Equation (5.9) can be further represented as

P (∞) = (1 +
λ
)−1 (5.10)

It simplymeans that if the rate at which PU accesses the spectrum band decreases, then the

probability for the availability of spectrum for cognitive use increases leading to improvement

in SU throughput.

5.8 Constraints on SU spectrum Access

There are some identified factors that impede the use of idle spectrum by CR users:

Regulations: Regulations haveput constraints on the SU’s access to spectrumband. This

is because regulatory bodies restricted SUs to the use of the bands only when not in use by

PUs. It is mainly to protect PUs from harmful interference of SUs [26]. Therefore, CRN

is required to sense the spectrum band and only transmit if an idle band is detected. As

stated earlier, longer stay of PU on the band denies SU the opportunities to use it. This is

mostly common in urban areas where they are high concentration of PUs. In rural areas,

there is infrequent use of spectrum band by PUs. In this case, the band is mostly available

for cognitive use. However, CRN are still required to sense the spectrum to ensure no

interference whenever PU wants to access it.

Errors in SpectrumDetection: Errors in spectrumdetection, for instance, false alarm is

an advantage to PU as such errors protects it from SU interference. False alarm is detecting

the band occupied when actually idle [3]. In miss detection error, CRN falsely detects the

band idlewhen occupied byPU and permit SU to transmit, thereby causing interference to
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PU signal. Error in detection of PU signal may result in an increase in SU throughput.

Let SU throughput when only PU is transmitting be Tpu,

throughput when PU and SU are simultaneously transmitting (miss detection) be T(pu + su)

and throughput when only SU is transmitting be denoted by Tsu.

In event of interference, the total SU throughput can be expressed as Ti = T(pu + su) + Tsu

If there is no interference, then Tn =Tsu

where Ti is total throughput during interference

and Tn is the total throughput when there is no interference.

This implies that if there isnointerference,SUareassumedtohaveusedonlythe ’OFF’period

when PUs are not transmitting for their transmission. Conversely, if there is interference,

then the SUs are assumed to have transmitted simultaneously with PUs and continues

the transmission after the PUs have vacated the channel. This is the case that result in

increase in SU throughput. This throughput is SU bits assumed to be corrupted during

the interference with PU. The packets transmitted during the interference is taken to be

corrupted since it will arrive out of order. This is in assumption that the network is using

packet switching inwhich longmessages are divided into smaller packets and send through

the network. It uses store and forward transmission and messages are received in order

before transmission. The interference may be caused by attack [8] or multipath fading. In

this work, it is assumed that the probability of false alarm increases as the sensing time

increases.In this case, SUs are denied the opportunities to use the spectrum band leading

to decreased throughput of SU.In contrast, short sensing time leads to increase probability

of miss detection. Using energy detection technique, the probability of false alarm can be

expressed as [11]

prob(T(x)> (!H0true) =
∞
fH0(L(x))dL (5.11)

(2

where T(x) is the energy of the received signal which is compared to a predetermined

threshold given in equation (4). H0 denotes noise sample. L(x) is the Likelihood ratio of the

data under observation. Based on the above equation, false alarm can be expressed as the

probability that the received signal T(x) is greater than the threshold given that PU is not

active on the band. If this probability increases, then SUs are denied opportunities to use

the spectrum band.
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Malicious Attack andDetection: One of the factors limiting SU from sharing spectrum

band is malicious attack. Attackers may try to eavesdrop on the content of requests being

transmitted. In [10], a model is proposed that encrypt request and also detect an attack.

This model is not tailored to a specific system. The operation of the system is ceased on

detection of attack. This causes delay and increase in the number of requests waiting to be

transmitted and invariably lead to decrease in throughput of SU transmitter.

Anyof the above scenarios could lead to a build-up of the number of requests waiting to be

transmitted. When the queue is long, taking into account that the idle time of the spectrum

band decreases as soon as PU vacate the channel, the propose system releases additional

resources to complement the dedicated one. This is to largely transmit the requests before

the reappearance of PU on the band.

5.9 Security implementation in the proposed SAN model

This work adopts the combined sensing, security and performance tradeoff in CRN [73].

In the model, arriving SU on finding an idle encryption node gets encrypted and then

transmitted. The model included security control that ceases the operation of the CRN on

intrusion detection. The effects of encryption and security control is quantified and sensing

time at which the combined tradeoff is maximized is predicted. In the proposed model,

sensing time is used as the referencepoint to determine the improvement in theperformance

as a result of scalability. In a short sensing time scenario, the sensing node senses more

frequently, thereby detecting and transmitting more requests, though susceptible to miss

detectionerror. However,as thesensingtimeincreases, theprobabilityofdetectiondecreases

resulting insensingnodeas thebottleneck. This implies thatwhen therearewaiting requests

to transmit, extended sensing time indicates that there is inefficient spectrum detection

which limits the transmission of these requests.
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5.10 SAN and Mobius Petri Net Package

QN, SAN and GSPN models are some of the modelling approaches that can be used to

generate therequiredtraffic for thenetworkunderstudy.Asstatedearlier,QNrepresentation

of the model behaviour are only possible where only few details are required in the specification

ofthemodel[83].Onthisnote,SANisapreferredintherepresentationoftheproposedmodel.

This is because, SAN is introduced to capture system behaviour involving synchronization,

concurrency and conflict phenomena. Mobius petri net package is a simulation tool that

supportSANmodel. Thepackagehassomefeatures toabstract thebehaviourof theproposed

model. A transition, graphically represented as rectangular bar as detailed in Chapter 3 are

used to generate actions that changes the state of the system [84]. The transition is enabled

when an input place connected to transition contain at least one token. Enabling indicate

execution of process while firing of a transition corresponds to completion of execution

process [84]. Enabling and firing of a transition is associated to some randomdelaywhich is

exponential [84]. Circular component is used to represent the buffer for storing incoming

requests. Transitions connected to the buffer are enabled immediately there is arrival of

token to the place (buffer) indicating start of execution process. Tokens are requests or

packets being transmitted through the network. There is arc for connecting input place to

transition and from transition to output place. Inhibitor arc stops the execution of enabled

transition. Inhibitor arc inhibits the firing of enabled transition.

5.11 Proposed Model

The proposed model is presented as a single node of CRNwith two classes of requests (PU

and SU requests) on a single spectrum band. PUs requests have priority over SUs requests.

Themodel consists of 3 components: SU activity,PUactivity sub-model and security control

component. As shown in Fig. 5.4.,

the PU arrival is modelled as the firing of the transition ’PU arrival’. There are two tokens

in the place ’idle space’. Transition ’PU arrival’ is enabled whenever there is at least one

token in the place ’idle space’. A token is deposited in the place ’PU in service’ when the
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Figure 5.4: Proposed SANmodel for CRN

transition ’PU arrival’ completes. Firing of transition ’PU departure’ transfers the token

back to ’idle space’ indicating completion of service by PU. The transfer of token to

place ’idle band’ shows that the band is now available for cognitive use.The second token

is used to detect interference (miss detection) as shown in Fig. 5.5.

