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[1] We examine upper mantle anisotropy across the Hawaiian Swell by analyzing shear wave splitting of
teleseismic SKS waves recorded by the PLUME broadband land and ocean bottom seismometer deploy-
ments. Mantle anisotropy beneath the oceans is often attributed to flow-induced lattice-preferred orientation
of olivine. Splitting observations may reflect a combination of both fossil lithospheric anisotropy and
anisotropy due to present-day asthenospheric flow, and here we address the question whether splitting pro-
vides diagnostic information on possible asthenospheric plume flow at Hawaii. We find that the splitting
fast directions are coherent and predominantly parallel to the fossil spreading direction, suggesting that
shear wave splitting dominantly reflects fossil lithospheric anisotropy. The signature of anisotropy from
asthenospheric flow is more subtle, although it could add some perturbation to lithospheric splitting. The
measured delay times are typically 1 s or less, although a few stations display larger splitting delays of
1-2 s. The variability in the delay times across the different stations indicates differences in the degree of
anisotropy or in the thickness of the anisotropic layer or in the effect of multilayer anisotropy. Regions with
smaller splitting times may have experienced processes that modified the lithosphere and partially erased
the fossil anisotropy; alternatively, asthenospheric splitting may either constructively add to or destructively
subtract from lithospheric splitting to produce the observed variability in delay times.
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1. Introduction

[2] Hawaii has long been viewed as the archetypi-
cal hot spot. The Hawaiian-Emperor chain is
located in an intraplate setting within the Pacific
plate, records voluminous, age-progressive volca-
nism for >75 My [Duncan and Keller, 2004], and
exhibits a broad topographic high known as the
Hawaiian Swell [Dietz and Menard, 1953; Crough,
1978]. It has been proposed that a deep-rooted,
high-temperature, upwelling mantle plume gen-
erates the Hawaiian hot spot [Morgan, 1971], and
numerous numerical studies have been undertaken
to assess the possible patterns of plume flow and
melting in the mantle [e.g., Davies, 1988; Sleep,
1990; Moore et al., 1998; Ribe and Christensen,
1999; Farnetani and Hofmann, 2010; Ballmer
et al., 2011]. Recent regional [Wolfe et al., 2009,
2011] 3-dimensional seismic imaging at Hawaii
has documented low seismic velocities extending
from the upper mantle into the lower mantle, con-
sistent with the existence of a high-temperature,
upwelling mantle plume. The existence of anisot-
ropy in the oceanic upper mantle is often attributed
to strain-induced lattice-preferred orientation (LPO)
of olivine a axes [100] [Christensen, 1984], with
fast directions providing information on the direc-
tion of mantle flow in olivine aggregates for large
deformations [Zhang and Karato, 1995]. However,
the development of LPO may in some cases have a
complex dependence on the finite strain history
[Kaminski and Ribe, 2002]. Melt inclusions are
another potential source of mantle anisotropy
[Blackman and Kendall, 1997, Jousselin and
Mainprice, 1998]. Thus the characterization of
anisotropy may provide constraints on the pattern
of upper mantle flow and melting at Hawaii.

[3] Shear wave splitting studies have been per-
formed at several hot spot regions, including Iceland
[Bjarnason et al., 2002; Xue and Allen, 2005],
Yellowstone [Waite et al., 2005], the South Pacific
superswell [Fontaine et al., 2007], Galapagos
[Fontaine et al., 2005], Eiffel [Walker et al.,
2005a], and Hawaii [Wolfe and Silver, 1998;
Walker et al., 2001, 2003; Collins et al., 2002]. One
special focus of hot spot splitting investigations has
been to ascertain whether the measured spatial
distribution of anisotropy provides any diagnostic
evidence of asthenospheric plume flow [Riimpker
and Silver, 2000; Walker et al., 2001, 2005b;
Waite et al., 2005].

[4] At Hawaii, it has been suggested that radial
flow of plume material in the asthenosphere com-
bined with shear in the absolute plate motion

direction by the moving plate should produce a
thick, coherent layer with asthenospheric plume
flow that is parabolic in map view [Sleep, 1990].
Walker et al. [2001, 2003] attributed the splitting
patterns around Hawaii to reflect a thick anisotropic
layer with such plume-generated parabolic flow.
However, their interpretation was severely limited
by the sparse station coverage, since splitting mea-
surements were only available at just 5 locations:
on the island of Oahu (Global Seismic Network
Station KIP), on the island of Hawaii (POHA), at
the Ocean Seismic Network borehole station south
of Oahu [Collins et al., 2002], at the seafloor H20
site east of Hawaii [Duennebier et al., 2002], and
at Johnson atoll (JOHN). Karato [2008] also pro-
posed another type of model where plume-
asthenosphere interactions in the central Pacific
and around Hawaii are a major influence on geo-
physical anomalies and anisotropy.

