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Abstract. It is argued that the complexity of fluid particle
trajectories provides the basis for a new method, referred
to as the Complexity Method (CM), for estimation of La-
grangian coherent structures in aperiodic flows that are mea-
sured over finite time intervals. The basic principles of the
CM are explained and the CM is tested in a variety of exam-
ples, both idealized and realistic, and in different reference
frames. Two measures of complexity are explored in detail:
the correlation dimension of trajectory, and a new measure
– the ergodicity defect. Both measures yield structures that
strongly resemble Lagrangian coherent structures in all of the
examples considered. Since the CM uses properties of indi-
vidual trajectories, and not separation rates between closely
spaced trajectories, it may have advantages for the analysis
of ocean float and drifter data sets in which trajectories are
typically widely and non-uniformly spaced.

1 Introduction

Over the last few decades chaotic advection has been shown
to provide an insightful paradigm for interpreting stirring
processes in fluid flows (Aref, 1984; Poje and Haller, 1999;
Kuznetsov et al., 2002; Deese et al., 2002; Shadden et al.,
2005; Olascoaga et al., 2006; Mancho et al., 2006; Lekien
and Ross, 2010; Rypina et al., 2009, 2010, 2011). Hyper-
bolic trajectories and their stable/unstable manifolds are key
to understanding this paradigm. Numerical estimates of these
manifolds are often calculated using finite-time Lyapunov
exponents (FTLEs), which measure the maximum rate of
separation between a fluid trajectory and its nearby neighbors
(Haller, 2002; Shadden et al., 2005; Lekien and Ross, 2010).
The objects so obtained are known as Lagrangian Coherent
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Structures (LCS).Poje and Haller(1999) have argued that
LCSs approximate manifolds when the Eulerian time scale
TE is much greater than the Lagrangian time scaleTL . The
Eulerian time scale could be chosen as the typical life span
of a coherent eddy and is also the time scale over which the
hyperbolic trajectory remains well defined. The Lagrangian
time scale could be the typical winding time, or decorrelation
time, of a trajectory. WithTE � TL fluid parcels cycle many
times about a region, allowing stable and unstable manifolds
to be most clearly identified.

The calculation of FTLEs is straightforward when the ve-
locity field is given continuously in space and time, as in
numerical model output. In the ocean, the velocity field is
rarely given as such, but information about the trajectories
themselves is widely available from Lagrangian instruments,
mainly floats and drifters. The spacing between trajectories
is generally too large to permit computation of FTLEs and
one therefore seeks other helpful measures that characterize
the motion of individual trajectories (rather than relative mo-
tion of trajectories with respect to their neighbors) and that
could lead to the calculation of LCS.

The objects defined and methodology discussed herein are
based on an entirely different concept: that of complexity.
We base our approach on two hypotheses. First, that the flow
field in questions contains some trajectories that exhibit hy-
perbolic behavior in the sense that attraction and repulsion of
nearby material occur over time scales�TL . The attracted
and repulsed material form material contours (proxy man-
ifolds) that intersect at the distinguished hyperbolic trajec-
tory, as suggested in Fig. 1. Due to the limitation of finite
time, these contours would only be defined to some small
but finite width (similar to how LCSs are defined as ridges
of FTLE fields). The second hypothesis is that the “hyper-
bolic trajectory” has a measurable complexity (in terms of
spatial coverage) that differs from that of trajectories that ap-
proach but veer away from it (green and purple trajectories
Fig. 1). If this is true, then the trajectories that comprise the
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Fig. 1. Flow in the vicinity of a hyperbolic trajectory.

proxy manifolds (red and black curves) should have a com-
plexity that differs from that of the green and purple trajec-
tories as well. After all, the former trajectories approach the
hyperbolic trajectory asymptotically in forward or backward
time and therefore spend a long time in the close vicinity of
the hyperbolic trajectory. They are expected, therefore, to
have complexity measures close to that of the hyperbolic tra-
jectory. In this way, the hyperbolic trajectory and its proxy
manifolds should be distinguishable from the other nearby
trajectories.

We will explore and test these ideas further by introduc-
ing two independent measures of trajectory complexity, the
ergodicity defect and a form of the correlation dimension,
and apply both to examples of idealized and realistic flow
fields. We will show that, at least as far as these examples are
concerned, the objects produced by the new methods agree
with each other and also with the stable and unstable mani-
folds computed using conventional techniques. We will not
attempt to formally prove that the objects so defined are in-
deed LCSs or material manifolds. Even without this formal
proof, maps of the Lagrangian complexity of the flow field
remain of interest since they have implications for design
of fieldwork, for coverage of Lagrangian instruments, and
for physical processes such as stirring and mixing. The new
methodology also appears to have some advantages in situ-
ations where trajectory information is based on sparse and
poorly resolved data, as is often the case with ocean drifters
and floats.

