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Abstract

By generalizing the method of contour dynamics to the quasigeostrophic two

layer model, we have proposed and solved a number of fundamental problems in

the dynamics of rotating and stratiffed vorticity fields. A variety of rotating and

translating potential vorticity equilibria (V-states) in one and two layers have been

obtained, shedding new light on potential vorticity dynamics in the geostrophic

context. In particular, the equivalent barotropic model is shown to be a singular limit

of the two-layer model for scales large compared to the radius of deformation.

The question of coalescence of two vortices in the same layer (merger) and·

in different layers (alignment) is studied in detail. Critical initial separation

distances for coalescence are numerically established as functions of the radius of

deformation and the relative thickness of the layers at rest. The connection

between coalescence and the existence of stable rotating doubly-connected V­

states is shown to be an illuminating generalization of the Euler results.

The question of filamentation of two-dimensional vorticity interfaces is

addressed from a new geometrical perspective. The analysis of the topology of the

streamfunction in a frame of reference rotating with the instantaneous angular

velocity of the vorticity distribution (the corotating frame) is shown to yield new

powerful insights on the nonlinear evolution of the vorticity field. In particular, the

presence of hyperbolic (critical) points of the corotating streamfunction that come in

contact with the vorticity interface is found to be directly responsible for the

generation of filaments.
The importance of the position of the critical points of the comoving

streamfunction is found to generalize to the two-layer quasigeostrophic context.

They are shown to play the crucial role in determining the limits, in parameter

space, on the existence of a number of two-layer rotating and translating potential

vorticity equilibria.
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1. Prolegomena

Strong, isolated and coherent vortical structures, among which Gulf Stream

rings, "blocking patterns" in the atmosphere and the archetypical Jupiter Great Red

Spot are familiar examples, are prominent features of many geophysical flows and

consequently the understanding of their dynamics is a matter of great importance.

At the same time, in recent years, great advances have been made in the study of

the two-dimensional incompressible vorticity fields. Not only have new and

powerful techniques been developed, but a whole new series of problems have

been proposed and successfully solved, leading to many illuminating new

insights.

On the basis of these two premises, the main objective of this thesis is the

following: to extend the methods as well as the approaches that have proven so

valuable to the study of two-dimensional rotational fluids to investigate the vorticity

dynamics of a simple physical system (Phillips' two-layer model) that exhibits

many of the fundamental properties of large scale geophysical flows. Before

discussing our results it is however necessary to review a certain number of

points, and that is the purpose of this introductory chapter.

More specifically, we proceed first to present the two-layer model in some

detail and to make explicit the properties that make it a good candidate for the

investigation of the vorticity dynamics of large scale geophysical flows; we will also

expose its limitations (Section 1.1). The following section is dedicated to a brief

review of coherent vortex structures in two-dimensional incompressible flows; the

two-dimensional results have largely served us as paradigms for the investigation

of the two-layer model (Section 1.2). We next explain the motivations behind the

contour dynamical approach that we have almost exclusively adopted here

(Section 1.3), and then present a synopsis of the work contained in this thesis

(Section 1.4). The last part of this prolusory chapter is dedicated to a somewhat

detailed exposition of the numerical algorithms that we have used throughout the

thesis (Section 1.5).

Chapter 1



9

1.1. The Two-Layer Model

Our life is frittered away by details...SimplifY,simplify!
Thoreau

The complexity of most geophysical flows is such that, if one is to make any

progress towards the understanding of their dynamics, a specific strategy is

needed to reduce the problems to tractable dimensions. We have, in this thesis,

espoused the following point of view: rather than directing our attention

immediately to any concrete geophysical situation (say, a Gulf Stream ring or the

Great Red Spot) we have elected to investigate the dynamics of a separate and

hopefully much simpler physical system which possesses several characteristics

proper of the geophysical situations of interest to us.

With this strategy it is hoped that, having understood the physics of the

simpler system, meaningful statements can be made with regard to the more

complex geophysical context. The task of "exporting" the ideas learnt from the

simpler system and determining if and to what extent they are relevent to any

actual geophysical situation is a difficult and laborious one, and could easily make

the object of another thesis. We have here limited ourselves to selecting a simple

system whose properties make it very germane to large scale geophysical flows

and to investigating its vortex dynamics in some depth.

The system we have chosen is the familiar quasi-geostrophic two-layer

model on the f-plane , also referred to as Phillips' model. Although derived

originally as a two-level model (Phillips 1954), we have adopted here the two­

layer version first formulated by Pedlosky (1970). Since this model has been

extensively used in the oceanographic and meteorological literature, it will suffice

here to recall its principal characteristics (for a full derivation see Pedlosky 1979).

As shown in Figure 1.1, the physical system under consideration is
composed of two stably stratified horizontal fluid layers of density p and p+L1p, with

L1p«p. The thickness H1 (and H2) of the upper (and lower) layer is considered to

be much smaller than the horizontal scale L of the system; the fluid is thus always
in hydrostatic equilibrium. The system rotates with an angular velocity co large

compared to the relative vorticity U/L (U being the velocity scale), I.e. the Rossby
number Ro=U/(2coL) is small compared to 1; this ensures that, at lowest order in

Ro, the fluid is in geostrophic balance.

Chapter 1
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Under these conditions, the motion in each layer is strictly two-dimensional
(el. the Taylor-Proudman theorem) and can be described by a streamfunction o/i

(i=1 and 2 for the upper and lower layer, respectively). The dynamics of the system
is dictated by the statement of conservation of geostrophic potential vorticity IIi in

each layer. After nondimensionalization, the two-layer model equations take the

simple form:

where

and

II1 = V2o/1 + i- (0/2 - 0/1)

II2 = V2o/2 + 1) i- (0/1 - 0/2)

(1.1 a)

(1.1b)

and V2 is the two-dimensional Laplacian operator. Note that only two

nondimensional parameters appear in this formulation: the first one 1)=H1/H2 is the

ratio of the upper to lower layer thickness (when the fluid is at rest) and the second
one r=ULR is ratio of the length scale to the radius of deformation LR defined by:

The parameter 1 can be intuitively understood as the rigidity of the
interface between the two layers. In particular, when 1=0 (which corresponds to

a perfectly rigid interface) the two layers become uncoupled and behave as two

independent two-dimensional fluids obeying the two-dimensional Euler equations

(Lamb 1945, Landau and Lifschitz 1959):

with (1.2)

Chapter 1
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This model represents the stratification as two coupled layers in which the

advection is two-dimensional, and it is able to retain a linear relationship between

the streamfunction and the geostrophic potential vorticity, as can be seen from
(1.1 b). Thus, given the vorticity fields IIi , the streamfunctions can be obtained by

solving the linear system (1.1 b), and are given by:

where

'Vi (x,y) = -2
1 .f fJ I1j (~,11) Gij (r) d~ dl1
1t 1= 1

r = [ (x-{)2 + (y-11)2 ] 1/2

(1.3)

and Gij is the Greens' function for the effect in layer i of a point vortex in layer j. The

four Greens' functions needed can be derived in a straightforward way from (1.1 b)

and are found to be:

Ii 1
G11 =-----; logr - - Ko (rr)

1+u 1+1i

Ii Ii
G21 = - logr + - Ko(rr)

1+1i 1+1i

1 1
G12 = - logr + - Ko (rr)

1+Ii 1+Ii

where

1 Ii
G22 =- logr - - Ko (rr)

1+1i 1+1i
(1.4)

and Ko is the modified Bessel function of order zero.

The system described by (1.1) is the simplest that incorporates both

geostrophic and hydrostatic balances as well as baroclinicity, some of the most

important characteristics of large scale geophysical flows. The principal limitation

of this model rests in the fact that the layer thicknesses are only allowed to change

by O(Ro) amounts with respect to their values when the fluid is at rest. Thus a

phenomenon such as the formation of fronts cannot take place in such a system.

Chapter 1



12

The other major simplifications are the absence of a planetary gradient of
potential vorticity (the f3 effect) and of dissipation.These were motivated by the

following two reasons: in the first place, as will be shown in chapters 2 and 3, the

inviscid f-plane dynamics is rich enough that it deserves a thorough investigation

by itself. More fundamentally, however, the techniques that we intend to use are

not well suited to handle such effects. How and why this is the case will become

evident after the discussion of section 1.3.

As we have already pointed out, the quasi-geostrophic two-layer model

consists of two coupled two-dimensional layers, and for which the inverse

of the deformation radius (squared) plays the role of the coupling constant. Since

the primary objective of this thesis has been to consider how two-dimensional

vortex dynamics is modified by the presence of stratification, it will be wise, before

proceeding to the study of the coupled system, to recall the principal results that

are known about the vortex dynamics of two-dimensional fluids.

1.2. A concise review of Euler results

Oien mira 10 pasado, 10 porvenir advierte.t
Lope de Vega

Although the equations describing two-dimensional incompressible flows ­

the Euler equations for the inviscid case and the Navier-Stokes equations for the
viscous one (the difference being a vV2'l' term to account for dissipation) - have

been known for several hundred years, progress towards the understanding of the

nonlinear dynamics they generate has been quite slow until the advent of

computers and the availability of high resolution numerical simulations.

These have not only provided access to complicated new solutions but,

more importantly, have paved the way by helping to formulate the essential

questions of two-dimensional hydrodynamics. This synergetic interaction has

already been the subject of a number of reviews to which the reader is referred for

a detailed description (Zabusky 1986, 1985, 1984, 1981 and references therein).

Perhaps the clearest way of illustrating this is to briefly recall the by now

classic - although quite recent - numerical experiments of McWilliams (1984). He

t To observe the past is to take warning for the future.

Chapter 1
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simulated the decay of a two-dimensional velocity field using a 1282 dealiased
pseudospectral code (with \7 6'1' hyperviscosity to confine the damping to the

smallest scales in the flow). The initial condition was taken to be a broad-banded

spectrum peaked near wavenumber 6 with a random Gaussian initialization for

each Fourier component.

The evolution of the vorticity field is shown in Figure 1.2 (reprinted from

McWilliams 1984). Although the analysis of the energy spectrum reproduces the

familiar cascades of 2D turbulence, I.e. enstrophy to small scales and enl3rgy to

large scales - for a thorough review see Kraichnan and Montgomery (1980) - it is

unable to capture the remarkable development of intermittency in the vorticity field

that corresponds to the emergence of isolated coherent vortex structures
(an analysis of the fourth moment - the kurtosis - is necessary to detect the highly

non-Gaussian distribution of the vorticity field)t .

As McWilliams describes, the essential mechanism for the condensation of

vorticity into isolated entities is the merger of two structures of equal signed

vorticity into a single larger one; this process is repeated until the number of

vortices is so low that encounters become extremely rare. If they have opposite

sign vorticity the encounter can lead to binding, whereby a dipolar structure is

created. McWilliams also noted that after a long enough time the vortices tend to

relax into an axisymmetric configuration through a process termed

"filamentation".

More generally, the fundamental questions of 2D vortex dynamics that have

emerged from this and similar studies can be concisely formulated as foil lows:

a. What are the stationary configurations of vorticity and which of

these are stable?

b. What are the mechanisms by which two like-signed (opposite­

signed) regions of vorticity merge (bind)?

c. How does the axisymmetrization process occur, and what

exactly is the role of filamentation?

t That the energy spectrum, by discarding the phase information, is a particularly inadequate tool for detecting
such phenomena is by now a generally recognized fact. Hank Stommel, with his customary wit, has remarked
that "a power spectrum of a Beethoven symphony would be rather an oversimplification too; maybe just enough
to decipher the key"l (quoted in Armi and Flament 1985 )

Chapter 1 .
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(It is useful to note that, in the jargon of two-dimensional turbulence, merger

corresponds to the well known reverse cascade of energy to the large scales,

while the filamentation process corresponds to the forward cascade of enstrophy

to high wavenumbers). It is probably fair to say that all the above matters have

been investigated with success over the past decade, although many questions
still need to be resolved. A short summary of the main results follows.

a. Because of the symmetry of the Laplacian operator any function
\jf=\jf(r) - r being the polar distance from the origin - is an exact solution of the

Euler equations in two-dimensions. However, fully axisymmetric fields are not very

interesting since the Jacobian term in (1.2) vanishes identically; thus, in some

sense, such fields are in fact little more than very special linear solutions that, due

to the symmetry of the system, happen to satisfy the fully nonlinear equations.

Moreover, the study of the stability for any specific radial function is a complicated

problem and only a few cases have been explored (see e.g. Legras and Carton,

1988).
The simplest weak (I.e. discontinuous in the second derivative of \jf) analog

of the smooth aXisymmetric solutions is known as the Rankine vortex (Lamb 1945):

it is a circular patch of uniform vorticity embedded in an irrotational flow. Since the

work of Lord Kelvin (1880) it is known to be stable to infinitesimal perturbations of

all wavelengths.

Its nonlinear stability has only recently been investigated by Wan and

Pulvirenti(1985) and by Dritschel (1988). Recall that nonlinear stability is only

meaningful with respect to a specified norm, so that a configuration could be

stable in one norm but not in another. For the Rankine vortex, Wan and Pulvirenti

(1985) have shown that the Rankine vortex is nonlinearly stable in a norm that

measures the area of the rotational fluid beyond the equilibrium circular boundary,

whereas Dritschel (1988) has provided computational evidence of its instability

with respect to a norm measuring arc-length. Taken together these results suggest

that a perturbed Rankine vortex remains circular in a coarse-grained sense, but

with a boundary that becomes increasingly convoluted and ill-defined.

Chapter 1
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Among weak solutions, the Kirchhoff ellipse (Lamb 1945) is the simplest

one to exhibit a noncircular symmetry: it consists of an elliptic patch of constant

vorticity rotating without change in shape in an irrotational background with a
constant angular velocity Qk given by the expression:

(1.5)

where q is the value of the vorticity inside the ellipse and A is the aspect ratio (the

ratio of the minor to the major axis, note that 0~A~1). The Kirchhoff ellipse is known

to be linearly unstable to infinitesimal perturbations when the aspect ratio is less

than 1/3 (Love 1893).

Looking at the Kirchhoff ellipse as the finite amplitude extension of an m=2

(m being the azimuthal wavenumber) perturbation on a Rankine vortex, one is led

to consider the existence of finite amplitude solutions for values of m>2. These

were found numerically by Deem and Zabusky (1978a and b), and were given the

name "V-states". Their linear stability was studied by Burbea (1980) and Burbea

and Landau (1982). More generally, the term V-state describes any exact

nonlinear weak solution of the inviscid Euler equations consisting of any number

of finite area regions of piecewise constant vorticity (or potential vorticity, in the

case of the two-layer model equations).

Dipolar vortices consisting of two patches of constant equal and opposite

vorticity (also termed "translating V-states" or "modons") were numerically found

by Deem and Zabusky(1978a and b) and independently by Pierrehumbert (1980);

the delicate question of the existence and shape of the limiting V-states was

settled by Wu et al (1984). In addition, the so called "Batchelor couples" (Lamb

1945, Batchelor 1967) are analytical dipolar exact solutions of the Euler equations

in which the vorticity is linearly related to the streamfunction within a certain radius

(the radius of the couple)t . They are, however, discontinuous in the first derivarive

of the vorticity.

Finally, among a number of other V-state solutions that have been

discovered in recent years we mention the N-fold mUltiply connected rotating V­

states calculated by Dritschel (1985, 1986) who also studied their linear stability

and their nonlinear evolution (the N=2 states had been previously reported by

t Although the first reference to these solutions appears in Lamb, the name of "Batchelor couples" is found
most frequently in the literature.

Chapter 1
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Saffman and Szeto 1980, and Zabusky 1981 b), the vortex street of finite-core

vortices (Saffman and Schatzman 1982, Kida 1982, Meiron et al. 1984) and the

asymmetric doubly-connected rotating V-states (Zabusky 1981 b).

It should be kept in mind that point vortices (and combinations thereof) are

also solutions of the Euler equations. The idea of singularizing the continuum is

originally due to Kirchhoff, and the singularized Euler equation can be shown to

be a Hamiltonian system with as many degrees of freedom as there are point

vortices and can exhibit both regular and stochastic motion (for an extensive

review of this subject the reader should consult Aref 1983).

b. Of the two elementary interactions, merger and binding, it is the merger

process that has received the largest attention, and this can be attributed mostly to

the fact that it plays the truly essential role in the emergence of single-signed

coherent vortices (binding is, on the contrary, a much more infrequent event and

this is reflected in the relatively small number of dipoles formed compared to

monopoles).

Recall that two point vortices simply rotate about their common centroid (i.e.

the center of vorticity) while their distance remains constant. Finite area vortex

regions (not necessarily of constant vorticity) on the other hand exhibit a much

richer behavior (this is a typical example in which desingularization is necessary

to reveal qualitatively new dynamics). The pioneering work, using a vortex-in-cell

method, is due to Roberts and Christiansen (1972) and Christiansen and Zabusky

(1973) while later studies (Deem and Zabusky 1978a and b, Zabusky et al. 1979,

Overman and Zabusky 1982a, Jacobs and Pullin 1985) used a contour dynamical

algorithm.

When two circular regions of uniform vorticity and radius R are placed such

that their centers are separated by a distance D, one of two things occurs
depending of the value of the (nondimensional) ratio dc=D/R: if dc<3. 3

(apprOXimately) the two vortices approach and wrap around each other forming a
single vortex, I.e. they merge. If, on the other hand, dc>3.3 the two vortices simply

rotate around one another undergoing regular pulsations in their shape but

without ever coalescing into a single vortex. A classic illustration of these two

processes is shown in Figures 1.3a and b (from Roberts and Christiansen, 1972).

The crucial question here is, of course, to understand how the critical value

of 3.3 comes about and to try to predict it without the full numerical simulations.

Saffman and Szeto (1980),using extremely simple arguments, were able to predict

Chapter 1
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a value of 3.0 and, with more sophisticated methods, a value of 3.16. Their

approach is based on the consideration of the properties of the N=2 corotating V­

states. We have generalized their approach considerably and have shown that, in

fact, there is a very close connection between the existence of V-states and the

merger criterion (we will review their work in detail in section (2.2.3).

More recently Melander, Zabusky and Styczek (1984 and 1986) have

introduced an elliptically desingularized model for the two-dimensional Euler

equations (the "moment model") that they have applied to the symmetric merger

problem with success. With the moment model, the merger process can be

reduced to a four dimensional integrable Hamiltonian system that can be solved

analytically, yielding a value of 3.2 for the critical merger distance. The success of

the moment model is, perhaps, one of the most beautiful examples of the creativity

generated by the synergetic interaction between theoretical and computational

research, and it represents, in the spirit of von Neumann, a significant analytical

penetration into the two-dimensional turbulence problem.

Finally, of the several other types of interactions that have been investigated

in recent years, we recall the asymmetric merger problem (Melander at al. 1987),

the merger arising from unstable perturbed V-states (Overman and Zabusky

1982b) and the scattering of Batchlelor couples (McWilliams and Zabusky 1982,

Couder and Basdevant 1986).

c. The so called "axisymmetrization principle" was first formulated by

Melander and coworkers (1987a) who studied the evolution of one isolated

elliptical vortex in a weakly dissipative two-dimensional fluid using a high

resolution dealiased pseudospectral code. They showed computationally that a

spatially smooth vortex relaxes inviscidly towards axisymmetry on a circulation

time scale - an example is shown in Figure 1.4 (reprinted from Melander et al.

1987a). This investigation has provided an understanding of the already

mentioned discovery of McWilliams (1984) that most monopolar vortices emerging

spontaneously from a turbulent vorticity field are very nearly axisymmetric.

It is important to recall that a top hat elliptical vortex (I.e. a Kirchhoff) ellipse

is an exact solution of the Euler equations and, unless perturbed, maintains its

initial eccentricity. The fact that axisymmetrization is a truly inviscid process has

been confirmed by the contour dynamical computations of Dritschel (1988) who

has observed the axisymmetrization of a set of nested elliptical regions of constant

vorticity.

Chapter 1
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The studies of Melander, Zabusky and McWilliams (1987 a and b, 1988)

have also brought to light the powerful insights that can be obtained from the

consideration of the topology of the co-moving streamfunction , Le. the

streamfunction as seen from a frame rotating or translating with the coherent

vortex structure. In particular, the location of centers, saddle points and

separatrices with respect to the vorticity distribution was shown to be crucial in

determining the evolution of the flow, and in predicting the occurence of strongly

nonlinear events such as merger and filamentation.

1.3 Contour Dynamics

Et vera incessu patuit dea.t
Virgil

Having chosen the quasigeostrophic two-layer model as the physical

system that will be the object of our study in this thesis, and having been exposed

to a great wealth of techniques and results for the vortex dynamics of the Euler

equations in two dimensions, we are now confronted with the question of solving

the equations (1.1). At the risk of offending the reader, we point out that, in spite of

the linearity of (1.1 b), system (1.1) is extremely complicated: in addition to a

nonlinear advection similar to the one of the Euler equations, it involves the

nonlinear coupling of the two layers. In order to motivate the method that we have

opted to use, we start by recalling two approaches that have proven useful in the

past.

One possible avenue of analytical progress is to find (by unspecified

means) simple exact solutions of (1.1) and to study their stability. Such an

approach was taken, for instance, by Pedlosky (1985) and more recently by Flierl

(1988). It suffers, however, from two severe limitations: first, only a small set of

exact analytical solutions can be found (simple jets, vorticity fronts or circular

vortices). Secondly, and more importantly, only the linear - or at most (with some

courage and a lot of patience!) the weakly nonlinear - stability of these exact

solutions can be studied analytically. This approach will be of limited applicability

t And in her walk it showed, she was in truth a goddess.
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here since the phenomena of interest to us are fundamentally nonlinear, i.e.
nonlinear at 0(1).

In order to address such problems an alternative approach to the solution of

(1.1) has been the direct numerical simulation using finite difference or, more

commonly nowadays, pseudospectral schemes. Although this second strategy

does allow one to tackle the full nonlinearity, it presents the inconvenience of

requiring large amounts of computer memory and CPU time (typically, a CRAY

would be needed to perform runs at any reasonable resolution). Moreover the

simulation of the full system often obscures some of the simpler aspects of the

dynamics.

What is needed is a technique to reduce the complexity of the system while

retaining the fundamental nonlinearity. We believe that contour dynamics
(Zabusky, Hughes and Roberts 1979) provides such a via media. in as much as it

allows one to simplify the dynamics and at the same time tackle problems that are

nonlinear at 0(1). The central idea of contour dynamics is the following: simplify

the system not by linearizing, but by reducing the complexity of the vorticity field

through a discretization of the vorticity levels.

The cleverness of this approach becomes apparent once the following

crucial observation is made: in a two-dimensional fluid (or a multilayer one such

as the two-layer model) the gradients of vorticity (or potential vorticity) are the

locations where action takes place. If one then approximates a smooth (i.e.

differentiable) vorticity field with a set of discrete nested regions of constant

vorticity, one confines the gradients of vorticity to the contours delimiting these

regions. By this simple device one has in fact reduced a two-dimensional problem

to a one- dimensional one, since the field is then totally described by the location

of the contours.

It is important to stress that, from a mathematical point of view, such an

approach yields exact solutions to (1.1), and not approximations to the exact

solutions which would be obtained, say, with a Galerkin scheme. By adopting the

contour dynamical approach one effectively restricts one's attention to solutions

that, although exact, are discontinuous in the second derivatives of the

streamfunction.

In practice eventually, one has to implement a numerical algorithm to

determine these weak solutions, and at that stage approximations are necessary

to carry out the integration numerically. However the numerical solutions obtained

via contour dynamics approximate the much simpler weak exact solutions and not
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the more complicated infinitely differentiable solutions that one tries to

approximate, for instance, with a spectral code. Contour dynamics is therefore

much more than simply "another numerical scheme"; it reduces the complexity of

the dynamics by limiting one's scope to vorticity fields that are intrinsically simple
(although discontinuous)t.

From a physical standpoint, however, it is useful to consider the contour

dynamical approach as an approximation to the continuous problem whereby a .

smooth vorticity gradient is represented by a series of vorticity jumps. The lowest

order of approximation replaces the smooth vorticity gradient with a single vorticity

step, the next order with two steps, and so on. Thus the continuous solutions can

be approximated to any degree of accuracy by including a sufficient number of

vorticity levels. In practice, however, the computations become quite cumbersome

when more than a few levels are considered, and, in fact, the strength of the

contour dynamical approach rests effectively in its ability to reproduce the

dynamics of the continuous system with a very small number of levels.

As a matter of fact, all of the computations in this thesis were carried out with

a single vorticity step, but there is little doubt that, for the initial value problems, the

main qualitative conclusions would have emerged had more levels (or even the

continuous system) been considered. We base this assertion on several

comparative studies that were carried out with the Euler equations which we have

reviewed in the previous section.

As far as the V-states are concerned, their connection to smooth analogs is

not always as clear, mostly because smooth analogs are usually not known. In

most cases it is reasonable to suspect that smooth analogs exist, especially when

they are found to emerge spontaneously in spectral simulations. One such

example is provided by the tripolar vortex structures which will be examined in

detail in Chapter 6. it is however important to keep in mind that there exist

"singular" situations in which the results of a single step contour dynamical

calculation are not representative of the continuous system (the Kirchhoff ellipse

vs the axisymmetrization principle is a good example of this).

A further reason that contributes to making contour dynamics especially

appealing as a tool for studying the kinds of problems we have mentioned is the

fact that it is, to our knowledge, the only technique that allows one to investigate

t We are referring here to low to moderate resolution calculations such as the ones we have performed in this
thesis. At very high resolution the vorticity fields become extremely complicated as was shown by Dritschel
(1988a).
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the dynamics of truly isolated structures, since it particularly well suited to hadle

situations in which the fluid is unbounded in all directions. Most spectral methods

are designed for periodic domains, and finite-difference or finite-element methods
also need periodic or finite domains. It should be noted that contour dynamics too

can deal with finite or periodic domains, provided the Greens' functions are

chosen to satisfy the appropriate boundary conditions (see e.g. Stern and Pratt

1985).

Before describing in detail the numerical algorithms that we have used, we

wish to conclude this general discussion of contour dynamics by pointing out the

limitations from which it suffers. As is often the case, it turns out that its greatest

strength is at the same time its greatest weakness. Because the idea of confining

the vorticity gradients to contours is at the heart of its power of simplification,

contour dynamics is inherently incapable of dealing with situations where the

vorticity gradient is nonzero over a two-dimensional surface. Such is the case, for

instance, for many geophysical situations which necessitate the presence of a

planetary vorticity gradient. Note that "mean flows" are not totally excluded;

provided their shear is linear (so that their vorticity gradient vanishes) they can be

handled easily. However it is crucial, for the method to be applicable, that all

vorticity gradients be confined along contours.

The fact that contour dynamics is not well suited to deal with dissipative

systems is also a handicap. However, the kind of phenomena that we will discuss

in this thesis are essentially inviscid ones - e.g. the merger problem - and the

comparison with viscous spectral calculations show that, when the viscosity is

small enough, contour dynamics is a very appropriate tool to use. Moreover,

although to the best of our knowledge no one has attempted to do this yet, there

may be ways of incorporating some form of dissipation by allowing the areas

enclosed by the contours to increase and the vorticity to change with time.

This handicap, however, can become a most valuable advantage if one is

interested in reproducing the truly inviscid dynamics of a system. In that case

contour dynamics offer a power of resolution that is unparalleled by any other

technique. Thus, for instance, the recent work of Dritschel (1988a, b) has revealed

details of structures in inviscid two-dimensional flows, whose complexity was

hitherto unsuspected and beyond the grasp of even the highest resolution spectral

simulations.

In the final analysis we believe that the special appeal of the contour

dynamical method resides in its being particularly appropriate in addressing the
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fundamental questions of vortex dynamics that have been successfully

investigated for two-dimensional incompressible flows and that we have

considered in the context of the quasi-geostrophic two-layer model.

1.4. Synopsis

MuB es sein? Es muB sein.t
Beethoven

After these perhaps protracted but necessary remarks, we hope the readers

will find themselves in a position of being able to more fully appreciate the

relevance of the problems we have decided to address in this thesis. In our

attempt to understand the vortex dynamics of the two-layer model, we have

decided to increase the complexity of the system in a gradual manner from the

purely two-dimensional case. We have thus first limited our attention to the case in

which geostrophic potential vorticity is non-zero in the upper layer alone. This was

done in order to assess to what extent the presence of an active lower layer of

finite depth and constant potential vorticity influences the vortex dynamics in the

upper layer. The results of this investigation are presented in Chapter 2.

We have then considered situations where the geostrophic potential

vorticity is non-zero in both layers, and Chapter 3 is devoted to the study of some

of the simplest possible configurations. In general, we have given the greatest

attention to the merger problem and its two-layer counterpart, the "alignment"

problem. We have also determined a number of one and two-layer V-states which

have provided a valuable means of quantifying some of the qualitative results

obtained from the initial value calculations.

An important finding, that emerged during the study of the two-layer

geostrophic problems just mentioned, is the importance of the location of critical

(hyperbolic) points of the streamfunction in a frame of reference rotating (or

translating) with the velocity of the coherent vortex structures. These points are

found to playa major role in determining the regions in parameter space where

stationary solutions (V-states) exist.

t Must it be? It must be.
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Reverting to the simpler two-dimensional context, we show, in Chapter 4,

how the critical points of the corotating streamfunction are also deeply related to

the process of filamentation. For the simple case of a perturbed Kirchhoff ellipse

we derive, from a geometrical analysis of the corotating fields, an expression for

the onset time of filamentation that compares well with fully nonlinear numerical

simulations.

The Addenda contain a number of smaller problems that should also be
considered further advances in the understanding of more complicated vorticity

configurations, but where the complexity is added by increasing the number of

contours while retaining the two-dimensional assumption. In Addendum A, we

present the first (and to our knowledge) only known analytic time-dependent non­

axisymmetric family of multi-contour solutions to the two-dimensional Euler

equations. Addendum B illustrates an example where the linear stability of a 2­

contour vortex can be shown to be connected with the location of the critical points

of the associated corotating streamfunction. Finally, in Addendum C, we report on

a new set of V-states for the two-dimensional Euler equations: they are the finite­

area constant-vorticity analogs of the tripolar coherent vortex structures that have

recently been observed in very high resolution numerical simulations of two­

dimensional turbulence.
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1.5. Algorithmst

o [3wr; [3paxvr;, 1) De ~exv1) j1aXP1)J
Hippocrates

We describe in this section the two contour dynamics algorithms that we

have used repeatedly, with a number of variations, throughout this thesis: the first

one, which may rather deserve the name of "contour statics", has served to

determine a variety of V-state solutions; the second one was used to compute

inital value problems. They share the way in which the velocity field is calculated

from the location of the contours delimiting the closed regions of constant vorticity.

It is this technique that we proceed to decribe next.

