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ABSTRACT

Several experiments are presented in this thesis which examine
methods to measure and monitor fluld flow from hydrothermal wvent fields.
Simultaneous wvelocity, temperature, and conductivity data were
collected in the convective flow emanating from a hydrothermal vent field
located at 10056’N, 103°41'W on the East Pacific rise. The horlzontal
profiles obtalned indicate that the flow field approaches an ideal plume
in the temperature and velocity distribution. Such parameters as total

heat flow and maximum plume height can be estimated using either the
velocity or the temperature information. The results of these
independent calculations are in close agreement, yielding a total heat
flow from this vent site of 3.7 + 0.8 MW and a maximum height of 150+10
m. The nonlinear effects of large temperature variatlons on heat
capacity and volume changes slightly alter the calculations applied to
obtalin these values.

In Guaymas Basin, a twelve day time serles of temperature data was
collected from a point three centimeters above a diffuse hydrothermal
flow area. Using concurrent tidal gauge data from the town of Guaymas it
is shown that the effects of tidal currents can be strong enough to
dominate the time variability of a temperature signal at a fixed point in
hydrothermal flow and are a plausible explanation for the variations seen
in the Guaymas Basin temperature data.

Theoretical examination of hot, turbulent, buoyant jets exiting from
hydrothermal chimneys revealed acoustic source mechanisms capable of
producing sound at levels higher than ambient ocean noise. Pressure
levels and frequency generated by hydrothermal jets are dependent on
chimney dimensions, fluid velocity and temperature and therefore can be
used to monitor changes in these parameters over time.

A laboratory study of low Mach number jet noise and amplification by
flow inhomogeneities confirmed.theoretical predictions for homogeneous
jet noise power and frequency. The increase in power due to convected
flow inhomogeneities, however, was lower in the near field than expected.

Indirect evidence of hydrothermal sound fields (Reidesel et al.,
1982; Bibee and Jacobson, 1986) showing anomalous high power and low




frequency noise associated with vents is due to processes other than jet
noise.

On Axial Seamount, Juan de Fuca Ridge, high quality acoustic noise
measurements were obtained by two hydrophones located 3 m and 40 m from
an active hydrothermal vent, in an effort to determine the feasibility of
monitoring hydrothermal vent activity through flow noise generation.

Most of the noise field could be attributed to ambient ocean noise
sources of microseisms, distant shipping and weather, punctuated by local
ships and biological sources. Water/rock interface waves of local
origin, were detected which showed high pressure amplitudes near the
seafloor and, decaying with vertical distance, produced low pressures at
40 m above the bottom.

Detection of vent signals was hampered by unexpected spatial non-
stationarity due to shadowing effects of the caldera wall. No continuous
vent signals were deemed significant based on a criterion of 90%
probability of detection and 5% probability of falseaala . However, a
small signal near 40 Hz, with a power level of 1x10  Pa“/Hz was noticed
on two records taken near the Inferno black smoker, 'The frequency of
this signal is consistent with predictions and the power level suggests
the occurrence of jet noise amplification due to convected density
inhomogeneities.

Ambient nolse from the TAG (Trans-Atlantic .Geotraverse) hydrothermal
area on the Mid-Atlantic Ridge near 26°N, in the frequency band 1-30 Hz
at a range of 0.75-14 km from the site of an extremely active high
temperature hydrothermal vent field (Rona, 1986) was examined. The
ambient noise field exhibits great temporal and spatial variations
attributed in part to typical ocean noise sources such as distant
shipping and microseisms. Power spectral levels as measured at each of
six ocean bottom hydrophones (OBH) were used to estimate the location of
point sources of sound in the area, if any.

The hydrothermal vent did not produce enough sound to be located as
a point source using data from the OBH array. The only consistently
identifiable point source found with the data set was generating sound in
a 0.8-3.5 Hz bandwidth and located outside the median valley. It appears
to be harmonic tremor associated with the tip of a ridge on the western
side of the spreading axis and may be volcanic in origin.
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INTRODUCTION

The interaction of a complex set of'geological, biological, chemical
and fiuid dynamical processes create the life supporting enviromment
called earth. Except for the influx of solar radiation, the earth is
basically a self-contained, internally eycling system upon which a great
diversity of life depends. The different cycles occur on all scales and
levels of interaction. Slow, large scale geologic processes such as
continental formation and drift, seafloor creation, and mountain building
interact with similar scale processes in other fields: species evolution
in biology, mantle convection in fluid dynamics, to create long time
period trends in the enviromment. Medium scale wvariations seen in ocean
chemical composition, hydrothermal activity, sea level, biological
extinction and global climate are clearly cyelic and interdependent., And
on the small scale, volcanic eruptions, earthquakes, storms, pollution,
and species blooms and extinctions interact to produce a challeﬁging,
rapidly changing habitat. The ability to predict and control changes in
this environment is necessary for our survival on such a planet,
especially as we begin to participate, through technology and increased
population, in the eyecles and processes themselves,

The ambitious task of understanding the earth as a system must be
approached by breaking down the problem into a set of studies of
individual processes which can then be related to the interdisciplinary,

global view., In this way, a large number of scientists from many fields




contxibute to a level of understanding necessary to prevent adverse
changes and precipitate beneficial ones in this self-contained system.

In the context of earth system science, an important, individual
process is the circulation of seawater through oceanic lithosphere, a
process which transfers heat and chemicals from the mantle to the oceans
and enables them to react with and influence the biosphere. Over 30
active hydrothermal vent sites have been found to date, both In the
Atlantic and Pacific oceans. It is becoming increasingly apparent that
hydrothermal systems permeate a large portion of the Mid-Ocean Ridge
system, and may significantly contribute to the chemical composition of
the ocean and atmosphere.

Hydrothermal circulation begins as cold seawater seeps into the
exposed, fractured basalt found along mid-ocean ridges. The shallgw
magma chambers and intruded lavas characteristic of these ocean floor
spreading centers provide heat to drive the seawater in a convection
system within the crust, Unreacted seawater enters a broad downflow zone
which extends kilometers along and away from the unsedimented spreading
axis. As the cool water descends and approaches the heat source, its
temperature and reactability increase and it rapidly leaches minerals
from the surrounding rock. Upon descending to the top of a magma
chamber, 2-4 km into the crust, the water, now rich in minerals, turns
and rises through narrow upflow zones a few tens of meters wide and exits
onto the sea floor. The surface expression of these hydrothermal wents
is a spectacular manifestation of the importance of the heat and mass
load of the fluid. ihe precipitation of minerals that occurs when the

hot veﬁt fluid mixes with cold, ambient seawater forms tall, 15-20 m high




sulfide chimneys out of which spews 350°C black, particle laden smoke.
Fluid that has mized in the subsurface with amblent seawater and has
lost its mineral load issues from cracks and fissures around these
chimneys as cooler, clear fluid. The hydrogen sulfide present in vent
water provides the primary energy source for a suite of unique organisms
which colonize hydrothermal vents. Massive ore deposits of iron, copper
and zinc sulfide are formed by continuous deposition of the mineral
content of vent fluid. And the plume of warm, particle rich fluid that
rises above a vent field can be detected many kilometers away and may
drive local ocean circulation.

Studies of hydrothermal circulation have relied on instantaneous
measurements of surface characteristies like morphology, biota,
temperature, chemical composition, and flow velocity, which are then can
be used to model subsurface chemical and flow processes. Even these
measurements are difficult to obtain, requiring the use of a submersible
for most sampling. The high pressure,; hot water, particle precipitation
and corrosive flulds make long-term measurements even more scarce. In
desipgning a method to determine simply the temperature field, for
example, one is faced with numerous difficulties starting with the
complex and variable morphology of vent fields. Flow ranges in character
from 10°C water slowly seeping through cracks, fissures, masses of tube
worms, and bacterial mats, to hot, 350°C water jetting out of narrow, 5
cm diameter sulfide chimmeys at 2-3 m/s. The sensor must be able to
withstand high temperature and also cover an area of extreﬁely variable
flow and temperature. Long-term measurements are even more problematic,

as they are complicated by the fact that chimneys grow, fall and




effectively change position, that many materials degrade under vent
conditions, and that variable cross-currents move the plume of hot water
back and forth over the vent field.

The full impact of hydrothermal fluxes of heat and chemicals on
biogeochemical cycles can only be assessed by determining both the total
spatial extent and temporal variability of hydrothermal vents, neither of
which are presently well known. The overall purpeose of the work
contained in this volume was to examine heat and fluid fluxes from
hydrothermal vents, and to develop methods with which to measure these,
both instantanecusly and over the long-term.

The first study was directed at measuring instantaneous heat flux
from a black smoker vent field. Velocity and temperature measurements
were taken in the convective flow emanating from a hydrothermal vent
field and used with plume theory to estimate total heat flux from the
site. The close agreement between heat flux calculations using velocity
and independent calculations using temperature justified the validity of
this method for estimating instantaneous hydrothermal vent heat flux.

The second study examined cross-current effects on temperature
measurements made in diffuse hydréthermal flow. A twelve day time series
of temperature from a few centimeters above an area of diffuse flow
showed significant temporal variations which seemed to be correlated with
tide. It was shown through a boundary layer flow model that the effects
of tidal currents can be strong enough to dominate the time variability
of a temperature signal at a fixed point in hydrothermal flow. The

results show the necessity of recording simultaneous bottom currents when
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trying to use temperature measurements to determine variations in
hydrothermal flow éaused by subsurface processes.

The three other studies which make up this work were concentrated on
determining the feasibility of monitoring high temperature, high velocity
fluid flux through passive acoustic measurements of hydrothermally
generated sound. They include a theoretical examination of sound source
mechanisms, a laboratory experiment to determine the acoustic behavior of
low Mach number, an examination of noise recorded near hydrothermal vents
by microearthquake surveys, and a field experiment designed to measure
the sound produced at a hydrothermal vent jet.

Theoretical examination of hot, turbulent, buoyant jets exiting from
hydrothermal chimneys revealed acoustic source mechanisms capable of
producing sound at levels higher than ambient ocean noise., Pressure
levels and frequency generated by hydrothermal jets are dependent on
chimney dimensions, fluid velocity and temperature and therefore can be
used to monitor changes in these parameters over time.

A laboratory study of low Mach number jet noise and amplification by
flow inhomogeneities confirmed theoretical predictions for homogeneous
jet noise power and frequency. The increase in power due to convected
flow inhomogeneities, however, was lower in the near fleld than expected,

Indirect evidence of hydrothermal sound fields showing anomalous
high power and low frequency noise associated with vents is due to
processes other than jet noise,

Direct measurements of hydrothermal vent sound fields show that
frequency and power levels are comparable to ambient ocean noise and are

consistent with jet quadrupole near-field sound which has been amplified

i1l




by the dipole behavior of convected flow inhomogeneities. This near-
field amplification is not as great as that predicted for the far-field
but is consistent with theoretical considerations for near-field dipole
and quadrupole behavior.

Hydrothermal systems are extremely variable, complex, iInaccessible
and difficult to characterize. Yét, they embody a process through which
significant quantities of heat and chemicals enter the ocean, massive ore
deposits are formed, and on which uniqué vent communities depend. The
value of studying them outweighs the difficulties inherent in such
studies. The Qork presented here has provided a method with which to
measure instantaneous heat flux from black smoker vent fields. The
propertion of heat loss from diffuse flow to that of total flux remains
unknown, however. The importance of measuring cross-currents in long-
term monitoring has been illuminated. The method of examining long-term
variability in flow through passive acoustic monitoring has been shown to
be théoretically possible, but given the levels of ambient ocean noise,
not a simﬁle tool useful at all vent sites.

The development of hydrothermal vent monitoring techniques is still

an active field where many important problems remain unsolved.
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Simultancous velocity, temperature, and conductivity data were taken in the convective flow emanating
from a' hydrothermal vent fietd located at |0°56'N, 103°41°'W on the Fast Pacific Rise. The horizontal
profiles cbtained indicate that the Now field approaches an ideal plume in the temperature and velocity
distribution. Such parameters as total heat flow and maximum plume height can be estimated using either
the velocity or the temperature information. The results of these independent calculations are in close
agreement, yielding a total heat flow from this vent site of 3.7+ 0.8 MW and a maximum height of 150 £ 10
m. The ponlinear effects of large temperature variations on heat capacity and volume changes slightly alter

the calculations applied to obiain these values.

INTRODUCTION

Near midocean ridges (MOR's), cold scawater seeps into
unsedimented crust and is heated by the shaliow magma
chambers and intruded lavas of newly formed oceanic lithos-
phere in the process called hydrothermal circulation. The hot
water, rich in minerals, rises buoyantly through the crust and
exits through hydrothermal vents located on the ridge axis.
These relatively sparsely distributed and inaccessibie vents are
geologically, chemically, and biologically active areas currently
under intense study,

Active hydrothermal vents have been found in the Pacific
Ocean on medium to fast spreading ridges near the Galapagos
at 86°W, along the East Pacific Rise (EPR} at 2¢°S, [I°N,
13°N, and 21°N, inthe Guaymas Basin, and on the Gorda and
Juan de Fuca ridges between 40° and 50°N {Green et al., 1981;
Baker et al., 1985; Francheteau and Ballard, 1983; Crane et al.,
1985; Roria et al., 1985]. Numerous extinct vent sullide chim-
neys have also been found in these areas. Inthe Atlantic Ocean,
vents have been photographed at 23°N and 26°N on the Mid-
Atlantic Ridge [Rona et al,, 1984 and R. Detrick, personal
commuaication, 1985]. ]

The processes of hydrothermai convection can be separated
into three distingt scales of venting, The smallest scale s that of
flow from a single opening on a hydrothermatl suifide edifice.
Veats on this scale are often called smokers (due to the particu-
lates in the venting fiuid) and typically have openings 2-8 cm in
diameter [Converse et al., 1984} The next scale is that of a vent
field or vent area, This includes ali the kot smokers (30-420°C)
on the sulfide structure as well as the cocler (5-30°C) diffuse
flow from cracks and crevices in the vicinity of the main sulfide
edifice. A typical vent field is 100 x {00 m and is usually defined
by the laterai extent of thermal anomalies and the associated
animal communities [ Francheteau and Ballard,1983}. Thelarg-
est scale of hydrothermal venting is that of an active ridge

Copyright 1987 by the American Geophysical Union,
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segment. On this scale of tens of kilometers, hydrothermal
deposits and venting sites appear on regularly spaced (30-80
km} topographic highs [Francheteau and Ballard, 1983;
Schouten et al., , 1985} These highs are thought to overlie sites
of geotogically recent {thousands of years) magma injection
[Schouten er al., 1985). This scale could include 10-100 ke of
midocean ridge crest containing 20-30 active vent areas,

Attempts to determine the thermal output of hydrothermal
vents have been limited in accuracy by either the very small scate
{e.g., a single vent orifice) or the very large scale (2.2, a mido-
cean ridge segment) of the measurements, Macdonald et al,
f1980] used vent exit velocities and an orifice diameter esti-
mated from video tapes coupled with assumed exit tempera-
tures to calcutate a heat flow of 60 MW from a single smoker at
the National Geographic vent site at 21°N on the East Pacific
Rise, Converse ef al. [1984] measured flow rates and tempera-
tures at 21°N by inserting a small vane-type flowmeter into
individual smokers, estimating orifice diameters. and using
buoyant plume theory to obtain values of heat flow ranging
from 0.5 to {0 MW for individual smokers. These heat flow
estimates depend on measurements made near the plume source
and are thus highly sensitive to both the location of velocity and
temperature measurements and visual estimates of the vent exit
geometry, 1n addition, subsequent estimates of total heat flow
from the vent field obtained by mulliplying an individual smok-
er’s heat flow by the number of observed orifices can neither
account for the variations of individual smoker size nor the
contribution to heat flow from diffuse flow.

On the large scale, Crane et gl. [1985] estimated heat loss
from ridge segments by applying buoyant plume theory and a
gross heat balance to temperature measurements obtained by a
ship-towed sensor array, Their estimates varied by a factor of
more than 100, between 13,000 and 1,560,000 MW, for 141 km
of the Juan de Fuca Ridge, largely as a result of the sensitivity of
heat flow calculations to the resoiution of horizontal and verti-
cal positioning of temperature measurements and to uncertain-
ties in the magnitude of regional ocean currents and
hydrography.
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Fig. 1. Map of vent ficld at 10° 55. 73N, 103° 40.6'W showing sulfide structure on edge of favkt scarp [from
McConachy et al., 1986]. Zone | depicts the jocation of warm waler seeps; zone 2 shows the location of the

main sullide edifice with black smokers.

QOur objectives were to obtain more accuraie heat flow esti-
mates and to characterize the fluid flow from a vent field by
measuring the-three-dimensional structure of the convective
flow above a vent field at a scaie {meters} between that of
MacDonald and Converse et al, {centimeters) and Crane et al.
{kilometers). Measurements made at the scale of a vent field can
avoid problems due to sensitivity to vent exil quantity and

- geometry, and depend minimally on estimates of oceanic condi-

tions such as ambient current and stratification. Precise map-
ping of temperature anomalies also permits the quantification
of the relative contributions of high-lemperature smokers and
lower temperature diffuse fow to the totai heat low, To colfect
the appropriate data, the DSV Alvin and R/V Adantis I
visited L1°N onthe EPR in May 1984 to survey chemically and
physically the water above a vent field composed of both black
smokers and the more dilfuse warm vents, Temperature, pres-

sure, conductivity, and velocity were measured at various
heights above this vent field and used to determine the physical
structure of the flow and to calculate maximum plume height
and total advective heat flow.

SITE DESCRIPTION

The target vent field, located a1 10°55.73'N, 103°40.6'W ata
depth of 2531 m (see Figure 1), contains an actively venting
sutfide edifice surrounded by patches of warm venting. The 65 x
45 m vent fieid lies along the eastern edge of the rift valley
against a 20 m-high north-seuth trending fault scarp [ McCon-
achy et gl., 1984, 1986]. The vent area is comprised of pillow
lava, basalt sheet flows, lava lakes with lava spires, and talus
blocks of sulfide near the smokers. The chimney structure,
consisting of both dead and broken spires and several active
lz}egions. reaches a height of approximately 8 mand is 34 m wide
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Fig. 2. Diagram of 50 m cable array deployed from the DSR/V Alvin
with a water sampler, transmissometer, current meter and nine
thertmistors.

at the base. Hot, gray-black water flowed from the base from
three main and three or four lesser opentngs 2-8 cmin diameter,
atl within [ m of the seafloor. Shimmering, milky white water
seeped oul several meters {rom the base through beds of vesti-
mentiferan tube worms.

