
 1 

Mesoscale Eddies in the Gulf of Aden and their Impact on the 

Spreading of Red Sea Outflow Water 

 

Amy S. Bower* and Heather H. Furey 

Department of Physical Oceanography 

Woods Hole Oceanographic Institution 

Woods Hole, MA  02543 USA 
 

*abower@whoi.edu 
 

 

 

 

 

 

 

 

 

 

 

 

Submitted to Progress in Oceanography 

November 2010 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Woods Hole Open Access Server

https://core.ac.uk/display/4169626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Abstract 

 

The Gulf of Aden (GOA) in the northwestern Indian Ocean is the receiving basin for Red Sea 

Outflow Water (RSOW), one of the World’s few high-salinity dense overflows, but relatively 

little is known about spreading pathways and transformation of RSOW through the gulf. Here we 

combine historical data, satellite altimetry, new synoptic hydrographic surveys and the first in 

situ direct observations of subsurface currents in the GOA to identify the most important 

processes in the spreading of RSOW. The new in situ data sets were collected in 2001-2003 as 

part of the Red Sea Outflow Experiment (REDSOX) and consist of two CTD/LADCP Surveys 

and 49 one-year trajectories from acoustically tracked floats released at the depth of RSOW.  

 

The results indicate that the prominent positive and negative sea level anomalies frequently 

observed in the GOA with satellite altimetry are associated with anticyclonic and cyclonic eddies 

that often reach to at least 1000 m depth, i.e., through the depth range of equilibrated RSOW. 

The eddies dominate RSOW spreading pathways and help to rapidly mix the outflow water with 

the background. Eddies in the central and eastern gulf are basin-scale (~250-km diameter) and 

have maximum azimuthal speeds of about 30 cm/s at the RSOW level. In the western gulf, 

smaller eddies not detectable with satellite altimetry appear to form as the larger westward-

propagating eddies impale themselves on the high ridges flanking the Tadjura Rift. Both the 

hydrographic and Lagrangian observations show that eddies originating outside the gulf often 

transport a core of much cooler, fresher water from the Arabian Sea all the way to the western 

end of the GOA, where the highest-salinity outflow water is found. This generates large vertical 

and horizontal gradients of temperature and salinity, setting up favorable conditions for salt 

fingering and diffusive convection. Both of these mixing processes were observed to be active in 

the gulf.  

 

Two new annually appearing anticyclonic eddies are added to the previously identified Gulf of 

Aden Eddy (GAE; Prasad and Ikeda, 2001) and Somali Current Ring (SCR; Fratantoni et al., 

2006). These are the Summer Eddy (SE) and the Lee Eddy (LE), both of which form at the 
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beginning of the summer monsoon when strong southwest winds blowing through Socotra 

Passage effectively split the GAE into two smaller eddies. The SE strengthens as it propagates 

westward deeper in the GOA, while the Lee Eddy remains stationary in the lee of Socotra Island. 

Both eddies are strengthened or sustained by Ekman convergence associated with negative wind 

stress curl patches caused by wind jets through or around high orography. The annual cycle in 

the appearance, propagation and demise of these new eddies and those described in earlier work 

is documented to provide a comprehensive view of the most energetic circulation features in the 

GOA. 

The observations contain little evidence of features that have been shown previously to be 

important in the spreading of Mediterranean Outflow Water (MOW) in the North Atlantic, 

namely a wall-bounded subsurface jet (the Mediterranean Undercurrent ) and submesoscale 

coherent lenses containing a core of MOW (‘meddies’).  This is attributed to the fact that the 

RSOW enters the open ocean on a western boundary. High background eddy kinetic energy 

typical of western boundary regimes will tend to shear apart submesoscale eddies and boundary 

undercurrents. Even if a submesoscale lens of RSOW did form in the GOA, westward self-

propagation would transport the eddy and its cargo of outflow water back toward, rather than 

away from, its source.
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1. Introduction 
 

The Gulf of Aden (GOA) is a large, deep rectangular basin that connects the Red Sea to the 

Arabian Sea in the northwestern Indian Ocean, Figure 1. Even though the GOA is the receiving 

basin for one of the World’s few high-salinity dense overflows, namely Red Sea Water (salinity 

~40 psu), the region has received little attention recently from oceanographers due to political 

instability in nearby countries and threats of piracy. We know from historical studies that the 

salty Red Sea Water flows over the 160-m deep sill in Bab al Mandeb Strait and entrains cooler, 

fresher Gulf of Aden Intermediate Water (GAIW) as it descends to intermediate depths in the 

western GOA (Siedler, 1968; Wyrtki, 1971; Fedorov and Meshchanov, 1988; Murray and Johns, 

1997).  Large-scale hydrographic observations in the Indian Ocean show that the resultant 

gravitationally equilibrated Red Sea Outflow Water (RSOW) leaves the GOA and enters the 

Arabian Sea with a much lower salinity (~35.7; Beal et al., 2000) that nonetheless can be traced 

throughout much of the Indian Ocean as a mid-depth salinity maximum (e.g., Beal et al., 2000). 

It is also known that unlike the Mediterranean outflow, the Red Sea outflow undergoes large 

seasonal modulation in transport through Bab al Mandeb, with the maximum occurring during 

the winter monsoon (~0.6-0.7 Sv) and a near-zero minimum during summer (Murray and Johns, 

1997). But the pathways by which RSOW spreads through the GOA and the processes that 

transform its water properties along those pathways are not well-known.  

In 2001, the first comprehensive in situ study of GOA circulation and hydrography was 

conducted as part of the Red Sea Outflow Experiment (REDSOX), a collaborative effort by the 

Woods Hole Oceanographic Institution and the Rosenstiel School of Marine and Atmospheric 

Science. It included two quasi-synoptic hydrographic surveys of the GOA at the peaks of the 
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winter and summer monsoon seasons and the release of 53 acoustically tracked floats at the 

depth of RSOW. The goals of this project were two-fold.  First, we sought to improve our 

understanding of the modification of RSW as it descends as a gravity current into the GOA 

(Ozgokmen et al., 2003; Peters and Johns, 2005; Peters et al., 2005; Bower et al., 2005; Matt and 

Johns, 2007; Chang et al., 2008; Ilicak et al., 2008a,b; Ilicak et al., 2011). Second we wanted to 

make the first subsurface measurements of GOA circulation and determine its impact on the 

stirring and mixing of the equilibrated RSOW. Two studies focused on this second goal revealed 

the presence of strong deep-reaching mesoscale eddies in the GOA and their potential impact on 

the spreading of RSOW.  Bower et al. (2002) showed using direct velocity and hydrographic 

observations that during the first REDSOX survey, three energetic (surface speeds up to 50 cm/s) 

cyclonic and anticyclonic eddies were present in the gulf. They found that the eddy currents in 

some cases extended to nearly the ~2000 m-deep sea floor and appeared to strongly impact the 

spreading pathways of the recently injected RSOW at intermediate depths (300-800 m). 

Fratantoni et al. (2006) showed with remote sensing and hydrographic observations that one of 

the observed anticyclonic eddies appears at the entrance to the gulf nearly every year at the end 

of the summer monsoon (November) and propagates westward into the gulf during the winter. 

They further showed that this anticyclone results from a northward transport anomaly through 

Socotra Passage of relatively warm, fresh Somali Current water. The process was likened to the 

formation of North Brazil Current Rings from a retroflection of the North Brazil Current, and the 

GOA version was dubbed the Somali Current Ring (SCR) by Fratantoni et al. (2006) in 

recognition of this similarity.  

 



 6 

Two other studies have described mesoscale eddies in the GOA. Prasad and Ikeda (2001) used 

historical hydrographic and drifter data as well as altimetric observations to show that a large 

(~600 km wide) anticyclonic eddy, called the “Gulf of Aden Eddy” (GAE) appears at the 

entrance to the GOA every year at the end of the winter monsoon (May), centered at about 13°N, 

53°E. Surface velocities were estimated to be 30-50 cm s-1, and it was argued that eddy currents 

extend down to 250 m assuming a level of no motion at 400 m. Prasad and Ikeda (2001) also 

argued that at least in some years, the appearance of the GAE was associated with the arrival at 

the western boundary of the Southern Arabian Sea High (SAH), which propagates across the 

Arabian Sea between February and April in the latitude band 4-8°N.  The subsequent demise of 

the GAE was not discussed in their paper. 

 

Al Saafani et al. (2007) used 11 years of altimetric-derived sea level anomaly (SLA) 

observations (1993-2003) to investigate the origin of mesoscale eddies in the GOA. They argued 

that anticyclonic and cyclonic eddies observed in the GOA owe their existence to several 

different mechanisms:  Rossby waves radiating from the west coast of India (see e.g., Brandt et 

al., 2002), Rossby waves generated in the interior Arabian Sea, from instabilities of the Somali 

Current and its associated gyres (Great Whirl, Socotra Gyre) and to a lesser extent from local 

Ekman pumping. They showed that during winter, the eddies propagated westward at a speed 

predicted by the first baroclinic mode Rossby wave speed for the local stratification, 6.0-8.5 

cm/s. They claimed that little or no westward propagation of eddies occurs in the GOA during 

the summer monsoon due to blocking by an area of low SLA at the gulf entrance. 
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Three studies have previously addressed the spreading pathways of RSOW in the GOA. Fedorov 

and Meshchanov (1988) used historical salinity data from the oceanographic archives of the 

former Soviet Union to describe RSOW pathways in the western gulf, but none of the original 

data were shown and the results were only illustrated schematically. Bower et al. (2000) used 

sparse historical salinity observations and four high-resolution AXBT surveys conducted by the 

U.S. Naval Oceanographic Office (NAVOCEANO) in 1992-1993 to examine the distributions of 

RSOW in the GOA. They showed that the warmest (and presumably the most saline) outflow 

water was often found in the southwestern gulf and in various veins and blobs in the interior. 

Without salinity data to accompany the AXBT data and/or direct velocity observations, it was 

not possible in this study to determine the mechanisms leading to the spreading of RSOW and its 

transformation through the gulf.  Finally, a recent modeling study (using a high resolution 3D 

regional model: Regional Ocean Modeling System; Ilicak et al., 2011) shows how the RSOW is 

transported from the Tadjura Rift out of the gulf to 48°E. They ran the model both with idealized 

circulation conditions (no eddies, a single cyclonic eddy, and a single anticyclonic eddy), and 

forced with one years’ worth of 1/12° HYCOM data.  Ilicak et al. (2011) show that the outflow, 

with no large scale eddies present, will form a boundary current along the southern boundary.  

When a single eddy is present, the boundary current is disrupted, with a cyclone enhancing 

transport of RSOW out of the GOA, and an anticyclone prohibiting this transport.  Under more 

realistic external forcing conditions, the outflow is patchy, and occurs in bursts due to eddy 

circulation, with water from the Tadjura Rift taking less than 50 days to pass east of 48°N.   
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The purpose of this paper is to bring together the extensive direct velocity, hydrographic and 

Lagrangian data sets collected during both REDSOX surveys, most of which have not been 

previously published, with historical and remote sensing observations to provide a 

comprehensive description of the subsurface structure and evolution of mesoscale eddies in the 

GOA and their impact on RSOW spreading. The results show the GOA to be a region of strong 

mesoscale variability that effectively stirs and mixes RSOW with the background, producing a 

highly diluted new product that is ultimately discharged into the Arabian Sea. Double-diffusive 

mixing processes are also shown to be active in the GOA, mainly associated with recently 

injected overflow water. The Lagrangian data reveal the capacity of the eddies to trap fresher 

Indian Ocean water and transport it all the way to the western end of the gulf. We also show that 

much of the mesoscale variability is not random, but associated with a clear annual cycle in the 

appearance, propagation and decay of eddies, including but not limited to the GAE and SCR. 