[5] Prior studies in the Pacific and around Hawaii
have also suggested two potential layers of mantle
anisotropy [see Nishimura and Forsyth, 1988,
1989; Wolfe and Silver, 1998]: a lithospheric layer
with inherited anisotropy that was formed near the
Pacific ridge axis [e.g., Wolfe and Solomon, 1998;
Harmon et al., 2004] with fast axis aligned parallel
to the fossil spreading direction, and an astheno-
spheric layer, with anisotropic fast axis aligned
parallel to the present-day mantle flow. Observa-
tions of mantle anisotropy at Hawaii thus also may
be important for understanding the evolution of the
lithosphere, as reflected in the degree of preserva-
tion of fossil anisotropy.

[6] The Plume-Lithosphere Undersea Melt Experi-
ment (PLUME) project consisted of two one-
yearlong deployments of ocean bottom seismographs
(OBSs) and a concurrent land deployment, and
provides an opportunity to assess the anisotropic
mantle structure across a broad region around
Hawaii. New splitting measurements from the
PLUME seismometer deployments (Figure 1) pro-
vide unprecedented station coverage on the islands
and the seafloor around Hawaii. Here we report
shear wave splitting measurements at 49 sites,
which dramatically improves the identification of
splitting patterns, allowing us to reevaluate past
interpretations regarding lithospheric and astheno-
spheric anisotropy across the Hawaiian Swell.

2. Shear Wave Splitting Analysis

[71 A shear wave passing through a single homo-
geneous anisotropic layer splits into two orthogonal
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Figure 1. Splitting measurements on PLUME. (a) Plot
of splitting measurements and bathymetry (from an
updated version of Smith and Sandwell [1997]). Splitting
delay time scale is provided in lower left corner. (b) Plot
of splitting measurements and magnetic lineations
[Miiller et al., 1997]. Arrows indicate the absolute plate
motion direction (APM) from Gripp and Gordon
[2002] and the fossil spreading direction (FOS). For a
more detailed and accurate description of the Molokai
Fracture Zone around Hawaii, see Searle et al. [1993].

waves with different wave speeds. Measurements
of shear wave splitting constrain the fast shear wave
polarization direction ¢ and the delay time o¢
between fast and slow shear waves. SKS waves
undergo a P-to-S conversion at the core-mantle
boundary, where they become radially polarized,
so any observed anisotropy must come from the

upgoing portion of the path between the core and
receiver. SKS splitting parameters thus reflect the
path-integrated effects of anisotropy beneath the
receiving seismometer, and can provide informa-
tion on the orientation of anisotropy as well as the
combined effects of the thickness of the anisotropic
layer, the degree of anisotropy, and the isotropic
velocity [Silver and Chan, 1991].

[8] The PLUME project consisted of two one-
yearlong deployments of ocean bottom seismo-
graphs in 2005-2006 and 20062007, as well as a
concurrent deployment of land seismometers.
Detailed information on the PLUME project can be
found in the works of Laske et al. [2009] and Leahy
et al. [2010] and the supporting online information
of Wolfe et al. [2009]. High levels of seafloor noise
on the horizontal components of the PLUME OBSs
makes the measurement of shear wave splitting
challenging. Microseismic noise limits the high-
frequency end (>0.1 Hz) of the band where useful
measurements can be made [e.g., Collins et al.,
2001]. Because the seismometer is deployed on
the seafloor (rather than being buried), it is subject
to seafloor-current induced tilting, which limits the
lower end of the measurement band. At some
PLUME stations, we typically observe SKS phases
of sufficient quality for constraining splitting
parameters in a narrow ~0.05-0.1 Hz frequency
band, although other PLUME stations failed to
provide any useful data for splitting.

