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The two-layer skirted island

by Joseph Pedlosky1,2, Roberto Iacono3, Ernesto Napolitano3 and Michael A. Spall1

ABSTRACT
The flow around a planetary scale island in a baroclinic ocean is examined when the island possesses

a topographic skirt representing a steep continental slope and the ocean is modeled as a two-layer
system in order to examine the role of stratification in the circulation. The study extends an earlier
barotropic model of similar geometry and forcing to focus on the degree to which the topography,
limited here to the lower of the two layers, affects the circulation and to what degree the circulation
is shielded by stratification from the topographic effects noted in the simpler barotropic model.

As in the barotropic model, the topography is steep enough to produce closed, ambient potential
vorticity contours over the topography in the lower layer providing free “highways” for the deep flow
in the presence of small forcing by the wind-driven upper layer flow. The flow is very weak outside
the region of closed contours but can become of the same order, if somewhat smaller, as the upper
layer flow on those contours in the presence of even weak coupling to the upper layer.

A series of models, analytical and numerical, are studied. Linear theory is applied to two configu-
rations. The first consists of a long, meridionally oriented island with a topographic skirt in the lower
layer. The lower layer flow is driven by a hypothesized frictional coupling between the two layers
that depends on the circulation of the upper layer velocity on a circuit defined by the closed potential
vorticity contours of the lower layer. The largest part of the driving flow is identical on both sides
of the island and cancels in the contour integration. The major part of the residual forcing comes
from relatively small but effective forcing on the semi-circular tips of the topographic skirt. A circular
island with a topographic skirt is also examined in which the coupling to the upper layer is stronger
all around the island. Even in this case there is a delicate balance of the forcing of the lower layer on
each side of the island. In all cases the flow on closed potential vorticity contours in the lower layer
is much weaker than in the barotropic model but much stronger than in the flat region of the lower
layer.

A sequence of numerical calculations that both check and extend the analytic linear theory is
presented demonstrating the subtlety of the force balances. Further nonlinear, eddy-containing exper-
iments give a preview of the direction of future work.

1. Introduction

In a recent paper, Pedlosky et al. (2009), hereafter PINH, considered the flow around a
planetary scale island when the island possesses a topographic skirt that girdles the island
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and crudely represents a continental slope. Of particular interest was the change in both the
structure of the circulation near the island and the way in which Godfrey’s (1989) “Island
Rule” must be reinterpreted. The presence of isolines of ambient potential vorticity, f/h,
where f is the Coriolis parameter and h is the depth of the single, constant density layer
of the model, completely alters the form of the circulation. It eliminates the recirculation
found in theories of flat bottom oceans (Pedlosky et al., 1997) and traps a relatively strong
circulation around the potential vorticity (pv) contours that does not participate in the basin-
wide circulation and suggests that the Island Rule should instead be applied to the domain
demarked by the outermost closed pv contour instead of the boundary of the island’s surface
expression. The strong circulation on the closed pv contours represents a steady resonance,
that would exist in a frictionless fluid, of the free geostrophic mode on those contours.
The resonance, forced by the wind stress in the model, is bounded ultimately by the weak
dissipation in the system and so is able to reach large velocities.

It is naturally of interest to reconsider the problem to take into account the baroclinic
character of the ocean circulation and to examine to what extent the ideas of the barotropic
model of PINH remain valid when the topography is shielded from the direct forcing by
the wind by an overlying layer of lower density. We take up this problem in a two-layer
model to keep our models, both analytic and numerical, as simple as possible. In this
paper the topography will be limited to the region of the lower, second layer although
we shall discuss qualitatively some results for larger topography that penetrates into the
upper layer. Some previous works using wind-driven, baroclinic ocean models have exam-
ined the island effect (e.g. Pedlosky, 2010; Spall, 2000), but the joint effect of topography
and stratification renders the dynamics considerably more complex. Dewar (1998) consid-
ered the deep flow over regions of closed potential vorticty contours, and found that eddy
fluxes could drive strong barotropic recirculations in which forcing is balanced by bottom
drag.

Section 2 describes the basic model and the model equations, which are essentially a
two-layer version of the dynamics in PINH. Section 3 describes the basic model geometries
and the results of linear theory for the two geometries considered, i.e. the meridional, thin
island and skirt and the circular island with its skirt that girdles the island. In both cases the
topography introduces closed isolines of potential vorticity in the lower of the two layers.
The forcing of the lower layer flow is shown to be much less efficient for the meridionally
oriented island over most of its length. Nevertheless, effective forcing over a relatively small
domain near the two meridional extremes of the topography dominate the forcing and are
sufficient to drive a substantial flow along the pv contours in the lower layer. The circular
island is studied as an example of geometry where the forcing is more effective over a larger
portion of the skirt. Section 4 presents our numerical results and compares them with the
results of our simple analytical theory and this serves to underline the delicate nature of
those analytical results reflecting the subtle balances that obtain in the dynamics. Section 5
presents some preliminary results where layer coupling is due to spontaneously generated
eddies. In section 6 we summarize and discuss our results.
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2. The model

Figure 1 shows the geometry of the first model we are using. The first panel shows a
zonal cross section of the island and its topography. In the upper layer it is a very thin
island oriented in the north-south direction for ys ≤ y ≤ yn. The height of the peak of
the topography from the otherwise flat bottom is hT , and it extends a distance xT to each
side of the island. The local thickness of the second layer is h2 while the layer thicknesses
beyond the topography are, in the absence of motion, H1 and H2, both constant. In plan view
its topography is shown in Figure 1b while the third panel shows the isolines of ambient
potential vorticity, i.e. in the absence of motion, for a skirt width of 250 km, a height above
the bottom of 500 m in a layer of thickness 1000 meters which is also the thickness of the
upper layer. This relatively short island is 800 km in length. For these parameters there is
significant departure of the pv isolines from the topography but we will generally consider
cases in which the departure is locally rather small. Even in this case the pv gradient
due to the beta effect is ten times smaller that the pv gradient due to the change in layer
thickness induced by the topography. Note that the topography has been smoothed within
semi-circular regions at the northern and southern tips of the island to avoid abrupt changes
in depth.

The second geometry we will examine, shown in Figure 2, consists of a circular island
with radius rI that in the lower layer is surrounded by an azimuthally symmetric, circular
skirt that extends to radius rT . As in the previous case, the skirted island is placed at the
center of a basin of radius ro.

The circulation is driven by a wind stress,

�τ = ρτor/roîθ, (1)

where îθ is a unit vector in the azimuthal direction, and r is the radial distance from the
center of our circular ocean basin. The mean density, ρ, is included in the definition of
the stress to simplify the formulae that follow so that τo has the dimensions of a velocity
squared. Note that the curl of �τ/ρ is spatially constant, and equals 2τo/ro.

For our governing equations we take, for each layer,

∂ �un

∂t
+ (ζn + f )�k × �un = −∇Bn + �τ

ρh1
δn1 + �Dn(�u1, �u2), n = 1, 2

∂hn

∂t
+ ∇ · (hn�un) = 0, (2.2a,b)

where

Bn = 1

2
|�un|2 + pn/ρ, ζn = �k · ∇ × �un

�Dn(�u1, �u2) =
(

λi

hn

)
(�u1 − �u2)(−1)n −

(
λ

h2

)
�u2δn2 + 1

hn

(∇ · Ahn∇)�un (2.3a,b)



Figure 1. (a) The two-layer model showing the topography and layer thicknesses for the meridionally
oriented island. (b) The depth contours in units of 100 meters. (c) The isolines of potential vorticity
f/h2 in the lower layer.
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Figure 2. The four regions for the upper layer Sverdrup solution showing the island with inner radius
rI in the upper layer and the skirt in the lower layer extending to rT . For the meridional island the
inner circle is replaced by a north-south line.

where δnm is the Kronecker delta, and f = f0 + βy is the Coriolis parameter, which takes
the value f0 at y = 0, the midlatitude of the basin.