The data sets used in this study are described in detail in section 2. We begin section 3 with a 

description of Gulf eddies observed in the AXBT surveys in the early 1990s and their signature 

in maps of SLA. We then go on to present hydrographic, direct velocity and Lagrangian 

observations from the 2001 REDSOX expeditions, including observations of double diffusive 

mixing. Again, maps of sea level anomaly are used to provide the large-scale spatial and 

temporal context for the in situ observations. Section 3 ends with an analysis of the annual cycle, 

its relationship to local wind forcing and a synthesis of new and historical observations of the 

eddies. The results are discussed and summarized in section 4, which includes some thoughts on 

the different mechanisms by which RSOW and the better-known Mediterranean Outflow Water 

(MOW) spread away from their respective sources.  

   



 9 

2. Data Sources 

 

2.1. Air-deployed expendable bathythermograph (AXBT) surveys  

 

Between 1992 and 1995, NAVOCEANO conducted nine AXBT surveys in the GOA using 400-

m and 800-m probes. Four of these were high-resolution gridded surveys with profile spacing of 

about 30 nm and consisting of more than 210 profiles, conducted in a quasi-seasonal sequence 

beginning in October 1992. [11-15 October 1992: 210 profiles; 1-7 March 1993: 220 profiles; 1-

6 June 1993: 248 profiles; 21-31 August 1993: 216 profiles.]  These data were used by Bower et 

al. (2000) to study the distribution of RSOW in the depth range 300-800 m based on temperature 

maps and the location of temperature inversions associated with equilibrated RSOW. The 

influence of the mesoscale eddy field on those distributions was not discussed in that earlier 

work. The accuracy of temperature and depth from the AXBTs is about +/- 0.2°C and +/- 5 m 

(Boyd, 1986).  In this paper we use only the upper 400 m of the profiles to map the thermocline 

depth and eddy structure throughout the gulf.   

 

2.2 REDSOX hydrographic, direct-velocity, and float data 

 

Two hydrographic and direct-velocity surveys of the Gulf of Aden were carried out in 2001 as 

part of REDSOX, the first in February-March 2001 on board the R/V Knorr (the “winter” cruise), 

and the second during August-September 2001 on board the R/V Maurice Ewing (the “summer” 

cruise). On both cruises, over 200 conductivity-temperature-depth (CTD)-lowered acoustic 
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doppler profiler (LADCP) stations to 2000 m or the sea floor were occupied throughout Bab al 

Mandeb and the open gulf using a Sea-Bird Electronics, Inc. SBE911+ CTD system and a 

lowered 300 kHz broadband Teledyne RD Instruments, Inc. “Workhorse” ADCP.  These data are 

described in detail in Johns et al. (2001) and Peters et al. (2005), respectively.  LADCP accuracy 

is estimated to be ±3 cm s-1 (Peters and Johns, 2005). Some of the winter cruise data were 

previously presented by Bower et al. (2002). Here we will present a detailed analysis of both the 

summer and winter observations. The station locations for the two surveys were planned to be 

the same, but a pirate attack on the vessel during REDSOX-2 led to restrictions in vessel 

movement to outside 50 km from the coasts of Yemen and Somalia. 

 

Also as part of REDSOX, a total of 53 isobaric RAFOS floats (Rossby et al., 1986) were 

released during the winter and summer cruises at 650 m and tracked for one year missions using 

an array of five 780-Hz acoustic sound sources (Furey et al., 2005). Nineteen of these were 

initially anchored to the seafloor at four “time series” sites and released their anchors at two-

month intervals. The remaining 34 floats were released from the R/V Knorr and R/V Maurice 

Ewing during the two cruises and began their drifting missions immediately. Position fixes were 

recorded four times daily, to accurately resolve eddy-scale motion, and temperature and pressure 

observations were recorded twice daily. The pressure and temperature were derived from a 

module manufactured and calibrated at Seascan, Inc., and accuracy is estimated to be +/- 5 dbars 

and +/- 0.005°C, respectively.  The sequential float releases meant that Lagrangian data were 

collected from February 2001 through March 2003.  Nearly all the floats remained within the 

Gulf of Aden for their entire one-year mission. A total of 41 float-years of data were collected.  

Some of these data (10 floats) have been used previously to describe pathways of Red Sea 
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Outflow Water in the extreme western GOA/Tadjura Rift (Bower et al., 2005). Here, we use the 

full float data set to describe eddy characteristics and evolution in the entire GOA. 

 

2.3. Altimetric observations 

 

Sea surface height anomaly, or sea level anomaly (SLA), data were derived from quality 

controlled satellite altimetry data provided by AVISO (www.aviso.oceanobs.com).   Ducet et al. 

(2000b) and Le Traon and Dibarboure (1999) detail the data processing used on and the accuracy 

of the altimetric measurements. The data were derived from a merged data set of all available 

satellites (TOPEX/Poseidon, Jason-1, ERS-1/2, and Envisat), available from 14 October 1992, to 

5 January 2005.  The altimeter product was gridded spatially at 1/3°x1/3° on a Mercator grid and 

temporally at a 7-day interval, and detrended with a 7-year mean.  The ground track spacing 

changed from a maximum of ~300 km in 1992 down to ~150 km by 2005.  AVISO provides a 

historical summary of operational periods for each satellite mission at 

http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-

products/global/sla/index.html#c5134.  We focused on the region 0°N-32°N and 42°E-70°E, the 

Gulf of Aden and Arabian Sea.   

 

3. Results 

 

3.1. Horizontal and Vertical Structure of Mesoscale Eddies in the GOA 

 

http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-products/global/sla/index.html#c5134
http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-products/global/sla/index.html#c5134
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3.1.1 1992 – 1993:  Repeated AXBT Surveys 

 

The set of four quasi-seasonal AXBT surveys conducted in the GOA by NAVOCEANO in 1992-

1993 (Bower et al., 2000) is the only known high-resolution in situ data set in the GOA obtained 

prior to REDSOX. Before describing the structure of GOA eddies in these surveys, a one-year 

time series of AVISO SLA in the GOA is used to set the temporal context, Figure 2.  The 

sequence begins in October 1992 (monsoon transition) with a northward intrusion of positive 

SLA through Socotra Passage into the GOA. It had an amplitude of 30 cm above the long-term 

mean, and maximum geostrophic surface velocity anomalies (not shown) of 70 and 120 cm/s on 

its western and eastern flanks, respectively. The timing and apparent origin (Socotra Passage) of 

this feature indicate that it is the 1992 SCR (Fratantoni et al., 2006). It is flanked to the east and 

west by areas of lower SLA. In mid-gulf (~49°E) is a second smaller positive SLA, with 

maximum amplitude of 5 cm and geostrophic surface velocity anomalies of 90 cm/s on its 

eastern flank. We have labeled this positive anomaly the Summer Eddy (SE) as it appears every 

summer in mid-gulf (see section 3.3 for more details on the SE). West of the SE, in the far 

western GOA, SLA is relatively low. 

 

During the following months of the winter monsoon, these anticyclones, woven together with 

cyclones, make up a train of five anomalies, which is joined by several more anomalies of 

alternating sign stretching east-northeastward from the gulf entrance. Through April 1993, these 

anomalies drift slowly westward deeper into the gulf. The SE becomes less distinct with time, 

SLA is increasing everywhere in the gulf and gradients are decreasing. Through April and May 

1993 (monsoon transition), westward propagation is not as obvious, and two of the positive 



 13 

SLAs from the central Arabian Sea appear to merge and form one large area of positive SLA at 

the gulf entrance. The timing and location of this feature indicate that it is the GAE described by 

Prasad and Ikeda (2001), although it is slightly farther west than usual during this year (see 

below). To the west, areas of negative and positive SLA persist through this time period. 

 

In June and July (summer monsoon), an area of low SLA develops and deepens along the Somali 

east coast, through Socotra Passage and at the gulf entrance due to upwelling of colder water 

associated with the onset of the summer monsoon (Schott and McCreary, 2001).  This appears to 

split the GAE, leaving two positive SLAs to either side, one in the GOA and the other north-

northeast of Socotra Island. The former is the new SE; the remnants of the previous year’s SE 

were evident in the first panel. The latter is hereafter called the Lee Eddy (LE), as it will be 

shown in section 3.3 that it appears every year on the downwind (north) side of Socotra Island. 

Both of these positive anomalies persist through August, although they have shrunk in size and 

the amplitude of the LE has decreased substantially. Also during the summer monsoon, we see 

the development of the well-known Great Whirl and Socotra Gyre east of Somalia (see e.g., 

Schott and McCreary, 2001). 

 

Figure 3 shows the depth of the 20°C isotherm (hereafter called z20) in the GOA from the four 

AXBT surveys conducted during this time period, with contours of SLA on a date close to the 

middle of each survey superimposed. The 20°C isotherm is in the middle of the main 

thermocline, as seen in the representative vertical temperature sections for each survey, Figure 4. 

It ranges in depth, both spatially and temporally, from near the surface to about 150 m depth, and 

is visually well-correlated with the average depth of the main thermocline (16°-25°C). 
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Temperature maxima below the thermocline are associated with relatively undiluted RSOW 

(Bower et al., 2000):  they will be ignored for the purposes of this discussion. 

 

The first important feature of these surveys to note is that there is significant seasonal variation 

in the average depth of z20 in the gulf. Comparison of the March and August 1993 surveys 

indicates that z20
 is on average about 50 m shallower in summer (Figures 3b and 3d, and Figure 

5). As a result, the vertically averaged temperature over the upper 300 m is actually higher in 

winter (by about 2°C) even though surface temperatures are higher in summer (by about 4°C) 

(Figure 4).  The resultant steric height difference (about 9 cm) produces higher average SLA in 

winter and spring compared to summer and fall, as pointed out above and evident in Figure 2. 

This seasonal cycle in thermocline depth and SLA, which is opposite of what would be expected 

from seasonal heating alone, has been attributed to monsoon winds, either in the GOA (Patzert, 

1974) or in the Arabian Sea (Aiki et al., 2006). 

 

The large-scale variations in z20 correlate well with high and low SLAs within each survey, 

Figure 3. Depressions in z20 are typically associated with elevated SLA and represent warm 

anticyclonic eddies, and shallow z20 and lower SLA indicate cold cyclonic eddies, as will be 

shown with direct velocity observations in a later section. The named eddies identified in the 

monthly SLA sequence in Figure 2 are also evident in z20: the SCR and SE in the October 1992 

survey, the GAE in the March 1993 survey, and another SE in the June and August 1993 

surveys. Thermocline depth variations within one survey are as high as 100 m.  
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Some smaller eddies apparent in the z20 fields, mainly in the far western gulf, are not visible in 

SLA:  this is not surprising in light of the relatively lower spatial resolution of the altimeter 

ground tracks (up to 300 km; see Section 2.3) during this time period.  A good example is the 

cyclonic/anticyclonic pair in the southwestern gulf in the March 1993 survey. Below we will 

show that these smaller eddies that are undetectable with altimetry are critical in defining the 

initial spreading pathway of recently injected RSOW. 

