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Abstract 

 

Clearing for large-scale soy production and the displacement of cattle-breeding by 

soybeans are major features of land-use change in the lowland Amazon that can 

alter hydrologic properties of soils and the runoff generation over large areas. We 

measured infiltrability and saturated hydraulic conductivity (Ksat) under natural 

forest, pasture, and soybeans on Oxisols in a region of rapid soybean expansion in 

Mato Grosso, Brazil. The forest-pasture conversion reduced infiltrability from 1258 to 

100 mm/h and Ksat at all depths. The pasture-soy conversion increased infiltrability 

from 100 to 469 mm/h (attributed to shallow disking), did not affect Ksat at 12.5 cm, 

but decreased Ksat at 30 cm from 122 to 80 mm/h, suggesting that soybean 

cultivation enhances subsoil compaction. Permeability decreased markedly with 

depth under forest, did not change under pasture, and averaged out at one fourth the 

forest value under soybeans with a similar pattern of anisotropy. Comparisons of 

permeability with rainfall intensities indicated that land-use change did not alter the 

predominantly vertical water movement within the soil. We conclude that this 

landscape is well buffered against land-use changes regarding near-surface 

hydrology, even though short-lived ponding and perched water tables may occur 

locally during high-intensity rainfall on pastures and under soybeans. 
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1  Introduction 
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The Amazon basin is both the world’s largest and most diverse tropical forest region 

(Phillips et al., 2008) and the location of the highest absolute rates of land clearing 

on earth (Morton et al., 2006). Historically, cattle ranching was the dominant use of 

deforested lands (Fearnside, 1987; Serrão, 1992), and although this kind of land use 

remains the prevailing one, clearing for large-scale production of soybeans now 

rivals cattle ranching as the driver of new deforestation (Fearnside, 2001, 2005; 

Grieg-Gran et al., 2007; Morton et al., 2006). This trend is likely to continue (Cerri et 

al., 2007; Soares-Filho et al., 2006; Vera-Diaz et al., 2008). Economic growth in 

China coupled with rising meat consumption and the effects of widespread outbreaks 

of BSE (bovine spongiform encephalopathy) in the European Union have created 

favorable market conditions for Brazil’s soybean exports (Cattaneo, 2008; Nepstad 

et al., 2008). Higher oil prices and enhanced global demand for biofuels have also 

contributed to increased demand for soy production in the Amazon region (Cattaneo, 

2008; Laurance, 2007; Nepstad et al., 2008). 

Recently, the impetus to increase soybean production has become a principal 

driver of deforestation along Amazonia’s southern boundary (Morton et al., 2006; 

Nepstad et al., 2006; Soares-Filho et al., 2006). In 2006–2007, the states of Mato 

Grosso, Pará, and Rondônia accounted for 85% of Brazil’s total deforestation (INPE, 

2008). The state of Mato Grosso, which is the center of Amazon soybean agriculture 

(Jasinski et al., 2005), accounted for 87% of the Amazon’s cropland expansion and 

40% of new deforestation from 2001 to 2004 (Fearnside, 2005; Morton et al., 2006). 

Land for expanded soybean production comes from two main sources: (1) the 

displacement of cattle ranching (Kirby et al., 2006; Nepstad et al., 2008), and (2) the 

direct conversion of forest to cropland. Morton et al. (2006) estimated that during 
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2001–2004 between 4,670 and 5,463 km2 of new cropland in Mato Grosso were 

derived from new forest clearing and 5,930 km2 were derived from conversion of 

existing pastures. 

Land-use changes in Amazonia have the potential to alter the hydrologic 

properties of soils (Biggs et al., 2006; Chaves et al, 2008; Costa, 2005; De Moraes et 

al., 2006; Neill et al., 2006; Zimmermann et al., 2006). Infiltrability and hydraulic 

conductivity are sensitive to disturbances (Alegre and Cassel, 1996; Schoenholtz et 

al., 2000) and are key soil properties because they determine the activation of 

surface and near-surface flowpaths that influence runoff generation (Elsenbeer, 

2001; Elsenbeer and Lack, 1996). Runoff generation is controlled by the interaction 

of rainfall characteristics, vegetation, topography and soil physical properties 

(Dunne, 1978). Depending on these variables, runoff can follow either predominantly 

vertical flowpaths or predominantly lateral flowpaths. Lateral flowpaths include sub-

surface storm flow (SSF), return flow, Hortonian overland flow (HOF), and saturation 

overland flow (SOF) (Elsenbeer, 2001). The mechanisms of storm flow generation 

have important consequences for the generation of erosion (Bonell and Bruijnzeel, 

2005; Bruijnzeel, 2004; Nortcliff et al., 1990; Ross et al., 1990) and for solute 

transport because near-surface flowpaths can increase the stream water 

concentration of biogenic solutes (e.g., Elsenbeer and Lack, 1996; Germer et al., 

2009; Johnson et al., 2006; Neill et al., 2006). 

