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TUNNEL EFFECT IN METALLIC CRYSTALS
by

Geoarge L. Landolt Ph. D.*

Tian Yow Tsong**

According to our ordinary way of considering things, a fly enclosed in a well-
formed bottle will never fly away unless it is strong enough to break the glass wall
and escape. Newtonian mechanics predicts the same result, while wave mechanics
tells us quite a different story. In wave mechanics. a particle of total energy E
will penetrate a greater potential energy barrier, say V, and appear in the regions
away from its originally bounded space according to certain quantum statistical
laws. This phenomenon, named “the tunnel effect”®, is particularly helpful in
theoretical explantions of radioactive disintegration,® chemical rate processes,®
metallic bonding and many other chemical facts, Uuder this title, we intend to
formulate certain relations for barrier penetration probability with boundary cond-
itions, and by them we are able to construct a correct intuitive picture of the
phenomena concerning the metallic behavior.

I. Tunnel Effect With Boundary Conditions®

For particles of total energy E and potential energy V in one dimensional

problems, Schroedinger equation of time independence is given :

Notes:

(1) Many authors preter to use barrier penetration or quantum mechanical leakage
instead of tunnel effect.

(2) Thorough treatments of a—decay, see, fcr example, M. Bcrn, Atomic Physics, G.
E. Strechert & Co., 1951, pp. 202~206, 308.

(3) See H. Eyring, J. Walter, G. E. Kimball, Quantum Chemistry, John Wiley & Sons,
Inc., 1944, pp. 299~331.

@) Treatments in this section are restricted to chne dimensional barrier problems.
References see: a). D. Bohm, Quantum Theory, Prentice-Hall, Inc., 1951, pp. 238~
240; b). H. Margenatu, G. M. Murphy, The Mathematics of Physics And Chemistry,
Van Nostrand Co. Inc., 1956, pp. 353~858; c). S. Golden, Introduction to Theo-
rectical Physical Chemistry, Addison-Wesley Publishing Co. Inc., 1961, pp. 237~245.

* Visiting professor, Department of Chemistry, College of Science & Engineering,
Taiwan Provincial Chung Hsing University.

** Senjor student, Department of Chemistry.
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L2 vy =0 ® (1)
Taking energy equation in Hamiltonian form

E=_§;+ Ve ’ ' ‘ (1-2)
where p is momentum and m the mass of the particle. Solving for p, we have

P=V2m (E-V) , with E>V (1-3)
and P=ivVZm (V-E) , with E<V (1-4)

‘The prototype wave function and hence the solution of the differential equation
(1-1) is given as:

Wr=Ae'*F + Be T (D (1-5)
where «=V32m (E~V) |k , with E>V (1-6)
and £=iV2m (V-E) [k , with E<V (-1

A and B are two arbitrary constants.
Now let us first construct a barrier potential of the form as shown in Figure-1.

1 I I

==

Fig. 1. Barrier penetration of particles

This potential is
/ V (x) =V,, for o=x=a
V) =0 , for —awo<x=0 and o >x=a (1-8)
where V, > E.

(5) Derivation of Schreedinger equation and the physical meanings ¢f wave function

see T. Y. Tsong, Electronic Interprelation of Chemical Bonding, Science Education
(FE3%E) » Vol. 8, No. 8, (1962). Note that f=~h/2x.

6) E=E, +V,where E, =%mv2=p2/2m.

