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Second- and fourth-moment mode-amplitude statistics for low-frequency ocean sound propagation

through random sound-speed perturbations in a shallow-water environment are investigated using

Monte Carlo simulations and a transport theory for the cross-mode coherence matrix. The acoustic

observables of mean and mean square intensity are presented and the importance of adiabatic effects

and cross-mode coherence decay are emphasized. Using frequencies of 200 and 400 Hz, transport

theory is compared with Monte Carlo simulations in a canonical shallow-water environment representa-

tive of the summer Mid-Atlantic Bight. Except for ranges less than a horizontal coherence length of the

sound structure, the intensity moments from the two calculations are in good agreement. Corrections for

the short range behavior are presented. For these frequencies the computed mode coupling rates are

extremely small, and the propagation is strongly adiabatic with a rapid decay of cross-mode coherence.

Coupling effects are predicted to be important at kilohertz frequencies. Decay of cross-mode coherence

has important implications for acoustic interactions with nonlinear internal waves: For the case in which

the acoustic path is not at glancing incidence with a nonlinear internal-wave front, adiabatic phase

randomizing effects lead to a significantly reduced influence of the nonlinear waves on both mean and

mean square intensity. [DOI: 10.1121/1.3666002]

PACS number(s): 43.30.Bp, 43.30.Re, 43.60.Cg [DRD] Pages: 1749–1761

I. INTRODUCTION

Acoustical fields in shallow ocean areas invariably fluc-

tuate because of the dynamic environment. Both the mean

fields and the fluctuations themselves are of intrinsic interest.

Fluctuations are caused by the time-evolving spatially com-

plex water column and by time-dependent sound interaction

with the rough and inhomogeneous boundaries. For sound at

hundreds of hertz, progress on this problem has been facili-

tated by full-physics simulation (Monte Carlo) techniques

(Headrick et al., 2000; Tielburger et al., 1997; and Fredricks

et al., 2005, to mention a few). However, comparison

between such simulations and results from reduced-physics

analytical theory are sparse (Creamer, 1996; Chen et al.,
2005), so that insight gained from such reduced-physics the-

ories is not readily available. This paper seeks to fill this

void (at least partially) by utilizing a new transport theory

governing the range evolution of the mode amplitude coher-

ence matrix (Colosi and Morozov, 2009) in a study using

Monte Carlo simulations with waves having a spatially ho-

mogenous spectrum, and additional isolated deterministic

waves, such as shallow water internal solitary waves (ISWs).

It is important to point out that previous transport theories

(Creamer, 1996) from which the present theory is based

could only solve for the mode energies (i.e., the diagonal of

the mode amplitude coherence matrix) under the assumption

of zero cross-mode coherence. Other theoretical studies have

examined cross-mode coherence (Beran and Frankenthal,

1992; Sazontov et al., 2002; Voronovich and Ostachev,

2009), but Monte Carlo simulations were not used to test the

approximations. Thus understanding and quantifying the

mechanisms at work in the Monte Carlo simulation via the

transport theory forms the basis of our new results, and the

associated validation of the transport theory builds confi-

dence in using the theory as a tool to explain experimental

results suffering from incompletely constrained environmen-

tal parameters.

In this paper a simple canonical environment typical of

the summer Mid-Atlantic Bight (see Fig. 1) is treated, which

is based on observations from the Shallow Water 2006

(SW06) experiment (Lynch and Tang, 2008; Colosi et al.,
2012). Here the diffuse random sound-speed perturbations

are modeled using a modified Garrett–Munk (GM) (Munk,

1981) internal-wave spectrum,1 and the nonlinear waves are

modeled using the common hyperbolic secant form. The

choice of a canonical and geographically specific environ-

ment to test an analytic model creates the possibility that the

results are not robust or in some sense not universal. Despite

this, a single canonical environment was chosen so that the

present results can be easily reproducible by others. The

issue of robustness can be resolved with further work. The

present results are intended to be a benchmark as much as a

validation study.

With this proper context in mind, the basic results for

propagation through the random waves in our canonical

environment are as follows. (1) For 200 and 400 Hz sound,
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the transport theory works well for predicting the mode co-

herence (auto- and cross-correlation) matrix. Because of this

predictive ability, theoretical estimates of mean intensity are

within a fraction of a decibel of Monte Carlo results. (2) The

theory allows for a quantitative estimation of the mode cou-

pling rates and the degree of adiabaticity of the propagation.

(3) For the tens of kilometer ranges of interest in shallow

water, one can understand much of the propagation physics

through the random waves with the simple adiabatic approx-

imation. In fact, adiabatic estimates of second- and fourth-

mode amplitude moments lead to predictions of scintillation

index that are in excellent agreement with Monte Carlo

results. (4) The theory/Monte Carlo comparisons are suffi-

ciently precise that an important correction to the adiabatic

theory is found to be necessary. Near the source and receiver

the standard theory overcounts the scattering in a so-called

edge effect (Van Kampen, 1981). A new adiabatic calcula-

tion that properly treats the edges produces cross-mode co-

herence estimates that are in even better agreement with the

Monte Carlo simulations. (5) When strong packets of ISWs

are added to the Monte Carlo simulation it is found that

mean intensity and intensity variance are not changed signif-

icantly by these waves. This surprising effect is the result of

modal phase randomization by the diffuse waves and the

corresponding loss of coherent scattering effects by the

ISWs. The conclusions related to nonlinear internal waves

apply when the acoustic path is not at glancing incidence to

the nonlinear wave front.

