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Abstract Studies of time-invariant matrix metapopula-
tion models indicate that metapopulation growth rate
is usually more sensitive to the vital rates of individ-
uals in high-quality (i.e., good) patches than in low-
quality (i.e., bad) patches. This suggests that, given
a choice, management efforts should focus on good
rather than bad patches. Here, we examine the sensi-
tivity of metapopulation growth rate for a two-patch
matrix metapopulation model with and without sto-
chastic disturbance and found cases where managers
can more efficiently increase metapopulation growth
rate by focusing efforts on the bad patch. In our model,
net reproductive rate differs between the two patches
so that in the absence of dispersal, one patch is high
quality and the other low quality. Disturbance, when
present, reduces net reproductive rate with equal fre-
quency and intensity in both patches. The stochastic
disturbance model gives qualitatively similar results to
the deterministic model. In most cases, metapopulation
growth rate was elastic to changes in net reproductive
rate of individuals in the good patch than the bad
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patch. However, when the majority of individuals are
located in the bad patch, metapopulation growth rate
can be most elastic to net reproductive rate in the bad
patch. We expand the model to include two stages and
parameterize the patches using data for the softshell
clam, Mya arenaria. With a two-stage demographic
model, the elasticities of metapopulation growth rate to
parameters in the bad patch increase, while elasticities
to the same parameters in the good patch decrease.
Metapopulation growth rate is most elastic to adult
survival in the population of the good patch for all
scenarios we examine. If the majority of the metapop-
ulation is located in the bad patch, the elasticity to pa-
rameters of that population increase but do not surpass
elasticity to parameters in the good patch. This model
can be expanded to include additional patches, multiple
stages, stochastic dispersal, and complex demography.

Keywords Metapopulation · Patch dynamics ·
Disturbance · Matrix population model ·
Stage-structured · Mya arenaria

Introduction

Many populations of organisms are distributed among
patches that vary in quality. When organisms move
between these patches, thereby connecting them, the
collection of patches is termed a “metapopulation.”
When managing a metapopulation, effort must be al-
located among patches and life cycle stages because of
inevitable limitations on time, manpower, and money.
One way to approach this allocation problem, and the
motivation of this paper, is to develop a method for
determining the potential impact of changes in patch-
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specific population parameters, particularly when the
metapopulation in question is subject to stochastic
disturbance.

The simpler problem of allocating effort among
life cycle stages within a single population has been
approached using elasticity analyses of the popula-
tion growth rate (e.g., Crouse et al. 1987; Parker 2000;
Aires-da Silva and Gallucci 2007; Kesler and Haig 2007;
Raithel et al. 2007; Enneson and Litzgus 2008). The
assumption is that, all else being equal, if population
growth rate is very elastic to a parameter, then that
parameter is a good target for management efforts.
In this paper, we will show that the elasticities of the
stochastic metapopulation growth rate can be used to
extend this approach and identify both locations and
stages that are good targets for management.

Previous theoretical studies of metapopulations
(e.g., Pulliam 1988; Runge et al. 2006) have suggested
that management should focus on patches where de-
mographic rates (survival, reproduction, and growth)
are most favorable. Using elasticity analyses of pro-
gressively more complex models, we examine when this
rule of thumb is correct and when it is not. Firstly,
we analyze a deterministic two-patch metapopulation
without stage structure. We then add environmental
stochasticity. Finally, we include stage structure and a
life cycle model that conforms with the softshell clam,
Mya arenaria.

One-stage, deterministic model

Imagine a metapopulation consisting of two patches.
Let ni(t) be the population density in patch i at time
t, referred to hereafter as population i. Two processes
acting sequentially will change ni(t). Firstly, individuals
survive and reproduce with a net per capita rate Ri in
patch i. Next, a proportion mi of individuals from patch
i emigrate to patch j (Fig. 1). We can combine these two

processes in the following matrix model to project the
population from time t to t + 1:

n(t + 1) = An(t) (1)

where n(t) = [n1(t) , n2(t)]T and

A =
(

R1 (1 − m1) R2 m2

R1 m1 R2 (1 − m2)

)
. (2)

We set R1 > 1 and R2 < 1, so that in the absence of
migration, population 1 is increasing in size and popula-
tion 2 is decreasing in size (hereafter “good” and “bad”
patches, respectively). The metapopulation growth rate
λ is the dominant eigenvalue of A, and the stable patch
distribution w is the right eigenvector corresponding
to λ.