 

A Hovmöller diagram of SLA during 1992-1993, Figure 6, serves as a useful summary of eddy 

appearance and progression (a 14-year Hovmöller diagram of SLA will be presented in Section 

3.3 and Figure 20). At the bottom of the diagram (October 1992), we see the SE and beginnings 

of the SCR, as well as the train of eddies of alternating sign stretching eastward from the 

entrance to the gulf. Between the October 1992 and March 1993 AXBT surveys, this train of 

eddies propagated westward at an average speed of approximately 7.4 cm/s. This is consistent 

with Al Saafani et al. (2007) estimate of the first baroclinic mode Rossby wave speed of 7.2 cm/s 

and his estimate from altimetric observations of 6.0-8.5 cm/s. The westward propagation of most 

eddies in the gulf persisted until about mid-April 1993 (monsoon transition), as also pointed out 

by Al Saafani et al. (2007). After that, eddies maintained their respective positions in the gulf. 

The GAE reaches maximum amplitude and zonal extent in early May 1993.  

 

After the June survey, the positive SLA associated with the GAE is gradually replaced with an 

area of strong negative SLA at the entrance to the GOA, as also discussed by Al Saafani et al. 

(2007). This is due to very strong positive wind stress curl produced by an acceleration of the 

SW monsoon winds through Socotra Passage. What Al Saafani et al. (2007) did not point out 
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however, is that this locally-forced elevation of the thermocline effectively splits the warm GAE 

in half, and both halves persist through the summer as smaller anticyclonic eddies. The western 

half, the SE, propagates slowly westward deeper into the gulf, and is the dominant anticyclonic 

feature there in the August 1993 AXBT survey, Figure 3d. It is in approximately the same 

location as the SE observed at the beginning of the sequence in October 1992, Figure 3a. The 

relatively weaker LE is also apparent in July.  The area of strong negative SLA widens in 

longitudinal extent throughout the summer, and by the beginning of October covers almost all of 

the GOA.  

 

3.1.2. 2001:  Two CTD/LADCP Surveys from REDSOX 

 

The year of the REDSOX surveys exhibited some similarities and some differences to the 1992-

1993 sequence of eddies described above. Figure 7 shows the monthly sequence of SLA for the 

year including the REDSOX hydrographic surveys.  In the Fall of 2000, when we would 

normally expect to see the SCR form as an intrusion of high SLA through Socotra Passage, an 

anticyclone is moving into the gulf north of Socotra Island (SCRa). It is not until January 2001 

that a SCR forms by the typical process through the passage (SCRb). Al Saafani et al. (2007) 

documented a similar double-anticyclonic eddy structure which they argue is caused by the 

splitting of a larger high pressure eddy around Socotra Island.  The positive and negative SLAs 

propagate westward into the gulf during the winter monsoon as described in the previous 

subsection for the AXBT year. As early as February 2001, the positive SLA that will become the 

GAE is forming near the Yemeni coast just outside the gulf.  It grows in size and amplitude 

through May, and in June, the same splitting observed in 1993 begins, forming the SE to the west 
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and the LE to the east. As before, the SE slowly drifts deeper into the gulf and the LE disappears 

through the summer.  As also observed in 1993 (Figure 2), the SE amplitude increases after it 

splits off the GAE:  its surface currents are stronger on 4 July 2001 at about 48°E than it was 

when it first split off from the GAE in the 6 June 2001 image (Figure 7). 

 

In Figure 8, SLA from 7 March 2001 and 29 August 2001 is superimposed on the pressure of the 

27.0 σθ surface and the 300-m deep LADCP velocity vectors from REDSOX-1 and REDSOX-2.  

There is some clear visual correlation between SLA and the depth of the pycnocline, but some of 

the features observed during the in situ surveys are completely missing in SLA. For example, in 

March 2001, the deep thermocline at the eastern end of the survey area corresponds well to the 

positive SLA named SCRb, which emerged through Socotra Passage during January and 

propagated westward into the gulf (Figure 8a; also see Figure 7). The SLA also matches the 

deeper thermocline along the northern boundary of the gulf during REDSOX-1. What is not 

represented in SLA however is the shallow thermocline associated with a strong cyclonic eddy in 

the southwestern gulf during REDSOX-1. The SLA shows only a relatively flat sea surface in 

this region. In August (Figure 8b), the positive SLA in the central gulf (the SE) corresponds well 

to a deeper thermocline and an anticyclonic circulation, but the cyclones to either side are not 

well-resolved in SLA. 

 

While satellite altimetry has been used previously to investigate location and propagation of the 

larger eddy features in the gulf, the REDSOX observations offer the first look at their subsurface 

velocity structure. Three cross-sections of zonal velocity from REDSOX-1, Figure 9, show that 

the eddies often extend deep into the water column, including the depths at which RSOW 
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equilibrates (indicated by the three isopycnals superimposed on the isotachs). The cyclone in the 

western gulf during REDSOX-1 is surface-intensified, with peak zonal velocities of 40-50 cm s-

1, Figure 9a. Isopycnals at the RSOW levels bow upward near the center of the eddy, consistent 

with its cyclonic circulation and baroclinicity. At 46°E, Figure 9b, an even more surface-trapped 

cyclonic eddy was observed with peak westward velocity near the northern gulf boundary of 50-

60 cm s-1. In contrast, the large anticyclone SCRb (48°E; Figure 9c) has a subsurface velocity 

maximum of about 30-40 cm s-1 centered at about 350 m depth. It too extends to the depths of 

RSOW and deeper, and isopycnals are displaced downward at the center of the eddy. There is 

weak eastward flow near the southern boundary of the gulf in Figures 9a and b at the RSOW 

depths, but this does not give the impression of a strong wall-bounded undercurrent as is 

observed in the case of the Mediterranean outflow (see e.g., Ambar and Howe, 1979a, Ambar 

and Howe, 1979b, and Bower et al., 2005). 

 

The sections of zonal velocity across the cyclone-SE-cyclone triplet observed during REDSOX-

2, Figure 9d-f, also show eddy velocities greater than 10 cm s-1 extending to (and beyond) the 

depths of RSOW.  The SE, Figure 9e, appears more surface-intensified and somewhat weaker 

than the cyclonic eddies on either side. Its currents do not penetrate as much into the depth range 

of RSOW. 

 

Based on a preliminary analysis of the REDSOX-1 survey data only, Bower et al. (2002) argued 

that the eddies have a fundamental impact on the spreading pathways of RSOW through the 

GOA. Here we reinforce this point with a detailed analysis of both the REDSOX-1 and 

REDSOX-2 salinity distributions and LADCP velocity vectors on the three density surfaces 
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where the largest RSOW anomalies equilibrated (σθ= 27.0, 27.2 and 27.48; Bower et al., 2005), 

Figure 10. During the winter survey, the highest salinities were found in the narrow Tadjura Rift 

at all three levels, Figure 10a-c.  Bower et al. (2005) already describe the vertical and horizontal 

salinity distribution in the rift, where the dense plumes of RSOW reach gravitational equilibrium. 

At the shallowest level, the escape of the outflow water from the rift and its advection around the 

cyclonic eddy in the southwestern GOA is clearly apparent, Figure 10a. Low-salinity water at the 

core of the cyclone indicates that it has trapped and transported water from farther east to the far 

western gulf, setting up large salinity gradients in the western Gulf (35.7-35.8 in the eddy core 

compared to 36.8-36.9 in the surrounding streamer of outflow water). The transport of Indian 

Ocean water by eddies will be confirmed with the Lagrangian observations in the next section. 

The eddy has a larger radius near the surface than at depth (see Figure 9a), suggesting that the 

edges of the eddy have been shaved off at depth as the eddy propagated into the southwestern 

corner of the gulf, following the narrowing channel of deeper water in that direction, and that the 

eddy has become more surface trapped over time as it travels the length of the gulf. Adjacent to 

the southeastern flank of the cyclonic eddy is a smaller detached patch of high-salinity water 

with anticyclonic circulation.  

 

Interestingly, in a compilation of sparse historical salinity data in the GOA, Bower et al. (2000) 

noted a very similar vein of high-salinity outflow water following the continental slope south of 

the rift in a cyclonic fashion. They also showed in all the four synoptic AXBT surveys that the 

warmest (and presumably most saline) RSOW leaving the rift at 350 m was found south of the 

rift along the Somali coast, suggesting that the distribution observed during REDSOX-1 was not 

unique. What was not evident from the previous work but revealed with direct velocity 



 20 

observations is that a deep-reaching cyclonic eddy can cause the outflow water to follow the 

slope to the south of the rift.  These observations are supported by the modeling study by Ilicak 

et al. (2011), where idealized RSOW from the Tadjura Rift was moved out of the gulf by a 

cyclonic eddy in a similar manner (see their Figure 5).  Ilicak et al. (2011) also demonstrate that 

when no eddies are present, the outflow preferentially develops cyclonic circulation, and adheres 

to the southern boundary of the gulf to about 47°E, conserving potential vorticity (Spall and 

Price, 1998). 

 

East of about 46°E, salinity gradients on the shallowest density surface during REDSOX-1 were 

much weaker. Low-salinity water was found associated with the cyclonic eddy centered at 46°-

47°E and the anticyclonic eddy at 48°E.  Fratantoni et al. (2006) pointed out that the 48°E eddy 

in this survey had a core of low salinity, low oxygen water above 400 m reflecting its origin in 

the tropical Indian Ocean and formation from a branch of the northward-flowing Somali Current 

through Socotra Passage. This is clearly apparent in Figure 10a. The cyclonic eddy whose core is 

located between 46° and 47°E (according to the LADCP vectors) is also coincident with low-

salinity water, but its core properties were not measured during the survey. Higher salinity water 

was apparently being advected northward along 47°E between the central cyclone and eastern 

anticyclone and wrapping westward around the cyclone along the Yemeni coast.  

 

The patterns at the middle density level are generally similar, Figure 10b. Differences include a 

higher-salinity streamer that wraps more completely around the cyclone in the southwestern gulf, 

a better-defined small anticyclonic satellite eddy southeast of this cyclonic eddy, and higher 

average salinity and weaker lateral gradients in the central and eastern gulf. This figure shows 
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convincingly that the RSOW is being advected around the cyclonic eddy in the southwestern 

corner, not following the isobaths along the Somali coast. 