There have been a few studies of this acoustical situa-

tion. A Monte Carlo simulation study of the effects of these

two wave types was carried out by Tielburger et al. (1997).

The present study complements that seminal work because

of the extra insight provided by the transport theory and the

mode cross correlations. A related study was also performed

by Chen et al. (2005), who treated waves with a homogene-

ous spectrum in a two-layer ocean and tested a scattering

theory based on the Rayleigh–Born approximation (Ratilal

and Makris, 2005). Our results corroborate and serve to

explain the mechanisms at work in those studies.

The outline of this paper is as follows. Section II briefly

summarizes the coupled mode theory from Colosi and Moro-

zov (2009) and presents new results for the scattering matri-

ces, which utilize the GM spectrum. Section III shows

comparisons of the theory to Monte Carlo numerical simula-

tions of sound propagation through random fields on linear

internal waves. The topic of the combined effects of random

linear internal waves and nonlinear internal solitary wave

packets is taken up in Sec. IV. Summary and conclusions are

presented in Sec. V.

II. TRANSPORT THEORY: MODE AMPLITUDE
SECOND MOMENTS

In this work the acoustic pressure at frequency x is

expressed as a 2D normal mode expansion with the unper-

turbed modes (Creamer, 1996; Colosi and Morovoz, 2009),

p r; z; xð Þ ¼
XN

n¼1

an rð Þ/n zð Þffiffiffiffiffiffiffi
knr
p : (1)

In this representation, all the variability is contained in the com-

plex mode amplitude an(r). The eigenmodes /n zð Þ and eigen-

wavenumbers kn are from the unperturbed mode equation,

q0 zð Þ@=@z q�1
0 zð Þ@/n=@z

� �
þ �k2 zð Þ � k2

n

� �
/n ¼ 0, where the

background density is q0(z), and the 2D sound-speed field is

represented by c r; zð Þ ¼ �c zð Þ þ dc r; zð Þ, with �k zð Þ ¼ x=�c zð Þ.
The evolution equations for the mode amplitudes an(r) are

given by the well-known set of coupled ordinary differential

equations (Dozier and Tappert, 1978a; Dozier, 1983)

FIG. 1. Profiles of mean sound speed, buoyancy frequency, and rms sound-speed fluctuation used in the numerical calculations of this paper. For rms sound

speed, the input profile is shown using a solid line, and the actual modeled profile averaging over 256 realizations is shown with a dash.
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dan

dr
� ilnan ¼ �i

XN

m¼1

qmn rð Þam rð Þ; (2)

where the symmetric coupling matrix qmn(r) is given by

qmn rð Þ ¼ k2
0ffiffiffiffiffiffiffiffiffi

knkm

p
ðD

0

/n zð Þ/m zð Þ
q0 zð Þ l r; zð Þdz: (3)

Here l r; zð Þ ¼ dc r; zð Þ=c0 is the fractional sound-speed per-

turbation, k0¼x/c0 is a representative wavenumber, D is the

water depth, and the complex modal wave number is

ln¼ knþ ian. Typically the complex part of the wavenumber

an is obtained by perturbation methods (Jensen et al., 1993).

An important acoustic observable is the mean intensity

given by

I r; zð Þh i ¼ p r; zð Þj j2
D E

¼
XN

n¼1

XN

p¼1

ana�p rð Þ
D E

r

/n zð Þ/p zð Þffiffiffiffiffiffiffiffiffi
knkp

p (4)

and the relation to the cross-mode coherence, hana�p rð Þi, is

seen. In the limit of uncorrelated modes, the mean intensity

is an incoherent sum given by

I r; zð Þh i ¼
XN

n¼1

anj j2 rð Þ
D E

r

/2
n zð Þ
kn

; (5)

where it is evident that the modal interference pattern is lost.

It will be demonstrated that the incoherent modes case will

be important for long-range propagation in shallow water,

and it will be important when interaction with nonlinear in-

ternal waves are considered.

Using the small-angle forward scattering and Markov

approximations, Creamer (1996) and Colosi and Morozov

(2009) show that a cross-mode coherence transport equation

for propagation though random fields of linear internal-wave

induced sound-speed perturbations is

d ana�p

D E
rð Þ

dr
¼ i ln� l�p

� �
ana�p

D E
�
XN

m¼1

XN

q¼1

aqa�p

D E
Imn;qm

�

� ama�q

D E
I�mn;qp� aqa�m

� �
Imp;qn

þ ana�q

D E
I�mp;qm

�
(6)

with the scattering matrix Imn,qp given by

Imn;qp ¼
ð1

0

dnDmn; qp nð Þeilpqn: (7)

Here Dmn;qp nð Þ ¼ qmn rð Þqqp r þ nð Þ
� �

is the horizontal corre-

lation function of the coupling matrices between modes m,n
and q,p, and lpq¼ lp� lq. The interested reader can refer to

Creamer (1996) and Colosi and Morozov (2009) for details

of the derivation. An important limitation of Eq. (6) is that

the results will only be accurate when the final range is

greater than a few horizontal correlation lengths of the inter-

nal waves. Although this issue is not so critical in deep-

water long-range acoustic propagation it will be much more

important in this shallow-water problem (see discussion and

results from Sec. III C). Note that a somewhat more compli-

cated 3D result for deep water has been obtained by Vorono-

vich and Ostashev (2009).

