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Abstract
In this paper suppression of the transient flexural vibrational disturbances in long rotors, with fluid film bearings, is investi-
gated. The rotor is described by a series of distributed shafts connected by the lumped discs, and the system is mounted on 
lumped fluid film bearings. Upon determination of the dynamic stiffness matrix of the system, the best approximate transfer 
function matrix description of the rotor, is determined. Initially vibration suppression by simple diagonal Proportional + Inte-
gral (PI) controllers is studied and via direct search optimisation techniques the PI parameters which exhibit fast vibration 
suppression is found. The resulted high integration rate, and low proportional gain PI controller, theoretically provided fast 
suppression time. However, it is shown that due to the strong coupling effect in the rotor system, and high rate of integration, 
the closed loop relative stability is weak, and feasibility of controller is questionable. Therefore, an alternative simple first 
order controller without integration action, that is named “attenuation filter “is suggested that can produce stronger stability 
and produces significant (not full) vibration suppression. The closed loop multivariable control of the rotor system compris-
ing two vibration sensors and two magnetic actuators using such attenuation filter, is then simulated. The response to step 
disturbances, has provided 95% suppression with significantly fast response. It is concluded that although the attenuation filter 
may not provide 100% suppression, but it more reliable since the integration of the error, that results weak stability is avoided.

Keywords Rotor vibration · Optimisation · Control · Multivariable

1 Introduction

It is nearly four decades that research on active vibration 
control is continuing to accommodate the needs for provid-
ing reliable aircraft engines and active anti-seismic struc-
tures. Although the technology has progressed significantly, 
applicable and commercially viable solutions, are few. The 
two major control strategies are electromagnetic excita-
tion type and described in [1]. And wrapped piezoelectric 
patches on rotors that is still under research and develop-
ment [2].

Since there are several sources that can cause excessive 
vibration in rotors, the suppression of unwanted vibration by 
unique controller will be sophisticated. Recently, a model 
free control (MFC) based on adaptive machine learning [3] 
is tested for such purpose. There are not simply structured 

controllers except in limited circumstances, where PD con-
trollers can be used [4].

Traditional methods for vibration control are usually pas-
sive and, rely upon viscous dampers or dynamic vibration 
absorbers [5]. However, the synthesis of active controllers 
for vibrating systems, was investigated in the early seventies 
using modal control theory [6, 7]. Such works were extended 
to include active control of flexible rotors using state vari-
able feedback [8], where An approximation to behaviour 
uses discrete models with lumped masses.

Difficulties arise, when higher order descriptions of 
behaviour which are derived from finite element analysis 
of rotor-bearing system [9], are employed in these types of 
investigations. The complexity initiated, from assigning a 
large number of eigenvalues (fifty pairs for example) this 
results in high order, non-realisable controllers [10] espe-
cially when observer based controllers are designed.

In order to achieve a realisable control strategy for 
lumped of rotor-bearing systems, a vibration performance 
index in the frequency domain has been defined by Bur-
rows [11]. The optimal location of the control force was 
computed to minimise this index and was confirmed using 
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experiments with a magnetic control unit [12]. Implement-
ing this type of control is often expensive and impractical 
in rotating machinery applications, since it requires mov-
ing actuators.

Practical control scheme known as Adaptive Force Bal-
ancing (AFB) can be implemented and described by Shafai 
et al. [13]. However this strategy is limited to removal of 
steady state vibration, thereby achieving “on-line” balanc-
ing. This has been applied to single variable and multivari-
able models of a rotor supported on magnetic bearings, 
that enable removal of steady state vibration of a given 
frequency between them.

In order to increase the range of frequencies, further 
theoretical and experimental studies was carried out by 
Kenospe et al. [14]. They proposed a multi-tasking com-
puter program, that performs AFB and feedback loop 
computations, simultaneously, and computes the required 
control forces in the magnetic bearings.