 

The deepest density surface, Figure 10c, shows a very different salinity distribution in the 

western gulf. The strong cyclonic eddy so prominent at the upper surfaces was located higher up 

on the slope, and is not present at this depth (see Figure 9a). The main vein of high-salinity 

RSOW was emerging from the Tadjura Rift, toward the east, likely steered by the underlying 

bathymetry of the rift (Figure 1).  Temperature at 800 m in the March 1993 AXBT survey shows 

a similar eastward tongue (Bower et al., 2000). The small anticyclonic eddy southeast of the 

cyclone is still evident in velocity, but little salinity anomaly is associated with it at this level. In 

the central and eastern gulf, the patterns are similar to what was observed at the upper surfaces:  

salinity gradients were generally weaker than in the west, patches of low-salinity water were 

found near the centers of the large cyclonic and anticyclonic eddies and diluted RSOW was 

being advected northward between the two eddies. The scale of the cyclone centered between 

46° and 47°E seems to be set at this depth by the curvature of the 1500-m isobath north of the rift 

(see also Figure 10b), indicating that it is being squeezed by the bathymetry. 

 

The more restricted area surveyed during REDSOX-2 makes it difficult to trace the spreading 

pathways of RSOW through the gulf, but some important similarities and differences with the 

winter survey can be identified. Salinities in the western gulf were much lower than during 

winter, with a maximum of only 37.2 at the upper surface.  Highest salinities in summer were 

more confined to the far western Tadjura Rift. As was found during the winter survey, the most 

saline water outside the rift was found south of the rift axis, and higher salinities were generally 
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observed on the middle surface. In the central and eastern gulf, we generally see alternating 

bands of higher and lower salinities coinciding with the two cyclones there:  diluted RSOW was 

apparently being advected northward along the eastern flank of each cyclonic eddy. Bower et al. 

(2000) showed a similar banded structure in temperature at the RSOW level in 1993, but its 

relationship to eddies in the gulf only becomes clear with the velocity observations from 

REDSOX.  The anticyclonic SE did not extend to the depths of the RSOW (see Figure 9e) and 

therefore does not appear to impact the spreading of RSOW. The streamer of relatively high 

salinity at 47°E includes a patch of salinity 36.6-36.7 (on the middle surface), higher than any 

salinities observed this far east during the winter survey. This patch is located southeast of the 

cyclonic eddy centered at 46.5°E, giving the impression that it has been advected around its 

southern flank. A similar patch of high temperature outflow water was observed in the June 1993 

AXBT survey (see Plate 5 in Bower et al., 2000). At the deepest density surface, the northward 

advection of this streamer is not present:  the western cyclone centered at 46.5°E is not as deep-

reaching as the one farther east (see velocity vectors and Figure 9d, f).  The lowest salinity water 

in both surveys (35.2) was found at the eastern end of the gulf during the summer survey, which 

extended farther east than the winter survey. 

 

These salinity and velocity maps reveal a consistent picture of how RSOW spreads through the 

GOA. The equilibrated RSOW, deposited in the Tadjura Rift mainly during winter, escapes from 

the rift and is advected around the periphery of mesoscale eddies that have propagated into the 

gulf from the Arabian Sea. This is most evident at the two shallower surfaces, but also at the 

deeper surface for the deepest-reaching eddies. Low-salinity water generally found in the centers 

of the eddies, even eddies found in the far western gulf, is apparently trapped when the eddies 
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form outside the gulf and transport it completely through the gulf. This sets up a heterogeneous 

region in the western gulf with very large salinity gradients. Farther east in the gulf, salinity 

gradients are generally much weaker, reflecting the stirring action of the eddies and erosion of 

the salinity anomalies of the outflow. 

 

Figure 11 shows that the vertical profiles of salinity also vary significantly from west to east.  In 

the top row are plotted salinity versus depth profiles from the winter and summer in the western, 

central and eastern gulf. The distribution of stations is shown in the lower row. In the western 

gulf, the individual winter salinity profiles are characterized by multiple layers of high-salinity 

RSOW between 100 and 1000 m depth, with maximum salinity > 39 at about 800 m (blue 

profiles in Figure 11a). Some layering is still present six months later, but the maximum salinity 

values have been reduced to 38 and the shallowest intrusion of high-salinity water near 100 m is 

absent (red profiles in Figure 11a; see also Bower et al., 2005, for a detailed description of 

equilibration depths of RSOW). The maximum mean salinities in winter and summer are similar, 

about 36.8, suggesting that the RSOW has been redistributed in the western gulf rather than 

diluted between the winter and summer surveys. 

 

In the central and eastern gulf, the vertical structure of salinity is remarkably different in both 

summer and winter compared to the western gulf:  the intrusions of very high salinity water have 

been mostly eroded by mixing and replaced by smoother profiles with a broad salinity maximum 

(Figure 11b, c). One exception is the patch of relatively high salinity noted earlier near 47°E 

during summer (Figure 9d, e), which has a maximum salinity of 36.6 centered at about 400 m. 
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Peak mean salinities were similar in winter and summer:  about 36.2 in the central gulf and 35.9 

in the eastern gulf.  

 

3.1.3. Double-diffusive processes in the Gulf of Aden 

 

We might expect that the mid-depth intrusion of warm, salty RSOW into the GOA sets up 

vertical temperature and salinity gradients that are favorable for double-diffusive mixing 

processes such as have been observed beneath MOW in the North Atlantic (e.g., Washburn and 

Kaese, 1987). Here we do not attempt to provide a comprehensive analysis of double-diffusive 

mixing in the GOA:  there were no microstructure measurements made during the surveys and 

the topic is worthy of a dedicated study. Rather we show here with the 1-dbar averaged 

temperature and salinity profiles that conditions are strongly favorable for both salt fingering and 

diffusive convection and that there is direct evidence that both processes are active in the GOA. 

While the density ratio, Rρ = αΔT / βΔS, where α is the thermal expansion coefficient and β is the 

haline contraction coefficient, is often used to test for favorable conditions for double diffusion, 

here we use the Turner angle, defined as (Tu = tan-1[(αΔT - βΔS)/(αΔT + βΔS)]), a somewhat 

more practical means by which to determine where salt fingering (salt de-stabilizing) and 

double-diffusive layering (temperature de-stabilizing) may occur (Ruddick, 1983; Washburn and 

Kaese, 1987; Lillibridge et al., 1990). Here we use the sign convention of Washburn and Kaese  

(1987) (z-coordinate positive upward), in which case Turner angles from 0°-45° indicate a water 

column that is unstable to salt fingering, although growth rates are fastest for Turner angles in 

the range 0°-20° (Rρ= 1-2.14; Schmitt, 1979; McDougall and Whitehead, 1984; McDougall and 
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Taylor, 1984). Angles from 135°-180° indicate a water column that is unstable to convective 

layering.  

 

Figure 12 shows profiles of Turner angle calculated using the mean temperature and salinity 

profiles from the western GOA in winter and summer (see Figure 11a). Temperature and salinity 

gradients were estimated using the one-dbar averaged CTD data at 1-dbar intervals by linear 

regression over a 10-dbar vertical scale. During winter, Figure 12a, there are two layers that are 

unstable to double-diffusive mixing. From about 250-750 m, where the cooler, fresher Gulf of 

Aden Intermediate Water sits over the RSOW (Figure 11a), convective layering is generally 

indicated, while at all depths below the RSOW salinity maximum (below ~1000 m), strong salt-

fingering (Turner angles < 20°) is indicated, with minimum Turner angle immediately under the 

salinity maximum in the depth range 1000-1200 m (minimum density ratio of 1.3) and increasing 

gradually with increasing depth. The mean summer profile, Figure 12b, is similar in that there is 

a layer generally conducive to convective layering overlying a deep layer unstable to strong salt 

fingering. In summer, a more well-defined layer of salt-fingering-favorable Turner angle is found 

centered at 600 m because there is a more pronounced salinity minimum there in the mean 

summer profile compared to winter. The basic structure of Turner angle shown in Figure 12 is 

also found using mean temperature and salinity profiles from farther east in the GOA (not 

shown):  the main difference going east is that Turner angles are somewhat larger below 1500 m, 

but still generally below 20°. The large depth range where the water column is favorable for 

double-diffusive processes suggests that salt fingering and convective layering may play an 

important role in redistributing heat and salt vertically in the gulf. 
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In fact, evidence of double-diffusive processes in the form of well-defined thermohaline 

staircases was observed in numerous CTD profiles in the Gulf. The most dramatic examples 

were found in a group of stations in the western Gulf during the summer survey, Figure 13.  

Some well-mixed layers under the RSOW salinity maximum, in the depth range 800-1200 m, are 

60-m thick (e.g., stations 144 and 145). Three layers appear to exhibit considerable spatial 

coherence over the group of stations (~50 km) when grouped by potential density (σ1). 

 

In an attempt to determine the temporal and horizontal extent of salt fingering activity 

throughout the survey area, we defined a steppiness index (following Washburn and Kaese, 

1987), which is equal to the number of well-mixed layers below 300 m. A step was identified 

where a sharp negative salinity gradient (less than -0.02 /dbar) overlaid a well-mixed layer where 

the absolute value of the salinity gradient did not exceed 0.005/dbar for at least 10 dbar. These 

thresholds were determined by iteration and visual inspection of the profiles. An example of step 

identification for station 145 during the summer survey is shown in Figure 14. A total of eight 

well-mixed layers that meet our criteria are marked, seven of them are below the deep salinity 

maximum at 800 m depth. This profile is remarkable also in that several well-mixed layers 

indicative of diffusive convection are observed above the deep salinity maximum, at least one 

with a thickness of about 30 m. These layers are not counted in the steppiness index, which only 

includes steps generated by salt fingering. 

 

Figure 15 shows the distribution of the steppiness index for the winter and summer surveys.  The 

steppiest profiles were observed during summer (maximum number of steps below 300 m in one 

profile was 11, compared to 7 during winter). Profiles with the most steps (> 5, black circles) are 
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all found seaward of the 1000-m isobath:  profiles in shallower water often had a salinity 

maximum near the bottom (i.e., no fresher/colder Indian Ocean Water below the RSOW).  

Comparing these maps to the salinity maps from the two surveys (Figure 10), we see that the 

steppiest profiles are generally located at stations with the most saline RSOW. In winter, the 

steppiest profiles are associated with the veins of high-salinity water being swept into deep water 

by the cyclonic eddy in the southwestern corner of the Gulf and extending east-southeastward 

from the entrance of the rift. More steppy profiles were located at the southern end of the 47°E 

transect, where salinity is also elevated. In the summer survey, the profiles with the most steps 

are concentrated in the patch of high-salinity water in the southwestern gulf (see in particular 

Figure 10f at 27.48 σθ). Little steppiness is observed over the Tadjura Rift because even though it 

is deeper than 1000 m, the 1000-m deep sill prevents the invasion of colder, fresher Indian Ocean 

Water into the deep rift. Unlike some regions of the World Ocean where the same well-mixed 

layers associated with salt fingering have been observed to persist for years and even decades 

(such as under the wide-spread Subtropical Underwater in the western North Atlantic (C-SALT 

area; Schmitt, 1994), the GOA layers shown here do not because the location and salinity of the 

small-scale intrusions of RSOW are altered by the eddies. 

 

3.2. Lagrangian view of eddies 

 

3.2.1. REDSOX floats 2001-2003: Overview and float examples. 
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During the two REDSOX cruises in 2001, 53 floats were deployed on one-year missions at 650 

dbars, 34 from the research vessels during the cruises, and 19 between and after the cruises from 

‘float parks’ (Zenk et al., 2000) on the sea floor (see Furey et al., 2005, for details). A total of 41 

float-years of data were collected from February 2001 up to February 2003.  The sound source 

array design allowed floats to be tracked inside the GOA to about 52˚E, and the majority of 

floats remained west of 52°E during the two year time period (Furey et al., 2005).  Out of the 49 

floats that surfaced and returned data, eight surfaced east of 52°E in the Arabian Sea: six to the 

northeast along the eastern Yemeni coast, and two to the southeast of Socotra Island.   