For the sake of generality, consider a vorticity field made up of Nj regions

OJ(n), where j=1 ,2 refers to the upper and lower layer respectively and n=1 ,... ,Nj. Let
dOj(nJdesignate the contour enclosing OJ(nJ and let {IIj(nJ} be the jump in potential

vorticity across do/n), namely {IIj(nJ} = IIj (outside OJ(nJ) - IIj (inside OJ(n)).Since IIj is

constant inside each OJ(nJ it can be taken outside the integral of (1.3) which then

simplifies to :

1 2
\jIj (x,y) =-2 L

11: j = 1
(1.6)

(1.7)

Expressions for the velocity in layer i as contour integrals over the boundaries

dOj(nJare obtained by differentiating (1.6) and applying Greens' theorem to yield:

1 2 Nj J
lUi , Vi] = [-dy\jlj ,dx\j!i] =- - L L {IIj'nJ} Gij (r) [dS,dTj]

211: j =1 n =1 (JDin)

In practice the contour integration in (1.7) has to be carried out numerically, and

this is done by substituting the integral with a summation. Each contour is

represented by a set of Mj(n) nodes (x(j)(m), y(j)(m)} - with m=1,... ,Mj(nJ. Moreover

the nodes are connected by straight line segments (more sophisticated versions of

contour dynamics use various sorts of polynomial interpolations to represent

t Since this section is of a very technical nature, we encourage the reader who may be rather uninterested in
the computational aspects at this work, to proceed directly to Chapter 2.
:j: The life so short, the craft so long to learn.
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contours, e.g. Dritschel 1988). The discrete form of (1.7) that gives the velocity at

any point (x,y) in layer i becomes:

2 Nj M,(n)

lUi , Vi] (x,y) =_1 L L {IV")} :t Gij (r (j)(m)) [o~(j)(m), oT1(j)(m)] (1.8)
21t j = 1 n = 1 m = 1

where

and

We have used formula (1.8) without exception throughout this thesis. Earlier

versions of contour dynamics algorithms (Zabusky, Hughes and Roberts 1979,

Stern and Pratt 1985, 1986, Jacobs and Pullin 1985) used a more complex

expression that was intended to analytically desingularize the logarithmic

divergences of the Greens' functions by evaluating separately the contributions

from the two nearest segments on the contour.

[It turns out that there is a much simpler way than Pratt and Stern's to

desingularize the evaluation of the velocities from (1.7) and it is presented in detail

in Appendix C. We have tested it against (1.8) for both for the static and dynamic

calculations we have performed, but have found extremely small differences at the

somewhat low resolutions we have used in this thesis.]

1.5.1. Iterative Scheme for V-States

We now describe the second order iterative algorithm that we have used in

the determination of several types of one and two-layer V-states. We have

essentially generalized the method of Wu et al. (1984) to make it applicable to

different geometries and to more than one layer. We will give here the general

outline and point out the specifics for each type of V-state in the correpsonding

sections and appendices.
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Usually, because of symmetry considerations, only a portion of the V-state
needs to be calculated and the rest can be obtained by rotation and/or translation.

Thus, for example, to find symmetric translating dipolar V-states, only one half of

one vortex of the modon has to be computed; this is the dotted portion of the

contour shown in Figure 1.5. This segment is discretized into N intervals. The

endpoints - designated by crosses - are given, and are part of the free

parameters of the problem. The unknowns of the problem are the the locations of

the N-1 nodes between the endpoints and V, the linear velocity with which the V­
state translates (for rotating V-states, an angular velocity n has to be determined).

To simplify matters, the N-1 nodes are placed at given and fixed (not

necessarily equal) angular intervals between the endpoints so that only their

radial distances from the center of the contour - designated Rj (i=2,N-1) - need to

be found. The number of unknowns is then reduced to N: the linear or angular

velocity plus the N-1 values of the Rj's. The N equations needed are obtained by

enforcing that, on the boundaries, the normal velocity of the fluid be equal to the

normal velocity of the vortex boundaries themselves. For the translating states this

is expressed by:

dx dy
(v-V)--u- =0

de de

and for the rotating states one has:

dx dv 1 dR2
v--u=-+-n -- =0

de de 2 de

where e is the polar angle measured with respect to the center of the contour. In

discretized form these become:

while for the rotating states it becomes:

for 1:s:i:s:N (1.9a)

for 1:s:i:s:N (1.9b)

where i+1/2 designates the midpoint between node i and node i+1 and the index i

goes from 1 to N. The velocities at the midpoints are calculated using the sums
given in (1.8). If the N equations (1.9) are added, it is possible to solve for V or n
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as a function of the locations of the nodes alone (since the velocities are also

functions of the node positions); however this expression depends on the

particular geometry of the V-state and the precise form of (1.9), and cannot be

given in general. For example, for symmetric translating V-states, one has:

1 N
V=(XA-XB) ~ [Vi+1/2(Xi+1- Xi)-Ui+1/2 (Yi+1-Yi)]

1= 1

where XA and XB are the x-coordinates of the endpoints. For each type of V-state a

formula analogous to (1.10) allows one to calculate the linear or angular velocity

from the positions of the nodes alone.

The N equations (1.9) can, moreover, be expressed as a tridiagonal system

for the unknown Ri'S by sustituting the expressions for Xi and Yi in terms of the polar
coordinates Ri and ai. This substitution, after rearrangement, leads to N equations

of the form:

and, alternatively:

for 1S;iS;N (1.11a)

1
R---R'1

1- Ff-1/2 I-
for 2s; i S; N+1 (1.11a)

where again the F's are different for each type of V-state. They depend on the
specific geometry and are functions of the the velocities and V (or il); e.g. for the

symmetric translating V-states are given by:

Ui+1/2 sin ai+1 - (Vi+1/2 - V) COSai+1
Fi+1/2 = . (1.12)

Ui+1/2 sin ai - (Vi+1I2 - V) COSai

Recall that the values ai of the angular positions of the nodes are fixed throughout

the calculation. Combining (1.11 a) and (1.11 b) we build a tridiagonal system for

the N-1 unknown radial distances R; (recall that R1 and RN+1 correspond to the

endpoints which have been chosen at the outset):

(1.13)
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After calculating the velocities with (1.8) and V with the appropriate form of (1.10)

using one set of values for the Ri'S, the solutiont of (1.13) yields new values for the
Ri'S from which a new V (or 0) and new velocities can calculated. In practice, as

was found by Wu et al. (1984), to insure convergence one must use a relaxation

procedure after each iteration, i.e. the new Rk'S are "mixed in" with a certain

proportion of the old ones before the next iteration is performed.

In summary, the iterative procedure goes as follows:

i. Start with an initial guess of the boundary shape (the Rk'S).

ii. Calculate the velocities at the midpoints using (1.8).
iii. Evaluate V (or 0) from (1.10).

iv. Obtain the F's from (1.12).

v. Solve the tridiagonal system (1.13) for the new Rk'S.

vi. Repeat steps ii to v until some convergence criterion is satisfied.

The convergence criterion we have chosen is basically a test of whether the

L1-norm of the difference between two successive iterations is smaller that some

given threshold. More specifically we terminate a run when the condition:

N+1
L IR \n+1) - R In) I < E
i= 1

(1.14)

is satisfied. In most cases we have found that, with 0(100) points per contour
convergence is achieved in less than 0(100) iterations for E=0(1 0-5).

It is important to remark that the curvature of the solution that is being found

has a great deal of impact on the convergence rate of the algorithm. Regions of

high curvature are difficult to obtain unless a sufficient number of nodes is used to

resolve them accurately. As is the case for the V-states that have already been

found, regions of high curvature seem to arise as the parameters approach some

limiting values beyond which no solution exists. The analysis of these limiting

cases may require a higher order algorithm (see Wu et al. 1984).

As we will have the opportunity to present in detail in Chapters 2 and 3, an

important new result of our work has been the discovery that the existence and

geometry of the limiting V-states is dictated, in some cases, by the presence, in the

co-moving streamfunction, of critical points that become very close to the contours

and are responsible for the formation of cusps. It turns out that one is often

t The tridiagonal system (1.3) is solved using a Crout reduction (ct. for instance Carnahan, Luther and Wilkes
1969) which is both simpie to encode an relatively fast.
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interested in just such limiting cases, because one is trying to determine the critical

value of some parameter beyond which no V-state exists.

The strategy we have adopted in this thesis has been to improve the

convergence not by resorting to a higher order algorithm but simply by locating the

nodes in a stategic way so as to condense them in the regions were the curvature

is high and to reduce their density in the low curvature regions. It should, however,

be noted that this can only be done to a certain extent because when the node

density varies too much from one region of the contour to another the loss of

accuracy due to the errors introduced in the contour integration in (1.7) adversely

affects the convergence in a significant way.

, Once the algorithm has converged to a set of values for the positions of the
nodes and V (or Q), one would like to find ways of independently verifying that one

is in possession of a authentic solution of the Euler equations. We have used in

this thesis a number of different approaches to consolidate our belief in the validity

of our results. The most direct way has been to compare our results with known

ones in parameter limits where the V-state solut,ions have already been found. For

instance, as we will show explicitly later on, the two-layer model solutions often

reduce to the Euler ones as the radius of deformation become zero or infinite.

A second way of testing our results has been to measure the linear velocity
V (or the angular velocity Q) directly from an initial value problem for which an

unperturbed V-state is taken to be the initial condition, and to insure that the

measured value of V compares well with the value obtained via the relaxation

algorithm described above. In practice however, because of the inherent difficulty
in measuring V (or Q) with more that two significant figures of accuracy, this

method must be considered only as a somewhat gross validation of our solutions.

A last way way of confirming our results is related to the so called

"desingularization conjecture" (Zabusky 1981 b) which states that if a stationary

(I.e. rotating or translating) array of point vortices exists then it should be possible

to find an array of V-states of identical circulation with a similar geometry.

Conversely, we have tested our algorithm by comparing its solutions, as the areas

of the non-zero vorticity regions become very small, with the analytically known

point vortex solution of identical circulation.
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1.5.2. Time-dependent Contour Dynamics

For studying time dependent processes - e.g. the merger problem, the

stability of V-states, and so on - one needs an algorithm that, given a set of

contours and the values of the vorticity gradients across them, will allow the
calculation of the subsequent evolution of the flow.

The first contour dynamics algorithm was proposed about ten years ago by

Zabusky, Hughes and Roberts (1979) as a generalization of the "water-bag" model

used to study the Vlasov equations of plasma dynamics (Berk and Roberts 1970,

Potter 1976). The main innovation of this technique, as we have already pointed

out, is that the velocity at any point in the fluid can be calculated by performing a

contour integral around regions of constant vorticity as given by (1.7).

In particular the velocity on the contours themselves can be evaluated in

such a way, the contours having been discretized with a finite set of Mj(n) nodes
located at {x(j)(m), y(j)(m)j - the coordinates of the mth node on the nth contour in

the jth layer. The nodes move according to the equations:

:x x(j)(m) = Ui (x(j)(m),y(j)(m))

:x y(j)(m) = Vi (x(j)(m),y(j)(m)) (1.15)

where the velocities are calculated using the sums in (1.8).

In this thesis we have used three different schemes to perform the discrete

time steps necessary to advance the nodes. For maximum accuracy we have

relied on a fourth order Runge-Kutta method; this, however, necessitates four

"pseudo time steps" to be calculated for each actual time step. When the number

of nodes surpasses a few dozens such a calculation becomes prohibitively long

for most small computers.

The most time consuming part of the calculation is the evaluation of the

velocity at each node, and we have thus given preference to schemes that

necessitate the minimal number of velocity evaluations per time step. Of the

second order schemes we have used, the fastest is an Adams-Bashforth explicit

multi-step method (originally used by Helfrich and Send, 1988) which requires a

single evaluation of the velocities at each time step. We have also used a second
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order Runge-Kutta scheme that requires two calculations of the velocities for each

time step and is thus quite a bit slower.

Expressions (1.15) reveal clearly the Lagrangian character of a contour

dynamical calculation. By this we mean that the nodes themselves behave as

tracer particles and are advected by the flow. Of particular interest is the motion of

the nodes along the contour which they are supposed to discretize. Originally they

are placed at chosen regular intervals, but, as time evolves and contours deform,

the nodes tend to condense on one side of the regions of high curvature while the

regions of low curvature become depleted. As the nodes move around the

contours, the regions of high curvature behave as obstacles that the nodes have

great difficulty overtaking (this is connected with the presence of a stagnation

point in the comoving streamfunction as will be shown in detail in Chapter 4).

The consequence of this is that, unless some action is taken, as soon as the

contours start to develop filaments the calculation has to be stopped because the

unevenness in node distribution along the contour produces large errors in the

evaluation of the velocities via (1.8). Node redistribution becomes imperative if

one wants to be able to continue the computation beyond the very early times. We

have used in this thesis two quite different algorithms for node adjustment that we

briefly describe next. They are both, however, quite involved and since a thorough

discussion is beyond the scope of this thesis, we will limit ourselves here a brief

description.

Most node redistribution schemes used until now have followed the one of

Overman and Zabusky (1982a and b), the main idea being that node adjustment

must be subjected to both local and global constraints. Locally the nodes should

be placed so that their density is proportional to some power of the curvature; at

the same time the distance between any two nodes must be bounded above and

below by a minimum and a maximum value that are independent of curvature.t

We have used, in some of our calculations, an algorithm developed by

Overman which essentially implements the above two criteria. Every few time

steps, the contour is fitted with cubic splines and the nodes are placed such that

their density is proportional to the curvature raised to the 1/3 power. This value has

been shown to be optimal for the Kirchhoff ellipse (Zou et al. 1987), although other

studies have used a 2/3 power density (Dritschel 1988) and have found it to be

optimal.

t It is necessary. for instance, to avoid leaving large gaps in regions of low curvature.
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We have also used, for faster though less accurate runs, a crude node
insertion and deletion scheme (Meacham et al. 1988). Instead of actually

relocating all the nodes along the contour to make their density proportional to

some power of curvature, this scheme simply contents itself with measuring the

distance between each pair of adjacent nodes and a) if this distance is below

some threshold a node is removed or b) if the internodal distance is above some

threshold a new node in inserted. In practice the scheme is somewhat more

sophisticated because, in order to determine whether nodes need to be added or

removed, it makes use of a quantity involving both the distance and some power of

the local curvature, so that the criterion for inserting or deleting nodes incorporates

curvature information as well and allows greater density of nodes where the

curvarure is higher.

However accurate, the node adjustment technique one uses takes nothing

away from the fact that enstrophy cascade towards smaller scales is an intrinsic

property of two-dimensional vortex dynamics. This implies that, although the area

enclosed by the contours remains constant (to within computational errors), the

perimeter tends to increase drastically as vorticity is sheared into ever thinner and

longer filaments. Thus, if the initial accuracy is to be maintained, the number of

nodes must constantly increase, and this simple fact imposes a practical constraint

on how far in time the computation can be extended.

The ubiquitous generation of small-scale features with extremely high

curvatures and ever increasing perimeter is the principal reason why contour

dynamics (even with a good node redistribution scheme) is unable to proceed

beyond the first stages in the nonlinear development of unsteady flows. To acceed

to the next stage of evolution Dritschel recently proposed a new algorithm called

"contour surgery" (Dritschel 1988). The main innovation of contour surgery resides

in its ability to perform automatic topological reconnections of the contours. Thus,

for instance, a filament can actually be "pinched off" a larger region of vorticity, in

which case from a unique contour one obtains two disconnected contours.

Although contour surgery unquestionably represents the state-of-the-art

algorithm, its necessity is less than obvious for the kind of questions that we have

been interested in addressing in this thesis. The merger problem is a good

example: if all one wants to determine is whether two regions of vorticity merge or

don't,a short time calculation is sufficient to provide the answer, and the extremely

complicated evolution that follows the merger will not shed any further light on the

question.
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Sometimes surgery is not necessary to infer the intermediate or even long
time behavior of the contours. Thus, for instance, the work of Helfrich and Send

(1988) shows that an unstable perturbatioJ:l of mode m on a circular baroclinic

vortex will lead to the breakup of the vortex into m dipoles that will propagate away

from each other. Although they halted the computation before the dipoles had

actually completely separated, there was no doubt left as to the long time evolution

of the vorticity. The point we wish to make is that, often, a short time calculation is

sufficient to understand the overall behavior of the larger structures at long times.

Moreover, at this time, it is totally unknown what types of errrors are

introduced by the topological reconnections of contour surgery. As far as the

deletion of very small features of vorticity is concerned, one might suppose that its

effect may not be dissimilar to a kind of dissipation. However the technique is so

new that no in depth quantitative studies have yet been made. Finally, the contour

surgery algorithm is cumbersome enough that a supercomputer is absolutely

necessary to perform runs in any reasonable amount of time. Thus, in some sense,

it destroys the purpose of using contour dynamics as a means of treating fully

nonlinear problems with modest computational means.

In general throughout this thesis we have only performed surgery where

absolutely necessary. In Chapter 2 we have performed manual (as opposed to

automatic) surgery on certain runs, a single time per run, and have repeated the

runs, performing surgery at different times, to insure that it did not affect the

evolution in any significant way. In Chapter 3 we have used a very simple contour

surgery code of Meacham et al. (1988) that has automatic surgery. However, only

minimal amounts of surgery were performed before the runs were stopped.

After this long discussion on node redistribution and topological

reconnection the reader may have been left with somewhat mixed feelings as to

the reliability of the numerical results that we are going to present. However we

would like to provide some reassurance by pointing out that, no matter how

sophisticated (or unsophisticated!) the algorithm one employs is, the validity of the

numerical simulation can be established by a careful monitoring of the
conserved quantities of the system.

In particular, the area enclosed by the contours should be conserved

exactly since it represents the circulation that, in inviscid and unforced situations

such as those we are considering, can be neither created nor destroyed. In all of

the computations presented here, with maybe one or two exceptions, the

circulation is conserved to within one or two percent in the worst cases
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when surgery has been used. Most of the time, when surgery is not employed, the

loss in circulation is of the order of parts per thousand or per ten thousand.

The higher moments of vorticity are also conserved and we have usually

monitored the first three (the area and the two first-order moments). Since the

changes in the values of the moments that we are interested in detecting are most

often extremely small, we have had to design high order algorithms to calculate

the moments. We have found the usual second order algorithms to be of
insufficient accuracy and have written fourth order ones, which are described in

detail in Appendix A.

By a careful use of these diagnostic quantities we have been able to gain

much confidence in the reliability of our numerical results. We note that this has

proven especially useful in situations, as for instance the runs in Chapter 4, where

the qualitative conclusions depend crucially on accurate numerical results.

In conclusion we can say that, for the type of problems of interest in this

thesis, only short to intermediate time calculations are necessary and, because we

have used a minimal amount of surgery and very careful diagnostics we believe

our calculations to be reliable. The questions concerning the accuracy,

dependability and interpretation of long time calculations with large amounts of

surgery (such as the ones performed by Dritschel, 1988, 1988a and 1988b) are

not really relevant to the results presented here.
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FIGURE 1.1. A schematic drawing of the quasigeostrophic two-layer model.
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FIGURE 1.2. Emergence of isolated vortical structures from a k-3 energy spectrum

and random phases at t=O. Note that at t=O the vorticity appears to be distributed

uniformly, Le. with no apparent coherent center of vorticity. By t=2.5, vorticity

regions have begun to condense into vortex centers that can be individually

tracked. (From McWilliams 1984).
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FIGURE 1.3. The phenomenology of the merger problem. (From Roberts and

Christiansen 1972).
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column shows the vorticity ro, the second the instantaneous corotating

streamfunction 'JIc and the third the streamfunction 'JI in the inertial frame, (From

Melander et al. 1987a),
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FIGURE 1.5. Schematic drawing of a translating V-state. The dots indicate the

location of the nodes. The crosses designate the endpoints XA and xs, which are

fixed during the entire iteration. By symmetry, only the upper right-hand quadrant

needs to be computed.
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2. Two-layer Dynamics with TI2=O

There is no subject so old that
something new cannot be said about it.

Dostoevski

2.1. Introduction

As we have already pointed out, one of the objectives of this thesis has been

to investigate the vortex dynamics of the two-layer model using our knowledge of

two-dimensional vortex dynamics as a starting point, and progressively increasing

the complexity of the system towards a stratified quasi-geostrophic configuration.

We have taken the first step away from exact two-dimensionality by considering the

effect of the presence of a finite layer of zero geostrophic potential vorticity that is

coupled to a two-dimensional fluid.

We thus limit our attention in this chapter to situations in which the lower
layer has no geostrophic potential vorticity, I.e. such that II2(x,y)=ot. It is important

to keep in mind, however, that although the geostrophic potential vorticity vanishes

exactly neither the velocity nor the relative vorticity fields are zero in that layer. In

other words, the lower layer participates actively in the dynamics of the upper
layer, even if II2 vanishes.

For purposes of solving the two-layer model equations (1.1) to study the

upper-layer dynamics it is, however, unnecessary to calculate the lower-layer fields

when a contour dynamical approach is used. Indeed, as can be seen from (1.6),

the evolution of the fields (in both layers) is determined entirely from the positions

of the contours delimiting the regions of constant geostrophic potential vorticity in

the upper layer alone. In all the calculations of this chapter we have thus confined

our attention to the upper layer, where the geostrophic potential vorticity is located.

t To dispel any possible confusion, we remind the reader that II is not the full potential vorticity but only its

quasigeostrophic component. Thus II=O does not imply I;=-f.
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The simplification introduced by setting II2=0 implies that, of the four Greens'

functions defined in (1.4), only one remains dynamically important, namely G11
which represents the effect on the upper layer of vorticity on that layer, and is given

by:

where

o 1
G11 (r) =-; logr - - Ko (rr)

1+u 1+0
(2.1 )

and where, we recall, 0 is the ratio of the layer thicknesses at rest and y, the inverse

of the radius of deformation, quantifies the degree of coupling of the two layers.

Therefore, as far as the upper layer is concerned, the effect of the presence of an
active lower layer with II2=0 manifests itself through the fact that the purely

logarithmic Greens' function of the 2D Euler equations is replaced by G11.

Note, from the form of G11, that the vorticity can interact in two distinct ways.

The logarithmic term corresponds to the barotropic mode of interaction of the
Euler equations, with the difference that, in (2.1), it is reduced by a factor of 0/(1 +0).

As the thickness of the lower layer vanishes, Le. 0---+00 , the dynamics of the upper

layer becomes dominated by this logarithmic term and reduces identically to two­

dimensional Euler dynamics.
At the other extreme, as 0---+0, Le. as the lower layer becomes infinitely deep,

we recover the Greens' function -Ko(yr) of the so called "equivalent barotropic"

modeIt. This modified Bessel component of G11 represents the baroclinic mode

of interaction of the vorticity in the upper layer, and, of course, it tends to vanish as

the lower layer thickness becomes very small. It is this component of the Greens'

function that is responsible for the new dynamics introduced by the presence of an

active lower layer.

In order to investigate this new dynamics we have, in analogy with what has

been done for the Euler equation, concentrated our efforts on two particular

questions: the stationary configurations of vorticity (the V-states) and the merger
problem. Usually, in addition to y and 0, there is at least one other parameter that

can be chosen so that, in general, the parameter spaces that need to be

investigated are, at least, three dimensional. To restrict the amount of computations

to tractable dimensions while, at the same time, capturing all of the principal

t Sometimes also referred to as the "reduced gravity" model.
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qualitative behaviors that are found in the different regions of the parameter space,
we have proceded as follows in our selection of the values of 0 and y.

We have decided to limit ourselves to three interesting and representative
values of 0: the equivalent barotropic model (0=0), the case of two equal layers

(0=1) and, as an intermediate case, the value 0=.2, which roughly corresponds to

the ratio of the depth of the oceanic thermocline to the full depth of the ocean.
Computational evidence will be presented in this chapter that at large values of 0 ­

i.e. 0>1 ! - the vortex dynamics in the upper layer are essentially identical to two­

dimensional Euler dynamics.
The parameter y represents the strength of the coupling between the two

layers, and the approach that we have adopted throughout this thesis has been to

investigate how the dynamics of the two layer model changes as this coupling

between the layers is progressively increased from zero to infinity.
For the simplified situation of interest in this chapter, i.e. II2=0, in the weak

coupling limit it is easy to show that, due to the logarithmic behavior of the Ko
function at small values of the arguments,

lim G11(r) = logr
'}'->o

(2.2)

for all values of o. This simply states that, as the coupling is reduced to zero, the

dynamics in the upper layer becomes exactly two-dimensional. The more
interesting limit is the one for large values of y, when the coupling between the

layers becomes very strong.

For that case, using the asymptotic approximation for the modified Bessel

function at large arguments, we can writet

o 1 1t
G11(r) ~ - logr - - [-11/2 e-rr for

1+0 1+0 2['r
y»1 (2.3)

The case of interest, as we have already mentioned, is when 0 is small, and here

great care must be used in taking the limit because of the competition of two small
terms in (2.3). As long as 0 is different from zero, the exponential term will

eventually become smaller than the logarithmic one, no matter how small 0 is.

t We must point out that the arguments presented next would lose their validity were the fields at each point
determined mostly by the contributions from the vorticity lying at r«1, in which case (2.3) wouid be invalid even
in the limit r»1. It turns out that such is not the case, and that the arguments derived here are strongly
confirmed by the numerical results of the following sections.
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Therefore we can write:
o

lim G11 (r) =- logr
y-f><> 1+0

for (2.4)

If, however, we chose 0=0 in (2.1), i.e. we restrict our attention to the equivalent

barotropic model from the start, then the coefficient of the logarithmic term in (2.3) is

identically zero, and, in the strong coupling limit, the Greens' function behaves as a

decaying exponential, namely

for 0=0 (2.5)

From this it is easy to conclude that at large y, i.e. at scales that are large compared

to the deformation radius, the equivalent barotropic model can be expected to

behave in a drastically different way from the Euler equations. The Greens' function

(2.5) is characteristic of shielded vortices, whose interaction is extremely local

and is therefore fundamentally different from the very long-range logarithmic

interaction characteristic of two-dimensional Euler dynamics.

The equivalent barotropic model is often used as a simple shortcut to a full

baroclinic calculation, whereby one retains the simplicity of single-layer dynamics

and, at the same time, tries to capture the effect of an underlying lower layer. The

implication of (2.3) is that, when the radius of deformation becomes small, the
equivalent barotropic model simulates a two-layer calculation for which O<Oeb,

where Oeb is approximately given by:

It turns out that even at relatively innocuous values of y the value of Oeb is extremely

small due to its exponential dependence on y. For instance, at scales only three

times larger than the radius of deformation (y=3) the ratio of upper to lower layer

depths simulated by the equivalent barotropic model is approximately 1/35, and at
y=5 (not what one would call an asymptotic regime!) the value of Oeb is of the order

of 1/330.

In summary, the point to be retained is the following: for motions on scales a

few times the radius of deformation or larger, the equivalent barotropic model will

generate dynamics that are extremely different from those a model with two finite

layers. Therefore, on those scales, a full two-layer calculation is necessary and the
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equivalent barotropic shortcut should be avoided. This conclusion, which will be

confirmed by the variety of numerical results presented in this chapter, is probably

one of the most important results to emerge from this study and suggests that the

results previously obtained with equivalent barotropic models may have to be
reexamined.

2.2. Upper-layer V-states

After having obtained, from a careful consideration of the asymptotic forms of

the Greens' function, a first indication of the behavior that is to expected in the

various limiting cases, we now proceed to present our results for the stationary

vorticity configurations in the upper layer. As was reviewed in the previous chapter,

a great number of V-states have been determined for the two-dimensional Euler

equations, but it would certainly take more than a single thesis to find all of their

two-layer analogs.

We have thus decided to confine our results to the three simplest and most

interesting types of V-states: the m=2 rotating V-states (generalizations of the

Kirchhoff ellipse to the G11 Greens' function), the same-layer translating V-states

(dipoles with both positive and negative vorticity in the same layer) and the doubly

connected corotating V-states (first determined for the Euler equations by Saffman

and Szeto 1980). The latter are intimately connected with the merger problem and

we have therefore delayed their discussion to the last section of this chapter

(section 2.4) after the merger problem will have been discussed in depth.

2.2.1. Rotating (m=2) V-Statest

We start with the simplest possible vorticity configuration in a two-layer

context (illustrated schematically in Figure 2.1): a patch of constant vorticity in the
upper layer rotating without change in shape at constant angular velocity Q.

Because of symmetry, it is sufficient to determine only one quarter of the shape for

any value of the two endpoints, designated by RA and RA. Of these two lengths only

t The value of m represents the wavenumber of the perturbation on a circle of which these solutions are the finite
amplitude extensions. Solutions up to m=6 have been determined by Wu et al. (1984) for the Euler equations.
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one has to be varied and, without loss of generality, we have chosen the aspect
ratio A.=RA/Rs as the parameter of interest. The numerical details of the algorithm

are given in Appendix B1.
Since for each value of the parameters A, 0 and y a V-state can be

determined, the parameter space is three dimensional and, as explained in the

previous section, we have carried out its investigation by using only a small but

representative set of parameter values. We have selected three values of the
aspect ratio A: a slightly elliptical shape A=3/2, an intermediate value A=5/2 and a

very elongated one A=7/2. For each of these we have calculated solutions at the

three values 0=0, 0.2 and 1 as explained above.

To observe the variation in shape as the coupling constant y is increased

from zero, we have for each fixed value of A and 0 obtained the V-states for 21

values of y that span, in approximately equal intervals (on a logarithmic scale), the

three orders of magnitude 10-2 ::;; y::;; 102. The reason for extending our investigation

to such high and low values of y is that we want to insure that we cover the

asymptotic results known for the limits y«1 and 'Y» 1.

Recall that, for a purely logarithmic Greens' function, the shape of the

boundary is an exact ellipse. Because of the asymptotic behavior of G11, we expect,
for 0,,;0, to recover exactly elliptical shapes in both the y«1 and y»1 limits. The

real questions can then be restated in the following simple form: as y is varied

between zero and infinity, how do the m=2 rotating V-states differ from Kirchhoff
ellipses? How does this difference depend on 0 and A? What happens at y»1 for

the equivalent barotropic case o=o? The answer to these questions is presented in

Figures 2.2, 2.3 and 2.4 for A=3/2, 5/2 and 7/2 respectively.

Consider first the case A=3/2 for which the solutions are shown in Figure 2.2

(for 0=0, 0.2 and 1). Only the upper right quadrant is plotted and, for clarity~ only the

three V-states corresponding to y=0.01, 1 and 10 are shown (the solid lines

represent the Kirchhoff) ellipse. It is quite remarkable to observe that, quite
independently of 0, the deviations from the Kirchhoff ellipse are extremely small, at

this aspect ratio, over the entire range in y.

To make a quantitative estimate of the difference between the upper-layer
V-states and the Kirchhoff ellipse, we have calculated the quantity OA defined by:

AK - A
AK
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where AK and A are the areas of the Kirchhoff ellipse and of the V-state

respectively. This quantity, which represents the fractional change in area, is
shown in Figure 2.2 as a function of 1 for the three values of 15 for which solutions

were computedt.

An inspection of this quantity immediately reveals the qualitatively different
behavior of the equivalent barotropic model (15=0) at large 1 that we have argued

from an analysis of the Greens' function. We note incidentally, that the 15=0 large-1

limit presents computational problems as well. Since the Greens' function decays

exponentially, most of the vorticity interaction is extremely local and this affects

considerably the convergence of our algorithm. The velocity is essentially zero

everywhere in that limit, except for strong jets located around the position of the

contours. This strong inhomogeneity in the velocity fields is probably responsible

for the increased difficulty in achieving convergence in that limit.

