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A variety of localization methods with normal mode theory have been established for localizing

low frequency (below a few hundred Hz), broadband signals in a shallow water environment.

Gauss-Markov inverse theory is employed in this paper to derive an adaptive normal mode back-

propagation approach. Joining with the maximum a posteriori mode filter, this approach is capable

of separating signals from noisy data so that the back-propagation will not have significant influ-

ence from the noise. Numerical simulations are presented to demonstrate the robustness and accu-

racy of the approach, along with comparisons to other methods. Applications to real data collected

at the edge of the continental shelf off New Jersey, USA are presented, and the effects of water col-

umn fluctuations caused by nonlinear internal waves and shelfbreak front variability are discussed.
VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3672643]
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I. INTRODUCTION

Normal mode back-propagation is a physics-based signal

processing technique which utilizes the propagation properties

of low frequency sound (below a few hundred Hz) in an ocean

waveguide, and can be applied to target-localization. Acoustic

normal mode propagation theory shows that low frequency

sound propagation, especially in shallow water where the water

depth is within the order of tens of meters, has significant

acoustic mode dispersion (e.g., Frisk, 1994). Consequently, a

received pulse on a hydrophone is comprised of several normal

mode arrivals with separate arrival times, and the arrival time

difference between each mode can provide useful information

on the source-to-receiver distance. Additionally, the source

depth can be estimated from the ratio of excitation of different

modes or from the closure relation of normal modes. This pa-

per presents an adaptive back-propagation approach employing

Gauss-Markov inverse theory as well as adiabatic mode theory.

This adaptive approach can adjust its kernel to balance robust-

ness and accuracy depending on the uncertainty of the esti-

mated mode arrivals.

Bucker (1976) first introduced Matched Field Processing

(MFP) to utilize acoustic propagation physics via numerical

models for source localization. Comprehensive discussions on a

variety of MFP methods can be found in Baggeroer et al. (1993)

and Tolstoy (1993). A back-propagation method can be consid-

ered as a variant of MFP due to the fact that it also makes use of

phase conjugation. Instead of correlating the field with a model

replica, phase conjugation in back-propagation is performed to

reverse the waveguide dispersion. The application of back-

propagation source localization was first introduced by Tappert

et al. (1985). Their approach was to employ a parabolic-

equation (PE) propagation model to back-propagate the meas-

ured sound pressure on a vertical line array (Tappert et al.,
1985). Voltz and Lu (1994) also established a back-propagation

method using ray theory in the time domain. A more detailed

overview of back-propagation techniques can be found in

Meyer et al. (2006), and applications for geoacoustic inversion

can be found in Dizaji et al. (2002) and Park et al. (2010).

Source localization using normal mode theory has drawn

much attention in shallow water applications due to the modal

nature of sound propagation. Shang (1985) and Shang et al.
(1985) recognized that the source range and depth can be

determined from the phase difference between modes and the

closure relation of normal modes, respectively. Yang (1987)

utilized jointly the phase conjugation and the closure relation

for normal mode beamforming to source locations, which can

also be considered as Matched Mode Processing (MMP).

Yang (1990) showed that when the sampled-mode-shape

mode filter (Ferris, 1972) is used, MMP is equivalent to MFP.

One advantage of MMP is its tolerance to some environmen-

tal mismatch, since one can use a subset of modes that are

less sensitive to the mismatch. However, when there are only

a small number of modes observed or used, the closure rela-

tion holds only partially, causing some degradation of source

depth resolution and often leading to biased estimates. To pre-

vent this possible drawback, Shang (1989) proposed to use the

ratio of mode amplitudes to achieve higher resolution. A

potential disadvantage of this ratio method is its lack of

signal-to-noise robustness. The ratio method requires a high

signal-to-noise ratio, but the closure relation method does not.

In this paper, an adaptive approach is presented to blend these

two methods and procure the advantages of both.

Passive acoustic technology has been applied extensively

to marine mammal monitoring (e.g. Clark et al., 2010), local-

ization and tracking (e.g., Thode et al., 2000; Baumgartner

et al., 2008). The normal mode back-propagation approach

presented here has significant potential for improving long-

term, long-range monitoring of baleen whales in coastal areas
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and on continental shelves, as it relies on only a single array

sensor site. An example of this advantage is reported by New-

hall et al. (2012) for tracking sei whales (Balaenoptera borea-
lis) on the New Jersey shelf.

The paper is organized as follows. The method is

explained in detail in Sec. II, and considerations for implement-

ing the method are discussed in Sec. III. Simulation studies are

shown in Sec. IV. To understand, calibrate and benchmark the

technique in the real world, the method is employed in Sec. V

to localize low-frequency broadband sources deployed during

the Shallow Water 2006 (SW06) experiment (Tang et al.,
2007) off the coast of New Jersey in 2006. Finally, conclusions

and future directions are addressed in Sec. VI.

II. NORMAL MODE BACK-PROPAGATION METHOD

The normal mode back-propagation method utilizes

modal dispersion to passively determine the source location

with a basic assumption that the mode coupling is negligible

so that adiabatic mode theory holds. The method is briefly

described here. The first step is to implement a vertical mode

filter to obtain individual modal arrivals from vertical hydro-

phone array data, and then back-propagate those modes with

their own group speeds derived from the acoustic waveguide

parameters. Back-propagation will reverse the modal disper-

sion, and the source position is estimated at the range where

the back-propagated modes coincide with each other. For

source depth estimation, two physical principles are utilized:

(1) the ratio of excitation of different modes and (2) the nor-

mal mode closure relation. An adaptive method is proposed

to allow a smooth transition from one to another depending

on the signal-to-noise ratio. Source bearing is known prior to

the back-propagation, as the bearing information can be

obtained from beamforming a horizontal line array. In one of

the examples shown in this paper, a horizontal beamforming

technique employing normal mode theory will be shown.

The detailed methodology of this source localization

method is provided in the rest of this section, and normal

mode theory is reviewed first to provide some background.

A. Normal mode theory

Considering a broadband sound source at~xs with a source

spectrum S(x), the sound pressure time series p(t) at a re-

ceiver at~xr can be expressed as an inverse Fourier transform

pð~xr; tÞ ¼
1

2p

ð1
�1

SðxÞGð~xr;x;~xsÞe�ixtdx; (1)

where x is angular frequency, and Gð~xr;x;~xsÞ is the Green’s

function between ~xs and ~xr. From adiabatic mode/WKB

theory (Frisk, 1994) one can get a two-dimensional (2-D)

normal mode solution for the Green’s function in a slowly

varying environment:

Gð~xr;x;~xsÞ¼
ffiffiffiffiffiffi
2p
p

eip=4
X

m

Wmðzs;xs;ys;xÞ
qð~xsÞ

Wmðzr;xr;yr;xÞ

�
exp

ð~xr

~xs

½ifmðx;y;xÞ�amðx;y;xÞ�dr

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fmðxr;yr;xÞR

p ; (2)

where an auxiliary variable r is used to denote the distance

along the radial from the source to the receiver, and 0 � r � R.
Wm is the mth mode function, fm is its horizontal wavenumber,

and am is its attenuation. The modes are obtained from the

depth-dependent normal mode equation at each horizontal posi-

tion with proper boundary conditions on the sea surface and the

seafloor:

qðz;~xHÞ
d

dz

1

qðz;~xHÞ
d

dz
Wmðz;~xH;xÞ

� �

þ x2

c2ðz;~xHÞ
� ½fmð~xH;xÞþ iamð~xH;xÞ�2

� �
Wmðz;~xH;xÞ¼ 0;

(3)

where ~xH indicates horizontal locations (x, y), and c is the

complex sound speed (its imaginary part relates to medium

absorption). The phase speed of a mode can be determined

from x/fm.