Most of our current knowledge of how Amazon land-use change influences soil 

hydrology and runoff generation comes from examining the effects of clearing forest 

for pasture production. The replacement of old-growth forest by pasture affects the 

hydrology of watersheds by increasing soil compaction, which in turn reduces 

infiltrability and hydraulic conductivity at shallow depths and shifts flowpaths from 



5 
 

predominantly vertical towards lateral (Biggs et al., 2006; Chaves et al., 2008; De 

Moraes et al., 2006; Zimmermann et al., 2006). These changes have been shown to 

result in a longer duration and greater volumes of storm flow and greater total runoff 

(Germer et al., 2009; Trancoso, 2006). No study has examined how the current land-

use transformations associated with soybean expansion influence soil hydraulic 

properties and runoff generation. 

The objectives of our study were: (1) to compare infiltrability and saturated 

hydraulic conductivity (hereafter “Ksat”) among forest, pasture, and soybean 

cropland including their specific changes in soil conductivity with depth, and (2) to 

assess the potential implications of land-use change for runoff generation by 

comparing these soil properties with prevailing rainfall intensities. 

 

2  Methods 

 

2.1  Study area 

 

This study was conducted at Tanguro Ranch (12°59´S, 52°23´W, 370 m asl) in the 

municipalities of Canarana and Querência in Mato Grosso in central Brazil (Fig. 1). 

Tanguro Ranch is situated in the watershed of the Xingu River, one of the major 

southern tributaries of the Amazon River. Tanguro Ranch is bordered by the 

Tanguro River in the west and the Darro River in the east, and covers 80,000 ha. 

The climate at Tanguro is humid tropical with a rainy season from October to 

April and a severe dry season from May to September. This climate corresponds to 

Köppen’s Aw (Kottek et al., 2006). Mean annual precipitation averaged 1890 mm in 

a 21-year period from 1987 to 2007 (Grupo A. Maggi, unpublished data). The annual 
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precipitation shows a unimodal pattern with a maximum between January and 

February. Precipitation within the dry season averages less than 100 mm. Mean 

annual temperature is 25 °C. 

Tanguro Ranch lies on the Brazilian Shield on Tertiary and Quaternary fluvial 

deposits, which cover Precambrian gneisses of the Xingu Complex (Projeto 

Radambrasil, 1981). Wide interfluves sloping gently to the waterways form the 

undulating landscape devoid of pronounced topography. The dominant soils on the 

broad plateaus are Oxisols (Haplustox / Latossolo vermelho-amarelo distrófico) with 

a sandy clay texture (mean soil texture of 55 % sand, 2 % silt, and 43 % clay) 

(Oliviera et al., 1992; Projeto Radambrasil, 1981; Soil Survey Staff, 1999). The pH of 

the soils determined as mean pH-water (± SE) and mean pH-KCl (± SE) range 

between 4.7 (± 0.24) and 3.9 (± 0.15) under forest, and 5.9 (± 0.08) and 5.0 (± 0.08) 

under soybean cropland (M. Figueira and S. Riskin, unpublished data). These soils 

grade into Gleysols along streams (Projeto Radambrasil, 1981). 

Originally the area was completely covered by transitional forest, a vegetation 

type of evergreen tropical rainforest that represents a transition between the 

cerradão vegetation to the south and the moist tropical of the central Amazon 

(Walter, 1979). This forest is characterized by a lower diversity of species, smaller 

trees, and lower canopy heights than more humid rainforests (Ivanauskas et al., 

2004). Lauraceae is the dominant tree family of these forests (Balch et al., 2008; 

Ivanauskas et al., 2004). 

Tanguro Ranch has been influenced by agricultural expansion since the early 

1980s and consists of a mosaic of old-growth forest, pasture and soybean cropland. 

Pastures were formed by clearing in 1982 and 1983. Clearing was done by dragging 

a chain between bulldozers and piling and burning slash. Pastures were planted with 
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Brachiaria brizantha [(Hochst. ex A. Rich.) Stapf] and Brachiaria humidicola 

[(Rendle) Schweick]. The overall livestock grazing density was approximately one 

head of cattle per ha. The conversion from pasture to soybeans occurred in 2002 

and 2003 and involved: (1) bulldozing pasture vegetation into piles and burning, (2) 

deep plowing to 50 cm, (3) grading fields to create berms parallel to contour lines, (4) 

incorporating 1-2 tons/ha lime, (5) replowing to 35 - 40 cm, and (6) shallow disking 

immediately before planting (Tanguro Ranch, personal communication). New 

soybean fields were subjected to repeated shallow disking (up to 25 cm) during the 

first three years after conversion, and were then placed in no-till management 

(Tanguro Ranch, personal communication). Pearl millet [Pennisetum glaucum (L.) 

R.Br.] was typically planted in November followed by planting of soybeans [Glycine 

max. (L.) Merr] 5 to 6 weeks later (after poisoning millet). 