In the model, there are 3 states. State 1 with two tokens at the ’idle space’ indicates an idle

band for CR use. In other words, there are no PU request in the band. The probability that

the band is idle and available for CR use is

P [idlespace = 2] = 1− P [PUinservice = 1] (5.12)

In state 2, there is PU arrival demonstrated by transfer of token to the place ’PU in service’.



71

Figure 5.5: Token transitions in the proposed model

This indicates that PU is transmitting in the band and no interference from SU. The

probability that the band is unavailable for CR use is

P [PUinservice = 1] (5.13)

State 3 shows that the two tokens are in a place ’PU in service’ implying a miss detection

leadingtosimultaneoususeof thebandbybothSUandPU.Theprobabilityofmissdetection

is

P [PUinservice = 2] (5.14)
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Similarly, transition ’SU arrival’ generates SU arrivals which are temporary stored in SU

arrival queue pending the detection of an idle band. These requests are transferred to the

encryption node as soon as it is detected idle. If the node is busy by other SUs, there are

stored in the queue. Load balancer are used to observe the average number of requests in

the place ’Enc queue’ and determines when an additional resources are needed.

SUcomponentsconsistof sensing,encryptionandtransmissionnodes. Encryptionnodeand

SU transmitter are replicated and made redundant in events of low traffic but comes into

full operationwhen there is a surge in service demand. It is assumed that SUs paymore for

this extra services rendered to them. The sensing, encryption and transmissionnodes for the

dedicatedresourcesareconnectedtoasecuritydetectioncontrolmodel. Thecomplementary

resource which consist of encryption and transmission nodes is also connected to security

control.

In the security control, the token in the place ’Secure’ is used to indicate a secured network.

However, firing of transition ’Sec Inc’ shows security breach which is demonstrated by

transfer of token to place ’Insecure’ but not detected. The detection of the security incident

is indicated by the firing of the transition ’Detect’, transferring the token to the

place ’Restore’. Token at the place ’Restore’ block the operation of CRN until a new key is

generated. The rate at which the security fails depends on the length of the encryption key.

It was stated in [73] [10] that the longer the encryption key, the stronger the security of

the network and vise-versa. In the proposed network, extensive sensing has adverse effects

on the security and by extension the throughput of the SU. More information about the

combinedsensing, performance andsecurity tradeoff inCRNcanbe found in [73]. As shown

in Fig. 5.4, the performance part of the model has a redundant resources that only come to

operationwhenthenumberof requests intheplace’Encqueue’ isgreater thanpredetermined

threshold.

It is challenging to choose the right input parameter that is relevant in determining the

behaviour of the proposed model. However, considering the model verified by [10], it is easier

to formulate the input parameter for the proposed model.

The experiment was started with sensing time of 0.1ms to 3.4ms while the encryption time

varies from 3.4ms to 0.1ms for both the main server and virtual server. It is assumed that
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the encryption time is proportional to the encryption key length. The rate of service request

for PU varies from 0.01 to 0.5 (0.5, 0.1, 0.01) while SU requests rate is 1.0. The transition

rate for SU transmission node is 10. The arrival and service rate of PU is 1. Time to security

incident starts from 15100ms and decreases in steps of 1000ms until it gets 1100ms, then

decreases in steps of 100ms until 100ms and further decreases by (time-time/2)ms in each

progression until it gets to 12.5ms. In thiswork, the frame structure of [19] inwhich eachCR

user is assigned a frame size is assumed. Frame is a transmission unit which can be divided

into fixed number of slots. The first slot in the frame is used for sensing the spectrum to

establish the status the band. The second slot is used for encryption and the last slot for

transmission. As shown in the Fig. 5.4, the request generated by SU joins the SU queue.

This activates the sensing node. The sensor senses the band through the place ’PU in service’

to detect the presence or otherwise of the PU signal. If there is token in the place ’PU in

service’ then no SU encryption process is allowed to take place and vice versa. Similarly, if

the sameplace contain a token, no SU transmission takes place. However, if the tokenmoves

from ’PU in service’ to ’idle spec’ then SU requests can be encrypted and transmitted.

5.12 Results and Analysis

This experiment is carried out to determine the optimum throughput that is achievable in a

SCRN and unscalable CRN (UCRN) with consideration to encryption and security control

mechanism. It is also aimed to determine the optimum value for the combined sensing,

security and performance trade-off in SCRN.

In a SCRN, the surge in service demand is handled by provisioning of additional resources

in order to swiftly utilize the band before the reappearance of PU. However, the capacity of

the resources should not exceed the spectrum bandwidth in order to avoid losses.

The Fig.5.6 - 5.22 show the result of the experiment carried out. The total throughput

attained by SU in a SCRN and UCRN depend on the activities of PU on the band as

illustrated in equations (5.4) - (5.10)

At the beginning, the average sensing time is 0.1ms and SU request rate is 1.0. This time

increases in steps of 0.1ms until 3.4ms. It implies that the network senses at an average
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Figure 5.6: Throughput for the SCRN

rate of 10 down to 0.29. PU request rate of 0.01, 0.1 and 0.5 are used and remain constant

for each experiment. Since sensing, in this case, occurs frequently at initial rate of 10, the

probability of detecting and transmitting through an idle spectrum band is high, resulting

in largevolumeofSUrequestsbeing transfer to theencryptionqueuewaiting for encryption

and to be transmitted. Consequently, additional resources, based on the queue length is

introduced. This results in overall increase in throughput. The increase in throughput is

expected to continue until SU request rate is greater than or equal to the sensing rate. At

this instant, the complementary resources is withdrawn. The throughput as a result of the

additional resources is demonstrated in Fig. 5.8.

Asvisible in5.7., the improvedoverall SUthroughputcontinuesuntil itspeakat sensing time

corresponding to 0.9ms. Thereafter, the throughput is seen todecline. This is demonstrated
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Figure 5.7: Throughput for the SCRN and UCRN

by continues drop in throughput until the resources is assumed to be withdrawn at the

sensing time of 1.75mswhich is the pointwhere there is intersection in throughput between

SCRN and UCRN as revealed in the figure. At this sensing time,requests generated by SU

may not be largely transmitted because the sensing is not frequent enough to detect the

required spectrum space to transmit them.As such,the requests are either on the queue or

are lost. This implies that increase in packet loss due to sensing process is proportional to

increase in sensing time as demonstrated in Fig. 5.12-5.14. It also depends on the PU arrival

rate. This is because, the probability of miss detection is minimized when the PU arrival

rate is 0.01, implying very minimized interference from SU. PU arrival rate of 0.5, however,

demonstrates ahighprobabilityofmissdetection andhigher interference. Since sensing rate

is determined by the rate of packet generation by SU, then it is essential that on detection

of interference,SUreduces its rateofpacketgenerationandconsequentlysensing frequency.