The equations are nearly the same as used in PINH. These are, in (2.2a), the horizontal
momentum equations for each layer. The stress appears as a body force in layer 1; that term
is divided by the layer thickness since it is really a surface stress. The dissipation consists of
the three terms given in (2.3b). The first is an interfacial friction term whose coefficient is λi .
It exerts an equal and opposite stress on each layer proportional to the velocity difference.
This vertical momentum flux is consistent with a parameterization of baroclinic instability
as a horizontal diffusion of layer thickness (e.g., Gent et al., 1995). The second term is a
bottom friction term proportional to λ again divided by the second layer thickness. The
remaining term is our representation of lateral momentum mixing. We have used this model
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of interfacial friction to couple the two layers instead of a cross isopycnal velocity so that
in the steady state we can represent the horizontal transport by a streamfunction since our
equation for mass conservation (2.2b) has no cross isopycnal velocity. Thus, for steady flows
(2.2b) is identically satisfied by the representation in terms of the streamfunction ψn,

�unhn = k̂ × ∇ψn, n = 1, 2 (2.4)

where hn are the actual thicknesses of the layers including the variations due to topography.
In keeping with the linear approximation, we neglect variations in layer thickness due to
sloping isopycnals associated with the vertical shear in horizontal velocity. This is valid for
ε(L/Ld)

2 � 1 here ε = U/f L, and L is a characteristic width of the topography.
For steady motions the momentum equations can be usefully written as

qn∇ψn = ∇Bn − �τ
h1

δn1 − �Dn(�u1, �u2) (2.5)

where qn = (ζn + f )/hn is the potential vorticity of layer n.
The vorticity equation for the lower layer combined with the mass conservation equation

for the layer yields the potential vorticity equation for layer 2 which for a steady state is,

�u2 · ∇q2 = 1

h2

�k · ∇ × �D2 (2.6)

so that for weak enough dissipation, we would anticipate the potential vorticity for layer 2
to be locally conserved. Furthermore, if there is a closed contour of potential vorticity, q2,
in the lower layer an integral of (2.5) around that contour implies that∮

Cq2

�D2 · �tds = 0. (2.7)

This constraint holds for all nonlinearity but it will be most usefully employed in the linear
theory of the next section where the contours of constant potential vorticity are the ambient
isolines of q2 = f/h2 and h2 is known.

3. Linear theory

To help establish a conceptual picture of the dynamics in the two-layer model it is useful
to consider the situation when the wind stress is weak enough to produce a slow, laminar
circulation in the upper layer. We will also examine the case where the dissipation is very
weak. In particular, we will avoid regions in which the lateral mixing is important, i.e. we
will remain outside Munk layers, whose thickness we can estimate as δM = (A/β)1/3 and
we consider the case where δM � xT , δM � rT − rI . Over regions of closed potential
vorticity contours the thickness generally would be of the order of (Ah2/λ)1/2 via (2.7)
with a balance between the second and third terms of (2.3).
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The interfacial friction coefficient λi and the bottom friction coefficient λ are also taken
as small, i.e.

(λ, λi )/βh2 � (xT , rT − rI ). (3.1)

When the contours, Cq2, of f/h2 are closed, i.e. when the topographic contribution to
the potential vorticity in layer two is large enough, the constraint (2.7) applies on those
contours (see (3.5c) and (3.17) below). Further, if the coefficients of bottom and interfacial
friction satisfy (3.1) the constraint (2.7) implies

λi

∫
�

Cq2

∇ψ1 · �n
h1h2

ds = (λ + λi )

∫
�

Cq2

∇ψ2 · �n
h2

2

ds (3.2)

on each such contour and the potential vorticity equation implies in the linear limit that
those isolines are given by the isolines of f/h2 which are known a priori. The potential
vorticity equation in turn implies that

ψ2 = Ψ2(q2) (3.3)

or from (3.2)

dΨ2

dq2
= λi

λ + λi

∫�

Cq2

∇ψ1
h1h2

· �nds

∫�

Cq2

∇q2·�n
h2

2
ds

. (3.4)

Once the upper layer equilibrium streamfunction is known, this expression can be used, in
principle, to compute the lower layer transport in the skirt region. Note that for an order
one streamfunction in the upper layer we can anticipate from (3.4) an order one flow in
the lower layer on the closed contours. Instead, on the open q2 contours the lower layer
streamfunction will be O(λi ).

a. The meridional island

We first consider the case of a thin island oriented in the north-south direction as in
Figure 1, surrounded by a topographic skirt confined to the lower layer. The skirt is assumed
to be tall enough to produce closed pv contours girdling the island. Since the outermost
closed pv contour, starting a x = xT and y = yn satisfies the relation

fn

H2
= f

H2 − hT (1 − x
/

xT )

⇒ x

xT

= 1 − H2

hT

(
1 − f

fn

)
(3.5a,b)
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the condition that it reaches the southern boundary without striking the island at x = 0, is
simply

hT

H2
>

β(yn − ys)

fn

. (3.5c)

For an island of length 1400 km and for β = 2 10−11 m−1 and f0 = 10−4 s−1, this yields a
critical value of hT /H2 of about 0.25. Topography lower than this will have all the potential
vorticity contours blocked and the O(1) motion, with respect to the friction parameters
satisfying (3.1) will be expunged.

To simplify the analysis, we further assume that the skirt width xT is smaller than the
island half-length, so that the contributions of the tip regions to the denominator of (3.4)
can be neglected in a first approximation when compared to those coming from the two
nearly meridional sides of the integration contour. We then find (see Appendix A), that, to
leading order in βxT /f , ∫

�
Cq2

∇q2 · �n
h2

2

ds = −q4
2
s

β

(
f 2

n − f 2
s

f 2
n f 2

s

)
(3.6)

(here s = hT /xT is the slope of the topography, and fn,s are the values of f at the northern
and southern tips of the island, where y = yn,s).

For small dissipation, and outside of any western boundary layers, the upper layer stream-
function can be derived from the Sverdrup balance as long as the flow in the lower layer is
order one, or less, with respect to the Sverdrup flow. For our wind stress given by (2.1), the
Sverdrup streamfunction satisfies

βψ1x = �k · curl�τ = 2τo/ro, (3.7)

which must be solved in the four regions shown in Figure 2 (the island in the figure is
the circular island but the regional domains are the same with obvious changes for the
meridional island). In regions A, B, and C, (3.7) yields the Sverdrup solution

ψ1 = 2τo

βro

[x − xe(y)], xe(y) = (r2
o − y2)1/2 (3.8a)

whereas the solution in region D, in the “beta shadow” west of the island, is

ψ1 = 2τo

βro

x + Ψ1I (3.8b)

where Ψ1I is the island constant for the upper layer island, which is computed in Appendix B.
Using (3.8a,b), one can evaluate the integral in the numerator of (3.4), as the sum of three

contributions: one from the portions of the pv contour on the two sides of the skirt, another
from the jumps in the Sverdrup solution across the boundaries between region D and regions
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A and C, and the final one from the portions of the contour lying in the semi-circular tip
regions. An explicit computation, whose details are not given here for brevity, shows that
the latter contribution is dominant in our geometry: the ratio of this contribution to the sum
of the two others is of the order fosxT /h2βro = O(fo/βro), as long as the ratio hT /h2 is
order one. Since in our ocean basin fo/βro is about an order of magnitude greater than one,
it is therefore reasonable to neglect all forcing except the forcing at the two extreme ends of
the island’s skirt.