B. Theoretical expressions

There are different perspectives that we can take to look

into the theory of this back-propagation method, but perhaps

it is most useful to consider it as an estimation problem

to determine the unknown source location from the modal

arrivals. From Eqs. (1) and (2), the frequency spectrum of

pð~xr; tÞ at x is Pð~xr;xÞ ¼
P

m Am ~xs;~xr;xð ÞWmð~xr;xÞ;
and the amplitude spectrum of mode m, Am, can be readily

found as

Amð~xs;~xr;xÞ ¼ A0SðxÞEmð~xs;~xr;xÞ; (4a)

where

A0 ¼
ffiffiffiffiffiffi
2p
p

eip=4 �q�1ð~xsÞ �R�1=2;

Em ¼Wmð~xs;xÞ � f�1=2
m ðxr;yr;xÞ

�exp

ð~xr

~xs

ifmðx;y;xÞ� amðx;y;xÞdr

� �
:

8>>><
>>>:

(4b)

Em is essentially a mode content function and contains the

mode functions at the source location Wmð~xs;xÞ reflecting

the modal excitation, and thus has source depth information.

Additionally, it has an exponential function describing the

modal dispersion, which contains source range information.

By back-propagating each modal arrival and reversing its

modal excitation and dispersion, we should, in theory, obtain

the same scaled source function A0SðxÞ from each back-

propagated mode at the true source location.

Reversing modal excitation and dispersion at each back-

propagation step ~xb can be done mathematically by inverting

the mode content function. The most apparent approach is to

take a direct inversion of Emð~xb;~xr;xÞ; which results in a

spectrum of the back-propagated mode: Bmð~xb;xÞ
¼ E�1

m ð~xb;~xr;xÞAmðxÞ: Note that the variable of source posi-

tion in Em is now ~xb. Assuming the modes are not coupled,

the normal mode back-propagation can be done for each

mode independently. Again, when ~xb ¼~xs we recover the

same source spectrum, scaled by A0, from all of the modes.
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One immediate shortcoming of this direct inversion is that it

becomes singular when Em ~xb;~xr;xð Þ is zero. To avoid the

singularity, one can use a pseudo-inverse in linear algebra,

where 0/0 is defined to be 0. In doing so, we first discretize

the frequency into X bins, which naturally results from

employing a Discrete Fourier Transform or a Fast Fourier

Transform (FFT) on a time series. We then rewrite Eq. (4)

into a matrix form of Am¼A0EmS, where A0 is still a scalar,

and the size of the other variable vectors/matrices is X� 1

for both S and Am, and X�X for Em which will be a diagonal

matrix when the Doppler shift is not considered. The pseudo-

inverse back-propagation can then be formulated as

Bmð~xbÞ ¼ fEH
mð~xbÞEmð~xbÞg�1

EH
mð~xbÞAm; (5)

where the notation for frequency is dropped for conciseness.

This pseudo-inverse does overcome the singularity problem.

However, it is still very sensitive to the noise or uncertainties in

the modal amplitude when the condition number of Em is large,

which will happen for example, when the signal is back-

propagated to a depth close to a node (zero) of a local mode.

To obtain a more robust inversion, one can use a weighted and

tapered least squares inversion (Wunsch, 1996), which gives

Bmð~xbÞ ¼ fEH
mð~xbÞW�1

m Emð~xbÞ þU�1
m g

�1
EH

mð~xbÞW�1
m Am;

(6)

where Um and Wm are column and row scaling matrices,

respectively, and the superscript H indicates the Hermitian

transpose. Choosing the scaling matrices is somewhat arbi-

trary in the sense of least squares, but for getting maximum

a posteriori estimates it is natural to make the ratio of the

scaling matrices ‖Um‖/‖Wm‖ proportional to the signal-to-

noise ratio of the modal amplitude estimates. We will dis-

cuss the selection of scaling matrices in detail later.

Normal mode back-propagation with Eq. (6) is adap-

tively adjusted by the signal-to-noise ratio (SNR). Although

we have not yet detailed the scaling matrices involved in the

equation, their ratio ‖Um‖/‖Wm‖ should be proportional to

the SNR of the modal amplitude estimates. In this case, if the

SNR is low, Eq. (6) will approach EH
m ~xbð ÞAm; and it still

has the capability to resolve the source location. This mode

conjugate formula is used in Matched Mode Processing

(Yang, 1987; Yang, 1990). The principal criterion for ranging

the source is phase conjugation, and the closure relation

of the normal modes, i.e., RmWH
m zð ÞWm zsð Þ ¼ d z� zsð Þ, is

employed for estimating the source depth. Note that the clo-

sure relation holds completely only when there is an infinite

set of modes (propagating plus continuum and evanescent

modes). In shallow water, where we have a finite set of prop-

agating modes in the far field, this closure relation holds only

partially, and so it loses some resolution for determining the

source depth. However, it is still a robust depth estimator. On

the other hand, when the SNR is high, Eq. (6) approaches to

a pseudo-inverse, and the ratio of modal excitations becomes

the key for source depth estimation. This will be shown later

in a simulation example to have superior resolution, even

when just considering only a few propagating modes.

The inversion kernel varies with back-propagation steps

because of its dependence on ~xb. Thus, there is a series

of inversions being implemented in the back-propagation

procedure. To determine the source location from these

inversions, we can use the difference between each back-

propagated mode as a metric (minimal difference gives us

the source location), since we are expecting identical back-

propagated modes at the source location. Alternatively, we

can also examine their cross-correlations and select the max-

imal correlation point as the source location. The next alge-

braic equality shows that these two criteria can actually

produce the same cost function for source localization.

P
m 6¼n

BH
mBn

P
m

Bmk k2
þ 1 ¼M� 1

2

P
m 6¼n

kBm � Bnk2

P
m

Bmk k2
¼
k
P
m

Bmk2

P
m

Bmk k2
;

(7)

where BH
mBn is the cross-correlation with zero-lag between

back-propagated modes m and n, and Bm � Bnk k2
is the

squared l2 norm of their difference. M is the number of back-

propagated modes, and
P

m Bmk k2
is their total intensity,

acting like a normalization factor. The first equality in Eq.

(7) actually indicates that maximizing the cross-correlation

is the same as minimizing the difference. The second equal-

ity in Eq. (7) suggests that we can select the coherent sum of

back-propagated modes to be the cost function, i.e.,

Ccð~xbÞ ¼
k
P
m

Bmð~xbÞk2

P
m

Bmð~xbÞk k2
; (8)

and the final source location estimate is x̂s

¼ arg max~xb2~x Cc ~xbð Þ. Note that computing the coherent sum

requires less algebraic manipulations than calculating the

cross-correlation or the inter-mode difference. It also pro-

vides an intuitive index for the similarity of back-

propagating modes. For example, when the cost function

reaches its maximum M, it indicates that all of M back-

propagated modes are identical.

III. IMPLEMENTATION CONSIDERATIONS

In this section, how to use a vertical mode filter to esti-

mate modal amplitudes will be explained. In practice, acous-

tic noise and array tilt will produce errors in the modal

amplitude estimates, and we will discuss how to reduce these

errors. The noise issue is tied with the scaling matrices, Um

and Wm, used in the back-propagation inversion. The impact

of mode coupling and three-dimensional (3-D) propagation

effects will also be discussed.

A. Modal amplitude estimation: Normal mode filtering
with a vertical line array

The first step in the implementation of the back-

propagation method is to perform a mode filter to obtain
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individual modal arrivals (modal amplitudes), which can be

done using a vertical hydrophone array. Since broadband

signals and the frequency dependence of normal modes are

considered, it is easier to perform mode filtering in the fre-

quency domain. This technique is well established and is

reviewed below with some discussion on its application to

normal mode back-propagation.

