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TUNNEL EFFECT IN METALLIC CRYSTALS 

by 

George L. Landolt Ph. D.* 

Tian Yow Tsong壘醬

According to our ordinary way of considering things, a fly enclosed in a well­

formed bottle will never fly away unless it is strong enough to break the glass wal1 

and escape. Newtonian mechanics predicts the same result, while wave mechanicf; 

tells us quite a different story. In wave mechanics. a particle of total energy E 
will penetrate a greater potential energy barrier, say V, and appear in the regions 

away from its originally bounded space according to certain quantum statistical 

la ＼~’ s. This phenomenon, named "the tunnel effect"l1l, is particularly helpful in 

theoretical exp1antions of radioactive disintegration,c21 chemical rate processes,(3l 

metallic bonding and many other chemical facts. Uuder this title, we intend t() 

formulate certain relations for barrier penetration probability with boundary cond­

itions, and by them we are able to construct a correct intuitive picture of the 

phenomena concerning the metallic behavior. 

J. Tunnel Effect WHh Boundary Conditions<4i 

For particles of total energy E and potential energy V in one dimensional 

problems, Schroedinger equation of time independence is given : 

Notes; 

(1) Many authors preter to u田 barrier penetration or quantum mechanical leakage 

instead of tunnel effect. 

(2) Thorough treatments of α← decay, s間， fer example, M. Bern, Atomz"c Physt'cs, G. 

E. Strechert & Co., 1951, pp. 202~ 206, 308. 

(3) See H. Eyring, ]. Walter, G. E. Kimball, Quantum Chemistry, John Wiley & Sons, 

Inc., 1944, pp. 299~ 331. 

（的 Treatments in this section are restricted to cne dimensional barrier problems. 

References s間， a). D. Bohm, Quantum Theory, Prentice-Hall, Inc., 1951, pp. 238~ 
240; b). H. Margenau, G. M. Murphy, The Mathematics of Physics And Chemt"stry, 

Van Nostrand Co. Inc., 1956, pp. 353~ 358; c). S. Golden, Introducti•m to Theo­

rec#cal Physt'cal Chemt'stry, Addison-Wesley Publishing Co. Inc., 1961, pp. 237~ 245. 

* Visiting professor, Department of Chemistry, CJllege of Science & Engineering, 
Taiwan Provincial Chung Hsing University. 

•• Senior stud ent, Department of Chemistry. 
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d2ψ 2m 
di2十五「 （E-V) =0 5) 

Taking energy equation in Hamiltonian form 

E＝ 主三＋ yrs,
,::,m 

(1-1) 

(1-2) 

where P is momentum and m the mass of the particle. Solving for ρ， we have 

P=v'2m (E-V) , with E>V (1『3)

and ρ ＝ t'v'2m (V-E) , with E<V (1-4) 

The prototype wave function and hence the solution of the differential equation 

(1-1) is given as: 

ψ＝ Aei<x 十 B e-i句 （1) (l-5) 

where te= v'.2瓦CE二V5 I說， with E > V (1-6) 

and te ＝九12m (V-E) I露， with E < V (1-7) 

A and B are two arbitrary constants. 

Now let us first construct a barrier potential of the form as shown in Figure-1. 

E 

. 
Fig. 1. Barrier penetration of particles 

This potential is 

v （的 ＝ V。， for o 之Xξa

V (x) =o , for 一 00 < x ξ o and oo > x ?- a 
where V。 ）＞ E.

Notes: 

(1-8) 

(5) Derivation of Schrcedinger equation and the physical meanings cf wave function 

see T. Y. Tsong, Electronic Interpretation of Chemical Bonding, Science Education 

（科學教育） , Vol. 8 , No. 8 , ( 1962). Note that 窕＝ h / 211'..

的 E=Ek 十V,where Ek=i-mv2=P2/2m. 