Note, moreover, how small the fractional change in area is when both layers

are finite. Even for a lower layer five times as deep as the upper layer, the

maximum change in area is of the order of one percent. This number changes to a
few percent for the slightly larger aspect ratio '}..,=5/2, for which the solutions are

presented in Figure 2.3. To keep the figures legible, we have chosen to present
only a selected number of V-states for each value of 15 (the ones for 1=0.01 and

y=10 are always shown). The poorer convergence of our algorithm at high 1 for 15=0

may also be due, in part, to the emergence of negative curvature sections at higher

values olthe aspect ratio.
This is even more apparent at '}..,=7/2, as can be seen from Figure 2.4. The

equivalent barotropic solutions at large 1 bulge away from the Kirchhoff ellipse, and

give rise to "peanut" shaped vortices. This effect is undoubtedly the consequence

of the exponentially decaying character of the Greens' function, and it is
considerably weaker when both layers are finite. In that case, over the entire 1

range, the solutions are remarkably close to Kirchhoff ellipses, even at this high

aspect ratio.
In Figure 2.5 we have plotted the angular velocity Q as a function of 1 for the

various values of 15 and'}.., for which the solutions were determined. For non-zero 15,

both the large and small 1 limit are finite and, from (2.2) and (2.4), it is easy to see

that they are simply given by:

t The jaggedness of the curves is due to the fact that V-states were calculated at discrete values of 'Y.
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for 0#0

is the angular velocity of a Kirchhoff ellipse of aspect ratio 11,. Note however that, in

the equivalent barotropic case 0=0, the angular velocity n goes to zero in the limit

of large y. Why this is so can be easily understood by recalling that, in that limit, the

Greens' function is an exponential that decays extremely fast, so that, each portion

of the vortex is influenced almost uniquely by the closest surrounding vorticity.
We have fitted the log-log curves of n vs y for 0=0 at large values of y with

straight lines, and have found the slopes to be equal to 2.94, 2.93 and 2.89 for

11,=3/2,5/2 and 7/2 respectively. This numerical result is in good agreement with the

results of Pratt & Stern (1986), who, in developing an asymptotic theory for the

evolution of a perturbation on a vorticity front in the equivalent barotropic model at

large y, found that a dominant balance in the vorticity equation could be achieved

only when time was scaled by "13.

Their derivation, however, is convoluted enough to obscure the fundamental

balance that leads to this scaling, and we have formulated a very simple argument

that shows how it arises. Let R(e) be the radial distance of the contour from the

origin. The dimensionalstreamfunction 'II must satisfy the condition:

a 1 a-R---'P
CJt - Rae

for all angles eon the boundary. The small parameter of interest is "11, and we are

considering the case y»1 which corresponds to motions on scales large

compared to the radius of deformation (recall that y is defined as the ratio ULR). At

leading order in "11, 'II is independent of e and it is therefore the 0("11) correction to

'¥ which allows the above boundary condition to be satisfied in time. In order to

determine the time scale define:

R= L R' t=y"q-1 t'

where the starred quantities are nondimensional and 0(1), and q is the vorticity

scale. Note how 'II has been scaled one order smaller than the leading order
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geostrophic streamfunction. Substituting these scalings in the above boundary

condition and requiring that both sides be of the same order yields the value n=3.

We note that this scale seems to be fundamental to the dynamics of the equivalent
barotropic model in the large y regime, since it arises naturally in a number of

different contexts. For instance, one can show analyticallyt that the angular velocity

of an infinitesimal perturbation on the boundary of a Rankine vortex in the
equivalent barotropic model is proportional to y-3 when "{» 1.

2.2.2. Translating V-States (Dipoles):t:

All of the qualitative conclusions that have emerged from the study of the

rotating V-states are confirmed by the investigation of the other most important type

of coherent vortex structure: the dipole. We consider here a vortex composed of two

regions of opposite-signed geostrophic potential vorticity of the same strength in

the upper layer. The vortices induce motion on each other in such a way that the

compound vortex propagates without change in shape at constant velocity V along

the y-axis, as is illustrated schematically in Figure 2.6. For simplicity we limit our

attention to vortices in which the two regions are perfectly symmetric upon

reflection about the y-axis.

Each dipole is characterized by its inner and outer radius, XA and Xs

respectively (cf.· Figure 2.6). Without loss of generality we set xs=1 and define
Il=XA/XS to be the parameter to be varied. As for the rotating V-states we have

determined the shapes for a few values of Il and 0, and have concentrated our

attention on the variations as the coupling constant y is increased from zero to very

large values. One difference with the rotating V-states is that the corresponding

Euler solution is not known analytically. The translating V-states for the Euler

equations, first obtained by Deem and Zabusky (1978a and b) are numerical

solutions. The exception to this, as one would have suspected by now, is the case
0=0 (equivalent barotropic model) at y»1. In that limit the Greens' function

becomes a very rapidly decaying exponential, and the solution corresponds to two

exact circles of opposite vorticity that are stationary (I.e. V=O).

The major difference between the rotating and translating V-states is that in
the latter case, depending on the value of the parameter Il, there exist two

t We will do this in Chapter 4.
:t: See Appendix S2lor details concerning the algorithm used in this section.
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qualitatively different behaviors of the solutions as y is varied (in the previous

section we have seen that as y is increased from zero the solutions always "bulge

out" from the Kirchhoff ellipse for all aspect ratios A). We illustrate this by

considering two values of j.t in the different regimes.

In Figure 2.7 the results are shown for j.t=0.2 (we have used the same values

of 8 and y as for the rotating V-states). For 8"'0 the vortices always have a smaller

aspect ratio, at finite values of y, than the Deem and Zabusky dipoles. Note that, for

y«1 and y»1, the Euler solution is recovered, in agreement with (2.2) and (2.4)

respectively (I.e with the Euler value of V scaled by a factor 8/(1 +8) in the limit y» 1,

according to 2.4). The equivalent barotropic solutions behave differently, and the
shapes progressively relax to circles as y-too . To quantify the results we have

plotted the ratio NAc versus y, where A is the area of one of the vortices of the V­

state and Ac the area of the circle of radius (xs-xA)/2.
When the ratio j.t of the inner to the outer radius becomes less than a critical

value fi (we have found fi~0.09), the behavior, as y Is varied, become qualitatively

different. As y is increased from zero the V-states become more elongated than the

Euler ones. We present the results for j.t=0.06 in Figure 2.8. Note that for the

equivalent barotropic case the maximum deformation, which occurs for y~7, is very

large (the area essentially doubles), while for the cases in which 8",0 the change in

area compared to the Euler shapes is of only a few percent, as was the case for the

rotating solutions.
The velocity of propagation of the dipole is plotted as a function in y in Figure

2.9. At y=O the Euler value is recovered, as well as in the limit y»1 scaled by the

factor 8/(1 +8) in accordance with (2.4). For the equivalent barotropic case the

velocity vanishes as y-too , but we have been unable to fit the log-log plot of V vs Y

with a straight line.

The two main conclusions that had been drawn from the analysis of the

rotating V-states have been strengthened by the investigation of the translating

ones. To summarize, we have found, on one side, a great insensitivity of the
dynamics in the upper layer to the presence of the lower layer for 8",0 (and its

similarity to Euler dynamics) and, on the other side, the anomalous behavior of the
equivalent barotropic model (8=0) when the coupling of the two layers becomes

very strong (y»1). These conclusions, obtained by the study of static vorticity

configurations, will now be tested with time-varying vorticity fields as we proceed to

consider the question of merger.
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2.3. Merger of Vorticity in the Same Layer

Since the early numerical studies of two-dimensional vortex dynamics, the

problem of merger of two structures of equal-signed vorticity has occupied a

favorite place (Roberts and Christiansen, 1972 and Christiansen and Zabusky,

1973). As we pointed out in the previous chapter, the importance of this

fundamental process resides in its being the principal mechanism through which

the energy cascade to large scales is enacted. The most important result for
initially-circular constant-vorticity two-dimensional vortices is that merger will occur

if the ratio of the centroid distance to the radius at the initial time is smaller than

(approximately) 3.3.

It is important to keep in mind that the merger boundary is somewhat "fuzzy",

at the level of accuracy to which we have decided to confine ourselves in this

chapter, and the decision as to whether merger did or did not occur can be a

subjective one. Near the critical initial ratio one often observes one or more

filaments of vorticity being exchanged between the two vortices which, however,

retain their identity and do not coalesce into a single structure. Thus the transition

from no-merger to merger is a smooth one. Although one can define an objective

criterion for deciding whether merger has occurred (as we have done in the next

chapter), we are in this section mostly interested in a zeroth order investigation of

the merger question in the two-layer model.

The presence ·of two layers of fluid immediately presents an additional

degree of freedom to the merger problem, in as much as we can consider the two

vortices in the same or in different layers. We have distinguished between these

two processes by assigning to them different names. In the context of a

quasigeostrophic system composed of two (or perhaps several) layers we
designate by merger the process by which two vortices in the same layer

coalesce into a single one. The interaction of regions of equal-signed vorticity
residing in different layers will be referred to as the alignment problem.

Since this chapter is dedicated to the study of situations in which all of the

vorticity resides in the upper layer, we have deferred the study of the alignment

problem to the next chapter. The question to be addressed here can then be posed

in the following very concise form: how much does the Euler value 3.3 change

when the logarithmic Greens' function is replaced by G11? how far from 3.3 does
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the critical merger distance deviate as a function of 0 and y, the two parameters of

the two-layer model?

2.3.1. Review of Recent Laboratory Experiments

In a recent series of papers Griffiths and Hopfinger (1986, 1987) have

addressed this very question by performing laboratory experiments with two fluid
layers of equal depth (I.e. at 0=1, in our notation). They specifically constructed their

laboratory setup in such a way as to be able to simulate a two-layer system

obeying the quasigeostrophic equations (1.1).

In order to confirm the quasigeostrophic nature of the finite-area vortices that

they were able to generate in their experiments, Griffiths and Hopfinger very

carefully compared the velocity field of their circular vortices as a function of the

radial distance from the center against the theoretical results obtained from the

solution of (1.1 b) for a circular distribution of vorticity. They found the agreement

between the experimental data and the quasigeostrophic theory to be good, and

presented evidence to consolidate their belief that their laboratory setup was

indeed obeying two-layer geostrophic dynamics.

Their results for the the dependence of the critical merger distance on the
inverse radius of deformation y, that we have reproduced in Figure 2.10 (adapting

the data of Figure 10 from Griffiths and Hopfinger 1987 to our notation) is however

surprising since, although the authors seem to have been unaware of the fact, it is

at odds with what one would expect to observe for a system that obeys the

quasigeostrophic two-layer dynamics described by (1.1). Even more disturbing is
the fact that this discrepancy occurs in the weak coupling regime (I.e. y«1), in

which, as we have already shownt , the dynamics in the upper layer should reduce

to simple Euler dynamics.

More specifically, concerning Figure 2.10, it is difficult to understand how, in
the limit of weak coupling (')'1»1) the critical merger distance could assume a

value so different from the Euler value of 3.3. Notice that in the more delicate limit of
strong coupling, which corresponds to ')'1«1, the Euler value is recovered quite

accurately, in agreement with the result of (2.4). A number of effects could be

mentioned as possibly responsible for the remakable difference between the

t See equation (2.2) and the discussion thereabout.
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results of Griffiths and Hopfinger and the predictions of quasigeostrophic therory,
but, mostly because we have had no access to how the experiment was performed

beyond what has appeared in print, we have been unable to arrive at a convincing

argument that would allow one of them to emerge as the certain cause.
We believe nonetheless that excessive friction can be excluded as a

possible cause for the discrepancy because, had it been present without the
knowledge of the experimenters, it would have affected the results at y-1«1 even

more dramatically then at y-1» 1, since the times for merger are a lot longer in the

large y regime (typically one order of magnitude, as reported by Griffiths and

Hopfinger 1987). Moreover it is quite implausible that the discrepancy betwen

these experiments and the predictions of quasigeostrophic theory be due to friction

since both merging vortices are placed in the upper layer and therefore dissipation

has to act via the density interface. Finally, Griffiths and Hopfinger (1987) report that

they measured the dissipation time scale in their experiment to be of the order of
more than 20 rotation periods TQ, while most mergers for y-1>2 took place in less

than 5TQ •

What we suggest might have been playing a role unsuspected by the

experimenters is the presence of a particularly strong Eddington-Sweet circulation
in the y-1»1 range. It is well known that a stratified fluid cannot sustain exact solid­

body rotation, and that, after spin-up, a residual radial circulation is produced by

the density gradient, and the strenght of the circulation increases proportionally to
this gradient. Because the y-1»1 regime corresponds to LR»1, which in turn

corresponds to i1p/p»1, it is not impossible that an Eddington-Sweet circulation

considerable enough to affect the results might have been present in the

experiments of Griffiths and Hopfinger (1987).

In the final analysis, however, we recognize that, not having access to the

experimental apparatus used and not being familiar with the way in which the

experiment was conducted, we can only speculate as to why Griffith and

Hopfinger's results are what they are. There is however little doubt that they are

incompatible with vortex dynamics in the nearly inviscid quasi-geostrophic finite­

area constant potential vorticity approximation. Further evidence in support of this

assertion will be provided by the results presented in this and the next section.
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2.3.2. Numerical Results for the Merger Problem

We have conducted three sets of initial value numerical experiments to

explore the dependence of the critical merger distance on the two parameters of

the quasi-geostrophic two-layer model. As for the V-states we have limited our
attention to the three "canonical" values of 0 (0, 0.2 and 1) and for each of these we

have covered the whole range of interest in y. The initial condition is taken to be the

following: two circular regions of constant potential vorticity and radius 1 located (in

the upper layer) on the x-axis and separated by a distance dc.

The first set of results, for layers of equal depths, is shown in Figure 2.10
where we have drawn a cross at the values of dc and y where merger occurred and

a circle otherwise. After having seen the results for the V-states it is not surprising to
observe the great insensitivity of the results to changes in the coupling constant y.

We have drawn in by hand, in Figure 2.10, a curve labelled dcritical whose only

purpose is to separate the crosses from the circles to enhance the clarity of the

results. From the fact that we have drawn a flat curve it should not be concluded
that dcritical is independent of y, but rather that no dependence could be detected at

the resolution, in the (dc,y) plane, with which these experiments were conductedt .

In Figure 2.11 we show the results for the case 0=0.2. As the lower

layer is made deeper, its influence on the dynamics of the upper layer becomes
more noticeable. In particular we note that the qualitative shape of the curve (with

the exception of the perplexing y-1»1 range) is in accordance with the results of

Griffiths and Hopfinger. Specifically, we refer to the fact that, as the presence of the

active lower layer is felt by the vorticity in the upper layer, the merger distance

decreases, i.e. two vortices need to be placed closer to each other before they can

merge. This is, of course, the result of the baroclinic mode of interaction ( via the Ko
Greens' function) that plays a detectable role at y~1. As expected, the 3.3 value in

both the large and small y limit is recovered.

A final set of runs was made for the equivalent barotropic model (0=0),

and the results are shown in Figure 2.12. Again the y» 1 limit exhibits singular

behavior and the Euler value 3.3 for the critical merger distance is not recovered as
y-L~O. This behavior is easily understood from the consideration of (2.5): at y» 1

t Computational evidence will be given, in Section 2.4, that indicates avery weak depence on 'Y at 3=1.
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the shielding due to the asymptotically exponential behavior of the Ko function is so

strong that two vortices have to be placed extremely close before they can merge.

2.3.3. Non-axisymmetrization in the equivalent barotropic model at "(»1

In the previous section we have merely been interested in determining

whether or not merger will occur for a particular initial condition characterized by

the value of the two parameters de and 1. In this section wish to take a closer look at

the merger events themselves, and try establish how they differ from Euler mergers

due to the presence of the active lower layer. When no merger takes place the

vortices merely rotate around each other undergoing a kind of pulsation in their

shape. The interesting dynamics takes place when the two vortices actually merge.

We present here a number of runs that were conducted at much higher

resolution than the runs of the previous section (the need for doing this will become

apparent in a moment). They all have the identical initial condition de=2.2, and

differ in their values of 1 and o.
The first one, which establishes a reference point, is essentially an Euler

merger since it occurs at 0=0 and 1=10-3 (see Figure 2.13). The distinguishing

feature of the Euler merger is the shedding of very thin and elongated vorticity
filaments as the vorticity field proceeds to settle into an axisymmetric state (cf. the

third frame of the first column in Figure 1.4, which, it is valuable to recall, is a

spectral simulation). As was shown by Melander et al. (1988) the shedding of these

vorticity filaments is an integral part of the axisymmetrization process.

Consider next the run shown in Figure 2.14, for which 0=0 and 1=1. The

main qualitative behavior is not dissimilar, with the exception that the vorticity

filaments seem to exhibit a tendency to "roll up" into pools of vorticity. The fi nal

configuration resembles more to a three-vortex state, as opposed to a single

vortex surrounded by filaments. We note that a qualitatively similar result has

recently been obtained by Williams and Wilson (1988) in their finite-difference

simulation of Jovian vortices (cf. in particular their Figure 7). Although their system

is not quasigeostrophic (they solved the full shallow water equations with one

layer), their parameter ranges are such that geostrophy is the prevailing balance in

the flow.
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Keeping the value of 0 fixed, we show in Figure 2.15, an equivalent
barotropic merger at y=3. It is truly remarkable how drastically the behavior

changes at this higher value of y. Note that here the Greens' function is identically

equal to -Ko(yr) since the logarithmic component is completely absent from the

equivalent barotropic case. The generation of filaments is suppressed and

axisymmetrization does not take placet.
A similar result is shown for the even larger value of y=5 in Figure 2.16. It is

interesting to see how local the interaction is in these cases. Consider for

instance the T=24 frame of Figure 2.16. It is obvious that only the side of each

vortex that is closest to the other vortex is affected, while the rest of the vortex is

essentially not moving. Moreover, the rotation rate of the two vortices about their

common centroid is much slower than the merging process (presumably by a factor
y-3). The final vorticity distribution can then be described as an essentially elliptical

vortex over which large amplitude nonlinear disturbances propagate without

breaking.
Finally, consider a merger at the same "large" value of y but in the presence

of a finite (though deep) lower layer, such as the one shown in Figure 2.17 for
0=0.2. Although reduced by the small value of 0, the presence of the logarithmic

term in the Greens' function is clearly felt at long distances over which the Ko
component has no effect. The shedding of vorticity takes place and, similarly to the

results of Figure 2.14, leads to the formation of two smaller vortices that are simply

advected by the flow of one large vortex.

The important conclusion to be retained is that, in the equivalent barotropic
model at large y, the filamentation process is greatly suppressed and,

therefore, axisymmetrization cannot take place. As we will show in detail in

Chapter 4, this can be described by the fact that the stagnation points in the

t Only a single surgery has been "manually" performed in this and the next run, to remove a common boundary
between the two vortices. This step is necessary in order to carry the integration out to the times of O(y-S ).
Dritschel (priv. comm.) has repeated some of these runs at even higher resolution and shown that extremely thin
and convoluted filaments are generated in the very high curvature region where one vortex "wraps around" the
other. However these are so small that several magnifications are necessary to see them. Moreover their
presence increases so much the computational burden that he was unable to carry to integration out beyond the
very early times. The surgery we have performed eliminates these events on very small scales and allows us to
compute to times over which the large scale features evolve significantly. The conclusions we draw in this
section are therefore not valid for the extremely small scales. Whether such very small scale processes are
physically relevant, in view of the inevitable presence of dissipation in any realistic system, is not entirely clear.
It would be of great interest to repeat some of these calculations with a continuous model, e.g. by doing high
resolution spectral simulations, to establish whether the nonaxisymmetrizing behavior persists in the case
where the vorticity fields are smooth.
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corotating streamfunction never succeed in penetrating the vorticity boundary and
extracting filaments.

2.4 Doubly-Connected Rotating One-layer V-states

2.4.1 A Review of the Saffman-Szeto Approach

Before proceeding to the study of situations in which the geostrophic

potential vorticity is present in both layers, we conclude this chapter by explicitly

showing, qualitatively and quantitatively, how the shapes of the curves in Figures
2.10, 11 and 12 for the critical merger distance as a function of 'Y and 0 can be

understood in connection with the existence of corotating V-states. What we have

done is to generalize to the two-layer system, the study that Saffman and Szeto

(1980) conducted for Euler equations.

As we have already mentioned in the review of Section 1.2, N vortices of

equal and constant vorticity can be arranged in a symmetric configuration in such a

way that they are stationary in some rotating frame. The simplest case is the one

where two vortices simply rotate around each other without change in shape; this

combination has been referred to as the doubly-connected rotating V-state. From

intuitive geometrical considerations, it shouldn't be surprising that the existence

and properties of these V-states are intimately connected with the occurrence of

merger.

The basic idea is the following: the initial condition that is usually chosen to

study the merger problem, namely two exact circles of equal vorticity, can be

considered to represent a large amplitude perturbation of a doubly-connected V­

state, if one exists for that value of de, the distance between the centroids scaled by

the radius of each vortex. This ratio (centroid distance over radius) is the relevant

parameter which characterizes the initial condition of the merger problem. Of

course the doubly-connected V-states are not circular, but the quantity de can be
calculated by defining the equivalent radius as the square root of the area over 11:. If

a V-state does not exist at that value of dc, or if it is unstable, it is reasonable to

expect the initial condition to evolve towards merger of the two vortices. Otherwise

the system will evolve by "oscillating" (both in physical and in phase space) around

this stable stationary state.
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Let us consider first the question of existence. When the vortices are far

apart, it is certainly possible to find a V-state and one can easily guess that the

shapes will be not be very different from circulart; its value of dc is large since the

centroid separation is much bigger than the radius. As the vortices are brought

closer together they become more elliptical, in order to resist each other's shear,

and the value of dc decreases. It is obvious that the vortices can be brought no

closer then when they are actually touching at one point. That last - "limiting" - V­

state has a specific, presumably 0(1), value of dc, let's call it dl, and no V-state

exists for dc<dl.
This is the essence of the idea of Saffman and Szeto. Merger will occur for

any value of dc<dl because no V-state that exists to play the role of a stationary

point to oscillate around in phase space. It turns out that, for the Euler equations,

one doesn't even need to calculate the exact V-states. By approximating them with

ellipses (which is equivalent to doing a second order moment model) and solving

a single very simple nonlinear algebraic equation Saffman and Szeto found
dl~3.0. They also numerically solved the full integra-differential system to

determine the shapes of the V-states and found dl~3.16.

Before showing our own results for the two-layer model, we need to say a

word about stability. Since even when a V-state exists it need not be stable, dl will

in fact represent only a lower bound to the critical merger distance. However it so

happens that, with the exception of the very elongated and "cuspy" states close to

the limiting one, most doubly-connected rotating V-states are probably stable, so

that dl turns out to be a very good lower bound for the critical merger distance.

More specifically, consider the schematic drawing of a doubly-connected

state shown in Figure 2.18. Of the inner and outer radii, xA and XB respectively, we
can, without loss of generality, chose xB=1 and define the ratio xA/xB=V as single

the parameter of interest. By a very careful numerical study of the eigenvalue

problem for the linear stability, Dritschel (1985) showed that, for the Euler

equations, only the m=2 mode (m being the discrete angular wave number of a

perturbation on the contour shape) can be linearly unstable, and that this occurs
when v<O.083, Le. when the ratio of the inner to the outer radius is less than 1:10.

This is, of course, only a linear result, but it certainly provides a first step

towards an understanding of why the value of dl is so close to the critical merger

distance. Alternatively, and perhaps more interestingly, it might not be erroneous to

t This was proven analytically by Dritschel (1985) for the Euler equations.
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claim that the proximity of dL to the critical merger distance is, rather, an indication

of the nonlinear stability of most doubly-connected rotating V-states. What we are

going to show next is that these same considerations can be applied, with only

quantitative differences, to the merger problem for the quasigeostrophic two-layer

model.

2.4.2 Two-Layer Model Results

Since we are only interested in the properties of the upper-layer doubly­

connected rotating V-states in as much as they lead us, by considering the limiting

cases (I.e. the ones for which the two vortices are touching at the origin) to a better

understanding of the variation of the critical merger distance as a function of the
two parameters of the two-layer model - 1 and 0, we have only briefly considered

the cases for which wOo

In general, both qualitatively and quantitatively, the resultst are perfectly

analogous to the ones obtained for the other types of upper-layer V-states
presented in section 2.2 namely that, for fixed v and 0, the difference from the Euler

shapes is very small and is maximal around 1=0(1) for 0#0, with the equivalent

barotropic model not reducing to the Euler limit at y:» 1.

As an example we show, in Figure 2.19 a set of V-states at 1=1 and

0=1 (equal layer depths) as we decrease the value of the ratio v of the inner to the

outer radius from 1 to O. Some of their properties are given in Table 2.1, including
the angular velocity (0), the area, the equivalent radius (R), the centroid of each

vortex (x) and the ratio of the centroid distance to the equivalent radius (de). A
second example, for the equivalent barotropic model at large 1, is shown in Figure

2.20, where the V-states for 1=10 and 0=0 are drawn for the same values of v (see

Table 2.2 for their properties).

Since our aim is to compare the the values of de with the results of the

merger problem for which the circles in the initial condition have area equal to 11:

(while the area of the V-states is in general different from 11:), a rescaling is

necessary to make the comparison meaningful. The way to proceed is the
following: for any given 1,0 and v, we find a V-state of area A for which the

equivalent radius is R and the intercentroid distance de. If we want rescale lengths

t Details of the algorithm, and, particularly, the method with which we have dealt with the infinite curvatures of
the limiting states that are of primary interest here, are contained in Appendix 83.
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by an amount u so that the area of each vortex is equal to n, we must chose

u=(A/n)1/2. The value of ytoo then needs to be rescaled so that the V-state of area

n will occur at y=uy. The value of y* is also given in Tables 2.1 and 2.2 for each V­

state.

Let's now finally concentrate exclusively on the limiting V-states. i.e. the
ones for which v=ot .For the three "canonical" values of 0 (0, 0.2 and 1) we have

plotted the values of dc versus (y*)-1 in Figure 2.21. It is remarkable how closely

these curves compare with ones for the critical merger distance obtained in Section
2.3.2. In particular, for the case 0=1 the value of dc is contained between 3.11 and

3.19 over the whole y range, and that is the reason why we were unable to detect a

dependence of the critical merger curve on yat 0=1 with a grid spacing of 0.2 in dc
(cf. Figure 2.10).

For 0=0.2 we find 3.0<dc<3.2, which agrees well with the variations of the

critical merger distance with y shown in Figure 2.11. Moreover the location of the

minimum in dc, which occurs around y=0.6, can be reconciled with the coarse

results of the initial value calculations. Notice that the values of dc are always
below 3.3, indicating the probable instability of the cuspy V-states near v=O. Finally,

for the equivalent barotropic case, comparison on Figures 2.12 and 2.21 shows
good agreement, though we have been unable to extend the curve to very high y

because of convergence problems in that limit, as we have already mentioned.

In conclusion, we would like to restate in a different, and perhaps more

illuminating, way what we believe to be the fundamental reason for the existence of

a critical distance for the merger problem: when two regions of equal vorticity are

sufficiently separated they fail to merge because of the presence "in their vicinity"

(in some phase space with some measure) of a stationary and stable configuration

that acts as an attractor for the vorticity field, preventing the collapse of the two

vortices into a single one. The collapse inevitably occurs where the initial condition

is "far" from any stable stationary state. We think it is reasonable to conjecture that

this understanding of the fundamental underlying dynamics of the merger problem

can be generalized to make it applicable to continuous distributions fo vorticity as

well as to continously stratified quasigeostrophic flows.

t Numerically, of course, we cannot set v=O. We have determined the solution at v~O.001, which, as can be seen
from Tables 2.1 and 2.2 is more than adequate for our present purposes.
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y

x

FIGURE 2.1. Schematic drawing of an upper-layer rotating V-state. Only the upper

layer is shown here (recall that 112=O).
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and 2.8.
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FIGURE 2.10. Merger results for the case of two equal layers, 13=1, in the (de,y)

parameter space. A x indicates that merger occurred at the correspoding values of

de and y, while a 0 indicates that no merger was observed. Thl:1 solid line for deritieal

was drawn in by hand to help visualize the regions of merger and no-merger.
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FIGURE 2.11. Same as Figure 2..10 but for 0=0.2.
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FIGURE 2.12. Same as Figure 2.10 but for 0=0.
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FIGURE 2.13. A merger at 0=0 and y=10-3 fordc=2.2. Notice the formation of thin

filaments and the axisymmetrization of the core, typical of the Euler equations.
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FIGURE 2.14. A merger at 0=0 and y=1 for dc=2.2. Notice the condensation ("rollup")

of vorticity in the filaments, similar the one observed by Williams and Wilson (1988).
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FIGURE 2.15. An equivalent barotropic "large y' merger [0=0, 1=3 and dc=2.2].

Notice the absence of filamentation and the non-axisymmetrization of the vorticity.
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FIGURE 2.16. Same as Figure 2.15 but for 1=5.
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FIGURE 2.17. A merger at large y but finite 8 [ here 8=0.2, y=5 and dc=2.2].
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FIGURE 2.18. Schematic drawing of a doubly-connected rotating V-state in the
upper layer. Recall that II2=O here.
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FIGURE 2.19. Doubly-connected rotating upper-layer V-states for 0=1 and y=1.

TABLE 2.1

Garnma=l De1ta=1

nu Omega de Gamma* R xbar Area

0.5000 0.01669 6.151 4.098 0.244 0.751 0.1870.3000 0.04175 4.023 3.079 0.325 0.653 0.3310.2000 0.05928 3.458 2.844 0.352 0.608 0.3880.1000 0.07572 3.160 2.775 0.360 0.569 0.4080.0500 0.08024 3.125 2.806 0.356 0.557 0.3990.0200 0.08078 3.140 2.833 0.353 0.554 0.3910.0100 0.08064 3.146 2.839 0.352 0.554 0.3900.0050 0.08057 3.148 2.840 0.352 0.554 0.3890.0020 0.08053 3.149 2.840 0.352 0.554 0.3890.0010 0.08053 3.149 2.840 0.352 0.554 0.389
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FIGURE 2.20. Doubly-connected rotating upper-layer V-states for 0=0 and y=1 O.

TABLE 2.2

Gamma=10 De1ta=0

nu Omega de Gamma* R xbar Area

0.5000 0.00000 6.005 0.400 0.250 0.750 0.196
0.3000 0.00001 3.721 0.286 0.349 0.650 0.383
0.2000 0.00007 3.034 0.252 0.396 0.601 0.493
0.1000 0.00046 2.666 0.238 0.420 0.560 0.555
0.0500 0.00092 2.713. 0.246 0.406 0.551 0.519
0.0200 0.00117 2.819 0.255 0.392 0.553 0.484
0.0100 0.00120 2.848 0.257 0.389 0.555 0.477
0.0050 0.00121 2.856 0.257 0.389 0.555 0.475
0.0020 0.00120 2.857 0.257 0.389 0.555 0.475
0.0010 0.00120 2.857 0.257 0.389 0.555 0.475
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FIGURE 2.21. Ratio of the intercentroid distance to the equivalent radius for the
limiting doubly-connected rotating upper-layer V-states as a function of y* for

0=0, 0.2 and 1.
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3. Two-Layer Dynamics with Geostrophic
Potential Vorticity in Both Layers

Roll on, thou deep and dark blue ocean - roJlJ

Byron

We now lift the constraint 112=0, and turn our attention to problems where the

geostrophic potential vorticity is simultaneously present in both layers. In this case

the number of interesting configurations that deserve to be studied becomes very

large. Rather than to concern ourselves superficially with a large number of

situations, we have opted to investigate in depth a small number of fundamental

problems. Moreover, we eliminate one dimension of the parameter space at the

outset by limiting our investigations throughout this chapter to the case of two
layers of equal depth (8=1).