 

Figure 16 shows all the float trajectories (black), with trajectory segments slower than 10 cm/s 

marked in blue, and segments faster than 20 cm/s marked in red.  The mean float speed, averaged 

in 1˚ wide bins, is plotted as a function of longitude on the inset plot, with one standard deviation 

error bars.  The floats reveal that mid-depth circulation is dominated by eddy circulation that 

extends the width of the Gulf, similar to what has been shown in the LADCP data in the previous 

section (e.g., Figures 8 and 9).  Velocity is generally weakest in the western gulf and along the 

southwestern boundary, and faster in the central and eastern gulf, where large and energetic 

eddies stir the water, even at intermediate depths.  The fastest speeds (red trajectory segments, 

Figure 16) diminish west of about 45.5°E, at the eastern edge of the Tadjura Rift (Figure 1).  

Mean float velocity and standard deviation increases from west to east, from 5.8±4.1 cm/s to 

15.9±7.9 cm/s in the far eastern gulf (Figure 16, inset).  Formal mapping of the mean velocity 

was not carried out because the float trajectories were dominated by a small number (~5) of 

westward-propagating gulf-scale eddies during the two year time period, making it impossible to 

define a mean field with any statistical confidence. 
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We have chosen two floats to illustrate the range of behaviors observed at 650 m in the GOA, 

float 146 that was trapped in the GOA for its entire one-year lifetime and float 212 that escaped 

relatively quickly from the GOA and surfaced in the Arabian Sea.  Figure 17 shows the two 

floats: the left-hand column chronicles float 146, with the upper four left-hand panels showing 

the trajectory paired with SLA for four times during the floats mission, and float temperature 

presented on the bottom of the left-hand side.  The right hand side depicts float 212 similarly.  

Both float trajectories were strongly influenced by the westward moving eddies present in the 

Gulf, with different outcomes. 

 

Float 146 was deployed on the winter REDSOX-1 cruise and, as a delay-release float, began its 

mission two months later, on 1 May 2001.  During its one-year mission, It traveled through the 

Gulf from its launch position on the north slope of the Tadjura Rift at 12.0°N 43.9°E (black dot, 

Figure 17a), to its surface position in the northwest Gulf at 12.7°N 45.7°E, on 30 April 2002, 

only about 200 km from its launch position.  During the year, however, it traveled ~4200 km in a 

circuitous path to the Gulf’s entrance at 50°E and back to the west.  

 

Float 146 spent the first four and a half months, May through mid-September, in the western 

Gulf, west of 45.5°E, crossing the Tadjura Rift from northwest to southeast, and slowly 

meandering in the southwest Gulf with speeds generally less than 5 cm/s (Figure 17a).   The float 

recorded temperatures > 19°C at launch, falling to about 16°C as it crossed over the rift, then 

rebounding to 17°C after it entered the southwest Gulf, indicative of the heterogeneous 

distribution of water masses in the western gulf (Figure 17e).  After four months, the float was 
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apparently entrained in a cyclone, as it was swept east and then north along the southeast edge of 

the cyclone. The float turned east, traveling a half-circle of what was probably a small O(50 km) 

diameter anticyclone. In November, five and a half months after launch, the water temperature 

drops abruptly from 17 to 14°C over the course of 10 days (Figure 17e, star marker on SLA plots 

and temperature record) as the float was entrained in a second cyclone for one and a half 

rotations, centered about 12.0°N 46.5°E and about 200 km in diameter.  The float then traveled 

quickly, at about 30 cm/s, anticyclonically across a region of positive sea level anomaly to the 

eastern Gulf (Figure 17b), over the course of seven days, making it to nearly 50°E before being 

entrained in a third cyclone.  Figure 17b shows the SLA on 12 December 2001, and during this 

period of travel from west to east, the SLA data does not correspond exactly to the float’s 

movement below, though there is an anticyclonic feature centered at about 13.0°N 48.5°E, the 

2001 SCRa. 

 

When float 146 neared the entrance of the Gulf it was entrained in a westward-traveling cyclone 

and remained in that cyclone for the rest of its mission, from January-May 2002 (Figure 17c,d).  

The float velocities remained about 30 cm/s and temperatures at ~14°C, as the float made 14 

complete loops with an average period of 8.75 days.  During this time period, the altimetric data 

correlates well with the circulation at the float depth.  SLA on 30 January 2002 (Figure 17c), 

shows a strong (<-15 cm) negative SLA centered at 48.0°E and spanning the width of the Gulf, 

about 300 km in diameter.  The float trajectory indicates that the float is traveling near the center 

of the cyclone between the 2001 SCRa and the 2001 SCRb at this point.  The image two and a 

half months later (10 April 2002; Figure 17d), shows the amplitude and diameter of the cyclone’s 

SLA have diminished, with the anomaly less than -5 cm.  The floats loops are also now much 
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smaller in diameter, reduced from 110 km to 30 km, and centered in the northwest gulf, just east 

of the 1000-m isobath.  Based on both the float loops and SLA maps, the cyclone appears to 

become smaller just as it encountered the sharply rising bathymetry of the eastern Tadjura Rift 

(see 1000 meter isobath contour in Figure 1).  One other trajectory (see Furey et al., 2005) 

captured this type of event, with the gulf-scale eddy reducing diameter from 300 km to about 50 

km just east of 46°E. Several studies have explored the interaction of submesoscale vortices with 

isolated topography, both using laboratory experiments (e.g., Cenedese, 2002, Dewar, 2002, 

Adduce and Cenedese, 2004), or with observations (float and CTD) data (e.g. Richardson et al., 

2000, Bashmachnikov et al., 2009).  An eddy-seamount collision may result in a drastic change 

in looping characteristics of an eddy and change in both temperature (Richardson et al., 2000) 

and salinity (Bashmachnikov et al., 2009) of the core properties.  Eddies may split (Cenedese, 

2002), become hetons (Hogg and Stommel, 1985), or may be destroyed (Richardson et al., 

2000).  In accordance with these studies, we surmise that the gulf-wide, westward traveling 

eddies are split or otherwise reduced in diameter when they are “impaled” on the rising 

seamounts at the eastern edge of the Tadjura Rift (Figure 1).  In this case, the looping diameter is 

reduced by 80 km over the course of less than one looping period (<8.75 days), and speeds 

decrease from ~30 to 15 cm/s.  There is no obvious change in temperature, indicating that the 

float is still within the eddy core. 

 

We also surmise that in these two cases, the eddies (or these eddy remnants) are then focused 

into a narrower basin to the northwest (45.5°E 12.3°N), that they remain deep reaching (below 

the height of the seamounts and 1000 meter isobath), thus their diameters are necessarily reduced 

to ~50 km.  As we have seen previously in the CTD and LADCP data (Figures 9 and 10), eddies 
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with a fresher/cooler core also travel into the southwestern basin west of 46°E where their deeper 

expression is similarly squeezed by the bathymetry. The effective trapping of water in the center 

of the cyclone results in the delivery of cool Indian Ocean water through the GOA and directly to 

the region where the much warmer RSOW is injected into the western GOA, creating very high 

lateral gradients in water properties (see Figure 10, for example). 

 

Float 212 (Figure 17f-j) was deployed on the summer REDSOX-2 cruise south of the Tadjura 

Rift at 11.6°N 44.6°E on 31 August 2001, and surfaced a year later outside the GOA at 12.9°N 

54.4°E, a distance greater than 1100 km from the launch site.  In contrast to the previous float 

example, the westward travelling eddies that entered the GOA served to transport this float, once 

entrained, quickly out of the gulf, in a period of five months.   

Similar to float 146, float 212 spent the first four months (September through December) in the 

southwestern gulf (Figure 17f).  The float recorded temperatures that gradually decreased from 

16 to 14°C, well below the temperature of float 146, which was launched nearer the source of the 

RSOW and in the season with the highest outflow volume transport from the Red Sea (Bower et 

al., 2000).  In January (Figure 17g), the float is entrained by an anticyclone, in this case the 

SCRa.  From there the float moves around the northern edge of the SCRa, cyclonically around 

the southern edge of the next eastward eddy – in this case a cyclone (the same cyclone that float 

146 is trapped inside (Figure 17c)), and then clockwise around the northern edge of the SCRb.  

The float slows its eastward (not meridional) progression a bit until the next anticyclone arrives.  

As the GAE intensifies, the float is then entrained (Figure 17i) and moves clockwise to the north 

and out of the GOA.  
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The float’s temperature record (Figure 17j) steadily decreases from 16 to 13°C from launch to 

the entrance to the GOA, then decreases to 11°C once outside the gulf.  This steady decrease, as 

compared to the 3°C jump in temperature recorded by float 146, suggests steady mixing or 

diffusion of heat as the water parcel makes its way through the gulf. The temperature recorded 

by float 146, in contrast, drops suddenly.  This float was launched into much warmer (19°C) 

RSOW near the source (Tadjura Rift), and the temperature drop happens as the water parcel the 

float is embedded in becomes quickly mixed with the cold (14°C) water of the cyclone centered 

at 46.5°E at that time.  The water surrounding float 212 may also have been just as vigorously 

mixed as it was swept into the anticyclone centered at 46.5°E, but the weaker contrast in 

temperature made for a less dramatic record.   

3.2.2. Horizontal temperature distribution recorded by 650-dbar floats  

 

The large number of RAFOS floats present in the GOA from 2001-2003 provide an opportunity 

to study both the evolution of RSOW and the incoming Indian Ocean water using the 

temperatures recorded by the floats.  Even though the RAFOS floats used in this experiment 

were isobaric, temperature changes along their trajectories are indicative of water mass changes 

and not just sloping isotherms (see Appendix). As shown in the previous section, float 146 

recorded recently equilibrated water at 650 dbar having a temperature of 19°C north of the 

Tadjura Rift, down to 17°C after it crossed the rift (Figure 17e).  Float 212 (Figure 17j) recorded 

water at the entrance to the gulf of ~12°C.  How and where does this water mix? The 

hydrographic and velocity data presented in Section 3.1 indicate that the RSOW is advected out 

of the GOA between the eddies, mixing along the way, and the float data reinforce this result. 
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Figure 18a illustrates temperatures across the entire gulf at 650 dbars, from float data between 2-

21 October 2001.  At this time, floats from both cruises had been deployed, and in this example, 

37 floats were in the water, spread across the gulf from the rift to about 52.0°E.  SLA data from 

10 October 2001 has been contoured over the temperature data.  As was shown in the last 

section, float motion is often well correlated with SLA east of the Tadjura Rift (45.5°E), and this 

is corroborated in this image.  SLA is relatively low throughout the GOA in Fall (Figures 2 and 

7), and the SLA in October 2001 is negative across most of the gulf.  One strong cyclone is 

present in the SLA data centered at 47.5°E, and an anticyclone, the SCRa, is depicted as a 

relative high to the east of the cyclone.   