2 Two complexity measures and the relationship
between them

For a 2-D time-dependent fluid flowu(x,t), a fluid particle
trajectoryx (t;x0,t0) satisfies

dx/dt = u(x,t) (1)

wherex = (x,y) is a 2-D position vector, andx0 is the par-
ticle position att0. Fluid particles in such flows exhibit a

wide range of behavior, ranging from particles that are al-
most stationary to complex particle trajectories that densely
cover certain areas of the domain. This difference in behavior
can be quantified by estimating trajectory complexities.

The first complexity measure considered here is the cor-
relation dimensionc, which is closely related to the frac-
tal dimension. The correlation dimension is a number that,
for trajectories in 2-D flows, can vary from 0 (stationary
point) to 1 (smooth 1d curve) to 2 (chaotic curve that densely
covers a 2-D area). The notion of the correlation dimen-
sion goes back to the work ofGrassberger and Procac-
cia (1983), who introduced the correlation integral,C(s)=
limN→∞

1
N2

∑N
i,j=1θ(s− |xi − xj |) where θ is the Heavi-

side function and{xi}
N
i=1 = {x(t + idt)}Ni=1, and proposed

to estimate the dimension of the curve from the scaling re-
lationshipC(s)∝ sc for small s. Later in the same paper,
Grassberger and Procaccia suggest that the correlation inte-
gral C(s) can be approximated by the distribution function
F(s)= 1

N2

∑
j [Nj (s)]

2, which is estimated by covering the

set{xi}Ni=1 with adjacent squares of edge lengths and count-
ing the number of points,Nj , from the set{xi}Ni=1 that lies
inside thej -th square. The correlation dimensionc of a tra-
jectory can then be computed as the slope ofF(s) vss in log-
log coordinates for smalls and largeN . In this paper, we will
use a slight variation of this box counting technique, where
the domain of interest is first mapped onto a unit square and
then covered with adjacent squares of edge lengths = 2−m,
m= 0,1,...,M. In the case of elongated domain, this map-
ping weights coverage in either direction equally. This algo-
rithm has previously been used inBrown (1998) andRypina
et al.(2010).

Before proceeding, it is important to reconcile the general
notion of the correlation dimension of a trajectory with how
we are planning to use it. First of all, we are not interested
in estimating the exact value of the trajectory’s correlation
dimension per se, but only the value relative to other tra-
jectories. In other words, all we want to do is distinguish
the “more complex” from the “less complex” trajectories.
Second, we are using the notion of the correlation dimen-
sion in the “finite-time” sense similar to how the finite-time
Lyapunov exponents are interpreted, i.e., we are interested
in measuring complexities of trajectory segments over some
finite time interval rather than in the limit oft → ∞. It is
therefore important to treat all trajectories equally and esti-
matec over the same range ofs and using the samedt,N and
M for all trajectories. In contrast, it is not very important for
our purposes to really approach the limit of largeN and small
s (although ifdt is large andN is small, trajectories them-
selves are not well resolved and it is hard to distinguishing
their complexities). A rule of thumb in our case is that if we
are interested in the motion of particles over some time inter-
valT , the sampling intervaldt should be� T . Note also that
because of the finite-time nature of the method, the usual ar-
guments about the temporal separation between the Eulerian
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and Lagrangian timescales,TL � TE, apply when identifying
LCSs using the CM method.

The second complexity measure considered here is the er-
godicity defectd that was recently introduced byScott et al.
(2009). d measures the extent to which the dynamical system
and the corresponding map falls short of being ergodic using
the “time average equals space average” view of ergodicity
(Petersen, 1983; Lasota and Mackey, 1994). The ergodicity
defect was originally introduced in the context of illustra-
tive (mathematical) maps inScott et al.(2009) and the the-
ory behind it is further developed in (Scott, 2010, 2011b,a).
Here we extend the notion of ergodicity defect to fluid par-
ticle trajectories in geophysical fluid flows. For a trajectory
x (t;x0,t0), we define the ergodicity defect at scales as

d(s;x0,t0)=

s−2∑
j=1

[
Nj (s)

