
Journal of Marine Research, 69, 779–795, 2011

Thermohaline convection at density ratios below one:
A new regime for salt fingers

by Raymond W. Schmitt1

ABSTRACT
New experimental results on haline convection show a surprising preference for narrow fingers

over large-scale convection when even a small stabilizing temperature gradient is present (Hage and
Tilgner, 2010). This regime has heat/salt density ratios below one, a parameter range that has not been
explored in traditional salt finger theory. Here the properties of the exact (long finger) solutions of
Schmitt (1979, 1983) are explored at low density ratios. It is found that narrow finger solutions are
indeed obtained and remain the fastest growing in some circumstances, though the selective advantage
of the “Stern scale” can disappear as the density ratio decreases. The variation of solutions with Prandtl
number and the relation to the Stern (1975) approximate solution are examined and discussed.

1. Introduction

Stern (1960) introduced the world to salt fingers and initiated study into the various
forms of double-diffusive convection. Over the years he contributed much to the intellectual
advance of this new branch of fluid mechanics. Interest in salt fingers is now reviving since
direct tracer release experiments have shown the vertical fluxes in fingering staircases to
be large (Schmitt et al., 2005; Veronis, 2007), and evidence supporting the hypothesized
(Schmitt, 1981, 1990) effects of fingers on the thermohaline stratification is emerging in the
ARGO profiling float data set (Johnson, 2006). Indeed, Johnson and Kearney (2009) find
that fingers have attenuated the signals of climate change in the thermocline. Discussions of
various aspects of double-diffusion have been provided by a collection of reviews introduced
by Ruddick and Gargett (2003), including work on salt fingers (Kunze, 2003; Schmitt, 2003;
Yoshida and Nagashima, 2003a) diffusive-convection (Kelley et al.., 2003) and double-
diffusive intrusions (Ruddick and Kerr, 2003; Ruddick and Richards, 2003; Ruddick, 2003;
Yoshida and Nagashima, 2003b). Stern himself continued to make significant contributions
to double-diffusive theory throughout his career (Stern et al., 2001). However, our focus
here will be on a previously unknown parameter regime for salt fingers revealed by the
recent experiments of Hage and Tilgner (2010). We place the discussion in the context of
one of Stern’s most useful contributions to salt finger theory.
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Specifically, Stern (1975) presented a solution to the growing finger problem that applies
in a fluid with uniform vertical gradients of temperature and salinity. This theory may have
its origin in an “equilibrium” finger model first proposed by W. Malkus (according to Stern,
1969). Stern examined the asymptotic case of large viscosity and small salt diffusivity
in his 1975 book and could readily explain the experimental results of Turner (1967) on
the heat/salt buoyancy flux ratio of salt fingers. However, at that time, there were new
experimental results from the sugar-salt finger system by Lambert and Demenkow (1972)
that did not match Stern’s asymptotic theory. As a graduate student at the University of
Rhode Island at that time, this presented an opportunity for me to more fully explore the
long finger solutions, though a significant amount of tedious algebra was required. The
complete solutions for all Prandtl number and Lewis number proved quite successful in
explaining the differences between heat-salt and salt-sugar fingers (Schmitt, 1979, 1983).
Stern’s asymptotic theory continues to be rediscovered by later generations of researchers
(Kunze, 1987; Smyth and Kimura, 2007), perhaps indicating that books are not the best
repositories for original contributions.

In the following, the properties of the exact long finger solutions in the “density ratio less
than one” regime are explored. This is a regime where narrow fingers were not thought to
be dominant. Here the salt gradient is strongly destabilizing and the temperature gradient is
only weakly stabilizing. The work is motivated by surprising recent experimental results on
haline convection by Hage and Tilgner (2010). Pure haline-driven convection is not easily
explored in the laboratory; osmotic membranes would seem to be necessary. Hage and
Tilgner used an electro-deposition cell in which copper ions are plated out from one solid
copper horizontal plate to another at the top/bottom of the cell. To quote their abstract: “An
electrodeposition cell is used to sustain a destabilizing concentration difference of copper
ions in aqueous solution between the top and bottom boundaries of the cell. The resulting
convecting motion is analogous to Rayleigh–Bénard convection at high Prandtl numbers.
In addition, a stabilizing temperature gradient is imposed across the cell. Even for thermal
buoyancy two orders of magnitude smaller than chemical buoyancy, the presence of the
weak stabilizing gradient has a profound effect on the convection pattern. Double diffusive
fingers appear in all cases.”