76

Figure 5.8: Throughput of SU via complementary resources

Similarly, the packet loss probability due to encryption delay is seen to be decreasing inversely

with the sensing time. This is because, though encryption node can encryptmore request as

sensing time increases, however, fewer requests are forwarded to it due to increase in the

sensing delay. This is the case for both SCRN and UCRN as shown in Fig.5.9.
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Figure 5.9: Prob. of loss due to encryption delay for the SCRN and UCRN
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Figure 5.10: Prob. of loss due to encryption delay for the SCRN and UCRN
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Figure 5.11: Prob. of loss due to encryption delay for the SCRN and UCRN
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Figure 5.12: Prob. of loss due to sensing delay for the SCRN and UCRN



81

Figure 5.13: Prob. of loss due to sensing delay for the SCRN and UCRN
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Figure 5.14: Prob. of loss due to sensing delay for the SCRN and UCRN

The total number of packet loss due to sensing and encryption delay are as shown in Fig.5.15-

5.17. TheimprovementintheperformanceofSCRNandUCRNcanbeassessedbycomparing

the total packet loss in the SCRN to the packet loss in UCRN. This is demonstrated in Figs.

5.15-5.17. From the Figs, it is common to note that there is significant decline in packet

loss in a SCRN in comparison with UCRN just as there is an increase in throughput. This

increment and significant drop in packet loss are due to the introduction of complementary

resources whenever there is surge in service demand.
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Figure 5.15: The total number of packet loss due to sensing and encryption delay for
SCRN and UCRN
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Figure 5.16: The total number of packet loss due to sensing and encryption delay for
SCRN and UCRN
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Figure 5.17: The total number of packet loss due to sensing and encryption delay for
SCRN and UCRN

If the band ismostly unavailabledue to PU activities as illustrated in equation (5.4)-(5.10),or

falsealarmdetectionashighlighted inequation (5.11), itmay lead tobuild-upof SUrequests

in the queue.On this note, when an idle band is detected, SUwith the aid of CRN transmits

and continue to transmit on the band until PU reappears during which SU vacates the

channel. If thenumberof requests in thequeue increasesmore thana certain threshold, then

additional resource would be introduced in order to swiftly encrypt and transmit the requests

before the reappearance of PU. A predetermined queue length in this case is required as

threshold to decide when the additional resources is required. In this work, maximum of 5

requests in thequeue is needed foradditional resources tobe introduced. Themaximumof5

requests in queue in this case is used in order to swiftly transfer service to a new channel to

aid encryption and consequently transmission of more requests and improve the throughput

before the reappearance of PU. This leads to increase in throughput of SCRN than aUCRN
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which is static in handling the surge in service demand as demonstrated in Fig.5.7.

The result obtained in Fig.5.7. shows that without scalability the maximum throughput of

the SU is 5.97 while with scalability the throughput rose to 6.68 on PU arrival rate of 0.5.

This work also intends to determine when SU transmission is interfering with PU signal.

This is done byquantifying the throughput achievedwhen SU is interferingwith PU signal.

This throughput is assumedcorrupted since themessagesarrives out of order givena packet

switching scenario. It is interesting to note that highest throughput of SU occur at the

highest rate of the PU activity (0.5) on the band. Similarly, the lowest throughput of SU

was obtained at the PU arrival rate of 0.01. This is true for both SCRN and UCRN. The

throughput of UCRN is as shown in Fig. 5.18 Fig. 5.12.
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Figure 5.18: SU throughput for unscalable network.

In this context, the peak of SU throughput occur when the rate of the arrival of PU in the

band is highest. An analysis revealed that the increase in throughput is due to interference

resulting from miss detection given the same PU departure rate (0.01). This is because,

assuming the same departure rate of PU, increase in PU arrival and CRN sensing rate, the

probability of SU interference with PU signal is expected to be high. In order words, the

probability of SU simultaneously transmittingwith PU is raised, leading to improvement in

overall throughput. The throughput of SUwhen interferingwith PU signal can be obtained

bycomparing the observed throughput during theperiod of high interference ratewhen the

PU arrival rate is 0.5 with the throughput obtained during the period of two different low

interference with PU arrival rate of 0.1 and 0.01 respectively. This is as demonstrated in the

Fig. 5.13 5.19 and 5.20 5.14.

The difference gives the total number of SU requests transmitted when SU is simultaneously
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Figure 5.19: SU Throughput via dedicated server during interference

transmitting with PU. Therefore, the interference level can be detected by measuring the

total throughputofSUat instant timeandcomparingitwithanSUthroughputmeasurement

with reduced or no case of interference. For instance, if the throughput of SUwhen the band

is idle is x, then x is used as a threshold to determine the interference level. SU throughput

greater than x in this case is an indication of interference.

The experiment was also carried out to determine the trade-off between sensing, security

and performance in a SCRN. It is aimed at predicting the sensing time at which the

combined metrics of sensing, security and performance is optimum in a SCRN. This is is a

straightforwardadditionof themetrics for sensing, securityandperformance. Thesemetrics

are probability of successful detection of an idle band, the probability of the network in a

secured state, and the throughput of the secondary transmitter respectively. In this case,

the probability of detection is the sensing parameter, probability of network in a secured
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Figure 5.20: Throughput of SU via complementary server during interference

state is a security parameter and throughputmeasures performance. The addition of these

parameter gives an optimumvalue for each of themeasuringparameters. It is expressed as:

CSSPM=P{det}+P{sec}+throughput

whereCSSPM is the combined sensing, security andperformancemeasure in the context of

SCRN

P{det} is the probability of detection

An idle space is assumed to be detected when SUs can successfully transmit on it. In this

case, thenumberof successful SU transmissions canbe ameans todetermine theprobability

of detection. Fig. 5.21 demonstrates the optimum value for CSSPM.

Similarly, the minimum value for the CSSPM is also considered. In this case, the sensing

parameterisprobabilityof falsealarm,thesecurityismeasuredbyprobabilityof thenetwork
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Figure 5.21:Max [Combined sensing, security and performance metrics]

in insecure state and probability of loss is performance parameter.

In the probability of loss, a finite capacity queue was considered. Todetermine the the total

packet loss, the loss due to delays in the sensing and encryption process are added in order

to obtain the total loss needed for the experiment. This is expressed as shownbelow.

TL= LSD + LED

where TL is the total packet lost

LSD is the loss due to sensing delay

LED is loss due to encryption delay

Therefore, the minimum value for the CSSPM is expressed as CSSPM{min}= P{FA}+P{TL}+P{insecure}

Fig. 5.22 shows the minimum point for the CSSPM. As demonstrated in the next figure,

the minimum and maximum values occur at the same sensing time, giving credence to the
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Figure 5.22:Min [Combined sensing, security and performance metrics]

experiment.
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Figure 5.23:Min & Max [Combined sensing, security and performance metrics]
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5.13 Summary

CRNwith scalable feature of cloud computing in conjunction with encryption and security

controlmechanism has been proposed. An experiment was carried out ’with’ and ’without’

scalabilitytodeterminethe impactontheperformanceofCRN.Theresultof theinvestigation

shows that the proposed CRN can sustain good performance upon sudden surge in service

demand. The experiment also reveals that scalable system attains its optimum throughput

at shorter sensing time which is good for battery saving.