N
−s2

]
2, (2)

where againNj (s) is the number of points from the set
{xi}

N
i=1 = {x(t + idt)}Ni=1 that lie inside the j-th square of

the edge lengths. The numerical algorithm for estimating
the ergodicity defect has elements in common with the box
counting method for correlation dimension. We first map
the domain of interest onto a unit square and then cover
it with adjacent boxes of edge lengths to estimate the de-
fect d at scales. Physical insight can be gained by noting
that, since the trajectory is sampled with fixed time stepdt ,
Nj/N =Njdt/(Ndt)=Njdt/T is the fraction of the time
spent by the particle in the j-th square, or the “time-average”.
On the other hand, the “space-average” is the fraction of the
space that is occupied by the particle during that fraction of
time, which is simply equal to the areas2 of thej -th square.
When the trajectory is most complex (or “ergodic”), it spends
equal time fractions in each square so that it’s time average
is equal to it’s space average at all scaless (i.e., d = 0 for
all s). For a stationary trajectory (stagnation point which
is least complex),d = 1− s2 so thatd → 1 ass → 0, indi-
cating a large deviation from ergodicity. For trajectories of
intermediate complexity,d can be anywhere between these
two extreme values. See Appendix for more details on the
ergodicity defect. Note that all of the comments about the
finite-time nature of our analysis apply to the ergodicity de-
fect estimates as well as to the correlation dimension, i.e.,
we will be using the ergodicity defect to estimate the relative
complexity of finite-time segments of trajectories over some
finite time intervalTint rather than in the limit ofTint → ∞.

A bit of intuition into the ergodicity defect and the mean-
ing of Eq. (2) can be gained by considering a stationary dis-
tribution of some water property, such as salinity or temper-
ature,T (x,y), in the unit square. The square is sampled
at regular, discrete time intervals by an instrument that fol-
lows a trajectory. We wish to compare the time average and
space averages ofT . If the regular sub-squares of dimension
s are sufficiently small, the temperature field can be approx-
imated by a discrete representation in whichT within the

j -th box is given by its spatial averageTj within that box.
Then the time average of temperature following the trajec-

tory<T >=
∑s−2

j=1
NjTj
N

. The space average of temperature
is obtained by summing the products of the temperature in
each box,Tj , and the area ofeach box,s2, and then dividing

the sum by the (unit) area of the square, i.e.,T̄ =
∑s−2

j=1s
2Tj .

The difference between the time and space averages is

<T >−T̄ =

s−2∑
j=1

(
Nj

N
−s2)Tj . (3)

The reader will observe that the termNj/N − s2 also ap-
pears in the working definition (2). One might plausibly use
Eq. (3), or some normalized variant of it, as a depiction of
the extent of ergodicity in the system, but the result would
clearly depend on the temperature distribution itself. Only
in the case of an ergodic system, whereNj/N− s2 vanishes
for each box, would the result be independent of the function
being averaged. Our definition (2) measures instead the ten-
dency of the trajectory to sample all portions of the domain
equally and only involvesNj/N−s2.

The connection between the ergodicity defect and
the correlation dimension will now be examined. We
start by expanding d(s) =

∑s−2

j=1[Nj (s)/N − s2
]
2

=

1
N2

∑s−2

j=1N
2
j (s)−

2s2
N

∑s−2

j=1Nj (s)+
∑s−2

j=1s
4. Using the

equality
∑s−2

j=1Nj (s)= N simplifies the above expression

to d(s)= F (s)− s2. Over the range of scaless where the
power law scalingF (s)∼ sc holds, this expression reduces
to (d (s)+ s2)∼ sc. Although both the ergodicity defect and
the correlation dimension are estimated using box counting
algorithms, d is a superior complexity measure thanc
because the latter is only valid over the range of scales where
the scaling relationshipF (s)∼ sc holds, while the former is
valid for anys.

It is important to note that other complexity measures are
also possible. Trajectory arclengthL=

∫ t0+Tint
t0

|ẋ(t)|dt , for
example, provides another suitable, although less sensitive,
measure of trajectory complexity. Trajectories with small
complexity (smallc/large d) correspond to smallL-values
and vice versa.