 

2.2  Sampling design 

 

We selected three areas of intact forest, three areas of pasture and three soybean 

fields for measurements in the dry season between August and September, 2007 

(Fig. 1). All sites were on wide, level interfluves underlain by a Latossolo vermelho-

amarelo distrófico (Projeto Radambrasil, 1981). This selection excluded the influence 

of other, potentially confounding variables such as topography and soil type and 

allowed us to interpret differences in soil hydraulic properties as a function of land 

use alone. All areas within the same land use had the same land-use history. The 

forested areas were undisturbed, old-growth forest. The pasture areas had a history 

of grazing for 25 years. The soybean areas had been cultivated for four years after 

21 years in pasture. 
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Within each of the nine areas we established one representative 1-ha sampling 

plot (hereafter “F1” for forest plot 1, “P1” for pasture plot 1, “S1” for soybean plot 1, 

and so on) (Fig. 1). Within each plot, we selected at random 25 points for 

measurements of infiltrability and Ksat (summarized as “permeability”). 

To minimize the effects of any texture variability, we removed one potential 

source of texture variability by a sampling design that painstakingly observed the 

catena principle in the sense that all plots were in precisely the same topographic 

position, i.e., on interfluves. Furthermore, on each land use we conducted 

measurements at three replications to capture the effects of variety of soil texture 

within interfluve positions (Fig. 1). However, to validate the limited variability in soil 

texture between all sites, we randomly selected 5 (samples A to E) of the 25 

measurement points within each plot for collecting soil samples at depths of 0 – 10, 

13 – 20, and 30 – 37 cm, the three depths relevant for our study. We estimated soil 

textural classes manually upon air-drying and sieving. 

 

2.3  Measuring methods 

 

Infiltrability was measured in situ with a Hood infiltrometer (UGT, Müncheberg, 

Germany), which is a special type of a tension infiltrometer (Punzel and Schwärzel, 

2007). In contrast to traditional tension infiltrometers, no preparation of the soil 

surface is required, i.e., no rings have to be driven into the soil surface, and there is 

no need for a special contact layer. This allows surface properties such as soil 

crusting, compaction or silting to be measured directly, which may be an important 

feature in soybean fields and in pastures (e.g., tractor and cattle tracks). The 

experimental procedure involved (1) placing a circular Plexiglas dome (“hood”, 
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effective infiltration area at soil surface: 242 cm2), which is connected to a Mariotte 

device, on the mineral soil surface (litter layer removed), (2) establishing a constant 

head inside, whose positive pressure potential can be compensated for or adjusted 

to zero total head by applying a vacuum that is controlled by the Mariotte device, and 

(3) calculating the infiltrability directly from the steady-state flow, which is reached, 

when the infiltration rate remains the same for three consecutive time intervals 

(Punzel and Schwärzel, 2004, 2007; Wooding, 1968). 

We measured field-saturated hydraulic conductivity, Ksat, with an Amoozemeter 

(Ksat Inc., Raleigh), a compact constant head well permeameter designed by 

Amoozegar (1989a) for in situ measurements above the water table. The procedure 

involved (1) augering a borehole of radius r (r = 2 cm at 12.5 cm depth and r = 2.5 

cm at 30 cm depth), (2) establishing a constant water head H in the hole in order to 

fulfill the requirement H/r ≥ 5, and (3) calculating Ksat from the steady-state 

infiltration rate using the Glover equation (Amoozegar, 1989b). We measured Ksat at 

12.5 and 30 cm (“Ksat12.5” and “Ksat30”). The 12.5-cm depth was the shallowest at 

which Ksat could be measured with our instrumental setup and was a depth known 

to be affected by cattle trampling (Godsey and Elsenbeer, 2002; Zimmermann et al., 

2006). The 30 cm depth was below the shallow disking (up to 25 cm) conducted at 

Tanguro Ranch during the first three years after conversion but not below the one-

time deep plowing (to 50 cm) that followed the conversion from pasture. 

Rainfall was determined at two sites (marked as MS in Fig. 1) for a three-year 

period from 2004 to 2007 with a tipping bucket rain gauge (Rain-Wise Inc., Bar 

Harbor, ME, USA) and a Campbell 10X data logger (resolution of 0.254 mm). 

 

2.4  Data analysis 
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In line with our objectives we first compared infiltrability and Ksat data among the 

three land-use types. Second, we compared these soil hydraulic properties with 

selected rainfall intensities to determine which land-use type has the potential to 

generate storm-related “fast” lateral runoff. 

For comparisons among land uses, raw and transformed data were tested for 

normal distribution by applying the Shapiro-Wilk statistic (Shapiro and Wilk, 1965) 

and for homogeneity of variances by applying the Fligner-Killeen test statistic 

(Conover et al., 1981). Statistical tests were performed for a significance level of α = 

0.05. Because all data sets or their possible transformed pendants did not fulfill the 

requirements for parametric statistics, we analyzed the raw data by application of the 

non-parametric Kruskal-Wallis rank sum test (Hollander and Wolfe, 1973). If that test 

detected significant differences in population medians, a Kruskal-Wallis post-hoc test 

was also performed. The basic idea of this post-hoc test was to conduct a pairwise 

Mann-Whitney U-test (Bauer, 1972) and then compare the U value to a critical value, 

Ucrit, based upon the studentized range, q (Copenhaver and Holland, 1988), which is 

commonly used in 'regular' post-hoc analyses, e.g., Tukey’s honestly significant 

difference (HSD) (Crawley, 2002). The critical U value was calculated by the 

following formula: 

Ucrit = n2/2 + q n [(2n+1)/24]1/2, 

where n is the uniform sample size of each data set. A U-test carries out two values 

according to the following equation: 

U1 + U2 = n2, 
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where U1 and U2 are the two possible U values. If the larger one was greater than 

the calculated critical value, the pairwise comparison was significant (Sokal and 

Rohlf, 1995). To summarize the results of the Kruskal-Wallis post-hoc analysis, we 

developed rankings to present the data sets with respect to their medians. For all 

rankings, there are no significant differences among the members of a group set in 

parentheses but among these groups. 