In the following chapter, the proposed investigation was carried out to predict a network

underDoS attack and one experiencing congestion. This is necessary in order to ensure that

repair is not initiated when not required.
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6
Detection of Network Congestion and Denial of

Service (DoS) Attacks in Cognitive Radio

Networks

6.1 Introduction

The scarcity of spectrum has necessitated the need for the introduction of CRN. As stated

in theprevious chapter, about75% of licensed spectrumare unused for significant periodof

time (c.f., [11]-[16]). As stated earlier FCC allows SUs to access the licensed spectrum with

theaidofCRN.This implies that SU relieson the information fromCRNbefore transmitting.

Due to itswireless nature, a CRN is very vulnerable to attacks as a result of its adopted open

policies and programming interfaces that expose the configuration options of a controlling

entity such as service providers deploying CR (c.f., Bhattacharjee et al. [30] and Attar et al.

[28]). The open access policy is because a portion of the radio spectrum is reserved as

license-free bands such as in industrial, scientific and medical (ISM) bands [85]. The

controlling entity can frequently change the operating parameters, for instance, the access

policies, operatingband, transmissionbandandmodulation. As a result, the configurability

features are vulnerable to manipulation (c.f., Clancy and Goergen [86]). Consequently,

attackers could seize this opportunity to introduce an attack such as preventing the SUs

from receiving signal from CRN in the form of Denial of Service (DoS) attack or eavesdrop

on the packet on transmission. In order to secure the network from eavesdroppers (c.f., [87])

or attacks that modify the content of requests, (c.f., Wolter and Reinecke [10]) suggested

encryption processing in conjunction with intrusion detection mechanism to mitigate the

94

Chapter
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attacks. Similarly, (c.f., Xu et al.[89] and Pelechrinis et al. [9]) proposed PDR to detect

the presence of DoS or jammers. Though the above studies referred to congestion andthe

adverse effects on the performance of the network as jamming attack, nevertheless, this has

not been applied in the context of CRN.

In this chapter, PDR is applied in CRN with experimental evidence to detect jamming

attack and differentiate it from network experiencing congestion. The study alsomeasures

the PDR and depending on the result threshold, infer if the network is i) working normally

ii) under jamming attack and iii) experiencing congestion. Moreover, a new congestion

control mechanism is proposed that throttles SUs requests in the presence of any perceived

congestion. It also shields the network from attacks that eavesdrop on the content of the

request and at same time protects it from attacks that jam the network.

This chapter focuses on the detection of a jammer in CRNs and clearly distinguish it from

network congestion. This is challenging due to the management of priorities and pre-emptions

sincethepresenceofPUsintroduceambiguity inthedeterminationof thepresenceof jammer

with regards to network congestion.

6.2 Study Overview

A CRN is based on a technology that enables SUs to access available licensed spectrum not

occupied by PUs. As stated in previous section, a CRN is vulnerable to fraudulent attacks,

which might attempt to eavesdrop or modify the contents of packets being transmitted.

Moreover, denying SUs the opportunity to use a free band leads to underutilization of the

spectrum space. In this case, it is important as well as challenging to differentiate between

networks under DoS attack from network experiencing congestion. This work adopts the

SUs performance measures of packet loss probability, mean queue length and normalised

throughput of the transmission node in order to devise a PDR for SUs aiming to determine

whether or not the network is experiencing a DoS attack. PDR in this case is the ratio of the

number of packets successfully forwarded from the encryption node to the SU transmitter.

To this end, SAN is proposed in order to investigate if the network is under aDoS attack and

suggest apreventivestrategy for anefficientnetworkprotection. Basedon theapplicationof
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theMobius PetriNet Package, typical numerical simulation experiments are carried out and

related operational interpretations are made.

6.3 Cognitive Radio Networks (CRN)

This technology is required to allow SUs to use licensed spectrum. It senses the channel

and only allow SU to transmit if an idle band is identified in an interweave spectrum access

arrangement (c.f., Mehr et al.[90]). In other words, CRN is a link between the SU and

primary base station. For efficient spectrum utilization, CRN is required to sense the band

with high accuracy and to dynamically select the best band for the transmission of SU

requests. It is assumed in this work that each CRN is assigned a frame. Frame is a period

assigned to CRN during which it senses, carry out encryption process and then transmit

SU requests. The transmission rate of a frame is equal to the frame rate multiplied by the

number of bits in a slot (c.f., [91]). It is as demonstrated in Fig.4.3.

It senses for some time and backs off if no spectrum is detected. The average sensing time

for best performance and security is determined as illustrated in (c.f., Ejike and Kouvatsos

[88]). However, after sensing anddetection of idle spectrumband, themalicious node could

hinder the SU from receiving the signal from the CRN (c.f., Kurose and Ross [91]). In this

context, an SU intending to transmit may assume the spectrum to be occupied and would

not transmit, leading to a drop in throughput. It is common to expect the probability of

loss to decrease, because SU will perceive the band busy and would not send its request

for transmission leading to unused spectrum opportunities and consequently, drop in the

probabilityof loss fornetworkunderDoSattack. This is incontrast toanetworkexperiencing

congestion in which the queue length and probability of loss at the encryption node are

expected to be high.

6.4 Review of Related Works

Security is an important aspect of the design of the CRN. Several works in literature have

highlighted the need for secured communication among SUs. These works independently
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either studieddetection of jammingattackor detectionof intrusion in conventionalwireless

networkbut not both simultaneously. (c.f, Xu et al. [89]) proposed different jamming attack

models that adversaries can rely on to disable the operations of wireless networks and also

evaluatetheeffectiveness in termsofhoweachmethodaffects theabilityof thewirelessnode

to send or receive packets. It also discussedmeasures that are basics for detecting jamming

attacks.

An investigation was carried out in (c.f., Wolter and Reineke[10]) to determine the ideal

encryption key length for optimum security and performance of a network. The study was

not linked to a particular system. In the model, there is an intrusion detectionmechanism

aimedatdetectingan intrusionasshowninFig.6.1. Themodelonlyconsidered thedetection

of an attack that eavesdrop or modify the content of requests. It did not, however, consider

an attack that can block the SUs from receiving the information it requires to enable it

transmitornot. Thepaper employedencryptionand intrusiondetection controlmechanism

to mitigate this attack. It measured the trade-off between security and performance and

predicted an encryption time at which the network has optimum performance.

A research was carried out in (c.f., Kulkarni et al.[92]) to study the secured communication

between communicating entities. The paper presents protocol that maintain O(
√
n) secrets

per user where n is the number of users in a system. Similarly, this research is particularly

forpreventing insider attacks such as eavesdroppers thatmayhaveprivileges andcoulduse

the privileges to eavesdrop or modify the content of requests being transmitted. It didnot

consider attack such as jamming that could cause interference to PU or deny SUs the access

opportunity to the channel in the form of false alarm.