[s] A general rule based on synthetic tests is that
for single-event analyses, waveforms containing
energy at periods less that 10 times the splitting
delay 6t are required to obtain a good measurement.
The PLUME waveforms at 0.05-0.1 Hz, and with
higher noise levels than at seismometers in conti-
nental interiors, are thus of borderline quality for
obtaining individual splitting parameters when
o0t <1 s. We therefore apply the multiple-event
method of Wolfe and Silver [1998] for deriving
optimum splitting parameters from SKS phases of
multiple earthquakes, which significantly improves
resolution of splitting parameters [see also Restivo
and Helffrich, 1999; Monteiller and Chevrot, 2010],
particularly when the events occur at differing
backazimuths. This method analyzes waveforms
from multiple events at a given station and deter-
mines the best pair of splitting parameters (¢, 1)
that can explain the suite of events. We choose
to best linearize horizontal particle motion, rather
than to minimize transverse energy; both options
are implemented in the codes of Silver and Chan
[1991] and Wolfe and Silver [1998]. The former
method will absorb any possible error in the OBS
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Figure 2. Earthquake epicenters used in the splitting analysis, with respect to Hawaii. Coastlines are indicated by

gray lines.

horizontal-component orientations directly into ¢
without affecting é¢. The horizontal orientations of
OBSs were estimated from teleseismic P wave
particle motion analyses and have errors of ~5°;
PLUME land seismometer orientations are derived
using a magnetic compass and should have smaller
errors. The multiple event splitting method is
designed for single layer anisotropy, although
Wolfe and Silver [1998] show how it can be
adapted to two-layer anisotropy if the back-
azimuthal coverage of earthquakes is adequate.

[10] Teleseismic splitting analyses were designed
for the case of a single anisotropic layer (repre-
senting the path-integrated anisotropy), which may
amalgamate multiply split waves into a single
apparent splitting parameter. It is more difficult to
obtain information on depth-varying anisotropy.

Several promising avenues for gaining further
insight include two-layer splitting analyses [Silver
and Savage, 1994], comparison of splitting with
the predictions from numerical geodynamic models
[e.g., Blackman and Kendall, 2002; Kaminski and
Ribe, 2002; Becker et al., 2006], combined inter-
pretation with surface wave or P, anisotropy [Li
and Detrick, 2003; Marone and Romanowicz,
2007], or, if data coverage and quality is suffi-
cient, splitting tomography [Chevrot, 2006; Abt and
Fischer, 2008].

3. Shear Wave Splitting Results
[11] We examined SKS records at distances >85°—

120° from earthquakes of moment magnitude (My,)
5.5 or larger in the Global Centroid Moment Tensor
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Table 1. Earthquakes Used in the Analyses

Year Julian Day Latitude (deg) Longitude (deg) Depth (km) Mw BAZ (deg)
2005 057 291 95.59 36 6.7 279
2005 080 —24.98 —63.47 579 6.9 113
2005 100 —1.64 99.61 19 6.7 273
2005 134 0.59 98.46 34 6.8 276
2005 164 —19.99 —69.20 116 7.8 110
2005 186 1.82 97.08 21 6.7 271
2005 205 7.92 92.19 16 7.3 285
2005 281 34.54 73.59 26 7.6 318
2005 321 —22.32 —67.89 163 6.8 111
2006 120 —27.01 —70.96 27 6.6 117
2006 136 0.09 97.05 12 6.8 275
2006 146 —7.96 110.45 12 6.4 264
2006 172 6.94 92.45 16 6.0 284
2006 178 6.50 92.79 28 6.2 284
2006 197 —28.72 —72.54 10 6.2 119
2006 198 -9.25 107.41 34 7.7 263
2006 200 —6.53 105.39 45 6.2 267
2006 208 1.71 97.15 20 6.2 277
2006 223 2.40 96.35 22 6.3 278
2006 237 —24.41 —67.03 184 6.6 113
2006 252 —7.21 120.11 572 6.3 261
2006 260 -31.75 —67.18 142 6.2 120
2006 264 —9.05 110.36 25 6.0 262
2006 265 —26.87 —63.15 598 6.0 115
2006 272 10.88 —61.76 53 6.1 78
2006 285 -31.30 —71.33 46 6.4 121
2006 293 —13.46 —76.68 23 6.7 106
2006 317 —26.04 —63.22 552 6.9 114
2006 320 —52.00 139.47 10 6.1 214
2006 335 3.40 99.09 205 6.3 278
2007 030 —54.74 146.3 11 6.9 209

Catalog. We find that almost all useable data are
from larger earthquakes, generally M, > 6.5 on
PLUME OBS stations and M,, > 6 on PLUME land
stations. The subset of waveforms used for splitting
is also smaller than the subset of SKS phases that
provided delay times for 3-dimensional imaging
[Wolfe et al., 2009], because splitting measure-
ments require good signal-to-noise ratio on both the
radial and the transverse components. We did not
observe any clear SKKS phases on PLUME.