Previous work in deep water used an idealized form of

the internal-wave spectrum such that an analytic form of the

correlation function Dmn,qp and, thus, the scattering matrix

could be obtained (Colosi and Morozov, 2009). Here a new

form of the coupling matrix horizontal correlation function

is used, which assumes an arbitrary horizontally isotropic

spectrum Sj(k) and it is found that

Dmn;qp nð Þ ¼
XJm

j¼1

Gmn jð ÞGqp jð Þ
ð1

0

dkSj kð ÞJ0 k nj jð Þ; (8)

where J0 is the zeroth-order Bessel function, k is the magni-

tude of the horizontal wave number, j is the internal-wave

mode number, Jm is the maximum internal-wave mode num-

ber, and

Gmn jð Þ¼k2
0

ffiffiffiffiffiffiffiffiffi
2

knkm

r ðD

0

dz l2 zð Þ
� �1=2

�sin pjẑ zð Þ½ �/n zð Þ/m zð Þ
q0 zð Þ : (9)

In Eq. (9), ẑ zð Þ is the Wentzel-Kramers-Brillouin (WKB)

stretched vertical coordinate (Colosi and Brown, 1998), and

l2 zð Þ
� �

¼ f2
0

c2
0

N0

N zð Þ
dc

dz

	 
2

p

(10)

is the fractional sound-speed variance. In Eq. (10), the buoy-

ancy frequency profile is N(z), with N0¼ 3 cycles per hour

(cph) being a reference buoyancy frequency, the reference

displacement is f0, and the potential sound-speed gradient is

(dc/dz)p. Plugging Eq. (8) into Eq. (7) and neglecting the

modal attenuation factor apq the following new instructive

result is obtained:

Imn;qp ¼
XJm

j¼1

Gmn jð ÞGqp jð Þ
ð1

0

dk
Sj kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

qp

q : (11)

The neglect of apq in Eq. (7) is justified if the correlation

length of Dmn,qp is less than 1/|apq| (Creamer, 1996).

Through numerical calculations and analytical considera-

tions (see the following) it has been found that this approxi-

mation is quite good. In this paper the wavenumber integral

in Eq. (11) is done numerically.

Equation (11) provides important information concern-

ing the acoustically relevant ocean scales for acoustic scat-

tering, namely the integrable singularity at k¼ kqp means

that the scattering will be strongly influenced by the magni-

tude of the spectrum in the neighborhood of the difference

wavenumber. The adiabatic terms in the scattering matrix
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(i.e., Inn,pp) will be important in this analysis. Here the differ-

ence wavenumber is zero and the contribution to the scatter-

ing matrix from the various internal-wave horizontal

wavenumbers is Sj(k)/k which typically strongly emphasizes

the large scale ocean structure. The importance of the ocean

structure at the difference wavenumber has been emphasized

by many previous authors (Dozier and Tappert, 1978a;

Creamer 1996; Zhou et al., 1991; Rouseff and Tang, 2006;

Colosi, 2008).

In this paper the GM internal-wave spectrum is utilized,

Sj kð Þ ¼ H jð Þ 4

p
k2kj

k2 þ k2
j

� �2
; (12)

where kj¼pfj/N0B, f is the Coriolis parameter, and

N0B ¼
ÐD

0
N zð Þdz. Here H jð Þ ¼ Nj= j2 þ j2

�
� �

is the GM verti-

cal mode number spectrum with Nj being the normalization.

Note here that the spectrum is normalized to unity, and the

WKB depth scaling of the internal-wave displacements has

been subsumed into Eq. (10). To first order for the GM spec-

trum, the horizontal correlation length of mode j is 1/kj, and,

thus, the condition for the validity of Eq. (11) is

apq

�� ��=kj� 1. Importantly, measurements from the SW06

experiment (Colosi et al., 2012) show that the random inter-

nal waves have a frequency and mode spectrum that is quite

close to the GM model except the modal band width parame-

ter j� ’ 1.

It should be pointed out that the WKB approximation

for the internal-wave dispersion relation and normal modes

have been made in this analysis for the sake of analytic and

numerical simplicity. The WKB modes are seen in Eq. (9)

and the WKB dispersion relation is used to translate the

internal-wave frequency spectrum into a wavenumber spec-

trum [Eq. (12)]. Although it is true that WKB analysis is cen-

tral to the deep water GM spectral model, the applicability

of this approximation in shallow water has not been tested;

in fact our knowledge of the shallow-water internal-wave

spectrum is somewhat limited. It should also be remarked

that the WKB analysis is not essential to the transport equa-

tion theory, and thus the scattering matrices could be easily

modified to use true linear internal wave modes and disper-

sion relation, as was done by Voronovich and Ostachev

(2009) and Rouseff and Tang (2006).

A. Mode energy

Colosi and Morozov (2009) have shown that the evolu-

tion of mode energy in Eq. (6) is insensitive to the cross-

mode coherence terms. When these coherence terms are

neglected a considerably simpler transport equation for

mode energy is obtained (Creamer, 1996), which is of the

form

@ anj j2
D E
@r

¼� 2an anj j2
D E

þ
XN

m¼1

2Re Imn;mn

� �
amj j2

D E
� anj j2
D E� �

: (13)

Considerable use of this result will be made in the following

analysis as it provides a simple means to predict small mode

coupling effects seen in the Monte Carlo simulations.

