水土保持學報 36(3): 215-230 (2004) Journal of Soil and Water Conservation, 36(3): 215-230 (2004)

集水區植生復育評估系統與降雨逕流模式建置之研究

林昭遠⁽¹⁾宋之光⁽²⁾林壯沛⁽³⁾

摘要

烏溪流域經歷九二一集集大地震後產生多處崩塌地,在暴雨期間易造成二次災害,本研 究利用常態化差異植生指標(Normalized Difference Vegetation Index; NDVI)量化分析乾峰橋集 水區崩塌區位及其植生復育情形並建置集水區崩塌地植生復育評估系統,作為崩塌地監測之 用;另以地理統計推求降雨資料之空間分布配合等集流時間概念修正合理化公式之限制,透過 實測流量資料分析推求集水區監測站降雨-逕流歷線之修正值α(洪峰到達時間修正係數)、β(洪 峰値修正係數)及退水修正式 R,建置集水區降雨-逕流模式。研究結果顯示九份二山崩塌區位 於地震後三年之植生復育率有逐年改善之趨勢,復育率分別為2000年27.1%、2001年40.3% 及2002年52.4%。集水區降雨-逕流模式之修正係數α與集水區最大降雨強度成負相關,β則與 集水區洪峰前累積雨量成正相關;若以不同時期之植生覆蓋狀況予以推估,可得地表逕流量將 隨著植生復育改善而降低。

(關鍵詞:常態化差異植生指標、植生復育、崩塌地、流量歷線)

A Study on Vegetation Index Analysis and Estabishment of A Rainfall-Runoff Model

Chao-Yuan Lin

Professor, Department of soil and water conservation National Chung-Hsing University, Taichung, Taiwan, R.O.C.

Chin-Kuang Sung

Graduate Student, Department of soil and water conservation National Chung-Hsing University, Taichung, Taiwan, R.O.C.

J.P. Lin

Assistant Scientist, Division of Watershed Management Taiwan Forestry Research Institute,53,Nanhai Rd.,Taipei,100,Taiwan

(2) 國立中興大學水土保持系碩士班研究生

⁽¹⁾ 國立中興大學水土保持學系教授

⁽³⁾ 行政院農業委員會林業試驗所集水區經營系助理研究員

ABSTRACT

The "921 Chichi Earthquake" resulted in numerous landslides in the Chian-Feng Bridge watershed. Satellite images and digital terrain models were used to process the Vegetation Index analysis for identifying landslide sites and extracting topographic information in this study area. A system coupled with the GIS data developed for this research has been effectively used to monitor and/or assess the vegetation recovery rate of the landslides. Peak flow estimation and hydrograph simulation by the rainfall-runoff model were employed to analyze affecting parameters for flood events. The correction coefficients (α , β) and the revised recession curve (R) calibrated from the observed data can be presented as the index of watershed characteristics. The correction coefficient α -value represents water conservation capability; the β -value can be employed as the index of sediment concentration. Vegetation analyses confirm a good trend of vegetation recovery at the landslide sites of Chiufenershan peaks area (VRR= 27.1% in 2000 \times VRR=40.3% in 2001 \times and VRR=52.4% in 2002, respectively). Simulations have suggested not only a negative correction between α -value and the maximum rainfall intensity but also a positive correction between β -value and cumulative rainfall before peak flow. Furthermore, better vegetation recovery rate results in less surface run-off in the watershed according to the model simulation in this study.

(keywords: Normalized difference vegetation index, Landslides, Rainfall-runoff model)

前言

民國八十八年九月二十一日凌晨,台灣 中部發生芮氏規模 7.3 強烈地震,除造成人員 大量傷亡與許多房屋毀損之外,亦導致台灣 中部地區多處山坡地發生山崩,烏溪流域尤 以九九峰以及國姓鄉九份二山地區最爲嚴 重。由於崩塌區位分佈遼闊且零散,若採用 現地調查或航照判釋不但費時費力,且難以 監測及評估大範圍崩塌區位之植生復育情 形,本研究利用衛星影像具有多時攝像、大 面積涵蓋及快速分析等優點,並可與舊有影 像比對,進而得知其變遷過程,對 921 地震 崩塌區位植生復育之監測與評估助益極大。