For tropical regions, several techniques were developed to decide whether or not 

the observed precipitation patterns can be classified as high-amount or high-intensity 

rainfall events (hereafter “storms”). We used an approach of Wischmeier and Smith 

(1978) as modified by Ziegler et al. (2004) and selected events according to the 

following criteria: (1) a storm was a rainfall event accumulating at least 12.7 mm with 

any rain-free period up to 4 h, or up to 6 h in the case that more than half of the total 

rainfall occurred following the gap, or (2) a storm was a rainfall event having at least 

6.4 mm within any 15-min period. The detailed record of precipitation from both 

tipping bucket rain gauges was used to calculate the maximum 5-, 10-, 15-, 30-, and 

60-min rainfall intensities (MaxI5, MaxI10, MaxI15, MaxI30, and MaxI60) for each 

storm. Because the calculated values did not differ significantly between both 

meteorological stations, we pooled these data sets for further statistical analysis. 

The possible effects for the hydrological flowpath regime were inferred from the 

comparison of the medians of infiltrability and Ksat with the medians and other 

quantiles of maximum rainfall intensities. To specify the findings of the box plot 

representation, we plotted cumulative distribution functions of permeability data and 

maximum rain intensities and interpreted them with regard to potential implications 

for runoff generation. 
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We used the language and environment of R, version 2.6.1 (R Development Core 

Team, 2007) for all data analysis. 

 

3  Results 

 

3.1  Infiltrability and Ksat 

 

Infiltrability was highest in the forest, lower in soybean fields and lowest in pasture 

(Fig. 2, panel A). The within-land-use variability was small, whereas the variability 

caused by different land-use types was much greater. Among plots, infiltrability 

ranked: {F2, F1, F3} > {S3, S1, S2} > {P3, P2, P1} showing that there were no 

significant differences in infiltrability of plots within land uses. The significant 

differences in infiltrability among land uses were: {forest} > {soybeans} > {pasture}. 

Ksat12.5 was higher in the forest than in soybean fields or pasture (Fig. 2, panel 

B). As with the surface data, the within-land-use variability among the forest plots 

was small. This was not true for pasture and, in particular, soybeans. For example, 

median Ksat for S1 was 200 mm/h in contrast to S3 with a median Ksat of only 62 

mm/h, which was the second lowest median after P2 with 57 mm/h. Significant 

differences within the same land use existed between P1 and P2, and S1 and S3, as 

well as between different land uses for P2 and S1, and P1 and S3, but these 

differences were small compared with the differences between the land use forest 

and the other land uses. Among plots, Ksat12.5 ranked: {F1, F2, F3} > {S1, P1} > 

{S3, P2}, with P3 and S2 indistinguishable from the last two groups (i.e., P3 and S2 

are also similar). The significant differences in Ksat12.5 among land uses were: 

{forest} > {soybeans, pasture}. 
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Ksat30 was more variable than Ksat12.5 and showed smaller differences among 

land uses (Fig. 2, panel C). Ksat30 was highest in the forest and most of the 

cultivated areas had three- to four-fold smaller medians. All soybean fields had lower 

Ksat30 than forest (all differences were significant except for F2 and S1). The lowest 

values of Ksat30 were measured at S2 and at S3, resulting in medians of 50 and 73 

mm/h, respectively. One pasture plot had Ksat30 comparable to the forest. Among 

plots, Ksat30 ranked: {F1, F2, P1} > {P3, P2} > {S2}, with the other plots overlapping 

with two of these groups. According to the Kruskal-Wallis post-hoc test the significant 

differences in Ksat30 were: {forest} > {pasture} > {soybeans} although the difference 

between pasture and soybeans was comparatively small. 

 

3.2  Trends in permeability with depth 

 

In the forest, permeability decreased sharply with increasing depth (Fig. 3). 

Significant differences were found both for all individual plots except F3 between the 

12.5 and 30 cm depths and for the pooled data sets. From one depth to the next, 

median permeability decreased roughly by half. In pasture, permeability did not 

change significantly with depth both for the individual and the pooled data sets. 

Under soybean, an even more abrupt reduction than in the forest occurred between 

the soil surface and 12.5 cm, but not between 12.5 and 30 cm depth. Nonetheless, 

the decrease in the upper depth interval was still within one order of magnitude. 

 

3.3  Soil texture 
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Texture of all soil samples from the study plots were estimated as either sandy clay 

or sandy clay loam (Table 1). Half of the forest samples and one third of the pasture 

and soybean samples were classified as sandy clay. Therefore, clay content tended 

to be slightly higher in forest than in pasture or soybeans. Clay content decreased 

slightly with depth in all land uses. 