{?) Substitution of (1~5) into (1~1) will easily verify that it is a solution of the
differential equation (1~1). Discussion of equations (1~5), (1~6) and (1~T7)
however will be found in elementary textbooks of physical chemistry and modern
physics. A brief example is given in H. Margenau etc., loc. cit., pp. 228~235.
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Tunrel Effect in Metallic Crystals

We are considering what fraction of particles will penetrate through region II
and appear in region III, if particles of kinetic energy Ex=FE, i. e. V=0, impinge
on a rectangular barrier of thickness @ and height V,, In other words, we are
trying to find the probability that a particle will be reflected from or transmit
through the barrier. Suppose 4, Y, and «; are wave functions of the particle in
tegions I, II, III respectively, and let

Yy=Ae*r + Beifr® (1-9)
Vr=C 2% + D e %2* (1-10)
Jrg=F e**1* + Ge ia* (1-11)
where 1=V 2mE [k (1-12)
and ko =iV IV E [# (1-13)

and A, B, C, D, F. G, are coefficients to be determined. Since the first terms of
wave functions stand for waves propagating from left to right, while the second
terms stand for waves from right to left, the second term of 1} is missing, i e,
G=0, assuming that no particles hit on the barrier from region III. wave mechanics
requires 1 functions to be continuous over all space, that is at contact surface

X =0, ry=1ry, %:é‘iz(S)and xX=a, o=y, %2=%1’,é3, From these boundary conditions
we obtain A+B=C+D (1-14)
y (A—B) =« (C—D) (1-15)
Cefxzn+De~;x2a=Fet'Kla (1*16)
©s (C e;xza_De—:~2a> = Feix1o (1-17)

We have now four equations for five coefficients, hence we can solve the ratio
for any pair of them. Qur interest is in the ratio of |F|?/|A|?. Since this value
indicates the ratio of transmission, which we name transmission ccefficient(® and
denote it by 7.

Now let us divide (1-15) by «; then add it to (1-14)
A=Lr1+% e+ (1-2) D (1-18)
2 y 31
or by substracting it from (1-14)

B-——%[(l—z—j) C+ (1+5 D) (1-19)

8) 1=+ and %—Zl:dd‘iz mean that the functions themselves and their slcres meet

at x=o. This implies that they are continuous at x=o.

1=1 1=1

n
{9) Normalization and orthcogonality require that i‘, a*o; =3 |a;|? =1and Eiaz;*a,:o
. ; b

u
for wave functicn of general form =3 e; +; - Here «.* is the complex ccnju-
7=1
5

gate of «;; |«;]? represents the prcbability distributicn of + to y; or contributicn
ccefficient of 4; to v». By this category, it is easy to realize that |F|?/|A|? is
the transmission coefficient cf the particles under consideraticn. See C. A. Cou-
Ison, Valence, Oxford University Press, 1952; pp. 13~19.
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Again divide (1-17) by «; then add it to (1-16)

or

or

. 1 .
Cet* %= 2 (1+£~;) F et*1¢

C=% (1+%) Fexp i(ky—ws)a (1-20)
2
Substituting (1-20) into (1-16) , De""‘z’zé« (1= Feie
2
5 (=) F exp iCe+un)a (20

Now introducing (1-20) and (1-21) into (1-18) and reducing

__1_ ixqa Jﬂ ’2 —iKg2 _ky Ky iKga
A—4Fe 19 (2 ‘—:c2+/c1)e ®224-(2 ;;2—;1) e 22]

Rearranging A=21fF ei*18 [2 (e %274 g~ikza) »ﬂ('xil+:%?)(ei"z°-—e—f"‘z°)]
2 Ky

or

A=F é¢*15{cosh i@a—% (%ﬁ%) sinh @] (1-2)
Taking the complex conjugate of A1

A*=F* e-icia [cosh i«:za-i——;: (24 sinh d; @) (1-23)
From (1-22), (1-23) we get

H%{Z:%I:cosha i — (E+00 sinh? ica (1-24)

it

a is fairly large, e~**2¢ is small in comparison with e*2*, therefore we may take

approximation that

cosh? fx.@ == sinh? fx,a 1

Again when V, > E, we see from (1-12) and (1-13) the ratio

'fg_- VO_E .
il S (1-25)

is large in magnitude, and its reciprocal «,/«; ie small that can be neglected.
Therefore (1-24) is reduced to

(0
®

@

3

2
E%{,z:[ 1—+ (2 3 sind® ina
2
. s = — (O sinh? inua 263
Notes:

By definition sinh xs-;— (e*—e™*); cosh x:-é— (e*+e )

Note that «, is imaginary, hence the first term in the bracket of equation (1~22)
is real and the second term is imaginary.