This result, which agrees fairly well with the numerical evidence described below, can
be partly understood by looking more closely at the forcing, ∇ψ1 · �n. On the long sides of
the topography we have

∇ψ1 = 2τo

βro

[
î + ĵ

y

(r2
o − y2)1/2

]
, x > 0

∇ψ1 = 2τo

βro

î, x < 0. (3.9a,b)

Hence, the largest term of the forcing, (∂ψ1/∂x)nx , has the same size on the two sides,
but different signs, and consequently cancels out in the integration, leaving only the term
∂ψ1/∂y multiplied by the very tiny component of the normal in the meridional direction.
Similarly, the jumps across the boundaries between region D and regions A and C represent
narrow, zonally oriented boundary layers whose flow contributes to (3.4) only due to the
inner product of the ψ1 gradient in the y direction with the small component of the normal
in that direction and it too is very small. On the other hand, the forcing ∇ψ1 · �n can be
locally much larger in the tip regions, particularly to the northeast and southeast of the tips,
where both the streamlines of ψ1 and the pv contours in the lower layer tend to wrap around
the island, and this yields a sizable contribution to (3.4). It is a remarkable feature of the
lower layer flow in this geometry how a very localized region of strong forcing can produce
a circulation on the closed potential vorticity contours that essentially shoots a substantial
flow all around the entire island.

The tip contributions can be evaluated by introducing local radial coordinate systems
centered at the island extremes (0, yn,s), and assuming that in these small semicircular
domains the pv contours are nearly coincident with the bathymetry and hence are lines of
constant radius r . Then, using the linear dependence of h2 on r , we can write r in terms of
q2. For the northern tip, we find

r = xT +
(

fn

q2
− H2

)
xT

hT

(3.10)

and the corresponding forcing is

π∫
0

∇ψ1 · �n
H1h2

rdθ = 2τo

βroH1

q2

fn

π∫
0

rdθ
y sin θ

[r2
o − y2]1/2

. (3.11)
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Since in this region y = yn + r sin θ and since r is less than or equal to xT we can replace
y everywhere in (3.11) by yn so that the contribution of the northern tip is approximately
given by

π∫
0

∇ψ1 · �n
H1h2

rdθ = 2τo

βroH1

q2

fn

2ynxT

[r2
o − y2]1/2

{
1 + fn

q2hT

− H2

hT

}
. (3.12)

A similar analysis for the southern semi-circular tip yields a similar result. Adding the two
of them together, and using (3.6), gives the dominant contribution to (3.4), namely,

dΨ2

dq2
=

(
λi

λi + λ

) { −4τo

sH1ro

}
ynxT

(r2
o − y2

n)
1/2

fnf
2
s

(f 2
n − f 2

s )
·

·
[

1

q3
2

(
1 + fn

fs

) (
1 − H2

hT

)
+ 1

q4
2

2fn

hT

]
(3.13)

Integrating (3.13) and using the condition that the lower layer streamfunction vanishes on
the outer closed contour where q2 = fn/H2 yields ψ2 as a function of the pv,

ψ2 = A

s

[
1

2

(
1 + fn

fs

) (
1 − H2

hT

) [
1 − f 2

n

q2
2H 2

2

]
+ 2

3

H2

hT

(
1 − f 3

n

q3
2H 3

2

)]
(3.14a)

where, recall, s = hT /xT , and

A =
(

λi

λi + λ

) {−4τo

H1ro

}
ynxT

(r2
o − y2

n)
1/2

f 2
s

(f 2
n − f 2

s )

H 2
2

fn

. (3.14b)

Figure 3 shows the form of ψ2(x) over the skirt at the mid latitude, y = 0, for hT = 0.5H2

(solid line) and hT = 0.999H2. The calculation is shown for an anticyclonic wind stress
curl, which yields an anticyclonic circulation in the lower layer. Note that the abscissa x/xT

falls a bit short of unity, because of the slope of the q2 contours in the x.y plane due to the β

effect. This leaves a small sliver of the edge of the skirt outside the closed q2 contours. The
weak solution over the flat region can be continued on the open pv contours over this sliver
but for concision we will not discuss it in detail. When the maximum height of the skirt
almost reaches the interface between the layers the form of the stream function profile is
different and is flatter in the neighborhood of the island with strong variations of ψ2 limited
to the outermost closed potential vorticity contours nearer the edge of the skirt.

The total transport ψs in the skirt region predicted by linear theory is obtained by evalu-
ating (3.14) at x = 0 and y = yn. Rearranging terms a bit, we get

ψs = λi

λi + λ

(−τ0

2β

)
H2

H1

(xT /r0)
2√

1 − (yn/r0)2

× f 2
s

f0fn

{
3fn

fs

− 1 + 2

(
1 − fn

fs

)
H2

hT

+
(

1

3
− fn

fs

)
hT

H2

}
(3.15)
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Figure 3. The form of the lower layer streamfunction as a function of x at the mid latitude, y = 0,
for hT = 0.5H2 (solid) and hT = 0.999H2 (dotted).

which shows that the transport is proportional to the ratio H2/H1, and to the square of
xT /r0, i.e., to the ratio between the total area of the tip regions and the basin area. The
dependence on the basin radius is concentrated in the fourth fraction, and is manifestly a
monotone decreasing one. That on the island length is more involved, but the numerical
computation of Figure 4a shows that the transport decreases with increasing yn [note that
increasing the island length increases the denominator of (3.4)].

The dependence of the lower layer transport on the skirt height is determined by the
expression in the curly bracket in (3.15), which vanishes for some small value of hT /H2.
This value is plotted in Figure 4b (solid curve) as a function of yn, for β = 2 10−11 m−1 and
f0 = 10−4 s−1, together with the critical values (dotted line) obtained from (3.5c). The two
curves almost coincide, providing an a posteriori check of the validity of the approximations
made in deriving (3.15). Note also that in the limit hT /H2 → 1 the dependence on fn/fs

cancels out and the expression in the bracket tends toward a constant value of 2/3. As shown
in Figure 11, for short islands, one may get slightly higher values at intermediate values
of hT /H2, yielding a transport that first increases, reaches a maximum, and then slowly
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Figure 4. (a): the transport on the skirt in the lower layer as a function of the island half-length yn,
for hT /H2 = 0.4, 0.6 and 0.8 (dotted, solid, dashed), as resulting from (3.15). The forcing and the
other parameters are the same as in Fig. 9b): the dotted line gives the critical value of hT/H2 below
which all pv contours on the skirt are blocked by the island, while the solid line gives the value of
hT/H2 for which the transport vanishes according to (3.15). Both values are shown as a function
of yn. The two curves are almost coincident.

decreases with hT . However, the same figure shows that, in the range 0.5 ≤ hT /H2 < 1,
the overall dependence of the transport on the skirt height is pretty weak.

If the topography is steep enough to intrude into the upper layer the situation becomes
much more complex. However, in the region of the upper layer with steep topography
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and closed pv contours in the upper layer the flow on the closed contours is essentially
barotropic and, as predicted in PINH, much stronger, O(λ−1). A full treatment of that
problem is beyond the scope of the present paper. However, the important qualitative point
is that the presence of stratification has shielded the lower layer from the direct effect of
the wind forcing. The circulation on the closed q2 contours is smaller than in the barotropic
case although still much larger than in the flat region of the lower layer.

b. The circular island

In view of the weak projection of the forcing on the contour of integration we have
turned to another island geometry, shown in Figure 2, consisting of a circular island of
radius rI , surrounded by a circular skirt of size Δr = rT − rI . The evaluation of (3.4) is
more complicated for this configuration, and it is difficult to derive an accurate analytic
expression for the lower layer transport. We believe, however, that the calculation below is
sufficient to illustrate the main differences with the meridional island case.

In this geometry the pv contours in the skirt region are given by

r

(
1 − βΔr

hT q2
sin θ

)
= rT − Δr

hT

(
H2 − f0

q2

)
(3.16)

where (r, θ) are polar coordinates with origin in the island center, and the radius r varies in
the range rI ≤ r ≤ rT . The threshold for closed pv contours is now obtained by asking that
the outermost pv contour, on which q2 = (f0 + βrT )/H2, encircles the island, i.e, that on
this contour r is larger than rI at θ = 3π/2. This yields

hT

H2
>

β(rI + rT )

f0 + βrT

. (3.17)

For rI = 250 km, rT = 500 km, β = 2 10−11 m−1 and f0 = 10−4 s−1, this corresponds to a
critical value of hT /H2 of about 0.14. It is also clear from (3.16) that the extent to which the
pv contours deviate from circles depends on the size of the term βΔr/(hT q2). For hT /H2

of order unity, the magnitude of this term is of the order of 10−2, and it seems reasonable
to neglect it, to simplify the analysis. This amounts to neglecting the β effect in the lower
layer over the topography.