3 New complexity-measure-based diagnostic for
locating LCSs

We now investigate the relationship between trajectory com-
plexity and LCSs and use the two measuresc and d to
develop a new diagnostic for locating LCSs. We refer to
this new diagnostic as the Complexity Method (CM). Be-
cause trajectories generally have different ergodicity defect
at different scales, for the CM diagnostic we usedmean=

mean(d(s)) over all scaless to characterize trajectory com-
plexity.
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To gain insight into the relationship between hyperbolic
trajectories, stable/unstable manifolds and trajectory com-
plexity, consider a generic fluid flow in the vicinity of a
hyperbolic trajectory, which is schematically illustrated in
Fig. 1. Of course, since the flow field is time-dependent,
the hyperbolic trajectory and its attending manifolds evolve
in time so what is shown in Fig. 1 is just a snapshot of the
hyperbolic trajectory and the manifolds at some fixed time.
If another snapshot is taken at some different time, the ex-
act positions of the hyperbolic trajectory and manifolds will
change, but the geometry of the flow will stay the same, i.e.,
the flow will converge to the hyperbolic trajectory along the
stable directions and diverge along the unstable directions.
We also assume that the time separationTE � TL applies so
the geometry shown in Fig. 1 does not change during the time
interval that we consider. We now return to the concepts dis-
cussed in the introduction. Trajectories originating on a sta-
ble manifold (black curve in Fig. 1) will rapidly approach the
hyperbolic trajectory (this is guaranteed by the exponential
dichotomy property and is consistent with the definition of a
manifold). The values ofc (or d) on a hyperbolic trajectory
are thus expected to be approximately equal to that along its
stable manifold (black curve). It is also clear that trajectories
(green and purple curves) that initially lie on either side of
a stable manifold will diverge from each other and from the
black trajectory. The green and purple curves will be moving
into different regions of the flow while the black curve will
be “stuck” in the vicinity of the hyperbolic trajectory. As
a result, the values ofc (or d) for trajectories on the mani-
fold are expected to be different from those of its neighbors
on either side of the manifold. In maps of either quantity,
the manifolds should therefore appear as level sets ofc and
d, with the complexity changing rapidly as one “steps” to
either side of this level set. In many textbook applications
the hyperbolic trajectory is almost stationary and samples a
very limited area (either in a rest or moving frame) so itsc
value, and that of its attendant manifolds, will be relatively
small (andd large and close to 1) compared to the regions
between the manifolds. In such flows, the manifolds will
show up as minimizing ridges in maps ofc, and maximizing
ridges in maps ofd. However there may be cases for which
trajectory complexity is actually lower on one side or both
sides of a manifold. Finally, as trajectories lying on opposite
sides of the manifold diverge from one another, they are sam-
pling different regions of the flow field and thus often have
different values ofc andd. However, it is possible to imag-
ine a flow field that is symmetric about the stable manifold,
in which case trajectories on opposite sides of the manifold
will have the same complexity. So the only general claim we
make is that stable manifolds correspond to nearly constant
complexity, and that the complexity should change rapidly as
one moves in the normal direction from the manifold. These
properties may distinguish the manifolds from the neighbor-
ing regions. Similar statement holds in backward time for the
unstable manifold.

Since the flows we are considering are time-dependent, the
manifolds evolve in time, and so do the complexity fields. To
estimate the manifolds at timet0, one needs to seed the do-
main of interest with trajectories att0, calculate trajectories
over a finite time interval fromt0 to t0+Tint, compute com-
plexities of the trajectories and then plot the resulting c- and
d-fields. (This is analogous to how the FTLEs are used to
identify manifolds.) The manifolds will correspond to level
sets of c or d-fields, with c and d values changing rapidly as
one “steps” to either side of the level set.

Numerical estimates ofc andd depend on the integration
time,Tint. As the integration time increases, longer segments
of trajectories are used to estimate complexity, so the con-
trast between complexity values on and off the manifold gets
larger. At the same time, the sets of nearly constant com-
plexity (or ridges for stationary hyperbolic trajectories) nar-
row rapidly so more densely-spaced sets of trajectories are
needed to fully resolve them. In practice, this implies that for
long integration times, such sets of constant complexity often
get too thin to be resolved and the manifolds simply corre-
spond to curves that have the highest gradient of complexity
in the normal direction. In the limit of very longTint, the
manifolds will densely cover the whole chaotic region and it
will be impossible to distinguish between trajectories on and
off the manifold. This statement is also true for the FTLE
method of identifying LCSs. For the examples we have con-
sidered it is computationally impractical to explore such long
integration times.

Although the value of trajectory complexity is frame de-
pendent, two trajectories that have equal (different) com-
plexities in one reference frame should have equal (differ-
ent) complexities in all reference frames. Thus, the described
CM diagnostic for locating LCSs should work in any refer-
ence frame. We will come back to the question of frame de-
pendence in Sect. 5. The idea of exploiting, in a dynamical
systems context, properties of isolated trajectories (such as
arclengthL) is not new. For example,Poje et al.(1999) used
the averaged velocity along trajectory, which is closely re-
lated toL, to estimate hyperbolic and elliptic regions;Mezic
et al.(2010) introduced a new mixing diagnostic that is based
on the gradient of the average velocity; andMadrid and Man-
cho(2009); Mendoza et al.(2010) used a quantity closely re-
lated toL to estimate distinguished hyperbolic trajectories.
Our work builds on these earlier studies. We are exploring
more sophisticated complexity measures such asc andd and
we exploit these measures as a diagnostic tool for estimating
LCSs (proxy stable/unstable manifolds). We now proceed to
test CM in idealized and realistic settings.