Figures 1 and 2 are from Hage and Tilgner (2010). In Figure 1 the red vectors represent
velocities measured by particle imaging velocimetry (PIV); the light/dark pattern represents
the intensity of the up- (light) or down-going (dark) fluid velocities. The right panel shows
the expected large scale “salt” convection when the plates are held at the same temperature,
the left panel shows narrow finger cells when a very slight stable temperature gradient is
imposed. Figure 2 is a shadowgraph of fingering in the salt-convection apparatus. The basic
molecular parameters in these experiments are similar to the oceanic heat-salt system, with
Prandtl number ∼10 and heat/salt diffusivity ratio ∼100. The overall density ratio applied
at the boundaries is significantly less than one (∼10−2) in their experiments.

These are very surprising results. It has generally been assumed that haline-driven convec-
tion with density ratios below one would be dominated by traditional large-scale convective
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Figure 1. PIV patterns in the experiments of Hage and Tilgner (2010). The images show the entire
cell height of 20 mm and extend over a width of 12 mm on the left and 45 mm on the right. The red
lines are velocity vectors and the shade of gray indicates the vertical component of velocity (dark
= downward, light = upward). The right panel shows large scale convection in the absence of any
vertical temperature gradient, the left panel shows narrow fingers when a slight stable temperature
gradient is imposed across the cell.

Figure 2. Shadowgraph image from the experiments of Hage and Tilgner (2010). The cell is 80-cm
high and 85-cm wide. The bright horizontal bar is an artifact of the illumination. An electric current
between copper plates at the top and bottom supplies a destabilizing vertical flux of copper ions
across the cell. Narrow fingers appear when a very slight stable vertical temperature gradient is
applied.
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overturning. These are cells with an order one aspect ratio, with width comparable to layer
depth. The large-scale gradients are unstable so there seemed no reason to suspect small-
scale fingers would play a role. In addition, the Stern (1975) asymptotic theory predicts a
transition to large scales at a density ratio of one, so no one has explored the basic theory in
this regime. In the following, the complete solutions of Schmitt (1979, 1983) are examined
in the Rρ < 1 parameter range.

2. The long finger solutions

The regime we examine is an unbounded one with uniform gradients of temperature (T )

and salinity (S). In the interior of such a linearly stratified fluid, it is possible to describe a
field of purely vertical finger motions (elevator modes) that remains valid at finite amplitude,
because all the flows are parallel and the gradients of T and S are uniform. The heat and salt
equations reduce to a balance between growth, vertical advection and horizontal diffusion
(with ∇2

2 = horizontal Laplacian):

∂T

∂t
+ wT Z = κT ∇2

2T

∂S

∂t
+ wSZ = κS∇2

2S. (2.1)

The momentum balance is between viscous drag and gravitational driving and is given by:

∂w

∂t
= g(αT − βS) + v∇2

2w (2.2)

where α ≡ − ∂ρ

ρ∂T
, and β ≡ ∂ρ

ρ∂S
. (2.3)

We assume that a mean hydrostatic balance describes the pressure field and that no horizontal
motions are associated with the initial growth of the vertical fingers. The exact solutions to
the foregoing equations are the mean fields:

T = T0 + (z − z0)T Z

S = S0 + (z − z0)SZ (2.4)

and finger perturbations:

T ′, S ′, w′ = (T̂ , Ŝ, ŵ) exp(λt) sin(kx) sin(ky). (2.5)

Here λ is the exponential growth rate of the fingers, k is their horizontal wavenumber
and the (ˆ) represent “seed” amplitudes for the initial finger growth. Here we have used
sin(kx) sin(ky) as a simple solution to the Helmholtz equation (∇2φ + k2φ = 0) that
yields square packed fingers, a planform that is observed in the later stages of laboratory
experiments (Williams, 1975). Schmitt (1994a) has shown that a rich variety of finger
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planforms are available to satisfy the Helmholtz equation, but this has no impact on the
essential relation between growth and the total horizontal wavenumber.