It should therefore be apparent that, even in the present simplest context of

finite-area f-plane inviscid two-layer dynamics, many important questions still need

to be addressed, and that the problems that we have tackled and solved in this

thesis represent, in some sense, only a first taste of the very rich and fascinating

dynamics of strongly interacting highly-nonlinear potential vorticity structures in a

stratified quasi-geostrophic fluid.

Two recent studies have attracted our attention in particular, and have

played a dominant role in directing our efforts in two specific directions. The first is

a set of very high resolution numerical simulations of turbulence decay in a

stratified quasigeostrophic system (McWilliams 1988) which have pointed to the

question of alignment as. potentially one of the most important type of vortex

interaction within a quasigeostrophic stratified fluid. We have thus been led to study

the alignment problem in the simple two-layer quasigeostrophic model, and the

results of that investigation are presented in the next section (Section 3.1).

We have already alluded to the fact that, in analogy to the one-layer merger,

the phenomenology of the alignment problem is strongly connected with existence

of stationary configurations of vorticity. This connection is made explicit in Section
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3.2, where the new and rich phenomenology introduced by the presence of vorticity

at different densities is presented. Above all, we will show that much insight can be

gained from a new geometrical approach to the understanding of the dynamics
of vorticity structures.

The last portion of this chapter (Section 3.3) was motivated by a number of

recent studies dealing with the formation and the evolution of translating pairs

(dipoles) of vorticity in a quasigeostrophic two-layer model. We have determined

the stationary shapes of finite-area constant-vorticity dipoles with one vortex in

each layer. Again we are going to show that a geometrical interpretation of the

results can be quite valuable in understanding of the presence of boundaries that

delimit the existence of these solutions to certain regions of parameter space.

3.1. The Alignment Problem in the 2-layer Model

High-resolution numerical simulations of two-dimensional turbulence

(Fornberg 1977, Basdevant et al. 1981, McWilliams 1984, Babiano et al. 1986)

have shown how the enstrophy spectra in the inertial range appear to be

considerably steeper than the the k-1 slope predicted by the self-similar

Kolmogorov theory of Kraichnan (1967). The discrepancy is due to the failure of

that theory to take into account the existence of the energy invariant and the

localness of the flow dynamics in 'physical space.

These are known to lead to the condensation of vorticity into strong coherent

isolated and long-lived vortex structures, superimposed on a weak vorticity

continuum that behaves like a passive scalar (see Babiano et al. 1986, for more

details). The fundamental mechanism through which this coalescence of vorticity

takes place is the merger of vorticity regions of the same sign. It is through merger

that the reverse energy cascade to the small wavenumbers is understood to occur.

The status of our knowledge of stratified geostrophic turbulence is not as

advanced, mostly due to a lack of sufficiently high-resolution numerical simulations

that are just now beginning to appear. The original observation of Charney (1971)

that the geostrophic expression of the potential vorticity is isomorphic to the two­
dimensional (relative) vorticity V2'l'thereby implying a k-3 spectral lawt , reverse

tHere k is the total three dimensional wavenumber, with the vertical coordinate rescaled by the ratio Nlf of the
Brunt-Vaissala frequency to the Coriolls parameter.
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energy and forward enstrophy cascades and equipartition between potential and
kinetic energy has been generally confirmed by the study of Herring (1980), who

used a statistical closure model and, more recently, by the intermediate resolution

numerical simulations of Hua and Haidvogel (1986).
A number of other investigations have instead concentrated on models with

low vertical resolution, and in particular the two-layer model (Rhines 1979, Salmon

1980 and Holloway 1986). The important results to emerge from those studies are

that interactions of barotropic and baroclinic modes lead to energy cascades in

opposite directions - a barotropic "red" cascade to the large scales (analogous to

the two-dimensional case) and a baroclinic cascade to the smaller scales (a

manifestation of baroclinic instability). Moreover intermodal interactions tend to

transfer energy from the baroclinic to the barotropic modes, and occur preferentially

at scales close to the radius of deformation.

The first suggestion of the emergence of isolated and coherent vortices in

stratified quasigeostrophic turbulence was reported by Hua and Haidvogel (1986)

and a clear indication of their presence is found in the very recent numerical

simulation of McWilliams (1988) at an unprecedently high resolution. In particular,

McWilliams reports that the vortices of stratified geostrophic turbulence seem to be

mostly elongated in the vertical direction and horizontally axisymmetric.

We identify the mechanism responsible for the the formation of stratified

geostrophic vortices with the alignment process defined in Chapter 2. In the same

way as merger is responsible for the reverse energy cascade of the barotropic

modes towards the larger scales, alignment is the fundamenatal
mechanism that mediates the conversion of energy from baroclinic to
barotropic modes.

The alignment process necessitates the existence of stratification, and the

simplest possible context in which it can be studied is the one we have chosen for

this thesis: the quasigeostrophic two-layer model. Since this is new phenomenon

(we are unaware of previous direct studies of vortex alignment) we will start first by

defining it in an unambiguous way, and then proceed to a qualitative exploration of

its phenomenology.

We consider the interaction of two circular regions of equal vorticity located

one in the upper and one in the lower layer, and whose centroids are separated at

t=O by a horizontal distance de (scaled by the radius of the vortices). If, for t >0, the

centroid separation collapses to a lower value within a time of the order of the

period teof rotation of the vortices about their common centroid, we say that the two
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vortices have "aligned". When the vortices do not align, the centroid separation
undergoes a periodic (or quasiperiodic) oscillation but, on average, does not
decrease with timet.

The parameter space for the alignment problem, as we have defined it, is
two-dimensional (recall that we are considering here only the simplest case 0=1 of

equal depth layers), since both the initial intercentroid distance de and y, the ratio of

the radius of the vortices to the radius of deformation, can be specified

independently. We start by presenting a number of different cases that give a first
taste of the rich phenomenology of the alignment problem.

A first example of alignment is shown in Figure 3.1 for the case dc=2.2 and
y=1.25, where the dashed (solid) line represents the lower (upper) -layer vortex.

Notice how different the evolution of the vorticity field is from a merger event, in a

much as the two vortices do not wrap around one another but simply come to a

quasi-equilibrium state (in terms of not shedding further large vorticity filaments) as

they rest on top of each other. The baroclinic configuration at t=O has thus

transformed itself into a essentially barotropic one. In Figure 3.1 a we plot the

intercentroid distance as a function of time; it can be seen to fall essentially from the

initial value of 2.2 to about 0.6t .

As the coupling between the two-layers is reduced, it is reasonable to expect
that, at some sUfficiently small value of y, alignment will cease to occur. In Figure

3.2 we illustrate this with a run at the same initial distance dc=2.2 but at the smaller
value of y=1.0; notice how the intercentroid distance (Figure 3.2a) undergoes a

quasiperiodic oscillation, and the originally non-overlapping vortices pulsate as if

oscillating around a stationary vorticity configuration (a V-state). We will show in the

next section that such V-states do indeed exist, and the result of Figure 3.2 seems

to indicate that at least some of them are also stable.

Because the vortices are in different layers, they can actually be started off
with a nonzero overlap. If the value of y is now held constant, one would probably

expect that as the initial intercentroid distance is reduced alignment takes place.We
show in 3.3 one such example at the same value of 'Y=1 and at the smaller value of

t The question of possible exact recurrence in the case of non-merger (or non-alignment) has not been
investigated in detail even for the Euler equations. Suffice it to say that, in the present context, we are only
concerned in the short times of the order te and possibly secular behavior is not of interest here since, in actual
simulations of geostrophic turbulence, the encounters usually last less than O(tcl.
t The discontinuity in the value of the intercentroid distance at t=36 is due to the fact that, after the filaments
are disconnected by the automatic surgery, the intercentroid distance is calculated between the two central
vortices alone.
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de=1.4 (the intercentroid distance as a function of time is shown in Figure 3.3a).

After shedding a relatively thin filament, the vortices seem again to oscillate around

a stationary state, as evidenced by the nearly periodic pUlsation in the value of the
intercentroid distance after t=40.

In view of our experience with the merger problem, we would probably

expect that if we start the vortices at an even shorter distance for the same value of
Yalignment should again occur. It is therefore surprising to discover that this need

not be the case, as evidenced by run shown in Figure 3.4, for which the vortices do

not align at the smaller initial intercentroid distance of de=1.0 for the same value of
y=1. Again we interpret this as being due to the existence "near" the initial

condition of a V-state that is probably stable in some non-linear sense. It is

interesting to observe how no alignment takes place in spite of the large amount of

overlap between the two vortices.
The results of our exploration of the (de,y) parameter space to delimit the

region where alignment occurs is illustrated in Figure 3.5, where we have actually
plotted the results as function of y-1 to make them comparable with the merger

curves of Chapter 2. As in that case, we have drawn a cross where we have

observed alignment to occur and a circle where no alignment takes place (we

have, of course, been able to ascertain this only partially, in the sense that one

cannot wait indefinitely to convince oneself that alignment does not occur). The

solid curve that separates the crosses from the dots was drawn in by hand, and it

only serves the purpose of approximately indicating the location of a transition in
. behavior.

Before showing how the shape of this curve is intimately connected with the

existence of two-layer corotating V-states, a few comments should be made to

propose the plausibility of some of its characteristics. In the first place, it must be
noted that it is not surprising to have found that at Y<Ymin alignment never occurs;

this simply reflects the fact that as the layers become sufficiently uncoupled the

vortices cannot interact strongly enough to undergo an "irreversible" (more

precisely "non-recurrent") evolution. Perhaps more surprising is that the value of
Ymln is extremely close to 1 .

The upper branch of the curve, say for de>2, can be understood easily in

terms of arguments similar to the ones that were used to rationalize the merger
curves. Thus as Y--7oo we expect the curve to tend towards the Euler de value of 3.3,

since in that limit the Green's functions of (1.4) become identically logarithmic (with
the exception of an irrelevant time scale factor of 1/2 for the case 0=1 of interest
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here). In the large 1 limit then, when the vortices are not initially overlapping, the

vorticity in each layer affects the flow as if it were present in both layers at the same

time. A beautiful example of this interesting behavior is shown in Figure 3.6 where
alignment is shown to occur at 1=5 and de=2.2. Note how small the overlap region

between the two vortices is, in spite of the fact that they are actually located in

different layers (the evolution could actually be mistaken for an Euler merger!).

What is preventing the vortices from overlapping is the coupling between the layers

that is so strong that it makes the flow in each layer behave as if both vortices were

present in that layer.

The lower branch of the curve is also not entirely surprising. In a recent study

on the linear stability of quasigeostrophic vortices in a two-layer model, Flierl

(1988) has shown that barotropic circular vortices of constant potential vorticity are

stable to non-axisymmetric baroclinic perturbations of mode m=1. At small de it is

not unreasonable to consider the initial condition we have used for the alignment

problem as an m=1 baroclinic perturbation on a barotropic vortex, and thus we

expect the alignment curve never to intersect the de=O axis. What the results of

figure 3.5 seem to indicate is that barotropic circular vortices are in fact nonlinearly

unstable to quasigeostrophic baroclinic m=1 perturbations provided the amplitude

is large enough and the radius of deformation is small.

We conclude this section with a last example of alignment that illustrates the

variety of behavior that can occur when vorticity is present in both layers. In Figure

3.7 we show the evolution of two vortices with initial intercentroid distance de=3.0 at
1=2. The vortices are essentially split in half by their counterpart in the opposite

layer and thereby lead to a final state composed of four vortices. This kind of

complex final state can emerge because of the many degrees of freedom that are

possible when vorticity is present in both layers, and it suggests that four-vortex

stationary states exist and are probably stable. The two-vortex states are presented

next.
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3.2. Doubly-Connected Rotating Two-layer V-Statest

The purpose of this section is to illustrate how the shape of the critical

alignment distance curve (cf. Figure 3.5) can also be understood from a

generalization of the arguments presented in Section 2.4. The basic idea is very
simple: we wish to prove that alignment takes place in the region of the (dc,y) plane

where no stable doubly-connected rotating two-layer V-state exists.

Again we need to distinguish between the existence and the stability

questions. We are going to show in what follows that doubly-connect~d rotating

two-layer V-states do not exist in a region coinciding to a large extent with the

region where alignment occurs, and that the discrepancy between these two

regions must be attributed to the probable instability of the V-states with large

curvatures.
Because the critical alignment curve is not a single-valued function of y-1,

the method of Section 2.4 has been modified as follows. Consider the schematic

drawing of a two-layer doubly connected V-state is given in Figure 3.8. It consists of

two regions of equal geostrophic potential vorticity located one in the upper and

one in the lower layer, rotating around their common centroid (the origin) with an
angular velocity Q. As for the one-layer doubly-connected states, the only

geometrical parameter to be chosen is the ratio of inner to outer radius that we
define as V=XA!XB; the novelty here is that the vortices, being in different layers, can

overlap in which case v becomes negative. Note that the interesting parameter

range for v is -1 <v<1 .

Since we have confined the problem to two equal layers (0=1), we retain the

two-fold symmetry of the vortices (about the x-axis) and the parameter space to be

investigated is only two-dimensional. The question we wish to address here can
then be reformulated as follows: for what values of v and y does a V-state of the

type shown in Figure 3.8 exist? Recall that when the vortices are in the same layer
(cf. Section 2.4) solutions can be found for all v>O and y. In that case, as we have

shown, the interesting states are the ones were the vortices are actually touching

at one point (the "limiting" states).

t The details of the algorithm used to determine these V-states are found in Appendix B3.
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When the vortices are in different layers the meaning of "limiting" state needs

to be understood in the original sense of Wu et al. (1984). Namely, suppose we are
varying some parameter a (which identifies the state) and, having found a state at

a=ao, we can find states for increasing values of a up to a=ae. If no state exists for

a=ae+e, no matter how small e is, we designate the state at a=ae by the term

"limiting" state. For the Euler equations the parameter that indicates the existence

of a limiting state is usually a geometrical one. Thus, for example, the limiting state
for doubly-connected rotating Euler V-states occurs at v=O.

The reason for subjecting the reader to this somewhat formal definition

resides in that we want to show next that, in the quasigeostrophic two-layer model,
there exist limiting V-states in r. More specifically, for a fixed ratio of inner to

outer radius v, we will show that when the two-vortices ovelap (v<O) the limiting

state can occur at a finite value of r. A limiting state exists even when v>O (no

overlap) but it is only approached asymptotically as 'Y~oo. The reason for

proceeding by increasing 'Yat fixed v in the investigation of the (v,'Y) plane is

obviously suggested by the single-valuedness of the critical alignment distance
curve (cf. Figure 3.5) when de is taken to be fixed instead of 'Y.

Ideally, one would like, with reference to Figure 3.5, to fix de and calculate V­
states for increasing values of 'Y, showing that V-states cease to exist for 'Y>'Ye.

Recall, however, that de is, for a V-state, the ratio of the intercentroid distance to the

equivalent radius, and the algorithm we have used to determine the V-states does

not allow us to to prescribe these values a priori. We have therefore proceeded by
finding states as 'Y is increased from zero at fixed v, until, for 'Y='Yc, our algorithm fails

to converget . We then compute de for the V-state at "f='Yc.

These values are shown in Table 3.1, where the values of 'Yc have been

rescaled by (Area/lt)1/2 (cf. Section 2.4 for details) to make the numbers

comparable with the alignment problem of the previous section, where the vortices

had been chosen to be circles of radius 1. We have also plotted these values as
crosses in the (dc,'Y) plane, together with 'the critical alignment curve derived from

the initial value problems presented earlier (see Figure 3.9).

The agreement is not as good as for the one-layer case, but undoubtedly the

location where the V-states cease to exist is a good zeroth order predictor for

t Whether the value 'Yc at which the algorithm stops converging corresponds to the value 'Yo at which the V­
states stop eXisting is a very delicate question that we postpone to the latter part of this chapter. For most of
the cases we have computational evidence that the two are identical, while for some other cases the question
remains open.
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the region where alignment can be expected to occur. The hashed sector is the

location where V-states do exist but are probably unstable (in some nonlinear

sense). As we are going to show next, this seems to be the case especially for

those V-states whose shapes include regions of very high curvature.

We cannot avoid commenting on the lower part of the diagram in Figure 3.9,

where the results seem to indicate the existence of a small region in which V-states

do not exist but alignment doesn't seem to take place. Among a number of

explanations we suspect that the initial value problems were carried out at

insufficiently high resolution to detect the formation of thin filaments. Another

possibility may be offered by the existence of another kind of V-states in that region,

that we are unable to capture with the present algorithm.

It remains to be shown what causes the V-states to stop existing at a finite
value of 'Y, and we proceed now to a careful examination of the V-states themselves

in order to elucidate this matters. We have determined the solutions by increasing 'Y

from zero at fixed v. For v>O the situation is quite simple because the vortices do

not overlap. At 'Y=O the shapes are exact circles and !1=O. As 'Y is increased, i.e. as

the coupling between the two layers is made stronger, the vortices become

elongated, in a way similar to the Euler case, because, in order to remain

stationary, they must resist the shear induced by the vortex in the opposite layer.
When 'Y becomes very large the solution asymptotes to the Euler doubly-connected

rotating states, with the value of Q scaled by a factor of 1/2. In that limit, as we have

already mentioned, the vorticity behaves as if it were present in both layer at once,

and exact Euler behavior is recovered provided no vorticity is present in the upper

and lower layer at the same horizontal position.
As an illustration of this, a set of V-states for v=O.1 is shown in Figure 3.10

(the vortices are in different layers, although we have drawn both of them with solid

lines). Some of their properties are given in Table 3.2a, including dc, the area of
each vortex, its centroid X, its equivalent radius R and its aspect ratio A (obtained by

fitting an ellipse to the values of the second moments of vorticity, cf. Appendix A).
The interesting behavior, however, occurs as v becomes negative, in which case

the vortices have a nonzero overlap.
In Figure 3.11 the solutions for v=-O.1 are presented, and their properties

are given in Table 3.2b. It is here that we first see the existence of a critical 'Y
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beyond which no V-states exist; in particular for v=-0.1 we find Yc=11.90t . Note that

as Yc is approached the states become more elongated and more pointed. We are
now going to show that the large curvatures, as y approaches Yc are the

consequence the presence of a critical point in the corotating
streamfunction , and that the critical point approaches the contour as Y---?Yc.

We start with some definitions. For each V-state we can define a
corotating frame: it is the frame that rotates with constant angular velocity Q - the

rotation rate of the V-state in the inertial frame. Thefore, in the corotating frame, the
V-state is stationary with respect to the coordinate axes. The streamfunction 'IIcor in

the corotating frame is related to the streamfunction 'II in the inertial frame by:

1
'llcor (x,y) = 'II(x,y) - 2" Q (X2+y2)

By equilibrium points we refer to the points in the fluid were the velocity is

identically zero (so that if, for instance, a tracer particle were put at such a point, it

would not move away from it). The are two quite different types of equilibrium

points: centers and saddles:t: (they are sometimes referred to as elliptic and

hyperbolic points). We will try to show in the rest of this thesis, and in particular in

next chapter, that the latter (often called stagnation points), which from here on we
will designate by the term critical points , play a very important role in the

existence, stability and evolution of isolated vortex structures. Finally we will refer to
the streamlines that connect the critical points as the separatrices.

Armed with these definitions, let us try consider now the geometry of the

doubly-connected rotating two-layer V-states. Consider first the streamfunction, in

the inertial frame, of a V-state far from the limiting state. We show in Figure 3.12a,
for the case v=-0.1 and y=2.0, the velocity vectors on a grid large enough to

encompass the whole V-state# . Because of the symmetry of the system, we need

only show one of the two layers; the other one can be obtained by reflection about

the y-axis. Note that the velocity field is not tangent to the contour of the V-state in

t It goes without saying that one can determine the critical value of "I to any accuracy, provided one is willing to
invest the computational resources necessary. We have decided to content ourselves with determining "Ie to
within 0.05, which is of the order of afew percent for the 0(1) is of interest, especially in view of our somewhat
crude knowledge of amore precise location of the critical alignment distance curve.
:t: This nomenclature is borrowed from the theory of analytic functions.
#We have found this technique to be by far the easiest way to grasp the geometry of the streamfunction, since
the velocities are very easily calculated from the contour positions, while the streamfunctiom cannot be reduced
to asimple contour integral for the case of aKoGreens' function. Recall that the streamfunction is tangent to the
velocity field at every point in the fluid.
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the inertial frame since the vortices are rotating at constant velocity n in that frame.

Most importantly, however, it should be observed that the velocity field possesses
only one center (located somewhere inside the contour of the V-state), and that the

geometry of the streamfunction in the inertial frame consists simply of nested
closed streamlines.

By contrast, as can be seen from Figure 3.12b, the velocity field in the

corotating frame has a considerably more complicated topology. Not only two new

critical points appear but two more centers are also present in that frame, for a total

of five equilibrium points. In Figure 3.13 we have drawn a schematic rendition of

the geometry of the corotating streamfunction that helps to bring out the salient

features. The two new centers (designated C1 and C2 in Fig.3.13) are related to the

presence of two new sets of closed streamlines that correspond to what Melander

et al. (1987a) have called ghost vortices. They are a purely kinematic effect

produced by the change of frame. Their presence, however, necessitates the

introduction of two new critical points (81 and 82 in Fig. 3.13). It should be noted
that, at this value of 'Y, both critical points are located at 0(1) distances from the

contour of the V-state.
For 'Y=O, the shape of the V-state is an exact circle and the geometry of

Figure 3.13 becomes degenerate. In that case the area enclosed by the

separatrices (the ghost vortices) vanishes as they coalesce into a circle on which

8 1 and 82 are also located (we will give more details about this in Chapter 4). As
soon as 'Y is made nonzero, keeping v constant, the geometry of the corotating

streamfunction becomes similar to the one shown in Figure 3.13. As 'Y is increased

the critical point 8 1 at first approaches the contour but is eventually actually pushed
away from the contour until, at a value 'Y='Ys, the geometry of the corotating

streamfunction changes in a dramatic fashion.
What happens is that as 'Y exceeds the threshold 'Ys ( for the case v=-O.1 we

find 'Ys=4.5) the influence in each layer of the vorticity in the other layer is so strong

(because the coupling constant 'Y is large) that it induces a new set of closed

streamlines immediately above (or below) in the other layer, and a new center and,

by necessity, a new critical point are also created. In Figure 3.14 the velocity field
for the limiting state v=-O.1 and 'Y='Yc=11.90 is shown, while a schematic drawing of

the geometry of the corotating streamfunction for the states at ,,(>'Ys can be found in

Figure 3.15.

The existence of a limiting V-state is a direct consequence of the new critical
point 83 that appears as 'Y exceeds 'Ys. Indeed, as 'Y is increased further beyond 'Ys
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the vortex centered in C3 becomes larger and larger (because of the increased

coupling between the two-layers) and pushes the critical point 83 closer and closer
to the contour of the V-state, until, at the finite value Ye, the limiting state is reached

where the critical point is located on the contour itself.

To corroborate this interpretation, we have plotted in Figure 3.16 the

distances di (i=1,2,3), along the x-axis, between the critical points 8j and the
contour of the V-state as function of Y(the numerical algorithm that was used to

determine the location of the critical points is described in Appendix 0). Note that
d3, which appears only for y>4.5, vanishes at finite y~11.90, while the other two

critical points remain at 0(1) distances from the contour of the V-state. In order to
dispel any possible doubts as to whether d3 actually vanishes at finite Y or simply

aymptotes to zero as y-'loo , we have plotted, in Figure 3.16a the values of d3 versus

y for the interval 11.0<y<11.9 for the V-states that we have determined. It is clear

from that figure that d3 is equal to zero for a finite value of y, which can actually be

obtained by extrapolating the straight line to the axis, and is found to be very close
to 11.95, the first value of y for which our algorithm fails converge.

The above scenario for the existence of a limiting V-state at finite yapplies,

however, only to the cases for which the amount of overlap between the two
vortices (qualitatively measured by the magnitude of v) is relatively small, say v<v.

The reason for this is quite simple: when the overlap becomes more considerable,

the vortex in the lower (respectively upper) layer doesn't succeed in generating the

ghost vortex 83 in the upper (lower) layer because of the presence of the upper
(lower) layer vortex at that same location. It turns out that for v sufficiently large the

geometry of the corotating streamfunction is always qualitatively similar to the one

of Figure 3.13, namely with only two critical points present.
To illustrate this behavior we show, in Figure 3.17, a set of states at v=-0.7

for which Ye~3.55 (the properties are found in Table 3.2c). The limiting state comes

about because the critical point 82 (cf. Figure 3.13) touches the contour of the V­
state at Y=Ye. It is interesting to point out that, at this larger value of v, both critical

points approach the contour monotonically as y is increased from zero, and, as we

have said, there is no transition in behavior at some Y=15'

Consider the corotating velocity field for the limiting state for v=-0.7 at

Ye~3.55 shown in Figure 3.18. Notice that the critical point 82 is almost coincident

with the contour and that the amount of overlap between the two states is very large
(cf. Figure 3.18 for this). To see how the critical points move as y is varied, we have

plotted the distances d1 and d2 between the critical points (81 and 82 respectively)
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and the contour of the V-state as a function of y, in Figure 3.19. Note the monotonic

character of these functions, in contrast with the richer behavior at smaller values of
v (cf. Figure 3.16). In Figure 3.19a the values of d2 vs y for the last six V-states are

shown to fall on a straight line, leaving no doubt as to the fact that d2 vanishes for a
finite value of y.

It is perhaps remarkable that, at high yt, the shapes for two vortices that are

almost overlapping are so different from circular. Why this is so can be understood,

in qualitative sense, from the fact that as the coupling between the two layers

increases each vortex tends to become elongated in order to resist the shear

induced by the other vortex and this, as we will have the opportunity to show in

detail in the next chapter, brings the critical points of the corotating streamfunction
closer to the contours so that, at the finite value of y=Yc, the critical points coincide

with the contour and for Y>Yc no solution existst .

We conclude this section by turning to the difficult question of determining
whether the value Yc at which convergence ceases corresponds to the value Ye at

which the solutions stop existing. Clearly when we can show that the distance

between the contour of the V-state and a critical point vanishes for a finite value of
y (as for instance in Figure 3.16a or 3.19a) were are left with little doubt that the

failure of the algorithm to converge beyond Yc is truly associated with the fact that

states simply do not exist beyond that value of y.

It however turns out that, for some values of v not far from v, where the

transition in behavior occurs#, the cessation of convergence at Yc cannot be

associated with a critical point becoming extremely close to the contour. One such
example is given in Figure 3.20, where the V-states for v=-0.20 are shown (the

properties are given in Table 3.2d). Notice how the last very elongated states near

t We would like to point out that, from a quantitative perspective, "large y' usually means between 1<'/<5. This is
a consequence of the exponentially asymptotic behavior of the modified Bessel function of order zero.
t The linear theory of Flier! (1988 and priv. comm.) seems to indicate that fin~e amplitude m=1 perturbations to a
barotropic circular vortex equilibrate at all values of ywith the exception of one at which a resonance seems to
occur. It is therefore quite probable that, at a much larger value of y, V-states of this sort do exist. They would
however have quite different shape from the one presented here, in particular they would be elongated in the
opposite direction. We have been unable, numerically, to determine their existence; however their relevance to
the alignment problem at the values of y we have investigated with initial value calculations is probably very
weak, and their stability would still have to be ascertained even ~ they were found to exist.
# Our knowledge of the critical value 11, at which the behavior changes from the one indicated of Figure 3.11 to

the one of Figure 3.17, is somewhat crude because we have determined the solutions for only 9 values of v (cf.

Table 3.1). Ourresults indicate that -{).1 > 11 > -0.15.
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'Yc show little evidence of a cusp developing. An analysis of the critical points shows

in fact that even near 'Yc their distance to the contour is of 0(1).

The interesting question to be resolved here is whether it is possible to find a

limiting V-state (according to the definition given above) whose contour does not

contain a singularity. This would be a novelty since all known examples of single­

contour V-states (for the Euler equations) are known to possess limiting states that

are associated with the development of infinite curvatures on the contours

(associated with a critical point)t . Faced with the failure of our algorithm to
converge for "f>'Yc without the presence of a critical point "very near" the contour,

we are thus confronted with two possibilities: either 'Yc='Ye, i.e. the state at 'Yc is truly a

limiting state although it is smooth, or else our algorithm is simply not powerful
enough to be able to converge for the states beyond 'Yc (which however exist).

We have first considered the latter eventuality, and have thus implemented a

number of simple strategies to improve our power of convergence without major

changes to the algorithm. As is described in more detail in appendices these have

included:

a) increasing the number of points and distributing them in greater

amounts in the regions of high curvature (cf. Appendix B).
b) decreasing the increment in 'Y between two successive states to

avoid the possibility that convergence fails due to the choice of an

initial guess for the iteration that is to "far" from the actual solution.

c) using a logarithmically desingularized algorithm ( cf. Appendix C)

Although these improvements have allowed us to find V-states a very small amount
beyond 'Yc, the qualitative result remains that convergence fails when the contours

show no evidence of points of infinite curvature developing. We thus propose that,

if indeed the failure of the algorithm to converge must be attributed to its

inadequacy (as opposed to the non-existence of solutions), a first step could be

taken by increasing its order, as, for instance, Wu et al. (1984) have done to

accurately resolve the cuspy limiting Euler V-states. We note, however, that the

present algorithm is able to converge quite easily into very cuspy states (cf. for

instance Figure 3.17), and we suspect that the difficulty here (if indeed there is one)
is due to the "high" values of 'Y that induce the function Ko to behave very differently

from a logarithm.

t Dritschel (1988c) has recently presented Euler V-states with nested contours (corresponding to different
vorticity levels) that also appear to exhibit the existence of "smooth" limiting states.
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The other hypothesis that we have investigated is that the failure to converge
must be attributed to the factual non-existence of solutions beyond Ye. If that were

the case, one ought to be able to detect in the behavior of the solutions at Y<Ye
some indication that the states will cease to exist for Y>Ye. In the previous examples

known of limiting states the shape itself of the solutions, by becoming non­

differentiable, signals the approach of a region of parameter space were the

solutions fail to exist.

As we have said (cf. Figure 3.20), the shape of the contours for some two­

layer doubly-connected rotating V-states shows no sign of an approching limiting
state near Ye. One possibility we have explored:l: is that at Y=Ye we may be in the

presence of a fold in the solution as illustrated by Figure 3.21, where A designates

some quantity (amplitude) that represents a V-state (say its area, or aspect ratio,
etc.). If the solutions in the (A,y) plane happened to fall on a curve that had an

infinite slope (when Ywere taken to be the independent variable) at Ye, one would

of course be unable to find solutions for Y>Ye. However, since the solution curve

does not terminate at Ye, but simply "folds back", no catastrophe occurs at Ye and if A

were made the independent variable one would easily be able to find the solutions
above Ae by marching along the solution curve by incrementing A instead of y.