From Note (), if x is large enough, ¢~* will vanish, and cosh x == sinh x, that
cosh? x == sinh? x.

Since sinh? ik, axé— Cexp (2irsa) + exp (—2iza) —27, where x; by (1~13) is
equal to £V 2m (V,—E) |, if Vo> E, term (2ik,e) is a large negative number,

hence exp (2ix; a) approaches zero, and exp (—2ik;a) is large in comparison

with 2, therefore sinh? ix.,a ~ %—exp (—2¢ka) «
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Tunnel Effect in Metallic Crystals

Introducing (1-25) into (1-26) and replacing sinh? ix,z by its largest term' ¥

2 e
11_174‘“{‘2 o~ 113 K”fgexp (—2 ixz: @) (1-27)
‘This is equal to
2 -
r=hh= 2 esp (— v/ Tm (VSEY @) (1-28)

From this equation, we conclude that for particle ¢f mass s so small as electrons or
alpha particles, transmission ccefficient 7' is not negligible provided that @ is not
too large. In fact, there is no retangular energy barrier as shown in Figure 1.
Potential energy barrier is always a smooth curve, In such a case we can practically
reduce (1-28) into the form
T = exp (-} [VZm(V(D=ET dr)eo (1-29)

1I. The Band Model of Metals(’®

We recall in this section some basic ideas of band thecries.

Molecular orbital theory using LCAOU® treatment states that two overlapping
s orbitals, one from each of two atoms, produce two new orbitals of slightly different
energies. By similar reasoning, repeated addition of one more atomic orbital produces
one more molecular orbital. For j centers crystal, therefore, possesses j molecular
orbitals of very close energies. These orbitals form a energy band. Between energy
bands of neighboring quantum states, for instance between 1s and 2s levels, there is
an energy gap. No electron is allowed to move in this gap. If the number of electrons
in the crystal is such that the allowed energy bands are occupied entirely, there
are no free electrons at all, and the crystal will behave as an insulator. On the
other hand, if one or more bands are partly filled, the crystal will behave as a metal.
Semi-conductors are crystals between two extreme examples. The partly occupied
outermost band of valence electrons is a conduction band, while the next fully
occupied bands of valence electrons are valence bands. And the rest of electrcns
in the atom form inner shell which are less important in characterizing the

metallic behavior of the crystals. For three-dimentional considerations, these bands
-

Notes:

19 In (1~27), if the absolute value of expcnential term is so large, term 16E[(V,~—
E) is no longer impcrtant, so that it can be taken zs unit. Since pctential
energy V is a functicn cf cccrdinate variable », we can reduce (1~28) to T =

45 General references are given: a). W. J. Moccre, Physical Chemistry, 3rd ed,
Prentice-Hall, Inc., 1962, pp. 680~685; b). Coulscn, loc. cit., pp. 276~287; c). C.
Kittel, Introduction to Solid State Physics, 2nd ed.,, Jchn Wiley & Scns, 1956,
Chapt. 11; d). R. A. Smith, Semiconductors, Cambridge University Press, 1958,
Chapts. 1, 2.

{49 Linear Combination c¢f Atcmic Qrbitals. See Cculson, loc. c¢il., pp. 69~76.

— 85 —



Pigm 8 AR

are known as Brillounin zones.