 

3.4  Storm characteristics 

 

One hundred and fifty-three rainfall events recorded from September 2004 to August 

2007 were classified as storms (Fig. 4). Although this equaled 28% of the total 

number of all rainfall events, these storms accumulated about 80% of the mean 

annual precipitation. The percentage of rain that fell within storms varied little over 

the year. The months November to March contained 7-10 storms each. Thus, more 

than 80% of all storms occurred within this central part of the rainy season. Monthly 

averaged maximum rain intensities were highest at the start of the rainy season in 

October and decreased slightly until the end of this season in April. 

 

4  Discussion 

 

4.1  Effect of land use on infiltrability and Ksat 

 

As a consequence of land-use change, permeability decreased from old-growth 

forest to cultivated land. These effects were most pronounced at the surface, where 

infiltrability ranked clearly {forest} > {soybeans} > {pasture}, and at 12.5 cm depth, 

where an overall difference was found between forest and cultivated land (Fig. 2, 
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panels A, B). Conversion of former pasture to soybeans was associated with a 

roughly four-fold increase in infiltrability, though not to the high infiltrability found in 

the original forest. This “recovery” in infiltrability occurred over four seasons of 

cultivation. At Tanguro, new soybean fields were subjected to repeated shallow 

disking (up to 25 cm) during the first three years after conversion, which may have 

enhanced infiltrability. After three years, soybean fields were placed in no-till 

management (Tanguro Ranch, personal communication). The effects of longer-term 

no-till management on infiltrability were not investigated because soybean cultivation 

in this region of Mato Grosso and the entire Amazon is still new. 

With increasing depth, the differences in Ksat became weaker and more variable, 

but were still existent at 30 cm depth. Soybeans and pasture included significant 

differences between plots. Consequently, the representation as land uses in Fig. 2 

(panel C) should be understood as indicating trends rather than statistically firm 

differences. Relating this higher within-land-use variability of Ksat we assume that, 

with increasing soil depth, factors such as biological activity (e.g., ants, termites) 

become more important than the influence of land use (Sobieraj et al., 2002). 

The depth-dependent anisotropy under native vegetation (Fig. 3) was similar to 

that found in several other studies of the humid tropics (Elsenbeer et al., 1992; 

Godsey et al., 2004; Godsey and Elsenbeer, 2002; Malmer, 1996; Zimmermann et 

al., 2006). Our finding contrasts with the results of one study conducted on a 

forested Oxisol (Soil Survey Staff, 1999) near Juruena in Mato Grosso, in which 

Johnson et al. (2006) observed an increase in Ksat with depth. The shape of the 

permeability-depth function for pasture differed substantially from the one for the 

forest. Although Ksat30 of pasture was still lower than forest, the difference in 

permeability and therefore the effect of land use diminished with increasing depth. 
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This supports the often-observed phenomenon that the effect of cattle trampling is 

strongly depth-limited (Godsey and Elsenbeer, 2002; Zimmermann et al., 2006). In 

contrast, the respective depth functions for soybeans and forest were similar. The 

further decrease in Ksat at 30 cm depth after conversion of former pasture to 

soybean fields (despite the one-time deep plowing up to 50 cm included in the 

conversion process) might indicate the development of a compacted layer due to the 

use of heavy machinery for soybean cultivation. This also suggests that, while cattle 

pasture causes compaction concentrated at the soil surface, soybean cultivation may 

have a stronger potential to cause subsoil compaction. Thus, the soil depths at which 

changes to hydraulic conductivity occur may depend on the source of compaction 

(cattle trampling vs. heavy machinery). 

The infiltrability and Ksat values we obtained in the forest were in the upper 

spectrum of reported values for tropical forests (Table 2). Zimmermann et al. (2006) 

working on a Kandiudult (Soil Survey Staff, 1999) in the southwestern Amazon state 

of Rondônia reported the highest infiltrability under forest in sharp contrast to cattle 

pasture (1690 vs. 113 mm/h). This forest-pasture difference was also detected for an 

Oxisol (Haplustox) in the eastern Amazon state of Pará (De Moraes et al., 2006). In 

sub-humid West Africa, Giertz and Diekkrüger (2003) measured lower infiltrability on 

a Plinthosol (plinthitic crust about 40 cm deep) cultivated with beans compared with 

forest, though their value of infiltrability of 42 mm/h for bean fields was about one 

order of magnitude lower than ours for soybeans. In analogy to these studies, our 

results certainly confirm the often-reported behavior that permeability (in particular, 

infiltrability) decreases when land-use intensity increases. In this context, the role of 

soybeans requires clarification, which in turn requires resorting to other areas in the 

absence of pertinent data from Amazonia. Roth et al. (1987), working on an Oxisol in 
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Paraná (Brazil) under a soybean-wheat rotation, found infiltrability values of about 54 

mm/h. Both the infiltrability and Ksat that we measured in soybean fields were higher 

than most other measurements from the sub-humid tropics (Hati et al., 2007) and 

temperate regions (Anderson et al., 2005; Bathke et al., 1992; Fesha et al., 2002; 

Jiang et al., 2006; Rachman et al., 2004). This was consistent with the high 

infiltrability and high Ksat in the forest at Tanguro compared with other tropical 

forests. 