With our algorithm we cannot afford to fix quantities like A throughout the

iteration but, if we were in the presence of the above scenario, we ought to be able
to detect a incipient infinite slope near Ye as these quantities are plotted against Y

for the solutions obtained at Y<'Ye. Unfortunately, we have been unable to do so for

any of the quantities in Table 3.2d, which represent, at least, the few most obvious
properties of the solution. The examination of these quantities versus Y shows no

indication of a fold in the solution of the type shown in Figure 3.21.

In conclusion we confess that, in spite of our efforts, we have at present

been unable to settle this issue, and we suspect that a considerable amount of
work is going to be necessary to decide whether the smooth V-states at Ye are true

limiting states or simply location in parameter space where convergence becomes

a lot more difficult to achieve. The same considerations apply to some two-layer

dipolar V-states that we present next.

:I: We owe this suggestion to Prof. Joe Keller.
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3.3. Two-Layer Dipoles

We turn now the study of dipolar coherent vortex structures within the two­

layer quasigeostrophic model. These have been the subject of a number of

investigations in recent years that it will prove useful to review before proceeding to

present our own results.

Two main approaches must be distinguished. On one side, the analytical

approach has yielded a variety of exact, though discontinuous, solutions for pairs of

vortices in a baroclinic fluid usually referred to as modons (Flierl et al. 1980).

These are essentially the extension of the Batchelor solution for the Euler equation

(Batchelor 1967, pp.534-535) to the quasi-geostrophic two-layer model. These
solutions are C(2) in the streamfunctiont, i.e. discontinous in the first derivative of

the vorticity, and can be extended to include the effects of a planetary gradient of
vorticity (the 13-plane) provided their propagation is such that no Rossby radiation

is induced by their motion through the fluid.

The state of our knowledge as to the stability of these solutions is not very

advanced. However numerical simulations (McWiliams et al. 1981) seem to

suggest that barotropic modons may be unstable to perturbations of moderate

amplitude. There is also some evidence (Flierl, priv. comm.) that baroclinic modons

may be unstable in a similar way.

On the other side, we must recall the point vortex work of Hogg and Stommel

(1985a and b) and Young (1985). They have studied in some detail, within the

context of two-layer quasigeostrophy, the interactions of propagating pairs of point

vortices of opposite sign, one vortex in each layer, to which they assigned the

name herons:t. Because of their simplicity, these point vortex solutions exhibit

extremely aesthetically pleasing behavior of great variety as they interact. The

solutions we are going to present next can be considered to be the desingularized

extension of these point vortex pairs (we are unfavourable to the term "finite area

hetons").

It should be recalled that quasigeostrophic two-layer finite-area constant­

vorticity dipoles have already been observed to emerge naturally as the end

t Recall that the finite-area constant vorticity solution obtained via contour dynamics are only C(1), I.e. only the
velocity field is continuous throughout the fluid.
:t We note, incidentally, that point vortex dipolar solutions have also been found on the ~-plane (Zabusky and

McWilliams 1982) and in a continuously stratified quasigeostrophic situation (Flier! 1987).
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product of the decay of a perturbed baroclinic vortex (Helfrich and Send 1988).

This problem was originally proposed by Pedlosky (1985), who considered the

instability of a circular vortex in the upper layer, located directly above a circular

vortex of equal but opposite vorticity in the lower layer; he studied both the linear
and weakly non-linear problem (the same questions were more recently revisited

by Flierl 1988).

Helfrich and Send (1988) performed inital value contour dynamical

simulations to determine the large amplitude behavior of the perturbed vortex, and

confirmed that, following the simple arguments of Pedlosky (1985), an unstable

perturbation of mode m (the quantized angular wavenumber) will lead to the

breakup of the vortex into m two-layer dipoles. To illustrate this point, we have

reproduced in Figure 3.22 (from Helfrich and Send), a beautiful example of a

perturbed baroclinic vortex breaking into 3 two-layer dipoles.

We are now ready to present the result we have obtained for the stationary

translating vorticity configurations in two-layers, of which a sketch is shown in

Figure 3.23. Note that the vorticity has opposite sign in the different layers (this is

necessary for propagation). Since we have confined ourselves to the case of two
equal layers (0=1) only two parameters are left to be chosen: 'Yand the ratio J.t=XA!XS

of the inner to outer radius. The question we are addressing is essentially identical
to the one we asked in the preceding section: for what values of 'Y and Il can we find

dipolar V-states?

As we have done throughout, we have investigated the matter by increasing
'Y gradually from zero for a fixed value of Il. In contrast with the one-layer dipoles,

and in analogy with the two-layer doubly connected rotating V-states, the
interesting results in this problem are found for negative values of Il, Le. when the

two vortices have a nonzero overlap. For completeness' sake, however, we start by
consider the simple Il>O case (details of the algorithm are given in Appendix 62).

In Figure 3.24 we show a set of solutions for Il=O.05; their properties are

given in Table 3.3a. In particular we have tabulated the velocity and its ratio to the

velocity of an equivalent point vortex hetont, the area of each vortex and its ratio to

t We must warn the reader that this comparison is unfortunately of little value unless "'{ is small. From (1.4) it is
easy to see that, for a V-state of area A and intercentroid distance dc, the most reasonable choice for the

velocity of an equivalent point vortex heton is:

Vpv = ~ [d1 - .J2"'{ K1(.J2ydcll
471 c

with the strength s=A (recall that, without loss of generality, we have chosen the vorticity identically equal to 1).
What needs to be kept in mind is that the choice s=A is not a necessary one. Indeed, while for an Euler circular
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the circular solution at y=O, the intercentroid distance, the aspect ratio Ie of each

vortex (here O<Ie<1, and 1e=1 corresponds to a circle) and its equivalent radius R. In

perfect analogy to the V-states of the precending section, as y is increased from

zero the circular shapes become more elongated and as y-t~ the Euler dipolar

solutions of Deem and Zabusky (1978a and b) are recovered, with the velocity

reduced by a factor of 2, as can be seen directly from (1.4).

The interesting behavior starts to appear as 11 is made negative. The case

11=-0.1 is shown in Figure 3.25* (and Table 3.3b exhibit the properties of these

states). In a way not dissimilar with what we have shown occurs for the rotating two­

layer V-states, our algorithm fails to converge beyond some critical value of y.

For 11=-0.1 we find yc=2.95 (we have limited our knowledge of Yc to only ±0.05).

Here also we have attempted a series of simple improvements to the algorithm in

order to improve the convergence, as was explained in the previous section, but

without much success.

A consideration of the cotranslating streamfunction, for which a sketch is

provided in Figure 3.26, suggests that the failure to converge may be due to the

presence of the critical points 81 and 82 that approach the contour as y is

increased, which is the reason for the presence of a limiting state for the dipolar V­

states of the Euler equation (cf. Wu et al. 1984, for details). However, from the

smoothness of the contours at Yc, it is difficult to imagine that would be the case.

We illustrate this point in detail for the case 11=-0.3, for which the V-states

are shown in Figure 3.27 (cf. also Table 3.3c) and where Yc= 2.20. The minimum

distance dmin from the critical point 81 to the contour is plotted versus y in

Figure 3.28. Although it decreases with increasing y, it still has 0(1) values when

convergence is lost (I.e. at Yc), and no signs of an infinite slope of this quantity

versus y, which, as was explained in the previous section, may suggest the

approach to a limiting state, can be detected near Yc. It thus remains unclear

whether the state at Yc is a smooth limiting state.

vortex of radius 1 the exterior velocity field is identical to one of apoint vortex of strength 1t, such is not the case
when the Greens' function is of modified Bessel type. Thus, for instance, it is easy to show that the strenght Seq

of the point vortex that produces a field identical to the exterior of an equivalent barotropic circular vortex is
given by:

Seq = 1t [
21

1(')') 1
"I

which, of course, reduces to 1t in the limit "1«1.
* Throughout the remainder of this section we only plot, for the sake of clarity, the vortex in the upper layer.
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Similarly to the results of the previous section, we find that as the overlap
becomes larger, Le. as 11 becomes more negative, the behavior changes drastically

beyond the critical value it. A new scenario appears at 11=-0.6 for which the V­

states are shown in Figure 3.29 (and the properties given in Table 3.3d).
As y is increased from zero the vortices at first simply elongate in the familiar

way to maintain a stationary configuration in the presence of the shear due to the

other vortex, and, in the cotranslating frame, the geometry of the streamfunction is

identical to the one illustrated in Figure 3.26, Le. with two centers and two critical
points. However, when y becomes large enough, the coupling is so strong that the

vortex in each layer is capable of producing two new sets of closed streamlines,

thereby adding two centers and, by necessity, one new critical point.

This can be seen by considering the velocity field, for example, of the state at

11=-0.6 and y=2.90 which is given in Figure 3.30. The two new centers and a new

saddle point (So) on the x-axis appear, as the vorticity in each layer seems to

withdraw from the strong influence of the vorticity in the opposite layer and we find
that, at even larger 11, it is the new critical point So which becomes responsible for

the existence of a limiting V-state at finite y.

This can be seen more clearly from the states shown in Figure 3.31 at

11=-0.9 (see Table 3.3e for their properties) where the algorithm happens to

converge well enough to show us the beginning of the development of a cusp

(point of infinite curvature) on the contour as the critical pont So approaches the
boundary when y~yc=2.50. The distance between the critical point So and the

contour is plotted versus y in Figure 3.32 for the last few values of y. From an

extrapolation of the points, it is reasonable to believe that, for this value of 11, there

exist a limiting V-state due to the approach of critical point So.

We would like to point out, for the distracted reader who may not have

noticed it yet, that, at large yand 11 not too far from -1, the centroid of each vortex

has crossed the y-axis with respect to its location at y«1, so that the velocity has

also changed sign. This simple statement implies that there exists a V-state, say at

y=Yo, for which V=O, Le that does not translate. Thus, for instance, for the case 11=­

0.9 we find 2.12 < Yo < 2.15 (c!. Table 3.3e). As can be seen from Figure 3.31, this

state can be considered as the finite amplitude extension of a mode 1 plus a mode

3 perturbation on a circular baroclinic vortex whose linear stability was originally

considered by Pedlosky (1985). In his recent study, Flierl (1988) using an

asymptotic expansion in small amplitude, has predicted the existence of nonlinear

equilibrated solutions to the perturbed baroclinic vortex (see also Helfrich and

Chapter 3



98

Send for computational evidence for the existence of this type of solutions). We
believe that the V-states at y=Yo are the first example of finite amplitude solutions

that confirm the (vanishing amplitude) results of Flierl (1988).

More than the actual reversal in the direction of propagation, the shapes
themselves of the states near Yc are so different from the ones at y«1 t that one

may legitimately be concerned as to whether our particular method of solution is

such that, without being aware of it, we have started out on one branch of finite
amplitude solutions (at y«1) and ended up on a different branch at y~Yc. As a

general rule, to increase the efficiency of the computation, we have used as a first
guess for the iteration at the each value of y the converged V-state at the previous

value of y (recall that J.l, the ratio of inner to outer radius, is the same for a whole set

of states). For the first value of y we know that the solution has a nearly circular

shape, and we thus use an exact circle as the seed for the iteration.

The question we are addressing is the sensitivity of the results just

presented to the choice of the initial guess for the iterative scheme. In particular,
one may wonder whether the somewhat peculiar looking shapes at y~Yc aren't the

result of the procedure delineated above. To corroborate our result we have
calculated, as an example, the set of V-states for J.l=-0.9 using as the initial guess a

perfectly circular shape for each value of y. The results for this set of states, whose

shape are indistinguishable from the ones of Figure 3.31, are presented in Table

3.4b (for the reader's convenience we have retabulated the results of Table 3.3e in

Table 3.4a, with, in addition, the number of iterations necessary to achieve
convergence at each value of y).

Note that the differences are only in the fifth decimal figure, which is

probably unreliable due to the moderate accuracy with which the V-state were

computed (100 nodes per vortex). Of course, as can be seen in Tables 3.4a and b,

when the iteration for each V-state is inititialized with a circle the number of

iterations necessary to achieve convergence is considerably larger than when the
V-state at the previous value of y is used as the initial guess.

What we can conclude from the fact that, even with a circular initial guess at
all y, our algorithm converges to the solutions of Figure 3.31 is that if there exist, for

the same value of J.l, a new branch of solutions, their shapes would be very

tAt y«1 one would guess that the dominant modes are 1 and 2, while, from a simple inspection of the figures, it

seems more likely that the dominant modes are 1 and 3 for y near Yc .
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different from the ones presented here, although we cannot at this point exclude

their existence.

We hope to have given enough evidence throughout this chapter to support

the claim that a careful study of the topology of the corotating or cotranslating fields

yields much insight into the question of existence of stationary states of vorticity.

Extending this idea from a static to a dynamic context, we will show, in the next

chapter, how the critical points of the corotating streamfunction play an even more

crucial role in the evolution of unsteady voticity configurations.
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FIGURE 3.5. Phenomenology of the alignment problem in two-layer quasigeostrohy.

Crosses indicate alignment. and circles no-alig,nment.
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FIGURE 3.8. Schematic drawing of a two-layer doubly connected rotating V-state.
The solid (dashed) vortex is in the upper (lower) layer. (V=XA/xS).
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Table 3.1

XA Yc de

-0.10 4.02 3.23

-0.15 1.29 2.00

-0.20 1.48 2.50

-0.30 1.23 1.34

-0.40 1.30 0.95

-0.50 1.44 0.66

-0.60 1.63 0.46

-0.70 1.92 0.29

-0.80 2.45 0.16
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FIGURE 3.9. Alignment and the existence of doubly-connected corotating V-states.
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FIGURE 3.10. Doubly-connected two-layer corotating V-states for v=O.1. The values
of 'Yare given in the table below. As 'Y increases the states become more elliptical.

Table 3.2a

nu=O.l

Gamma Omega de Lambda R ><bar Area

0.01 0.00005 2.44486 1. 00000 0.44992 0.55000 0.63596
1. 00 0.04371 2.53956 0.93281 0.43443 0.55163 0.59292
2.00 0.05820 2.71710 0.82603 0.40848 0.55494 0.52419
3.00 0.05893 2.87183 0.74958 0.38879 0.55827 0.47488
5.00 0.05556 3.05399 0.67711 0.36882 0.56319 0.42735

10.00 0.05225 3.17605 0.64058 0.35745 0.56764 0.40140
20.00 0.05147 3.20145 0.63560 0.35540 0.56890 0.39681
50.00 0.05133 3.20557 0.63514 0.35510 0.56915 0.39615
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FIGURE 3.11. Doubly-connected two-layer corotating V-states for v=-O.1. The
values of yare given below. As y increases the states become more elliptical.

Table 3.2b

nu=-O.l

Gamma Omega de Lambda R xbar Area
0.01 0.00007 1. 63664 1.00000 0.54991 0.45000 0.950011. 00 0.07230 1. 73572 0.90004 0.52160 0.45268 0.854732.00 0.09336 1.98927 0.69832 0.45972 0.45726 0.663963.00 0.08760 2.27876 0.54012 0.40565 0.46219 0.516955.00 0.06930 2.78672 0.38630 0.34528 0.48110 0.374538.00 0.05659 3.17126 0.37273 0.32828 0.52054 0.3385711.00 0.05364 3.24048 0.43399 0.33481 0.54248 0.3521711.50 0.05358 3.23624 0.44804 0.33660 0.54466 0.3559411.80 0.05359 3.23226 0.45646 0.33765 0.54568 0.3581611. 85 0.05360 3.23170 0.45767 0.33779 0.54582 0.3584611.90 0.05360 3.23127 0.45874 0.33791 0.54595 0.35873
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FIGURE 3.12a. The velocity field of the V-state v=-0.1 at 1=2.0 in the inertial frame.

Note the presence of a single center, located somewhere inside the vortex. Note

also that the velocity field is not tangent to the contour in this frame.
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FIGURE 3.12b. The velocity field of the V-state v=-0.1 at y=2.0 in the corotating

frame. Note the presence of 3 centers (dots) and 2 saddles (crosses).
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FIGURE 3.13. A sketch of the geometry of the corotating streamfunction in the upper

layer for a doubly-connected corotating V-state, such as the one of the previous

figure. In the lower layer the situation is identical but reflected about the y-axis.
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FIGURE 3.14. The velocity field of the V-state v=-0.1 at Y=1c=11.90 in the corotating

frame. Note the appearance of a new center and a new saddle on the x-axis.
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FIGURE 3.15. A sketch of the geometry of the corotating streamfunction in the upper

layer for a doubly-connected corotating V-state, such as the one of the previous

figure.
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FIGURE 3.16. Plots of the distances between the critical points and the contour as a
function of y for the doubly-connected rotating V-states with v=-0.1.
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FIGURE 3.16a An enlargement of the previous figure near Yo showing the

intersection of d3 with the axis at "'1"'11.90.
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FIGURE 3.17. Doubly-connected two-layer corotating V-states for v=-0.7. The

values of yare given in the table below. As y increases the states become more

elliptical.

Table 3. 2c

nu=-O.7

Gamma Omega de Lambda R xbar Area

0.01 0.00017 0.35300 1. 00000 0.84986 0.15000 2.26904
1. 00 0.17724 0.36006 0.95523 0.83076 0.14956 2.16820
1. 50 0.21774 0.37663 0.82323 0.77082 0.14516 1.86661
2.00 0.22059 0.39119 0.65986 0.68809 0.13459 1. 48744
2.50 0.21458 0.38658 0.55120 0.62452 0.12071 1.22530
3.00 0.20891 0.35894 0.48710 0.57933 0.10397 1.05439
3.25 0.20722 0.33486 0.46749 0.56160 0.09403 0.99084
3.50 0.20666 0.30149 0.45444 0.54517 0.08218 0.93371
3.55 0.20663 0.29419 0.45208 0.54168 0.07968 0.92180

Chapter 3



121

FIGURE 3.18. The velocity field of the V-state v=-O.7 at Y=Yc=3.55 in the corotating

frame. Note the presence of 3 centers (dots) and 2 saddles (crosses).
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FIGURE 3.19. Plots of the distances between the critical points and the contour as a
function of 'Y for the doubly-connected rotating V-states with v=-O.7.
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FIGURE 3.19a An enlargement of the previous figure near Yc showing the

intersection of d3 with the axis at y=3.55.
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FIGURE 3.20. Doubly-connected two-layer corotating V-states for v=-0.2. The

values of yare given in the table below. As y increases the states become more

elliptical.

Table 3.2d

nu=-O.2

Gamma Omega de Lambda R xbar Area

0.01 0.00009 1. 33356 1. 00000 0.59990 0.40000 1.13059
1. 00 0.08902 1.41882 0.89272 0.56695 0.40220 1. 00980
1. 50 0.10945 1.52563 0.77404 0.52832 0.40301 0.87690
2.00 0.11408 1.65499 0.65133 0.48560 0.40183 0.74082
2.50 0.11115 1.78839 0.54393 0.44530 0.39819 0.62296
3.00 0.10530 1.91373 0.45296 0.40832 0.39071 0.52379
3.40 0.10012 1.99216 0.38540 0.37780 0.37632 0.44842
3.45 0.09954 1.99674 0.37621 0.37314 0.37254 0.43742
3.50 0.09905 1.99648 0.36613 0.36762 0.36697 0.42456
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FIGURE 3.21. A schematic drawing of the solution in the presence of a fold.

Chapter 3



T- 0.00

o
T- 30.00

126

T- 54.00 T- 8<t.OO

FIGURE 3.22. The evolution of an unstable circular baroclinic vortex with a m=3

normal mode perturbation (reprinted from Helfrich and Send. 1988).
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FIGURE 3.23. A schematic drawing of a two-layer dipole. The solid (dashed)

contour is in the upper (lower) layer. Note that the two vortices can overlap
(jl=XA/xS).
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FIGURE 3.24. Two-layer dipoles for Il=O.05. The values of yare given in the table
below. As y increases the vortices become more elongated.

Table 3. 3a

mu=0.05

Gamma V V/Vpv Area Area/AD de Lambda R

0.010 0.00003 0.97855 0.70883 1.00001 1.05000 0.99929 0.47500
0.500 0.01446 0.92608 0.72475 1. 02248 1.04882 0.97830 0.48031
1. 000 0.03051 0.90447 0.76806 1.08357 1.04483 0.92410 0.49445
2.000 0.05406 0.87460 0.91814 1.29531 1.02762 0.77697 0.54061
2.500 0.06329 0.85562 1.01683 1.43454 1.01524 0.70415 0.56892
3.000 0.07125 0.83377 1.12074 1.58113 1. 00205 0.64100 0.59728
3.500 0.07779 0.81232 1.21820 1.71863 0.98986 0.59093 0.62271
4.000 0.08285 0.79413 1.30058 1.83485 0.97988 0.55381 0.64342
5.000 0.08932 0.76980 1.41475 1. 99592 0.96671 0.50832 0.67107
7.500 0.09535 0.74717 1.53044 2.15913 0.95419 0.46754 0.69796

10.000 0.09704 0.74073 1.56484 2.20767 0.95053 0.45624 0.70577
50.000 0.09825 0.73546 1. 59085 2.24436 0.94765 0.44793 '0.71161
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FIGURE 3.25. Two-layer dipoles for 1l=-O.1 (only the upper layer vortex is shown).
The values of yare given in the table below. As y increases the vortices become

more elongated.

Table 3.3b

mu=-O .1

Gamma V V/Vpv Area Area/AO de Lambda R

0.010 0.00003 0.96494 0.95034 1.00000 0.90000 0.99929 0.55000
0.100 0.00170 0.93152 0.95133 1. 00105 0.89994 0.99875 0.55029
1. 000 0.03896 0.82575 1.05424 1.10934 0.89189 0.90266 0.57929
1. 500 0.05830 . 0.78098 1.19816 1. 26078 0.87783 0.79650 0.61757
2.000 0.07730 0.71907 1.43759 1.51272 0.85219 0.66760 0.67646
2.200 0.08513 0.68591 1.57164 1.65378 0.83743 0.61251 0.70730
2.400 0.09309 0.64691 1.73387 1. 82448 0.81940 0.55697 0.74290
2.600 0.10101 0.60167 1.92856 2.02936 0.79729 0.50210 0.78351
2.800 0.10859 0.54856 2.16298 2.27602 0.76860 0.44818 0.82976
2.900 0.11205 0.51546 2.30516 2.42564 0.74801 0.42013 0.85660
2.950 0.11351 0.49237 2.39501 2.52018 0.73144 0.40364 0.87313
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FIGURE 3.26. A sketch of the corotranslating streamfunction for the two-layer dipoles
when v is not too negative and y not too large.
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FIGURE 3.27. Two-layer dipoles for 11=-0.3 (only thJ upper layer vortex is shown).

The values of yare given in the table below. As y increases the vortices become

more elongated.

Table 3. 3e

mu=-O.3

Gamma V V/Vpv Area Area/AO de Lambda R

0.010 0.00004 0.92540 1. 32733 1.00000 0.70000 0.99898 0.65000
1. 000 0.04405 0.66961 1.47023 1.10767 0.69236 0.90298 0.68410
1. 250 0.05535 0.62953 1. 56799 1.18131 0.68533 0.84731 0.70647
1. 500 0.06627 0.58633 1.70671 1.28583 0.67380 0.77990 0.73706
1. 750 0.07694 0.53519 1.90452 1. 43486 0.65471 0.70187 0.77861
2.000 0.08684 0.46762 2.19558 1.65414 0.61966 0.61464 0.83599
2.100 0.08979 0.43014 2.35450 1. 77387 0.59381 0.57721 0.86571
2.200 0.08805 0.36363 2.56200 1.93020 0.52997 0.53637 0.90306
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FIGURE 3.28. The distance between the critical point 8 1 and the contour for the two­

layer dipole with J.L=-O.3.
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FIGURE 3.29. Two-layer dipoles for I.l.=-O.6 (only the upper layer vortex is shown).

The values of yare given in the table below. As y increases the vortices become, at

first, more elongated, and at sufficiently large y, develop a large m=3 component.

Table 3.3d

mu=-O.6

Gamma V V/Vpv Area Area/AO de Lambda R

0.010 0.00003 0.82732 2.01062 1.00000 0.40000 0.99898 0.80000
1. 000 0.03483 0.41007 2.11451 1.05167 0.39751 0.95075 0.82041
1. 500 0.04916 0.32420 2.30427 1.14605 0.38721 0.87350 0.85643
1. 750 0.05422 0.28300 2.45949 1. 22325 0.37216 0.82094 0.88480
2.000 0.05466 0.23191 2.64248 1. 31426 0.33248 0.76968 0.91713
2.100 0.05008 0.20105 2.68178 1.33381 0.29300 0.75720 0.92392
2.200 0.03766 0.15547 2.60890 1. 29756 0.21663 0.74390 0.91128
2.300 0.02369 0.11335 2.45744 1.22223 0.13604 0.70634 0.88444
2.400 0.01397 0.08495 2.,31454 1.15116 0.07952 0.66797 0.85834
2.500 0.00724 0.06440 2.17877 1. 08363 0.04038 0.63696 0.83278
2.600 0.00251 0.04701 2.04461 1. 01691 0.01335 0.61177 0.80673
2.700 -0.00083 0.03387 1.90914 0.94953 0.00478 0.58999 0.77955
2.800 -0.00314 0.05233 1.77059 0.88062 0.01615 0.56941 0.75073
2.900 -0.00476 0.06491 1.62553 0.80847 0.02244 0.54761 0.71932
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FIGURE 3.30. The velocity field in the upper layer and in the cotranslating frame for
the dipole at 1l=-Q.6 and r=2.90. Note the presence of 3 centers and 3 saddles.
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FIGURE 3.31. Two-layer dipoles for ~=-O.9 (only the upper layer vortex is shown).
The values of yare given in the table below. As y increases the vortices develop

high curvatures and a cusp appears near xB.

Table 3.3e

mu=-O.9

Garrma V V/Vpv Area Area/AO de Lambda R

0.010 0.00001 0.65069 2.83529 1.00000 0.10000 0.99898 0.95000
1. 000 0.01041 0.17816 2.84624 1.00386 0.09995 0.99603 0.95183
2.000 0.01552 0.09060 2.90517 1.02465 0.09461 0.97594 0.96164
2.050 0.01502 0.08636 2.90690 1.02526 0.09048 0.97458 0.96192
2.100 0.01206 0.07581 2.89494 1.02104 0.07198 0.96620 0.95994
2.120 0.00515 0.05450 2.85889 1. 00832 0.03077 0.92944 0.95395
2.150 -0.00574 0.05591 2.80343 0.98876 0.03468 0.86777 0.94465
2.200 -0.01725 0.08812 2.74503 0.96817 0.10443 0.80820 0.93476
2.250 -0.02597 0.11061 2.69894 0.95191 0.15719 0.76748 0.92688
2.300 -0.03338 0.13023 2.65841 0.93761 0.20151 0.73599 0.91989
2.350 -0.03998 0.14851 2.62293 0.92510 0.24020 0.71053 0.91373
2.400 -0.04601 0.16577 2.59522 0.91533 0.27420 0.68962 0.90889
2.450 -0.05152 0.18144 2.58127 0.91041 0.30328 0.67233 0.90645
2.500 -0.05641 0.19404 2.58826 0.91287 0.32632 0.65768 0.90767
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FIGURE 3.32. Plot of the distance between the critical pont So and the contour as a

function of y. There is a strong suggestion that a limiting V-state exists at finite y.
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Table 3. 4a

mu=-0.9

Gamma V V/Vpv Area Area/AO de Lambda R nit

0.010 0.00001 0.65069 2.83529 1. 00000 0.10000 0.99898 0.95000 1

1. 000 0.01041 0.17816 2.94624 1. 00396 0.09995 0.99603 0.95183 23

2.000 0.01552 0.09060 2.90517 1.02465 0.09461 0.97594 0.96164 105

2.050 0.01502 0.08636 2.90690 1.02526 0.09048 0.97458 0.96192 127

2.100 0.01206 0.07581 2.89494 1. 02104 0.07198 0.96620 0.95994 398

2.120 0.00515 0.05450 2.95889 1.00932 0.03077 0.92944 0.95395 600

2.150 -0.00574 0.05591 2.80343 0.98876 0.03468 0.96777 0.94465 265

2.200 -0.01725 0.08812 2.74503 0.96817 0.10443 0.80820 0.93476 133

2.250 -0.02597 0.11061 2.69994 0.95191 0.15719 0.76748 0.92688 94

2.300 -0.03339 0.13023 2.65941 0.93761 0.20151 0.73599 0.91989 83

2.350 -0.03998 0.14951 2.62293 0.92510 0.24020 0.71053 0.91373 90

2.400 -0.04601 0.16577 2.59522 0.91533 0.27420 0.68962 0.90889 79

2.450 -0.05152 0.19144 2.58127 0.91041 0.30328 0.67233 0.90645 83

2.500 -0.05641 0.19404 2.58826 0.91297 0.32632 0.65769 0.90767 224

Table 3. 4b

mu--O.9

Garrma V V/Vpv Area Area/AO de Lambda R nit

0.010 0.00001 0.65069 2.93529 1. 00000 0.10000 0.99899 0.95000 1
1. 000 0.01041 0.17816 2.84624 1. 00386 0.09995 0.99603 0.95183 23
2.000 0.01552 0.09060 2.90518 1. 02465 0.09461 0.97594 0.96164 106
2.050 0.01502 0.08636 2.90690 1. 02526 0.09048 0.97458 0.96192 166
2.100 0.01206 0.07591 2.89495 1. 02104 , 0.07198 0.96620 0.95994 448
2.120 0.00515 0.05450 2.95889 1. 00832 0.03077 0.92944 0.95395 727
2.150 -0.00574 -0.05591 2.80343 0.98876 0.03468 0.86777 0.94465 415
2.200 -0.01725 -0.08812 2.74503 0.96817 0.10443 0.80821 0.93476 248
2.250 -0.02597 -0.11061 2.69894 0.95191 0.15719 0.76748 0.92688 190
2.300 -0.03338 -0.13023 2.65841 0.93761 0.20151 0.73599 0.91999 166
2.350 -0.03998 -0.14851 2.62293 0.92510 0.24020 0.71053 0.91373 154
2.400 -0.04601 -0.16577 2.59521 0.91533 0.27420 0.69962 0.90889 146
2.450 -0.05152 -0.18145 2.58122 0.91039 0.30330 0.67231 0.90644 149
2.500 -0.05642 -0.19407 2.58808 0.91281 0.32.636 0.65767 0.90764 306
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4. Critical Points and Filamentation

Se non evero, emolto ben trovato.t

Giordano Bruno

Filamentation, the formation of extremely thin threads of vorticity in the

vicinity of otherwise coherent vortex structures, has come to be recognized, in

recent years, as one of the most common phenomena in the evolution of two­

dimensional vorticity fields. Originally observed by Deem and Zabusky (1978a and

b), it was for the first time revealed in all its beauty by. the very high resolution

contour dynamical calculations of Dritschel (1988, 1988a, 1988b) but has, until

now, eluded simple explanations.