The growth rate depends on several nondimensional parameters as well as the wavenum-
ber (and flux ratio) of the fingers. There are two constants involving the diffusivities of
heat, salt and momentum, the Prandtl number, Pr = v

κT
and the diffusivity ratio or Lewis

number, Le = κT

κS
. For seawater, and the Hage and Tilgner experiments, the Prandtl number

is ∼7–10 and the Lewis number ∼100. The main environmental parameter is the density
ratio Rρ, given by:

Rρ ≡ αT Z

βSZ

. (2.6)

This expresses the degree to which the temperature gradient over-stabilizes the adverse
salinity gradient; values much greater than one representing more stable water than those
situations with near neutral stability (Rρ = 1), where fingers can grow most rapidly. For
much of the subtropical thermocline, Rρ tends to be near 2, indicating a strong propensity
for salt fingering. The maximum density ratio at which fingers can grow is just the Lewis
number (∼100), since at that value the salinity gradient is too weak to overcome the damping
effects of salt diffusion.

An important derived parameter for salt fingers is the ratio of the thermal buoyancy flux
to the haline buoyancy flux. The flux ratio (γ) is defined as:

γ = w′αT ′

w′βS ′ . (2.7)

For any given wavenumber it can also be defined by the ratio of the thermal and haline
density anomalies:

γ = αT ′(k)

βS ′(k)
(2.8)

which is very useful for understanding salt finger dynamics. That is, we expect a wide finger
to retain a larger thermal anomaly due to reduced diffusion, while very narrow fingers would
have a lower flux ratio due to the enhanced short circuiting of heat between up- and down-
going fingers.

Thus, a close connection between flux ratio and wave number is expected. We also note
that energetics places an upward limit on the value of the flux ratio of 1.0, since no more
buoyancy can be gained by the heat field than is extracted from the salt distribution. By
setting the time derivative to zero in Eqs. (2.1–2.3), we can examine the properties of the
“equilibrium finger”, in which heat and salt diffusion just balance each other, and find that
the lower limit of flux ratio at a given density ratio is just:

γeq = κSαT Z

κT βSZ

= Rρ

Le
(2.9)
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Figure 3. Flux ratio versus density ratio space for heat-salt fingers. Energetics sets an upper limit of
γ = 1, where heat and salt anomalies cancel and there is no density anomaly to drive the fingers.
Salt diffusion sets a lower limit of γ = Rρ/Le where narrow fingers diffuse enough salt to yield
zero growth rate. No fingers can form in a uniform gradient region for Rρ > Le (∼100 for heat –
salt).

Thus, at low Rρ a wide range of fingers can grow, but when Rρ → Le only fingers with a
flux ratio near one can exist. This limited range of allowable flux ratios and wavenumbers is
the likely explanation for the increasing order displayed in finger planforms as experiments
run down and the density ratio approaches its upward limit and one wavenumber comes to
dominate the field (Williams, 1975). Strongly forced fingers at low density ratios are much
more irregular in appearance, and numerical simulations display increasingly chaotic and
turbulent appearing structures as Rρ → 1.

It is useful to examine these issues in a plot of flux ratio against density ratio (Fig. 3).
Values of flux ratio above the diagonal line (Eq 2.9) represent growing fingers; those below
are decaying fingers. The equilibrium finger with the λ = 0 (γ = Rρ/Le) line separates
the two domains.

While the no-growth lines can be identified by inspection of the equations, finding the
maximum growth rate requires some algebra. Schmitt (1979, 1983) has provided solutions
for the scaled growth rate and wavenumber as functions of the flux ratio:

G = λ

(gαT z)1/2
(2.10)
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K = k(
gαT z

νκT

)1/4 (2.11)

G = (Leγ − Rρ)

{
(1 − γ)

γRρ(Le − 1)[Rρ(P rLe − 1) − Leγ(P r − 1)]
}1/2

(2.12)

K = (Rρ − γ)1/2Le1/2
{

Pr(1 − γ)

γRρ(Le − 1)[Rρ(P rLe − 1) − Leγ(P r − 1)]
}1/4

. (2.13)

These relations have been explored for the purposes of finger spectra (Gargett and Schmitt,
1982; Shen and Schmitt, 1996) and the flux ratio. In particular, the flux ratio of the fastest
growing finger has proven to be a good predictor of the flux ratio realized in both the heat-salt
and salt-sugar experimental regimes (Fig. 4).