4 Duffing Oscillator

As an illustration, we begin with a quasiperiodic Duffing Os-
cillator flow. It consists of two gyres with the same sign
of rotation that oscillate quasiperiodically in time around
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Fig. 2. (top) velocity and manifolds for the Duffing Oscillator; (middle)c (left) and dmean (right) fields with shorter integration time
Tint = 4π/ν2; (lower) c (left) anddmean(right) fields with longer integration timeTint = 8π/ν2. The dotted blue curve in the middle and
bottom subplots is the stable manifold.

their mean locations. Particle trajectories in this flow satisfy
Eq. (1) with u= −y andv = −x− εx

∑2
i=1cos(νi t+φi)+

x3/a2 wherea = 1, ν1 =
3π
2 , ν2 = ν1

√
5−1
2 , and ε = 0.25.

The Duffing Oscillator has two elliptic regions associated
with the gyre centers and one hyperbolic trajectory located
between the gyres at the origin, from which a pair of sta-
ble and a pair of unstable manifolds emanate. The velocity
field att = 0 and the geometry of the manifolds are shown in
Fig. 2 (top).

In the 4 lower panels of Fig.2, which show only the right
half (x > 0) of the domain, we show thec- anddmean-fields
at t = 0 for the Duffing Oscillator as a function of initial po-
sition of trajectory computed in forward time withTint = 2T2
(middle panels) andTint = 4T2 (lower panels) whereT2 =

2π/ν2. The stable manifold calculated from a direct evolu-
tion method is also shown as a dotted blue curve on each of
the 4 lower subplots. This curve coincides with the maximiz-
ing/minimizing ridge of thedmean/c field. The ridge is best
seen near the hyperbolic trajectory (here the origin), where
it is slightly stronger and wider. As one follows the ridge
away from the origin, it narrows down and its strength grad-
ually decreases. Comparison between the middle and lower
panels illustrates that as the integration time increases, longer

segments of the manifold are revealed. This figure shows that
LCSs in the Duffing Oscillator flow can be correctly identi-
fied in thec- anddmean-fields.

There is also a cluster of smallc- and largedmean-values
near the gyre center, which corresponds to an elliptic region.
Although both the elliptic region and the manifold corre-
spond to smallc- and largedmean-values, the geometry of
these two structures is sufficiently different from each other
(the elliptic region is a compact blob or cluster while the
manifold is a long and narrow filament) that it is easy to dis-
tinguish between them. A more rigorous distinction can be
made, if needed, by computing complexity fields in both for-
ward and backward times. The elliptic region will show up
in both forward and backward time complexity fields while
the stable and unstable manifolds will show up either in one
or the other (stable manifold in forward time and unstable
manifold – in backward time).

Note that the complexity field in either forward or back-
ward time only provides information about either the stable
or unstable manifolds, respectively, and does not allow for
the identification of the hyperbolic trajectory. Estimating the
position of the hyperbolic trajectory requires that both for-
ward and backward time computations are performed. In
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this respect, the CM is similar to the FTLE method. For
both methods, the hyperbolic trajectory can be estimated by
overlaying the forward and backward fields on top of each
other and looking for intersections between the stable and
unstable manifolds. When carrying out this calculation, one
needs to be careful about how to distinguish the hyperbolic
trajectory from all other intersections between the stable and
unstable manifolds. One way to overcome this complication
is to make use of the fact that the length of the revealed seg-
ment of the manifold decreases as the integration time gets
smaller (this is illustrated, for example, in Fig.2). So one can
decrease the integration time to the point where short enough
segments of manifolds are revealed, which only intersect
with each other at the hyperbolic trajectory. Of course, this
is just one of the available methods for identifying the posi-
tion of the hyperbolic trajectory. Other methods that do not
make use of the FTLEs or complexity fields are also possi-
ble. One such alternative technique, which is based on the
iterative procedure for identifying distinguished hyperbolic
trajectories, is described in detail inIde et al.(2002) or Man-
cho et al.(2004, 2006).