To illustrate the complexity of this phenomenon we reprint in Figure 4.1 the

evolution of a perturbed Kirchhoff ellipse, calculated with a contour surgery

algorithm by Dritschel (1988). Notice how very thin filaments are repeatedly

generated leading to an extremely complicated convolution of the contour from a

very simple initial condition.

It is almost impossible to contemplate this without being reminded of the

complex behavior exhibited by the solutions of nonlinear dynamical system, which

have been the object of much study in the last half century. Among the many

discoveries of modern dynamical system theory is the importance of what have

come to be called "Smale horseshoes", whereby a volume of phase space is

repeatedly stretched and folded into a fabulously contorted shape. These are

known to occur, in particular, near the intersection of the stable and unstable

invariant manifolds at a hyperbolic fixed point.

That these ideas from dynamical system theory can be directly related to the

evolution of two-dimensional inviscid incompressible flows becomes apparent

upon consideration of the simple fact that the familiar expressions for the velocity in

t If it is not true, it is still a nice idea.
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terms of the streamfunction, Le.

u =dx/dt =- 'lfy and v =dy/dt ='lfx

are in fact Hamilton's equations, in which the streamfunction plays the role of the

Hamiltonian. Thus, among others, a direct analogy can be made between the

stagnation points of the flow and the hyperbolic points mentioned above (see, for

instance Wiggins 1988, Aref 1988 and references therein).

The object of this chapter is thus very simple: we intend to make manifest

how the process of filamentation can be directly attributed to the presence of a

critical (hyperbolic) point - in a comovingt reference frame - which comes into

contact with the vorticity distribution. We will show that a careful analysis of the

geometry of the comoving streamfunction, and in particular the location of the

critical points, can in fact be used to predict the time at which filamentation will

occur.

We must. however, start from the simplest example, which we treat in the

next section (4.1), of the geometry of the corotating streamfunction of a perturbed

circular vortex. We then proceed to the analysis of a perturbed Kirchhoff ellipse,

which provides the simplest and clearest instance for the observation of

filamentation and its connection to the presence of the critical points of the flow

(Section 4.2). We then extend these considerations from the Euler equations to the

equivalent barotropic model, and show how the absence of filamentation and
axisymmetrization at large 'Y discovered in Chapter 2 , can again be understood

from a geometrical analysis of the corotating fields (Section 4.3).

4.1. The Linearly Perturbed Rankine Vortex+

Let us start by considering the simplest possible two-dimensional vorticity

structure: the Rankine vortex, namely a circular patch of constant vorticity

embedded in an infinite irrotational flow. Without loss of generality we choose the

vorticity to have value 1 inside the radius R. The streamfunction 'If associated with

this vortex is found by solving the simple system:

t It is obvious that the general considerations of this chapter can be applied without qualitative differences to
both translating and rotating configurations. \
+Throughout this section the symbols rand e (or l'l) designate standard polar coordinates in the x-y plane.
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for

for

r<: R

r> R

together with the boundary conditions that \jI and \jIr be continuous at r=R. The

solution is easily found to be:

\jIi'= (1/4) [r2- R2]

'1'0 = (1/2) R2 log [ r/R ]

for r < R

for r> R (4.1 )

The stability of the solution (4.1) was investigated by Lord Kelvin more than a

hundred years ago (1880), and the results are well known (cf. for instance Lamb,

1945). If the boundary is displaced by an infinitesimal periodic perturbation of

mode m so that its location is given by the expression:

r =R + e11(8,t)

where
11(8,t) == (1/2) R-1 cos(m8-cot)

and e«1, the streamfunction associated with the perturbation is found to be:

<Pi = - e (r/R)2 cos(me-cot)

<Po = - e (R1r)2 cos(m8-cot)

and the dispersion relation is given by:

co= (m-1)/2 (4.2)

We now wish to investigate the geometry of the streamfunction in a frame that
rotates with,the same angular velocity Q=co/m as the perturbation. The total

corotating streamfunction 'Pc is obtained from the inertial one 'P=\jI+<p by subtracting

a term (1/2)Qr2 and changing the angular variable to ~=8-Qt. For simplicity let's

consider the case m=2 for which Q=1/4. The total exterior streamfunction in the

corotating frame is then given by:

'Pc = (1/2) R2 10g(r/R) - e (R/r)2 cos(2~) - (1/2) Q r2

and the boundary of the vortex is located at:

r = R + e (1/2R) cos(2~)
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We now proceed to the exploration of the geometry of 'Pc. First we wish to find the
critical points -located at (rc,l'}cl- which are found by solving:

and (4.5)

The second equation immediately gives l'}c=O, 1t/2,1t and 31t/2 but, from (4.4) it easy

to see that the hyperbolic critical points are located at 0 and 1t (the significance of

the solutions 1t/2 and 31t/2 will become clear in moment). Since 10 is infinitesimal we

then write:

and substituting this into the first equation of (4.5) we easily find:

(4.6)

This is an important result because it shows that, even when the perturbation is

infinitesimal, the critical point of the corotating streamfunction is located at an 0(1)
distance from the contour. This distance is equal to ("2-1 )~.41 times the radius of

the vortex itself. It is also easy to show that the 0(10) correction to the location of the

critical point is given by:

The next task is to find the separatrices that emanate from these critical points.

Since we know that they are very nearly circles of radius rc(O), we let them be

defined by the equation:
(4.7)

The function ps and the exponent ~ are determined by requiring that 'Pc along the

separatrices have the same value as at the critical points, I.e.:

(4.8)

Substitution of (4.7) into (4.8) shows that dominant balance at order 10 can only be

achieved if ~=1/2, and yields the expression for the separatrices:

(4.9)

It easy to show from (4.7) and (4.9) that the separatrices, in this simplest case, are

actually exact circles of radius "2R whose centers are displaced above and below
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the x-axis by an amont 0(101/2), which is much larger than the 0(10) displacement of

the perturbed vortex boundary given by (4.4).

This geometry is illustrated in Figure 4.2. The description of the corotating

streamfunction can be completed by calculating the position of the centers of the

ghost vortices (the regions enclosed by the separatrices) located at (rg , i}g), which

are found by solving:

and (4.10)

Since i}g=rr;/2 and 3rr;/2, and rg can only be 0(10) away from ..J2R, letting:

rg = ..J2R + 10 pg + 0(102)

and substituting into (4.10) yields:

pg =-2/R (4.11 )

The centers of the ghost vortices therefore reside inside the circle of radius ..J2R. It
is important to note that in the limit 10-.0 the two separatrices coalesce on this circle

and the ghost vortices disappear. The unperturbed Rankine vortex possesses

therefore a "critical circle" located at ..J2R with respect to m=2 perturbations.

As a matter of fact, the Rankine vortex possesses a countable infinity of

critical circles, one for each value of the angular wavenumber m of the linear

eigenmodes. Using the dispersion relation (4.2) it is easy to show that the critical

circle for mode m is located at

[ m ]112
rC,m = m-1 R (4.12)

What really matters is that in the limit m-.oo the distance between the vortex

boundary and the critical circle goes to zero. Thus, in a way totally analogous to the

m=2 case that we have just illustrated, an infinitesimal perturbation of mode m will

give rise to m critical points located a distance rc,m-R from the boundary, and m

ghost vortices.

This simple fact is at the root of the recent discovery of Dritschel (1988a)

regarding the filamentation of the Rankine vortex. After perturbing a Rankine vortex

with a small Gaussian "bump" on an otherwise circular contour, Dritschel observed

that, no matter how small the amplitude of the initial perturbation, filaments of

vorticity were eventually expelled, leading to an extremely complex evolution of the
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boundary shape. This has seemed to be difficult to reconcile with the linear

analysis which shows (cf. equation 4.2) that all modes are stable.

It is our belief, for which the next section will provide much evidence, that the

discovery of Dritschel can be easily understood from the presence of the above

mentioned critical points that, once in contact with the vortex, actually extract the

vorticity filaments. Since the initially Gaussian perturbation used by Dritschel can

be considered to contain even the highest modes, which, as we have shown, have

associated critical points which are extremely close to the boundary of the vortex, it

is not suprising that, given enough time, these modes would grow sufficiently

through the nonlinear interactions to make the vortex boundary collide with a

critical point, thereby leading to the formation of a filament.

We believe that, in Dritschel's experiment, the nonlinearity is a fundamental

ingredient that, by mediating the energy exchange between the modes, allows the

higher ones to gain sufficient amplitude to come in contact with their associated

critical point, and thus to filament. Indeed if the evolution of the perturbation were

arbitrarily made perfectly linear the modes would simply propagate around the
circular vortex boundary with the dispersive angular velocity n but without

interacting, and the initial Gaussian bump would simply recur every t=41tt.

The role of nonlinearity is thus crucial to the filamentation of the linearly

stable Rankine vortex. We have chosen to consider instead the filamentation of the

Kirchhoff ellipse, which presents the advantage of possessing unstable normal

modes. We are going to show that their growth leading to the coincidence of a

critical point with the vortex is the essential mechanism for filamentation. The

reason for studying this apparently more complicated problem (most of the analysis

has to be carried out in elliptical coordinates) is that it is possible to isolate the

filamentation process from the simple linear growth of an unstable eigenmode.

Because the nonlinear interactions are not playing as great a role as in the circular

problem, the comparison between linear theory and numerical experiments can be

meaningfully made and is found to be surprisingly good.

t It is simple to show that 1l(e,t+41t)=1l(e,t) if co is given by (4.2).
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4.2. The Filamentation of Kirchhoff Ellipses

The Kirchhoff vortex, an elliptical region of constant vorticity q surrounded by
irrotational fluid and rotating without change in shape with angular velocity Ok

given by
ab

Ok =q (a+b)2

where a and b are the major and minor axes of the ellipse, is an exact nonlinear

solution of the Euler equations. The linear stability of this vortex was analyzed by

Love (1893), who showed that infinitesimal perturbations will grow in time when the

ratio alb is greater than 3.
In a frame of reference rotating with constant angular velocity Ok the

topology of the streamfunction of an unperturbed Kirchhoff ellipse is qualitatively

identical to the one produced by an m=2 perturbation on a circular vortex shown in

Figure 4.2. It is characterized by two critical points located outside the vortex along

the major axis and two ghost vortices centered on the y-axis above and below the

ellipse.

What we intend to show in this section is the following: when a small

unstable mode is added to the ellipse at t=O, it grows according to linear theory

until the boundary of the perturbed ellipse comes into contact with one or more

critical points of the corotating streamfunction, after which filaments are extracted.

Because the growth of the perturbation is an essentially linear phenomenon, the

time at which the filament appears can actually be predicted analytically, and the

agreement with numerical initial value calculations is found to be good.

We first present the theory which leads to an analytic expression for the time

of filamentation, from now on referred to as tf, which we define as the time when

one or more critical points become coincident with the vortex boundary. Without

loss of generality, we can choose the vorticity q of the ellipse to be identically equal
to 1, and its area to be exactly 1t (I.e. ab=1). The only parameter describing the

ellipse is then its aspect ratio A=b/a (note that O<A.<1) so that:
Ai·

Ok =(1 +A)2 a =-VA
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The natural coordinate system for the problem is the elliptical one, where the
elliptical radius p and the elliptical angle l'} are implicitly defined in terms of the

cartesian coordinates (x,y) by the relations:

x =c coshp cos l'} and y =c sinhp sinl'}

and c,;(aL b2)1/2. In this coordinate system, the equation for the ellipse of aspect

ratio 'A. simply reduces to:

p =po = tanh-1'A.

The streamfunction 'V associated with the Kirchhoff solution is given by:

(4.14)

'Vo = (1/2) P + (1/4) e-2p cos2l'}

'Vi = (1/2) (1 +'A.)-1 ('A.x2+ y2)
for p> Po

for p < Po (4.15)

We now want to investigate the geometry of the streamfunction associated with the
Kirchhoff solution in a frame rotating with angular velocity Ok. As for the perturbed

Rankine vortex, the whole analysis can be done exactly.

Let the exterior corotating streamfunction be defined by

'Vc ='Vo - (1/2) ~ (x2+y2)

= 'Vo - (1/4)~ c2(cosh2p + cos2l'}) (4.16)

As was shown in the previous section, the corotating streamfunction of an elliptical

vortex is qualitatively given by the sketch in Figure 4.2; we now wish to determine

the exact position (Pc,l'}c) of the critical points. They are found by solving the

system:

and (4.17)

Substitution of (4.16) into (4.17) yields the system:

1 - e-2pc cos2l'}c - Ok c2 sinh2pc =0

(Ok c2- e-2p) sin2l'}c = 0

Chapter 4



146

The second of these equations yields 1'}c=O or ltt (the solutions It/2 and 3lt/2 are the

centers of the ghost vortices:!:), and upon substitution into the first one, the equation

to be solved for Pc becomes:

from which the exact expression for Pc is easily found to be:

1+3A
pc = (1/2) log( --)

1-A
(4.18)

Recalling that the major axis of the ellipse extends along the positive x-axis to

x=a=c cosh Po, the interesting quantity to consider is the ratio of the x coordinate of

the critical point Xc to the length of the major axis a. This is a function of the aspect

ratio A alone, and is easily shown to be:

(1+A)3/2
XC (A) _ ..L...--'-..,.­
a - (1 +3A)1/2

(4.19)

We have plotted this quantity versus A in Figure 4.3. Three important points have to

be made. First, as A---+ 1 it is easy to show from (4.19) that xc---+.y2a, so that the

circular result (4.6) is recovered in that limit. Second, it is apparent upon inspection

of (4.19) that the critical point becomes infinitely close to the ellipse as the aspect

ratio becomes infinitely large, i.e. xc---+a as A---+O. This would suggest that very

elongated ellipses should filament faster than more circular ones.

Third, and most importantly, notice that the curve of Figure 4.3 is perfectly

smooth at A=1/3, the linear stability threshold. The point we wish to stress is that

there is no connection between the linear stability of the Kirchhoff ellipse and the

existence and position of the critical points. A simple way to understand why this is

so' is to recall that the validity of a linear analysis rests in its dealing with

infinitesimally small amplitudes. Thus as long as the critical point is not exactly on

t Note that here fj is the elliptic angle. However, fj~O (and ,,) correspond to the portion of the positive (and,
respectively, negative) x-axis for which Ixl>c. Recall that the concentration points of the elliptical coordinate
system are located at x=±c and y~O.

:!: For the sake of completeness we note that it can easily be shown that the centers of the ghost vortices are
located at fjg~"/2 and 3"/2, and at the elliptical radius:

3+APg = log E"7l
1-..
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the contour of the unperturbed vortex, the linear stability analysis will show no

signs of its presence.

[In Addendum B we present a simple example to illustrate this point

a contrario . We show there that the stability of a 2-contour Rankine vortex is in

some limits connected with the position of the critical points.]

For a single-contour vortex (Le. one with a unique discontinuity in the

vorticity field), however, the filamentation process is a separate phenomenon from

the linear stabilty , as is evidenced by the fact that stable Rankine vortices are

also known to filament. In reexamining Figure 4.1, it should then be clear that the

breakup of a perturbed ellipse takes place in two quite distinct phases. At first (until

about t=6) the unstable perturbation grows in amplitude and the dynamics of this

evolution are well captured by the linear stability analysis (at least when the initial
amplitudes are small, and A. is not too large).

When the amplitude has grown sufficiently that the vortex is brought in

contact with the critical point, a filament is stripped away from the vortex (d. the

frame t=8 of Figure 4.1). The nonlinear evolution that ensues is of course too

complicated to be described analytically. However a careful application of the

linear theory allows us to predict the time at which the filament will appear.

We start by sketching the linear stability theory of Love (1893). We define the
total streamfunction 'P='l'+<P, where <P is the perturbation of elliptical angular

wavenumber m which, following Love, we write in the form:

<po = Am coshmpo e-m(P-Po} cosm1} + Bmsinhmpo e-m(p"1'o} sinm1}

<Pi = Am coshmp cosm1} + Bmsinhmp sinm1}
for P>Po

for P<Po

where the Am and Bm are function of time alone. This choice automatically insures

continuity of ail<P at the vortex boundary. The equation for the perturbed vortex

boundary itself is chosen to bet:

where

Pv(1}) = po + h~ ( Um cosm1) + ~m sin m1} ) (4.20)

(4.21 )

t We note incidentally that it is this clever choice of {4.20} that allows the decoupling of the different angular
modes in this problem. The factor {ho)2 is necessary to perturb the vortex without altering its total circulation.
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Requiring continuity in ap<p at the boundary yields the identities:

and 13m = -m e-rnpo Bm (4.22)

The last condition to be imposed is that the fluid inside the ellipse remain inside at

all times. This condition yields the evolution equations for the amplitudes Am and

Bmas functions of time, which take the simple form:

d mA.
dt Am = + [ (1 +A.)2 - e-mpo sinhmpo] Bm

(4.23)

The last step, yielding the dispersion relation for infinitesimal normal mode

perturbations of wavenumber m on the boundary of a Kirchhoff ellipse, is to let Am
and Bmbe proportional to exp(-im). This gives:

(4.25)

first obtained by Love (1893), who showed that mode 1 is stable, mode 2 is always
neutral (cr2=O) and mode 3 becomes unstable for A.>1/3. From (4.20) is it easy to

see that, for the unstable modes, Re(cr)=O so thatthey simply grow in place, without

propagating around the ellipse.

We now wish to examine more closely the streamfunction of a perturbed

ellipse, and in particular, by considering the frame rotating with angular velocity Dk,

to determine the location of the critical points of the corotating streamfunction for
t>O. Let us concentrate our attention on the case of an ellipse of aspect ratio A. to

which we superimpose, at t=O, an unstable infinitesimal perturbation of mode m.

We let:

so that the solution of system (4.19) can be written:

Am (t) = A~ est + A;;; e-st

Bm(t) =B~ est + B;;; e-st
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Substitution of (4.27) into (4.23) yields the relation:

with

x= e-mpo coshmpo -
mA.

(1 +A.)2

(4.28)

(4.29)

The Am's are determined by the choice of a perturbation at t=O. As was done by

Dritschel (1988) for the example shown in Figure 4.1, we choose initial

perturbations of the vortex boundary with only the cosm1'} mode present at t=O,

namely:
and (4.30)

where E is infinitesimal. Combining (4.22), (4.23), (4.27), (4.28) and (4.30) it is easy

to show that this choice implies:

Am (t) = - (112m) e-mpo E (est + e-st)

8m(t) = - X (112m) e-mpo E (est - e-st) (4.31 )

The total exterior streamfunction 'If0 for the evolving perturbed unstable ellipse can

then be written as follows:

'If0 = 'Vo + qJo

=(1/2) P+ (114) E-2P cos21'}

- E (112m) coshmpo (est + e-St) e-mp cosm1'}

- E (112m) X sinhmpo (est- e-st) e-mp sinm1'} (4.32)

The next step is to select a corotating frame, and we are here confronted with what

is probably the weakest point of this theory. The crux of the matter is that one

cannot precisely define a corotating frame when the vorticity field is not stationary.

This choice is thus formally always somewhat arbitrary (cf. Melander et al 1987a)

but, in practice, can be quite good. In the present context we proceed by assuming

that the perturbation is small enough that the angular velocity of the perturbed

vortex has deviated from Ok by only negligible amounts by the time the critical point

comes into contact with the vortext.

t The numerical simulations that we will present next provide an excellent a posteriorI validation of this
assumption. We have found that for small initial perturbations (say £<0.01) the deviation of the angular velocity
of the perturbed vortex obtained by fitting ellipses to the vorticity distribution at small time intervals and
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We thus define the corotating exterior total streamfunction '¥C as follows:

'I'c '" 'I'a - (1/2) Qk (X2+y2)

= '¥a - (1/4) Qk c2 (cosh2p + cos2~) (4.33)

and determine the positions (Pc,8c) of the critical points by solving the system:

and (4.34)

Since we are dealing with linear theory, i.e. we can neglect all terms of 0(102), we

can write:
Pc = pc(O) + 10 pc(1) + 0(102)

8 c = 8 c(0) + 10 8 c(1) + 0(102) (4.35)

Upon substitution of (4.35) into (4.34) with the definition (4.33) a sequence of

problems emerges as equal powers of 10 are collected.

At 0(1) the unperturbed Kirchhoff problem is obviously recovered so that:

and E\:(O) = t'\: (4.36)

where pc is given by (4.18) and ~c=O or n. At 0(10) we obtain the linear correction to

the position of the critical points which, after some algebra, is found to be:

P
c
(1) = coshmpc cosm~c e-mpc (est + e-st)

2 [Acosh2pc-e-2Pc]

""C(1) __ X sinhmpc cosm~c e-mpc"" ...:.::...---'----;::- (est - e-St)
2 [A-e-2Pc]

(4.37a)

(4.37b)

where A", (1-A)/(1+A). The equations (4.37) describe the trajectory of the crtical

point in the corotating frame according to linear perturbation theory. Let us first

consider the displacement in the location of the critical points at t=O due to the

perturbation.

It is easily seen from (4.37b) that 8 c(1)(t=0)=0. This is simply due to our

choice (4.30) to perturb the ellipse with the cosm~ mode alone. The more

interesting fact is that, without too much effort, one can show that, for the case

measuring the rate of change of the inclination of the major axis of the fitted ellipse to the x-axis differs from Q k
by amounts of the order of less than 1% for times smaller than tf.
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m=3t, for the critical point 81 (cf. Figure 4.2) - Le. the one at t'}c=O - Bc(1)<0 for t>o
so that 81 is initially moved into the y<O half-plane. This indeed corresponds to the

side of the vortex where the filament is extracted (cf Figure 4.1), and can be

considered as the first prediction of this linear theory.

Even more surprising is the investigation of (4.37a). With a bit of ingenuity it

can be shown that the denominator in (4.37a) is always positive so that the sign of
pc(1l(t) is the same as the sign of cosmt'}c. For a mode 3 perturbation this means

that that 81 is actually "pushed away" as the perturbation grows, while 8 2
approaches the origin. This remarkable fact is indeed supported by the numerical

calculation that we are going to present next. .

Contrary to what one might have guessed, the scenario that leads to the

filamentation of an ellipse perturbed with an unstable normal mode can be

summarized as follows: as the perturbation grows 81 is pushed further away from

the origin but the vortex boundary grows outwards faster than the critical point

recedes and, after overtaking, a filament forms. At the non-filamenting end, on the

contrary, 82 actually gets closer to the origin, but the receding vortex boundary

contracts fast enough that the distance between 82 and the contour always

remains 0(1).

Before presenting the numerical simulations, we carry out the last step of the

linear analysis that leads to the estimation of the filamentation time tf. From (4.20),

(4.22) and (4.31) it is easy to obtain the equation that describes the evolution of the

vortex boundary, which is found to be

pv(t},t) = Po + (1/2) £
(esl+e-Sl) cosmt'} + X (eSI-e-SI) sinmt'}

').., COS2t} + (1 fA) si n2t}
(4.38)

When the critical points coincides with the perturbed vortex boundary, its

coordinates given by (4.37), must also be solutions of (4.38). Therefore tf is found

by substituting (4.37) into (4.38) and solving for the time. After some algebra the

following result is obtained:

t ~.:!. 10 (Pc-po)
f s g £3(')..,)

(4.39)

t It may be useful, for Ihe sake of claliry, 10 remind Ihe reader that although amode mon acircular vortex gives
rise 10 mcritical poinls, a perturbed ellipse possesses only Iwo crilical poinls for any mode m (as shown in
Figure 4.2) provided its amplitude is "small".
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where 3 is a geometric factor that depends on the aspect ratio A. of the unperturbed

ellipse and given by:

3(1..) =_1
21..

coshmpc e-2Pc

2[ACOsh2pc-e-2Pc]
(4.40)

with pc given by (4.18). The reason for the ~ sign in (4.39) is twofold. In the first

place, to obtain (4.39) the orders of the asymptotic perturbation theory have had to
be mixed (notice the 10 appearing in the argument of the logarithm). Secondly, the

terms proportional to e-st have been neglected in comparison with the ones

proportional to est, which approximation can be validated after the calculation of tl

from (4.39) (one could, of course, keep the e-st terms and derive an expression for

tl by solving a quadratic).

In simpler terms, (4.39) is obtained by equating the radius of the vortex given
by Po+EP1est with the radius of the critical point given by Pc+EP2est, where P1 and P2

are constants, and solving for 1. Provided 10 is small, the 0(102) terms can be

neglected without too much ado. Of course pc-po also ought to be small if it has to

be balanced by small terms proportional to 10, which, as can be seen from Figure

4.3, turns out to be the case. Thus, for instance, for a 1..=0.3 ellipse Pc-Po~0.19 and

for 1..=0.2 Pc-Po~0.14. We believe that it is the closeness of the critical points of the

unperturbed ellipse to the boundary that makes (4.39) a better predictor than one

might have expected.

Notice that the factors entering (4.39) appear in the intuitively correct

position. Thus tl is inversely proportional to the growth rate s, so that more unstable

disturbances will tend to filament sooner. Also (4.39) shows that less elongated
ellipses (Le. larger Pc-Po) and smaller perturbation amplitudes will retard

filamentation.

Armed with (4.39) we now present some of the numerical experiments that

we have performed to test the extent to which the above linear analysis can applied

to the fully nonlinear evolution of a perturbed Kirchhoff vortex. In all of these runs

the errors in the globally conserved quantities we have measured (area and first

moments) are of the order one part in 10-4. The algorithm we have used is the

same as the one described in Section 1.5.2.

The initial condition for these runs are ellipses perturbed according to (4.20)

together with (4.30). Thus an initial condition is entirely specified by the choice of
the aspect ratio A. of the ellipse together with the mode m and amplitude 10 of the
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perturbation. We start by showing the evolution of a slightly unstable "-=0.30t

ellipse with a mode 3 perturbation of amplitude e=0.02 in Figure 4.4. The crosses

are drawn at the location of the critcal points of the instantaneous corotating

streamfunction (the technique used for calculating their position is presented in

Appendix D; we simply note here that it loses its validity when the vorticity patch

becomes very different from an E1l1ipse, as is the case after the filament is

extracted) .

Notice how after approximately 3/4 of a full rotation (for "-=0.3 the period

t k=21t/Qk~35.4) the critical point 81 originally to the right of the ellipse comes in

contact with the contour and almost immediately thereafter the filament is seen to

emerge. To quantify the filamentation time we plot in Figure 4.5 the time evolution

of the distance of the critical point from the origin dcp and the quantity dmax the

location of the "nose" of the ellipse:t:. As was shown with the linear theory, the

critical point recedes from the origin but the growth of the perturbation is such that

the boundary eventually overtakes it.

The time tc at which dcp and dmax cross is found to be approximately tc~28.5.

This compares quite well which the prediction of linear theory from (4.39) which

gives tf~30.4. Notice also, from Figure 4.4 how the distance between the critical

point 82 and the boundary of the vortex actually increases due to the receding

contour.

A clear diagnostic that easily quantifies the emergence of the filament is the

minimum value of the curvature along the contour plotted versus time, shown in

Figure 4.5a. Recall that for an ellipse (and even for a perturbed one, as long as the

perturbations is small) the curvature is positive for every point on the contour. The

appearence of negative curvature is a sure sign that a filament has been

created (ct. Figure 4.4). It is a simple matter to show that the minimum value of the

curvature on an exact ellipse is equal to "-312, which for "-=0.3 is approXimately 0.16.

The value of min(K) is not far from this number as the perturbation grows, but can

be seen to become very large and negative as the filament emerges.

As a second example we show in Figure 4.6 the evolution of a more

elongated "-=0.2 ellipse with an m=4 perturbation of amplitude e=0.02. Because the

initial vorticity field is symmetric upon reflection about the origin, both critica! points

t Recall that the stability boundary for the Kirchhoff ellipse is A=0.333... below which mode 3 becomes unstable.
:t: dmax is defined as the maximum distance of the contour from the origin. That this corresponds to the nose of
the ellipse is confirmed by the fact that the plot of the distance from the origin to the point of maximum curvature
around the contour was found to be indistinguishable from the curve for dmax.
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actually come into contact with the contour, and two filaments are extracted, as

could have been seen from (4.37a and b). The curves for dcp and dmax are shown

in Figure 4.7, and the crossing time is found to be tc=14.3. Again the prediction of

linear theory tf=17.5 is found to be quite good. In Figure 4.7a the minimum value of

the curvature is seen to become large and negative as the filament makes its
appearance.

In conclusion we show, as a counter example, the evolution of a ",=0.25

ellipse perturbed with a stable m=4t mode of amplitude £=0.02. Note that the

evolution shown in Figure 4.8 is actually fully nonlinear, but the nonlinear

interactions cannot generate any m=3 component, which is the only linearly

unstable mode. We have integrated numerically up to t=3Tk without observing any

sign of filamentation, which is consonant with the fact that the critical points are.

always outside the boundary of the vortex.

In Figure 4.9 plot the evolution of dcpand dmax. Note how the critical points

move in phase with the pulsations of the perturbed vortex, approaching the origin

as the vortex contracts and receding as the vortex elongates. That these curves are

not simple periodic functions is not too surprising because the evolution they are

describing is actually nonlinear. The crucial point, however, is that as long as the

critical points are outside the voticity boundary no filamentation is observed. We

remark, incidentally, that the actual distance between the critical point and the

contour is in fact quite small ( min[dcp-dmaxl=0.08for a major axis a=2.0).

We believe that the evidence presented here incontrovertibly establishes the

connection between the process of filamentation and the presence of critical

(hyperbolic) points in the comoving streamfunction that come into contact with the

boundary. We are now going to extend this idea from the Euler equations to the

equivalent barotropic model, and show that the discovery of suppressed
filamentation at large y reported in section 2.3.3 can analogously be understood

from the absence of critical points near the boundary of the vortices.

t It is easy to show from (4.25) that the mode m=4/oses stability below N=0.216.
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4.3. Critical Point~ in the Equivalent Barotropic Model (y»1)

As for the Euler case, it will prove useful to start by analyzing the case of a

perturbed circualr vortex before turning to more complicated vorticity distributions.

We consider an equivalent barotropic circular vortex of radius R and constant
potential vorticity I1=(VLy2)'V=I1o, surrounded by fluid with I1=O. Without loss of

generality we choose I1o=1. The streamfunction that satisfies:

(VL 'f) 'Vi = 1

(VL 'f) 'Va = 0

for r < R

for r> R (4.41 )

together with continuity of pressure and velocity (I.e. 'V and 'Vr) at the boundary is

easily found to bet:

'Vi = R y-1 K1 (yR) lo(yr) - y-2

'Va = - R y-1 11 (yR) Ko(yr)

for r<R

for r>R (4.42)

where 1m and Km are modified Bessel functions of order m. We now consider

infinitesimal perturbations on this vortex proportional to ei(m-a-Olt) and wish to find the

dispersion relation for such waves on the circular boundary. Among the many ways

to solve this problem, we illustrate the one used by Pedlosky (1985) for the heton
cloud problem. Let <P designate the perturbation streamfunction. It must satisfy the

homogeneous version of equation (4.41) and be continuous at the boundary, and

is easily shown to be given by:

<Pi = e Im(y r) / Im(yR) ei(m-a-rot) + cc.