EQUIPMENT

The temperature, conductivity, and velocity ficlds above the
hydrothermal vent field were sampled with an array of sensors
deployed verticaily from the DRV Alvin (Figure 2). The instru-
ments used in this work included a verticaily mounted seven-
thermistor chain surrounding a self-contained flowmeter,
which fecorded three-component current velocity, lempera-
ture, conductivity, pressure, tilt, and compass heading. The
flowmeter was positioned 24 m above the sampling basket
attached to base of the submarine; the thermistors were
mounted at 40.5, 38.2, 35.6, 34.2, 30.1, 25.4, and 22.5 m above
the base. -

The flowmeter, buiit by J. Dean at the Woods Hole Oceano-
graphic Institution, operates in the range of 1-100 cm/s{#eller
et al., 1985). Its four [ans, each 22 cm in diameter, detect two
vertical (for redundancy) and two horizentai components of
velocity. A tilt meter and a compass enable the measured veloci-
ties to be transposed into an earth-based reference frame despite
rotations of the flowmeter. The thermistor response time is 7s
with a resolution of 0.005°C. Tilt, temperature, and pressure
are each averaged over 5 s, conductivity over 3.6 s, and the
current velocities over the entire 14 s sampling interval,

The thermistor chain, consisting of seven thermistors and a
self-contained, internally recording package, was deployed on
dive 1386, A data sample with a resolution ol 0.001°C was
recorded from each thermistor every 24 s,
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EXPERIMENTAL PROCEDURE

I e S8 m eable, with its sttached Howmeter, thermistor chain,
and flotation, was connccted by o yaick release mechanism to
the basket of Alvin prior to launch, During descent, tempera-
ture, conductivity, and pressure were recorded to obtain the
ambient stratification of the water column. Following descent,
each dive consisted of several stations in the vicinity of the
active main sullide edifice. At each station the submarine
retnained stationary on the bottom for 5-36 min to alfow the
instrument array to stabilize in a vertical position and to record
the time variability of the turbulent fluctuations in the plume.
The submarine moved between stations while remaining as
close to the bettom as possible. usually within 1-2 m. This
resulted in Mowmeter positioning of 24 - 2 mabove the seafloor
during most of the dives. Larger excursions can be seen by
examining the pressure records. All stations were conducled in
the vent field at distances of 1-35 m from the chimney. Naviga-
tion was by dead reckoning, Video and stiil pictures were taken
of the chimney structure and environs.

Three dives were completed with a futly operational, continu-
ously recording flowmeter (1384, [385, {386). and onthe lastof
these the thermistor chain internally recorded temperature at
seven poinis along the vertical array.

DATA REDUCTION

The experiment resulted in a data set that includes seven
simultaneous temperature profiles of the plume from one dive
and three sets of temperature, conductivity, pressure, three-
component velocity, tilt, and compass taken at 24 m above the
bottom from each of three dives.

Salinity was calculated via a salinity algorithm{ Fofonoff and
Millard, 1983] using the temperature, conductivity, and pres-
sure records. The few-second time fag between measurements of
temperature and conductivity was sufficient to cause errors in
salinity caleulations tn the rapidly varying plume environment.
However, the chloride content of a water sample from this vent
taken on dive 1377, several weeks earlier. was found to be only
395 higher than that of Lthe ambient water {J. Edmond, personal
communication, {985}, Accordingly, it was assumed in further
data analysis that the plume salinity was equal to the ambient
value of 34.651% oblained during the dive series 1384-1386.

Plume densily was calculated employing an equation of slate
for seawater, [ Fofonoff and Millard, 1983} and assuming a
constant ambient salinity and pressure (2535 x (¥ Pa).

Corrections are applied in order to recover the true vertical
plume velocities in cases when the instrument array was moving
up or down in response to the submarine motian. These vertical
motions are removed rom the measured ventical velocities to
obtain true vertical plume velocities by subtracting the rate of
pressure change of the instrument from the measured velacities.
This procedure introduces an unwanted but tractable amount
of noise (X4 cm/s) into the resulting vertical plume velocities
due to the limited resolution of the pressure sensor.

Both the vertical and horizontal velocities have been putinan
carth-based reference frame by using the compass and tilt
records Lo remove the effects of spinning and tipping. These
horizontal velocily records were used to calculate approximate
instrument trajectories because an operational bottom naviga-
lior system was unavailable during the dives. The trajectories
were reconstrucied by estimating the ambient current from the
long-term stations and subtracting this from the herizental
velocity dala. The resultant velocities were integruted to obtain
the relative positions of the instrument during a given dive. By
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10 m) results from the assumption of constant ambient current,
—— 4000 - | 842 which ranged from 3 to 4 cm/s toward the north to northwest

. . +4842 - £963 °C \ \
ST w+1353 . 2084°¢ during the dive,
o= 2084. 2.208°C

RESULTS AND DISCUSSION

\.. \ In order to characterize the fluid flow from a hydrothermal

vent fieid and improve the accuracy of quantifying advected
heat flow it is important to determine the extent 1o which the
advective flow is plumelike and how it may be complicated by
multiple sources, diffuse flow, ambient stratification, or shear
flow caused by cross currents.

To determine the form of the convected flow, it is noted that
when the instruments intersect the vent field at a height of 24 m
above the botiom, the data show constant ambient values of
1.83°C punctuated by sharp peaks in temperature, velocity, and

Guram 3 conductivity {see Figures 4-7). The data obtained [rom the
U thermistors at seven different heights also show this pattern
with similariy shaped anomalous peaks in temperature. This
indicates a plumeliké structure, characterized by positive,.
o peaked anomalies, where the overall siructure of each anomaly
is present at more than one height (Figure 7) with a general
Fig. 3. Approximate dive track from dive | 384 shown withannotated  decrease in amplitude as height increases.
.tlsmpcralur‘es and amblcl:nl current vector {0.24 co's W, 3.4 cm/s N). The four complicating factors mentioned above are all pres-
rack obtained [rom horizonal current records (accurateto 10 m), The . K oL ,
approximate location of the main sulfide chimney is outtined with a ent at this vent site and must initially be addressed to determine
circle. : the applicability of simple plume theory at this site. and later
wiil be tested more rigorously with the specific values calculated
from the theory, (1) Mulliple sources: Photos show three
strongly venting orifices and three or four weaker ones located
at various levels on the main sullide deposit within 3 m horizon-
tally of each other. (2) Diffuse flow: Several pockets of cooler

combining temperature records with these positions we were
able to make an approximate, two-dimensional map of the
measured temperature anomalies 24 m off the bottom (see
Figure 3), The major source of error in position (on the order of
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Fig. 4. Dive 1384 vertical velocity. temperature, conductivity, pressure.and density protiles through the
vent ficld. The ascent at the end of the dive can be seen at 21.5 hours. The spikes in the velocity result from
the corrections applied to compensate for the vertical motions of the submaring (X4 cnvs).
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diffuse flow are visible within 20 m of the base of the suifide
edifice. (3) Ambient stratification: Ambient stratilication moni-
tored during ascent and descent indicated that the ambient
density of 1039.3330 kg/ m’ at 2535 m remained constant uploa
height of 75 m off the bottom, after which it dropped steadily {in
50 m averages) to 1039.3185 kg/m3 at 2235 m. (4) Shear flow:
The ambient current remained fzirly constant during the Jdays
at 34 cm/s toward the north 10 northwest,

{f each of the six or seven orifices was emitting a single plume,
the diameters of each would be approximately 5 m at a height of
24 m above the base of the suifide edifice. The plume center-
lines, however, are no more than 3 m apart, so by 24 m, the
plumes will have merged to some extent. The temperatuse
sampling intervat of 14 s coupled with a bottom speed ranging
from S to 50 cm/s resutlied in a typical sample spacing of from
0.7 to 7.0 m. This makes it difficult to determine whether unique
signatures of the plumes from individual orifices exist at 24 m.
No evidence of a distributed, diffuse, convective flow is
observed in the recorded data. The effects of the dilfuse flow are
either below the iimits of detection or have been incorporated
through entrainment into the main plume. On the basis of these
measurements, we hypothesize that at this vent site the convec-
tive heat transport is primarily in the form of a single plume
created by the merging of multiple individual smokers. Further-
more, zithough the ptume was measurabiy defiected by a lateral

_current (no anomalies were found when the submarine was on

the south side of the smokers), it is hypothesized that this
current has no significant effect on calculations yielding heat
flow and maximum plume height. Finally, there is very little
ambicnt density stratification over the height range of measure-
meats (50 m). This characterization of the vent field Mow pro-

vides the basis for heat flow estimates developed in the next
section.

StMPLE PLUME APPROXIMATION

In a pure ideal plume, the gravitational force acts on density
differences between the source fluid and its environment and,
for a buoyant source fluid, an upwardiy expanding plume
results. In a pure jet, fluid enters an ambient fluid of equal
density, and the flow is governed entirely by the initial momen-
tum. Many flows, called buoyant jets, fall somewhere between
the two, with both initia!l momentum and either positive or
negative buoyancy reiative 1o the ambient fluid, Although jets
and ptumes behave differently near the source, all buoyant jets
will emulate ideal plumes at distances far from the source
{Turner, 1973]. In the following formulation we use simple
plume theory to examine quantitatively the hypothesis that our
vent field plume can be considered an ideal plume exiting into a
uniform, quiescent environment.

The behavior of these plumes can be approximated for smail
temperature differences by simple piume theory [ Fischer et al.,
1979] in which the plume is characterized by a given initiai
buoyancy flux from a point source:

Bo = (agH)/{Cop) 8
where H is the heat flux added by the source, a is the density of
the fluid. a is the coefficient of thermal expansion (.48 x 107
°C™" at ambient temperature), g is gravitational acceleration,
and G, is the specific heat {4200 J kg™'°C™" atambient tempera-
ture). In a simpie plume, with no initial momentum flux, dimen-
sional analysis resuits in equations relating the centerline axial
velocity, I, to initial buoyancy fiux B, and height Z above a

17
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Fig. 6, Dive 1386 vertical velocity, temperature, conductivity, pressure, and densily profiles through the
vent field, The descent at the beginning of the dive can be seen at 16,5 hours.

point source:

W= C{B./2)"? (2)
and centerline temperature T, to initial buoyancy fux and
height:

T= CAB:"Z %" /ag) (3

The dimensionless constants Cy and C; have been obtained
empirically: 4.7 for Cy by Rouse er al., [1952] and 9.1 for 2
{Chen and Rodi, 1980]. Real plumes do not exit from point
sources, but Morton et al. [1956] have demonstrated that ail
plumes exiting from finite sources can be modeled as {lows
generated from virtual sources a distance Z, below the real
source. To obtain other plume parameters, the equations relat-
ing initial volume flux, s, and specific momenum flux A/, to
buoyancy flux and height are

0> = GoBo'32Z,%? (@
Mo = CuB 2" (5)
In addition, the plume radius can be related to 0 and B
R ={Q/mm}" (6

where Cy and C., obtained using an assumption of Gaussian
profiles for temperature and velocity [ Fischer et al.. 1979], are
6.15 and 0.315, respectively. (The value of Cy is slightly different
from that given by Fischer et al. because we have taken into
account the contribution of both mean and turbulent fluxes.)
The initial values of plume parameters such as buoyancy flux
{B.), volume discharge {(%). specific momentum discharge
{M.). radius (R.), and velocity ( 1#,) can be calculated given an
initial temperature ( T,), and either the centeriioe temperature
or velocity at a known height. An average centerline tempera-
ture anomaly of .27 +0.09° C at 24 m above the bottomand an
average ceaterling velocity of 0.15 £ 0.03 m/s at 24 m have been
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Fig. 7. Simultaneoustemperature profiles as a function of height from
dive 1385, Prolifes were taken at 22,5, 25.4, 30.1, 34.2, 35.6, 38.2, and
40.5 m atrove the Alvinsampling basket, Bars on right indicate 2 0.20°C
temperature differential, The abruptness of the temperature peaks is
due ta the sharpness of the hot/cold houndary characteristic of plumes,
coupled with the length of sampling interval compared with the width of
the plume.
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calcuiated using the maximum values from the data shown in
Figures 4-6, A vent exit temperatuse of 338°C was measured
with the submarine's high temperature probe at one of the
erifices, .Using the above equations and the average centerline
{emperature, the foilowing values for the relevant plume
parameters are obtained:

Zo= 033 m
Wo = 0.63m/s
Ry = 0033 m

B = 1.9 x 107 m*/s*
Qo = 22x 107 m¥s
Mo = 6.8 x107* m*/s*

These values are consistent {within 10%) with those calcu-
lated from the average centerline velocity. These initial values
can now be used to check the validity of certain assumptions
made when the simple equations presented above were applied
to this vent. These assumptions relate to the effects of source
geometry, tnitial momentum, viscosity, ambient stratification,
and shear {flow on plume behavior.

The simple piume refationships presented above may beapp-
lied to observed-plumes provided that the comparisons with
measufements are made beyond the distance lg = Qu/ Mo"?,
within which the source geometry is important, and
In = M,¥%/B."? within which initial momentum influences
the plume [ Fischer et al., 1979). Using the above vatues for the
hydrothermal vents studied here, it is found thatlp = 0.9 m
and lm = 0.14 m. The data in this experiment were coliected
well beyond these distances, The effects of viscosity can be
neglected provided that the Reynolds number

Re = (m WY v (7

{where v is the kinematic viscosity) is greater than about 4000
[ Labus and Symons, 1972), The Reynolds number at the exit of
the hydrothermal vent is about 4 x 10* (v = | x 107 m%/s).
The effect of the 3-4 cmy/s lateral current on the heat flow

19

estimates is negligible because at 24 m the (calewlated) initia)
vertical velocity of 63 cmfs has been reduced to a {measured)
value 15 cm/s, which is still # factor of 4 times the magnitude of
the ambient cross current, Plume defllections at this height are
estimated to be of the order of 10 m, which is consistent with the
observed horizontal distribution of anomalies.

The maximum height of the plume in a stratified environ-
ment can be calculated from the heat flow and density stratifica-
tton. Specifically, from Campbell et al. {1985},

Zmax = S5(Bo/m)' A0 (8)

where Zma, is the maximum height off the boltom and N is the
buoyancy {requency

N = [(-gdp)(pdn)}'* 9)
where p is a reference density of seawater.

Using data obtained on dive descent and ascent, an average
density gradient of 4.8 x 107 kg/m* for the bottom.300 m was
recorded {averaging in 50 m intervals). With a buoyancy flux of
7.9x 10" m*/s"and N = 6.8 x 107" Hz, the plume should reach
maximum height of 150 m, at which point the plume density
reaches ambient density and it begins to spread lateralty. Since
the plume does not bepin to spread until 150 m, simple plume
theory (which ignores density stratification effects) can be used
at heiphts below this and is valid for the range of measurements
in this experiment (up to 50 m).

NONLINEAR PLUME MODEL

The discussion above justifies the neglect of plume momen-
tum, ambient stratification, and horizental currents in analyz-
ing the plume data. A potential problem with using the simple
plume model is that the environment of hydrothermal plumes
comprises seawater, high pressure {2500 x 10“Pa), and Iarge
temperature gradients (2-350° C). The specific volume () and
the enthalpy (E) are nonlinear functions of temperature (see
Figure B) and, in the temperature and pressure ranges at a
hydrothermal vent, lincar approximationsto ¥ and Ecannot be
used {i.c., the coefficient of thermal expansion g and the specific
heat G, of seawater are not constant). As a consequence, Lhe
plieme buoyancy flux is not conserved but varies with height.
Kortsovines {1975] has shown that corrections should be made
in plume behavior models for even moderate differences in
temperature, Instead of a posteriori use of nonlinear
temperature-densily or temperature-enthalpy retationships {as
was done by Converse et al. {1984)) to correct a model based on
buoyancy flux conservation, a piume mode! based on enthalpy
conservation that takes into account the nonlinear dependence
of enthalpy and volume with temperature must be used. This
more generat approach to the buoyant plume problem uses the
Morton et al. [1956] entrainment hypothesis coupled with an
assumption of similarity of horizontal proliles of velocity and
temperatare. This method, which uses a dilferential formula-
tion, is described in the appendix. This approach also ailows
plume and environmental parameters such as ambient stratifi-
cation or cross flow to enter the problem as initial conditions,
boundary conditions and coefficients in a system of differential
equations, although such calculations are not presented in this
paper.

The numerical solution of the differential model yields the
same results as the simple plume modet when the coeflicients of
thermal expansion and specific heat are held constant. When
they are allowed to vary as expected. a comparison of simple
plume theory with nonlinear formulation indicates that the
nonlinear variation of density and enthalpy with temperature
has some ¢ilect on the plume temperature and velocity profiles
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1386 (point C) taken at 24 m above the submarine,

when apptied to a vent ficld. For a vertical velocity of 14 .4 cm/s
at 24 m, the simple plume modet predicts a heat flow ol 2.02
MW, while the nonlinear model predicts {.97 MW, a difference
of 3%. For a temperature anomaly at 24 m of 0.344°C, the
simple plume model yields 3.40 MW, whereas the nonlinear one
produces 2.76 MW  a difference of 20%. While these differences
are modest compared with possible errors in the measurements,
the nonlinear modei provides, at reasonable computational
¢ost, a theoretically consistent prediction of plume temperature
and velocity. Accordingly, the nonlinear model will be used in
the next section to estimate heat flpws.

HEAT FLOW ESTIMATES

Heat flow values using the nonfinear model can be obtained
by fitting efther T versus £ ot W versus Z to the peak tempera-
ture and velocity data. Heat flow estimates resulting from using
Tand W are independent of each other, and their comparison
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Fig. 10. Height versus velocity for initial heat flow values of (from left
to right) 1, 2, 3, and 4 MW obtained using the nonlinear model. Peak
velocity values from dives 1384 {point A), 1385 (point B), and 1386
{point C) taken at 24 m above the submarine.
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Fig. 11. Height versus velocity for initial heal Mlow vatues of (from left
1o right) 1. 2. 3, and 4 MW ebtained using the nonlinear modet, Peak
temperatures from dive 1386 taken at 40.5, 38,2, 35.6, 34.2, 30,1, 25.4
and 22.5 m above the submarine.

can be used as a measure of confidence in the final heat flow
estimate. Maximum peak values of temperature anomaly and
vertical velocity from each of three dives were used in the model;
it is assumed that the lesser peaks on the T (or W) versus time
records were due 1o passing through the plume but not through
its center, To obtain the heat flow, the maximum temperatures
(Figure 9)-and velocities (Figure 10) measured with the lowme-
ter from each of three dives are plotted with the calculated
temperature versus height and velocity versus height curves for
various initial heat flows generated by the nonlinear enthalpy
and thermal expansion model. The seven-thermistor chain used
on dive [ 386 yields additional temperalure maxima at different
heights (Figure 11). A summary of the data and resultant heat
flow is given in Table .