B. Adiabatic approximation

Another important aspect of the analysis here will be the

adiabatic approximation in which the scattering matrices are

assumed zero except for those of the form Inn,pp. The adia-

batic solutions to Eq. (6) are thus,

anj j2
D E

rð Þ ¼ anj j2
D E

0ð Þe�2anr;

ana�p

D E
rð Þ ¼ ana�p

D E
0ð Þei ln�l�pð Þre� Inn;nn�2Inn;ppþIpp;ppð Þr:

(14)

It is important to note that Eq. (14), derived from the trans-

port equation, is exactly what one would obtain if a tradi-

tional adiabatic approximation (Jensen et al., 1993) was

made on the wave equation; that is to say the approximations

of the transport equation preserve the traditional adiabatic

result. Further, in the adiabatic limit the scattering matrices

with the GM spectrum have an analytic form such that

Inn;pp ¼
2

p

XJm

j¼1

H jð ÞGnn jð ÞGpp jð Þ
kj

: (15)

The adiabatic decorrelation range Rn,p for modes n and p can

thus be defined using Eqs. (14) and (15) giving

Rn;p ¼
I

Inn;nn � 2Inn;pp þ Ipp;pp

	 


¼ p
2

XJm

j¼1

H jð Þ
kj

Gnn jð Þ � Gpp jð Þ
� �2

 !�1

: (16)

III. MONTE CARLO SIMULATION RESULTS

Monte Carlo numerical simulations of mode propaga-

tion through random realizations of internal-wave induced

sound-speed perturbations were carried out to test the accu-

racy of the cross-mode coherence transport equation

[Eq. (6)], and to delve into the important acoustic propaga-

tion physics related to mean intensity. The issue of the com-

bined effects of random internal waves and nonlinear

internal-wave packets is taken up in Sec. IV.

A. Description of the calculations

In this numerical example, calculations are presented uti-

lizing a 2D sound-speed field of the form c r; zð Þ ¼ �c zð Þ
þdc r; zð Þ, where �c zð Þ is the background sound-speed profile

and dc is a random linear internal-wave perturbation. The

ocean acoustic environment for these calculations is inspired

by the SW06 experiment (Lynch and Tang, 2008; Colosi

et al., 2012). For the background profiles, the ocean is

assumed to have a constant salinity of 35 psu (practical

salinity unit) and a mean temperature profile of the form
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�T zð Þ ¼ T0 � 0:04z� DT

2
1þ tanh

z� zth

Dth

	 
� 

(17)

with parameters T0¼ 24 �C, DT¼ 12 �C, a thermocline

depth of zth¼ 17.6 m, and a thermocline width of Dth¼ 5 m.

The water depth, D, is taken to be 60 m. Using the equation

of state of sea water, the salinity and temperature profiles are

used to compute the mean sound speed �c zð Þ and buoyancy

frequency N(z) profiles which are shown in Fig. 1. The back-

ground density is fixed in the water column and seabed with

values of 1000 and 1500 kg/m3, respectively. In the seabed

an attenuation constant of ak¼ 0.2 dB/k and a sound speed of

cb¼ 1700 m/s are used.

Random realizations of linear internal-wave induced

sound-speed perturbations, dc(r,z), are modeled using the

GM internal-wave spectrum and the method of Colosi and

Brown (1998). Parameters for the internal-wave fluctuations

are taken to be f0¼ 2 m, j*¼ 1, and the latitude is 39�N. For

the present model the parameter N0B is equal to 1.1 rad m/s.

These spectral values are consistent with observations from

the Mid-Atlantic Bight (Yang and Yoo, 2002; Colosi et al.,
2012). In our numerical calculations a maximum internal-

wave mode number of Jm¼ 15 is used, and internal waves

with horizontal scales from 0.05 to 300 km are simulated.

The mode number cutoff Jm yields a minimum internal-wave

vertical wavelength of� 4 m, the scale at which one expects

internal-wave shear instability to start significantly attenuat-

ing the spectrum (Munk, 1981). The input fractional sound-

speed variance for the Colosi/Brown model is given by Eq.

(10), where the potential sound-speed gradient is approxi-

mated by the total gradient of the mean sound-speed profile,

and c0¼ 1500 m/s. Figure 1 shows the input profile of

c0 l2 zð Þ
� �1=2

computed from Eq. (10), as well as the actual

numerical modeled values from the Colosi/Brown method.

The difference in these two curves occurs because only 15

modes are modeled and the internal-wave modes have a zero

boundary condition. The magnitude of the modeled sound-

speed perturbations are consistent with those observed dur-

ing the SW06 experiment (Colosi et al., 2012).

Finally it should be noted that the transport theory

described in Sec II and the Colosi/Brown method are com-

pletely consistent in their use of the WKB approximation and,

thus, the calculations presented here provide a direct test of

the acoustic propagation physics without the ambiguity of

having different ocean models in the theory and Monte Carlo

simulation. That being said, one may rightly question the use

of the WKB approach in shallow water; Fig. 2 shows how the

WKB mode functions compare to a direct calculation from

the linear internal-wave mode equation. For internal-wave fre-

quencies between f and� 2 cph the WKB modes (except for

mode 1, as expected) are a good approximation to the true

dynamic modes, and thus inaccuracies are only due to the

higher internal-wave frequencies between 2 and 30 cph.