[12] The distribution of earthquake epicenters that
provided useful data for splitting is displayed in
Figure 2 and listed in Table 1. For assessing pos-
sible two-layer anisotropy, it is important to have a
range of backazimuthal coverage. Unfortunately, as
shown in Figure 2, our backazimuthal coverage is
too limited to constrain two-layer anisotropic
models. Most events come from the South American
subduction zone to the southeast and the Sumatra
subduction zone to the west. On the first PLUME
deployment, SKS phases from the damaging M,,
7.6 Pakistan earthquake in 2005 were recorded

with good signal-to-noise ratio on more than half
of the stations, providing additional coverage from
the northwest. A small number of stations on the
second PLUME deployment also recorded good
SKS phases from two events at the western Indian-
Antarctic ridge with southern backazimuth and
from an earthquake in Trinidad with eastern
backazimuth.

[13] All measurements are carefully reviewed using
the diagnostic plots of Silver and Chan [1991].
Clear splitting is present on some seismograms:
prior to correcting for anisotropy, there is notice-
able energy on the transverse component, elliptical
particle motion, and when components are rotated
into the fast and slow directions (not shown), two
split S waves are evident. Correcting for splitting
using the multiple-event solution removes these
characteristics and linearizes particle motion. For
the case of small or null splitting, across multiple
events we systematically observe minimal energy
on the transverse component and linear particle
motion.
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Figure 3. Splitting at OBS station PL21 from the first PLUME deployment, where several events display a high
quality split shear wave on the transverse component. The solution (Figure 3e) is constrained by a set of 7 events.
(a—e) Examples of data used for the analyses. (top) Radial (solid line) and transverse (dashed line) component SKS data
from one earthquake. (bottom) Corresponding particle motion of SKS data in the fast-slow reference frame before (left)
and after (right) correcting for the solution splitting parameters. Elliptical motion indicates splitting, whereas correct-
ing for splitting linearizes particle motion. (¢) Contour plot of stacked energy [Wolfe and Silver, 1998] on the solution
transverse components as a function of the delay time ¢¢ and the polarization angle ¢ of the fast split shear wave. The
double contour represents the 95% confidence interval, and the star indicates the best solution, which is well

constrained.

[14] Because of strong differences in signal-to-
noise levels, solution quality is highly variable from
station to station. To illustrate the range of station
quality, we provide example plots of splitting

diagnostics in Figures 3—7. Figure 3 shows an
example of waveforms on the first PLUME
deployment from station PL21, where several
earthquakes yield clear, high-quality records of
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Figure 4. Splitting at OBS station PL15 from the first PLUME deployment, where splitting is subtle. The solution
(Figure 4d) is constrained by 4 events. See Figure 3 for further information.

splitting. Splitting in this example is indicated by
prominent arrivals on the transverse component at
certain backazimuths (Figures 3a (top), 3d (top),
and 3e (top)) and the elliptical particle motion
(Figures 3a (bottom, left), 3d (bottom, left), and
3e (bottom, left)). The particle motion is linearized
(Figures 3a (bottom, right), 3d (bottom, right), and
3e (bottom, right)) after correcting for splitting
using the multiple-event solution, which is derived
by analyzing the stacked energy on the solution
transverse component as a function of splitting
parameters (Figure 3f). Figure 4 shows the splitting
analysis for station PL15 from the first PLUME
deployment. On this station, SKS phases display
more subtle splitting, but nonetheless, correcting
for the multiple-event solution successfully line-
arizes the weakly elliptical particle motion. Figure 5
displays an example of diagnostics on one of the
more quiet OBSs from the second PLUME
deployment, and Figure 6 displays example diag-
nostics on one of the more noisy OBS from the
second deployment. Finally, a very-well constrained
null solution from station LHSM, on Maui, is

displayed in Figure 7, where events from differing
backazimuths display no splitting.

[1s] Table 2 lists the splitting parameters at
49 stations, as well as the solution errors and the
events that were used in the analyses. Delay times
(61) range from ~0 to 2.2 s and typical errors are
£10° for ¢ and £0.2 s for Oz. The results are
plotted in Figures la and 1b. We note that the
splitting method solves for the polarization of the
SKS wave (after correcting for splitting). These
polarizations are typically close to the backazimuth
direction, with an overall residual standard devia-
tion of 6° on OBSs, indicating that the horizontal
components are well orientated.