Investigations into removing loads due to shock or tran-
sient vibration as given by sudden blade loss or unpre-
dicted disturbances, is very limited due to its complexity. 
Palazzolo et al. [15] use optimal control theory for this 
purpose, to search for an optimal state feedback rather 
than seek to reject disturbances. Hori et al. [16] consider 
a simple torsional system, with State Feedback and Load 
Acceleration Control (SFLAC) to suppress the torsional 
vibration. Their simulation results do not indicate appro-
priate vibration rejection, since their state feedback strat-
egy considers pole placement rather than disturbance 
rejection.

Hathout and Shafei [17] have considered a simple Jef-
fcott rotor model (a hypothetical distributed shaft with its 
mass concentrated in the middle), they show that a Hybrid 
Squeeze Film Damper (HSFD) coupled to a servomecha-
nism with PI controller can reduce the rotor vibration. The 
results of their simulation do not indicate a significant degree 
of rejection. This arises because a single control element is 
applied to a two degree of freedom system.

In all previous investigations two major assumptions are 
ignored. First, the rotor ought to be modelled as a distrib-
uted-lumped parameter system, rather than purely lumped. 
Moreover, the rotor-bearing model can be made multivari-
able, with multiple sensors and control force actuators. Apart 
from that, stationary actuators are necessary prelude in order 
to implement practical control strategies in long rotor sys-
tems. The single moving actuators used in [11, 12] is hard 
to implement in practice.

Aleyaasin et al. [18] have shown that both assump-
tions can be effectively combined into a single system. 
Although the actual distributed-lumped rotor model would 
be more complicated, by implementing dynamic stiffness 
matrix method, an appropriate approximation for describ-
ing a multivariable model can be obtained. Moreover in 

a review on various control strategies [19], it is proposed 
that the response of a low order PI controller designed by 
optimisation is much better than a high order H∞ control-
ler [20]. This paper sets out to explore the above issues in 
more detail.

In particular a rotor that is mounted on fluid film bear-
ings, and is described by a series of distributed and lumped 
elements. Upon determination of the dynamic stiffness 
matrix of the system, the best multivariable transfer func-
tion matrix description of the rotor is computed. It is 
shown that vibration disturbances in the rotor could be 
suppressed by simply structured controllers. The first type 
investigated in this article is diagonal PI controllers, that 
can provide 100% suppression, but they suffer from sta-
bility weakness. To overcome this weakness, another first 
order controller named “attenuation filter” is also inves-
tigated and can produce 95% suppression with stronger 
stability.

To find parameters of the PI controller and also the 
attenuation filter, that ensures stability together with 
reducing the suppression time, a powerful pattern search 
algorithm based on the Hooke and Jeeves (HJ) technique 
is implemented. By considering the location of the domi-
nant closed loop pole as an objective function, and the 
closed loop system stability as a constraint, the range of 
PI parameters and attenuation filter are determined, that 
can reduce the suppression time and also increase the sup-
pression percentage. This is then applied to a system com-
prising two vibration sensors and two magnetic actuators. 
The response to a step disturbance, is shown to be quick. 
However, the examination of the full Nyquist plot of mul-
tivariable system shows that the relative stability for PI 
controller is very weak. Therefore, PI controllers that are 
useful in process industries, cannot be successful in vibra-
tion suppression particularly in long rotors.

The alternative controller, which is the combination of 
minimum effort controller and an attenuation filter, does not 
provide full disturbance rejection (100%), but can supress 
the vibration significantly i.e. (95%) in simulation. Since 
there is not integrator in the structure of alternative control-
ler, the stability weakness, does not exist in attenuation filter.

2  Multivariable models and transfer 
function estimation

Figure 1 indicates a rotating shaft idealised as a series of 
distributed and lumped elements. The number of lumped 
elements is n and there are n + 1 distributed elements.

The vibration of the mth lumped disc in vertical y direc-
tion which results from the vertical excitation force at lth 
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lumped element can be computed using the flexibility matrix 
as follows:

where G�
lm
(j�) in (1) is the frequency response function, in 

which the corresponding flexibility matrix is:

The above partitioned flexibility matrix is derived in [18] 
based on dynamic stiffness matrix method (DSMM) in 
which each of the sub-matrices are described in appendix.

Frequency response data can be obtained from each trans-
fer function, so that a vector of frequency response data, as 
a function of � , could be written as.