An analysis was carried out in (c.f., Syed et al.[93]) to study the use of jammer in preventing

the spectrum sensing and obstructing communication between CRNs. In this model, an

attacker stops the CRN from receiving information it requires to function properly. For

instance, an attacker could block CRN running through a certain frequency from receiving

information about the true status of the channel, resulting in severe interference to PU. The

paper only consideredDoS attacks or attacks that obstruct SU from receiving information it

requires to transmit its request. However, it did not consider attacks that could eavesdrop

or modify the content of requests being transmitted.
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Figure 6.1: Petri net model for combined performance and security analysis (c.f., Wolter
and Reinecke [10])

In (c.f., Cho et al.[94]), the performance characteristics of secure group communication

system(GCS) inmobile adhocnetworks that employ intrusiondetection controlmechanism

in dealing with insider attacks in conjunction with rekeying technique for outsider attacks

wasinvestigated. Thepaperonly consideredattacks thathaveprivileges andcoulduse these

privileges to eavesdropormodify the contentof requestson transmission. Though thepaper

investigates this attack, however,the implementation of this design is different inCRNsince

CRN involves multiple classes. In this context, it suffice to assume that implementation in

GCS has no need to manage pre-emption that may arise due to priorities as it is obtainable

in CRN between SUs and PUs. This priority and pre-emption are the core features of CRN.

This work is intended towards detecting the presence of jammer in CRN and also distin-

guishing it fromnetworkcongestion. This is somewhat challenging since thepresenceof PU
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introduces ambiguity in determining thepresence of jammer as against networkcongestion

in CRN. It involvemanaging pre-emption as required in CRN.

6.5 Problem Statement

In this work, it is assumed that CRN senses the channel non-cooperatively (c.f.,Ngomane

et al.[95]) and only allows SU to transmit if an idle band is detected which depends on

the frequency of the sensing. SU sends transmission request to CRN if it has packets to

transmit. This activates the CRN sensor and depending on the perceived status of the band,

CRN responds with either ’Clear to Send (CTS)’ or ’Not Clear to Send (NCTS)’ signals.

However, attackers aiming to jam the signal could intercept this request bit and falsify it

(c.f., Bhattacharjee et al.[30]) to suit its harmful objective (c.f., Bhattacharjee et al. [30]

and Pathan et al.[96]). For instance, attackers could change the CTS bit transmitted by

CRN to NCTS. In this case, the SUs may differ its transmission and the idle time of the

band is wasted (Yang et al.[97] and Thamilarrasu et al. [98]) . The attackers could also

aim to cause SUs transmission to interfere with PUs signal by changing the NCTS response

of CRN to CTS resulting in SUs transmitting when there is an ongoing PU transmission

causing regulatory violations (c.f., Bhattacharjee et al.[30] and Attar et al. [28]. This is as

illustrated inFig.6.2

Themajor challenge (c.f., Chelli [99]) is to differentiate between theNCTS signal received by

SU when the channel is truly occupied by PU from the signal sent by an attacker when the

network is under DoS attack. The CRN senses the spectrum and if the band is occupied, it

sendsNCTS signal to SUs. Similarly, if the CRN senses the channel and found an idle band,

it sends CTS signal to SU, however, malicious node may intercept this response and swiftly

modify it to NCTS thereby denying SU the opportunity to use the channel. Due to the

similarities betweennetworkunderDoS attack andnetworkexperiencing congestion, aDoS

attack could wrongly be taken as a network congestion and vice versa. This situation may

possibly lead to initiating repairs where and when not needed. Likewise, a network under

attack could also be wrongly assumed to be experiencing congestion. Continuing to assume

a network under attack is experiencing congestion could lead to waste of band resources.
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Figure 6.2:Mode of attack to CRN

This work is therefore based on the need to resolve the conflict in initiating a repair when

not needed resulting from a wrong assumption that a network experiencing congestion is

under attack and waste of band resources resulting from assumption that a network under

attack is experiencing congestion.

Cryptography especially AES with long key length can be used to secure and ensure these

attacks do not occur, however, it decreases the throughput. In some networks that requires

extremeswith respect to security,AESwith longest key length could be appliedwith little or

no consideration to the impact on theperformance ([10]). However, in networkunder study,
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it is assumed that performance is as important as security. In this context, a trade-off is

required. Since the network is not fully secured due to trade-off, it is reasonable to guild the

network against possible security breach. This necessitates the need to introduce measures

to distinguish network congestion from attack.This is required in order to initiate repairs

onlywhen the network is under DoS attack and not when it is experiencing congestion as a

result of the activities of PU.

6.5.1 Congested Network and Network Under Attack

To successfully distinguish between a network under attack from one experiencing congestion,

some metrics are required to capture the behaviour of the model. Specifically, the Packet

Send Ratio (PSR) and the PDR proposed in (c.f., Pelechrinis [9]) are the ratios of successful

encryption and the ratio of successful transmissions respectively.

Packet Send Ratio (PSR): This is the ratio of the number of requests successfully

received by SU encryption node for encryption to the total number of requests intended to

be encrypted (c.f., Pelechrinis [9]).This is the throughput of the encryption node. It follows

binomialdistributionsince it canbe either successfulorunsuccessful. Itmaybeunsuccessful

due to congestion resulting from PU activities or DoS attack. This is represented as shown

in equation (6.1). For instance, if users havem packets to encrypt and only n (n ≤ m) of

the packets are successfully encrypted due to congestion or jamming attack then

P (X = n) =
m ∗ pn(1 − p)m−n =

m! ∗pn(1−p)m−n (6.1)
n m!(m −n)!

where X is the random variable for n independent trials. Thus,

PSR = m!
pn(1 p)m−n (6.2)

m!(m −n)!

wheren is the number of successful packet sent

m is the total number of attempts

p is the probability of success

Packet Delivery Ratio (PDR): Similar to PSR, this is the number of requests successfully
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forwardedfromtheencryptionnodetotheSUtransmitter. Inpractice, it couldbe interpreted

as the throughput of the transmitter at a given time. For example, if the encryption node

encrypts and eventually forwardsn of these requests to the SU transmitter but onlyq (q≤

n)of the requests are successfully transmitted then thePDRis expressedas (c.f., Pelechrinis

[9])
PDR = q!

pq(1 p)n−q (6.3)
n!(n − q)!

where n in this case is the number of trials.

q is the number of success

p is the probability of success

In this work, battery failure is considered an attack since draining the battery power is one

of the strategies adopted by an attacker to introduce DoS attack. An attacker can exhaust

the CRN resources by continually sending Request to Transmit (RTS) signal to elicit CTS

from the targeted CRN. This could drain the power of the battery since it does not depend

on external power source (Raymond and Midkiff[100]).