。~ Substitution of (1~ 5) into (1~ 1) will easily verify that it is a solution of the 

differential equation (1~ 1). Discussion of equations (1~ 5), (1~ 6) and (1~ 7) 

however will be found in elementary textbooks of physical chemistry and modern 

physics. A brief example is given in H. Margenau etc., loc. c缸， pp. 228~ 235. 
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Tunr.e1 Effect in Metallic Crystals 

We are considering what fraction of particles will penetrate through region II 

and appear in region III, if particles of kinetic energy Ek=E, i.e. V=o, impinge 

on a rectangular barrier of thickness a and height V 0, In other words, we are 

trying to find the probability that a particle will be reflected from or transmit 

through the barrier. Suppose ψ1 ， ψz and ψ3 are wave functions of the particle i·n 

regions I, II, III respectively. and let 

where 

and 

ψ1=Ae<K1r + B e「Klr

ψ2 = c e•K2x + D e-•K2X 

ψa=Fe<K1x + Ge-iK1x 

κ1=i/豆子瓦互／堯

Kz=z'i/2或Wo=E〕／堯

(1- g) 

(1帽 10)

(1司 11)

(1-12) 

(1-13) 

and A, B, C, D, F. G, are coefficients to be determined. Since the first terms of 

wave functions stand for waves propagating from left to right, while the second 

terms stand for waves from right to left, the second term ofψz is missing, i. e. 

G=o, assuming that no particles hit on the barrier from region III. wave mechanics 

requires ψfunctions to be continuous over all space, that is at contac1: surface 

X=O， ψ1＝恥， 411＝寄生〔8land x=a， ψ2＝啦，言：2＝話， Fr叫hese boundary c叫tions

we obtain A+B=C十D (1峙14)

K1 (A-B) ＝ κ2 (C-D) (1-15) 
Ce•K2a + D e-•K2a =F e•«1a 

的 （C e•1<2°-D e「勻。＝IC1 F e•.1<1a 

(1-16) 

(1-17) 

We have now four equations for five coefficients, hence we can solve the ratio 

for any pair of them. Our interest is in the ratio of JFJ2 / JAj2. Since this value 

indicates the ratio of transmission, which we name transmission ccefficient叫 and

<lenote it by T. 

Now let us divide (l-15) by ic1 then add it to (1-14) 

A＝＊〔（ 1 十些） c卡 (1 一些） D〕 (1-18) 
4 IC1 K1 

or by substracting it from (1司 14)

B＝主〔（ 1一些） C十（l十的〕 D〕 (1-19) 
~ /C1 /C1 

Notes: 

徊） ψ1 ＝ψ2 and r!./xl ＝令~mean 枷枷 fu 枷s 伽

at x=o. This implies that they are continuous at x=o. 

”” {9) Normalization and orthogonality require that Zα門α； ＝~！α； 1 2 =1 and~α汁αi=O
i-1 i-1 i'f:.l 

u 
for wave f unction of genera﹞ formψ ＝~αiψi ﹒ Here α‘＊ is the complex ccnju-

i-1 
gate ofαi﹔ ︱ α； j 2 represents the probability distribution of ψtoψi or contributicn 

coefficient of ψi toψ. By this category, it is easy to realize that I FJ2川 Aj2 is 

the transmission coefficient cf the particles under consideraticn. See C. A. Cou­

lson, Valence, Oxford University Press, 1952, pp. 13~ 19. 
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Again divide (1月 17) by te2 then add it to (1-16) 

or 

Ceiκ2α＝﹔（ 1十~） Fe"'1 

c =-!:. (1十竺-1) Fexρ i(te1一κ2)a 
,:;, "'2 

Substituting (1-20) into (1-16) , De-i«27=1- (l一已） F eiK1a 
白 ，也且

or D ＝生（1一戶） F exρ i(te1十的）a
且也Z

Now introducing (1-20) and (1-21) into (1-18) and reducing 

A=4-F們α 〔（2冉十些）e-iK2<Z 十（2一些一些）們α〕
官 IC2 IC1 IC2 IC1 

Rearranging A= i-F們a 〔2 (ei«2含十叭α）一（宇＋宇）（仍α一e叫α
侃，2 ，ι1

or A=Fei•叫cosh ite2a一占（宇十宇） sinh ite2a〕﹛叫
血，也2 ’‘1

Taking the complex conjugate of A {11) 