Studies of probability distribution

of conduction electron energy states © = L =
in metallic crystals have been experi- ¢
mentally and theorectically developed = =] = —

by Sommerfeld, Fermi, Dirac and

many other investigators. If we denocte b

B RS

the number of energy staies available «:.:.:::::.::.."
e (X
per unit volume in a given crystal
by N, the density of states b E), » .. .
Y Y v &(E) Metal Semiconductor  insulator
we have
v 3 Fig. 2. Schematic band models of Solid,
Jg (E) dE =NV:§7't7;—i3 @mE) 7 a) Inner shell electron, b) Energy gap,
¢) Valence band, d) Energy gap, €) Con-
z-1 duction band.
174 3 1
and g (E) =gz (2m) T E2 0D (2-2)

where V is the volume of the crystal. The distribution curve is shown in Figure 3.
g(E) ©

E

Fig. 3. Plot of density of state g (E) as a function of energy. The sodid
line indicates the distribution at absolute zero, and the dotted 1line
at temperature T.

1II. Electrons in Metallic Crystals

Regular lattice points of metallic crystals form a set of periodic potentials. The
potential energy rises rapidly to infinite at the position near each of nucleus that
representing a deep potential energy well for electrons. If we plot a negative pote-
ntial energy versus coordinate variable, we get a periodic potential diagram with
period equal to the length of unit cell . An oversimplified diagram for such potential
barrier is shown in Figure 4. Movement of conduction electrons from the vicinity
of one nucleus to that of the next requires the electrons to pass through these
potential barriers. As we discussed in Section I, tunnel effect, thus plays an essential
role in theorizing the energy State, and hence of metallic behaivor, of electrons in

metallic crystals.

@) Drivation of (2~1) and (2~2) see C. Kttel, Joc. ¢it., pp. 243~251.
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Tunnel Effect in Metallic Crystals
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Fig. 4. Periodic negative potential energy barrier for electrons
in metallic crystals.

Let us now see how wave functions of Schroedinger equation are adapted into a
periodic lattice according to Bloch Theorem.(1®
One-dimentional Schroedinger equation given in (1-1) is

L 2E - V) =0 @D

Since V is periodic with period e, 4 must also be pericdic. Let 4 be a linear comb-
ination of two independent real solutions f; (x) and f; (x).

Y (x) =A1 1 (x) +A2fs (%) (3-2)
A, and A4, being constants, Now if fy (x) and f; (x) are solutions of (3-1), periocity
requires that f; (x+a) and f, (x-+a) must be solutions of (3-1) too.

This implies that  f; (x+a) =ay fi (&) +ap f2 (1) (3-3)
and f2 (x+a) =as f1 (x) +ag f2 (x) 3-4)
the a’s being constants. Similarly, for (3-2) we have

Vv (x+a) =A; 1 (x+a) +A, fr (x+a) ) (3-5)
Hence Vv (x+a) = (Ayan+Asan) fi (8) + (AyaptAsan) f: (x)  (3-6)
Let ¥ (x+a) =AA f1 (x) +A A f2 (x) (37
This means A; ay;+As aoy=A A, (3-8)

A; izt A = A (3-9)
X being the function to be determined. Now we have + (x+a) in the form

¥ (x+a@) =x P (x) (3-10)
For equations (3-8) and (3-9) to be satisfied, A must be subject to the equation

[ Cn—A (223)

| =0 (3-11)

1 (24T Qg2 —A
or (=) (Aaz—A) ~@2 Wz =0 (3-12)

This is a quadratic equarion which has two roots A, and A, for A. Therefore there
are two corresponding solutions of the Schroedinger equation.

Notes:

(® See a). F. Seitz, Modern Theory of Solids, McGraw-Hill Beok Co., 1940, Chapt. 8;
b). C. Kittel, foc. cit., p. 279; ¢). H. Margenau etc., loc. c¢it., pp. 80~81, Floquet's
Theorem.
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By (3-10) W (x+a) =Aply (%) (3-13)
Yy (X+a) =Xepy (%) (3-14)
Again, since the potential is periodic and symmetric with respect to the origin,
V (x) =V (—x), so that if +» (x) is a solution, ¢ (—x) and +» (x—a) are solutions
too. Replace x by x—a in (3-13)
Py (%) =AY (¥—a) (3-15)
Furthermore replacing x by —x