南投縣國姓鄉南港村長石巷一帶受 921 集集大地震影響,發生大規模的土石崩塌, 造成南港溪上游北山坑溪(木屐欄溪)的支流 韭菜湖溪及澀仔坑溪等因崩塌土石阻斷溪 流,形成韭菜湖溪及澀仔坑溪兩處堰塞湖。 為了預防災害的發生,即建置植生復育評估 系統,利用植生復育指標推算集水區降雨-逕 流模式。

本研究以九份二山爲研究試區,分析自 九二一地震後四年來的衛星影像,探討崩塌 區位的植生復育率,並蒐集烏溪乾峰橋上游 集水區的水文資訊,配合衛星影像處理,以 常態化差異植生指標爲基礎結合地理資訊系 統,考慮空間及時間分布因素,建立乾峰橋 集水區的降雨-逕流模式。

材料與方法

(一)研究地區

烏溪位於台灣西海岸中部為臺灣第 6大河川,發源於中央山脈合歡山西麓, 東以中央山脈為界,北鄰大甲溪流域,西 臨台灣海峽,南鄰濁水溪流域,九份二山 崩塌地位於南投縣國姓鄉崁斗山山麓一 帶,韭菜湖溪自南往北於崩塌處與支流澀 仔坑溪匯流,西折繞流至中興橋後,直下 西方南興橋與北山坑溪匯流進入南港溪,

圖 1. 研究試區位置圖 Figure 1. Site of the study area.

圖 2. 研究流程 Figure 2. Flow chart of the study.

最後注入烏溪。堰塞湖崩塌地區範圍北 起太平角海拔 650 公尺至崁斗山南稜海 拔 1040 公尺沿順向坡向東南崩塌,南屆 韭菜湖溪堰塞湖海拔 530 公尺,東起中 興橋前,西迄崁斗山南稜,呈西北向東 南傾斜約 28 度,樣區位置如圖 1 所示。 (二)研究流程

本研究以數值地形模型(DTM)資 料、SPOT 衛星影像及電子地圖,利用遙 感探測及地理資訊系統等技術,配合模式 分析萃取崩塌區位、植生覆蓋因子(C0 值)、集水區及水系等,另外除九份二山 試區外,增加並比較同屬烏溪流域之九九 峰,其崩塌區位植生復育率之評估,並以 烏溪流域乾峰橋上游集水區為範圍,利用 集水區及其鄰近雨量站歷年暴雨事件之 雨量資料,採反距離權重法進行內差,分 別求得區域內之時雨量空間分布,另利用 法國 SPOT 衛星影像,求得常態化差異植 生指標(NDVI),經線性反向配置後,決 定初始之逕流係數 C 值, 並考慮集水區 逕流係數係隨時間變化,推求分析集水區 逕流係數之時間空間變動模式。

同時以等集流時間線之觀念,劃分出 等集流時間匯流面積,克服合理化公式在 應用上集水區面積須小於1,000公頃之限 制,建立合理化公式-流量歷線修正式, 模擬歷年暴雨產生之流量歷線,再與實測 之流量資料對照,校正洪峰時間(α值)及 洪峰流量(β值),經整理所求得之α值與β 值,進行統計分析,渴求得各流量測站集 水區之α、β值分布情形與值域範圍,做 為預警系統建置之參考。研究流程如圖 2 所示。

研究方法

1. 植生覆蓋因子分析

SPOT 衛星影像感測器所接收的波段 為綠光(0.5~0.59µm)、紅光(0.61~0.69µm) 及近紅外光(0.79~0.9µm)三個波段,植物體 對近紅外光的反射較裸露土石強,有植生 覆蓋的地表在衛星影像上呈紅色色調。因 綠色植物有吸收藍光、紅光及強烈反射紅 外光之特性,可用於植物資源之探測。