5 Bickley jet

In this section we apply CM to a Bickley jet flow, which
represents an idealized, but dynamically-consistent, model
for the eastward zonal jet in the Earth’s Stratosphere (Rypina
et al., 2007a). This flow consists of a steady eastward zonal
jet on which two eastward propagating Rossby-like waves
are superimposed. Particle trajectories in this flow satisfy
Eq. (1) with the streamfunction

ψ(x,y,t)=

−U0Ltanh(y/L)+A3U0Lsech2(y/L)cos(k3(x−c3t))+

A2U0Lsech2(y/L)cos(k2(x−c2t)). (4)

Stability considerations dictate that the phase speeds and
wavenumbers (cn and kn, n = 2,3) satisfy 6c2

n − 4U0cn +

βU0L
2

= 0 and 6cn = U0L
2k2
n. Here U0 is the jet core

velocity, L is the jet width, andβ = (2�/REarth)cos(φ0)

where�= 2π/1(day) is the angular frequency of the Earth,
REarth= 6371 km is the Earth’s radius, andφ0 = 60◦ corre-
sponds to the latitude of the core of the zonal jet. Indices
2 and 3 correspond to zonal wavenumbers 2 and 3, i.e.,
k2X = 4π and k3X = 6π whereX is the distance around
the earth at the reference latitude, which is taken here to
be 60 degrees. The parameter values used in our simu-
lations, β = 1.14× 10−11 s−1 m−1, U0 = 62.66 m s−1 and
L= 1770 km,A3 = 0.3 andA2 = 0.25, are typical for the
stratospheric polar vortex (Rypina et al., 2007b).

The Bickley jet flow is most naturally described in a refer-
ence frame moving with the phase speed of one of the waves
and thus presents a good test case for investigating the frame
dependence of CM. In the reference frame moving at speed

c3 the streamfunction consists of a steady meandering east-
ward jet centered aty = 0 with the three recirculation gyres
both above and below, on which a time periodic perturbation
is superimposed:

ψ(x,y,t)=

c3y−U0Ltanh(y/L)+A3U0Lsech2(y/L)cos(k3x)+

A2U0Lsech2(y/L)cos(k2x−σ2t). (5)

The velocity field att = 0 and the geometry of the manifolds
in both stationary and moving reference frames are shown in
Fig. 3a and b, respectively.

In the (c, d) and (e, f) panels of Fig.3, which show only
the upper half (y > 0) of the domain, we show thec fields
(panels c and d) anddmeanfields (panels e and f) att = 0 in
the stationary and moving reference frames, respectively, as a
function of initial position of trajectory computed in forward
time with Tint = 2π/k2(c3 − c2). The c andd fields reveal
similar structures and, since trajectories with large complex-
ities correspond to largec but smalld values and vise versa,
the red regions in panels (c) and (d) correspond to the blue
regions in panels (e) and (f). In each of these panels, one can
make out 3 pairs of stable manifolds associated with the 3 hy-
perbolic trajectories marked by asterisks in panels (e) and (f).
The manifolds correspond to thin curves of approximately
constant complexity (or color) with rapid color changes to
either side of these narrow curves. (One good example of
this behavior is the narrow yellow curve separating the green
and blue regions, which extends from the boxed hyperbolic
trajectory to the northeast in panel f.) There are also 3 clus-
ters of largedmean(orange/red) and smallc (blue) values near
the centers of the recirculation cells, which correspond to the
elliptic regions.

To examine more closely the structure of the complexity
field in the two reference frames, the magnified segment of
the dmean field (indicated by the black frame) is shown in
panels (g) and (i) of Fig.3. In the moving reference frame
(panel i) the hyperbolic trajectory, although non-stationary,
moves “least” compared to the surrounding trajectories. Tra-
jectories starting on the associated stable manifold approach
this hyperbolic trajectory at a rapid rate and get “stuck” in
its vicinity. Their complexities, therefore, are smaller than
complexities of trajectories on either side of the manifold and
thus the manifold appears as a maximizing ridge of thedmean
field (thin yellow curve) withdmeanvalues decreasing rapidly
if one steps to either side of the ridge (color changing rapidly
to green above this curve and to blue below the curve).