4. Discussion

[16] The splitting measurements are displayed in
Figure 1. The fast directions (¢) are coherent over a
broad region and are predominantly parallel to the
fossil spreading direction (~75°). For example, the
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Figure 5. Splitting at OBS station PL48 from the second PLUME deployment, which is a quiet OBS station. The
solution (Figure 5d) is constrained by a set of 4 events. See Figure 3 for further information.

mean value of all ¢ in Table 1 is 76°, although there
is some variability in the directions, which have a
standard deviation of 19°. Only one station, POHA
on the island of Hawaii, exhibits splitting parallel to
the absolute plate motion (APM) direction (—60°)
[Gripp and Gordon, 2002]. Our results suggest that
splitting dominantly reflects the fossil lithospheric
anisotropy and that splitting from asthenospheric
depths is less obvious. The fast directions around
Hawaii do not yield the parabolic pattern predicted
by some types of simple geodynamic models of
flow and LPO development from a plume-fed
asthenosphere (Figure 8), as was previously sug-
gested by Walker et al. [2001, 2003] in their anal-
yses with much more limited station coverage.

[17] Why does the splitting signal appear to be
stronger from the lithosphere than from the astheno-
sphere? Several factors may explain the apparently
weaker asthenospheric splitting. The first is if diffu-
sion creep, which does not produce anisotropy, is the
dominant deformation mechanism in the astheno-
sphere, rather than dislocation creep. However, this
possibility seems unlikely, since a recent study of the

shape of the Hawaiian swell supports a dislocation
creep rheology in the asthenosphere [4saadi et al.,
2011] and because surface wave studies indicate
unusually strong (6%) radial anisotropy in the central
and north Pacific at 100-200 km depth [Ekstrém and
Dziewonski, 1998; Nettles and Dziewonski, 2008]. A
second possibility is that the plume-fed astheno-
sphere could have less olivine and more clinopyr-
oxene in the Hawaiian mantle source [Sobolev et al.,
2005]. The third possibility comes from studies such
as Karato et al. [2008] and Karato [2008], where it is
suggested that the mapping between mantle flow and
anisotropy can be complex. Water content, temper-
ature, and stress may alter the development and type
of anisotropic olivine fabric, and Karato [2008]
proposes a model whereby the plume-fed astheno-
sphere around Hawaii may have a fabric type yield-
ing weaker splitting (but stronger radial anisotropy,
consistent with surface wave studies).

[18] A fourth, and perhaps most promising, factor
that may affect the splitting results is the presence
of vertically varying anisotropic structure. Verti-
cally varying flow in the asthenosphere occurs in
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Figure 6. Splitting at OBS station PL43 from the second PLUME deployment. Note transverse component noise
levels are higher at this station. The solution (Figure 6d) is constrained by a set of 5 events. See Figure 3 for further

information.

some numerical Hawaiian plume models that
include small-scale convection [Moore et al., 1998;
Ballmer et al., 2011]; alternatively vertically vary-
ing anisotropic structure may reflect complexities
in the mapping between mantle deformation and
LPO. Flow in a plume-fed asthenosphere may
generate fabric with varying orientation as a func-
tion of depth and fail to produce a thick and
coherently orientated anisotropic layer that pre-
serves a signature of parabolic flow. Strong vertical
variations in the orientation of anisotropy can gen-
erate apparent small splitting from the relevant
depth interval, as shown by Riimpker and Silver
[1998] or Saltzer et al. [2000]. Saltzer et al
[2000] also suggest that splitting in heterogeneous
media is more sensitive to the upper portions of the
model, so if the orientation of anisotropy varies
with depth, the splitting fast direction will be biased
toward that of the topmost layer, thus potentially
explaining the dominance of shallower lithospheric
splitting at Hawaii.

[19] Future work should help narrow possible
explanations. The study of Rayleigh wave

azimuthal anisotropy from the PLUME project
should contribute significantly by constraining the
relative strength and direction of lithospheric
and asthenospheric anisotropy: initial results
[Chojnacki et al., 2009] indicate Rayleigh wave
fast directions oriented in the fossil spreading
direction at frequencies of 30-50 mHz (corre-
sponding to lithospheric depths), consistent with
our inference that splitting patterns reflect fossil
lithospheric anisotropy. This coherent pattern breaks
down for lower frequencies, however, hinting at
the presence of non-uniform anisotropy in the
asthenosphere. Predictions of splitting from geody-
namic models of plume flow and melting that
incorporate LPO development using the method of
Kaminski and Ribe [2002] should also be useful to
assess the possible influence of vertically varying
asthenospheric anisotropy. This method indicates
that in regions where mantle flow varies over short
length scales, interpreting anisotropy requires geo-
dynamic models of mantle deformation and LPO,
since LPO may not always parallel the mantle flow
direction. A recent geodynamic study predicting
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Figure 7. A well-constrained null splitting at land
station LHSM on Maui. Note the lack of energy on
the transverse components for differing backazimuths
and the linear polarization. Contour plot (Figure 7c) of
stacked energy [Wolfe and Silver, 1998] on the solution
transverse components. The solution is constrained by a
set of 6 events. See Figure 3 for further information.