We used sensitivity analysis to determine the relative
effects of changes to R1 and R2 on λ. The sensitivities
of λ to the elements of A are given by the sensitivity
matrix with entries

sij = ∂λ

∂aij
. (3)

This matrix is

S = vw�

v∗w
(4)

where v is the left eigenvector corresponding to λ

(Caswell 2001). The entries of S depend on the combi-
nation of parameters that make up the corresponding
aij. A more interesting analysis is the sensitivity of λ

to the lower-level parameters that compose A. From
Caswell (2001, Chapter 9), we calculate the propor-
tional sensitivity, or elasticity, of λ to the lower-level
parameter Ri as

eRi = Ri

λ

∂λ

∂ Ri
= Ri

λ

∑
jk

∂λ

∂a jk

∂a jk

∂ Ri
. (5)

Fig. 1 Life cycle graph for
one-stage, two-patch model

Patch 1 Patch 2

R2m2

R1m1

R R1(1-m1) 2(1-m2)
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To compare the effects of changes in per capita growth
rate in the two patches on λ, we define the elasticity
ratio of λ to Ri as

E = R1

R2
· ∂λ/∂ R1

∂λ/∂ R2
. (6)

If E > 1, then λ is more elastic to changes in R1. If
E < 1, then λ is more elastic to changes in R2. Using
Eqs. 4–6, we can write an expression for E in terms of
the model parameters Ri and mi and entries of the right
and left eigenvectors v and w:

E = R1w1 [v1 (1 − m1) + v2m1]

R2w2 [v2 (1 − m2) + v1m2]
. (7)

Figure 2 shows log E for different combinations of
net reproductive rates, with m1 and m2 ranging from
zero to one. E = 1 (the dashed line in Fig. 2) when

m2 = 1 + R1

R2
(m1 − 1) . (8)

To the left of this line (as m1 decreases), E > 1 and in-
creasing R1 results in the largest proportional increase
in λ. To the right of this line (as m1 increases), E < 1
and increasing R2 results in the largest proportional
increase in λ. That is, if individuals in the good patch
tend to stay in that patch, then regardless of the fraction
of individuals who migrate out of the bad patch (m2),
metapopulation growth rate is more elastic to changes
in R1 than R2. As migration out of the good patch (m1)
increases, the proportion of individuals located in the
bad patch also increases and E becomes less than 1.
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Fig. 2 Contour plots of log E for the one-stage model with no
disturbance. Red contours are where E > 1 and blue contours are
where E < 1. Shaded regions are where λ > 1. The dotted line is

where individuals in the metapopulation are evenly distributed
among patches 1 and 2
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The transition from λ < 1 to λ > 1 indicates where
the metapopulation switches from declining to growing.
As one might expect, increasing net reproductive rate
in either patch increases the area of parameter space
where λ > 1 (shaded areas in Fig. 2). A proportional
increase in R1, however, results in a greater proportion
of space where λ > 1 than the same increase in R2.

There are instances when E < 1 and λ > 1 (Fig. 2b,
d). That is, there are times when the metapopulation
growth rate is positive and is more sensitive to net
reproductive rate in the bad patch. In these instances,
migration rates are such that the majority of the
metapopulation is found in the bad patch. The dotted
lines on Fig. 2b–d are where the population is evenly
distributed among patches. To the left of this line, there
are more individuals in patch 1; to the right of this line,
there are more individuals in patch 2. Cases where E <

1 and λ > 1 are always below the line. By solving for the
stable structure from the matrix (Eq. 2), it can be shown
that E < 1 only if the majority of the population is in
the bad patch; i.e., that the dashed line in Fig. 2 is always
to the right of the dotted line. One might assume that
when the majority of individuals are in the bad patch,
then metapopulation growth rate would be negative;
however, this clearly is not always the case. The above
result indicates that increasing R2 has a larger effect
because it impacts more individuals than increasing R1.
It also suggests that not only should individual patch
growth rates be considered when determining where
management efforts should be focused, but also the
distribution of individuals among patches within the
metapopulation.