常態化差異植生指標(Normalized Difference Vegetation Index, NDVI),可以用 來判別植生反射量之多寡,適用於監測植 生變化。而 NDVI 指數係採用健康的綠色 植生在近紅外光有強烈反射,植生因光合 作用對紅光有強烈吸收的特性,依二者波 段之相差與和的比例而成,如下式:

$$NDVI = \frac{NIR - R}{NIR + R}$$

式中 NIR:近紅外光反射值。

R:紅光反射值。

NDVI 值介於-1~1 之間,小於零的値 通常屬於非植生之雲層、水域、道路和建 築物等;而指數愈大時,代表地表植物生 育愈旺盛、植被覆蓋佳(Burgan and Hartford,1993)。將NDVI 值域,經線性反 轉成介於 0~1 的 C₀值;C₀值愈大植生覆蓋 愈差,用來判集水區釋崩塌區位(圖 3)及植 生情形(圖 4)。

圖 4. 九份二山崩塌區位 C₀ 值分布圖 Figure 4. Spatial distribution of C₀ factor.

由衛星影像萃取 NDVI 値後轉換成植生 覆蓋因子(C0 値),由各時期的衛星影像所萃 取 C0 値的持續變遷,計算植生復育率,藉以 探討崩塌區位植生復育程度及優劣。崩塌區 位 植 生 復 育 率 (Vegetation Recovery Rate, VRR)定義如下(林昭遠等, 2001)

$$VRR(\%) = \frac{C_1 - C_2}{C_1 - C_0} \times 100\%$$

式中 C₀為崩塌前地表之植生覆蓋因子。 C₁為崩塌初期地表之植生覆蓋因子。 C₂為評估期地表之植生覆蓋因子。

2. 集水區動態劃分

以累積流量為門檻値自動劃分集水區, 多依使用者主觀認定及劃分後各河段存在有 違反集水區定義之集水區,在應用上有其盲 點,實用上宜以集水區之出流口為劃分依 據,針對要整治或處理的區位,動態劃分出 流口之集水區範圍供規劃參考(林昭遠等, 1999)。本研究利用集水區動態劃分方法,以 各分析水文站為集水區出口點,根據地形模 擬之排水流向,向上游自動追蹤流經該點之 所有排水區位,劃分集水區範圍。

3. 集水區地文資訊分析

本研究係以水土保持技術規範為依據, 整合數值高程模型(DEM)資料及地理資訊系 統技術,分析集水區地文資訊,以了解流域 特性,做為災害即時治理之參考。

- 4. 水文資料蒐集
 - (1) 選取颱風暴雨

依最大瞬時流量高低篩選近十年之水 文事件:83年道格、葛拉斯、85年賀伯颱 風、86年溫妮颱風、安伯颱風、89年桃芝 颱風、納莉等七場颱風,此群組為造成高 洪峰流量之水文事件如圖 5。

(2) 雨量、流量資料

由經濟部水利署提供之雨量 站位置及降雨資料,選取翠巒、惠 蓀、清流、北山、頭汴坑、集集、 卡奈托灣、龍神橋等八個雨量站如 圖 6,蒐集歷史颱風暴雨期間之逐 時雨量資料如圖 6,經地理統計(反 距離權重法)進行內差分析,分別求 得區域內每小時降雨之空間分佈。

Figure 5. Peak flows of tested storm events (Chian-Feng Bridge).

圖 6. 乾峰橋集水區水文站分佈圖

Figure 6. Spatial distribution of meteorological stations (Chian-Feng Bridge).

乾	面積	周長	長度	主流長度	河川數量	平均高程
嶠	960.54	237.36	46.96	77.86	875.44	367
集	平均坡度	水系密度	形狀因子	密集度	圓比値	細長比
瓜區	53.64	0.38	0.16	0.46	0.21	0.74

表 1. 乾峰橋集水區地文資訊 Table 1. The topographic information of Chian-Feng watersheds.