<po = e Km(y r) / Km(yR) ei(m-a-rot) + cc.

for

for (4.43)

where e is an infinitesimal. The last matching condition needed is readily obtained

by integrating the equation of motion:

t In this section we revert to the use of rand f} as circular polar cordinates.
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with '¥""V+<P across the boundary of the vortex. From the 0(10) terms it is found that

the quantity that ought to be made continuous at the boundary is:

where V=dr'V is the azimuthal velocity of the unperturbed vortex. With (4.42) and

(4.43), some simple algebra yields the dispersion relation for waves on the

boundary of an equivalent barotropic vortex:

(4.44)

Note that the only nondimensional parameter of interest in this problem is yR the

ratio of the radius of the vortex to the deformation radius. Using the property (cf., for

instance Abramowitz and Stegun 1964):

. r(v) 1
lim Iv(z)Kv(z) = --'-'-'--
Z-->O 2r(v+1) 2v

is easily follows that 00=1/2 for m=2, so that the Euler result (4.2) is recovered in the

y~O limit. The more interesting behavior in the equivalent barotropic model is

however observed at "(»1 , where the property

1 1 4v2-1
Iv(z)Kv(z) ~ 2z (1 2 8z2) for 2»1

can be used to show that:

As we have mentioned in Chapter 2, a time scale proportional to y3 appears from a

number of different problems for the equivalent barotropic model at "(» 1.

From the dispersion relation it is a simple matter to determine the location rc
of the critical circle for mode m - which for 10",0 opens into m ghost vortices with m

critical points located at rc+O(e). Its position is given by equating Vo=dr'Vo with the

quantity Qr, where Q=oo/m. The equation to be solved for rc then becomes:

(4.45)
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Before showing the numerical solution of (4.45) it is useful to derive the asymptotic

expressions. Let us concentrate on the elliptical mode m=2. The quantity of interest
is rc/R as a function of yR. The y~O limit is quite obviously identical to the Euler

result given in (4.6):

I. rc ./1m - = '12
z->o R

The y»1 limit is, however, not as simple to deduce. Notice first that, for m=2,

(4.46)

n ~ (3/8) (yR)--3 for y»1

This might suggest that, since n~o as y~oo, the critical points should move to

infinity in that limit. This however turns out not to be the case, and tre reason is to

be found in the fact that the velocity field vanishes exponentially away from the
vortex. Substituting the ansatz rc=R+o - with 0«1 - into (4.45) and using the

asymptotic forms for the modified Bessel functions leads to the result:

for y»1

Thus, perhaps surprisingly, as y~oo the critical points of the m=2 perturbation

become coincident with the vortex boundary. Notice, however, that their approach
to the boundary is a very weak function of y.

The numerical solution of (4.45) shows that there is an even richer behavior
as y is varied from zero to infinity. It is shown in Figure 4.10, obtained using a very

simple bisection method (see, for instance, Press et al. 1986). It turns out that as y is

made finite the critical points at first recede from the vortex, reaching a maximum
distance around ~5, but at even larger y they approach the vortex with a very slow

logy/y decay. In practical terms, therefore, the logy/y behavior means that, even at

very large y the critical points are "far" from the vortex (cf. Figure 4.10).

This is, we believe, the reason for the absence of filamentation at y»1 that

was observed in Chapter 2. To confirm this we present a numerical initial value
calculation at y=3. The condition at t=O was chosen to be an exact A=0.3 ellipse.

Since the ellipse is not a solution of the equivalent barotropic equation, although,

as we have shown in Chapter 2, it is not far from an equivalent barotropic rotating

V-state, it will not maintain its shape for t>O.

The evolution is shown in Figure 4.11, where the computation has been

carried out to two full revolutions of the vortex (tmax=1000). The need for going so
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far in time is dictated by the y3 time scale present. Since, as was shown in the

previous section, an Euler ellipse filaments on times of 0(10)t, for large y the

calculation should be extended to times 0(100-1000) before a conclusive

statement regarding filamentation can be made. Compare the rotation period of an
Euler A=0.3 ellipse, Tk~35, with the time required for a full rotation of the vortex at

y=3, which, as can be deduced from Figure 4.11 is close to 500.

Notice how the critical points remain at an 0(1) distance throughout the

evolution. In Figure 4.12 we have plotted their distance from the origin - dcp - as a

function of time, together with the maximum distance from the origin to the vortex

boundary - dmax• As was observed for the Euler case the quantities are in phase,

as the critical point approaches and retracts from the vortex while the latter

undergoes large amplitude pulsations. There is, however, no apparent sign of a

trend that would indicate a long time approach of the critical point to the contour.

In summary, the results presented in this chapter leave little doubt as to the

the direct connection between the formation of vorticity filaments and the presence

of critical (hyperbolic) points of the comoving steamfunction. It is our hope and

belief that a geometric approach to the understanding of the fUlly nonlinear

dynamics of coherent vortex structures - such as the one we have illustrated here,

will prove very useful in shedding light on a number of other phenomena that have,

until now, escaped simple explanations.

t Recall that these are nondimensional units, and that time is scaled by the constant value of the geostrophic
potential vorticity inside the ellipse.
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FIGURE 4.1. The evolution of a 1:4 Kirchhoff ellipse with an inital normal mode 3

perturbation of amplitude £=0.005. (Reprinted from Dritschel, 1988). The vorticity is
constant within the ellipse and its value is 2n:.
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FIGURE 4.2. A sketch of the geometry of the corotating streamfunction for a circular

vortex with an m=2 (elliptical) perturbation. The solid line is the unperturbed circle.

The thin dashed line is the critical circle. The dark dashed lines are the

separatrices. C1 and C2 are the centers of the ghost vortices, and 51 and 52 are the

hyperbolic critical ponts.
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FIIGURE 4.3. The ratio of the distance of the critical point to the origin to the major

axis of the Kirchhoff ellipse (xc/a in the text) vs. the aspect ratio A..
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FIGURE 4.4. The evolution of a A=O.30 Kirchhoff ellipse, initially perturbed with an

unstable m=3 Love mode of amplitude e=O.02. The crosses designate the locations

of the hyperbolic critical points of the instantaneous corotating streamfunction

obtained by the method of Appendix D. Times advances to the left and downwards,

and the frames shown correspond to t=O, 2, 4, 6, etc.
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FIGURE 4.5. Plots of the maximum distance of the contour from the origin (dmax) and

of the distance from the critical point to the origin (dcp) as a function of time for the

evolution shown in Figure 4.4. The crossing occurs at t~28.5 when filamentation is

observed.
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FIGURE 4.5a. The evolution of the minimum value of the curvature along the contour

vs. time for the perturbed ellipse of Figure 4.4. Note the appearance of large

negative curvatures near tc signalling the formation of a filament.
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FIGURE 4.6. Evolution of a A.=0.20 ellipse with an initial m=4, E=0.02 perturbation:

The time frames shown are t=O, 2, 4, 6, etc.
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FIGURE 4.7. Same as Figure 4.5 but for "-=0.20, m=4 and e=0.02. Here tc~14.3.
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FIGURE 4.7a. Same as Figure 4.5a but for 1..=0.20, m=4 and £=0.02. Here tc~14.3.
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FIGURE 4.8. The evolution of a 1..=0.25 ellipse with an initial stable Love

perturbation of mode 4 and amplitude £=0.02. Note that the critical points never

penetrate the contour, and no filamentation is observed. The times shown

are t=O, 4, 8, 12, etc.
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FIGURE 4.9. Same as Figure 4.5 but for the stable m=4 evolution of Figure 4.8.
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FIGURE 4.10. The the critical radius as a function of y for a circular equivalent

barotropic vortex of radius 1. The maximum distance occurs around 'Y"'3.3.
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FIGURE 4.11. The evolution of an initially elliptical 1..=0.30 equivalent barotropic

vortex at 1=3. The crosses designate the location of the critical points of the

instantaneous corotating streamfunction. The time frame are t=O, 40, 80, etc.
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FIGURE 4.12. Same as Figure 4.5 but for the equivalent barotropic evolution of
Figure 4.11 at "(=3.
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5. Conclusion I
1- _

La dernifJfe demarche de la raison est de reconnartre
qu'i/ y a une infinite de chases qui la surpassent.t

Pascal

The new results presented in this thesis can be grouped into two broad

categories. On the one hand a number of fundamental questions in the

dynamics of isolated coherent vortex structures have been addressed within the

context of the quasigeostrophic two-layer approximation. The problem of

coalescence of two vortices in the same layer (merger) or in different layers

(alignment) has been studied in detail. The critical distances for merger and

alignment were numerically established as functions of the ratio of the vortex to

the deformation radius and of the relative thickness of the layers at rest.

The deep connection between the coalescence process and the

existence of doubly-connected rotating V-states was made explicit by

comparing the critical merger and alignment distances with the geometrical

properties of these V-states. In general, merger takes place within regions in

parameter space where V-states do not exist and also somewhat beyond the

existence boundary. Dritschel (1985) has shown that multiply-connected Euler

V-states tend to be unstable near the existence boundary and we believe that to

be the case for two-layer ones as well.

We have also found dipolar translating solutions of the two-layer

quasigeostrophic equations, either with one pole in each layer or with both

poles in the same layer. Their characteristics, as well as the ones of the rotating

states, have helped clarify the peculiar nature of the equivalent barotropic

model for motions on scales large compared with the deformation radius. In that

limit the dynamics of that model were shown to be very different from those of

the two-layer model, and in particular, the process of filamentation was found to

be greatly suppressed. Essentially, the Greens' function for potential vorticity

anomalies in the upper layer alone is very logarithmic in character (although

t The last advance of reason is to recognize that it is surpassed by an infinity of things.
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with different amplitudes, corresponding to different time scales). Only when the

lower layer is very deep does the exponential character of the induced velocity

become apparent for motions on a scale larger than LR.

A new geometrical approach to the understanding of the dynamics of

isolated and coherent vortex structures has yielded a number of insights on

questions previously lacking simple explanations. Above all, we have shown

the importance of the critical (stagnation) points of the comoving streamfunction

associated with a vortex structure. These have been found to determine bounds

(in parameter space) on the existence and the shape of stationary
configurations of vorticity.

We have also shown that they playa crucial role in the filamentation

process. We have studied in detail the evolution of a perturbed Kirchhoff ellipse,

for which case simple geometrical arguments combined with linear theory have

allowed us to derive an analytic expression for the time of filamentation which

was found to compare well with numerical simulations. The same geometrical

approach has also elucidated the suppression of filamentation for equivalent

barotropic motions with a small deformation radius.

Since the principal results of this thesis have been obtained using

models with discontinuous vorticity distributions, one may wonder to what extent

these results would be found to be qualitatively confirmed in continuous

systems. On the basis of the rather extensive investigations on 2D systems,

which have shown the results of contour dynamics to be qualitatively confirmed

by studies of more complex continuous systems, we have reasons to believe

that, at least qualitatively, the phenomenology of the merger and alignment

problems that we have presented here should be sufficiently robust to

generalize to continuous systems. However, the quantitative results will be

dependent on the smoothness of the vorticity fields.

In the case of V-states, the situation is more difficult, since it may be very

hard or impossible to find non-trivial smooth equilibria. We believe nonetheless

that smoothed out versions of our solutions represent relatively long-lived

structures. Undoubtedly, very delicate matters, such as the precise location of

the boundary for existence of equilibria and their stability, are very dependent

on the form of the vorticity distribution.

All in all, it is our belief that the contour dynamical calculations presented

here should be considered a first step in our understanding of stratified and

rotating vorticity dynamics. Because of its computational simplicity and the ease
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at obtaining insights into the flow equilibria and evolution, the contour

dynamical approach is very well suited for the rather simple situations

considered in this thesis, but it is rather obvious that the computational burden

would very easily become unbearable if several layers and many vortices with a

number of nested contours were to be considered.

There are a number of important additions to the problems we have

treated here that, we believe, deserve future investigation. In the first place the

presence of a planetary gradient of vorticity, the beta-effect, will introduce the

possibility of radiative interactions and energy transfers (Rossby waves) which

are liable to substantially enrich the dynamics of the problems presented here. It

would also prove interesting to study a system with a more realistic stratification

than two layers of equal depth; several layers (or a continuous stratification) will

exhibit dynamics that the simple two layers are unable to capture.

The model we have considered in this thesis, inviscid two-layer

quasigeostrophy on the f-plane, is probably much too simplified to allow for a

direct comparison with actual geophysical situations. However, it is not

unreasonable to believe that at least the gross qualitative conclusions maybe

sufficiently robust to allow one to draw some meaningful parallels with the

observations.

Thus, for instance, the merger and alignment processes are likely to play

significant roles in the highly nonlinear dynamics of the oceanic mesoscale

eddy field, where relative vorticity dominates over the planetary one, and for

which fully nonlinear f-plane dynamics is a reasonable simplest model. These

processes are the fundamental mechanisms that mediate, respectively, the

reverse barotropic two-dimensional energy cascade and the barotropic to

baroclinic energy conversion.

We would also like to mention the filamentation process, which is

probably related, among other things, to the large masses of fluid, often referred

to as streamers, that are observed to be entrained and detrained in the vicinity

of Gulf Stream rings, and whose presence is probably responsible for the

observed near axisymmetry of the latter. This phenomenon is one the clearest

geophysical examples of the role played by filamentation in reducing the

ellipticity of isolated coherent vortices.
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6. Addenda

A. Generalized Kirchhoff Vortices

Problems worthy
of attack
prove their worth
by hitting back!

Piet Heln

We append here the discovery of a new family of exact time dependent

solutions of the two-dimensional Euler equations. They are generalizations of the

Kirchhoff solution to N confocal ellipses. It should be noted that, because the

boundaries delimiting the regions of constant vorticity are forced to be elliptical, the

values of the vorticity jumps across them are prescribed by the appropriate

matching conditions, and cannot be chosen arbitrarily.

It turns out, unfortunately, that the vorticity distributions associated with these

vortices are somewhat "odd". In particular, the vorticity changes sign across each

interface, and for the 2-contour case, these vortices tend to look rather like elliptical

annuli of vorticity, with a core of opposite signed smaller amplitude vorticity.

The linear stability for the 2-contour vortex is also presented. It is an

extension of Love's (1893) analysis for the Kirchhoff ellipse. Stable regions in

parameter space are found.
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Generalized Kirchhoff vortices
L. M. Polvani and G. A. Flierl
Center for Meteorology and Physical Oceanography, Massachusetts Institute a/Technology, Cambridge.
Massachusetts 01139

(Received II September 1985; accepted 28 April 1986)

A family of exact solutions of the Euler equations is presented: they are generalizations of the
Kirchhoff'vortex to N confocal ellipses. Special attention is given to the case N = 2, for which the
stability is analyzed with a method similar to the one used by Love [Proc, London Math. Soc. 1.
XXV 18 ( 1893) ] for the Kirchhoff vortex. The results are compared with those for the
corresponding circular problem.

o

FIO. I. A ICbematic drawinJ 01'. pneralized Kircbholl'vortcx.

Since the whole system is in uniform rotation with angular
velocity 6), we must impose the condition that the stream
function with respect to a rotating reference frame.
f/J - ~ wr, must be invariant along the boundaries. i.e.•

:9 (Ib- ~ "(X'+y'»)~O onp=Pj' j~l,.... N.

(2)

(3 )

(3)

forPJ>p>Pi+P j=I....,N-l,

;N = I QNc'(cosh lp + cos 29)

+ A cosh lp cos 21/ +~, for P <PH.

This condition eliminates all homogeneous solutions except
the ones proportional to cos 28. The solution to the inhomo­
geneous system (1) which satisfies (2) is easily found to be

;0 = 1«e- 2
(p-p,) cos 28 + (r121T) p. for P >p,.

;J = I Qjc'(cosh 1p + cos 29) + BJ sinh lp cos 29

+ CJ cosh lp cos 29 + (/\/2,,) P + >Ill,

where

Bj = _J..c'(.. _J.. Q ) sinh(pj+Pi+') ,
4 2 J cosh(PJ -PHI)

Cj =J..c' (.. _ J.. Qi ) cosh( Pi +PJ+') •
4 2 cosh(Pj-Pi+l)

A = I c'(.. -I QH)(cosh lpH) - '.

The constants jIJ can be chosen to make'" continuous across
the boundaries; since our matching conditions are posed in
tenns of the velociti5-i.e.• the flow in the rotating frame
must be tangent to the boundaries-these constants are im~

A two-dimensional elliptical patch of homogeneous in­
viscid fluid ofunifonn vorticity rotating with constant angu~
lar velocity is an exact solution of the Euler equations; it is
called a Kirchhotrvortex. I Its vorticity Qand angular veloc­
ity 6) are related by

Q= [(a+b)'labJ ..,

where a and b are. respectively, the major and minor axes of
the ellipse. The system is stable to small perturbations pro­
vided a < 3b.2 We present in this work a family ofexact solu~
tions which are generalizations of the Kirchhoff vortex to N
confocal ellipses. and we investigate the stability for the spe­
cial case N = 2.

In terms of the usual Cartesian coordinates (XJl'). the
elliptical coordinates ( P.(}) needed to obtain an analytic so-­
lution are implicitly defined by

x=ccoshpcos8. y=csinhp sin 8.

The lines P = const define confocal ellipses whose foci are
located on the x axis at x = ± c.

II. GENERAUZED KIRCHHOFF VORTICES

Consider now the following distribution of vorticity Q
(Fig. I):

Q=O. for P>PI'

Q=Qj' forpj>p>PJ+" j=l •...• N-l.

Q=Q., for P<PN.

The stream function must then satisfy

V
2
"o=O. for P>PI'

V2~J =Ql' for Pj>P>PJ+I' j= 1..... N-l.

V2~N = QN' for P<PN'
which in elliptical coordinates becomes

(a' a') .
clp'+ iJ(J' ;0=0, P>P"

(a' a') Iclp' + iJ(J' ;J =TQJc'(cosh1p-cos29).

PJ>P>PJ+I' j= 1,...• N-l, (1)

(a' a') I
clp'+ iJ(J' ;N=TQNc'(cosh1p-cos2l/).

P<PN'

I. INTRODUCTION
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(II)

with

where

on P =PI +P;.
(9)

on P=P2+P;',

a a
ap (1/10 + ~o) ~ ap (¢, + ~,)

a a
ap (1/1, + ~,) = ap (1/1, + ~,)

a aao (I/Io+~o)= ao (I/I,+~,) onp~p,+p;,

a a (10)
ao (1/1, +~,) = ao (1/1, +~,) on p~p, +p;,

-.£.[p-p,-p;(O)]~O onp~p,+p;,
Dt

-.£. [p -p, -pi (0)] = 0 on p =p, +Pi,
Dt

Q, = 2<u[ 1 + coth( P, -p,) I
and

1/10 = lwc2e-2(P-P,) cos 28 +~UJc2e-2p,p,

1/1, ~! Q,c'(cosh 2p + cos 20) +! a,b,(Q, - Q,) P

+J.. wc! sinh( PI + P2) sinh 2p cos 28
4 sinh(p,~P2) (8)

~ J...tJJCl cosh( PI + P2} cosh 2p cos 28 + 1/10
4 sinh(Pl-p!) \'

1/12 = - AQ2c2(cosh 2p+ cos 28) + !UJc!

X (sinh 2p2)-1 cosh 2pcos 28 + I/I~.

D a ( I)-=-+J 1/I+~--4Ir .
Dt at 2

J(f,g) = a/ ag _ a/ .!!J...
ax iJy iJy ax

Q, ~ 2<u(l - coth 2p,).

Of the four parametersPI,p2' w, and c only the first two
are important in determining the shape. structure, and sta­
bility of the vortices.

Contours of the quantity QIIQ2 in the (PI' P2) plane are
plotted in Fig. 2. Also shown in that figure are the shapes of
the vortices for three typical values ofpl andp2'

In order to investigate the stability of the steady state
(8) we use a method similar to the one in Ref. 2. We denote
by Jo' t/J I' and "2 the perturbation stream functions. The
perturbed boundaries of the ellipses are given by

P=PI+P;(B) and P=P2+P;.(8).

Both the ""s and the P' 's are understood to be infinitesimal
qua'ntities. The "'s must satisfy Laplace's equation together
with the following conditions:

where OJ and bj are. respectively, the major and minor axes
of thefih ellipse. and are related to theP's by

aj = c coshpj and bj = c sinhpj'

f/Jo = ~ wc2e- 2( p -p,) cos 28 + (r121T) p.

I/Ij = I Qjc'(cosh 2p + cos 20) + (A/2,,) P

. + I 1 2 _s"in.,.h..:(.:,p!..j..:+--,P--,J.;:''':'':'')+(_1)1 -we
4 sinh(pj-pj+l)

x sinh 2p cos 20 (7)

+ ( I
,ll ,cosh(PJ +Pj+,) h2p

- r-tJJc cos
4 sinh(pl -Pl+ I)

xcos28+f/Jy. }=I..... N-l.

I/IN =! QNc'(cosh 2p + cos 20) + ( - I)N j4lc'

x (sinh 2pN)-' cosh 2p cos 20 +>/fi,.

It is easy to show that the N = I case corresponds to the
Kirchhoffvortex. Using (6) one can rewrite (3) as follows:

Qj = 2tu(1 +; )1+
1 coth(pj -Pj+ I) J.

j~ 1,... ,.\ . I, (6)

QN ~ 2<u[1 + ( - I)"" coth 2p,],

material. The Q) 's and A) 's are determined by requiring con·
tinuity of the tangential velocities:

a a
ap 1/11-1 = ap 1/11 on P=P1 for j= I. .... N (4)

which guarantees continuity of pressure. This condition
yields

r = 1\1 + 1Ta l b l QlJ
I\j_1 =Aj +1Ta1b

J
(Qj-Qj_I)' }=2,...,N-I, (5)

A... _ I = 1Ta NbN (QN - Q-v- I)'

and

It should be pointed out that once 4J and the Pj's
(j = 1.",. N) have been chosen. the Qj'S follow necessarily
from (6) and therefore cannot be set arbitrarily. In particu~

lar it is easy to see that Q) and Q) + I always have opposite
signs, and that Ql has the sign of 4J, A further interesting
property of these solutions is that the total circulation r is
detennined uniquely by the angular velocity (J) and the size
P I of the outer ellipse, Indeed it can be shown from (5) that

for all values of Nandpj's (j> 1).

III. STABILITY OF THE N = 2 VORTEX

We now turn our attention to the special case N = 2. for
which the stream function is given by

The last condition ensures that the deformed ellipses always
contain the same ftuid. It is possible to show that the above
three conditions guarantee continuity of pressure at the
boundaries.

Since the (I's are solutions of Laplace's equation we can
immediately write
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FIG. 2. Contours of Q,IQ2 in the
( p,. p,! plane. The values of the pa­
rameters for the vortices shown are
as follows: (a) PI = J.D. P: = 0.5.
e = 1.94, b,la, = 0.76, b/az
= 0.46. alia, = \.37. Q,/Q~

= -JQ,I.(b)PI=J,O,P2=0.5,e
= 0.]0, bl/a , = 0.99. b2la, = 0,46.

a,ia: = 8.9, Q,IQ: = - 6.4. (e) P,
= 2.5. P, = 1.5, e = 0.49. b,la ,
= 0.98, b,I(J, = 0.91, (J,/(J, = 2.6.
Q,IQ, = - 465.4.

¢Jt = 2: (em cosh mp cos mO + Dm sinh mp cos mO

4Jo = 2: (Ame - mp cos mO + 0me -mp sin mO),
m

Sincepi and pi always appear in combination with h ,- 2 and
h 2- 2 we can expand them together as follows:

+ Em cosh mp sin mO + Fm

X sinh mp sin mOl + dJ~ ,
(12)

(p; Ih i )(0) = L (am cos mO + 13m sin mO),
m

(pilhJ)(O) = L (Ym cosmO+6m sinmO).
• m

(15)

(14)

dJ 2 = L (Gm cosh mp cos me
m

+ Hm sinh mp sin me) + 4J~.

Conditions (9) and (10) can be combined to eliminate four
of the eight unknowns. After some algebra they can be
shown to simply reduce to

1 (P;)+-Q, - =0,
2 hi (13)

~:m ( Dm cos mB _ . Em sin mo)
'" cosh !np2 smh "'P2

1 (p' )--(Q,-Q,) -' =0,
2 hi

where we have defined

hj- 2 =c(cosh2pj -cos 20), i= 1,2.

In a similar way (11) must be Taylor expanded about the
unperturbed boundaries. After much algebra we obtain

a I a (P; ) I a (P;)ao 4J1 p, = - at hT' - T tV ae hf '
.!....~,I = _!...(Pi)+.l.,.!....(Pi).
a8 PI at h~ 2 an hi

Upon substitutions of (15) into (13) it immediately follows
that

am = - (2mIQt)(C", +D",)emp"

/3", = - (2mIQI)(E", +Fm)emp"

and

2m D...
Y... = ,

(Q2-QI) coshmp2 .

o = -2m E...
m (Q, _Q,) sinhmp,

The final step is the substitution of ( 12) and ( 1S) into ( 14).
Setting the coefficients ofcos m8 and sin mO to zero yields a
system offour homogeneous equations in four unknowns. If
the coefficients in (12) are assumed to be proportional to
e - ial. the equation for u is obtained by requiring that a non~

trivial solution exist, i.e" that the determinant of the system
vanish. This leads to an equation of the form:

(ul.,)' - A(m,p"p,)(ul.,)' - B(m,p"p,) = 0,
(16)

where the coefficients A and B are given by

A =a/3 -'5 + y(2a -]/J+' +5- y),

B = a13(y' - m - y(a" +13 '5),

and
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FIG. 3. Stability curves for N = 2 for
the modes '" = 3.4,j. The doned
curve is cal.culated from Aierl's the­
ory for circulu vortices for m = 3 as
described in the text.
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a = (l/2o»Q, cooh mp,e -..", - 1m,

p = (1I2o»Q,.inh mp,e-"'" -I m.

r = (l/2o>)(Q, - Q,)sinh mp, cosh mp,.

{; = (1I2o>)(Q, - Q,)sinh' mp, -I m tanh mp,.

S= (1/20>)(Q, - Q, )cooh' mp, +1m coth mp,.

From the fonn of (16) it is clear that 111 plays no role in
determining the stability of the vortex. Furthermore it is
easy to show that for stability the foUowing conditions must
be satisfied:

(17)

Because of the complexity of the coefficients A and B
one has to resort to numerical methods in order to detennine
the shape ofthe critical cW"Ves in the ( PI' p~) plane for each
mode m; they are shown in Fig. 3. The foUowing results have
been establillhed:

(1) Thcmodesm =,1 andm = 2 are stable (or neutral)
for all vaiues ofPI and P2 as was the case for the Kirchhoff'
vortex (N= I).

(2) In the limit ofvery !argep, the vortex becomes un·
stable ifp, <0.347 which comsponds to b,la, < j, in agree­
ment with Love's result for the Kirchhoff vortex.

(3) In genenol. given an inner ellipse of siu p, >0.347
the system will be stable for all m's provided the size of the
outer ellipse exceeds some critical value. For very luge val­
ues ofPI and Pl (i.e., for virtually circular boundaries) the
vortex will become unstable for (PI - Pl) <0.7.

Finally, we compare our results with the linear stability
theory ofRef. 3 for the circular problem. To each point in the
(Pl' Pl) plane we associate a unique pair of concentric cit·
cia of uniform vorticity; if the inner one has radius I and
vorticity I, and the outer one radius r and vorticity 9, we
establish a one·to--ooe correspondence between ( PI' P2) and
(r,q) by choosing

r' = sinh ?e, and q=~,
sinh 2pl Ql

which means that the outer to inner ratios ofarea and vorti·
city are the same for the concentric circles and the confocal
ellipses.

The stability curve for the m =3 mode is shown in Fig.
3. As eApect~ it agrees weD with the curve for the confocal
eillpse for large values of PI and Pl' The circular theory
breaks down forpl < 1.2, wbic:hcorresponds tobl /01<0.83.

In conclusion, we point out that two quite dilTerent
kinds of instabilities can be identified from the curves of Fig.
3. The lower branch of these curves (which is asymptotic to
Pl = 0.347, i.e., bl /01 = i for the mode m = 3) represents a
Lov~type instability due to excessive ellipticity of the inner
boundary. The upper branch. on the contrary. is really a
Rayleigh-type shear instability associated with the fact that
the vorticity gradient docs not have a unique sign through­
out the vortex.
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B. The 2-Level Rankine Vortex: Critical Points & Stability

L'example souvent n'est qu'un miroir trompeur.t

Corneilfe

It has been shown in Chapter 4 how the linear stability of the Rankine vortex

and the Kirchhoff ellipse are totally unrelated to the location of the critical points of

their corotating streamfunction. The central idea is the following: linear stability

theory is applicable in the limit of vanishing amplitude, and therefore, as long as

the critical points are not located exactly on the vortex boundaries, a linear (Le.

infinitesimal) perturbation will be unaware of their presence.

To demonstrate this point we consider in this section a situation in which it is

possible to have critical points actually coinciding with the vorticity discontinuities,

and show that, when this happens, the linear stability of the vortex is connected

with the location of the critical points of the corotating streamfunction.

This simplest example is provided by the 2-level Rankine vortex, for which
the axisymmetric vorticity V2'l' versus the radial distance r from the origin is

schematically illustrated in Figure 7.1. It is composed of two circular nested regions

of constant vorticity surrounded by irrotational flow. Without loss of generality, we

have chosen the inner vorticity and the outer radius to be equal to 1, so that only

two parameters appear in this problem: q=l= , the ratio of outer to inner vorticity, and

R, the ratio of inner to outer radius (note that O<R<1).

This vorticity distribution, being axisymmetric, is an exact nonlinear

stationary solution of the Euler equations. Its linear stability has been investigated

by a number of authors (see Flierl 1988, for the latest and most complete version),

but their choices of parameters are quite inappropriate for the present context. We

briefly summarize the analysis to introduce the notation.

t Example is often but a lying mirror.
=1= We confine our attention here to the range -1<q<1, where the connection between linear stability and the
position of the critical points is established.
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The streamfunction of the unperturbed vortex is the solution of:

o
V2", = q

1

for r>1
for R<r<1

for r<R

(7.1 )

with "', continuous at r=1 and r=R. It is easy to show that:

(1/2) [q+(1-q)R2] logr

"'= (1/2) (1-q) R2 10gr+ (1/4) q r2

(1/4) r2

for r>1

for R<r<1

for r<R

(7.2)

We now consider an infinitesimal perturbation <p of mode m on this basic state

which, following Lamb's (1945) analysis of the (one-level) Rankine vortex, we write:

(A+B) r mcos(m1'H2t)

<p = (A r m+ B rm)cos(mt'}-Qt)

(A R-2m + B) rmcos(mt'}-Qt)

for r>1

for R<r<1

for r<R

(7.3)

The form (7.3) is chosen to satisfy continuity of <p,} at r=1 and r=R. Next we must

impose continuity in the radial derivative of total streamfunction 'P=",+<p. If the outer

and inner perturbed vortex boundaries are located at 1+T11 (1'},t) and R+'TlR(1'},t)

respectively, it is simple to see that continuity of 'P, implies continuity of the quantity

'Tl"'rr+<p, at r=1 and r=R. The last condition to be enforced is the kinematic constraint

that ensures that fluid does not cross the vorticity boundaries:

'Tll + (1 Ir) "', 'Tl,} = - (1/r) <p,} at r=1 and r=R

These four boundary conditions, together with the choice

'Tl1 = H1 cos(mt'}-Qt) and 'TlR = HR cos(mt'}-Qt)

are used to eliminate the four constants A,B,H1 and HR and yield, after much

algebra, the dispersion relation for the normal modes of the problem:

(2Qf - (2Q) [q+(m-1)(1 +q)+m(1-q)R2]

+ (m+q-1) [(m-1)q+m(1-q)R2]-q(1-q)R2m = 0 (7.4)

Note that this is a quadratic in Q, as is expected from the presence of two contours.