From the multivariable frequency response matrix in 
Eqs. (3) and (4) estimates of the transfer functions can be 
obtained. An elementary algorithm for the computation of 
the estimated second-order transfer functions is given in 
[18].

The simple route for obtaining low order estimated 
transfer functions arises from the use of frequency domain 
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identification techniques. A program in the MATLAB 
named MFD toolbox [21] is available, enabling a proper 
transfer function of any order to be estimated from frequency 
response data.

This satisfies both the amplitude and phase of Eqs. (3) 
and (4). However, the estimation procedures are based on 
least squares techniques [22] and there is the possibility of 
achieving unstable transfer functions, even if the stability 
of the system is guaranteed, as explained by the procedure 

used in [18].
Therefore, the user should choose the lowest possible 

order transfer function, commensurate with steady state and 
transient fidelity, by matching data from Eqs. (3) and (4). 
Such transfer functions could be represented by the form:

3  Controller synthesis by optimisation

Upon the computation of an estimated transfer function 
matrix G(s) a control system could be determined, for the 
multivariable configuration, shown in Fig. 2 where the D(s) 
is the vibrational disturbance vector, E(s) is the error vector 
and Y(s) are the vibrational displacement, measured by the 

(5)G�
ij
(s) ≅ Gij(s) =

∑m

k=1
aks

k

∑n

k=1
bks

k
m ≤ n

Fig. 1  Distributed lumped model of rotor-bearing system
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Fig. 2  Block diagram of the multivariable closed loop control system
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sensors. The multivariable compensator here, is K(s) and 
this should be designed to reject vibrational disturbances.

According to the block diagram in Fig. 2, the following 
relationships between the vectors and matrices exist:

and

For full disturbance rejection the set point vector r(s) can be 
considered to be null.

From Eqs. (6)–(8) the closed loop transfer function matrix 
can be computed from:

The necessary condition for steady state vibration rejection 
can be expressed as

In order to connect the frequency and time domain, the final 
value theorem in multivariable version should be used [23].
When step vibrational disturbances are applied to Eq. (9), it 
results the following expression between time and frequency 
i.e. mapping from t = ∞ into s = 0:

Substituting (10) into (11), then to achieve a non trivial 
solution for the system of linear equations in (11) we can 
conclude that [23]:

To satisfy Eq. (12) the compensator K(s) should be con-
structed, in diagonal form with PI (Proportional + Integral) 
elements as follows:

The parameters of each PI element could be determined to 
ensure stability and also to produce low disturbance rejection 
times. For this purpose direct search optimisation techniques 
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are employed. The procedure consist of a series of itera-
tions in which the closed loop transfer function matrix is 
computed using:

The iteration procedure is based on choosing the initial gains 
ki and integral rates kp then by using the symbolic operations 
in MATLAB, the characteristic determinant of the system 
can be determined and represented as:

The location of the dominant closed loop pole of the system 
can be determined as an objective function in the optimisa-
tion procedure, which could be shown by:

Since all of the closed loop poles have negative real parts, 
the minus sign in (16) is considered to find the location of 
domain poles. An efficient search method is then required 
to continue the iteration until the dominant pole location Δ 
in (16) is minimised enabling the required low disturbance 
rejection time to be achieved. In order to determine realis-
able controllers, the following constraints should be imposed 
on the parameters of the PI elements:

Since the objective function for this problem is compli-
cated, and there are several searching variables, gradient 
based optimisation will be formidable task. Therefore, direct 
search optimisation techniques are the best route for this 
case. Direct search optimisation techniques do not form the 
fastest vehicle, but their convergence is not too sensitive to 
the initial starting values of the variables. An efficient and 
ingenious direct search technique was proposed by Hooke 
and Jeeves [24]. The method is based on a pattern search 
scheme which is described by the flow chart in Fig. 3. The 
search consists of a sequence of exploration steps about a 
base point, which if successful is followed by pattern moves. 
An exploration step is described by the flow chart in Fig. 4. 
To satisfy the constraints, a suitable penalty function [25] 
could be added to the main objective function.