In the stationary reference frame (panel g) the hyperbolic
trajectory does not move the “least” amount and thus its com-
plexity value is not locally smallest. However, it is still true
that trajectories starting on the associated stable manifold ex-
ponentially approach the hyperbolic trajectory so that their
complexities are close to that of the hyperbolic trajectory
itself. Therefore, in the stationary frame the manifold cor-
responds to a set of almost constantdmean values (thin yel-
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Fig. 3. Velocity and manifolds att = 0 in stationary(a) and moving(b) reference frames;(c, d) c field computed forward in time with
Tint = 2π/(k2(c3−c2)); (e, f) dmeanfield computed forward in time withTint = 2π/(k2(c3−c2)); (g, i) magnified segment of thedmean
field; (h, j) |∂ydmean| as a function ofy at x = 16 for the Bickley jet flow in (left) stationary reference frame and (right) non-stationary
reference frame moving with speedc3. The black dotted curve in(g, i) shows stable manifold computed using the direct evolution method.
The black square in(e, f) indicates the portion of the plot that is magnified in(g, i). Ticks on thex and y axes are given in Mm (1
Mm = 106 m).

low curve), rather than a maximizing ridge as in the moving
reference frame. Note that the thin yellow curve in Fig.3g
and i coincides very well with the black dotted curve that
shows the stable manifold computed using the direct method.
Finally, panels (h) and (j) show the gradient of thedmean
field evaluated at the right side of the domain in the sub-
plot to the left. Since trajectories starting on the manifold
diverge rapidly from their neighbors starting slightly off the

manifold, there is a large change in complexity as one steps
from the manifold to either side. Consistent with this ex-
planation, large gradients occur in panels (h) and (j) on both
sides of the manifold (there are two neighboring peaks in
panels (h) and (j), which are hard to see because they are so
close together). Note also that since this flow is not sym-
metric with respect to the manifold, trajectories starting on
opposite sides of the manifold move into different regions
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Fig. 4. (top) velocity and manifolds; (lower left)c and (lower right)dmeanfields for the numerically-generated flow field produced by ROMS
on 15 June 2007.

and sample different features of the flow field after diverg-
ing from each other in the hyperbolic region. Therefore, they
exhibit qualitatively different behavior and are characterized
by the qualitatively different values of complexity, so that re-
gions on opposite sides of a manifold show up as different
colors (such as, for example, red above and blue below the
manifold in panel g).

6 A numerically-simulated mesoscale eddy

In order to test CM in realistic settings, we applied it to a
numerically-generated hourly-averaged near-surface veloc-
ities produced by ROMS (Shchepetkin and McWilliams,
2005; Moore et al., 2004) for the Philippines domain.
(See Rypina et al. (2010) for details on the Philippines
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Fig. 5. (left) dmean-field (middle) FTLE-field produced using theLekien and Ross(2010) method, and (right) FTLE-field produced using the
conventional method computed using (top) 2550 and (bottom) 640 randomly distributed simulated drifters advected by the Duffing Oscillator
flow.

ROMS). The ROMS domain covers most of the Philippine
Archipelago but we focus on a mesoscale anticyclonic eddy
that was present in the Sulu Sea in June 2007 (Fig.4, top).

Middle panels of Fig.4 show thec- anddmean-fields on
15 June 2007 computed in forward time withTint = 2 weeks.
To locate stable manifolds, one should look for curves of
abrupt shade change of the complexity field. One such curve,
for example, can be seen to extend diagonally across the red
rectangle. A magnified segment of the complexity fields cor-
responding to the red rectangle is shown in the bottom sub-
plots. As in the other examples, one can immediately recog-
nize the manifold as a level set ofc or d (black and white
curve, respectively) with a large shade change to either side
of this curve.

The structure of the eddy in Fig.4 qualitatively resembles
that of the Duffing Oscillator gyre. At the center of the eddy
there is an elliptic region indicated by a cluster of smallc-
and largedmean-values and manifolds wrap around this ellip-
tic region near the perimeter of the eddy. The realistic eddy
is however more complicated than the Duffing Oscillator ex-
ample. In the latter, there are always 2 gyres with 1 hyper-
bolic trajectory between them. In the realistic flow field, the
gyre interacts with various features of the flow, some of them
transient, so several hyperbolic trajectories with correspond-
ing manifolds exist near the perimeter of the eddy. One such
hyperbolic trajectory with its attending stable and unstable
manifolds is shown in the upper panel. Another difference
between the realistic flow and the Duffing oscillator is the

tendency of the manifold in Fig.4 to spiral toward the eddy
center, which is a consequence of a slight convergence of the
flow field.

7 Discussion

One important application of the new diagnostic is to avail-
able Lagrangian datasets in the ocean and atmosphere. Tra-
ditional methods (e.g.,Shadden et al.(2005)) of LCS iden-
tification require fields of estimates of finite time Lyapunov
exponents (FTLEs). But to reliably construct such a field
the separation rate of many closely-spaced pairs (or clusters)
of simultaneously released Lagrangian instruments (drifters,
floats or balloons) would have to be measured. These condi-
tions are clearly not easy to satisfy. In contrast, the new CM,
which is based on isolated trajectories, might give better es-
timates of LCSs based on a fairly sparse set of effectively
randomly spaced trajectories.