One-stage, stochastic model

Metapopulations in nature are subject to stochastic en-
vironmental variability. Environmental variation may
take many forms. Most commonly it is considered as
underlying variability in the model parameters, or as
events that are more intense but only occur sporadically
(e.g., disturbance or catastrophes). Underlying variabil-
ity would cause uncertainty in the results of Fig. 2 but
would not be expected to change the observed patterns.
Effects of disturbance are more difficult to predict. We
model disturbance as a random event that occurs with
probability p and reduces population size in patch i by
a proportion δi(t) that varies stochastically:

A =
(

R1 (1 − m1) δ1(t) R2 m2 δ1(t)
R1 m1 δ2(t) R2 (1 − m2) δ2(t)

)
. (9)

To construct δ(t) = [δ1(t), δ2(t)]T, we first let xi(t) be
an indicator variable for the event that population i is
disturbed, such that

xi(t) =
{

1 if population i is disturbed
0 otherwise

(10)

and these events form the random vector x(t). We
assume that x(t) is drawn from a bivariate Bernoulli
distribution (Marshall and Olkin 1985). We set the
expectation

E[x(t)] =
(

p
p

)
, (11)

so that the patches are disturbed with equal probability
at each time. Then

δ(t) = 1 − Dx(t), D ∈ [0, 1]. (12)

where D is a measure of disturbance intensity. Given
that patch i is disturbed, xi(t) = 1 and population i is
reduced by the proportion D. Large values of D equate
to high disturbance intensity. Conversely, δ(t) is the
proportion that survive the disturbance (1 − D).

Disturbance may occur at the two patches indepen-
dently, or may be positively or negatively correlated.
For example, a large-scale weather event such as a
hurricane that affected all patches in a metapopulation
would create a positive covariance of patch disturbance
(c). Alternatively, a rotating harvest schedule where
one patch is harvested, and the other is not, would
create a negative covariance of patch disturbance. With
c = cov(x1, x2), the variance–covariance matrix for x(t)
is the constant matrix

var[x(t)] =
(

p(1 − p) c
c p(1 − p)

)
. (13)

One can show that p and c must satisfy the con-
straints

c ≤ p(1 − p), (14)

c ≥ −p2, (15)

c ≥ −(1 − p)2, (16)

and that the sum of the probabilities of all possible dis-
turbance events equals 1. The constraints 14–16 define
a two-dimensional parameter space of all allowable
combinations of p and c (Fig. 3).

Including disturbance, the deterministic projection
matrix (Eq. 2) becomes the stochastic matrix

At =
(

R1 (1 − m1) δ1(t) R2 m2 δ1(t)
R1 m1 δ2(t) R2 (1 − m2) δ2(t)

)
. (17)
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Fig. 3 Allowable combinations (shaded), as defined by inequali-
ties 14–16, of the probability of disturbance (p) and the covari-
ance of disturbance events (c) for the two patches in models
10–17

The stochastic growth rate

log λs = lim
T→∞

1

T
log ||AT−1 · · · A0n0|| (18)

is the long-term average growth rate of every real-
ization of the model with probability 1 (Furstenberg
and Kesten 1960; Cohen 1976; Tuljapurkar and Orzack
1980; Caswell 2001). The sensitivity analysis of stochas-
tic growth rate was introduced by Tuljapurkar (1990)
and extended to lower-level parameters by Caswell
(2005). The elasticity of the stochastic growth rate to
the net reproductive rate in patch i is

∂ log λs

∂ log Ri
= lim

T→∞
1

T

T−1∑
t=0

RivT(t + 1) ∂At
∂ Ri

w(t)

r(t)vT(t + 1)w(t + 1)
. (19)

It gives the proportional change in log λs, resulting from
a proportional change in Ri. In Eq. 19, v(t) and w(t) are
the stochastic analogs to the left and right eigenvectors
of the deterministic projection matrix, and r(t) is the
one-step growth rate

r(t) = ||Atw(t)||
||w(t)|| (20)

(Caswell 2005, Eqs. 2–4). We define the stochastic elas-
ticity ratio of log λs to the Ri as

Es = ∂ log λs/∂ log R1

∂ log λs/∂ log R2
. (21)

As in the deterministic case, if Es > 1 then log λs is
more elastic to changes in R1. Conversely, if Es < 1,
then log λs is more elastic to changes in R2.