4  Numerical example and application

A rotor bearing system which is shown in Fig. 5 consists 
of three lumped steel discs each with thickness t = 50 mm, 
diameter of 100 mm connected by four distributed shaft 
elements each with length of L = 400 mm and diameter 

(14)�(s) = [� +�(s)�(s)]−1
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D = 25.4 mm. This example is also considered by Burrows 
and Sahinkaya [11]. The rotor with angular velocity of 
Ω = 360 rad/s is supported by two identical fluid film bear-
ings each with the length l = 16.9 mm. The radial clear-
ance of the shaft bearing is c = 0.127 mm and the lubricant 
viscosity is μ = 0.015 N·s/m2. Using the above data the 
stiffness and damping of the bearings could be computed 
according to the procedure outlined in the “Appendix 2”.

For the system in Fig. 5, in the case where three sensors 
are used to measure the lateral vibration of the lumped 
discs, while the control force is applied through the 

bearings, considering Eqs. (1) and (2) the system of equa-
tions for the flexural vibrations in (52) gives:

The actual G′ij found via distributed-lumped modelling is 
irrational (not polynomial) because it is related to flexibility 
matrix in Eq. (2). In order to find open loop poles it should 
be approximated by polynomial type Gij. In MFD toolbox 

(18)G�
11
(j�) = Λ5,2(j�), G�

22
(j�) = Λ13,18(j�)

(19)G�
21
(j�) = Λ13,2(j�), G�

12
(j�) = Λ5,18(j�)

Fig. 3  Flow chart of the Hooke 
and Jeeves pattern search 
method
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a powerful identification algorithm [22] exists that approxi-
mates a Gij polynomial form with poles and zeros.

Using the elements of the multivariable frequency 
response matrix displayed in Eqs. (18) and (19) and the 
algorithm for the estimation of the closest low order transfer 
functions, which is described by Eq. (5), the transfer func-
tion matrix of the rotor bearing system can be computed. In 
the configuration where two sensors are located at the discs 
1 and 2, while actuators are placed at bearings 1 and 2, the 
system is MIMO with two inputs and two outputs, hence:

where the transfer functions in (20) are:

(20)
[
Y1(s)

Y2(s)

]
=

[
G11(s) G12(s)

G21(s) G22(s)

] [
Q1(s)

Q2(s)

]

(21)G11(s) =
0.146s3 + 15.76s2 + 3229.1s + 511750

s3 + 213.06s2 + 13904s + 2574700

Fig. 4  Flow chart of an explora-
tion step in Hooke and Jeeves 
method
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and:

All the above estimations satisfy both the amplitude and 
phase angle equivalence. For example in Fig. 6, the esti-
mated transfer functions (21) are very close to the actual 
transfer function, where both the amplitude and phase angle 
of the actual and estimated transfer functions are drawn. 

(22)G21(s) =
−0.038s2 + 3.47s + 840.04

s2 + 6.78s + 12435

(23)G21(s) =
0.103s2 + 1.92s + 2576.7

s2 + 6.303s + 12501

(24)G12(s) =
−0.049s2 − 5.39s + 832.7

s2 + 6.91s + 12617

These figures also show that when ω = 112 rad/s there is a 
peak in the frequency response curves.

The transfer function matrix in [18] for the above sys-
tem is different, since it is an approximated 2nd order sys-
tem fit with poles only (no zeros in individual transfer 
function). However, herein the type of fitting above for the 
“same system” is more accurate and is carried out by Mul-
tivariable Frequency Domain (MFD) toolbox that provides 
the closest fit as possible such that both poles and zeros 
exist in the open loop system. The MFD toolbox identified 
 G11 as an order 3 system, from the general form expressed 
for any order in (5).

The G11 is very close to (approximated value) of the G`11 
which gives the displacement Y1 resulted by unit force of 
Q1. This can be obtained from the following ration by using 
the elements of the flexibility matrix (inversion of stiffness 
matrix) in Eq. (2). The elements of the stiffness matrix can 
be found from the Eqs. (38) and (48) in “Appendix 1”.