Throughput in this case is used topredict if the network is experiencing congestionorunder

DoS attack. This is by consideration of two factors that affects the throughput of SUs when

the channel is idle: false alarm in the form of an attack and false alarm resulting from

prolonged sensing. The throughput ismonitored for each frame time and consideredunder

the following cases.

Case A1: The throughput obtained when the band is idle given that there is no false alarm

due to prolonged sensing time and the throughput when the band is idle given that there

is no false alarm resulting from attack within the sensing time.The average throughput as

shown in (c.f., Liang et al. [11] and Bhowmick et al. [67]) to be determined by:

V0 = (P(H0)(1−Pfas)th0+P(H0)(1−Pfaa)th0)(τ)) (6.4)

where Vo is the average throughput for the system within the sensing time.

(Pf as) probability of false alarm due to sensing delay

(Pf aa) probability of false alarm due to an attack.

th0 denote the throughput when the band is idle and correctly detected to be idle
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P (H0) is the probability that the band is idle

(1 − Pf as) is the probability that there is no false alarm resulting from prolonged sensing.

(1 − Pf aa) is the probability that there is no false alarm resulting from attack.

CaseA2: The throughputobtainedwhile theband is idle and there isno falsealarmresulting

fromprolongedsensingandduetoanattackwithintheencryptiontimeandcanbeexpressed

as (c.f., Liang et al. [11] and Bhowmick et al. [67]) :

V1=(P(H0)(1−Pfas)th0+P(H0)(1−Pfaa)th0)(E)) (6.5)

where E is the encryption time

Case B1: The throughput that the band is idle but could not be detected due to prolonged

sensing time or attack within the sensing time (c.f., Liang et al. [11] and Bhowmick et al.

[67]).

V2 = (P(H0)(Pfas)th1+P(H0)(Pfaa)th1)(τ)) (6.6)

where V2 is the average throughput for the system during the sensing time.

th1 denote the throughput when the band is idle and correctly detected to be idle

P (H0) is the probability that the band is idle

(Pf as) is the probability that there is false alarm resulting from prolonged sensing.

(Pf aa) is the probability that there is false alarm resulting from attack.

Case B2: The throughput that the band is idle but could not be detected due toprolonged

sensing time or attack within the encryption time can be expressed as(c.f., Liang et al. [11]

and Bhowmick et al. [67])

V3=(P(H0)(Pfas)th1+P(H0)(Pfaa)th1)(E)) (6.7)

The average throughput for the probability that the band is idle and correctly detected to

be idle within sensing time is expressed as

g0 = V0(τ ) +V1(E) (6.8)
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g0 in this case is expected to be greater 0 aswouldbe demonstrated in the simulation results

and analysis. Similarly,

g1 = V2(τ ) +V3(E) (6.9)

In this context, g1 is expected to be equal to 0 as was the case in (Xu et al.[89])

g0 indicates that thenetworkis experiencingcongestionwhileg1 shows thenetworkisunder

DoS attack.

Toovercome these attacks, this chapter proposes a DoS attack detection control model. This

detection control is connected to SU arrival node. It monitors communications between SUs

and sensing node. If SU has request to transmit, the request activates the sensing node.

The sensing node probes through the band to detect the status. Specifically, the sensing

node assesses the status of the place “PU trans” as demonstrated in Fig. 6.3. One token

at the place “PU trans” implies that the channel is occupied by PU and SUs transmissions

are not permitted. The network is considered free from DoS attacks with a token in a place

“safe” until the transition “DoS attack” completes and a token is transferred to the place

“detect”. A token at the place “DoS attack” cease further generation of SU arrival in the

form of DoS attack. In this case, the throughput, probability of loss andmean queue lengths

are expected to be zero.

This chapter also provides the solution to network congestion by incorporating congestion

control mechanism. The mechanism throttles the sending of SU requests. This implies

that SUs reduces its sending when the number of token in the buffer is at a predetermined

threshold. For instance, the SUs may continue to forward a number of requests, say 3

requests per slot to encryption node until a certain number of requests are in the buffer. In

order to avoid loss and still maintain high throughput, the SU reduces its requests. In this

case, SU may reduce the number of requests to 1. This is as demonstrated in Section 7 of

this chapter. The experiment shows that there is an increase in throughput by transmitting

more packets when the packets in buffer is below the set threshold. However, there is also

an increase in packet loss if the sending is not controlled by the SUs. The trade-off between

increase in throughput and decrease in packet loss will be considered in future work.
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6.6 Proposed NetworkModel

Thismodel represents DoS detection in conjunctionwith intrusion detectionmechanism in

CRN. This research continues frompreviouswork (c.f., Ejike andKouvatsos[88]), but unlike

the previousmodel, it consists of twosecuritymodels: DoS and intrusion detection security

control models. There is also PU arrival and departure which is modelled as a cycling of

tokens from place ’SU trans’ to ’PU trans’. All the models are attached to SU performance

model and have the common function of freezing the operation of SU whenever there isa

token at the appropriate place.

In the DoS model, token at the place ’safe’ indicates a secure and functioning network. SUs

may continue to transmit if an idle band is detected until DoS attacker is able to launch

a successful attack and consequently cease the network operation. Unlike the intrusion

detection control model, the token moves from place ’safe’ to ’detect’ and back to ’safe’.

This is because an attacker can promptly cease the transmission of SU request which can

immediately be suspected to be an attack. This explains why the flow did not consider

insecure state before restoration.

In the PU arrival and departure model, there are two tokens in the place ’SU trans’. The

tokens at the place ’SU trans’ implies that the band is being used by SUs since no PU is

using it. Depending on the arrival rate of PU, the tokens could move from ’SU trans’ to ’PU

trans’ indicating the PU arrival. This is as shown in the Fig.6.3. If PU arrives, it ceases the

transmission of SU requests until it vacates the band.

The second token in the place ’SU trans’ is used to capture the misdetection. At the

beginning, there are two tokens in the place ’SU trans’ indicating an idle band that could be

usedbySUwithout interferingwithPUsignal. The rate atwhich this tokenmoves from ’SU

trans’ to ’PU trans’ depends on the arrival rate of PU and also the data rate of the band.

The intrusion detection control freezes the network operation upon detection of attack. A

token in the place ’Sec’ implies a secure network. The transfer of the token from ’Sec’ to

place ’insecure’ indicates an undetected attack. The transfer of the token from the

place ’insecure’ to ’restore’ demonstrates that the attack has been detected and it is

assumed that repair is initiated immediately and as a result, the network operation is

stopped.
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Figure 6.3: Proposed CRN Structure

6.7 Parameters and Simulations

As stated earlier, simulations are used to abstract the behaviour of a real system. In this

context, it is necessary that the model is parameterized to represent the actual system

under study. SANformalisms is used to generate the required traffic to theproposedmodel.