As a vertical hydrophone array receives broadband sound

at different depths, the acoustic data space spans both time/

frequency and spatial/wavenumber domains. Thus, the

sampled sound field can be decomposed by spatial basis func-

tions (normal modes) at each frequency, i.e., P zr;xð Þ
¼
P

m Am xð ÞWm zr;xð Þ: The goal of mode filtering is to

obtain the modal amplitudes Am(x), and this can be done with

linear inverse theory. We can rewrite the modal decomposi-

tion at each frequency in matrix form PN�1 xið Þ
¼ WN�M xið ÞAM�1 xið Þ, where the number of frequencies xi

is X, and N hydrophones on the array and M modes are

assumed in the decomposition. There should be X such equa-

tions within the frequency band, and if we consider the

spatial-spectral cross-correlation of the acoustic signal and

noise, we need to form a full matrix equation by cascading the

variable vectors and matrices. Many inversion methods can

be used in solving this linear mode filtering equation, such as

direct projection with sampled mode shapes (Ferris, 1972),

pseudo-inverse (Tindle et al., 1978) and Gauss-Markov esti-

mation (Chiu et al., 1997; Buck et al., 1998). The direct pro-

jection method is optimal for detecting a single mode in a

white noise field, but it suffers from modal cross-talk in

resolving multiple modes. The pseudo-inverse method can

preserve the orthogonality of normal modes, hence it produces

the least modal cross-talk. However, it is sensitive to noise, as

is observed in the pseudo-inverse back-propagation Eq. (5).

The Gauss-Markov estimator leads to a maximum a posteriori
mode filter (Chiu et al., 1997; Buck et al., 1998) when modal

amplitudes and noise are zero-mean complex Gaussian ran-

dom variables:

ÂM�1 ¼ fWH
N�MR�1

nn WN�M þ R�1
AAg

�1WH
N�MR�1

nn PN�1;

(9)

where RAA and Rnn are the expected second moments, a
priori information about the modal amplitudes and noise,

respectively. From the theory of Gauss-Markov estimation,

the posteriori uncertainty of amplitude estimates can be found

to be WH
N�MR�1

nn WN�M þ R�1
AA

� ��1
: Note that this estimation

is made under an assumption of statistical stationarity, which

means Rnn and RAA are considered to be constant in the ran-

dom process, or at least over a certain period. Chiu et al.
(1997) and Buck et al. (1998) showed that this mode filtering

technique can reach the optimal balance between rejecting the

noise and preserving the orthogonality of normal modes. This

is due to the fact that this estimation takes into account the

statistics both of noise and signals, and so enables us to sepa-

rate noise and signals. A complete Gauss-Markov estimation

should also involve a posteriori test to check if the behavior

of the estimated noise, i.e., residues of the filter, is consistent

with the prior statistics.

Estimation of Rnn and RAA is necessary for implementa-

tion of a Gauss Markov mode filter, but it often suffers from

snapshot deficiency, which causes the sampled Rnn and RAA

matrices to be not full-rank. Many methods (e.g., Song et al.,
2003, and references therein) have been proposed to over-

come this problem, and a method of replacing zero eigenval-

ues with the minimal non-zero eigenvalue has been found

very useful in the application of broadband normal mode fil-

tering. Instead of truncating the eigenvector null space, pre-

serving them with the least weight (the minimal non-zero

eigenvalue) ensures that the part of the signal or noise in the

null space is still being properly treated in the mode filtering

inversion. A more detailed discussion on this will be given

when examples are presented later.

Array tilt also needs to be corrected for mode filtering,

or otherwise unwanted modal cross-talk will occur. Given

horizontal deviations of array elements Dxn, a phase correc-

tion of fmDxn can be applied in the mode function matrix

WN�M in Eq. (9), i.e.,

W0nm ¼ Wnmexpð � ifmDxnÞ: (10)

If the exact array tilt is not available, a total least squares

inversion (Markovsky and Van Huffel, 2007) can be used to

account for the array tilt uncertainty in the mode function

matrix. The details of this inverse method are beyond the

scope of this paper, and we shall assume in the following

examples that some reliable array tilt estimates are available.

In fact, from a modeling study shown later, the source local-

ization method with normal mode back-propagation is toler-

ant of array tilt to a certain degree so that one may

sometimes disregard the tilt correction in comparison to

other environmental uncertainties in the ocean.

B. Selection of the scaling matrices for the
back-propagation inversion

To avoid an ill-conditioned inversion for back-propagating

modes, one should take the approach of weighted and tapered

least squares. The following is a discussion on selecting the

scaling matrices for the back-propagation inversion.

Recall Eq. (6), Bm ~xbð Þ ¼ EH
m ~xbð ÞW�1

m Em ~xbð Þ
�

þU�1
m g

�1
EH

m ~xbð ÞW�1
m Am: When the second moment of A0S

is used for Um, and the modal amplitude uncertainty is used

for Wm, this inversion is exactly a Gauss-Markov estimation.

In fact, if the Gauss-Markov mode filter mentioned above is

also used for estimating modal amplitudes Am, the posterior

uncertainty of modal amplitude estimates is readily available

[see Eq. (9) and its discussion] and can be inherently used

for the row-scaling matrix Wm. On the other hand, it requires

some effort to obtain the column-scaling matrix Um. Due to

the fact that the back-propagation process mentioned above

only reverses the modal excitation and dispersion without

restoring the spreading loss, the second moment of A0S is

suggested for Um. However, when the source spectrum S is

unknown, it is not clear how the second moment of A0S can

be determined. A useful approach is provided below.

In deriving the scaling matrix Um directly from the

modal amplitude estimates without prior knowledge about
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the source function, we first consider the relationship

between the magnitude of the modal amplitude and the

source function, i.e., Am ~xrð Þj j ¼ A0Sj j � Wm ~xsð Þj j � f�1=2
m ~xrð Þ

with an assumption of small modal attenuation. If the mode

function at the unknown source position has a similar struc-

ture to the one at the receiver, we can use the following scal-

ing matrix for the case where the probability distribution of

source depth is uniform over the entire water column:

Um;X�X ¼ diag
fmðxÞ ÂmðxÞ

		 		2
D�1

ðD

0

WmðzÞj j2dz

0
BB@

1
CCA; (11)

where D is the water depth at receiver, and the integral in the

denominator is due to the uniform distribution of unknown

source depth. One can see that the formulated Um does not

have off-diagonal terms, which indicates that the cross spec-

trum is not considered for back-propagation, but it also does

not require prior knowledge about the source function.

Although the cross spectrum is not considered here, the

Gauss-Markov mode filter does account for that. Denoting the

diagonal element of Um as s2(x), and neglecting the cross

spectral components of modal amplitude uncertainty, the

back-propagation inversion Eq. (6) can be further simplified:

Bmð~xb;xÞ ¼
Z�mð~xb;xÞ

Zmð~xb;xÞj j2þr2ðxÞ
s2ðxÞ

exp �i

ð~xr

~xb

fmð~x;xÞdr

� �

� Âmð~xb;xÞ; (12)

where, Zm ~xb;xð Þ¼Wm ~xb;xð Þf�1=2
m ~xr;xð Þexp½�

Ð~xr

~xb
am ~x;xð Þdr�;

and r2(x) are the diagonal elements of the modal amplitude

uncertainty. The loading term r2/s2 is in fact the ratio ‖Wm‖/

‖Um‖, and this back-propagation inversion will have the adapt-

ive capability mentioned in the discussion of Eq. (6).

C. Mode coupling and 3-D propagation effects

The scattering and refraction of sound from the ocean

and seabed can create two error effects for our adiabatic

back-propagation method, mainly time wander and time

spreading of the arriving signal. The time wander of the sig-

nal is probably negligible, since the time wander seen in

shallow water applications (e.g., Headrick et al., 2000a,b) is

on the order of 10 msec, which would translate into a small

ranging error (�15 m). Also, wander is essentially not a

mode coupling effect, so it poses little problem against our

adiabatic mode assumption. Error caused by the time spread

of the signal due to either mode coupling or 3-D propagation

effects is more serious, in that it can “smear” the data over

the effective length of the entire sequence of modal arrivals

and make the individual modal arrivals unresolvable. For

our technique, which relies on adiabatic mode theory to

allow modal “realignment,” this will be entirely debilitating.