Let us now calculate the numerator in (3.4). As before, we must be aware of the regions
with different Sverdrup solutions; in regions A, B, and C the solution is again that given in
(3.8a), whereas in region D the solution is now given by

ψ1 = 2τo

βro

(x − xw(y)) + Ψ1I , xw = −(r2
I − y2)1/2 (3.18)

where Ψ1I is the island constant, that is computed in Appendix B.
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Figure 5. The outer circle is the contour of integration. The inner circle is the island in the upper
layer. The angle θS is the critical angle for the integration in Section 3b.

Since the pv contours are circles and the integrand in the numerator of (3.4) is north-south
symmetric for weak forcing (see Pedlosky et al., 1997), we can carry out the integral on any
circle of radius r between the angles of 0 and π. In starting from the x axis to the east of
the island the integral proceeds counter clockwise until the contour intersects the boundary
between regions A and D. This occurs at an angle π − θs where, as seen in Figure 5,

θS = sin−1(rI /r) (3.19)

where the solution for ψ1 in the integrand must be abruptly changed (note that as r → rI θS

approaches π/2). We will therefore do the integral in pieces, taking into account the delta
function-like behavior of ψ1. Since r̂ = î cos θ + ĵ sin θ, where θ is the azimuth angle, we
have in region A

∇ψ1 · �n = 2τo

βro

[
cos θ + y sin θ

(r2
o − y2)1/2

]
(3.20a)

while in region D

∇ψ1 · �n = 2τo

βro

[
cos θ − y sin θ

(r2
I − y2)1/2

]
. (3.20b)

Note that the second term in (3.20b) may become very large and it is certainly greater than the
equivalent term in (3.20a). In distinction to the meridional island the circular island’s western
coast is curved and introduces a new, relatively large term to the forcing. This is similar
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to the aforementioned case if the eastern boundary of the basin is convex facing westward
rather than concave as for the circular basin. For the same curl the convex boundary of the
western portion of the island acts the same way changing the sign of the zonal Sverdrup
flow. The nature of the flow in the basin is a powerful function of the shape of the basin
perimeter since in Sverdrup dynamics that information is propagated in a nondispersive
manner westward.

In calculating the integrals needed in (3.4) we can use the fact that y = r sin θ and the
expression of r as a function of q2 obtained by setting β to zero in (3.16). After a small
calculation we obtain∮

Cq2

∇ψ1·�n
h1h2

ds

2τo

foβroH1

= q2r

⎡
⎢⎣2

π−θS∫
0

sin2 θ

[m2 − sin2 θ]dθ − 2

π∫
π−θS

sin2 θ

[n2 − sin2 θ]dθ;
⎤
⎥⎦

n = rI

/
r; m = ro

/
r, θS = sin−1(rI /r) (3.21)

The two integrals in (3.21) yield terms of opposite signs. This is very much like the situation
referred to earlier where there is a change in sign of forcing if the eastern boundary of the
basin is convex rather than concave facing west. Here the term of opposite sign is introduced
by the island geometry itself.

Including the contributions from the jumps in the solution across the boundary between
regions A and D that are calculated in Appendix C, we finally obtain

dψ2

dq2
=

− λi

λ + λi

2τo

sβH1ro

f 2
o

2πq3
2

[
Im − In − 1

r
tan(θS)

(
[r2

o − r2
I ]1/2 − r2

o

rI

sin−1(rI /ro) − πrI

2

)]
(3.22)

where Im and In are the integrals appearing in the square bracket in (3.21), and s = hT /Δr

is the slope of the skirt. Once dψ2/dq2 is calculated the azimuthal transport around the pv
contours in the lower layer is obtained by multiplying (3.22) by dq2/dr2, where

dq2

dr2
= −f0

h2
2

s. (3.23)

Figure 6 shows the form of the azimuthal transport ∂ψ2/∂r for an island for which
rI /rT = 0.5 and r0/rT = 5 and for which the wind stress has a constant negative curl. The
figure shows that the flow is everywhere anticyclonic. If we had ignored the contribution
from the zonal boundary layers we would have obtained cyclonic circulation over part of
the range in r as a consequence of the forcing on the western curved boundary of the
island (the integral In). It is important to recall that a major part of the forcing, due to the
equal meridional flow on both sides of the island cancels in the contour integral leaving the
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Figure 6. The azimuthal transport ∂ψ2/∂r obtained from (3.22) and (3.23) for rI /rT = 0.5 and
ro/rT = 5 and 2.

residuals related to the curvature of the boundaries to determine the balance of forcing on
the contours of potential vorticity. Figure 6 also shows a calculation for which the ratio of
the basin radius to the skirt radius is smaller i.e. r0/rT = 2. This enhances the effect of the
integral Im and the flow is more strongly anticyclonic everywhere.

Figure 6 also illustrates one of the difficulties involved in this calculation. The azimuthal
flow diverges when approaching the island border, because of the tan(θS) appearing in the
term that gives the contribution of the meridional jumps in the Sverdrup streamfunction
to the forcing (remember that θs tends to π/2 for r → rI ). This shows that the simple
arguments used in the appendix fail in the small region with complex dynamics near the top
of the island (see Fig. 12 below). The failure, however, only affects the flow near the island,
which can be expected to contribute very little to the total transport in practical cases. With
this in mind, we may go on and use (3.22) and (3.23) to express the total transport ψs as an
integral over the radial extent of the skirt:

ψs = λi

λi + λ

(−τ0

πβ

)
H2

H1

∫ ρT

ρI

dρ

[
1 − hT

H2

rT − r

Δr

]
F(ρ, ρI ). (3.24)
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Figure 7. The square bracket in (3.22) for ro/rT = 2.

Here ρ = r/r0, ρI = rI /r0, F is the term in square brackets in (3.22), and the terms in front
of the integral are the same as in (3.15), except for a π replacing a 2 in the denominator of
the second fraction. Note that, just as in the meridional island case, the dependence on s has
canceled out, so that the transport does not depend explicitly on the skirt slope. There is a
residual dependence on the skirt height, simpler than that occurring in (3.15): for a positive
definite F , the transport predicted by (3.24) is linearly decreasing with hT /H2. This appears
qualitatively consistent with the large hT /H2 behavior observed in the simulations (see Fig.
13b below), but is certainly not right for small skirt heights, i.e., when we approach the
threshold (3.17), since in this limit the transport should vanish. This is the price we have
to pay for having neglected the beta-induced deformation of the pv contours, which was
crucial in allowing a semi-analytic evaluation of (3.4).

For moderate skirt heights, however, we may expect (3.24) to be sufficient to roughly
estimate the size of the transport. Since F is slowly varying (see Fig. 7), except near the
inner boundary, because of an unphysical divergence, we can approximately evaluate the
integral in (3.24) by replacing F with its radial average. This gives

ψs ≈ λi

λi + λ

(−τ0

πβ

)
H2

H1
〈F 〉Δr

r0

(
1 − 1

2

hT

H2

)
(3.25)

with 〈F 〉 of order unity, as shown by Figure 7. Note that, according to (3.25), the transport is
proportional to Δr/r0. This is different from the meridional island case, where the transport
scaled with the square of xT /r0, and indicates that in the present geometry we may expect
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larger transports for the same skirt width. Likewise, we can estimate the ratio of the transport
in the lower layer to the Sverdrup transport in the upper layer as

ψs

ΨI1
= O

(
λi

λi + λ

H2

H1

1

2π

Δr

r0

(
1 − 1

2

hT

H2

))
(3.26)

that the flow can be expected to be somewhat smaller in the lower layer than in the upper
layer although of the same order. For a barotropic model, as in PINH, the flow on closed q2

contours would go as λ−1, so as in the case of the meridional island, the principal effect of
the stratification is to shield the lower layer from the direct forcing of the wind and reduce the
response of the topographic resonance. Note also that the lower layer can equilibrate with
no bottom drag. This differs from the potential vorticity homogenization approach of Dewar
(1998), in which bottom drag is essential in determining the strength of the recirculation.