The ability of the exact solutions to predict the variation of flux ratio with Lewis number,
Prandtl number and to some extent density ratio, provided great impetus for its further
application to the problem of the salt finger width, at which it also succeeded (Gargett
and Schmitt, 1982; Marmorino et al., 1987). Oceanic observations of the finger width are
quite consistent with the “Stern scale” of ∼2π(gαTZ/νκT )−1/4, which is typically a few
centimeters. St Laurent and Schmitt (1999) showed how oceanic data on thermal and kinetic
energy dissipation in the salt finger regime implies a fall-off in flux ratio with increasing
density ratio, similar to the theory at density ratios from 1–4. To date no data have been
produced to show an increase in flux ratio with even higher density ratios but such behavior
is a key feature of the layering instabilities discussed by Radko (2003, 2005, 2007) so would
be of interest. It is easy to argue that an increase in flux ratio with increasing density ratio
is sure to occur in the ocean by the dominance of turbulence at higher density ratios, where
finger growth rates are small.

The fastest growing finger curves of Figure 4 are obtained by maximizing the
expression for G with respect to flux ratio; that is, ∂G/∂γ = 0, yielding a cubic in γ:
aγ3 + bγ2 + cγ + d = 0. With

a = (Pr − 1), b = (Pr + 1 − 2PrLe)
Rρ

Le
, c = (PrLe + 1 − 2Pr), d = (PrLe − 1)

R2
ρ

Le2 ,

H = (b2 − 3ac)

9a2
, J = (2b3 − 9abc + 27a2d)

27a3
, and θ = 1

3
arcos

[ −J

2H 3/2

]
(2.14)

the solutions for the growth maximizing flux ratio (γm) are defined in different Prandtl
number regimes:

Pr = 0, γm =
[

Rρ

Le

] 1
2

Pr < 1, γm = 2H
1
2 cos(θ) − b

3a



786 Journal of Marine Research [69, 4-6

Figure 4. Flux ratio from laboratory data compared with the flux ratio of the fastest growing finger
(solid curves) in the heat-salt (top) and salt-sugar (bottom) regimes. The equilibrium finger with
λ = 0 is shown as a dashed line. From Schmitt (1979).

Pr = 1, γm = 1

2

[
1

4
+ 2Rρ

Le

] 1
2 + 1

4

Pr > 1, γm = 2H
1
2 cos

(
θ + 4π

3

)
− b

3a
. (2.15)

The variation of the solutions with Prandtl number is of some interest, and helps us to
understand the asymptotic solution of Stern (1975). In our notation, Stern’s expression for
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the flux ratio of the fastest growing long fingers in the high Prandtl number and Lewis
number regime is:

γ = Rρ − [Rρ(Rρ − 1)]1/2. (2.16)

Figures 5a,b compare the Stern asymptotic solution with the full solution. Stern’s solution
has a flux ratio of one at Rρ = 1, hitting the energetic limit for fingers. However, at Rρ = 1,
the full solution of Schmitt has a flux ratio of 0.73 for Pr = 7 and Le = 100. The “zero
wavenumber” limit (Eq. 2.13) is not met until the flux and density ratios equal 0.876 for
Pr = 7 and Le = 100. The line represented by γ = Rρ is an advective limit for finger
solutions that replaces the energetic limit for Rρ < 1. That is, the line γ = Rρ represents the
effects of advection and/or pure vertical turbulence. Heat and salt perturbations in that case
are in proportion to their ratio in the background gradients. In this uniform gradient situation,
fingers cannot carry a larger temperature perturbation relative to salt than is available in the
background gradients. When the flux ratio of the fastest growing finger merges with the
γ = Rρ line for Rρ < 1, then Eq. 2.13 indicates that the horizontal wavenumber goes to zero
and the convection cells should be large. In the high Prandtl number limit examined by Stern
(1975) this happens at Rρ = 1. Both the energetic and advective limits are reached at the
same point. However, the full solutions of Schmitt (1979, 1983) show that a narrow “Stern
scale” finger can still be the fastest growing at Rρ = 1 and below. The zero wavenumber
limit for the fastest growing fingers is not met until γm = Rρ for finite Prandtl number. Of
course, slower growing fingers with a narrow width are possible anywhere in the γ < Rρ,
Rρ < 1 wedge.

Further exploration of this new parameter range suggests a reconsideration of the growth
rate scaling introduced in Eq. 2.10. Since we are exploring a regime where the temperature
gradient becomes very small, the traditional scaling of growth rate with temperature gradient
may be deemed inappropriate. (It remains the scaling of choice in the oceanic thermocline,
as the temperature gradient is always much easier to measure than the salinity gradient.)
That is, with the vertical temperature gradient becoming small as Rρ → 0, there will be an
“artificial” increase in nondimensional growth rate in that limit. In this Rρ < 1 and Tz → 0
regime, it is appropriate to scale with the vertical salinity gradient. Kunze (1987) used this
scaling in his analysis. Here this is easily done with a factor of R

1/2
ρ applied to Eq. 2.10.