5. 乾峰橋集水區地文分析

利用 DTM 資料萃取集水區及水系,配合 雨量資料及地表狀況,進行集水區地文資料自 動萃取(表 1)。

6. 集水區降雨-逕流模式

本研究之降雨-逕流模式係以等集流時間 之概念,計算河道各點之集流時間,並建立其 與出口之時間差,配合即時降雨資料及合理化 公式-流量歷線修正式動態推估監測站之流量 歷線。

(1) 集流時間的計算

集流時間之定義為集水區最遠點的雨水 到達集水區出口的時間,欲準確地計算集流 時間,應考慮集水區坡面逕流之集流時間(t₀) 加上河道之上游頂點至出口之集流時間 (t_s),亦即由集水區最遠端到達出口所需的時 間,一般為漫地流時間及渠道流時間之和。 而 t₀之估算採用坡面長度除以漫地流速度, 因此坡面長度係由集水區最遠端流至河道之 距離,而漫地流流速一般在 0.3-0.6 m/s,可 依集水區之現況輸入計算。由河道上游至出 口所需時間,依 Rziha 公式計算,即

$$t_s = \frac{l_s}{60 \cdot v} \qquad \qquad v = 20(\frac{h}{l_s})^{0.6}$$

h 為河道上游與出口之高差[m]。 ls 為河道長度[m]。

v 為流速[m/s]。

(2) 等集流時間線

集流時間均分為每時間單位 後,將集水區內具有相同匯流(至出 口)時間之點連接,則每一集流時間 線可劃分集水區為許多區域,假設區 域內為均勻降雨,若以小時為單位, 即每一集流時間線的時間間隔為 1 小時,則每小時產生的逕流量如下:

$$t = 1, Q_1 = C_1 I_1 A_1$$

$$t = 2, Q_2 = C_2 I_1 A_2 + C_1 I_2 A_1$$

$$t = 3, Q_3 = C_3 I_1 A_3 + C_2 I_2 A_2 + C_1 I_3 A_1$$

:

$$t = n, Q_n = \sum_{i=1}^n C_i I_{n-i+1} A_i$$

(3) 初始逕流係數

逕流係數的定義原為集水區中 洪峰流量於集流時間內對平均降雨 強度之比值,但此集塊系統之觀念往 往與實際情形不符合,為求準確之集 水區逕流係數,需掌握集水區每一網 格單元之空間特性,本研究採分佈 (distributed)系統求算集水區逕流係 數之空間變化。利用植生指標之方法 來考慮地表特性,具有全面概括及量 化簡便之優點,可做為推估集水區之 逕流係數分布之基礎。以遙測衛星影 像之常態化差異植生指標(NDVI)推 估初始逕流係數。由於 NDVI 之值域介於-1 至 1 之間,為配合逕流係數之合理值域 (0~1),即當土壤狀況愈不良,植生量愈低, 所對應的逕流係數愈大的條件下,將 NDVI 線性反向配置為初始逕流係數,其公式為

 $C_0 = (1 - NDVI) / 2$.

(4) 逕流係數之動態模式

逕流係數實際上與時空之變動有關可由 下式得知:

$$C = \frac{R}{P} = \frac{(P - I')/t}{P/t} = \frac{I - f}{I} = F(I, f)$$

(式中,R 為逕流量;P 為降雨量;

I'為入滲量;t為降雨延時;I為降雨強度;f 為入滲率。)

逕流係數 C 值與降雨強度和入滲率有關,影響入滲之因子繁多且彼此互為因果, 無法於現地逐一量測。若以常態化差異植生 指標(NDVI)建置集水區逕流係數之動態模 式,一方面因 NDVI 量測的植生生長狀況可 間接反應集水區內入滲量的變化;另一方面 影像資料獲得的快速簡便有利於即時監測系 統洪峰流量之推估。

配合即時雨量及合理化公式-流量歷線 修正式,可動態計算集水區之流量歷線。式 中之逕流係數C與集水區之土地利用型態有 關,為迅速推求C值,假設土地利用型態(即 植生覆蓋情形)與土壤、地質之立地條件有 關,植生覆蓋良好多屬地形較平坦、土壤化 育較好、入滲較佳之地區。因逕流係數與入 滲率有關,亦為時間的函數,可以 Horton 入滲公式之概念為基礎,推導集水區逕流係 數之動態時空分佈模式。