Once the modal arrivals become unresolvable in time, the

data become useless for this technique.

Time spreading will affect the performance of the back-

propagation method, and the exact amount of time spreading

will vary widely, depending upon the range, frequency, and

physical environment through which the sound propagates

and scatters. Since the exact calculations of such broadband,

coupled mode or 3-D propagation are rather tedious, we will

discuss the spreading effects here rather than perform

detailed calculations.

3-D oceanography and topography produce a spreading

of the signal due to the introduction of additional horizontal

multipaths, which can be mode or ray in nature. For each

vertical acoustic normal mode that we calculate for a two-

dimensional path between source and receiver, there can be

a number of horizontal modes as well, so that a vertical

mode indexed by m now becomes indexed by mn, where the

n indexes the added horizontal modes. These mn modes

arrive at different times (i.e., they have slightly different

group speeds), so that instead of a single mode m, multiple

arrivals will appear and spread out over time. Modal arrivals

are often tightly spaced in time, so any additional arrivals

may overlap and make identification and resolution of modes

in time impossible. Angular resolution can help here in

theory, though the angles between the 3-D multipaths are of-

ten quite small.

Time spreading caused by mode coupling is easy to

assess as to the maximum spread, which is (ignoring the con-

tinuum) the time between the fastest and slowest trapped

mode’s arrival. Much harder to assess is the strength of the

mode coupling, as this involves the evaluation of a fairly

detailed overlap integral involving the initial and final modal

states and the environmental perturbation creating the cou-

pling. We will not evaluate such integrals here, as it is

beyond the scope of this paper, and the readers are referred

to Headrick et al. (2000a,b) for detailed discussion. A nu-

merical example will be presented later in the paper to dem-

onstrate the impact of mode coupling caused by nonlinear

internal waves on the back-propagation method.

IV. SIMULATION STUDIES

Numerical examples of source localization using the

normal mode back-propagation are presented in this section.

The sound speed profile used here is shown in Fig. 1(a),

along with the source function model, which consists of

eight cycles of 100 Hz sinusoidal waves tapered with a Hann

window. From the source spectrum shown in Fig. 1(a), one

can see that the first pair of nulls around the center frequency

are at 75 Hz and 125 Hz, and the frequency band considered

in the example is taken as between these two nulls. The

sound speed profile is in fact the mean profile derived from

data collected during the SW06 experiment (Lin et al.,
2010), presenting a general sound speed profile for summer

at the edge of the continental shelf off New Jersey, USA.

The water depth is 80 m, and the modeled bottom is homoge-

neous, with sound speed 1700 m/s, density 1.5 g/cm3 and

attenuation 0.5 dB per wavelength.

Figure 1(b) presents the signals in the numerical model.

The hydrophone array in the model is located 20 km from

the source, and it has 13 hydrophones spanning the water

column from 10 m to 70 m with equal spacing. Modal arriv-

als at the array and their back-propagated modes are also
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shown in Fig. 1(b). The modes at the array are dispersed, but

when they are back-propagated, they become closer to each

other, indicating that the modal dispersion has been compen-

sated for. The modeled signal is considered to be determinis-

tic, which means there is no random variability in the

modeled environment and source function. This is to sim-

plify the method comparisons presented below. In fact, the

back-propagation approach can be applied to stochastic sig-

nals, as will be seen in the SW06 examples in Sec. V.

A. Modeling methods

Modeling examples are shown with the aim of testing the

back-propagation method for four factors: (1) localization re-

solution, (2) noise tolerance, (3) effects of array tilt, and (4)

effects of nonlinear internal waves. Two other established

methods of localization are also compared here. The first

method is Bartlett matched-field processing (MFP) and the

second one is Minimum Variance Distortionless Response

(MVDR) matched-field processing (Baggeroer et al., 1993).

These two MFP’s can be in general formulated as

CMFPð~xbÞ ¼ wHð~xbÞd
		 		2¼ wHð~xbÞRddwð~xbÞ; (13)

where d is a data vector consisting of the received signal p and

noise n, thus Rdd¼Rpp þ Rnn, and the data vector is formed by

cascading the data (frequency spectra) received by each hydro-

phone on an array. The processing output CMFP can be consid-

ered as the output power, and the steering vector w is formed

from the theoretical prediction p̂ of the received signal, the so-

called replica, assuming the source location is at ~xb: The steer-

ing vector of the Bartlett MFP is simply the replica without con-

sidering the noise, i.e., wBart ~xbð Þ ¼ p̂ ~xbð Þ: On the other hand,

the steering vector of the MVDR MFP does consider the noise,

and it is wMVDR ~xbð Þ ¼ R�1
dd p̂ ~xbð Þ p̂

H ~xbð ÞR�1
dd p̂ ~xbð Þ


 ��1
: The

FIG. 1. (a) Sound speed profile and

source function used in the numeri-

cal examples. (b) Modeled signals

on the hydrophone array located

20 km away from the source are

shown in the upper left panel, and

the modal arrivals at the receiver are

shown in the left panel. The right

panels present the modes when they

are back-propagated for 15 km and

18 km.
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Bartlett MFP tolerates noise adequately, but its resolution is not

very good for estimating source depth. The MVDR method can

produce superb resolution when the data covariance Rdd is per-

fectly known, but this is extremely difficult to achieve in a real

case.

Implementing the MVDR MFP and the back-

propagation method with the Gauss-Markov mode filter

requires the inverse of the covariance matrices. In the case of

snapshot deficiency, the sampled covariance matrix is not full

rank, and its inverse matrix will not exist. In the following

examples, the covariance Rdd is given exactly for the MVDR

MFP, and makes it ideal and perfect. On the other hand, the

exact information about the signal and noise is intentionally

not provided to the back-propagation, and so will make its

comparison to the ideal MVDR MFP more critical.

Fifty realizations of the modeled signal plus Gaussian

noise with a given SNR are made for localization in each test,

and the same set of modeled data (signal plus noise) is used in

all methods for consistent comparisons. The noise intensity is

kept constant at each water depth, and the SNR value is deter-

mined by comparing the constant noise to the depth-averaged

signal intensity in the water column. When implementing the

back-propagation approach, the pseudo-inverse mode filter is

employed first on these 50 realizations of noisy data, and the

resultant mode estimates are coherently averaged to provide an

estimate R̂AA for the second moment of the modal amplitude.

In addition, 50 realizations of Gaussian random noise are gen-

erated separately, and the method of replacing zero eigenvalues

with the minimal non-zero eigenvalue, described in Sec. III A,

is employed to regularize the sampled noise covariance matrix

R̂nn: Since the signal in the numerical examples is assumed to

be deterministic, the true RAA is a rank-one matrix equal to

AA
H, and it is not invertible. Thus, another form of the Gauss-

Markov estimator for mode filtering is used replacing Eq. (9):

Â ¼ RAAWHfWRAAWH þ Rnng�1
P: (14)

The exact source function is given for the Bartlett and

MVDR MFP’s in the examples, but not for the back-

propagation approach. The scaling matrices described in

Sec. III B are employed for back-propagation inversion, and

they do not require knowledge about the source function.

When implementing the Bartlett MFP, the modeled data

(signal plus noise) is normalized in such a way that its total

power equals to one i.e., dHd¼ 1. The steering vector is also

normalized in the same way, wH
MFPwMFP ¼ 1: This makes

the maximal output of the Bartlett MFP equal to one. In the

following back-propagation examples, four modes are being

used and back-propagated to localize the source.

B. Localization resolution

The first test is focused on the resolution of localization.