That is:

GS = λ

(gβSZ)1/2
= R1/2

ρ G. (2.17)

The two different growth rate scalings are contrasted in Figure 6.
Similarly, we expect that the wavenumber scaling based on temperature gradient will

become problematic as the temperature gradient vanishes for Rρ → 0. The nondimensional
wavenumber scaled with the salinity gradient is given by:

KS = k(
gβSZ

νκT

)1/4 = R1/4
ρ K. (2.18)
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Figure 5. (a) Flux ratio as a function of density ratio for the fastest growing fingers of Stern (1975)
(dashed), and for Schmitt (1979) (solid). The flux ratio of the nongrowing “equilibrium” finger
where thermal and salt diffusion are in balance, is shown as a dotted line. (b) Detailed behavior of
the flux ratio in the finger solutions of Stern (1975) (dashed) and Schmitt (1979) (solid) at low Rρ.
Stern’s asymptotic solution reaches the upper (energy) limit of γ = 1 at Rρ = 1, but the flux ratio
of the full solution of Schmitt remains below one for heat-salt fingers even for density ratios less
than one. Solutions are limited at Rρ < 0.876 by an advective constraint, where γ = Rρ and the
wavenumber goes to zero (Eq. 2.13).
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Figure 6. Log-log comparison of the nondimensional temperature and salinity growth rate scalings
for heat-salt fingers. Note that the maximum growth rate with salinity gradient scaling approaches
a constant of one as Rρ gets small.

As in Gargett and Schmitt (1982), we can examine the growth rate as a function of
wavenumber for several different density ratios in order to understand the expected hori-
zontal spectra for fingers, using the salinity gradient scalings (Fig. 7a,b). The basic “Stern
wavenumber” given by K ∼ 1 for the fastest growing finger is seen to dominate the finger
spectra in the usual Rρ > 1 regime, but loses its selective advantage entirely at Rρ = 1
in the large Prandtl number limit of Stern (Fig. 7a), where the (wide) (zero wavenumber)
fingers have the fastest growth. In contrast, for the Schmitt (1979, 1983) solutions (Fig. 7b)
a growth rate advantage for the Stern-scale finger persists to a density ratio of 0.876 for
the heat-salt system of Pr = 7, Le = 100. At lower density ratios the growth rate peak
vanishes and all low wavenumber fingers grow equally well.

The existence of spectral peaks at low density ratios is a function of the Prandtl number.
Additional growth rate ‘spectra’ are shown in Figure 8a,b for Prandtl numbers of 1 and 0.1.
The lower the Prandtl number the lower the density ratio where the advective limit is reached
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Figure 7. (a) Growth rate as a function of finger wavenumber in the Stern limit of large Prandtl and
Lewis numbers for Rρ = 1, 2, 5. The growth rate and wavenumber have been scaled with the
salinity gradient and renormalized to compensate for a Pr−1/2 dependence of growth rate (See
Eq. 5 of Schmitt, 1994b). Note that growth remains positive even for high wavenumber fingers
because there is no salt diffusion. (b) Growth rate as a function of wavenumber for Pr = 7 and
Le = 100 for the finger solutions of Schmitt (1979, 1983) for various Rρ. High wavenumber fingers
are damped by salt diffusion. A fastest growing “Stern scale” finger persists to a density ratio of
0.876 for Pr = 7 and Le = 100. At lower Rρ the growth rate advantage vanishes, and the spectrum
become white at low wavenumbers.
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Figure 8. (a) (left) Growth rate as a function of wavenumber for various Rρ with Pr = 1. (b) (right)
Growth rate as a function of wavenumber for various Rρ with Pr = 0.1.

and the wavenumber vanishes (Eq. 2.13). For Pr = 0.1 there is still a peak growth rate at
an order one wavenumber even for Rρ = 0.2, though the growth rate advantage over lower
wave numbers is small. For Pr = 1 the peak in growth rate vanishes for Rρ ∼ 0.5. At density
ratios less than this the spectrum transitions to a broad ‘white’ low wavenumber regime.