1 一一A*=F永 e-•Kla [ cosh ite2a 十有（于十宇） sinh ite2 a]
,:;, "'2 ，也 1

From (1-22), (1-23) we get 

(1-20) 

(1-21) 

( 1-2:?) 

(1司23)

I A 12 AA* 2 • 1 IC IC 
JFP=pp•=cosh t01C20 －~－ c；；＋；？叫的 口－24)

If a is fairly large, e-i"'2a is small in comparison with ei"'2九 therefore we may take 

approximation that 

cosh2 ifc2a = sinh2 i1C2all2l 

Again when V。＞ E, we see from (1-12) and (1-13) the ratio 

些＿； /V。 －E-· ，一一－
IC1 y E 

(1-25) 

is large in magnitude, and its reciprocal 1Ci/te2 is 

Therefore (1-24) is reducec! to 

small that can be neglected. 

IAl2 1 
,T2＝〔 1 一一（－）2 〕 sinh2 ite2a 

!Fl 4 "1 
or IAl2 1 w = -4 c;? 叫 ite2a (1-26) 

Notes: 
1 -(lo) By definition sinh x= (ex-e ""). cosh x=0 (ex 十 e-x)
2 ' 2 

的 Note that 1C2 is imaginary, hence the first term in the bracket of equation (1~ 22) 

is real and the second term is imaginary. 

(12) From Note 帥， if x is large enough, e-x will vanish, and cosh x = sinh x, that 

cosh2 x = sinh2 x . 
1 

倒 Since sinh2 iK2 a ＝互〔exρ （2 ite2 a） 十 exρ （－ 2 ite2a) -2 ], where K2 by (1~ 13) is 

equal to z" v互m-cv;;-=-E）『／~. if V0>E, term (2純的 is a large negative number r 

hence exρ （2 z"ic2 a) approaches zero, and exp （一2i的 α） is large in comparison 

with 2， 伽伽e sinh2 川＝士州（一2i1C2a) • 
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Tunnel Effect in Metallic Crystal 日

Introducing (1-25) into (1-26) and replacing sinh2 iK2a by its largest term 13 

IAl_:i ～ 1 巨dexρ （一2 iK a) (1-27) 
IFl2 一 16 E 且

This is equal to 

_ [Fl2 16 E 
一（互戶＝ Y.;=Eexρ卜xv吉否可Vo=E了a〕 (1司28)

From this equation, we conclude that for particle d ma部 m so small as electrons or 

alpha particles, transmission ccefficient T is not negligible provided that a is not 

too large. In fact, there is no retangular energy barrier as shown in Figure 1. 

Potential energy barrier is always a smooth curve, In such a case we can practically 

reduce (1-28) into the form 

T = exp 〔－~－ Iv互訪cv·-c而二ET d的（州 (1-29) ’,... J 

Il. The Band Model of Meta]sC15l 

We recall in this section some basic ideas of band theories. 

Molecular orbital theory using LCA0(16l treatment states that two overlapping 

s orbitals, one from each of two atoms, produce two new orbitals of slightly different 

energies. By similar reasoning, repeated addition of one more atomic orbital produces 

one more molecular orbital. For j centers crys拍l, therefore, possesses j molecular 

orbitals of very close energies. These orbitals form a energy band. Between energy 

bands of neighboring quantum states, for instance between 1s and 2s levels, there is 

an energy gap. No electron is allowed to move in this gap. If the number of electrons 

in the crystal is such that the allowed energy bands are occupied entirely, there 

are no free electrons at all, and the crystal will behave as an insulator. On the 

other hand, if one or more bands are partly filled, the crystal will behave as a metal. 