Given the delicacy of the relative balances of the residuals of the upper layer forcing
on the lower layer, and the limitations of the analytic approach, it is important to compare
these idealized linear results with numerical calculations which include the effects of lateral
friction and nonlinearity.

4. Numerical model and results for the linear regime

The previous theoretical results indicate that deep circulations can be driven along topog-
raphy that encircles an island through a fairly simple parameterization of coupling with the
upper layer wind-driven flow. The circulation along a closed contour of potential vorticity
results from a delicate balance between forcing from the upper layer and dissipation, in the
form of bottom drag, interfacial stress, or horizontal viscosity. Owing to the symmetries in
the problem, the net forcing on the deep layer is much weaker than the wind forcing in the
upper layer, yet the mean circulation can be of similar strength. Numerous assumptions are
required in order to make the problem analytically tractable and, while each are defensible,
an independent confirmation of the result is desirable. In this section, the basic circulation
patterns and parameter dependencies predicted by the theory are tested using a numerical
model. The model contains more complete physics, and so provides an inherent validation
of the analytic result, while the theory provides a clear interpretation of the balances that
determine the mean circulation.

The numerical model used in this study is based on the Miami Isopycnal Coordinate Ocean
Model (MICOM, Bleck et al., 1992). The model solves the primitive equations of motion
using an isopycnal vertical coordinate. The MICOM solves prognostic equations for the
isopycnal-layer averaged horizontal momentum, layer thickness (and sea surface height),
temperature, and salinity. We have made several simplifications for the present problem.
Temperature and salinity are uniform within each layer, and so the model effectively uses
only the potential density field. There is no mixing of density (or tracers) between isopycnal
layers and there is no surface buoyancy flux, so the model is adiabatic. All calculations
reported here use two isopycnal layers.
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The initial layer thicknesses are 1000 m for both the upper and lower layers, giving
a maximum total depth of 2000 m. The horizontal grid spacing is 5 km for all cases. The
Coriolis parameter varies linearly with latitude as f = f0+βy, where f0 = 0.75×10−4 s−1,
β = 2 × 10−11 m−1 s−1, and y = 0 at the mid-latitude of the basin. The change in density
between the two layers is 2.81 Kg m−3, resulting in a baroclinic deformation radius of 50 km.

The upper layer is forced by a body-force representation of wind stress, as in (2.2a) with
a uniform wind stress curl. The deep layer is forced through an interfacial stress term that is
proportional to the difference between the upper layer velocity and the lower layer velocity,
as in the linear theory (2.3b). Viscous dissipation is represented as a lateral Laplacian
friction.

The relative strengths of the model forcing and dissipation are characterized by several
boundary layer thicknesses. The strength of the wind stress is specified indirectly through

the inertial boundary layer thickness, δI =
(

2τo

roH1β2

)1/2
. The strength of dissipation is

specified through the previously defined frictional Munk boundary layer thickness.
For comparison with the linear theory, we choose relatively weak forcing so that the

relative vorticity of the mean flow remains small and the large-scale mean circulation is
stable to baroclinic and barotropic instabilities. Unless differently specified, the inertial
boundary layer thickness is δI = 2 km, while the Munk layer thickness is δM = 10 km
(A = 20 m2 s−1), giving a ratio δI /δM = 0.2. The interfacial drag coefficient in our standard
runs is λi = 10−5 m s−1. Using the parameterization of baroclinic instability of Gent et al.
(1995), this is equivalent to a horizontal thickness diffusion of Ah = λiL

2
d/H = 25 m2 s−1.

The model calculations are started from rest and run for a period of 20 years, at which
point the fields are essentially steady.

a. Meridional island

Here we present numerical results for thin meridional islands in a circular basin, and
compare them with the predictions of the linear theory previously developed. To summarize
the expected dependences on the geometrical parameters, in Figure 8 we present a map
obtained from (3.15) and (B.3), showing the lower layer transport on the skirt, normalized
by the upper layer island constant, as a function of the basin radius ro and of the island
half-length yn, for a fixed value of the topography “aspect ratio,” xT /yn = 0.5. Qualitatively
similar maps are obtained for higher (lower) values of the aspect ratio, with higher (lower)
values of the transports, respectively. For fixed ro, the transport increases monotonically with
yn because of the dependence on x2

T in (3.15), while for given island length it decreases when
going to larger basins, so that the maximum ratio of transports, just above 4%, is obtained
near the right lower corner of the map. These qualitative dependences are confirmed by the
numerical simulations. In the following, we will restrict to a basin of 1000 km of radius.

A typical steady state obtained in the simulations is that of Figure 9, showing the stream-
functions of the two layers for a configuration with an island of 800 km, surrounded by a
250-km wide skirt that reaches 600 m of height. The forcing is from a constant curl wind
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Figure 8. Lower layer transport over the skirt for the meridional island as predicted by (3.15). The
transport is normalized by the upper layer island constant (B3), and is given as a function of the
island half-length yn and of the basin radius r0, for hT = 600 m and xT /yn = 0.5. The contour
interval is 0.005.

stress, whose size is determined by the non-dimensional parameters previously specified,
that are appropriate for a linear context. The solution in the upper layer is very close to what
may be expected on the basis of the barotropic linear theory developed in Pedlosky et al.
(1997) with almost coinciding numerical and theoretical values of the island constant ΨI

(0.0781 Sv and 0.0778 Sv, respectively). This indicates that the interfacial drag coupling
with the lower layer is small enough not to affect the upper layer dynamics (see the next
subsection for a more detailed analysis of the effects of the interfacial drag on the circula-
tion). On the other hand, the same coupling drives significant circulations in the lower layer,
one of which is confined in the region of the western boundary layer, while the other, over
the skirt, is characterized by streamlines that closely follow the PV contours encircling the
island. Much weaker flow is observed over the rest of the flat bottom region, and the overall
picture is in qualitative agreement with the theory. Moreover, the transport on the skirt of
1.277 × 10−3 Sv is very close to the value of about 1.35 × 10−3 Sv predicted by (3.15),
indicating that the effects of lateral friction and of numerical dissipation are small.
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Figure 9. Steady state streamfunctions for the two layers (upper layer in panel a), from a simulation
with an island of 800 km, surrounded by a skirt of 250 km, 600 m tall, whose boundary is indicated
by the dashed contour. The contour intervals are 0.01 Sv and 2.5×10−4 Sv, respectively. The lower
layer pattern displays a closed circulation around the island, over the skirt, with streamlines closely
following the contours of constant potential vorticity.
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An interesting point emerging from the analytic calculation of Section 3a is the obser-
vation that the main contributions to the transport appears to come from the regions of the
skirt tips, which prompted us to retain only these contributions in the derivation of (3.15).
As a consequence, the transport was found to be weakly decreasing with the island length
(see Fig. 4a), mainly because of the increase in the denominator of (3.4). Two runs with the
same geometry and parameters of Figure 9, but different island lengths (yn = 300 km, and
yn = 600 km), yield transports over the skirt of 1.6 × 10−3 Sv, and 0.68 × 10−3 Sv, respec-
tively, confirm this behavior, supporting the idea that the forcing along the lateral portions
of the PV contours is less effective than the one acting in the tip regions. This is further
clarified in Figure 10, where we plot the integrand in the numerator of (3.4), ∇ψ1 · �n/h1h2,
over the skirt region, as computed from the upper layer numerical solution of Figure 9, with
some PV contours superimposed (dashed lines). The forcing is weak and cyclonic to the
west of the island, and of the same order of the anticyclonic forcing present in the outer part
of the eastern skirt. On the other hand, the anticyclonic forcing, that is prevalent in the tip
regions, becomes very strong near the tips of island, and provides a major driving source
for the circulation around the island, as suggested by the analytic estimates. It should be
noted, however, that the picture emerging from the simulation is more complex, since near
the eastern side of the island there is also an intense, but quite localized, forcing pattern
due to the presence of a boundary layer, whose effects could not be included in the analytic
approach. The effects of this boundary layer may be expected to become more important at
larger values of the Munk layer thickness.