Mobius petri net package is the simulation tool that supports SANmodel. The package has

some features to demonstrate the behaviour of the proposedmodel. Transitions are used to

generate the actions that changes the state of the system and are represented graphically

as rectangular bars [62]. Places are used to store incoming request to the network. A

token represents the actual request on transmission. A transition is enabled when the input

place connected to transition contain at least a token. Enabling indicates execution process

while firing corresponds to completion of the process. In the experiment, transitions with

exponential firing delay distributions are chosen. Finite capacity queue is assumed. The

table 6.1 shows the chosen input parameters.
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Ideal Cond (no att, no cong) Cong (no att) Att (no cong)

Attack rate 0.001 0.001 1.0

Recovery rate 1.0 1.0 0.001

Sensing rate 10 1.0 10

Encryption rate 10 10 10

Transmission rate 10 10 10

Request rate 1.0 1.0 1.0

Table 6.1: Input values

Table 6.1 shows that it would take 1000 milliseconds for an attacker to launch a successful

attack when the network is on a normal working condition. The recovery rate in this case

is 1.0 which demonstrates quick network recovery if there is an attack. Sensing rate of 10

as shown in Table 6.1 indicates that time between sensing is 0.1 milliseconds. This implies

that hardly an idle band go undetected. Transmission and encryption rate of 10 were also

used in order to ensure that they are not bottlenecks since the aim is to model a network

without attack or congestion. This experiment is also carried out for network under attack

and network experiencing congestion. As shown in the table, the arrival rate of SU is 1.0.

The SU will continue to send its request at this rate for transmission until there is PU

interruption or a security incident. Some incidents can interrupt the SU transmission. These

are external attacks such as DoS that freezes the network operation when there is an attack

and during repair as demonstrated in Fig.6.3 and internal attacks and restorations such

as those that eavesdrop and modify the content of request on transmission. Finally, the

detection of PU signal. Each of these events can disrupts the transmission of SU requests.

However, network congestion may not disrupt continues transmission of SU requests but

could delay it in the queue. In this chapter, the aim is to distinguish between the network

experiencing a congestion and the one under DoS attack. In the next section, the results of

the simulation is demonstratedwith emphasis on how the network congestion improves the

throughput and can reduce packet loss.
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6.8 Results and Analysis

This analysis aim to investigate thebehavioural differencebetweenaCRNunderDoSattack

and one experiencing congestion so that appropriate measures can be adopted to control

it. It is also demonstrated how DoS attack increases the probability of misdetection. This

study was carried out for network under normal working condition, network experiencing

congestion and network under DoS attack. The input values are as in Table 6.1. The result

as shown in Fig. 6.4 demonstrates that the throughput for a network under ideal working

condition is the highest with the throughput close to the input load.

Figure 6.4: Throughput for network under different conditions

The network experiencing congestion has high throughput but far less than the input load.

However, network under DoS attack has near to zero throughput. This is because, when

the network is under ideal working condition, if the band is idle, the band is underutilized.
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For instance, in the experiment, the applied SU load is 1Mbps but the band offer data rate

of 10Mbps. This implies that the band is about 90% underutilized when it is idle. This is

demonstrated in Fig.6.4 where the highest throughput attained is 0.77Mbps. Fig.6.4 also

shows that due to congestion, the throughput of network experiencing congestion fall short of

the transmitted load. For example, the maximum throughput attainedwhen the network is

experiencingcongestion is 0.55Mbps though the same loadwastransmitted. Thecongestion

maybe due to weak signal strength that the CRN sensor could not detect. The throughput

for network under attack is ≈ 0. This is because, during attack, the attacker is assumed to

have gained access and able to change the CTS response emanating from CRN to NCTS

thereby denying the SUs the opportunity to use the spectrum. Since the attacker denies the

SU the chances to use the band, the throughput decreases as shown in Fig.6.4. Tovalidate

the results, the probability of loss and average queue length were also considered.

Fig.6.5 similarly shows that network under ideal working condition has moderate queue

length. The queue length is due to the use of the band by the incumbent. This queue length

decreases as the incumbent inter-arrival times increases as shown in Fig.6.5. As expected,

the queue length for network experiencing congestion is highest. This is due to infrequent

sensing by the CRN as shown in the input data in Table 6.1. The table shows that though

the band has data rate of 10Mbps, however, the sensor may not detect when the band is

idle due to infrequent sensing. This leads to increase in the number of SUs request in the

queue. For network under attack, since SUs do not receive CTS signal from CRN due to

attack, it defer its transmission and no load is transmitted, leading to zero request in queue

as demonstrated in Fig.6.5.

There is similar behaviour when the probability of loss is considered. The SU packet lost

when the network is experiencing congestion is highest. For network under ideal working

condition, some SU requests are lost when the PU inter-arrival time is small, e.g. 0.5 ms,

but decreases as the inter arrival time increases since there is no other constraint such as

congestion or attack affecting the transmission of its requests. However, similar to the

previous explanation, attack changes the CTS response to NCTS thereby leading to SU

being denied the opportunity to transmit. This causes packet loss as shown in Fig.6.6. Note

that packet drop is only possible where there is a transmission.
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Figure 6.5: Queue length for network under different conditions

In addition to the above metrics, when a network is under attack, attackers could change

the response from NCTS to CTS, eliciting transmissions from SU when the band is being

occupied by PU. This results in SU interfering with the PU signal. One of the conditions

listed by regulatory bodies before SUs are allowed to use licensed spectrum is that its signal

must not interfere with PU signal (Bhagate and Patil [7]). Therefore any increase in the

interference to SU signal is flagged as an attack. Fig.6.7 shows that when the inter-arrival

time of PU decreases, then the probability of misdetection is expected to increase. This

is because, with the service rate of 1.0, it will take much more service time to transmit

PU request and if the network is under attack, the transmission could be affected by SU

transmission. In contrast, if the service rate is 5.0, then it implies that it will take less service
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Figure 6.6: Probability of loss for network under different conditions

time to transmit PU requests. In this case, the band will be idle for about 50% of the time,

resulting in decrease in the interference to PU transmission if the network is under attack.

Todemonstrate thesolutiontonetworkcongestionashighlightedinsection6, it isestablished

here that increasing the number of SU requestswhen the spectrum is idle leads to significant

increase in the throughput. For example, at any given slot, Si, i= 1, 2,...n SU sends its

requests in 3 per slot. Let

Si = {x1,x2, x3} (6.10)

be the requests the SU sends per slot, then the total number of the requests for all the slots

will be expressed as

X = {S1 +S2+, ...,+Sn} (6.11)
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Figure 6.7: Probability of miss detection for network under different conditions

In this case, SU will continue to send this requests in 3 per slot until it gets to the

predetermined transfer length of 9 requests at which it reduces to 1 per slot in order to avoid

losses. This experiment was also carried out but with 2 requests in a slot and similarly until

it gets to the transfer length of 9 requests at which it reduces to 1 request per slot. As shown

in Fig. 6.8, there is an increase in SU throughput if more requests are transmitted in a slot.