The final estimate of the total heat flow must take into
account the need of the plume models for an input of centerfine
temperature or velocity. Since real-time temperature was not
available during the dive, wecannot be sure that the peak values
were centerline values, bt is likely that some of the peak temper-
ature values were recorded off-centertine and thus are lower
than the true centerline temperatures. This would imply that the
maximurn temperature recorded during the experiment should
be chosen and, consequently, the maximum heat flow obtained
with the noniinear plume model. However. the models also
assume that the centerline value is a mean value, averaged over
a long time to remove the effects of turbulent fluctuations,
Unfortunately, again because electronics problems in Afvin
eliminated real-time readouts, we were not able to position the
sensor in one spot of the plume for the necessary amount of
time. Therefore the temporal temperature variability of the
plueme due to turbulent fluctuations is not known, if the abso-
lute peak temperature measured during the experiment is
chosen as a representative mean centerline temperature, too
high a2 heat flow estimate may result. However, because the
temperature and velocity values are so sensitive to lateral posi-
tion in the plume, it is more likely that the heat flow valuesare
biased on the low side. The average vaiue of all the heat flow
estimates is 2.8 MW and the maximum value is 4.6 MW. Given
the uncertainties mentioned above, a reasonable heat flow esti-
mate for the vent field is 3.7 £ 0.8 MW,

Heat [Tow can also be calculated directly by muitiplying point
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TABLE |. Nonlinear Model Heat Flow (Maximum Vatue From Each Dive)

Temperature
Dive  fleight*m  Anomaly °C

Heat Heat
Flow MW Velocity an/s  Flow MW

1384 24.0 (k)
1388 4.0 (N1 ]
1386 240 0.141
405 0 020!
38.2 0.230
35.6 0.213
34,2 0.210
3o 0.179
254 £.232
215 0.453

224 18.8 4.2
a9 12.1 1.2}
284 14.4 2.0t
4.4
4.6
4.1
3l
1.9
1.8
7

* Above submarine.

t Vatue derived [rom data sbiained by Mowmeter instrumentation,

velocity and temperature measurements. This is a relativeiy
inaccurate procedure, in part because temperature and velocity
are correlated in turbulent plumes, and errors due to sparse
sampling of turbutent fluctuations are multiplied. To illustrate,
temperature and velocity are known at 24 m, and we estimate
the plume radius to be about 2.5 m at this height (using simple
plume relations, R=0.1 Z). Multiplying temperature and veloc-
ity at each point and taking the average of this value, we can
oblain an estimate of heat flow (using C, = 4200 Jjkg™" °C™",
density 1000 kg/ m®) ranging from 0.04 10 0.59 MW for the three
dives. These estimates are up to a factor of 50 times lower than
of any of the temperature or velocity heat flow estimates. and
they illuminate some of the difficulties in using the technique of
averaging flow through a surface for turbulent plumes without
sufficient spatiat resolution.

CONCLUSIONS

We obtained the first simuitancous velocity, temperature,
and conductivity data to be 1aken in the convective low eman-
ating from a hydrothermal vent field. The single temperature,
velocity, and conductivity profiles at 24 m and the seven simui-
taneous temperature profiles al various heights indicate that the
flow field forms a singte plume.

The flow characteristics and surrounding environment are
such that simple plume formulas can be applied to predict such
plume behaviors as maximum height and total heat flow. The
nonlincar effects of large temperature variations have been
considered here as far as they relate to using plume theory to
predict heat flow. The good agreement between heat flow esti-
mates from vertical velocity and from temperature anomalies
supports the heat flow estimate of 3.7 £ 0.8 MW for this vent
field.

APPENDIX: CALCULATIONS FOR PLUMES WiTH VARIABLE
NONLINEAR PARAMETERS
The primary vartables of the plume model are the total Nuxes
of volume, specific momentusm, and enthalpy, integrated over
the plume cross section: :

VYolume {lux :
: O =Ja2mrw dr {10)
Specific momentum flux
M = [Q2mrn? dr {(n
Enthalpy flux
E=[32mrw Ah dr (82}

where r is radial distance from the piume centerline, w is vertical
velocity, and Ah is specific enthalpy.
The time-averaged tracer concentration (temperature, den-

sity, or velocity) across a turbulent plume exhibits essenlially2 1

Gaussian distributions { Fischer er ai., 1979}, These mean veloc-
ity and concentration profiles are self-similar with height, ena-
bling tracer distributions to be expressed only in terms of
maximum (centerline) values and some measure of width ithe
point off-axis where the vertical velocity w falls to ¢' =0.37 of
the centerline velocity W for Gaussian distributions),
w= Wexp (/R (in
Al = Altngs exp [-FP/(REAY)] (14)
where A = |.2{ Fischer et af., 1979]. With these assumptions, the
integrated flux parameters become

¢=nrRW %
M = Kam REWA2 (16)
E= KemA R WiAhma!(1 + A {n

where the constant coefficients Km = 0.89 and K, = 1.24 have
been included to account for the additional transport of
momentum and enthalpy by turbulent fluctuations rather than
by mean motions | Fischer et al.. 1979]).

Following Fischer et al. [1979]. dillerential conservation
equations for O, M, and E are given by

dQidz = 2ra RW (18
dMldz = mgbA*R: (19
dE/dz =0 (20)

Equation {18} states that increase in specific volume flux Qs
the result of entrainment, which is in turn proportioral to the
local centerline plume vetocity where the constant of propor-
tionality o is the entrainment coefficient. The value of o for
buoyant jets lies between that of jets (g} = 0.0535) and plumes
{op = 0.0833). Priesily and Ball [1955] found that, to a good
approximation

O =Oe— (0’|gt - Up!umo}( Rf'/an)z (2”
where Ri; is the plume Richardson number, with a value of
0.557 [ Fischer er al., 1979). Riis the local Richardson number
given by

Ri = [{402m)" 2%t + AY)JigRo/ WP (22)

Equation {19) states that the vertical buoyancy force acting per
unil height of the jet equals the rate of change of vertical
momentum flux. The quantity & is the specific density anomaty
{Pa ~ Dmax)/ pa at the plume centerline. For the nonlinear plume
this must be calculated as a function of the centerline tempera-
ture (or enthalpy).

Equation {20) expresses conservation of enthalpy flux £
across any horizontal piane in the plume. The maximum
enthalpy anomaly A/tmaa is in general a noniinear function of
the plume centerline temperature difference A Tinax. Only for
simall values of A Tax and thus constant G is

E = pComA2 WA Tmal(1 + A% (23)
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The system of equations ((18)-{20)) can be soived relatively
easily by using an explicit, first-order, numerical formulation.
Specific volume values for temperatures of NaCl solutions
greater than 40°C were oblained from Chen [1981] and
enthalpy values for pure water from Keenen et al. [1969].
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ABSTRAGT

A twelve day time series of temperature data was collected from a

point three centimeters above a diffuse flow area at a Guaymas Basin

hydrothermal site. Using concurrent tidal gauge data from the town of
Guaymas it is shown that the effects of tidal currents can be strong
enough to .-dominate the time variability of a temperature signal at a
fixed point in hydrothermal flow and are a plausible explanation for the

variations seen in the Guaymas Basin temperature data.
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INTRODUCTION

The high heat flow, high permeability and low sedimentation of the
world’'s Mid-Ocean Ridge system support hydrothermally active regions of
the seafloor in localized siﬁes encompassing areas as large as 104m2.

The process of hydrothermal circulation transfers heat and material from
the lithosphere into the oceans, influencing oceanic composition as well
as creating-massive ore deposits on the seafloor. The significance and
global impact of this process are determined by the heat and mass flux
from individual sites, the number of hydrothermal sites, and the
variation of these fluxes over time.

Recent efforts have focussed on charécterizing temporal changes in
hydrothermal activity. Hydrothermal vent fields evolve continually, in
flow rates, size, geometry and biological composition (Hekinian et al,
1983; Johnson and Tunnicliffe, 1985), the most direct evidence being both
the existence of numerous extinet fields and apparently young fields
uncolonized by biota. Possible mechanisms for reducing flow include the
blocking of flow channels by hydrothermal precipitates, exhaustion of the
underlying heat source, reduction of porosity by mineralization, and
obstruction of flow paths due to tectonic activity. On the other hand,
increase in flow may result from tectonic activity and magma injection.
Periodic oscillation in flux may be produced by tidal foreing either
indirectly through tectonic activity or directly through pressure effects
on the flow. Cataclysmic changes are possible based on models of heat
transfer near the magma-water interface of the convective system which

predict sudden changes in flow due to the behavior of seawater as it
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reaches the two-phase region of pressure and temperature (Cann et al.,
1985).

Quantifying even the instantaneous heat and mass flux from
individual sites is difficult due to the complexity of flow systems
typically encountered in hydrothermal fields. In a single field the flow
can range in character from warm, 10°C water slowly seeping through large
masses of tube worms and bacterial mats, to hot, 350°C water jetting from
narrow sulfide chimneys only 0.05 m in diameter. The most
straightforward flux measurements to make are those of well-defined
plumes emanating from single chimneys. These measurements are achieved
by obtaining temperature, flow rate and exit area at a vent orifice using
conventional thermistors and mechanical flow meters (Converse et al.,
1984; Macdonald et al., 1980). Only slightly more complex is measuring
temperature and velocity above a multiple outlet sulfide structure and
using plume theory to derive heat flux from the entire edifice (Little et
al., 1987).

Much more difficult to quantify is the diffuse flow emanating from
cracks, fissures and biologlcal masses at velocities of less than about
0.1 m/s because the velocity and temperature signals are low and unevenly
distributed over a large area. Diffuse flow is visually identified by
the presence of shimmering water, upward moving particles, hydrothermal
mineral deposits and an abundance of biota, Measuring Instantaneous,
point temperature is reasonably simple although typical non-uniform
distributions require many measurements. Velocity is quite difficult to
obtaln because the flow is heterogeneous over scales as small as a few

centimeters and the flow velocity is low and on the same order of
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magnitude as ocean currents (0.05-0.10 m/s) which can dominate
hydrothermal fluid related flow,

Measurements of temporal changes in hydrothermal activities require
some means of obtaining time-series data within the difficult constraints
of deployment, recovery, power consumption, data storage, and instrument
reliability. Little (in prep) has explored the use of passive acoustic
monitoring for this purpose. However, until this method is proven,
temperature may be the parameter of choice, especially for low
temperature diffuse flow.

When making temperature measurements in a hydrothermal environment,
care must be taken to separate out the effects of changes in hydrothermal
flow and temperature from changes in ambient currents. In this article
we examine a time-series of temperature data collected near a diffuse
flow area at a Guaymas Basin hydrothermal site. We will show that the
effects of tidal currents can be strong enough to dominate the time
variability of a temperature signal at a fixed point in hydrothermal
flow, and are a plausible explanation for the wvariations seen in the
Guaymas Basin temperature data. This study points out the necessity to
measure lateral currents whenever temperature measurements made in
hydrothermal vent fields are used to examine time variability of venting.
MEASUREMENTS AND RESULTS

The experiment site was a hydrothermally active area located in the
Southern Trough of Guaymas Basin in the Gulf of California at 27000'N,
111%24'w (figure Al) where vents flow through a thick layer of pelagic

sediment before breaking out onto the seafloor. 1In an effort to
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characterize temporal variability of diffuse hydrothermal flow, a
temperature probe was placed 0.03 m above the sediment surface in an
approximately 5x5 m zone characterized by bacterial mat, whitish mineral
deposition and patches of shimmering water. A few meters from the
thermistor site was a particﬁlarly dense bacterial mat in and above which
temperatures were greater than 30% (the upper limit of the temperature
probe) and perhaps as high as 230 °C as evidenced by charring of the
recording instrument's wooden base. 1In the vicinity of the study area
were broad areas of hydrothermal discharge covered with living bacterial
mat whose temperatures were measured from the submarine at less than 11°C
above ambient at a depth of 0.08 m below the sediment surface and 78°C
above ambient at a depth of 0.50 m in the sediments. Numerous 270°C
vents were assoclated with mounds and chimneys that rose up to 25 m
above this sediment pond area (Lonsdale and Becker, 1985).

The thermistor was deployed with a submersible and left in place for
12.5 days from July 17, 1985 to July 28, 1985, during which time
temperatures were recorded every 5 minutes for a total of 3790 points.
The ambient temperature in this area as measured during descent of the
instrument package was 2.85°C. The maximum recorded temperature for this
deployment was 20°C, which occurred during deployment probably as the
probe touched or came very close to the sediment surface. We will use
this value for sediment surface temperature in calculations that follow.

Tidal high and low water surface elevations were obtained from the
town of Guaymas, Mexico, approximately 100 km away, for the same time
period. A cubic spline is subsequently used to interpolate this

temporally unevenly spaced data. Tidal currents measured at 10 m above
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bottom in the troughs of Guaymas Basin have reversing northwest-southeast
flow with velocities of up to 0,12 m/s (Lonsdale and Becker, 1985).
Current speed was not recorded at the vent site and will be derived from
tidal heights recorded at the town of Guaymas.

The most prominent feature of the raw temperature data (figure A2)
is the strong semi-diurnal oscillation, which exhibits a temperature
range from a minimum of 3.05°C to a maximum of 4.87°C. The concurrent
tide data {also figure A2) show that the dominant tide in this region is
diurnal., Closer examination reveals that the temperature reaches a peak
when the tide is at a minimum or maximum, and reache=s a low when the tide

is at an inflection-point.

DISGUSSION

From the observations follows the hypothesis that temperature is
influenced by tidal current speed, a process which can have a 90° phase
lag to tidal height and which peaks twice as often as tidal elevation,
To test this hypothesis we will compare the frequency spectra of
temperature and tide to determine whether correlations at frequencies
higher than diurnal exist. Following this, we will estimate current
speed from tidal height, use this in a simple model of boundary layer
flow and ¢cimpare the results with the measured temperature data.

To compare temperature and tidal frequencies under the supposition
that tidal periods are twice that of temperature, we have presented the
frequency spectra with the tidal period axis divided by two (figure A3).
The tidal spectrum was calculated after cubic spline interpolation (see

figure A2). The temperature spectrum was produced by first dividing the
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data set into fourteen, 256 point segments by sub-sampling the full set
every fourteen points., The new segments, with points separated by 70
min,, are used to produce an averaged spectrum with a minimum resolvable
period of 2.33 hours. The power levels are not normalized so comparison
only can be made of the peak-period locations, not amplitudes. There are
striking similarities between the two spectra, especially at the 12 and 6
hour periods but also at the shorter periods such as 4 and 3 hours,
indicating that tidal current speed, which peaks twice as often as tidal
height, may be influencing temperature.

Now we turn to a boundary layer flow model to examine the effects of
current speed on temperature at a fixed point above a heated surface,
When a current passes over a heated surface, a thermal boundary layer is
produced whose thickness increases with distance downstream from the
leading edge of the plate. There are two ways that a vector current can
influence temperature at a point inside a thermal boundary layer. First,
if the heated surface is asymmetrical and finite and the sensor is
located off center then rotating the direction of the current vector
while maintaining a constant current magnitude will change the effective
distance between the sensor and leading edge of the surface. As boundary
layer thickness is a function of this distance, a current rotation will
result in _a change of boundary layer thickness and hence the recorded
temperature. Such temperature variations would have frequencies
correlated with the tides. However, it would be pure chance if the
phases of variation coincided - there would be no reason to expect a
temperature low at a tidal inflection point since the timing of the

variation would depend only on sensor position within the hot plate.
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The second mode of current influence on temperature depends on the

fact that thermal boundary layer thickness is a function of current
magnitude, and temperature at a fixed point above the surface depends on

boundary layer thickness. We sdggest that this mode is operating and

temperature variations seen are due to the fact that the thermistor iz in

an area where a thickening and thinning of the boundary layer is caused

by changes in current magnitude.

To examine how temperature relates to flow we first assume a general

form for the dependence of the boundary layer thickness, §, on flow

velocity, U:
(L

§ = cu?

This functional relationship 1s consistent with a thermal boundary layer

development in a flow with a uniform velocity and a constant diffusivity

(Fischer et al., 1979). The constant C will be determined by calibration

with the temperature and velocity measurements, and will be limited in

resolution to an order of magnitude because surface temperature and

bottom current speed are not well constrained. These approximations do

not affect comparisons of temporal varisbility so much as comparisons of

absolute temperatures.
To relate temperature to the position of a measurement point within

the boundary layer we assume a parabolic for the temperature profile:

(2)

T{y) = Ts-(Ts-Ta){ly - x%
§ §

Wheve Ts is the surface temperature (a2006), Ta is the ambient
temperature (=2}85°C), and y is distance from surface (=0.03m). This

prefile reflects the general characteristics of the temperature
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variations within a thermal boundary layer (Schlicting, 1968). A simpler
linear functiomality yieided 1eés satisfactory results.

The flow speed over the heated surface, U, was assumed to be
proportional to the first derivative of tidal height as measured at
Guaymas. To obtain a functional form for U, the interpolated tide data
was harmonically decomposed using a least squares sine fit such that:

h =K ZA(D)sin[d(L)t + 4(1)] (3

i :
where A(i), 6(i} and ¢(1) are the amplitude, frequency, and phase of each
component (see table 1). The flow speed U is then modelled as being
linearly dependent on the absolute value of the time derivative of
equation 3 for h:

U - K, abs{ = A(1)8(1)cos[8(1)t + ¢(1)] ) + Ky (&)
i

The constants K0 and K1 are determined to match estimated values of

the maximum and minimum current speeds, U « and U, 8t the height of

mal

the sensor. Umax is estimated from the maximum free stream velocity
measured at 0.12 m/s at 10 m above bottom (Lonsdale and Becker, 1985).
Using a logarithmic velocity profile between two points above the bottom:
Ul = In(zl)-1n(zo) (5
G2 in(z2)-1n{zo)

where zo =roughness height/25 (Townsend, 1980). For a roughness height
of 0.05 m we estimate zo to be 0.002m. Using z1=0.03m, z2=10 m, U2=0.12
m/s in equation 3 results in an order of magnitude estimate for Ul = U

max

= 0.05 m/s. This value of U ax MY be used directly in conjunction with
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TABLE 1

Period Amplitude Phase
(hours) (meters) (degrees)
4.00 ¢.010 166
4.14 0.002 230
6.10 0.010 206
6.21 0.002 344
6.27 0.009 273
8.18 0.013 120
11.97 0.939 230
12.00 1.032 57
12.42 0.317 13
12.66 0.164 289
23.93 1.451 3
24 .07 1.184 188
25.82 0.204 102
26,87 0.160 60
327.90 0.101 40
661.30 0.140 289
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the observed temperature minimum Tmin = 3.05°C and equation 1 and 2 to

-3 3/2

caleulate C=7,5x10 /sk. Using the same equations with this value

of Cand T=T _ = 4.87°¢C vields an estimate of Uosp = 0.03m/s.

in
Correspondingly, the values of K, = 9.27 and Ky = 6.03 m/s may be
obtained. In addition, With.the above values for C and U, amin =0.033 m
and Smax = (.043 m,

The time series of velocitles obtained from equation 4 may now be
substituted into equation 1 and 2 to obtain an estimate of temperature at
the sensor height (figure A4a and A4b). A detailed examination shows
extremely good correlation between predicted and actual temperatures
between 0 and 150 hours. Following this, a notable difference arises
where from 150-290 hours maximum temperature peaks decrease and the
variations get slightly out of phase. This is probably due to the fact
that tides can have a rotational component which is not considered here,
ie they are not exactly reversing and the minimum current increases
during these periods. This causes disagreement between the estimated
T(h), which is forced to a constant minimum set by scaling to Vnin
CONCLUSIONS

The important measurements of temperature variation over space and
time for the purpose of estimating heat flux and flux variability from
hydrothermal vents should be pursued, however, this analysis shows that
temperature variability measured near a source of diffuse hydrothermal
flow can be produced by tidal currents. A time series of temperature
from a hydrothermal area in the Guaymas Basin can be expiained in a large

part, if not entirely, by invoking boundary layer theory and tidal cross
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currents. These results point out the importance of collecting
simultaneous temperature and bottom current velocities to allow

unambiguous interpretation of the data.
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Figure Al
Map showing location of hydrothermal vent site (small box) in the
Southern Trough of Guaymas Basin in the Gulf of California. Units on
contours are in 100 m, Town of Guaymas, marked on inset, is about
100 km away, 35
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Figure A2

Upper - Raw temperature data recorded by Tl, 3 cm above diffuse flow,
samples every 5 minutes, showing semi-diurnal variations.