Semi-conductors are crystals between two extreme examples. The partly occupied 

<Juterrnost band of valence electrons is a conduction band, while the next fully 

·Occupied bands of valence electrons are valence bands. And the rest of electn,ns 

.in the atom form inner shell which are less important in characterizing the 

metallic behavior of the crys拍ls. For three-dimentional consideratiοns, thef.e bands 

. 
Notes; 

甜 In (1~ 27), if the absolute valt:e of expcnentfal term is so large, term 16E/(V。←

E) is no longer impcrtant, so that it can be taken εS vnit. Since pιtential 

energy V is a functicn cf cccrdinate variab]e r, we can reduce (1~ 28) to T = 
” 」一一一 一一一－ 2 ( 

zρ卜孟子1V'2m〔V（川一E﹞ Ar，］＝呻卜 If Jν局(V(r)-E) dr].

的 General references are given: a). 引人 ］. Mocre, Physz"cal Chemt"stry, 3rd e孔，

Prentice間Hal1, Inc., 1962, pp. 680～685﹔的. Coulscn, toe. dt., pp. 276~ 287; c). C. 

Kittel, Introduction to SoUd State Physics, 2nd e孔， Jιhn Wiley & Sens, 1956, 

Chapt. 11; d). R. A. Smith, Semiconductors, Cambridge University P ress, lS間，

Chapts. 1, 2. 

{16) Linear Combination cf Atcmic Orbitals. See Cculson, foe . cit ., pp. 69~ 76. 
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are known as Brillonin zones. 

Studies of probability distribution 

of conduction electron energy states e 

in metallic crystals have been experi- d 

mentally and theorectically developed c 

by Sommerfe肘， Fermi‘ Dirac and 

many other investigators. If we denote b 

the number of energy states available 

per unit volume in a given crystal a 

by N, the density of states by g (E), 

we have 

f g 仰 dE =NV=3ι伽E） ι
(2-1) 

and 
TT S 1 

g (E) = ~ (2m) 2 E -'- (17) 
L晶晶

Metal SemiconcJuctor insulator 

Fig. 2. Schematic band models of Solid, 
a) Inner shell electron, b) Energy gap, 
c) Valence band, d) Energy gap, e) Con-
duction band. 

(2-2) 

where V is the volume of the crystal. The distribution curve is shown in Figure 3. 

g(EJ . 

E,(O} 
·E 

Fig. 3. Plot of density of state g (E) as a function of energy. The sodid 
line indicates the distribution at absolute zero, and the dotted line 
at temperature T. 

HI. Electrons in Metallic Crystals 

Regular lattice points of metallic crystals form a set of periodic potentials. The 

potential energy rises rapidly to infinite at the position near each of nucleus that 

representing a deep potential energy well for electrons. If we plot a negative pote­

ntial energy versus coordinate variable, we get a periodic potential diagram with 

period equal to the length of unit cell a. An oversimplified diagram for such potential 

barrier is shown in Figurθ4. Movement of conduction electrons from the vicinity 

of one nucleus to that of the next requires the electrons to pass through these 

potential barriers. As we discussed in Section I, tunnel effect, thus plays an essential 

role in theoriz ing the energy state, and hence of metallic behaivor, of electrons in 

metallic crystals. 

Not＇的：

明 Drivation of (2~ D and O~ 2) see C. Kttel. loc. cit吋 pp. 243~ 251. 
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Tunnel Effect in Metallic Crystal ;i 
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Fig. 4. Periodic negative potential energy barrier for electrons 
in metallic crystals. 