splitting at Hawaii [lfo et al., 2011] tests whether
plume flow may add a recognizable perturbation to
the dominantly lithospheric signal. Asthenospheric
mantle flow (or melt) may either be oriented so that
asthenospheric splitting constructively reinforces
lithospheric splitting (when asthenospheric and

lithospheric fast directions are parallel) or destruc-
tively decreases it (when asthenospheric and litho-
spheric fast directions are perpendicular). Thus the
variability in splitting fast directions and delay
times at Hawaii may reflect the influence of
asthenospheric flow, rather than being due to var-
iations in lithospheric anisotropy. If so, it may be
possible to extract more information on astheno-
spheric anisotropy and plume flow by geodynamic
modeling of these perturbations.

[20] Our measured delay times are typically 1 s or
less, although a few stations display larger delay
times of 1-2 s. Assuming a horizontal olivine
a-axis and a single anisotropic layer, the variability
in the delay times across the different stations
indicates differences either in the degree of anisot-
ropy or in the thickness of the anisotropic layer.
Typical degrees of anisotropy from petrofabric
measurements on mantle samples are 3-5%
[Mainprice and Silver, 1993; Silver et al., 1999],
which yields about 1 s of splitting for a 100-km-
thick anisotropic layer. The typical splitting times
of 0.5—1 s in our study may therefore correspond to
a 50 to 100 km thick anisotropic region.

[21] PLUME stations yielding small splitting times
may alternatively reflect regions where processes
have altered the lithosphere and erased some of the
fossil anisotropy. Many of the locations with small
delay times are on or near the Hawaiian Islands,
where hot spot magma transport through the litho-
sphere may act to partially reduce the fossil litho-
spheric anisotropy. Weak splitting is observed on
the islands of Maui and Hawaii, locations with high
volcanic flux [Van Ark and Lin, 2004]. Magmatic
underplating also occurs at the Hawaiian Islands
[Watts et al., 1985; Leahy et al., 2010], and perhaps
the lithosphere is modified by an extensive melt
network with pathways that do not always reach the
surface. There is also abundant mantle seismicity
down to 50-60 km depth beneath the Island of
Hawaii [Wolfe et al., 2004], and faulting may per-
haps be sufficiently pervasive to deform the litho-
sphere and partially erase the fossil anisotropy.
Moreover, 3-dimensional imaging using PLUME
surface wave data [Laske et al., 2011] indicates
decreased velocities beneath and around the islands
at lithospheric and asthenospheric depths (40—
140 km), also consistent with some level of
modification of the fossil lithosphere.

[22] Figure 9 displays the splitting measurements
superimposed on the average teleseismic S wave
station delay times from Wolfe et al. [2009]. There
is no simple linear relation between splitting delay
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Table 2. PLUME Stations and Splitting Parameters

Station Latitude Longitude Depth (m) ok ot Year/Day of Events (YY/JJJ)