Lower - Tidal maxima and minima above mean low water, recorded at the
town of Guaymas (stars). A cubic spline interpolation between data
points (dotted line) is then fitted with tidal harmonics to approximate
a functional form for the tide. This will then be used to arrive at
tidal velocities which are applied to a boundary layer model.
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Frequency spectra from raw temperature data, solid line, and cubic
spline fit to tides, dotted line. The frequency axis for the tidal
spectrum has been divided by two to show good comparisen of estimated
tidal current spectrum with temperature spectrum. The y-axis units are
useful only for comparing relative power levels within a single

spectrum..
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mation that currents are the first
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SOQUND PRODUCTION BY HYDROTHERMAI. VENTS

ABSTRACT

Theoretical examination of hot, turbulent, buoyant jets exiting from
hydrothermal chimneys revealed acoustic source mechanisms capable of
producing socund at levels higher than ambient ocean noise. Pressure
levels and frequency generated by hydrothermal jets are dependent on
chimney dimensions, fluid wvelocity and temperature and therefore can be
used to monitor changes in these parameters over time,

A laboratory study of low Mach number jet noise and amplification by
flow inhomogeneities confirmed theoretical predictions for homogeneous
jet noise power and frequency. The increase in power due té convected
flow inhomogeneities, however, was lower in the near field than expected.

Indirect evidence of hydrothermal sound fields (Reidesel et al.,
1982; Bibee and Jacobson, 1986) showing anomalous high power and low
frequency noise associated with wvents is due to processes other than jet
noise.’

Direct measurements of hydrothermal vent sound fields show that
frequency and power levels are comparable to ambient ocean noise and are
consistent with jet quadrupole near-field sound which has been amplified
by the dipole behavior of convected flow inhomogeneities. This near-
field amplification is not as great as that predicted for the far-field
but is consistent with theoretical considerations for near-field dipole

and quadrupole behavior.
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INTRODUCTION

The global transport of heat and chemicals from the earth’s interior
through the seafloor and into the biosphere depends on the movement of
water through oceanic lithosphere. At the crests of the world's mid-
ocean ridge (MOR) system, cold seawater seeps into the permeable,
unsedimented crust and is heated by the shallow magma chamber and
intruded lavas of newly formed oceanic lithosphere in the process called
hydrothermal circulation. The hot water, rich in minerals, rises
buoyantly in narrow upflow zones from crustal depths of 2-4 km
{Macdonald, 1982) and exits at hydrothermal wvents located on the ridge
axis (figure Bl). Upon mixing with the cold, ambient ocean bottom water,
metals and sulfides precipitate, depositing zinc, copper and iron
sulfides and forming the massive sulfide deposits characteristic of
hydrothermal vent sites., It is becoming increasingly apparent that
hydrothermal systems permeate a large portion of the Mid-Ocean Ridge
system and may significantly contribute to the chemical composition of
the o;eans and atmosphere.

To date, active hydrothermal v;nts have been found (Hoagland and
Broadus, 1987) in the Pacific Ocean on medium to fast spreading ridges:
at the Galapagos Rift area near 86°W (Ballard et al., 1982), along the
East Pacific Rise (EPR) at 20°s, 11°N (McConachy et al., 1986), 13°N, and
21°N (Ballard et al., 1981; Ballard et al., 1984; Francheteau and
Ballard, 1983; Hekinian et.al., 1983b; RISE, 1980), in the Guaymas Basin
{Peter and Scott, 1985), on the Explorer Ridge (Scott et al., 1984), the

Juan de Fuca Ridge (CASM, 1985; Hammond et al., 1984; Crane et al.,
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1985; Normark, 1986), the Gorda Ridge (USGS, 1985), the Lau Basin
(Hawkins, 1986; Craig, 1987), and in the Sea of Okhotsk (Ocean Science
News, 1986). Numerous extinct vent sulfide chimneys have also been found
in these areas. On the slow spreading Mid-Atlantic Ridge (MAR) active
vents have been located nearlthe TAG (Trans-Atlantic CGeotraverse) area at
26°N and at 23°N (Rona, 1984; Rona, 1985).

Vent fields, ranging in area from 10 to 10,000 m2, form in the
narrow active volcanic regions of ridge crests. The fields are
characterized by sulfide structures up te 15 m high, surficial sulfide
deposits and sedimentation, and are usually found hosting a suite of
organisms whose primary food source is hydrogen sulfide from vent fluid.
The flow regime is often quite complex and depends on the subsurface
geological structure as well as sediment cover. The highest velocity and
hottest flow emanates from sulfide chimneys, with typical velocities of
1-3 m/s, temperatures of 250-350 °c, and exit areas of 10-30 cm2
{Converse et al., 1984; Little et al., 1987). This type of flow
originates from near the top of the magma chamber, with hot fluld moving
upward through the crust in a relatively unobstructed path (Cann, 1982).
The rest of the vent field encompasses areas 6f diffuse flow emanating
from cracks and fissures. In this case, the high temperature fluid has
premixed Wifh ambient seawater that has szeeped several tens of meters
into the subsurface. The fluid is therefore cooler, 10—30°C, and has
precipitated most of 1ts sulfides beﬁore exiting the sea floor.

The full impact of hydrothermal fluxes of heat and chemicals on
biogeochemical cycles can only be assessed by determining both the total

spatial extent and temporal variability of hydrothermal vents, neither of
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which are presently well known. Vent sites are typically found by towing
cameras, nephelometers, CTDs {(conductivity, temperature, depth
recorders), or taking hydrocasts to locate the plume of hydrothermal
fluid found above active vents., Measurements of instantaneous
morphology, chemical composition, mineralogy, temperature, flow rates and
biota, have generally been done with a submersible, a method which
results in short time samples and sparse lateral coverage along the ridge
axis (Backer et sl., 1985; Hekinian et al., 1983a; Karsten et al., 1984;
Tivey and Delaney, 1985; Hessler et al., 1985}, In addition, both the
difficulty in location vents and the harsh environmment they comprise have
resulted in an unusual dearth of information on vent activity. The high
temperatures and particle precipitation at vents make conventional direct
sensing instruments such as thermistors and flow meters ineffective for
long-term measurements (none have operated for more than a few days;
Converse et al., 1984). Also, these instruments need to be precisely
placed by a submarine with a manipulator arm inside an active sulfide
chimney, and the results are strongly dependent upon the positien of the
sensor in the chimney.

There is at present a strong scientific need for methods with which
to measure the long-term (days to years) variations in hydrothermal vent
activity. " Talculations of vent lifetime based on such indirect estimates
as vent fauna age and size of heat source in the ocean crust range from
one to 10“ years (Converse et al., 1984; Hekinian et al., 1983Db;
Macdonald, 1982). Hydrothermal vent fields evolve continually, in flow
rates, slze, geometry and biological composition (Hekinian et al., 1983a;

Johnson and Tunnicliffe, 1985), the most direct evidence being the
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existence of numerous extinct fields. Possible mechanisms for reducing

flow include the blocking of flow channels by hydrothermal

. mineralization, exhaustion of underlying heat source (Cann and Strens,

1982), reduction of porosity{ and closing of flow paths by tectonic
activity. On the other hand, flow may increase as a result of tectonic
activity or magma injection. Periodic oscillation in flow may be
produced by tidal forcing either indirectly through tectonic activity or
directly through pressure effects on flow. Cataclysmic changes are
possible based on models of heat transfer at the base of the convective
system which predict sudden changes in flow due to the behavior of
seawater as it reaches the high temperature two-phase region of pressure
and temperature (Cann et al., 1986). Measurements of flow variations are
needed to constrain these and other models of hydrothermal processes.
Long-term monitoring of fluid fluxes within the severe environmental
conditions at vents requires the development of a remote sensing
technique that can be located away from hydrothermal fluid. This article
will examine the applicability of a method to acoustically monitor fluid
flow by recording the sound field generated by hydrothermal vents. The
sound field of a hot, turbulent jet is known to be related to fluid
efflux velocity, fluld temperature, and orifice diameter (Lighthill,
1952). The monitoring of jet sound power and frequency can be used to
detect changes in fluxes at a particular site. In addition, a detailed
understanding of sound source mechanisms and vent geometry can
theoretically allow vent sound fields to be used to determine the
absolute velocity, diameter, and temperature of fluid discharge. Long-

term monitoring of this sound field will give information on the
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variation of these parameters over time and thﬁs provide data on the
variations of vent fluid fluxes over the life cycle of a particular vent
field.

The use of passive remote acoustic monitoring with available
technology alleviates many of the degradation problems associated with
instrumentation placed direétly in hydrothermal flow, In this paper we
will examine evidence for hydrothermal sound generation and assess the
technique of determining the long-term behavior of heat, chemical and
mass fluxes from the active hydrothermal vents found along Mid-Ocean
Ridges by acoustically monitoring the sound produced by hot, turbulent,
hydrothermal vent jets. Included in this presentation are a theoretical
examination of sound source mechanisms, a laboratory study of jet noise,
and a summary of results of nocise measurements made near hydrothermal

vent sites (Riedesel et al., 1982; Bibee and Jacobson, 1986; Little, in

prep.)

THEORETICAL SOURCE MECHANISMS

Sound production by moving £luids occurs through the conversion of
kinetic energy into acoustic energy (Dowling and Ffowecs Williams, 1983).
The kinetic energy of a moving fluid is attributed to hydrodynamic
motions and inertial effects and depends on fluld density and velocity,
whereas acoustic energy is stored in the elastic forces of the fluid and
depends on its compressibility. Pressure variations occur in all
unsteady flows; sometimes they are confined to the flow and balance
fluctuations of local momentum, and sometimes they propagate away from

the flow as sound (Ffowcs Williams, 1969). Propagating and non-
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propagating pressure fields (often designated sound and pseudo-sound,
respectively) are sensed in the same way by hydrophones, but they behave
differently. The non-propagating pressure field defines the near-field
and does not radiate; it is a hydrodynamic pressure field in which
compressibility effects are ﬁegligible. The propagating pressure field
makes up the far-field, or radiated pressure field, which behaves as a
classical acoustic wave whose speed depends on the compressibility of the
fluid. The non-propagating pressure level is proportional to the
dynamic head of the flow, which is sz, where p is fluid density and V is
fluid velocity.

The basic physical processes which transfer inertial to elastic
energy and generate a radiating pressure field in a fluid primarily do so
through mechanisms (figure B2) described as monopoles, dipoles, and
quadrupoles (or more generally, multipoles). The monopole radiator
arises through volume or mass fluctuations, such as expanding and
collapsing bubbles. Also, if mass flux from a hydrothermal vent is not
constant, but varies in a regular way, then conditions exist for monopole
sound production, The dipole radiator is generated by external force
fluctuations which result in variations of momentum, such as wvibrations
of an object in a fluid. Vibrations of the chimney induced by the flow
of turbulent hydrothermal fluid would produce dipole sound radiation.

The quadrupole is produced by fluctuations of the rate of momentum across
a fixed surface, such as turbulent shear stress in the mixing region of a
jet. In the mixing region of turbulent jets where shear stress is high,

kinetic energy is converted to sound through fluctuations in momentum
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flux. Quadrupole sources also can be considered formed from the opposing
dipoles of vortices found on the edges of the jet (Powell, 1964).

Generally, in dividing multipole pressure fields into the two
regions of differing behavior (radiating and non-radiating), the near-
field is chosen as less than one wavelength from the source and the far-
field as beyond one wavelength, although the change is not abrupt. A
single monopole radiates a pressure wave equally in all directions. The
amplitude decays as 1/r, where r is radial distance from the source and
it has no near-field component., A dipole, made of two equal but opposite
polarity monopoles, has a two-dimensional radiation pattern and is a less
efficient radiator due to cancellation effects of the two monopoles. The
near-field of a dipole, however, has a higher amplitude than that of a
monopole of the same source strength, and decays as 1/1:-2 until r=X (A =
wavelength)., In the far-field, the amplitude of the dipole pressure wave
decays as 1/r, A quadrupole has a three-dimensional radiation pattern
and, being formed from two equal but opposite dipoles, is the least
efficient radiator. However, the near-field of a quadrupole has the
highest amplitude of these multipoles and it decays as 1/r3. Its far-
field decays as 1/r but is the weakest of the three poles. Monopole
radiation, if present, will dominate the far-field acoustic signal,
followed By dipole radiation. Quadrupole radiation will be significant
only at high fluid exit velocities if the other sources are not present,
or in the near-field.

At hydrothermal vents it is possible that all three sources are
present and that they are site specific. Monopole radiation can be

produced by cavitation, boiling, pulsating exit flows, or resonance in
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subsurface cavities. Dipole radiation will arise frsm vibrations of the
chimney, interaction of the turbulent flow with a rigid surface, or
convection of flow inhomogenelties. Quadrupole radiation will emanate
from the shear stress produced in the turbulent mixing region of the free
hydrothermal jet. Estimates.of the contribution of these sources to a
hydrothermal acoustic pressure field follow,

Sound production by hydrothermal vents is theoretically a function
of £luid exit velocity (V), temperature (T}, density (p), sound speed
(¢), orifice diameter (D), and sulfide chimney dimension (L). The
dependence of sound on these parameters varies according to the
particular source mechanism involved. These parameters are difficult to
measure, and vary from site to site, but estimates have been obtained in
several experiments (Converse et al., 1984, Little et al., 1987; Tivey
and Delaney, 1986). The following nominal values are used in this

discussion of acoustic source mechanisms:

Velocity: Vo= 2 m/s

Temperature: T = 350 °C

Density: p = 1000 kg/m>

Diameter: D= 0.05 m

Length: _ _ L= Im

Sound Speed: c = 1500 m/s
Monopole

i) Pulsating Exit Flow
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The sound generated from this type of pulsating flow from a pipe can be
treated as if it was produced by the motions of a baffled piston (Ross,

1976). The pressure field from such a source is approximated as:

P(r) = 3«DP,£(4)

1tr (D
where Pi is the rms pressure fluctuations, £(#) = 1 for A > 0.5m. The
pressure produced by the mean flow of a jet is approximately pV2 where V

is the mean exit velocity. If we assume that Py is 10% of the mean flow,

then
2
Pi = 0,1pV" = 400 Pa (2)

and

P(r) = 12 Pasm
T _ (3)

ii) Subsurface Cavity Resonance

Hydrothermal vents are generally found on fresh hasalt flows which
often contain numerous drained lava lakes and collapse pits. Recent
efforts to drill into zero-age crust at a hydrothermal site were hampered
by the presénce of subsurface cavities (ODP, 1986). These cavities are
capable of resonating and producing considerable sound if excited at the
proper frequency. Fluid moving in and out of a cavity provides mass
while the flexibility of the cavity walls provides the spring action to
sustain resonance. Flow excitation of the cavity occurs through
interaction of turbulent flow with the walls as the fluid enter the
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volume. If the dominant frequency of turbulence approaches the resonance
frequency of the cavity, the cavity will begin to pulsate, which, in
turn, will strengthen production of that very frequency of turbulence
(Laufer and Yen, 1983). Such flow excited resonance will radiate a
strong tonal component (Ross, 1976). The frequency of such acoustic
radiation, being dependent on cavity size, rigidity, and geometry, is
difficult to predict since very little information on subsurface cavity
structure in hydrothermal systems exits. The magnitude of radiated power
depends on how close the bandwidth of the excitation frequency is to the
resonant frequency of the cavity. This type of sound would be extremely

site specific in hydrothermal systems.

iii) Cavitation

Cavitation is the formation of a macroscopic bubble at a liquid-
liquid or liquid-solid interface caused by a local drop in pressure
(Ross, 1976; Urick, 1975). Such local pressure drops occur when a moving
fluid is forced to accelerate around a bend or past a fixed object. The
magnitude of this pressure drop is a function of the density and velocity
of the fluid and is approximately equal to pV2/2, which for hydrothermal
vents 1s about 2000 Pa. Cavitation inception depends on the existence of
submicroscopic voids, called cavitation nuclel, in the liquid, When
pressure outside a nucleus drops below the surface tension of the bubble,
rapid vaporization can occur and the bubble will rupture, expand and then
collapse, producing significant monopole sound. The rates of growth and
collapse, which determine acoustic frequency and power, are affected by

the interaction of the pressure and velocity fields at the moving
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boundary, surface tension, evaporation, dissolved gas content, heat
conduction, viscosity and compressibility. Dissolved gas in the fluid
has the effect of cushioning the collapsing bubble, causing ﬁultiple
rebounds, and reducing sound production.

The peak frequency of cavitation is inversely related tc bubble
radius o which is likely to be small given the depth and large static

pressure at vents:

f=1 /P

2a ./ p (4)

where

P = p(a)-p{=), (5)

p{») is ambient pressure, p{a) is the pressure in the liquid just outside
the liquid-gas surface, and p is ambient fluid density.  Low frequency
bread band noise dominates when the gas content of the bubble i1s high.
Sharp, high amplitude peaks are characteristic of cavitation due to water
vapor only. The inception of cavitation has been experimentally
determined to depend on a cavitation parameter:

, ,
K = (P(m)-Pv-Pg)/(o.spv ) (6)

where Pv is vapor pressure in the bubble, and Pg is gas pressure in the
bubble. If K is greater than 4, cavitation will not occur (Ross, 1976).