A high 20 dB SNR is considered here, as the noise tolerance

is tested separately later. With a relatively high SNR, the

MVDR MFP can produce superb resolution; hence it is not

used for the explicit comparisons presented here.

A source is placed at a distance 20 km away from the

receiving array. Three different source depths (15, 35, and

55 m) are considered, and the back-propagation approach with

four modes and the Bartlett MFP are implemented. Figure 2

shows the ambiguity plots of source location estimate, and

both methods produce a maximal peak at the true source loca-

tion. Recall that the maximal peak height in the back-

propagation approach is the number of back-propagated

modes and is one in the Bartlett MFP with the normalization

mentioned previously. Comparing the ambiguity plots shows

that the back-propagation generally has much better depth re-

solution than the Bartlett MFP. Note that the peak shapes of

both methods in the case of 15 m source depth are compara-

ble, but the back-propagation peak is still slightly sharper.

Given that this shallow depth is near the edge of the mixed

layer [see Fig. 1(a)] and the source range is 20 km, this slight

improvement is appreciable. Comparing the sharpness of the

peaks for range resolution reveals that the Bartlett MFP is just

slightly better, but it has significant side lobes at distance

�18.5 and 21.5 km.

Figure 3 presents the detailed comparisons of depth re-

solution in the case of 55 m source depth. Figure 3(a) shows

that the main lobe of the back-propagation kernel is much

sharper than the Bartlett MFP. Additionally, the side lobes

of the back-propagation kernel are in general smaller than

the envelope of the Bartlett MFP kernel. Figure 3(b) shows a

comparison of the resolution produced by the back-

propagation approach with a different number of modes. The

resolution resulting from using three modes is nearly as good

as using four modes.

C. Noise tolerance

This test focuses on the noise tolerance of the back-

propagation approach and also presents the comparisons to

the Bartlett and MVDR MFP localization. Four different

SNR’s, 20 dB, 10 dB, 0 dB, and �10 dB are considered here,

along with source locations at depths of 15 m, 35 m, and

55 m. The same source range is considered at 20 km. In each

test with a given pair of SNR and source depth, 50 realiza-

tions of signal plus noise are generated for the localization.

Table I summarizes the numerical results of this noise

tolerance example. At 20 dB SNR, all of the methods success-

fully locate the source with zero standard deviation. When the

SNR slightly decreases to 10 dB, the MVDR MFP starts suf-

fering from the noise and loses accuracy and robustness.

However, the back-propagation approach and Bartlett MFP

still perform well. A slight bias in the source depth estimate is

observed in the results of back-propagation localization. At

0 dB, the MVDR MFP suffers greatly, and its estimates of

source depth are no longer correct, and significant variance is

seen in the source range estimates. Comparing the results

from back-propagation and Bartlett MFP, one can also see

that the back-propagation approach has smaller variance in

estimating source depth with only a slightly degraded accu-

racy. The source range estimates from these two methods are

still accurate and robust. When the SNR goes down to

�10 dB, the performance of the MVDR MFP is as bad as the

0 dB case, indicating the influence of noise on this method is

saturated. The results indicate the Bartlett MFP reaches the

limit of its noise tolerance. As for the back-propagation
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approach, its performance under this very low SNR is still

considerably good, and not much degradation is observed.

Figure 4 shows the ambiguity plots of source location

estimate from the back-propagation localization and the

MVDR MFP at �10 dB SNR. Even though there is a peak at

the true source location in the MVDR MFP, the shallow

depth region is saturated with very high values. This makes

the localization scheme unable to track the peak without

prior information about the source location. The back-

propagation ambiguity plot reveals a degradation of the peak

height at the true source location, and the side lobes become

more noticeable. Nevertheless, the localization performance

is still better than the other methods.

FIG. 3. Depth resolution kernels of different localization schemes.

TABLE I. Noise tolerance comparisons. The source range is at 20 km, and

three different source depths are considered. Each entry represents the mean

and standard deviation of 50 localizations with a given SNR (20, 10, 0 or

�10 dB). SR stands for source range, and SD stands for source depth.

SNR 20 dB 10 dB 0 dB �10 dB

mean/std mean/std mean/std mean/std

SR (km/m) (km/m) (km/m) (km/m)

SD (m/m) (m/m) (m/m) (m/m)

True source depth 15 m

Back propagation
SR 20.00/0.0 20.00/0.0 20.00/0.0 20.00/0.0

SD 15.00/0.0 16.00/0.0 17.00/0.0 14.68/0.5

Bartlett MFP
SR 20.00/0.0 20.00/0.0 20.00/0.0 20.00/3.2

SD 15.00/0.0 15.02/0.3 15.02/1.0 14.94/3.1

MVDR MFP
SR 20.00/0.0 20.00/0.0 20.16/451.1 20.17/489.5

SD 15.00/0.0 12.48/5.4 1.28/2.0 1.00/0.0

True source depth 35 m

Back propagation
SR 20.00/0.0 20.00/0.0 20.00/0.0 19.99/0.0

SD 35.00/0.0 34.96/0.2 35.84/0.4 37.40/0.5

Bartlett MFP
SR 20.00/0.0 20.00/0.0 20.00/0.0 20.03/937.5

SD 35.00/0.0 35.02/0.1 34.94/0.7 44.84/12.5

MVDR MFP
SR 20.00/0.0 20.03/284.0 20.91/914.6 20.73/1032.0

SD 35.00/0.0 32.96/8.1 1.00/0.0 1.00/0.0

True source depth 55 m

Back propagation
SR 20.00/0.0 20.00/0.0 20.00/0.0 19.99/0.0

SD 55.00/0.0 55.00/0.0 56.00/0.0 53.00/0.0

Bartlett MFP
SR 20.00/0.0 20.00/0.0 20.00/0.0 20.06/524.2

SD 55.00/0.0 54.98/0.1 54.98/0.5 52.56/5.8

MVDR MFP
SR 20.00/0.0 20.25/579.7 20.78/1075.5 20.92/895.1

SD 55.00/0.0 46.36/19.8 1.00/0.0 1.00/0.0

FIG. 2. (Color online) Ambiguity plots of the source location estimate using (top) the normal mode back-propagation approach with four modes and (bottom)

the Bartlett MFP. The SNR is 20 dB, and the methods are tested for three different source depths. The color range for plotting is from the maximal possible

output to the three-fourths of its value.
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D. Effects of array tilt

This example is to examine the tolerance to array tilt. A

20 dB SNR is considered here. The numerical results show

that the MVDR MFP is unable to locate the source. As for

the back-propagation and Bartlett MFP methods, their local-

ization performance is summarized in Table II. Three differ-

ent tilt angles, 5	, 3	, and 1	, are considered along with three

source locations. The Bartlett MFP performs better (very ro-

bust) and tolerates more tilt than the back-propagation local-

ization. The source range estimates from the back-

propagation are still accurate. The problem for the back-

propagation localization occurs in estimating the depths of

shallow sources. The only case where the back-propagation

completely fails to locate the source depth is the 5	 tilt and

15 m source depth. In other cases, the bias of the source

depth estimate is still acceptable when comparing to a

100 Hz wavelength.

In this example we can see that for deep sources the

back-propagation localization can tolerate up to 5	 array tilt,

and for shallow sources it can tolerate up to 3	 array tilt.

E. Effects of nonlinear internal waves

The last numerical example is to test the back-propagation

method in the presence of nonlinear internal waves. Figure 5(a)

shows the waves of depression considered in this example. This

wave train is centered at 10 km from the source and consists of

three ideal squared hyperbolic secant waves with amplitudes

equal to 9 m, 7.2 m and 5.4 m, respectively. The themocline of

the background sound speed profile shown in Fig. 1(a) is per-

turbed by the waves, which will cause acoustic mode coupling

(Duda and Preisig, 1999). Figure 5(b) presents the modal arrival

pulses received on the array located 20 km away from a 55 m

deep source. The modal arrivals with and without the presence

of internal waves are both plotted for comparison, and signifi-

cant time spreading caused by the mode coupling is seen on

modes 1 and 2.