This increase in performance is because since the encryption node has an encryption rate

of 10, then it implies that the greater the number of requests forwarded to it, the greater

the throughput. Reducing the number in a slot leads to decline in throughput. Tovalidate

this assertion, the same experiment is carried out but with a transfer length of 9 and 20 and

buffer size of 10. It started with 2 requests in a slot which reduces to 1 after the transfer
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Figure 6.8: Throughput for the solution for network congestion

length. The results in Fig. 6.9 shows that though in both cases, the number of requests in

a slot is 2, however, the probability of loss is greater when the transfer length is 20. This

is because, at transfer length of 9, the SU reduces the number of requests in a slot to 1 to

avoidlosses. Fortransfer threshold of 20, SUwill continue to send the samenumber of token

with no consideration to the buffer size, thereby resulting inmore losses as demonstrated in

Fig. 6.9.

Fig. 6.10 also confirmed the assertions. In the figure, the experiment was carried out with

same transfer lengthof 9 and initial 2 and3 requests per slot respectively andqueue capacity

of 10. Asdemonstrated, the experimentwith 3 requests per slot losses slightlymore because

it has more in the queue before it reduces sending.
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Figure 6.9: Probability of loss for the solution for network congestion

6.9 Summary

In the context of CRNs, it is essential to comprehend the actual cause of underutilization of

idle spectrum space. In this research, an experimentwas carried out aiming to distinguish a

networkunderDoSattack fromoneexperiencingnetworkcongestionso that anappropriate

solution can be devised. The analysis of the proposedmodel shows that a network is under

DoS attack if the throughput of the transmitter, average queue length and packet loss

probability are approximately zero. However, in a congested network, all themetrics of the

transmitter are greater than zero but less than the expected value. This analysis shows that

DoS attacks can be detected as shown in Fig. 6.3.
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Figure 6.10: Probability of loss for the control of network congestionwith transfer length
of 9 and token size of 2 and 3 respectively
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7
Conclusions

A developed new formalism was proposed based on a SAN sub-model to determine ’optimal’

sensing, security and performance trade-offs in SCRNs and UCRNs. In this context, an

experiment-based assessment was carried out to quantify the improvement of scalability in

comparisonwith UCRNs. The proposed redundant service channel was used to determine

the optimum throughput achievable in SCRN in comparisonwith that of UCRNs. A further

extension of thework included the use of a SANmodel for the abstraction of the real system

behaviour in order to establish if a CRN is under DoS attack and differentiate it from a

network experiencing congestion.

In this context, an investigation was carried out focusing on a CRN, subject to ’optimal’

sensing, security and performance trade-offs. The proposed CRN model with two classes

of requests with priorities under a random selection discipline was used to abstract the

behaviour of CRN with respect to sensing, security and performance. Specifically, a proposed

new CRNmodel with intrusion detection control mechanismwas introduced in Chapter 4,

where the encryption rate was correlated with the rate of security incidents. Both sensing

delay and the interplay between the encryption key lengths and rate of security incidents

were used in conjunction with Poisson arrival process of SU requests. To this end, ’optimal’

sensingvs securityvsperformance trade-offs inCRNswith theencryption and transmission

times being exponential. Note that the input parameters were selected to imitate the real

network behaviour, as appropriate.

Moreover, inhibitor arcs connected the performance model to security model whilst transition

connected to the output place of the arrival node was used to model the sensing operation

116
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of the network. This implied that sensing introduced some delay, which degraded the

performance of the network. In this context,multiple classes of requestswere used tomodel

the sharing of spectrumbySUs aswell as to represent thepre-emptions that occurwhenever

requests with higher priority appeared in the channel. Numerical simulation experiments

were carried out, based on the use of the Mobius Petri Net Package, in order to determine

the optimal value that offers no maximum but optimum values for sensing, security and

performance parameters. The results of the simulations show that there exist an ’optimal’

sensing time thatmaximizes the combinedprobabilities of ’spectrumdetection’, ’CRNbeing

in secure state’, and ’normalized throughput’. Simulation results were also presented to

validate the analysis.

Chapter 5 focusedon the analysis of a proposed SCRN,whichwithstood the surge in service

demand, where the performance sub-model was connected to the security sub-model. This

chapterprovideda redundant service channel that acts as aback-up channelwhenever there

is an increase in service demand. This redundant service channel provided the same service

with the dedicated server. This implies that even though redundant, it is still connected to

security controlmodel,whichdetects and freezes the channel in eventof intrusiondetection.

The sensing time at which the scalable network has the highest throughput was quantified and

comparedwithUCRN. Thisworkwas extended to include detection of PUarrival, detection

and quantification of interference to PU signal. The outcomes of conducted experiments

revealed that SCRNs require a shorter sensing time to achieve optimum performance and

security than UCRNs.

Finally, Chapter 6 dealt with detection of DoS attacks, differentiating them from network

experiencing congestion and their behavioural differences were assessed. Moreover, the

investigation was extended to include a sub-model for detection of DoS attacks. The study

adopted typical performance metrics for SUs such as packet loss probability, mean queue

length and normalized transmission throughput. This led to the credible estimation of the

PDR for SUs in order to determine whether or not the network was under DoS attack.

The numerical experiments were conducted for a CRN, which was subject to i) Attacks ii)

Normalworkingconditionsand iii)Congestion. The results showedthat aCRNunderattack

has near to zero throughput associated with SUs, which was distinguished from network
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experiencing congestion as well as network under ideal working condition.

7.0.1 Future Work

Anextensionof this research could include theuseofmachine learning topredict thepattern

of arrival of PU requests in order to reduce the sensing frequency of CRN and save the

battery life. In this case, if it is discovered thatduring aperiod, theband is being consistently

busy by PU requests, the CRNwould be required to avoid sensing throughout this period,

given that the probability of the band being occupied is high. This is in an effort to conserve

the energy. Moreover, some spectrum opportunities would be missed by SUs during the

period predicted to be busy by PUs. Thus, there is a need to determine ’optimal’ trade-offs

between energy conservation and missed spectrum opportunities.

When the network is under attack but not detected, it is also assumed to be insecure and

not recovering as demonstrated in [10]. In this case, the network is vulnerable. Therefore,

the future work could be extended to consider an additional state, namely a vulnerable

state of the security detection control model aiming to protect the data during the period of

vulnerability.

The work could be extended to include creation of group communication of CRN users in

conjunctionwith intrusiondetection system in order to protect the band fromunauthorised

users. For further protection and improvement of performance, batch rekeying technique

could be used to identify the optimal settings that satisfy the performance and security

requirements. In this case, anyuser in the group could sense anduse the bandwith a shared

access key.

Finally, further workwill consider the extension of the thesis to include multiple spectrum

bands andmultiple CRNusers. In this case, colour Petri nets could be used to identify users

from different CRN users. The use of colours to represent requests from each participating

CRN user is expected to improve the security because any user not in the accepted colour

list would be flagged as malicious.
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