在降雨初期時,土壤之入滲能力高,隨 降雨時間增長,土壤之入滲能力逐漸下降, C 値隨降雨時間增長而變大,兩者之關係可 加入時間(t)因子,基於此理念,假設C値亦為指數函數,且隨降雨持續時間而遞增,代入起始條件,t=0時C=0,建立一逕流係數隨時間變化之變動模式。

$$C = 1 - e^{-C_0 t}$$

(5) 模式檢驗

以效率係數(Cofficient Efficiency; CE)檢驗模式模擬結果 之優劣,效率係數的計算式如下:

$$CE = 1 - \frac{\sum_{i=1}^{n} [Q_{0}(i) - Q_{c}(i)]^{2}}{\sum_{i=1}^{n} [Q_{0}(i) - \overline{Q_{0}}(i)]^{2}}$$

 $Q_0 =
觀測流量(cms) \circ$

 $Q_{c} = 模式推估流量(cms)。$

 Q_0 = 觀測流量平均値(cms)。

結果

(一) 崩塌區位植生復育率分析

計算地震前、地震後、以及地震後 一年、兩年、三年三個時期,崩場區位 之植生覆蓋因子(C₀),作為地表復育 指標(圖 7),再以植生復育率評估崩場 區位於地震後一年、兩年、三年之植生 恢復情況,顯示經地震一年後九九峰、 九份二山崩場區位植生復育率為 27.1 %、22.9%,兩年後為 37.7%、40.3%, 三年後為 58.5%、52.4%均顯示其植生 復育情況良好(圖 8)。

圖 7. 崩塌區位 Co值分布

(二) 集水區降雨-逕流模式

模擬結果分別如圖 9~圖 15,模式檢算成 果如表 2。所推估暴雨場次,以高洪峰流量及 單峰型暴雨之模擬較佳,高洪峰流量除了賀伯 颱風外,平均效率係數 CE 均在 0.7 以上。迴 歸分析結果顯示,集水區最大降雨強度與洪峰 時間校正係數 α 成負相關(圖 16),洪峰流量和 α 成負相關(圖 17),洪峰前累積雨量和 α 成負 相關(圖 22)。β 校正係數為洪峰流量之校正, β 值越高,表示模式所推算之洪峰流量遠小於 實測流量,需加以調整修正。由於一般水文模 式所推算之流量皆為清水流,且河道流量資料 多由水位率定而得,若水流中夾砂量愈高,模 式所推算之流量(水位)與實測資料 相較,明顯低估。β 値可顯示含砂水 流之含砂濃度,爲河道輸砂之重要指 標。

在降雨強度較小的場次,由於模 式推估所產生的流量,部分入滲於地 表,所以β亦可以表現出集水區之涵 養水源能力,當β値愈小表示該場降 雨之涵養水源能力愈佳。此外,β值 較小亦有可能爲集水區內河道阻塞 所造成,由於地震觸發山區山崩,崩 落之土石即堆積於山腹或山谷中,行 成天然的土石壩。當山區降雨強度大 或延時長超過引發土石壩之潰壩 時,飽涵水分之土石即可形成土石 流,所以當模式在前期降雨所推估之 β 值較小時,除了涵養水源佳外,亦 可能爲土石流危險溪流之警訊指 標。分析模擬結果由(圖18)可看出 集水區最大降雨強度與β成正相關, 洪峰流量和β成正相關(圖19),洪峰 前累積雨量和β成正相關(圖23)。

圖 10. 桃芝颱風(2001/7/29) 流量歷線 模擬結果

Figure 10. Simulation of runoff hydrograph for the Typhoon TORAJI.

圖 11. 賀伯颱風(1996/7/30) 流量歷線 模擬結果

Figure 11. Simulation of runoff hydrograph for the Typhoon HERB.