BIG2 19.0790 —155.7730 582 70+ 17 0.45 +£0.17 05080, 05100, 05134, 05164, 05186, 06120,
06136, 06137

CCHM 20.7710 —155.9970 60 60+ 14 0.5+ 0.15 05080, 05164, 05281, 05321, 06136, 06317

DLAH 19.6010 —154.9830 52 61 %19 0.5 £0.17 05080, 05100, 05186, 05205, 06252, 06260, 06264

HPAH 20.0460 —155.7110 775 53+ 19 0.35+0.17 05080, 05100, 05281, 06120, 06136

KCCH 219710 -159.4010 128 75£22 03+04 05080, 05100, 05164, 05186, 05205, 05321,
06120, 06260, 06317, 06335

KIP 21.4233 —158.0150 37 807 0.925 £ 0.15 05080, 05100, 05134, 06164, 05281, 05321

LHSM 20.8910 —156.6580 204 42+£22 0.05 £ 0.15 06120, 06136, 06252, 06260, 06317, 07030

MAUI 20.7668 —156.2448 2060 74 £ 22 0.2 £0.45 05080, 05100, 05164, 05186, 05281, 05321,
06120, 06136

MRKH 21.1090 —157.2700 143 79 +£22 0.45 £ 0.47 05080, 05100, 05164, 05205, 06120, 06136

NGOK 22.1230 —159.6650 1157 82 +£5 1.15+0.17 06120, 06136, 06172, 06285, 06293, 06317,
06335, 07030

PHRM 21.1360 —156.7560 407 76 £ 12 0.74 £ 0.22 05080, 05164, 0581, 05321, 06120, 06136, 06172

POHA 19.7575 —155.5325 1966  —45£10 0.55=£0.17 05281, 05321, 06136, 06260, 06265, 06285,
06317, 06335 07030, 07136

PLO3 21.2055 —155.6794 5144 40+ 4 1.075 £ 0.17 05080, 05100, 05164, 05205, 05281, 05321

PL0O4 222936 —155.5947  —4515 60+ 38 0.8 £0.12 05057, 05080, 05134, 05164, 05205, 05281

PLO6 21.0000 —154.4828  —5373 76+ 8 0.48 £ 0.11 05057, 05080, 05100, 05134, 05164, 05205, 05281

PLO7 21.5197 —153.9827 —4912 5246 0.95 £ 0.0.25 050880, 05205, 05281, 05321

PL11 19.4952 —153.5032  —5181 —74 £20 0.675 £0.29 05080, 05164, 05205, 05281

PL12 19.5022 —154.0150  —5385 -85+ 11 044 +£0.14 05080, 05100, 05134, 05164, 05186, 05205,
05281, 05321

PLI5 18.8009 —153.2959  —5077 77+ 12 0.7 £0.16 05100, 05164, 05205, 05281

PL17 18.4814 —152.1324 5184  —73 £22 0.575 £ 0.65 05080, 05164, 05205, 05281, 05321

PL19 16.7119 —153.4067  —5163 —86 £ 13 0.88 + 0.28 05080, 05164, 05205, 05281, 05321

PL20 172975 —153.7008  —5120 79 £ 15 0.55£0.2 05080, 05164, 05281, 05321

PL21 17.1803 —154.6925 —4993 87+ 5 1.25 £ 0.11 05080, 05100, 05134, 05164, 05281, 05321

PL22 17.9884 —154.0305 5057 82 £7 075£02 05057, 05164, 05205, 05281, 05321

PL23 18.4017 —154.4959 5167 74+9 0.475 £ 0.12 05080, 05100, 05281

PL24 18.8031 —154.7974 5319 72+ 14 0.9 £0.27 05080, 05164, 05281, 05321

PL27 18.0003 —155.7150  —5099 68 £ 19 0.3 +0.14 05080, 05100, 05134, 05164, 05205, 05281

PL29 18.4042 —156.8082  —4627 —84 +22 0.17£0.39 05080, 05100, 05164, 05205, 05281, 05321

PL30 18.3010 —156.1670  —5091 68 + 4 1.05 £0.16 05080, 05100, 05205, 05281, 05321

PL32 18.9831 —157.2286  —4604 42 £ 5 0.90 £ 0.13 05057, 05080, 05100, 05134, 05164, 05205, 05281

PL33 19.4777 —156.5101 —4707 53 +£20 0.47 £ 0.24 05080, 05164, 05281, 05321

PL34 19.8327 —156.9320  —4748 59+ 15 037 £0.12 05080, 05134, 05164, 05205, 05281, 05321

PL35 20.3461 —157.6276  —4650 73 £ 13 0.57 £0.17 05164, 05205, 05281, 05321

PL37 19.8234  —160.0475 —4676 49 £ 11 0.65 +0.17 06136, 06208, 06317

PL39 219563 —161.3149  —4543 74+ 13 0.67 £0.19 06223, 06293, 06317, 06320, 06335

PL40 239931 —161.0931 —4691 58+9 0.99 +£0.14 06120, 06136, 06293, 06317, 07030

PL41 245738 —158.9331 —4749 —-83+7 1.12+£03 06120, 06223, 06260, 06293

PL43 26.7767 —155.7653 —5545 76 £ 22 1.07 £0.26 06136, 06200, 06260, 06317, 06320

PL44 25.5928 —152.7658  —5420 —81 +4 245+ 031 06136, 06265, 06285, 06317

PL46 243121 —156.9646  —4428 76+ 8 0.8 £0.1 06136, 06146, 06172, 06178, 06197, 06260, 06320

PL47 22.6217 —158.1842  —4830 62 £ 16 0.74 £ 0.25 06120, 06237, 06293, 06317, 07030

PL48 222999 —155.6362  —4528 67 £ 13 0.72 £ 0.21 06136, 06285, 06317, 06320

PL49 21.1669 —154.2492  —5173 -85+ 15 0.58 £0.22 06198, 06260, 06317, 06335, 07030

PL57 189142 —150.9150  —5335 83 +22 0.50 £ 0.54 06136, 06237, 06285, 06317, 07030

PL63 147311 —153.9655 —5603 —81£5 096+£0.19 06198, 06237, 06260, 06317

PL65 173154 —153.8682 5115 61 £ 10 1.00 £ 0.12 06197, 06252, 06223, 06260, 06272, 06285

PL67 16.1630 —156.2070  —5112 79 £ 14 0.70 £ 0.24 06197, 06200, 06260, 06285, 06317

PL68 14.6596 —157.8591 —5639 80+ 12 1.17+0.44 06136, 06223, 06272, 06285, 06317

PL70 15.5734 —158.9809  —5591 88 7 0.77 £ 0.21 06136, 06198, 06317, 06335

time and average station delay time, but the station  the largest splitting (2.2 s) occurs at station PL44,