Hydrothermal vents have been found at depths of 1500-3700 m which
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correspond to ambient pressures of 1.5x107-3.7x107 Pa. The vapor

pressure of seawater at 350°C 1s about 1.5x107

Pa. The dissolved gas
content will effectively increase the pressure inside the bubble. It is
therefore possible that cavitation occurs at shallow vent sites where

P(m)-Pv < 8000 Pa. However, it is highly unlikely for cavitation to be a

source of sound at greater depths.

iv) Boiling

Boiling differs from cavitation in that the enlargement of bubbles
occurs due to an increase in temperature and hence vapor pressure, rather
than a decrease in local outside pressure. Sound production will depend
on the temperature of the hydrothermal fluid and the depth of the wvent.
Most systems will not exhibit appreciable sound due te beoiling. Some of
the shallower vent sites could, however, experience two-phase separation
and generate some sound through growth and collapse of bubbles. This
process, being monopole in nature, could be of primary importance in
hydrothermal sound generation, if present. Recent studies north of
Iceland (Jon Olafsson, personal communication) have visually documented
boiling at discharge sites of hydrothermal vents at a depth of 100 m.

These vents will have a distinctive acoustic signature.

Dipole

i) Chimmey Vibrations

It is possible for turbulent flow through sulfide chimneys to induce
vibrations in their structures. The frequency of oscillation depends on

the stiffness and length of the chimney. The amplitude depends, as in
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cavity resonance, on mean flow velocity and on how close the forcing
frequency is to the natural frequency of the chimney. A way to estimate
pressure from a vibrating chimney is to use the general description of
dipole resonance coupled with a frequency estimate from theories of
structural vibrations for circular beams (Ross, 1976). The dipole source
term D due to a fluctuating force F at frequency f is:
D, = E.

2nif (7)
Maximum pressure amplitude for dipole radiation is given by

P - -(21rf)2D° - 27ifF
L4ore L4rre . (8)

The frequency of resonance in a circular beam is given by

Y 57 9
where Cy, is sound velocity in the beam, N is beam density, and d is beam
diameter (=1 m}, Using a value of cbﬁ3000m/s, P, = 4000 kg/m3 and =1,
equation 9 results in a frequency of 40 Hz. Force F is estimated by
assuming that 10% of the available pressure from fluid flow (4000 Pa from
above) acts upon the inside wall of the chimney of length L and diameter
0.05 m, which results in a force of approximately 240N. Using this in

equation 8 produces a fluctuating chimney pressure estimate of

P=23,2 Paem
r (10)
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Quadrupole

Lighthill’'s (1952) formulation of the aeroacoustic problem showed
that the mixing region of a jet could be equated to a volume of
quadrupoles with strength proportional to the stress tensor in the moving
fluid. Such a mathematical formulation allows radiated jet acoustic
powér levels to be estimated and shown to be proportional to VS for low
Mach number flow (Lighthill, 1952; 1954).

The frequency of jet nolse depends on the size of the turbulent
eddies in the jet, which scale with jet diameter (Lighthilil, 1963).

Since the jet expands laterally and decreases speed with increasing
distance from the orifice, acoustic power and frequency from a given
section of jet will both decrease. The resultant far-field spectrum will
have a peak frequency near 0.8V/D (Lush, 1971) with a power fall-off of
6-9 db per octave (frequency doubling) below the peak and 2-3 db per
octave above the peak. In the near fleld, the frequency spectrum
produced will be similar but depend on relative proximity to either the
mixing region near the orifice, which produces high frequencies, or the
fully developed turbulent region further downstream which produces lower
frequencies,

The power and frequency distribution are both directional in jets,
with higher frequencies being stronger at 90° to the jet axis and lower
frequencies dominating at low angles (<450) to the jet axis (Lush, 1971).

Sound production by turbulent jets is a complicated process and
extensive theoretical and laboratory work has examined the exact
directionality, frequency, and power of sound from low to high Mach

number (M) jets (Lighthill, 1954; Ffowecs Williams, 1977; Lush, 1971;

53




Laufer and Yen, 1983; Goldstein, 1984; Powell, 1964; Dowling et al.,
1978; Mankbadil, 1985; Cohen and Wygnanski, 1987). There are however,
very few experimental results on very low Mach number jets (Jorgensen,

1961). Hydrothermal vents, with M—lO-3

, fall into this category.
Therefore, we can use theoretical studies of jet radiation efficiency to

predict intensity of jet noise from vents. The maximum pressure field of

low Mach number jets in the far-field is proportiomal to (Lush, 1971):

P o oUsD (11)
cr

at a peak frequency of

£ ~ V/D (12)
The absolute magnitude of the near and far pressure fields of a
turbulent jet generating quadrupole radiation can be approximated by

(Ross, 1976; Ffowcs Williams, personal communication):

-2 42

P = 10 “pV = 40 Pa for r < D near-field (13)
p = 10"2,v2 (p/r)3 - 5x10°3/r Pasm® for r < A near-field  (14)
p = 107292 (0/0)%D/r = 4x10°%/r Pasm  for r > A far-field (15)

where A=cD/V in equation 15 returns equation 12.

Other Effects

i) Pipe Resonance

Flow through a hydrothermal chimney can set up resonant internal
pressure waves, much like an organ pipe, whose frequency depends on sound
speed in the fluid and on the length of the pipe:

f = ne/L : {16)
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where n ig an integer. Power level depends on how similar the frequency
of the driving pressure oscillations are to the resonant frequencies of
the pipe, and is difficult to predict in hydrothermal systems since

nothing is yet known about variations in fluid flow.

ii) Flow Inhomogeneities

If a turbulent flow is of non-uniform density, the most efficient
source is not the velocity quadrupcle term but a dipole order term whose
radiated power scales as V6 {(Moxfey, 1973). This is due to the fact that
accelerated density differences found in heterogeneous turbulent flow are
effectively force fluctuations resulting in variations of momentum, which
radiate as more efficient dipoles. The radiation efficiency of this type
of flow is represented by a r#tio of dipole pressure field to quadrupole

pressure field (Morfey, 1973):

Pd/Pq = cph/V (17

where A is the specific volume difference between jet and ambient fluid.
The amplification is inversely proportiomal to Mach number and as such,

may be a very strong effect at hydrothermal vents. For hydrothermal

fluid at 35000, the specific volume difference is approximately 0.5}{10'3
kg/m3, and:

2
Pd/Pq = 4x10 (18)
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Using the pressure calculated above for quadrupole radiation, equation

15, yields a far-field inhomogeneous flow pressure level of:
-3
P = 1.5x10 “/r Pa-m (19)

The complexities and variability of hydrothermal vent systems allow
for a wide range of possible sound generating mechanisms. Sources and
nominal sound frequency and power levels are tabulated in table 1 using

values for vent parameters given above., Levels indicate that some vents

may produce significantly more sound than others based on geometry and

structure alone. In addition, the range of velocities seen at vents will .
give rise to an additional several orders of magnitude range in power

levels as most mechanisms are heavily dependent on velocity. This

theoretical analysls sugpgests that monitoring changes in vent fields

through sound is feasible, although specific sources and power levels may

vary considerably depending on vent site. On the other hand, determining

exact values for velocity, diameter, length and temperature will depend

so heavily on chimney dimensions and internal structure that a complete

morphologic description of the vent field would be required to separate
out the different source mechanisms,
LABORATORY EXPERIMENT

In order to determine whether theoretical estimates of jet noise
production through quadrupole radiation and amplification by flow
inhomogeneities were valld at the low Mach numbers found at vents, we

conducted a simple laboratory investigation., Our measurements were made

56



in the near field since nco experimental investigations exist in the
literature on jet noise and the effects of flow inhomogeneities on near-
field pressure levels in flows with velocity and spatial scales
commensurate with hydrothermal vents. The aim of this study was to
substantiate theoretical estimates of jet sound pressure levels and use
the results to help design a fileld experiment to directly measure
hydrothermal vent sound fields (Little, in prep.).

In the laboratory we concentrated on pure jet noise production, a

process dependent on quadrupole radiation for homogeneous fluids and on tf"
1

dipole radiation for non-homogeneous fluids, Comparisons were made of

several velocities and nozzle dimensions for cold jets (homogeneous) to

determine effects of these parameters on power and frequency. Sound j
|

amplification due to inhomogeneous flow was investigated using both hot
jets into cold ambient fluild, and fresh water jets into a saline

solution.

Methods

The experimental tank holding ambient water was 1.2 m x 1.5 m x 2.4
m and constructed of wood with one glass face. The jet orifice was
mounted on the bottom and fed through a pipe running down the side of the
tank (figure B3). Flow through the jet, driven by tap pressure, was
monitoredrf; within 3x10~5 m3/s by a flow meter in series with the pipe.
To reduce the effects of external vibrations, the hydrophone was
suspended in the tank on a long wire cable. The hydrophone itself was a
deep sea hydrophone (the same one used in the field experiment (Little in

prep.)), 15 cm X 5cm, and was calibrated to within 6 db by comparison to
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a known receilver. Data was recorded digitally at 500 Hz and 2000 Hz
after passing through an appropriate anti-aliasing filter.

Four configurations were examined: a cold (10°C) jet with velocity
of 3 m/s passing through an orifice of 2.7 cm diameter into cold ambient
water with sound measured at a range of 49 cm (to center of hydrophone);
a cold jet with a velocity of 7.5 m/s passing through a 1.05 cm diameter
orifice monitored at 27 em; a hot (55°C, p-985kg/m3) jet at 3 m/s and
orifice diameter of 2.7 cm monitored at 49 cm, and a fresh water jet with
velocity of 3 m/s passing through an orifice of 2.7 em diameter into cold
salty water with salinity 55 ppt (density: 1041 kg/m3), monitored at a

distance of 49 cm.

Results

The laboratory environment was noisier than optimal for a rigorous
test of theory (figure B4) but the results achieved here agree with
theoretical predictions of jet noise within the order of magnitude
resolution of this experiment (summarized in table 2). Frequency was as
predicted by equation 12 for jet noise in all configurations. Power
measured was within an order of magnitude of that predicted by the near
field quadrupole equation 14 for the two cold jet arrangements. The
higher velocity jet produced somewhat less power than anticipated, which
may be dué ;o the déminant wavelength approaching the dimensions of the
tank., The amplification due to convected flow inhomogeneities was less
than half that predicted by theory (equation 17) for the hot jet, and ten

times less than predicted for the saline solution, This 1s attributed to

the fact that our measurements were made in the very near field where
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amplification effects of flow inhomogeneities, causing dipole radiationm,
on the pressure field may be less dominant than in the far-field.
FIELD OBSERVATIONS
The potential difficulty in detecting hydrothermal wvent acoustic
signals lies not so much in the sensitivity of hydrophones and recording
instruments, as in the intensity and variability of ambient ocean noise.
Typlcal ambient ocean noise has been extensively studied (Urick, 1986;
_ Burdick, 1984; Hodgkiss and Anderson, 1980; Wentz, 1962; Akal et sl.,
1986) but absolute levels depend on the exact location and time of
sampling. Noise varies considerably depending on depth of water,
weather, shipping, season, local topography and is punctuated by .
transient sources such as local ships and biological sources, making é
estimates for specific sites difficult. 5
The lowest frequency band, 0.01-5 Hz (figure B53), exhibits high
power levels and is dominated by microseisms: low frequency pressure
disturbances caused by non-linear interactions of ocean surface waves

(Webb, 1984), and teleseismic events, |

Power in the band from 5-100 Hz, produced by distant shipping, is S

dependent on sound that has travelled tens to hundreds of kilometers and
is strongly influenced by wave guide propagation effects such as sound
channelling due to a velocity minimum in the water column. Sound which
travels great distances through the ocean experiences a broadening of its
spectral peak.

The mid-band, 100-10,000 Hz, is a function of local sea state and

wind related noise caused by spray, breaking waves and falling water

droplets. Sound due to weather within a few kilometers of the
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measurement sife will dominate pressure levels on the seafloor in this
frequency band.

Finally, the high frequency band above 10,000 Hz is dominated by
thermal noise caused by agitation of water molecules.

Transient sources also éontribute to noise at a given location.
These include local ships and submarines, which are characterized by high
energy narrow band peaks, often including harmonics of a fundamental
frequency, anywhere from 5 to 200 Hz. Biological sources can also

contribute to the noise field, with whales and dolphins capable of

producing high amplitude, short duration sounds at frequencies from 18-

106 Hz (Watkins, 1981). é

Published Field Data : (
East Pacific Rise
The first evidence of vent sound generation came from data collected
near hydrothermal vents at 21°N on the EPR where an array of ocean bottom
hydrophones was set out to study microearthquake activity at an active
|
i

vent gite (Riedesel et al., 1982). 1In comparing two hydrophones, located

300 m and 2 km from the vents, 1t was noted that the automatic gain
control on the instrument nearer the vents set itself to a gain level 16-
64 times less sensitive than that of the instrument far away. This
indicated that the intensity of ambient sound near the vent was
consistently louder than the sound further away, suggesting that the
major source of ambient noise in this area was the hydrothermal vents
(Riedesel et al., 1982). In addition, the month long record of gain

level shows daily variations of noise level that are correlated between
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the two hydrophones (figure B6). An inspection of a time series record
(figure B7) reveals a major difference in amplitude at very low
frequencies (.16 Hz). These freguencies are usually associated with

surface generated microseisms (Webb, 1984) but it is not clear why the
amplitude should be so different at a receiver separation of only 1.5 km,

These data are suggestive of a low frequency vent sound source but the

evidence is inconclusive.

Juan de Fuca Ridge

Recently, anomalous high ambient acoustic noise was observed in the

caldera of Axial Seamount at 46°N on the Juan de Fuca Ridge (Bibee and

Noise levels from 2-30 Hz varied up to 25 db over 6 km

Jacobson, 1986).
as measured on four separate receivers (figure B8) and it was suggested
With the assumption

that the noise source was at or near the sea floor.

of spherical spreading, the source was placed at 400m from one of the
This placed it within

instruments, in the northern part of the caldera,.
200m of a low temperature vent field mapped on a previous expedition.

Interestingly, 10 db variations in sound power level were observed over !
the course of the eight day record. An instrument placed several hundred
meters from the known high temperature vent fleld Ashes, located in the

southwestern part of the caldera, recorded no evidence of anomalous

acoustic noise,

ARGORISE Towed Hydrophone
In December, 1985, we attached a deep-sea hydrophone to the ARGO

televiewer system during the survey of the East Pacific Rise (EPR)
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between latitudes 10° and 12°N (ARGORISE). Noilse was recorded in real
time on the ship via ARGO’s conducting cable. Digital samples were taken
at 1000 Hz every hour and when in the vieinity of hydrothermal areas.

The vehicle was passively towed by the surface ship and flow noise was
minimized by reducing the ARGO’s horizontal velocity to less than 0.2
kts. Unfortunately, a heave compensator was not able to remove all the
vertical motions induced by the surface swell; thus, only about 10% of
the recorded data was uncontaminated by flow noise. Few wvigorous black
smokers were encountered during the 200+ hours of slaloming down the
ridge crest, but five hydrothermally active areas, as defined by biota,
were crosged. Comparison of sound recordings near (within several
meters) and far (further than 1000 m) from these areas reveals
consistently elevated sound levels near hydrothermal sites (figure B9) at
frequencies generally between 15 and 30 Hz. Unfortunately, absolute
power levels were uncbtainable but noise levels near vents were up to a
factor of 10 times those away from vents. Contamination from wehicle

flow noise prevents more robust further analysis of the spectrum.

Ashes Vent Field, Juan de Fuca Ridge, Acoustic Monitor Experiment

In Septemﬁer, 1987, high quality recordings of noise within a few
tens of meters of an active vent were made using two hydrophones emplaced
by the sugm;rsible Alvin in Ashes Vent Field, Axial Seamount, on the Juan
de Fuca Ridge (45°55'N, 130°02'W) (Little, in prep). The hydrophones
were suspended 38m apart on a vertical cable with the lower one placed 2-

3m from the vent orifice, No continuocus vent signals were deemed

significant based on a criterion of 90% probability of detection and 5%
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probability of false alarm. However, a small signal near 40 Hz, with a

4 Paz/Hz was noticed on two records taken near

power level of 1x10~
Inferno vent (figure B10). This vent had an exit diameter of 4 cm and
veloecity of 2 # 0.5 m/s and, using equation 12 above, the expected peak
frequency for jet noise is Adtlo Hz, which is consistent with the
measurements. Predicted power level for the near-field of such a jet

7 Paz/Hz. The power level

is, from equation 14 with r=2.3m, 1.7x10°
suggests the occurrence of jet noise amplification of about 103 due to
convected density inhomogeneities. Theoretically, amplification due to
convected flow inhomogeneities for a density diffefence of 0.5):10'3
kg/m3 (corresponding to the measured exit temperature of 329°C) can be a
factor of up to 1.6x105 above homogeneous quadrupole radlation, or a
power level of 3x10-2 Pa2/Hz. Measured power is less than predicted for
near-field radiation with such amplification and we attribute the

difference to the fact that measurements were made in the near-field

where, as seen in the laboratory, amplification effects are reduced.

Summary of Field Observations

The high amplitude, low frequency noise observed at 21°N, if it is
of hydrothermal origin, would have to be produced by pulsations of flow
or large cavity resonance {or an unidentified mechanism) since sound
source processes assecciated with turbulent flows would generate much
higher frequencies than observed.

The ARGORISE data is consistent with black smoker inhomogenecus jet
sound production in that the frequencies were within the expected range

and signals were above ambient only within a few meters of vents. The
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fact that no anomalous signals were detected by Bibee and Jacobson (1986)
near the Ashes vent field is consistent with Little's Ashes experiment in
which the hydrophone had to be within several meters of the black smoker
to detect a signal. Even at that distance the probability of detecting a
signal was lower than 90%. fhe anomalous sound recorded in the northern
part of the caldera is, in light of these results, not due to a high
temperature, high velocity black smoker. It may be more related to
subsurface hydrothermal/tectonic Interactions where the cracking of rocks
would be able to preduce higher power at lower frequencies than the

simple movement of water.

CONCLUSIONS

The need to determine long-term variations in hydrothermal fluid
flow prompted this study of sound generation at hydrothermal vents.
Theoretical examination of hot, turbulent, buoyant jets exiting from
hydrothermal chimneys illuminated several acoustic source mechanisms
capable of producing sound at levels higher than ambient ocean noise.
Among these were fluctuating flow, pipe resonance, cavitation, chimney
vibrations and jet noise with amplification due to convected density
inhomogeneities.‘ Pressure levels and frequency generated by these
mechanisms are dependent on chimney dimensions, fluid velocity and
temperature and therefore can be used to monitor changes in these
parameters over time,

A laboratory study of low Mach number jet noise and amplification by

flow inhomogeneities confirmed theoretical predictions for homogeneous
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jet noise power and frequency. The increase in power due to convected

flow inhomogeneities, however, was lower in the near field than expected.

Indirect evidence of hydrothermal sound fields (Reidesel et al.,
1984; Bibee and Jacobson, 1986) showing anomalous high power and low
frequency noise associated with vents (21°N, northern Axial caldera), is
due to processes other than jet noise. Possible hydrothermally induced
processes include low frequency fluid source pumping, cavity resonance,
and flow/rock interactions in the form of fracturing.