 

The trajectory segments indicate that the floats appear to be entrained in three eddies, a cyclone 

in the south western gulf centered at 45.0°E (not seen in the SLA), a second strong cyclone 

centered at 47.5°E, and the SCRa to the east.  The float temperatures range from about 17.5°C in 

the Tadjura Rift and between the two cyclones, down to 12°C in the centers of the eastern 

cyclone and anticyclone.  The temperatures are generally warmer on the edges of the eddies than 

in the center, consistent with the idea that the eddies transport cold water from outside the gulf 

westward into the gulf, and that outflow water from the Red Sea form filaments that skirt the 

edges of these eddies (Bower et al., 2002; Ilicak et al., 2011).  This is also consistent with data 

we have previously presented (e.g. the CTD data, Figure 10), where the RSOW is found along 

the edges of the eddies.   

 

What is gained from studying the float data is that we can trace the source of the high 

temperature (and therefore high salinity; Bower et al., 2000) water directly back to the point of 
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origin.  One specific example: the single float trajectory segment measuring 16.5-17.5°C water 

located at 46°E traces an anticyclonic pathway between the two cyclones, and this is the same 

float (146) discussed in the previous section (Figure 17a-e).   The temperature of this segment 

indicates its source is the RSOW, and following its path back (Figure 17), we can see that this 

water parcel was originally tagged just north of the Tadjura Rift.  This water parcel has remained 

relatively undiluted, and is moving out of the gulf on a path defined by the incoming eddies (and 

mixing along that path).  This observation is supported by Ilicak et al. (2011). 

 

Conversely, the westward travelling eddies transport the cold fresh water from the Indian Ocean 

into the GOA.  Float 221 (Figure 18b) was launched at 12.6°N 47.0°E on 5 September 2001.  

The float was launched further east in the GOA than most of the other floats (launch location is 

marked as a star on the plot), between a cyclone and the SE.  The SLA data, which is only 

relevant to the first week of the float’s trajectory, show the cyclone and the eastward anticyclone, 

in this case the SE.  The float measured its coldest temperature at launch, 12°C.  As it travels 

westward around the cyclone, it maintains its cold temperature until it reached the central 

Tadjura Rift, where the float turns due south and becomes entrained in a smaller scale cyclone 

(O(100 km)) for two months.  Over this time, the float temperature gradually warms from 12 to 

14°C by December.  The float is then kicked out in to the central GOA, and is entrained again in 

another cyclone.   The float registers slightly colder temperatures at is farthest extent east (13°C), 

and then gradually warms again as in travels for a second time over the Tadjura Rift and into the 

southwest basin. 
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The longitudinal change in temperature distribution of all float data (Figure 19) illustrates the 

position where the along-gulf temperature decreases are greatest.  Temperature of all data is 

generally between 17-20°C west of 44°E, east of this point the distribution of points broadens to 

12 to 20°C.  The lower temperature limit remains about the same along the gulf, while the upper 

limit decreases eastward.  The mean curve found from averaging the temperature data across 0.1° 

bins (thick gray line, Figure 19), shows two locations of greatest decrease, a three degree drop 

between 44.0 and 44.2°E and a two degree drop between 45.5 and 45.8°E.  From about 44.0°E, 

the standard deviation decreases to the east. Although this represents a small number of 

independent realizations in time as compared to the annual cycle of eddies coming into the GOA 

(next section), the locations of the drops do suggest regions of intense mixing.  The first drop is 

at the location of the recently equilibrated high temperature, high salinity RSOW in the Tadjura 

Rift.  Standard deviation is relatively low in this location, as we expect from relatively 

homogenous water (thin gray lines, Figure 19).  Floats at 650 dbars are constrained west of 44°E 

to the western Tadjura Rift, a receptacle for recently ventilated RSOW (Bower et al., 2005).  

(The temperature data points measuring less than 16°C are confirmed by CTD profile data taken 

at the time of float launch – a 75 dbar intrusion of colder less saline water at this location, not 

shown.)  The drop in mean temperature to the east of this location represents the geographic 

broadening of the float locations, and, circumstantially, the mixing that occurs once the RSOW 

leaves the rift.  The standard deviation increases in this region, also reflecting the heterogeneous 

water.  The second drop in temperature occurs at the eastern edge of the rift (45.5°E), where it 

was shown (Figure 17, previous section) the large scale westward travelling eddies break apart 

into smaller scale eddies, and that float speeds are generally lessened westward (Figure 16).  The 

drop in temperature at this point suggests that this is a region of strong mixing, and the 
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turbulence associated with the demise of eddies in this area is possibly the source of this mixing 

(again, circumstantially).  As the mean temperature decreases east of 46.0°E, the standard 

deviation also decreases, indicating more homogenous water at the 650-m depth. 

 

In the GOA, the eddies travelling westward from the Indian Ocean are the dominant means of 

mixing and define the pathways of RSOW transport out of the gulf.  They are also the source for 

cold fresh water into the GOA.  It is therefore important to understand the source and timing of 

these regularly occurring eddies. 

 

3.3. Annual cycle in GOA eddies 

In this section, we show that the sequence of large eddies observed in the GOA in 1992-1993 

(Figure 2) and 2001-2002 (Figure 7) are more or less repeated every year with minor variations. 

Figure 20 shows a Hovmöller diagram for the same section shown in Figure 6, which stretches 

from the western GOA across the Arabian Sea to the coast of India, but for the entire 14-year 

SLA data set. A similar diagram was shown by Al Saafani et al. (2007), but here we will identify 

individual features in the western half of the diagram and the annual cycle in their appearance 

and movement as we attempt to bring together findings in the present study with those from 

earlier work. 

 

One of the most striking aspects of the 14-year time series is the westward-propagating positive 

and negative anomalies in the eastern Arabian Sea (east of about 60°E), which have an annual 

period and propagation speed of approximately 7.9 cm/s. This feature has been noted in a 

number of earlier studies, and has been identified as an annual Rossby wave that originates off 



 38 

the west coast of India due to an annual cycle in wind stress curl there (e.g., Shankar and Shetye, 

1997; Schott and McCreary, 2001; Brandt et al., 2002; Prasad and Ikeda, 2001; Al Saafani et al., 

2007).  

 

Of greater relevance to the present study is the annual cycle in the appearance, propagation and 

disappearance of the prominent anomalies in the western Arabian Sea and GOA. The SCR is the 

positive anomaly that appears nearly every year at about 52°E (the longitude of Socotra 

Passage), between October and January (Fratantoni et al., 2006). In some years, it begins 

propagating westward as soon as it appears at the entrance to the gulf (e.g., 1993) while in other 

years it remains stationary for 1-2 months before drifting westward deeper into the gulf (e.g., 

2002 and 2003). It can typically be tracked through the gulf through March of the following year 

(~5 months), and almost always to at least 47°E, and occasionally as far west as 45-46°E (e.g., 

March 1999 and March 2000; see also Fratantoni et al. (2006) who tracked eddies with 

SeaWiFS).  Maximum SLA associated with the SCR can reach 35 cm above the long-term mean 

(e.g., November 2003).  The SCR was weak and/or late appearing in 1994 and 2001 (the 

REDSOX year), and relatively strong SCRs occurred in 2002 and 2003. 

  

Equally reliable in its annual appearance is the GAE (Prasad and Ikeda, 2001), in the longitude 

range 50-57°E, which begins to intensify in March-April each year and reaches maximum 

amplitude in May. In sharp contrast to the SCR, it does not propagate westward into the gulf as a 

whole. Rather it remains relatively stationary for up to two months (see also Prasad and Ikeda, 

2001). The appearance of the GAE is sometimes preceded by one ore more westward-

propagating features that appear to stall and form the GAE (e.g., 1993; see also Figure 3). In 
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most years, the maximum SLA of the GAE appears to shift slowly eastward through the summer, 

replaced at the gulf entrance by a developing negative SLA anomaly, as described for the year 

1993 in section 3.1.1 and by Al Saafani et al. (2007). New in this paper is that as the GAE 

amplitude decreases, the SE frequently breaks off its western flank and drifts deeper into the 

GOA. The SE intensifies after it enters the gulf, usually reaching maximum amplitude of up to 

30 cm at 48˚E (see Figure 7 and below).  Its life history and relationship to other mesoscale 

features has not been previously documented, although Fratantoni et al. (2006) briefly noted the 

re-occurrence of an eddy in six consecutive Septembers in altimetry at about 48°E. The eastern 

part of the GAE, the LE, is not always as visible, but some indication is present in nearly all 

years. 

 

The SE is the most intense new eddy identified in the present study. It typically strengthens after 

it travels into the gulf (Figure 21a), with the amplitude increasing until it reaches a maximum > 

+15 cm occurring at about 48°E, and usually in July (dates range from 5 July through 31 August 

for this 12-year period).  The SE manifests itself both as a single anticyclone, as seen in the 

AXBT year (Figure 2-4) and the REDSOX cruise year (Figures 7), and occasionally as two 

anticyclones, SEa and SEb, as illustrated by the SLA images from summer 2003 (Figure 21b).   

A single SE event typically begins with the anticyclone splitting off from the GAE in June, 

traveling westward in the GOA, intensifying through July, and then diminishing in amplitude as 

it travels west of 48˚E. These changes in eddy amplitude may be related to the pattern of wind 

stress curl in the GOA during summer (see below). In a double SE event, the SE enters the gulf, 

intensifies in July, but then splits once inside the GOA into two anticyclones of similar amplitude 

(Figure 21b).  The westward eddy (SEa) diminishes in the western GOA, and the eastward eddy 
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(SEb) moves westward, intensifying as it travels past 48°E (in the 2003 case, in September), and 

then weakens as it travels westward in the GOA.    

 

The mean annual cycle in SLA is shown in Figure 22 along with the monthly mean wind stress 

curl estimated from QuikScat winds for the years 2000-2006 (http://www.ssmi.com). The annual 

cycle in SLA accounts for 50-95% of the total variance in SLA in the GOA, Figure 23. A similar 

sequence of the annual cycle in SLA was obtained from calculation of the annual and semiannual 

harmonics of SLA, but we choose to stick to the weekly mean in the middle of each month so as 

not to prematurely impose specific timing and periodicities.  

 

Figure 22 provides an effective summary of the timing and evolution of the major eddies in the 

GOA and their relationship to local wind forcing.  Al Saafani et al. (2007) showed that the 

appearance of the strong negative LSA at the beginning of the summer monsoon is well-

correlated with the local positive wind stress curl caused by the wind blowing strongly through 

Socotra Passage. Fratantoni et al. (2006) showed the mean wind stress curl for the GOA in 

August 2000 and suggested the pattern of alternating positive and negative curl could lead to the 

generation of eddies in the mid-GOA. Here we show the monthly mean curl along with the 

annual cycle in SLA throughout the gulf region to provide a more complete picture of where and 

when local wind forcing may be important to eddy evolution. From October – February, the SCR 

appears through Socotra Passage and propagates westward in the gulf. The intrusion of warm 

water associated with the SCR effectively splits the large region of negative SLA that forms in 

the gulf during summer into two pieces, producing cyclonic neighbors for the SCR. From March-

May, the GAE appears at the entrance to the gulf and increases in amplitude. Throughout these 
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months of the winter monsoon, the wind stress curl is near zero. From June-August, banks of 

positive and negative wind stress curl form and strengthen where mountains in eastern Somalia 

and Socotra Island produce wind shadows for the strong southwest monsoon winds. By July, the 

GAE has been replaced by a region of low SLA, consistent with the positive curl and upwelling 

of colder water. To either side however, the positive-SLA SE and LE are situated under regions 

of negative wind stress curl which would tend to enhance their anticyclonic circulation through 

Ekman pumping. This could explain why the SE strengthens until it passes west of 47°E. The LE 

on the other hand disappears in August even though strong negative curl persists behind the 

western half of Socotra Island. The spatial scale of the curl pattern behind Socotra is likely 

reducing the scale of the eddies to one below detection by the altimeter ground tracks. 