Last, the Monte Carlo acoustic propagation simulations

were carried by numerical solution of Eq. (2) using the techni-

ques as described in Dozier and Tappert (1978b), and Creamer

(1996). For these simulations, 200 and 400 Hz point sources

were located at a depth of zs¼ 55 m. The initial condition was

normalized such that an 0ð Þ ¼ /n zsð Þ=Na where Na is obtained

from the condition
PN

n¼1 an 0ð Þj j2
D E

¼ 1. Here only trapped

mode propagation was considered, thus, yielding maximum

mode numbers of 6 and 12 for the frequencies of 200 and

400 Hz, respectively (see Jensen et al., 1993, Eq. 2.172 for the

mode cutoff frequencies for the Pekeris problem). For each fre-

quency a total of 256 realizations were used to compute the

normal mode and mean intensity statistics.

B. Results: Mean intensity

Figures 3 and 4 show comparisons of 200 and 400 Hz

mean intensity for a receiver at 50 m in depth computed by

Monte Carlo simulation and by using Eqs. (6) and (4). For

reference the unperturbed intensity is also plotted. The

agreement between theory and direct simulation is seen to be

excellent past a range of� 5 km, with deviations at the level

of a fraction of a decibels. The small deviations between

theory and simulation are consistent with sampling errors.

For ranges less than� 5 km there are larger discrepancies

particularly near the nulls, and this result is understood as an

edge effect in the theory (Van Kampen, 1981); that is to say

these ranges are comparable to or shorter than the horizontal

correlation length of the internal waves, which is computed

to be 3.2 km.2 As previously stated, the theory is not

expected to be accurate at these short ranges, although cor-

rections can be applied (more later).

An important effect observed in Figs. 3 and 4 is that the

random internal-wave perturbations are seen to smooth out

the unperturbed modal interference pattern [see Eq. (5)] pro-

gressively with increasing range; this effect is due to the

decorrelation of the modes by the random sound-speed fluc-

tuations. The large differences between the mean intensity

and the unperturbed intensity demonstrate the importance of

random internal-wave induced sound-speed perturbations in

affecting shallow-water acoustic fields. Due to this fact, the

behavior of cross-mode coherence decay is discussed in

more detail in the next section.

C. Results: Cross-mode coherence

Figure 5 shows the range evolution of cross-mode co-

herence at 200 and 400 Hz for a few low mode pairs from

both the transport theory and the Monte Carlo simulation. To

remove the effects of modal attenuation and some small

measure of coupling, the coherences in Fig. 5 are normal-

ized; i.e., the quantity jhana�pij rð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h anj j2i rð Þh ap

�� ��2i rð Þ
q

: is

presented. The coherences are seen to decay at a scale on the

order of tens of kilometers, and the higher frequencies, as

expected, have a more rapid decay.

Comparing the transport theory to the Monte Carlo sim-

ulation, one would expect relatively good agreement, given

the comparisons obtained for mean intensity. Figure 5, how-

ever, shows the Monte Carlo simulation to be clearly more

coherent than the theory, and the theory shows the decay of

cross-mode coherence to be almost completely adiabatic.

The discrepancy between the Monte Carlo simulation and

theory, comes from the previously mentioned “edge” effect,

where the transport theory improperly treats the ranges,
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which are on the order of a coherence length of the internal

waves. This effect can be easily understood in the adiabatic

approximation, which apparently applies quite well here.

From adiabatic theory, one obtains (Colosi and Morozov,

2009)

Inn;nnþ Ipp;pp�2Inn;pp¼
1

2

ðr

0

dr1

ðr

0

dr2 Dnn;nn nj jð Þ
�

þDpp;pp nj jð Þ�2Dnn;pp nj jð ÞÞ; (18)

where n¼ r1� r2. In the transport theory, the approximation

that r is much larger than the correlation length of the

internal-waves allows one to write

Inn;nnþ Ipp;pp�2Inn;pp’
1

2

ðr

0

dr1

ð1
�1

dn Dnn;nn nj jð Þ
�

þDpp;pp nj jð Þ�2Dnn;pp nj jð ÞÞ; (19)

where it can be seen that this result exactly corresponds to

that from Eq. (11). The overcounting in Eq. (19) relative to

Eq. (18), where r is on the order of the internal-wave

correlation length is evident, and thus the transport theory

predicts too rapid a decay of the coherence with range. Using

Eqs. (8) and (14) with Eq. (18), cross-mode coherences with

the edge’s properly treated were computed and are shown in

Fig. 5; the new coherences match the Monte Carlo results

very well. Although results are only shown here for a few

mode pairs similar results are seen for the other modes.

Thus, it is found somewhat surprisingly that the adia-

batic approximation provides some very useful insight into

the problem. In fact, adiabatic mean intensity curves (not

shown in Figs. 3 and 4) directly overlay the full theory

curves, and thus for the environment and frequencies consid-

ered here the adiabatic approach is completely adequate.

Although the issue of adiabaticity is not directly addressed

in previous work (Tielburger et al., 1997) the present results

appear consistent with those because large sound-speed per-

turbations and ranges of the order of hundreds of kilometers

are required for coupling to be observed. It should be noted

that the adiabaticity of the propagation suggests that higher

moments of the field will be quite easy to treat. This fascinat-

ing result leads to the questions of mode energies and cou-

pling, which are discussed in the next section.