To test this expectation, we computed thedmean (Fig. 5,
left) and FTLE fields (Fig.5, middle and right) using
randomly-spaced simulated drifters advected by the Duffing
Oscillator flow. In this calculation, we kept all of the param-
eters – start timet0, integration timeTint, sampling interval
dt with which trajectories were sampled, and the number and
distribution of launch positions – identical when computing
FTLE anddmean fields. The difference between the FTLE
fields shown in middle and right panels is that in the right
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panel the FTLE field was computed using the conventional
method (see, for example,Haller, 2002), while in the middle
panel the FTLE field was computed using the “unstructured-
mesh” method described in (Lekien and Ross, 2010). The
difference between the top and bottom plots is that more
drifters were used to produce the fields in the upper panels.

The stable manifold corresponds to the maximizing ridge
(curve of the darkest black color) in all panels. Compar-
ison between the subplots shows that the conventionally-
constructed FTLE fields (right panels) are most noisy, the
FTLE fields computed using theLekien and Ross(2010)
method (middle panels) are less noisy, and thedmean-fields
(left panels) are the least noisy among the three methods,
suggesting that the CM is best suited to identifying LCSs
using isolated trajectories, at least in this example.

The described CM diagnostic is of finite-time nature but
the finite-scale counterpart of the CM is also possible. Fi-
nally, CM can easily be generalized to 3-D flows, thereby
providing a means to estimate LCSs in these flows.

Appendix A

Formally, by Birkhoff’s characterization of ergodicity, a
measure preserving (i.e., area-preserving in 2-D and volume-
preserving in 3-D) flowu(x,t) with fluid particle trajectory
x(t) is ergodic if and only if, for all integrable functionsf ,

lim
T→∞

1

T

∫ T

0
f (x(t))dt =

∫
f (x)dx, (A1)

i.e., if for almost all trajectoriesx(t), the time average of any
integrable function along fluid particle trajectory (given by
the integral with respect to time on the left side of the above
equation) converges to the average of the function over the
entire space (given by the integral with respect to positionx

on the right side of the above equation). The functionf is
free to be chosen and should be viewed as the way in which
the underlying system is being observed or analyzed. The
general idea is that because an ergodic system satisfies the
requirement that the time average is equal to the space aver-
age, by evaluating the difference between the time average
and space average for a representative set of functions (i.e.,
a basis), we can capture the deviation of the system from er-
godicity. Moreover a wavelet basis – i.e., a basis of functions
that allows for analyzing windows of varying sizes – can be
used to detect how the deviation from ergodicity possibly de-
pends on scale.

In this paper we use the characteristic (or indicator) func-
tion of the unit square – denoted byφ – (i.e., the Haar scaling
function) to generate a basis of analyzing functionsφsj and
thus, we base the scaling analysis on the Haar wavelet. The
φsj are obtained via dilations and translations ofφ so that
φsj (x)= φ(2sx− (j −1)) j = 1,...,2s , wheres is the scale
index andj is the translation index. As our focus here is

to determine complexities of individual trajectories, we con-
sider the ergodicity defect of individual trajectories as fol-
lows. For a fluid particle trajectoryx(t,x0,t0), we define the
(Haar) ergodicity defect at scales with respect to{φ2

j }
Ns
j=1, as

d(s;x0,t0)=

Ns∑
j=1

[φ
s,∗
j (x)−φsj ]

2 (A2)

where

φ
s,∗
j (x)= lim

N→∞

1

N

N∑
j=1

[φsj (x(ti;x0,t0)) (A3)

is the time-average of the analyzing functionφsj along trajec-
tory x and

φsj =

∫
φ2
j (x)dx (A4)

is the average ofφsj over the entire space.
We adopt the notation of the correlation dimension and di-

vide the unit square intos2 boxes, so thats2 refers to the
area of each box. In this case,φsj can be thought of as the

characteristic function of thej -th box, φs,∗j is the average

residence time of the trajectory in thej -th box andφ̄sj is

the area of the box at scales – i.e. s2. The general expres-
sion for the (Haar) ergodicity defect can then be reformu-

lated asd(s;x0,t0)=
∑s−2

j=1[Pj (s)− s
2
]
2, where againPj ,

j = 1,...,s−2 is the probability that the trajectory visits the
j -th box – i.e. the time average – ands2 is the space average.
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