In this example, four modal arrivals are back-propagated

without considering internal waves, as if we do not know their

presence. The ambiguity plot of source location estimates is

shown in Fig. 5(c), which has multiple peaks caused by the

mode coupling. Note that the coupled (scattered) modal arriv-

als are back-propagated adiabatically. So, these coupled

modes may correlate to each other at multiple locations, but

the correlation value will be weaker than the case when there

are no internal waves. This is seen in Fig. 5(c), where the

peak value is lower than the one shown in the upper right

panel of Fig. 2.

The Bartlett MFP is also tested, and the signal replica is

calculated without considering internal waves. The pattern of

the Bartlett MFP ambiguity plot [Fig. 5(d)] remains the same

as the case where there are no internal waves (the lower right

panel of Fig. 2), but has lower peak values. Comparing the am-

biguity plots of the back-propagation and Bartlett MFP meth-

ods, we still see that the back-propagation performs better

since it has smaller side-lobe deviation from the true location.

V. APPLICATIONS TO SW06 EXPERIMENTAL DATA

Two source localization examples using the Shallow

Water 2006 (SW06) experiment data are presented in this

section. A variety of environmental measurements made

FIG. 4. (Color online) Ambiguity

plots of the source location estimate

with �10 dB SNR using (left) the

normal mode back-propagation app-

roach with four modes and (right)

the MVDR MFP. The color range

for plotting is from the maximal

output to the three-fourths of its

value for the back-propagation local-

ization, and from 0 to 1 for the

MVDR MFP.

TABLE II. Array tilt tolerance comparisons. The source range is at 20 km,

and three different tilt angle are considered. Each entry has the mean and

standard deviation of 50 localizations. SR stands for source range, and SD

stands for source depth. The SNR is 20 dB.

Tilt angle 5	 3	 1	

mean/std mean/std mean/std

SR (km/m) (km/m) (km/m)

SD (m/m) (m/m) (m/m)

True source depth 15 m

Back propagation
SR 20.01/0.0 20.00/0.0 20.00/0.0

SD 1.00/0.0 9.00/0.0 14.00/0.0

Bartlett MFP
SR 20.00/0.0 20.00/0.0 20.00/0.0

SD 16.98/0.1 15.78/0.4 15.00/0.0

True source depth 35 m

Back propagation
SR 19.88/0.0 20.00/0.0 20.00/0.0

SD 19.00/0.0 40.00/0.0 36.00/0.0

Bartlett MFP
SR 20.00/0.0 20.00/0.0 20.00/0.0

SD 36.00/0.0 35.00/0.0 35.00/0.0

True source depth 55 m

Back propagation
SR 20.00/0.0 20.00/0.0 20.00/0.0

SD 54.00/0.0 55.00/0.0 55.00/0.0

Bartlett MFP
SR 20.00/0.0 20.00/0.0 20.00/0.0

SD 54.04/0.2 55.00/0.0 55.00/0.0
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during this experiment are used to achieve better perform-

ance for source localization. These measurements include

sound speed profiles, barotropic and baroclinic tides, bottom

topography and sub-bottom geoacoustic properties, which

are reviewed below.

A. SW06 environmental measurements

The SW06 experiment was a large interdisciplinary

experiment conducted on the edge of the continental shelf

off New Jersey during the summer of 2006 (Tang et al.,
2007). This experiment had two main components for study-

ing acoustics and oceanography in a shelfbreak region. Fig-

ure 6 shows locations of the moorings from which the

acoustic and oceanographic data used in this paper were col-

lected. Environmental measurements were made on the

moorings ENV#32 and ENV#45. The mooring ENV#45 was

equipped with temperature sensors, and the mooring

ENV#32 had temperature, conductivity and pressure sensors.

The acoustic receiving system is labeled “WHOI array” as it

is owned and operated by Woods Hole Oceanographic Insti-

tution (WHOI). The system had 16 hydrophones covering

three-fourths of the water column (�80 m deep) from 13 m

to 75 m in depth and forming a vertical line array (VLA).

Additionally, there were 32 hydrophones spaced at 15 -m

intervals forming a horizontal line array (HLA) on the bot-

tom and directed to the north. Both the VLA and HLA were

navigated by an acoustic long baseline (LBL) system (New-

hall et al., 2007), and the navigation results are incorporated

in the source localizations presented below. The WHOI VLA

also had temperature sensors whose data are used in this pa-

per. Two acoustic sources, the Miami Sound Machine

(MSM, owned and operated by University of Miami) and a

J-15-3 source operated by Penn State University and WHOI,

will be used for testing the localization methods.

The sound speed measurements, derived from tempera-

ture and salinity data, are shown in Figs. 7(a)–7(c). They

reveal the complicated frontal variability known at this loca-

tion, including the foot of the front, frontal intrusions in the

middle of the water column and internal waves and tides.

Each of these features can cause sound speed variability, and

a paper by Colosi et al. (2012) is referred to for detailed dis-

cussions. The barotropic tides, shown in Fig. 7(d), are M2

dominant, and this record is used to determine the time-

varying water depth in the localization procedure. Detailed

bathymetry and sub-bottom structure are also used, as shown

in Fig. 7(e). The bathymetry data is from the 1996 STRATA-

FORM swath map survey, and the sub-bottom geoacoustic

model is obtained from a previous study (Ballard et al., 2010).

FIG. 5. (Color online) Source local-

ization in the presence of nonlinear

internal waves. (a) The wave form

used in the example to perturb the

themocline of the background sound

speed profile. (b) The arrivals of first

three modes received on the hydro-

phone array located 20 km away

from the source. (c and d) The ambi-

guity plots of source location esti-

mates from back-propagation and

Bartlett MFP, respectively.

FIG. 6. SW06 experimental area and mooring locations.

J. Acoust. Soc. Am., Vol. 131, No. 2, Pt. 2, February 2012 Lin et al.: Source localization using back-propagation 1807

Downloaded 29 Feb 2012 to 128.128.44.26. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



B. MSM sound source localization

Back-propagation localization of the moored MSM

source is presented next. The source was positioned at 56 m

depth and 19.74 km northeast (25.73	 due north) from the

WHOI VLA. It transmitted M-sequence phase encoded sig-

nals in 5 different frequency bands (100 Hz, 200 Hz, 400 Hz,

800 Hz, and 1600 Hz), and the 100 Hz signal (with a 25 Hz

bandwidth) is analyzed here. Every half hour, a 1.5-min long

transmission, which contained 36 identical M-sequence phase

encoded signals, was emitted. Received signals from August

14 to 24 are considered here, and source localization is done

without employing pulse compression. The source bearing

from the WHOI VLA is given in this example, and four

modes will be back-propagated along the known source bear-

ing to determine the source location and the source depth.

1. Vertical Mode filtering

Mode filtering with the WHOI VLA requires local mode

functions, and these were calculated using sound speed pro-

file time series and a bottom model obtained from previous

studies (Lin et al., 2010; Ballard et al., 2010). A Gauss Mar-

kov mode filter is employed, and the detailed procedure is

described below.

For each MSM signal, the noise covariance R̂nn is esti-

mated from the noise records taken right after the MSM

transmission period at the VLA, and the signal covariance

R̂AA is estimated by a pseudo-inverse mode filter using data

taken within a six-hour time window. This is similar to what

has been done in the previous numerical examples, and the

signal variations in the six-hour window (half of the M2 tide

period) and the noise variations in the 3-min window are

assumed to be weak-sense stationary. The method of replac-

ing zero eigenvalues with the minimal non-zero eigenvalue

is used to regulate the sampled R̂nn and R̂AA. After the signal

is mode-filtered, the residue n̂ of the Gauss-Markov mode

filter is calculated from

n̂N�1 ¼ PN�1 �WN�MÂM�1; (15)

where the variables are defined in Eq. (9). When the statistics

of the filter residues are consistent with the noise measure-

ments, the Gauss-Markov mode filter can be considered as

only extracting the signal.