Another point to be explored is the dependence of the transport on the skirt height.
Figure 11 shows that this dependence, for the geometry of Figure 9, is quite weak; the
transport is somewhat lower for smaller and larger skirt heights, peaking around a height
of 500 m. The analytic dependence is also shown, for yn = 300 km (dashed line), 400 km
(solid line, that directly compares with the numerical values), and 600 km (dotted line). The
agreement between the two is reasonably good for intermediate values of the skirt height,
i.e., for hT in the range 400–700 m, but theory tends to overestimate the transport outside
this range. A possible explanation for this discrepancy is the neglect of the tip contributions
in the denominator of (3.4). Taking into account these contributions should bring the solid
line down a bit, and could even modify the functional dependence on the skirt height. A
weak dependence of the transport on the skirt height was also found for other configurations,
and we anticipate a similar behavior for the circular island case.

b. Circular island

The mean circulation for a circular island in a circular basin is shown in Figure 12. The
island radius rI = 250 km, the topographic skirt radius is rT = 500 km, and the basin
radius r0 = 1000 km, giving ri/rT = 0.5 and r0/rT = 2. The skirt height is 500 m, giving
a topographic slope s = 0.002. The streamfunction in each layer is nondimensionalized by
the theoretical island constant (B.5).
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Figure 10. The integrand in the numerator of (3.4), measuring the strength of the forcing exerted by
the upper layer, wind-driven dynamics, on the lower layer circulation. Equally spaced contours,
with the solid (dotted) lines corresponding to anticyclonic (cyclonic) forcing, with the dashed lines
indicating contours of constant potential vorticity.
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Figure 11. The dependence of the lower layer transport on the skirt height hT for the meridional
island. Asterisks mark values from numerical simulations, with all other parameters as in Figure
9, while the curves are obtained from the analytic estimate (3.15). The solid line is for an island
half-length yn = 400 km, as in the simulations, while the dashed (dotted) curve is for yn = 300 km
(yn = 600 km).

The circulation in the upper layer reflects the Sverdrup transport away from the island,
with the flow direction in regions A, B, and C tracing the shape of the eastern boundary. To
the west of the island the zonal flow changes sign because the island west coast is convex,
as expected from the linear theory. There is also a strong boundary layer along the eastern
side of the island, which is required because the island constant is greater than the Sverdrup
transport between the island and the eastern boundary, see (B.5). This eastern boundary layer
was not included in the theory, but the westward boundary layers extending from the northern
and southern tips of the island, also evident in the figure, were included. The influence of
this eastern boundary layer is to drive an anticyclonic circulation within approximately δM

of the island. This region close to the island is also where the theory predicts a very strong
anticyclonic circulation driven by the northern and southern tip boundary layers. Because
of the neglect of dissipation and this western boundary layer in the theory, we do not expect
quantitative agreement between the model and theory close to the island.



2011] Pedlosky et al.: The two-layer skirted island 371

Figure 12. Mean streamfunction for (a) upper layer and (b) lower layer for δM = 10 km, δI = 2 km,
λI = 10−5 m s−1, rI = 250 km, rT = 500 km, and ro = 1000 km. The streamfunction in both
layers has been nondimensionalized by the upper layer island constant ΨI = .095 Sv, and the
contour interval in a) is 0.1 and in (b) is .004. The topography is indicated on (a) by the gray
circular contours, contour interval 200 m.

The model produces a mean anticyclonic circulation around the island of strength
2.18×10−3 Sv, or 0.023 ΨI1, which is somewhat lower than the value of 0.03 ΨI1 resulting
from the rough estimate (3.26). However, the transport is 1.7 times that found in the stan-
dard experiment with the meridional island, in agreement with the analysis of Section 3b,
indicating that for the same skirt width and basin geometry, transports should be larger for
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the circular island. Note that the transport is carried over a width of O(250 km), while the
upper layer transport of ψ1 is carried over O(1000 km) width, so the ratio of their transports
per unit width is indeed of order unity.

The transport around the island is more than 2 orders of magnitude greater than the deep
transport over the flat bottom, as expected from the theory, and confirms that even relatively
weak coupling between the upper and deep layer can force an O(1) flow over the closed
topographic contours. There is a significant north-south asymmetry in the streamfunction
because the potential vorticity contours do not coincide with topographic contours because
of the influence of β. This contribution was neglected over the topographic skirt in the
theory, and the numerical result demonstrates that its primary influence is to distort the
circulation slightly but it does not change the qualitative response in the deep layer.

The primary purpose of the model is to verify the basic balances and parameter dependen-
cies predicted by the theory. Expression (3.25) indicates that, for λ = 0, the deep circulation
over the skirt should be independent of λi . The circulation over the flat bottom is much
weaker than the circulation over the skirt, but is expected to increase linearly with λi . A
series of model calculations have been carried out in which the coupling coefficient has been
varied, while all other parameters are the same as for the above standard case. The circula-
tion strength over the skirt is shown as a function of the coupling coefficient in Figure 13a.
The recirculation varies with the coupling strength approximately as (λi/βh2(rT − rI ))

1/2.
Recall that the theory assumes that this ratio is much less than 1. The model requires lateral
viscosity for computational stability and, as a result, we are not able to find a regime in which
the solution is independent of the coupling strength. We can anticipate this general behavior
from the theory (3.26), as dissipation (represented by λ in the theory) will cause a decreasing
recirculation strength with decreasing λi . The boundary layer width (Ah2/λi )

1/2 is 20 km
for (λi/βh2(rT −rI )) = 10−2, but increases to O(300 km) for the weakest coupling strength
in Figure 13a. This viscous dissipation was not included in the theory, and for dissipation
values required for computational stability in the numerical model (A = 20 m2 s−1) as we
move into the regime of small λi , the boundary layer becomes important.

The transport over the flat interior, between the topography and the eastern boundary, is
always less than that over the topographic skirt, but it shows a stronger dependence (nearly
linear) on the coupling coefficient. This result is consistent with the theory, and confirms that
the dynamics over the region of closed potential vorticity contours are very different from
that found in the region of blocked potential vorticity contours. Even for weak coupling in
the presence of lateral dissipation the circulation over the closed topographic contours is
much stronger than over the flat interior. The specific parameter dependence in Figure 13a
is difficult to predict analytically, but the overall result, that the resonant circulation over
the topography is intermediate to that for the barotropic flow and the flat interior, is robust
to the details of the model physics.

Figure 13b shows the nondimensional transport as a function of hT /H2. The dependence
is non-monotonic, and similar to that found in the meridional island case (see Fig. 11). For
hT /H2 less than 0.2 the transport becomes very small. This is consistent with (3.17), which
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Figure 13. (a) The total nondimensional transport over the topographic skirt (asterisks) and flat interior
east of the topography (circles) as a function of the scaled coupling coefficient λi/βh2(rT − rI ).

The straight lines have slopes proportional to λ
1/2
i for the island result and λi for the interior result.