Let us now see how wave functions of Schroedinger equation are adapted into a 

periodic lattice according to Bloch Theorem.<18l 

One-dimentional Schroedinger equation given in (1-1) is 

d2ψ2 
研＋｛！｛！CE 一 vc的﹞ ψ＝ O (3-1) 

Since V is periodic with period a， ψmust also be periodic. Let ψbe a linear comb­

ination of two independent real solutions /1 (x ] and /2 (x). 

ψ （x〕＝A1 九 （x) +Ad2 (x) (3-2) 

A1 and A2 being constants. Now if /1 (x) and /2 (x) are solutions of (3-1), periocity 

requires that 九 （x＋α） and /2 (x+a) must be solutions of (3司。 too.

This implies that /1 (x+a) ＝α11 九 （x） 十α12 j三 （x) (3-3) 

and /2 (x+a) ＝α21 !1 (.x) ＋α22 /2 (x) (3-4) 

the α’s being constants. Similarly, for (3-2) we have 

ψ （x十a) =A1 /1 (.x十 a） 十A2 !2 (.x十α） (3－月

Henceψ （x+a) = (A1α11+A2α且1) /1 (x) + CA1α12+A2α22) /2 (x) (3-6) 

Let ψ （x＋α）＝λAi !1 (.x) ＋λ A2 !2 (x) (3-7) 

This means A1α11十A2 α21＝λAi (3-8) 

Ar α12+A2 α22 ＝λ A2 (3-9) 

λbeing the function to be determined. Now we have ψ （x十。） in the form 

ψ （.x 十 a) ＝λψ （x) (3-10) 

.For equations (3-8) and (3” 9) to be satisfied， λmust be subject to the equation 

or 

︱ α11一入 α21 I 
I I =O 

αl2 α鈞一λ I 

（α11一λ〉（α22一λ〉一α12α21=o 

(3-11) 

(3-12) 

This is a quadratic equarion which has two roots ;\1 and A.2 for λTherefore there 

are two corresponding solutions of the Schroedinger equation. 

Notes; 

(Lil) See a). F. Seitz, M「odern Theory of Solt"ds, McGraw-Hill Book Co., 1940, Chapt. 8; 
b). C. Kittel, loc. cit., p. 279; c). H. Margenau etc吋 loc. cit吋 pp. 80~ 81, Floquet’S 

Theorem. 
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By (3-10） ψ1 (x+a) ＝λ1ψ1 (.x) 

ψ2 (.x十a) ＝ λ2ψ且 （x)

(3-13) 

(3-14) 

Again, since the potential is periodic and symmetric with respect to the origin, 

V (x) = V ( x), so that ifψ （x) is a solution， ψ （－x) and ψ （x-a) are solutions 

too. Replace x by x-a in (3-13) 

、h (x) ＝ λ1 、h (x-a) 
Furthermore replacing x by -x 

ψ1 c一的＝λ1ψ1 〔一 （x+a)J

or 侃一〈川〉〕＝~v1 卜的 (3-16) 

Comparing equations (3-16) and (3-14) to see they are similar in form with (3-10) 

Obviously Yi_ 〔一 （x十 a） 〕 ψ2 (x十 a) (3-17) 
ψ江三互了一＝可只正了

(3-15) 

This lead to the result that 

λ1λ2= 1 (3-18) 

Two sets of values for λ1 and λ2 are considerable. 
’、 ＿ nlJα First l "1-"' 
lλ2=e-bα 

where a is the length of unit cell, b a real number. But this set is not what we 

(3-19) 

wanted, since as b increa時s, X1 tends to be infinite and ;\2 vanishes. 

a 

α
μ
 

μ

－
s
 

ee 
－
－
一
一

可
A
O
A
M

、
A
E
內

.... 
,‘ ... 
、

r e 可

G
’l s n nu c e w 4

ι
 

x e n o nb 
(3-20) 

whereµ is a real number. Both ;\1 and X2 i.n this form are wave functions of period 

a. And these are the functions which we look for. 