圖 12. 葛拉斯颱風(1994/9/1) 流量歷線 模擬結果

Figure 12. Simulation of runoff hydrograph for the Typhoon GLAYS.

- 圖 13. 溫妮颱風(1997/8/17) 流量歷線 模擬結果
- Figure 13. Simulation of runoff hydrograph for the Typhoon WINNIE.

圖 14. 安伯颱風(1997/8/29) 流量歷線 模擬結果

Figure 14. Simulation of runoff hydrograph for the Typhoon AMBER.

- 圖 15. 納莉颱風(2001/9/16) 流量歷線 模擬結果
- Figure 15. Simulation of runoff hydrograph for the Typhoon NARI.

颱風名稱	道格	葛拉斯	賀伯	溫妮	安伯	桃芝	納莉
頻率年	3	2	2	1	1	4	1
α校正	0.26	0.4	0.28	0.35	0.7	0.32	0.92
β校正	0.9618	0.285	0.6463	0.2806	0.2495	0.7156	0.2285
最大瞬時流量 (cms)	3560	1090	1800	328	268	4460	150
最大時雨量 (mm/hr)	67	63	52	22	34	129.5	29
洪峰前累積雨 量(mm)	267.15	189.98	354.93	114.12	78.99	265.63	81.28
效率係數(CE)	0.9235	0.8834	0.6811	0.9331	0.7039	0.8060	0.8905

表 2. 模式檢算成果表 Table 2. Summary for each simulated storm hydrograph.

表 3. 退水曲線修正表

Table 3. Recession simulation for each storm hydrograph.

殿国夕秘	流量分類	最大雨量	洪峰流量	R=A ln x-B		效率係
<u>严电</u> /出认-石/冉		(mm/hr)	(cms)	A値	B 値	數(CE)
道格	高流量	67	3560	920	-10	0.9051
(1994/8/7)						
葛拉斯	市法昌	63	1090	250	90	0.865
(1994/9/1)	中沉重					
賀伯	山太早	52	1800	168	358	0.2980
(1996/7/30)	甲弧里					
溫妮	低流量	22	328	49	13	0.8595
(1997/8/17)						
安伯	低法昌	34	268	45	22	0.9697
(1997/8/29)	此机里					
桃芝	古法旦	129.5	4460	355	605.	0.9935
(2001/7/29)	向抓里					
納莉	瓜法旦	29	150	20	18	0.9175
(2001/9/16)	心心里					

圖 16. α值與最大降雨強度關係圖 Figure 16. Relationship between α-value and the maximum rainfall intensity.

Figure 17. Relationship between α -value and peak discharge.

圖 19. β値與洪峰流量關係圖 Figure 19. Relationship between β-value and peak discharge.

分析每場次颱風暴雨求得之退水曲線斜率方程式(R=A ln x-B),將A 値及 B 値分別 與洪峰流量進行迴歸分析,發現洪峰流量和 A 値成正相關(圖 19);洪峰流量和 B 値成負 相關(圖 20)。依退水曲線作分析結果(表 3), 除賀伯颱風場次之外;其他場次所模擬之退 水其效率係數(CE)皆相當高。退水修正式可 依頻率年加以分類,分析結果高流量其退水 修正式為 R=637.5 ln X-320;中流量之退水修 正式為 R=209 ln X-268;低流量之退水修正 式為 R=38 ln X-320。

圖 21. 洪峰流量和 B 值關係圖 Figure21. Relationship between B-value and peak discharge.

圖 24. 乾峰橋集水區 Co 値分布圖 Figure24. The Co factor in the Chian-Feng Bridge.

圖 23 β値和洪峰前累積雨量關係圖 Figure 23. Relationship between β-value and cumulative rainfall before peak flow.