It is found that the a priori noise information is more

crucial for successful noise-signal separation. The spatial-

spectral cross-correlation is used in the Gauss-Markov mode

filter, and the use of a three-minute noise window is

adequate for tracking the noise variations in the SW06 data.

A priori statistics R̂AA and R̂nn will be used in the Gauss-

Markov mode filter to produce a posteriori uncertainty for

the modal amplitude estimates. Within the framework of the

adaptive normal-mode back-propagation, the posteriori

uncertainty is then used in the implementation of back-

FIG. 7. (Color online) Environmental measurements used for localizing acoustic sources in the SW06 experiment. (a)–(c) Water sound speed measurements,

and (d) the record of barotropic tides. Data from August 14 to 24 are shown. (e) The sound speed model used in source localization at one time. This model

includes detailed bathymetry and sub-bottom structure, and the water sound speed varies with time (e.g., the baroclinic internal tides show clearly).
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propagation inversion, which is formulated in Eq. (6) and

explained previously in Sec. III B.

One example of mode filtering is illustrated in Fig. 8 to

show the performance of the Gauss Markov mode filter with

noisy data recorded around 11:30 (UTC) on August 22. Figure

8(a) shows the spectrogram of three minutes of data at depth

28.5 m, and only the first 1.5 min contain MSM signals. The

Gauss Markov mode filter is performed to extract those sig-

nals, and the filter residues at depth 28.5 m are shown in Fig.

8(b). The statistics of the residues are compared to the noise

measurements in the second 1.5-min data, and they agree with

each other very well, which means the Gauss-Markov mode

filter only extracted the signal. This is expected since the spec-

tral pattern of the filter residues and the noise data is similar,

as shown in Fig. 8(b). To demonstrate the advantage of our

approach, the pseudo-inverse mode filter without considering

the statistics of signal and noise is also performed, and the fil-

ter residues are plotted in Fig. 8(c). One can see that, unlike

the Gauss-Markov mode filter, the pseudo-inverse mode filter

passes both signal and noise, and only small amount of resi-

due remains. The modal arrivals extracted for one MSM sig-

nal using both methods are plotted in Fig. 9. Note that pulse

compression is performed here to visualize the signal, and the

Gauss-Markov mode filter indeed rejects the noise and pre-

serves the signal nicely. This is important because we do not

want to back-propagate the noise along with the signal when

we are performing the source localization.

2. Normal mode back-propagation and source
localization results

Two dimensional in-plane propagation is assumed here,

and the back-propagation does not consider mode-coupling,

which is responsible for some error in the localization

results. The sound speed field along the acoustic track is cal-

culated with a spatial interpolation procedure using sound

speed data measured at three moorings, WHOI VLA,

ENV#32 and ENV #45 (see Fig. 7(e) for an example of the

sound speed model). Accurate bathymetry and barotropic

tide records were used to produce water depth in the model.

A detailed sub-bottom model was also used. Four modes are

calculated every 150 m and back-propagated in 25 m steps.

Ten days of MSM data are processed. Every half hour,

35 pulses within 1.5 min are analyzed, and 35 source range

and depth estimates are obtained. The distributions of local-

ization results are shown in Fig. 10. The total mean range esti-

mate is 19.77 km, very close to the true distance (19.74 km),

along with a standard deviation of 950 m. The depth estimates

reveal a bi-modal distribution at 56 m and 42 m, which is

most likely due to the mode-coupling that we do not account

FIG. 8. (Color online) (a) The spectrogram of the received MSM signals at

28.5 m depth around 11:30 (UTC) on August 22, 2006. The first 1.5-min

data contains both signal and noise, and the second 1.5-min data contains

only noise. (b) The Gauss-Markov mode filter is carried out with noise co-

variance estimates obtained from the noise, and the filter residues are shown.

(c) The pseudo-inverse mode filter is also carried out for a comparison, and

the filter residues are shown.

FIG. 9. (Color online) Mode filtering comparisons. The data is shown in the

third column of Fig. 8, and it is clear that the Gauss-Markov mode filter

rejects the noise and preserves the signal nicely.
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for in the back-propagation, as described by the numerical

example shown in Sec. IV E. Note that the higher peak of the

bi-modal distribution is at the true source depth (56 m).

3. Environmental effects

Some environmental effects are significant in the MSM

source localization. The average value and standard deviation

of the range estimates in each transmission period (1.5 min)

are plotted in Figs. 11(a) and 11(b), along with nonlinear in-

ternal wave signals plotted in Fig. 11(c). It can be observed

that at the times when internal waves were present, the stand-

ard deviation of the 1.5 min localization record also increased.

It is known that nonlinear internal waves can distort the coher-

ent structure of the sound field due to mode coupling (Duda

and Preisig, 1999) and 3-D sound propagation effects (Lynch

et al., 2010). When there is a nonlinear internal wave group in

the propagation path, the localization suffers from these prop-

agation effects and the performance can be degraded.

Sub-mesoscale variability is also considerable in this ex-

perimental area since the experiment was located at the edge

of continental shelf and subject to the variability of the

shelf-break front. This can be seen in Figs. 7(a)–7(c). Note

that the water column mooring measurements were sepa-

rated by �10 km. The spatial Nyquist sampling rate of these

measurements is thus 20 km, meaning the water-column var-

iability with a wavelength less than 20 km along the propa-

gation path is not resolvable.

Another environmental effect could be from the sub-

bottom acoustic properties. From the non-biased mean in the

source range estimates, the sound speed structure, including

sub-bottom layering, used in the environmental model is

believed to be quite accurate. However, the attenuation coeffi-

cients in the bottom are not well understood, and this can

explained why the cost function of the back-propagation

localization only reaches about 2.4, not the expected maximal

value, which should be 4 since four modes are used. In fact,

the back-propagated modes do coincide with each other in

time, but the compensation for modal attenuation is not per-

fect so that the cost function can not reach its maximal value.

C. J-15-3 sound source localization

Signals collected from a broadband experiment con-

ducted by Penn State University (Rajan and Becker, 2010)

during the SW06 experiment are also used to test the back-

propagation approach. The signals were linear chirps with a

bandwidth of 250 Hz (40–290 Hz) transmitted from a J-15-3

source and received by the WHOI arrays. The signal dura-

tion was 0.5 s, and chirps were transmitted for a certain pe-

riod at stations circled around the WHOI VLA. One station

was selected for testing back-propagation source localization

across the shelfbreak. The details of this broadband experi-

ment and its application on geoacoustic inversion are

referred to Ballard et al. (2010) and Rajan and Becker

(2010). Full 3-D source localization including source bear-

ing, range and depth are performed.

J-15-3 data in a frequency band from 75 Hz to 125 Hz is

used. The reasons for selecting this band are that (1) it

FIG. 10. Distributions of MSM source

localization results from the normal-

mode back-propagation approach.

FIG. 11. Effects of nonlinear internal waves on MSM source localization.

The vertical current speeds measured at the mooring ENV#32 are good indi-

cators of nonlinear internal waves. From a statistical hypothesis test, the

short-time standard deviations of range estimates are found to be correlated

with the internal wave signals.
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coincides with the bandwidth of the MSM 100 Hz pulse, so a

direct comparison with the previous example can be

achieved, and (2) strong noise exists in this bandwidth, so

the signal/noise separation with the Gauss Markov model fil-

ter can be tested. In this example, three modes are used and

back-propagated to localize the source.