 

4.2  Effect of soil texture on permeability 

 

The variability of soil texture within plots and between land uses at Tanguro Ranch 

was low. This was further confirmed by subsequent analysis of soil texture across a 

larger number of randomly-selected forest and soybean plots that spanned the entire 

80,000 ha Tanguro Ranch (Table 3). This survey showed no significant difference 

between areas in soybean cropland and those in remaining forest and indicates that 

the differences in permeability we found were caused by land use and not pre-

existing differences in texture at the study sites. 

 

4.3  Permeabilities vs. storm intensities – expected runoff mechanisms 

 

The interaction between soil physical properties, topography, land cover and the 

rainfall regime plays the decisive role for storm-related response pattern. Moreover, 

it controls which flowpaths are activated during rainfall events (Elsenbeer, 2001; 

Godsey et al., 2004). We observed rainfall intensities with maximum values at the 

beginning of the rainy season in October and decreasing trend after that. Similar 
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patterns have been observed in Paraná (Mondardo et al., 1979) and Rondônia 

(Scheffler and Porada, unpublished data, 2006). 

Rain intensities never exceeded the estimated infiltrability in forest and soybeans 

(Fig. 5, panel A) and ruled out Hortonian overland flow (HOF) as relevant runoff 

generating process. In pasture, median infiltrability was exceeded by 5% of all 

storms for at least one 5-min interval. This indicates that ponding, and therefore 

HOF, may occur occasionally in some places in pasture. The lack of connectivity 

with stream channels restricts this to occasional occurrences of short-lived flow 

largely along cattle tracks (Elsenbeer et al., 1999). 

Depending on surface characteristics and storm features (most notably intensity, 

amount and frequency) the Ksat of the sub-surface soil increments determines at 

which depth a perched water table, and hence, lateral flowpaths may develop, 

leading in turn to sub-surface storm flow (SSF) or, in case of saturation up to the soil 

surface, saturation overland flow (SOF) (Bonell and Gilmour, 1980; Bonell et al., 

1991). 

Rain intensities never exceeded the estimated Ksat at any depth in the forest 

plots (Fig. 5, panels B, C). Thus, our results indicated a total dominance of vertical 

flowpaths in forest over the whole investigated depth interval. This behavior agrees 

with other studies on Oxisols in the Amazon region, which pointed out the 

dominance of vertical drainage in undisturbed forested areas (e.g., Nortcliff and 

Thornes, 1989; Williams and Melack, 1997). 

In pasture, Ksat12.5 was exceeded by MaxI5 of 5% of all storms (Fig. 5, panel 

B), the same percentage as at the soil surface. Because permeability did not change 

within the upper soil increment but slightly increased to 30 cm depth (Fig. 3), we 

expect rather HOF than SSF but only within the strongest 5% of storms. Hence, for 
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pasture we expect clearly vertical dominated drainage and a very limited lateral flow 

component mainly as HOF. This behavior is consistent with reports from other 

lowland Amazon sites, where land-use conversion from forest to pasture led to the 

generation of or increase in overland flow, though often to much more pronounced 

effects. Chaves et al. (2008) highlighted the importance of overland flow following 

forest-to-pasture conversion given a 20-fold increase in stream flow from a pasture 

on a Kandiudult in central Rondônia, though the mechanism responsible for this 

increase was saturation overland flow (Germer et al., 2010). Another study in 

Rondônia (Biggs et al., 2006) found that HOF generation accounted for 8% of annual 

rainfall and represented a significant flowpath from mature pasture systems on 

Ultisols. The lesser importance of overland flow in the Tanguro pastures compared 

with these other studies is consistent with the higher infiltrability and Ksat of the soils 

of the original forest. 

Under soybean, the situation differed slightly. Permeability decreased persistently 

from the surface to 30 cm (Fig. 3). Consequently, not the soil properties at surface or 

near surface are most important for the flowpath patterns, as it was in pasture, but 

the subsoil characteristics, e.g., the occurrence of an impeding layer. MaxI5 of only 

4% of the storms exceeded Ksat12.5 but the MaxI5 of 17% of storms and the 

MaxI15 of 6% of all storms exceeded Ksat30 (Fig. 5, panels B, C). This indicated 

that for these stronger storms soybean fields formed perched water tables at 30 cm 

depth and generated SSF, though, variations in the impeding behavior of the horizon 

and the absence of slope may partially avoid this flow. For all the other storms (as 

well as the times with lower intensities) vertical flowpaths under soybeans were 

expected. 