	高流量	中流量	低流量	
植生覆蓋	桃芝颱風	賀伯颱風	安伯颱風	
因子C₀值	洪峰流量	洪峰流量	洪峰流量	
	(cms)	(cms)	(cms)	
頻率年	4	2	1	
Co=0.1024	1005 27	822.00	124.77	
921 地震前	1005.57	032.99		
Co=0.147	3886 11	000 03	146.62	
921 地震後	5000.44	JJJ.JJ		
Co=0.2697				
2001 桃芝	4460	1800	268	
颱風後				
Co=0.1225	2560	1059 53	114.79	
2002/11/06	2000	1057.55		

分析監測站 15 年來流量資料並以對數-皮爾森第三類分布法推算頻率年,將流量區 分成高、中、低三類,頻率年大於 3 為高流 量、2~3 為中流量、1 為低流量,並以九二一 地震前至今四年衛星影像推算之植生覆蓋因 子模式推估集水區之降雨逕流模式,其植生 覆蓋因子 C₀值分佈如圖 24 ,模擬結果如表 5,由 C₀值分布圖可知桃芝颱風後崩塌範圍 擴大使得植生覆蓋變差 C₀值變為 0.2697,至 2002年11月植生覆蓋已改善而漸趨近於地震 前的狀態 C₀值變為 0.1225。

由不同時期植生覆蓋因子推估降雨-逕流發現,桃芝颱風最大瞬時流量比地震前增加 2.37倍,賀伯颱風增加2.16倍,安伯颱風增加2.14倍,顯示集水區因植生覆蓋變差進而 影響地表逕流。

討論

烏溪流域歷經九二一地震後,產生許多 崩塌地,而利用衛星影像資訊配合數位地形 模型能將大面積崩塌區位做即時與量化之分 析,對崩塌地列管與植生復育工作助益極 大,本研究分析九份二山崩塌區位植生復育 率,到今已達 52.4%顯示植生復育狀況良好。

爲必免颱風暴雨來臨時,造成嚴重災 害,故建置降雨-逕流模式,估算乾峰橋流域 之洪峰流量,係以等集流時間線之概念,將 集水區劃分成若干等集流時間區位,依降雨 延時累計各區位之逕流水量,已改善合理化 公式在集水面積上之限制,可推估大集水區 之逕流量。

集水區逕流係數傳統上係採用集塊式 (lumped)推算,考量集水區逕流係數値於降雨 期間是隨時空之變異而變化,本研究以衛星 影像之常態化差異植生指標結合地理資訊系 統,建置分佈式(distributed)集水區逕流係數 動態模式,能有效探討集水區土地利用變遷 對逕流之影響。透過監測站實測流量資料, 可推算不同降雨強度下,合理化公式-流量歷 線修正式之α(洪峰到達時間修正係數)、β(洪 峰值修正係數)校正係數及退水修正式 R 。

不同暴雨強度模擬結果顯示,α值越小, 集水區對該場暴雨水源涵養能力越差,即表 示該集水區有崩塌地的產生或植生被大量破 壞。β值除了為逕流含砂濃度指標外亦可在流 量高估時顯示出河道堰塞情況及集水區內土 石流發生之可能性用以評估集水區土地利用 變遷與整治率之計算參考及土石流危險溪流 警訊指標。

參考文獻

- 王如意、簡振和 (1980)「小集水區設計 逕流量推估方法之研究(二)」,行政院農 業委員會,輔助編號:79 農建-71-林 -26(4-3)研究計畫報告,pp.129-152。
- 王如意、蔡宜樺、王鵬瑞、洪君伯 (2000)
 「三角形不規則網格之分布型降雨-逕流 模式」,農業工程學報,46(1):pp.1-22。
- 呂建華、吳銘哲(1993)「利用計量地形 方法推估集水區降雨之集流時間」,第十 二屆測量學術及應用研討會論文集, pp.513-527。
- 名建華、陳重宏、陳通發、鄧偉傑 (1996) 「利用數值地形資料建立集水區地文參 數之查詢系統」,第十五屆測量學術及應 用研討會論文集,pp.187-196。
- 林文賜(2002)「集水區空間資訊萃取及 坡面泥砂產量推估之研究」,國立中興大 學水土保持學研究所博士論文。
- 林昭遠、林文賜、張力仁 (1999)「數値 地形模型應用於集水區規劃與整治之研 究」,中華水土保持學報,30(2): 149-155。
- 林昭遠、林文賜 (2000)「集水區地文水 文因子自動萃取之研究」,中華水土保持