 

4. Discussion and Summary 

 

The Gulf of Aden is the receiving basin for one of the few high-salinity dense overflows 

worldwide, namely Red Sea Water, but almost nothing was known about its subsurface 

circulation and the spreading of equilibrated Red Sea Outflow Water through the gulf due to the 

lack of subsurface velocity observations. More is known about the spreading of RSOW as a mid-

depth salinity maximum throughout much of the Indian Ocean than is known about the pathways 

and transformation of RSOW from its source at Bab al Mandeb Strait through the GOA. 

Previous studies described the origin and propagation of some large, long-lived coherent eddies 

(diameters of at least 250 km, lifetimes up to six months) in the gulf based mainly on remote 

sensing observations (Prasad and Ikeda, 2001; Fratantoni et al., 2006; Al Saafani et al., 2007) 

and their potential to have a major impact on the spreading pathways of RSOW (Bower et al., 
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2002). In this paper, we have combined several extensive data sets collected during the Red Sea 

Outflow Experiment (REDSOX) in 2001 with historical AXBT surveys, satellite altimetry and 

the results from previous studies to provide a comprehensive view of the annual cycle in eddy 

activity and its impact on RSOW stirring and mixing. The new in situ data sets include two 

quasi-synoptic CTD/LADCP surveys at the peaks of the winter and summer monsoon seasons 

and trajectories from 49 acoustically tracked RAFOS floats, both of which reveal the depth-

penetration of the eddies and their profound impact on RSOW. 

 

The primary results of this study can be summarized as follows: 

 

1. Subsurface signature of sea level anomalies:  The basin-scale positive and negative SLAs 

frequently observed in the central and eastern GOA with amplitudes ±30 cm around the long-

term mean are associated with ~100-m variations in the depth of the main thermocline and 

anticyclonic and cyclonic currents that extend deep into the water column. Most of the observed 

eddies were surface-intensified with azimuthal velocities as high as 50-60 cm/s at the surface and 

20-30 cm/s at the depths of RSOW. 

 

2. Vertical and horizontal eddy scales smaller in the western GOA:  Smaller anticyclonic and 

cyclonic eddies (diameter ~100 km or less) also exist in the gulf, especially in the western gulf.  

These eddies are too small to be resolved with satellite altimetry, but they dominate the 

spreading of recently equilibrated RSOW in the western gulf. Some appear to be the remnants of 

larger eddies that have been cleaved into smaller eddies by the high topography of the Tadjura 

Rift. 
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3. RSOW spreading pathways:  The highest salinities at the RSOW level were observed in the 

Tadjura Rift and in the southwestern gulf, indicating a preferred RSOW spreading pathway. 

Veins of high-salinity RSOW were observed to wrap around the eddies in the gulf, which 

typically have much lower salinities in their cores. In the western gulf, this generates 

exceptionally high lateral and vertical property gradients. East of about 46°E, property gradients 

on isopycnals are much weaker, suggesting rapid mixing of the RSOW with the background, 

although in general, higher salinities were found in the southern GOA and streamers of diluted 

RSOW were still observed wrapping around the fresher eddy cores here. The quickest route out 

of the Gulf recorded with these data were from a float that took five months to leave the GOA 

(cross 51°E) once entrained in an eddy (at ~45°E).  This generally agrees with the estimate of  

Ilicak et al., 2011, where RSOW was transported from the Tadjura Rift to 48°E in bursts of less 

than two months, in that this float (Figure 17, right hand column) took two months to cross 48°E, 

once entrained in an eddy.  This suggests that, similar to the western Gulf from the Tadjura Rift 

to 48°E (the domain of the Ilicak et al. 2011 modeling study), RSOW is exported along pathways 

defined by the eddies, episodically.  Seventeen per cent of floats were exported from the GOA in 

one year. 

 

4. GOA an active region of double-diffusive mixing:  Turner angles (related to density ratio) 

indicate that the whole water column below the layer of RSOW is strongly unstable to salt 

fingering throughout the GOA, and numerous profiles show evidence of thermohaline staircases, 

indicating that double-diffusive mixing processes are actively fluxing heat and salt. There is also 

some evidence of diffusive convection between the RSOW and fresher, cooler overlying GAIW.  
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Staircases do not persist between the two REDSOX surveys, perhaps because of the strong time-

dependence in the distribution of the RSOW and/or turbulence induced by the mesoscale eddy 

field, especially where it interacts with topography. 

 

5. Subsurface floats reveal eddy stirring in the GOA:  Float observations show relatively weaker 

velocities at the RSOW level (650 m) in the western gulf (~5 cm/s mean) compared to the 

eastern gulf (~15 cm/s mean). About 17% of the floats were exported from the GOA in one year 

(some within months of deployment); the rest circulated within the gulf for their entire mission, 

revealing the strong stirring action produced at depth by the mesoscale eddy field. 

 

6. Westward eddy transport of Indian Ocean Water:  Some floats were trapped within westward 

propagating eddies and revealed how cold Indian Ocean water is trapped and transported all the 

way to the western gulf by these eddies. This contributes to the rapid dilution of RSOW after it 

emerges from the Tadjura Rift.   

 

7. Annual cycle in major eddies in the GOA:  Others have shown previously that the SCR and 

GAE appear in the GOA more or less every year at the same time, and that the SCR propagates 

westward into the GOA while the GAE remains stationary. Here two more eddies have been 

added to the set of annually appearing mesoscale features, namely the Summer Eddy (SE) and 

the Lee Eddy (LE). These two eddies form at the beginning of the summer monsoon, when 

positive wind stress curl and rising thermocline at the entrance to the GOA split the warm GAE 

into two smaller anticyclonic eddies. The SE propagates westward into the GOA, often 

strengthening as it moves westward. While the generation of low SLA at the gulf entrance is 
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aligned with the area of positive wind stress curl, the SE and LE both appear to be enhanced by 

negative wind stress curl (Ekman convergence) either inside the GOA (SE) or in the lee of 

Socotra Island (LE).  

 

It is interesting to contrast the processes by which the product waters from the two best-known 

high-salinity overflows, namely the MOW and the RSOW, spread away from their respective 

sources.  Both overflows descend along the sea floor after crossing over shallow sills:  160- and 

300-m sill depth for the Red Sea and Mediterranean, respectively. The Red Sea overflow is more 

confined within bathymetric channels whereas the Mediterranean overflow is allowed to spread 

out more laterally over the continental slope, which has important implications for entrainment 

(e.g., Siedler, 1968; Bower et al., 2000; Peters et al., 2005; Matt and Johns, 2007;Price and 

O'Neil Baringer, 1994 ; Baringer and Price, 1997). After equilibration, the MOW continues to 

follow the continental slope as a wall-bounded jet all around the Iberian Peninsula (Ambar and 

Howe, 1979a, Ambar and Howe, 1979b; Daniault et al., 1994; Iorga and Lozier, 1999a;Iorga and 

Lozier, 1999b) whereas the RSOW is deposited into the Tadjura Rift and does not appear to form 

a subsurface jet or undercurrent along the continental slope (this paper and Bower et al., 2005).  

 

The Mediterranean Undercurrent frequently forms submesoscale coherent vortices containing a 

core of MOW that then separate from the slope and transport MOW sometimes thousands of 

kilometers westward and southwestward from the formation sites (see review by Richardson et 

al., 2000). Many meddies have been discovered in the eastern North Atlantic and their physical 

properties and life histories have been well-documented (e.g., Armi and Zenk, 1984; Armi et al., 

1989; Richardson et al., 1991; Zenk et al., 1992; Pingree and Le Cann, 1993; Prater and Sanford, 



 46 

1994; Shapiro et al., 1995; Paillet et al., 2002; Serra and Ambar, 2002). It has been estimated that 

8-20 of these so-called meddies may form each year (Richardson et al., 1989; Bower et al., 1997) 

and that they may be responsible for 25% or more of the westward salt flux at mid-depth in the 

North Atlantic (Richardson et al., 1989; Maze et al., 1997).  On the other hand, only one small 

anticyclonically rotating eddy with a core of RSOW was observed during REDSOX, adjacent to 

a larger cyclonic eddy in the southwestern GOA. Shapiro and Meschanov (1991)  and 

Meschanov and Shapiro (1998)  observed lenses of RSOW in the Arabian Sea, but based on the 

salinities in the cores of their lenses (35.20-35.85) these eddies apparently formed in the Arabian 

Sea, not in the GOA.  

 

Based on the observations described in this paper, ‘reddies’ appear not to be important in the flux 

of RSOW through the GOA. There are at least three possible reasons:  lack of a strong 

undercurrent, direction of monopole propagation on a β-plane and the presence of strong 

mesoscale eddies in the GOA. Several mechanisms have been proposed for the formation of 

meddies:  separation of the Mediterranean Undercurrent from topography at a sharp corner 

(Bower et al., 1997), mixed baroclinic/barotropic instability of the undercurrent itself (Cherubin 

et al., 2000) and dipole formation as the undercurrent interacts with a deep canyon (Serra et al., 

2005).  With no undercurrent in the GOA, there seems to be no energy source to generate 

reddies. Even if a submesoscale lens of RSOW did form in the GOA, self-propagation dynamics 

dictate that it will propagate westward, i.e., back toward the high-salinity source. Finally, the 

location of the Red Sea outflow on a western, as opposed to eastern boundary also means much 

stronger mesoscale variability in the GOA compared to the eastern North Atlantic (e.g., Plate 8 

in Ducet et al., 2000a), which will likely shear a reddy apart soon after it formed and certainly 
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before it managed to exit the GOA. The observations described in the present paper indicate that 

RSOW spreads away from its source primarily due to the stirring action of a vigorous mesoscale 

eddy field, which draws the outflow water out into narrow filaments where isopycnal and 

diapycnal mixing processes quickly diminish its thermohaline signature. 

 

One question that has not been addressed in this study that could have wider implications is the 

role of the mesoscale eddies in the flux of heat and salt through Bab al Mandeb. The float and 

hydrographic data analyzed here showed that eddies formed outside the GOA are capable of 

trapping water at intermediate depths and transporting it to the western end of the gulf. With 

most of the eddies having surface-intensified velocity profiles, such trapping may be even more 

effective near the sea surface, resulting in the delivery of Arabian Sea water directly to the 

entrance to the Red Sea. This could also have an impact on the along-strait pressure gradient and 

exchange flow as the eddies modulate the stratification in the western gulf. Multi-year 

observations within the strait as well as at either end in the Red Sea and Gulf of Aden would be 

needed to investigate this further.  Although it is beyond the scope of this paper, the large 

number of RAFOS floats in REDSOX make up a data set that is well-suited for a relative 

dispersion study.  
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Appendix  

 

When showing temperature changes along the float tracks (Figure 18), it is important to confirm 

that these differences are not due to the fact that the floats were isobaric rather than isopycnal. 