delay times likely reflect the structure throughout  which is a station located off of the Hawaiian
the upper mantle, whereas splitting may be domi-  Swell and has a fast station delay time. Either the
nated by shallower mantle structure. We note that  fossil lithosphere has unusually strong anisotropic
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Figure 8. PLUME splitting measurements superimposed on streamlines for the parabolic asthenospheric flow (PAF)
model taken from Walker et al. [2001]. We also plot a splitting measurement (red dot) from the OSN1 deployment
[Collins et al., 2002]. The measured fast polarization directions appear to be dominated by lithospheric anisotropy

rather than the displayed asthenospheric flow model.

fabric at this location or some form of deeper
asthenospheric anisotropy also contributes to
splitting.

[23] It is useful to compare our Hawaii results with
splitting patterns at other hot spot regions. Only the
weak Eiffel hot spot [ Walker et al., 2005a] shows a
parabolic pattern of splitting that conforms to a
simple model of plume flow and LPO develop-
ment. A parabolic pattern is not obvious at the
Yellowstone hot spot [Waite et al., 2005], where
fast directions are mostly parallel to the direction of
absolute plate motion (APM), nor at hot spots of
French Polynesia [Fontaine et al., 2007], where fast
directions are also dominantly parallel to APM;
however, seismometer spacing in the French
Polynesia study may not be dense enough to detect
parabolic plume flow. Splitting at the Galapagos
hot spot [Fontaine et al., 2005] shows a rapid
change of fast directions parallel to APM to a
region of no measurable anisotropy. Splitting at the
Iceland hot spot [Bjarnason et al., 2002; Xue and
Allen, 2005] may be complicated by channeling
of flow down the spreading ridge: alternatively, Li
and Detrick [2003] compare surface wave azi-
muthal anisotropy with splitting, and suggest that
splitting may be dominated by the deep back-
ground mantle flow below 100 km depth.

[24] Hawaii is the archetypal hot spot and has been
estimated to have the largest buoyancy flux of any
possible mantle plume [Davies, 1988; Sleep, 1990].
The lack of a parabolic splitting pattern at Hawaii
does not negate the possible existence of atheno-
spheric plume flow. But the signature of plume
flow in shear wave splitting may be more subtle
than previously realized, due to the presence of
fossil lithospheric anisotropy and because of verti-
cal complexities in the flow itself or complexities in
the mapping between mantle deformation and LPO.

6. Conclusions

[25] Using a multiple-event method, we measure
shear wave splitting at 49 land and ocean bottom
seismometer stations deployed across the Hawaiian
Swell during the PLUME project. Most splitting
fast directions are parallel to the fossil spreading
direction, and only one station yields a fast direc-
tion parallel to the direction of absolute plate
motion. We suggest that splitting around Hawaii
dominantly reflects the fossil lithospheric anisot-
ropy. The signature of asthenospheric splitting is
more subtle, and splitting around Hawaii thus
seems to provide less direct information on plume
flow, although further geodynamic modeling and
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Figure 9. Map of splitting superimposed on the mean S wave station delays from Wolfe et al. [2009]. Early arrivals
are shown by blue circles and late arrivals by red triangles, with symbol size scaled linearly to the magnitude of the
delay (see scale at lower left). Station names are also displayed.

integration with information from surface wave
anisotropy may yield additional insight. The mea-
sured splitting delay times are typically 1 s or less,
although a few stations display larger splitting
times of 1-2 s. There is also noticeable variability
in the splitting delay times across the different sta-
tions spanning the Hawaiian Islands and Swell. We
postulate that locations displaying small splitting
times may have experienced processes that have
altered the lithosphere and partially erased the fossil
lithospheric anisotropy; alternatively, astheno-
spheric splitting may either constructively or
destructively contribute to the lithospheric splitting,
generating variability in delay times.
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