Attempts to find a diagonal compensator with PI elements in 
order to supress vibrational disturbances in the rotor system, 
described by the transfer functions (21) to (24) resulted in 
a low proportional gain together with a high integral rate. 
Elsewhere, in the gain space it was not possible to find PI 
parameters which would provide closed loop stability. In 
Fig. 7, a three dimensional graph shows the location of the 
dominant closed loop poles of the system versus the param-
eters of the PI elements. From this graph it can be concluded 
that, the dominant pole of the system could be located in the 
right hand side of the complex plane, with a high propor-
tional gain.

G11(j�) ≅ G�
11
(j�) = Λ5,2(j�) =

Y1(j�)

Q1(j�)

Fig. 5  A rotor-bearing system with two sensors and two actuators
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A controller matrix consisting of PI diagonal elements 
was calculated using the Hooke and Jeeves search method. 
Table 1, shows the search results including the initial PI 
parameters, number of iterations, and the final resulting PI 
parameters which are used to obtain the minimum rejection 
time when a step disturbance is imposed on the rotor system. 
The resulting PI controller can be expressed as:

In Fig. 8, the block diagram of the multivariable closed loop 
configuration for the rotor-bearing system is shown, where 
two vibrational step disturbances are applied at positions 1 
and 2, simultaneously. The physical explanation for the high 

(25)�(s) =

[
0.1 +

14

s
0

0 0.1 +
14

s

]

integral rate used herein, is because of the existence of high 
frequency oscillations in the system model, which requires 
substantial control effort for disturbance rejection.

The simulation is for the worst case, where double step 
disturbances are introduced. The responses are shown 
in Fig. 9 where a rapid suppression time of about 2 s. is 
achieved. It should be noted that the response would be 
faster if the disturbance originated from one position only. 
The suppression time in Fig. 9, is in transient phase and 
after that phase, the steady state vibration will remain if 
the unbalance force has not been removed or cancelled by 
active balancing or AFB.

However, the low proportional gain with high integral 
rate for stabilising this system is unusual and the frequency 
domain interpretation of this action requires further expla-
nation. Unfortunately, due to strong coupling in the sys-
tem, and also the huge growth of the vibration amplitude 
at the resonance frequency, the stability information can-
not be assessed via Gershgorin bands. In the 2 × 2 MIMO 
system in this article, the radius is q12 for q11 band and q21 
for q22 band and q = (GK)−1.

In Fig. 10 these bands, which are based on the inverse 
Nyquist plot of the open loop system are shown for the 
case where feedback reversal is not employed. Both of the 
bands include the origin, and therefore stability cannot be 
investigated [23].

Table 1  Searching for a PI controller which results minimum rejec-
tion time

Initial 
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k
P

11
, kP

22
, kI

11
, kI

22
 

for starting 
optimisation 
procedure

Final values of 
k
P

11
, kP

22
, kI

11
, kI

22
 In 

optimisation by 
Hooke and Jeeves 
method

Number of 
iterations in 
optimisation 
by Hooke 
and Jeeves 
method
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tion by Hooke 
and Jeeves 
method
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Fig. 8  Simulation block diagram of the multivariable closed loop control of rotor system
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In order to investigate the stability condition Nyquist’s 
stability theorem could be employed. This deals with the 
closed loop characteristic equation of the system:

The full Nyquist plot will be drawn by using (26). The Ger-
shgorian band in Fig. 10, shows that in vibrational systems 
(long rotors) “diagonal dominance” cannot be observed in 
the band. This the only tool illustrate the strong interaction 
in the system.

Let this determinant have Npo poles, which are identi-
cal to the number of open loop poles and Nzc zeros which 

(26)det [� +�(s)�(s)] = 0

are also the number of closed loop poles in the right hand 
plane, then the argument theorem states that:

where Δ arg denotes the change in the angle as s traverses 
the Nyquist contour D, once clockwise. When there are no 
open loop poles in the right hand plane i.e.

Then the number of anti-clockwise encirclements of the ori-
gin by the determinant (26) is equal to the number of closed 
loop poles in the right hand plane i.e.