We calculated log λs and the elasticity ratio (Eq. 21)
for R1 = 2.5, R2 = 0.9, D = 0.9 (corresponding to the
deterministic case in Fig. 2b), and for four migration
scenarios in which the emigration rates are high or low:

(m1, m2) ∈

⎧⎪⎪⎨
⎪⎪⎩

(0.1, 0.9)

(0.9, 0.9)

(0.1, 0.1)

(0.9, 0.1)

. (22)

We evaluated Eqs. 18 and 19 by Monte Carlo simu-
lation with T = 10,000. As in the deterministic case,
the elasticity ratio is correlated with the distribution of
individuals among patches (Fig. 4). Determining where
the majority of individuals are located is not as straight-
forward in the stochastic case. Rather than determine
this based on migration rates, we must instead calculate
the long-term average patch distribution.

Figure 5a shows that in Fig. 4a, there are, on average,
more individuals in patch 1 than in patch 2 because few
individuals leave patch 1 (m1 = 0.1) and most individ-
uals from patch 2 migrate to patch 1 (m2 = 0.9). As
expected, elasticity ratio is greater than 1 and changes
to the good patch will result in proportionally greater
increases in metapopulation growth rate.

In the case where migration rates are equal (Fig. 4b,
c), the majority of metapopulation individuals are
located where most individuals originating from the
good patch ultimately settle (patch 2 in the case
where m1, m2 = 0.9, Fig. 5b; patch 1 in the case where
m1, m2 = 0.1, Fig. 5c). Again, the elasticity ratio is
greater than 1.

The result changes if emigration from patch 1 is high
and emigration from patch 2 is low (Fig. 4d). Migration
rates in this case result in more individuals, on aver-
age, in patch 2 (Fig. 5d). Consequently, Es < 1 for all
combinations of disturbance parameters p and c. These
results parallel those of the deterministic model: Es < 1
only if there are a lot more individuals on average in
patch 2 than in patch 1. Changes to parameters in patch
2 thus will affect more individuals of the metapopula-
tion, resulting in a proportionally greater increase in
metapopulation growth rate.

Es also is affected by disturbance parameters, al-
though to a lesser extent when compared with the
effects of migration rates. In general, c has a greater
effect on Es than p; contours of Es tend to be more
horizontal than vertical in all panels of Fig. 2. That
is, the temporal relationship between disturbance at



172 Theor Ecol (2012) 5:167–179

the two patches is more influential on their relative
elasticities than the probability that disturbance occurs
over any given time period.

Although there is only a small amount of variabil-
ity in Es within a given panel, Es varies dramatically
among the four panels (note the log scale). Migration
rates appear to affect Es to a much greater extent than
disturbance parameters. Es < 1 only when emigration
was high from patch 1 and low from patch 2 (Fig. 4d),
and in that migration scenario log λs < 0 for most com-
binations of p and c. There is a small set of disturbance
parameter values (p < 0.05, c ≈ 0) where both log λs >

0 and Es < 1; this occurs at the lowest values of p,

when disturbance is so improbable that results from
the stochastic model are comparable to those of the
deterministic model (Fig. 2b).

For the reproductive rate and disturbance intensity
used for Fig. 4, the stochastic metapopulation growth
rate is positive only when the probability of disturbance
is low (shaded areas, Fig. 4). The set of disturbance
parameters p and c for which log λs > 0 is largest when
on average population 1 is larger than population 2.
The set shrinks as individuals become more evenly
distributed between the two patches. When population
2 is larger, as in Fig. 4d, log λs > 0 only for the smallest
values of the disturbance probability p.
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details of the response of log λs at small values and for comparing
results to the no disturbance case (Fig. 2)
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Two-stage, stochastic model

For many species, especially marine invertebrates, the
model of the previous section lacks the appropriate
level of demographic detail to adequately summarize
the animal’s life history. An example of one such in-
vertebrate is the softshell clam, M. arenaria, a com-
mercially important bivalve commonly found in New
England estuaries. M. arenaria’s life cycle is typical
of nearshore marine benthic invertebrates (Thorson
1950; Abraham and Dillon 1986). It is characterized
by a relatively sedentary adult stage, with adults highly
aggregated into patches of suitable habitat. Migra-
tion between populations occurs via dispersal of the

short-lived larval stage. Like many marine invertebrate
species, M. arenaria larvae are produced in vast quan-
tities during a short reproductive season and typically
most larvae die before recruiting to the adult phase.

To model such a population requires at least two
patches connected by dispersal, and two stages: adults
and larvae/juveniles (Fig. 6). We assume that demog-
raphy, dispersal, and disturbance act sequentially in
the intervals (t, t1), (t1, t2) and (t2, t + 1), respectively,
within a given projection interval (t, t + 1).