D. Results: Mode energy

Figure 6 shows the range evolution of mean mode

energy from the Monte Carlo simulation, predictions from

the mode energy transport equation [Eq. (13)], and predic-

tions from adiabatic theory [Eq. (14)]. Here some weak

effects from mode coupling are observed. At 200 Hz for the

most part the three curves (Monte Carlo, transport, and adia-

batic) are linear and directly upon one another. Here the

slope of the curves is dictated by the modal attenuation fac-

tor. However, for the two weakest initial energy modes, the

curves are seen to be initially linear and then level off with

the Monte Carlo simulation and theory following one

another. This weak effect from internal-wave coupling was

previously misinterpreted as a numerical artifact (Tielburger,

et al., 1997). At 400 Hz, the coupling effects are even more

evident, but still basically weak. Not only is the leveling-off

effect seen, but here the two weakest excited modes show a

completely different slope than the adiabatic theory would

predict. The point here is not to dwell on a small effect that

has virtually no impact on real observables like mean inten-

sity, but it is to show that the theory can be used to predict

coupling effects in shallow water. It must also be pointed out

that coupling effects in other shallow water environments

may be significantly higher than those modeled here.

The previous results have clearly shown that for the

cases considered here, mode coupling rates are quite small,

and that the mode energy transport equation is useful for pre-

dicting coupling effects. Writing this equation [Eq. (13)] in

matrix form dA/dr¼FA, it is clearly seen that the solutions

are a set of exponentials whose evolution in range is dictated

by the eigenvalues of the matrix F. In lossy shallow water

environments where the coupling rates are small compared

to the attenuation rates, the eigenvalues are strongly affected

by the attenuation. So to predict coupling rates the attenua-

tion constants an in Eq. (13) are set to zero and the

FIG. 2. Comparison of true linear internal-wave mode shapes (solid) with

the WKB approximation (dash). Upper four panels are for an internal-wave

frequency of 1 cph, and the lower four panels are for a frequency of 4 cph.

The modes displayed are 1, 2, 4, and 10.
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eigenvalues kn are computed; the inverse of the smallest

eigenvalue is what Dozier and Tappert term the equipartition

range (Dozier and Tappert, 1978a,b). As such it is useful to

define an eigenvalue interaction range Rn ¼ k�1
n . Figure 7

plots the mean and minimum of Rn for frequencies of 200,

400, 600, 800, and 1000 Hz, where the number of propagat-

ing modes is 6, 12, 18, 24, and 30. Here it is seen (as has

been previously demonstrated) that at the 200 and 400 Hz

frequencies in our example calculations, the propagation is

strongly adiabatic with the smallest eigenvalue interaction

range being 638 and 116 km, respectively.

For the parameters used in this simulation, Fig. 7 sug-

gests that significant coupling effects would only be

observed in the kilohertz frequency range. Again, this

FIG. 3. Mean intensity for 200 Hz propagation from the Monte Carlo simulation (red), the model results from Eq. (6) (blue), and the unperturbed intensity

(m¼ 0; green). The lower panels show an expanded view of the range 5–20 km. In each calculation Eq. (4) is utilized, but the cylindrical spreading factor is

ignored. The receiver depth is 50 m.

FIG. 4. Mean intensity for 400 Hz propagation from the Monte Carlo simulation (red), the model results from Eq. (6) (blue), and the unperturbed intensity

(m¼ 0; green). The lower panels show an expanded view of the range 5–20 km. In each calculation Eq. (4) is utilized, but the cylindrical spreading factor is

ignored. The receiver depth is 50 m.
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prediction clearly depends on the shallow water environment

considered, namely the background profiles, the strength of

the perturbations, and the internal-wave spectrum.

E. Higher moments

The strong adiabaticity of the propagation can be

exploited to understand and predict higher moments of the

field. The mean square intensity is of fundamental interest

because it can be used to provide an “error bar” on the mean

intensity. This quantity can be written as

I2
� �
¼
X

n

X
p

X
m

X
q

ana�pama�q

D E
r2

/n zð Þ/p zð Þ/m zð Þ/q zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knkpkmkq

p ;

(20)

where it is seen that the fourth moment of the mode ampli-

tudes is required. In the adiabatic approximation the mode

amplitudes are of the form an rð Þ ¼ an 0ð Þei lnrþdhn rð Þð Þ, where

dhn(r) is the adiabatically induced phase fluctuation. If the

adiabatic phases can be assumed to be Gaussian, as has been

done in this paper, a simple calculation yields

ana�pama�q

D E
¼ ânâ�pâmâ�q exp

h
� Inn;nn þ Ipp;pp þ Imm;mm

�
þIqq;qq þ 2 Inn;mm þ Ipp;qq � Inn;pp

�
�Inn;qq � Imm;pp � Imm;qq�Þr

i
; (21)

Where ân ¼ an 0ð Þeilnr. Using these results, a comparison

between theory and Monte Carlo simulation is carried out

using the scintillation index SI ¼ I2
� �

= Ih i2 � 1. Figure 8

shows this comparison for both 200 and 400 Hz, for a re-

ceiver depth of 50 m. The adiabatic theory is seen to fit the

Monte Carlo data exceptionally well for both frequencies,

where it should be noted at short ranges, discrepancies are

due to uncorrected edge effects in the adiabatic calculation.

The oscillating nature of the scintillation curves is due to the

fact that SI is generally larger in the low mean intensity

regions and correspondingly SI is smaller in the high mean

FIG. 5. Range evolution of normalized cross-mode coherences for mode

pairs (1,2), (1,3), and (2,3) at 200 (upper panel) and 400 Hz (lower panel).

Monte Carlo numerical simulation results are shown in red, transport equa-

tion [Eq. (6)] are shown in blue. The adiabatic results [Eq. (14)] are shown

with a blue dash, and a modified adiabatic result, [Eq. (18)], taking account

of edge effects is shown with a red dash.