1. Vertical mode filtering

The Gauss-Markov mode filter is employed to analyze the

J-15-3 chirp signals. These chirps were transmitted in 3-second

intervals. At the J-15-3 station analyzed here, the transmission

lasted for 12 min, and a total number of 220 pulses are analyzed,

and the second moment of the received signal R̂AA is estimated

from the entire transmitted pulses. To filter each signal, a 12-s

center window is utilized to estimate the noise covariance R̂nn

around the signal time. A mode filtering example is shown in

Fig. 12, and, as one can see in the estimated modal arrivals, the

Gauss-Markov mode filter produces a lower noise floor.

2. Horizontal array beamforming with normal modes

The HLA beamforming implemented here is the con-

ventional Bartlett Matched-Field Processing shown in Eq.

(13) with the replica field made up for the modal arrivals

along the HLA. The replica is calculated using plane-wave

normal mode propagation with the mode amplitude esti-

mates at the VLA. The advantage of this beamforming tech-

nique is to eliminate the phase speed mismatch which may

occur when using the conventional plane wave beamforming

in an acoustic waveguide consisting of multiple normal

modes.

Figure 13(a) shows the beamforming output in the dot-

ted line and the shipboard Global Position System (GPS)

data with the solid line. The bearing angles agree very well

but with a 1	 constant bias. Since the WHOI HLA employed

a long-base line (LBL) system (Newhall et al., 2007), this 1	

beamforming bias should not be caused by array position

errors. Possible causes are discussed below.

One suspect for the beamforming bias is the error in the

theoretical calculation of the local modes around the VLA,

specifically on the modal phase speeds, which can be caused

by the environmental mismatch in the model utilized. The

water column sound speeds at the WHOI VLA were

obtained from an objective merging process using all physi-

cal oceanographic data collected around the VLA (Lin et al.,
2010). The local sub-bottom model at the VLA was obtained

from an independent geoacoustic inversion with a good con-

fidence level (Ballard et al., 2010). The barotropic tide is

also considered for adjusting the water depth at the time

when the J-15-3 broadband experiment was conducted.

While the environmental mismatch is believed to be small, it

may still contribute to the observed 1	 beamforming bias.

Another suspect for this 1	 offset error is 3-D horizontal

refraction. As shown in Fig. 6, the propagation path from the

J-15-3 station to the WHOI VLA was oblique across the

shelfbreak, which may result in horizontal refraction due to a

sloping bottom (Doolittle et al., 1988). A detailed analysis is

required to confirm what exactly causes the small beamform-

ing bias. Since it is beyond the scope of this paper, we defer

it for future research.

3. Normal mode back-propagation and localization
results

The normal mode approach is employed to localized the

J-15-3 source. 2-D in-plane propagation is assumed, and the

FIG. 12. (Color online) A mode fil-

tering example of J-15-3 signal. (a)

Spectrogram of the received signal

on the hydrophone at 36 m depth at

21:59 (UTC) on August 6. The two

thin lines mark the frequency band

(75 Hz to 125 Hz) where the mode

filters are applied. (b and c) Mode

filtering comparisons. Clearly, the

Gauss-Markov mode filter rejects

the noise nicely.
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search grid of source range and depth is along the source

bearing obtained from the horizontal array beamforming.

The environmental model for calculating the theoretical nor-

mal modes along the source bearing is constructed differ-

ently than the previous MSM example due to the lack of

water column and sub-bottom information. The sub-bottom

structure model along this path is outside the grid of the

detailed geoacoustic study (Ballard et al., 2010; Rajan and

Becker, 2010), so a one-layer sub-bottom model is used. The

sub-bottom model layer is 150 -m thick with a constant

sound speed of 1640 m/s on the top of a basement with

1740 m/s sound speed. The density of the bottom model is

1.9 g/cm3, and the attenuation coefficient is 0.2 dB per wave-

length. The geoacoustic properties of this bottom model are

selected from the average values of the geoacoustic inver-

sions near the area (Ballard et al., 2010; Rajan and Becker,

2010) with some tuning to match the true source range.

Lack of water column measurements is also an issue in

this example. Two sound speed profiles at both ends of the

track are used to construct two range-independent segments

(nearest neighbour interpolation). The sound speed profiles

measured at the VLA are used for the receiver side, and a

single CTD cast (Rajan and Becker, 2010) conducted imme-

diately after the J-15-3 transmission at the station is used for

the source side. One may wonder why we did not use the

mooring measurements along the across-shelf mooring line

(see Fig. 6). During the SW06 experiment, a fleet of submar-

ine gliders were deployed to measure the sub-mesoscle

oceanographic variability in the experiment area. It is found

that the along-shelf variability is complicated by the shelf-

break front process. In fact, the glider data collected during

the J-15-3 experiment shows that the along-shelf variability

was so intense that the spatial correlation range was limited

(Gong et al., 2008), and the simple extrapolation of the data

along the across-shelf mooring line to the propagation path

of the J-15-3 signal track is questionable. A comparison of

the J-15-3 CTD profile with the mooring data is made, and

the de-correlation agrees with the physical oceanographic

picture drawn from the glider observations: the frontal intru-

sions and filaments were across the area of J-15-3 station at

the time, and changed the structure of the mid-water column

sound speed field. We shall certainly bear in mind this envi-

ronmental variability, along with the uncertain sub-bottom

structure, in the examination of the back-propagation source

localization.

Figures 13(b)–13(c) present the results from the back-

propagation source localization. First, in Fig. 13(b), the source

range estimates agree with the shipboard GPS data well. Note

that the source was slightly drifting during the transmission.

Some bias of �100 m is observed before 21:58, and the bias

becomes less afterward. Although some adjustment to the

geoacoustic parameters may improve the overall agreement, it

will only shift the entire localization results up or down, and

the jump at 21:58 will still remain. The most plausible reason

for this jump may be due to the water column variability

which is not accounted for in the model. This might be an

interesting point to investigate in the future.

The source depth estimates shown in Fig. 13(c) are satis-

factory, as can be seen with a comparison to the ground truth

from the pressure sensor on the source. Considering the aspect

ratio of the distance to the source and the water depth (15 km to

�100 m), the bias of a few meters seen in the depth estimates

should be considered small. The environmental mismatch can

certainly contribute an error of this order of magnitude. Also,

the assumption made in the sound propagation model, i.e., 2-D

adiabatic mode propagation, may also be responsible.

VI. CONCLUSIONS

An adaptive normal mode back-propagation approach

for low-frequency broadband sound source localization from

a single station in a shallow-water ocean has been presented.

Gauss-Markov inverse theory is used in both mode filtering

and back-propagation, and unifies our adaptive back-

propagation method. The accuracy and robustness of this

method are confirmed via simulation studies and compari-

sons to other methods.

This adaptive back-propagation method was also success-

fully applied to localize two distant sources in the SW06

experiment, which demonstrates the feasibility of this method

for real-data applications in a shallow water environment. In

the first SW06 example, we localized the Miami Sound

Machine (MSM) along the shelf and found that nonlinear in-

ternal waves are responsible for range estimate deviations

over small time-scales (<2 min). In a second example, we

localized a J-15-3 source across the shelfbreak, and mode cou-

pling due to the sloping bottom and the internal waves were

likely to cause some error. Insufficient sub-mesoscale sound

speed measurements may also be responsible for errors seen

in both examples. Incorporating a regional data-assimilating

ocean model for the sub-mesoscale sound speed field is work

in progress by the authors and their collaborators.

In theory, the adiabatic mode assumption used in the back-

propagation method can be relaxed. The equations presented

here can be readily generalized to consider mode coupling by

cascading the mode content matrix Em over mode number and

FIG. 13. (Color online) J-15-3 localization results: (a) source bearing, (b)

source range, and (c) source depth.
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simultaneously back-propagating all modes. However, lack of

environmental data on the sound speed field (especially the hor-

izontal gradients) along the propagation path will be an insur-

mountable impediment to including mode coupling for source

localization in most all practical applications.
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