20 
 

To evaluate the probability of the generation of SOF we specifically analyzed the 

plots that showed the lowest Ksat. For these plots, Fig. 6 illustrates the comparison 

of median Ksat and rain intensities and allows fast referencing of the mean number 

of storms per year that exceeded Ksat. In the case of S2 (lowest Ksat), the level of 

median Ksat30 (50 mm/h) was exceeded by MaxI15 of 15 storms, by MaxI30 of 6 

storms, and by MaxI60 of less than 1 storm per year. Maximum possible amounts 

during 15, 30, and 60 minutes were 29.5, 47.3 and 61.5 mm, respectively. This 

indicates that the cultivation of soybeans on former pastures has the potential 

occasionally to activate lateral flowpaths. However, the available water retention of 

the soil (total pore space in 20 cm depth under S2 was 43.5 %, F. Bäse et al., 

unpublished data, 2008) and the relatively short duration of high-intensity rainfall 

during storms suggest that the generation of relevant SOF is unlikely even in 

circumstances of sufficient rainfall duration and antecedent soil moisture. Bearing in 

mind that S2 was the most extreme case, this finding can likely be generalized to 

both land uses – pasture and soybean. 

Whereas our expectations of runoff mechanisms on pasture and soybeans differ 

somewhat from those under forest, the differences between the two land uses are 

less obvious. Our results still suggest that the cultivation of soybeans on former 

pastures has the potential to activate lateral flowpaths more frequently. 

 

Conversion of pastures to soybean fields represents a common land-use transition in 

the area of rapid Amazon soybean expansion in Mato Grosso. Morton et al. (2006) 

reported that pasture conversion to soybeans during 2001–2004 was nearly 6,000 

km2 and exceeded forest cleared for new cropland. We measured the response of 

soil infiltrability and Ksat to land use change on one large farm that was 
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representative of soils and topography of the area of the southern Brazilian Shield, 

where rapid soybean expansion is occurring. However, this is only one location with 

a particular history of land use, pasture management and land-conversion 

methodology. In addition, soybean cultivation at Tanguro Ranch at the time of this 

study had occurred for only four years. We currently know relatively little about how 

permeability differs with different past land-use and land-management history and 

how permeability changes with time under typical no-till soybean management. We 

also made measurements during the fallow period in the cropping cycle. 

 

5  Conclusions and outlook 

 

We studied soil hydraulic responses to land-use change by measuring infiltrability 

and Ksat in an Oxisol landscape in Mato Grosso, Brazil. Cattle grazing reduced 

infiltrability by an order of magnitude relative to forest. Infiltrability, however, 

increased four-fold four years after converting pasture to soybean fields, which we 

attribute to shallow disking. Permeability at the 12.5-cm depth was also considerably 

lower under pasture and soybeans than under forest, but the impact of land use 

diminished with depth. The lowest permeability was found at the 30-cm depth under 

soybeans, which we tentatively attribute to the heavy machinery used in soybean 

cultivation. 

Impressive as these decreases in infiltrability and Ksat may sound, their 

hydrological consequences are minor because of the respective high base rates. 

The predominantly vertical nature of hydrological flowpaths did not change with 

changes in land use, even though localized ponding and short-range overland flow 

may occur occasionally on pastures, and localized perched water tables may be 
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generated occasionally under soybeans. Thus, our results reveal a soilscape well-

buffered with respect to near-surface hydrology in this part of Amazonia and 

underpin the findings of Hayhoe et al. (2011) that the conversion to soybeans did not 

affect stormflow dynamics. 

Nonetheless, one should refrain from any generalizations regarding the 

hydrological effects of soybean cultivation. We do not know (1) whether other 

soilscapes are equally well-buffered (but we suspect that Ultisol landscapes are not), 

(2) how permeability evolves with time under typical no-till soybean management, 

and (3) if the impeding layer at 30 cm is typical or not. Further studies should focus 

on the impacts of long-term soybean cultivation across a range of land-use histories 

and soil characteristics and on the short-term behavior of infiltrability and Ksat during 

individual cultivation periods. These will help to identify where and if reductions in 

soil infiltrability and Ksat are likely to be concerns for managing surface runoff from 

expanding soybean cropping in Amazonia. 
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Tables 

 

Table 1  Field determination of soil textural classes. 

Sample Depth [cm] F1 F2 F3 P1 P2 P3 S1 S2 S3 

A 0 - 10 sC sC sCL sCL sC sC sCL sC sC 

  13 - 20 sC sC sCL sCL sC sCL sCL sC sC 

  30 - 37 sCL sC sCL sCL sC sCL sCL sCL sCL 
  

B 0 - 10 sC sCL sC sCL sC sCL sC sC sCL 

   13 - 20 sCL sC sCL sCL sC sCL sCL sC sCL 

  30 - 37 sC sCL sCL sCL sCL sCL sCL sCL sCL 
   

C 0 - 10 sCL sC sCL sCL sC sCL sCL sC sC 

13 - 20 sCL sC sC sCL sC sCL sC sCL sC 

30 - 37 sCL sC sCL sCL sCL sCL sCL sCL sCL 
   

D 0 - 10 sC sC sCL sC sC sCL sCL sC sC 

13 - 20 sC sC sCL sCL sC sCL sCL sCL sC 

30 - 37 sC sC sCL sCL sCL sCL sCL sCL sCL 
   

E 0 - 10 sC sCL sC sCL sC sC sCL sC sC 

13 - 20 sCL sC sCL sCL sC sC sC sCL sCL 

30 - 37 sCL sC sCL sCL sCL sCL sCL sCL sCL 
        

sC: sandy clay;   sCL: sandy clay loam 

 

Table 2  Infiltrability and Ksat for selected land uses in this and 10 other studies in 

various tropical and temperate regions. 