Direct measurements of hydrothermal vent sound fields (ARGORISE,
Ashes vent field) show that frequency and power levels are consistent
with jet quadrupole near-field sound which has been amplified by the
dipole behavior of convected flow inhomogeneities. This near-field
amplification is not as great as predicted for the far-field but is
consistent with theoretical considerations for near-field dipole and
quadrupole behavior.

Hydrothermal vents generate sound but source mechanisms at vents
will be site specific, depending on vent geometry and velocity. This
coupled with great variability in ambient ocean noise means that some
vents will generate sound which is more easily detectable than others.
The nominal vent, however, produces sound at a level close to ambient
ccean noise and as such, needs a complex hydrophone array for

quantitative flow monitoring.
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Table 1

Source Mechanism Frequency Pressure Level Powerzat 3m
Hz Pa Pa”/Hz
Monopole
Pulsation < 3000 12.0/r 16
Cavity Res. < 1000 ? <o) ;
Pipe Res. n*250 ? <0(1)
Cavitation > 1000 ? <0(1)
Boiling ? ? ?
Dipole
Chimney Vibr, 40 3.2/c >1

Flow Inhomog.

far field 40 2x10"3 /¢ >5x10"7
near field 40 2/r3 >6x1073

Quadrupole _
far fleld 40 4x10"8/x >2x10~ 12 ét- i
near field 40 5x10'3/r3 >4x10°8 E

* 0()= Of order of magnitude ()

Table 2
Theoretical Measured
Jet Tank Vel. Dia. Freq. Poyer Amp. Freq. Pgwer. Amp.
m/sh cn Hz Pa“/Hz Hz Pa”/Hz

Cold Cold 3.0 2.80 88  2-8x10°% - 70-90  5.0x107% -
Cold Cold 7.5 1.05 550  5-50x107% - 450-650  1.0x10°% -
Hot Cold 3.0 2.80 88 2-8}{10“4 X 55 70-90 1.2x10_3 2.5
Gold Salt 3.0 2.80 88 2-8x10-4 x 380 70-90 1.0x10'3 2.0
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Figure B4a .
Mean and 95% confidence limits for difference in sound power between
ambient and a laboratory jet of cold water at 3 n/s through a 2.7 cm
diametar nozzle. Expected peak frequency is about 85 Hz. Variation
) _ mear 60 and 120 Hz is electronic noise.
Figure B4b

Mean and 95% confidence limits for difference in sound power between
ambient and a laboratory jet of hot (130° F) water into a cold tank at
3 m/s through a 2,7 cm nozzle, Expected peak frequency is about 85 Hz.

Variation near 60 and 120 Hz iz electronic noise. Hot jet sound is
elevated abeve cold jet sound, 70
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Figure B6
Plot of gain in hydrophone preamps vs. days on station for two
hydrophones near the black gmoker vent field at 21°N on the East
Pacific Rise. The upper curve is from the hydrophone 2km from the
vents and the lower from the hydrophone 300m from the vents. The
signals are correlated and indicate louder sound near the vents than
far away.
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Time series of data from two hydrophones near 21°N on the EPR. Larger
amplitude low frequency record is from the hydrophone 30Cm from the
vents and the other from the hydrophone 2km away.
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Figure B8a
Noise levels in Axial Volcano from Bibee and Jacobson's 1985
experiment., OBS 14 was in the northern part near a low
temperature vent field. OBS 3 was near Ashes vent field,

Figure B8b
Site map of above experiment with Ashes vent field in south-
western part of caldera and CASM low temperature fiald in northern
part. 74
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ARGORISE towed hydrophone power spectra from four different
deployments. Records taken within several meters of vents are

in solid lines; those taken greater than lkm are in dashed lines,
Power levels near vents are up to 10 times those away from vents
in frequencies from 15-30 Hz.
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. Low noise period from two hydrophone deployment on Ashes vent
field, Axlial volcano (Little, in prep)., Upper solid curve is
from upper hydrophone on first deployment, upper dotted is from
upper hydrophone on second deployment. Lower solid curve is
from the lower hydrophone on the first deployment, lower dotted
curve is from lower hydrophone on the second deployment. Notice
in particular the peak on the lower, first deployment at 39 Hz,
due to jet noise at Inferno vent.

76



SOUND ASSOCIATED WITH HYDROTHERMAIL VENTS:

JUAN DE FUCA RIDGE FIELD EXPERTMENT
ABSTRACT

High quality acoustic noise measurements were obtained by two
hydrophones located 3 m and 40 m from an active hydrothermal vent on
Axial Seamount, Juan de Fuca Ridge, in an effort to determine the
feasibility of monitoring hydrothermal vent activity through flow noise
generation. Most of the noise field could be attributed to amblent ocean
noise sﬁurces of microseisms, distant shipping and weather, punctuated by
local ships and bioclogical sources. Water/rock interface waves were
detectgd which showed high pressure amplitudes near the seafloor and,
decaying with vertical distance, produced low pressures at 40 m above the
bottom. The rapidity of pressure fall off with height implies a local
source,

| Detection of vent signals was hampered by unexpected spatial non-
stationarity due to shadowing effects of the caldera wall. WNo continuous
vent signals were deemed significant based on a criterion of 90%
probability of detection and 5% probability of false alarm. However, a

4 Paz/Hz was noticed

small signal near 40 Hz, with a power level of 1x10°
on two records taken near the Inferno black smoker. The frequency of
this signal is consistent with predictions and the power level suggests

the occurrence of jet noise amplification due to convected density

inhomogeneities,
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INTRODUCTION

At mid-ocean ridges the circulation of seawater brings heat and
chemicals up from the depths of oceanic lithosphere, releases part of
this load onto the seafloor and injects the rest into the water column,
The full impact of hydrother@al circulation on ocean composition, global
heat flux and the generation of economic ore deposits has not been
assessed because neither the full spatial nor temporal distributions of
venting are known. Thirty or so vent sites of varying size have been

identified both in the Pacific and Atlantic oceans since their first

discovery in 1977 (Corliss et al., 1979; Hoagland and Broadus, 1987).
Although instantaneous measurements of hydrothermal characteristics such
as morphology, temperature, salinity, chemistry, heat flux, and
biological composition have been taken at many of them (Converse et al.,
1982, Hekinian et al., 1983; Hessler and Smithey, 1983; Ballard et al.,
1984; Hammond et al., 1984; Normark et al., 1986; Rona et al., 1986; §¥;;if;
McConachy et al., 1986; Tivey and Delaney, 1986; Little et al., 1987;
Craig et al.,, 1987), long-term measurements of any type greater than a 5
few days are extremely rare (Johnson and Tunnicliffe, 1985; Little et
al., submitted). This deficiency is due to the inaccessibility and
severe envirommental conditions found at vents eg. high temperatures,
high pressures and reactive chemicals. An understanding of the local
scale fluid flow characteristics and changes in these over time is
required to develop models of hydrothermal processes ranging from
subsurface water-rock interactions (Cann and Strens, 1986) to bioclogical
dispersion and growth (Hessler et al., 1985; Van Dover, 1986). The

current scientific need to remotely monitor long-term changes in flow
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velocity has justified a feasibility test of a passive acoustic monitor
at a high temperature vent field. This method utilizes the sound
generated by moving fluid at hydrothermal chimneys, the frequency and
amplitude of which depend upon the fluid velocity and density, orifice
diameter and chimney structure (Lighthill, 1952; Dowling et al., 1977;
Ffowes Williams, 1969; Morfey, 1973).

In theory an exact description of vent sound could be used to
determine flow velocity, orifice diameter and possibly fluid density
(Little and Stolzenbach, submitted), 1In practice, however, no
unequivocal proof exists that vents generate scund at levels that are
detectable in the deep ocean, although some data is available that
suggests this is so (see review in Little and Stolzenmbach). No
measurements of vent sound have been made of adequate quality to
determine source mechanisms and permit estimation of vent parameters, In
this paper an experiment is described that was designed to determine the
feasibility of detecting hydrothermally generated sound in the ocean. 1In
September, 1987, high quality recordings of noise within a few tens of
meters of an active vent were made using two hydrophones emplaced by the
submersible Alvin in Ashes Vent Field, Axial Séamount, on the Juan de
Fuca Ridge (45055’N, 130002’W), The results of this experiment are

presented in this paper.

REVIEW OF AMBIENT OCEAN NOISE
The potential difficulty in detecting hydrothermal vent acoustic
signals lies not so much in the sensitivity of hydrophones and recording

instruments, as in the intensity and variability of ambient ocean noise.
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Typical, ubiquitous, deep-water ambilent ocean noise spectra can be
separated into four frequency bands caused by four different source
mechanisms, figure Cl, (Urick, 1975; Burdick, 1984; Wentz, 1962).

The lowest frequency band, 0.01-5 Hz, exhibits high power levels and
is dominated by microseisms: low frequency pressure disturbances caused
by non-linear interactions of ocean surface waves (Webb, 1984), and
teleseismic events, Témporal variations are as rapid as a few minutes
for interface waves travelling near the sea floor, and as long as a few
hours for variations in sea state and swell,

Power in the band from 5-100 Hz, produced by distant shipping, is
dependent on sound that has travelled tens to hundreds of kilometers and
is strongly influenced by wave guide propagation effects such as sound
channelling due to a velocity minimum. Travelling great distances
through the ocean broadens the spectral peak and eliminates waves
travelling outside a few degrees of horizontal. Time variations in this
band are slow, on the order of hours to days and depend on changes in
ship traffic and large scale temperature and salinity structure (in the
sound channel).

The mid-band, 100-10,000 Hz, is a function of local sea state and
wind related noise caused by spray, breaking waves and falling water
droplets. Sound due to weather within a few kilometers of the
measuremenﬁusite will dominate pressure levels on the seafloor in this
frequency band. Changes with time in power level are on the order of
hours to days and are dependent on weather patterhs.

Finally, the high frequency band above 10,000 Hz is dominated by noise

caused by thermal agitation of water molecules.
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Transient sources also contribute to noise at a given location.
These include local ships and submarines, which are characterized by high
energy narrow band peaks, often including harmonies of a fundamental
frequency, anywhere from 5 to 200 Hz. Biological sources can also
contribute to the noise field, with whales and dolphins capable of
producing high amplitude, short duration sounds at frequencies from 18-
100 Hz (Watkins, 1981).

Noise in the ocean is typically non-stationary both in time and
space (Burdick, 1984; Hodgkiss and Anderson, 1980). The noise field
varies considerably over time due to the rich variety of sources (Akal et
al., 1986) and measurements made hours apart can show striking
dissimilarity (as will be seen below). Sound recorded at near bottom
hydrophones is subject to additional propagation effects of local
topography, seafloor heterogeneity, and the interface of the ocean-
seafloor boundary. These effects can produce severe spatial variability
in the sound field over short distances through diffraction, scattering
and exponential decay of interface waves with distance from a boundary.
In the face of these difficulties, and to make the study of noise in the
ocean tractable, the necessary assumption of stationarity is often
validated by making comparisons over closely spaced times and distances.
SITE DESCRIPTIONR

Ashes Vent Field (Hannington and Scott, 1985; Hammond et al, 1986)
is located 75 m from the south-western wall of Axial Seamount on the Juan
de Fuca Ridge at 45°55'N, 130°02'W (CASM, 1983; CASM, 1985; Embley et

al., 1988), figure C2. The site is noted for its smooth floor and
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absence of cracks and fissures, which makes it an ideal spot in which to
work with the submersible and émplace a vertical instrumented cable, The
caldera floor, approximately & km from east to west and 10 km north to
south, is 1540 m below the sea surface which nominally places it in the
deep sound channel for this iatitude (Burdick, 1984). 1In the Ashes Vent
Field, there are two main black smokers with accompanying sulfide and
anhydrite chimneys, "Hell" and "Inferno", separated by 35 m (figure C3).
In addition to these there are several 1owér temperature and velocity
white smokers and many patches of diffuse flow within the 60x60 m area of
hydrothermal activity. At the time of acoustic sampling, the chimney of
Inferno was 3 m high, topped by one site of black smoke efflux sampled at
a temperature of 326°C with visually determined velocity of 1-2 m/s and
diameter of 4 em, There were, in addition, several other sites of clear
fluid discharge, one located 20 cm from the black smoker, with a
temperature of 126%¢, velocity of less than 1 m/s, and diameter of 1 em.
The others were located near the bottom of the edifice. The chimney of
Hell was 2 m high and hosted a single black smoker at its top with an
orifice diameter of 5 cm and a visually estimated velocity of 0.5-1.5

m/s,

INSTRUMENTATION AND DEPLOYMENT

The hydrothermal acoustic monitoring instrument consisted of two
hydrophones suspended on a cable beneath a float (figure C4) and attached
to a microprocessor controlled digitally recording system (Mellinger et
al., 1986). Designed for detecting an unknown vent acoustic signature,

the system had a 16 bit analog to digital converter and a programmable 1-
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10-100-1000 gain amplifier resulting in a dynamic range of 156db. One
tunable 8-pole Butterworth filter for each channel provided anti-aliasging
for sampling rates of 300 and 2400 Hz. Calibration to absolute sound
power levels was obtained by comparison to a known receiver and is
accurate to within 6 db for the bandwidth 15-1200 Hz and 15db for the
bandwidth 1-15 Hz., Calibration of relative response between the two
channels revealed less than a 4 db difference for all frequencies of
interest (1-1200Hz) in this experiment,

The deployment scheme was designed to accommodate three major
constralnts: minimizing the use of the submersible, recording without
ships or submarines in the viecinity, and limited memory storage
capability, To this end, the procedure was to drop the instrument from
the ship onto the vent site using an acoustic navigation net, dive on the
mooring with a submersible, pick it up, and move it to within 5 m of an
active chimney. The instrument then turned on that evening at a preset
time and recorded through the night after the submarine and ship had left
the area. The following day, the instrument was acoustically released
and recovered by the surface ship. The data was then transferred to a

portable computer and the Instrument readied for further deployments.

DATA DESCRIPTION

Two fuily succéssful hydrothermal acoustic monitor deployments were
obtained on Atlantis II/Alvin voyage 118, leg 21. For the first
deployment, Alvin dive #1917, the lower hydrophone was placed 2 m

horizdntally and 1 m vertically from the north-east side of black smoker

Inferno. The upper hydrophone was 39.5 m above the lower one. The
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instyument turned on at 23:00 on 9/23/87 local time and recorded two
consecutive sets of data every hour until 03:00 on 9/24/87. The first
set was 9216 points long taken at 2400 Hz with anti-alias filter at 800
Hz. The second set was 8192 points long recorded at 300 Hz with anti-
alias filter at 100 Hz. A total of 14 sets were obtained, 7 at each of
the two frequencies,

On the second deployment the lower hydrophone was positioned 2 m
horizontally and 2 m vertically above black smoker Hell, 35 m from
Inferno, on dive #1923, The upper hydrophone was 38.9 m above the lower.
The instrument began recording at 18:00 on 9/29/87 local time and sampled
once an hour until 06:00 on 9/30/87. Each sample was 8192 points long
taken at 300 Hz with anti-alias filter at 100 Hz, for a total yield of 13

sets,

GENERAL DATA REDUCTION

The output of a hydrophone placed in the ocean results from a
combination of system noise and pressure fluctuations in the ocean, Due
to the fact that all the sources of fluctuations are not completely
known, only a statlstical description is permiﬁted, based on cbservations
over an extended time period. In producing our statistical desecription
of the hydrophgne output and in analyzing the sound we will use several
assumptions. First, we will assume that the noise is temporally
stationary over our individual sample periods. This enables
interpretation of fourier transforms of the time series as representative
of the distribution of power over frequency. To help validate this

assumption, examinations of the time series will be uged to eliminate
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impulsive signals and gross differences with time. The second assumption
is that the signal from the vent is constant over the duration of the
experiment., Visual observations of the smokers support this assumption
as the flow velocity appeared to remaln constant from dive to dive.

Power spectra are calculated for this analysis using the Welsh
method (Oppenheim, 1975). The 8192 point records were divided into 16,
512 point sets, each set multiplied by a Hanning window, and used with an
FFT algorithm to compute the power spectral densities which are
subsequently averaged together. This gives a power estimation accuracy
of 1//N P = 1/4 P where N is the number of sets and P is the power level

at a given frequency. The mathematical spectral estimates are thus

‘accurate to # 0.125%xP, The calibration between the two hydrophones is

better than a factor of 1.3xP, since the measured differences (for which
corrections have been made in the plotted spectra) were about 4 db or a

factor of 1.5 for the frequencies in the bandwidth of this system. The

frequency resolution of 1/T, where T is the time length of a set, is 0.6
Hz for the 300 Hz samples, and 4.7 Hz for the 2400 Hz samples.

In addition to comparisons of simple power spectra, the coherence
(coherence squared) and phase between the two channels will be examined.
The coherence level reveals the amount of signal common to both
receivers while the phase differences at a given frequency provides
information on the angle of incidence of the incoming wave. Thé
direction of wave travel can be obtained by looking at linear trends in
phase as a function of frequency. Phase is calculated here such that if
a broadband signal impinges on the array at an angle # from above, the

phase will be a linearly increasing trend in frequency whose slope is
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dependent on # and receiver separation. If the waves arrive from below,

phase will decrease with increasing frequency.

ANAIYSIS OF NOISE FIELD

Two power spectra encompassing bandwidths of 1-800 Hz from the first
deployment (Inferno) and 1-100 Hz for the second (Hell), presented in
figure C5 and C6, represent two of the lower noise periods of the

experiment. The most obvious feature In these spectra is the difference

in power levels between the two hydrophones in the bandwidth 10-200 Hz, Eg

with the upper hydrophone receiving more power than the lower. Further,
a comparison with ambient ocean noise curves (figure Cl, from Urick)
reveals a marked similarity in power levels and spectral shape. We
hypothesize that most of the noise recorded in the caldera is due to the

ambient ocean noise sources described above and that the major difference

in signal level is due to a shadowing and reflecting effect by the nearby ? 5£:

caldera wall. The following analysis examines this hypothesis in detail.