The full Nyquist plot of the system is shown in Fig. 11, 
where the mapping starts at � = −∞ on the positive real 
axis and goes up to the second quadrant at � = 0 and makes 
a infinite semi-circular clockwise turn (which excludes 
the origin), and from the third quadrant progresses until it 
crosses the positive real axis again at � = +∞ . This curve 
does not make any encirclement around the origin, and it can 
be concluded that there are no right hand plane closed loop 
poles, indicating closed loop stability. The plot also shows 
that small model perturbations may cause instability.

In Fig. 11 the design route for PI controller in which the 
full suppression is guaranteed, is based on the pole place-
ment in frequency domain, and can be designated by objec-
tive function (16). This leads to low “suppression time” 
similar to “settling time”. However, the huge control force 
that is resulted from error integration cannot remove the 
stability weakness. Therefore, an alternative controller will 
be investigated in the next section in which “error integra-
tion” is avoided.

(27)Δ arg |� +�(s)�(s)| = 2�
(
Npo − Nzc
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Fig. 9  Response of the closed loop control system to double step dis-
turbances, indicating low rejection time
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Fig. 11  Nyquist plot showing det (I + GK) does not encircle origin 
with high integral ratio
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5  Alternative attenuation filter

To overcome weak stability performance of PI controller 
and simultaneously achieve a significant (not full) amplitude 
suppression, an alternative controller is indicated in Fig. 12 
is suggested. This includes a filter that is a simple time delay 
located in the forward path of block diagram. The filter is 
defined by the gain K and time delay T, which is multiplied 
by the gains k1 and k2.

Then the gain vector will be converted into following 
functions:

The gains 5.2 and 5.3 in equation is the result of two step 
controller design that is suggested by the author. In the first 
step the minimum effort control strategy that is described in 
[26] is implemented.

The polynomials N(s) and D(s) in Eq. (31) can be deter-
mined in terms of the filter parameters K and T as follows:

(30)k1(s) =
5.2K

T s + 1
k2(s) =

5.3K

T s + 1

(31)q(s) = 1 + ⟨��(s) �(s)⟩ = N(s)

D(s)

(32)

N(s) = T10
s

+ (1 + 233.1T − 0.0087K)s9 + (233.1 + 55900T − 1.236K)s8

+ (−756K + 114 × 105T + 55900)s7

+ (1156 × 106T − 127900K × 114 × 105)s6

+ (2081 × 108T − 2151 × 104K + 1156 × 106)s5

+ (1051 × 1010T − 3571 × 106K + 2081 × 108)s4

+ (1681 × 1012T − 2509 × 108K + 1051 × 1010)s3

+ (3547 × 1013T − 3889 × 1010K + 1681 × 1012)s2

+ (5071 × 1015T − 1039 × 1012K + 3547 × 1013)s

− 1477 × 1014K + 5071 × 1015
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Fig. 12  The simulation block diagram indicating the location of the attenuation filter
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The roots of N(s) give the poles of the closed loop sys-
tem versus the filter parameters of K and T. An advan-
tage of the minimum effort design procedure herein, can 
be realised by finding a range for the gains k1 and k2 for 
which the system is stable. In Fig. 13, the location of the 
dominant closed loop poles, which are designated by their 
negative real parts versus the filter parameters K and T, 
are shown.

This enables a direct search optimisation technique 
to be employed for obtaining the filter gain K and time 
delay T, for which the minimum vibrational amplitude 
occurs. The objective function of the search could be the 
sum of the absolute values of the steady state amplitudes, 
expressed by:

(33)

D(s) = Ts10 + (1 + 233.1T)s9 + (233.1 + 55900T)s8

+ (114 × 105T + 55900)s7

+ (1156 × 106T + 114 × 105)s6 + (2081 × 108T

+ 1156 × 106)s5 + (1051 × 1010T + 2081 × 108)s4

+ (1681 × 1012T + 1051 × 1010)s3

+ (3547 × 1013T + 1681 × 1012)s2 + (5071 × 1015T + 3547 × 1013)s

Via the simulation of the closed loop control system, the 
minimum value of the objective function ∆min can be 
achieved after several iterations.

The objective function for this problem cannot be 
expressed as a function of K and T and requires the system 
simulation at each trial, although only two searching vari-
ables are used. Direct search optimisation techniques still 
form the best solution approach for this case, since gradient 
based optimization techniques are a formidable task due to 
the complexity of objective function in Eq. (34).