Additional insight is gained by examining the flux ratio of the fastest growing fingers as
a function of density ratio in log-log space for different Prandtl numbers (Fig. 9). While the
fastest growing finger has a high flux ratio at Rρ = 1 for large Prandtl numbers (Stern limit),
lower flux ratios are found for smaller Prandtl numbers. The smaller the Prandtl number
the smaller the density ratio at which a ‘Stern-scale” finger has the fastest growth. Once the
flux ratio of maximum growth hits the γ = Rρ advective limit, wider fingers have the fastest
growth. In the normal Rρ > 1 regime, the different behavior of the curves suggests that the
layer formation and regulation mechanisms of Radko (2003, 2005, 2007) which depend on
a minimum flux ratio at an intermediate Rρ, would not work in low Prandtl number fluids.
This is of interest for possible thermohaline layering in stellar interiors.

3. Discussion

The foregoing analysis of the exact long finger solutions of Schmitt (1979, 1983) in the
Rρ < 1 regime tells us that: (1) Fast growing, narrow finger solutions do exist in this new
regime; (2) For order one Prandtl numbers and density ratios just below one, narrow, Stern-
scale fingers can have the fastest growth; (3) The growth rate advantage of the Stern scale
fingers expands for low Prandtl number fluids; and (4) The growth rate advantage vanishes
for high Prandtl number fluids, as low wavenumber modes have substantial growth rates.
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Figure 9. The flux ratio of the fastest growing finger as a function of density ratio for a diffusivity
ratio Le = 100 and various Prandtl numbers, in log-log space. Once the curves reach the advective
limit of γ = Rρ, the spectrum becomes white at low wavenumbers, and the growth rate advantage
of the Stern-scale fingers is lost to wider fingers.

Thus, while theory certainly allows narrow convective cells, we lack a complete explanation
of the new observations of Hage and Tilgner (2010).

It seems likely that an additional factor is at play in these experiments. That is, while
the interior solutions yield narrow fingers with substantial growth rates, it is not clear that
they should be preferred over wider fingers, except in the case where the density ratio is
just below one, and the Hage and Tilgner experiments have a density ratio of order 10−2. It
is likely that the rigid top and bottom boundary condition of these experiments is playing
a role. There will be thermal and haline diffusive boundary layers at the top and bottom to
maintain the heat and salt fluxes in the interior. It will always be true that the salt boundary
layer is much thinner than the thermal boundary layer, by a factor of Le−1/2 (Linden and
Shirtcliffe, 1978). Convection driven by the thin haline boundary layers seems very likely
to be providing a narrow, high wavenumber seed spectrum to the interior finger solutions
examined here. Since the growth rates for all wavenumbers are substantial at low density
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Figure 10. The TZ − SZ stability plane with the new fingering regime identified, following Ruddick
(1983). The gray colored sector above the Rρ = +1 line is gravitationally unstable, and the indicated
wedge (darker gray) shows where the fingers of Hage and Tilgner (2010) would be found. The Turner
Angle (Tu) is defined as shown. Its relationship to the slope Rρ is given by Rρ = − tan(T u+ 45◦).

ratio, a higher wavenumber boundary layer seed spectrum may be sufficient to produce the
observed narrow fingers in the interior.

Another possibility is that the interior temperature and salinity gradients evolve to have a
density ratio quite different from that imposed at the boundaries. As noted and illustrated in
Schmitt (1979, 1981, 1990), the greater transport of salt than heat will modify the density
ratio, tending to increase it in the interior. Any narrow fingers, perhaps seeded by plumes
from the thin haline boundary layers, would have a flux ratio below the γ = Rρ line
and would thus tend to increase Rρ, making fingers even more preferred over larger scale
convection. It is possible that the interior gradients actually have density ratio greater than
one, if the salinity gradient is reduced sufficiently. Thus the bulk of the fluid could actually
be supporting “normal” fingers. Some preliminary numerical model runs with Rρ < 1
by T. Radko (pers. comm.) suggest that this is indeed the case. Additional experimental
measurements and direct numerical simulations would be very illuminating in determining
the operant physics in these experiments.

Finally, we note that the traditional depiction of the limits of salt finger convection in
“Turner angle” space (Ruddick, 1983) must now be redrawn. That is, the Hage and Tilgner
experiments require us to expand the salt finger sector from 1/8 to 1/4 of the Tz − Sz plane
(Fig. 10). Whether this new finger regime plays a significant role in ocean mixing remains
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to be seen, but it may be active in the surface mixing layer under evaporative conditions
with solar heating and within the mixed layers of thermohaline staircases.
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