Temperature change on an isobar due to vertical displacement of isotherms can be estimated 

approximately from the average temperature gradient and typical vertical displacements of the 

isotherms. Figure A1 shows the mean temperature profile in the GOA from the two hydrographic 

surveys and the results of a linear fit in the depth range 550-800 dbar. The vertical temperature 

gradient at the float depth was 0.0036 and 0.0051°C/dbar for the winter and summer surveys, 

respectively. From the vertical sections in Figure 9, isopycnals (proxy here for isotherms) vary in 

depth by ± 50 m, giving a temperature difference on an isobar of 0.2-0.3°C. This estimate is 

much smaller than the temperature changes observed along the float tracks (see text), indicating 

that those changes are mainly due to water mass differences and not the fact that the floats were 

isobaric.  
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 Figure Captions 
 
Figure 1. Bathymetry, topography, and geographic locations in the Gulf of Aden and the 

northwestern Indian Ocean. Bathymetry and topography have been shaded every 1000 meters. 

The thick solid bold black line designates the land-sea boundary, and the thinner black line 

delineates the 1000 meter isobath.  Topex/Poseidon and Jason-1 satellite tracks have been 

overlaid as dotted lines.  

 

Figure 2:  Monthly time sequence of SLA (black contours) between October 1992 and 

September 1993.  Contour interval is 5 cm; the bold black line marks the 0-cm contour interval, 

yellow and reds are positive SLA, and green and blue are negative SLA.  Each panel is marked 

with the date of the SLA image, and with the named anticyclones or gyres:  GAE – Gulf of Aden 

Eddy, GW – Great Whirl, LE – Lee Eddy, SCR – Somali Current Ring, SE – Summer Eddy, SG 

– Socotra Gyre.  
 

Figure 3:  Depth of the main thermocline, represented by the depth of the 20°C isotherm (z20) for 

four AXBT surveys conducted by NAVOCEANO in 1992 and 1993, see text for date ranges.   

Depressions are interpreted as warm, anticyclonic eddies, and shoaling as cold, cyclonic eddies. 

Coherent, identifiable anticyclones are labeled as in Figure 2, and cyclones are labeled as ‘C’ and 

numbered sequentially. See text and later figures for more explanation. Dots are AXBT profile 

locations. Contour interval is 10 m, SLA data has been contoured over the AXBT data with a 5-

cm contour interval; dashed lines are negative SLA, solid lines are positive, and the thick solid 

line is the 0-cm interval.  White lines indicate the locations of sections shown in Figure 4. The 

500 and 1000 m isobaths are drawn as thin black lines.   

 

Figure 4:  Representative vertical temperature sections along the axis of the GOA for each of the 

AXBT surveys shown in Figure 4, where white lines indicate section locations. The contour 

interval is 1°C and the 25°, 20° and 16°C isotherms, which span the main thermocline, are 

highlighted.  Eddies identified in the previous two figures are labeled along the top of each panel. 
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Figure 5:  Mean temperature profiles from the winter (solid line) and summer (dashed line) 

AXBT surveys, using data between 43 and 50°E. Mean surface temperature is higher in summer, 

but due to the much deeper thermocline in winter, the vertically-averaged temperature in the 

upper 300 m is higher in winter by about 2°C. 

 

Figure 6. Hovmöller diagram of SLA for the AXBT year 1992-1993. The data has been 

interpolated along the axis of the gulf to 51.5°E, then along the 14.5°N parallel, see inset.  

Contour interval is 10 cm; eddies have been labeled as in Figures 2 and 3.  The horizontal black 

lines mark when the AXBT surveys took place, and the vertical black line marked the change in 

direction of the Hovmöller line indicated in the inset figure, at about 51.5°E.  

 

Figure 7.  Monthly time sequence of SLA between October 2000 and September 2001, the 

REDSOX year, presented as in Figure 2.  The panels dated 7 February 2001 and 8 August 2001 

correspond most closely to REDSOX cruises #1 and #2, respectively. 

 

Figure 8.  Pressure of the 27.0 σθ surface for (a) REDSOX-1 (winter) and (b) REDSOX-2 

(summer).  SLA from a date within the survey time is contoured in black at 5 cm intervals, solid 

lines are positive SLA, dashed are negative, and the bold black line is the zero contour.  Panel (a) 

has SLA from 7 March 2001, and panel (b) from 29 August 2001.  LADCP velocity vectors at 

300 m are drawn as black arrows.  The three white meridional lines on each panel mark the 

locations of the vertical sections of velocity presented in the next figure. 

 

Figure 9.  Vertical sections of zonal velocity for REDSOX-1 (panels a-c) and REDSOX-2 

(panels d-f).  Locations of the sections are noted on each panel, and are drawn as white lines in 

Figure 9.  The bold black horizontal lines mark the locations of the density surfaces where 

RSOW salinity anomalies are highest (27.0, 27.2, and 27.48 σθ). Salinity on these same surfaces 

will be presented in Figure 10. 

 

Figure 10.  Salinity on three density surfaces for REDSOX-1 (panels a-c) and REDSOX-2 

(panels d-f).  LADCP vectors are plotted as black arrows on each panel.  (a, d) Salinity on the 
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27.0 σθ surface and LADCP vectors at 400 m; (b, e) salinity on the 27.2 σθ surface and LADCP 

vectors at 600 m; (b, e) salinity on the 27.48 σθ surface and LADCP vectors at 800 m. 

 

Figure 11.  West-to-east evolution of vertical profiles of salinity versus pressure.  Top row shows 

individual salinity profiles, split by winter (blue, cyan) and summer (red, light orange) REDSOX 

cruises, for western (west of 46°E), central (46-48°E) and eastern (48°-51°E) GOA.  Bold lines 

show mean winter and summer profiles.  Bottom row shows locations of stations used for the 

upper panels. Note that the x-axis limits in the upper and middle row are different. 

 

Figure 12.  Turner angle versus depth for (a) REDSOX-1 and (b) REDSOX-2, computed using 

the mean western profiles from Figure 12.  The solid vertical lines bounds the regions conducive 

to salt fingering (0°-20°) and convective layering (135°-180°). 

 

Figure 13.  (a) REDSOX-2 station locations (circles), where filled circles are for stations that 

contained steps in the salinity profiles.  (b) Profiles from a group of stations in the western gulf 

that contained pronounced thermohaline staircases. Dotted lines show isopycnal depths and 

coherence of some layers over the group of stations. 

 

Figure 14.  An example of a salinity profile with prominent thermohaline staircases (REDSOX-2 

station 145) illustrating steps identified with the criteria for calculating a steppiness index. The 

horizontal lines mark the location of the top of each step. The profile has some convective 

layering, but only salt fingering layers were counted for the steppiness index. 

 

Figure 15.  The steppiness index for each station location in (a) REDSOX-1 and (b) REDSOX-2.  

Color gradient indicates number of steps, and stations with five or more steps below 300 m depth 

are rimmed with black. 

 

Figure 16. All RAFOS float trajectories from REDSOX, smoothed using a 3-day Butterworth 

filter.  Trajectories have been color-coded by speed as follows: speeds >20 cm/s are drawn in 

red, <10 cm/s are blue, and between 10 and 20 cm/s are black.  Float data has been culled to 

remove any float position data that was taken when a float was grounded.  The 200 and 1000 
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meter isobaths are drawn in thin black lines.   Inset shows mean speed versus longitude for the 

float data binned in one degree longitude bands.  One standard deviation error bars are plotted at 

each data point. 

 

Figure 17.  Two float trajectories: left hand column, float 146 - a ‘trapped’ float, right hand 

column, float 212 - an ‘escaped’ float.  The top four panels of each column show the float 

trajectory plotted on top of SLA images that correspond to the time the float is at the pink dot, 

with dates located in the upper left hand corner of each plot. The float trajectories have been 

color-coded as follows: Float launch location is a solid black circle, the position of the float on 

the title date is a pink dot.  All previous track is in black, all future track is in white.  SLA data is 

contoured and labeled at 5 cm intervals.  The last panel in each column shows the temperature 

record for each float, with the dates of the images above marked as vertical black lines on the 

plots.  On the left hand-column images for float 146, a star marks the position and date of the 3-

degree temperature drop. 

 

Figure 18.  (a) One three week period of float trajectories (2-21 October 2001) color-coded by 

temperature, illustrating the warmer temperature of recently injected RSOW, and the flow 

pattern at 650 dbars.  Float position at the end of the time period (the ‘head’) is marked as white 

dots, edged by black.  SLA data for 10 October 2001 has been contoured in black at 5 cm 

intervals, where dashed lines are negative, solid are positive.  In this case, during the time when 

SLA across the region is relatively low, only a single 0-cm interval is visible at about 50.5°E. 

The segment for float 146 is marked on the plot.  (b) A single one-year float trajectory, color 

coded by temperature. SLA from 22 August 2001 is overlaid as in the panel above.  The star 

marked the launch location of the float.  Bathymetry for panels (a) and (b) are contoured at 200 

and 1000 meters depth.   

 

Figure 19.  All float temperature data plotted versus longitude.  Mean temperature, averaged in 

0.1 degree bins, is plotted as a thick gray line, and the +/- one standard deviations are plotted 

above and below as thin gray lines. 
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Figure 20.  Hovmöller diagram of SLA for the years 1992-2005. Left panel shows SLA vs. time 

for October 1992 through November 1998.  SLA data has been contoured at a 5 cm interval, with 

blues and greens negative, and yellows and red positive SLA.  Right panel, same as left, but for 

the latter half of the time period: December 1998 - January 2005.  Inset shows Hovmöller ‘line’.  

Data is presented as in Figure 6, but only named anticyclones have been labeled.   

 

Figure 21.  (a) The position of the maximum SLA of the annual Summer Eddy (see text) for the 

years 1993-2004, maxima defined by the +15 cm contour interval. The +15 cm line is solid, and 

the +10 cm line is dashed.  Bathymetry and topography are contoured at +1000 m, 0 m, and -

1000 m.  Note that the SE generally reaches maximum amplitude at about 48°E, usually in July.  

(b) a time sequence of SLA that shows an example of a split Summer Eddy (SEa, SEb), see text.  

The single SE corollary can be seen in Figures 2 and 8. 

 

Figure 22. Monthly plots of mean SLA, contoured in black as in Figure 3, and the monthly mean 

wind stress curl from Quikscat for the years 2000-2004 (color shading) in units of 10-6 N m-3. 

The mean SLA was computed from the 14-year time series by weekly averaging. The mean for a 

date near the middle of each month is shown. 

 

Figure 23.  Fraction of total variance explained by the mean annual SLA pattern shown in Figure 

22. 

 

Figure A1. The mean temperature profiles on the GOA from REDSOX-1 and REDSOX-2, 

plotted against pressure.  The thin lines between 550 and 800 dbars are the linear fit to the data in 

that pressure range. 
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