Between t and t1, the population undergoes demo-
graphic processes. The demographic transitions within
population i are given by the matrix Bi, with en-
tries composed of adult survival (σi), per capita larval



174 Theor Ecol (2012) 5:167–179

Patch 1 
Stage 1

Patch 2 
Stage 1

Patch 1 
Stage 2

Patch 2
Stage 2

Patch 1 
Stage 1

Patch 2 
Stage 1

Patch 1 
Stage 2

Patch 2
Stage 2

Patch 1 
Stage 1

Patch 2 
Stage 1

Patch 1 
Stage 2

Patch 2
Stage 2

Patch 1 
Stage 1

Patch 2 
Stage 1

Patch 1 
Stage 2

Patch 2
Stage 2

t

t1

t + 1

t2

B

M

D

σ1  2

1 2  2 2 1 1

(1-m1) (1-m2)

m2m1

1
1

D1(t) D1(t) D2(t) D2(t)

Fig. 6 Life cycle graph for two-stage, two-patch model with stochastic disturbance. B, M, and D denote the block-diagonal matrices
for demography, migration, and disturbance, respectively (Eqs. 26, 30, and 32)

production and survival (βi), and survival and matura-
tion of new recruits (γi):

Bi =
(

0 σiβi

γi σi

)
. (23)

If we define the entries nij(t) of the vector n(t) to be the
number of individuals in stage j of population i at time
t and arrange the elements as

n(t) =

⎛
⎜⎜⎝

n11(t)
n12(t)
n21(t)
n22(t)

⎞
⎟⎟⎠ , (24)

then the demographic transitions are described by

n(t1) = Bn(t) (25)

where

B =
(

B1 0
0 B2

)
. (26)

Next, individuals migrate between patches. Let M j

be the matrix of migration rates for individuals in
stage j. A simple model for migration has these stage- j
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individuals migrating from patch i at the per capita rate
mij. Thus,

M j =
(

1 − m1 j m2 j

m1 j 1 − m2 j

)
. (27)

If we now rearrange the vector n(t1) as

ñ(t1) =

⎛
⎜⎜⎝

n11(t1)
n21(t1)
n12(t1)
n22(t1)

⎞
⎟⎟⎠ , (28)

then

ñ(t2) = Mñ(t1), (29)

where

M =
(

M1 0
0 M2

)
. (30)

Since M. arenaria adults are sedentary, we set M2 =I.
To simplify notation, we will set m11 = m1 and m21 =
m2 from here on.

Finally, disturbance reduces the number of individ-
uals in population i by the proportion D, as described
in Eqs. 12–16. If we return to the original arrangement
(Eq. 24), we have

n(t + 1) = Dtn(t2), (31)

where

Dt =
(

D1(t) 0
0 D2(t)

)
(32)

and

Di(t) =
(

δi(t) 0
0 δi(t)

)
. (33)

To convert between the vectors n and ñ, which
is required at each time step, we employ the vec-
permutation matrix:

P(s, p) =
s∑

i=1

p∑
i=1

Eij ⊗ ET
ij (34)

where s is the number of stages, p is the number of
patches, and Eij is an s × p matrix with a 1 in the
(i, j) position and zeros elsewhere (Henderson and
Searle 1981; for an application see Hunter and Caswell
2005). The vec-permutation matrix has the useful
properties

ñ = Pn, (35)

n = PTñ. (36)

For the two-patch, two-stage case

P =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ . (37)

Combining the demographic, migration, and distur-
bance processes gives the model

n(t + 1) = Atn(t) (38)

where

At = DtP�
MPB. (39)

Using the matrix calculus approach (Caswell 2007,
2008), we can write the elasticity of λs to the lower-level
parameters as

∂ log λs

∂ log θT
= lim

T→∞
1

T

T−1∑
t=0

[
wT(t) ⊗ vT(t + 1)

r(t) vT(t + 1) wT(t + 1)

]

× ∂ vecAt

∂θT
diag (θ) (40)

where θ is a column vector of parameters, and the
operator vec(·) stacks the columns of a matrix on top
of each other. The matrix ∂vecAt/∂θT is the derivative
of the projection matrix at each time step with respect
to each lower-level parameter in θ .