High frequency: 100-800 Hz

Sound in this frequency band is dominated by sea state and wind
force and will experience changes on a time scale of several hours to
days. An examiﬁation of the time history for the Inferno deployment,
figure 07; ;eveals power variations of about a factor of three for the
bandwidth 200-800 Hz over the course of the deployment. The ship’s log
records a constant sea state of 3-5 feet and wind increasing from 11 to

21 knots over the deployment. This is consistent with the general trend

of increasing power seen in figure C7.
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Weather related sound propagates downward from the sea surface with
sea conditions directly overhead exerting the most influence on sound at
the seafloor below. Since sound waves are travelling to the receiver
array from above, one would expect little or no caldera wall effects on
this bandwldth if the sources are indeed weather related. Figure C8
supports this as there is very little difference in power between the two
receivers above about 250Hz. Although the coherence is generally weak
(figure €9), 1t is to be expected for wavelengths short as compared to
receiver separation. A look at the cross-correlation reveals the highest
correlation for a lag corresponding to an end-on wave approach from above

(figure C10), suggesting sources at the sea surface,

Medium Frequency Band: 5-100 Hz

S?und from distant shipping, travelling horizontally large distances
(hundreds to thousands of kilometers), often in the sound channel, will
depend on both traffic density and speed, and propagation path
characteristics. Time variations are expected to be on the order of
hoﬁrs but may be punctuated by local sources such as ships overhead
(figure Cl1l). It is because these waves from long distant sources travel
very close to horizontal that the caldera wall can influence the sound at
the vent field. All the sound arriving from the west must diffract
around the edge of the wall to reach the lower receiver as it is in the
geometric shadow of eastward travelling acoustic waves {(figure C3). 1In
addition, westward travelling waves can reflect off the wall and
increase the poﬁer levels at the upper receiver, while the lower

receiver, being so close to the bottom, will intercept fewer reflected
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waves, Several effects are seen in the power spectra which support this
hypothesis. First, the upper hydrophone has up to four times as much
power in the affected bhandwidth as the lpwer (figure Cl2a,b,c). Second,
the effect should drop off at low frequencies as the wavelength of sound
approaches the dimensiomns of the wall., Wavelengths near 75 m and longer,
20 Hz and below, will be less influenced by the wall and hence reach hoth
receivers more equally, as can be seen in figure Cl12a,b. Power
differences should also be reduced at higher frequencies, above 200 Hz,
because the predominant sound at these frequencies is not travelling
horizontally, as was seen above (figure Cl2c). Third, the second
deployment should show slightly greéter differences since Hell vent is 15
m closer to the caldera wall than Inferno; this is seen in figure Cl2a,
and C12b. Finally, the phase difference of the waves at the two
recelvers should be roughly zero and constant as the sound hits the array
broadside from westward travelling waves. Figure Cl3 presents coherence
and phase for a record taken during Hell deployment. The generally low
coherence 1s expected if one receiver samples part of a sound field not
gampled by the other. However, the cocherence is markedly above random,
and the phase significant as can be seen by comparing them to coherence
and phase caleculated between two totally uncorrelated samples taken hours
apart (figure Cl4). The phase between 20-100 Hz on Hell 8 is quite
constant and near zero (compare to uncorrelated phases in figure Cl4),
implying that the sound impinges at right angles to the vertical array

and is thus travelling horizontally.

Low Frequency Band: 0.25-10 Hz
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There appear to be two major types of sound in this band, one,
microseisms caused by local sea surface waves, and the other of unknown
origin which produces evanescent interface waves travelling along the
seafloor boundary whose amplitudes decay exponentially with distance from
the boundary (Dowling and Ffﬁwcs Williams, 1983). The power falls off
rapidly with height, implying short wavelengths and therefore a local
source generating these Interface waves. The power levels in this band
for the interface waves is quite variable and intermittent. On the other

hand, microseism power changes more slowly as it is tied to changing sea

state. The upper hydrophone, being less influenced by interface waves,
should have slower and lower amplitude variability than the lower
hydrophone. Figures C15-Cl7 depict this effect and show the striking
difference between microseism and interface waveforms. A record from
Inferno, figure €15, and one from Hell, figure Clb6, show nearly identical
low frequency waves, in phase, as expected from long-wavelength
microseisms, The second record from Hell (figure Cl17), taken four hours
earlier, shows high amplitude interface waves on the lower hydrophoné and
typical microseismic amplitude waves on the upper, exemplifying the
effect that interface wave amplitude dies awaf exponentially from the
seafloor. The power, coherence and phase confirm the conclusions of the
visual examination of the time series. In figures Ci8a and C18b can be
seen the high coherence and constant phase for microseisms. In figures
Cl9a and C19b are shown the low coherence and variable phase for the
interface waves.

In summary, the general power spectral level, time variability,

power differences and wave phase relationships suggest that the bulk of
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recorded sound is attributable to the identifiable ocean noise sources of
microseismg, distant shipping, and ocean surface weather. 1In addition,

several records present striking evidence of evanescent interface waves

generated by a local source.

Isolated Events

Several individual noise events were recorded during the course of
this experiment. One record ;aken during Inferno deployment captured a
monochromatic 19 Hz sound signal which we attribute to a whale (figure
G20). The signal has high power (figure C21), coherence (figure C22a)
and the phase shows that the signal is coming in end-on from above
(figure G22b). The separation, d, of the receivers is such that for this
frequency, d=s), so sound arriving from above will have a phase delay
hetween the two receivers of 1800, as is seen in figure C22b. Curiously,
the amplitude is higher on the lower hydrophone than on the upper. This
may be due to the reflected wave from the hard bottom causing
constructive interference on the lower hydrophone and destructive
interference on the upper hydrophone * wavelength away.

Similar power and phase phenomena are seen on a record taken when
the Atlantis IT is the sound source. Figure 023 shows the power spectra
of noise with the ship overhead and slightly eastward of the vent site.
There is very high coherence in the signals and a linear phase with
slope describing waves coming in end-on (figure C24)., At 20 Hz the 180°

phase shift is evident, similar to that of the whale.

Hydrothermal Noise Detection
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Neither Hell nor Inferno vents produce enough sound to isolate
unambiguously thelr entire spectrum levels from ambient ocean noise. In
fact, as seen above, overall noise levels are higher far from the vents
than they are close to them. This unexpected result makes direct
comparisons of simultaneous but spatially separated noise spectra
difficult., In order to identify regions §f the spectra which may have
vent slgnal, we must identify a background noise level for this site. It
had been hoped that the far receiver would provide this information, but
geometrical influences, ie the caldera wall, proved to be too sipgnificant %g,
and complex. As an alternative, we have chosen to represent background
ambient ocean noise with the lowest recorded noise spectra. Anything
recorded significantly above this, as defined below, will be considered a
signal which we will attempt to attribute to known sources.

Since all analyses are within a statistical framework, it is useful

to assign significance by examining the probability that a given signal

is real and not a chance fluctuation. The effective signal to noise

level will be described here using a wvalue called the detection index

(Burdick, 1984; Bangs and Schultheiss, 1973; Owsley and Swope, 1981). t .

This is an array output signal to noise ratio which depends on the number
of receivers, the sample length, and the signal field and noise field.

It describes both the probabllity of detection and the probability of
false alaéﬁ“(mistakenly detecting a signal when its not present) for a
given signal and noise input to the hydrophones (see appendix). A high
detection index provid;s simultaneously high confidence in correctly

detecting a signal when it is present and in not falsely detecting one

when it is absent. We will calculate this detection index by assigning
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-G25), are remarkably similar considering they were recorded several days

the lowest power level record to be noise, comparing the other records to
these values and designating as signal anything above the noise. The
magnitude of the resulting detection indices will represent our
confidence in a given signal. We will deem as significant any detection
index over 10 - this value répresents a probability of detection of 90%
and probability of false alarm of 5%.

The average of the lowest nolse spectra, one set from Hell and the

other from Infernc, assigned to represent ambient ocean noise (figure

apart. The lower hydrophone near Hell will be used for comparison to ‘
Inferno and vice versa, based on the logic that the vents are not exactly Do
identical and any differences in sound level due to venting should be
apparent given the 35 m separation between vents.

When we compare the quietest record at Hell with background Inferno
noise we find that the detection indices at all frequencies are less than
ten, as shown in figure C26. Also, when the quietest record from Inferno

is compared to background at Hell, the indices are all less than ten

(figure €26. We must conclude that the sound produced by the vents are

below the 90% confidence detection limit of this array in this noise
field, a detection limit that 1Is equivalent to a SNR of about 10 in a §

4 Paz/Hz.

Hz band, or about 10~
We will note here, however, that Inferno appears to be genérating a

small sound signal at about 40 Hz, as seen in figure C25, of

approximately 1x10'4Pa2/Hz. This signal is evident on the two lowest

noise 300 Hz bandwidth records. The other five contain high noise on

both channels at this frequency as well as others, probably due to an
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undocumented ship or submarine in the area, and no conclusions can be
drawn from these. The frequency and power level of Inferno vent are
consistent with theoretical estimates of noise from a jet (Little and
Stolzenbach, in prep.). A velocity of 2 m/s from the 0.04 m orifice
would generate sound with a peak frequency of 40 Hz. Sound pressure
level at 2,3 m in the near field region of a cold turbulent jet is
predicted to be 2x10'4Pa at peak frequency, (a power level of about 5x10°
8 Paz/Hz). A hot, 350°C jet exiting into cold seawater can produce up to
a factor of 106 higher power levels, through the amplification of sound
by convecting flow inhomogeneities (Morfey, 1973). The data from the
Inferno deployment show a factor of about 103 elevation in power levels

over expected cold, jet sound, which we attribute to the high temperature

and consequently low density of the exiting hydrothermal fluid.

Comparison with other Data

Noise measurements made in Axial Caldera two years earlier (Bibee
and Jacobson, 1986) are comparable to the data from this experiment. The
1985 instrument placed closest to the vents detected sound about a factor
of 10 in power lower than our lowest noise record. Anomalously high
noise from the northern part of the caldera measured on the 1985
experiment remains unexplained but, in light of our experiment, it is not

from a typical black smoker vent field like Ashes.

CONCLUSIONS
High quality data collected on this experiment were used to

characterize the noise field associated with Ashes Vent Field on Axial
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Seamount. Narrow band temporal variability was dominated by local ship
traffic, submarines and whales. Broadband variability is attributed to
changes in distant shipping or propagation paths thereof, and tb changes
in local weather.

The very low frequency signals (0.5-2Hz) appear to be from two
distinet sources, one continuous microseisms and the other intermittent
local events., Microseisms which are equal in amplitude on both receivers
appear in almost all records. Sporadically appearing interface waves
show high pressure amplitudes near the seafloor and, decaying rapidly ?;
with vertical distance, produce very low signal levels at 40 m above the |
bottom.

No continuous vent signals were deemed significant based on a
eriterion of 90% probability of detection and 5% probability of false
alarm. However, a small signal near 40 Hz, with a power level of 1}:10_4
Paz/Hz was noticed on two records from the Inferno deployment. This
frequency of this signal is consistent with predictions and the power
level suggests the occurrence of jet noise amplification due to convected
density inhomogeneities.

Detection of vent signals was hampered by the unexpected spatial
non-stationarity where receivers 38 m apart had about a factor 4 ambient
noise level difference due to effects of local topography. This made
absolute ﬁa;er level comparisons impossible and the resulting low signal
coherences reduced confidence in phase and directionality results.

Future experiments will need to include more receivers to improve
the effective SNR. Several hydrophones should be located close enough to

the vent (~5 m) to allow beamforming through coherence and phase
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caleulations. In addition, to improve SNR, a more active vent site
should be chosen since acoustic power output increases rapidiy with
increasing fluid exit velocity.

To generalize from one vent site, it appears that the method of
monitoring hydrothermal vent fluxes through passive acoustics will
require more than a simple surface ship deployment of a two-element
hydrophone array. It may be most useful on high output vent sites rather

than on low to moderate hydrothermal areas.
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APPENDIX

The signal detection ability of a hydrophone array in a noise field
is calculated by determining the raw input signal level required to
achieve a given probability 6f detection while maintaining an acceptable
probability of false alarm. The probability of detecting a signal within
a gaussian noise distribution depends on the amplitude of the signal,

amplitude and coherence length of noise, number of observations, and

number of receivers. A matrix description, Pf, of.the signal waveform
for a receiver array with a point source located at the hydrothermal
chimney orifice, can be generated from a description of the waveform at
each receiver (from Owsley and Swope, 1981}, Vf:

V. = Eale-j2wfr1/c , aze-ijfrZ/c] (1a)

£
Here f is frequency, j is J(-l), rl and r2 are receiver-source separation
distances (figure C27), c is sound speed and a is an amplitude factor %;7'””
accounting for spherical spreading loss:
ay=l/r; and, (2a)
P = VoV (3a)
The correlation length of the ambient noise field in the ocean will
determine how difficult noise removal will be given a fixed receiver
separation. We will assume that the noise field is isotropic both for
simplicity and since the results are not significantly different from
either surface generated or azimuthally distributed noise fields. For

isotropic noise, the correlation function q is (Burdick, 1984):

q = sin(2nd/X\)/(2xd/)) (4a)
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where d is receiver separation and A is wavelength. The array noise

correlation function for two receivers will then be:

Qe = [1 q] + € {1 o] : _ (5a)
ql 01

where ¢ is zeroc for perfectly bandlimited, perfectly predictable, noise
but for real, ocean systems with a random uncorrelated noise component, ¢
must be non-zero. For isotropic noise, ¢ is approximated by 0.1 (J.
Krolik, personal communication).

The effective signal to noise ratio output (SNRO) of a system in a
coherent noise field is (from Bangs and Schultheiss, 1973):
SNR_ = N(§_, (8¢/Np)? trace[(BQe 121 (62)
where N is number of sample sets and Sf/Nf is the SNR as a function of
freque£cy input to each receiver. Equation éa is used to calculate the
output SNR given an input S./N.. For the 100Hz bandwidth, Sf/Nf is
calculated using an average of the quietest records from the lower
hydrophone of the opposite deployment as the value of ambient noise Ng.
This must be done because the upper hydrophone of both deployments had
such high noise levels. The assumption inherent in this procedure is
that the two vents are not producing exactly the same signal. The SNR
is then c;i;ulﬁted in 5.3Hz frequency bands. The SNR equals Burdick's
(1984) detectability index d,. We have chosen as significant a 4
greater than 10, which is equivalent to a probability of detection of 90%

and a probability of false alarm of 5% (Burdick, 1%84).
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Figure C3

a) Plan view of Ashes Vent Field showing black smokers Hell and
Inferno, and white smokers Mushroom, Hillock, and Virgin Mound,
with caldera wall 60-80 m to the west of deployment sites.

b) Side view of deployment showing relationship between wall, vents

and hydrophone array. Eastward travelling waves are prevented from

reaching lower hydrophones by the shadowing effect of this wall.
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Figure C4 .
® Detail of instrumented cable and deployment scheme., Lower hydrophone

was 2-3 m from vent orifice, upper hydrophone was 38-40 m above lower.
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Inferno 10 Low Noise
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Figure C5

Low noise period power spectral density from Inferno deployment (record
10) of bandwidth 1-B800Hz. Solid line is for lower hydrophone (close to
the vent) and dotted line is for upper hydrophone. Differences in the
bandwidth 30-250 Hz are attributed to effects of the caldera wall on
ambient ocean noise, The mathematical spectrum estimation for all
spectra shown in this paper is accurate to +0.13 x power level, In
addition, the spectra shown include the calibration between upper and
lower hydrophones, a difference which was less than a factor of 1.6 for
the frequencies presented here,
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Figure Cb

Low noise period power spectral density from Hell deployment (record &)
of bandwidth 1-100Hz. Solid line is for lower hydrophone {(close to
vent) and dotted line is for upper hydrophone. This details
differences in sound level caused by the wall in the bandwidth 0.5-

100 Hz.
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100-800 Hz Inferno 0,2,4,6,8,10,12, Lower Hydrophone

Time (hours)

Frequency (Hz)

a from Inferno deployment (lower
-800Hz showing increasing energy toward

h corresponds to increasing wind wvelocity.

£ spectr

Hourly time history o
hydrophone) of bandwidth 100
end of deployment whic

Figure C7
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Inferno 10 100-800 Hz

10'3 - T = T L T T
3 1
o -
- n
1045 A
] = .
as N 3
Rl - ]
“a L i
& 5 i
Sy
E ]
By
105
-
10_6 1 i 3 1 e .
100 200 300 _ 400 300 600 700 300
Frequency (Hz)
Figure C8

Low noise period power spectral density from Inferno deployment (record
10) showing difference in upper (dotted line) and lower (solid line)
hydrophone power levels out to 250 Hz, followed by similar levels.

This due to the caldera wall affecting horizontally travelling 20-250
Hz waves and not influencing 250-800 Hz vertically travelling waves.
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Coherence between upper and lower hydrophones for bandwidth 100-800 Hz

for Inferno (record 10),
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Figure Cl10
Cross correlation between upper and lower hydrophone for high pass
filtered (above 200 Hz) Inferno low noise period (record 10). Greatest
magnitude of correlation cccurs at a lag of 64 points, which
corresponds to the recelver separation, implying that the waves are
impinging on the array from end-on (from above).
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Inferno 5-100 Hz 1,3,5,7,9,11,13 Lower Hydrophone
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Figure Cl1

a) Hourly time history of spectra from Inferno deployment for bandwidth
5-100 Hz, showing a general Increase during the middle of tha
deployment, probably in response to an increase in ship activity.

b) Hourly time history of spectra from Hell deployment for bandwidth
5-100 Hz, showing relatively constant levels except for the first and
last hour during which time the Atlantis Il was in close proximity

to the vent site.. 108
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| (compare to figura 14).
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a) Coharence calculated between records taken from upper and lower
hydrophones at two different times (totally uncorrelated). Note the
low level of this random coherence.
b) Phase for same records. Note the cowpletsly random phasa
(especially as comparsd to figure 13b).
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Figure G135
Time series pressure level from Inferno deployment (record 1), upper
trace is from upper hydrophone and vice versa. HNote similarity in
phase and pressure level for low frequency oscillations on both
hydrophones due to microseisms, :
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Figure Cl6
Time series pressure level from Hell deployment (record 9), upper
trace is from upper hydrophome and vice versa. Note similarity in
phase and pressure level for low frequency oscillations on both
hydrophones due to microseisms. :
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Time series pressure level from Hell deployment (record 5), upper
trace Is from upper hydrophone and vice versa. Note large amplitude
erratic oscillations on lower hydrophone not seen on upper hydrophone.
Upper hydrophone shows typical microseiswm osclllations while lower
records passage of Interface waves which poorly penetrate water column.
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Figure C18
a) Upper part shows power levels from Hell (record 9) in 0.5-10 Hz
bandwidth. HNote similarity in power between upper hydrophone (dotted
line) and lower hydrophone (sclid line) due to microseism energy.
b) Lower part shows high coherence between the two hydrophones from
0.5-3 Hz charactariatic of microseisms,
c) This shows the constant and zero phase between upper and lower
hydrophone. 115
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a) Upper part shows high power level on lower hydrophone (solid line)
and lower power on upper hydrophone (dotted line) for Hell deployment
{reacord 5). .

a) Low coherence between the two hydrophones 1ls seen since pressure
levels at lower hydrophone are due to interface waves not seen on
upper hydrophone,

b) This shows non-constant and nori-zero phase as i{s expected between
the upper and lower hydrophones since they are receiving different

signals. 116
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Upper trace is pressure level from upper hydrophone, lower trace is
pressure level at lower hydrophone. The beginning of this period
from Inferno (record 3) a monochromatic, 19 Hz signal is detected,
which we attribute to a whale.
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Figure C21

Power spectral density for Inferno (record 3), solid line is from
lower hydrophone, dotted line is from upper hydrophome, showing peak at
19 Hz attributed to a whale. The amplitude is higher on lower
hydrophone due to reflections off the hard bottom causing constructive
interference on the lower phone and destructive on the upper..
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Inferno 3 Whale

1 T E— T L T T — T .

0.9 _

0.8} _

0.6 T

051 4

Coherence

041

0.3

0.1 e

0 10 20 30 40 50 60 70 80 90 180

infemo 3 Whale

200 . ; . : : : —_—

150 :

1004 b

50

Phase (degrees)
=)
T

-100

T
Il

-150

_200 1 b AL A 1 1 Fl 1 !
0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz}

Figure 22
a) Coherence between upper hydrophone and lower for Inferno (record
3) which detected 19 Hz signal,
b) Phase between upper and lower hydrophone (Infernoe record 3) showing
180° phase shift near 20 Hz. This is due to the fact that the receiver
separation is approximately twice the wavelength at this frequency, and
hence waves comltig into the array end-on will see a 180° phase delay
between the two receivers.
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Figure c23

Power spectral density from Hell deployment (record 12) when the
Atlantis I1 is overhead and slightly to the north east of the vent
site. Peaks and harmonics are typical of near ship noise.
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Figure C24
a) Coherence between two receivers for Hell (12) when ship i3 near.
Notice extremely high coherence at ship’'s frequencies.
b) Transfer phase between the two receivers for this record at
high power and coherence frequencies. Linear trend shown by dotted
line would be produced by waves arriving from nearlg vertical., Phase

from ship noise falls mainly on this line, or + 180" from it due tec
reflections.
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Low noise records used for calculation of signal detection index,
average of Inferno records 1 and 11, (upper solid line from upper
hydrophone, lower solid line from lower hydrophone) and Hell records
4, 8, and 9 (upper dotted line from upper hydrophone, lower dotted
line from lower hydrophone).
spectral density near 38 Hz; this is attributed to jet noise from
Inferno wvent.