Table2, shows the search results including, the initial 
gain and time delay, number of iterations and the final gain 
and time delay which are selected as the attenuation filter 
parameters.

Using this filter the corresponding values of the steady 
state amplitude of each output are:

The simulation block diagram of the closed loop minimum 
effort control system with the attenuation filter is shown in 
Fig. 14, where two step disturbances are applied at the sys-
tem outputs. A similar situation occurs in wide span rotors 
during transient phase of the sudden blade loss, when the 
disturbance occurs at multiple locations across the rotor 
system.

The simulation results are shown in Fig. 15 where the 
responses due to the unit step disturbances are plotted. The 
vertical axis, which shows vibration displacement, has the 
same scale as the disturbances.

Therefore, the curves indicate directly the reduction 
achieved by using this control scheme. According to (35) 
the average equation vibration reduction is about 95% which 

(34)Δ =
(||y1(t)|| + ||y2(t)||

)
t→∞

(35)y1(∞) = 0 y2(∞) = 0.0429
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Fig. 13  3D graph shows the negative real part of dominant pole ver-
sus the filter gain K and time delay T

Table 2  Searching for optimal 
gain and time delay of the 
attenuation filter

Initial values of gain K and 
time delay T of attenuation 
filter

Final values of gain K and 
delay T in optimisation by 
Hooke and Jeeves method

Number of iterations in 
optimisation by Hooke and 
Jeeves method

Sum of the steady 
state responses 
of two step 
vibrational distur-
bances

K = 20 and T = 1 K = −1627 and T = 17.11 N = 988 |y1| + |y2| = 0.0429
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is remarkable. This reduction occurs rapidly and the ampli-
tude of the oscillations are not visible. It should be noted 
that Fig. 15, does not indicate full disturbance rejection, as 
achieved in PI controller. However, a significant reduction 
in vibration disturbances is obtained with minimum effort 
control only, without using integral control elements.

For the attenuation filter herein the error integration is 
avoided, and the main objective functions (34) is “suppres-
sion level” similar to “steady state error”. Moreover, the 
physical system limits the real part of the dominant pole and 
the important phenomena of “actuator saturation” should be 
considered. In this paper a basic assumption is that actuators 
are strong enough and will not be saturated.
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Fig. 14  Simulation block diagram of the closed loop controller for the rotor system with an attenuation filter

Fig. 15  The response of the closed loop control system with attenua-
tion filter following double step disturbances
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6  Conclusions

This paper shows that in distributed-lumped rotor systems, 
vibrational disturbances can be suppressed by simply struc-
tured first order controllers. When the number of sensors is 
the same as the number of actuators in the control system, 
suppression could be achieved by using simple controllers 
either in form of diagonal PI compensators or nondiagonal 
attenuation filters.

The PI controllers require high integral rate to obtain low 
suppression time, such that the closed loop system, provides 
significant control forces to supress the vibrational distur-
bances completely. However, the relative stability for PI 
controller, according to Fig. 11 is very weak.

It can be concluded that when a blade loss or a sudden 
shock occurs in a rotor system, the full vibrational distur-
bance suppression can be achieved in theory. Although, it is 
not reliable enough, to be implemented in practice. This is 
because a slight change in PI parameter can cause instability 
i.e. rotor -stator clash.

Thereafter, to overcome this an alternative controller 
strategy is used by combination of minimum effort con-
troller with an attenuation filter used in Sect. 5 of this 
article. Although this alternative controller cannot produce 
full suppression (100%), but significant suppression (95%) 
can be achieved. Therefore, reliable (more stable) control-
ler with 95% suppression is superior to unreliable (weakly 
stable) with 100% suppression and can be recommended 
in practice.