Thus for a given choice of the parameters (q,R) two eigenmodes exist for the same
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m value. It is also straightforward to show that the ratio of the amplitudes of the

deviations of the boundaries from the unperturbed circles is given by the simple

expression:
H1 (m-1)-2Q
HR = qRm-i

Lets us now concentrate on the case m=2, for which the dispersion relation

reduces to:
(2Q)2 - (2Q) [1+2q+2(1--q)R2]

+ q(1 +q) + 2(1_q2)R2--q(1--q)R4 = 0 (7.5)

We determine first the regions of stability in the (q,R) parameter space. The
discriminant 11 for the quadratic (7.5) can be shown to be given by:

11= 1-4R2 (1--q) (1-R2)

== 1 - (1--q) g(R) (7.6)

where it is a simple matter to prove that the function g(R) reaches the maximum

value of 1 at R=1/-v2 in the interval 0<R<1.
For q>O it is clear that 11>0 for all R, so that all solutions are stable. Consider

now the appearence of unstable regions in R as q is made negative. If we let q= ~

with 0<~«1, it is easy to show that the unstable vortices are found in a window of

width proportional to ~1/2 centered around R=1/-v2 .

The interesting result here is that, as was shown in Section 4.1, for the vortex
with R=1/-v2 and q==O, m=2 perturbations on the inner contour located at R=1/-v2

have critical points associated with them located at r=1, the radial position of the

outer contour. Therefore, as q is made negative, the window of instability
in R opens around the value for which the critical points of the inner
vorticity distribution are coincident with the outer vorticity boundary .

The location of the critical points can obviously be calculated exactly for this

problem. To lowest order in the amplitude of the pertubations the radial location rc
of the critical points is found by solving:

(7.7)
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where 'If is given in (7.2) and Q is easily obtained from (7.5). Because V(r) is always

positive for r<R, but can be negative for r>R when q<O, there can be as many as
three values of rc that solve (7.7).

The expression for 'If to be used in (7.7) depends on whether R<r<1 or r>1. It

is simple to show that:

and

rc = R { ..!..=9. }1/2
Q-q

q(1-R2)+R2 1/2
rc ={ }

Q

when

when

R<r<1

r>1

It should be clear that it is not possible to have rc<R. The values for Q easily are

obtained from (7.5):

where

i4 = (1/4) b ± (1/4) [b2 -4cj1/2 (7.8)

b=1 +2q+2(1--q)R2 and c=q(1 +q)+2(1--q2)R2--q(1--q)R4

Because these expressions are rather complicated, it is useful to evaluate them

numerically to understand the parametric dependences.
We start by showing the real parts of Q as functions of R for q=0.5, 0.1, 0.01,

-0.01, -0.1 and -0.5 in Figure 7.2; the solid line corresponds to Q+ and the dashed

one to Q_. Note how, as q is decreased and passes through zero, the two roots

coalesce first for q=O at R=1lv2, and how the window of instability widens as q is

made more negative.

The radii of the critical points are plotted versus R for the same values of q in

Figure 7.3. It is interesting to note that, for the stable cases with q>O, the two critical
points associated with the two values of Q are located one between r=R and r=1

(for Q+) and the other one outside r=1 (for Q_). As q is made smaller the two critical

points coalesce on the outer contour (r=1) at R=1/.y2 for q=O. Thus the
appearance of instability is associated with the coalescence of the two
critical points on the outer vorticity boundary.

When Im(Q)#O, of course, the notion of the "corotating frame" becomes

ambiguous because the fields are not stationary in any frame of reference. The

values plotted in Figure 7.3 for the unstable cases are obtained by solving (7.7)
with the real part of Q alone. The interesting result is that, for q<O, both critical

points are either inside the outer boundary, for R<1/.y2, or outside it, for R>1/.y2, and
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that the region of instability seems to be associated with a range in R for which the

critical points are located near the outer boundary.

[The dotted lines appearing in the q<O cases of Figure 7.3 are associated

with a third critical point that appears for sufficiently small R. and is associated with
[.L. It is always located outside the outer boundary and plays no role in the above

arguments. It is simple to show that it exists only for q<O and R<{q/(q-1)}. ]
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C. Tripolar Coherent Euler Vortices

Rara avis in ferris nigroque simiJIima cygno.t

Juvenal

In numerical simulations of two-dimensional turbulence as well as in

laboratory experiments with rotating fluids, the frequency of appearance of isolated

coherent vortex structures is observed to decrease very rapidly with the increasing

number of poles. Thus, for instance, the number of dipoles emerging in decaying

turbulence simulations (McWilliams 1984, Babiano et al. 1986) compared to the

number of monopoles is found to be quite small.

It is for this reason that the first examples of tripolar coherent vortices were

only first observed fairly recently. To the best of our knowledge, the earliest

reference in the literature is due to Leith (1981) and the first clear picture was

provided by Legras et al. (1988) who observed a tripole spontaneously emerge in

one of their high resolution spectral simulations of two-dimensional turbulence. By

analogy with classical electromagnetism, it should be clear that tripoles are in fact

quadrupole distributions of vorticity (recall that poles must be powers of 2), in the

same way as "modons" are dipoles.

In this addendum we report on a new family of finite-area constant-vorticity

equilibria (V-states) for the two-dimensional Euler equations that are the

piecewise-constant analogs of the tripole reported by Legras et al. The generic

shape of these vortices is shown in Figure 7.4. They are composed of three regions

of vorticity: the two outer regions (the "satellite" vortices) have constant vorticity
equal to 1, while the central vortex has vorticity y<O (vortices with '(.>0 probably also

exist, but they are not being considered here).
The parameter space for this problem is three dimensional, since yas well

as the two radii a and b (see Figure 7.4) can be specified arbitrarily (note that

0<a<1 and 0<b<1). The question to be addressed here is the following: for what
value of (y,a,b) do tripolar solutions exist? For fixed values of y and a, we find that,

as b is increased from to 0 to 1, convergence fails when the central vortex becomes

too close to the satellites; when this happens the vortices are very different in

shape from circles, and curvatures of both signs occur on their contours. Whether

t A rare bird on this earth, like nothing so much as a black swan.
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this failure is due to the inadequacy of our algorithm to handle very contorted
shapes or to the existence of a limiting V-state at some value of bE (0,1) is a

question that we have not examined in detail (refer to the discussion in Chapter 3).

The algorithm we have used to determine the tripolar solutions presented

here is an adaptation of the second order scheme of Wu et al. (1984) to the

geometry of this problem. By symmetry the nodes can be placed in the upper right­

hand quadrant alone as shown in Figure 7.5, with 4M nodes on the central vortex

and 2N on the satellites. The algorithm proceeds in a way very similar to the one

described in section 1.5.1; the novelty here is that we need to insur~ that all the
contours rotate at the same angular velocity n, which is calculated after each

iteration using the expression:

. 1 M M+N+1
n = [1-a2+b2-R~r [L + L ] {Vi+1/2 (Xi+1 - Xi) - Ui+1/2 (Yi+1 - Yi) }

i=1 i=M+2

where the labelling of the nodes is shown in Figure 7.5. Two tridiagonal systems

(cf. Section 1.5.1) must be solved, one for the satellites and one for the central

vortex. The analogs of (1.12) can be shown to be given by:

(i=1 ,... ,M) for the center vortex and

(i=M+2, ... ,N+M+2) for the satellites, where xo=(1-a)/2. It is important to note that the

intercept of the contour of the central vortex with the y-axis (R1) is not fixed and,
together with the angular velocity n, is an unknown to be solved for.

We now present a few solutions to illustrate the kinds of behavior observed.
In Figure 7.6 we show the states at y=-2, a=0.7 and b=0.1,0.2,0.3,0.4. No

convergence was achieved for b>0.4. Note how, as the satellites approach the

central vortex, they become more elongated to oppose its shear and maintain an
equilibrium position. In Figure 7.7 the states for y=-3, a=0.5 and b=0.1 ,0.2 and 0.3.

The last value of b for which the algorithm converged shows the presence of a
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slightly negative CUNatures on the satellite vortices; they are due to the greater

strength of the central vortex and become very evident for the last case shown
here, the V-states at 'Y=-4, a=0.3 and b=0.1 and 0.2, shown in Figure 7.8.

It perhaps is interesting to note that the value of n changes sign between

b=0.1 and b=0.2, which implies the existence of nonrotating tripolar configurations.

Tripoles with zero circulation are of special interest because the velocity field they

generate decreases very rapidly away from them. For a nonrotating point vortex

tripole, is is easy to show that that the velocity field decreases like 1/r3 for large r,

compared with a 1/r dependence for a point vortex monopole, and a 1/r2 for a point

vortex dipole). This would mean that such coherent vortex structures are almost

"invisible", in the sense that their presence is felt only at very short distances.

We have only briefly investigated the stability of the above solutions, and we

have found stable examples as well as unstable ones. In Figure 7.9 we show the
evolution of a perturbed 'Y=-2, a=0.6 and b=0.3 V-state. We have chosen a quite

simple and at the same time quite general perturbation: we displace one satellite

towards the central vortex at t=O. The example of Figure 7.9 suggest stability, as is

evidenced by the fact that the vorticity field retains its tripolar nature after two full

turnaround periods, and the satellites merely oscillate around the central vortex

while all three vortex boundaries undergo pulsations in their shapes.
An unstable evolution is presented in Figure 7.10, for a perturbed 'Y=-4,

a=0.6 and b=0.2 tripole. The interesting result could be summarized by saying that

an unstable tripole may "decay" into two dipoles. We wish to emphasize that this

result is not confined to the piecewise-constant inviscid situation. Pseudospectral

simulations (Polvani and Carton, 1988) reveal a similar behavior in a continuous

and dissipative context.

Another possible avenue for decay is for the vorticity field to axisymmetrize

into a "shielded vortex", i.e. an axisymmetric monopole of vorticity surrounded by

vorticity of the opposite sign. One such example is shown Figure 7.11 where a
perturbed unstable y=-4, a=0.3 and b=0.2 tripolar V-state is shown to decay into a

very nearly axisymmetric shielded vortex.

We conclude by pointing out that these decay modes can, vice-versa,

become ways by which tripoles are generated. Thus Flierl (priv. comm.) has

recently obseNed (with pseudosprectral simulations) that an unstable perturbed

shielded vortex may decay into a tripole, and Polvani and Carton (1988), also
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using spectral algithms, have shown how tripoles can emerge from the

superposition of two dipoles.

Such "two-way" processes are not really a novelty in two-dimensional

incompressible vortex dyanmics. Dritschel (1986) has shown that the ellipse and

the doubly-connected rotating V-states are also related in a similar way. The

richeness of the behavior observed with tripoles is due to the presence of both

positive and negative vorticity, and we believe that a number of other

decay/formation processes for dipoles and tripoles still remain to be uncovered.
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FIGURE 7.1. The vorticity as a function of radius for the 2-contour Rankine vortex.

Addenda



191

'0

05

OJ

c

SIOIl'hly of " 2-conIOu, Rank,n••ort... ,' ,,"0 1

'0

0.8

0.6

o.

0.2

00 <) 2 " R
06 . J 0.0 02 " R

06 08 '0

c

0'

0.6

0.'

02

StabIlIty "I a 2-contour Rank,ne .ortex ,,"'001

/----'----,----
,,,,

c

'0

0.8

0.6

0.'

02

Stability 01 {] 2-contour Roolc,"••a,lh' ,,"-001

~j
,,,,

O.O,-,-__~_~__~_~__.-J
00 0.2 0.'

R
06 0' '0

R

'0

StabIlity 01 {] 2-conlOIJC Ronk"''' ',Otle. 1--1 'i

06

C

" ,,,
02

,

/oa

00

00 02 O'

R
0.6 08

0.8

0'

C "
02

00

-0.2

00 02

,,

o.
R

06

FIGURE 7.2. The angular velocities of the normal modes of the 2-contour Rankine

vortex as functions of R for q=0.5, 0.1, 0.01, -0.01, -0.1 and -0.5. The solid

(dashed) line corresponds to Q+ (0-). The

Addenda



192

2-contour Rankine vortex: q=O.5 2-contour Rankine vortex: q=O.l

1.4 - ....

1.0
R

•c
'0 1.2
Q.

"~ 1.0

~ 0.8
•;;
_ 0.6
o
c

.9 0.4

"u30.2/'

o.o"'/'----~------'-~-~--~---' 0.0L-_-~----'---~---'--~
0.0 0.2 0,4 0.6 0,8 1.0 0.0 0.2 0.4 0.6 0,8

.~ 1.0

•c
'0 1.2
Q.

8 0 .8
•;;

..... 0.6
o
c

.9 0.4

"u.3 0.2

R

2-contour Rankine vortex: q=O.Ol 2-contour Rankine vortex: q=-O.Ol
2.5.------------'------,

1.4
.'1
c
'0 1.2
Q.

3 1.0.,
8 0.8
•;;
_ 0.6
o
c
.2 0.4
o
u
.3 0.2

\
\ ,

- - - - - - :::------

•
~ 2.0
Q.

"u
~ 1.5

•;;
'0 1.0

c
.2
80.5
3

/,
I

I
I

- - - - - - - -~~---I

1.00.80.60.40.2
0.0 !.<:-----'--~-----'------'-'---'

0.0
R

1.00.80.60.40.2

0.0 L-__~__~__~___'_____J

0.0
R

1 00.80.60.4

2-contour Rankine vortex: q=-O.5
2.5

•c
'0 2.0
Q.

"u., 1.58
•;;
15 1.0

c
.2

" 0.5u
0
~

/

0.0
1.0 0.0 0.20.80:60.402

0.0 = __-'-__~__~ L__---'

0.0

2-contour Rankine vortex: q= -0.1
2.5.------------'------,

c
:2 ",-
g 0.5
3 ,,

"~
'C 1.5
u

•;;
'0 1.0

R R

FIGURE 7.3. The location of the critical circles for the normal modes of the 2-contour

Rankine vortex as functions of R for q=0.5, 0.1, 0.01, -0.01, -0.1 and -0.5. The
solid (dashed) line corresponds to 0+ (0_). The dotted line that appears for q<O is

associated with !L

Addenda



o
w= I

193

y

O
l---+:-b-f--+--- x

a

w= I

w=y

I '

FIGURE 7.4. A schematic drawing of a tripolar Euler V-state. The vorticity 0l=Y'2'1' is

constant inside the vortices and zero outside. The three parameter of this problem
are a, band y (not to be confused with the inverse radius of deformation!).
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FIGURE 7.5. Arrangement of the nodes for the algorithm used in the determination

of the tripolar Euler V-states. Note that the position of nodes M+1, M+2 and N+M+2

are fixed, but the location of node 1 is free to change during the iteration.
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Figure 7.6 Tripolar V-state solutions for y=-2.0, a=0.7 and

b=0.1 ,0.2,0.3 and 0.4. As b increases the satellites become more elongated.
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Figure 7.7 Tripolar V-state solutions for r=-3.0, a=0.5 and

b=0.1 ,0.2 and 0.3. Note the incipient negative curvature

on the satellites of the V-state at b=0.3.
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Figure 7.8 Tripolar V-state solutions for )"=-4.0, a=0.3 and b=0.1 and 0.2.

Note that there exists a nonrotating (0=0) solution for 0.1 <b<0.2.
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FIGURE 7.9. The evolution of a perturbed 1=-2, a=0.6 and b=0.3 tripolar V-state.

At t=O the left satellite was displaced a distanceO.1 to the right.
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FIGURE 7.10. The evolution of a perturbed y=-2, a=O.4 and b=0.2 tripolar V-state.

At t=O the left satellite was displaced a distanceO.OS to the right.
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FIGURE ?11. The evolution of a perturbed y=-2=4, a=0.4=3 and b=0.2 tripolar V­

state. At t=O the left satellite was displaced a distanceO.O? to the right.
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7. Appendices

Celui qui veut faire des grandes choses
doit penser profondement aux details.t

Vatery

Appendix A

High Order Schemes for Moment Evaluation

We describe here in some detail the fourth order algorithms we have used to

diagnose the contour dynamical results obtained throughout the thesis. We start by

considering the quantities that need to be calculated. In general, given a closed,

simply-connected contour C enclosing a domain Din the (x,y) plane toe following

numbers are of interest:

Area = A = Moo = r dxdy = - A: y dx = A: x dyJD jc jc

x = MlO = K 1 fox dxdy = _A-1fc xy dx = A-1fc (x2/2) dy

y = M01 = K 1JYdxdy = - A-1f (y2/2) dx =A-1A: xy dy
D C jc

M02 = K 1Jy2 dxdy = - A-1f (y3/3) dx = K 1 f xy2 dy
D C C

t The man who wants to do great things must think very carefully about the details.
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In the same vein, the (mth,nth) moment Mmn of a given contour is given by:

(A.l)

However, in order to be able to interpret geometrically the moments for m+n>1, it is

convenient to redefine them with respect to the centroid (x,y) by considering the

quantites:

for m+n>1 (A.8)

For an ellipse with aspect ratio At and whose major axis is inclined with respect to

the x-axis by an angle cp it can be shown that:

A
J20 = - [ 1 - (1-A,2) cos2cp]

4nA,

J11 =8~A, [1-A,2] sin2cp

(A.9)

Thus, in the same way as when, by calculating its area and centroid, one obtains
the radius (-.iNn) and the center of the "equivalent circle" of any given contour, from

the values of the three second order moments one can, by inverting the above

relations, find the aspect ratio A,eq and the inclination cpeq of its "equivalent ellipse",

which are given by:

where

and _.!. in-1 { 8nA,J11 }
CPeq - 2 s (1-A,2)A (A.9a)

Recall, however, that A,eq and cpeq can only be interpreted meaningfully when the

shape of the contour is not too "far" from an ellipse.

t We have adopted here the convention 0,,1.51, so that a very elongated ellipse corresponds to 1..«1.
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Having designated the moments as the quantities to be calculated, we now

proceed to expound on the fourth order algorithm we have employed to evaluate

the Jmn's. The general expression that needs to be computed can put in the form:

M=f/(Y)dY (A.10)

Because nodes that discretize the contour are assumed to be a given set

{(Xi, Yi), i=1,N} , the intervals in dy between any two pairs of successive nodes are

usually not equal. We thus first recast the contour integral in a form such that the

variable of integration is incremented by a constant amount from one node to the

next. The simplest choice for such a variable is the node label n, which leads to the

expression:

(A.11 )

Now we split the integral over the entire contour in a sum of the integrals over the

intervals between two nodes, and thus write:

N ~1 N

M = I, J G(n) dn '" I, Hi
i=1 i i=1

(A.12)

where we have define XN+1=X1 and YN+1=Y1. Note that the above expression is still

exact. The approximation comes in the choice of a scheme for evaluating the

integrals Hi, since G(n) is only known at the integer values of n. If G(n) is substituted

with a polynomial p(q)(n) of degree qt, obtained via a Lagrange interpolation using

q+1 values of G at the nodes, one has the an approximation of order q to Hi,

namely

(A.13)

t We limit qto odd values here to maintain the symmetry about the interval between kn<i+1.
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where the need for the change of variables to n*,"n-i+1 will become apparent in a
moment, and:

where Gi~) is the value of G at node i+k-(q-1 )/2, and Lkq)(n) is the Lagrange

polynomial of degree q defined by:

and can be formally rewritten:

q .

= II~. 0 k-J
J=
j;tk

(A.15)

(A.16)

and the Ukm'S are obtained by comparing equal powers of n is (A.16) and (A.15)t.

Now substitution of (A.16) and (A.14) into (A.13) allows for direct evaluation of the
integral, and it follows that:

where:

q

= L
k=O

(A.17)

Thus the change of variables from n to n* in (A.13) makes the f3's independent of i,

so that they are only calculated once for all nodes, all moments and all contours.

The final expression for the moment M evaluated with a qth order scheme takes
therefore the simple form:

t Note that the akm's are the same for each internodal integral Hi, for each moment J mn and for each contour, so
that they need only be calculated once.
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N q
M(q) = L L

i=1 k=O

R(q) G (q)
I-'k ik (A.17)

(A.18)

It can be shown that the choice q=1 is equivalent to using the trapezoidal rule to

evaluate Hi, which is equivalent to fitting a straight line between G(i) and G(i+1) ­

I.e. a first order polynomial. In fact for q=1 it is easy to see from (A.10) that:

N .
M (1) _ ~ F(I+1)+F(1) (. _. )

- £oJ 2 y'+1 y,
i=1

Formula (A.18) is however not accurate enough for our purposes. For N nodes

equally spaced on a circle of radius 1, the average value of dy is 4/N; thus we can
estimate that M-M(1)=0(N-2). Since we usually work with less than or

approximately 0(100) nodes, and since we need to be able to detect logarithmic

changes in moments down to 0(10-6) we have used the next lowest order

symmetric scheme, which corresponds to q=3.

At that order the function G(n) in (A.11) is interpolated between n=i and

n=i+1 by a cubic polynomial using the values of G(i-1), G(i), G(i+1) and G(i+2).

Recall that to evaluate G(n) at n=i we need to calculate dy/dn at the nodes. Clearly,

to maintain the same accuracy as the cubic Lagrange interpolation, we need for

dy/dn a "five- point formula" (see for instance Burden and Faires 1985) which is of

order four. We have here chosen the symmetric one, which gives the value of the

slope at Xo of a function f(x) in terms of the values of the function at the four points

xo-2h, xo-h, xo+h and xo+2h, namely:

df 1
dx (xo) = 12h [f(xo-2h) - 8 f(xo-h) + 8 f(xo+h) - f (xo+2h) ] + 0(h4)

for h«1. With the combination of a cubic Lagrange interpolant and and a five-point

formula we have therefore built an algorithm that is accurate to 0(N-4) which, for

N=0(1 00), has proven to be more than adequate for our purposes.

As a last check, we have actually verified numerically the order of this

algorithm - as well as the the one of the scheme given in (A.18) - by means of a

simple Richardson extrapolation performed with a ellipse off the origin and inclined

at some non-zero angle with the x-axis.
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Appendix B

Explicit Formulas for V-State Algorithms

81: Rotating V-States (m=2)

For this type of V-state the expressions anlogous to (1.10) for the angular
velocity Q and to (1.12) for the Fi'S are identical to the ones for the Euler V-states

given by Wu et al. (1984). Thus:

2 N
Q = ~ R2 I, [ui+1I2(xi+1-xi+1)-vi+1/2(Yi+1-Yi+1)]

A - 8 i=1

and

u1l2 sinei+1 - vi+1/2 cosei+1 + (Q/2) Ri+1

ui+1/2 sine i - v i+1/2 cose i + (Q/2) Ri

We remark that we did not place nodes at equal polar angles for this type of

V-state. Rather, since Zou et al. (1988) have shown that placing nodes such that

their density is proportionally to the curvature to the power 1/3 is optimal for the

Kirchhoff ellipse, and since (as we have learnt a posteriori) the shapes of the V­

states are very close to ellipses, we decided to place the nodes at equal elliptical

anglest, which, for an exact ellipse, is equivalent to their density going like ](1/3.

t The elliptical angle I] is implicitly defined by the relations x= acosl] and y = b sinl] for any point (x,y) located
on an ellispe of major axis aand minor axis b.
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82: Translating V-States

Here again the formulas for V and the Fi'S are identical to the ones of Wu et
al. (1984), namely:

N

V = 2 1 2 L [Ui+1/2 (X;+1 - X;+1) - vi+1/2 (y;+1 - y;+1)]
XA - Xs i=1

and

U1/2 sinS;+1 - (vi+1/2-V) COSSi+1

u;+1/2 sinSi - (v;+1/2-V) cosS i

Since they are a consequence of the topology of the vorticity field alone, these

expressions apply equally to the case when the two vortices either are in the same

or in different layers.

83: Doubly-Connected Rotating V-States

The formulas for 0 and the Fi'S applicable to this geometry are easily derived

by generalizing Wu et al. (1984) and are found to be:

N

0= x2 2 x 2 L [Ui+1/2(Xi+1-Xi+1)-Vi+1/2(Yi+1-Yi+1)]
A - S ;=1

and

U1/2 sinSi+1 - vi+1/2 cosSi+1 + (0/2) (Ri+1+2xoCOSSi+1)

Ui+1/2 sinS; - vi+1/2 cosSi + (0/2) (Rj+2xocosSi)

where we have defined:
XA - Xs

Xo 2

Since for this type of V-states we have been particularly interested in the

limiting cases which have regions of very high curvature, the nodes were not

placed at either polar or elliptical equal angles. Rather we have procedeed by

increasing the density of nodes near either XA or Xs or both according to the
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following simple procedure.

Since only the upper-right-hand quadrant need be considered (cf. Figure
2.18) focus only on the interval 0<8<1t, where 8 is the polar angle measured from

the point (xo,O), the "center" of the right vortex. Now let 8i be the value of 8 for node i

and i=1,N+1 so that 81=0 corresponds to XB and 8N+1=1t to XA, and the contour is

devided into N segments. Chosing a node placement scheme is then equivalent to
givi ng an expression for 8i as a function of i.

If the nodes are placed at equal angles it is elementary to see that the

expression is simply:

i - 1
8i = 1t {-N-}

We have instead used the formula:

(83.1)

(83.2)

which places in a smooth way more nodes near 8=0 and 1t and fewer nodes near

8=1t/2. We have found that with (B3.2), not only is convergence greatly improved for

the states with moderate curvature, but that, for the really spiky states, the algorithm

will often converge to a spurious V-state when (B3.1) is used.
One may wonder whether, since the cusp usually develops either at 8=1t or

8=0, it wouldn't be even better to put more nodes only in the region were the

curvature is high, and less everywhere else. In the same spirit as (B3.2) we have

tried the formulas:

(83.3)

and

(83.4)

which put more nodes near 8=1t and 8=0, respectively, and where:
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We have found that, in general, (B3.3) and (B3.4) perform less well than (B3.2) and

we attribute this to the fact that the former produce such large differences in the

internodal distances that the evaluation of the velocity as an integral over the

contour is worsened sufficiently to produce a negative impact on the overall
convergence.

Again, we recall that the above expressions hold for this type of V-state

independently of whether the vortices are in the same or in different layers.
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Appendix C

Desingularized Two-layer Contour Dynamics

The exact expression for the velocity at a point (x, y) in layer i=1,2 is given by

equation (1.7):

1 2 Nj f
lUi , ViI (x,y) = - - ~ ~ (!Vn)} Gij (r) [d~,dr1]

21t j =1 n= 1 aOj(n)
(C.1)

where Nj is the number of closed regions of nonzero geostrophic potentyialvorticity

in layer j, and

The Greens' functions Gij, given in (1.4), contain both logarithmic and modified

Bessel (Ko) terms which are singular at vanishing distances.

For the Euler equations the logarithmic singularity at the origin can be

eliminated by means of a simple integration by parts (cf., for instance, Zou et al.

1987). Thus the Euler analog to (C.1), viz.

1 N f[u, vI (x, y) = - ~ {Qn} log(rP) [d~,dll]
21tp n= 1 aOn

where, usually, p=1 or 2, becomes, after integration by parts:

1 N f[u, vI (x, y) = - ~ {Qn} [(X-S),(Y-TJ)J (i'drP
21tp n=1 aOn

(C.2)

(C.3)

The same operation can be performed on the modified Bessel term of order zero in

the Greens' function. For instance, the equivalent barotropic velocities given by

1 N J[u, Vle.b. (x, y) = - - ~ {IIn} Ko('yr) [d~,dll]
21t n= 1 aOn
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can be rewritten in terms of the modified Bessel function of order 1, leading to the

logarithmically desingularized expression

1 N J[u, V]e.b. (x, y) =- 1: {ITn} YK1 ('yr) [(x-l;),(Y-l1)] dr
2n n = 1 aDn

(C.5)

The advantage of this expression, which, we recall is still exact, resides in the fact

that near the origin the function K1 (z} behaves like 1/z. A simple integration by parts

has thus removed the logarithmic singularity. Expression (C.5) can be discretized

in the way shown by Zou et al. (1987) to obtain a second order algorithm.
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Appendix D

Numerical Determination of the Critical Points
of the Corotating Streamfunction for a

Perturbed Kirchhoff Ellipse

From a time sequence of contours {Xi(t), Yi(t) I i=1.N(t)} at t=t1. t2. b .... (with

t2=t1+l1t, t3=t2+l1t .... ) we proceed as follows to determine the equilibrium points of

the corotating streamfunction.
First one needs to determine the instantaneous angular velocity Q(t). To do

this we fit the contours at t1 and b with ellipses from the values of the moments of
vorticity. as explained in Appendix A. This yields the values «>1 and «>3 of the angles

between the major axes of the fitted ellipses and the x-axis. The instantaneous
value of Q at t2 is then calculated using the second order formula:

(0.1 )

Since the corotating streamfunction 'Jfc is related to the inertial streamfunction 'Jf by

the simple relationship:

'Jfc(x.y,t) = 'Jf(x,y.t) - (1/2) Q(t) (x2+y2)

the corotating velocity field is easily obtained from the inertial one:

uc(x.y) = u(x.y) + Qy and vc(x.y) = v(x,y) - Qx (0.2)

The eqUilibrium points of the corotating streamfunction, the centers and saddles of

'Jfc(x.y.t). are the points where both Uc and Vc are identically zero. The coordinates

(xc.Yc) of the equilibrium points must then satisfy:

u(Xe.yc.t) = - Q(t) Yc and v(xc,yc.t) = + Q(t) Xc (0.3)

Since u(xc.Yc) and v(xc,Yc) can be thought of as "very" nonlinear functions of Xc and

Yc. (0.3) is simply a nonlinear algebraic system of equations in two unknowns, and

must be solved numerically. We have solved it using a nonlinear secant method

due to Wolfe (1959). which is part of the IMSL routine package (Version 9) under
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the name ZSCNT. We have found this algorithm to converge extremely fast (say

0(10) iterations) provided the initial guess is sufficiently good. Note that this

method yields the location of the centers as well as the saddles of the corotating
streamfunction.

Using the Euler version of (1.8) to calculate the velocity fields, with single

precision, 0(100) nodes per contour and sufficiently small t.t (usually < 0.25) we

have found the above procedure to yield values for Xc and Yc to 3 decimal figures

when tested against the exact positions known for an unperturbed Kirchhoff ellipse.

The same nonlinear secant method was used to solve (0.3) for a variety of
V-states, but the value of Q used was the one obtained from the iterative algorithms

described in Section 1.5.1 and Appendix S, and no time stepping was required.
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