FIG. 6. Range evolution of mean mode energy for 200 (upper panel) and

400 Hz (lower panel). At 200 Hz, modes 1–6 are displayed, whereas for

400 Hz modes 1, 2, 7, 8, 11, and 12 are presented. Monte Carlo numerical

simulation results are shown in red, transport equations [Eq. (13)] are shown

in blue, and adiabatic results [Eq. (14)] are shown in black.
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intensity regions. Also of interest is that at long range the

scintillation is actually decreasing. This occurs because of

mode stripping by attenuation, such that at long range there

are fewer high energy modes to interfere and thus cause in-

tensity fluctuations.

IV. IMPLICATION FOR INTERACTION WITH
NONLINEAR WAVES

An important implication of the present work is that for

acoustic frequencies on the order of hundreds of hertz, the

shallow-water linear internal-wave field adiabatically random-

izes the modal phases progressively in range. The decorrela-

tion range can be accurately estimated using Eq. (16), and

although some mode pairs have surprisingly large values of

Rn,p, typical values for the low-energy carrying modes are 15

and 30 km for 400 and 200 Hz, respectively (these values are

qualitatively consistent with Figs. 3 and 4).3 It has been shown

through numerical simulation (Preisig and Duda, 1997; Duda

and Preisig, 1999) and through theoretical arguments (Colosi,

2008) that nonlinear internal solitary wave-induced coupling

between modes n and p depends critically on the relative

phases of the modes at the location of the nonlinear wave. In

particular, the modulation factor estimated by single scattering

theory (Colosi, 2008) is sin(knpr0) where r0 is the location of

the wave; that is to say if the relative phase of the modes is an

integer multiple of p there is no coupling, and if the relative

phase is an odd multiple of p/2 the transfer of energy between

modes is maximum and can be either positive or negative.

This being the case if the modal phases are sufficiently vari-

able when they interact with the nonlinear internal wave, the

energy is equally likely to couple in any way between the

modes with the first-order effect that there is no net coupling

on average. The implication then is that the mean intensity

will be insensitive to nonlinear internal waves. A further con-

sequence of the phase randomizing effect of the linear internal

waves is that after the acoustic field has interacted with a non-

linear wave, the progressive randomization in range will

slowly diminish the memory of the nonlinear waves.

Thus, to demonstrate the aforementioned effects, the

same Monte Carlo simulations from Sec. III were carried

out, but with a sound-speed model of the form

c r; zð Þ ¼ �c zð Þ þ dc r; zð Þ þ dcISW r; zð Þ, where dcISW(r, z) is a

sound-speed perturbation from a three wave, nonlinear

internal-wave packet of the form (Apel et al., 2007)

dcISW r; zð Þ ¼
X3

n¼1

fn sin pz=Dð Þ sech2 r � rnð Þ=Dð Þ d�c

dz
:

(22)

Here the wave amplitudes are fn¼ (8,7,6) m, the wave

widths are D¼ 100 m, and the wave positions are rn¼ (20,

20.5, 21) and (1.0, 1.5, 2.0) km. An example of the

combined sound-speed perturbations from the random inter-

nal waves and the nonlinear internal waves are shown in

Fig. 9. The two different locations of the three-wave packet

(i.e., 1.0 and 20.0 km range) were chosen to cover the cases

where the modes were weakly and strongly phase random-

ized. Note from Fig. 9 that the nonlinear internal-wave

packet represents an extremely strong sound-speed

perturbation.

A. Mean intensity

Figure 10 shows the mean intensity patterns for 200 and

400 Hz propagation through random internal-wave fields

with and without a nonlinear internal-wave packet at 1 km

range. Here the modes incident upon the nonlinear waves

will be quite coherent, and locally the effect of the wave will

be more deterministic. The wave packet is seen to initially

shift the interference pattern, but as the range progresses out,

the mean intensity is more dramatically shaped by the decor-

relation of the modes by the random internal waves. The

mean intensity has lost memory of the nonlinear wave. For

the 200 Hz case the mean intensity at longer ranges with the

wave packet is seen to be somewhat larger than the case

without the wave packet. Apparently the packet has coupled

more energy into the lower, less lossy modes. On the other

hand, for the 400 Hz case, the opposite is seen, that is to say

the packet has coupled energy into higher mode lossy modes.

Such effects of mean attenuation and amplification are con-

sistent with prior model studies (Duda and Preisig, 1999;

Duda, 2006).

The situation of a nonlinear internal-wave packet

located at the 20 km range is shown in Fig. 11. In this case

the modes incident upon the nonlinear wave have been

strongly phase randomized, and the modes are expected to

couple with equal likelihood into and out of one another

with a net average of zero. This is indeed the case, as the dis-

played mean intensity in Fig. 10 is quite insensitive to the

nonlinear wave packet. Given this situation one may rightly

ask the following: over what time span is this mean intensity

estimate relevant, given the rapid variations known to exist

in the shallow water? To first order one could answer that

the time scale is simply the coherence time of the internal

waves (on the order of 1 h), but a more precise answer would

involve examination of the modal coherence times.

FIG. 7. Mean (plus) and minimum (dot) eigenvalue range Rn as a function

of acoustic frequency. The minimum of Rn scales like frequency to the

minus 2, whereas the mean Rn scales like frequency to the minus 1.5.
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B. Scintillation index

The previous results suggest that mean intensity is insen-

sitive to nonlinear internal waves, but is this true of the higher

moments, in particular, the scintillation index? Figure 12

shows the comparison of Monte Carlo simulations of scintilla-

tion index with and without the three wave nonlinear internal-

wave packets for the two acoustic frequencies.