Appendix 1

The corresponding block diagram for the system is shown in 
Fig. 16. For the distributed part there are left and right hand 
terminations of eight parameters. These are respectively 
denoted by L and R subscripts and are: displacements YL

i
, YR

i
 

and ZL
i
, ZR

i
 , slopes �L

i
, �R

i
 and �L

i
,�R

i
 , bending moments 

ML
y i
,MR

y i
 and ML

z i
,MR

z i
, and shear forces  QL

y i
,QR

y i
 and 

QL
z i
,QR

z i
 . The input to the lumped elements is the output from 

the distributed elements and, therefore, the left and right ter-
minations for the lumped part are specified by the above eight 
parameters. The equations of motion for the lumped mass con-
siders rigid body motion, while for the distributed element, 
these are derived from Euler beam model.

The following relationships exist for the input and output 
of each distributed, and lumped element, as give by detailed 
analysis in [18]. The governing equations for a distributed ele-
ment are succinctly written in terms of  Γ = s

√
L0C0 with 

L0 = �A and C0 =
1

E I
 , where A is the cross sectional area, E 

is the modulus of elasticity and  I is the moment of inertia of 
the cross section in bending.

where 
[
Φ

(i)

d

]
 is the 8 × 8 matrix:

With the submatrices:

(36)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

YR
i

�R
i

ZR
i

�R
i

MR
y i

QR
y i

MR
z i

QR
z i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
�
Φ

(i)

d

�

⎡
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�L
i

ZL
i
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i
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For the lumped parts, the gyroscopic moments and rotary 
inertia of the discs are included which couples the in y and 
z coordinates. The corresponding governing equation is 
described by:

where the 
[
Φ

(i)

l

]
 is taken from [27]:

with:

Jp and Jt are the polar and transverse moments of inertia of 
the lumped disc. In Eqs. (1) to (6) s is the Laplace variable, 
m is the mass of each lumped element, Ω is the rotational 
speed of the shaft and � is the density of the shaft material. L 
is the length of each distributed element. The transfer matrix 
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for the fluid film bearings could be The damping of the fluid 
film bearings is captured by a spring and dashpot, as indi-
cated in Fig. 1. The transfer matrix has the following form

where the 
[
Φ

(i)

b

]
 is [27]:

with

and Kyy, Kyz, Kzz, Kzy are the stiffness and Cyy, Cyz, Czz, Czy are 
the damping coefficients. Coupled stiffness and damping are 
indicated by yz and zy. From Figs. 1 and 2, the left and right 
side vectors of Eq. (42) apply to the left end of the first bear-
ing and to the right end of the second bearing respectively. 
In the formulation of the dynamic stiffness matrix method, 
force and displacement vectors are defined as

(42)
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Equations (36, 37) can now be expressed in the following 
form

Solving Eq. (46) explicitly for moments and forces gives 
[28]:

where

From Eqs. (40, 41) for the ith disc lumped elements the 
dynamic stiffness matrix form could not be expressed in 
form of Eq. (47). However an alternative form could be 
written [29] as:

Similarly from Eqs. (43, 44) for first lumped bearing:

and for the second lumped bearing:

From Fig. 1, when the rotor bearing system, consists of n 
distributed shaft elements connected by n lumped discs and 
is supported on two bearings at the left and right ends, using 
Eqs. (49)–(51), the equations for the flexural vibrations of 
the rotor could be expressed by a dynamic stiffness matrix 
form. When the external forces applied at ith lumped ele-
ment, is designated by 
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 and the resulting displacement 
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]
 . Then the equations of motion could be 

expressed in terms of the flexibility matrix as follows:
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The flexibility matrix in Eq. (52) is expressed in Eq. (2):

Appendix 2

For the computation of the stiffness and damping coefficients 
of a journal bearing the following data is required.

(1) length of the journal bearing l. (2) Radius of the jour-
nal, R. (3) Radial clearance c. (4) Lubricant viscosity μ. (5) 
Angular velocity of the journal ω.

Then the load carrying capacity of the bearing would be

where:

The variable ε in (54) is the eccentricity ratio.
The following successive steps are necessary:
Step 1—using l, R, c, μ, and ω compute:

Step 2—when the load carried by bearing P is known the 
eccentricity ration ε can be determined by finding the roots 
of the fourth order equation.

Step 3—compute the dimensionless parameters.

Step 4-compute the angle ψ and further parameters.

(52)
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Step 5- compute the stiffness of the bearing from:

and damping coefficients of the bearing from.
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