In our model, At is the product of several matrices,
therefore the calculation of ∂vecAt/∂θT is not trivial.
Taking the differential of both sides of Eq. 39 gives

dA = (dD) PT
MPB + DPT(dM) PB

+ DPT
MP (dB) . (41)

Multiplying the first and third terms in Eq. 41 by the
identity matrix leaves those terms unchanged.

dA = I (dD) PT
MPB + DPT(dM) PB

+ DPT
MP (dB) I. (42)

We can then apply the vec operator to each term in Eq.
42. Using the fact that vec(ABC) = (

CT ⊗ A
)

vecB, we
obtain an equation for dvecA in terms of the compo-
nent matrices:

dvecA = [(
PT

MPB
) ⊗ I

]
dvecD

+ [
(PB)T ⊗ (

DPT)] dvecM

+ [
IT ⊗ (

DPT
MP

)]
dvecB. (43)
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Fig. 7 Elasticity of log λs to changes in lower-level parameters,
θ under two disturbance scenarios: probability of disturbance p
is 0.5, with covariance either positive (a) or negative (b). White
bars are elasticities in patch 1; gray bars are elasticities in patch 2.

In both plots, m1 = 0.1, m2 = 0.1, D = 0.9, and log λs < 0 (–0.27
and –0.23 for (a and b), respectively). The expected proportion
of individuals in patch 1 is 0.89 (a) and 0.67 (b)

Using the chain rule, along with the first identification
theorem of Magnus and Neudecker (1985) gives

dvecA

dθT
= [(

PT
MPB

) ⊗ I
] dvecD

dθT

+ [
(PB)T ⊗ (

DPT)] dvecM

dθT

+ [
IT ⊗ (

DPT
MP

)] dvecB

dθT
(44)

The matrices dvecD/dθT, dvecM/dθT and dvecB/dθT

can be rewritten in terms of their component matrices
(i.e., Di, Mi, and Bi). For example,

dvecD

dθT
=

2∑
i=1

(Hi ⊗ I2)
dvecDi

dθT
(45)

where

Hi = (I2 ⊗ P) (vecEi ⊗ I2) (46)

and Ei is the 2 × 2 matrix with every entry zero, save
(i, i), which is 1. To calculate dvecM/dθT, simply replace
D and Di in Eq. 45 by M and Mi respectively. dvecB/dθT

can be obtained from analogous steps.1

1Equation 40 applies to all models of form 38. Equations 41–46
apply to the specific case of Eq. 39. Equations 44–46 can be found
in their more general format in Magnus and Neudecker (1985).

We analyzed the model in Eqs. 38 and 39 for σ1 =
0.9, σ2 = 0.3, γ1 = 0.8, γ2 = 0.24, β1 = 5.6, and β2 = 7.5.
These parameter values (1) produce individual patch
growth rates similar to the net reproductive rates for
the one-stage case, i.e., R1 = 2.5 and R2 = 0.9; and
(2) roughly comport with estimated demographic pa-
rameters for M. arenaria from field studies (Ripley and
Caswell 2006). First we set migration rates to be equal
and low, at m1 = m2 = 0.1. Migration rates are difficult
to obtain for benthic invertebrates with pelagic larvae,
and were not available for M. arenaria, but these values
are arguably realistic. We assumed that disturbance
affects all patches and stages with intensity D = 0.9,
and set the probability of disturbance at the two patches
to p = 0.5.

Under these conditions, when the covariance of
patch disturbance c is positive, both patches tend to be
disturbed simultaneously. This preserves the inherently
higher quality of population 1, and the resulting elas-
ticities of log λs to population 1 parameters (Fig. 7a)
are much larger than the elasticities to population 2
parameters (i.e., Es >> 1). When covariance is nega-
tive, the patches tend to be disturbed at different times.
As a result, population 2 can be temporarily of higher
quality than population 1. The elasticities of log λs to
population 2 parameters are therefore larger than when
c > 0 (Fig. 7b). Nevertheless elasticities to population 2
parameters are still much smaller than those to popula-
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Fig. 8 Elasticity of log λs to changes in lower-level parameters
(θ) under two migration scenarios: a m1 small and m2 large,
resulting in more individuals in patch 1, and b m1 large and m2
small, resulting in more individuals in patch 2. White bars are

elasticities in patch 1; gray bars are elasticities in patch 2. In
both plots, p = 0.15, c = 0, and D = 0.9, and log λs > 0 (0.53 and
0.05 for (a) and (b) respectively). The expected proportion of
individuals in patch 1 is 0.88 (a) and 0.23 (b)

tion 1 parameters. These results parallel those obtained
for the one-stage model (cf. Fig. 4c).