Note small peak in lower Inferno power
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Figure C26 .

a) Signal datection index for low moise Hell deployment (record 1l),
note that nowhere 1s the SNR greater than 10, the value which
corresponds to a 90% confidence in signal detaction with a 5% false
alarm rate.

b) Detaection index for low nolse Inferno deployment {record 1), note
that nowhere is the SNR greater than 10, the valua which corresponds
to a 90% confidence in signal detection with a 5% false alarm rate.
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Figure €27
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Diagram showing geometry for wave paths in detection index
calculation.
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OCEAN NOISE MEASUREMENTS NEAR THE TAG HYDROTHERMAL. AREA,

MID-ATLANTIC RIDGE, LATITUDE 26°N

ABSTRACT

In light of the potential utility of a remote, passive acoustic
technique for moniltoring variations in hydrothermal vent fluxes, we have
examined ambient noise in the frequency band 1-30 Hz at a range of 0.75-
14 km from the TAG (Trans-Atlantic Geotraverse) hydrothermal area on the
Mid-Atlantic Ridge near 26°N, the site of an extremely active high
temperature hydrothermal wvent field (Rona, 1986). The ambient noise
field exhibits great temporal and spatial variations attributed in part
to typical ocean noise sources such as distant shipping and microseisms.
Power spectral levels as measured at each of six ocean bottom hydrophones
(OBH) were used to estimate the location of point sources of sound in the
area, if any.
The hydrothermal vent did not produce enough sound to be located as a
point source using data from the OBH array. The only consistently
identifiable point source found with the data set was generating sound in
a 0.8-3.5 Hz bandwidth and located ocutside the median valley. It appears
to be haré;;ié tremor associated with the tip of a ridge on the western

side of the spreading axis and may be volcanic in origin.
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INTRODUCTION

High temperature hydrothermal fluid travels through fractured
oceanic crust in narrow upflow zones to exit at the seafloor in flows
ranging from high velocity buoyant jets emerging from tall chimneys to
diffuse seepage from local cracks and fissures. This diversity of flow
makes detailed characterization of vent fields over space and time
extremely difficult. Without this information, precision modelling of
hydrothermal systems from chemical, geological, fluid dynamical and
biclogical standpoints is nearly impossible., The lack of long-term flow
information motivated a study of the use of passive acoustics for
monitoring flow characteristies (Little and Stolzenbach, in prep). The
sound field produced by a turbulent jet is theoretically heavily
dependent on fluid velocity and exit geometry (Lighthill, 19532). Such a
sound field could be used to monitor changes in these jet parameters over
time. A techﬁique to monitor and understand changes in sound output as
they relate to fluid flow would give researchers a much needed tool for
studying long-term temporal variations in hydrothermal activity. The
feasibility of this method will depend on an ability to detect and
identify hydrothermally generated sound in a background of ambient ocean
noise. Recently published papers have reported anomalous sound fields,
in the baﬁé&idth 1-30 Hz, associated with hydrothermal centers, one at
21°N on the East Pacific Rise (EPR) (Reidesel et al., 1982) and one on
the Juan de Fuca Ridge (Bibee and Jacobson, 1986). The mechanism
responsible for sound generation in these two cases has not been

identified, 1In light of these results and the potential utility of a
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passive acoustic monitoring technique for hydrothermal vents, we have
examined ambient noise collected near the TAG (Trans-Atlantic
Geotraverse) hydrothermal area on the Mid-Atlantic Ridge near 26°N, the
site of an extremely active high temperature hydrothermal vent field
(Rona, 1986). A microearthquake study of the TAG area (Kong et al,
1986), conducted prior to the discovery of the high temperature vent
field, conveniently provided a data set with which to examine the ambient
sound field in the frequency band 1-30 Hz at a range of 0.75 to 14 km
from the vent site. The purpose of examining this data set was first, to
determine whether the hydrothermal vent could be identified as a source
of sound, and second, whether any other point sources of sound could be

located within the study area.

AMBIENT OCEAN NOISE

Tge level of ambient ocean noise in a given frequency band
determines the degree of difficulty associated with identifying and
detecting an unknown sound source. HNoise in the ocean is typically non-
stétionary both in time and space (Burdick, 1984; Hodgkiss and Anderson,
1980). The noise field varies considerably over time due to the rich
variety of sources (Akal et al., 1986) and measurements made hours apart
can show striking dissimilarity. Spatially, the noise field power levels
can be or&é;s of magnitude different depending on topography, water sound
velocity structure, and proximity of receiver to the seafloor or sea
surface (Urick, 1986; Burdick, 1984; Wentz, 1962). On average, typical,

ubiquitous, deep-water ambient ocean noise spectra in the frequency range

covered by this experiment are caused by two different source mechanisms.
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The lowest frequency band, 0.01-5 Hz, figure D1, exhibits high power
levels and is dominated by microseisms: low frequency pressure
disturbances caused by non-linear interactions of ocean surface waves
(Webb, 1984),; and teleseismic events. Temporal variations are as rapid
as a few minutes for interface waves travelling near the sea floor from
teleseismic and local sources, and as long as a few hours for variations
in sea state and swell.

Power in the higher frequency band from 5-100 Hz, produced by
distant shipping, is dependent on sound that has travelled tens to
hundreds of kilometers and is strongly influenced by wave gulde
propagation effects such as sound channelling due to a velocity minimum
in the water column. Travelling great distances through the ocean
broadens the spectral peak and removes waves travelling outside a few
degrees of horizontal. Receivers placed in a depression or wvalley are
likely to be screened off somewhat from such distant sources and have
lower noise levels (Urick, 1986). Variations in this band are slow, on
the order of hours to days and depend on changes in ship traffic and
large scale temperature and salinity structure (in the sound channel).

Transient sources also contribﬁte to noise at a given location.
These include local ships, which are characterized by high energy narrow
band peaks, often including harmonics of a fundamental frequency,
anywhere from 5 to 200 Hz, Biological sources can also contribute to the
noise field, with whales and dolphins capable of producing high
amplitude, short duration sounds at frequencies from 18-100 Hz (Watkins,

1981).
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HYDROTHERMAL SOUND GENERATION

No unambiguous field data exists characterizing vent sound, but
theoretical estimates on power and frequency, as well as laboratory
results (Little and Stolzenbach, in prep) give a range of values to help
delimit the frequency bands 6f possible energy. Sound produced by
turbulent mixing, as 1s found at the jet orifice, will be generated at a
frequency élose to V/D where V is exit velocity and D is orifice diameter
(Morfey, 1973). For typical wvent velocities and geometries, this
frequency range is 10-100Hz. Other source mechanisms, such as fluid
pumping or cavity resonance, may generate lower frequencies, depending on
the distribution'and geometry of subsurface fluid pathways as well as
hydrodynamic flow characteristics deep within the hydrothermal system.
Higher frequencles can be produced by pipe resonance, and are
proportional to ¢/L where ¢ is sound speed and L pipe length., In this
paper we are confined to examining frequencies of 1-30 Hz by the

bandwidth set for the microearthguake study.

HYDROTHERMAL SITE DESCRIPTICN

The TAG hydrothermal area (Rona et al., 1986; Thompson, et al.,
1988) is located at 26°08.28'N, 44°49 . 63'W, on a wall 1.5 kilometers east
of the spreading axis of the Mid-Atlantic Ridge (figure D2). This east
wall rises from the valley floor at 4000 m to a height of 2000m through a
series of block faults. The hydrothermal site is composed of an inner
mound of sulfides 250m wide and 55m tall which sits atop an outer mound
580 m wide and 25m high. The base of this structure is situated at a

maximum depth of 3700 m. White smokers and shimmering water, with
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temperatures up to 226°C, were found around the periphery of the inner
mound. Tall chimneys, at least 10 m high, and black smokers were
predominantly located at the very top of the inmer mound, emitting fluid
at temperatures of 350°C at velocities of about 1-2 m/s. A zone of low
temperature hydrothermal activity is located between 2400 and 3100 m
depth on the east wall, 3.7 km upslope to the east of the main field
(Rona, 1980). Water column anomalies suggest a heat flux from this 10 km

section of ridge of 5x108 W (Klinkhammer, et al., 1986)}.

DATA DESCRIPTION

During the summer of 1985, a successful three week deployment of a
network of six continuously recording ocean bottom hydrophones (OBH),
(Koelsch and Purdy, 1979; Kong et al., 1986) was carried out within an
area of 19x10 km on the crest of the Mid-Atlantic Ridge. This network
provided coverage of the known low-temperature hydrothermal field on the
easﬁern wall (Rona, 1976; Kong et al., 1986) and, coincidentally,
surrounded the subsequently discovered high temperature vent field
(figure D2). The instruments were deployed within the median wvalley (OBH
1,2,3,6) and on the valley walls (OBH 5,8). The six Instruments were
located around the vent at ranges of approximately 0.75, 3.5, 5.5, 6.5,
12.0, andilk.O km. Data for this paper were cbtalned from a small subset
of the earthquakes and shots which were recorded on all six instruments.
The data set included thirteen separate time periods consisting of

approximately 8-13 seconds of digitized (at 100 Hz) ambient noise

preceding each event. These thirteen sets of simultaneously recorded
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ambient noise, each 12.8 s long, spanned a period of 15 days. The
reliable bandwidth of the system was 1-30 Hz. Power spectra were
caleculated using the Welsh method, dividing each record into 256 point
length sets, multiplying by a Hanning window and averaging the results.

Temporal variations are-evident in the raw time series data as seen
in figure D3 which depicts two records taken 11 days apart by the same
instrument. The second record shows high amplitude low frequency
components not seen in the first. An examination in the frequency domain
reveals power variations over time of three orders of magnitude on the
instrument nearest the vent (figure D4a) and almost four orders of
magnitude at the instrument 12 km away (figure D4b). Spectra from the
lower noise periods resemble typical ambient ocean noise with high power
at low frequencies (0.8-5 Hz), a minimum near 15 Hz, and increasing
levels out to 30 Hz (the bandwidth of this system) as the effects of
distant shipping become important. Spectral peaks at 22 Hz were seen
when the R.V. Knorr was within the array and not at other times,

Spatial variability is exemplified by two time series taken at 0.75
and 6.5 km from the vent (figure D5). A look at the power spectra
reveals several orders of magnitude difference over the array for a
number of the events, figure D6a, D6b, D7a, D7b. Plotting power versus
proximity to vent does not reveal any frequency at which power decreases
monotonically with distance for typical events (figures D8a, D8b, D9%a,

D9b).

SOURCE LOCATIONS
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In order to determine whether the hydrothermal vent site is
generating detectable sound, and if there are any other point sources of
sound near the array, we use the power spectral measured at each
instrument. Our use of power levels to locate point sources is based on
the assumption that such soufces radiate acoustic waves whose power
decays inversely with the square of distance. To minimize contamination
from different sources we have divided the frequency into 3.2 H=z
bandwidths. Of these, only ones with relatively high power levels are
chosen (0.8-3.5, 3.5-6.6, 6.6-9.7, 12,9-16.0, 19.1-22.3, and 28.5-31.6
Hz) in order to reduce errors caused by the superposition of the
isetropic noise field in this area and any point source noise fields.
Power in each bandwidth is calculated for each of fhe six instruments.
These levels are then compared to power that would be expected if a point
source of amplitude A, call this a predictive source, was located at
polnt x,y in a 40 km x 40 km grid surrounding the study area where:

P- A
(x"+y™)

To limit the number of free parameters to A, x and y, and improve the
estimate of location, source depth was fixed at 3750, the depth of the
high temperature vent field., Next, the root-mean-square difference
between actual and predicted power is calculated using the six
instruments. This value, the misfit in units of Paz/ﬂz for at 3.1 Hz
bandwidth, is then plotted (figure Dl0a and D10b) for each grid point
(spacing %x: 2 km, y: 2 km). The minimum misfit ié then the best estimate
for point source location for the given measured power levels at the
specified bandwidth and event. Perfect data from a point source would
yield a misfit of 0 at the source location. The misfit value approaches
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the rms value of the six Instrument power levels as the predictive source
is placed further and further away from the array. High misfits occur
near ;he instruments {provided the actual source is not there) because
the calculated power becomes very high for predictive sources placed near
the receivers. Sources were sought for each of the six bandwidths and 13
events. Some events and bandwidths do not result in isolatable misfit
minima and hence have not point source solutions. This would be the case
for sound recorded from an isotropiec noise field. Figure D1l0a shows a
contour plot of the misfit for an event. The low In the north-west
corner is the best source location for an event in bandwidth 0.8-3.5 Hz.
A similar example is seen in figure D10b for an event one day earlier.
Events in the next bandwidth, 3.5-6.6 Hz, have more poorly defined minima
located in between the receivers for all events. High misfits occur near
the receivers since as range = (x2+y2) decreases, P increases rapidly.
Sources of error in calculating these locations include errors in
instrument calibration, non-spherically spreading waves, or the existence
of multiple sources.

The only bandwidth with consistent source locations from event to
event was 0.8-3.5 Hz (figure D2). This bandwidth also exhibits the
highest overall power level and hence may be less affected by superposed
isotropic neise. The other bandwidths with relatively high power levels,
show greaé_;catter in sﬁurce location over time and hence it is
impossible to attribute them to a stationary geophysical process. The
bandwidth 0.8-3.5Hz sources cluster near the tip of a small ridge on the

western part of the Mid-Atlantic Ridge (figure D2).
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Harmonic tremor characterized by narrow band frequencies in the
range of 1-10 Hz has been associated with eruptive activity and magma
movement in volcances (Aki et al., 1981; Koyanagl et al., 1987).
Persistent, long tremor events which last for hours and recur for days
probably result from magmatic activity beneath the volcano. In Hawail,
this shallow (<5 km) activity is confined to areas as small as 5 km in
diameter centered on the summits of the volcances., We postulate that the
high 0.8-3.5 Hz signal seen in the TAG area, with a peak at 2.5 Hz, is
produced by volcanic processes, such as magma flow, on the western wall

of the rift wvalley.

CONCLUSIONS

The ambient sound fleld in the bandwidth 1-30 Hz recorded within 13
km of the TAG hydrothermal area shows considerable spatial and temporal
variation over the course of fifteen days. The hydrothermal vent did
not produce enough sound to be detected by the ocean bottom hydrophone
array located from 0.75 to 14 km away.

Using a model to find a point source given actual power levels at
each of six OBH instruments, under the assumpfion of spherical spreading,
the only stationary source uncovered was generating sound in a 0.8-3.5 Hz
bandwidth and located outside the median valley. It appears to be

harmonic tremor associated with the tip of a ridge on the western side

of the spreading axis and may be volcanic in origin.
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Figure D1
Spectra of ambient noise in the band 1 to 1000 Hz,based upon

measurements in the literature and present models for noise spectra in
various frequencies ranges. (From Urick, 1986).
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Figure D2
Topographic map of TAG study area In the Mid-atlantic Ridge (Rona, et
al., 1986), showing hydrophone locations {larpe open circles),
sarthquake locations (small open circles) from Kong et al., 1986, high
temperature vent location (double cross), and 0.8-3,2 Hz source
locationa for events used in this study (solid circles). GContours are
in 100 = intervals, median valley runs from north-east to south-west.
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Power spectra for the first record (solid line), one hour later
(dashed line), eleven days later (dotted line) and twelve days
later (dot-dash line), from the instrument closest to the vent,
750m, showing temporal varfation., The 22 Hz peak may be due to
the R.V. Knorr. The anomalously high levels on day twelve are
unexplained (dot-dash line).

Power spectra for the first record (solid line), one hour later
(dashed line), eleven days later (dotted line) and twelve days
later {dot-dash line), from the instrument 12 km from the vent
showing the temporal variation. The 22 Hz peak may be due to the

R.V. Knorr., The anomalously high levels on day twelve are
unexplained (dot-dash line),
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record show two orders of magnitude range. Note 22 Hz peak which
may be caused by the ship or a whale.

Power spectra recorded at each of six instruments for record taken
one hour after figure 6a. Note 22 Hz peak which may be caused by
the ship or a whale.
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Power spectra recorded at each of six instruments for record taken
eleven days after figure 6a, Ship is absent. BHNote high power at
low frequencies.

Power spectra recorded at each of six instruments for record taken
one day after figure 7a. Shows anomalously high broad band noise
on all Iinstruments,
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a) Power spectra va., distance from vent site for first record (same
as figure 6a). Note that at no frequency does power fall off
monotonically with distance. The 22 Hz ship peak can be seen in
all instruments.

b} Power spectra vs. distance from vent site for same record as
figure 6b. Nota that at no frequency does power fall off
monotonically with distance. The 22 Hz ship peak can be seen in
all instruments.
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Contour of wisfit between actual power vs calculated power fo:_a
pridietive sources within the study area, Contours are 3.7x1l0
Pa“/Hz in a 3.1 Hz bandwidth of the rws misfit., Lowest point is
the beat fitting source location. The low in the north-west
corner is the location of the source that produces the minimum
misfit with recorded power levels for the bandwidth ¢.8-3.5 Hz for
the records shown in figures 7a and 9a. Contour values are
different from above because the total rms power i3 different

for the two events. The rms power from the six instruments for
this svent was 0.0125 Pa“/Hz, 144
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