(b) The nondimensional transport over the skirt as a function of the bottom slope; the vertical
dashed line is the approximate value for which the closed potential vorticity contours vanish.
(c) The nondimentional transport over the skirt from different simulations in which the slope of
the topography is held fixed, while the skirt height and size are varied. The numerical transports
(asterisks) increase linearly with rT − rI , and are not far from those (squares) predicted by (3.26).

gives a threshold of 0.176 for this geometry, below which the region of closed potential vor-
ticity contours is eliminated. For hT /H2 larger that 0.5 the transport decays, approximately
linearly, consistently with the dependence predicted by (3.25), but the numerical slope is
somewhat steeper than that resulting from (3.25).

Another prediction of theory is that the transport is not functionally dependent on the slope
hT /Δr . To test this prediction, we have performed runs with the same slope s = 0.002, but
different couples (hT , Δr), whose transports are plotted in Figure 13c (asterisks), together
with the corresponding transport values predicted by (3.26) (squares). The analytical and
numerical transports are not far from each other, and they both increase almost linearly,
consistently with the linear dependence on Δr predicted by the theory.
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A last point worth exploring, at least partially, is that of how the delicate balances that
determine the transport over the skirt may be affected by modifications of the upper layer
circulation induced by changes in the basin geometry. As noted in Section 3b, in the merid-
ional island case the circulation would be deeply affected by making the eastern boundary
of the basin convex toward the island. In the circular island case, a similar effect may be
induced by placing another island to the east of the one in consideration. This is illustrated
in Figure 14, where the island has been moved a little toward the west (island A), and made
smaller, to remain far enough from the circulation induced by the western boundary layer,
while a larger island (B) has been placed in the eastern part of the basin. Panels a) and
b) show the resulting equilibrium circulations, for the upper and lower layer, respectively.
Note that circulations of opposite signs develop in the lower layer over the islands’ skirts,
due to the different structure of the upper layer flow to the east of the islands. To the east of
B, the flow is similar to that of the single island experiment of Figure 12, and the resulting
forcing on the lower layer is likewise anticyclonic. On the other hand, to the east of A the
curvature of the streamlines has changed from concave to convex, due to the presence of the
convex western boundary of B. This destroys the anticyclonic contribution to the forcing
from the eastern part of the island (the integral Im in (3.21)), allowing the net forcing on
the lower layer flow to become cyclonic.

5. Nonlinear numerical results

The linear calculations in the preceding sections parameterized forcing of the deep ocean
through a simple interfacial stress between the upper layer and the deep layer. This approach
is intended to represent the tendency, in baroclinic fluids, for momentum to be transmitted
from the upper ocean to the deep ocean as a result of baroclinic instability or vertical
mixing. The advantage of such an idealized approach is that it allows for closed form
analytic solutions and a straightforward interpretation of the driving mechanisms for the
deep ocean.

It is, however, a drastic simplification of what is likely in the real ocean to be a much
more complex process. Given the apparent sensitivity of the linear model to details of the
forcing, it is important to confirm that the basic result remains relevant in more nonlinear
regimes representative of the real ocean.

We have carried out a number of numerical model calculations in configurations similar
to those already discussed, but with sufficiently strong forcing of the upper layer that the
circulation becomes unstable and strongly time-dependent. The interfacial stress used for
the linear calculations has been removed, and the only forcing on the deep layer comes
from the resolved time-dependent motions. We report results from one of these calculations
(although all have been found to produce qualitatively similar results) to demonstrate the
basic response predicted by the simple linear models is also produced in a nonlinear model.

A calculation with a narrow meridional island, as in Section 4a, has been carried out with
5 km horizontal resolution and forcing and dissipation characterized by an inertial boundary
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Figure 14. Equilibrium streamfunctions for the (a) upper layer and (b) lower layer, for a configuration
with two islands, and anticyclonic forcing. Panels (c) and (d) show sections of the bathymetry and
of the lower layer streamfunction at y = 0. Note that circulations of opposite signs develop in the
lower layer over the islands’ skirts, due to the different structure of the upper layer flow to the east
of the islands. To the east of B, the flow is similar to that of the single island experiment of Figure
12, and the resulting forcing on the lower layer is likewise anticyclonic. On the other hand, to the
east of A the curvature of the streamlines is dramatically changed by the presence of the convex
western boundary of B, and the net forcing on the lower layer flow becomes cyclonic.

layer thickness of 15 km and a Munk boundary layer thickness of 10 km. The stratification
has been reduced so that the baroclinic deformation radius is 30 km and the large-scale flow
is more susceptible to baroclinic instability. The model was started at rest and integrated
for a period of 20 years.

The mean streamfunction over the final 5 years of integration in the upper and lower
layers is shown in Figure 15. The upper layer circulation to the east of the island largely
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Figure 15. Mean (a) upper and (b) lower layer streamfunction from the final 5 years of a 20-year inte-
gration for the nonlinear numerical model. The streamfunction in both layers has been nondimen-
sionalized by the upper layer island constant. The contour interval is 0.25. The bottom topography
is indicated in (a) by the gray contours, contour interval 200 m.

reflects the expected Sverdrup flow, but there are considerable differences in the vicinity of
and to the west of the island. The model produces strong, barotropic recirculation gyres on
the offshore side of the western boundary current.

The flow in the western shadow of the island is similar to what one would expect from
Sverdrup theory, however near the southern portion over the bottom topography, the flow
turns to the north. There is a small closed anticyclonic recirculation near the northern tip of
the island in the upper layer which we found in most nonlinear calculations.
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The deep layer is dominated by closed recirculations near the western boundary and
around the skirt topography. The circulation around the island is 1.4 times the island constant
in the upper layer, stronger than predicted by the linear theory but of the same order of
magnitude as the upper layer wind-driven circulation. The flow around the island is strongly
baroclinic, particularly along the western flank where the deep flow is in the opposite
direction to the local wind-driven flow. Potential vorticity over the topographic skirt is not
homogenized in layer 2, but is instead dominated by the changes in layer thickness due to
the topography.

The nonlinear model result is very complex and includes processes not considered in the
linear theory (such as loss of momentum from the upper layer to the deep layer and eddy-
driven recirculation gyres). A detailed analysis of this regime is beyond the scope of the
present study. It is encouraging, however, that the primary prediction from the linear theory,
that the combined effect of closed f/h2 contours in the deep layer and stratification produce
deep recirculations of the same order as the upper layer wind-driven flow, is reproduced
in this model that explicitly resolves the time-dependent forcing of the deep layer through
instabilities of the upper layer flow.

6. Discussion and conclusions

The addition of both topography and baroclinicity to the dynamics of flow around plan-
etary scale islands produces new and important qualitative changes in the circulation. The
presence of baroclinicity, represented in our model by our two-layer system, introduces for
the first time the issue of the vertical structure of the flow.

The presence of topography in the barotropic model in PINH introduced closed
geostrophic contours around the island and the resulting flow, directly wind driven, could
be very large since the geostrophic resonance on those contours led to velocities bounded
only by the dissipation experienced by the flow on each closed contour. Most of that flow
remained trapped to the topography and the Island Rule, which focused primarily on the
interchange of flow between ocean basins on each side of the island, could be simply rein-
terpreted by applying it to the region defined by the outermost closed geostrophic contour
instead of the island’s surface boundary.

In the two-layer model, the flow in the lower layer is not directly forced by the wind but
is instead forced by the action of the upper layer on the lower layer. In our linear models of
Section 3, for example, the drag on the lower layer by the upper layer flow depends on the
coupling constant λi between the layers. When the coupling is weak, as seems realistic, the
flow in the lower layer on the closed contours never exceeds the flow in the upper layer and,
in linear theory, is reasonably independent of the value of the coupling as long as it is small.
This is in contrast to the flat region outside the topographic skirt where the resulting lower
layer flow is very weak and order λi itself. Our numerical modeling of this linear regime
shows a weak dependence on λi over the topography, possibly as the result of lateral friction
neglected in the theory and does show the linear dependence of the flat interior on λi . Thus
the baroclinic model predicts a deep flow with a strength intermediate between the flow on



378 Journal of Marine Research [69, 2-3

the skirt in the barotropic model and the flow in the deep interior where there are no closed
potential vorticity contours. In that sense the presence of closed potential vorticity contours
provided by the topography allows a locally efficient mechanism to transfer momentum to
the lower layer.