Now we conclude that, since 

ψ （x十a）＝λψ （x) (3-21) 

the correct wave function in the periodic potential is the original wave function 

for the free electron multiplied by a wave function with the potential period a. 
Equation (3-21) is known as Bloch function. 

The result obtained above may be expressed in wore convenient way. 

On putting ei"'a=exρ i' （µ十 2n-n:/a）α（ 19) (3‘ 22) 

Evidently, this equation holds over the whole range of the coordinate, therefore we 

may place x instead of a. Again if we take zero value of µ and express original 

wave function by t肘， we have by (3-22) 

ψ （x十α） =exρ i· cκ＋ 2nn:/a) x=eiK，尤（3-23)

This expression describes a wave travelling through the crystal in the positive x 

direction. For that of oppositely directed wave 

ψC一 （x十a） 〕 ＝ exρ－ i' (tc十2均作／a) x=e-i•lx (3-24) 

Not明：

(19) e-ip.a=cos ua-i sinµt{＝~os (µa十 2n 7t) -i sin (µa十2n 7t) =exρ－ i· (µa十2n 吋

=exρ－ i' （µ十2紹，r/a)a.

倒 From 叫／h and P= h/X we get IC刁v
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Tunnel Effect in Metallic Crystals 

We s曲 from (3-23) and (3-24) that the effect of periocic potential on electrons is to 

modulate the frequency of original wave which is proportional to "t20l by subjecting 

it to a periodic function. The general relation between " and "' is 

的主宇 間〉
When ＂＝ κ’， the electron wave is completely reflected by the potential barrier, 

and a standing wave is 記t up in a unit cell. In this ca田

. n7t 
＂＂＇－ε 土一一一

a 
(3-26) 

which is an analogy to Bragg equation for reflecting wave. 

2d sinθ ＝ n λ (3-27) 

Since energy of an fr的 electron is proportional to "2 l21 、’ out of the boundary 

n?r 
K=-1二豆， there are no energy states allowed, and energy gaps are thus formed. On 

the contrary, inside the boundary, bands perfectly free for conduction electrons 

called, as we mentioned before, Brillouin zones are established. It is easily seen, 

therefore, that the electrical conductivity of metals in the idealized model, in which 

the nuclei are arranged at the point of perfectly periodic lattice, no resistance 

would be perceived. The electron waveψwould pass through the lattice unscattered, 

without resistance, just like electromagnetic radiations pass through perfect rredium 

without scattering or alteration. The resistance of metals arises only when the 

crystals are imperfect, for example, lattice vibration caused by heat, lattice vacancies 

and impurities, dislocation and many other defects of crystal lattice. These explan­

ations are also particularly instructive to the fact that the resistivities of metals 

increase as the temperature rises. 

金屬晶體中之洞穿鼓應

繭控. 4** 鄭丈佑州
一、一定邊界條件下粒子對高於其總能量的位能障壁立穿透係數 T 經計算去Tl下：

l6E 2 
T=V;;=Eexρ ﹝－i v 2 m cv:-=--:EJ a ]

式中 E 表粒子之總能量、 m 為粒子之質暈、 Vo 障壁位能、 a 障壁厚度。

二、固態耳體＊價電子研成最外層能帶稱導電幣。此帶中之能位被電子前佔浦者為絕路體﹔脅中留有過

當空位，電子得以自由移動其間者為導體﹔自由電子或空位之數目甚少者~半導體。

三、金屬品格形成週期性位能障壁。自由電子在該障壁中之波函數罵其原有函數乘以另一道期提缸格勒

畏乏波函數。

四、自由電子在理想晶體中移動所受立阻力為零。金屬之電阻係由於是i體不理想、反熱振盪前致。

Note: 

自1) By (1~ 2), E=P2/2m+V. putting V=o, and substituting (J ~ 6) into it we get 

E ＝誰知2/2m .

＊中興大學理工學院化學系客座教授

＊＊中興大學化學系間年級生
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