Yy (—%) =24 [— (x+@)]

or Yy [— (x+a) ]:%1\]/1 (—x) (8-16)
Comparing equations (3-16) and (3-14) to see they are similar in form with (3-10)
bvious] Yy (= (xta)] s (x+a) i
Obviewsly Tl =m T et

This lead to the result that
A Ae=1 | (3-18)
Two sets of values for A, and A, are considerable.
First { Ry slh™ (3-19)
A= be

where @ is the length of unit cell, » a real number. But this set is not what we
wanted, since as b increases, A; tends to be infinite and A, vanishes.
So next we consider {xl:e”_m (3-20)
Ag=g t#a
where w is a real number. Both A; and A; in this form are wave functions of period
a. And these are the functions which we look for.
Now we conclude that, since

¥ (x+a) =P (x) (32D
the correct wave function in the periodic potential is the original wave function
for the free electron multiplied by a wave function with the potential period a.
Eguation (3-21) is known as Bloch function.

The result obtained above may be expressed in mwore convenient way.

On putting e'**=exp i(u+2nz/a)a’™ (3-22)
.Evidently, this equation holds over the whole range of the coordinate, therefore we
may place x instead of ¢. Again if we take zero value of u and express original
wave function by e***, we have by (3-22)

Y (x+a) =exp i (e+2nnja) x=e*'~ (3-23)
This expression describes a wave travelling through the crystal in the positive x
direction. For that of oppositely directed wave
AV [~ (x+a) J=exp—i (k+2nnla) x=ei"'* (8-24)

Notes:
49 e*e=cos ua—i sinpa=cos (pa+2nn) —i sin (pa+2n ) =exp—i (pa+inm)
—exp—t(p+2nmla)a.

@3 From «=plh and p= k/x we get x:%?vn
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Tunnel Effect in Metallic Crystals

We see from (3-23) and (3-24) that the effect of periocic potential on electrons is to
modulate the frequency of original wave which is proportional to «?9 by subjecting
it to a periodic function. The general relation between & and «’ is
«:’:ici:ZZ—ﬂ (8-25)
When «=—«’, the eleciron wave is completely reflected by the potential barrier,
and a standing wave is set up in a unit cell. In this case

b £ 2 (3-26)

which is an analogy to Bragg equation for reflecting wave.
2d sin@=nx (3-27)
Since energy of an free electron is proportional to &2, out of the boundary

K= Zgai[" there are no energy states allowed, and energy gaps are thus formed. On

the contrary, inside the boundary, bands perfectly free for conduction electrons
called, as we mentioned before, Brillouin zones are established. It is easily seen,
therefore, that the electrical conductivity of metals in the idealized model, in which
the nuclei are arranged at the point of perfectly periodic lattice, no resistance
would be perceived. The electron wave ¢ would pass through the lattice unscattered,
without resistance, just like electromagnetic radiations pass through perfect medium
without scattering or alteration. The resistance of metals arises only when the
crystals are imperfect, for example, lattice vibration caused by heat, lattice vacancies
and impurities, dislocation and many other defects of crystal lattice. These explan-
ations are also particularly instructive to the fact that the resistivities of metals

increase as the temperature rises,

e HaBTZRT XR
Mo kR
o SRR TR T H R A A B b BB 2 R T MRS ¢
T=g Lenp (-2 v 2m (Voo Ey a)
A E RNTIREE - m BRET2ER SV, BENE s o HEREE o
= FERE B IERE TR R R SRR o M BN B T ML E ARG WP RS
Eof EFHLEERHDAMERER ShETIENZREESERSER -
Z S BEMTER R REREEE o HIRE T ARPEE T S W R R A R B R A
R WEE
s HHETAHEASHRESEHZZENEE « B2 ENARNR B REE L ARER I o
Note:
0 By (1~2), E=p%/2m+V, putting V=0, and substituting (1~6) into it we get
E=%%2/2m.

* HBCKERTE T B L B R R R
*x TUECKERILEUAIG IR
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