Reference 
 

Region, soil type (as given)   
                

Land 
use 

Infiltrability 
[mm/h] 

Ksat 
 [mm/h] 

Depth   
[cm] 

Method 
 

Present study Mato Grosso/Brazil, Haplustox F 1258 563  , 320 0, 12.5, 30 HI, Am 
  S   469 114  ,   80 0, 12.5, 30  
  P   100 100  , 122 0, 12.5, 30  

Anderson et al., 2005 Missouri/USA, Vertic Albaqaulf   S*     10 - 0 SIR  

Bathke et al., 1992 S. Carolina/USA, Paleudult a S      - 8 5-12 CHM 

Fesha et al., 2002 Alabama/USA, Typic Hapludult  S*      - 47 0-15 Borehole 
  P      - 12 0-15  

Giertz & Diekkrüger, 2003 Benin (West Afrika), Plinthosol F   108 - 0 HI, CHM 
  B     42 32 0, 2-15  

Jiang et al., 2006 Missouri/USA, Epiaqualf  S*      - 36 0-10 CHM 

Hati et al., 2007 Central India, Typic Haplustert  S*      - 26 0-15 CHM 

De Moraes et al., 2006 Pará/Brazil, Haplustox a F      - 230  ,  17 ≈0, 20-30 Guelph 
  P      -     4  ,   5 ≈0, 20-50  
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Rachman et al., 2004 Iowa/USA, Typic Hapludoll  S*      - 115 0-10 CHM 

Roth et al., 1987 Paraná/Brazil, Typic Haplorthox  S*     54 - 0 I = Rf - Ro

Zimmermann et al., 2006 Rondônia/Brazil, Kandiudult F 1690 131, 22 0, 12.5, 20 HI, Am 
    P   113   22,   6 0, 12.5, 20   

F: Forest;   S: Soybeans;   P: Pasture;   B: Beans;   Am: Amoozemeter;   Guelph: 

Guelph permeameter;   HI: Hood infiltrometer;   CHM: Constant head method on 

undisturbed soil samples;   Borehole: Borehole method;   SIR: Single infiltration 

rings;   I = Rf - Ro: Infiltrability calculated as rainfall minus runoff (rainfall simulator 

and overland flow protectors). 

a   Plinthic;              *   Soybean rotations mostly wheat or corn 

 

Table 3  Mean soil texture under forest and soybean fields at Tanguro Ranch 

(unpublished data from M. Figueira and S. Riskin). 

Land use Sample 
size (N) 

Mean clay 
content 

(± SE) [%] 

Mean sand 
content 

(± SE) [%] 

Forest 7 38.2 (± 3.9) 59.3 (± 3.9) 

Soybeans* 28 39.6 (± 2.3) 58.4 (± 2.4) 

*   This land use includes sites, which were pastures at the time of our field 

campaign but were converted to soybeans shortly after. 
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Figure captions 

 

Figure 1  Location of the study area. 

Tanguro Ranch is 80,000 ha and contains a mosaic of old-growth forest, pasture and 

soybean cropland. Situation in August, 2007. 

 

Figure 2  Permeability of all plots (left) and as a function of land use (right) at 

surface (A), at 12.5 cm (B), and 30 cm (C). 

The x- axis labels refer to the 9 individual plots (left) and the 3 land uses (right). Non-

overlapping notches of box plots indicate a significant difference between 2 medians 

(at 95% confidence level). MaxI5 / MaxI15 are medians of the maximum 5-/15-min 

rain intensities (57.9 and 39.6 mm/h). 

 

Figure 3  Permeability as a function of depth under forest, pasture and soybeans. 

Symbols mark the positions for medians of plots and lines connect positions for 

medians of land uses. 

 

Figure 4  Rainfall pattern throughout the year. 

Monthly means visualize the amount of precipitation fallen within all measured rain 

events and the amount not fallen within the storms (indicated by the ┴ -bar), the 

number of storms (on top of the bars), and selected maximum rain intensities. 

Highest intensities occurred at the start of the rainy season. 

 

Figure 5  Cumulative distribution functions for permeability of land uses vs. the 

maximum 5-min rain intensity at surface (A), at 12.5 cm (B), and 30 cm (C). 
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Vertical lines mark quantiles of MaxI5, which have a return interval of about 26, 13, 

and 5 times per year. The upper parts of all distribution functions were omitted. 

 

Figure 6  Cumulative distribution functions of maximum rain intensities in 

comparison with the lowest medians Ksat. 

The labels on the distribution functions indicate the maximum rain intensities: “5” for 

MaxI5 to “60” for MaxI60. The graphic allows direct referencing of the mean number 

of storms per year exceeding Ksat, e.g., Ksat30 of S2 got exceeded by MaxI5 of 

about 32 storms per year (i.e., every 7 days on average within the rainy season). 
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