For the case of the nonlinear wave near the source

(upper panels) there are some small differences in SI due to

the shifting of the interference pattern, but the curves are

remarkably similar in overall shape and magnitude. Interest-

ingly for the 200 Hz case the long-range SI values are

actually less than the case without the nonlinear waves. This

is due to the fact that the nonlinear waves have coupled the

more unstable higher mode energy into lower modes as was

demonstrated in the mean intensity (see Fig. 10). A similar

effect is seen in the 400 Hz SI curves in which the SI values

with the nonlinear waves are slightly higher at long range.

FIG. 8. Range evolution of scintillation index from Monte Carlo simulation (red), and adiabatic theory (blue). The upper/lower panels show 200 and 400 Hz

cases, respectively. The adiabatic theory does not have edge effect corrections.

FIG. 9. A realization of sound-speed perturbations from linear and nonlinear internal waves as a function of range and depth (upper panel). The lower panel

shows a horizontal slice through this structure at the depth of maximum sound-speed perturbation.
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When the nonlinear internal-wave packet is placed at

20 km range (lower panels of Fig. 12) it is seen that there is

very little impact of the nonlinear wave on the scintillation

index. This effect can be understood physically in terms of

the loss of coherence of the scattering due to the random

waves, that is to say the phase randomization of the modes

prevents strong, coherent interference of the modes that

would give rise to larger fluctuations. Further study will be

required to better understand this interesting effect.

V. SUMMARY AND CONCLUSIONS

Second and fourth moments of mode amplitudes and

observables of mean and mean square intensity were studied

using transport theory, adiabatic theory, and Monte Carlo

simulation for a shallow-water environment typical of the

summer Mid-Atlantic Bight. For frequencies of 200 and

400 Hz the propagation is seen to be strongly adiabatic with

a rapid decay of cross-mode coherence, whose range scale is

of the order of tens of kilometers. Accurate theoretical esti-

mates of cross-mode coherence are obtained only after

accounting for edge effects, when the range is comparable to

the internal-wave horizontal correlation length. Small cou-

pling effects at these frequencies are correctly modeled using

the transport theory, but significant coupling is not expected

until kilohertz frequencies.

Mean intensity from transport theory and Monte Carlo

simulations are seen to agree within a fraction of a decibel,

except at ranges shorter than the horizontal correlation

length of the internal waves. Again edge effect corrections to

the theory rectify these problems at short range. Because of

strong adiabatic cross-mode decorrelation, the modal inter-

ference pattern in the mean intensity is significantly

smoothed out relative to the unperturbed intensity, pointing

to the importance of random linear internal waves to

shallow-water acoustic prediction. Further, predictions of

mode amplitude fourth moments using adiabatic theory pro-

vide predictions of the scintillation index that agree quite

well with the Monte Carlo simulations. Therefore, the mod-

els described here would seem to provide a very strong low

frequency shallow-water model for mean transmission loss

and its error bar. Of course there is the issue of the nonlinear

FIG. 10. Mean intensity computed from Monte Carlo simulation with (blue)

and without (red) a packet of nonlinear internal waves located at 1 km range.

The upper/lower panels are for 200/400 Hz. The receiver depth is 50 m.

FIG. 11. Mean intensity computed from Monte Carlo simulation with (blue)

and without (red) a packet of nonlinear internal waves located at the 20 km

range. The upper/lower panels are for 200/400 Hz. The receiver depth is 50 m.

J. Acoust. Soc. Am., Vol. 131, No. 2, Pt. 2, February 2012 Colosi et al.: Shallow-water modes 1759

Downloaded 20 Mar 2012 to 128.128.44.26. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



internal waves. However, it is shown that strong cross-mode

decorrelation and progressive phase randomization dictate

that the mean and mean square intensities will be quite

insensitive to strong nonlinear internal-wave packet sound-

speed perturbations. The conclusions of the Monte Carlo

simulation here are indisputable, but further theoretical study

will be required to understand this important result in more

detail.

It must be pointed out, however, that there are several

uncertainties associated with the present results with regards

to predicting fluctuations in the real ocean. The foremost

issue is that very little information is available concerning

the actual shallow-water internal-wave spectrum and its geo-

graphic variability. Studies from moored instrumentation on

the continental shelf of the Eastern United States (Levine,

2002; Yang and Yoo, 2002; Colosi, 2012) suggest a GM-

type spectrum like the one used here is a reasonable model,

but there is little or no information on spectral horizontal iso-

tropy, horizontal homogeneity, frequency-mode number fac-

torization, and spectral parameters. In addition, internal

waves are not the only source of small-scale sound-speed

structure in the shallow water. Spicy thermohaline structure

consisting of compensating temperature and salinity anoma-

lies along an isopycnal have been shown to be the dominant

source of stochastic sound-speed fluctuation in the summer

Mid-Atlantic Bight, and even less is known about the hori-

zontal structure of these features (Colosi et al., 2012).

It must also be kept in mind that the results presented

here are expected to have a strong sensitivity to the back-

ground profiles of sound speed, density, and attenuation.

Within the GM model, one important effect is the stratifica-

tion influence on the horizontal correlation of the internal

waves; a doubling of N0B results in a doubling of the

internal-wave correlation length, and thereby a halving of

the mode decorrelation range Rn,p. Other effects are the vari-

ation of the important beat wavenumbers kmn, the relative

mode stripping from attenuation, and the source depth (and

thus initial mode energy distribution).
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