學報,31(3):247-256。

- 8.林昭遠、林文賜、林信輝(2000)「集集 震災崩塌地植生復育監測與評估」,水土 保持植生工程研討會論文集,pp.37-47。
- 9. 林昭遠 (2001)「集水區崩塌地植生復育 監測與評估」,水土保持植生工程研討會 論文集,pp.72-81。
- 10. 林莉莉(1992)「台灣上游集水區洪峰流量的產生、特性和計算方法之研究」,國立中興大學水土保持學研究所碩士論文。
- 11. 陳文福 (1989)「通用水文系統模式應用 於四個森林集水區水文分析之研究」,國 立台灣大學森林學研究所博士論文。
- 12. 陳文福 (1992)「集水區環境與水文之關 係」,中華水土保持學報,24(1):
 113-129。。
- 陳朝圳、馬仕穆 (2001) 「以 SPOT 衛星 影像推測南仁山森林生態系葉面積指 數」,中華林學季刊,34(1):63-72。
- 14. 郭振民 (1999)「應用遙測與地理資訊系 統於分布型降雨-逕流模式之研究」,國立 成功大學水利及海洋工程研究所碩士論 文。
- 15. 黃國楨、王韻皓、焦國模(1996)「植生 指標於 SPOT 衛星影像之研究」,台灣林 業,22(1):45-52。
- 16. 劉光武(1991)「分布型降雨-逕流模式 之研究」,國立成功大學水利及海洋工程 研究所碩士論文。
- 17. 盧惠生、林壯沛、陸象豫、黃良鑫 (1990)
 「上游小集水區逕流係數之研究」,水土
 保持學報,21(1):1-11。
- Atkinson, E. (1995) Method for Assessing Sediment Delivery in River Systems. Hydrological Sciences Journal 40(2): 273-280.

- Band LE. 1986. Topographic Partition of Watersheds with Digital Elevation Models. Water Resources Research 22(1): 15-24.
- Bedient, P. B. and W. C. Huber (2002) "Hydrology and Floodplain Analysis 3rd ed.", Prentice-Hall, Inc., New Jersey, USA, pp.394-398.
- Burgan, R. E., and R. A. Hartford (1993) "Monitoring Vegetation Green- ness with Satellite Data", USDA For. Serv. Gen. Tech. Rep. INT297, p.13.
- Gee, M., W. A. Thnomas, V. Bonner, and D. W. Davis (2003) "HEC-6 Correction and Application", http://www.hec.usace.army.mil/.
- Loveland, T. R., and D. O. Ohlen (1993) "Experimental AVHRR Land Data Sets for Environmental Monitoring and Modeling", Environmental Modeling with GIS, Oxford University Press, New York, pp.379-385.
- Minshall, N. E. (1960) "Predicting Storm Runoff on Small Experimental Watersheds", J. Hydrau., ASCE, 86(HY8), pp.28-33.
- 25. USACE (2001) "Hydrologic Modeling System HEC-HMS User's Manual", US Army Corps of Engineers, Hydrologic Engineering Cneter, Institute for Water Resources, US Army Corps of Engineers, Davis, California, USA.
- Van Dijke JJ, Van Westen CJ. (1990) Rockfall Harzard: A Geomorphological Application of Neighborhood Analysis with ILWIS. ITC Journal, No.1. p40-44.
- Van Westen CJ. (1993) Application of Geographic Information System to Landslide Harzard Zonation. ITC Publication No.15. International Institute

for Aerospace Survey and Earth Sciences (ITC), Enschede, Netherlands. 245pp.

 Yang, C.T. and F.J.M., Simões (2001) "User's Manual for GSTARS 3.0", Sedimentation and River Hydraulics Group, Technical Service Center, Bureau of Reclamation, U.S. Department of the Interior, Denver, Colorado, USA.

93 年 7 月 15 日收搞 93 年 8 月 30 日修改 93 年 9 月 8 日接受