Furthermore, since the flow in the deeper layer is driven by the velocity of the upper layer
Sverdrup flow rather than the wind stress itself, portions of that driving are ineffective in
driving the flow. In particular, the meridional flow in our constant wind stress curl forcing
is equal on each side of the island and cancels in the contour integral around the island
that determines the net forcing that drives the deep response. This leads to a surprisingly
sensitive dependence of the deep flow on the geometry of the island as well as the geometry
of the basin. For example, in the case of the long, meridionally oriented island, the major
driving comes from the upper layer flow acting on the relatively small northern and southern
rounded tips of the island’s topography. That localized forcing is responsible for the major
impetus for motion over the entire length of the potential vorticity isolines in the lower
layer. The forcing on the rest of the island’s perimeter, although locally as strong, is almost
completely self-canceling so that the total forcing is dominated by the effects of the tips. For
the circular island the forcing is everywhere stronger but the convex shape of the western
boundary of the island produces a local forcing that would actually drive a flow in the
opposite direction to that imposed by the sense of the wind stress curl were it not for the
contributions to the forcing of the zonally oriented boundary layers produced, in turn, by the
discontinuities of the Sverdrup solution in the region west of the island. At the same time
the forcing on the eastern side of the island depends on the curvature of the basin boundary
and when that curvature is weak (on the meridional scale of the island), or non existent (in
the case of a straight eastern boundary) there is no forcing provided by the eastern edge of
the island. Thus the nature of the response to the wind forcing is a rather complex function
of the basin and island geometry.

The strength of the circulation has been found not to be functionally dependent on the
slope of the skirt: it depends from the skirt width and from the skirt height, but these func-
tional dependences are different from each other. While the former is monotone increasing,
the latter is nonmonotonic. If the skirt height is too small the presence of the planetary vor-
ticity gradient allows the potential vorticity contours to strike the island’s boundary instead
of encircling it and the resulting deep circulation is very weak. For larger heights, the trans-
port increases, reaches a maximum, and finally decreases, almost linearly, when the skirt
height approaches the size of the lower layer.

The effects of lateral friction are neglected in the analytical theory of Section 3. Yet,
the numerical experiments in the linear limit show no sign of baroclinic instability in the
basin interior removed from the skirt and boundary currents. That implies that there is
sufficient damping, due to lateral friction to expunge the growth rate of instabilities since
the meridional flow should be unstable at all levels of shear if inviscid. That, in turn implies
an intrinsic Reynolds number of order one on the deformation radius scale. The presence
of this irreducible level of friction may contribute to the quantitative differences between
inviscid theory and numerical experiment.
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If the island were large enough and if the curl varied substantially in the zonal direc-
tion across the breadth of the island an additional forcing would arise which we have not
considered in this study.

Most of our numerical studies of the same models have been restricted to rather weak
forcing in order to compare with the linear, analytic theory developed here. Preliminary
results of a more nonlinear nature exhibit qualitatively similar enhanced circulation on the
closed f/h2 contours of the lower layer topography indicating a preferential pathway for
the vertical transmission of momentum downward in that region.
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APPENDIX A

Here we evaluate the denominator of (3.4) for the case of the meridional island. Over the
topography on the long sides of the skirt

∇q2 = ±f s

h2
2

�i + �j β

h2
, (A.1)

where the plus (minus) sign holds to the left (right) of the island, �i and �j are the unit vectors
in the longitudinal and meridional direction, respectively, and s = hT /xT is the slope of
the topography. The outward normals on the right and left hand sides of the island are

�nR =
�i − �jβh2

/
f s(
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)1/2 , �nL =
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βh2
f s

]2
)1/2 (A.2)

and note that f/h2 = q2 and so is constant along a pv contour.
On the right-hand side of the island

∇q2 · �nR = −f s

h2
2

{
1 +

(
β

q2s

)2
}1/2

(A.3)

and using the fact that on that contour ds = dy{1 +
(

β

q2s

)2}1/2 we find that the portion of

the integral in the denominator of (3.4) on the right-hand sides of the island is:
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q2s

)2
}

(A.4)

where we have ignored the relatively small O(xT /yn) contributions from the island tips.
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The integral on the left hand side yields the same result so, ignoring only the northern
and southern tips of the island the denominator in (3.4) yields

∫
�

Cq2
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h2

2

ds = −q4
2
s

β

(
f 2

n − f 2
s

f 2
n f 2
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(A.5)

Finally, we note that the last term in the curly bracket,

(
β

q2s

)2

= O

(
βh2xT

f hT

)2

= O

(
βxT

f

)2

� 1, (A.6)

can be neglected, giving the expression (3.6).

APPENDIX B

The island constant

It is shown in PINH that the island constant for single layer of fluid of constant depth,
which will apply to the upper layer of our model in the linear limit is given by the following
integrals

Ψ1I = 1

(yn − ys)

yn∫
ys

ψSverdrup(x+(y), y)dy −
∫
�
CI

�τ · �t
β(yn − ys)

ds (B.1)

The first term on the right-hand side is the integral in y of the Sverdrup streamfunction
evaluated on the eastern boundary of the island.

The meridional island of Section 3a

The Sverdrup streamfunction for the thin, meridional island on its eastern side is, from
(3.8a)

ψ1(0, y) = −2τo

βro

(r2
o − y2)1/2 (B.2)

so that doing the integral in (B.1) leads us to
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1

2
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o

2yn

sin−1
(

yn

ro

)]
(B.3)

for the case where ys = −yn as in our model.
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The circular island of Section 3b

For the solution (3.18) the eastern boundary of the island boundary is x+ = (r2
I −y2)1/2.

Thus the first integral is

1

(yn − ys)

yn∫
ys
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βro
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]
(B.4)

while the second term is easily calculated using Stokes theorem for the constant curl wind
stress of our model and that term is just − 2τo

βro
, which when combined with (B.4) yields the

island constant
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(B.5)

APPENDIX C

Here we compute the contribution to (3.4) from the jumps in the Sverdrup streamfunction
across the boundaries between region D and regions A and C (see Fig. 2), for the circular
island. Consider the jump across the line y = rI . That jump in the y direction is

ψ1A − ψ1D = −2τo

βro

{(r2
o − r2

I )1/2} − Ψ1I (C.1)

That means that that in evaluating ∇ψ1 · �n in the upper layer we will again approximate the
gradient as a delta function, namely in the neighborhood of y = rI

∇ψ1 = −�j
(
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βro
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)
δ(y − rI ) (C.2a)

so that

∇ψ1 · �n = −
[

2τo

βro

{(r2
o − r2

I )1/2} + Ψ1I

]
sin θSδ(y − rI ); θ = π − θS (C.2b)

Note that θS is positive. In (C.2b) r is the circle on which the integral in (3.4) is being carried
out. Now, our integral is an integral at fixed r and so ds is rdθ. To evaluate the integral using
the delta function we need to use the relation, for constant r , rdθ = dy/ cos θ. Keeping in
mind that the integral in (3.4) is in the counterclockwise sense, it means that as an integral
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in y the segment in the immediate neighborhood of y = rI is
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which, when combined with (B.5) yields
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as the contribution of both the northern and southern jumps in the streamfunction to the
forcing of the lower layer flow. For small rI /ro the first two terms in the final bracket in

(C.4) nearly cancel, the residual being of order − 2
3

r2
I

ro
which would be much smaller than

the last term in the bracket so that the contribution is dominated by the portion of the island
constant related to the circulation of the stress around the upper layer island. In fact, for
very large ro, the variation of the distance from the island to the eastern boundary, over the
latitude range of the island is negligible and the eastern boundary act as if it were straight
contributing little to the integrals (3.21) and (C.4).
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