We also explored the effects of dispersal scenarios
that resulted in the majority of the metapopulation
density being in patch 1 (m1 = 0.1, m2 = 0.9; Fig. 8a) or
patch 2 (m1 = 0.9, m2 = 0.1; Fig. 8b). The expected pro-
portion of individuals in patch 1 for these two scenarios
was 0.88 and 0.23, respectively. We chose a low proba-
bility of intense disturbance (p = 0.15, D = 0.9) and no
covariance between patches (c = 0). This combination
of p and c were chosen to explore the parameter space
most likely to yield an interesting result in relative
elasticities based on results from the one-stage model.
In both dispersal scenarios, log λs is more elastic to
changes in patch 1 parameters than to corresponding
parameters in patch 2. When the population in patch
1 is larger than the population in patch 2 (Fig. 8a),
elasticities to patch 2 parameters are much smaller than
to patch 1. When the majority of individuals are found
in patch 2 (Fig. 8b), elasticity to patch 2 parameters
are much closer to those of patch 1, but log λs is still
most elastic to patch 1 parameters. In particular, a pro-
portional change in σ1 still causes a larger proportional
change in log λs than the same change in σ2.

When the model complexity was increased by adding
a second stage, the elasticities of stochastic metapopula-
tion growth rate to population 1 parameters increased,
while those same elasticities to population 2 parameters
decreased. Even when the majority of individuals were

in the bad patch, growth rate elasticity was still greatest
to parameters in the good patch for the scenarios we
examined.

Discussion & conclusions

Good and bad patches, as defined in this paper, are also
referred to as “sources” and “sinks”. The source/sink
literature (Pulliam 1988; Howe and Davis 1991; Runge
et al. 2006) suggests that if one must choose between
focusing management efforts on a source or a sink,
one should always choose the source. In most cases,
our results agree, however we found that under some
conditions sink populations are important to long-term
metapopulation persistence.

For two patches without demographic structure, the
distribution of individuals among patches is important
in addition to individual patch growth rates. Improving
the source population is best except when the majority
of individuals are in the sink population. When most
of the individuals are in the sink, changes to parame-
ters in that population affect more individuals and can
therefore have a proportionally larger effect on overall
metapopulation growth rate.

There is no way to know a priori how likely such pat-
terns are, or the ecological factors that might produce
them. The distribution of individuals among patches
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may account for previous suggestions of the impor-
tance of sink populations, for example, higher overall
metapopulation size resulting when individuals unable
to settle at source populations due to high popula-
tion densities migrate to sinks (Pulliam 1988) or when
emigration from the source patch is suggested to in-
crease population size by offering “insurance” against
catastrophe (Levin et al. 1984). This is especially true
if the environmental variability is spatially negatively
correlated (Wiener and Tuljapurkar 1994).

When conditions are stochastic the correlation of
disturbance among patches also influences the relative
impacts of the good and bad patch. In cases of positive
covariance, disturbance reduces conditions in the good
and patches in concert, so results are the same as for the
deterministic case. However, when the covariance of
disturbance is low, disturbance affecting the good patch
can cause the good patch to become worse than the
bad patch, so focusing management on the bad patch
becomes more important (Figs. 4, 7 and 8).

When demographic structure is considered, the rela-
tive importance of the bad patch to overall metapopu-
lation growth rate is reduced. The additional stages act
as a buffer for stochastic disturbance and the distribu-
tion of individuals is less influential on metapopulation
growth rate.

We have focused here on elasticities, which indi-
cate where management efforts should be directed if
changes in all parameters of the same magnitude can be
made and all else is equal. Other factors also play a role
in the implementation of management actions; includ-
ing cost, feasibility, and inherent parameter variability.
Such factors, which can vary both among parameters
and among patches, greatly influence the efficacy of
management efforts in concert with elasticities. Such
constraints can easily be incorporated into a modified
metric within the framework of elasticities, and then be
used to guide management decisions.

These results offer no rules of thumb for allocating
management efforts. Rather, they suggest the impor-
tance of conducting elasticity or other perturbation
analyses to determine the contributions of individual
patches to overall metapopulation growth rate. The
analyses presented here can be extended to include
additional patches, stages, types of stochasticity, etc. as
well as additional constraints on the implementation of
management actions.
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